WorldWideScience

Sample records for alters immune endocrine

  1. Altered time structure of neuro-endocrine-immune system function in lung cancer patients

    Directory of Open Access Journals (Sweden)

    Carughi Stefano

    2010-06-01

    TcS1 was decreased in cancer patients. The melatonin/cortisol mean nocturnal level ratio was decreased in cancer patients. Conclusion The altered secretion and loss of circadian rhythmicity of many studied factors observed in the subjects suffering from neoplastic disease may be expression of gradual alteration of the integrated function of the neuro-immune-endocrine system

  2. Determinants of altered intracellular endocrine-immune interplay in Bosnian war refugees suffering from PTSD.

    Science.gov (United States)

    Pitts, Kenneth P; Joksimovic, Ljiljana; Steudte-Schmiedgen, Susann; Rohleder, Nicolas; Wolf, Jutta M

    2016-07-01

    Posttraumatic Stress Disorder (PTSD) has been repeatedly linked to changes in glucocorticoid (GC) sensitivity. To increase our understanding of this phenomenon and its potential relevance for PTSD development and treatment, the current study investigates the interplay between two key moderators, glucocorticoid receptor (GRα) and GR co-chaperone FKBP5, and their relation to GC sensitivity. A GC sensitivity assay was performed in 52 Bosnian war refugees (19m; 40.8±8.7 years) clinically diagnosed with PTSD to divide the patient group into a high (HS) and a low (LS) GC sensitivity group. Expression of GRα and FKBP5 mRNA was quantified by real-time RT-PCR. Links between gene expression and GC sensitivity were driven by the HS group of PTSD patients, which also showed increased expression of GRα but not FKBP5 compared to the LS group. Further, expressions of FKBP5 and GRα were strongly correlated in the HS patient group, while this association was missing in the LS PTSD group. Our findings suggest that PTSD phenotypes may be characterized by differences in intracellular signaling transduction processes. The associations of expression of GRα and FKBP5 in the high-sensitive PTSD subgroup may thereby reflect physiological adaptation to preserve immune-relevant GC signaling. Further research is needed to understand the role and consequences of GRα-FKBP5 dissociation in low GC sensitivity PTSD patients.

  3. Altered mental status and endocrine diseases.

    Science.gov (United States)

    Park, Elizabeth; Abraham, Michael K

    2014-05-01

    Although the altered mental status is a common presentation in the emergency department, altered mental status caused by endocrine emergencies is rare. The altered patient could have an endocrine cause that can quickly improve with appropriate diagnosis and interventions. When dealing with limited information and an obtunded patient, it is important to have a broad differential diagnosis, pick up on the physical examination findings, and evaluate laboratory abnormalities that could suggest an underlying endocrine emergency. This article outlines the findings and provides a description of altered patients with endocrine emergencies to facilitate the diagnosis and treatment in the emergency department.

  4. Muscular Dystrophies at Different Ages: Metabolic and Endocrine Alterations

    OpenAIRE

    Oriana del Rocío Cruz Guzmán; Ana Laura Chávez García; Maricela Rodríguez-Cruz

    2012-01-01

    Common metabolic and endocrine alterations exist across a wide range of muscular dystrophies. Skeletal muscle plays an important role in glucose metabolism and is a major participant in different signaling pathways. Therefore, its damage may lead to different metabolic disruptions. Two of the most important metabolic alterations in muscular dystrophies may be insulin resistance and obesity. However, only insulin resistance has been demonstrated in myotonic dystrophy. In addition, endocrine di...

  5. Endocrine alterations in HIV-infected patients

    Directory of Open Access Journals (Sweden)

    Sujit Kumar Tripathy

    2015-01-01

    Full Text Available Aims and objectives: To study the frequency of thyroid, adrenal and gonadal dysfunction in newly diagnosed HIV-infected patients and to correlate them at different levels of CD4 cell counts. Materials and Methods: Forty-three HIV-positive cases were included in the study group. Cases were divided into three groups on the basis of CD4 cell count. Serum free T3, free T4, TSH, Cortisol, FSH, LH, testosterone and estradiol were estimated by the radioimmunoassay method. Hormone levels between cases were compared and their correlation with CD4 count was analyzed. Results: Prevalence of gonadal dysfunction (88.3% was the most common endocrine dysfunction followed by thyroid (60.4% and adrenal dysfunction (27.9%. Secondary hypogonadism (68.4% was more common than primary (31.6%. Low T3 syndrome, that is, isolated low free T3, was the most common (25.6% thyroid dysfunction followed by secondary hypothyroidism (16.2% and subclinical hypothyroidism (11.6%. Adrenal excess (16.3% was more common than adrenal insufficiency (11.6%. The difference in hormonal dysfunction between male and female was statistically insignificant (P > 0.05. 27.9% of patients had multiple hormone deficiency. There was negligible or no correlation between CD4 count and serum hormone level. Conclusion: In our study, endocrine dysfunction was quite common among HIV-infected patients but there was no correlation between hormone levels and CD4 count. Endocrine dysfunctions and role of hormone replacement therapy in HIV-infected patient needs to be substantiated by large longitudinal study, so that it will help to reduce morbidity, improve quality of life.

  6. Muscular Dystrophies at Different Ages: Metabolic and Endocrine Alterations

    Directory of Open Access Journals (Sweden)

    Oriana del Rocío Cruz Guzmán

    2012-01-01

    Full Text Available Common metabolic and endocrine alterations exist across a wide range of muscular dystrophies. Skeletal muscle plays an important role in glucose metabolism and is a major participant in different signaling pathways. Therefore, its damage may lead to different metabolic disruptions. Two of the most important metabolic alterations in muscular dystrophies may be insulin resistance and obesity. However, only insulin resistance has been demonstrated in myotonic dystrophy. In addition, endocrine disturbances such as hypogonadism, low levels of testosterone, and growth hormone have been reported. This eventually will result in consequences such as growth failure and delayed puberty in the case of childhood dystrophies. Other consequences may be reduced male fertility, reduced spermatogenesis, and oligospermia, both in childhood as well as in adult muscular dystrophies. These facts all suggest that there is a need for better comprehension of metabolic and endocrine implications for muscular dystrophies with the purpose of developing improved clinical treatments and/or improvements in the quality of life of patients with dystrophy. Therefore, the aim of this paper is to describe the current knowledge about of metabolic and endocrine alterations in diverse types of dystrophinopathies, which will be divided into two groups: childhood and adult dystrophies which have different age of onset.

  7. Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction.

    Science.gov (United States)

    Ahmed, R G

    2016-09-01

    Because bisphenol A (BPA) has been detected in animals, the aim of this study was to investigate the possible effects of maternal BPA exposure on the fetal endocrine system (thyroid-adipokine axis). BPA (20 or 40 μg/kg body weight) was orally administered to pregnant rats from gestation day (GD) 1-20. In both treated groups, the dams and their fetuses had lower serum thyroxine (T4) and triiodothyronine (T3) levels, and higher thyrotropin (TSH) level than control dams and fetuses at GD 20. Some histopathological changes in fetal thyroid glands were observed in both maternal BPA groups at embryonic day (ED) 20, including fibroblast proliferation, hyperplasia, luminal obliteration, oedema, and degeneration. These disorders resulted in the suppression of fetal serum growth hormone (GH), insulin growth factor-1 (IGF1) and adiponectin (ADP) levels, and the elevation of fetal serum leptin, insulin and tumor necrosis factor-alpha (TNFα) levels in both treated groups with respect to control. The depraved effects of both treated groups were associated with reduced maternal and fetal body weight compared to the control group. These alterations were dose dependent. Thus, BPA might penetrate the placental barrier and perturb the fetal thyroid adipokine axis to influence fat metabolism and the endocrine system.

  8. An exploratory study into the effect of exhausting bicycle exercise on endocrine and immune responses in post-menopausal women : Relationships between vigour and plasma cortisol concentrations and lymphocyte proliferation following exercise

    NARCIS (Netherlands)

    van der Pompe, G; Bernards, N; Kavelaars, A; Heijnen, C

    2001-01-01

    It is well-established that bicycle exercise alters the endocrine and immune responses in men, but little information is available for women, especially middle-aged, post-menopausal women. The purpose of our study was to document the endocrine and immune reactivity to exhausting bicycle exercise in

  9. Inflammation and immune system alterations in frailty.

    Science.gov (United States)

    Yao, Xu; Li, Huifen; Leng, Sean X

    2011-02-01

    Frailty is an important geriatric syndrome characterized by multisystem dysregulation. Substantial evidence suggests heightened inflammatory state and significant immune system alterations in frailty. A heightened inflammatory state is marked by increases in levels of inflammatory molecules (interleukin 6 and C-reactive protein) and counts of white blood cell and its subpopulations, which may play an important role in the pathogenesis of frailty, directly or through its detrimental influence on other physiologic systems. Alterations in the innate immune system include decreased proliferation of the peripheral blood mononuclear cells and upregulated monocytic expression of specific stress-responsive inflammatory pathway genes. In the adaptive immune system, although little information is available about potential B-cell changes, significant alterations have been identified in the T-cell compartment, including increased counts of CD8+, CD8+CD28-, CCR5+T cells, above and beyond age-related senescent immune remodeling.

  10. An overview of estrogen-associated endocrine disruption in fishes: evidence of effects on reproductive and immune physiology

    Science.gov (United States)

    Iwanowicz, L.R.; Blazer, V.S.

    2011-01-01

    Simply and perhaps intuitively defined, endocrine disruption is the abnormal modulation of normal hormonal physiology by exogenous chemicals. In fish, endocrine disruption of the reproductive system has been observed worldwide in numerous species and is known to affect both males and females. Observations of biologically relevant endocrine disruption most commonly occurs near waste water treatment plant outfalls, pulp and paper mills, and areas of high organic loading sometimes associated with agricultural practices. Estrogenic endocrine disrupting chemicals (EEDCs) have received an overwhelmingly disproportionate amount of scientific attention compared to other EDCs in recent years. In male fishes, exposure to EEDCs can lead to the induction of testicular oocytes (intersex), measurable plasma vitellogenin protein, altered sex steroid profiles, abnormal spawning behavior, skewed population sex ratios, and lessened reproductive success. Interestingly, contemporary research purports that EDCs modulate aspects of non-reproductive physiology including immune function. Here we present an overview of endocrine disruption in fishes associated with estrogenic compounds, implications of this phenomenon, and examples of EDC related research findings by our group in the Potomac River Watershed, USA.

  11. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity

    Science.gov (United States)

    Cissé, Yasmine M.; Russart, Kathryn L.G.; Nelson, Randy J.

    2017-01-01

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues. PMID:28361901

  12. Diffuse endocrine system, neuroendocrine tumors and immunity: what's new?

    Science.gov (United States)

    Ameri, Pietro; Ferone, Diego

    2012-01-01

    During the last two decades, research into the modulation of immunity by the neuroendocrine system has flourished, unravelling significant effects of several neuropeptides, including somatostatin (SRIH), and especially cortistatin (CST), on immune cells. Scientists have learnt that the diffuse neuroendocrine system can regulate the immune system at all its levels: innate immunity, adaptive immunity, and maintenance of immune tolerance. Compelling studies with animal models have demonstrated that some neuropeptides may be effective in treating inflammatory disorders, such as sepsis, and T helper 1-driven autoimmune diseases, like Crohn's disease and rheumatoid arthritis. Here, the latest findings concerning the neuroendocrine control of the immune system are discussed, with emphasis on SRIH and CST. The second part of the review deals with the immune response to neuroendocrine tumors (NETs). The anti-NET immune response has been described in the last years and it is still being characterized, similarly to what is happening for several other types of cancer. In parallel with investigations addressing the mechanisms by which the immune system contrasts NET growth and spreading, ground-breaking clinical trials of dendritic cell vaccination as immunotherapy for metastatic NETs have shown in principle that the immune reaction to NETs can be exploited for treatment.

  13. Leptin, resistin and visfatin: the missing link between endocrine metabolic disorders and immunity.

    Science.gov (United States)

    Al-Suhaimi, Ebtesam A; Shehzad, Adeeb

    2013-05-01

    Adipose tissue is still regarded as a principle site for lipid storage and mobilizing tissue with an important role in the control of energy homeostasis. Additionally, adipose tissue-secreted hormones such as leptin, visfatin, resistin, apelin, omentin, sex steroids, and various growth factors are now regarded as a functional part of the endocrine system. These hormones also play an important role in the immune system. Several in vitro and in vivo studies have suggested the complex role of adipocyte-derived hormones in immune system and inflammation. Adipokines mediate beneficial and detrimental effects in immunity and inflammation. Many of these adipocytokines have a physiological role in metabolism. The uncontrolled secretions of several adipocytokines were associated with the stimulation of inflammatory processes leading to metabolic disorders including obesity, atherosclerosis, insulin resistance and type 2 diabetes. Obesity leads to the dysfunction of adipocytes andcorrelated with the imbalance of adipokines levels. In obese and diabetic conditions, leptin deficiency inhibited the Jak/Stat3/PI3K and insulin pathways. In this review, ample evidence exists to support the recognition of the adipocyte's role in various tissues and pathologies. New integral insights may add dimensions to translate any potential agents into the future clinical armamentarium of chronic endocrine metabolic and inflammatory diseases. Functional balance of both adipocytes and immune cells is important to exert their effects on endocrine metabolic disorders; furthermore, adipose tissue should be renamed not only as a functional part of the endocrine system but also as a new part of the immune system.

  14. Immune system alterations in amyotrophic lateral sclerosis

    DEFF Research Database (Denmark)

    Hovden, H; Frederiksen, J L; Pedersen, S W

    2013-01-01

    cells working together are necessary for the pathogenesis of the disease. Observed immune system alterations could indicate an active participation in this mechanism. Damaged motor neurons are able to activate microglia, astrocytes and the complement system, which further can influence each other...... give more insight into the disease. Markers from the classical complement pathway are elevated where its initiator C1q appears to derive primarily from motor neurons. Activated microglia and astrocytes are found in close proximity to dying motor neurons. Their activation status and proliferation......Amyotrophic lateral sclerosis is a disease of which the underlying cause and pathogenesis are unknown. Cumulatative data clearly indicates an active participation by the immune system in the disease. An increasingly recognized theory suggests a non-cell autonomous mechanism, meaning that multiple...

  15. Corticosteroids and interleukin-1, messengers for communication between the endocrine and immune system in carp.

    NARCIS (Netherlands)

    Weijts, F.A.A.

    1998-01-01

    SummaryStress-induced inummosuppression is a well known phenomenon and mostly attributed to actions of steroid hormones released upon activation of the hypothalamus-pituitary-adrenal (HPA)-axis. In mammals, this endocrine-immune interaction is part of a bidirectional communication n

  16. Evidence of endocrine alteration in the red mullet, Mullus barbatus from the NW Mediterranean

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Skilton, Rebeca [Department of Environmental Chemistry, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona (Spain); Lavado, Ramon [Department of Environmental Chemistry, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona (Spain); Thibaut, Remi [Department of Environmental Chemistry, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona (Spain); Minier, Christophe [Laboratoire d' Ecotoxicologie, Universite du Havre, 25 rue Philippe Lebon, B.P. 540, F-76058 Le Havre (France); Porte, Cinta [Department of Environmental Chemistry, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona (Spain)]. E-mail: cpvqam@cid.csic.es

    2006-05-15

    Red mullet (Mullus barbatus) were collected from different sampling sites (NW Mediterranean) in spring and autumn, with the aim of assessing potential alterations of the endocrine system. Alkylphenols were measured in fish bile as an indicator of estrogenic exposure. Key enzymatic activities involved in both synthesis (ovarian 17{beta}-hydroxysteroid dehydrogenases and P450 aromatase) and metabolism of steroids were assessed together with histological alterations of the gonads. During the spring sampling, delayed gamete maturation, intersexuality, fibrosis, and depressed ovarian P450 aromatase activity were observed in organisms from the most polluted sites. During the autumn sampling, those effects were less evident, indicating that fish might be more susceptible to endocrine disrupting chemicals during the reproductive period. Nonetheless, enhanced glucuronidation of testosterone and estradiol was observed. Overall, this work provides first evidences of significant alterations in the endocrine system of red mullet from highly impacted areas in the NW Mediterranean. - Red mullet may be more susceptible to endocrine disruptors during the reproductive period.

  17. The effects of estrogenic and androgenic endocrine disruptors on the immune system of fish: a review.

    Science.gov (United States)

    Milla, Sylvain; Depiereux, Sophie; Kestemont, Patrick

    2011-03-01

    During the last decade, a number of studies have shown that, in addition to their classically described reproductive function, estrogens and androgens also regulate the immune system in teleosts. Today, several molecules are known to interfere with the sex-steroid signaling. These chemicals are often referred to as endocrine disrupting contaminants (EDCs). We review the growing evidence that these compounds interfere with the fish immune system. These studies encompass a broad range of approaches from field studies to those at the molecular level. This integrative overview improves our understanding of the various endocrine-disrupting processes triggered by these chemicals. Furthermore, the research also explains why fish that have been exposed to EDCs are more sensitive to pathogens during gametogenesis. In this review, we first discuss the primary actions of sex-steroid-like endocrine disruptors in fish and the specificity of the fish immune system in comparison to mammals. Then, we review the known interactions between the immune system and EDCs and interpret the primary effects of sex steroids (estrogens and androgens) and their related endocrine disruptors on immune modulation. The recent literature suggests that immune parameters may be used as biomarkers of contamination by EDCs. However, caution should be used in the assessment of such immunotoxicity. In particular, more attention should be paid to the specificity of these biomarkers, the external/internal factors influencing the response, and the transduction pathways induced by these molecules in fish. The use of the well-known mammalian models provides a useful guide for future research in fish.

  18. Interleukin 13 and serotonin: linking the immune and endocrine systems in murine models of intestinal inflammation.

    Directory of Open Access Journals (Sweden)

    Md Sharif Shajib

    Full Text Available OBJECTIVE: Infiltration of activated immune cells and increased cytokine production define the immunophenotype of gastrointestinal (GI inflammation. In addition, intestinal inflammation is accompanied by alteration in the numbers of serotonin (5-hydroxytryptamine; 5-HT synthesizing enterochromaffin (EC cells and in 5-HT amount. It has been established that EC cells express interleukin (IL-13 receptor, additionally IL-13 has been implicated in the pathogenesis of ulcerative colitis. In this study, we investigated the role of IL-13 mediated 5-HT signaling in pathogenesis of colitis. METHODOLOGY: Colitis was induced in IL-13 deficient (IL-13-/- and wild-type (WT mice with dextran sulfate sodium (DSS and dinitrobenzene sulfonic acid (DNBS, as well as in IL-13-/- mice given recombinant mouse IL-13 (rmIL-13 and 5-hydroxytryptamine (5-HTP, the direct precursor of 5-HT. PRINCIPAL FINDINGS AND CONCLUSION: Elevated colonic IL-13 levels were observed in WT mice receiving DSS in comparison to control. IL-13-/- mice administered DSS exhibited significantly reduced severity of colitis compared to WT mice as reflected by macroscopic and histological damage assessments. Following DSS administration, significantly lower pro-inflammatory cytokine production and fewer infiltrating macrophages were observed in IL-13-/- mice compared to WT. The reduced severity of colitis observed in IL-13-/- mice was also accompanied by down-regulation of EC cell numbers and colonic 5-HT content. In addition, increasing colonic 5-HT content by administration of rmIL-13 or 5-HTP exacerbated severity of DSS colitis in IL-13-/- mice. IL-13-/- mice also exhibited reduced severity of DNBS-induced colitis. These results demonstrate that IL-13 plays a critical role in the pathogenesis of experimental colitis and 5-HT is an important mediator of IL-13 driven intestinal inflammation. This study revealed important information on immune-endocrine axis in gut in relation to inflammation which

  19. Endocrine and Local IGF-I in the Bony Fish Immune System

    Directory of Open Access Journals (Sweden)

    Anne-Constance Franz

    2016-01-01

    Full Text Available A role for GH and IGF-I in the modulation of the immune system has been under discussion for decades. Generally, GH is considered a stimulator of innate immune parameters in mammals and teleost fish. The stimulatory effects in humans as well as in bony fish often appear to be correlated with elevated endocrine IGF-I (liver-derived, which has also been shown to be suppressed during infection in some studies. Nevertheless, data are still fragmentary. Some studies point to an important role of GH and IGF-I particularly during immune organ development and constitution. Even less is known about the potential relevance of local (autocrine/paracrine IGF-I within adult and developing immune organs, and the distinct localization of IGF-I in immune cells and tissues of mammals and fish has not been systematically defined. Thus far, IGF-I has been localized in different mammalian immune cell types, particularly macrophages and granulocytes, and in supporting cells, but not in T-lymphocytes. In the present study, we detected IGF-I in phagocytic cells isolated from rainbow trout head kidney and, in contrast to some findings in mammals, in T-cells of a channel catfish cell line. Thus, although numerous analogies among mammals and teleosts exist not only for the GH/IGF-system, but also for the immune system, there are differences that should be further investigated. For instance, it is unclear whether the primarily reported role of GH/IGF-I in the innate immune response is due to the lack of studies focusing on the adaptive immune system, or whether it truly preferentially concerns innate immune parameters. Infectious challenges in combination with GH/IGF-I manipulations are another important topic that has not been sufficiently addressed to date, particularly with respect to developmental and environmental influences on fish growth and health.

  20. Effect of a straw-derived xylooligosaccharide on broiler growth performance, endocrine metabolism, and immune response.

    Science.gov (United States)

    Zhenping, Sun; Wenting, Lv; Ruikui, Yu; Jia, Li; Honghong, Liu; Wei, Sun; Zhongmie, Wang; Jingpan, Li; Zhe, Shan; Yuling, Qin

    2013-04-01

    The aim of this work was to evaluate the effect of 3 levels of supplemental xylooligosaccharides (XOS) from straw on the growth performance, endocrine metabolism, and immune response of broiler chickens. Day-old, healthy Arbor Acres broilers (n = 192) received a basal diet of maize-soybean meal and, depending on the group to which they were allocated, no additive (control group) or the following experimental treatments for 59 d: treatment 1: 5 g XOS/kg; treatment 2: 10 g XOS/kg; and treatment 3: 20 g XOS/kg. By day 59 the body weight gain of the chickens receiving treatment 2 had increased by 9.44% (P < 0.01) over the gain of the control group. The levels of serum triiodothyronine, thyroxine, and insulin on day 44 were significantly higher in the treatment groups than in the control group. The titers of antibody to the avian influenza H5N1 virus on day 24 were also significantly higher in the treatment groups than in the control group, and on day 59 the titer of the chickens receiving treatment 2 were still significantly increased (P < 0.05). Thus, the addition of XOS to feed can increase growth performance, enhance endocrine metabolism, and improve immune function in broiler chickens.

  1. Associations among central nervous, endocrine, and immune activities when positive emotions are elicited by looking at a favorite person.

    Science.gov (United States)

    Matsunaga, Masahiro; Isowa, Tokiko; Kimura, Kenta; Miyakoshi, Makoto; Kanayama, Noriaki; Murakami, Hiroki; Sato, Sayaka; Konagaya, Toshihiro; Nogimori, Tsuyoshi; Fukuyama, Seisuke; Shinoda, Jun; Yamada, Jitsuhiro; Ohira, Hideki

    2008-03-01

    Recent studies on psychoneuroimmunology have indicated that positive psychological events are related to immune functions; however, limited information is available regarding associations among the central nervous, endocrine, and immune systems when positive emotions are elicited. In the present study, we demonstrated associations among these systems by simultaneously recording brain, endocrine, and immune activities when positive emotions were evoked in participants as they watched films featuring their favorite persons. Interestingly, the activity of peripheral circulating natural killer cells and the peripheral dopamine level were elevated while participants experienced positive emotions, and these values were positively correlated. The following brain regions were significantly activated in the positive condition relative to the control condition: medial prefrontal cortex, thalamus, hypothalamus, subcallosal gyrus, posterior cingulate cortex, superior temporal gyrus, and cerebellum. Further, covariate analyses indicated that these brain regions were temporally associated with endocrine and immune activities. These results suggest that while an individual experiences positive emotions, the central nervous, endocrine, and immune systems may be interrelated and attraction for favorite persons may be associated with the activation of the innate immune function via the dopaminergic system.

  2. COMMENTS ON THE HOLISTIC ACTION OF ACUPUNCTURE IN VIEW OF ITS INFLUENCE ON NERVE-ENDOCRINE-IMMUNE NETWORK

    Institute of Scientific and Technical Information of China (English)

    梁凤霞

    2004-01-01

    In the present paper, the author makes some comments on the holistic action of acupuncture from the regulative effect on the nerve-endocrine-immune network, and the close relationship between the nerve-endocrine-immune network and the meridian-collateral system of TCM. The wholism concept of TCM refers to the organism being an integrated entirety, and the regulatory effect of acupuncture on functional activities of the organism relies on the integral connection of the acupoint-meridian-collateral-zangfu-organ system. When stimulated with acupuncture, the human body will brings its potential force into full play in preventing and treating diseases.

  3. Insulin deficiency alters the metabolic and endocrine responses to undernutrition in fetal sheep near term.

    Science.gov (United States)

    Fowden, Abigail L; Forhead, Alison J

    2012-08-01

    Insulin deficiency affects the adult metabolic response to undernutrition, but its effects on the fetal response to maternal undernutrition remain unknown. This study examined the effects of maternal fasting for 48 h in late gestation on the metabolism of fetal sheep made insulin deficient by pancreatectomy (PX). The endocrine and metabolic responses to maternal fasting differed between intact, sham-operated and PX fetuses, despite a similar degree of hypoglycemia. Compared with intact fetuses, there was no increase in the plasma concentrations of cortisol or norepinephrine in PX fetuses during maternal fasting. In contrast, there was a significant fasting-induced rise in plasma epinephrine concentrations in PX but not intact fetuses. Umbilical glucose uptake decreased to a similar extent in both groups of fasted animals but was associated with a significant fall in glucose carbon oxidation only in intact fetuses. Pancreatectomized but not intact fetuses lowered their oxygen consumption rate by 15-20% during maternal fasting in association with increased uteroplacental oxygen consumption. Distribution of uterine oxygen uptake between the uteroplacental and fetal tissues therefore differed with fasting only in PX fetuses. Both groups of fetuses produced glucose endogenously after maternal fasting for 48 h, which prevented any significant fall in the rate of fetal glucose utilization. In intact but not PX fetuses, fasting-induced glucogenesis was accompanied by a lower hepatic glycogen content. Chronic insulin deficiency in fetal sheep therefore leads to changes in the counterregulatory endocrine response to hypoglycemia and an altered metabolic strategy in dealing with nutrient restriction in utero.

  4. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Directory of Open Access Journals (Sweden)

    Oana Marcu

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  5. Epigenetic alterations caused by nutritional stress during fetal programming of the endocrine pancreas.

    Science.gov (United States)

    Sosa-Larios, Tonantzin C; Cerbón, Marco A; Morimoto, Sumiko

    2015-02-01

    Nutrition during critical periods of development is one of the pivotal factors in establishing a lifelong healthy metabolism. Different nutritional deficiencies such as a low availability of proteins in the maternal diet produce alterations in offspring that include changes in insulin and glucose metabolism, a decrease in the size and number of cells of pancreatic islets of Langerhans, and premature ageing of the secretory function of pancreatic β cells. Moreover, it has been reported that chronic nutritional stress is associated with epigenetic alterations in mechanisms of gene regulation during pancreatic development and function. These alterations can lead to dysfunctional states in pancreatic β cells, which in the long run are responsible for the onset of metabolic diseases like type 2 diabetes. The present review summarizes the most important evidence in relation to the participation of epigenetic mechanisms in the regulation of gene expression during the intrauterine programming of the endocrine pancreas in animal models. Such mechanisms include DNA methylation as well as modifications of histones and microRNAs (miRNAs).

  6. Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation?

    Science.gov (United States)

    Xin, Frances; Susiarjo, Martha; Bartolomei, Marisa S

    2015-07-01

    Increasing evidence has highlighted the critical role of early life environment in shaping the future health outcomes of an individual. Moreover, recent studies have revealed that early life perturbations can affect the health of subsequent generations. Hypothesized mechanisms of multi- and transgenerational inheritance of abnormal developmental phenotypes include epigenetic misregulation in germ cells. In this review, we will focus on the available data demonstrating the ability of endocrine disrupting chemicals (EDCs), including bisphenol A (BPA), phthalates, and parabens, to alter epigenetic marks in rodents and humans. These epigenetic marks include DNA methylation, histone post-translational modifications, and non-coding RNAs. We also review the current evidence for multi- and transgenerational inheritance of abnormal developmental changes in the offspring following EDC exposure. Based on published results, we conclude that EDC exposure can alter the mouse and human epigenome, with variable tissue susceptibilities. Although increasing data suggest that exposure to EDCs is linked to transgenerational inheritance of reproductive, metabolic, or neurological phenotypes, more studies are needed to validate these observations and to elucidate further whether these developmental changes are directly associated with the relevant epigenetic alterations.

  7. Dietary selenium and nutritional plane alter specific aspects of maternal endocrine status during pregnancy and lactation.

    Science.gov (United States)

    Lemley, C O; Meyer, A M; Neville, T L; Hallford, D M; Camacho, L E; Maddock-Carlin, K R; Wilmoth, T A; Wilson, M E; Perry, G A; Redmer, D A; Reynolds, L P; Caton, J S; Vonnahme, K A

    2014-01-01

    Objectives were to examine effects of selenium (Se) supply and maternal nutritional plane during gestation on placental size at term and maternal endocrine profiles throughout gestation and early lactation. Ewe lambs (n = 84) were allocated to treatments that included Se supply of adequate Se (ASe; 11.5 μg/kg BW) or high Se (HSe; 77 μg/kg BW) initiated at breeding and nutritional plane of 60% (RES), 100% (CON), or 140% (EXC) of requirements beginning on day 40 of gestation. At parturition, lambs were removed from their dams, and ewes were transitioned to a common diet that met requirements of lactation. Blood samples were taken from a subset of ewes (n = 42) throughout gestation, during parturition, and throughout lactation to determine hormone concentrations. Cotyledon number was reduced (P = 0.03) in RES and EXC ewes compared with CON ewes. Placental delivery time tended (P = 0.08) to be shorter in HSe ewes than in ASe ewes, whereas placental delivery time was longer (P = 0.02) in RES ewes than in CON and EXC ewes. During gestation, maternal progesterone, estradiol-17β, and GH were increased (P nutritional plane. During the parturient process, HSe ewes tended to have greater (P = 0.06) concentrations of estradiol-17β than ASe ewes. Three hours after parturition a surge of GH was observed in ASe-RES ewes that was muted in HSe-RES ewes and not apparent in other ewes. Growth hormone area under the curve during the parturient process was increased (P < 0.05) in ASe-RES vs HSe-RES ewes. Ewes that were overfed during gestation had reduced (P < 0.05) estradiol-17β but greater IGF-I, triiodothyronine, and thyroxine (P < 0.05) compared with RES ewes. Even though ewes were transitioned to a common diet after parturition, endocrine status continued to be affected into lactation. Moreover, it appears that gestational diet may partially affect lactational performance through altered endocrine status.

  8. Prenatal Hyperandrogenization Induces Metabolic and Endocrine Alterations Which Depend on the Levels of Testosterone Exposure

    Science.gov (United States)

    Amalfi, Sabrina; Velez, Leandro Martín; Heber, María Florencia; Vighi, Susana; Ferreira, Silvana Rocío; Orozco, Adriana Vega; Pignataro, Omar; Motta, Alicia Beatriz

    2012-01-01

    Prenatal hyperandrogenism is able to induce polycystic ovary syndrome (PCOS) in rats. The aim of the present study was to establish if the levels of prenatal testosterone may determine the extent of metabolic and endocrine alterations during the adult life. Pregnant Sprague Dawley rats were prenatally injected with either 2 or 5 mg free testosterone (groups T2 and T5 respectively) from day 16 to day 19 day of gestation. Female offspring from T2 and T5 displayed different phenotype of PCOS during adult life. Offspring from T2 showed hyperandrogenism, ovarian cysts and ovulatory cycles whereas those from T5 displayed hyperandrogenism, ovarian cysts and anovulatory cycles. Both group showed increased circulating glucose levels after the intraperitoneal glucose tolerance test (IPGTT; an evaluation of insulin resistance). IPGTT was higher in T5 rats and directly correlated with body weight at prepubertal age. However, the decrease in the body weight at prepubertal age was compensated during adult life. Although both groups showed enhanced ovarian steroidogenesis, it appears that the molecular mechanisms involved were different. The higher dose of testosterone enhanced the expression of both the protein that regulates cholesterol availability (the steroidogenic acute regulatory protein (StAR)) and the protein expression of the transcriptional factor: peroxisome proliferator-activated receptor gamma (PPAR gamma). Prenatal hyperandrogenization induced an anti-oxidant response that prevented a possible pro-oxidant status. The higher dose of testosterone induced a pro-inflammatory state in ovarian tissue mediated by increased levels of prostaglandin E (PG) and the protein expression of cyclooxygenase 2 (COX2, the limiting enzyme of PGs synthesis). In summary, our data show that the levels of testosterone prenatally injected modulate the uterine environment and that this, in turn, would be responsible for the endocrine and metabolic abnormalities and the phenotype of PCOS

  9. Altered Allogeneic Immune Responses in Middle-Aged Mice

    Institute of Scientific and Technical Information of China (English)

    Yimin Sun; Hanhan Li; Alan N. Langnas; Yong Zhao

    2004-01-01

    It is well known that leukocyte composition, T cell phenotypes and immune function change in aged mice and humans. However, limited and conflicting results on the age-related immune changes in middle-aged mice were reported. Identification of the characteristics of allogeneic immune responses in aging mice may offer important information for transplantation immunology. The major age-related changes in the immune cell phenotypes and function of 12 months old mice include: 1) the significantly decreased CD4+ cell population in the peripheral blood, the major peripheral CD4+ cells is CD45RBlowCD62Llow memory phenotype; 2) the in vitro responses to alloantigens and Con A of splenocytes markedly reduced; 3) the in vivo secondary humoral immune responses to alloantigens significantly declined; 4) the age-related alteration in the thymus mainly occurred in CD4/CD8 double positive (DP) stage; and 5) increased CD80+ and MHC class Ⅱ+ cell population in spleens. Thus, the major age-related immune changes in 12 months old mice occurred in CD4+ T cells in the periphery and DP stage in the thymus, which may subsequently lead to the decreased allogeneic immune responses and the different sensitivity to immunosuppressive drugs and treatments. Further studies on the characteristics of allogeneic immunity in aging individuals may help to determine the appropriated treatment for transplant aging individuals. Cellular & Molecular Immunology. 2004; 1(6) :440-446.

  10. Altered Allogeneic Immune Responses in Middle-Aged Mice

    Institute of Scientific and Technical Information of China (English)

    YiminSun; HanhanLi; AlanN.Langnas

    2004-01-01

    It is well known that leukocyte composition, T cell phenotypes and immune function change in aged mice and humans. However, limited and conflicting results on the age-related immune changes in middle-aged mice were reported. Identification of the characteristics of allogeneic immune responses in aging mice may offer important information for transplantation immunology. The major age-related changes in the immune cell phenotypes and function of 12 months old mice include: 1) the significantly decreased CD4+ cell population in the peripheral blood, the major peripheral CD4+ cells is CD45RBlowCD62Llow memory phenotype; 2) the in vitro responses to alloantigens and Con A of splenocytes markedly reduced; 3) the in vivo secondary humoral immune responses to alloantigens significantly declined; 4) the age-related alteration in the thymus mainly occurred in CD4/CD8 double positive (DP) stage; and 5) increased CD80+ and MHC class II+ cell population in spleens. Thus, the major age-related immune changes in 12 months old mice occurred in CD4+ T cells in the periphery and DP stage in the thymus, which may subsequently lead to the decreased allogeneic immune responses and the different sensitivity to immunosuppressive drugs and treatments. Further studies on the characteristics of allogeneic immunity in aging individuals may help to determine the appropriated treatment for transplant aging individuals. Cellular & Molecular Immunology. 2004;1(6):440-446.

  11. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes.

    Science.gov (United States)

    Zama, Aparna Mahakali; Uzumcu, Mehmet

    2009-10-01

    Exposure to endocrine-disrupting chemicals during development could alter the epigenetic programming of the genome and result in adult-onset disease. Methoxychlor (MXC) and its metabolites possess estrogenic, antiestrogenic, and antiandrogenic activities. Previous studies showed that fetal/neonatal exposure to MXC caused adult ovarian dysfunction due to altered expression of key ovarian genes including estrogen receptor (ER)-beta, which was down-regulated, whereas ERalpha was unaffected. The objective of the current study was to evaluate changes in global and gene-specific methylation patterns in adult ovaries associated with the observed defects. Rats were exposed to MXC (20 microg/kgxd or 100 mg/kg.d) between embryonic d 19 and postnatal d 7. We performed DNA methylation analysis of the known promoters of ERalpha and ERbeta genes in postnatal d 50-60 ovaries using bisulfite sequencing and methylation-specific PCRs. Developmental exposure to MXC led to significant hypermethylation in the ERbeta promoter regions (P < 0.05), whereas the ERalpha promoter was unaffected. We assessed global DNA methylation changes using methylation-sensitive arbitrarily primed PCR and identified 10 genes that were hypermethylated in ovaries from exposed rats. To determine whether the MXC-induced methylation changes were associated with increased DNA methyltransferase (DNMT) levels, we measured the expression levels of Dnmt3a, Dnmt3b, and Dnmt3l using semiquantitative RT-PCR. Whereas Dnmt3a and Dnmt3l were unchanged, Dnmt3b expression was stimulated in ovaries of the 100 mg/kg MXC group (P < 0.05), suggesting that increased DNMT3B may cause DNA hypermethylation in the ovary. Overall, these data suggest that transient exposure to MXC during fetal and neonatal development affects adult ovarian function via altered methylation patterns.

  12. Interrelationships among growth, endocrine, immune, and temperament variables in neonatal Brahman calves.

    Science.gov (United States)

    Burdick, N C; Banta, J P; Neuendorff, D A; White, J C; Vann, R C; Laurenz, J C; Welsh, T H; Randel, R D

    2009-10-01

    Interrelationships among growth, endocrine, immune, and temperament variables were assessed in neonatal Brahman calves. The velocity upon exiting a working chute (exit velocity) of an animal was measured and used as an objective indicator of temperament to classify calves as calm, intermediate, or temperamental. Calves (n = 116) were weighed weekly between d 0 and 21 to 24, and blood samples were collected for plasma and serum on d 0, 1, 2, 7, 14, and 21 to 24 after birth to measure concentrations of immunoglobulins, cortisol, and epinephrine (EPI). Body weight increased from d 0 through d 21 to 24 (P temperament (P = 0.89) or sex (P = 0.97). Concentrations of EPI were affected by time, with an increase in EPI concentrations in temperamental bulls between 2 and 14 d of age (P temperament (P = 0.44) or sex (P = 0.68). Serum immunoglobulin concentrations peaked on d 1 before declining (P temperament (P = 0.40 to 0.68). Of the stress hormones measured (cortisol and EPI), only cortisol was associated with the early performance of the calf. Calf BW at d 21 to 24 and BW gain were positively associated with serum immunoglobulin concentrations, yet negatively associated with concentrations of cortisol. Serum immunoglobulin concentrations were negatively correlated with cortisol concentrations (r = -0.28; P = 0.003), yet positively associated with EPI concentrations (r = 0.51; P = 0.003). During the neonatal period in this study, there was no relationship of temperament with passive immunity or stress hormone concentrations; however, growth was positively associated with passive immunity and negatively associated with stress hormones. Measuring exit velocity as early in life as d 21 to 24 fails to accurately predict temperament at weaning in over 40% of Brahman calves. Our conclusion is that measurement of exit velocity should be done nearer to the time of weaning than to birth. These data can be beneficial in developing best management practices for young calves.

  13. Trypanosoma cruzi disrupts thymic homeostasis by altering intrathymic and systemic stress-related endocrine circuitries.

    Directory of Open Access Journals (Sweden)

    Ailin Lepletier

    2013-11-01

    Full Text Available We have previously shown that experimental infection caused by Trypanosoma cruzi is associated with changes in the hypothalamus-pituitary-adrenal axis. Increased glucocorticoid (GC levels are believed to be protective against the effects of acute stress during infection but result in depletion of CD4(+CD8(+ thymocytes by apoptosis, driving to thymic atrophy. However, very few data are available concerning prolactin (PRL, another stress-related hormone, which seems to be decreased during T. cruzi infection. Considering the immunomodulatory role of PRL upon the effects caused by GC, we investigated if intrathymic cross-talk between GC and PRL receptors (GR and PRLR, respectively might influence T. cruzi-induced thymic atrophy. Using an acute experimental model, we observed changes in GR/PRLR cross-activation related with the survival of CD4(+CD8(+ thymocytes during infection. These alterations were closely related with systemic changes, characterized by a stress hormone imbalance, with progressive GC augmentation simultaneously to PRL reduction. The intrathymic hormone circuitry exhibited an inverse modulation that seemed to counteract the GC-related systemic deleterious effects. During infection, adrenalectomy protected the thymus from the increase in apoptosis ratio without changing PRL levels, whereas an additional inhibition of circulating PRL accelerated the thymic atrophy and led to an increase in corticosterone systemic levels. These results demonstrate that the PRL impairment during infection is not caused by the increase of corticosterone levels, but the opposite seems to occur. Accordingly, metoclopramide (MET-induced enhancement of PRL secretion protected thymic atrophy in acutely infected animals as well as the abnormal export of immature and potentially autoreactive CD4(+CD8(+ thymocytes to the periphery. In conclusion, our findings clearly show that Trypanosoma cruzi subverts mouse thymus homeostasis by altering intrathymic and

  14. Behavioural, endocrine and immune responses to repeated social stress in pregnant gilts.

    Science.gov (United States)

    Couret, D; Otten, W; Puppe, B; Prunier, A; Merlot, E

    2009-01-01

    Pregnant sows are exposed to various stressors in intensive pig husbandry that may have negative consequences on their health, reproductive performances and welfare. Social stress is one of these challenges, because gestating sows have to be housed in groups according to EU guidelines (2001/88/CE). The purpose of this study was to determine the consequences of repeated social stress in pregnant female pigs on their behavioural, endocrine and immunological responses and on pregnancy outcome. Pregnant gilts were submitted to a repeated social stress procedure induced by housing unfamiliar gilts in pairs changed twice a week between days 77 and 105 of gestation (S group, n = 18). Control gilts were housed in stable pairs during the same period (C group, n = 18). Agonistic behaviour was observed during the first 3 h after each grouping. Skin lesions were numbered 2 h after each grouping. Salivary cortisol was measured before and repeatedly during the 4 weeks of grouping. Gilts were immunized against keyhole limpet haemocyanin (KLH) on days 81 and 95 of gestation. Immunoglobulins G against KLH, proliferative responses to concanavalin A, lipopolysaccharide, pokeweed mitogen and KLH and peripheral blood leukocyte numbers were evaluated 1 week before the first grouping and 3 days after the last one. Agonistic interactions and skin lesions were observed in S gilts at each grouping, although there was a decline between the first and the last grouping (P Gestation length tended to be shorter in S gilts (P = 0.09), but litter size, piglet weight or mortality at birth were not affected. Variability of the response of S gilts to groupings was partly explained by their average success value determined according to the outcome (defeat or win) of all the groupings. In conclusion, our study demonstrates that the application of repeated social stress to pregnant gilts during the last third of their gestation repeatedly activates their hypothalamo-pituitary-adrenal axis but does not

  15. MONITORING TRAINING LOADS, STRESS, IMMUNE-ENDOCRINE RESPONSES AND PERFORMANCE IN TENNIS PLAYERS

    Science.gov (United States)

    Moreira, A.; Lodo, L.; Nosaka, K.; Coutts, A.J.; Aoki, M.S.

    2013-01-01

    The study aim was to investigate the effect of a periodised pre-season training plan on internal training load and subsequent stress tolerance, immune-endocrine responses and physical performance in tennis players. Well-trained young tennis players (n = 10) were monitored across the pre-season period, which was divided into 4 weeks of progressive overloading training and a 1-week tapering period. Weekly measures of internal training load, training monotony and stress tolerance (sources and symptoms of stress) were taken, along with salivary testosterone, cortisol and immunoglobulin A. One repetition maximum strength, running endurance, jump height and agility were assessed before and after training. The periodised training plan led to significant weekly changes in training loads (i.e. increasing in weeks 3 and 4, decreasing in week 5) and post-training improvements in strength, endurance and agility (P < 0.05). Cortisol concentration and the symptoms of stress also increased in weeks 3 and/or 4, before returning to baseline in week 5 (P < 0.05). Conversely, the testosterone to cortisol ratio decreased in weeks 3 and 4, before returning to baseline in week 5 (P < 0.05). In conclusion, the training plan evoked adaptive changes in stress tolerance and hormonal responses, which may have mediated the improvements in physical performance. PMID:24744485

  16. Role of endocrine-immune dysregulation in osteoporosis, sarcopenia, frailty and fracture risk.

    Science.gov (United States)

    Joseph, Cherian; Kenny, Anne M; Taxel, Pamela; Lorenzo, Joseph A; Duque, Gustavo; Kuchel, George A

    2005-06-01

    Osteoporosis, a key predictor of hip fractures can be treated using a variety of safe and effective interventions. Nevertheless, optimally effective strategies for the prevention of hip fractures must also incorporate efforts to address a broad range of other potentially reversible factors. Hyperthyroidism, anticonvulsants, caffeine and smoking may decrease bone mass and increase fracture risk at any age. In older individuals it is important to also consider additional risk factors, including long-acting benzodiazepines, poor vision and sarcopenia. The presence of sarcopenia, an age-related decline in muscle bulk and quality enhances the risk of frailty and possibly also hip fracture, particularly if associated with diminished functional mobility, lower quadriceps strength and poor balance or body sway. In this review we examine evidence which indicates the presence of endocrine-immune dysregulation in both osteoporosis and sarcopenia. Post-menopausal declines in serum estrogen and androgen levels contribute to increases in local bone levels of cytoclastic cytokines, followed by increased osteoclastogenesis and bone loss. Similarly, the presence of decreased gonadal hormones and IGF-1, combined with unusually high peripheral levels of cytokines, inflammatory mediators and coagulation markers all enhance the risk of sarcopenia and frailty. We propose that a translational research approach which emphasizes common pathophysiologic mechanisms in osteoporosis and sarcopenia could accelerate the speed of discovery of effective strategies for both frailty and hip fracture prevention.

  17. Immune and Histological Changes in the Endocrines Glands in Experimental Thyrotoxicosis and Hypothyroidism

    Directory of Open Access Journals (Sweden)

    V V Zdor

    2014-03-01

    Full Text Available Experimental thyrotoxicosis rats showed significant elevation in serum rates of pro-and-anti-inflammatory cytokines: IL-1β, IFNγ and IL-10 against in control. The rats with tentative experimentally-induced hypothy- roidism showed significant elevation in serum TNF-α. IFN-γ / IL-10 correlation both in system and organs was determined observed close to Th1 with minor dominance of Th2 marker cytokines in situ of healthy rats and tenfold ratio change towards Th1 marker cytokines at organ level in thyrotoxicosis. Morphological changes in thyroid were shown in mastocytar focal infiltration of follicles stroma indicating activation of T-cell population of lymphocytes. Augmentation of cells with proliferative phase of cell cycle with amitotic activity was detected in glomerular and fas- ciculate zone of adrenal glands and in adenohypophysis. Hereby findings prove interdependence of hormone, mor- phological and immune changes in endocrine system under thyrotoxicosis and enlarge our view about the concep- tion of Grave’s Disease development.

  18. Alterations of Cellular Immune Reactions in Crew Members Overwintering in the Antarctic Research Station Concordia

    Science.gov (United States)

    Crucian, Brian; Feuerecker, Matthias; Moreels, Marjan; Crucian, Brian; Kaufmann, Ines; Salam, Alex Paddy; Rybka, Alex; Ulrike, Thieme; Quintens, Roel; Sams, Clarence F.; Schelling, Gustav; Thiel, Manfred; Baatout, Sarah; Chouker, Alexander

    2012-01-01

    Background: Concordia Station is located inside Antarctica about 1000km from the coast at an altitude of 3200m (Dome C). Hence, individuals living in this harsh environment are exposed to two major conditions: 1.) hypobaric hypoxia and 2.) confinement and extreme isolation. Both hypoxia and confinement can affect human immunity and health, and are likely to be present during exploration class space missions. This study focused on immune alterations measured by a new global immunity test assay, similar to the phased out delayed type hypersensitivity (DTH) skin test. Methods: After informed written consent 14 healthy male subjects were included to the CHOICE-study (Consequences-of-longterm-Confinement-and-Hypobaric-HypOxia-on-Immunity-in-the Antarctic-Concordia-Environment). Data collection occurred during two winter-over periods lasting each one year. During the first campaign 6 healthy male were enrolled followed by a second campaign with 8 healthy males. Blood was drawn monthly and incubated for 48h with various bacterial, viral and fungal antigens followed by an analysis of plasma cytokine levels (TNF-alpha, IL2, IFN-gamma, IL10). As a control, blood was incubated without stimulation ("resting condition"). Goals: The scope of this study was to assess the consequences of hypoxia and confinement on cellular immunity as assessed by a new in vitro DTH-like test. Results: Initial results indicate that under resting conditions the in vitro DTH-like test showed low cytokine levels which remained almost unchanged during the entire observation period. However, cytokine responses to viral, bacterial and fungal antigens were remarkably reduced at the first month after arrival at Concordia when compared to levels measured in Europe prior to departure for Antarctica. With incrementing months of confinement this depressed DTH-like response tended to reverse, and in fact to show an "overshooting" immune reaction after stimulation. Conclusion: The reduced in vitro DTH-like test

  19. The influence of surgical stress on the psychoneuro-endocrine-immune axis.

    Directory of Open Access Journals (Sweden)

    Dahanukar S

    1996-01-01

    Full Text Available Stress is known to depress the immune system severely. This study was done to evaluate whether surgical stress influenced polymorphonuclear (PMN and monocyte functions in association with serum cortisol and the anxiety score as measured on the HARS Rating Scale. We found that surgery (irrespective of whether it was major or minor significantly depressed PMN and monocyte functions and increased serum cortisol levels. PMN phagocytosis correlated significantly (p < 0.05 with the rise in serum cortisol. In spite of these changes, postoperative clinical recovery was uneventful. No major alterations in the HARS scores were noted pre and post operatively. This study demonstrates that surgical stress depresses the immune system with a concomitant rise in cortisol.

  20. ADULT EXPOSURE TO PHYTOESTROGEN APIGENIN RESULTS IN CHANGES IN ENDOCRINE PARAMETERS BUT FAILS TO ALTER FECUNDITY

    Science.gov (United States)

    Plant-derived estrogens offer the opportunity to investigate the potential for weakly estrogenic compounds to influence endocrine function and reproduction. The presence of these phytoestrogens in foods, and agricultural and industrial runoff has the potential to increase the tot...

  1. Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae pathogenesis.

    Directory of Open Access Journals (Sweden)

    Yundan Wang

    2013-01-01

    Full Text Available The stress of living conditions, similar to infections, alters animal immunity. High population density is empirically considered to induce prophylactic immunity to reduce the infection risk, which was challenged by a model of low connectivity between infectious and susceptible individuals in crowded animals. The migratory locust, which exhibits polyphenism through gregarious and solitary phases in response to population density and displays different resistance to fungal biopesticide (Metarhizium anisopliae, was used to observe the prophylactic immunity of crowded animals. We applied an RNA-sequencing assay to investigate differential expression in fat body samples of gregarious and solitary locusts before and after infection. Solitary locusts devoted at least twice the number of genes for combating M. anisopliae infection than gregarious locusts. The transcription of immune molecules such as pattern recognition proteins, protease inhibitors, and anti-oxidation proteins, was increased in prophylactic immunity of gregarious locusts. The differentially expressed transcripts reducing gregarious locust susceptibility to M. anisopliae were confirmed at the transcriptional and translational level. Further investigation revealed that locust GNBP3 was susceptible to proteolysis while GNBP1, induced by M. anisopliae infection, resisted proteolysis. Silencing of gnbp3 by RNAi significantly shortened the life span of gregarious locusts but not solitary locusts. By contrast, gnbp1 silencing did not affect the life span of both gregarious and solitary locusts after M. anisopliae infection. Thus, the GNBP3-dependent immune responses were involved in the phenotypic resistance of gregarious locusts to fungal infection, but were redundant in solitary locusts. Our results indicated that gregarious locusts prophylactically activated upstream modulators of immune cascades rather than downstream effectors, preferring to quarantine rather than eliminate pathogens to

  2. Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae) pathogenesis.

    Science.gov (United States)

    Wang, Yundan; Yang, Pengcheng; Cui, Feng; Kang, Le

    2013-01-01

    The stress of living conditions, similar to infections, alters animal immunity. High population density is empirically considered to induce prophylactic immunity to reduce the infection risk, which was challenged by a model of low connectivity between infectious and susceptible individuals in crowded animals. The migratory locust, which exhibits polyphenism through gregarious and solitary phases in response to population density and displays different resistance to fungal biopesticide (Metarhizium anisopliae), was used to observe the prophylactic immunity of crowded animals. We applied an RNA-sequencing assay to investigate differential expression in fat body samples of gregarious and solitary locusts before and after infection. Solitary locusts devoted at least twice the number of genes for combating M. anisopliae infection than gregarious locusts. The transcription of immune molecules such as pattern recognition proteins, protease inhibitors, and anti-oxidation proteins, was increased in prophylactic immunity of gregarious locusts. The differentially expressed transcripts reducing gregarious locust susceptibility to M. anisopliae were confirmed at the transcriptional and translational level. Further investigation revealed that locust GNBP3 was susceptible to proteolysis while GNBP1, induced by M. anisopliae infection, resisted proteolysis. Silencing of gnbp3 by RNAi significantly shortened the life span of gregarious locusts but not solitary locusts. By contrast, gnbp1 silencing did not affect the life span of both gregarious and solitary locusts after M. anisopliae infection. Thus, the GNBP3-dependent immune responses were involved in the phenotypic resistance of gregarious locusts to fungal infection, but were redundant in solitary locusts. Our results indicated that gregarious locusts prophylactically activated upstream modulators of immune cascades rather than downstream effectors, preferring to quarantine rather than eliminate pathogens to conserve energy

  3. The endocrine system controlling sexual reproduction in animals: Part of the evolutionary ancient but well conserved immune system?

    Science.gov (United States)

    De Loof, Arnold; Schoofs, Liliane; Huybrechts, Roger

    2016-01-15

    Drastic changes in hormone titers, in particular of steroid hormones, are intuitively interpreted as necessary and beneficial for optimal functioning of animals. Peaks in progesterone- and estradiol titers that accompany the estrus cycle in female vertebrates as well as in ecdysteroids at each molt and during metamorphosis of holometabolous insects are prominent examples. A recent analysis of insect metamorphosis yielded the view that, in general, a sharp rise in sex steroid hormone titer signals that somewhere in the body some tissue(s) is undergoing programmed cell death/apoptosis. Increased steroid production is part of this process. Typical examples are ovarian follicle cells in female vertebrates and invertebrates and the prothoracic gland cells, the main production site of ecdysteroids in larval insects. A duality emerges: programmed cell death-apoptosis is deleterious at the cellular level, but it may yield beneficial effects at the organismal level. Reconciling both opposites requires reevaluating the probable evolutionary origin and role of peptidic brain hormones that direct steroid hormone synthesis. Do e.g. Luteinizing Hormone in vertebrates and Prothoracicotropic Hormone (PTTH: acting through the Torso receptor) in insects still retain an ancient role as toxins in the early immune system? Does the functional link of some neuropeptides with Ca(2+)-induced apoptosis make sense in endocrine archeology? The endocrine system as a remnant of the ancient immune system is undoubtedly counterintuitive. Yet, we will argue that such paradigm enables the logical framing of many aspects, the endocrine one inclusive of both male and female reproductive physiology.

  4. Endocrine Disrupting Chemicals and Disease Susceptibility

    OpenAIRE

    Schug, Thaddeus T; Janesick, Amanda; Blumberg, Bruce; Heindel, Jerrold J.

    2011-01-01

    Environmental chemicals have significant impacts on biological systems. Chemical exposures during early stages of development can disrupt normal patterns of development and thus dramatically alter disease susceptibility later in life. Endocrine disrupting chemicals (EDCs) interfere with the body's endocrine system and produce adverse developmental, reproductive, neurological, cardiovascular, metabolic and immune effects in humans. A wide range of substances, both natural and man-made, are tho...

  5. Selective Induced Altered Coccidians to Immunize and Prevent Enteritis

    Science.gov (United States)

    2016-01-01

    Microbiomic flora in digestive tract is pivotal to the state of our health and disease. Antibiotics affect GI, control composition of microbiome, and shift equilibrium from health into disease status. Coccidiosis causes gastrointestinal inflammation. Antibiotic additives contaminate animal products and enter food chain, consumed by humans with possible allergic, antibiotic resistance and enigmatic side effects. Purposed study induced nonpathogenic, immunogenic organisms to protect against disease and abolish antibiotics' use in food animals and side effects in man. Diverse species of Coccidia were used as model. Immature organisms were treated with serial purification procedure prior to developmental stages to obtain altered strains. Chicks received oral gavage immunized with serial low doses of normal or altered organisms or sham treatment and were challenged with high infective normal organisms to compare pathogenicity and immunogenicity. Mature induced altered forms of E. tenella and E. necatrix lacked developmental stage of “sporocysts” and contained free sporozoites. In contrast, E. maxima progressed to normal forms or did not mature at all. Animals that received altered forms were considerably protected with higher weight gain and antibody titers against challenge infection compared to those that received normal organisms (p < 0.05). This is the first report to induce selected protective altered organisms for possible preventive measures to minimize antibiotic use in food animals. PMID:27721824

  6. Strain Specific Induction of Pyometra and Differences in Immune Responsiveness in Mice Exposed to 17α-Ethinyl Estradiol or the Endocrine Disrupting Chemical Bisphenol A

    Science.gov (United States)

    Kendziorski, Jessica A.; Kendig, Eric L.; Gear, Robin L.; Belcher, Scott M.

    2012-01-01

    Pyometra is an inflammatory disease of the uterus that can be caused by chronic exposure to estrogens. It is unknown whether weakly estrogenic endocrine disruptors can cause pyometra. We investigated whether dietary exposures to the estrogenic endocrine disruptor bisphenol A (BPA) induced pyometra. Pyometra did not occur in CD1 mice exposed to different dietary doses of BPA ranging from 4.1 to >4000 µg/kg/day or 17α-ethinyl estradiol (EE; 1.2 to >150 µg/kg/day). In the C57BL/6 strain, pyometra occurred in the 15 µg/kg/day EE and 33 µg/kg/day BPA treatment groups. At the effective concentration of BPA, histological analysis revealed pathological alterations of uterine morphology associated with a >5.3-fold increase in macrophage numbers in non-pyometra uteri of C57BL/6 mice exposed to BPA. These results suggest that BPA enhances immune responsiveness of the uterus and that heightened responsiveness in C57BL/6 females is related to increased susceptibility to pyometra. PMID:22429997

  7. Altered steroid metabolism in several teleost species exposed to endocrine disrupting substances in refuse dump leachate

    NARCIS (Netherlands)

    Noaksson, E.; Linderoth, M.; Bosveld, A.T.C.; Balk, L.

    2003-01-01

    Endocrine disruption associated with reproductive failure has been reported previously in female perch (Perca fluviatilis) and roach (Rutilus rutilus) from Lake Molnbyggen in Sweden and in female brook trout (Salvelinus fontinalis) from Vadbäcken, a stream emptying into Molnbyggen. Both Molnbyggen a

  8. BACE1-Deficient Mice Exhibit Alterations in Immune System Pathways.

    Science.gov (United States)

    Stertz, L; Contreras-Shannon, V; Monroy-Jaramillo, N; Sun, J; Walss-Bass, C

    2016-12-21

    BACE1 encodes for the beta-site amyloid precursor protein cleaving enzyme 1 or β-secretase. Genetic deletion of Bace1 leads to behavioral alterations and affects midbrain dopaminergic signaling and memory processes. In order to further understand the role of BACE1 in brain function and behavior, we performed microarray transcriptome profiling and gene pathway analysis in the hippocampus of BACE1-deficient mice compared to wild type. We identified a total of 91 differentially expressed genes (DEGs), mostly enriched in pathways related to the immune and inflammation systems, particularly IL-9 and NF-κB activation pathways. Serum levels of IL-9 were elevated in BACE1-deficient mice. Our network analysis supports an intimate connection between immune response via NF-κB and BACE1 signaling through the NRG1/Akt1 pathway. Our findings warrant future mechanistic studies to determine if BACE1 signaling and the IL-9 pathway interact to alter behavior and brain function. This study opens new avenues in the investigation of hippocampus-related neuroimmunological and neuroinflammation-associated disorders.

  9. An exploratory study into the effect of exhausting bicycle exercise on endocrine and immune responses in post-menopausal women: relationships between vigour and plasma cortisol concentrations and lymphocyte proliferation following exercise.

    Science.gov (United States)

    van der Pompe, G; Bernards, N; Kavelaars, A; Heijnen, C

    2001-08-01

    It is well-established that bicycle exercise alters the endocrine and immune responses in men, but little information is available for women, especially middle-aged, post-menopausal women. The purpose of our study was to document the endocrine and immune reactivity to exhausting bicycle exercise in post-menopausal women, and to explore whether complaints of fatigue or low vigour are related to these exercise-induced responses. Thirteen healthy post-menopausal women participated in this study. We used a graded exercise protocol to study the kinetics of activation of the endocrine and immune system. We chose to examine hormones related to the hypothalamus-pituitary-adrenal (HPA) system such as adrenocorticotropin hormone (ACTH) and cortisol and hormones related to the pituitary such as prolactin (PRL) and growth hormone (GH). With regard to the immune system, we examined the natural killer (NK) cell activity and pokeweed (PWM)-induced lymphocyte proliferation in addition to changes in peripheral blood cell counts. Our results demonstrate that acute physical stress results in a strong release of ACTH, cortisol, GH and PRL. The bicycle test significantly increased the number of CD3+, CD4+, CD16/56+ (NK cells) and CD8+ cells in our group of post-menopausal women. Interestingly, NK activity did not increase significantly despite an increase in NK cell numbers. PWM-induced lymphocyte proliferation did not change either. In addition, our data support the hypothesis that low vigour in post-menopausal women interferes with the endocrine and immune responses to exhausting exercise. In women with complaints of low vigour we found lower cortisol responses and higher increments in the proliferative capacity of lymphocytes as compared to those with high vigour scores. NK activity was unrelated to exhaustive mood states. These data indicate that endocrine as well as immune system activity changes in response to exhausting exercise in middle-aged, post-menopausal women. In addition

  10. Endocrine system and obesity.

    Science.gov (United States)

    Ashburn, Doyle D; Reed, Mary Jane

    2010-10-01

    Obesity is associated with significant alterations in endocrine function. An association with type 2 diabetes mellitus and dyslipidemia has been well documented. This article highlights the complexities of treating endocrine system disorders in obese patients.

  11. Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation?

    OpenAIRE

    Xin, Frances; Susiarjo, Martha; Bartolomei, Marisa S.

    2015-01-01

    Increasing evidence has highlighted the critical role of early life environment in shaping the future health outcomes of an individual. Moreover, recent studies have revealed that early life perturbations can affect the health of subsequent generations. Hypothesized mechanisms of multi- and transgenerational inheritance of abnormal developmental phenotypes include epigenetic misregulation in germ cells. In this review, we will focus on the available data demonstrating the ability of endocrine...

  12. Altered steroid metabolism in several teleost species exposed to endocrine disrupting substances in refuse dump leachate

    OpenAIRE

    2003-01-01

    Endocrine disruption associated with reproductive failure has been reported previously in female perch (Perca fluviatilis) and roach (Rutilus rutilus) from Lake Molnbyggen in Sweden and in female brook trout (Salvelinus fontinalis) from Vadbäcken, a stream emptying into Molnbyggen. Both Molnbyggen and Vadbäcken have been contaminated by toxic leachate from a municipal refuse dump. In this study, female perch were caught in Molnbyggen and the reference lake, Lake Djursjön, to further investiga...

  13. Endocrine Disruptors

    Directory of Open Access Journals (Sweden)

    Ediz Yeşilkaya

    2008-10-01

    Full Text Available Endocrine disruptors are of special interest because they mimic, block, or in some way alter the activity of endogenous chemicals that are synthesized by the endocrine system. Besides many other organs, they especially affect the urinary system and the thyroid glands. Endocrine-disrupting chemicals are typically identified as compounds that can interact with oestrogen or androgen receptors and thus act as agonists or antagonists of endogenous hormones. During the last decade, numerous studies have been published, reporting an increase in reproductive organ anomalies, as well as in testicular cancer, and a decline in the relative number of male births, and in semen quality. In this review, the effects of endocrine distruptors on the reproductive health are discussed in the light of the recent literature. (Journal of Current Pediatrics 2008; 6: 76-82

  14. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    Science.gov (United States)

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish.

  15. [Alteration of thyroid hormone secretion after long-term exposure to low doses of endocrine disruptor DDT].

    Science.gov (United States)

    Iaglova, N V; Iaglov, V V

    2014-01-01

    Endocrine disruptors are exogenous substances that exhibit hormone-like action and consequently disrupt homeostatic action of endogenous hormones. DDT is the most common disruptor. The objective was to evaluate changes in thyroid hormone secretion after long-term exposure to low doses of DDT. The experiment was performed on male Wistar rats. The rats were given DDT at doses of 1.89±0.86 мg/kg/day and 7.77±0.17 мg/kg/day for 6 and 10 weeks. Dose dependent increase of serum total thyroxine, total triiodthyronine, and thyroid peroxidase was revealed after 6 weeks exposure. After 10 weeks free thyroxine secretion was reduced. Such alterations of the thyroid status are typical for iodine deficient goiter. The data obtained indicate that the main mechanism of DDT action includes disruption of thyroxine secretion by thyrocytes, but not inhibition of deiodinase activity and decrease of blood thyroid binding proteins.

  16. Metabolic and immune impairments induced by the endocrine disruptors benzo[a]pyrene and triclosan in Xenopus tropicalis.

    Science.gov (United States)

    Regnault, Christophe; Willison, John; Veyrenc, Sylvie; Airieau, Antinéa; Méresse, Patrick; Fortier, Marlène; Fournier, Michel; Brousseau, Pauline; Raveton, Muriel; Reynaud, Stéphane

    2016-07-01

    Despite numerous studies suggesting that amphibians are highly sensitive to cumulative anthropogenic stresses, the role played by endocrine disruptors (EDs) in the decline of amphibian populations remains unclear. EDs have been extensively studied in adult amphibians for their capacity to disturb reproduction by interfering with the sexual hormone axis. Here, we studied the in vivo responses of Xenopus tropicalis males exposed to environmentally relevant concentrations of each ED, benzo[a]pyrene (BaP) and triclosan (TCS) alone (10 μg L(-1)) or a mixture of the two (10 μg L(-1) each) over a 24 h exposure period by following the modulation of the transcription of key genes involved in metabolic, sexual and immunity processes and the cellular changes in liver, spleen and testis. BaP, TCS and the mixture of the two all induced a marked metabolic disorder in the liver highlighted by insulin resistance-like and non-alcoholic fatty liver disease (NAFLD)-like phenotypes together with hepatotoxicity due to the impairment of lipid metabolism. For TCS and the mixture, these metabolic disorders were concomitant with modulation of innate immunity. These results confirmed that in addition to the reproductive effects induced by EDs in amphibians, metabolic disorders and immune system disruption should also be considered.

  17. Alteration of cellular lipids and lipid metabolism markers in RTL-W1 cells exposed to model endocrine disrupters.

    Science.gov (United States)

    Dimastrogiovanni, Giorgio; Córdoba, Marlon; Navarro, Isabel; Jáuregui, Olga; Porte, Cinta

    2015-08-01

    This work investigates the suitability of the rainbow trout liver cell line (RTL-W1) as an in-vitro model to study the ability of model endocrine disrupters, namely TBT, TPT, 4-NP, BPA and DEHP, to act as metabolic disrupters by altering cellular lipids and markers of lipid metabolism. Among the tested compounds, BPA and DEHP significantly increased the intracellular accumulation of triacylglycerols (TAGs), while all the compounds -apart from TPT-, altered membrane lipids - phosphatidylcholines (PCs) and plasmalogen PCs - indicating a strong interaction of the toxicants with cell membranes and cell signaling. RTL-W1 expressed a number of genes involved in lipid metabolism that were modulated by exposure to BPA, TBT and TPT (up-regulation of FATP1 and FAS) and 4-NP and DEHP (down-regulation of FAS and LPL). Multiple and complex modes of action of these chemicals were observed in RTL-W1 cells, both in terms of expression of genes related to lipid metabolism and alteration of cellular lipids. Although further characterization is needed, this might be a useful model for the detection of chemicals leading to steatosis or other diseases associated with lipid metabolism in fish.

  18. Depresión y neuroplasticidad: Interacción de los sistemas nervioso, endocrino e inmune Depression and neuroplasticity: Interaction of nervous, endocrine and immune systems

    Directory of Open Access Journals (Sweden)

    Paola Cassano

    2010-04-01

    Full Text Available La depresión clínica es una enfermedad física y psíquica que presenta bases neuropatológicas, sin embargo aún no se tiene un conocimiento exacto del origen o causas de esta enfermedad. Se conoce que existe un componente genético, aunque el componente ambiental en el desarrollo de la depresión es innegable. El estrés juega un rol esencial en el desencadenamiento de la depresión. La interacción y respuesta del sistema endocrino, inmune y nervioso se encuentran afectadas en este desorden. La observación de los efectos de los antidepresivos sobre la neurotransmisión monoaminérgica ha llevado hace muchos años a la hipótesis de las monoaminas de la depresión. Sin embargo, esta hipótesis ya no puede explicar muchos de los efectos de las drogas antidepresivas. La nueva hipótesis para explicar los efectos de los antidepresivos es la de neuroplasticidad neuronal. Esta hipótesis propone que los cambios que esas drogas producen sobre diversos sistemas, entre ellos el sistema nervioso, el inmune y el endocrino, son capaces de inducir cambios neuroadaptativos en el cerebro. La neuroplasticidad ha sido definida como la habilidad del cerebro para reorganizarse a sí mismo y formar nuevas conexiones neuronales a lo largo de la vida. Se propone que el mecanismo por el cual los antidepresivos logran sus efectos es mediante la neuroplasticidad.Clinical depression is a physical and psychic disease that has neuropathological basis, although the clear understanding of its ethiopathology is still missing. There is evidence of a genetic component in depression, however, the participation of environment is crucial. Stress plays an essential role in the onset of depression. The interaction and the response of the endocrine system with the immune and nervous system are altered in depression. The observation of the effect of antidepressants on monoaminergic transmitters leads to the hypothesis of monoamines. However this hypothesis cannot explain many of

  19. Early weaning PCB 95 exposure alters the neonatal endocrine system: thyroid adipokine dysfunction.

    Science.gov (United States)

    Ahmed, R G

    2013-12-01

    Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that can severely disrupt the endocrine system. In the present study, early-weaned male rats were administered a single dose of 2,3,6-2',5'-pentachlorinated biphenyl (PCB 95; 32 mg/kg per day, by i.p. injection) for two consecutive days (postnatal days (PNDs) 15 and 16) and killed 24 and 48 h after the administration of the last dose. Compared with the control group, administration of PCB 95 induced a reduction (P<0.01) in serum concentrations of thyroxine, triiodothyronine, and GH and an increase (P<0.01) in the serum concentration of TSH at PNDs 17 and 18. These conspicuous perturbations led to some histopathological deterioration in the thyroid gland characterized by follicular degeneration, edema, fibrosis, hemorrhage, luminal obliteration, and hypertrophy with reduced colloidal contents at PND 18. The dyshormonogenesis and thyroid dysgenesis may be attributed to the elevation of DNA fragmentation at PNDs 17 and 18. Furthermore, this hypothyroid state revealed higher (P<0.01) serum concentrations of leptin, adiponectin, and tumor necrosis factor and lower (P<0.01) serum concentrations of IGF1 and insulin at both PNDs compared with the control group. Interestingly, the body weight of the neonates in the PCB 95 group exhibited severe decreases throughout the experimental period in relation to that of the control group. These results imply that PCB 95 may act as a disruptor of the developmental hypothalamic-pituitary-thyroid axis. Hypothyroidism caused by PCB 95 may impair the adipokine axis, fat metabolism, and in general postnatal development. Thus, further studies need to be carried out to understand this concept.

  20. Endocrine alterations around the time of abortion in mares impregnated with donkey or horse semen.

    Science.gov (United States)

    Boeta, M; Zarco, L

    2010-08-01

    The objective of this study was to monitor and compare the concentrations of equine chorionic gonadotropin (eCG), progesterone and estrone sulphate during normal and failed pregnancies of mares impregnated with donkey or horse semen, relating their individual endocrine profiles to the time of pregnancy loss, and to the histopathologic findings in the aborted fetuses and placenta. Mares (n=54) were used, 32 of them impregnated with donkey semen and 22 impregnated with horse semen. Blood samples were taken twice a week from Day 35 to 120 of pregnancy. Ultrasonographic observations of the fetus were carried out twice a week. The incidence of abortion in mares impregnated with donkey semen (30%) was greater (Phorse semen. From Week 8 to the end of the sampling period, the mean progesterone concentrations of mares with normal mule pregnancies were less (Phorse fetus occurred in mares with lesser progesterone and very low eCG concentrations, and were classified as caused by luteal impairment secondary to eCG deficiency; estrone sulphate concentrations were less than normal or absent before these abortions. Two mares aborted after several weeks of low progesterone concentrations in the presence of eCG concentrations that were normal for mule pregnancies, suggesting primary luteal deficiency. In three mares carrying a mule fetus, the concentrations of progesterone and estrone sulphate decreased abruptly immediately before fetal death, suggesting luteolysis due to active prostaglandin F2 alpha (PGF2alpha) secretion. It is concluded that the greater incidence of abortion in mares impregnated by donkeys is associated with different kinds of luteal malfunction. Deficiency of eCG may be a primary cause of many of these cases, either by failing to stimulate enough luteal progesterone secretion and/or by failing to protect the corpora lutea (CL) of pregnancy from endogenous PGF2alpha secretion.

  1. [Thymus endocrine function and the immune system indices of cancer patients after neutron and gamma therapy].

    Science.gov (United States)

    Grinevich, Iu A; Martynenko, S V; Baraboĭ, V A; Monich, A Iu; Tolstopiatov, B A; Konovalenko, V F; Protsyk, V S

    1992-01-01

    Patients with head and neck and locomotor system tumors received neutron therapy in the total doses of 4-8 and 12-14 Gy which was followed by a pronounced dose-dependent decrease in the serum thymus factor and total blood-lymphocyte levels. The latter changes were predominantly due to a decrease in the non-T-non-B cell concentration. Following the treatment, a rise in the level of circulating immune complexes and those of IgA and IgG was observed. Changes in the immune system proved less apparent in patients with locomotor system cancer who had been given 20 Gy of gamma-ray radiation.

  2. Psycho-neuro-endocrine-immune mechanisms of action of yoga in type II diabetes

    OpenAIRE

    Singh, Vijay Pratap; Khandelwal, Bidita; Sherpa, Namgyal T.

    2015-01-01

    Yoga has been found to benefit all the components of health viz. physical, mental, social and spiritual well being by incorporating a wide variety of practices. Pathophysiology of Type II DM and co-morbidities in Type II DM has been correlated with stress mechanisms. Stress suppresses body's immune system and neuro-humoral actions thereby aff ecting normal psychological state. It would not be wrong to state that correlation of diabetes with stress, anxiety and other psychological factors are ...

  3. Cannabinoids Prevent the Development of Behavioral and Endocrine Alterations in a Rat Model of Intense Stress

    Science.gov (United States)

    Ganon-Elazar, Eti; Akirav, Irit

    2012-01-01

    Cannabinoids have recently emerged as a possible treatment of stress- and anxiety-related disorders such as post-traumatic stress disorder (PTSD). Here, we examined whether cannabinoid receptor activation could prevent the effects of traumatic stress on the development of behavioral and neuroendocrine measures in a rat model of PTSD, the single-prolonged stress (SPS) model. Rats were injected with the CB1/CB2 receptor agonist WIN55,212-2 (WIN) systemically or into the basolateral amygdala (BLA) at different time points following SPS exposure and were tested 1 week later for inhibitory avoidance (IA) conditioning and extinction, acoustic startle response (ASR), hypothalamic-pituitary-adrenal (HPA) axis function, and anxiety levels. Exposure to SPS enhanced conditioned avoidance and impaired extinction while enhancing ASR, negative feedback on the HPA axis, and anxiety. WIN (0.5 mg/kg) administered intraperitoneally 2 or 24 h (but not 48 h) after SPS prevented the trauma-induced alterations in IA conditioning and extinction, ASR potentiation, and HPA axis inhibition. WIN microinjected into the BLA (5 μg/side) prevented SPS-induced alterations in IA and ASR. These effects were blocked by intra-BLA co-administration of the CB1 receptor antagonist AM251 (0.3 ng/side), suggesting the involvement of CB1 receptors. These findings suggest that (i) there may be an optimal time window for intervention treatment with cannabinoids after exposure to a highly stressful event, (ii) some of the preventive effects induced by WIN are mediated by an activation of CB1 receptors in the BLA, and (iii) cannabinoids could serve as a pharmacological treatment of stress- and trauma-related disorders. PMID:21918506

  4. Steroid levels in crinoid echinoderms are altered by exposure to model endocrine disruptors.

    Science.gov (United States)

    Lavado, Ramón; Barbaglio, Alice; Carnevali, M Daniela Candia; Porte, Cinta

    2006-06-01

    Sexual steroids (testosterone and estradiol) were measured in the whole body of wild specimens of the crinoid Antedon mediterranea collected from the Tyrrhenian Sea (Italy). Testosterone levels (274-1,488 pg/g wet weight (w.w.)) were higher than those of estradiol (60-442 pg/g w.w.) and no significant differences between males and females were observed. No clear seasonal trend was either detected - individuals from February, June and October 2004 analyzed - apart from a peak of estradiol in males in autumn. Nonetheless, dramatic changes on tissue steroid levels were observed when individuals were exposed to model androgenic and anti-androgenic compounds for 2 and 4 weeks. The selected compounds were 17 alpha-methyltestosterone (17 alpha-MT), triphenyltin (TPT), fenarimol (FEN), cyproterone acetate (CPA), and p,p'-DDE. Endogenous testosterone levels were significantly increased after exposure to 17 alpha-MT, TPT and FEN, while different responses were observed for estradiol; 17 alpha-MT and FEN increased endogenous estradiol (up to seven-fold), and TPT lead to a significant decrease. Concerning the anti-androgenic compounds, CPA significantly reduced testosterone in a dose-dependent manner without altering estradiol levels, whereas specimens exposed to p,p'-DDE at a low dose (24 ng/L) for 4 weeks showed a four-fold increase in T levels. Overall, the data show the ability of the selected compounds to alter endogenous steroid concentrations in A. mediterranea, and suggest the existence in this echinoderm species of vertebrate-like mechanisms that can be affected by exposure to androgenic and anti-androgenic chemicals.

  5. The endocrine-immune network during taeniosis by Taenia solium: The role of the pituitary gland.

    Science.gov (United States)

    Quintanar-Stephano, Andrés; Hernández-Cervantes, Rosalía; Moreno-Mendoza, Norma; Escobedo, Galileo; Carrero, Julio Cesar; Nava-Castro, Karen E; Morales-Montor, Jorge

    2015-12-01

    It is well known that sex hormones play an important role during Taenia solium infection; however, to our knowledge no studies exist concerning the immune response following complete or lobe-specific removal of the pituitary gland during T. solium infection. Thus, the aim of this work was to analyze in hamsters, the effects of lack of pituitary hormones on the duodenal immune response, and their impact on T. solium establishment and development. Thus, in order to achieve this goal, we perform anterior pituitary lobectomy (AL, n = 9), neurointermediate pituitary lobectomy (NIL, n = 9) and total hypophysectomy (HYPOX, n = 8), and related to the gut establishment and growth of T. solium, hematoxylin-eosin staining of duodenal tissue and immunofluorescence of duodenal cytokine expression and compared these results to the control intact (n = 8) and control infected group (n = 8). Our results indicate that 15 days post-infection, HYPOX reduces the number and size of intestinally recovered T. solium adults. Using semiquantitative immunofluorescent laser confocal microscopy, we observed that the mean intensity of duodenal IFN-γ and IL-12 Th1 cytokines was mildly expressed in the infected controls, in contrast with the high level of expression of these cytokines in the NIL infected hamsters. Likewise, the duodenum of HYPOX animals showed an increase in the expression of Th2 cytokines IL-5 and IL-6, when compared to control hamsters. Histological analysis of duodenal mucosa from HYPOX hamsters revealed an exacerbated inflammatory infiltrate located along the lamina propria and related to the presence of the parasite. We conclude that lobe-specific pituitary hormones affect differentially the T. solium development and the gut immune response.

  6. Role of beta2 agonists in respiratory medicine with particular attention to novel patents and effects on endocrine system and immune response.

    Science.gov (United States)

    Larocca, Nancy E; Moreno, Dolores; Garmendia, Jenny V; De Sanctis, Juan B

    2011-09-01

    Beta adrenergic receptors are very important in respiratory medicine. Traditionally, the stimulation of beta adrenergic receptors by beta2-agonists is commonly used for giving bronchodilation in chronic airflow obstruction However; the wide distribution of these receptors in cells and tissues other than airway smooth muscle suggests that beta agonists should offer other beneficial effects in respiratory disease. Recent studies have shown the importance of these receptors in the modulation of endocrine and immune system that affect respiratory function and may decrease therapy effectiveness in asthma and chronic obstructive pulmonary disease. New patented compound and uses have provided new insights in future therapeutics of respiratory diseases in which genetic, endocrine and immune response should be considered.

  7. Pavlovian conditioning of morphine-induced alterations of immune status: evidence for opioid receptor involvement.

    Science.gov (United States)

    Coussons-Read, M E; Dykstra, L A; Lysle, D T

    1994-12-01

    Prior work in our laboratory has shown that morphine's immunomodulatory effects can become conditioned to environmental stimuli that predict drug administration. These immune alterations include conditioned changes in natural killer cell activity, interleukin-2 production, and mitogen-induced lymphocyte proliferation. The present study examined the involvement of opioid receptor activity in the establishment and expression of conditioned morphine-induced alterations of immune status. During the training phase of the experiment, Lewis rats received two conditioning sessions during which a subcutaneous injection of 15 mg/kg morphine sulfate was paired with exposure to a distinctive environment. On the test day, animals were re-exposed to the distinctive environment alone prior to sacrifice. Saline or naltrexone (0.3, 1.0, 3.0 or 10.0 mg/kg) was administered during either the training or the test session. Administration of naltrexone prior to training antagonized the development of all of the conditioned alterations of immune status including changes in the mitogenic responsiveness of splenocytes, suppression of natural killer cell activity, and interleukin-2 production by splenocytes. Naltrexone administration prior to testing also was effective in antagonizing the expression of a subset of morphine-induced conditioned alterations in immune status. Taken together, these studies indicate that opioid receptor activity is involved in the establishment of conditioned morphine-induced immune alterations, as well as in the expression of a subset of these conditioned alterations of immune status.

  8. Alterations in immune function with biologic therapies for autoimmune disease.

    Science.gov (United States)

    Her, Minyoung; Kavanaugh, Arthur

    2016-01-01

    Autoimmune disorders, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, and others, are characterized by dysregulation of various aspects of normal immunity and inflammation. Biologic agents targeting key components of the dysregulated immune response have dramatically improved patient outcomes and transformed treatment paradigms for a number of systemic inflammatory autoimmune diseases. Despite their excellent efficacy, because they do affect normal immune responsiveness, biologic agents can potentially be associated with a variety of adverse effects. Important potential adverse effects related to the use of biologic agents include immunosuppression, which might result in outcomes such as infection, and autoimmunity, that could result in paradoxical inflammation or even autoimmune disease. In this article the current clinical evidence and immunologic mechanisms of the adverse effects related to biologic agents are discussed.

  9. High-altitude hypoxia induces disorders of the brain-endocrine-immune network through activation of corticotropin-releasing factor and its type-1 receptors

    Institute of Scientific and Technical Information of China (English)

    Xue-qun CHEN; Fan-ping KONG; Yang ZHAO; Ji-zeng DU

    2012-01-01

    High-altitude hypoxia can induce physiological dysfunction and mountain sickness,but the underlying mechanism is not fully understood.Corticotrophin-releasing factor (CRF) and CRF type-1 receptors (CRFR1) are members of the CRF family and the essential controllers of the physiological activity of the hypothalamo-pituitary-adrenal (HPA) axis and modulators of endocrine and behavioral activity in response to various stressors.We have previously found that high-altitude hypoxia induces disorders of the brain-endocrine-immune network through activation of CRF and CRFR1 in the brain and periphery that include activation of the HPA axis in a time-and dose-dependent manner,impaired or improved learning and memory,and anxiety-like behavioral change.Meanwhile,hypoxia induces dysfunctions of the hypothalamo-pituitary-endocrine and immune systems,including suppression of growth and development,as well as inhibition of reproductive,metabolic and immune functions.In contrast,the small mammals that live on the Qinghai-Tibet Plateau alpine meadow display low responsiveness to extreme high-altitudehypoxia challenge,suggesting well-acclimatized genes and a physiological strategy that developed during evolution through interact-ions between the genes and environment.All the findings provide evidence for understanding the neuroendocrine mechanisms of hypoxia-induced physiological dysfunction.This review extends these findings.

  10. Vitamin D endocrine system and the immune response in rheumatic diseases.

    Science.gov (United States)

    Cutolo, Maurizio; Plebani, M; Shoenfeld, Yehuda; Adorini, Luciano; Tincani, Angela

    2011-01-01

    Epidemiological evidence indicates a significant association between vitamin D deficiency and an increased incidence of autoimmune diseases. The presence of vitamin D receptors (VDRs) in the cells of the immune system and the fact that several of these cells produce the vitamin D hormone suggested that vitamin D could have immunoregulatory properties, and now potent immunomodulatory activities on dendritic cells, Th1 and Th17 cells, as well as B cells have been confirmed. Serum levels of vitamin D have been found to be significantly lower in patients with systemic lupus erythematosus, undifferentiated connective tissue disease, and type-1 diabetes mellitus than in the healthy population. In addition, it was also found that lower levels of vitamin D were associated with higher disease activity in rheumatoid arthritis. Promising clinical results together with evidence for the regulation of multiple immunomodulatory mechanisms by VDR agonists represent a sound basis for further exploration of their potential in the treatment of rheumatic autoimmune disorders.

  11. Endocrine and Metabolic Disorders

    Science.gov (United States)

    ... for disorders of endocrine glands other than the thyroid, compared to 3.1 percent of visits made by women. The rate of visits due to metabolic and immunity disorders was also higher among men than women (2. ...

  12. Transcriptome analysis of Aedes aegypti transgenic mosquitoes with altered immunity.

    Directory of Open Access Journals (Sweden)

    Zhen Zou

    2011-11-01

    Full Text Available The mosquito immune system is involved in pathogen-elicited defense responses. The NF-κB factors REL1 and REL2 are downstream transcription activators of Toll and IMD immune pathways, respectively. We have used genome-wide microarray analyses to characterize fat-body-specific gene transcript repertoires activated by either REL1 or REL2 in two transgenic strains of the mosquito Aedes aegypti. Vitellogenin gene promoter was used in each transgenic strain to ectopically express either REL1 (REL1+ or REL2 (REL2+ in a sex, tissue, and stage specific manner. There was a significant change in the transcript abundance of 297 (79 up- and 218 down-regulated and 299 (123 up- and 176 down-regulated genes in fat bodies of REL1+ and REL2+, respectively. Over half of the induced genes had predicted functions in immunity, and a large group of these was co-regulated by REL1 and REL2. By generating a hybrid transgenic strain, which ectopically expresses both REL1 and REL2, we have shown a synergistic action of these NF-κB factors in activating immune genes. The REL1+ immune transcriptome showed a significant overlap with that of cactus (RNAi-depleted mosquitoes (50%. In contrast, the REL2+ -regulated transcriptome differed from the relatively small group of gene transcripts regulated by RNAi depletion of a putative inhibitor of the IMD pathway, caspar (35 up- and 140 down-regulated, suggesting that caspar contributes to regulation of a subset of IMD-pathway controlled genes. Infections of the wild type Ae. aegypti with Plasmodium gallinaceum elicited the transcription of a distinct subset of immune genes (76 up- and 25 down-regulated relative to that observed in REL1+ and REL2+ mosquitoes. Considerable overlap was observed between the fat body transcriptome of Plasmodium-infected mosquitoes and that of mosquitoes with transiently depleted PIAS, an inhibitor of the JAK-STAT pathway. PIAS gene silencing reduced Plasmodium proliferation in Ae. aegypti, indicating

  13. The cost of caregiving: endocrine and immune implications in elderly and non elderly caregivers.

    Science.gov (United States)

    Lovell, Brian; Wetherell, Mark A

    2011-05-01

    This review will provide an overview of literature that has linked caregiver stress with development and progression of disease, via interactions between the hypothalamic-pituitary-adrenal (HPA) axis and immune systems. The link between caregiver stress and dysregulation of key physiologic mediators has, in the main, focussed on elderly caregivers of spouses with degenerative illness, i.e., dementia. In these populations, aberrations of both endocrinological and immunologic mediators have been demonstrated. However, as a function of their advancing age, elderly populations experience natural dysregulation of the HPA axis and decline of immunologic efficacy. More recently, research has begun to assess whether caregiver stress exacts a similar physiologic toll on non elderly caregivers, i.e., parents of medically fragile children. Dysregulation of endocrinological and immunologic mediators have been observed in both populations, however, more consistently so in the elderly. The authors suggest that, by considering specific characteristics of the care recipient, i.e., type of impairment, and concomitant changes in the caregiving experience, i.e., caregiving intensity, as well as the role of dyadic support, researchers might be better poised to explain discrepant physiologic findings between elderly and non elderly caregivers and reconcile similar physiologic inconsistencies between different, non elderly populations.

  14. Protein supplementation does not alter intramuscular anabolic signaling or endocrine response after resistance exercise in trained men.

    Science.gov (United States)

    Gonzalez, Adam M; Hoffman, Jay R; Jajtner, Adam R; Townsend, Jeremy R; Boone, Carleigh H; Beyer, Kyle S; Baker, Kayla M; Wells, Adam J; Church, David D; Mangine, Gerald T; Oliveira, Leonardo P; Moon, Jordan R; Fukuda, David H; Stout, Jeffrey R

    2015-11-01

    The mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway appears to be the primary regulator of muscle protein synthesis. A variety of stimuli including resistance exercise, amino acids, and hormonal signals activate mTORC1 signaling. The purpose of this study was to investigate the effect of a protein supplement on mTORC1 signaling following a resistance exercise protocol designed to promote elevations in circulating hormone concentrations. We hypothesized that the protein supplement would augment the intramuscular anabolic signaling response. Ten resistance-trained men (age, 24.7 ± 3.4 years; weight, 90.1 ± 11.3 kg; height, 176.0 ± 4.9 cm) received either a placebo or a supplement containing 20 g protein, 6 g carbohydrates, and 1 g fat after high-volume, short-rest lower-body resistance exercise. Blood samples were obtained at baseline, immediately, 30 minutes, 1 hour, 2 hours, and 5 hours after exercise. Fine-needle muscle biopsies were completed at baseline, 1 hour, and 5 hours after exercise. Myoglobin, lactate dehydrogenase, and lactate concentrations were significantly elevated after resistance exercise (P exercise also elicited a significant insulin, growth hormone, and cortisol response (P growth factor-1, insulin, testosterone, growth hormone, or cortisol. Intramuscular anabolic signaling analysis revealed significant elevations in RPS6 phosphorylation after resistance exercise (P = .001); however, no differences were observed between trials for signaling proteins including Akt, mTOR, p70S6k, and RPS6. The endocrine response and phosphorylation status of signaling proteins within the mTORC1 pathway did not appear to be altered by ingestion of supplement after resistance exercise in resistance-trained men.

  15. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti

  16. Alemtuzumab treatment alters circulating innate immune cells in multiple sclerosis

    Science.gov (United States)

    Ahmetspahic, Diana; Ruck, Tobias; Schulte-Mecklenbeck, Andreas; Schwarte, Kathrin; Jörgens, Silke; Scheu, Stefanie; Windhagen, Susanne; Graefe, Bettina; Melzer, Nico; Klotz, Luisa; Arolt, Volker; Wiendl, Heinz; Meuth, Sven G.

    2016-01-01

    Objective: To characterize changes in myeloid and lymphoid innate immune cells in patients with relapsing-remitting multiple sclerosis (MS) during a 6-month follow-up after alemtuzumab treatment. Methods: Circulating innate immune cells including myeloid cells and innate lymphoid cells (ILCs) were analyzed before and 6 and 12 months after onset of alemtuzumab treatment. Furthermore, a potential effect on granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)–23 production by myeloid cells and natural killer (NK) cell cytolytic activity was determined. Results: In comparison to CD4+ T lymphocytes, myeloid and lymphoid innate cell subsets of patients with MS expressed significantly lower amounts of CD52 on their cell surface. Six months after CD52 depletion, numbers of circulating plasmacytoid dendritic cells (DCs) and conventional DCs were reduced compared to baseline. GM-CSF and IL-23 production in DCs remained unchanged. Within the ILC compartment, the subset of CD56bright NK cells specifically expanded under alemtuzumab treatment, but their cytolytic activity did not change. Conclusions: Our findings demonstrate that 6 months after alemtuzumab treatment, specific DC subsets are reduced, while CD56bright NK cells expanded in patients with MS. Thus, alemtuzumab specifically restricts the DC compartment and expands the CD56bright NK cell subset with potential immunoregulatory properties in MS. We suggest that remodeling of the innate immune compartment may promote long-term efficacy of alemtuzumab and preserve immunocompetence in patients with MS. PMID:27766281

  17. [Neuroimmune endocrine relationships under exposure to local vibration in workers].

    Science.gov (United States)

    Bodienkova, G M; Kurchevenko, S I

    2015-01-01

    The studies prove that local vibration in workers alters parameters of immune, nervous, endocrine systems interconnected and demonstrating pathologic process degree. Findings are that workers with long length of service, having no health disorders, increased CNTF level is associated with high TSH, increased IgG level is connected with ACTH growth. In vibration disease, increase of neurospecific protein S-100β is associatedwith lower level of T4. Increase of anti-inflammatory IL-4 is accompanied by high level of T3--that can prove disbalance in main regulatory systems (immune, nervous, endocrine).

  18. Prenatal cadmium exposure alters postnatal immune cell development and function

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B., E-mail: jbarnett@hsc.wvu.edu

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can

  19. Altered macrophage differentiation and immune dysfunction in tumor development.

    Science.gov (United States)

    Sica, Antonio; Bronte, Vincenzo

    2007-05-01

    Tumors require a constant influx of myelomonocytic cells to support the angiogenesis and stroma remodeling needed for their growth. This is mediated by tumor-derived factors, which cause sustained myelopoiesis and the accumulation and functional differentiation of myelomonocytic cells, most of which are macrophages, at the tumor site. An important side effect of the accumulation and functional differentiation of these cells is that they can induce lymphocyte dysfunction. A complete understanding of the complex interplay between neoplastic and myelomonocytic cells might offer novel targets for therapeutic intervention aimed at depriving tumor cells of important growth support and enhancing the antitumor immune response.

  20. Endocrine Disruptors

    Science.gov (United States)

    ... adjust the font size, or print this page. Endocrine Disruptors Table of Contents Health Studies & Clinical Trials What ... Disruptors General Information For Educators Related Topics Introduction Endocrine Disruptors Introduction Endocrine disruptors are chemicals that may interfere ...

  1. Lipid body accumulation alters calcium signaling dynamics in immune cells.

    Science.gov (United States)

    Greineisen, William E; Speck, Mark; Shimoda, Lori M N; Sung, Carl; Phan, Nolwenn; Maaetoft-Udsen, Kristina; Stokes, Alexander J; Turner, Helen

    2014-09-01

    There is well-established variability in the numbers of lipid bodies (LB) in macrophages, eosinophils, and neutrophils. Similarly to the steatosis observed in adipocytes and hepatocytes during hyperinsulinemia and nutrient overload, immune cell LB hyper-accumulate in response to bacterial and parasitic infection and inflammatory presentations. Recently we described that hyperinsulinemia, both in vitro and in vivo, drives steatosis and phenotypic changes in primary and transformed mast cells and basophils. LB reach high numbers in these steatotic cytosols, and here we propose that they could dramatically impact the transcytoplasmic signaling pathways. We compared calcium release and influx responses at the population and single cell level in normal and steatotic model mast cells. At the population level, all aspects of FcɛRI-dependent calcium mobilization, as well as activation of calcium-dependent downstream signaling targets such as NFATC1 phosphorylation are suppressed. At the single cell level, we demonstrate that LB are both sources and sinks of calcium following FcɛRI cross-linking. Unbiased analysis of the impact of the presence of LB on the rate of trans-cytoplasmic calcium signals suggest that LB enrichment accelerates calcium propagation, which may reflect a Bernoulli effect. LB abundance thus impacts this fundamental signaling pathway and its downstream targets.

  2. Central immune alterations in passive strategy following chronic defeat stress.

    Science.gov (United States)

    Joana, Perez-Tejada; Amaia, Arregi; Arantza, Azpiroz; Garikoitz, Beitia; Eneritz, Gomez-Lazaro; Larraitz, Garmendia

    2016-02-01

    The relationship between stress, mood disorders and immune disorders is known, but what remains to be resolved is why certain individuals are more susceptible than others to suffer different disorders, along with the biological mechanisms that underlie these differences. The objective of this study was to analyze the changes in the expression patterns of proinflammatory cytokines in the hypothalamus, hippocampus, amygdala and prefrontal cortex after chronic defeat, depending on the coping strategy used. The expression levels of α1b and α2a adrenergic receptors and cytokine-inducible nitric oxide synthase (iNOS) in the prefrontal cortex were also measured. The results indicated that subjects with a passive coping strategy showed high levels of interleukin-6 (IL-6) and interleukin-1β (IL-1β) expression in several cerebral structures in resting conditions after 21 days of chronic stress and increases in these cytokine levels in the hippocampus following an additional stress. Low expression levels of tumour necrosis factor-alpha (TNF-α) in the prefrontal cortex in active subjects at rest and in passive subjects after an additional defeat were detected. The iNOS expression levels were lower in the prefrontal cortex of the active group at rest. With respect to adrenergic receptor expression, there were no changes as a function of stress, but there were changes as a function of coping strategy. These results indicate differences in the variables studied in terms of the coping strategy adopted, with passive subjects having a biological profile that could be considered more vulnerable to the development of stress-related disorders.

  3. Selective estrogen receptor modulators differentially alter the immune response of gilthead seabream juveniles.

    Science.gov (United States)

    Rodenas, M C; Cabas, I; García-Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A

    2016-05-01

    17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives and hormone replacement therapy, tamoxifen (Tmx), a selective estrogen-receptor modulator used in hormone replacement therapy, and G1, a G protein-coupled estrogen receptor (GPER) selective agonist, differentially increased the hepatic vitellogenin (vtg) gene expression and altered the immune response in adult gilthead seabream (Sparus aurata L.) males. However, no information exists on the effects of these compounds on the immune response of juveniles. This study aims, for the first time, to investigate the effects of the dietary intake of EE2, Tmx or G1 on the immune response of gilthead seabream juveniles and the capacity of the immune system of the specimens to recover its functionality after ceasing exposures (recovery period). The specimens were immunized with hemocyanin in the presence of aluminium adjuvant 1 (group A) or 120 (group B) days after the treatments ceased (dpt). The results indicate that EE2 and Tmx, but not G1, differentially promoted a transient alteration in hepatic vtg gene expression. Although all three compounds did not affect the production of reactive oxygen intermediates, they inhibited the induction of interleukin-1β (il1b) gene expression after priming. Interestingly, although Tmx increased the percentage of IgM-positive cells in both head kidney and spleen during the recovery period, the antibody response of vaccinated fish varied depending on the compound used and when the immunization was administered. Taken together, our results suggest that these compounds differentially alter the capacity of fish to respond to infection during ontogeny and, more interestingly, that the adaptive immune response remained altered to an extent that depends on the compound.

  4. 17α-Ethynylestradiol alters the immune response of the teleost gilthead seabream (Sparus aurata L.) both in vivo and in vitro.

    Science.gov (United States)

    Cabas, Isabel; Liarte, Sergio; García-Alcázar, Alicia; Meseguer, José; Mulero, Victoriano; García-Ayala, Alfonsa

    2012-03-01

    There is increasing public attention concerning the effect of endocrine disruptor chemicals (EDCs) on the immune system. One important group belonging to EDCs are the environmental estrogens. Commonly found in the effluents in wastewater treatment plants, 17α-ethynylestradiol (EE(2)) which is used in contraceptive pills, is an endocrine disruptor with strong estrogenic effects. This study aims to investigate the capacity of EE(2) to modulate in vivo and in vitro the innate immune response of the gilthead seabream (Sparus aurata L.), a teleost species of great commercial value. For this purpose, adult specimens were bath-exposed to EE(2) (0, 5 and 50 ng/L) and then immunized with hemocyanin in the presence of the adjuvant aluminum. The results indicate that, after 15 days of EE(2)-exposure, the disruptor was able to inhibit in a dose-dependent manner the induction of interleukin-1β (IL-1β) gene expression, but did not significantly alter the specific antibody titer. To shed light on the role played by EE(2) into seabream immune response, leukocytes were exposed in vitro to several concentrations of EE(2) (0, 0.5, 5, 50 and 500 ng/ml) for 3, 16 and 48 h and the production of reactive oxygen intermediates, the phagocytic activity and the gene expression profile of these cells were analyzed. EE(2) was seen to inhibit both cellular activities and to alter the immune gene expression profile in primary macrophages. Thus, low concentrations of EE(2) increase the mRNA levels of IL-1 β, IL-6, tumour necrosis factor α and tumour growth factor β in non-activated macrophages. In contrast, EE(2) treatment of activated macrophages resulted in the decreased expression of pro-inflammatory genes and the increased expression of genes encoding anti-inflammatory and tissue remodeling/repair enzymes. Taken together, our results suggest that EE(2) might alter the capacity of fish to appropriately respond to infection although it does not behave as an immunosuppressor.

  5. Risk of Crew Adverse Health Event Due to Altered Immune Response

    Science.gov (United States)

    Crucian, Brian; Kunz, Hawley; Sams, Clarence F.

    2015-01-01

    Determining the effect of space travel on the human immune system has proven to be extremely challenging. Limited opportunities for in-flight studies, varying mission durations, technical and logistical obstacles, small subject numbers, and a broad range of potential assays have contributed to this problem. Additionally, the inherent complexity of the immune system, with its vast array of cell populations, sub-populations, diverse regulatory molecules, and broad interactions with other physiological systems, makes determining precise variables to measure very difficult. There is also the challenge of determining the clinical significance of any observed immune alterations. Will such a change lead to disease, or is it a transient subclinical observation related to short-term stress? The effect of this problem may be observed by scanning publications associated with immunity and spaceflight, which began to appear during the 1970s. Although individually they are each valid studies, the comprehensive literature to date suffers from widely varying sampling methods and assay techniques, low subject counts, and sometimes a disparate focus on narrow aspects of immunity. The most clinically relevant data are derived from in-flight human studies, which have demonstrated altered cell-mediated immunity and reactivation of latent herpes viruses. Much more data are available from post-flight testing of humans, with clear evidence of altered cytokine production patterns, altered leukocyte distribution, continued latent viral reactivation, and evidence of dramatically altered virus-specific immunity. It is unknown if post-flight assessments relate to the in-flight condition or are a response to landing stress and readaptation. In-flight culture of cells has clearly demonstrated that immune cells are gravity-sensitive and display altered functional characteristics. It is unknown if these data are related to in vivo immune cell function or are an artifact of microgravity culture

  6. Does cancer start in the womb? altered mammary gland development and predisposition to breast cancer due to in utero exposure to endocrine disruptors.

    Science.gov (United States)

    Soto, Ana M; Brisken, Cathrin; Schaeberle, Cheryl; Sonnenschein, Carlos

    2013-06-01

    We are now witnessing a resurgence of theories of development and carcinogenesis in which the environment is again being accepted as a major player in phenotype determination. Perturbations in the fetal environment predispose an individual to disease that only becomes apparent in adulthood. For example, gestational exposure to diethylstilbestrol resulted in clear cell carcinoma of the vagina and breast cancer. In this review the effects of the endocrine disruptor bisphenol-A (BPA) on mammary development and tumorigenesis in rodents is used as a paradigmatic example of how altered prenatal mammary development may lead to breast cancer in humans who are also widely exposed to it through plastic goods, food and drink packaging, and thermal paper receipts. Changes in the stroma and its extracellular matrix led to altered ductal morphogenesis. Additionally, gestational and lactational exposure to BPA increased the sensitivity of rats and mice to mammotropic hormones during puberty and beyond, thus suggesting a plausible explanation for the increased incidence of breast cancer.

  7. Endocrine disrupting chemicals and disease susceptibility.

    Science.gov (United States)

    Schug, Thaddeus T; Janesick, Amanda; Blumberg, Bruce; Heindel, Jerrold J

    2011-11-01

    Environmental chemicals have significant impacts on biological systems. Chemical exposures during early stages of development can disrupt normal patterns of development and thus dramatically alter disease susceptibility later in life. Endocrine disrupting chemicals (EDCs) interfere with the body's endocrine system and produce adverse developmental, reproductive, neurological, cardiovascular, metabolic and immune effects in humans. A wide range of substances, both natural and man-made, are thought to cause endocrine disruption, including pharmaceuticals, dioxin and dioxin-like compounds, polychlorinated biphenyls, DDT and other pesticides, and components of plastics such as bisphenol A (BPA) and phthalates. EDCs are found in many everyday products--including plastic bottles, metal food cans, detergents, flame retardants, food additives, toys, cosmetics, and pesticides. EDCs interfere with the synthesis, secretion, transport, activity, or elimination of natural hormones. This interference can block or mimic hormone action, causing a wide range of effects. This review focuses on the mechanisms and modes of action by which EDCs alter hormone signaling. It also includes brief overviews of select disease endpoints associated with endocrine disruption.

  8. Endocrine disorders in pregnancy

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, Ulla; Mathiesen, Elisabeth R

    2011-01-01

    The endocrinology of pregnancy involves endocrine and metabolic changes as a consequence of physiological alterations at the foetoplacental boundary between mother and foetus. The vast changes in maternal hormones and their binding proteins complicate assessment of the normal level of most hormones...... hormones and their precursors across the foeto-maternal interface. The endocrine system is the earliest system developing in foetal life, and it is functional from early intrauterine existence through old age. Regulation of the foetal endocrine system relies, to some extent, on precursors secreted...

  9. Suppression of Adaptive Immune Cell Activation Does Not Alter Innate Immune Adipose Inflammation or Insulin Resistance in Obesity.

    Directory of Open Access Journals (Sweden)

    Manikandan Subramanian

    Full Text Available Obesity-induced inflammation in visceral adipose tissue (VAT is a major contributor to insulin resistance and type 2 diabetes. Whereas innate immune cells, notably macrophages, contribute to visceral adipose tissue (VAT inflammation and insulin resistance, the role of adaptive immunity is less well defined. To address this critical gap, we used a model in which endogenous activation of T cells was suppressed in obese mice by blocking MyD88-mediated maturation of CD11c+ antigen-presenting cells. VAT CD11c+ cells from Cd11cCre+Myd88fl/fl vs. control Myd88fl/fl mice were defective in activating T cells in vitro, and VAT T and B cell activation was markedly reduced in Cd11cCre+Myd88fl/fl obese mice. However, neither macrophage-mediated VAT inflammation nor systemic inflammation were altered in Cd11cCre+Myd88fl/fl mice, thereby enabling a focused analysis on adaptive immunity. Unexpectedly, fasting blood glucose, plasma insulin, and the glucose response to glucose and insulin were completely unaltered in Cd11cCre+Myd88fl/fl vs. control obese mice. Thus, CD11c+ cells activate VAT T and B cells in obese mice, but suppression of this process does not have a discernible effect on macrophage-mediated VAT inflammation or systemic glucose homeostasis.

  10. Echovirus 6 Infects Human Exocrine and Endocrine Pancreatic Cells and Induces Pro-Inflammatory Innate Immune Response

    Directory of Open Access Journals (Sweden)

    Luis Sarmiento

    2017-01-01

    Full Text Available Human enteroviruses (HEV, especially coxsackievirus serotype B (CVB and echovirus (E, have been associated with diseases of both the exocrine and endocrine pancreas, but so far evidence on HEV infection in human pancreas has been reported only in islets and ductal cells. This study aimed to investigate the capability of echovirus strains to infect human exocrine and endocrine pancreatic cells. Infection of explanted human islets and exocrine cells with seven field strains of E6 caused cytopathic effect, virus titer increase and production of HEV protein VP1 in both cell types. Virus particles were found in islets and acinar cells infected with E6. No cytopathic effect or infectious progeny production was observed in exocrine cells exposed to the beta cell-tropic strains of E16 and E30. Endocrine cells responded to E6, E16 and E30 by upregulating the transcription of interferon-induced with helicase C domain 1 (IF1H1, 2'-5'-oligoadenylate synthetase 1 (OAS1, interferon-β (IFN-β, chemokine (C–X–C motif ligand 10 (CXCL10 and chemokine (C–C motif ligand 5 (CCL5. Echovirus 6, but not E16 or E30, led to increased transcription of these genes in exocrine cells. These data demonstrate for the first time that human exocrine cells represent a target for E6 infection and suggest that certain HEV serotypes can replicate in human pancreatic exocrine cells, while the pancreatic endocrine cells are permissive to a wider range of HEV.

  11. Secretion of interferon gamma from human immune cells is altered by exposure to tributyltin and dibutyltin.

    Science.gov (United States)

    Lawrence, Shanieek; Reid, Jacqueline; Whalen, Margaret

    2015-05-01

    Tributyltin (TBT) and dibutyltin (DBT) are widespread environmental contaminants found in food, beverages, and human blood samples. Both of these butyltins (BTs) interfere with the ability of human natural killer (NK) cells to lyse target cells and alter secretion of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) from human immune cells in vitro. The capacity of BTs to interfere with secretion of other pro-inflammatory cytokines has not been examined. Interferon gamma (IFNγ) is a modulator of adaptive and innate immune responses, playing an important role in overall immune competence. This study shows that both TBT and DBT alter secretion of IFNγ from human immune cells. Peripheral blood cell preparations that were increasingly reconstituted were used to determine if exposures to either TBT or DBT affected IFNγ secretion and how the makeup of the cell preparation influenced that effect. IFNγ secretion was examined after 24 h, 48 h, and 6 day exposures to TBT (200 - 2.5 nM) and DBT (5 - 0.05 µM) in highly enriched human NK cells, a monocyte-depleted preparation of PBMCs, and monocyte-containing PBMCs. Both BTs altered IFNγ secretion from immune cells at most of the conditions tested (either increasing or decreasing secretion). However, there was significant variability among donors as to the concentrations and time points that showed changes as well as the baseline secretion of IFNγ. The majority of donors showed an increase in IFNγ secretion in response to at least one concentration of TBT or DBT at a minimum of one length of exposure.

  12. Will Global Climate Change Alter Fundamental Human Immune Reactivity: Implications for Child Health?

    Science.gov (United States)

    Swaminathan, Ashwin; Lucas, Robyn M; Harley, David; McMichael, Anthony J

    2014-11-11

    The human immune system is an interface across which many climate change sensitive exposures can affect health outcomes. Gaining an understanding of the range of potential effects that climate change could have on immune function will be of considerable importance, particularly for child health, but has, as yet, received minimal research attention. We postulate several mechanisms whereby climate change sensitive exposures and conditions will subtly impair aspects of the human immune response, thereby altering the distribution of vulnerability within populations-particularly for children-to infection and disease. Key climate change-sensitive pathways include under-nutrition, psychological stress and exposure to ambient ultraviolet radiation, with effects on susceptibility to infection, allergy and autoimmune diseases. Other climate change sensitive exposures may also be important and interact, either additively or synergistically, to alter health risks. Conducting directed research in this area is imperative as the potential public health implications of climate change-induced weakening of the immune system at both individual and population levels are profound. This is particularly relevant for the already vulnerable children of the developing world, who will bear a disproportionate burden of future adverse environmental and geopolitical consequences of climate change.

  13. Will Global Climate Change Alter Fundamental Human Immune Reactivity: Implications for Child Health?

    Directory of Open Access Journals (Sweden)

    Ashwin Swaminathan

    2014-11-01

    Full Text Available The human immune system is an interface across which many climate change sensitive exposures can affect health outcomes. Gaining an understanding of the range of potential effects that climate change could have on immune function will be of considerable importance, particularly for child health, but has, as yet, received minimal research attention. We postulate several mechanisms whereby climate change sensitive exposures and conditions will subtly impair aspects of the human immune response, thereby altering the distribution of vulnerability within populations—particularly for children—to infection and disease. Key climate change-sensitive pathways include under-nutrition, psychological stress and exposure to ambient ultraviolet radiation, with effects on susceptibility to infection, allergy and autoimmune diseases. Other climate change sensitive exposures may also be important and interact, either additively or synergistically, to alter health risks. Conducting directed research in this area is imperative as the potential public health implications of climate change-induced weakening of the immune system at both individual and population levels are profound. This is particularly relevant for the already vulnerable children of the developing world, who will bear a disproportionate burden of future adverse environmental and geopolitical consequences of climate change.

  14. The role of altered cutaneous immune responses in the induction and persistence of rosacea.

    Science.gov (United States)

    Margalit, Anatte; Kowalczyk, Michał J; Żaba, Ryszard; Kavanagh, Kevin

    2016-04-01

    Rosacea is a chronic inflammatory skin condition that predominantly affects the skin of the face and the eyes. Several factors are associated with the onset and persistence of the condition, including an altered immune response in the skin and elevated levels of Demodex mites. Alterations in the immune response include elevated levels of LL-37 in rosacea skin, increased expression of TLR-2 and increased amounts of vitamin D3 in epidermal tissue. The combined effect of these changes may make the skin more sensitive to external and internal stimuli. External stimuli that may trigger or sustain rosacea inflammation include exposure to ultraviolet light, while internal factors may include the presence of elevated numbers of Demodex mites. These mites may directly stimulate an immune response or release bacteria within the pilosebaceous unit that act as a trigger for inflammation. This review will highlight the changes that occur in the immune response of the skin and describe how Demodex mites and associated bacteria may activate this response and lead to the characteristics of rosacea.

  15. Glycans in the immune system and The Altered Glycan Theory of Autoimmunity: a critical review.

    Science.gov (United States)

    Maverakis, Emanual; Kim, Kyoungmi; Shimoda, Michiko; Gershwin, M Eric; Patel, Forum; Wilken, Reason; Raychaudhuri, Siba; Ruhaak, L Renee; Lebrilla, Carlito B

    2015-02-01

    Herein we will review the role of glycans in the immune system. Specific topics covered include: the glycosylation sites of IgE, IgM, IgD, IgE, IgA, and IgG; how glycans can encode "self" identity by functioning as either danger associated molecular patterns (DAMPs) or self-associated molecular patterns (SAMPs); the role of glycans as markers of protein integrity and age; how the glycocalyx can dictate the migration pattern of immune cells; and how the combination of Fc N-glycans and Ig isotype dictate the effector function of immunoglobulins. We speculate that the latter may be responsible for the well-documented association between alterations of the serum glycome and autoimmunity. Due to technological limitations, the extent of these autoimmune-associated glycan alterations and their role in disease pathophysiology has not been fully elucidated. Thus, we also review the current technologies available for glycan analysis, placing an emphasis on Multiple Reaction Monitoring (MRM), a rapid high-throughput technology that has great potential for glycan biomarker research. Finally, we put forth The Altered Glycan Theory of Autoimmunity, which states that each autoimmune disease will have a unique glycan signature characterized by the site-specific relative abundances of individual glycan structures on immune cells and extracellular proteins, especially the site-specific glycosylation patterns of the different immunoglobulin(Ig) classes and subclasses.

  16. Neuroimmune endocrine effects of antidepressants

    Directory of Open Access Journals (Sweden)

    Antonioli M

    2012-02-01

    Full Text Available Marco Antonioli, Joanna Rybka, LA CarvalhoPsychoimmunology Translational Laboratory, Health Science Research Centre, Roehampton University, London, UKAbstract: Antidepressant pharmacotherapy is to date the most often used treatment for depression, but the exact mechanism of action underlying its therapeutic effect is still unclear. Many theories have been put forward to account for depression, as well as antidepressant activity, but none of them is exhaustive. Neuroimmune endocrine impairment is found in depressed patients; high levels of circulating corticosteroids along with hyperactivation of the immune system, high levels of proinflammatory cytokines, low levels of melatonin in plasma and urine, and disentrainment of circadian rhythms have been demonstrated. Moreover, antidepressant treatment seems to correct or at least to interfere with these alterations. In this review, we summarize the complex neuroimmune endocrine and chronobiological alterations found in patients with depression and how these systems interact with each other. We also explain how antidepressant therapy can modify these systems, along with some possible mechanisms of action shown in animal and human models.Keywords: antidepressant agents, biological markers, human, cytokines, neuroinflammation, psychoneuroimmunology, endophenotype

  17. Repeated stress-induced stimulation of catecholamine response is not followed by altered immune cell redistribution.

    Science.gov (United States)

    Imrich, Richard; Tibenska, Elena; Koska, Juraj; Ksinantova, Lucia; Kvetnansky, Richard; Bergendiova-Sedlackova, Katarina; Blazicek, Pavol; Vigas, Milan

    2004-06-01

    Stress response is considered an important factor in the modulation of immune function. Neuroendocrine hormones, including catecholamines, affect the process of immune cell redistribution, important for cell-mediated immunity. This longitudinal investigation was aimed at evaluating the effect of repeated stress-induced elevation of catecholamines on immune cell redistribution and expression of adhesive molecules. We assessed the responses of epinephrine (EPI), norepinephrine (NE), cortisol, changes in lymphocytes subpopulations, and percentages of CD11a+, CD11b+, and CD62L+ lymphocytes to a 20-min treadmill exercise of an intensity equal to 80% of the individual's Vo(2)max. The exercise was performed before and after 6 weeks of endurance training consisting of a 1-h run 4 times a week (ET) and after 5 days of bed rest (HDBR) in 10 healthy males. We did not observe any significant changes in the basal levels of EPI, NE, and cortisol in the plasma, nor in the immune parameters after ET and HDBR. The exercise test led to a significant (P <.001) elevation of EPI and NE levels after both ET and HDBR, a significant elevation (P <.01) of cortisol after HDBR, an increase in the absolute numbers of leukocytes, granulocytes, monocytes, CD3+, CD4+, CD8+, CD16+, CD19+ lymphocytes, percentage of CD11a+ and CD11b+ lymphocytes, and to a decrease of CD62L1 before, after ET, and after HDBR. We found comparable changes in all measured immune parameters after ET and HDBR. In conclusion, repeated stress-induced elevation of EPI and NE was not associated with an alteration in immune cell redistribution found in response to the single bout of exercise.

  18. Plasma omega 3 polyunsaturated fatty acid status and monounsaturated fatty acids are altered by chronic social stress and predict endocrine responses to acute stress in titi monkeys

    Science.gov (United States)

    Disturbances in fatty acid (FA) metabolism may link chronic psychological stress, endocrine responsiveness, and psychopathology. Therefore, lipid metabolome-wide responses and their relationships with endocrine (cortisol; insulin; adiponectin) responsiveness to acute stress (AS) were assessed in a ...

  19. Estrogenic compounds -endocrine disruptors

    Directory of Open Access Journals (Sweden)

    Munteanu Constantin

    2011-11-01

    Full Text Available Endocrine disruptors (polychlorinated biphenyls, dichlorodiphenyl-trichloroethane [DDT], dioxin, and some pesticides are estrogen-like and anti-androgenic chemicals in the environment. They mimic natural hormones, inhibit the action of hormones, or alter the normal regulatory function of the endocrine system and have potential hazardous effects on male reproductive axis causing infertility. Although testicular and prostate cancers, abnormal sexual development, undescended testis, chronic inflammation, Sertoli-cell-only pattern, hypospadias, altered pituitary and thyroid gland functions are also observed, the available data are insufficient to deduce worldwide conclusions.

  20. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Broderick Nichole A

    2010-04-01

    Full Text Available Abstract Background The gut comprises an essential barrier that protects both invertebrate and vertebrate animals from invasion by microorganisms. Disruption of the balanced relationship between indigenous gut microbiota and their host can result in gut bacteria eliciting host responses similar to those caused by invasive pathogens. For example, ingestion of Bacillus thuringiensis by larvae of some species of susceptible Lepidoptera can result in normally benign enteric bacteria exerting pathogenic effects. Results We explored the potential role of the insect immune response in mortality caused by B. thuringiensis in conjunction with gut bacteria. Two lines of evidence support such a role. First, ingestion of B. thuringiensis by gypsy moth larvae led to the depletion of their hemocytes. Second, pharmacological agents that are known to modulate innate immune responses of invertebrates and vertebrates altered larval mortality induced by B. thuringiensis. Specifically, Gram-negative peptidoglycan pre-treated with lysozyme accelerated B. thuringiensis-induced killing of larvae previously made less susceptible due to treatment with antibiotics. Conversely, several inhibitors of the innate immune response (eicosanoid inhibitors and antioxidants increased the host's survival time following ingestion of B. thuringiensis. Conclusions This study demonstrates that B. thuringiensis infection provokes changes in the cellular immune response of gypsy moth larvae. The effects of chemicals known to modulate the innate immune response of many invertebrates and vertebrates, including Lepidoptera, also indicate a role of this response in B. thuringiensis killing. Interactions among B. thuringiensis toxin, enteric bacteria, and aspects of the gypsy moth immune response may provide a novel model to decipher mechanisms of sepsis associated with bacteria of gut origin.

  1. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer.

    Science.gov (United States)

    Nosho, Katsuhiko; Sukawa, Yasutaka; Adachi, Yasushi; Ito, Miki; Mitsuhashi, Kei; Kurihara, Hiroyoshi; Kanno, Shinichi; Yamamoto, Itaru; Ishigami, Keisuke; Igarashi, Hisayoshi; Maruyama, Reo; Imai, Kohzoh; Yamamoto, Hiroyuki; Shinomura, Yasuhisa

    2016-01-14

    The human intestinal microbiome plays a major role in human health and diseases, including colorectal cancer. Colorectal carcinogenesis represents a heterogeneous process with a differing set of somatic molecular alterations, influenced by diet, environmental and microbial exposures, and host immunity. Fusobacterium species are part of the human oral and intestinal microbiota. Metagenomic analyses have shown an enrichment of Fusobacterium nucleatum (F. nucleatum) in colorectal carcinoma tissue. Using 511 colorectal carcinomas from Japanese patients, we assessed the presence of F. nucleatum. Our results showed that the frequency of F. nucleatum positivity in the Japanese colorectal cancer was 8.6% (44/511), which was lower than that in United States cohort studies (13%). Similar to the United States studies, F. nucleatum positivity in Japanese colorectal cancers was significantly associated with microsatellite instability (MSI)-high status. Regarding the immune response in colorectal cancer, high levels of infiltrating T-cell subsets (i.e., CD3+, CD8+, CD45RO+, and FOXP3+ cells) have been associated with better patient prognosis. There is also evidence to indicate that molecular features of colorectal cancer, especially MSI, influence T-cell-mediated adaptive immunity. Concerning the association between the gut microbiome and immunity, F. nucleatum has been shown to expand myeloid-derived immune cells, which inhibit T-cell proliferation and induce T-cell apoptosis in colorectal cancer. This finding indicates that F. nucleatum possesses immunosuppressive activities by inhibiting human T-cell responses. Certain microRNAs are induced during the macrophage inflammatory response and have the ability to regulate host-cell responses to pathogens. MicroRNA-21 increases the levels of IL-10 and prostaglandin E2, which suppress antitumor T-cell-mediated adaptive immunity through the inhibition of the antigen-presenting capacities of dendritic cells and T-cell proliferation in

  2. Endocrine and ovarian responses in water buffalo cows immunized against inhibin and subjected to the Ovsynch protocol

    Institute of Scientific and Technical Information of China (English)

    Abdalla Bahareldin-Ali; QIN Guang-sheng; GUO Ri-hong; Anastasia Tsigkou; TAN Zheng-zhun; HUANG Jian; LI Hui; SHI Zhen-dan

    2015-01-01

    The aim of this study was to investigate the feasibility of stimulating ovarian fol icle development in order to improve fertility in water buffalo cows by immunization against inhibin. The experiment was carried out in early summer (May) and included 24 multi-parity crossbred Murrah-Swamp buffaloes that were divided into immunized (n=11) and control (n=13) groups. Each immunized cow was administered with a 2-mL immunogen of mineral oil adjuvant containing 2 mg of recombinant inhibinα-subunit fusion protein. The controls were treated with the adjuvant only. Al animals received Ovsynch protocol treatment, starting on the day of the antigen administration, and they were artiifcial y inseminated upon behavioral estrus. As a result, al of the immunized buffaloes generated antibodies against inhibin during the experimental period and had higher plasma concentrations of fol icle-stimulating hormone (FSH), activin, and estradiol (E2) related to estrous expression. A higher proportion of immunized animals expressed estrus behavior than did the controls (72%vs. 30%, P0.05). These results demonstrate that immunization against inhibin, coupled with the treatment with the Ovsynch protocol, can constitute a new technique to increase fertility in water buffalo cows.

  3. Altered transcription levels of endocrine associated genes in two fisheries species collected from the Great Barrier Reef catchment and lagoon.

    Science.gov (United States)

    Kroon, Frederieke J; Hook, Sharon E; Jones, Dean; Metcalfe, Suzanne; Henderson, Brent; Smith, Rachael; Warne, Michael St J; Turner, Ryan D; McKeown, Adam; Westcott, David A

    2015-03-01

    The Great Barrier Reef (GBR) is chronically exposed to agricultural run-off containing pesticides, many of which are known endocrine disrupting chemicals (EDCs). Here, we measure mRNA transcript abundance of two EDC biomarkers in wild populations of barramundi (Lates calcarifer) and coral trout (Plectropomus leopardus and Plectropomus maculatus). Transcription levels of liver vitellogenin (vtg) differed significantly in both species amongst sites with different exposures to agricultural run-off; brain aromatase (cyp19a1b) revealed some differences for barramundi only. Exposure to run-off from sugarcane that contains pesticides is a likely pathway given (i) significant associations between barramundi vtg transcription levels, catchment sugarcane land use, and river pesticide concentrations, and (ii) consistency between patterns of coral trout vtg transcription levels and pesticide distribution in the GBR lagoon. Given the potential consequences of such exposure for reproductive fitness and population dynamics, these results are cause for concern for the sustainability of fisheries resources downstream from agricultural land uses.

  4. Endocrine and ovarian responses in water buffalo cows immunized against inhibin and subjected to the Ovsynch protocol

    Institute of Scientific and Technical Information of China (English)

    Abdalla Bahareldin-Ali[1; QIN Guang-sheng[2; GUO Ri-hong[1; Anastasia Tsigkou[3; TAN Zheng-zhun[2; HUANG Jian[2; LI Hui[2; LI Hui[4; SHI Zhen-dan[4

    2015-01-01

    The aim of this study was to investigate the feasibility of stimulating ovarian follicle development in order to improve fertility in water buffalo cows by immunization against inhibin. The experiment was carried out in early summer (May) and included 24 multi-parity crossbred Murrah-Swamp buffaloes that were divided into immunized (n=11) and control (n=13) groups. Each immunized cow was administered with a 2-mL immunogen of mineral oil adjuvant containing 2 mg of recombinant inhibin a-subunit fusion protein. The controls were treated with the adjuvant only. All animals received Ovsynch protocol treatment, starting on the day of the antigen administration, and they were artificially inseminated upon behavioral estrus. As a result, all of the immunized buffaloes generated antibodies against inhibin during the experimental period and had higher plasma concentrations of follicle-stimulating hormone (FSH), activin, and estradiol (E2) related to estrous expression. A higher proportion of immunized animals expressed estrus behavior than did the controls (72% vs. 30%, P〈0.05). On aver- age, inhibin-immunized buffaloes had significantly more large follicles (〉9 mm in diameter) than the controls (mean_+SEM; 1.2+0.1 vs. 0.84+0.1, respectively; P〈0.05)and a slightly higher mean total number of follicles (〉2 mm; 11.4+0.7 vs. 9.0+1.1, respectively; P=0.09) and small (2-4 ram) follicles (8.81+0.6 vs. 6.84+1.0, respectively; P=0.12). A higher percentage of cows ovulated in the immunized group than in the control group (91% (10/11) vs. 54% (7/13), respectively; P〈0.05). Moreover, inhibin-immunized cows had slightly larger corpus luteum (CL) than the controls 9 days after ovulation and significantly higher (P〈0.01) post-ovulation peak plasma progesterone (P4) concentrations. Immunization against inhibin also mar- ginally increased the conception rate 42 days after insemination (45.8% vs

  5. Estrogen mediates innate and adaptive immune alterations to influenza infection in pregnant mice.

    Directory of Open Access Journals (Sweden)

    Michael A Pazos

    Full Text Available Pregnancy is a leading risk factor for severe complications during an influenza virus infection. Women infected during their second and third trimesters are at increased risk for severe cardiopulmonary complications, premature delivery, and death. Here, we establish a murine model of aerosolized influenza infection during pregnancy. We find significantly altered innate antiviral responses in pregnant mice, including decreased levels of IFN-β, IL-1α, and IFN-γ at early time points of infection. We also find reduced cytotoxic T cell activity and delayed viral clearance. We further demonstrate that pregnancy levels of the estrogen 17-β-estradiol are able to induce key anti-inflammatory phenotypes in immune responses to the virus independently of other hormones or pregnancy-related stressors. We conclude that elevated estrogen levels result in an attenuated anti-viral immune response, and that pregnancy-associated morbidities occur in the context of this anti-inflammatory phenotype.

  6. Altered expression of immune-related genes in children with Down syndrome.

    Directory of Open Access Journals (Sweden)

    Bruna Lancia Zampieri

    Full Text Available Individuals with Down syndrome (DS have a high incidence of immunological alterations with increased susceptibility to bacterial and viral infections and high frequency of different types of hematologic malignancies and autoimmune disorders. In the current study, we profiled the expression pattern of 92 immune-related genes in peripheral blood mononuclear cells (PBMCs of two different groups, children with DS and control children, to identify differentially expressed genes that might be of pathogenetic importance for the development and phenotype of the immunological alterations observed in individuals with DS. PBMCs samples were obtained from six DS individuals with karyotypically confirmed full trisomy 21 and six healthy control individuals (ages 2-6 years. Gene expression was profiled in duplicate according to the manufacturer's instructions provided by commercially available TaqMan Human Immune Array representing 92 immune function genes and four reference genes on a 96-plex gene card. A set of 17 differentially expressed genes, not located on chromosome 21 (HSA21, involved in immune and inflammatory pathways was identified including 13 genes (BCL2, CCL3, CCR7, CD19, CD28, CD40, CD40LG, CD80, EDN1, IKBKB, IL6, NOS2 and SKI significantly down-regulated and four genes (BCL2L1, CCR2, CCR5 and IL10 significantly up-regulated in children with DS. These findings highlight a list of candidate genes for further investigation into the molecular mechanism underlying DS pathology and reinforce the secondary effects of the presence of a third copy of HSA21.

  7. Mechanisms of alteration of the immune system by ionizing radiations: a basis for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Bourguignon, M. [Direction Generale de la Surete Nucleaire et de la Radioprotection, 75 - Paris (France); Perez, M.; Dubner, D.; Michelin, S. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); Carosella, E. [CEA, Service de Recherches en Hemato -Immunologie, 75 - Paris (France)

    2006-07-01

    Full text of publication follows: Alterations of the immune system appear in relationship with exposure to ionizing radiation (IR) in different situations, e.g., accidents, radiation therapy of cancer, prenatal irradiation, some human diseases with hypersensitivity to IR and aging. Thus, the comprehension of the mechanisms of the alterations of the immune system by IR is necessary to elaborate strategies of protection and to pave the way for future possible therapies. At least 9 mechanisms of alterations can be identified: 1- Apoptosis. Apoptosis is a key mechanism of the natural regulation of the immune system and plays also a key role in the response to IR: lymphocytes die rapidly by apoptosis after exposure. Different pathways of induction of apoptosis have been identified, and include p53 dependent and mitochondria mediated pathways, as well as CD95 and ROS initiation; 2- TCR mutations. The T cell antigen receptor is responsible to discriminate between self and non self. Mutations of the TCR may result from exposure to IR; 3- Modification of the Th1-Th2 balance. T helper cells may express 2 distinct secretion patterns: Th1 cytokines promote cell-mediated immunity while Th2 cytokines favor humoral immunity. Although the effects of IR on the Th1/Th2 balance remains controversial, an imbalance towards a Th2 profile is likely and patients with cancer and systemic auto-immune disease often present a switch from Th1 to Th2; 4- Bystander effects and genetic instability. Stimulatory effect or genomic instability have been observed in haematopoietic cells exposed to IR and related to a bystander mechanism. 5- Shift toward an inflammatory profile. Ionizing radiation may induce a persistent inflammatory profile as a result of dis-regulation of cytokine production; such a status of persistent inflammation has been observed in Hiroshima and Nagasaki survivors. 6- Modification of antigen presentation. Antigen presentation by dendritic cells is an essential function preceding

  8. PATHOGENESIS OF IMMUNE ALTERATIONS AND CORRECTIVE ROLE OF AMLODIPINE IN EXPERIMENTAL CHRONIC RENAL FAILURE

    Directory of Open Access Journals (Sweden)

    M. V. Osikov

    2016-01-01

    Full Text Available The purpose of this study was to assess some mechanisms of changes in immune state, and to evaluate a role of amlodipine, a known calcium channel blocker, as a potential corrective drug in experimental chronic renal failure (CRF. An animal CRF model was produced in rats by a two-stage operative resection of 5/6 of the renal tissue. Amlodipine is used per os at a daily dose of 0.25 mg/kg for 7 days. Flow cytofluorimetric approach was used to discern peripheral blood lymphocytes: CD3+ (mainly, T lymphocytes, CD45RA+ (mainly, B cells, as well as the following cell markers: Annexin 5-FITC+/7-AAD- (early apoptosis, Annexin 5-FITC+/7-AAD+ (late apoptosis and, in part, necrotic cells. Moreover, we have measured serum concentrations of urea, creatinine, phosphate, total calcium, parathyroid hormone (PTH, IL-1β, IL-4, interferon-γ, superoxide dismutase (SOD and catalase activities. Evaluation of Th1- and Th2-dependent immune response was carried out, respectively, by detection of delayed-type hypersensitivity, and scoring the antibody-forming cells in rat spleen induced by immunization with allogeneic erythrocytes. Primary, secondary and final products of lipid peroxidation were evaluated in lipid extracts from peripheral blood lymphocytes. Changes of immune state in CRF included depression of Th1 and Th2 dependent immune response, reduced number of lymphocytes bearing T and В cell markers, increased IL-1β concentrations in blood, along with decreased amounts of IFNγ and IL-4. Probable pathogenesis of the altered immune state may be associated with increased number of peripheral lymphocytes being at early and late stages of apoptosis/necrosis, elevated blood levels of IL-1β, total calcium, parathyroid hormone, reduced concentrations of IFNγ, and increased contents of primary, secondary and final peroxidation products in peripheral blood lymphocytes, being accompanied by inhibition of the SOD and catalase activity in blood plasma

  9. Gestational Diabetes Alters Offspring DNA Methylation Profiles in Human and Rat: Identification of Key Pathways Involved in Endocrine System Disorders, Insulin Signaling, Diabetes Signaling, and ILK Signaling.

    Science.gov (United States)

    Petropoulos, Sophie; Guillemin, Claire; Ergaz, Zivanit; Dimov, Sergiy; Suderman, Matthew; Weinstein-Fudim, Liza; Ornoy, Asher; Szyf, Moshe

    2015-06-01

    Gestational diabetes is associated with risk for metabolic disease later in life. Using a cross-species approach in rat and humans, we examined the hypothesis that gestational diabetes during pregnancy triggers changes in the methylome of the offspring that might be mediating these risks. We show in a gestation diabetes rat model, the Cohen diabetic rat, that gestational diabetes triggers wide alterations in DNA methylation in the placenta in both candidate diabetes genes and genome-wide promoters, thus providing evidence for a causal relationship between diabetes during pregnancy and DNA methylation alterations. There is a significant overlap between differentially methylated genes in the placenta and the liver of the rat offspring. Several genes differentially methylated in rat placenta exposed to maternal diabetes are also differentially methylated in the human placenta of offspring exposed to gestational diabetes in utero. DNA methylation changes inversely correlate with changes in expression. The changes in DNA methylation affect known functional gene pathways involved in endocrine function, metabolism, and insulin responses. These data provide support to the hypothesis that early-life exposures and their effects on metabolic disease are mediated by DNA methylation changes. This has important diagnostic and therapeutic implications.

  10. Early endocrine alterations reflect prolonged stress and relate to one year functional outcome in patients with severe brain injury

    DEFF Research Database (Denmark)

    Marina, Djordje; Klose, Marianne; Nordenbo, Annette

    2015-01-01

    OBJECTIVE: Severe brain injury poses a risk of developing acute and chronic hypopituitarism. Pituitary hormone alterations developed in the early recovery phase after brain injury may have implications for long-term functional recovery. The objective was to assess the pattern and prevalence...

  11. Vitamin D3 alters microglia immune activation by an IL-10 dependent SOCS3 mechanism.

    Science.gov (United States)

    Boontanrart, Mandy; Hall, Samuel D; Spanier, Justin A; Hayes, Colleen E; Olson, Julie K

    2016-03-15

    Microglia become activated immune cells during infection or disease in the central nervous system (CNS). However, the mechanisms that downregulate activated microglia to prevent immune-mediated damage are not completely understood. Vitamin D3 has been suggested to have immunomodulatory affects, and high levels of vitamin D3 have been correlated with a decreased risk for developing some neurological diseases. Recent studies have demonstrated the synthesis of active vitamin D3, 1,25-dihydroxyvitamin D3, within the CNS, but its cellular source and neuroprotective actions remain unknown. Therefore, we wanted to determine whether microglia can respond to vitamin D3 and whether vitamin D3 alters immune activation of microglia. We have previously shown that microglia become activated by IFNγ or LPS or by infection with virus to express pro-inflammatory cytokines, chemokines, and effector molecules. In this study, activated microglia increased the expression of the vitamin D receptor and Cyp27b1, which encodes the enzyme for converting vitamin D3 into its active form, thereby enhancing their responsiveness to vitamin D3. Most importantly, the activated microglia exposed to vitamin D3 had reduced expression of pro-inflammatory cytokines, IL-6, IL-12, and TNFα, and increased expression of IL-10. The reduction in pro-inflammatory cytokines was dependent on IL-10 induction of suppressor of cytokine signaling-3 (SOCS3). Therefore, vitamin D3 increases the expression of IL-10 creating a feedback loop via SOCS3 that downregulates the pro-inflammatory immune response by activated microglia which would likewise prevent immune mediated damage in the CNS.

  12. Microgravity-induced alterations in signal transduction in cells of the immune system

    Science.gov (United States)

    Paulsen, Katrin; Thiel, Cora; Timm, Johanna; Schmidt, Peter M.; Huber, Kathrin; Tauber, Svantje; Hemmersbach, Ruth; Seibt, Dieter; Kroll, Hartmut; Grote, Karl-Heinrich; Zipp, Frauke; Schneider-Stock, Regine; Cogoli, Augusto; Hilliger, Andre; Engelmann, Frank; Ullrich, Oliver

    2010-11-01

    Since decades it is known that the activity of cells of the immune system is severely dysregulated in microgravity, however, the underlying molecular aspects have not been elucidated yet. The identification of gravity-sensitive molecular mechanisms in cells of the immune system is an important and indispensable prerequisite for the development of counteractive measures to prevent or treat disturbed immune cell function of astronauts during long-term space missions. Moreover, their sensitivity to altered gravity renders immune cells an ideal model system to understand if and how gravity on Earth is required for normal mammalian cell function and signal transduction. We investigated the effect of simulated weightlessness (2D clinostat) and of real microgravity (parabolic flights) on key signal pathways in a human monocytic and a T lymphocyte cell line. We found that cellular responses to microgravity strongly depend on the cell-type and the conditions in which the cells are subjected to microgravity. In Jurkat T cells, enhanced phosphorylation of the MAP kinases ERK-1/2, MEK and p38 and inhibition of nuclear translocation of NF-kB were the predominant responses to simulated weightlessness, in either stimulated or non-stimulated cells. In contrast, non-stimulated monocytic U937 cells responded to simulated weightlessness with enhanced overall tyrosine-phosphorylation and activation of c-jun, whereas PMA-stimulated U937 cells responded the opposite way with reduced tyrosine-phosphorylation and reduced activation of c-jun, compared with PMA-stimulated 1 g controls. P53 protein was phosphorylated rapidly in microgravity. The identification of gravi-sensitive mechanisms in cells of the immune system will not only enable us to understand and prevent the negative effects of long time exposure to microgravity on Astronauts, but could also lead to novel therapeutic targets in general.

  13. Altered lymphocyte proliferation and innate immune function in scrapie 139A- and ME7-infected mice.

    Science.gov (United States)

    Cho, In Soo; Spinner, Daryl S; Kascsak, Richard J; Meeker, H Cliff; Kim, Bo Sook; Park, Seung Yong; Schuller-Levis, Georgia; Park, Eunkyue

    2013-06-01

    Lymphoid organs play an important role in prion disease development and progression. While the role of lymphoid organs and changes in immune-related genes have been extensively investigated in scrapie-infected animals, innate immunity has not. Previous studies examined lymphocyte function in scrapie-infected C3H/HeJ mice, which exhibit defects in lipopolysaccharide (LPS) response now known to result from a mutation in Toll-like receptor (TLR) 4. We examined immune function in scrapie-infected CD1 mice, which are LPS responders. Lymphocyte proliferation from CD1 mice infected with either 139A or ME7 scrapie was measured in response to concanavalin (Con) A or LPS at 1 and 3 months after infection. Following LPS exposure, mice infected 3 months with ME7, but not 139A, demonstrated significantly decreased lymphocyte proliferation compared to controls. After Con A exposure, lymphocyte proliferation in scrapie-infected mice did not differ from controls. Gender-specific comparison of lymphocyte proliferation showed significant decreases in mitogenic responses in females infected 3 months with either 139A or ME7, compared to controls. Males infected for 3 months with ME7, but not 139A, showed significantly decreased proliferation after lymphocyte exposure to LPS, but not Con A. Neither gender showed changes in lymphocyte proliferation after 1 month of scrapie infection. Innate immune activation of peritoneal macrophages was determined via production of nitric oxide (NO), IL-6, and TNF-α after exposure to TLR ligands. TNF-α and IL-6 production were reduced in macrophages from females infected with either scrapie strain for 3 months, while NO production after TLR agonist plus IFN-γ exposure was decreased in both females and males infected for 3 months with 139A, compared to ME7. These data demonstrated altered innate immunity, suggesting hormonal and/or other gender-specific regulation may contribute to gender differences in some immune functions. Our data demonstrate

  14. Endocrine disorders in pregnancy

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, Ulla; Mathiesen, Elisabeth R

    2011-01-01

    The endocrinology of pregnancy involves endocrine and metabolic changes as a consequence of physiological alterations at the foetoplacental boundary between mother and foetus. The vast changes in maternal hormones and their binding proteins complicate assessment of the normal level of most hormones...

  15. Urine proteomes of healthy aging humans reveal extracellular matrix (ECM) alterations and immune system dysfunction.

    Science.gov (United States)

    Bakun, M; Senatorski, G; Rubel, T; Lukasik, A; Zielenkiewicz, P; Dadlez, M; Paczek, L

    2014-02-01

    Aging is a complex physiological process that poses considerable conundrums to rapidly aging societies. For example, the risk of dying from cardiovascular diseases and/or cancer steadily declines for people after their 60s, and other causes of death predominate for seniors older than 80 years of age. Thus, physiological aging presents numerous unanswered questions, particularly with regard to changing metabolic patterns. Urine proteomics analysis is becoming a non-invasive and reproducible diagnostic method. We investigated the urine proteomes in healthy elderly people to determine which metabolic processes were weakened or strengthened in aging humans. Urine samples from 37 healthy volunteers aged 19-90 years (19 men, 18 women) were analyzed for protein expression by liquid chromatography-tandem mass spectrometry. This generated a list of 19 proteins that were differentially expressed in different age groups (young, intermediate, and old age). In particular, the oldest group showed protein changes reflective of altered extracellular matrix turnover and declining immune function, in which changes corresponded to reported changes in cardiovascular tissue remodeling and immune disorders in the elderly. Thus, urinary proteome changes in the elderly appear to reflect the physiological processes of aging and are particularly clearly represented in the circulatory and immune systems. Detailed identification of "protein trails" creates a more global picture of metabolic changes that occur in the elderly.

  16. The effect of altered gravity on immune cells (Ground studies: TRIPLE LUX-A BIOLAB experiment)

    Science.gov (United States)

    Horn, Astrid; Huber, Kathrin; Kuebler, Ulrich; Briganti, Luca; Baerwalde, Sven; Zander, Vanja; Ullrich, Oliver; Hemmersbach, Ruth

    The experiment TRIPLE LUX A, whose performance on Biolab is foreseen for 2010, aims to increase the information about the functioning of immune cells during space flight. Thus, we investigate the impact of altered gravity -microgravity and hypergravity conditions -on the immune response of mammalian macrophages. Previous studies had already demonstrated that phagocytosis in macrophages, an essential step in the innate immune response, is decreased on a fast rotating clinostat. Now, the production of ROS (reactive oxygen species) within the oxidative burst reaction, was measured by means of a luminol assay (luminescence + photo-multiplier technique) comparable to the set up which will be used in the TRIPLE LUX flight hardware. The kinetics of the ROS production was investigated a) under 1 g conditions, b) on a clinostat (with one rotation axis) under varied rotational speed c) in short-term real micro-gravity on a parabolic flight and d) in hypergravity (1.8 g) on the Short Arm Human Centrifuge (SAHC) at DLR Cologne. By means of a photomultiplier clinostat online kinetic luminescent measurements during clinorotation were possible. Permanent fast clinorotation (60 rpm) leads to a dramatic reduction of the oxidative burst signal by up to 60% compared to the signal at 1 g. Slower rotation (30 rpm to 2 rpm) reduces the signal strength even more by up to 90% of the original strength. 60 rpm clinorotation as well as short-term real microgravity (22 s) during parabolic flight likewise decreases the signal of the oxidative burst to a comparable amount, thus the term "simulated weightlessness" is valid for the chosen experimental condi-tion. In contrast, hypergravity leads to a significant signal increase. The results demonstrate a clear effect of altered gravity on the immune response of the macrophages. In the upcoming ISS experiment the established test system (oxidative burst of macrophages) will be tested in continues microgravity within the Biolab hardware, designed by

  17. Differential effect of severe and moderate social stress on blood immune and endocrine measures and susceptibility to collagen type II arthritis in male rats.

    Science.gov (United States)

    Stefanski, Volker; Hemschemeier, Susanne K; Schunke, Kerstin; Hahnel, Anja; Wolff, Christine; Straub, Rainer H

    2013-03-01

    The effects of social stress on several blood immune measures and collagen-induced arthritis (CIA) were investigated in Wistar rats using the resident-intruder confrontation paradigm to induce stress of different intensity. Male intruders were exposed for one week to a dominant opponent either repeatedly for 4h daily (moderate stress) or continuously (severe stress). Arthritis was induced by intradermal injection of collagen type II (CII) into the tail skin at the end of day 3 of confrontation. Only severe stress was associated with decreased CD4 and CD8 T cells, and the increase in granulocyte numbers and body mass loss was more pronounced under these conditions. Only severe stress reduced the susceptibility to arthritis by about 50%. Severity scores did not differ in the first five days after disease onset between all groups. Subsequent experiments focused on severely stressed rats indicated that disease progressed until day 10 only in control animals, but not in severely stressed males. Stressor exposure resulted in increased blood monocyte numbers, but these males failed to accumulate macrophages into the skin at the site of CII injection. High numbers of attacks experienced by intruders correlated with delayed disease onset in severely stressed rats. We hypothesize that severe stress persisting after disease induction exhibits beneficial effects on the susceptibility of CIA and propose that the specific endocrine and immunological profile associated with severe stress is an important factor for disease outcome--a factor which probably explains many of the conflicting data of previous stress studies on CIA.

  18. 颈上交感神经节与内分泌和免疫相关研究进展%Study Development in Superior Cervical Sympathetic Ganglion and the Endocrine and Immune Sys-tems

    Institute of Scientific and Technical Information of China (English)

    李辉(综述); 何宗宝(审校)

    2015-01-01

    Superior sympathetic ganglion(SCG) is an important part of the sympathetic nervous system, as the largest ganglion of the neck,it is closely adjacent to and associated with the cervical spine.Cervical spine disorders can stimulate SCG and affect the endocrine and immune function ,which is a cause of cervical vertebra disease.At present many studies have confirmed that SCG can widely contact with the endocrine and immune system through the nerve fibers and neural active substance,and participate in the neuro-endocrine-immune regulation.However the current research on SCG and immune system and endocrine system is lack of overall connection from the macroscopic angle, which has restricted the exploration of the mechanism and needs further studies.%颈上交感神经节( SCG)是交感神经系统的重要组成部分,作为颈部最大的神经节,与颈椎毗邻关系密切。颈椎紊乱可刺激SCG并影响内分泌及免疫功能,是引起颈源性疾病的原因之一。目前众多研究证实SCG可通过神经纤维及神经活性物质与内分泌和免疫系统广泛联系,并参与神经-内分泌-免疫调控。但目前对SCG与免疫和内分泌系统研究缺乏从宏观角度整体的联系,制约了对发病机制的探索,有待更加深入的研究。

  19. Pathogenesis of Bone Alterations in Gaucher Disease: The Role of Immune System

    Directory of Open Access Journals (Sweden)

    Juan Marcos Mucci

    2015-01-01

    Full Text Available Gaucher, the most prevalent lysosomal disorder, is an autosomal recessive inherited disorder due to a deficiency of glucocerebrosidase. Glucocerebrosidase deficiency leads to the accumulation of glucosylceramide primarily in cells of mononuclear-macrophage lineage. Clinical alterations are visceral, hematological, and skeletal. Bone disorder in Gaucher disease produces defects on bone metabolism and structure and patients suffer from bone pain and crisis. Skeletal problems include osteopenia, osteoporosis, osteolytic lesions, and osteonecrosis. On the other hand a chronic stimulation of the immune system is a well-accepted hallmark in this disease. In this review we summarize the latest findings in the mechanisms leading to the bone pathology in Gaucher disease in relationship with the proinflammatory state.

  20. Alterations of Innate Immunity Reactants in Transition Dairy Cows before Clinical Signs of Lameness

    Directory of Open Access Journals (Sweden)

    Guanshi Zhang

    2015-08-01

    Full Text Available The objectives of this study were to evaluate metabolic and innate immunity alterations in the blood of transition dairy cows before, during, and after diagnosis of lameness during periparturient period. Blood samples were collected from the coccygeal vain once per week before morning feeding from 100 multiparous Holstein dairy cows during −8, −4, disease diagnosis, and +4 weeks (wks relative to parturition. Six healthy cows (CON and six cows that showed clinical signs of lameness were selected for intensive serum analyses. Concentrations of interleukin-1 (IL-1, interleukin-6 (IL-6, tumor necrosis factor (TNF, haptoglobin (Hp, serum amyloid A (SAA, lipopolysaccharide binding protein (LBP, lactate, non-esterified fatty acids (NEFA, and β-hydroxybutyrate (BHBA were measured in serum by ELISA or colorimetric methods. Health status, DMI, rectal temperature, milk yield, and milk composition also were monitored for each cow during the whole experimental period. Results showed that cows affected by lameness had greater concentrations of lactate, IL-6, and SAA in the serum vs. CON cows. Concentrations of TNF tended to be greater in cows with lameness compared with CON. In addition, there was a health status (Hs by time (week interaction for IL-1, TNF, and Hp in lameness cows vs. CON ones. Enhanced serum concentrations of lactate, IL-6, and SAA at −8 and −4 wks before parturition were different in cows with lameness as compared with those of the CON group. The disease was also associated with lowered overall milk production and DMI as well as milk fat and fat-to-protein ratio. In conclusion, cows affected postpartum by lameness had alterations in several serum variables related to innate immunity and carbohydrate metabolism that give insights into the etiopathogenesis of the disease and might serve to monitor health status of transition dairy cows in the near future.

  1. Alcohol abuse and smoking alter inflammatory mediator production by pulmonary and systemic immune cells.

    Science.gov (United States)

    Gaydos, Jeanette; McNally, Alicia; Guo, Ruixin; Vandivier, R William; Simonian, Philip L; Burnham, Ellen L

    2016-03-15

    Alcohol use disorders (AUDs) and tobacco smoking are associated with an increased predisposition for community-acquired pneumonia and the acute respiratory distress syndrome. Mechanisms are incompletely established but may include alterations in response to pathogens by immune cells, including alveolar macrophages (AMs) and peripheral blood mononuclear cells (PBMCs). We sought to determine the relationship of AUDs and smoking to expression of IFNγ, IL-1β, IL-6, and TNFα by AMs and PBMCs from human subjects after stimulation with lipopolysaccharide (LPS) or lipoteichoic acid (LTA). AMs and PBMCs from healthy subjects with AUDs and controls, matched on smoking, were cultured with LPS (1 μg/ml) or LTA (5 μg/ml) in the presence and absence of the antioxidant precursor N-acetylcysteine (10 mM). Cytokines were measured in cell culture supernatants. Expression of IFNγ, IL-1β, IL-6, and TNFα in AMs and PBMCs was significantly increased in response to stimulation with LPS and LTA. AUDs were associated with augmented production of proinflammatory cytokines, particularly IFNγ and IL-1β, by AMs and PBMCs in response to LPS. Smoking diminished the impact of AUDs on AM cytokine expression. Expression of basal AM and PBMC Toll-like receptors-2 and -4 was not clearly related to differences in cytokine expression; however, addition of N-acetylcysteine with LPS or LTA led to diminished AM and PBMC cytokine secretion, especially among current smokers. Our findings suggest that AM and PBMC immune cell responses to LPS and LTA are influenced by AUDs and smoking through mechanisms that may include alterations in cellular oxidative stress.

  2. Altered helper Tcell-mediated immune responses in male mice conceived through in vitro fertilization.

    Science.gov (United States)

    Karimi, Hiwa; Mahdavi, Pooya; Fakhari, Shohreh; Faryabi, Mohammad Reza; Esmaeili, Parisa; Banafshi, Omid; Mohammadi, Ebrahim; Fathi, Fardin; Mokarizadeh, Aram

    2017-03-08

    A study using a mouse IVF model was conducted to examine the hypothesis that in vitro fertilization (IVF) treatment may lead to immune alteration in the offspring. Phagocytic activity and lymphocyte proliferative responses to mitogen, alloantigen, and purified protein derivative (PPD) of Mycobacterium bovis were investigated in the splenocytes of BCG-treated male mice conceived by IVF or natural conception. Intracellular expression of T-bet and GATA3 in helper T-cell population were examined in both groups. Moreover, the serum levels of IFN-γ and IL-4 along with BCG-specific levels of IgG1 and IgG2a were assessed by ELISA. In comparison with naturally-conceived mice, PPD-specific proliferative response and T-bet/GATA3 ratio were significantly decreased in IVF-conceived mice. Moreover, IVF-conceived mice exhibited marked decreases in IFN-γ/IL-4 and IgG2a/IgG1 ratios. Results indicate that in comparison with male mice conceived by natural conception, IVF counterparts exhibit less efficient immune responses against BCG through further promotion of Th2 responses.

  3. Blood gene expression profiles suggest altered immune function associated with symptoms of generalized anxiety disorder.

    Science.gov (United States)

    Wingo, Aliza P; Gibson, Greg

    2015-01-01

    Prospective epidemiological studies found that generalized anxiety disorder (GAD) can impair immune function and increase risk for cardiovascular disease or events. Mechanisms underlying the physiological reverberations of anxiety, however, are still elusive. Hence, we aimed to investigate molecular processes mediating effects of anxiety on physical health using blood gene expression profiles of 336 community participants (157 anxious and 179 control). We examined genome-wide differential gene expression in anxiety, as well as associations between nine major modules of co-regulated transcripts in blood gene expression and anxiety. No significant differential expression was observed in women, but 631 genes were differentially expressed between anxious and control men at the false discovery rate of 0.1 after controlling for age, body mass index, race, and batch effect. Gene set enrichment analysis (GSEA) revealed that genes with altered expression levels in anxious men were involved in response of various immune cells to vaccination and to acute viral and bacterial infection, and in a metabolic network affecting traits of metabolic syndrome. Further, we found one set of 260 co-regulated genes to be significantly associated with anxiety in men after controlling for the relevant covariates, and demonstrate its equivalence to a component of the stress-related conserved transcriptional response to adversity profile. Taken together, our results suggest potential molecular pathways that can explain negative effects of GAD observed in epidemiological studies. Remarkably, even mild anxiety, which most of our participants had, was associated with observable changes in immune-related gene expression levels. Our findings generate hypotheses and provide incremental insights into molecular mechanisms mediating negative physiological effects of GAD.

  4. Different Candida parapsilosis clinical isolates and lipase deficient strain trigger an altered cellular immune response

    Directory of Open Access Journals (Sweden)

    Renata eToth

    2015-10-01

    Full Text Available Numerous human diseases can be associated with fungal infections either as potential causative agents or as a result of changed immune status due to a primary disease. Fungal infections caused by Candida species can vary from mild to severe dependent upon the site of infection, length of exposure and past medical history. Patients with impaired immune status are at increased risk for chronic fungal infections. Recent epidemiologic studies have revealed the increasing incidence of candidiasis caused by non-albicans species such as C. parapsilosis. Due to its increasing relevance we chose two distinct C. parapsilosis strains, to describe the cellular innate immune response towards this species. In the first section of our study we compared the interaction of CLIB 214 and GA1 cells with murine and human macrophages. Both strains are commonly used to investigate C. parapsilosis virulence properties. CLIB 214 is a rapidly pseudohyphae-forming strain and GA1 is an isolate that mainly exists in a yeast form. Our results showed, that the phagocyte response was similar in terms of overall uptake, however differences were observed in macrophage migration and engulfment of fungal cells. As C. parapsilosis releases extracellular lipases in order to promote host invasion we further investigated the role of these secreted components during the distinct stages of the phagocytic process. Using a secreted lipase deficient mutant strain and the parental strain GA1 individually and simultaneously, we confirmed that fungal secreted lipases influence the fungi’s virulence by detecting altered innate cellular responses.In this study we report that two isolates of a single species can trigger markedly distinct host responses and that lipase secretion plays a role on the cellular level of host pathogen interactions.

  5. Altered expression of talin 1 in peripheral immune cells points to a significant role of the innate immune system in spontaneous autoimmune uveitis.

    Science.gov (United States)

    Degroote, Roxane L; Hauck, Stefanie M; Kremmer, Elisabeth; Amann, Barbara; Ueffing, Marius; Deeg, Cornelia A

    2012-07-19

    The molecular mechanism which enables activated immune cells to cross the blood-retinal barrier in spontaneous autoimmune uveitis is yet to be unraveled. Equine recurrent uveitis is the only spontaneous animal model allowing us to investigate the autoimmune mediated transformation of leukocytes in the course of this sight threatening disease. Hypothesizing that peripheral blood immune cells change their protein expression pattern in spontaneous autoimmune uveitis, we used DIGE to detect proteins with altered abundance comparing peripheral immune cells of healthy and ERU diseased horses. Among others, we found a significant downregulation of talin 1 in peripheral blood granulocytes of ERU specimen, pointing to changes in β integrin activation and indicating a significant role of the innate immune system in spontaneous autoimmune diseases.

  6. Pavlovian conditioning of morphine-induced alterations of immune status: evidence for peripheral beta-adrenergic receptor involvement.

    Science.gov (United States)

    Coussons-Read, M E; Dykstra, L A; Lysle, D T

    1994-09-01

    The present studies examined the involvement of peripheral beta-adrenergic receptor activity in the establishment and expression of conditioned morphine-induced alterations of immune status. Previous work in our laboratory has shown that morphine's immunomodulatory effects can become conditioned to environmental stimuli which predict drug administration. These immune alterations include conditioned changes in natural killer cell activity, interleukin-2 production, and mitogen-induced lymphocyte proliferation. During the training phase of these experiments, Lewis rats received two conditioning sessions during which a subcutaneous injection of 15 mg/kg morphine sulfate was paired with exposure to a distinctive environment. On the test day, rats were reexposed to the conditioned stimulus prior to sacrifice. Saline or nadolol (0.002, 0.02, 0.2, or 2.0 mg/kg) was administered either prior to the training sessions or prior to the test session. Administration of nadolol prior to training did not affect the development of conditioned alterations of immune status. Conversely, nadolol administration prior to testing completely attenuated the expression of a subset of the conditioned morphine-induced changes in immune status. Taken together, these studies suggest that whereas peripheral beta-adrenergic receptor activity is not required for the establishment of conditioned morphine-induced alterations of immune status, it is involved in the expression of a subset of these conditioned immunomodulatory effects.

  7. Endocrine Diseases

    Science.gov (United States)

    ... low, you may have a hormone disorder. Hormone diseases also occur if your body does not respond ... In the United States, the most common endocrine disease is diabetes. There are many others. They are ...

  8. Deep brain stimulation during early adolescence prevents microglial alterations in a model of maternal immune activation.

    Science.gov (United States)

    Hadar, Ravit; Dong, Le; Del-Valle-Anton, Lucia; Guneykaya, Dilansu; Voget, Mareike; Edemann-Callesen, Henriette; Schweibold, Regina; Djodari-Irani, Anais; Goetz, Thomas; Ewing, Samuel; Kettenmann, Helmut; Wolf, Susanne A; Winter, Christine

    2016-12-07

    In recent years schizophrenia has been recognized as a neurodevelopmental disorder likely involving a perinatal insult progressively affecting brain development. The poly I:C maternal immune activation (MIA) rodent model is considered as a neurodevelopmental model of schizophrenia. Using this model we and others demonstrated the association between neuroinflammation in the form of altered microglia and a schizophrenia-like endophenotype. Therapeutic intervention using the anti-inflammatory drug minocycline affected altered microglia activation and was successful in the adult offspring. However, less is known about the effect of preventive therapeutic strategies on microglia properties. Previously we found that deep brain stimulation of the medial prefrontal cortex applied pre-symptomatically to adolescence MIA rats prevented the manifestation of behavioral and structural deficits in adult rats. We here studied the effects of deep brain stimulation during adolescence on microglia properties in adulthood. We found that in the hippocampus and nucleus accumbens, but not in the medial prefrontal cortex, microglial density and soma size were increased in MIA rats. Pro-inflammatory cytokine mRNA was unchanged in all brain areas before and after implantation and stimulation. Stimulation of either the medial prefrontal cortex or the nucleus accumbens normalized microglia density and soma size in main projection areas including the hippocampus and in the area around the electrode implantation. We conclude that in parallel to an alleviation of the symptoms in the rat MIA model, deep brain stimulation has the potential to prevent the neuroinflammatory component in this disease.

  9. The immune-endocrine loop during aging: role of growth hormone and insulin-like growth factor-I.

    Science.gov (United States)

    Burgess, W; Liu, Q; Zhou, J; Tang, Q; Ozawa, A; VanHoy, R; Arkins, S; Dantzer, R; Kelley, K W

    1999-01-01

    Why a primary lymphoid organ such as the thymus involutes during aging remains a fundamental question in immunology. Aging is associated with a decrease in plasma growth hormone (somatotropin) and IGF-I, and this somatopause of aging suggests a connection between the neuroendocrine and immune systems. Several investigators have demonstrated that treatment with either growth hormone or IGF-I restores architecture of the involuted thymus gland by reversing the loss of immature cortical thymocytes and preventing the decline in thymulin synthesis that occurs in old or GH-deficient animals and humans. The proliferation, differentiation and functions of other components of the immune system, including T and B cells, macrophages and neutrophils, also demonstrate age-associated decrements that can be restored by IGF-I. Knowledge of the mechanism by which cytokines and hormones influence hematopoietic cells is critical to improving the health of aged individuals. Our laboratory has recently demonstrated that IGF-I prevents apoptosis in promyeloid cells, which subsequently permits these cells to differentiate into neutrophils. We also demonstrated that IL-4 acts much like IGF-I to promote survival of promyeloid cells and to activate the enzyme phosphatidylinositol 3'-kinase (PI 3-kinase). However, the receptors for IGF-I and IL-4 are completely different, with the intracellular beta chains of the IGF receptor possessing intrinsic tyrosine kinase activity and the alpha and gammac subunit of the heterodimeric IL-4 receptor utilizing the Janus kinase family of nonreceptor protein kinases to tyrosine phosphorylate downstream targets. Both receptors share many of the components of the PI 3-kinase signal transduction pathway, converging at the level of insulin receptor substrate-1 or insulin receptor subtrate-2 (formally known as 4PS, or IL-4 Phosphorylated Substrate). Our investigations with IGF-I and IL-4 suggest that PI 3-kinase inhibits apoptosis by maintaining high levels of

  10. [Dementia due to Endocrine Diseases].

    Science.gov (United States)

    Matsunaga, Akiko; Yoneda, Makoto

    2016-04-01

    Endocrine diseases affecting various organs, such as the pituitary gland, the thyroid, the parathyroid, the adrenal glands and the pancreas, occasionally cause dementia. While Alzheimer's disease (AD) is the main cause of dementia in the elderly and is untreatable, dementia caused by endocrine diseases is treatable in most cases. However, patients with dementia associated with endocrine diseases show memory impairments similar to those found in AD, often leading to misdiagnoses. Patients with endocrine diseases often present with other characteristic systemic and neuropsychiatric symptoms caused by altered hormone levels. Such neuropsychiatric symptoms include involuntary movements, depression, seizures, and muscle weakness. In these cases, abnormalities in imaging and blood or urine tests are helpful in making a differential diagnosis. As delays in the diagnosis and treatment of these patients may cause irreversible brain damage, it is imperative for clinicians to carefully exclude the possibility of latent endocrine diseases when treating patients with dementia.

  11. Maternal exposure to estradiol and endocrine disrupting compounds alters the sensitivity of sea urchin embryos and the expression of an orphan steroid receptor.

    Science.gov (United States)

    Roepke, Troy A; Chang, Ernest S; Cherr, Gary N

    2006-10-01

    Endocrine disrupting compounds (EDCs) are known to affect reproduction and development in marine invertebrates. In previous work, we have shown that developing sea urchin embryos were sensitive to estradiol and estrogenic EDCs at environmentally relevant concentrations in a tamoxifen-sensitive manner (Roepke et al. 2005. Aquat Toxicol 71:155-173). In this study, we report the effects of maternal exposure to EDCs on embryo sensitivity and regulation of an orphan steroid receptor in sea urchin eggs. Maternal exposures were conducted by injecting female Strongylocentrotus purpuratus sea urchins initiating oogenesis with two concentrations of estradiol, octylphenol, tributyltin and o, p-DDD for 8 weeks with an induced spawning before and after the injection cycle. Developing embryos were less sensitive to estradiol following maternal exposure to estradiol, octylphenol and DDD. The steroidogenesis inhibitor, spironolactone, and the aromatase inhibitor, formestane, affected normal sea urchin development with EC50 values of 18 and 2 microM, respectively. Binding of estradiol was demonstrated in homogenates supernatants of sea urchin embryos by filtration centrifugation and column chromatography, but saturation was not reached until 4-6 hr and was highly variable. Analysis of eggs from pre- and post-injection spawns using real-time Q-PCR for the mRNA of an orphan steroid receptor, SpSHR2, shows that receptor mRNA increased in eggs with estradiol, octylphenol and tributyltin but decreased with DDD. RIA showed that estradiol may be present during gastrulation. In summary, maternal exposure to estradiol and EDCs alters embryo sensitivity and regulates the expression of an orphan steroid receptor in the egg.

  12. Monitoring training load, recovery-stress state, immune-endocrine responses, and physical performance in elite female basketball players during a periodized training program.

    Science.gov (United States)

    Nunes, João A; Moreira, Alexandre; Crewther, Blair T; Nosaka, Ken; Viveiros, Luis; Aoki, Marcelo S

    2014-10-01

    This study investigated the effect of a periodized training program on internal training load (ITL), recovery-stress state, immune-endocrine responses, and physical performance in 19 elite female basketball players. The participants were monitored across a 12-week period before an international championship, which included 2 overloading and tapering phases. The first overloading phase (fourth to sixth week) was followed by a 1-week tapering, and the second overloading phase (eighth to 10th week) was followed by a 2-week tapering. ITL (session rating of perceived exertion method) and recovery-stress state (RESTQ-76 Sport questionnaire) were assessed weekly and bi-weekly, respectively. Pretraining and posttraining assessments included measures of salivary IgA, testosterone and cortisol concentrations, strength, jumping power, running endurance, and agility. Internal training load increased across all weeks from 2 to 11 (p ≤ 0.05). After the first tapering period (week 7), a further increase in ITL was observed during the second overloading phase (p ≤ 0.05). After the second tapering period, a decrease in ITL was detected (p ≤ 0.05). A disturbance in athlete stress-recovery state was noted during the second overloading period (p ≤ 0.05), before returning to baseline level in end of the second tapering period. The training program led to significant improvements in the physical performance parameters evaluated. The salivary measures did not change despite the fluctuations in ITL. In conclusion, a periodized training program evoked changes in ITL in elite female basketball players, which appeared to influence their recovery-stress state. The training plan was effective in preparing participants for competition, as indicated by improvements in recovery-stress state and physical performance after tapering.

  13. Vaccenic acid favourably alters immune function in obese JCR:LA-cp rats.

    Science.gov (United States)

    Blewett, Heather J; Gerdung, Christopher A; Ruth, Megan R; Proctor, Spencer D; Field, Catherine J

    2009-08-01

    Vaccenic acid (VA) is a ruminant-derived trans-fat and precursor of conjugated linoleic acid (CLA). The objective of the present study was to explore the effects of VA on immune function in a model of the metabolic syndrome, JCR:LA-cp rats. Lean (2:1 mix of +/cp and +/+) and obese (cp/cp) rats, aged 8 weeks, were fed a control (0% VA) or a VA diet (1.5% (w/w) VA) for 3 weeks (twenty rats per group). Splenocytes and mesenteric lymph node (MLN) immune cell phenotypes (flow cytometry), ex vivo cytokine production (ELISA) and phospholipid fatty acid concentrations were measured. Obese rats had higher proportions of splenic macrophages, total T-cells, helper T-cells (total and percentage CD25+), cytotoxic T-cells (total and percentage CD25+) and produced higher concentrations of IL-6 to concanavalin A (ConA) compared with lean rats. Obese rats had lower proportions of MLN T-cells, new T-cells (CD3+CD90+) and cytotoxic T-cells, but higher proportions of helper cells that were CD45RC+, CD25+ and CD4lo, and produced higher concentrations of IL-2, IL-10, interferon gamma and TNFalpha in response to ConA compared with lean rats. VA was higher in plasma phospholipids and both VA and CLA (cis-9, trans-11) were higher in MLN phospholipids compared with control-fed rats. Lean VA-fed rats had lower proportions of MLN and splenocyte CD45RC+ helper cells, and helper T-cells. Splenocytes from VA-fed rats produced 16-23% less IL-2, IL-10 and TNFalpha compared with controls. VA normalised production of MLN IL-2 and TNFalpha in obese rats to levels similar to those seen in lean rats. These results indicate that dietary VA favourably alters the pro-inflammatory tendency of mesenteric lymphocytes from JCR:LA-cp rats.

  14. Induction of antibodies reactive to cardiac myosin and development of heart alterations in cruzipain-immunized mice and their offspring.

    Science.gov (United States)

    Giordanengo, L; Maldonado, C; Rivarola, H W; Iosa, D; Girones, N; Fresno, M; Gea, S

    2000-11-01

    Human and murine infection with Trypanosoma cruzi parasite is usually accompanied by strong humoral and cellular immune response to cruzipain, a parasite immunodominant antigen. In the present study we report that the immunization of mice with cruzipain devoid of enzymatic activity, was able to induce antibodies which bind to a 223-kDa antigen from a mouse heart extract. We identified this protein as the mouse cardiac myosin heavy chain by sequencing analysis. The study of IgG isotype profile revealed the occurrence of all IgG isotypes against cruzipain and myosin. IgG1 showed the strongest reactivity against cruzipain, whereas IgG2a was the main isotype against myosin. Anti-cruzipain antibodies purified by immunoabsorption recognized the cardiac myosin heavy chain, suggesting cross-reactive epitopes between cruzipain and myosin. Autoimmune response in mice immunized with cruzipain was associated to heart conduction disturbances. In addition, ultrastructural findings revealed severe alterations of cardiomyocytes and IgG deposit on heart tissue of immunized mice. We investigated whether antibodies induced by cruzipain transferred from immunized mothers to their offsprings could alter the heart function in the pups. All IgG isotypes against cruzipain derived from transplacental crossing were detected in pups' sera. Electrocardiographic studies performed in the offsprings born to immunized mothers revealed conduction abnormalities. These results provide strong evidence for a pathogenic role of autoimmune response induced by a purified T. cruzi antigen in the development of experimental Chagas' disease.

  15. Alteration of transcriptional networks in the entorhinal cortex after maternal immune activation and adolescent cannabinoid exposure.

    Science.gov (United States)

    Hollins, Sharon L; Zavitsanou, Katerina; Walker, Frederick Rohan; Cairns, Murray J

    2016-08-01

    Maternal immune activation (MIA) and adolescent cannabinoid exposure (ACE) have both been identified as major environmental risk factors for schizophrenia. We examined the effects of these two risk factors alone, and in combination, on gene expression during late adolescence. Pregnant rats were exposed to the viral infection mimic polyriboinosinic-polyribocytidylic acid (poly I:C) on gestational day (GD) 15. Adolescent offspring received daily injections of the cannabinoid HU210 for 14days starting on postnatal day (PND) 35. Gene expression was examined in the left entorhinal cortex (EC) using mRNA microarrays. We found prenatal treatment with poly I:C alone, or HU210 alone, produced relatively minor changes in gene expression. However, following combined treatments, offspring displayed significant changes in transcription. This dramatic and persistent alteration of transcriptional networks enriched with genes involved in neurotransmission, cellular signalling and schizophrenia, was associated with a corresponding perturbation in the expression of small non-coding microRNA (miRNA). These results suggest that a combination of environmental exposures during development leads to significant genomic remodeling that disrupts maturation of the EC and its associated circuitry with important implications as the potential antecedents of memory and learning deficits in schizophrenia and other neuropsychiatric disorders.

  16. Alterations in Circulating Immune Cells in Neovascular Age-Related Macular Degeneration.

    Science.gov (United States)

    Lechner, Judith; Chen, Mei; Hogg, Ruth E; Toth, Levente; Silvestri, Giuliana; Chakravarthy, Usha; Xu, Heping

    2015-11-17

    Neovascular age-related macular degeneration (nAMD) is the leading cause of irreversible blindness in developed countries. Recent advances have highlighted the essential role of inflammation in the development of the disease. In addition to local retinal chronic inflammatory response, systemic immune alterations have also been observed in AMD patients. In this study we investigated the association between the frequency of circulating leukocyte populations and the prevalence as well as clinical presentations of nAMD. Leukocyte subsets of 103 nAMD patients (most of them were receiving anti-VEGF therapy prior to enrolment) and 26 controls were analysed by flow cytometry by relative cell size, granularity and surface markers. Circulating CD11b(+) cells and CD16(hi)HLA-DR(-) neutrophils were significantly increased (P = 0.015 and 0.009 respectively) in nAMD when compared to controls. The percentage of circulating CD4(+) T-cells was reduced in nAMD patients without subretinal fibrosis (P = 0.026) compared to patients with subretinal fibrosis. There was no correlation between the percentage of circulating leukocytes and the responsiveness to anti-VEGF therapy in nAMD patients. Our results suggest that higher levels of circulating CD11b(+) cells and neutrophils are associated with nAMD and that reduced levels of CD4(+) T-cells are associated with the absence of subretinal fibrosis in nAMD.

  17. Environmental epigenetics: a role in endocrine disease?

    Science.gov (United States)

    Fleisch, Abby F; Wright, Robert O; Baccarelli, Andrea A

    2012-10-01

    Endocrine disrupting chemicals that are structurally similar to steroid or amine hormones have the potential to mimic endocrine endpoints at the receptor level. However, more recently, epigenetic-induced alteration in gene expression has emerged as an alternative way in which environmental compounds may exert endocrine effects. We review concepts related to environmental epigenetics and relevance for endocrinology through three broad examples: 1) effect of early-life nutritional exposures on future obesity and insulin resistance, 2) effect of lifetime environmental exposures such as ionizing radiation on endocrine cancer risk, and 3) potential for compounds previously classified as endocrine disrupting to additionally or alternatively exert effects through epigenetic mechanisms. The field of environmental epigenetics is still nascent, and additional studies are needed to confirm and reinforce data derived from animal models and preliminary human studies. Current evidence suggests that environmental exposures may significantly impact expression of endocrine-related genes and thereby affect clinical endocrine outcomes.

  18. Age and the endocrine system.

    Science.gov (United States)

    Noth, R H; Mazzaferri, E L

    1985-02-01

    The pattern of age-induced changes in each endocrine system is unique. Both hormone levels and target organ responsivity are altered in the aging endocrine-cardiovascular system. Serum levels of vasopressor hormones both increase (norepinephrine) and decrease (renin, aldosterone). Target organ responses to beta-adrenergic stimulation in the heart and probably also in vascular smooth muscle decrease due to postreceptor changes. These effects contribute to the clinical problems of hypertension and orthostatic hypotension which characterize the elderly. Aging produces mild carbohydrate intolerance and a minimal increase in fasting serum glucose in healthy, nonobese individuals, primarily due to decreasing postreceptor responsiveness to insulin. Aging decreases the metabolism of thyroxine, including its conversion to triiodothyronine, but clinically significant alterations of thyroid hormone levels do not occur. Changes in the end-organ response to thyroid hormones, however, significantly alter the clinical presentation of thyroid diseases. Aging shifts the serum vasopressin-serum osmolality relationship toward higher serum vasopressin levels probably due to altered baroreceptor input, probably contributing to the tendency toward hyponatremia in the elderly. Aging slows the metabolism of cortisol, but glucocorticoid levels in the human are essentially unaltered by age. However, recent data indicate that delta-5 adrenal steroids decrease markedly in both men and women. Nodules in the anterior pituitary, the thyroid, and the adrenal increase in frequency with aging. Finally, the reproductive system is primarily altered by endocrine cell death, by unknown mechanisms, resulting in decreased estrogen and testosterone levels in women and men. This most obvious age-related endocrine change turns out to be incompletely understood and is not representative of most age-related endocrine changes. Despite characterization of these many age-related alterations in endocrine systems

  19. Environmental Epigenetics: A Role in Endocrine Disease?

    OpenAIRE

    Fleisch, Abby F.; Wright, Robert O.; Baccarelli, Andrea A.

    2012-01-01

    Endocrine disrupting chemicals that are structurally similar to steroid or amine hormones have the potential to mimic endocrine endpoints at the receptor level. However, more recently, epigenetic-induced alteration in gene expression has emerged as an alternative way in which environmental compounds may exert endocrine effects. We review concepts related to environmental epigenetics and relevance for endocrinology through three broad examples, 1) effect of early-life nutritional exposures on ...

  20. Effect of Endocrine Disruptor Pesticides: A Review

    OpenAIRE

    Benoit Roig; Olivier Thomas; Aghleb Bartegi; Wissem Mnif; Aicha Bouaziz; Aziza Ibn Hadj Hassine

    2011-01-01

    International audience; Endocrine disrupting chemicals (EDC) are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soi...

  1. Landscape structure and management alter the outcome of a pesticide ERA: evaluating impacts of endocrine disruption using the ALMaSS European Brown Hare model

    DEFF Research Database (Denmark)

    Topping, Christopher John; Dalby, Lars; Skov, Flemming

    2016-01-01

    , and indeed how to generate such landscapes. This paper evaluates the contribution of landscape and farming components to a model based risk assessment of a fictitious endocrine disruptor on hares. In addition, we present methods and code examples for generation of landscape structures and farming simulation...

  2. Sex differences in microglial colonization and vulnerabilities to endocrine disruption in the social brain.

    Science.gov (United States)

    Rebuli, Meghan E; Gibson, Paul; Rhodes, Cassie L; Cushing, Bruce S; Patisaul, Heather B

    2016-11-01

    During development, microglia, the resident immune cells of the brain, play an important role in synaptic organization. Microglial colonization of the developing brain is sexually dimorphic in some regions, including nuclei critical for the coordination of social behavior, suggesting steroid hormones have an influencing role, particularly estrogen. By extension, microglial colonization may be vulnerable to endocrine disruption. Concerns have been raised regarding the potential for endocrine disrupting compounds (EDCs) to alter brain development and behavior. Developmental exposure to Bisphenol A (BPA), a ubiquitous EDC, has been associated with altered sociosexual and mood-related behaviors in various animal models and children. Through a comparison of the promiscuous Wistar rat (Rattus norvegicus) and the socially monogamous prairie vole (Microtus ochrogaster), we are the first to observe that developmental exposure to the synthetic estrogen ethinyl estradiol (EE) or BPA alters the sex-specific colonization of the hippocampus and amygdala by microglia.

  3. Effect of endocrine disruptor pesticides: a review.

    Science.gov (United States)

    Mnif, Wissem; Hassine, Aziza Ibn Hadj; Bouaziz, Aicha; Bartegi, Aghleb; Thomas, Olivier; Roig, Benoit

    2011-06-01

    Endocrine disrupting chemicals (EDC) are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soil, air). For several years, there have been enquiries about the impact of environmental factors on the occurrence of human pathologies. This paper reviews the current knowledge of the potential impacts of endocrine disruptor pesticides on human health.

  4. Effect of Endocrine Disruptor Pesticides: A Review

    Directory of Open Access Journals (Sweden)

    Benoit Roig

    2011-06-01

    Full Text Available Endocrine disrupting chemicals (EDC are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soil, air. For several years, there have been enquiries about the impact of environmental factors on the occurrence of human pathologies. This paper reviews the current knowledge of the potential impacts of endocrine disruptor pesticides on human health.

  5. EXPRESSION OF IL-2 AND SIL-2R AND ALTERATION OF CELL IMMUNITY IN PATIENTS WITH HYPERTENSIVE CEREBRAL HEMORRHAGE

    Institute of Scientific and Technical Information of China (English)

    Zhang Yuelin; Qiu Shudong; Shi Wei; Dang Xiaojun

    2006-01-01

    Objective To study the expression of interleukin-2 (IL-2), soluble interleukin-2 receptor (sIL-2R),determine the alteration of erythrocytic immunity and T cell subgroup in the blood of outer circulation in patients with hypertensive cerebral hemorrhage so and to probe into the relationship between them, and to explore the clinical significance. Methods Enzyme linked immnunosorbent assay (ELISA) was used to determine the content of IL-2 and sIL-2R. The immunoadsorption was employed to examine the erythrocytic immune activity and its regulating function.Streptavidin-peroxidase(S-P) was used to determine the cell number of CD3 (cluster of differentiation3), CD4 and CD8. Results The content of IL-2 in the group with hypertensive cerebral hemorrhage was significantly lower than that in the control group (P<0.01), and the content of sIL-2R increased. Red blood cell C3b receptor (RBC. C3b R)and RBC immune adherence enhancing factor (RFEB) dropped greatly (P<0.01), while RBC immune complex rosette (RBC. ICR) and RBC immune adherence inhibiting factor (RFIR) increased greatly. The cell number of CD3 and CD4decreased (P<0.01) and there was no obvious change in CD8 (P<0.05). Conclusion The decrease of immune function was observed in patients with hypertensive cerebral hemorrhage. The determination of the content of IL-2, sIL-2R, erythrocytic immunity and the activity of T subgroup has an important clinical significance in the occurrence,development, treatment, and prognosis of hypertensive cerebral hemorrhage.

  6. Developmental alterations and endocrine-disruptive responses in farmed Nile crocodiles (Crocodylus niloticus) exposed to contaminants from the Crocodile River, South Africa.

    Science.gov (United States)

    Arukwe, Augustine; Myburgh, Jan; Langberg, Håkon A; Adeogun, Aina O; Braa, Idunn Godal; Moeder, Monika; Schlenk, Daniel; Crago, Jordan Paul; Regoli, Francesco; Botha, Christo

    2016-04-01

    In the present study, the developmental (including fertility) and endocrine-disruptive effects in relation to chemical burden in male and female Nile crocodiles (Crocodylus niloticus), from a commercial crocodile farm in the Brits district, South Africa, exposed to various anthropogenic aquatic contaminants from the natural environment was investigated. Hepatic transcript levels for vitellogenin (Vtg), zona pellucida (ZP) and ERα (also in gonads) were analyzed using real-time PCR. Plasma estradiol-17β (E2), testosterone (T) and 11-ketotestosterone (11-KT) were analyzed using enzyme immunoassay. Gonadal aromatase and hepatic testosterone metabolism (6β-hydroxylase (6β-OHase)) were analyzed using biochemical methods. Overall, there is high and abnormal number (%) of infertile and banded eggs during the studied reproductive seasons, showing up to 57 and 34% of infertile eggs in the 2009/2010 and 2013/2014 seasons, respectively. In addition, the percentage of banded eggs ranged between 10 and 19% during the period of 2009-2014 seasons. While hepatic ERα, Vtg, ZP mRNA and testosterone 6β-OHase, were equally expressed in female and male crocodiles, gonadal ERα mRNA and aromatase activity were significantly higher in females compared to male crocodiles. On the other hand, plasma T and 11-KT levels were significantly higher in males, compared to female crocodiles. Principal component analysis (PCA) produced significant grouping that revealed correlative relationships between reproductive/endocrine-disruptive variables and liver contaminant burden, that further relates to measured contaminants in the natural environment. The overall results suggest that these captive pre-slaughter farm crocodiles exhibited responses to anthropogenic aquatic contaminants with potentially relevant consequences on key reproductive and endocrine pathways and these responses may be established as relevant species endocrine disruptor biomarkers of exposure and effects in this threatened

  7. Endocrine Disruptors (Chapter 14) in Mammalian Toxicology Book

    Science.gov (United States)

    Endocrine disrupting chemicals (EDCs) are exogenous substances that alter endocrine system function(s) and consequently cause adverse health effects in intact organisms or its progeny. The endocrine system is important for a wide range of biological processes, from normal cell si...

  8. Immunologic endocrine disorders.

    Science.gov (United States)

    Michels, Aaron W; Eisenbarth, George S

    2010-02-01

    Autoimmunity affects multiple glands in the endocrine system. Animal models and human studies highlight the importance of alleles in HLA-like molecules determining tissue-specific targeting that, with the loss of tolerance, leads to organ-specific autoimmunity. Disorders such as type 1A diabetes, Graves disease, Hashimoto thyroiditis, Addison disease, and many others result from autoimmune-mediated tissue destruction. Each of these disorders can be divided into stages beginning with genetic susceptibility, environmental triggers, active autoimmunity, and finally metabolic derangements with overt symptoms of disease. With an increased understanding of the immunogenetics and immunopathogenesis of endocrine autoimmune disorders, immunotherapies are becoming prevalent, especially in patients with type 1A diabetes. Immunotherapies are being used more in multiple subspecialty fields to halt disease progression. Although therapies for autoimmune disorders stop the progress of an immune response, immunomodulatory therapies for cancer and chronic infections can also provoke an unwanted immune response. As a result, there are now iatrogenic autoimmune disorders arising from the treatment of chronic viral infections and malignancies.

  9. System chemical biology studies of endocrine disruptors

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    Endocrine disrupting chemicals (EDCs) alter hormonal balance and other physiological systems through inappropriate developmental or adult exposure, perturbing the reproductive function of further generations. While disruption of key receptors (e.g., estrogen, androgen, and thyroid) at the ligand...

  10. Pathogen effectors target Arabidopsis EDS1 and alter its interactions with immune regulators.

    Science.gov (United States)

    Bhattacharjee, Saikat; Halane, Morgan K; Kim, Sang Hee; Gassmann, Walter

    2011-12-01

    Plant resistance proteins detect the presence of specific pathogen effectors and initiate effector-triggered immunity. Few immune regulators downstream of resistance proteins have been identified, none of which are known virulence targets of effectors. We show that Arabidopsis ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1), a positive regulator of basal resistance and of effector-triggered immunity specifically mediated by Toll-interleukin-1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR) resistance proteins, forms protein complexes with the TIR-NB-LRR disease resistance proteins RPS4 and RPS6 and with the negative immune regulator SRFR1 at a cytoplasmic membrane. Further, the cognate bacterial effectors AvrRps4 and HopA1 disrupt these EDS1 complexes. Tight association of EDS1 with TIR-NB-LRR-mediated immunity may therefore derive mainly from being guarded by TIR-NB-LRR proteins, and activation of this branch of effector-triggered immunity may directly connect to the basal resistance signaling pathway via EDS1.

  11. μ-opioid Receptor-Mediated Alterations of Allergen-Induced Immune Responses of Bronchial Lymph Node Cells in a Murine Model of Stress Asthma

    Directory of Open Access Journals (Sweden)

    Kaori Okuyama

    2012-01-01

    Conclusions: Restraint stress aggravated allergic airway inflammation in association with alterations in local immunity characterized by greater Th2-associated cytokine production and a reduced development of regulatory T cells, mediated by MORs.

  12. 女性内分泌及免疫紊乱在复发性流产中的作用研究%Female Endocrine and Immune Disorder in the role of Recurrent Miscarriage

    Institute of Scientific and Technical Information of China (English)

    赵晓英; 高美华

    2014-01-01

    目的:探讨女性内分泌及免疫紊乱在复发性流产中的作用。方法回顾性分析2009年6月至2012年6月186例复发性流产病例作为观察组,并选同期180例正常产妇作为对照组,研究两组内分泌(卵泡生成激素,黄体生成激素,雌二醇,孕酮,睾酮,催乳激素)及免疫相关检测(抗精子抗体、抗子宫内膜抗体、抗心磷脂抗体、抗磷脂抗体综合症(APS)的检查结果。结果观察组中内分泌检测项目中卵泡生成激素(FSH),黄体生成激素(LH),雌二醇(E2),孕酮(P),睾酮(T),催乳激素(PRL)和免疫项目抗精子抗体(AsAb)、抗子宫内膜抗体(EMAb)、抗心磷脂抗体(AcL),抗磷脂抗体综合症(APS)检测结果显示,复发性流产病例中内分泌激素检查结果异常率89.78%,免疫相关检查异常率43.01%,远高于正常对照组中内分泌激素检查结果异常率7.22%,免疫相关检查异常率1.67%,两组数据对比分析分别具有统计学差异性意义(X2=16.87,P<0.05;X2=21.26,P<0.05)。结论女性内分泌及免疫紊乱是复发性流产的主要原因之一,其导致复发流产的作用不容忽视,对复发性流产患者应注重检测内分泌激素和相关免疫项目,是减少复发流产出现的有效诊疗措施,调整内分泌和免疫功能是促进受孕及保胎的治疗方法。%Objective To investigate the female endocrine and immune disorder in the role of recurrent miscarriage .Methods A retrospective analysis in June 2009 to June 2009 as observation group,186 cases of recurrent abortion and selected during the same period 180 cases of normal women as control group,the two groups of en-docrine,follicle generate hormone,luteinizing hormone generated,estradiol,progesterone,testosterone,the hormone prolactin)and immune related detection(antisperm an-tibody,endometrial antibody resistance

  13. [The immuno-endocrine system. A new endocrine theory: the problem of the packed transport].

    Science.gov (United States)

    Csaba, György

    2011-05-15

    Since the eighties of the last century hormone content was justified in immune cells (lymphocytes, granulocytes, monocytes, macrophages and mast cells), which produce, store and secrete these hormones. Although the amount of these materials in immune cells is relatively small, the mass of the producers (immune cells) is so large, that the phenomenon must be considered from endocrinological point of view, underlying the important differences between the "classical" and immuno-endocrine systems. Cells of the classic (built-in) endocrine system are mono-producers, while immune cells can synthesize many types of hormones (polyproducers). In addition, these cells can transport the whole hormone-producing machinery to the site of need, producing a local effect. This can be observed, for example, in the case of endorphin producing immune cells during inflammation and during early pregnancy around the chorionic villi. Hormone producing immune cells also have receptors for many hormones, so that they are poly-receivers. Via hormone producing and receiving capacity there is a bidirectional connection between the neuro-endocrine and immuno-endocrine systems. In addition, there is a network inside the immuno-endocrine system. The packed transport theory attempts to explain the mechanism and importance of the immuno-endocrine system.

  14. Transgenic alteration of Toll immune pathway in the female mosquito Aedes aegypti

    OpenAIRE

    Bian, Guowu; Shin, Sang Woon; Cheon, Hyang-Mi; Kokoza, Vladimir; Raikhel, Alexander S.

    2005-01-01

    Reverse genetics is a powerful tool for understanding gene functions and their interactions in the mosquito innate immunity. We took the transgenic approach, in combination with the RNA interference (RNAi) technique, to elucidate the role of mosquito REL1, a homolog of Drosophila Dorsal, in regulation of Toll immune pathway in the mosquito Aedes aegypti. By transforming the mosquitoes with ΔREL1-A or a double-stranded RNA construct of REL1 driven by the female fat body-specific vitellogenin (...

  15. Chronobiology in the endocrine system.

    Science.gov (United States)

    Haus, Erhard

    2007-08-31

    Biological signaling occurs in a complex web with participation and interaction of the central nervous system, the autonomous nervous system, the endocrine glands, peripheral endocrine tissues including the intestinal tract and adipose tissue, and the immune system. All of these show an intricate time structure with rhythms and pulsatile variations in multiple frequencies. Circadian (about 24-hour) and circannual (about 1-year) rhythms are kept in step with the cyclic environmental surrounding by the timing and length of the daily light span. Rhythmicity of many endocrine variables is essential for their efficacy and, even in some instances, for the qualitative nature of their effects. Indeed, the continuous administration of certain hormones and their synthetic analogues may show substantially different effects than expected. In the design of drug-delivery systems and treatment schedules involving directly or indirectly the endocrine system, consideration of the human time organization is essential. A large amount of information on the endocrine time structure has accumulated, some of which is discussed in this review.

  16. Fetal and neonatal endocrine disruptors.

    Science.gov (United States)

    Unüvar, Tolga; Büyükgebiz, Atilla

    2012-06-01

    Endocrine disruptors are substances commonly encountered in every setting and condition in the modern world. It is virtually impossible to avoid the contact with these chemical compounds in our daily life. Molecules defined as endocrine disruptors constitute an extremely heterogeneous group and include synthetic chemicals used as industrial solvents/lubricants and their by-products. Natural chemicals found in human and animal food (phytoestrogens) also act as endocrine disruptors. Different from adults, children are not exposed only to chemical toxins in the environment but may also be exposed during their intrauterine life. Hundreds of toxic substances, which include neuro-immune and endocrine toxic chemical components that may influence the critical steps of hormonal, neurological and immunological development, may affect the fetus via the placental cord and these substances may be excreted in the meconium. Children and especially newborns are more sensitive to environmental toxins compared to adults. Metabolic pathways are immature, especially in the first months of life. The ability of the newborn to metabolize, detoxify and eliminate many toxins is different from that of the adults. Although exposures occur during fetal or neonatal period, their effects may sometimes be observed in later years. Further studies are needed to clarify the effects of these substances on the endocrine system and to provide evidence for preventive measures.

  17. 女性内分泌及免疫紊乱在不孕症中的影响分析%Analysis the female endocrine and immune disorders in infertility

    Institute of Scientific and Technical Information of China (English)

    于秋梅; 安成涛

    2015-01-01

    ObjectiveTo explore the immune infertility women and the relationship between endocrine disorder.MethodsUsing chemiluminescence detection method in 32 infertile women and 42 cases of normal control group, the serum levels of LH, FSH, T, E2, INS, PRL level, gonadotropin antibody labeled with colloidal gold immune dot immunogold filtration assay for detection of anti endometrial antibody, anti sperm antibodies, anticardiolipin antibody, anti ovary antibody and anti human chorionic.ResultsAutoantibodies positive group 7 cases E2 level was signifi cantly lower than the negative group, while LH, FSH, T, INS, PRL level was signifi cantly higher than that of negative group 25 cases (P<0.05). Female endocrine disorders of immune antibody positive patients with a higher incidence (P<0.05), with statistical signifi cance.ConclusionFemale endocrine and immune dysfunction is an important cause of infertility, immune antibody can directly lead to infertility, and also lead to infertility caused by female endocrine hormone level change.%目的:探究不孕症妇女自身免疫与内分泌紊乱的关系。方法用化学发光法检测不孕症妇女32例及正常对照组42名体内血清黄体生成素(LH)、卵泡刺激素(FSH)、睾酮(T)、雌二醇(E2)、胰岛素(INS)、泌乳素(PRL)水平,用胶体金标记免疫斑点渗滤法来检验心磷脂抗体、卵巢抗体、子宫内膜抗体、抗绒毛膜促性腺激素抗体和精子抗体。结果自身免疫抗体阳性患者7例的E2水平明显比抗体阴性组低,但25例患者的LH、FSH、T、INS、PRL水平明显高出抗体阴性组,差异具有统计学意义(P<0.05)。女性内分泌失调患者免疫抗体阳性出现率提高,差异具有统计学意义(P<0.05)。结论女性患者的内分泌及免疫紊乱是引起不孕的重要病因,免疫抗体可直接引起不孕症,还可通过引起女性内分泌激素水平改变而导致不孕。

  18. 湿热中阻与神经内分泌免疫网络综述%Research Status of Damp-Heat Blocking the Middle Energizer and Neuro-Endocrine-Immune Network

    Institute of Scientific and Technical Information of China (English)

    梁嘉朗; 胡齐鸣

    2016-01-01

    There is close relationship between damp-heat blocking the middle energizer and nero-endocrine-immune (NEI) network.The pathogenesis of damp heat syndrome is the comprehensive manifestation of the effect of NEI network on the body.Syndrome of damp-heat blocking the middle energizer is a typical example of the syndrome of general damp-heat syndrome.By inducing abnormal secretion of various chemical signals,the damp heat eventually leads to disorder of nervous system,endocrine disorder and decline of immunity.The TCM formulas with effects of clearing heat and removing dampness can both positively and negatively regulate the patients with NEI network disorder.The mechanism may be two-ways regulation via three major chemical signals of nerves,endocrine and immunity (with the receptors as the target spots) to promote the steady state of the body.Strengthening the research on the relationship between NEI network and damp-heat pathogenic factors will further help to reveal the essence of TCM syndrome of damp-heat blocking the middle energizer and provide new ideas and approaches for the researches on the essence of the five zang-organs' attacking of pathogens.%湿热中阻与NEI网络关系密切,湿热证的致病作用是NEI网络影响机体的综合表现,湿热中阻证是全身性湿热证的典型代表,湿热中阻通过影响各种化学信号因子分泌异常,最终导致神经系统失调、内分泌紊乱、免疫功能下降中医清热祛湿的方药能对NEI网络失调者具有正反两面调节作用.中医方药治疗湿热中阻可能是通过神经、内分泌、免疫3大系统交流的化学信号因子及其受体作为效应靶点,进行双向调节,促使机体趋共稳态加强NEI网络与湿热致病“因子”关系的研究对揭示中医湿热中阻的本质有进一步帮助,为中医五脏受邪的本质研究提供新的思路和方法.

  19. Alteration of steroidogenesis in H{sub 2}95R cells by organic sediment contaminants and relationships to other endocrine disrupting effects

    Energy Technology Data Exchange (ETDEWEB)

    Blaha, L.; Hilscherova, K.; Mazurova, E.; Hecker, M.; Jones, P.D.; Newsted, J.L.; Bradley, P.W.; Gracia, T.; Duris, Z.; Horka, I.; Holoubek, I.; Giesy, J.P. [Masaryk University, Brno (Czech Republic)

    2006-08-15

    A novel bioassay with the human adrenocortical carcinoma cell line H{sub 2}95R can be used to screen for endocrine disrupting chemicals that affect the expression of genes important in steroidogenesis. This assay was employed to study the effects of organic contaminants associated with the freshwater pond sediments collected in the Ostrava-Karvina region, Czech Republic. The modulation of ten major genes involved in the synthesis of steroid hormones (CYP11A, CYP11B2, CYP17, CYP19, 17 beta HSD1, 17 beta HSD4, CYP21, 3 beta HSD2, HMGR, StAR) after exposure of H{sub 2}95R cells to sediment extracts was investigated using quantitative real-time polymerase chain reaction (PCR). Crude sediment extracts, containing high concentrations of polycyclic aromatic hydrocarbons (PAHs) and moderate amounts of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) significantly stimulated expression of the CYP11B2 gene (up to 10-fold induction), and suppressed expression of 3 beta HSD2 and CYP21 genes. Comparison of the results with other mechanistically based bioassays (arylhydrocarbon receptor, AhR, mediated responses in H{sub 4}IIE-luc cells, and estrogen receptor mediated effects in MVLN cells) revealed significant endocrine disrupting potencies of organic contaminants present in the sediments (most likely antiestrogenicity).

  20. Iodinated contrast media alter immune responses in pro-inflammatory states.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2010-07-01

    Hypertonic saline causes a transient elevation of blood osmolality and has been shown to alter cellular inflammatory responses in pro-inflammatory states. Intravascular administration of iodine contrast media also causes a transient elevation of blood osmolarity.

  1. Exogenous administration of lipids to steers alters aspects of the innate immune response to endotoxin challenge

    Science.gov (United States)

    Limitations in energy availability are known to impede the efficiency of the immune response to endotoxemia. Therefore, this study examined the effects of increasing energy availability on the pro-inflammatory response to LPS in Holstein steers. Steers were randomly assigned to 1 of 3 groups (n = 7 ...

  2. Uniquely altered transcripts are associated with immune preservation in HIV infection

    Science.gov (United States)

    Zanoni, Michelle; Aventurato, Ítalo Karmann; Hunter, James; Sucupira, Maria Cecilia Araripe; Diaz, Ricardo Sobhie

    2017-01-01

    The mechanisms underlying host HIV control hold much promise in the search for a functional HIV cure. We investigated the host genomic signatures in elite controllers or rapid progressors following recent infection and the correlates of immune reconstitution during combination antiretroviral therapy. We characterized the HIV-specific longitudinal host transcriptional response of peripheral blood mononuclear cells from elite controllers, rapid progressors, immune responders and non-responders using a RT-qPCR array in a cohort of recently HIV-infected Brazilian individuals. The elite controllers expressed unique transcripts early in infection that were closely associated with specialized cross-presentation between XCR1+ DCs and antigen-specific CD8+ T cells (XCL1). The natural suppression of HIV was also associated with the highly functional co-expression of cytokines and chemokines (CCL2, TNF and IL-10) concomitant with the maintenance of important anti-inflammatory and anticoagulant properties (Antithrombin III). Immune responders exhibited exclusively upregulated mRNAs possibly related to stem cell mobilization before combination antiretroviral therapy (neutrophil elastase). Our longitudinal approach to gene expression permitted us to discover previously unrecognized determinants that contribute to natural or antiretroviral-mediated HIV-1 immune control. PMID:28350860

  3. Acute brief heat stress in late gestation alters neonatal calf innate immune functions

    Science.gov (United States)

    Heat stress (HS), as one of the environmental stressors affecting the dairy industry, compromises the cow's milk production, immune function, and reproductive system. However, few studies have looked at how prenatal HS affects the offspring. The objective of this study was to evaluate the effect of ...

  4. Adaptive immunity alters distinct host feeding pathways during nematode induced inflammation, a novel mechanism in parasite expulsion.

    Directory of Open Access Journals (Sweden)

    John J Worthington

    2013-01-01

    Full Text Available Gastrointestinal infection is often associated with hypophagia and weight loss; however, the precise mechanisms governing these responses remain poorly defined. Furthermore, the possibility that alterations in feeding during infection may be beneficial to the host requires further study. We used the nematode Trichinella spiralis, which transiently inhabits the small intestine before migrating to skeletal muscle, as a biphasic model of infection to determine the cellular and molecular pathways controlling feeding during enteric and peripheral inflammation. Through the infection of genetically modified mice lacking cholecystokinin, Tumor necrosis factor α receptors and T and B-cells, we observed a biphasic hypophagic response to infection resulting from two separate immune-driven mechanisms. The enteroendocrine I-cell derived hormone cholecystokinin is an essential mediator of initial hypophagia and is induced by CD4+ T-cells during enteritis. In contrast, the second hypophagic response is extra-intestinal and due to the anorectic effects of TNFα during peripheral infection of the muscle. Moreover, via maintaining naive levels of the adipose secreted hormone leptin throughout infection we demonstrate a novel feedback loop in the immunoendocrine axis. Immune driven I-cell hyperplasia and resultant weight loss leads to a reduction in the inflammatory adipokine leptin, which in turn heightens protective immunity during infection. These results characterize specific immune mediated mechanisms which reduce feeding during intestinal or peripheral inflammation. Importantly, the molecular mediators of each phase are entirely separate. The data also introduce the first evidence that I-cell hyperplasia is an adaptively driven immune response that directly impinges on the outcome to infection.

  5. Endotoxemia is associated with altered innate and adaptive immune responses in untreated HIV-1 infected individuals.

    Directory of Open Access Journals (Sweden)

    Anne Roslev Bukh

    Full Text Available BACKGROUND: Microbial translocation may contribute to the immunopathogenesis in HIV infection. We investigated if microbial translocation and inflammation were associated with innate and adaptive immune responses in adults with HIV. METHODOLOGY/PRINCIPAL FINDINGS: This was an observational cohort study. Sera from HIV-infected and HIV-uninfected individuals were analyzed for microbial translocation (soluble CD14, lipopolysaccharides [LPS], endotoxin core antibody, and anti-α-galactosyl antibodies and inflammatory markers (high sensitivity C-reactive protein, IL-6, IL-1 receptor antagonist, soluble tumor necrosis factor receptor II, and IL-10 with enzyme-linked immunosorbent assays. Peripheral blood mononuclear cells (PBMC from HIV-infected persons and healthy controls (primed with single-stranded HIV-1-derived RNA were stimulated with LPS, and cytokine production was measured. Finally, HIV-infected patients were immunized with Prevnar 7vPnC±CpG 7909 followed by Pneumo Novum PPV-23. Effects of microbial translocation and inflammation on immunization were analyzed in a predictive regression model. We included 96 HIV-infected individuals, 76 on highly active antiretroviral therapy (HAART, 20 HAART-naive, and 50 healthy controls. Microbial translocation and inflammatory markers were higher among HIV-infected persons than controls. Cytokine levels following LPS stimulation were increased in PBMCs from HAART-naive compared to HAART-treated HIV-infected persons. Further, RNA-priming of PBMCs from controls acted synergistically with LPS to augment cytokine responses. Finally, high serum LPS levels predicted poor vaccine responses among HAART-naive, but not among HAART-treated HIV-infected individuals. CONCLUSIONS/SIGNIFICANCE: LPS acts synergistically with HIV RNA to stimulate innate immune responses in vitro and increasing serum LPS levels seem to predict poor antibody responses after vaccination among HAART-naive HIV-infected persons. Thus, our

  6. Transgenic alteration of Toll immune pathway in the female mosquito Aedes aegypti.

    Science.gov (United States)

    Bian, Guowu; Shin, Sang Woon; Cheon, Hyang-Mi; Kokoza, Vladimir; Raikhel, Alexander S

    2005-09-20

    Reverse genetics is a powerful tool for understanding gene functions and their interactions in the mosquito innate immunity. We took the transgenic approach, in combination with the RNA interference (RNAi) technique, to elucidate the role of mosquito REL1, a homolog of Drosophila Dorsal, in regulation of Toll immune pathway in the mosquito Aedes aegypti. By transforming the mosquitoes with DeltaREL1-A or a double-stranded RNA construct of REL1 driven by the female fat body-specific vitellogenin (Vg) promoter with the pBac[3xP3-EGFP, afm] vector, we generated two different transgenic mosquito strains, one with overexpressed AaREL1 and the second with AaREL1 knockdown. Both strains had a single copy of the respective transgene, and the expression in both transgenic mosquitoes was highly activated by blood feeding. Vg-DeltaREL1-A transgenic mosquitoes activate Toll immune pathway in the fat body by blood feeding. The overexpression of both isoforms, AaREL1-A and AaREL1-B, in Vg-DeltaREL1-A transgenic mosquitoes resulted in the concomitant activation of Aedes Spätzle1A and Serpin-27A, independent of septic injury. The same phenotype was observed in the mosquitoes with RNAi knockdown of an Aedes homolog to Drosophila cactus, an IkappaB inhibitor of Drosophila Toll pathway. The effect of the transgenic RNAi knockdown of AaREL1 on mosquito innate immunity was revealed by increased susceptibility to the entomopathogenic fungus Beauveria bassiana and the reduced induction of Spz1A and Serpin-27A gene expression after fungal challenge. These results have proven that AaREL1 is a key downstream regulator of Toll immune pathway in the mosquito A. aegypti.

  7. Immune responses during the larval stages of Mytilus galloprovincialis: metamorphosis alters immunocompetence, body shape and behavior.

    Science.gov (United States)

    Balseiro, Pablo; Moreira, Rebeca; Chamorro, Rubén; Figueras, Antonio; Novoa, Beatriz

    2013-08-01

    We investigated the development of the immune system during the larval stages of the mussel Mytilus galloprovincialis. The ability of trochophore and veliger larvae to phagocytose foreign particles (Escherichia coli and zymosan) was measured. Phagocytosis was detected as early as 24 h post-fertilization (hpf) using flow cytometry and fluorescence microscopy. However, although there was a high basal production of reactive oxygen and nitrogen species (ROS and NRS), the phagocytosis of zymosan did not trigger an associated increase in radical production. In addition, a panel of immune-related mussel genes (Myticin B, Myticin C, Mytilin B, Mytimycin precursor 1, Macrophage migration inhibition factor, lysozyme, C1q, membrane attack complex protein and fibrinogen-related protein) was selected for expression profile analysis throughout the different developmental stages (trochophore, veliger, metamorphosis, post-settlement and spat). The expression of these genes increased during the transition from trochophore to spat, and the level of expression was higher in oocytes than in trochophores, suggesting that gene expression during the first larval stages might be maternal in origin. Metamorphosis was identified as a crucial stage when larvae increased the expression of immune-related genes and responded to environmental signals. Whole-mount in situ hybridization studies showed the mantle edge as an important area in the development of immunocompetence in bivalve larvae. Larvae responded to both live and heat-inactivated bacteria by modulating expression of immune-related genes. Altogether, our results support that during the early stages of M. galloprovincialis development, immune mechanisms emerge to aid larvae in managing infections.

  8. Effects of Antibiotic Use on the Microbiota of the Gut and Associated Alterations of Immunity and Metabolism

    Directory of Open Access Journals (Sweden)

    M. Pilar Francino

    2013-11-01

    Full Text Available The excessively widespread use of antibiotics has created many threats. A well-known problem is the increasing bacterial resistance to antibiotics, which has clearly become a worldwide challenge to the effective control of infections by many pathogens. But, beyond affecting the pathogenic agents for which it is intended, antibiotic treatment also affects the mutualistic communities of microbes that inhabit the human body. As they inhibit susceptible organisms and select for resistant ones, antibiotics can have strong immediate effects on the composition of these communities, such as the proliferation of resistant opportunists that can cause accute disease. Furthermore, antibiotic-induced microbiota alterations are also likely to have more insidious effects on long-term health. In the case of the gut microbiota, this community interacts with many crucial aspects of human biology, including the regulation of immune and metabolic homeostasis, in the gut and beyond. It follows that antibiotic treatments bear the risk of altering these basic equilibria. Here, we review the growing literature on the effects of antibiotic use on gut microbiota composition and function, and their consequences for immunity, metabolism, and health.

  9. Epigenetic regulation of non-lymphoid cells by Bisphenol-A, a model endocrine disrupter: Potential Implications for Immunoregulation

    OpenAIRE

    Deena eKhan; S. Ansar eAhmed

    2015-01-01

    Endocrine disrupting chemicals (EDC) abound in the environment since many compounds are released from chemical, agricultural, pharmaceutical, and consumer product industries. Many of the EDCs such as Bisphenol A (BPA) have estrogenic activity or interfere with endogenous sex hormones. Experimental studies have reported a positive correlation of BPA with reproductive toxicity, altered growth, and immune dysregulation. Although the precise relevance of these studies to the environmental levels ...

  10. Larval Environment Alters Amphibian Immune Defenses Differentially across Life Stages and Populations.

    Directory of Open Access Journals (Sweden)

    Katherine L Krynak

    Full Text Available Recent global declines, extirpations and extinctions of wildlife caused by newly emergent diseases highlight the need to improve our knowledge of common environmental factors that affect the strength of immune defense traits. To achieve this goal, we examined the influence of acidification and shading of the larval environment on amphibian skin-associated innate immune defense traits, pre and post-metamorphosis, across two populations of American Bullfrogs (Rana catesbeiana, a species known for its wide-ranging environmental tolerance and introduced global distribution. We assessed treatment effects on 1 skin-associated microbial communities and 2 post-metamorphic antimicrobial peptide (AMP production and 3 AMP bioactivity against the fungal pathogen Batrachochytrium dendrobatidis (Bd. While habitat acidification did not affect survival, time to metamorphosis or juvenile mass, we found that a change in average pH from 7 to 6 caused a significant shift in the larval skin microbial community, an effect which disappeared after metamorphosis. Additionally, we found shifts in skin-associated microbial communities across life stages suggesting they are affected by the physiological or ecological changes associated with amphibian metamorphosis. Moreover, we found that post-metamorphic AMP production and bioactivity were significantly affected by the interactions between pH and shade treatments and interactive effects differed across populations. In contrast, there were no significant interactions between treatments on post-metamorphic microbial community structure suggesting that variation in AMPs did not affect microbial community structure within our study. Our findings indicate that commonly encountered variation in the larval environment (i.e. pond pH and degree of shading can have both immediate and long-term effects on the amphibian innate immune defense traits. Our work suggests that the susceptibility of amphibians to emerging diseases could be

  11. Altered Innate and Lymphocytic Immune Responses in Mouse Splenocytes Post-Flight

    Science.gov (United States)

    Hwang, ShenAn; Crucian, Brian E.; Sams, Clarence F.; Actor, Jeffrey K.

    2011-01-01

    Space flight is known to affect immune responses of astronauts and animals, decreasing lymphocytic responses to mitogenic stimuli, delayed typed hypersensitivity reactions, and T-cell activation. Despite changes in immune suppression, there are no reports of consistent adverse clinical events post flight. To further investigate the spectrum of affected immune responses, murine splenocytes were stimulated immediately post-shuttle flight (14 days on STS-135) with T-cell stimulators or toll-like receptor agonists. Comparisons were made to ground control splenocytes from age-matched mice. Cell phenotypes were assessed, as well as activation markers and associated cytokine production. The CD4+ population decreased with no concurrent decrease in CD8+ cells from shuttle mice post flight compared to ground controls. Regarding antigen presenting cell populations, the number of CD11c+ cells were slightly elevated post flight, compared to ground controls, with increased MHC Class I expression (I-A(sup b)) and no change in Class II expression (H-2K(sup b)). CD86+ populations were also significantly diminished. However, the decreased markers did not correlate with activity. Stimulation of splenocytes post flight showed significant increase in bead uptake, increased Class I expression, increased TNF-alpha and IL-6 production in response to TLR-2 (zymosan) and TLR-4 (LPS) agonists. While most activated (ConA or anti-CD3/anti-CD28) CD4+ cells showed markedly diminished responses (reduced IL-2 production), non-specific T cell responses to superantigen (SEA/SEB) increased post flight as determined by expression of early activation markers. Production of additional cytokines was also dysregulated postflight. Overall, persistent immune changes during space flight could represent unique clinical risks for exploration class missions. The consequences of pathogenic encounter remain an important concern that should be addressed.

  12. Restraint stress alters immune parameters and induces oxidative stress in the mouse uterus during embryo implantation.

    Science.gov (United States)

    Liu, Guanhui; Dong, Yulan; Wang, Zixu; Cao, Jing; Chen, Yaoxing

    2014-12-01

    The influence of stress on embryo implantation is not well understood. Prior studies have focused on later gestational stages and the long-term impact of stress on immune function. The objective of this study is to investigate the effects of restraint stress on the immune parameters and the oxidative states of the uterus during implantation. In this study, pregnant CD1 mice were subjected to restraint stress (4 h/d) on embryonic day 1 (E1) and sacrificed on E3, E5, and E7. Maternal plasma corticosterone (CORT) secretion and implantation sites in the uterus were examined. The uterine (excluding embryos) homogenate and uterine lymphocytes were collected to examine oxidative stress states and associated immune parameters. The results demonstrated that restraint stress increased maternal plasma CORT secretion and reduced the number of implantation sites by 15.3% on E5 and by 26.1% on E7. Moreover, restraint stress decreased the density of uterine natural killer (uNK) cells in the endometrium by 22.1-47.9% and increased the density of mast cells in the myometrium by 55.6-76.9%. Restraint stress remarkably decreased the CD3(+)CD4(+) T/CD3(+)CD8(+) T cell ratio (by 26.2-28.9%) and attenuated uterine lymphocyte proliferation and secretion of cytokines. In addition, restraint stress threatened the intracellular equilibrium between oxidants and antioxidants, resulting in decreased glutathione peroxidase (GSH-PX) (32.2% and 45.7%), superoxide dismutase (SOD) (15.5% and 26.1%), and total antioxidant capacity (T-AOC) (18.4% and 18.2%) activities and increased malondialdehyde (MDA) (34.4% and 43.0%) contents on E5 and E7. In conclusion, these findings demonstrate that restraint stress causes abnormal implantation and negatively impacts immune parameters in association with oxidative stress in mice.

  13. Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis.

    Science.gov (United States)

    Robinson, Dionne P; Klein, Sabra L

    2012-08-01

    During pregnancy, it is evolutionarily advantageous for inflammatory immune responses that might lead to fetal rejection to be reduced and anti-inflammatory responses that promote transfer of maternal antibodies to the fetus to be increased. Hormones modulate the immunological shift that occurs during pregnancy. Estrogens, including estradiol and estriol, progesterone, and glucocorticoids increase over the course of pregnancy and affect transcriptional signaling of inflammatory immune responses at the maternal-fetal interface and systemically. During pregnancy, the reduced activity of natural killer cells, inflammatory macrophages, and helper T cell type 1 (Th1) cells and production of inflammatory cytokines, combined with the higher activity of regulatory T cells and production of anti-inflammatory cytokines, affects disease pathogenesis. The severity of diseases caused by inflammatory responses (e.g., multiple sclerosis) is reduced and the severity of diseases that are mitigated by inflammatory responses (e.g., influenza and malaria) is increased during pregnancy. For some infectious diseases, elevated inflammatory responses that are necessary to control and clear a pathogen have a negative consequence on the outcome of pregnancy. The bidirectional interactions between hormones and the immune system contribute to both the outcome of pregnancy and female susceptibility to disease.

  14. Neutrophil Attack Triggers Extracellular Trap-Dependent Candida Cell Wall Remodeling and Altered Immune Recognition.

    Directory of Open Access Journals (Sweden)

    Alex Hopke

    2016-05-01

    Full Text Available Pathogens hide immunogenic epitopes from the host to evade immunity, persist and cause infection. The opportunistic human fungal pathogen Candida albicans, which can cause fatal disease in immunocompromised patient populations, offers a good example as it masks the inflammatory epitope β-glucan in its cell wall from host recognition. It has been demonstrated previously that β-glucan becomes exposed during infection in vivo but the mechanism behind this exposure was unknown. Here, we show that this unmasking involves neutrophil extracellular trap (NET mediated attack, which triggers changes in fungal cell wall architecture that enhance immune recognition by the Dectin-1 β-glucan receptor in vitro. Furthermore, using a mouse model of disseminated candidiasis, we demonstrate the requirement for neutrophils in triggering these fungal cell wall changes in vivo. Importantly, we found that fungal epitope unmasking requires an active fungal response in addition to the stimulus provided by neutrophil attack. NET-mediated damage initiates fungal MAP kinase-driven responses, particularly by Hog1, that dynamically relocalize cell wall remodeling machinery including Chs3, Phr1 and Sur7. Neutrophil-initiated cell wall disruptions augment some macrophage cytokine responses to attacked fungi. This work provides insight into host-pathogen interactions during disseminated candidiasis, including valuable information about how the C. albicans cell wall responds to the biotic stress of immune attack. Our results highlight the important but underappreciated concept that pattern recognition during infection is dynamic and depends on the host-pathogen dialog.

  15. Endocrine Disruptors

    Directory of Open Access Journals (Sweden)

    Paolo F. Ricci

    2015-11-01

    Full Text Available Law and science combine in the estimation of risks from endocrine disruptors (EDs and actions for their regulation. For both, dose–response models are the causal link between exposure and probability (or percentage change of adverse response. The evidence that leads to either regulations or judicial decrees is affected by uncertainty and limited knowledge, raising difficult policy issues that we enumerate and discuss. In the United States, some courts have dealt with EDs, but causation based on animal studies has been a stumbling block for plaintiffs seeking compensation, principally because those courts opt for epidemiological evidence. The European Union (EU has several regulatory tools and ongoing research on the risks associated with bisphenol A, under the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH Regulation and other regulations or directives. The integration of a vast (in kind and in scope number of research papers into a statement of causation for either policy or to satisfy legal requirements, in both the United States and the EU, relies on experts. We outline the discursive dilemma and issues that may affect consensus-based results and a Bayesian causal approach that accounts for the evolution of information, yielding both value of information and flexibility associated with public choices.

  16. Widespread alterations in the synaptic proteome of the adolescent cerebral cortex following prenatal immune activation in rats.

    Science.gov (United States)

    Györffy, Balázs A; Gulyássy, Péter; Gellén, Barbara; Völgyi, Katalin; Madarasi, Dóra; Kis, Viktor; Ozohanics, Olivér; Papp, Ildikó; Kovács, Péter; Lubec, Gert; Dobolyi, Árpád; Kardos, József; Drahos, László; Juhász, Gábor; Kékesi, Katalin A

    2016-08-01

    An increasing number of studies have revealed associations between pre- and perinatal immune activation and the development of schizophrenia and autism spectrum disorders (ASDs). Accordingly, neuroimmune crosstalk has a considerably large impact on brain development during early ontogenesis. While a plethora of heterogeneous abnormalities have already been described in established maternal immune activation (MIA) rodent and primate animal models, which highly correlate to those found in human diseases, the underlying molecular background remains obscure. In the current study, we describe the long-term effects of MIA on the neocortical pre- and postsynaptic proteome of adolescent rat offspring in detail. Molecular differences were revealed in sub-synaptic fractions, which were first thoroughly characterized using independent methods. The widespread proteomic examination of cortical samples from offspring exposed to maternal lipopolysaccharide administration at embryonic day 13.5 was conducted via combinations of different gel-based proteomic techniques and tandem mass spectrometry. Our experimentally validated proteomic data revealed more pre- than postsynaptic protein level changes in the offspring. The results propose the relevance of altered synaptic vesicle recycling, cytoskeletal structure and energy metabolism in the presynaptic region in addition to alterations in vesicle trafficking, the cytoskeleton and signal transduction in the postsynaptic compartment in MIA offspring. Differing levels of the prominent signaling regulator molecule calcium/calmodulin-dependent protein kinase II in the postsynapse was validated and identified specifically in the prefrontal cortex. Finally, several potential common molecular regulators of these altered proteins, which are already known to be implicated in schizophrenia and ASD, were identified and assessed. In summary, unexpectedly widespread changes in the synaptic molecular machinery in MIA rats were demonstrated which

  17. Acute brief heat stress in late gestation alters neonatal calf innate immune functions.

    Science.gov (United States)

    Strong, R A; Silva, E B; Cheng, H W; Eicher, S D

    2015-11-01

    Heat stress, as one of the environmental stressors affecting the dairy industry, compromises the cow milk production, immune function, and reproductive system. However, few studies have looked at how prenatal heat stress (HS) affects the offspring. The objective of this study was to evaluate the effect of HS during late gestation on calf immunity. Calves were born to cows exposed to evaporative cooling (CT) or HS (cyclic 23-35°C) for 1 wk at 3 wk before calving. Both bull and heifer calves (CT, n=10; HS, n=10) were housed in similar environmental temperatures after birth. Both CT and HS calves received 3.78 L of pooled colostrum within 12 h after birth and were fed the same diet throughout the study. In addition to tumor necrosis factor α, IL-1β, IL-1 receptor antagonist (IL-1RA), and toll-like receptor (TLR)2, and TLR4 mRNA expression, the expression of CD14(+) and CD18(+) cells, and DEC205(+) dendritic cells were determined in whole blood samples at d 0, 3, 7, 14, 21, and 28. The neutrophil to lymphocyte ratio, differential cell counts, and the hematocrit were also determined. During late gestation, the HS cows had greater respiration rates, rectal temperatures, and tended to spend more time standing compared with the CT cows. The HS calves had less expression of tumor necrosis factor-α and TLR2 and greater levels of IL-1β, IL-1RA, and TLR4 compared with CT calves. The HS calves also had a greater percentage of CD18(+) cells compared with the CT calves. Additionally, a greater percentage of neutrophils and lesser percentage of lymphocytes were in the HS calves compared with the CT calves. The results indicate that biomarkers of calves' immunity are affected in the first several weeks after birth by HS in the dam during late gestation.

  18. High Dietary Folate in Mice Alters Immune Response and Reduces Survival after Malarial Infection.

    Directory of Open Access Journals (Sweden)

    Danielle N Meadows

    Full Text Available Malaria is a significant global health issue, with nearly 200 million cases in 2013 alone. Parasites obtain folate from the host or synthesize it de novo. Folate consumption has increased in many populations, prompting concerns regarding potential deleterious consequences of higher intake. The impact of high dietary folate on the host's immune function and response to malaria has not been examined. Our goal was to determine whether high dietary folate would affect response to malarial infection in a murine model of cerebral malaria. Mice were fed control diets (CD, recommended folate level for rodents or folic acid-supplemented diets (FASD, 10x recommended level for 5 weeks before infection with Plasmodium berghei ANKA. Survival, parasitemia, numbers of immune cells and other infection parameters were assessed. FASD mice had reduced survival (p<0.01, Cox proportional hazards and higher parasitemia (p< 0.01, joint model of parasitemia and survival compared with CD mice. FASD mice had lower numbers of splenocytes, total T cells, and lower numbers of specific T and NK cell sub-populations, compared with CD mice (p<0.05, linear mixed effects. Increased brain TNFα immunoreactive protein (p<0.01, t-test and increased liver Abca1 mRNA (p<0.01, t-test, a modulator of TNFα, were observed in FASD mice; these variables correlated positively (rs = 0.63, p = 0.01. Bcl-xl/Bak mRNA was increased in liver of FASD mice (p<0.01, t-test, suggesting reduced apoptotic potential. We conclude that high dietary folate increases parasite replication, disturbs the immune response and reduces resistance to malaria in mice. These findings have relevance for malaria-endemic regions, when considering anti-folate anti-malarials, food fortification or vitamin supplementation programs.

  19. Altered Biomarkers of Mucosal Immunity and Reduced Vaginal Lactobacillus Concentrations in Sexually Active Female Adolescents

    Science.gov (United States)

    Madan, Rebecca Pellett; Carpenter, Colleen; Fiedler, Tina; Kalyoussef, Sabah; McAndrew, Thomas C.; Viswanathan, Shankar; Kim, Mimi; Keller, Marla J.; Fredricks, David N.; Herold, Betsy C.

    2012-01-01

    Background Genital secretions collected from adult women exhibit in vitro activity against herpes simplex virus (HSV) and Escherichia coli (E. coli), but prior studies have not investigated this endogenous antimicrobial activity or its mediators in adolescent females. Methodology/Principal Findings Anti-HSV and anti-E.coli activity were quantified from cervicovaginal lavage (CVL) specimens collected from 20 sexually active adolescent females (15–18 years). Soluble immune mediators that may influence this activity were measured in CVL, and concentrations of Lactobacillus jensenii and crispatus were quantified by PCR from vaginal swabs. Results for adolescents were compared to those obtained from 54 healthy, premenopausal adult women. Relative to specimens collected from adults, CVL collected from adolescent subjects had significantly reduced activity against E. coli and diminished concentrations of protein, IgG, and IgA but significantly increased anti-HSV activity and concentrations of interleukin (IL)-1α, IL-6 and IL-1 receptor antagonist. Vaginal swabs collected from adolescent subjects had comparable concentrations of L. crispatus but significantly reduced concentrations of L. jensenii, relative to adult swabs. Conclusions/Significance Biomarkers of genital mucosal innate immunity may differ substantially between sexually active adolescents and adult women. These findings warrant further study and may have significant implications for prevention of sexually transmitted infections in adolescent females. PMID:22808157

  20. Ionizing radiation selectively reduces skin regulatory T cells and alters immune function.

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    Full Text Available The skin serves multiple functions that are critical for life. The protection from pathogens is achieved by a complicated interaction between aggressive effectors and controlling functions that limit damage. Inhomogeneous radiation with limited penetration is used in certain types of therapeutics and is experienced with exposure to solar particle events outside the protection of the Earth's magnetic field. This study explores the effect of ionizing radiation on skin immune function. We demonstrate that radiation, both homogeneous and inhomogeneous, induces inflammation with resultant specific loss of regulatory T cells from the skin. This results in a hyper-responsive state with increased delayed type hypersensitivity in vivo and CD4+ T cell proliferation in vitro. The effects of inhomogeneous radiation to the skin of astronauts or as part of a therapeutic approach could result in an unexpected enhancement in skin immune function. The effects of this need to be considered in the design of radiation therapy protocols and in the development of countermeasures for extended space travel.

  1. Ionizing Radiation Selectively Reduces Skin Regulatory T Cells and Alters Immune Function

    Science.gov (United States)

    Zhou, Yu; Ni, Houping; Balint, Klara; Sanzari, Jenine K.; Dentchev, Tzvete; Diffenderfer, Eric S.; Wilson, Jolaine M.; Cengel, Keith A.; Weissman, Drew

    2014-01-01

    The skin serves multiple functions that are critical for life. The protection from pathogens is achieved by a complicated interaction between aggressive effectors and controlling functions that limit damage. Inhomogeneous radiation with limited penetration is used in certain types of therapeutics and is experienced with exposure to solar particle events outside the protection of the Earth’s magnetic field. This study explores the effect of ionizing radiation on skin immune function. We demonstrate that radiation, both homogeneous and inhomogeneous, induces inflammation with resultant specific loss of regulatory T cells from the skin. This results in a hyper-responsive state with increased delayed type hypersensitivity in vivo and CD4+ T cell proliferation in vitro. The effects of inhomogeneous radiation to the skin of astronauts or as part of a therapeutic approach could result in an unexpected enhancement in skin immune function. The effects of this need to be considered in the design of radiation therapy protocols and in the development of countermeasures for extended space travel. PMID:24959865

  2. Altered endometrial immune gene expression in beef heifers with retarded embryos.

    Science.gov (United States)

    Beltman, M E; Forde, N; Lonergan, P; Crowe, M A

    2013-01-01

    The aim of the present study was to compare endometrial gene expression profiles in a group of beef heifers yielding viable or retarded embryos on Day 7 after oestrus as a means of potentially explaining differences in embryo survival rates. Heifers were classified as either: (1) viable, when the embryo collected on Day 7 after oestrus was at the correct developmental stage (i.e. morula/early blastocyst); or (2) retarded, when the embryo was arrested at the 2-16-cell stage. The focus of the present study was on genes that were associated with either the pro- or anti-inflammatory immune response. Endometrial gene expression was determined using quantitative real-time polymerase chain reaction analysis. Expression of the β-defensin (DEFB1), interferon (IFN)-α (IFNA), IFN-γ (IFNG), interleukin (IL)-6 (IL6), IL-10 (IL10), forkhead box P3 (FOXP3) and natural cytotoxicity triggering receptor 1 (NCR1) genes was lower in endometria from viable than retarded heifers. Expression of the nuclear factor of kappa light polypeptide gene enhancer in B cells 1 (NKFB1), transforming growth factor (TGF)-β (TGFB), IFN-γ-inducible protein 16 (IFI16) and IL-21 (IL21) genes was higher in viable than retarded heifers. We propose that small disturbances in the expression of immune genes in the endometrium on Day 7 after oestrus can have detrimental effects on embryo survival.

  3. Immunity

    Institute of Scientific and Technical Information of China (English)

    1992-01-01

    920630 Effects of the spleen on immunestate of patients with gastric cancer.QIUDengbo (仇登波), et al. Dept General Surg,Union Hosp, Tongji Med Univ, Wuhan, 430022.Natl Med J China 1992; 72(6): 334-337. For analysing the effects of the spleen on im-mune state of gastric cancer patients.T-lym-

  4. Pancreatic endocrine tumours: mutational and immunohistochemical survey of protein kinases reveals alterations in targetable kinases in cancer cell lines and rare primaries

    Science.gov (United States)

    Corbo, V.; Beghelli, S.; Bersani, S.; Antonello, D.; Talamini, G.; Brunelli, M.; Capelli, P.; Falconi, M.; Scarpa, A.

    2012-01-01

    Background: Kinases represent potential therapeutic targets in pancreatic endocrine tumours (PETs). Patients and methods: Thirty-five kinase genes were sequenced in 36 primary PETs and three PET cell lines: (i) 4 receptor tyrosine kinases (RTK), epithelial growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), tyrosine-protein kinase KIT (KIT), platelet-derived growth factor receptor alpha (PDGFRalpha); (ii) 6 belonging to the Akt/mTOR pathway; and (iii) 25 frequently mutated in cancers. The immunohistochemical expression of the four RTKs and the copy number of EGFR and HER2 were assessed in 140 PETs. Results: Somatic mutations were found in KIT in one and ATM in two primary neoplasms. Among 140 PETs, EGFR was immunopositive in 18 (13%), HER2 in 3 (2%), KIT in 16 (11%), and PDGFRalpha in 135 (96%). HER2 amplification was found in 2/130 (1.5%) PETs. KIT membrane immunostaining was significantly associated with tumour aggressiveness and shorter patient survival. PET cell lines QGP1, CM and BON harboured mutations in FGFR3, FLT1/VEGFR1 and PIK3CA, respectively. Conclusions: Only rare PET cases, harbouring either HER2 amplification or KIT mutation, might benefit from targeted drugs. KIT membrane expression deserves further attention as a prognostic marker. ATM mutation is involved in a proportion of PET. The finding of specific mutations in PET cell lines renders these models useful for preclinical studies involving pathway-specific therapies. PMID:21447618

  5. Are endocrine and reproductive biomarkers altered in contaminant-exposed wild male Largemouth Bass (Micropterus salmoides) of Lake Mead, Nevada/Arizona, USA?

    Science.gov (United States)

    Goodbred, Steven L.; Patino, Reynaldo; Torres, Leticia; Echols, Kathy R.; Jenkins, Jill A.; Rosen, Michael R.; Orsak, Erik

    2015-01-01

    Male Largemouth Bass were sampled from two locations in Lake Mead (USA), a site influenced by treated municipal wastewater effluent and urban runoff (Las Vegas Bay), and a reference site (Overton Arm). Samples were collected in summer (July '07) and spring (March '08) to assess general health, endocrine and reproductive biomarkers, and compare contaminant body burdens by analyzing 252 organic chemicals. Sperm count and motility were measured in spring. Contaminants were detected at much higher frequencies and concentrations in fish from Las Vegas Bay than Overton Arm. Those with the highest concentrations included PCBs, DDTs, PBDEs, galaxolide, and methyl triclosan. Fish from Las Vegas Bay also had higher Fulton condition factor, hepatosomatic index, and hematocrit, and lower plasma 11-ketotestosterone concentration (KT). Gonadosomatic index (GSI) and sperm motility did not differ between sites, but sperm count was lower by nearly 50% in fish from Las Vegas Bay. A positive association between KT and GSI was identified, but this association was nonlinear. On average, maximal GSI was reached at sub-maximal KT concentrations. In conclusion, the higher concentration of contaminant body burdens coupled with reduced levels of KT and sperm count in fish from Las Vegas Bay suggest that male reproductive condition was influenced by contaminant exposures. Also, the nonlinear KT-GSI association provided a framework to understand why GSI was similar between male bass from both sites despite their large difference in KT, and also suggested the existence of post-gonadal growth functions of KT at high concentrations.

  6. The effects of nanomaterials as endocrine disruptors.

    Science.gov (United States)

    Iavicoli, Ivo; Fontana, Luca; Leso, Veruscka; Bergamaschi, Antonio

    2013-08-14

    In recent years, nanoparticles have been increasingly used in several industrial, consumer and medical applications because of their unique physico-chemical properties. However, in vitro and in vivo studies have demonstrated that these properties are also closely associated with detrimental health effects. There is a serious lack of information on the potential nanoparticle hazard to human health, particularly on their possible toxic effects on the endocrine system. This topic is of primary importance since the disruption of endocrine functions is associated with severe adverse effects on human health. Consequently, in order to gather information on the hazardous effects of nanoparticles on endocrine organs, we reviewed the data available in the literature regarding the endocrine effects of in vitro and in vivo exposure to different types of nanoparticles. Our aim was to understand the potential endocrine disrupting risks posed by nanoparticles, to assess their underlying mechanisms of action and identify areas in which further investigation is needed in order to obtain a deeper understanding of the role of nanoparticles as endocrine disruptors. Current data support the notion that different types of nanoparticles are capable of altering the normal and physiological activity of the endocrine system. However, a critical evaluation of these findings suggests the need to interpret these results with caution since information on potential endocrine interactions and the toxicity of nanoparticles is quite limited.

  7. Stimulation of the Drosophila immune system alters genome-wide nucleosome occupancy

    Directory of Open Access Journals (Sweden)

    Yingxue Ren

    2015-03-01

    Full Text Available In eukaryotes, nucleosomes participate in all DNA-templated events by regulating access to the underlying DNA sequence. However, nucleosome dynamics during a genome response have not been well characterized [1,2]. We stimulated Drosophila S2 cells with heat-killed Gram-negative bacteria Salmonella typhimurium, and mapped genome-wide nucleosome occupancy at high temporal resolution by MNase-seq using Illumina HiSeq 2500. We show widespread nucleosome occupancy change in S2 cells during the immune response, with the significant nucleosomal loss occurring at 4 h after stimulation. Data have been deposited to the Gene Expression Omnibus (GEO database repository with the dataset identifier GSE64507.

  8. Comparative efficacy of piperine and curcumin in deltamethrin induced splenic apoptosis and altered immune functions.

    Science.gov (United States)

    Kumar, Anoop; Sharma, Neelima

    2015-03-01

    Deltamethrin (DLM) being a potent immunotoxicant affects both humoral and cell mediated immunity. Thus, for the amelioration of its effects, two different bioactive herbal extracts piperine and curcumin are evaluated and their efficacy has been compared. The docking results demonstrated that curcumin has good binding affinity towards CD28 and CD45 receptors as compared to piperine but in vitro studies revealed that piperine is more effective. DLM induced apoptotic markers such as oxidative stress and caspase 3 have been attenuated more significantly by piperine as compared to curcumin. Phenotypic and cytokine changes have also been mitigated best with piperine. Thus, these findings strongly demonstrate that piperine displays the more anti-oxidative, anti-apoptotic and chemo-protective properties in the DLM induced splenic apoptosis as compared to curcumin. So, piperine can be considered the drug of choice under immunocompromised conditions.

  9. Effects of alcohol on the endocrine system.

    Science.gov (United States)

    Rachdaoui, Nadia; Sarkar, Dipak K

    2013-09-01

    Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine, and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiologic and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease, and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system.

  10. Association of human TLR1 and TLR6 deficiency with altered immune responses to BCG vaccination in South African infants.

    Directory of Open Access Journals (Sweden)

    April Kaur Randhawa

    2011-08-01

    Full Text Available The development of effective immunoprophylaxis against tuberculosis (TB remains a global priority, but is hampered by a partially protective Bacillus Calmette-Guérin (BCG vaccine and an incomplete understanding of the mechanisms of immunity to Mycobacterium tuberculosis. Although host genetic factors may be a primary reason for BCG's variable and inadequate efficacy, this possibility has not been intensively examined. We hypothesized that Toll-like receptor (TLR variation is associated with altered in vivo immune responses to BCG. We examined whether functionally defined TLR pathway polymorphisms were associated with T cell cytokine responses in whole blood stimulated ex vivo with BCG 10 weeks after newborn BCG vaccination of South African infants. In the primary analysis, polymorphism TLR6_C745T (P249S was associated with increased BCG-induced IFN-γ in both discovery (n = 240 and validation (n = 240 cohorts. In secondary analyses of the combined cohort, TLR1_T1805G (I602S and TLR6_G1083C (synonymous were associated with increased IFN-γ, TLR6_G1083C and TLR6_C745T were associated with increased IL-2, and TLR1_A1188T was associated with increased IFN-γ and IL-2. For each of these polymorphisms, the hypo-responsive allele, as defined by innate immunity signaling assays, was associated with increased production of TH1-type T cell cytokines (IFN-γ or IL-2. After stimulation with TLR1/6 lipopeptide ligands, PBMCs from TLR1/6-deficient individuals (stratified by TLR1_T1805G and TLR6_C745T hyporesponsive genotypes secreted lower amounts of IL-6 and IL-10 compared to those with responsive TLR1/6 genotypes. In contrast, no IL-12p70 was secreted by PBMCs or monocytes. These data support a mechanism where TLR1/6 polymorphisms modulate TH1 T-cell polarization through genetic regulation of monocyte IL-10 secretion in the absence of IL-12. These studies provide evidence that functionally defined innate immune gene variants are associated with the

  11. Increased Frequency of CD4+ CD25+ FoxP3+ T Regulatory Cells in Pulmonary Tuberculosis Patients Undergoing Specific Treatment and Its Relationship with Their Immune-Endocrine Profile

    Directory of Open Access Journals (Sweden)

    Ariana Díaz

    2015-01-01

    Full Text Available Tuberculosis (TB is a major health problem requiring an appropriate cell immune response (IR to be controlled. Since regulatory T cells (Tregs are relevant in IR regulation, we analyzed Tregs variations throughout the course of TB treatment and its relationship with changes in immune-endocrine mediators dealing with disease immunopathology. The cohort was composed of 41 adult patients, 20 of them completing treatment and follow-up. Patients were bled at diagnosis (T0 and at 2 (T2, 4 (T4, 6 (T6, and 9 months following treatment initiation. Twenty-four age- and sex-matched healthy controls (HCo were also included. Tregs (flow cytometry from TB patients were increased at T0 (versus HCo P<0.05, showing even higher values at T2 (versus T0 P<0.01 and T4 (versus T0 P<0.001. While IL-6, IFN-γ, TGF-β (ELISA, and Cortisol (electrochemiluminescence, EQ were augmented, DHEA-S (EQ levels were diminished at T0 with respect to HCo, with cytokines and Cortisol returning to normal values at T9. Tregs correlated positively with IFN-γ (R=0.868, P<0.05 at T2 and negatively at T4 (R=-0.795, P<0.05. Lowered levels of proinflammatory cytokines together with an increased frequency of Tregs of patients undergoing specific treatment might reflect a downmodulatory effect of these cells on the accompanying inflammation.

  12. Immune system modifications and feto-maternal immune tolerance

    Institute of Scientific and Technical Information of China (English)

    Song Dan; Shi Yichao

    2014-01-01

    Objective This review aimed at understanding pregnancy-induced changes in the maternal immune response and mechanisms for the establishment of feto-maternal tolerance.Data sources Articles cited in this review were obtained from PubMed in English from 2000 to 2014,and the search string included keywords such as feto-maternal tolerance,dendritic cells,macrophage,T regulatory cells,natural killer cells,cytokines and hormone.Study selection Articles regarding altered maternal immune response,including the proliferation and differentiation of the altered cells,and the production of cytokines and regulation of hormones in the feto-maternal interface were retrieved,reviewed and analyzed.Results The changes in immune cells and cytokines in the local uterine microenvironment and peripheral blood are correlated with the establishment of feto-maternal tolerance.The endocrine system regulates the maternal immune system,promoting modifications during pregnancy.In these regulatory networks,every factor is indispensible for others.Conclusions The integration and balance of these immune factors during pregnancy give rise to an environment that enables the fetus to escape rejection by the maternal immune system.This progress is complicated,and needs more comprehensive exploration and explanation.

  13. Altered immune function of Octodonta nipae (Maulik) to its pupal endoparasitoid, Tetrastichus brontispae Ferrière.

    Science.gov (United States)

    Meng, E; Tang, Baozhen; Hou, Youming; Chen, Xinxin; Chen, Jiantu; Yu, Xiao-Qiang

    2016-08-01

    Most studies on the contribution of the altered immune response by endoparasitoid have been restricted to the interactions between Ichneumonoidea and their hosts, while effects of parasitism by Chalcidoidea on the hosts have rarely been characterized except some wasps such as Pteromalidae. Endoparasitoid Tetrastichus brontispae Ferrière, belonging to Eulophidae (Hymenoptera), has a great potential to control some Coleopteran beetles such as Octodonta nipae, one invasive species in southern China. However, the physiological mechanism underlying the escape from the melanotic encapsulation in O. nipae pupae has not been demonstrated. In the present study, effects of parasitism on the immune function of its pupal host O. nipae were investigated. The combining results that granulocytes and plasmatocytes could phagocytize bacteria from 2 to 48h and granulocytes, plasmatocytes and oenocytoids were prophenoloxidase/phenoloxidase positive hemocytes indicated that granulocytes, plasmatocytes and oenocytoids were the main immunocompetent hemocytes in O. nipae pupae. Parasitism by T. brontispae resulted in a significant increase in the percentage of hemocytes viability and spreading at 96h, growing percentage of granulocytes at 24h but no effects on the total hemocyte counts, and an enhanced phenoloxidase activity only at 12 and 72h while a significantly longer melanization time of the hemolymph at 96h following parasitism. These results indicate that mixtures of systemic active and local active regulation are used for T. brontispae to escape host encapsulation in O. nipae pupae. The present study contributes to the understanding of the diversity of virulence strategies used by parasitoids.

  14. Larval exposure to predator cues alters immune function and response to a fungal pathogen in post-metamorphic wood frogs.

    Science.gov (United States)

    Groner, Maya L; Buck, Julia C; Gervasi, Stephanie; Blaustein, Andrew R; Reinert, Laura K; Rollins-Smith, Louise A; Bier, Mark E; Hempel, John; Relyea, Rick A

    2013-09-01

    For the past several decades, amphibian populations have been decreasing around the globe at an unprecedented rate. Batrachochytrium dendrobatidis (Bd), the fungal pathogen that causes chytridiomycosis in amphibians, is contributing to amphibian declines. Natural and anthropogenic environmental factors are hypothesized to contribute to these declines by reducing the immunocompetence of amphibian hosts, making them more susceptible to infection. Antimicrobial peptides (AMPs) produced in the granular glands of a frog's skin are thought to be a key defense against Bd infection. These peptides may be a critical immune defense during metamorphosis because many acquired immune functions are suppressed during this time. To test if stressors alter AMP production and survival of frogs exposed to Bd, we exposed wood frog (Lithobates sylvaticus) tadpoles to the presence or absence of dragonfly predator cues crossed with a single exposure to three nominal concentrations of the insecticide malathion (0, 10, or 100 parts per billion [ppb]). We then exposed a subset of post-metamorphic frogs to the presence or absence of Bd zoospores and measured frog survival. Although predator cues and malathion had no effect on survival or size at metamorphosis, predator cues increased the time to metamorphosis by 1.5 days and caused a trend of a 20% decrease in hydrophobic skin peptides. Despite this decrease in peptides determined shortly after metamorphosis, previous exposure to predator cues increased survival in both Bd-exposed and unexposed frogs several weeks after metamorphosis. These results suggest that exposing tadpoles to predator cues confers fitness benefits later in life.

  15. Plasma Cytokine Concentrations Indicate In-vivo Hormonal Regulation of Immunity is Altered During Long-Duration Spaceflight

    Science.gov (United States)

    Crician, Brian E.; Zwart, Sara R.; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather A.; Pierson, Duane; Sams, Clarence F.; Smith, Scott M.

    2013-01-01

    Background: Aspects of immune system dysregulation associated with long-duration spaceflight have yet to be fully characterized, and may represent a clinical risk to crewmembers during deep space missions. Plasma cytokine concentration may serve as an indicator of in vivo physiological changes or immune system mobilization. Methods: The plasma concentrations of 22 cytokines were monitored in 28 astronauts during long-duration spaceflight onboard the International Space Station. Blood samples were collected three times before flight, 3-5 times during flight (depending on mission duration), at landing and 30 days post-landing. Analysis was performed by bead array immunoassay. Results: With few exceptions, minimal detectable mean plasma levels (cytokines or adaptive regulatory cytokines, however IL-1ra and several chemokines were constitutively present. An increase in the plasma concentration IL-8, IL-1ra, Tpo, CCL4, CXCL5, TNF(alpha), GM-CSF and VEGF was observed associated with spaceflight. Significant post-flight increases were observed for IL-6 and CCL2. No significant alterations were observed during or following spaceflight for adaptive/T-regulatory cytokines (IL-2, IFN(gamma), IL-17, IL4, IL-5, IL-10). Conclusions: This pattern of cytokine dysregulation suggests multiple physiological adaptations persist during flight, including inflammation, leukocyte recruitment, angiogenesis and thrombocyte regulation.

  16. [Contamination, endocrine disruptors and cancer].

    Science.gov (United States)

    Arvelo, Francisco; Sojo, Felipe; Cotte, Carlos

    2016-03-01

    Since the mid-twentieth century, many species, very different from each other and located in all areas and comers of the planet, began presenting various alterations, many of which suggested to be related to endocrine disorders. Research has shown that such alterations were caused by exposure to various chemical contaminants that could affect the health and cause serious illnesses. Among them stands a diverse and large group of compounds, with very different chemical structures, capable of altering the hormonal balance, act at very low doses and with different mechanisms of action, that are called "endocrine disrupting chemicals". When released into the environment or as part of objects, food or medicines, constitute a major risk to animals and humans, which produces not only endocrine dysfunctions but also different cancers, which include the most common types. Despite the importance and significance of the impact of these compounds, they are not sufficiently known or understood, so the aim of this review is to show their origin and impact in the field of human health, highlighting their role as inducers of cancer, which has led to multiple clinical and biological investigations.

  17. Landscape structure and management alter the outcome of a pesticide ERA: Evaluating impacts of endocrine disruption using the ALMaSS European Brown Hare model.

    Science.gov (United States)

    Topping, Chris J; Dalby, Lars; Skov, Flemming

    2016-01-15

    There is a gradual change towards explicitly considering landscapes in regulatory risk assessment. To realise the objective of developing representative scenarios for risk assessment it is necessary to know how detailed a landscape representation is needed to generate a realistic risk assessment, and indeed how to generate such landscapes. This paper evaluates the contribution of landscape and farming components to a model based risk assessment of a fictitious endocrine disruptor on hares. In addition, we present methods and code examples for generation of landscape structures and farming simulation from data collected primarily for EU agricultural subsidy support and GIS map data. Ten different Danish landscapes were generated and the ERA carried out for each landscape using two different assumed toxicities. The results showed negative impacts in all cases, but the extent and form in terms of impacts on abundance or occupancy differed greatly between landscapes. A meta-model was created, predicting impact from landscape and farming characteristics. Scenarios based on all combinations of farming and landscape for five landscapes representing extreme and middle impacts were created. The meta-models developed from the 10 real landscapes failed to predict impacts for these 25 scenarios. Landscape, farming, and the emergent density of hares all influenced the results of the risk assessment considerably. The study indicates that prediction of a reasonable worst case scenario is difficult from structural, farming or population metrics; rather the emergent properties generated from interactions between landscape, management and ecology are needed. Meta-modelling may also fail to predict impacts, even when restricting inputs to combinations of those used to create the model. Future ERA may therefore need to make use of multiple scenarios representing a wide range of conditions to avoid locally unacceptable risks. This approach could now be feasible Europe wide given the

  18. Altered Innate Immune Responses in Neutrophils from Patients with Well- and Suboptimally Controlled Asthma

    Directory of Open Access Journals (Sweden)

    Francesca S. M. Tang

    2015-01-01

    Full Text Available Background. Respiratory infections are a major cause of asthma exacerbations where neutrophilic inflammation dominates and is associated with steroid refractory asthma. Structural airway cells in asthma differ from nonasthmatics; however it is unknown if neutrophils differ. We investigated neutrophil immune responses in patients who have good (AGood and suboptimal (ASubopt asthma symptom control. Methods. Peripheral blood neutrophils from AGood (ACQ 0.75, n=7, and healthy controls (HC (n=9 were stimulated with bacterial (LPS (1 μg/mL, fMLF (100 nM, and viral (imiquimod (3 μg/mL, R848 (1.5 μg/mL, and poly I:C (10 μg/mL surrogates or live rhinovirus (RV 16 (MOI1. Cell-free supernatant was collected after 1 h for neutrophil elastase (NE and matrix metalloproteinase- (MMP- 9 measurements or after 24 h for CXCL8 release. Results. Constitutive NE was enhanced in AGood neutrophils compared to HC. fMLF stimulated neutrophils from ASubopt but not AGood produced 50% of HC levels. fMLF induced MMP-9 was impaired in ASubopt and AGood compared to HC. fMLF stimulated CXCL8 but not MMP-9 was positively correlated with FEV1 and FEV1/FVC. ASubopt and AGood responded similarly to other stimuli. Conclusions. Circulating neutrophils are different in asthma; however, this is likely to be related to airflow limitation rather than asthma control.

  19. Acute morphine treatment alters cellular immune function in the lungs of healthy rats.

    Science.gov (United States)

    Coussons-Read, M E; Giese, S

    2001-08-01

    Previous work has shown that morphine suppresses the pulmonary immune response to infection and reduces pulmonary inflammation. No published studies have addressed the impact of morphine on lymphocyte function in the lungs without infection. This study addressed this question by assessing the impact of acute morphine treatment on proliferation, cytokine production, and natural killer (NK) cell activity in resident pulmonary lymphocytes from healthy rats. Male Lewis rats received either a single 15 mg/kg morphine sulfate or vehicle injection 1 h prior to sacrifice. Lungs were minced and passed through wire mesh following collagenase digestion. The resulting cell preparations were pooled (2 rats/pool) to yield sufficient cell numbers for the functional assays, and a portion of these suspensions were separated using a density gradient. Crude and purified cell suspensions were used in assays of NK cell activity and mitogen-induced proliferation and cytokine production. Morphine significantly suppressed lymphocyte proliferation and cytokine production in whole cell suspensions, but not in purified cultures. NK activity was enhanced by morphine treatment in purified treated cultures. Studies of nitrate/nitrite levels in crude and purified cultures suggest that macrophage-derived nitric oxide may be a mechanism of the suppression observed in whole cell suspensions following morphine treatment. These data are consistent with previous work showing that morphine suppresses mitogenic responsiveness and NK activity in the spleen and peripheral blood, and may do so through a macrophage-derived nitric oxide mechanism.

  20. Immune-to-brain signaling and substrates of altered behavior during inlfammation

    Institute of Scientific and Technical Information of China (English)

    Jan Pieter Konsman

    2016-01-01

    During the systemic inlfammatory response to acute infection, and when in a safe environment, endothermic mammals typically display reduced activity and food intake, increased sleep, and the adoption of a curled-up position. These changes in behavior, in concert with fever, are adaptive in that they contribute to host survival. The present review addresses the immune-to-brain signaling pathways as well as possible neural substrates mediating reduced exploration and food intake during acute systemic inlfammation. These involve rapid activation of peripheral nerves and glutamatergic brainstem circuits as well as slower IL-1β action in the brain activating limbic and possibly ventral hypothalamic structures. Although mostly adaptive acutely, behavioral changes during inlfammation may also relfect brain dysfunction in severe sepsis-associated delirium or become maladaptive and result in depression due to medical conditions that involve long-term inlfammatory episodes with pain or discomfort. The mechanisms underlying these conditions are presently ill-understood even though neuroinlfammation and neurodegeneration occur during and subsequent to sepsis-associated brain dysfunction, respectively.

  1. Altered immune parameters correlate with infection-related hospitalizations in children with Down syndrome.

    Science.gov (United States)

    Martínez, Elizabeth; Castañeda, Diana; Jaramillo, Sonia; Iregui, Alejandro; Quiñonez, Tatiana; Rodríguez, Jairo A; Herrera, Eddy; Gómez, Ana Milena; Rondón, Martin A; Prieto, Juan Carlos; Angel, Juana; Franco, Manuel A; Mesa, Martha C

    2016-07-01

    In addition to previously studied immunological variables, the relative expression of IFNGR2, IFNAR1, CD18, and CD275 (all encoded in chromosome 21) on circulating leucocytes and multifunctional T cells (evaluated by an intracellular cytokine/proliferation assay) were compared between children with Down syndrome (DS) and healthy controls (HC). As previously reported, numbers of lymphocytes, CD4(+) T cells, Treg cells, B cells, and levels of serum IgM were decreased, and levels of IgG and IgA were increased in children with DS. Moreover, the relative expression of CD18 on T and B cells (previously and not previously reported, respectively) were elevated in DS children (p⩽0.01). Age and numbers of B and Treg cells moderately correlated with retrospectively identified infection related hospitalizations (rho: 0.300-0.460, p⩽0.003). Age and the numbers of Treg cells also correlated with prospectively identified infection related hospitalizations. Future studies are necessary to clarify the role of these parameters in the immunity of DS patients.

  2. Immunomodulatory role of piperine in deltamethrin induced thymic apoptosis and altered immune functions.

    Science.gov (United States)

    Kumar, Anoop; Sasmal, D; Sharma, Neelima

    2015-03-01

    Deltamethrin (DLM), a well-known pyrethroid insecticide, is a potent immunotoxicant. In rodents, it is primarily characterized by marked thymic apoptosis. Mechanism of DLM induced thymic apoptosis in primary murine thymocytes has been recently explored. Oxidative stress and activation of caspase dependent pathways appear to be involved in the DLM induced thymic injury. Thus, for the amelioration of its effect, this study has been designed to first observe the binding affinity of piperine to immune cell receptors and its protective effects on the DLM induced immunotoxicity under in vitro condition. The docking results demonstrated that piperine has good binding affinity towards CD4 and CD8 receptors. In vitro study results have shown that piperine (1, 10 and 50 μg/ml) increased cell viability in a concentration dependent manner. The early activated markers of apoptosis such as enhanced reactive oxygen species (ROS) and caspase-3 activation by DLM was significantly reduced by piperine treatment. GSH depletion induced by DLM has been also restored by piperine treatment. At 18 h, all concentration of piperine (1, 10 and 50 μg/ml) significantly ameliorated the DLM induced apoptosis. Further, DLM induced phenotypic changes were mitigated by the piperine. In addition, piperine also restored the cytokine levels, which were suppressed by DLM treatment. These findings strongly indicate the anti-oxidative, anti-apoptotic and chemo-protective ability of piperine in the DLM induced thymic apoptosis.

  3. Lymphocyte GH-axis hormones in immunity.

    Science.gov (United States)

    Weigent, Douglas A

    2013-01-01

    The production and utilization of common ligands and their receptors by cells of the immune and neuroendocrine systems constitutes a biochemical information circuit between and within the immune and neuroendocrine systems. The sharing of ligands and receptors allows the immune system to serve as the sixth sense notifying the nervous system of the presence of foreign entities. Within this framework, it is also clear that immune cell functions can be altered by neuroendocrine hormones and that cells of the immune system have the ability to produce neuroendocrine hormones. This review summarizes a part of this knowledge with particular emphasis on growth hormone (GH). The past two decades have uncovered a lot of detail about the actions of GH, acting through its receptor, at the molecular and cellular level and its influence on the immune system. The production and action of immune cell-derived GH is less well developed although its important role in immunity is also slowly emerging. Here we discuss the production of GH, GH-releasing hormone (GHRH) and insulin-like growth factor-1 (IGF-1) and their cognate receptors on cells of the immune system and their influence via endocrine/autocrine/paracrine and intracrine pathways on immune function. The intracellular mechanisms of action of immune cell-derived GH are still largely unexplored, and it is anticipated that further work in this particular area will establish an important role for this source of GH in normal physiology and in pathologic situations.

  4. Endocrine System (For Parents)

    Science.gov (United States)

    ... of or replacing specific hormones can treat many endocrine disorders in children and adolescents, some of which include: ... System Your Child's Growth Female Reproductive System Activity: Endocrine System Word! Hormones Diabetes Center Thyroid Disorders Type 2 Diabetes: What Is It? Your Endocrine ...

  5. GATA factors in endocrine neoplasia.

    Science.gov (United States)

    Pihlajoki, Marjut; Färkkilä, Anniina; Soini, Tea; Heikinheimo, Markku; Wilson, David B

    2016-02-01

    GATA transcription factors are structurally-related zinc finger proteins that recognize the consensus DNA sequence WGATAA (the GATA motif), an essential cis-acting element in the promoters and enhancers of many genes. These transcription factors regulate cell fate specification and differentiation in a wide array of tissues. As demonstrated by genetic analyses of mice and humans, GATA factors play pivotal roles in the development, homeostasis, and function of several endocrine organs including the adrenal cortex, ovary, pancreas, parathyroid, pituitary, and testis. Additionally, GATA factors have been shown to be mutated, overexpressed, or underexpressed in a variety of endocrine tumors (e.g., adrenocortical neoplasms, parathyroid tumors, pituitary adenomas, and sex cord stromal tumors). Emerging evidence suggests that GATA factors play a direct role in the initiation, proliferation, or propagation of certain endocrine tumors via modulation of key developmental signaling pathways implicated in oncogenesis, such as the WNT/β-catenin and TGFβ pathways. Altered expression or function of GATA factors can also affect the metabolism, ploidy, and invasiveness of tumor cells. This article provides an overview of the role of GATA factors in endocrine neoplasms. Relevant animal models are highlighted.

  6. ALTERATION OF IMMUNE FUNCTION IN WOMEN COLLEGIATE SOCCER PLAYERS AND COLLEGE STUDENTS

    Directory of Open Access Journals (Sweden)

    Michael R. McGuigan

    2004-12-01

    Full Text Available The purpose of this study was to monitor the stress-induced alteration in concentrations of salivary immunoglobulin (S-IgA and cortisol and the incidence of upper respiratory tract infections (URTI over the course of a 9-week competitive season in college student-athletes and college students. The subjects consisted of 14 NCAA Division III collegiate female soccer athletes (19.8 ¡À 1.0 years, mean ¡À SD and 14 female college students (22.5 ¡À 2.6 years. Salivary samples were collected for 9 weeks during a competitive soccer season. S-IgA and cortisol concentrations were determined by enzyme linked immunosorbent assay (ELISA. A training and performance questionnaire was given to the subjects every week, to record the subjects' session rating of perceived exertion (RPE for all the training, load, monotony and strain, as well as any injuries or illnesses experienced. The between groups ANOVA procedure for repeated measures showed no changes in salivary concentrations of IgA and cortisol. Chi-square analysis showed that during the 9-week training season injury and illness occurred at a higher rate among the soccer players. There was a significant difference at baseline between soccer and control S-IgA levels (p¡Ü0.05. Decreased levels of S-IgA and increases in the indices of training (load, strain and monotony were associated with an increase in the incidence of illness during the 9-week competitive soccer season.

  7. Altered distribution of regulatory lymphocytes by oral administration of soy-extracts exerts a hepatoprotective effect alleviating immune mediated liver injury, non-alcoholic steatohepatitis and insulin resistance

    Science.gov (United States)

    Khoury, Tawfik; Ben Ya'acov, Ami; Shabat, Yehudit; Zolotarovya, Lidya; Snir, Ram; Ilan, Yaron

    2015-01-01

    AIM: To determine the immune-modulatory and the hepatoprotective effects of oral administration of two soy extracts in immune mediated liver injury and non-alcoholic steatohepatitis (NASH). METHODS: Two soy extracts, M1 and OS, were orally administered to mice with concanavalin A (ConA) immune-mediated hepatitis, to high-fat diet (HFD) mice and to methionine and choline reduced diet combined with HFD mice. Animals were followed for disease and immune biomarkers. RESULTS: Oral administration of OS and M1 had an additive effect in alleviating ConA hepatitis manifested by a decrease in alanine aminotransferase and aspartate aminotransferase serum levels. Oral administration of the OS and M1 soy derived fractions, ameliorated liver injury in the high fat diet model of NASH, manifested by a decrease in hepatic triglyceride levels, improvement in liver histology, decreased serum cholesterol and triglycerides and improved insulin resistance. In the methionine and choline reduced diet combined with the high fat diet model, we noted a decrease in hepatic triglycerides and improvement in blood glucose levels and liver histology. The effects were associated with reduced serum tumor necrosis factor alpha and alteration of regulatory T cell distribution. CONCLUSION: Oral administration of the combination of OS and M1 soy derived extracts exerted an adjuvant effect in the gut-immune system, altering the distribution of regulatory T cells, and alleviating immune mediated liver injury, hyperlipidemia and insulin resistance. PMID:26139990

  8. Quantitative Trait Locus and Brain Expression of HLA-DPA1 Offers Evidence of Shared Immune Alterations in Psychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Ling Z. Morgan

    2016-03-01

    Full Text Available Genome-wide association studies of schizophrenia encompassing the major histocompatibility locus (MHC were highly significant following genome-wide correction. This broad region implicates many genes including the MHC complex class II. Within this interval we examined the expression of two MHC II genes (HLA-DPA1 and HLA-DRB1 in brain from individual subjects with schizophrenia (SZ, bipolar disorder (BD, major depressive disorder (MDD, and controls by differential gene expression methods. A third MHC II mRNA, CD74, was studied outside of the MHC II locus, as it interacts within the same immune complex. Exon microarrays were performed in anterior cingulate cortex (ACC in BD compared to controls, and both HLA-DPA1 and CD74 were decreased in expression in BD. The expression of HLA-DPA1 and CD74 were both reduced in hippocampus, amygdala, and dorsolateral prefrontal cortex regions in SZ and BD compared to controls by specific qPCR assay. We found several novel HLA-DPA1 mRNA variants spanning HLA-DPA1 exons 2-3-4 as suggested by exon microarrays. The intronic rs9277341 SNP was a significant cis expression quantitative trait locus (eQTL that was associated with the total expression of HLA-DPA1 in five brain regions. A biomarker study of MHC II mRNAs was conducted in SZ, BD, MDD, and control lymphoblastic cell lines (LCL by qPCR assay of 87 subjects. There was significantly decreased expression of HLA-DPA1 and CD74 in BD, and trends for reductions in SZ in LCLs. The discovery of multiple splicing variants in brain for HLA-DPA1 is important as the HLA-DPA1 gene is highly conserved, there are no reported splicing variants, and the functions in brain are unknown. Future work on the function and localization of MHC Class II proteins in brain will help to understand the role of alterations in neuropsychiatric disorders. The HLA-DPA1 eQTL is located within a large linkage disequilibrium block that has an irrefutable association with schizophrenia. Future

  9. Dietary Inorganic Chromium in Summer-Exposed Buffalo Calves (Bubalus bubalis): Effects on Biomarkers of Heat Stress, Immune Status, and Endocrine Variables.

    Science.gov (United States)

    Kumar, Muneendra; Kaur, Harjit; Deka, Rijusmita Sarma; Mani, Veena; Tyagi, Amrish Kumar; Chandra, Gulab

    2015-09-01

    The aim of this study was to evaluate the effect of different levels of inorganic chromium (Cr) on heat stress, immune response, and hormonal variation in Murrah buffalo calves during the summer season. Twenty-four growing Murrah buffalo calves were randomly allocated into four treatments for a period of 120 days. Feeding regimen was same in all the groups, except the buffalo calves in treatment groups were additionally supplemented with 0.5, 1.0, and 1.5 mg of inorganic Cr/kg dry matter. Buffalo calves were monitored daily for physiological variables and dry matter intake (DMI) and fortnightly for body weight change. Blood samples were collected at day 0, 15, 30, 45, 60, 75, 90, 105, and 120 and analyzed for heat shock protein 70 (Hsp 70), lymphocyte proliferation, neutrophil phagocytic activity, immunoglobulin, ferric reducing antioxidant power (FRAP) assay, insulin, cortisol and thyroid hormones, and Cr levels. Dietary Cr supplementation did not have any effect on DMI, growth performance, and physiological variables. However, lymphocyte proliferation, neutrophil phagocytic activity, plasma immunoglobulin, FRAP value, and plasma Cr concentration increased significantly (P calves did not show any effect on plasma levels of thyroid hormone, while concentration of insulin, cortisol, and Hsp 70 decreased (P calves reared under high ambient temperature improved heat tolerance, immune status without affecting nutrient intake, and growth performance.

  10. [Postpartum endocrine syndrome].

    Science.gov (United States)

    Ducarme, G; Châtel, P; Luton, D

    2008-05-01

    Postpartum endocrine syndromes occur in the year after delivery. They are due to immunologic and vascular modifications during pregnancy. The Sheehan syndrome is the first described postpartum endocrine syndrome and consists on a hypophyse necrosis in relation with a hypovolemic shock during delivery. The immunologic consequences of the pregnancy are the most frequent, sometimes discrete and transitory. The physiological evolution of the endocrine glands during pregnancy and the most frequent post-partum endocrine syndromes are discussed: postpartum lymphocytic hypophysitis, thyroiditis and Sheehan' syndrome.

  11. Endocrine system: part 1.

    Science.gov (United States)

    Johnstone, Carolyn; Hendry, Charles; Farley, Alistair; McLafferty, Ella

    2014-05-27

    This article, which forms part of the life sciences series and is the first of two articles on the endocrine system, examines the structure and function of the organs of the endocrine system. It is important that nurses understand how the endocrine system works and its role in maintaining health. The role of the endocrine system and the types, actions and control of hormones are explored. The gross structure of the pituitary and thyroid glands are described along with relevant physiology. Several disorders of the thyroid gland are outlined. The second article examines growth hormone, the pancreas and adrenal glands.

  12. CONTAMINANT-ASSOCIATED ENDOCRINE DISRUPTION IN REPTILES.

    Science.gov (United States)

    The data presented suggest that contaminants can alter the endocrine and reproductive system of reptiles by mimicking hormones and by various mechanisms other than direct hormonal mimicry. However, these data indicate, as do many other studies using various vertebrates, that a fo...

  13. Using a maternal immune stimulation model of schizophrenia to study behavioral and neurobiological alterations over the developmental course.

    Science.gov (United States)

    Hadar, Ravit; Soto-Montenegro, M Luisa; Götz, Thomas; Wieske, Franziska; Sohr, Reinhard; Desco, Manuel; Hamani, Clement; Weiner, Ina; Pascau, Javier; Winter, Christine

    2015-08-01

    A growing body of evidence sheds light on the neurodevelopmental nature of schizophrenia with symptoms typically emerging during late adolescence or young adulthood. We compared the pre-symptomatic adolescence period with the full symptomatic period of adulthood at the behavioral and neurobiological level in the poly I:C maternal immune stimulation (MIS) rat model of schizophrenia. We found that in MIS-rats impaired sensorimotor gating, as reflected in disrupted prepusle inhibition (PPI), emerged post-pubertally, with behavioral deficits being only recorded in adulthood but not during adolescence. Using post mortem HPLC we found that MIS-rats show distinct dopamine and serotonin changes in the medial prefrontal cortex (mPFC), nucleus accumbens (Nacc), caudate putamen, globus pallidus, and hippocampus. Further, FDG-PET has shown that these animals had lower glucose uptake in the ventral hippocampus and PFC and a higher metabolism in the amygdala and Nacc when compared to controls. Changes in neurotransmission and metabolic activity varied across brain structures with respect to first appearance and further development. In the mPFC and Hipp, MIS-rats showed abnormal neurochemical and metabolic activity prior to and with the development of behavioral deficits in both adolescent and adult states, reflecting an early impairment of these regions. In contrast, biochemical alteration in the Nacc and globus pallidus developed as a matter of age. Our findings suggest that MIS-induced neurochemical and metabolic changes are neurodevelopmental in nature and either progressive or non-progressive and that the behavioral deficits manifest as these abnormalities increase.

  14. Evaluation of the systemic innate immune response and metabolic alterations of nonlactating cows with diet-induced subacute ruminal acidosis.

    Science.gov (United States)

    Rodríguez-Lecompte, J C; Kroeker, A D; Ceballos-Márquez, A; Li, S; Plaizier, J C; Gomez, D E

    2014-12-01

    Subacute ruminal acidosis (SARA) increases lipopolysaccharide endotoxin in the rumen, which might translocate into the systemic circulation, triggering a cascade of clinical and immunological alterations. The objective of this study was to characterize the clinical immune and metabolic responses to ruminal-derived lipopolysaccharide in nonlactating cows induced with SARA using 2 challenges, a grain-based SARA challenge (GBSC) or an alfalfa-pellet SARA challenge (APSC). Six dry, nonlactating Holstein cows were used in a 3 × 3 Latin square arrangement of treatments with 4-wk experimental cycles. All cows received the control diet containing 70% forage and 30% mixed concentrates (dry matter basis) for 3 wk. In wk 4, cows received a control diet, GBSC (38% wheat-barley pellets, 32% other mixed concentrate, and 30% forages), or APSC (45% mixed concentrate, 32% alfalfa pellets, and 23% other forages). Total plasma proteins and immunology-related proteins, acute phase proteins, blood cells, serum chemistry, mRNA gene expression of peripheral blood cell surface markers, and selected proinflammatory cytokines were evaluated. Ruminal pH was lower in both groups with induced SARA compared with a control group. Ruminal endotoxins were higher in GBSC; however, plasma endotoxin was not detected in any study group. No significant differences in feed intake, rectal temperature, white blood cell counts, or differentials were found between control and SARA challenge groups; changes in glucose, urea, Ca, and Mg were observed in SARA groups. Total plasma proteins were lower in both SARA groups, and acute phase proteins were higher in GBSC. The expression of CD14, MD2, and TLR4 mRNA in peripheral blood leukocytes was not affected by SARA induction. The induction of SARA as a result of GBSC or APSC challenge was successful; however, LPS was not detected in plasma. Changes in clinical, metabolic, and inflammatory responses were not observed in the SARA-challenged cows, suggesting that

  15. Sleep and the endocrine system.

    Science.gov (United States)

    Morgan, Dionne; Tsai, Sheila C

    2015-07-01

    In this article, the effect of sleep and sleep disorders on endocrine function and the influence of endocrine abnormalities on sleep are discussed. Sleep disruption and its associated endocrine consequences in the critically ill patient are also reviewed.

  16. Alterations of Cell-Mediated Immunity in Patients with Type 2 Diabetes Mellitus%2型糖尿病细胞免疫功能的变化

    Institute of Scientific and Technical Information of China (English)

    姚远; 郑佳; 杨敏

    2002-01-01

    Objective To investigate the alterations of cell- mediated immunity in patients with type 2 diabetes mellitus. Methods The level of CD3 CD4 CD8 in 30 normal subjects (NC group) and47 type 2 diabetes mellitus was measured by flow cytometry. Result Type - 2 diabetics had lower levels of CD4 and higher levels of CD8 than the non - diabetic control,especially during the 5 ~ 15 years of diabetes courses. The ratios of CD4 to CD8 was decreased. The correlation analysis showed that the level of CD3 CD4 CD8 and CD4/CD8 was not positively correlated with c - peptide. Conclusion Type - 2 diabeties have alterations of cell- mediated immunity.

  17. The endocrine quiz

    Directory of Open Access Journals (Sweden)

    Sanjay Kalra

    2014-01-01

    Full Text Available With the recent explosion in endocrine conferences, audience fatigue has set in and conference planners are now looking at newer pedagogic methods to revive the interest of audiences in these conferences. The endocrine quiz has finally come of vogue and is increasingly becoming one of the most popular attractions of any ranking endocrine conference. The endocrine quiz has a large and varied palette and draws questions from religious scriptures, history, literature, current affairs, sports, movies and basic and paramedical sciences. The more we delve into the quizzable aspects of endocrinology, the more we realize that endocrinology is ubiquitous and there is no sphere in human life untouched by endocrine disorders. Be it epic characters like Kumbhakarna and Bheema, fiction characters like Tintin or Orphan Annie, sportspersons like Gail Devers or heads of state like George Bush Sr and Boris Yeltsin, all have contributed to the melting pot of endocrine quizzing. Adding further grist to the endocrine mill are the Nobel prizes, with their attendant anecdotes and controversies. Step into this world of endocrine quizzing to have an up close and personal look at the diverse facets of this subject.

  18. From immunotoxicity to carcinogenicity: the effects of carbamate pesticides on the immune system.

    Science.gov (United States)

    Dhouib, Ines; Jallouli, Manel; Annabi, Alya; Marzouki, Soumaya; Gharbi, Najoua; Elfazaa, Saloua; Lasram, Mohamed Montassar

    2016-05-01

    The immune system can be the target of many chemicals, with potentially severe adverse effects on the host's health. In the literature, carbamate (CM) pesticides have been implicated in the increasing prevalence of diseases associated with alterations of the immune response, such as hypersensitivity reactions, some autoimmune diseases and cancers. CMs may initiate, facilitate, or exacerbate pathological immune processes, resulting in immunotoxicity by induction of mutations in genes coding for immunoregulatory factors and modifying immune tolerance. In the present study, direct immunotoxicity, endocrine disruption and inhibition of esterases activities have been introduced as the main mechanisms of CMs-induced immune dysregulation. Moreover, the evidence on the relationship between CM pesticide exposure, dysregulation of the immune system and predisposition to different types of cancers, allergies, autoimmune and infectious diseases is criticized. In addition, in this review, we will discuss the relationship between immunotoxicity and cancer, and the advances made toward understanding the basis of cancer immune evasion.

  19. [Obesity and the immune system].

    Science.gov (United States)

    Muñoz, M; Mazure, R A; Culebras, J M

    2004-01-01

    With an increased prevalence of obesity in developed countries, associated chronic diseases rise in a parallel way. Morbidity secondary to overweight and obesity include type 2 diabetes, dislipemia, hypertension, heart disease, cerebrovascular disease, cholelithiasis, osteoarthritis, heart insufficiency, sleep apnoea, menstrual changes, sterility and psychological alterations. There is also a greater susceptibility to suffer some types of cancer, infections, greater risk of bacteremia and a prolonged time of wound healing after surgical operations. All these factors indicate that obesity exerts negative effects upon the immune system. Immune changes found in obesity and their possible interrelations are described in this article. Changes produced during obesity affect both humoral and cellular immunity. It is known that adipose tissue, together with its role as energy reserve in form of triglycerides, has important endocrine functions, producing several hormones and other signal molecules. Immune response can be deeply affected by obesity, playing leptin an important role. Properties of leptin, alterations of leptin levels in different situations and its changes with different medical and surgical therapies for obesity are described in this article.

  20. Epigenetic regulation of non-lymphoid cells by Bisphenol-A, a model endocrine disrupter: Potential Implications for Immunoregulation

    Directory of Open Access Journals (Sweden)

    Deena eKhan

    2015-06-01

    Full Text Available Endocrine disrupting chemicals (EDC abound in the environment since many compounds are released from chemical, agricultural, pharmaceutical and consumer product industries. Many of the EDCs such as Bisphenol A (BPA have estrogenic activity or interfere with endogenous sex hormones. Experimental studies have reported a positive correlation of BPA with reproductive toxicity, altered growth and immune dysregulation. Although the precise relevance of these studies to the environmental levels is unclear, nevertheless, their potential health implications remain a concern. One possible mechanism by which BPA can alter genes is by regulating epigenetics, including microRNA, alteration of methylation and histone acetylation. There is now wealth of information on BPA effects on non-lymphoid cells and by comparison, paucity of data on effects of BPA on the immune system. In this mini review, we will highlight BPA regulation of estrogen receptor-mediated immune cell functions and in different inflammatory conditions. In addition, BPA-mediated epigenetic regulation of non-lymphoid cells is emphasized. We recognize that most of these studies are on non-lymphoid cells, and given that BPA also affects the immune system, it is plausible that BPA could have similar epigenetic regulation in immune cells. It is hoped that this review will stimulate studies in this area to ascertain whether or not BPA epigenetically regulates the cells of the immune system.

  1. Epigenetic Regulation of Non-Lymphoid Cells by Bisphenol A, a Model Endocrine Disrupter: Potential Implications for Immunoregulation.

    Science.gov (United States)

    Khan, Deena; Ahmed, S Ansar

    2015-01-01

    Endocrine disrupting chemicals (EDC) abound in the environment since many compounds are released from chemical, agricultural, pharmaceutical, and consumer product industries. Many of the EDCs such as Bisphenol A (BPA) have estrogenic activity or interfere with endogenous sex hormones. Experimental studies have reported a positive correlation of BPA with reproductive toxicity, altered growth, and immune dysregulation. Although the precise relevance of these studies to the environmental levels is unclear, nevertheless, their potential health implications remain a concern. One possible mechanism by which BPA can alter genes is by regulating epigenetics, including microRNA, alteration of methylation, and histone acetylation. There is now wealth of information on BPA effects on non-lymphoid cells and by comparison, paucity of data on effects of BPA on the immune system. In this mini review, we will highlight the BPA regulation of estrogen receptor-mediated immune cell functions and in different inflammatory conditions. In addition, BPA-mediated epigenetic regulation of non-lymphoid cells is emphasized. We recognize that most of these studies are on non-lymphoid cells, and given that BPA also affects the immune system, it is plausible that BPA could have similar epigenetic regulation in immune cells. It is hoped that this review will stimulate studies in this area to ascertain whether or not BPA epigenetically regulates the cells of the immune system.

  2. Endocrine-disrupting chemicals use distinct mechanisms of action to modulate endocrine system function.

    Science.gov (United States)

    Henley, Derek V; Korach, Kenneth S

    2006-06-01

    The term endocrine-disrupting chemicals is used to define a structurally diverse class of synthetic and natural compounds that possess the ability to alter various components of the endocrine system and potentially induce adverse health effects in exposed individuals and populations. Research on these compounds has revealed that they use a variety of both nuclear receptor-mediated and non-receptor-mediated mechanisms to modulate different components of the endocrine system. This review will describe in vitro and in vivo studies that highlight the spectrum of unique mechanisms of action and biological effects of four endocrine-disrupting chemicals--diethylstilbestrol, genistein, di(n-butyl)phthalate, and methoxyacetic acid--to illustrate the diverse and complex nature of this class of compounds.

  3. Models of stress in nonhuman primates and their relevance for human psychopathology and endocrine dysfunction.

    Science.gov (United States)

    Meyer, Jerrold S; Hamel, Amanda F

    2014-01-01

    Stressful life events have been linked to the onset of severe psychopathology and endocrine dysfunction in many patients. Moreover, vulnerability to the later development of such disorders can be increased by stress or adversity during development (e.g., childhood neglect, abuse, or trauma). This review discusses the methodological features and results of various models of stress in nonhuman primates in the context of their potential relevance for human psychopathology and endocrine dysfunction, particularly mood disorders and dysregulation of the hypothalamic-pituitary-adrenocortical (HPA) system. Such models have typically examined the effects of stress on the animals' behavior, endocrine function (primarily the HPA and hypothalamic-pituitary-gonadal systems), and, in some cases, immune status. Manipulations such as relocation and/or removal of an animal from its current social group or, alternatively, formation of a new social group can have adverse effects on all of these outcome measures that may be either transient or more persistent depending on the species, sex, and other experimental conditions. Social primates may also experience significant stress associated with their rank in the group's dominance hierarchy. Finally, stress during prenatal development or during the early postnatal period may have long-lasting neurobiological and endocrine effects that manifest in an altered ability to cope behaviorally and physiologically with later challenges. Whereas early exposure to severe stress usually results in deficient coping abilities, certain kinds of milder stressors can promote subsequent resilience in the animal. We conclude that studies of stress in nonhuman primates can model many features of stress exposure in human populations and that such studies can play a valuable role in helping to elucidate the mechanisms underlying the role of stress in human psychopathology and endocrine dysfunction.

  4. Endocrine mechanisms of intrauterine programming.

    Science.gov (United States)

    Fowden, A L; Forhead, A J

    2004-05-01

    Epidemiological findings and experimental studies in animals have shown that individual tissues and whole organ systems can be programmed in utero during critical periods of development with adverse consequences for their function in later life. Detailed morphometric analyses of the data have shown that certain patterns of intrauterine growth, particularly growth retardation, can be related to specific postnatal outcomes. Since hormones regulate fetal growth and the development of individual fetal tissues, they have a central role in intrauterine programming. Hormones such as insulin, insulin-like growth factors, thyroxine and the glucocorticoids act as nutritional and maturational signals and adapt fetal development to prevailing intrauterine conditions, thereby maximizing the chances of survival both in utero and at birth. However, these adaptations may have long-term sequelae. Of the hormones known to control fetal development, it is the glucocorticoids that are most likely to cause tissue programming in utero. They are growth inhibitory and affect the development of all the tissues and organ systems most at risk of postnatal pathophysiology when fetal growth is impaired. Their concentrations in utero are also elevated by all the nutritional and other challenges known to have programming effects. Glucocorticoids act at cellular and molecular levels to alter cell function by changing the expression of receptors, enzymes, ion channels and transporters. They also alter various growth factors, cytoarchitectural proteins, binding proteins and components of the intracellular signalling pathways. Glucocorticoids act, directly, on genes and, indirectly, through changes in the bioavailability of other hormones. These glucocorticoid-induced endocrine changes may be transient or persist into postnatal life with consequences for tissue growth and development both before and after birth. In the long term, prenatal glucocorticoid exposure can permanently reset endocrine

  5. Selenium and endocrine systems.

    Science.gov (United States)

    Beckett, Geoffrey J; Arthur, John R

    2005-03-01

    The trace element selenium (Se) is capable of exerting multiple actions on endocrine systems by modifying the expression of at least 30 selenoproteins, many of which have clearly defined functions. Well-characterized selenoenzymes are the families of glutathione peroxidases (GPXs), thioredoxin reductases (TRs) and iodothyronine deiodinases (Ds). These selenoenzymes are capable of modifying cell function by acting as antioxidants and modifying redox status and thyroid hormone metabolism. Se is also involved in cell growth, apoptosis and modifying the action of cell signalling systems and transcription factors. During thyroid hormone synthesis GPX1, GPX3 and TR1 are up-regulated, providing the thyrocytes with considerable protection from peroxidative damage. Thyroidal D1 in rats and both D1 and D2 in humans are also up-regulated to increase the production of bioactive 3,5,3'-tri-iodothyronine (T3). In the basal state, GPX3 is secreted into the follicular lumen where it may down-regulate thyroid hormone synthesis by decreasing hydrogen peroxide concentrations. The deiodinases are present in most tissues and provide a mechanism whereby individual tissues may control their exposure to T3. Se is also able to modify the immune response in patients with autoimmune thyroiditis. Low sperm production and poor sperm quality are consistent features of Se-deficient animals. The pivotal link between Se, sperm quality and male fertility is GPX4 since the enzyme is essential to allow the production of the correct architecture of the midpiece of spermatozoa. Se also has insulin-mimetic properties, an effect that is probably brought about by stimulating the tyrosine kinases involved in the insulin signalling cascade. Furthermore, in the diabetic rat, Se not only restores glycaemic control but it also prevents or alleviates the adverse effects that diabetes has on cardiac, renal and platelet function.

  6. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function.

    OpenAIRE

    2007-01-01

    International audience; Over the past few decades, corticotropin-releasing factor (CRF) signaling pathways have been shown to be the main coordinators of the endocrine, behavioral, and immune responses to stress. Emerging evidence also links the activation of CRF receptors type 1 and type 2 with stress-related alterations of gut motor function. Here, we review the role of CRF receptors in both the brain and the gut as part of key mechanisms through which various stressors impact propulsive ac...

  7. Efeito do treinamento físico como modulador positivo nas alterações no eixo neuroimunoendócrino em indivíduos com insuficiência cardíaca crônica: possível atuação do fator de necrose tumoral-alfa Efecto del entrenamiento físico como modulador positivo en las alteraciones en el eje neuroinmunoendócrino en indivíduos con insuficiência cardíaca crônica: posible actuación como factor de necrosis tumoral-alfa Effect of physical training as positive modulator on the alterations in the neuro-immune-endocrine axis in patients with chronic heart failure: possible role of the tumoral necrosis factor-alpha

    Directory of Open Access Journals (Sweden)

    Luís Fernando Bicudo Pereira Costa Rosa

    2005-08-01

    responsble por la progresión en el deterioro clínico en la ICC. En este cuadro, la principal citoquina envuelta en el cuadro fisiopatológico de la ICC es el factor de necrosis tumoral-alfa (TNF-alfa. Así, el TF puede actuar en el cuadro de ICC de dos maneras, mejorando el desempeño durante el ejercicio físico, bien como atenuando el cuadro de deterioro de elevada concentración de citoquinas pro-inflamatórias en el sistema cardiovascular, pudiendo representar una importante opción inmunomodulatoria, y de esta forma, permitir una mejora significativa en el cuadro clínico del paciente.Chronic physical exercise or physical training (PT has been widely used in the last years with therapeutic and preventive purposes in a series of pathophysiological conditions, including cardiovascular disease. Besides the cardiovascular benefits, PT seems capable to modulate in pathological conditions, at the presence of an abnormal inflammatory response, including over expression of proinflammatory cytokines through a neuro-immune-endocrine interaction. Nowadays chronic heart failure (CHF is reviewed as the consequence of an interplay of hemodynamic, neurohormonal, immunological and endocrine mechanisms. This abnormal inflammatory response, including the over expression of proinflammatory cytokines may be proposed as responsible for the progression and clinical deterioration in CHF. Tumor necrosis factor-alpha (TNF-alpha is the main proinflammatory cytokines involved in the inflammatory cascade implicated in the pathophysiological of CHF. PT may improve exercise performance by modifying the inflammatory status, as well as by allowing reversing the inflammation-induced harmful effects on the cardiovascular system, and that PT may represent an important immunomodulatory option that may be possible to intervene in the progression of the disease.

  8. 520-d Isolation and confinement simulating a flight to Mars reveals heightened immune responses and alterations of leukocyte phenotype.

    Science.gov (United States)

    Yi, B; Rykova, M; Feuerecker, M; Jäger, B; Ladinig, C; Basner, M; Hörl, M; Matzel, S; Kaufmann, I; Strewe, C; Nichiporuk, I; Vassilieva, G; Rinas, K; Baatout, S; Schelling, G; Thiel, M; Dinges, D F; Morukov, B; Choukèr, A

    2014-08-01

    During interplanetary exploration, chronic stress caused by long term isolation and confinement in the spacecraft is one of the major concerns of physical and psychological health of space travelers. And for human on Earth, more and more people live in an isolated condition, which has become a common social problem in modern western society. Collective evidences have indicated prolonged chronic stress could bring big influence to human immune function, which may lead to a variety of health problems. However, to what extent long-term isolation can affect the immune system still remains largely unknow. A simulated 520-d Mars mission provided an extraordinary chance to study the effect of prolonged isolation. Six healthy males participated in this mission and their active neuroendocrine and immune conditions were studied with saliva and blood samples from all participants on chosen time points during the isolation period. As a typical neuroendocrine parameter, stress hormone cortisol was measured in the morning saliva samples. Immune phenotype changes were monitored through peripheral leukocyte phenotype analysis. Using an ex vivo viral infection simulation assay we assessed the immune response changes characterized by the ability to produce representative endogenous pro-inflammatory cytokines. The results of this study revealed elevated cortisol levels, increased lymphocyte amount and heightened immune responses, suggesting that prolonged isolation acting as chronic stressors are able to trigger leukocyte phenotype changes and poorly controlled immune responses.

  9. Mycobacterium tuberculosis co-operonic PE32/PPE65 proteins alter host immune responses by hampering Th1 response

    Directory of Open Access Journals (Sweden)

    Mohd eKhubaib

    2016-05-01

    Full Text Available PE/PPE genes, present in cluster with ESAT-6 like genes, are suspected to have a role in antigenic variation and virulence of Mycobacterium tuberculosis. Their roles in immune evasion and immune modulation of host are also well documented. We present evidence that PE32/PPE65 present within the RD8 region are co-operonic, co-transcribed and co-translated, and play role in modulating host immune responses. Experiments with macrophage cell lines revealed that this protein complex suppresses pro-inflammatory cytokines such as TNF-α and IL-6 whereas also inducing high expression of anti-inflammatory IL-10. Immunization of mice with these recombinant proteins dampens an effective Th1 response as evident from reduced frequency of IFN-g and IL-2 producing CD4+ and CD8+ T cells. IgG sub-typing from serum of immunized mice revealed high levels of IgG1 when compared with IgG2a and IgG2b. Further IgG1/IgG2a ratio clearly demonstrated that the protein complex manipulates the host immune response favourable to the pathogen. Our results demonstrate that the co-transcribed and co-translated PE32 and PPE65 antigens are involved specifically in modulating anti-mycobacterial host immune response by hampering Th1 response.

  10. Adaptive Immunity in Ankylosing Spondylitis: Phenotype and Functional Alterations of T-Cells before and during Infliximab Therapy

    Directory of Open Access Journals (Sweden)

    Balázs Szalay

    2012-01-01

    Flow cytometry was used to determine T-cell subsets in peripheral blood and their intracellular signaling during activation. The prevalence of Th2 and Th17 cells responsible for the regulation of adaptive immunity was higher in AS than in 9 healthy controls. Although IFX therapy improved patients' condition, immune phenotype did not normalize. Cytoplasmic and mitochondrial calcium responses of CD4+ and CD8+ cells to a specific activation were delayed, while NO generation was increased in AS. NO generation normalized sooner upon IFX than calcium response. These results suggest an abnormal immune phenotype with functional disturbances of CD4+ and CD8+ cells in AS.

  11. Vitamin d deficiency in a multiethnic healthy control cohort and altered immune response in vitamin D deficient European-American healthy controls.

    Directory of Open Access Journals (Sweden)

    Lauren L Ritterhouse

    Full Text Available In recent years, vitamin D has been shown to possess a wide range of immunomodulatory effects. Although there is extensive amount of research on vitamin D, we lack a comprehensive understanding of the prevalence of vitamin D deficiency or the mechanism by which vitamin D regulates the human immune system. This study examined the prevalence and correlates of vitamin D deficiency and the relationship between vitamin D and the immune system in healthy individuals.Healthy individuals (n = 774 comprised of European-Americans (EA, n = 470, African-Americans (AA, n = 125, and Native Americans (NA, n = 179 were screened for 25-hydroxyvitamin D [25(OHD] levels by ELISA. To identify the most noticeable effects of vitamin D on the immune system, 20 EA individuals with severely deficient (24.8 ng/mL vitamin D levels were matched and selected for further analysis. Serum cytokine level measurement, immune cell phenotyping, and phosphoflow cytometry were performed.Vitamin D sufficiency was observed in 37.5% of the study cohort. By multivariate analysis, AA, NA, and females with a high body mass index (BMI, >30 demonstrate higher rates of vitamin D deficiency (p<0.05. Individuals with vitamin D deficiency had significantly higher levels of serum GM-CSF (p = 0.04, decreased circulating activated CD4+ (p = 0.04 and CD8+ T (p = 0.04 cell frequencies than individuals with sufficient vitamin D levels.A large portion of healthy individuals have vitamin D deficiency. These individuals have altered T and B cell responses, indicating that the absence of sufficient vitamin D levels could result in undesirable cellular and molecular alterations ultimately contributing to immune dysregulation.

  12. Research on Endocrine Disruptors

    Science.gov (United States)

    EPA researchers are developing innovative approaches, tools, models and data to improve the understanding of potential risks to human health and wildlife from chemicals that could disrupt the endocrine system.

  13. Environmental endocrine disruptors: A proposed classification scheme

    Energy Technology Data Exchange (ETDEWEB)

    Fur, P.L. de; Roberts, J. [Environmental Defense Fund, Washington, DC (United States)

    1995-12-31

    A number of chemicals known to act on animal systems through the endocrine system have been termed environmental endocrine disruptors. This group includes some of the PCBs and TCDDs, as well as lead, mercury and a large number of pesticides. The common feature is that the chemicals interact with endogenous endocrine systems at the cellular and/or molecular level to alter normal processes that are controlled or regulated by hormones. Although the existence of artificial or environmental estrogens (e.g. chlordecone and DES) has been known for some time, recent data indicate that this phenomenon is widespread. Indeed, anti-androgens have been held responsible for reproductive dysfunction in alligator populations in Florida. But the significance of endocrine disruption was recognized by pesticide manufacturers when insect growth regulators were developed to interfere with hormonal control of growth. Controlling, regulating or managing these chemicals depends in no small part on the ability to identify, screen or otherwise know that a chemical is an endocrine disrupter. Two possible classifications schemes are: using the effects caused in an animal, or animals as an exposure indicator; and using a known screen for the point of contact with the animal. The former would require extensive knowledge of cause and effect relationships in dozens of animal groups; the latter would require a screening tool comparable to an estrogen binding assay. The authors present a possible classification based on chemicals known to disrupt estrogenic, androgenic and ecdysone regulated hormonal systems.

  14. Endocrine system: part 2.

    Science.gov (United States)

    Hendry, Charles; Farley, Alistair; McLafferty, Ella; Johnstone, Carolyn

    2014-06-01

    This article, the last in the life sciences series, is the second of two articles on the endocrine system. It discusses human growth hormone, the pancreas and adrenal glands. The relationships between hormones and their unique functions are also explored. It is important that nurses understand how the endocrine system works and its role in maintaining health to provide effective care to patients. Several disorders caused by human growth hormone or that affect the pancreas and adrenal glands are examined.

  15. HIV-1 infected and immune competent mononuclear phagocytes induce quantitative alterations in neuronal dendritic arbor: relevance for HIV-1-associated dementia.

    Science.gov (United States)

    Zheng, J; Thylin, M R; Cotter, R L; Lopez, A L; Ghorpade, A; Persidsky, Y; Xiong, H; Leisman, G B; Che, M H; Gendelman, H E

    2001-10-01

    Neuronal loss, alterations in dendritic arbor, and decreased synaptic density, in infected brain tissue, are neuropathological signatures of HIV-1-associated dementia (HAD). Brain mononuclear phagocyte (MP) (macrophage and microglia) secretory products can effect neuronal compromise, although the underlying mechanism(s) remain incompletely defined. To these ends, we quantitatively assessed the effects of virus-infected and/or immune activated MP secretory products on multiple aspects of neuronal morphology. Rat cortical and hippocampal neurons were exposed to secretory products from HIV-1-infected and lipopolysaccharide (LPS)-activated human monocyte-derived macrophage (MDM). Our assays for alterations in neuronal dendritic arbor and cell loss included the quantification of neurofilament (NF), neuron-specific enolase (NSE), and MAP-2 by ELISA and cellular morphology. MDM conditioned media (MCM) enhanced neuronal survival. HIV-1 infection or activation by LPS had modest neurotoxic effects. In contrast, the combination of HIV-1 infection and activation of MDM produced significant neurotoxicity. Such MDM products altered dendritic arbor, decreased synaptic density, and increased LDH release. Comparable neurotrophic/toxic responses were observed when neurons were exposed to MCM collected from 12 separate human donors. Similar responses were observed with MCM from human fetal microglia, further supporting the role of HIV-1-infected and immune-activated brain MP in the overall neurotoxic responses. This work provides quantitative measures of neuronal damage by which virus infected and activated MP can elicit neuronal injury in HAD.

  16. Diet-induced obesity alters immune cell infiltration and expression of inflammatory cytokine genes in mouse ovarian and peri-ovarian adipose depot tissues.

    Science.gov (United States)

    Nteeba, J; Ortinau, L C; Perfield, J W; Keating, A F

    2013-11-01

    Dysregulation of immune cells and/or altered inflammatory signaling have been implicated with reproductive dysfunction. Physiological changes leading to perturbations in the profile of immune cells and/or pro-inflammatory cytokines in or around female reproductive tissue could potentially have profound effects on ovarian function. Obesity is associated with chronic low-grade inflammation due, in part, to increased immune cell infiltration and inflammation in visceral adipose depots. This study investigated the impact of diet-induced obesity on immune cell infiltration and inflammation in peri-ovarian adipose tissue and mRNA expression of key inflammatory markers and microRNAs (miRs) in ovarian tissue. Six-week-old female C57Bl/6J mice were fed a standard chow or high-fat diet (HFD; 60% kcal fat) for approximately 7 months, at which time peri-ovarian adipose tissue and ovarian tissues were collected. Histological analysis of peri-ovarian adipose tissue from obese mice revealed increased (P adipose tissue, along with increases (P tissue (P adipose depot, potentially negatively affecting ovarian function.

  17. Altered Polarization, Morphology, and Impaired Innate Immunity Germane to Resident Peritoneal Macrophages in Mice with Long-Term Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Hui-Fang Liu

    2012-01-01

    Full Text Available Type 2 diabetes (T2D is associated with perturbed innate immunity. Macrophages, bridging innate immunity and metabolic disturbances, play important roles in controlling immune homeostasis. However, the effect of long-term diabetic milieu (DM on the functions and phenotypes of macrophages is still not clear. In this study, we used resident peritoneal macrophages (RPMs from 5-month-old db/db mice to investigate the changes of macrophages. It was found that RPMs in db/db mice significantly reduced phagocytosis and adhesion capacity. After standardization with body weight, the number of F4/80+ RPMs markedly reduced in db/db mice, and, furthermore, the macrophages skewed to M2-polarizated macrophages. The results of morphology found that the RPMs shape of db/db mice was nearly round, but the RPMs shape of control mice was spindle-shaped and irregular. In this study, we found the cell numbers, morphology, and innate immunity functions of RPMs in 5-month-old type 2 diabetic mice (db/db mice obtained by abdominal cavity lavage were significantly altered. Importantly, we also found the remarkably increased M2-RPMs in diabetic mice for the first time.

  18. Endocrine disrupting chemicals as potential risk factor for estrogen-dependent cancers.

    Science.gov (United States)

    Rutkowska, Aleksandra Z; Szybiak, Aleksandra; Serkies, Krystyna; Rachoń, Dominik

    2016-08-09

    Civilization, industrialization, and urbanization create an environment where humans are continuously exposed to endocrine disrupting chemicals (EDCs). Some of breast cancers and endometrial cancer, which are the most common female malignant neoplasms, are estrogen-dependent tumors. Prolonged exposure to estrogens or substances with estrogenic properties may be a risk factor for their development. This paper aimed to discuss the potential adverse effect of EDCs on human health, including the role of EDCs in hormone-dependent carcinogenesis. A review of literature regarding the sources of environmental exposure to EDCs and molecular mechanisms of their action was performed. We analyzed the possible mechanisms of how these substances alter the function of the endocrine system, resulting in adverse health effects. Hundreds of substances with endocrine disrupting potential have been identified in our environment. There is accumulating evidence linking exposure to EDCs with the development of mammary and endometrial cancer. By interacting with steroid receptors, EDCs can impact the cellular processes potentially leading to carcinogenesis. There are also data showing the effect of EDCs on immune dysfunction. During lifespan, people are usually exposed to a mixture of various EDCs, which complicates the assessment of individual substances or compounds implicated in cancer development. As the prevalence of hormone-dependent tumors among women continues to increase, their successful prevention is of human benefit. Institutions representing medicine, science, industry, and governments should develop joint strategies to decrease exposure to EDC, and thus to reduce the risk of hormonedependent tumors in women.

  19. Factor interaction analysis for chromosome 8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer

    Directory of Open Access Journals (Sweden)

    Lengauer Thomas

    2007-02-01

    Full Text Available Abstract Background Alterations of chromosome 8 and hypomethylation of LINE-1 retrotransposons are common alterations in advanced prostate carcinoma. In a former study including many metastatic cases, they strongly correlated with each other. To elucidate a possible interaction between the two alterations, we investigated their relationship in less advanced prostate cancers. Results In 50 primary tumor tissues, no correlation was observed between chromosome 8 alterations determined by comparative genomic hybridization and LINE-1 hypomethylation measured by Southern blot hybridization. The discrepancy towards the former study, which had been dominated by advanced stage cases, suggests that both alterations converge and interact during prostate cancer progression. Therefore, interaction analysis was performed on microarray-based expression profiles of cancers harboring both alterations, only one, or none. Application of a novel bioinformatic method identified Gene Ontology (GO groups related to innate immunity, cytoskeletal organization and cell adhesion as common targets of both alterations. Many genes targeted by their interaction were involved in type I and II interferon signaling and several were functionally related to hereditary prostate cancer genes. In addition, the interaction appeared to influence a switch in the expression pattern of EPB41L genes encoding 4.1 cytoskeleton proteins. Real-time RT-PCR revealed GADD45A, MX1, EPB41L3/DAL1, and FBLN1 as generally downregulated in prostate cancer, whereas HOXB13 and EPB41L4B were upregulated. TLR3 was downregulated in a subset of the cases and associated with recurrence. Downregulation of EPB41L3, but not of GADD45A, was associated with promoter hypermethylation, which was detected in 79% of carcinoma samples. Conclusion Alterations of chromosome 8 and DNA hypomethylation in prostate cancer probably do not cause each other, but converge during progression. The present analysis implicates their

  20. Cross-reactive memory CD8(+) T cells alter the immune response to heterologous secondary dengue virus infections in mice in a sequence-specific manner.

    Science.gov (United States)

    Beaumier, Coreen M; Mathew, Anuja; Bashyam, Hema S; Rothman, Alan L

    2008-02-15

    Dengue virus is the causative agent of dengue fever and the more-severe dengue hemorrhagic fever (DHF). Human studies suggest that the increased risk of DHF during secondary infection is due to immunopathology partially mediated by cross-reactive memory T cells from the primary infection. To model T cell responses to sequential infections, we immunized mice with different sequences of dengue virus serotypes and measured the frequency of peptide-specific T cells after infection. The acute response after heterologous secondary infections was enhanced compared with the acute or memory response after primary infection. Also, the hierarchy of epitope-specific responses was influenced by the specific sequence of infection. Adoptive-transfer experiments showed that memory T cells responded preferentially to the secondary infection. These findings demonstrate that cross-reactive T cells from a primary infection alter the immune response during a heterologous secondary infection.

  1. Exercise and Caloric Restriction Alter the Immune System of Mice Submitted to a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Frederick Wasinski

    2013-01-01

    Full Text Available As the size of adipocytes increases during obesity, the establishment of resident immune cells in adipose tissue becomes an important source of proinflammatory mediators. Exercise and caloric restriction are two important, nonpharmacological tools against body mass increase. To date, their effects on the immune cells of adipose tissue in obese organisms, specifically when a high-fat diet is consumed, have been poorly investigated. Thus, after consuming a high-fat diet, mice were submitted to chronic swimming training or a 30% caloric restriction in order to investigate the effects of both interventions on resident immune cells in adipose tissue. These strategies were able to reduce body mass and resulted in changes in the number of resident immune cells in the adipose tissue and levels of cytokines/chemokines in serum. While exercise increased the number of NK cells in adipose tissue and serum levels of IL-6 and RANTES, caloric restriction increased the CD4+/CD8+ cell ratio and MCP-1 levels. Together, these data demonstrated that exercise and caloric restriction modulate resident immune cells in adipose tissues differently in spite of an equivalent body weight reduction. Additionally, the results also reinforce the idea that a combination of both strategies is better than either individually for combating obesity.

  2. The presence of alpha interferon at the time of infection alters the innate and adaptive immune responses to porcine reproductive and respiratory syndrome virus.

    Science.gov (United States)

    Brockmeier, Susan L; Loving, Crystal L; Nelson, Eric A; Miller, Laura C; Nicholson, Tracy L; Register, Karen B; Grubman, Marvin J; Brough, Douglas E; Kehrli, Marcus E

    2012-04-01

    Porcine reproductive and respiratory syndrome (PRRS) is one of the most devastating and costly diseases to the swine industry worldwide. Overall, the adaptive immune response to PRRS virus (PRRSV) is weak, which results in delayed elimination of virus from the host and inferior vaccine protection. PRRSV has been shown to induce a meager alpha interferon (IFN-α) response, and we hypothesized that elevated IFN-α levels early in infection would shorten the induction time and increase elements of the adaptive immune response. To test this, we measured both antibody and cell-mediated immunity in pigs after the administration of a nonreplicating human adenovirus type 5 vector expressing porcine IFN-α (Ad5-pIFN-α) at the time of PRRSV infection and compared the results to those for pigs infected with PRRSV alone. Viremia was delayed, and there was a decrease in viral load in the sera of pigs administered the Ad5-pIFN-α. Although seroconversion was slightly delayed in pigs receiving Ad5-pIFN-α, probably due to the early reduction in viral replication, little difference in the overall or neutralizing antibody response was seen. However, there was an increase in the number of virus-specific IFN-γ-secreting cells detected in the pigs receiving Ad5-pIFN-α, as well as an altered cytokine profile in the lung at 14 days postinfection, indicating that the presence of IFN-α at the time of infection can alter innate and adaptive immune responses to PRRSV.

  3. 藏象本质与神经内分泌免疫网络指标相关性研究%Correlation Research on the Essence of Viscera-state and Neuro-Endocrine-Immune Network-related Indicators

    Institute of Scientific and Technical Information of China (English)

    刘瑜; 项红; 战丽彬

    2014-01-01

    Objective To explore the intrinsic link between neuro-endocrine-immune (NEI) network and the viscera-state.Methods Using three databases namely TCM database, Chinese pharmacy database and combination of TCM and WM database in China Academic Journals Database, the authors searched and collected NEI-related indicators published on journals for the viscera-state researches. Then a related database was established for data mining. Through analysis of association rules, analysis of the relationship among diseases, syndromes, therapeutic principles, combination of disease and syndrome, and NEI network related indicators were performed for association rules and directional network diagrams.Results Through the association analysis, the authors drew 44 directional network diagrams of high-frequency disease positions, syndromes, therapeutic principles and NEI network related indicators, and obtained 19 association rules. Kidney and liver essence research focused on HPG axis, HPA axis, and HPT axis. Spleen essence research focused on brain-gut peptide related indicators. Heart essence research focused on vascular endothelium function indicators. Pulmonary essence research focused on humeral immunity, ET and TNF-α.Conclusion It was feasible to explore the intrinsic link between NEI network and the viscera-state by using data mining. Differences among study on NEI network of five-organs systems were found, which is of great significance for researches on the essence of the viscera-state.%目的:探讨神经内分泌免疫(NEI)网络与藏象的内在联系。方法以中国学术期刊网络出版总库中的中医学、中药学、中西医结合3个专题数据库为主要来源,检索以NEI网络相关指标为主要方法研究藏象本质的期刊文献,建立相关数据库。采用数据挖掘方法,对病位、证型、治则治法、病证结合与NEI网络指标进行关联规则分析,得到关联规则,绘制关联定向网络图。结果绘制高频

  4. Endocrine tumors of the pancreas.

    Science.gov (United States)

    Meko, J B; Norton, J A

    1994-01-01

    Pancreatic endocrine tumors are rare, yet can cause significant morbidity due to excessive secretion of hormones. Octreotide is effective in reducing the plasma concentrations of many of these hormones. The availability of potent H2-receptor antagonists and omeprazole has altered the emphasis in patients with Zollinger-Ellison syndrome away from total gastrectomy and towards resection of the gastrinoma for potential cure. Fifty percent of insulinomas and gastrinomas are not evident on preoperative imaging studies, despite their sophistication. Calcium angiography, endoscopic ultrasonography, isotope-labeled octreotide scanning, and injection of methylene blue during secretin angiography are recent imaging modalities that have shown promise in the localization of these tumors. Intraoperative ultrasound has emerged as the best method for operative detection of insulinomas. Duodenotomy and intraoperative endoscopic transillumination are especially important in the surgical management of Zollinger-Ellison syndrome because 30% to 40% of gastrinomas are located in the duodenum. The management of patients with multiple endocrine neoplasia type 1 and Zollinger-Ellison syndrome continues to be controversial. Some advocate an aggressive surgical approach, whereas others have had little success in rendering patients eugastrinemic.

  5. Immunoendocrine alterations following Marine Corps Martial Arts training are associated with changes in moral cognitive processes.

    Science.gov (United States)

    Siedlik, Jacob A; Deckert, Jake A; Clopton, Aaron W; Gigliotti, Nicole; Chan, Marcia A; Benedict, Stephen H; Herda, Trent J; Gallagher, Philip M; Vardiman, John P

    2016-02-01

    Combined physical and psychological stress events have been associated with exacerbated endocrine responses and increased alterations in immune cell trafficking when compared to exercise stress alone. Military training programs are rigorous in nature and often purposefully delivered in environments combining high levels of both physical and mental stress. The objective of this study was to assess physiological and cognitive changes following U.S. Marine Corps Martial Arts training. Seven active-duty, male Marines were observed during a typical Marine Corps Martial Arts training session. Immune parameters, including immunomodulatory cytokines, and hormone concentrations were determined from blood samples obtained at baseline, immediately post training (IP) and at 15min intervals post-training to 1h (R15, R30, R45, R60). Assessments of cognitive moral functioning (moral judgment and intent) were recorded at intervals during recovery. There were significant fluctuations in immunoendocrine parameters. Peak endocrine measures were observed within the IP-R15 time interval. Distributions of circulating immune cells were significantly altered with neutrophils and all lymphocyte subsets elevated at IP. IFN-γ and IL-17a exhibited small, non-significant, parallel increases over the recovery period. Moral functioning was informed by different social identities during the recovery resulting in changes in moral decision-making. These data demonstrate that the Marine Corps Martial Arts Program induces significant alterations in lymphocyte and leukocyte distributions, but does not shift the balance of Th1/Th2 cytokines or induce a systemic inflammatory response. The program does, however, induce alterations in moral decision-making ability associated with the observed endocrine responses, even suggesting a potential interaction between one's social identities and endocrine responses upon moral decision-making.

  6. Daily cholecalciferol supplementation during pregnancy alters markers of regulatory immunity, inflammation, and clinical outcomes in a randomized controlled trial

    Science.gov (United States)

    Vitamin D deficiency is widespread in pregnancy and has been associated with adverse health conditions for mothers and infants. Vitamin D supplementation in pregnancy may support maintenance of pregnancy by its effects on adaptive and innate immunity. We assessed the effects of vitamin D supplement...

  7. Altered immune response of immature dendritic cells upon dengue virus infection in the presence of specific antibodies

    NARCIS (Netherlands)

    Torres, Silvia; Flipse, Jacky; Upasani, Vinit C; van der Ende-Metselaar, Heidi; Urcuqui-Inchima, Silvio; Smit, Jolanda M; Rodenhuis-Zybert, Izabela A

    2016-01-01

    Dengue virus (DENV) replication is known to prevent maturation of infected DCs thereby impeding the development of adequate immunity. During secondary DENV infection, dengue-specific antibodies can suppress DENV replication in immature DCs (immDCs), however how dengue-antibody complexes (DENV-IC) in

  8. Omega-3 polyunsaturated fatty acids enrichment alters performance and immune response in infectious bursal disease challenged broilers

    Directory of Open Access Journals (Sweden)

    Maroufyan Elham

    2012-01-01

    Full Text Available Abstract Background Infectious bursal disease (IBD results in economic loss due to mortality, reduction in production efficiency and increasing the usage of antibiotics. This study was carried out to investigate the modulatory roles of dietary n-3 polyunsaturated fatty acids (PUFA enrichment in immune response and performance of IBD challenged broiler chickens. Methods A total of 300 day old male broiler chicks were assigned to four dietary n-3 PUFA ascending levels as the treatment groups (T1: 0.5; T2: 8.0; T3: 11.5; T4: 16.5 using combinations of tuna oil and sunflower oil. All diets were isocaloric and isonitrogenous. On day 28, all birds were challenged with IBD virus. Antibody titer, cytokine production, bursa lesion pre and post-challenge and lymphoid organ weight were recorded. Results On d 42 the highest body weight was observed in the T2 and T3 and the lowest in T4 chickens. Feed conversion ratio of the T2 broilers was significantly better than the other groups. Although productive parameters were not responded to the dietary n-3 PUFA in a dose-dependent manner, spleen weight, IBD and Newcastle disease antibody titers and IL-2 and IFN-γ concentrations were constantly elevated by n-3 PUFA enrichment. Conclusions Dietary n-3 PUFA enrichment may improve the immune response and IBD resistance, but the optimum performance does not coincide with the optimum immune response. It seems that dietary n-3 PUFA modulates the broiler chicken performance and immune response in a dose-dependent manner. Thus, a moderate level of dietary n-3 PUFA enrichment may help to put together the efficiency of performance and relative immune response enhancement in broiler chickens.

  9. Dactylogyrus intermedius parasitism enhances Flavobacterium columnare invasion and alters immune-related gene expression in Carassius auratus.

    Science.gov (United States)

    Zhang, Chao; Li, Dong-liang; Chi, Cheng; Ling, Fei; Wang, Gao-xue

    2015-09-17

    The monogenean Dactylogyrus intermedius and the bacterium Flavobacterium columnare are 2 common pathogens in aquaculture. The objective of the present study was to examine the effect of prior parasitism by D. intermedius on the susceptibility of goldfish to F. columnare and to explore the potential immune mechanisms related to the parasite infection. A F. columnare challenge trial was conducted between D. intermedius-parasitized and non-parasitized goldfish. The F. columnare load in gill, kidney, spleen and liver were compared. The expression of immune-related genes (IL-1β2, TNF-α1, TGF-β, iNOS-a, C3 and Lyz) in gill and kidney of D. intermedius-only infected and uninfected control fish were evaluated. D. intermedius-parasitized goldfish exhibited higher mortality and significantly higher loads (3051 to 537,379 genome equivalents [GEs] mg(-1)) of F. columnare, which were 1.13 to 50.82-fold higher than non-parasitized fish (389 to 17,829 GEs mg(-1)). Furthermore, the immune genes IL-1β2, TNF-α1, iNOS-a and Lyz were up-regulated while the TGF-β and C3 were down-regulated in the gill and kidney of parasite-infected fish compared to the non-parasitized controls. The down-regulation TGF-β and C3 was especially noteworthy, as this might indicate the suppression of the host immune functions due to the parasitism by D. intermedius. Taken together, these data demonstrate that parasite infection can enhance bacterial invasion and presents a hypothesis, based on gene expression data, that modulation of host immune response could play a role.

  10. Environmental signaling: from environmental estrogens to endocrine-disrupting chemicals and beyond.

    Science.gov (United States)

    McLachlan, J A

    2016-07-01

    The landmark report (Herbst et al. 1971) linking prenatal treatment with a synthetic estrogen, diethylstilbestrol (DES), to cancer at puberty in women whose mothers took the drug while pregnant ushered in an era of research on delayed effects of such exposures on functional outcomes in offspring. An animal model developed in our laboratory at the National Institute of Environmental Health Sciences confirmed that DES was the carcinogen and exposure to DES caused, as well, functional alterations in the reproductive, endocrine, and immune systems of male and female mice treated in utero. DES was also being used in agriculture and we discovered, at the first meeting on Estrogens in the Environment in 1979 (Estrogens in the Environment, 1980), that many environmental contaminants were also estrogenic. Many laboratories sought to discern the basis for estrogenicity in environmental chemicals and to discover other hormonally active xenobiotics. Our laboratory elucidated how DES and other estrogenic compounds worked by altering differentiation through epigenetic gene imprinting, helping explain the transgenerational effects found in mice and humans. At the Wingspread Conference on the Human-Wildlife Connection in 1991 (Advances in Modern Environmental Toxicology, 1992), we learned that environmental disruption of the endocrine system occurred in many species and phyla, and the term endocrine disruption was introduced. Further findings of transgenerational effects of environmental agents that mimicked or blocked various reproductive hormones and the ubiquity of environmental signals, such as bisphenol A increased concern for human and ecological health. Scientists began to look at other endocrine system aspects, such as cardiovascular and immune function, and other nuclear receptors, with important observations regarding obesity and metabolism. Laboratories, such as ours, are now using stem cells to try to understand the mechanisms by which various environmental signals

  11. Endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Mandrup, Karen

    BACKGROUND: Endocrine disrupting chemicals (EDCs) may contribute to reproductive changes in boys in the Western world, however, less is known about influence of EDCs in women. The incidence of precocious breast development is increasing in USA and Europe and mammary gland development has been...... suggested as particularly sensitive to endocrine disruption. Mammary gland examination in toxicological studies may be useful for improving knowledge on possible influences of EDCs on human mammary glands and also be useful for detection of endocrine disrupting effects of chemicals as part of safety testing...... and genistein, a mixture of phytoestrogens, and a mixture of environmentally relevant estrogenic EDCs of various origins. Moreover, mixtures of antiandrogenic chemicals were investigated. These include a mixture of pesticides and a mixture of environmentally relevant anti-androgenic EDCs of various origins...

  12. [Indicators of the persistent pro-inflammatory activation of the immune system in depression].

    Science.gov (United States)

    Cubała, Wiesław Jerzy; Godlewska, Beata; Trzonkowski, Piotr; Landowski, Jerzy

    2006-01-01

    The aetiology of depression remains tentative. Current hypotheses on the aetiology of the depressive disorder tend to integrate monoaminoergic, neuroendocrine and immunological concepts of depression. A number of research papers emphasise the altered hormonal and immune status of patients with depression with pronounced cytokine level variations. Those studies tend to link the variable course of depression in relation to the altered proinflammatory activity of the immune system. The results of the studies on the activity of the selected elements of the immune system are ambiguous indicating both increased and decreased activities of its selected elements. However, a number of basic and psychopharmacological studies support the hypothesis of the increased proinflammatory activity of the immune system in the course of depression which is the foundation for the immunological hypothesis of depression. The aim of this paper is to review the functional abnormalities that are observed in depression focusing on the monoaminoergic deficiency and increased immune activation as well as endocrine dysregulation. This paper puts together and discusses current studies related to this subject with a detailed insight into interactions involving nervous, endocrine and immune systems.

  13. Inhibition of Translation Initiation by Protein 169: A Vaccinia Virus Strategy to Suppress Innate and Adaptive Immunity and Alter Virus Virulence.

    Directory of Open Access Journals (Sweden)

    Pavla Strnadova

    2015-09-01

    Full Text Available Vaccinia virus (VACV is the prototypic orthopoxvirus and the vaccine used to eradicate smallpox. Here we show that VACV strain Western Reserve protein 169 is a cytoplasmic polypeptide expressed early during infection that is excluded from virus factories and inhibits the initiation of cap-dependent and cap-independent translation. Ectopic expression of protein 169 causes the accumulation of 80S ribosomes, a reduction of polysomes, and inhibition of protein expression deriving from activation of multiple innate immune signaling pathways. A virus lacking 169 (vΔ169 replicates and spreads normally in cell culture but is more virulent than parental and revertant control viruses in intranasal and intradermal murine models of infection. Intranasal infection by vΔ169 caused increased pro-inflammatory cytokines and chemokines, infiltration of pulmonary leukocytes, and lung weight. These alterations in innate immunity resulted in a stronger CD8+ T-cell memory response and better protection against virus challenge. This work illustrates how inhibition of host protein synthesis can be a strategy for virus suppression of innate and adaptive immunity.

  14. Toxoplasma gondii is dependent on glutamine and alters migratory profile of infected host bone marrow derived immune cells through SNAT2 and CXCR4 pathways.

    Directory of Open Access Journals (Sweden)

    I-Ping Lee

    Full Text Available The obligate intracellular parasite, Toxoplasma gondii, disseminates through its host inside infected immune cells. We hypothesize that parasite nutrient requirements lead to manipulation of migratory properties of the immune cell. We demonstrate that 1 T. gondii relies on glutamine for optimal infection, replication and viability, and 2 T. gondii-infected bone marrow-derived dendritic cells (DCs display both "hypermotility" and "enhanced migration" to an elevated glutamine gradient in vitro. We show that glutamine uptake by the sodium-dependent neutral amino acid transporter 2 (SNAT2 is required for this enhanced migration. SNAT2 transport of glutamine is also a significant factor in the induction of migration by the small cytokine stromal cell-derived factor-1 (SDF-1 in uninfected DCs. Blocking both SNAT2 and C-X-C chemokine receptor 4 (CXCR4; the unique receptor for SDF-1 blocks hypermotility and the enhanced migration in T. gondii-infected DCs. Changes in host cell protein expression following T. gondii infection may explain the altered migratory phenotype; we observed an increase of CD80 and unchanged protein level of CXCR4 in both T. gondii-infected and lipopolysaccharide (LPS-stimulated DCs. However, unlike activated DCs, SNAT2 expression in the cytosol of infected cells was also unchanged. Thus, our results suggest an important role of glutamine transport via SNAT2 in immune cell migration and a possible interaction between SNAT2 and CXCR4, by which T. gondii manipulates host cell motility.

  15. Natural functional SNPs in miR-155 alter its expression level, blood cell counts and immune responses

    Directory of Open Access Journals (Sweden)

    Congcong Li

    2016-08-01

    Full Text Available miR-155 has been confirmed to be a key factor in immune responses in humans and other mammals. Therefore, investigation of variations in miR-155 could be useful for understanding the differences in immunity between individuals. In this study, four SNPs in miR-155 were identified in mice (Mus musculus and humans (Homo sapiens. In mice, the four SNPs were closely linked and formed two miR-155 haplotypes (A and B. Ten distinct types of blood parameters were associated with miR-155 expression under normal conditions. Additionally, 4 and 14 blood parameters were significantly different between these two genotypes under normal and lipopolysaccharide (LPS stimulation conditions, respectively. Moreover, the expression levels of miR-155, the inflammatory response to LPS stimulation and the lethal ratio following Salmonella typhimurium infection were significantly increased in mice harboring the AA genotype. Further, two SNPs, one in the loop region and the other near the 3' terminal of pre-miR-155, were confirmed to be responsible for the differential expression of miR-155 in mice. Interestingly, two additional SNPs, one in the loop region and the other in the middle of miR-155*, modulated the function of miR-155 in humans. Predictions of secondary RNA structure using RNAfold showed that these SNPs affected the structure of miR-155 in both mice and humans. Our results provide novel evidence of the natural functional SNPs of miR-155 in both mice and humans, which may affect the expression levels of mature miR-155 by modulating its secondary structure. The SNPs of human miR-155 may be considered as causal mutations for some immune-related diseases in the clinic. The two genotypes of mice could be used as natural models for studying the mechanisms of immune diseases caused by abnormal expression of miR-155 in humans.

  16. Ageing is not associated with an altered immune response during Trypanosoma cruzi infection: Ageing and Trypanosoma cruzi infection.

    Science.gov (United States)

    Colato, Rafaela Pravato; Brazão, Vânia; Santello, Fabricia Helena; Toldo, Míriam Paula Alonso; do Vale, Gabriel Tavares; Tirapelli, Carlos Renato; Pereira-da-Silva, Gabriela; do Prado, José Clóvis

    2017-01-25

    The aims of this work were to evaluate the influence of ageing on the magnitude of the immune response in male Wistar rats infected with the Y strain of Trypanosoma cruzi (T. cruzi). Infected young animals displayed enhanced CD4(+) T cells as compared to uninfected counterparts. Ageing also triggered a significant reduction in CD8(+) T cells compared to young and uninfected groups. The percentage of spleen NKT cells was reduced for all groups, regardless of the infection status. Significant decreased B-cells was noted in aged controls and infected animals as compared to young counterparts. A significant decrease in MHC class II (RT1B) expression in all aged animals was observed, whether infected or not. The highest and significant levels of Thiobarbituric Acid Reactive Substances (TBARS) were noted in the aged and infected animals as compared to young-infected ones (16day). Consequently superoxide dismutase (SOD) activity was reduced for both control and infected aged animals. Significant elevation of 8-isoprostane levels was found in aged control and infected animals. Plasma glutathione (GSH) concentration was reduced in aged control animals, as well as, in the young infected animals. NO production was increased in both infected and uninfected aged animals compared to young infected and uninfected animals. Corticosterone levels were elevated in aged animals, whether infected or not. Thus, our results are inedited since the immune response is not worsened by the simple fact of animals being older. Ageing by itself triggered a damaged immune response as well as enhanced reactive oxygen species, when compared to young counterparts, but it did not contribute to impair the immune response of T. cruzi infected and aged rats.

  17. Altered Immune Profiles of Natural Killer Cells in Chronic Hepatitis B Patients: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Zhang, Qiong-Fang; Shao, Jian-Ying; Yin, Wen-Wei; Xia, Yang; Chen, Ling; Wang, Xing; Hu, Huai-Dong; Hu, Peng; Ren, Hong; Zhang, Da-Zhi

    2016-01-01

    Background Natural killer (NK) cells are the main effective component of the innate immune system that responds to chronic hepatitis B (CHB) infection. Although numerous studies have reported the immune profiles of NK cells in CHB patients, they are limited by inconsistent results. Thus, we performed a meta-analysis to characterize reliably the immune profiles of NK cells after CHB infection, specifically frequency, phenotype, and function. Methods A literature search of the computer databases MEDLINE, PUBMED, EMBASE, and Cochrane Center Register of Controlled Trails was performed and 19 studies were selected. The standard mean difference (SMD) and 95% confidence interval (CI) of each continuous variable was estimated with a fixed effects model when I2 NUCs) showed no statistical difference in NK frequency. The activating receptors were upregulated, whereas inhibitory receptors were comparable in the peripheral NK cells of CHB individuals and healthy controls. NK cells of CHB patients displayed higher cytotoxic potency as evidenced by CD107a protein levels and conserved potency to produce interferon-gamma (IFNγ), compared with their healthy counterparts. Conclusion Our results revealed that CHB patients had a lower frequency of NK cells compared with healthy individuals not treatable with antiviral NUC therapy. With an activating phenotype, NK cells in CHB patients showed better cytotoxic potency and conserved IFNγ production. PMID:27513564

  18. Sarcopenia, obesity, and natural killer cell immune senescence in aging: altered cytokine levels as a common mechanism.

    Science.gov (United States)

    Lutz, Charles T; Quinn, LeBris S

    2012-08-01

    Human aging is characterized by both physical and physiological frailty. A key feature of frailty, sarcopenia is the age-associated decline in skeletal muscle mass, strength, and endurance that characterize even the healthy elderly. Increases in adiposity, particularly in visceral adipose tissue, are almost universal in aging individuals and can contribute to sarcopenia and insulin resistance by increasing levels of inflammatory cytokines known collectively as adipokines. Aging also is associated with declines in adaptive and innate immunity, known as immune senescence, which are risk factors for cancer and all-cause mortality. The cytokine interleukin-15 (IL-15) is highly expressed in skeletal muscle tissue and declines in aging rodent models. IL-15 inhibits fat deposition and insulin resistance, is anabolic for skeletal muscle in certain situations, and is required for the development and survival of natural killer (NK) lymphocytes. We review the effect that adipokines and myokines have on NK cells, with special emphasis on IL-15. We posit that increased adipokine and decreased IL-15 levels during aging constitute a common mechanism for sarcopenia, obesity, and immune senescence.

  19. 六味地黄苷糖对悬吊应激小鼠生殖内分泌及免疫系统的影响%LW-AFC Improved or Restored the Disturbance of Reproductive Endocrine and Immune Function in Stress-Loaded Mice

    Institute of Scientific and Technical Information of China (English)

    谢兴振; 迟晓丽; 周文霞; 马渊; 张永祥

    2011-01-01

    目前尚无有效可靠的抗应激药物.传统的补益中药六味地黄汤(LW)对多种类型应激所致内分泌和免疫平衡失调具有明显调节作用,但目前已上市的LW成药缺乏可靠的质量控制方法,其临床疗效的可靠程度难以估测.本课题组在前期研究中以免疫和内分泌活性评价为导向,从LW中追踪分离并组成了质量可控且安全性好的六味地黄苷糖(LW-AFC).本文观察了悬吊应激雌性小鼠生殖内分泌及免疫系统的变化及LW-AFC的影响.结果表明,悬吊应激小鼠皮质酮升高,动情期缩短、动情间期延长,垂体LH下降,动情间期血清E2升高;脾细胞培养上清IgG含量明显降低;口服LW-AFC能显著降低血清皮质酮,升高垂体LH,且LW-AFC能明显降低动情间期血清E2,并能明显增强脾细胞IgG分泌能力.这提示,悬吊应激可导致雌性小鼠生殖内分泌功能紊乱以及免疫功能下降,口服LW-AFC具有明显调节作用,对应激所致生殖内分泌功能紊乱以及免疫功能下降具有潜在防治作用.%There are no effective and reliable anti-stress drugs. Traditional Chinese Medicine Liu Wei Di Huang Decoction (LW) can interfere with the various types of stress-induced endocrine and immune imbalance. However, traditional LW lacks reliable quality control methods, and the reliability of its clinical efficacy is difficult to estimate. In our previous study we evaluated the immune and endocrine activity of different parts from LW separation, and then formed LW-AFC which has satisfactory quality control, security and activity. In this paper, we observe the impact of LW-AFC on the reproductive endocrine and immune system of suspension-stressed female mouse. The results show that the stress increased the serum cortisone, reduced estrus cycle, prolonged diestrus, decreased the pituitary LH, but increased serum E2 on diestrus cycle, and IgG in spleen cell culture supernatant was significantly reduced after suspension

  20. Gastrointestinal manifestations of endocrine disease

    Institute of Scientific and Technical Information of China (English)

    Christina Maser; Arnbjorn Toset; Sanziana Roman

    2006-01-01

    The hormonal interactions among the systems throughout the body are not fully understood; many vague clinical symptoms may in fact be manifestations of underlying endocrine diseases. The aim of the following review is to discuss gastrointestinal manifestations of surgically correctable endocrine diseases, focusing on abnormalities of thyroid function, cancer and finally autoimmune diseases. We also review manifestations of pancreatic endocrine tumors, and multiple endocrine neoplasia.

  1. An altered immune response, but not individual cationic antimicrobial peptides, is associated with the oral attenuation of Ara4N-deficient Salmonella enterica serovar Typhimurium in mice.

    Directory of Open Access Journals (Sweden)

    Kristi L Strandberg

    Full Text Available Salmonella enterica serovar Typhimurium (S. Typhimurium uses two-component regulatory systems (TCRS to respond to stimuli in the local microenvironment. Upon infection, the Salmonella TCRSs PhoP-PhoQ (PhoPQ and PmrA-PmrB (PmrAB are activated by environmental signals in the intestinal lumen and within host cells. TCRS-mediated gene expression results in lipopolysaccharide (LPS modification and cationic antimicrobial peptide resistance. The PmrA-regulated pmrHFIJKLM operon mediates 4-amino-4-deoxy-L-arabinose (Ara4N production and attachment to the lipid A of LPS. A ΔpmrF S. Typhimurium strain cannot produce Ara4N, exhibits increased sensitivity to cationic antimicrobial peptide (CAMP-mediated killing, and attenuated virulence in mice upon oral infection. CAMPs are predicted to play a role in elimination of Salmonella, and may activate PhoPQ and PmrAB in vivo, which could increase bacterial resistance to host defenses. Competition experiments between wild type (WT and ΔpmrF mutant strains of S. Typhimurium indicated that selection against this mutant first occurs within the intestinal lumen early during infection. However, CRAMP and active cryptdins alone are not responsible for elimination of Ara4N-deficient bacteria in vivo. Investigation into the early immune response to ΔpmrF showed that it differed slightly from the early immune response to WT S. Typhimurium. Further investigation into the early immune response to infection of Peyer's patches suggests a role for IL-13 in the attenution of the ΔpmrF mutant strain. Thus, prominent CAMPs present in the mouse intestine are not responsible for the selection against the ΔpmrF strain in this location, but limited alterations in innate immune induction were observed that affect bacterial survival and virulence.

  2. Levetiracetam differentially alters CD95 expression of neuronal cells and the mitochondrial membrane potential of immune and neuronal cells in vitro

    Directory of Open Access Journals (Sweden)

    Susannah K Rogers

    2014-02-01

    Full Text Available Epilepsy is a neurological seizure disorder that affects over 100 million people worldwide. Levetiracetam, either alone, as monotherapy, or as adjunctive treatment, is widely used to control certain types of seizures. Despite its increasing popularity as a relatively safe and effective anti-convulsive treatment option, its mechanism(s of action are poorly understood. Studies have suggested neuronal, glial, and immune mechanisms of action. Understanding the precise mechanisms of action of Levetiracetam would be extremely beneficial in helping to understand the processes involved in seizure generation and epilepsy. Moreover, a full understanding of these mechanisms would help to create more efficacious treatments while minimizing side effects. The current study examined the effects of Levetiracetam on the mitochondrial membrane potential of neuronal and non-neuronal cells, in vitro, in order to determine if Levetiracetam influences metabolic processes in these cell types. In addition, this study sought to address possible immune-mediated mechanisms by determining if Levetiracetam alters the expression of immune receptor-ligand pairs. The results show that Levetiracetam induces expression of CD95 and CD178 on NGF-treated C17.2 neuronal cells. The results also show that Levetiracetam increases mitochondrial membrane potential on C17.2 neuronal cells in the presence of nerve growth factor. In contrast, Levetiracetam decreases the mitochondrial membrane potential of splenocytes and this effect was dependent on intact invariant chain, thus implicating immune cell interactions. These results suggest that both neuronal and non-neuronal anti-epileptic activities of Levetiracetam involve control over energy metabolism, more specifically, mΔΨ. Future studies are needed to further investigate this potential mechanism of action.

  3. Heavy Metals Acting as Endocrine Disrupters

    Directory of Open Access Journals (Sweden)

    Bogdan Georgescu

    2011-10-01

    Full Text Available Last years researches focused on several natural and synthetic compounds that may interfere with the major functionsof the endocrine system and were termed endocrine disrupters. Endocrine disrupters are defined as chemicalsubstances with either agonist or antagonist endocrine effects in human and animals. These effects may be achievedby interferences with the biosynthesis or activity of several endogenous hormones. Recently, it was demonstratedthat heavy metals such as cadmium (Cd, arsen (As, mercury (Hg, nickel (Ni, lead (Pb and zinc (Zn may exhibitendocrine-disrupting activity in animal experiments. Emerging evidence of the intimate mechanisms of action ofthese heavy metals is accumulating. It was revealed, for example, that the Zn atom from the Zn fingers of theestrogen receptor can be replaced by several heavy metal molecules such as copper, cobalt, Ni and Cd. By replacingthe Zn atom with Ni or copper, binding of the estrogen receptor to the DNA hormone responsive elements in the cellnucleus is prevented. In both males and females, low-level exposure to Cd interferes with the biological effects ofsteroid hormones in reproductive organs. Arsen has the property to bind to the glucocorticoid receptor thusdisturbing glucocorticoids biological effects. With regard to Hg, this may induce alterations in male and femalefertility, may affect the function of the hypothalamo-pituitary-thyroid axis or the hypothalamo-pituitary-adrenal axis,and disrupt biosynthesis of steroid hormones.

  4. Thyroid autoimmunity and polyglandular endocrine syndromes.

    Science.gov (United States)

    Wémeau, Jean-Louis; Proust-Lemoine, Emmanuelle; Ryndak, Amélie; Vanhove, Laura

    2013-01-01

    Even though autoimmune thyroiditis is considered as the most emblematic type of organ-specific autoimmune disorder of autoimmunity, autoimmune thyroid diseases can be associated with other autoimmune endocrine failures or non-endocrine diseases (namely vitiligo, pernicious anemia, myasthenia gravis, autoimmune gastritis, celiac disease, hepatitis). Thyroid disorders, which are the most frequent expression of adult polyendocrine syndrome type 2, occur concomitantly with or secondarily to insulinodependent diabetes, premature ovarian failure, Addison's disease (Schmidt syndrome, or Carpenter syndrome if associated with diabetes). Testicular failure and hypoparathyroidism are unusual. The disease is polygenic and multifactorial. Disorders of thyroid autoimmunity are, surprisingly, very rare in polyendocrine syndrome type 1 (or APECED) beginning during childhood. They are related to mutations of the AIRE gene that encodes for a transcriptional factor implicated in central and peripheral immune tolerance. Hypothyroidism can also be observed in the very rare IPEX and POEMS syndromes.

  5. Alterations of intestinal immune function and regulatory effects of L-arginine in experimental severe acute pancreatitis rats

    Institute of Scientific and Technical Information of China (English)

    Shi-Feng Qiao; Tian-Jing Lü; Jia-Bang Sun; Fei Li

    2005-01-01

    AIM: To discuss the changes of intestinal mucosal immune function in rats with experimental severe acute pancreatitis(SAP) and the regulatory effect of L-arginine.METHODS: Male adult Wistar rats were randomly divided into pancreatitis group, sham-operation group, and L-arginine treatment group. Animals were killed at 24, 48, and 72 h after SAP models were developed and specimens were harvested. Endotoxin concentration in portal vein was determined by limulus endotoxin analysis kit. CD3+, CD4+,CD8+ T lymphocytes in intestinal mucosal lamina propria were examined by immunohistochemistry. Secretory immunoglobulin A (SIgA) in cecum feces was examined by radioimmunoassay.RESULTS: Compared to the control group, plasma endotoxin concentration in the portal vein increased, percentage of CD3+ and CD4+ T lymphocyte subsets in the end of intestinal mucosal lamina propria reduced significantly,CD4+/CD8+ ratio decreased, and SIgA concentrations in cecum feces reduced at 24, 48, and 72 h after SAP developed. Compared to SAP group, the L-arginine treatment group had a lower level of plasma endotoxin concentration in the portal vein, a higher CD3+ and CD4+ T lymphocyte percentage in the end of intestinal mucosal lamina propria,an increased ratio of CD4+/CD8+ and a higher SIgA concentration in cecum feces.CONCLUSION: Intestinal immune suppression occurs in the early stage of SAP rats, which may be the main reason for bacterial and endotoxin translocation. L-arginine can improve the intestinal immunity and reduce bacterial and endotoxin translocation in SAP rats.

  6. Comparison of Watermelon and Carbohydrate Beverage on Exercise-Induced Alterations in Systemic Inflammation, Immune Dysfunction, and Plasma Antioxidant Capacity

    Directory of Open Access Journals (Sweden)

    R. Andrew Shanely

    2016-08-01

    Full Text Available Consuming carbohydrate- and antioxidant-rich fruits during exercise as a means of supporting and enhancing both performance and health is of interest to endurance athletes. Watermelon (WM contains carbohydrate, lycopene, l-citrulline, and l-arginine. WM may support exercise performance, augment antioxidant capacity, and act as a countermeasure to exercise-induced inflammation and innate immune changes. Trained cyclists (n = 20, 48 ± 2 years participated in a randomized, placebo controlled, crossover study. Subjects completed two 75 km cycling time trials after either 2 weeks ingestion of 980 mL/day WM puree or no treatment. Subjects drank either WM puree containing 0.2 gm/kg carbohydrate or a 6% carbohydrate beverage every 15 min during the time trials. Blood samples were taken pre-study and pre-, post-, 1 h post-exercise. WM ingestion versus no treatment for 2-weeks increased plasma l-citrulline and l-arginine concentrations (p < 0.0125. Exercise performance did not differ between WM puree or carbohydrate beverage trials (p > 0.05, however, the rating of perceived exertion was greater during the WM trial (p > 0.05. WM puree versus carbohydrate beverage resulted in a similar pattern of increase in blood glucose, and greater increases in post-exercise plasma antioxidant capacity, l-citrulline, l-arginine, and total nitrate (all p < 0.05, but without differences in systemic markers of inflammation or innate immune function. Daily WM puree consumption fully supported the energy demands of exercise, and increased post-exercise blood levels of WM nutritional components (l-citrulline and l-arginine, antioxidant capacity, and total nitrate, but without an influence on post-exercise inflammation and changes in innate immune function.

  7. Endocrine Drugs in Aircrew

    Science.gov (United States)

    2001-06-01

    Treatment of Hypothyroidism hyperthyroidism . Thyroid hormones are necessary Hypothyroidism is treated with synthetic thyroid for normal LH and FSH secretion...that Since hyperthyroidism is an unstable clinical both hormones become available even though only condition which requires definitive treatment , its one...P. Gobetti - 00185, Rome, Italy INTRODUCTION Hormonal therapy is, usually, a substitutive treatment for endocrine disease resulting from Hormones

  8. Autoimmune thyroid disease and other non-endocrine autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Todorović-Đilas Ljiljana

    2011-01-01

    Full Text Available Introduction, Autoimmune diseases are chronic conditions initiated by the loss of immunological tolerance to self-antigens. They constitute heterogeneous group of disorders, in which multiple alterations in the immune system result in a spectrum of syndromes that either target specific organs or affect the body systematically. Recent epidemiological studies have shown a possible shift of one autoimmune disease to another or the fact that more than one autoimmune disease may coexist in a single patient or in the same family. Numerous autoimmune diseases have been shown to coexist frequently with thyroid autoimmune diseases. Autoimmune thyroid disease and other organ specific non-endocrine autoimmune diseases. This part of the study reviews the prevalence of autoimmune thyroid disease coexisting with: pernicious anaemia, vitiligo, celiac disease, autoimmune liver disease, miastenia gravis, alopecia areata and sclerosis multiplex, and several recommendations for screening have been given. Autoimmune thyroid disease and other organ non-specific non-endocrine autoimmune diseases. Special attention is given to the correlation between autoimmune thyroid disease and rheumatoid arthritis, systemic lupus erythematosus, syndrome Sjögren, systemic sclerosis and mixed connective tissue disease. Conclusions. Screening for autoimmune thyroid diseases should be recommended in everyday clinical practice, in patients with primary organ-specific or organ non-specific autoimmune disease. Other­wise, in patients with primary thyroid autoimmune disease, there is no good reason of seeking for all other autoimmune diseases, although these patients have a greater risk of developing other autoimmune disease. Economic aspects of medicine require further analyzing of these data, from cost/benefit point of view to justified either mandatory screening or medical practitioner judgment.

  9. Future oceanic warming and acidification alter immune response and disease status in a commercial shellfish species, Mytilus edulis L.

    Directory of Open Access Journals (Sweden)

    Clara L Mackenzie

    Full Text Available Increases in atmospheric carbon dioxide are leading to physical changes in marine environments including parallel decreases in ocean pH and increases in seawater temperature. This study examined the impacts of a six month exposure to combined decreased pH and increased temperature on the immune response and disease status in the blue mussel, Mytilus edulis L. Results provide the first confirmation that exposure to future acidification and warming conditions via aquarium-based simulation may have parallel implications for bivalve health. Collectively, the data suggests that temperature more than pH may be the key driver affecting immune response in M. edulis. Data also suggests that both increases in temperature and/or lowered pH conditions may lead to changes in parasite abundance and diversity, pathological conditions, and bacterial incidence in M. edulis. These results have implications for future management of shellfish under a predicted climate change scenario and future sustainability of shellfisheries. Examination of the combined effects of two stressors over an extended exposure period provides key preliminary data and thus, this work represents a unique and vital contribution to current research efforts towards a collective understanding of expected near-future impacts of climate change on marine environments.

  10. Maternal diet during pregnancy has tissue-specific effects upon fetal fatty acid composition and alters fetal immune parameters.

    Science.gov (United States)

    Childs, Caroline E; Romijn, Tessa; Enke, Uta; Hoile, Samuel; Calder, Philip C

    2010-01-01

    Both animal and human studies demonstrate that the docosahexaenoic acid (DHA) content of plasma and/or tissue lipids is increased during pregnancy. We hypothesised that increasing the α-linolenic acid (ALA) or longer chain (n-3) PUFA content of the maternal diet during pregnancy influences fetal fatty acid composition and the fetal immune system. Pregnant rats were fed a low-fat (LF) soybean oil diet, or high-fat (HF) soybean, linseed, salmon or sunflower oil diets from conception to 20d gestation. The ALA-rich Linseed-HF diet resulted in an equivalent eicosapentaenoic acid (EPA) status in fetal immune tissues and an equivalent DHA status in the fetal brain to that achieved with the Salmon-HF diet. An (n-3) rich maternal diet during pregnancy associated with the highest expression of CD3 (Salmon-HF) and CD8 (Linseed-HF and Salmon-HF) on fetal thymic CD3(+)CD8(+) cells. The Linseed-HF diet resulted in the highest proportion of CD161(+) cells within the fetal thymus, which correlated with the production of IL-4. These data indicate that dietary ALA supplementation may confer some of the benefits of LC (n-3) PUFA during pregnancy. This should be examined in suitably designed human studies.

  11. Vaccination with Altered Peptide Ligands of a Plasmodium berghei Circumsporozoite Protein CD8 T-Cell Epitope: A Model to Generate T Cells Resistant to Immune Interference by Polymorphic Epitopes

    Science.gov (United States)

    Minigo, Gabriela; Flanagan, Katie L.; Slattery, Robyn M.; Plebanski, Magdalena

    2017-01-01

    Many pathogens, including the malaria parasite Plasmodium falciparum, display high levels of polymorphism within T-cell epitope regions of proteins associated with protective immunity. The T-cell epitope variants are often non-cross-reactive. Herein, we show in a murine model, which modifies a protective CD8 T-cell epitope from the circumsporozoite protein (CS) of Plasmodium berghei (SYIPSAEKI), that simultaneous or sequential co-stimulation with two of its putative similarly non-cross-reactive altered peptide ligand (APL) epitopes (SYIPSAEDI or SYIPSAEAI) has radically different effects on immunity. Hence, co-immunization or sequential stimulation in vivo of SYIPSAEKI with its APL antagonist SYIPSAEDI decreases immunity to both epitopes. By contrast, co-immunization with SYIPSAEAI has no apparent initial effect, but it renders the immune response to SYIPSAEKI resistant to being turned off by subsequent immunization with SYIPSAEDI. These results suggest a novel strategy for vaccines that target polymorphic epitopes potentially capable of mutual immune interference in the field, by initiating an immune response by co-immunization with the desired index epitope, together with a carefully selected “potentiator” APL peptide.

  12. Early life ozone exposure results in dysregulated innate immune function and altered microRNA expression in airway epithelium.

    Science.gov (United States)

    Clay, Candice C; Maniar-Hew, Kinjal; Gerriets, Joan E; Wang, Theodore T; Postlethwait, Edward M; Evans, Michael J; Fontaine, Justin H; Miller, Lisa A

    2014-01-01

    Exposure to ozone has been associated with increased incidence of respiratory morbidity in humans; however the mechanism(s) behind the enhancement of susceptibility are unclear. We have previously reported that exposure to episodic ozone during postnatal development results in an attenuated peripheral blood cytokine response to lipopolysaccharide (LPS) that persists with maturity. As the lung is closely interfaced with the external environment, we hypothesized that the conducting airway epithelium of neonates may also be a target of immunomodulation by ozone. To test this hypothesis, we evaluated primary airway epithelial cell cultures derived from juvenile rhesus macaque monkeys with a prior history of episodic postnatal ozone exposure. Innate immune function was measured by expression of the proinflammatory cytokines IL-6 and IL-8 in primary cultures established following in vivo LPS challenge or, in response to in vitro LPS treatment. Postnatal ozone exposure resulted in significantly attenuated IL-6 mRNA and protein expression in primary cultures from juvenile animals; IL-8 mRNA was also significantly reduced. The effect of antecedent ozone exposure was modulated by in vivo LPS challenge, as primary cultures exhibited enhanced cytokine expression upon secondary in vitro LPS treatment. Assessment of potential IL-6-targeting microRNAs miR-149, miR-202, and miR-410 showed differential expression in primary cultures based upon animal exposure history. Functional assays revealed that miR-149 is capable of binding to the IL-6 3' UTR and decreasing IL-6 protein synthesis in airway epithelial cell lines. Cumulatively, our findings suggest that episodic ozone during early life contributes to the molecular programming of airway epithelium, such that memory from prior exposures is retained in the form of a dysregulated IL-6 and IL-8 response to LPS; differentially expressed microRNAs such as miR-149 may play a role in the persistent modulation of the epithelial innate

  13. Alteration of Immune Markers in a group of Melancholic Depressed patients and their Response to Electroconvulsive Therapy

    Science.gov (United States)

    Rush, Gavin; O’Donovan, Aoife; Nagle, Laura; Conway, Catherine; McCrohan, AnnMaria; O’Farrelly, Cliona; Lucey, James V.; Malone, Kevin M.

    2017-01-01

    Background Immune system dysfunction is implicated in the pathophysiology of major depression, and is hypothesized to normalize with successful treatment. We aimed to investigate immune dysfunction in melancholic depression and its response to ECT. Methods 55 melancholic depressed patients and 26 controls participated. 33 patients (60%) were referred for ECT. Blood samples were taken at baseline, one hour after the first ECT session, and 48 hours after ECT series completion. Results At baseline, melancholic depressed patients had significantly higher levels of the pro-inflammatory cytokine IL-6, and lower levels of the regulatory cytokine TGF-β than controls. A significant surge in IL-6 levels was observed one hour after the first ECT session, but neither IL-6 nor TGF-β levels normalized after completion of ECT series. Seventy per cent (n=23) of ECT recipients showed clinical response and 42% (n=10) reached remission. Neither IL-6 nor TGF-β changes correlated with clinical improvement following ECT. No significant changes in IL-10, TNF-α and CRP levels were found in relation to melancholia or response to ECT. Limitations As a naturalistic study, some potential confounders could not be eliminated or controlled, including medication use. Conclusions Melancholic depressed patients demonstrated a peripheral increase in IL-6 and reduction in TGF-β, which did not normalize despite clinical response to ECT. These findings may be consistent with emerging hypotheses of the role of inflammation in mediating neurotropin expression. The implications of chronic inflammation in the melancholic depressed population for future medical health, particularly cardiovascular risk, are largely unknown and warrant further investigation. PMID:27414954

  14. The Bidirectional Relationship between Sleep and Immunity against Infections.

    Science.gov (United States)

    Ibarra-Coronado, Elizabeth G; Pantaleón-Martínez, Ana Ma; Velazquéz-Moctezuma, Javier; Prospéro-García, Oscar; Méndez-Díaz, Mónica; Pérez-Tapia, Mayra; Pavón, Lenin; Morales-Montor, Jorge

    2015-01-01

    Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed.

  15. The Bidirectional Relationship between Sleep and Immunity against Infections

    Directory of Open Access Journals (Sweden)

    Elizabeth G. Ibarra-Coronado

    2015-01-01

    Full Text Available Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed.

  16. The Bidirectional Relationship between Sleep and Immunity against Infections

    Science.gov (United States)

    Ibarra-Coronado, Elizabeth G.; Pantaleón-Martínez, Ana Ma.; Velazquéz-Moctezuma, Javier; Prospéro-García, Oscar; Méndez-Díaz, Mónica; Pérez-Tapia, Mayra; Pavón, Lenin; Morales-Montor, Jorge

    2015-01-01

    Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed. PMID:26417606

  17. Increased early local immune responses and altered worm development in high-dose infections of mice susceptible to the filaria Litomosoides sigmodontis.

    Science.gov (United States)

    Babayan, Simon; Attout, Tarik; Specht, Sabine; Hoerauf, Achim; Snounou, Georges; Rénia, Laurent; Korenaga, Masataka; Bain, Odile; Martin, Coralie

    2005-05-01

    The relationship between the number of larvae inoculated and filarial infection outcome is an important fundamental and epidemiological issue. Our study was carried out with BALB/c mice infected with the filaria Litomosoides sigmodontis. For the first time, an immunological analysis of infection with various doses was studied in parallel with parasitological data. Mice were inoculated with 200, 60 or 25 infective larvae (third stage larvae, L3), and monitored over 80 days. At 60 h post-inoculation the immune response was stronger in the 200 L3 group than the 25 L3 group. Cells from lymph nodes draining the site of inoculation proliferated intensely and produced large amounts of IL-5 and IL-4. In the pleural cavity, leukocyte populations accumulated earlier and in larger quantities. IgG1, IL-4 and IL-10 serum concentrations were transiently higher. During the first 10 days the worm recovery rates were identical in all groups, but decreased thereafter in the 200 L3 group. In this group, the development of the worms was altered, with reduced lengths, diminished intra-uterine production of microfilariae and abnormalities of male copulatory organs. Whereas mice inoculated with 25 L3 became microfilaraemic, only one third reached patency in the 200 L3 group. However, detrimental effects of high numbers of worms are not seen in studies using different inoculation protocols. This suggests that the very early events determine subsequent immune response and infection outcome rather than competitive interactions between the worms.

  18. Brain region-specific alterations in the gene expression of cytokines, immune cell markers and cholinergic system components during peripheral endotoxin-induced inflammation.

    Science.gov (United States)

    Silverman, Harold A; Dancho, Meghan; Regnier-Golanov, Angelique; Nasim, Mansoor; Ochani, Mahendar; Olofsson, Peder S; Ahmed, Mohamed; Miller, Edmund J; Chavan, Sangeeta S; Golanov, Eugene; Metz, Christine N; Tracey, Kevin J; Pavlov, Valentin A

    2015-03-11

    Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune-brain communication, including the impact of peripheral inflammation on brain region-specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region-specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches.

  19. Endocrine disrupters. The case of estrogen xenobiotics

    Directory of Open Access Journals (Sweden)

    N. Olea Serrano

    2001-06-01

    Full Text Available Interest of the scientific community in chemical substances able to alter the hormone balance –endocrine disrupters- has grown with increasing evidence of the consequences for animal populations of exposure to these substances. As has occurred on previous occasions, observational data on animal populations have been sufficiently suggestive to cause concerns among clinicians that similar effects may be produced in human populations. Although data on the effects on populations of animals are more easily generated than those on individuals, clinical observations on human individuals alongside the few existing epidemiological studies have shown a certain parallelism. Indeed, in vitro and in vivo models have been able to designate many chemical compounds as hormonal mimics, including both natural and human-produced compounds to which there are exposure risks. The present work reviews the conceptual premises of endocrine disruption and the development of the use of this term.

  20. Endocrine disrupters as obesogens.

    Science.gov (United States)

    Grün, Felix; Blumberg, Bruce

    2009-05-25

    The recent dramatic rise in obesity rates is an alarming global health trend that consumes an ever increasing portion of health care budgets in Western countries. The root cause of obesity is thought to be a prolonged positive energy balance. Hence, the major focus of preventative programs for obesity has been to target overeating and inadequate physical exercise. Recent research implicates environmental risk factors, including nutrient quality, stress, fetal environment and pharmaceutical or chemical exposure as relevant contributing influences. Evidence points to endocrine disrupting chemicals that interfere with the body's adipose tissue biology, endocrine hormone systems or central hypothalamic-pituitary-adrenal axis as suspects in derailing the homeostatic mechanisms important to weight control. This review highlights recent advances in our understanding of the molecular targets and mechanisms of action for these compounds and areas of future research needed to evaluate the significance of their contribution to obesity.

  1. Zearalenone endocrine system catch

    Directory of Open Access Journals (Sweden)

    Bursić Vojislava P.

    2005-01-01

    Full Text Available This paper deals with the contamination of our environment with thousands of both natural and man-made chemicals which affect the endocrine system of humans and animals. These so-called endocrine disrupting chemicals (EDCs are thought to mimic or block the action of hormones and therefore disrupt sexual development in utero. EDCs are organochlorine pesticides, dioxin compounds, polychlorinated biphenyls, alkylpolyethoxylates, plastic additives and phytoestrogens (occurring naturally in foods: isoflavones coumenestans and zearalenone. The structure of zearalenone is similar to the structure of estrogens and it enables binding to the estrogenic receptors. DNA laddering on gel electrophoresis was present 12 h after dosing thus indicating a conclusion that there was apoptosis. Apoptosis is the principal mechanism contributing to germ cell depletion and testicular atrophy following zearalenone exposure.

  2. Host genetic background influences the response to the opportunistic Pseudomonas aeruginosa infection altering cell-mediated immunity and bacterial replication.

    Directory of Open Access Journals (Sweden)

    Maura De Simone

    Full Text Available Pseudomonas aeruginosa is a common cause of healthcare-associated infections including pneumonia, bloodstream, urinary tract, and surgical site infections. The clinical outcome of P. aeruginosa infections may be extremely variable among individuals at risk and patients affected by cystic fibrosis. However, risk factors for P. aeruginosa infection remain largely unknown. To identify and track the host factors influencing P. aeruginosa lung infections, inbred immunocompetent mouse strains were screened in a pneumonia model system. A/J, BALB/cJ, BALB/cAnNCrl, BALB/cByJ, C3H/HeOuJ, C57BL/6J, C57BL/6NCrl, DBA/2J, and 129S2/SvPasCRL mice were infected with P. aeruginosa clinical strain and monitored for body weight and mortality up to seven days. The most deviant survival phenotypes were observed for A/J, 129S2/SvPasCRL and DBA/2J showing high susceptibility while BALB/cAnNCrl and C3H/HeOuJ showing more resistance to P. aeruginosa infection. Next, one of the most susceptible and resistant mouse strains were characterized for their deviant clinical and immunological phenotype by scoring bacterial count, cell-mediated immunity, cytokines and chemokines profile and lung pathology in an early time course. Susceptible A/J mice showed significantly higher bacterial burden, higher cytokines and chemokines levels but lower leukocyte recruitment, particularly neutrophils, when compared to C3H/HeOuJ resistant mice. Pathologic scores showed lower inflammatory severity, reduced intraluminal and interstitial inflammation extent, bronchial and parenchymal involvement and diminished alveolar damage in the lungs of A/J when compared to C3H/HeOuJ. Our findings indicate that during an early phase of infection a prompt inflammatory response in the airways set the conditions for a non-permissive environment to P. aeruginosa replication and lock the spread to other organs. Host gene(s may have a role in the reduction of cell-mediated immunity playing a critical role in

  3. Host genetic background influences the response to the opportunistic Pseudomonas aeruginosa infection altering cell-mediated immunity and bacterial replication.

    Science.gov (United States)

    De Simone, Maura; Spagnuolo, Lorenza; Lorè, Nicola Ivan; Rossi, Giacomo; Cigana, Cristina; De Fino, Ida; Iraqi, Fuad A; Bragonzi, Alessandra

    2014-01-01

    Pseudomonas aeruginosa is a common cause of healthcare-associated infections including pneumonia, bloodstream, urinary tract, and surgical site infections. The clinical outcome of P. aeruginosa infections may be extremely variable among individuals at risk and patients affected by cystic fibrosis. However, risk factors for P. aeruginosa infection remain largely unknown. To identify and track the host factors influencing P. aeruginosa lung infections, inbred immunocompetent mouse strains were screened in a pneumonia model system. A/J, BALB/cJ, BALB/cAnNCrl, BALB/cByJ, C3H/HeOuJ, C57BL/6J, C57BL/6NCrl, DBA/2J, and 129S2/SvPasCRL mice were infected with P. aeruginosa clinical strain and monitored for body weight and mortality up to seven days. The most deviant survival phenotypes were observed for A/J, 129S2/SvPasCRL and DBA/2J showing high susceptibility while BALB/cAnNCrl and C3H/HeOuJ showing more resistance to P. aeruginosa infection. Next, one of the most susceptible and resistant mouse strains were characterized for their deviant clinical and immunological phenotype by scoring bacterial count, cell-mediated immunity, cytokines and chemokines profile and lung pathology in an early time course. Susceptible A/J mice showed significantly higher bacterial burden, higher cytokines and chemokines levels but lower leukocyte recruitment, particularly neutrophils, when compared to C3H/HeOuJ resistant mice. Pathologic scores showed lower inflammatory severity, reduced intraluminal and interstitial inflammation extent, bronchial and parenchymal involvement and diminished alveolar damage in the lungs of A/J when compared to C3H/HeOuJ. Our findings indicate that during an early phase of infection a prompt inflammatory response in the airways set the conditions for a non-permissive environment to P. aeruginosa replication and lock the spread to other organs. Host gene(s) may have a role in the reduction of cell-mediated immunity playing a critical role in the control of P

  4. Genetic Immunity to AIDS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In an article on genetic immunity to AIDS published in Science magazine, American and Chinese scientists claim to have discovered why certain HIV carriers do not develop full-blown AIDS. They say that the key to this conundrum lies in a particular protein in the endocrine system that inhibits development of HIV.

  5. Feeding Glycyrrhiza glabra (liquorice) and Astragalus membranaceus (AM) alters innate immune and physiological responses in yellow perch (Perca flavescens).

    Science.gov (United States)

    Elabd, Hiam; Wang, Han-Ping; Shaheen, Adel; Yao, Hong; Abbass, Amany

    2016-07-01

    The current work assessed the potential immunomodulatory and growth-promoting effects of Astragalus membranaceus (AM) and Glycyrrhiza glabra (liquorice) in Yellow perch (Perca flavescens). In this regard, fish with an average weight of 31 ± 1.0 g were divided into five groups, and fed daily with an additive-free basal diet (control); 1, 2, and 3% (w/w) Glycyrrhiza glabra, and the fifth diet was incorporated with a combination of 1% G. glabra-AM for a four-week period. Immunological, biochemical and growth parameters were measured; and sub-groups of fish were exposed to 1-week starvation. The results showed that incorporating AM and liquorice in the diet significantly improved Immunological [superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), Lipid peroxidase (LPx) and lysozyme activities], biochemical [Aspartate Aminotransferase (AST) and Alanine Transaminase (ALT) activities; and glucose and cortisol concentrations] and growth performance parameters [body mass gain (BMG), specific growth rate (SGR), length, condition factor (K) and feed conversion ratio (FCR)]. In addition, markedly up-regulated the expression of related genes [Insulin-Like Growth Factor-1 (IGF-1), Serum amyloid A (SAA), Complement Component C3 (CCC3), Alpha 2 Macroglobulin (A2M), SOD and GPx] in treated fish groups compared to the control. Conclusively, feeding AM and liquorice diets significantly increased (P < 0.05) growth performance, antioxidant and immune response profiles throughout the entire experiment, suggesting their beneficial rule as natural anti-stress agents.

  6. Negative energy balance alters global gene expression and immune responses in the uterus of postpartum dairy cows.

    Science.gov (United States)

    Wathes, D Claire; Cheng, Zhangrui; Chowdhury, Waliul; Fenwick, Mark A; Fitzpatrick, Richard; Morris, Dermot G; Patton, Joe; Murphy, John J

    2009-09-01

    Most dairy cows suffer uterine microbial contamination postpartum. Persistent endometritis often develops, associated with reduced fertility. We used a model of differential feeding and milking regimes to produce cows in differing negative energy balance status in early lactation (mild or severe, MNEB or SNEB). Blood hematology was assessed preslaughter at 2 wk postpartum. RNA expression in endometrial samples was compared using bovine Affymetrix arrays. Data were mapped using Ingenuity Pathway Analysis. Circulating concentrations of IGF-I remained lower in the SNEB group, whereas blood nonesterified fatty acid and beta-hydroxybutyrate concentrations were raised. White blood cell count and lymphocyte number were reduced in SNEB cows. Array analysis of endometrial samples identified 274 differentially expressed probes representing 197 recognized genes between the energy balance groups. The main canonical pathways affected related to immunological and inflammatory disease and connective tissue disorders. Inflammatory response genes with major upregulation in SNEB cows included matrix metalloproteinases, chemokines, cytokines, and calgranulins. Expression of several interferon-inducible genes including ISG20, IFIH1, MX1, and MX2 were also significantly increased in the SNEB cows. These results provide evidence that cows in SNEB were still undergoing an active uterine inflammatory response 2 wk postpartum, whereas MNEB cows had more fully recovered from their energy deficit, with their endometrium reaching a more advanced stage of repair. SNEB may therefore prevent cows from mounting an effective immune response to the microbial challenge experienced after calving, prolonging the time required for uterine recovery and compromising subsequent fertility.

  7. [Is the immune system our sixth sense? Relation between the immune and neuroendocrine systems].

    Science.gov (United States)

    Ferencík, M; Stvrtinová, V

    1997-04-01

    recognition of the identity of ligands and receptors in the immune, nervous, and endocrine systems suggest a radically altered view of the immune systems impact on other tissues and organ systems, and vice versa. This will undoubtedly change our understanding of physiology, and consequently should profoundly impact the practice of medicine. (Tab. 5, Fig. 4, Ref. 85.)

  8. Direct and indirect endocrine disruption : aromatase and estrogen receptor-mediated processes in breast cancer development

    NARCIS (Netherlands)

    Heneweer, Marjoke

    2005-01-01

    Endocrine disrupting chemicals (EDCs) have been defined by the World Health Organization as: “exogenous substances or mixtures that alters function(s) of the endocrine system and causes adverse health effects in an intact organism, or its progeny, or (sub)populations”. Synthetic, as well as, natura

  9. ALTERATIONS IN THE MICROBIAL LOAD AT CERTAIN NON-SPECIFIC IMMUNE SITES OF MACROBRACHIUM ROSENBERGII SUPPLEMENTED WITH CENTELLA ASIATICA

    Directory of Open Access Journals (Sweden)

    JASMINE ANAND

    2013-01-01

    Full Text Available Macrobrachium rosenbergii has been the focus of research in India in the past few years. As a negative impact tothe success of aquaculture due to intensification lead to higher disease outbreaks. The bacterial diseases are themost common due to intensification. In the present study the Macrobrachium rosenbergii fed with diet containingmedicinal plant, Centella asiatica to test the antimicrobial activity. The prawns were fed with diet containingC.asiatica (0.2%. After 4 months both control and the experimental prawns were examined for microbial flora.Isolation and identification were also done. The investigation showed a significant reduction in the pathogenicbacteria and also found an improvement in the probiotic bacteria in prawns fed with experimental diet containingC.asiatica than the control diet. The % survival is 75% in medicated diet, but it is only 40% in control diet. Themedicated diet also showed improved growth parameters. The total microbial load at non-specific immune sites,such as gill, gut and exoskeleton of both control and medicated feed were examined after the experiment. Thetotal microbial load at gill, gut,exoskeleton were 41.00 x 105,50.00 x 106,30.00 x 106 respectively in control feed,but total microbial load at gill, gut, exoskeleton were 34.00 x 105, 28.00 x 106, 22.00 x 106 respectively inmedicated feed. Major pathogenic bacteria found in culture were Vibrio type I, Staphylococcus type III, Micrococcustype I, Strepto coccus I, Acinetobacter type I, Acinetobacter typeIII, Arthrobacter type I, Enterobacteriacea,Flavobacterium Vibrio type II, Strepto coccus II, Pseudomonas. After treating with medicated diet, diversity andintensity of microbial flora get reduced and culture of medicated diet also showed presence of probiotic bacteriasuch as Bacillus

  10. [Psychoneuroimmunology--regulation of immunity at the systemic level].

    Science.gov (United States)

    Boranić, Milivoj; Sabioncello, Ante; Gabrilovac, Jelka

    2008-01-01

    Innate and acquired immune reactions are controlled by their intrinsic regulatory mechanisms, ie. by an array of cytokines that mediate communication among cells of the immune system itself and with other cells and tissues, e. g. in areas of inflammation. In addition, the immune system is also subjected to systemic regulation by the vegetative and endocrine systems since immune cells express receptors for neurotransmitters and hormones. Neuroendocrine signals may enhance or suppress the immune reaction, accelerate or slow it, but do not affect specificity. Various stressful factors, including the psychosocial ones, affect immunity. In turn, cytokines generated by the immune system influence hormonal secretion and central nervous system, producing specific behavioral changes (the "sickness behavior") accompanying infectious and inflammatory diseases. That includes somnolence, loss of apetite, depression or anxiety and decrease of cognitive abilities, attention and memory. Local immune systems in skin and mucosa are also subjected to systemic neuroendocrine regulation and possess intrinsic neuroregulatory networks as well. These mechanisms render skin and respiratory and digestive tracts responsive to various forms of stress. Examples are neurodermitis, asthma and ulcerative colitis. In children, the immune and the neuroendocrine systems are still developing, particularly in fetal, neonatal and early infant periods, and exposure to stressful experiences at that time may result in late consequences in the form of deficient immunity or greater risks for allergic or autoimmune reactions. Recognition of the participation of neuroendocrine mechanisms in regulation of immunity helps us understand alterations and disturbances of immune reactions under the influence of stressful factors but so far has not produced reliable therapeutic implications. Psychosocial interventions involving the child and its family may be useful.

  11. Neuroendocrine targets of endocrine disruptors.

    Science.gov (United States)

    Gore, Andrea C

    2010-01-01

    The central neuroendocrine systems are responsible for the control of homeostatic processes in the body, including reproduction, growth, metabolism and energy balance, as well as stress responsiveness. These processes are initiated by signals in the central nervous system, specifically the hypothalamus, and are conveyed first by neural and then by endocrine effectors. The neuroendocrine systems, as the links between the brain and peripheral endocrine organs, play critical roles in the ability of an organism to respond to its environment under normal circumstances. When neuroendocrine homeostasis is disrupted by environmental endocrine-disrupting chemicals, a variety of perturbations can ensue, particularly when endocrine disruption occurs during critical developmental time periods. This article will discuss the evidence for environmental endocrine disruption of neuroendocrine systems and the effects on endocrine and reproductive functions.

  12. Dietary plant extracts alleviate diarrhea and alter immune responses of weaned pigs experimentally infected with a pathogenic Escherichia coli.

    Science.gov (United States)

    Liu, Y; Song, M; Che, T M; Almeida, J A S; Lee, J J; Bravo, D; Maddox, C W; Pettigrew, J E

    2013-11-01

    A study was conducted to evaluate the effects of 3 different plant extracts on diarrhea, immune response, intestinal morphology, and growth performance of weaned pigs experimentally infected with a pathogenic F-18 Escherichia coli (E. coli). Sixty-four weaned pigs (6.3±0.2 kg BW, and 21 d old) were housed in individual pens in disease containment chambers for 15 d: 4 d before and 11 d after the first inoculation (d 0). Treatments were in a 2×4 factorial arrangement: with or without an F-18 E. coli challenge (toxins: heat-labile toxin, heat-stable toxin b, and Shiga-like toxin 2; 10(10) cfu/3 mL oral dose; daily for 3 d from d 0) and 4 diets [a nursery basal diet (CON) or 10 ppm of capsicum oleoresin, garlic botanical, or turmeric oleoresin]. The growth performance was measured on d 0 to 5, 5 to 11, and 0 to 11. Diarrhea score (1, normal, to 5, watery diarrhea) was recorded for each pig daily. Frequency of diarrhea was the percentage of pig days with a diarrhea score of 3 or greater. Blood was collected on d 0, 5, and 11 to measure total and differential white blood cell counts and serum tumor necrosis factor (TNF)-α, IL-10, transforming growth factor (TGF)-β, C-reactive protein, and haptoglobin. On d 5 and 11, half of the pigs were euthanized to measure villi height and crypt depth of the small intestine and macrophage and neutrophil number in the ileum. The E. coli infection increased (Pdiarrhea score, frequency of diarrhea, white blood cell counts, serum TNF-α and haptoglobin, and ileal macrophages and neutrophils but reduced (Pdiarrhea score from d 0 to 2 and d 6 to 11 and frequency of diarrhea and decreased (Pdiarrhea score, frequency of diarrhea, and ileal macrophages compared with the CON. In conclusion, the 3 plant extracts tested reduced diarrhea and inflammation caused by E. coli infection, which may be beneficial to pig health.

  13. [Hypotension from endocrine origin].

    Science.gov (United States)

    Vantyghem, Marie-Christine; Douillard, Claire; Balavoine, Anne-Sophie

    2012-11-01

    Hypotension is defined by a low blood pressure either permanently or only in upright posture (orthostatic hypotension). In contrast to hypertension, there is no threshold defining hypotension. The occurrence of symptoms for systolic and diastolic measurements respectively below 90 and 60 mm Hg establishes the diagnosis. Every acute hypotensive event should suggest shock, adrenal failure or an iatrogenic cause. Chronic hypotension from endocrine origin may be linked to adrenal failure from adrenal or central origin, isolated hypoaldosteronism, pseudohypoaldosteronism, pheochromocytoma, neuro-endocrine tumors (carcinoïd syndrome) or diabetic dysautonomia. Hypotension related to hypoaldosteronism associates low blood sodium and above all high blood potassium levels. They are generally classified according to their primary (hyperreninism) or secondary (hyporeninism) adrenal origin. Isolated primary hypoaldosteronisms are rare in adults (intensive care unit, selective injury of the glomerulosa area) and in children (aldosterone synthase deficiency). Isolated secondary hypoaldosteronism is related to mellitus diabetes complicated with dysautonomia, kidney failure, age, iatrogenic factors, and HIV infections. In both cases, they can be associated to glucocorticoid insufficiency from primary adrenal origin (adrenal failure of various origins with hyperreninism, among which congenital 21 hydroxylase deficiency with salt loss) or from central origin (hypopituitarism with hypo-reninism). Pseudohypoaldosteronisms are linked to congenital (type 1 pseudohypoaldosteronism) or acquired states of resistance to aldosterone. Acquired salt losses from enteric (total colectomy with ileostomy) or renal (interstitial nephropathy, Bartter and Gitelman syndromes…) origin might be responsible for hypotension and are associated with hyperreninism-hyperaldosteronism. Hypotension is a rare manifestation of pheochromocytomas, especially during surgical removal when the patient has not been

  14. Endocrine disrupting compounds

    DEFF Research Database (Denmark)

    Bøgh, I B; Christensen, P; Dantzer, V

    2001-01-01

    With the growing concern that environmental chemicals might impair human and animal fertility, it is important to investigate the possible influence of these substances on sexual differentiation and genital development of mammals. Many of these substances are suspected to interfere with endocrine...... generations. Sows were treated daily from D 23 to 85 of pregnancy with either 0, 10 or 1000 micrograms OP/kg body weight. Treatment with OP extended pregnancy length and induced basal cell proliferation in the cervical epithelium of the parental generation. In F1 offspring of sows treated with the low dosage...

  15. Different distribution patterns of lymphocytes and microglia in the hippocampus of patients with residual versus paranoid schizophrenia: further evidence for disease course-related immune alterations?

    Science.gov (United States)

    Busse, Stefan; Busse, Mandy; Schiltz, Kolja; Bielau, Hendrik; Gos, Tomasz; Brisch, Ralf; Mawrin, Christian; Schmitt, Andrea; Jordan, Wolfgang; Müller, Ulf J; Bernstein, Hans-Gert; Bogerts, Bernhard; Steiner, Johann

    2012-11-01

    Certain cytokines have been identified in the peripheral blood as trait markers of schizophrenia, while others are considered relapse-related state markers. Furthermore, data from peripheral blood, cerebrospinal fluid (CSF) and nuclear imaging studies suggest that (1) blood-brain barrier (BBB) dysfunction (e.g., immigration of lymphocytes into brain tissue and intrathecal antibody production) correlates with the development of negative symptoms, while (2) the brain's mononuclear phagocyte system (microglial cells) is activated during acute psychosis. Based on these neuroinflammatory hypotheses, we have quantified the numerical density of immunostained CD3+ T-lymphocytes, CD20+ B-lymphocytes, and HLA-DR+ microglial cells in the posterior hippocampus of 17 schizophrenia patients and 11 matched controls. Disease course-related immune alterations were considered by a separate analysis of residual (prevailing negative symptoms, n=7) and paranoid (prominent positive symptoms, n=10) schizophrenia cases. Higher densities of CD3+ and CD20+ lymphocytes were observed in residual versus paranoid schizophrenia (CD 3: left: P=0.047, right: P=0.038; CD20: left: P=0.020, right: P=0.010) and controls (CD3: left: P=0.057, right: P=0.069; CD20: left: P=0.008, right: P=0.006). In contrast, HLA-DR+ microglia were increased in paranoid schizophrenia versus residual schizophrenia (left: P=0.030, right: P=0.012). A similar trend emerged when this group was compared to controls (left: P=0.090, right: P=0.090). BBB impairment and infiltration of T cells and B cells may contribute to the pathophysiology of residual schizophrenia, while microglial activation seems to play a role in paranoid schizophrenia. The identification of diverse immune endophenotypes may facilitate the development of distinct anti-inflammatory schizophrenia therapies to normalize BBB function, (auto)antibody production or microglial activity.

  16. Deoxynivalenol in chicken feed alters the vaccinal immune response and clinical biochemical serum parameters but not the intestinal and carcass characteristics.

    Science.gov (United States)

    Ghareeb, K; Awad, W A; Zebeli, Q; Böhm, J

    2016-02-01

    This study was conducted to investigate the impacts of deoxynivalenol (DON) feeding either alone or in combination with a microbial feed additive (MFA) on the immune response to a viral vaccine and serum clinical chemical parameters. Forty 1-day-old boiler chicks were weighed and randomly divided into four groups, 10 birds in each group: (i) control group fed with basal diet; (ii) DON group fed with basal diet artificially contaminated with 10 mg DON/kg feed; (iii) DON + MFA group fed with basal diet contaminated with 10 mg DON/kg feed and supplemented with 2.5 kg of MFA/ton feed; and (iv) MFA group fed with basal diet supplemented with 2.5 kg of MFA/ton feed. At 35 days of age, birds were slaughtered and blood was collected for investigating the antibody titre against infectious bronchitis virus (IBV) and clinical chemical parameters. The results showed that DON reduced (p = 0.032) the titre against IBV, decreased (p = 0.005) the level of alanine transaminase (ALT) (4.2 ± 0.5 U/l) compared with control birds (6.4 ± 0.5 U/l), increased (p = 0.002) the serum cholesterol concentration (144 ± 6 mg/dl) compared with their control counterparts (123 ± 5 mg/dl) and increased (p = 0.074) the amount of circulating triglycerides (62.25 ± 7.50 mg/dl) compared with controls (39.55 ± 4.74). These results indicate that dietary DON altered the humoral immune response to viral vaccine and affected the serum clinical biochemistry. However, DON in combination with MFA did not affect serum IBV titre. Taken together, DON in the feed of broilers produced an impairment of the success of IBV vaccine and affected the health of birds.

  17. Dietary β-glucan (MacroGard®) enhances survival of first feeding turbot (Scophthalmus maximus) larvae by altering immunity, metabolism and microbiota.

    Science.gov (United States)

    Miest, Joanna J; Arndt, Carmen; Adamek, Mikolaj; Steinhagen, Dieter; Reusch, Thorsten B H

    2016-01-01

    Reflecting the natural biology of mass spawning fish aquaculture production of fish larvae is often hampered by high and unpredictable mortality rates. The present study aimed to enhance larval performance and immunity via the oral administration of an immunomodulator, β-glucan (MacroGard(®)) in turbot (Scophthalmus maximus). Rotifers (Brachionus plicatilis) were incubated with or without yeast β-1,3/1,6-glucan in form of MacroGard(®) at a concentration of 0.5 g/L. Rotifers were fed to first feeding turbot larvae once a day. From day 13 dph onwards all tanks were additionally fed untreated Artemia sp. nauplii (1 nauplius ml/L). Daily mortality was monitored and larvae were sampled at 11 and 24 dph for expression of 30 genes, microbiota analysis, trypsin activity and size measurements. Along with the feeding of β-glucan daily mortality was significantly reduced by ca. 15% and an alteration of the larval microbiota was observed. At 11 dph gene expression of trypsin and chymotrypsin was elevated in the MacroGard(®) fed fish, which resulted in heightened tryptic enzyme activity. No effect on genes encoding antioxidative proteins was observed, whilst the immune response was clearly modulated by β-glucan. At 11 dph complement component c3 was elevated whilst cytokines, antimicrobial peptides, toll like receptor 3 and heat shock protein 70 were not affected. At the later time point (24 dph) an anti-inflammatory effect in form of a down-regulation of hsp 70, tnf-α and il-1β was observed. We conclude that the administration of MacroGard(®) induced an immunomodulatory response and could be used as an effective measure to increase survival in rearing of turbot.

  18. Common chromosomal fragile sites (CFS) may be involved in normal and traumatic cognitive stress memory consolidation and altered nervous system immunity.

    Science.gov (United States)

    Gericke, G S

    2010-05-01

    Previous reports of specific patterns of increased fragility at common chromosomal fragile sites (CFS) found in association with certain neurobehavioural disorders did not attract attention at the time due to a shift towards molecular approaches to delineate neuropsychiatric disorder candidate genes. Links with miRNA, altered methylation and the origin of copy number variation indicate that CFS region characteristics may be part of chromatinomic mechanisms that are increasingly linked with neuroplasticity and memory. Current reports of large-scale double-stranded DNA breaks in differentiating neurons and evidence of ongoing DNA demethylation of specific gene promoters in adult hippocampus may shed new light on the dynamic epigenetic changes that are increasingly appreciated as contributing to long-term memory consolidation. The expression of immune recombination activating genes in key stress-induced memory regions suggests the adoption by the brain of this ancient pattern recognition and memory system to establish a structural basis for long-term memory through controlled chromosomal breakage at highly specific genomic regions. It is furthermore considered that these mechanisms for management of epigenetic information related to stress memory could be linked, in some instances, with the transfer of the somatically acquired information to the germline. Here, rearranged sequences can be subjected to further selection and possible eventual retrotranscription to become part of the more stable coding machinery if proven to be crucial for survival and reproduction. While linkage of cognitive memory with stress and fear circuitry and memory establishment through structural DNA modification is proposed as a normal process, inappropriate activation of immune-like genomic rearrangement processes through traumatic stress memory may have the potential to lead to undesirable activation of neuro-inflammatory processes. These theories could have a significant impact on the

  19. Cognitive effects of endocrine-disrupting chemicals in animals.

    Science.gov (United States)

    Schantz, S L; Widholm, J J

    2001-12-01

    A large number of chemical pollutants including phthalates, alkylphenolic compounds, polychlorinated biphenyls and polychlorinated dibenzodioxins, organochlorine pesticides, bisphenol A, and metals including lead, mercury, and cadmium have the ability to disrupt endocrine function in animals. Some of these same chemicals have been shown to alter cognitive function in animals and humans. Because hormonally mediated events play a central role in central nervous system development and function, a number of researchers have speculated that the changes in cognitive function are mediated by the endocrine-like actions of these chemicals. In this paper we review the evidence that cognitive effects of chemicals classified as environmental endocrine disruptors are mediated by changes in hormonal function. We begin by briefly reviewing the role of gonadal steroids, thyroid hormones, and glucocorticoids in brain development and brain function. We then review the endocrine changes and cognitive effects that have been reported for selected endocrine-disrupting chemicals, discuss the evidence for causal relationships between endocrine disruption and cognitive effects, and suggest directions for future research.

  20. Two Virus Based Endocrine Disruptor Assays Effective Across Vertebrate Classes.

    Science.gov (United States)

    The presence of hormone mimics, or endocrine disrupting compounds (EDC’s), in the environment are increasing. Sources range from agricultural run–off, pharmaceuticals in waste water, to industrial operations. Current levels of contamination are sufficient to alter sexual develo...

  1. The impact of endocrine disruptors on endocrine targets.

    Science.gov (United States)

    Diamanti-Kandarakis, E; Palioura, E; Kandarakis, S A; Koutsilieris, M

    2010-07-01

    Endocrine disruption represents one of the most controversial environmental issues of our époque. So far, many substances, both natural and artificial, have been recognized to interfere with endocrine signaling pathways. In intact laboratory animals, this interaction has been documented to generate adverse health outcomes by impairing normal functions. With regard to humans, evidence is limited and inconsistent to clearly establish a causal inference, however, accumulating data incriminate endocrine disrupting chemicals to reproductive disorders and disturbed thyroid homeostasis. Recently, as a result of animal models and preliminary human studies, a new area of interest has arisen concerning the implication of endocrine disruptors in the etiology of obesity and diabetes, the two major, life-threatening, epidemics of modern world. This article reviews the evidence linking endocrine disrupting chemicals to a broad spectrum of clinical perturbations from reproduction and thyroid to metabolic regulation.

  2. Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation.

    Directory of Open Access Journals (Sweden)

    Adam D Cohen

    Full Text Available In vivo GITR ligation has previously been shown to augment T-cell-mediated anti-tumor immunity, yet the underlying mechanisms of this activity, particularly its in vivo effects on CD4+ foxp3+ regulatory T cells (Tregs, have not been fully elucidated. In order to translate this immunotherapeutic approach to the clinic it is important gain better understanding of its mechanism(s of action. Utilizing the agonist anti-GITR monoclonal antibody DTA-1, we found that in vivo GITR ligation modulates regulatory T cells (Tregs directly during induction of melanoma tumor immunity. As a monotherapy, DTA-1 induced regression of small established B16 melanoma tumors. Although DTA-1 did not alter systemic Treg frequencies nor abrogate the intrinsic suppressive activity of Tregs within the tumor-draining lymph node, intra-tumor Treg accumulation was significantly impaired. This resulted in a greater Teff:Treg ratio and enhanced tumor-specific CD8+ T-cell activity. The decreased intra-tumor Treg accumulation was due both to impaired infiltration, coupled with DTA-1-induced loss of foxp3 expression in intra-tumor Tregs. Histological analysis of B16 tumors grown in Foxp3-GFP mice showed that the majority of GFP+ cells had lost Foxp3 expression. These "unstable" Tregs were absent in IgG-treated tumors and in DTA-1 treated TDLN, demonstrating a tumor-specific effect. Impairment of Treg infiltration was lost if Tregs were GITR(-/-, and the protective effects of DTA-1 were reduced in reconstituted RAG1(-/- mice if either the Treg or Teff subset were GITR-negative and absent if both were negative. Our results demonstrate that DTA-1 modulates both Teffs and Tregs during effective tumor treatment. The data suggest that DTA-1 prevents intra-tumor Treg accumulation by altering their stability, and as a result of the loss of foxp3 expression, may modify their intra-tumor suppressive capacity. These findings provide further support for the continued development of agonist

  3. Health surveillance and endocrine disruptors

    Directory of Open Access Journals (Sweden)

    Waissmann William

    2002-01-01

    Full Text Available The author discusses the extreme relevance of research on the presence of endocrine disruptors (EDs in products of interest to health surveillance (HS. Focusing on EDs, the author highlights the urgency of changes already under way in the direction of HS. The shift should be from product and product-registration approaches to the productive process and its realization in consumption, generation of contaminants, and alterations in the health of workers and the overall population. He briefly describes: regulatory gaps for dealing with EDs; difficulty in evaluating risk and suspension of the production and use of products with its characteristics and the need, as exemplified by such products, to enhance the inter-relationship among all stakeholders and to turn HS into a state-of-the-art technological setting, associated with the academic community and accountable to the public. The author reports on measures already taken in relation to EDs, including the establishment of a reference laboratory for analyzing persistent organic pollutants (POPs, interruption of the use of various POPs in Brazil and an initial review of requirements for registering pesticides under the Brazilian National Health Surveillance Agency (ANVISA.

  4. Health surveillance and endocrine disruptors

    Directory of Open Access Journals (Sweden)

    William Waissmann

    2002-04-01

    Full Text Available The author discusses the extreme relevance of research on the presence of endocrine disruptors (EDs in products of interest to health surveillance (HS. Focusing on EDs, the author highlights the urgency of changes already under way in the direction of HS. The shift should be from product and product-registration approaches to the productive process and its realization in consumption, generation of contaminants, and alterations in the health of workers and the overall population. He briefly describes: regulatory gaps for dealing with EDs; difficulty in evaluating risk and suspension of the production and use of products with its characteristics and the need, as exemplified by such products, to enhance the inter-relationship among all stakeholders and to turn HS into a state-of-the-art technological setting, associated with the academic community and accountable to the public. The author reports on measures already taken in relation to EDs, including the establishment of a reference laboratory for analyzing persistent organic pollutants (POPs, interruption of the use of various POPs in Brazil and an initial review of requirements for registering pesticides under the Brazilian National Health Surveillance Agency (ANVISA.

  5. Genome-wide expression profiling deciphers host responses altered during dengue shock syndrome and reveals the role of innate immunity in severe dengue.

    Directory of Open Access Journals (Sweden)

    Stéphanie Devignot

    Full Text Available BACKGROUND: Deciphering host responses contributing to dengue shock syndrome (DSS, the life-threatening form of acute viral dengue infections, is required to improve both the differential prognosis and the treatments provided to DSS patients, a challenge for clinicians. METHODOLOGY/PRINCIPAL FINDINGS: Based on a prospective study, we analyzed the genome-wide expression profiles of whole blood cells from 48 matched Cambodian children: 19 progressed to DSS while 16 and 13 presented respectively classical dengue fever (DF or dengue hemorrhagic fever grades I/II (DHF. Using multi-way analysis of variance (ANOVA and adjustment of p-values to control the False Discovery Rate (FDR<10%, we identified a signature of 2959 genes differentiating DSS patients from both DF and DHF, and showed a strong association of this DSS-gene signature with the dengue disease phenotype. Using a combined approach to analyse the molecular patterns associated with the DSS-gene signature, we provide an integrative overview of the transcriptional responses altered in DSS children. In particular, we show that the transcriptome of DSS children blood cells is characterized by a decreased abundance of transcripts related to T and NK lymphocyte responses and by an increased abundance of anti-inflammatory and repair/remodeling transcripts. We also show that unexpected pro-inflammatory gene patterns at the interface between innate immunity, inflammation and host lipid metabolism, known to play pathogenic roles in acute and chronic inflammatory diseases associated with systemic vascular dysfunction, are transcriptionnally active in the blood cells of DSS children. CONCLUSIONS/SIGNIFICANCE: We provide a global while non exhaustive overview of the molecular mechanisms altered in of DSS children and suggest how they may interact to lead to final vascular homeostasis breakdown. We suggest that some mechanisms identified should be considered putative therapeutic targets or biomarkers of

  6. Predicting chemical impacts on vertebrate endocrine systems.

    Science.gov (United States)

    Nichols, John W; Breen, Miyuki; Denver, Robert J; Distefano, Joseph J; Edwards, Jeremy S; Hoke, Robert A; Volz, David C; Zhang, Xiaowei

    2011-01-01

    Animals have evolved diverse protective mechanisms for responding to toxic chemicals of both natural and anthropogenic origin. From a governmental regulatory perspective, these protective responses complicate efforts to establish acceptable levels of chemical exposure. To explore this issue, we considered vertebrate endocrine systems as potential targets for environmental contaminants. Using the hypothalamic-pituitary-thyroid (HPT), hypothalamic-pituitary-gonad (HPG), and hypothalamic-pituitary-adrenal (HPA) axes as case examples, we identified features of these systems that allow them to accommodate and recover from chemical insults. In doing so, a distinction was made between effects on adults and those on developing organisms. This distinction was required because endocrine system disruption in early life stages may alter development of organs and organ systems, resulting in permanent changes in phenotypic expression later in life. Risk assessments of chemicals that impact highly regulated systems must consider the dynamics of these systems in relation to complex environmental exposures. A largely unanswered question is whether successful accommodation to a toxic insult exerts a fitness cost on individual animals, resulting in adverse consequences for populations. Mechanistically based mathematical models of endocrine systems provide a means for better understanding accommodation and recovery. In the short term, these models can be used to design experiments and interpret study findings. Over the long term, a set of validated models could be used to extrapolate limited in vitro and in vivo testing data to a broader range of untested chemicals, species, and exposure scenarios. With appropriate modification, Tier 2 assays developed in support of the U.S. Environmental Protection Agency's Endocrine Disruptor Screening Program could be used to assess the potential for accommodation and recovery and inform the development of mechanistically based models.

  7. Changes in enteroendocrine and immune cells following colitis induction by TNBS in rats.

    Science.gov (United States)

    El-Salhy, Magdy; Hatlebakk, Jan Gunnar

    2016-12-01

    Approximately 3.6 million individuals suffer from inflammatory bowel disease (IBD) in the western world, with an annual global incidence rate of 3‑20 cases/100,000 individuals. The etiology of IBD is unknown, and the currently available treatment options are not satifactory for long‑term treatment. Patients with inflammatory bowel disease present with abnormalities in multiple intestinal endocrine cell types, and a number of studies have suggested that interactions between gut hormones and immune cells may serve a pivotal role in the pathophysiology of IBD. The aim of the present study was to investigate alterations in colonic endocrine cells in a rat model of IBD. A total of 30 male Wistar rats were divided into control and trinitrobenzene sulfonic acid (TNBS)‑induced colitis groups. Colonoscopies were performed in the control and TNBS groups at day 3 following the induction of colitis, and colonic tissues were collected from all animals. Colonic endocrine and immune cells in the obtained tissue samples were immunostained and their densities were quantified. The densities of chromogranin A, peptide YY, and pancreatic polypeptide‑producing cells were significantly lower in the TNBS group compared with the control group, whereas the densities of serotonin, oxyntomodulin, and somatostatin‑producing cells were significantly higher in the TNBS group. The densities of mucosal leukocytes, B/T‑lymphocytes, T‑lymphocytes, B‑lymphocytes, macrophages/monocytes and mast cells were significantly higher in the TNBS group compared with the controls, and these differences were strongly correlated with alterations in all endocrine cell types. In conclusion, the results suggest the presence of interactions between intestinal hormones and immune cells.

  8. Trauma and the endocrine system.

    Science.gov (United States)

    Mesquita, Joana; Varela, Ana; Medina, José Luís

    2010-12-01

    The endocrine system may be the target of different types of trauma with varied consequences. The present article discusses trauma of the hypothalamic-pituitary axes, adrenal glands, gonads, and pancreas. In addition to changes in circulating hormone levels due to direct injury to these structures, there may be an endocrine response in the context of the stress caused by the trauma.

  9. Endocrine disorders in mitochondrial disease.

    Science.gov (United States)

    Schaefer, Andrew M; Walker, Mark; Turnbull, Douglass M; Taylor, Robert W

    2013-10-15

    Endocrine dysfunction in mitochondrial disease is commonplace, but predominantly restricted to disease of the endocrine pancreas resulting in diabetes mellitus. Other endocrine manifestations occur, but are relatively rare by comparison. In mitochondrial disease, neuromuscular symptoms often dominate the clinical phenotype, but it is of paramount importance to appreciate the multi-system nature of the disease, of which endocrine dysfunction may be a part. The numerous phenotypes attributable to pathogenic mutations in both the mitochondrial (mtDNA) and nuclear DNA creates a complex and heterogeneous catalogue of disease which can be difficult to navigate for novices and experts alike. In this article we provide an overview of the endocrine disorders associated with mitochondrial disease, the way in which the underlying mitochondrial disorder influences the clinical presentation, and how these factors influence subsequent management.

  10. Il-6 Serum Levels and Production Is Related to an Altered Immune Response in Polycystic Ovary Syndrome Girls with Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Anna M. Fulghesu

    2011-01-01

    Full Text Available Polycystic ovarian syndrome (PCOS is frequently characterized by obesity and metabolic diseases including hypertension, insulin resistance, and diabetes in adulthood, all leading to an increased risk of atherosclerosis. The present study aimed to evaluate serum and production of inflammatory markers in adolescent Sardinian PCOS. On the basis of HOMA findings, patients were divided into noninsulin resistant (NIR and insulin resistant (IR, and were weight- and age-matched with healthy girls. Inflammatory cytokines (TNF-α, IL-6, Il-10, TGF-β and lipokines (leptin, adiponectin, the reactant hs-CRP, and in vitro inflammatory lympho-monocyte response to microbial stimulus were evaluated. In healthy and PCOS subjects, leptin and hs-CRP were correlated with BMI, whereas adiponectin was significantly reduced in all PCOS groups. Although cytokines were similar in all groups, Interleukin-6 (IL-6 was significantly higher in IR PCOS. Moreover, in the latter group lipopolysaccharide-activated monocytes secreted significantly higher levels of IL-6 compared to NIR and control subjects. To conclude, IR PCOS displayed increased IL-6 serum levels and higher secretion in LPS-activated monocytes, whilst revealing no differences for other inflammatory cytokines. These results suggest that in PCOS patients an altered immune response to inflammatory stimuli is present in IR, likely contributing towards determining onset of a low grade inflammation.

  11. Elucidating the links between endocrine disruptors and neurodevelopment.

    Science.gov (United States)

    Schug, Thaddeus T; Blawas, Ashley M; Gray, Kimberly; Heindel, Jerrold J; Lawler, Cindy P

    2015-06-01

    Recent data indicate that approximately 12% of children in the United States are affected by neurodevelopmental disorders, including attention deficit hyperactivity disorder, learning disorders, intellectual disabilities, and autism spectrum disorders. Accumulating evidence indicates a multifactorial etiology for these disorders, with social, physical, genetic susceptibility, nutritional factors, and chemical toxicants acting together to influence risk. Exposure to endocrine-disrupting chemicals during the early stages of life can disrupt normal patterns of development and thus alter brain function and disease susceptibility later in life. This article highlights research efforts and pinpoints approaches that could shed light on the possible associations between environmental chemicals that act on the endocrine system and compromised neurodevelopmental outcomes.

  12. [Acne vulgaris: endocrine aspects].

    Science.gov (United States)

    Dekkers, O M; Thio, B H; Romijn, J A; Smit, J W A

    2006-06-10

    Androgens play an important part in the development of acne vulgaris. Androgen levels in patients with acne are higher than those in controls and people with the androgen insensitivity syndrome do not develop acne. Local factors other than androgen plasma levels, also play a part in the development of acne. The skin contains enzymes that convert precursor hormones to the more potent androgens such as testosterone and dihydrotestosterone. Androgen synthesis can therefore be regulated locally. The effects of androgens on the skin are the result of circulating androgens and enzyme activity in local tissues and androgen receptors. Acne is a clinical manifestation of some endocrine diseases. The polycystic ovary syndrome has the highest prevalence. In women with acne that persists after puberty, in 10-200% of cases polycystic ovary syndrome is later diagnosed. The mechanism of hormonal anti-acne therapy may work by blocking the androgen-production (oestrogens) or by blocking the androgen receptor (cyproterone, spironolactone).

  13. Hypothalamic-endocrine aspects in Huntington's disease.

    Science.gov (United States)

    Petersén, Asa; Björkqvist, Maria

    2006-08-01

    Huntington's disease (HD) is a hereditary and fatal disorder caused by an expanded CAG triplet repeat in the HD gene, resulting in a mutant form of the protein huntingtin. Wild-type and mutant huntingtin are expressed in most tissues of the body but the normal function of huntingtin is not fully known. In HD, the neuropathology is characterized by intranuclear and cytoplasmic inclusions of huntingtin aggregates, and cell death primarily in striatum and cerebral cortex. However, hypothalamic atrophy occurs at early stages of HD with loss of orexin- and somatostatin-containing cell populations. Several symptoms of HD such as sleep disturbances, alterations in circadian rhythm, and weight loss may be due to hypothalamic dysfunction. Endocrine changes including increased cortisol levels, reduced testosterone levels and increased prevalence of diabetes are found in HD patients. In HD mice, alterations in the hypothalamic-pituitary-adrenal axis occurs as well as pancreatic beta-cell and adipocyte dysfunction. Increasing evidence points towards important pathology of the hypothalamus and the endocrine system in HD. As many neuroendocrine factors are secreted into the cerebrospinal fluid, blood and urine, it is possible that their levels may reflect the disease state in the central nervous system. Investigating neuroendocrine changes in HD opens up the possibility of finding biomarkers to evaluate future therapies for HD, as well as of identifying novel targets for therapeutic interventions.

  14. Corticotropin-releasing factor receptors and stress-related alterations of gut motor function.

    Science.gov (United States)

    Taché, Yvette; Bonaz, Bruno

    2007-01-01

    Over the past few decades, corticotropin-releasing factor (CRF) signaling pathways have been shown to be the main coordinators of the endocrine, behavioral, and immune responses to stress. Emerging evidence also links the activation of CRF receptors type 1 and type 2 with stress-related alterations of gut motor function. Here, we review the role of CRF receptors in both the brain and the gut as part of key mechanisms through which various stressors impact propulsive activity of the gastrointestinal system. We also examine how these mechanisms translate into the development of new approaches for irritable bowel syndrome, a multifactorial disorder for which stress has been implicated in the pathophysiology.

  15. A review on endocrine disruptors and their possible impacts on human health.

    Science.gov (United States)

    Kabir, Eva Rahman; Rahman, Monica Sharfin; Rahman, Imon

    2015-07-01

    Endocrine disruption is a named field of research which has been very active for over 10 years, although the effects of endocrine disruptors in wildlife have been studied mainly in vast since the 1940s. A large number of chemicals have been identified as endocrine disruptors and humans can be exposed to them either due to their occupations or through dietary and environmental exposure (water, soil and air). Endocrine disrupting chemicals are compounds that alter the normal functioning of the endocrine system of both humans and wildlife. In order to understand the vulnerability and risk factors of people due to endocrine disruptors as well as the remedies for these, methods need to be developed in order to predict effects on populations and communities from the knowledge of effects on individuals. For several years there have been a growing interest on the mechanism and effect of endocrine disruptors and their relation with environment and human health effect. This paper, based on extensive literature survey, briefly studies the progress mainly in human to provide information concerning causative substances, mechanism of action, ubiquity of effects and important issues related to endocrine disruptors. It also reviews the current knowledge of the potential impacts of endocrine disruptors on human health so that the effects can be known and remedies applied for the problem as soon as possible.

  16. Hormones in the city: endocrine ecology of urban birds.

    Science.gov (United States)

    Bonier, Frances

    2012-05-01

    Urbanization dramatically changes the landscape, presenting organisms with novel challenges and often leading to reduced species diversity. Urban ecologists have documented numerous biotic and abiotic consequences of urbanization, such as altered climate, species interactions, and community composition, but we lack an understanding of the mechanisms underlying organisms' responses to urbanization. Here, I review findings from the nascent field of study of the endocrine ecology of urban birds. Thus far, no clear or consistent patterns have been revealed, but we do have evidence that urban habitat can shape endocrine traits, and that those traits might contribute to adaptation to the urban environment. I suggest strong approaches for future work addressing exciting questions about the role of endocrine traits in mediating responses to urbanization within species across the globe.

  17. Carcinogenetic mechanisms of endocrine disruptors in female cancers (Review).

    Science.gov (United States)

    Del Pup, Lino; Mantovani, Alberto; Cavaliere, Carla; Facchini, Gaetano; Luce, Amalia; Sperlongano, Pasquale; Caraglia, Michele; Berretta, Massimiliano

    2016-08-01

    Endocrine disruptors (EDs) are pollutants that alter the endocrine system and are involved in carcinogenesis. EDs have multiple and complex levels of action. They can affect the synthesis, release and transport of natural hormones. In target tissues, EDs can reduce or increase the effects of natural hormones on their receptors and change signaling cascades. When ED exposure happens at critical periods of life, from embryo to puberty, they can act at doses considered safe for an adult. Furthermore, their epigenetic effects can also influence the cancer risk of future generations. The cancer mechanisms of known EDs are hereby reviewed, There are thousands of newly introduced substances whose potential endocrine-disrupting and cancer effects are completely unknown. Although there are still gaps in our knowledge, these data support the urgent need for health and environmental policies aimed at protecting the public and in particular, the developing fetus and women of reproductive age.

  18. Endocrine disrupters. The case of oestrogenic xenobiotics II: synthetic oestrogens

    Directory of Open Access Journals (Sweden)

    N. Olea Serrano

    2001-11-01

    Full Text Available In recent years, it has been demonstrated that endocrine systems of living beings can be altered by many chemical substances of anthropogenic origin, designated as endocrine disrupters. There are growing concerns about the number of these endocrine disrupters. It has not been possible to define a single chemical structure that allows the classification of a chemical compound as a mimic of female sex hormones, so that chemical structures similar to natural estrogens, based on cyclopentanoperhydrophenanthrene, share their hormonal effect with stilbenes, bisphenols, alkylphenols, dioxins, furans and parabenes. The recognition of estrogenic activity in different biological models has been used to update the list of xenoestrogens and reveal sources of human exposure that were previously unknown. New previously unsuspected chemical compounds have been added to the list, as well as their precursors, metabolites and degradation products, whose effects are only now beginning to be recognised.

  19. Altered immune responses in rhesus macaques co-infected with SIV and Plasmodium cynomolgi: an animal model for coincident AIDS and relapsing malaria.

    Directory of Open Access Journals (Sweden)

    Jeffrey W Koehler

    Full Text Available BACKGROUND: Dual epidemics of the malaria parasite Plasmodium and HIV-1 in sub-Saharan Africa and Asia present a significant risk for co-infection in these overlapping endemic regions. Recent studies of HIV/Plasmodium falciparum co-infection have reported significant interactions of these pathogens, including more rapid CD4+ T cell loss, increased viral load, increased immunosuppression, and increased episodes of clinical malaria. Here, we describe a novel rhesus macaque model for co-infection that supports and expands upon findings in human co-infection studies and can be used to identify interactions between these two pathogens. METHODOLOGY/PRINCIPAL FINDINGS: Five rhesus macaques were infected with P. cynomolgi and, following three parasite relapses, with SIV. Compared to macaques infected with SIV alone, co-infected animals had, as a group, decreased survival time and more rapid declines in markers for SIV progression, including peripheral CD4+ T cells and CD4+/CD8+ T cell ratios. The naïve CD4+ T cell pool of the co-infected animals was depleted more rapidly than animals infected with SIV alone. The co-infected animals also failed to generate proliferative responses to parasitemia by CD4+ and CD8+ T cells as well as B cells while also having a less robust anti-parasite and altered anti-SIV antibody response. CONCLUSIONS/SIGNIFICANCE: These data suggest that infection with both SIV and Plasmodium enhances SIV-induced disease progression and impairs the anti-Plasmodium immune response. These data support findings in HIV/Plasmodium co-infection studies. This animal model can be used to further define impacts of lentivirus and Plasmodium co-infection and guide public health and therapeutic interventions.

  20. 13种内分泌免疫指标水平与头发常见问题的相关性探讨%Study of the relationship between the level of thirteen kinds of endocrine-immune indicators and hair problems

    Institute of Scientific and Technical Information of China (English)

    杨帆; 步怀恩; 王邈; 薛丁文; 孟静岩

    2013-01-01

    目的:通过对天津市9-70岁身体健康的正常人群13种内分泌免疫指标水平与头发常见问题的关系分析,探讨其相关性及影响.方法:2010年-2011年对9-70岁身体健康的正常人头发常见问题出现情况进行横断面问卷调查,并取血检测13种指标数值.采用Spearman等级相关做为分析方法.结果:脱发与肾上腺素相关性Sig=0.043;头发稀疏与CD3+CD4相关性Sig=0.022;头发稀疏与NK细胞相关性Sig=0.013;头发干枯与多巴胺相关性Sig=0.044;头发干枯与白介素-1相关性结果Sig=0.010.以上Sig值均小于0.05.结论:脱发与肾上腺素有相关性;头发稀疏与CD3CD4、NK细胞具有相关性;头发干枯与多巴胺、白介素-1具有相关性.%Objective: From observing the changes of the level of thirteen kinds of endocrine and immune indicators from 9-70 years old of healthy population in the Tianjin city, analyzing the relationship between them. Methods: Surveying the cross-sectional questionnaire from the healthy population about the normal hair problems, and detecting the level of thirteen kinds of endocrine and immune indicators. By using Spearman as analysis method. Results: Hair loss and adrenaline correlation Sig=0.043; thinning hair and CD3+CD4 correlation Sig=0.022; thinning hair and NK cells correlation Sig=0.013; dry hair and dopamine correlation Sig=0.044; dry hair and IL-1 correlation Sig=0.010. The above Sig<0.05. Conclusion: Hair loss and the adrenaline thinning hair and CD3+CD4, NK cells has relevance; dry hair and dopamine, IL-1 has relevance.

  1. Endocrine disorders and the neurologic manifestations

    OpenAIRE

    Yu, Jeesuk

    2014-01-01

    The nervous system and the endocrine system are closely interrelated and both involved intimately in maintaining homeostasis. Endocrine dysfunctions may lead to various neurologic manifestations such as headache, myopathy, and acute encephalopathy including coma. It is important to recognize the neurologic signs and symptoms caused by the endocrine disorders while managing endocrine disorders. This article provides an overview of the neurologic manifestations found in various endocrine disord...

  2. Wilson's disease: An endocrine revelation

    Science.gov (United States)

    Kapoor, Nitin; Shetty, Sahana; Thomas, Nihal; Paul, Thomas Vizhalil

    2014-01-01

    Wilson's disease is an inherited disorder of copper metabolism. The affected patients, who otherwise have a near normal life span, may often suffer from some potentially treatable and under recognized endocrine disorders that may hinder their quality of life. We explored previously published literature on the various endocrine aspects of this disease with their probable underlying mechanisms, highlighting the universal need of research in this area. PMID:25364683

  3. Pathologic pancreatic endocrine cell hyperplasia

    Institute of Scientific and Technical Information of China (English)

    Debra Ouyang; Deepti Dhall; Run Yu

    2011-01-01

    Pathologic hyperplasia of various pancreatic endocrine cells is rare but has been long known. β cell hyperplasia contributes to persistent hyperinsulinemic hypoglycemia of infancy, which is commonly caused by mutations in the islet ATP-sensitive potassium channel, and to noninsulinoma pancreatogenous hypoglycemia in adults,which may or may not be associated with bariatric surgery.α cell hyperplasia may cause glucagonoma syndrome or induce pancreatic neuroendocrine tumors. An inactivating mutation of the glucagon receptor causes α cell hyperplasia and asymptomatic hyperglucagonemia.Pancreatic polypeptide cell hyperplasia has been described without a clearly-characterized clinical syndrome and hyperplasia of other endocrine cells inside the pancreas has not been reported to our knowledge.Based on morphological evidence, the main pathogenetic mechanism for pancreatic endocrine cell hyperplasia is increased endocrine cell neogenesis from exocrine ductal epithelium. Pancreatic endocrine cell hyperplasia should be considered in the diagnosis and management of hypoglycemia, elevated islet hormone levels,and pancreatic neuroendocrine tumors. Further studies of pathologic pancreatic endocrine cell hyperplasia will likely yield insights into the pathogenesis and treatment of diabetes and pancreatic neuroendocrine tumors.

  4. Environmental endocrine disruptors: Effects on the human male reproductive system.

    Science.gov (United States)

    Sweeney, M F; Hasan, N; Soto, A M; Sonnenschein, C

    2015-12-01

    Incidences of altered development and neoplasia of male reproductive organs have increased during the last 50 years, as shown by epidemiological data. These data are associated with the increased presence of environmental chemicals, specifically "endocrine disruptors," that interfere with normal hormonal action. Much research has gone into testing the effects of specific endocrine disrupting chemicals (EDCs) on the development of male reproductive organs and endocrine-related cancers in both in vitro and in vivo models. Efforts have been made to bridge the accruing laboratory findings with the epidemiological data to draw conclusions regarding the relationship between EDCs, altered development and carcinogenesis. The ability of EDCs to predispose target fetal and adult tissues to neoplastic transformation is best explained under the framework of the tissue organization field theory of carcinogenesis (TOFT), which posits that carcinogenesis is development gone awry. Here, we focus on the available evidence, from both empirical and epidemiological studies, regarding the effects of EDCs on male reproductive development and carcinogenesis of endocrine target tissues. We also critique current research methodology utilized in the investigation of EDCs effects and outline what could possibly be done to address these obstacles moving forward.

  5. Endocrine disorders and the neurologic manifestations.

    Science.gov (United States)

    Yu, Jeesuk

    2014-12-01

    The nervous system and the endocrine system are closely interrelated and both involved intimately in maintaining homeostasis. Endocrine dysfunctions may lead to various neurologic manifestations such as headache, myopathy, and acute encephalopathy including coma. It is important to recognize the neurologic signs and symptoms caused by the endocrine disorders while managing endocrine disorders. This article provides an overview of the neurologic manifestations found in various endocrine disorders that affect pediatric patients. It is valuable to think about 'endocrine disorder' as a cause of the neurologic manifestations. Early diagnosis and treatment of hormonal imbalance can rapidly relieve the neurologic symptoms. Better understanding of the interaction between the endocrine system and the nervous system, combined with the knowledge about the pathophysiology of the neurologic manifestations presented in the endocrine disorders might allow earlier diagnosis and better treatment of the endocrine disorders.

  6. Investigation of the Change of Nerve-Endocrine-Immune Network and Neural Stem Cells Based on Alzheimer's Disease%从老年性痴呆探讨神经-内分泌-免疫网络与神经干细胞之间的关系

    Institute of Scientific and Technical Information of China (English)

    颜靖文; 顾耘

    2012-01-01

    Through the objective disorder of the nerve - endocrine - immune( NEI) network in Alzheimer's disease and the experiment study of the neural stem cell transplantation in Alzheimer's disease, the change of NEI and neural stem cells were investigated. It is proposed the hypothesis that the relationship between NEI network and neural stem cells is like soil and seed - — NEI network imbalances affect the living environment of neural stem cells,changes in the environment may affect the proliferation and differentiation of neural stem cells.%通过老年性痴呆患者客观存在的神经-内分泌-免疫(NEI)网络的紊乱,以及神经干细胞移植在老年性痴呆方面的实验研究,探讨NEI与神经干细胞之间的关系,提出NEI网络与神经干细胞之间是“土壤”与“种子”的关系的假设,NEI网络的不平衡影响着神经干细胞的生存环境,环境的改变可能会影响神经干细胞的增殖分化.

  7. Treatment of alternated water-electrolyte balance and endocrine status after removal of craniopharyngioma in adults

    Institute of Scientific and Technical Information of China (English)

    WANG Lei; ZHAO Shang-feng; ZHANG Wei; ZHANG Mao-zhi

    2006-01-01

    Background Water-electrolyte disturbance and endocrine alterations are common complications of adult patients with craniopharygioma in the postoperative period and may affect their recovery and prognosis. Some of these complications even lead to death. Appropriate remedy based upon the status of water-electrolyte balance and the endocrine system is essential to good therapeutic results of adult patients with craniopharyngioma.Methods The alterations in water-electrolyte balance (117 patients) and endocrine status (42) of adult patients with craniopharyngioma after surgery were analyzed retrospectively.Results Most patients with craniopharyngioma experienced postoperative water-electrolyte disturbances and hypotonic dehydration. Moreover, the incidences of hypothyroidism and hypoadrenocorticism were relatively high.Conclusion It is critical to deal with dehydration and endocrine disorders for a sound outcome of craniopharyngioma surgery.

  8. Epigenetic transgenerational actions of endocrine disruptors and male fertility.

    Science.gov (United States)

    Anway, Matthew D; Cupp, Andrea S; Uzumcu, Mehmet; Skinner, Michael K

    2005-06-01

    Transgenerational effects of environmental toxins require either a chromosomal or epigenetic alteration in the germ line. Transient exposure of a gestating female rat during the period of gonadal sex determination to the endocrine disruptors vinclozolin (an antiandrogenic compound) or methoxychlor (an estrogenic compound) induced an adult phenotype in the F1 generation of decreased spermatogenic capacity (cell number and viability) and increased incidence of male infertility. These effects were transferred through the male germ line to nearly all males of all subsequent generations examined (that is, F1 to F4). The effects on reproduction correlate with altered DNA methylation patterns in the germ line. The ability of an environmental factor (for example, endocrine disruptor) to reprogram the germ line and to promote a transgenerational disease state has significant implications for evolutionary biology and disease etiology.

  9. Endocrine causes of secondary hypertension.

    Science.gov (United States)

    Sica, Domenic A

    2008-07-01

    Secondary hypertension is common in clinical practice if a broad definition is applied. Various patterns of hypertension exist in the patient with an endocrine source of their disease, including new-onset hypertension in a previously normotensive individual, a loss of blood pressure control in a patient with previously well-controlled blood pressure, and/or labile blood pressure in the setting of either of these 2 patterns. A thorough history and physical exam, which can rule out concomitant medications, alcohol intake, and over-the-counter medication use, is an important prerequisite to the workup for endocrine causes of hypertension. Endocrine forms of secondary hypertension, such as pheochromocytoma and Cushing's disease, are extremely uncommon. Conversely, primary aldosteronism now occurs with sufficient frequency so as to be considered "top of the list" for secondary endocrine causes in otherwise difficult-to-treat or resistant hypertension. Primary aldosteronism can be insidious in its presentation since a supposed hallmark finding, hypokalemia, may be variable in its presentation. It is important to identify secondary causes of hypertension that are endocrine in nature because surgical intervention may result in correction or substantial improvement of the hypertension.

  10. PET and endocrine tumors; TEP et tumeurs endocrines

    Energy Technology Data Exchange (ETDEWEB)

    Rigo, P.; Belhocine, T.; Hustinx, R.; Foidart-Willems, J. [Centre Hospitalier Universitaire de Liege, Service de Medecine Nucleaire et d' Hematologie (Belgium)

    2000-08-01

    The authors review the main indications of PET examination, and specifically of {sup 18}FDG, in the assessment of endocrine tumors: of the thyroid, of the parathyroid, of the adrenal and of the pituitary glands. Neuroendocrine tumors, gastro-entero-pancreatic or carcinoid tumors are also under the scope. Usually, the most differentiated tumors show only poor uptake of the FDG as they have a weak metabolic and proliferative activity. In the assessment of endocrine tumors, FDG-PET should be used only after most specific nuclear examinations been performed. (author)

  11. Risk assessment of 'endocrine substances': guidance on identifying endocrine disruptors.

    Science.gov (United States)

    Lewis, Richard W

    2013-12-16

    The European regulation on plant protection products (1107/2009) and other related legislation only support the marketing and use of chemical products on the basis that they do not induce endocrine disruption in humans or wildlife species. This legislation would appear to make the assumption that endocrine active chemicals should be managed differently from other chemicals presumably due to an assumed lack of a threshold for adverse effects. In the absence of agreed scientific criteria and guidance on how to identify and evaluate endocrine activity and disruption within these pieces of legislation, a European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) task force was formed to provide scientific criteria that may be used within the context of these three legislative documents. The first ECETOC technical report and associated workshop, held in 2009, presented a science-based concept on how to identify endocrine activity and disrupting properties of chemicals for both human health and the environment. Specific scientific criteria for the determination of endocrine activity and disrupting properties that integrate information from both regulatory toxicity studies and mechanistic/screening studies were proposed. These criteria combined the nature of the adverse effects detected in studies which give concern for endocrine toxicity with an understanding of the mode of action of toxicity so that adverse effects can be explained scientifically. A key element in the data evaluation is the consideration of all available information in a weight-of-evidence approach. Both sets of data (evidence of the adverse effect in apical studies and conclusive mode of action knowledge) are essential in order to correctly identify endocrine disruption according to accepted definitions. As the legislation seeks to regulate chemicals on a mode of action rather than the more traditional approach of adverse endpoints, then conclusive evidence of the mode of action of concern

  12. Biomarker Genes for Detecting Estrogenic Activity of Endocrine Disruptors via Estrogen Receptors

    OpenAIRE

    Hyun Yang; Eui-Bae Jeung; Kyung-Chul Choi; Beum-Soo An; Eui-Man Jung

    2012-01-01

    Endocrine disruptors (EDs) are compounds used in various industrial products, drugs, and cosmetics. They can be found in the environment and disturb the endocrine and reproductive systems, resulting in adverse effects to humans and wildlife such as birth defects and developmental disorders. Since several EDs have a structure similar to that of endogenous steroid hormones such as estrogens, they intend to have an affinity for steroid hormone receptors and alter hormone-mediated metabolism by b...

  13. Neuroendocrine and behavioral effects of embryonic exposure to endocrine disrupting chemicals in birds.

    Science.gov (United States)

    Ottinger, Mary Ann; Lavoie, Emma; Thompson, Nichola; Barton, Ashley; Whitehouse, Kasen; Barton, Meredith; Abdelnabi, Mahmoud; Quinn, Michael; Panzica, GianCarlo; Viglietti-Panzica, Carla

    2008-03-01

    Endocrine disrupting chemicals (EDCs) exert hormone-like activity in vertebrates and exposure to these compounds may induce both short- and long-term deleterious effects including functional alterations that contribute to decreased reproduction and fitness. An overview of the effects of a number of EDCs, including androgenic and estrogenic compounds, will be considered. Many studies have been conducted in the precocial Japanese quail, which provides an excellent avian model for testing these compounds. Long-term impacts have also been studied by raising a subset of animals through maturation. The EDCs examined included estradiol, androgen active compounds, soy phytoestrogens, and atrazine. Effects on behavior and hypothalamic neuroendocrine systems were examined. All EDCs impaired reproduction, regardless of potential mechanism of action. Male sexual behavior proved to be a sensitive index of EDC exposure and embryonic exposure to a variety of EDCs consistently resulted in impaired male sexual behavior. Several hypothalamic neural systems proved to be EDC responsive, including arginine vasotocin (VT), catecholamines, and gonadotropin releasing hormone system (GnRH-I). Finally, EDCs are known to impact both the immune and thyroid systems; these effects are significant for assessing the overall impact of EDCs on the fitness of avian populations. Therefore, exposure to EDCs during embryonic development has consequences beyond impaired function of the reproductive axis. In conclusion, behavioral alterations have the advantage of revealing both direct and indirect effects of exposure to an EDC and in some cases can provide a valuable clue into functional deficits at different physiological levels.

  14. Cognitive effects of endocrine-disrupting chemicals in animals.

    OpenAIRE

    Schantz, S L; Widholm, J J

    2001-01-01

    A large number of chemical pollutants including phthalates, alkylphenolic compounds, polychlorinated biphenyls and polychlorinated dibenzodioxins, organochlorine pesticides, bisphenol A, and metals including lead, mercury, and cadmium have the ability to disrupt endocrine function in animals. Some of these same chemicals have been shown to alter cognitive function in animals and humans. Because hormonally mediated events play a central role in central nervous system development and function, ...

  15. Clinical polymorphism of endocrine ophthalmopathy

    Directory of Open Access Journals (Sweden)

    V. G. Likhvantseva

    2014-07-01

    Full Text Available Purpose: to analyze clinical polymorphism of endocrine ophthalmopathy in patients with Graves’ disease.Methods: Clinical and radiological data of 18 cases with clinical manifestations of lacrimal gland increase were analyzed and compared with data retrieved from 50 patients without increasing of lacrimal gland.Results: the characteristics of clinical manifestations of endocrine ophthalmopathy with lacrimal gland increase were presented. this form differs, as the organ of the target, along with orbital fat and/or eye muscles becomes the glandula lacrimalis. A correlation between fact involving, on the one hand, and the intensity and severity of the autoimmune process in orbit, on the other hand were identified.Conclusion: Involvement of this secretion organ in the autoimmune process makes the clinical course of endocrine ophthalmopa-thy more complicated, and leads to eye dry syndrome creation.

  16. Clinical polymorphism of endocrine ophthalmopathy

    Directory of Open Access Journals (Sweden)

    V. G. Likhvantseva

    2012-01-01

    Full Text Available Purpose: to analyze clinical polymorphism of endocrine ophthalmopathy in patients with Graves’ disease.Methods: Clinical and radiological data of 18 cases with clinical manifestations of lacrimal gland increase were analyzed and compared with data retrieved from 50 patients without increasing of lacrimal gland.Results: the characteristics of clinical manifestations of endocrine ophthalmopathy with lacrimal gland increase were presented. this form differs, as the organ of the target, along with orbital fat and/or eye muscles becomes the glandula lacrimalis. A correlation between fact involving, on the one hand, and the intensity and severity of the autoimmune process in orbit, on the other hand were identified.Conclusion: Involvement of this secretion organ in the autoimmune process makes the clinical course of endocrine ophthalmopa-thy more complicated, and leads to eye dry syndrome creation.

  17. Humoral immune alterations caused by lead: studies on an adult toad model Alteraciones inmunes humorales causadas por plomo: estudios en un modelo de sapo adulto

    OpenAIRE

    2007-01-01

    There is evidence that environmental metal levels affect the immune function. In the particular case of the impact of heavy metals, information available suggests that the immune system is a target for low-dose Pb exposure. Among vertebrates it was shown that amphibians are capable of forming antibodies against a variety of antigens, causing several responses such as anaphylactic response and rejecting grafts. In this study, the production of antibodies was assessed against sheep red blood ce...

  18. Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio).

    Science.gov (United States)

    Jianjie, Chen; Wenjuan, Xue; Jinling, Cao; Jie, Song; Ruhui, Jia; Meiyan, Li

    2016-02-01

    Excessive fluoride in natural water ecosystem has the potential to detrimentally affect thyroid endocrine system, but little is known of such effects or underlying mechanisms in fish. In the present study, we evaluated the effects of fluoride on growth performance, thyroid histopathology, thyroid hormone levels, and gene expressions in the HPT axis in male zebrafish (Danio rerio) exposed to different determined concentrations of 0.1, 0.9, 2.0 and 4.1 M of fluoride to investigate the effects of fluoride on thyroid endocrine system and the potential toxic mechanisms caused by fluoride. The results indicated that the growth of the male zebrafish used in the experiments was significantly inhibited, the thyroid microtrastructure was changed, and the levels of T3 and T4 were disturbed in fluoride-exposed male fish. In addition, the expressional profiles of genes in HPT axis displayed alteration. The expressions of all studied genes were significantly increased in all fluoride-exposed male fish after exposure for 45 days. The transcriptional levels of corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroglobulin (TG), sodium iodide symporter (NIS), iodothyronine I (DIO1), and thyroid hormone receptor alpha (TRα) were also elevated in all fluoride-exposed male fish after 90 days of exposure, while the inconsistent expressions were found in the mRNA of iodothyronineⅡ (DIO2), UDP glucuronosyltransferase 1 family a, b (UGT1ab), transthyretin (TTR), and thyroid hormone receptor beta (TRβ). These results demonstrated that fluoride could notably inhibit the growth of zebrafish, and significantly affect thyroid endocrine system by changing the microtrastructure of thyroid, altering thyroid hormone levels and endocrine-related gene expressions in male zebrafish. All above indicated that fluoride could pose a great threat to thyroid endocrine system, thus detrimentally affected the normal function of thyroid of male zebrafish.

  19. Endocrine dysfunction in sepsis: a beneficial or deleterious host response?

    Science.gov (United States)

    Gheorghiţă, Valeriu; Barbu, Alina Elena; Gheorghiu, Monica Livia; Căruntu, Florin Alexandru

    2015-03-01

    Sepsis is a systemic, deleterious inflammatory host response triggered by an infective agent leading to severe sepsis, septic shock and multi-organ failure. The host response to infection involves a complex, organized and coherent interaction between immune, autonomic, neuroendocrine and behavioral systems. Recent data have confirmed that disturbances of the autonomic nervous and neuroendocrine systems could contribute to sepsis-induced organ dysfunction. Through this review, we aimed to summarize the current knowledge about the endocrine dysfunction as response to sepsis, specifically addressed to vasopressin, copeptin, cortisol, insulin and leptin. We searched the following readily accessible, clinically relevant databases: PubMed, UpToDate, BioMed Central. The immune system could be regarded as a "diffuse sensory organ" that signals the presence of pathogens to the brain through different pathways, such as the vagus nerve, endothelial activation/dysfunction, cytokines and neurotoxic mediators and the circumventricular organs, especially the neurohypophysis. The hormonal profile changes substantially as a consequence of inflammatory mediators and microorganism products leading to inappropriately low levels of vasopressin, sick euthyroid syndrome, reduced adrenal responsiveness to ACTH, insulin resistance, hyperglycemia as well as hyperleptinemia. In conclusion, clinical diagnosis of this "pan-endocrine illness" is frequently challenging due to the many limiting factors. The most important benefits of endocrine markers in the management of sepsis may be reflected by their potential to be used as biomarkers in different scoring systems to estimate the severity of the disease and the risk of death.

  20. Endocrine Disorders in Cystic Fibrosis.

    Science.gov (United States)

    Blackman, Scott M; Tangpricha, Vin

    2016-08-01

    Cystic fibrosis is frequently complicated by endocrine disorders. Diabetes can be expected to affect most with CF and pancreatic insufficiency and varies widely in age of onset, but early identification and treatment improve morbidity and mortality. Short stature can be exacerbated by relative delay of puberty and by use of inhaled corticosteroids. Bone disease in CF causes fragility fractures and should be assessed by monitoring bone mineral density and optimizing vitamin D status. Detecting and managing endocrine complications in CF can reduce morbidity and mortality in CF. These complications can be expected to become more common as the CF population ages.

  1. Endocrine hypertension in small animals.

    Science.gov (United States)

    Reusch, Claudia E; Schellenberg, Stefan; Wenger, Monique

    2010-03-01

    Hypertension is classified as idiopathic or secondary. In animals with idiopathic hypertension, persistently elevated blood pressure is not caused by an identifiable underlying or predisposing disease. Until recently, more than 95% of cases of hypertension in humans were diagnosed as idiopathic. New studies have shown, however, a much higher prevalence of secondary causes, such as primary hyperaldosteronism. In dogs and cats, secondary hypertension is the most prevalent form and is subclassified into renal and endocrine hypertension. This review focuses on the most common causes of endocrine hypertension in dogs and cats.

  2. Evasion and Immuno-Endocrine Regulation in Parasite Infection: Two Sides of the Same Coin in Chagas Disease?

    Science.gov (United States)

    Morrot, Alexandre; Villar, Silvina R.; González, Florencia B.; Pérez, Ana R.

    2016-01-01

    Chagas disease is a serious illness caused by the protozoan parasite Trypanosoma cruzi. Nearly 30% of chronically infected people develop cardiac, digestive, or mixed alterations, suggesting a broad range of host-parasite interactions that finally impact upon chronic disease outcome. The ability of T. cruzi to persist and cause pathology seems to depend on diverse factors like T. cruzi strains, the infective load and the route of infection, presence of virulence factors, the parasite capacity to avoid protective immune response, the strength and type of host defense mechanisms and the genetic background of the host. The host-parasite interaction is subject to a constant neuro-endocrine regulation that is thought to influence the adaptive immune system, and as the infection proceeds it can lead to a broad range of outcomes, ranging from pathogen elimination to its continued persistence in the host. In this context, T. cruzi evasion strategies and host defense mechanisms can be envisioned as two sides of the same coin, influencing parasite persistence and different outcomes observed in Chagas disease. Understanding how T. cruzi evade host's innate and adaptive immune response will provide important clues to better dissect mechanisms underlying the pathophysiology of Chagas disease. PMID:27242726

  3. Bariatric Surgery and the Endocrine System

    Science.gov (United States)

    ... Surgery and the Endocrine System Fact Sheet Bariatric Surgery and the Endocrine System February, 2012 Download PDFs ... Morton, MD Marzieh Salehi, MD What is bariatric surgery? Bariatric surgery helps people who are very obese ...

  4. Immune-driven adaptation of hepatitis B virus genotype D involves preferential alteration in B-cell epitopes and replicative attenuation--an insight from human immunodeficiency virus/hepatitis B virus coinfection.

    Science.gov (United States)

    Mondal, R K; Khatun, M; Ghosh, S; Banerjee, P; Datta, S; Sarkar, S; Saha, B; Santra, A; Banerjee, S; Chowdhury, A; Datta, S

    2015-07-01

    An important driving force behind the sequence diversity of hepatitis B virus (HBV) is viral adaptation to host immune responses. To gain an insight into the impact of host immunity on genetic diversification and properties of HBV, we characterized HBV of genotype D from treatment-naive hepatitis B e antigen-positive (EP) and hepatitis B e antigen-negative (EN) patients with chronic hepatitis B (CHB), where HBV is under stronger immune pressure, with that of HBV derived from human immunodeficiency virus (HIV)/HBV-coinfected individuals, where HIV infection has significantly weakened the immune system. Full-length sequence analysis showed that HBV heterogeneity was most extensive in EN-CHB followed by EP-CHB and HIV/HBV coinfection. The relative magnitude of non-synonymous changes within B-cell epitopes was greater than that in T-cell epitopes of HBV open reading frames (ORFs) in both EP-CHB and EN-CHB. Nine amino acid substitutions were identified in B-cell epitopes and one in a T-cell epitope of HBV in EN-CHB, most of which resulted in altered hydrophobicities, as determined using the Kyte and Doolittle method, relative to wild-type residues found in HBV from the HIV-positive group. Additionally, 19 substitutions occurred at significantly higher frequencies in non-epitope regions of HBV ORF-P in EN-CHB than HIV/HBV-coinfected patients. In vitro replication assay demonstrated that the substitutions, particularly in reverse transcriptase and RNaseH domains of ORF-P, resulted in a decline in replication capacity of HBV. Hence, our results indicate that HBV adapts to increasing immune pressure through preferential mutations in B-cell epitopes and by replicative attenuation. The viral epitopes linked to immune response identified in this study bear important implications for future HBV vaccine studies.

  5. Brain death in ICU patients: Clinical significance of endocrine changes

    Directory of Open Access Journals (Sweden)

    Sukhminder Jit Singh Bajwa

    2014-01-01

    Full Text Available Numerous studies have been carried out among patients admitted in intensive care unit (ICU having primary endocrine pathology, endocrine manifestations of systemic diseases or post-endocrine tissue surgery. However, minimal literary evidence is available highlighting the endocrine changes occurring during brain death in critically ill patients. A precise and timely diagnosis of brain death is required to convey the relatives about the prognosis and also to possibly plan for organ retrieval for transplantation purposes. The diagnosis of this condition as of today remains largely a clinical one. Brain death is associated with a multitude of endocrinological alterations which are yet to be completely unraveled and understood. Evaluating these endocrinological modifications lends us an added vista to add to the existing clinical parameters which might help us to confirm the diagnosis of brain death with a higher degree of precision. Moreover, since the efficacy of hormone replacement therapy to benefit in organ retrieval remains yet unproven, newer diagnostic modalities and research studies are definitely called for to strategize the optimal dosage and duration of such therapies.

  6. The endocrine manifestations of anorexia nervosa: mechanisms and management.

    Science.gov (United States)

    Schorr, Melanie; Miller, Karen K

    2017-03-01

    Anorexia nervosa is a psychiatric disorder characterized by altered body image, persistent food restriction and low body weight, and is associated with global endocrine dysregulation in both adolescent girls and women. Dysfunction of the hypothalamic-pituitary axis includes hypogonadotropic hypogonadism with relative oestrogen and androgen deficiency, growth hormone resistance, hypercortisolaemia, non-thyroidal illness syndrome, hyponatraemia and hypooxytocinaemia. Serum levels of leptin, an anorexigenic adipokine, are suppressed and levels of ghrelin, an orexigenic gut peptide, are elevated in women with anorexia nervosa; however, levels of peptide YY, an anorexigenic gut peptide, are paradoxically elevated. Although most, but not all, of these endocrine disturbances are adaptive to the low energy state of chronic starvation and reverse with treatment of the eating disorder, many contribute to impaired skeletal integrity, as well as neuropsychiatric comorbidities, in individuals with anorexia nervosa. Although 5-15% of patients with anorexia nervosa are men, only limited data exist regarding the endocrine impact of the disease in adolescent boys and men. Further research is needed to understand the endocrine determinants of bone loss and neuropsychiatric comorbidities in anorexia nervosa in both women and men, as well as to formulate optimal treatment strategies.

  7. Exposure to environmental endocrine disrupting compounds and men's health.

    Science.gov (United States)

    Meeker, John D

    2010-07-01

    Human exposure to environmental endocrine disrupting compounds (EDCs) have received increased attention in recent years due to the documentation of widespread exposure to a number of EDCs among the general population, experimental data demonstrating endocrine-related effects on reproduction, development, metabolism, and cancer, and observations for increasing trends (as well as geographic trends) in endocrine-related disorders among populations. However, human studies of exposure to most environmental EDCs in relation to adverse health outcomes remain limited. This review focuses on the human data generated to date on the relationship between exposures to environmental EDCs and men's health. The agents discussed here, which include polychlorinated biphenyls (PCBs), pesticides, phthalates, bisphenol A (BPA), and polybrominated diphenyl ethers (PBDEs), were chosen based on their exposure prevalence and the presence of existing human data in studies of male reproductive health, altered reproductive and thyroid hormone levels, diabetes and/or metabolic syndrome, and endocrine-related cancers. Taken together, the epidemiologic data on the environmental EDCs suggest that there may be associations between exposure and adverse health outcomes in men. However, the limited human data, and in many instances inconsistent data across studies, highlight the need for further research on these chemicals. Future longitudinal molecular epidemiology studies with appropriately designed exposure assessments are needed to determine potential causal relationships, to identify the most important time windows/life stages of exposure, and to define individual susceptibility factors for adverse effects on men's health in response to exposure.

  8. Endocrine cells producing regulatory peptides.

    Science.gov (United States)

    Solcia, E; Usellini, L; Buffa, R; Rindi, G; Villani, L; Zampatti, C; Silini, E

    1987-07-15

    Recent data on the immunolocalization of regulatory peptides and related propeptide sequences in endocrine cells and tumors of the gastrointestinal tract, pancreas, lung, thyroid, pituitary (ACTH and opioids), adrenals and paraganglia have been revised and discussed. Gastrin, xenopsin, cholecystokinin (CCK), somatostatin, motilin, secretin, GIP (gastric inhibitory polypeptide), neurotensin, glicentin/glucagon-37 and PYY (peptide tyrosine tyrosine) are the main products of gastrointestinal endocrine cells; glucagon, CRF (corticotropin releasing factor), somatostatin, PP (pancreatic polypeptide) and GRF (growth hormone releasing factor), in addition to insulin, are produced in pancreatic islet cells; bombesin-related peptides are the main markers of pulmonary endocrine cells; calcitonin and CGRP (calcitonin gene-related peptide) occur in thyroid and extrathyroid C cells; ACTH and endorphins in anterior and intermediate lobe pituitary cells, alpha-MSH and CLIP (corticotropin-like intermediate lobe peptide) in intermediate lobe cells; met- and leu-enkephalins and related peptides in adrenal medullary and paraganglionic cells as well as in some gut (enterochromaffin) cells; NPY (neuropeptide Y) in adrenaline-type adrenal medullary cells, etc.. Both tissue-appropriate and tissue-inappropriate regulatory peptides are produced by endocrine tumours, with inappropriate peptides mostly produced by malignant tumours.

  9. The Vitamin D Endocrine System.

    Science.gov (United States)

    Norman, Anthony W.

    1985-01-01

    Discusses the physiology and biochemistry of the vitamin D endocrine system, including role of biological calcium and phosphorus, vitamin D metabolism, and related diseases. A 10-item, multiple-choice test which can be used to obtain continuing medical education credit is included. (JN)

  10. [Environmental contaminants and endocrine disruptors].

    Science.gov (United States)

    Fontenele, Eveline Gadelha Pereira; Martins, Manoel Ricardo Alves; Quidute, Ana Rosa Pinto; Montenegro, Renan Magalhães

    2010-02-01

    The toxicity of various pollutants has been routinely investigated according to their teratogenic and carcinogenic effects. In the last few decades, however, many of such pollutants have been shown to adversely affect the endocrine system of human beings and other species. Currently, more than eleven million chemical substances are known in the world, and approximately 3,000 are produced on a large scale. Numerous chemical composites of domestic, industrial and agricultural use have been shown to influence hormonal activity. Examples of such chemical products with estrogenic activity are substances used in cosmetics, anabolizing substances for animal feeding, phytoestrogens and persistent organic pollutants (POPs). These agents are seen in residential, industrial and urban sewerage system effluents and represent an important source of environmental contamination. The International Programme on Chemical Safety (IPCS) defines as endocrine disruptors substances or mixtures seen in the environment capable of interfering with endocrine system functions resulting in adverse effects in an intact organism or its offspring. In this article the authors present a current literature review about the role of these pollutants in endocrine and metabolic diseases, probable mechanisms of action, and suggest paths of investigation and possible strategies for prevention and reduction of its possible damages.

  11. Surgical treatment of pancreatic endocrine tumors in multiple endocrine neoplasia type 1

    Directory of Open Access Journals (Sweden)

    Marcel Cerqueira Cesar Machado

    Full Text Available Surgical approaches to pancreatic endocrine tumors associated with multiple endocrine neoplasia type 1 may differ greatly from those applied to sporadic pancreatic endocrine tumors. Presurgical diagnosis of multiple endocrine neoplasia type 1 is therefore crucial to plan a proper intervention. Of note, hyperparathyroidism/multiple endocrine neoplasia type 1 should be surgically treated before pancreatic endocrine tumors/multiple endocrine neoplasia type 1 resection, apart from insulinoma. Non-functioning pancreatic endocrine tumors/multiple endocrine neoplasia type 1 >1 cm have a high risk of malignancy and should be treated by a pancreatic resection associated with lymphadenectomy. The vast majority of patients with gastrinoma/multiple endocrine neoplasia type 1 present with tumor lesions at the duodenum, so the surgery of choice is subtotal or total pancreatoduodenectomy followed by regional lymphadenectomy. The usual surgical treatment for insulinoma/multiple endocrine neoplasia type 1 is distal pancreatectomy up to the mesenteric vein with or without spleen preservation, associated with enucleation of tumor lesions in the pancreatic head. Surgical procedures for glucagonomas, somatostatinomas, and vipomas/ multiple endocrine neoplasia type 1 are similar to those applied to sporadic pancreatic endocrine tumors. Some of these surgical strategies for pancreatic endocrine tumors/multiple endocrine neoplasia type 1 still remain controversial as to their proper extension and timing. Furthermore, surgical resection of single hepatic metastasis secondary to pancreatic endocrine tumors/multiple endocrine neoplasia type 1 may be curative and even in multiple liver metastases surgical resection is possible. Hepatic trans-arterial chemo-embolization is usually associated with surgical resection. Liver transplantation may be needed for select cases. Finally, pre-surgical clinical and genetic diagnosis of multiple endocrine neoplasia type 1 syndrome and

  12. The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease.

    Science.gov (United States)

    Worthington, John J

    2015-08-01

    The intestinal epithelium represents one of our most important interfaces with the external environment. It must remain tightly balanced to allow nutrient absorption, but maintain barrier function and immune homoeostasis, a failure of which results in chronic infection or debilitating inflammatory bowel disease (IBD). The intestinal epithelium mainly consists of absorptive enterocytes and secretory goblet and Paneth cells and has recently come to light as being an essential modulator of immunity as opposed to a simple passive barrier. Each epithelial sub-type can produce specific immune modulating factors, driving innate immunity to pathogens as well as preventing autoimmunity. The enteroendocrine cells comprise just 1% of this epithelium, but collectively form the bodies' largest endocrine system. The mechanisms of enteroendocrine cell peptide secretion during feeding, metabolism and nutrient absorption are well studied; but their potential interactions with the enriched numbers of surrounding immune cells remain largely unexplored. This review focuses on alterations in enteroendocrine cell number and peptide secretion during inflammation and disease, highlighting the few in depth studies which have attempted to dissect the immune driven mechanisms that drive these phenomena. Moreover, the emerging potential of enteroendocrine cells acting as innate sensors of intestinal perturbation and secreting peptides to directly orchestrate immune cell function will be proposed. In summary, the data generated from these studies have begun to unravel a complex cross-talk between immune and enteroendocrine cells, highlighting the emerging immunoendocrine axis as a potential target for therapeutic strategies for infections and inflammatory disorders of the intestine.

  13. Developing brain as an endocrine organ: a paradoxical reality.

    Science.gov (United States)

    Ugrumov, M V

    2010-06-01

    The maintaining of homeostasis in the organism in response to a variable environment is provided by the highly hierarchic neuroendocrine-immune system. The crucial component of this system is the hypothalamus providing the endocrine regulation of key peripheral organs, and the adenohypophysis. In this case, neuron-derived signaling molecules (SM) are delivered to the blood vessels in hypothalamic "neurohaemal organs" lacking the blood-brain barrier (BBB), the posterior lobe of the pituitary and the median eminence. The release of SM to the blood vessels in most other brain regions is prohibited by BBB. According to the conventional concept, the development of the neuroendocrine system in ontogenesis begins with the "maturation" of peripheral endocrine glands which first are self-governed and then operate under the adenohypophysial control. Meantime, the brain maturation is under the control of SM secreted by endocrine glands of the developing organism and coming from the placenta and maternal organism. The hypothalamus is involved in the neuroendocrine regulation only after its full maturation that is followed by the conversion of the opened-looped neuroendocrine system to the closed-looped system as in adulthood. Neurons of the developing brain begin to secrete SM shortly after their origin and long before the establishment of specific interneuronal relations providing initially autocrine and paracrine morphogenetic influence on differentiating target neurons. Taking into account that the brain lacks BBB over this ontogenetic period, we hypothesized that it operates as the multipotent endocrine gland secreting SM to the general circulation and thereby providing the endocrine regulation of peripheral organs and the brain. The term "multipotent" means that the spectrum of the brain-derived circulating SM and their occupancy at the periphery in the developing organism should greatly exceed those in adulthood. In order to test this hypothesis, gonadotropin

  14. Moderate alcohol consumption alters both leucocyte gene expression profiles and circulating proteins related to immune response and lipid metabolism in men

    NARCIS (Netherlands)

    Joosten, M.M.; Erk, van M.J.; Pellis, E.P.M.; Witkamp, R.F.; Hendriks, H.F.J.

    2012-01-01

    Moderate alcohol consumption has various effects on immune and inflammatory processes, which could accumulatively modulate chronic disease risk. So far, no comprehensive, integrative profiling has been performed to investigate the effects of longer-term alcohol consumption. Therefore, we studied the

  15. An approach to the identification and regulation of endocrine disrupting pesticides.

    Science.gov (United States)

    Ewence, Annette; Brescia, Susy; Johnson, Ian; Rumsby, Paul C

    2015-04-01

    Recent decades have seen an increasing interest in chemicals that interact with the endocrine system and have the potential to alter the normal function of this system in humans and wildlife. Chemicals that produce adverse effects caused by interaction with endocrine systems are termed Endocrine Disrupters (EDs). This interest has led regulatory authorities around the world (including the European Union) to consider whether potential endocrine disrupters should be identified and assessed for effects on human health and wildlife and what harmonised criteria could be used for such an assessment. This paper reviews the results of a study whereby toxicity data relating to human health effects of 98 pesticides were assessed for endocrine disruption potential using a number of criteria including the Specific Target Organ Toxicity for repeat exposure (STOT-RE) guidance values used in the European Classification, Labelling and Packaging (CLP) Regulation. Of the pesticides assessed, 27% required further information in order to make a more definitive assessment, 14% were considered to be endocrine disrupters, more or less likely to pose a risk, and 59% were considered not to be endocrine disrupters.

  16. Altered Immune Response of the Rice Frog Fejervarya limnocharis Living in Agricultural Area with Intensive Herbicide Utilization at Nan Province, Thailand

    Directory of Open Access Journals (Sweden)

    Khattapan Jantawongsri

    2015-01-01

    Full Text Available Herbicides (atrazine, glyphosate and paraquat have been intensively used in Nan Province for a long time. Prior observations indicated that herbicide contamination and adverse health effects were found on the rice frog Fejervarya limnocharis living in paddy fields at Nan Province. Contamination of herbicides may influence disease emergence by acting directly or indirectly upon the immune system of amphibian or by causing disruptions in homeostasis, it is thus interesting to investigate potential effects of herbicide contamination in Nan Province on immune responses of the rice frog living in agricultural areas. Frogs were caught from a paddy field with no history of herbicide utilization (reference site and a paddy field with intensive herbicide utilization (contaminated site during 2010-2011. After dissection, frog livers were fixed in 10% neutral buffer formalin, processed by paraffin method and stained with hematoxylin and eosin. Number of melanomacrophage and melanomacrophage center (MMC were counted under a light microscope and used as markers of non-specific immune response. It was found that there was no significant sex-related difference in these numbers. However, there were significant seasonal differences in these numbers in both reference and contaminated site frogs, suggesting that seasonal difference in herbicide usage tend to affect frog's immune system in agricultural areas. Furthermore, numbers of melanomacrophage and MMC in early wet, late wet and early dry periods were markedly higher in the contaminated site frogs compared to those of the reference site frogs. The observation on amphibian's immune response to environmental contaminants could indicate the impacts of herbicide utilization on other vertebrates, as well as its role in amphibian declines.

  17. Endocrine Regulation of T-cell Development and Peripheral T-cell Maturation

    NARCIS (Netherlands)

    K. van der Weerd (Kim)

    2013-01-01

    markdownabstract__Abstract__ During the last century a large number of studies have demonstrated that complex interplay exists between the immune and the neuro-endocrine systems. This interplay, via shared cytokines, hormones and their respective receptors and nervous innervations, results in a hig

  18. Embryonic exposure to butachlor in zebrafish (Danio rerio): endocrine disruption, developmental toxicity and immunotoxicity.

    Science.gov (United States)

    Tu, Wenqing; Niu, Lili; Liu, Weiping; Xu, Chao

    2013-03-01

    Butachlor is a chloroacetanilide herbicide widely employed in weeding important crops. Recently, the study of the possible toxic effects of butachlor in non-target organisms has increased substantially. However, the endocrine disruption, developmental toxicity and immunotoxicity effects of butachlor in fish have not been fully investigated in previous studies. In the present study, zebrafish embryos were exposed to a range of butachlor concentrations from 4 to 20 μM to evaluate the embryonic toxicity of butachlor until 84 hours postfertilization (hpf). The results demonstrated that butachlor was highly toxic to zebrafish embryos, hindering the hatching process, resulting in a series of malformations and followed by mortality. The malformations observed included pericardial edema (PE) and yolk sac edema (YSE), which showed concentration-dependent responses. The analysis of endocrine gene transcription indicated that butachlor significantly induced the expression of the estrogen-responsive gene Vtg1 but had no effect on the expression of the ERα gene. The innate immune system appeared to be another possible target of butachlor. At 72 hpf, butachlor significantly up-regulated the innate immune system-related genes, including IL-1β, CC-chem, CXCL-C1c and IL-8. These data suggest that butachlor causes developmental toxicity, endocrine disruption and immune toxicity in the zebrafish embryo. Bidirectional interactions between the endocrine system and the immune system might be present, and further studies are needed to determine these possible pathways.

  19. Pancreatic endocrine neoplasms: Epidemiology and prognosis of pancreatic endocrine tumors

    OpenAIRE

    2008-01-01

    Pancreatic endocrine neoplasms (PETs) are uncommon tumors with an annual incidence less than 1 per 100,000 persons per year in the general population. PETs that produce hormones resulting in symptoms are designated as functional. The majority of PETs are nonfunctional. Of the functional tumors, insulinomas are the most common, followed by gastrinomas. The clinical course of patients with PETs is variable and depends on the extent of the disease and the treatment rendered. Patients with comple...

  20. Human exposure to endocrine disruptors and breast milk.

    Science.gov (United States)

    Stefanidou, M; Maravelias, C; Spiliopoulou, C

    2009-09-01

    Endocrine system is one of the most sensitive communication networks of the human body which influences all aspects of human health and well-being, including reproductive potential, cognitive functions, thyroid and metabolism, digestion and hormonal balance. In recent years basic laboratory research has been focused on the potential relationship between environmental contaminants and cellular endocrine function. Environmental contaminants are ubiquitous in the environment, alter endocrine physiology and produce endocrine disruption without acting as classic toxicants. These endocrine disruptors (EDCs) are lipophilic and stored for long periods of time in the adipose tissue. Maternal exposure to EDCs during pregnancy and lactation has as a result the exposure of the fetus and neonate through placenta and breast milk. It has been recognized that human milk is the best natural food for neonates providing immunologic, developmental and practical advantages throughout childhood. However, contamination of human milk by the presence of environmental toxicants is widespread through the past decades due to inadequately controlled pollution. Persistent pesticides, chemical solvents and others tend to invade slowly the environment, to bioaccumulate in the food chain and to have long half-lives in animals and humans. During the past fifteen years, the scientific interest has been focused on xenoestrogens, i.e.,environmental chemicals with estrogen disrupting activity. Certain adverse health and reproductive outcomes are attributed to these chemicals in wildlife, in laboratory animals, as well as in humans. Although most toxic agents are hazardous in high doses, the human health risks associated with EDCs concern exposure to low doses. The human health risks that may be associated with these low-level but constant exposures are still largely unknown and highly controversial. In this paper, we review available data on environmental chemicals present in breast milk that may

  1. Endocrine Regulation of Compensatory Growth in Fish

    Directory of Open Access Journals (Sweden)

    Eugene T. Won

    2013-07-01

    Full Text Available Compensatory growth (CG is a period of accelerated growth that occurs following the alleviation of growth-stunting conditions during which an organism can make up for lost growth opportunity and potentially catch-up in size with non-stunted cohorts. Fish show a particularly robust capacity for the response and have been the focus of numerous studies that demonstrate their ability to compensate for periods of fasting once food is made available again. Compensatory growth is characterized by an elevated growth rate resulting from enhanced feed intake, mitogen production and feed conversion efficiency. Because little is known about the underlying mechanisms that drive the response, this review describes the sequential endocrine adaptations that lead to CG; namely during the precedent catabolic phase (fasting that taps endogenous energy reserves, and the following hyperanabolic phase (refeeding when accelerated growth occurs. In order to elicit a CG response, endogenous energy reserves must first be moderately depleted, which alters endocrine profiles that enhance appetite and growth potential. During this catabolic phase, elevated ghrelin and growth hormone (GH production increase appetite and protein-sparing lipolysis, while insulin-like growth factors (IGFs are suppressed, primarily due to hepatic GH resistance. During refeeding, temporal hyperphagia provides an influx of energy and metabolic substrates that are then allocated to somatic growth by resumed IGF signaling. Under the right conditions, refeeding results in hyperanabolism and a steepened growth trajectory relative to constantly fed controls. The response wanes as energy reserves are re-accumulated and homeostasis is restored. We ascribe possible roles for select appetite and growth-regulatory hormones in the context of these catabolic and hyperanabolic phases of the CG response in teleosts, with emphasis on GH, IGFs, cortisol, somatostatin, neuropeptide Y, ghrelin and leptin.

  2. Endocrine disrupting pesticides: implications for risk assessment.

    Science.gov (United States)

    McKinlay, R; Plant, J A; Bell, J N B; Voulvoulis, N

    2008-02-01

    Endocrine disrupting (ED) chemicals are compounds that alter the normal functioning of the endocrine system, potentially causing disease or deformity in organisms and their offspring. Pesticides are used widely to kill unwanted organisms in crops, public areas, homes and gardens and medicinally to kill parasites. Many are proven or suspected to be EDs. Ancient physiological similarities between different vertebrate groups suggest that disorders observed in wildlife may indicate risks to humans. This makes accurate risk assessment and effective legislation difficult. In this paper, the hazardous properties of pesticides which are known to have ED properties are reviewed in order to assess the implications for risk assessment. As well as data on sources of exposure in the United Kingdom (UK) an assessment of the evidence on the health effects of ED pesticides is also included. In total, 127 have been identified from the literature and their effects and modes of action are listed in this paper. Using the UK as a case study, the types and quantities of pesticides used, and their methods of application are assessed, along with their potential pathways to humans. In the UK reliable data are available only for agricultural use, so non-agricultural routes of pesticide exposure have been poorly quantified. The exposure of people resident in or visiting rural areas could also have been grossly under-estimated. Material links between ED pesticide use and specific illnesses or deformities are complicated by the multifactorial nature of disease, which can be affected by factors such as diet. Despite these difficulties, a large body of evidence has accumulated linking specific conditions to ED pesticides in wildlife and humans. A more precautionary approach to the use of ED pesticides, especially for non-essential purposes is proposed.

  3. Early and late endocrine effects in pediatric central nervous system diseases.

    Science.gov (United States)

    Aslan, Ivy R; Cheung, Clement C

    2014-01-01

    Endocrinopathies are frequently linked to central nervous system disease, both as early effects prior to the disease diagnosis and/or late effects after the disease has been treated. In particular, tumors and infiltrative diseases of the brain and pituitary, such as craniopharyngioma, optic pathway and hypothalamic gliomas, intracranial germ cell tumor, and Langerhans cell histiocytosis, can present with abnormal endocrine manifestations that precede the development of neurological symptoms. Early endocrine effects include diabetes insipidus, growth failure, obesity, and precocious or delayed puberty. With improving prognosis and treatment of childhood brain tumors, many survivors experience late endocrine effects related to medical and surgical interventions. Chemotherapeutic agents and radiation therapy can affect the hypothalamic-pituitary axes governing growth, thyroid, gonadal, and adrenal function. In addition, obesity and metabolic alterations are frequent late manifestations. Diagnosing and treating both early and late endocrine manifestations can dramatically improve the growth, well-being, and quality of life of patients with childhood central nervous system diseases.

  4. Effect of heat stress during late gestation on immune function and growth performance of calves: isolation of altered colostral and calf factors.

    Science.gov (United States)

    Monteiro, A P A; Tao, S; Thompson, I M; Dahl, G E

    2014-10-01

    Calves born to cows exposed to heat stress during the dry period and fed their dams' colostrum have compromised passive and cell-mediated immunity compared with calves born to cows cooled during heat stress. However, it is unknown if this compromised immune response is caused by calf or colostrum intrinsic factors. Two studies were designed to elucidate the effects of colostrum from those innate to the calf. The objective of the first study was to evaluate the effect of maternal heat stress during the dry period on calf-specific factors related to immune response and growth performance. Cows were dried off 46 d before expected calving and randomly assigned to 1 of 2 treatments: heat stress (HT; n=18) or cooling (CL; n=18). Cows of the CL group were housed with sprinklers, fans and shade, whereas cows of HT group had only shade. After calving, the cows were milked and their colostrum was frozen for the subsequent study. Colostrum from cows exposed to a thermoneutral environment during the dry period was pooled and stored frozen (-20 °C). Within 4h of birth, 3.8L of the pooled colostrum from thermoneutral cows was fed to calves born to both HT and CL cows. Day of birth was considered study d 0. All calves were exposed to the same management and weaned at d 49. Blood samples were collected before colostrum feeding, 24h after birth and twice weekly up to d 28. Total serum IgG concentrations were determined. Body weight was recorded at birth and at d 15, 30, 45, and 60. Relative to CL calves, HT calves were lighter at birth (38.3 vs. 43.1 kg), but no difference in weight gain was observed at d 60. Additionally, HT calves had lower apparent efficiency of IgG absorption (26.0 vs. 30.2%), but no differences were observed for total IgG concentration. The objective of the second study was to evaluate the isolated effect of the colostrum from HT cows on calf immune response and growth performance. The experimental design was identical to the first study, but all calves were

  5. Sympathetic and Catecholaminergic Alterations in Sleep Apnea with Particular Emphasis on Children.

    Directory of Open Access Journals (Sweden)

    Fahed eHakim

    2012-01-01

    Full Text Available Sleep is involved in the regulation of major organ functions in the human body, and disruption of sleep potentially can elicit organ dysfunction. Obstructive sleep apnea (OSA is the most prevalent sleep disorder of breathing in adults and children, and its manifestations reflect the interactions between intermittent hypoxia (IH, intermittent hypercapnia, increased intra-thoracic pressure swings, and sleep fragmentation, as elicited by the episodic changes in upper airway resistance during sleep. The sympathetic nervous system is an important modulator of the cardiovascular, immune, endocrine and metabolic systems, and alterations in autonomic activity may lead to metabolic imbalance and organ dysfunction. Here we review how OSA and its constitutive components can lead to perturbation of the autonomic nervous system in general, and to altered regulation of catecholamines, both of which then playing an important role in some of the mechanisms underlying OSA-induced morbidities.

  6. The role of psychoneuroendocrine factors on spaceflight-induced immunological alterations

    Science.gov (United States)

    Meehan, R.; Whitson, P.; Sams, C.

    1993-01-01

    This paper summarizes previous in-flight infections and novel conditions of spaceflight that may suppress immune function. Granulocytosis, monocytosis, and lymphopenia are routinely observed following short duration orbital flights. Subtle changes within the monocyte and T cell populations can also be noted by flow cytometric analysis. The similarity between the immunological changes observed after spaceflight and other diverse environmental stressors suggest that most of these alterations may be neuroendocrine-mediated. Available data support the hypothesis that spaceflight and other environmental stressors modulate normal immune regulation via stress hormones, other than exclusively glucocorticoids. It will be essential to simultaneously collect in-flight endocrine, immunologic, and infectious illness data to determine the clinical significance of these results. Additional research that delineates the neuroendocrine mechanisms of stress-induced changes in normal immune regulation will allow clinicians in the future to initiate prophylactic immunomodulator therapy to restore immune competence altered by the stress of long-duration spaceflight and therefore reduce morbidity from infectious illness, autoimmune disease, or malignancy.

  7. Endocrine and metabolic changes in payload specialist (L-1)

    Science.gov (United States)

    Matsui, Nobuo

    1993-01-01

    The endocrine system plays an important role in the adaptation to unusual environments by secreting hormones to control metabolism. Since human beings have long evolved on the surface of the Earth under a gravity environment, the weightless environment must be quite unusual for them. The purpose of this experiment is to study the mechanisms of human adaptation to a weightless environment from endocrine and metabolic changes. Our study plan is focused on four major physiological changes which were reported during past space flights or which may be expected to occur under that condition: (1) hormone and metabolic changes associated with fluid shift; (2) bone demineralization and muscle atrophy; (3) altered circadian rhythm; and (4) stress reaction during space flight.

  8. Polycystic ovary syndrome (PCOS) and endocrine disrupting chemicals (EDCs).

    Science.gov (United States)

    Palioura, Eleni; Diamanti-Kandarakis, Evanthia

    2015-12-01

    Polycystic ovary syndrome (PCOS) is a heterogeneous disorder of unclear etiopathogenesis that is likely to involve genetic and environmental components synergistically contributing to its phenotypic expression. Endocrine disrupting chemicals (EDCs) and in particular Bisphenol A (BPA) represent a group of widespread pollutants intensively investigated as possible environmental contributors to PCOS pathogenesis. Substantial evidence from in vitro and animal studies incriminates endocrine disruptors in the induction of reproductive and metabolic aberrations resembling PCOS characteristics. In humans, elevated BPA concentrations are observed in adolescents and adult PCOS women compared to reproductively healthy ones and are positively correlated with hyperandrogenemia, implying a potential role of the chemical in PCOS pathophysiology, although a causal interference cannot yet be established. It is plausible that developmental exposure to specific EDCs could permanently alter neuroendocrine, reproductive and metabolic regulation favoring PCOS development in genetically predisposed individuals or it could accelerate and/or exacerbate the natural course of the syndrome throughout life cycle exposure.

  9. Endocrine side effects of broad-acting kinase inhibitors.

    Science.gov (United States)

    Lodish, Maya B; Stratakis, Constantine A

    2010-09-01

    Targeted therapy in oncology consists of drugs that specifically interfere with abnormal signaling pathways that are dysregulated in cancer cells. Tyrosine kinase inhibitors (TKIs) take advantage of unique oncogenes that are activated in certain types of cancer, and also target common mechanisms of growth, invasion, metastasis, and angiogenesis. However, many kinase inhibitors for cancer therapy are somewhat nonselective, and most have additional mechanisms of action at the cellular level, which are not completely understood. The use of these agents has increased our knowledge of important side effects, of which the practicing clinician must be aware. Recently, proposed endocrine-related side effects of these agents include alterations in thyroid function, bone metabolism, linear growth, gonadal function, fetal development, and glucose metabolism, and adrenal function. This review summarizes the most recent data on the endocrine side effects of TKIs.

  10. Multiple endocrine neoplasia type 2.

    Science.gov (United States)

    Lodish, Maya

    2013-01-01

    Multiple endocrine neoplasia type 2 (MEN2) is an autosomal-dominant cancer syndrome characterized by variable penetrance of medullary thyroid carcinoma(MTC), pheochromocytoma (PHEO), and primary hyperparathyroidism (PHPT). MEN2 consists of two clinical subtypes, MEN2A and MEN2B. Familial medullary thyroid cancer is now viewed as a phenotypic variant of MEN2A with decreased penetrance for PHEO and PHPT rather than a distinct entity. All subtypes are caused by gain-of-function mutations of the RET proto-oncogene. Genotype-phenotype correlations exist that help predict the presence of other associated endocrine neoplasms as well as the timing of thyroid cancer development. Recognition of the clinical entity in individuals and families at risk of harboring a germline RET mutation is crucial for the management and prevention of associated malignancies. Recent guidelines released by the American Thyroid Association regarding the management of MTC will be summarized in this chapter.

  11. Endocrine ophthalmopathy and radioiodine therapy

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, F. Anders [Uppsala Univ. Hospital, Inst. of Medical Sciences (Sweden). Section of Endocrinology and Diabetes

    2006-12-15

    Endocrine ophthalmopathy is to some degree present in most patients with Graves' disease. In few cases, a severe form of the condition develops and in the majority of these cases, the course of the eye problems has been influenced by the treatment for thyrotoxicosis. In this regard, radioiodine therapy has been increasingly recognized as carrying a special risk. Here, the current understanding of endocrine ophthalmopathy and the risks associated with the development of severe eye disease are discussed. The results of a retrospective investigation of patients with severe eye disease in our hospital, and the experience with corticosteroid administration following radioiodine in order to reduce the risk of ophthalmopathy, are also presented.

  12. Myeloid Cell Sirtuin-1 Expression Does Not Alter Host Immune Responses to Gram-Negative Endotoxemia or Gram-Positive Bacterial Infection

    Science.gov (United States)

    Crotty Alexander, Laura E.; Marsh, Brenda J.; Timmer, Anjuli M.; Lin, Ann E.; Zainabadi, Kayvan; Czopik, Agnieszka; Guarente, Leonard; Nizet, Victor

    2013-01-01

    The role of sirtuin-1 (SIRT1) in innate immunity, and in particular the influence of SIRT1 on antimicrobial defense against infection, has yet to be reported but is important to define since SIRT1 inhibitors are being investigated as therapeutic agents in the treatment of cancer, Huntington’s disease, and autoimmune diseases. Given the therapeutic potential of SIRT1 suppression, we sought to characterize the role of SIRT1 in host defense. Utilizing both pharmacologic methods and a genetic knockout, we demonstrate that SIRT1 expression has little influence on macrophage and neutrophil antimicrobial functions. Myeloid SIRT1 expression does not change mortality in gram-negative toxin-induced shock or gram-positive bacteremia, suggesting that therapeutic suppression of SIRT1 may be done safely without suppression of myeloid cell-specific immune responses to severe bacterial infections. PMID:24386389

  13. Myeloid cell sirtuin-1 expression does not alter host immune responses to Gram-negative endotoxemia or Gram-positive bacterial infection.

    Directory of Open Access Journals (Sweden)

    Laura E Crotty Alexander

    Full Text Available The role of sirtuin-1 (SIRT1 in innate immunity, and in particular the influence of SIRT1 on antimicrobial defense against infection, has yet to be reported but is important to define since SIRT1 inhibitors are being investigated as therapeutic agents in the treatment of cancer, Huntington's disease, and autoimmune diseases. Given the therapeutic potential of SIRT1 suppression, we sought to characterize the role of SIRT1 in host defense. Utilizing both pharmacologic methods and a genetic knockout, we demonstrate that SIRT1 expression has little influence on macrophage and neutrophil antimicrobial functions. Myeloid SIRT1 expression does not change mortality in gram-negative toxin-induced shock or gram-positive bacteremia, suggesting that therapeutic suppression of SIRT1 may be done safely without suppression of myeloid cell-specific immune responses to severe bacterial infections.

  14. Age-related changes in cerebellar and hypothalamic function accompany non-microglial immune gene expression, altered synapse organization, and excitatory amino acid neurotransmission deficits

    Science.gov (United States)

    Bonasera, Stephen J.; Arikkath, Jyothi; Boska, Michael D.; Chaudoin, Tammy R.; DeKorver, Nicholas W.; Goulding, Evan H.; Hoke, Traci A.; Mojtahedzedah, Vahid; Reyelts, Crystal D.; Sajja, Balasrinivasa; Schenk, A. Katrin; Tecott, Laurence H.; Volden, Tiffany A.

    2016-01-01

    We describe age-related molecular and neuronal changes that disrupt mobility or energy balance based on brain region and genetic background. Compared to young mice, aged C57BL/6 mice exhibit marked locomotor (but not energy balance) impairments. In contrast, aged BALB mice exhibit marked energy balance (but not locomotor) impairments. Age-related changes in cerebellar or hypothalamic gene expression accompany these phenotypes. Aging evokes upregulation of immune pattern recognition receptors and cell adhesion molecules. However, these changes do not localize to microglia, the major CNS immunocyte. Consistent with a neuronal role, there is a marked age-related increase in excitatory synapses over the cerebellum and hypothalamus. Functional imaging of these regions is consistent with age-related synaptic impairments. These studies suggest that aging reactivates a developmental program employed during embryogenesis where immune molecules guide synapse formation and pruning. Renewed activity in this program may disrupt excitatory neurotransmission, causing significant behavioral deficits. PMID:27689748

  15. Alterations in polyadenylation and its implications for endocrine disease

    DEFF Research Database (Denmark)

    Rehfeld, Anders Aagaard; Plass, Mireya; Krogh, Anders

    2013-01-01

    Introduction: Polyadenylation is the process in which the pre-mRNA is cleaved at the poly(A) site and a poly(A) tail is added - a process necessary for normal mRNA formation. Genes with multiple poly(A) sites can undergo alternative polyadenylation (APA), producing distinct mRNA isoforms with dif......Introduction: Polyadenylation is the process in which the pre-mRNA is cleaved at the poly(A) site and a poly(A) tail is added - a process necessary for normal mRNA formation. Genes with multiple poly(A) sites can undergo alternative polyadenylation (APA), producing distinct mRNA isoforms...... with different 3' untranslated regions (3' UTRs) and in some cases different coding regions. Two thirds of all human genes undergo APA. The efficiency of the polyadenylation process regulates gene expression and APA plays an important part in post-transcriptional regulation, as the 3' UTR contains various cis...

  16. Immunochemical determination of xenobiotics with endocrine disrupting effects

    Energy Technology Data Exchange (ETDEWEB)

    Estevez-Alberola, M.C.; Marco, M.P. [Department of Biological Organic Chemistry, IIQAB-CSIC, Jordi Girona, 18-26, 08034, Barcelona (Spain)

    2004-02-01

    This paper is a review with more than 100 references discussing the immunochemical methods reported in the literature for the most important man-made chemicals with suspected endocrine disrupting activity. Details regarding immunizing hapten design, antibody production, and the features (limit of detection, dynamic range, specificity) of the most important immunochemical methods developed (ELISA, FIIA, immunosorbents, immunosensors, etc.) are presented for important environmental pollutants such as bisphenol A, phthalates, alkylphenol polyethoxylates, alkylphenols, polychlorinated biphenyl compounds, and dioxins. Availability of commercial reagents and methods is reported. (orig.)

  17. Endocrine manifestations of celiac disease

    Directory of Open Access Journals (Sweden)

    R Philip

    2012-01-01

    Full Text Available Background: Celiac disease can have extra gastrointestinal tract (GIT presentations, most of which are endocrine. The aim of this study was to present patients diagnosed to have celiac disease from an endocrine department and to study the prevalence of endocrinopathies in celiac disease. Materials and Methods: A total of 36 patients from the endocrinology department (LLRM Medical College, Meerut between January 2011 and July 2012 and who were diagnosed to have celiac disease were included in the study. Results: Short stature was the commonest presentation (25%, other presentations included short stature and delayed puberty (20%, delayed puberty (11%, screening for celiac disease in type-1 DM patients (17%, rickets (6%, anemia not responding to oral therapy (6%, type-1 DM with recurrent hypoglycaemia (6%, and osteomalacia (3%. The endocrine manifestations include (after complete evaluation short stature (58%, delayed puberty (31%, elevated alkaline phospahatase (67%, low calcium (22%, X-rays suggestive of osteomalacia or rickets (8%, capopedal spasm (6%, and night blindness (6%. Anti-TPO antibody positivity was found in 53%, hypothyroidism in 28%, subclinical hypothyroidism in 17%, and type-1 DM in 25% of the patients. A total of 14% patients had no GI symptoms. Conclusion: Celiac disease is an endocrine disrupter as well as the great masquerader having varied presentations including short stature, delayed puberty, and rickets. Some patients who have celiac disease may not have any GI symptoms, making the diagnosis all the more difficult. Also, there is significant incidence of celiac disease with hypothyroidism and type-1 DM, making screening for it important in these diseases.

  18. Altered HLA Class I Profile Associated with Type A/D Nucleophosmin Mutation Points to Possible Anti-Nucleophosmin Immune Response in Acute Myeloid Leukemia.

    Directory of Open Access Journals (Sweden)

    Kateřina Kuželová

    Full Text Available Nucleophosmin 1 (NPM1 mutations are frequently found in patients with acute myeloid leukemia (AML and the newly generated sequences were suggested to induce immune response contributing to the relatively favorable outcome of patients in this AML subset. We hypothesized that if an efficient immune response against mutated nucleophosmin can be induced in vivo, the individuals expressing HLA alleles suitable for presenting NPM-derived peptides should be less prone to developing AML associated with NPM1 mutation. We thus compared HLA class I frequencies in a cohort of patients with mutated NPM1 (63 patients, NPMc+, a cohort of patients with wild-type NPM1 (94 patients, NPMwt and in normal individuals (large datasets available from Allele Frequency Net Database. Several HLA allelic groups were found to be depleted in NPMc+ patients, but not in NPMwt compared to the normal distribution. The decrease was statistically significant for HLA B(*07, B(*18, and B(*40. Furthermore, statistically significant advantage in the overall survival was found for patients with mutated NPM1 expressing at least one of the depleted allelic groups. The majority of the depleted alleles were predicted to bind potent NPM-derived immunopeptides and, importantly, these peptides were often located in the unmutated part of the protein. Our analysis suggests that individuals expressing specific HLA allelic groups are disposed to develop an efficient anti-AML immune response thanks to aberrant cytoplasmic localization of the mutated NPM protein.

  19. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease.

    Science.gov (United States)

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.

  20. Relationship between fatty acids and the endocrine and neuroendocrine system.

    Science.gov (United States)

    Bhathena, Sam J

    2006-01-01

    Significant interactions exist between fatty acids and the endocrine system. Dietary fatty acids alter both hormone and neuropeptide concentrations and also their receptors. In addition, hormones affect the metabolism of fatty acids and the fatty acid composition of tissue lipids. The principal hormones involved in lipid metabolism are insulin, glucagon, catecholamines, cortisol and growth hormone. The concentrations of these hormones are altered in chronic degenerative conditions such as diabetes and cardiovascular disease, which in turn leads to alterations in tissue lipids. Lipogenesis and lipolysis, which modulate fatty acid concentrations in plasma and tissues, are under hormonal control. Neuropeptides are also involved in lipid metabolism in brain and other tissues. Polyunsaturated fatty acids are also precursors for eicosanoids including prostaglandins, leucotrienes, and thromboxanes, which have hormone-like activities. Fatty acids in turn affect the endocrine system. Saturated and trans fatty acids decrease insulin concentration leading to insulin resistance. In contrast, polyunsaturated fatty acids increase plasma insulin concentration and decrease insulin resistance. In humans, omega3 polyunsaturated fatty acids alter the levels of opioid peptides in plasma. Free fatty acids have been reported to inhibit glucagon release. Fatty acids also affect receptors for hormones and neuropeptides.

  1. Endocrine responses and examination anxiety.

    Science.gov (United States)

    Herbert, J; Moore, G F; de la Riva, C; Watts, F N

    1986-06-01

    Endocrine and psychological function (measuring both affect and attitudes to study) were studied in 38 male medical students 4 weeks and 1-2 h before a major examination. Anxiety (or tension) and emotionality increased just before the examination, as did the 'denial' subscale of a 'coping' questionnaire. Serum cortisol and prolactin increased; serum testosterone and LH were unchanged. Both urinary noradrenaline and adrenaline were elevated. Increased cortisol correlated with increased prolactin across subjects; so, too, did levels of urinary noradrenaline and adrenaline, but the two sets of endocrine responses were not correlated with each other. Several of the trait scales predicted the endocrine response to the examination. The 'lie' scale of the Eysenck Personality Questionnaire correlated negatively with changes in both cortisol and prolactin, as did 'debilitating' anxiety, as defined by the Alpert-Haber scale. However, although there were no significant correlations between changes in hormone levels and those in any of the state scales, there was some relation between absolute hormone levels on the day of the examination. Measures of academic strategies or psychological responses to examinations do not predict the nature of the considerable hormonal response which occurs in this homogeneous set of high-achieving students.

  2. Spectrum of Endocrine Disorders in Central Ghana

    Directory of Open Access Journals (Sweden)

    Osei Sarfo-Kantanka

    2017-01-01

    Full Text Available Background. Although an increasing burden of endocrine disorders is recorded worldwide, the greatest increase is occurring in developing countries. However, the spectrum of these disorders is not well described in most developing countries. Objective. The objective of this study was to profile the frequency of endocrine disorders and their basic demographic characteristics in an endocrine outpatient clinic in Kumasi, central Ghana. Methods. A retrospective review was conducted on endocrine disorders seen over a five-year period between January 2011 and December 2015 at the outpatient endocrine clinic of Komfo Anokye Teaching Hospital. All medical records of patients seen at the endocrine clinic were reviewed by endocrinologists and all endocrinological diagnoses were classified according to ICD-10. Results. 3070 adults enrolled for care in the endocrine outpatient service between 2011 and 2015. This comprised 2056 females and 1014 males (female : male ratio of 2.0 : 1.0 with an overall median age of 54 (IQR, 41–64 years. The commonest primary endocrine disorders seen were diabetes, thyroid, and adrenal disorders at frequencies of 79.1%, 13.1%, and 2.2%, respectively. Conclusions. Type 2 diabetes and thyroid disorders represent by far the two commonest disorders seen at the endocrine clinic. The increased frequency and wide spectrum of endocrine disorders suggest the need for well-trained endocrinologists to improve the health of the population.

  3. Spectrum of Endocrine Disorders in Central Ghana

    Science.gov (United States)

    Sarfo, Fred Stephen; Ansah, Eunice Oparebea; Kyei, Ishmael

    2017-01-01

    Background. Although an increasing burden of endocrine disorders is recorded worldwide, the greatest increase is occurring in developing countries. However, the spectrum of these disorders is not well described in most developing countries. Objective. The objective of this study was to profile the frequency of endocrine disorders and their basic demographic characteristics in an endocrine outpatient clinic in Kumasi, central Ghana. Methods. A retrospective review was conducted on endocrine disorders seen over a five-year period between January 2011 and December 2015 at the outpatient endocrine clinic of Komfo Anokye Teaching Hospital. All medical records of patients seen at the endocrine clinic were reviewed by endocrinologists and all endocrinological diagnoses were classified according to ICD-10. Results. 3070 adults enrolled for care in the endocrine outpatient service between 2011 and 2015. This comprised 2056 females and 1014 males (female : male ratio of 2.0 : 1.0) with an overall median age of 54 (IQR, 41–64) years. The commonest primary endocrine disorders seen were diabetes, thyroid, and adrenal disorders at frequencies of 79.1%, 13.1%, and 2.2%, respectively. Conclusions. Type 2 diabetes and thyroid disorders represent by far the two commonest disorders seen at the endocrine clinic. The increased frequency and wide spectrum of endocrine disorders suggest the need for well-trained endocrinologists to improve the health of the population. PMID:28326101

  4. Role of SST, CORT and Ghrelin and its receptors at the endocrine pancreas.

    Directory of Open Access Journals (Sweden)

    Belen eChanclón

    2012-09-01

    Full Text Available Somatostatin (SST, cortistatin (CORT, and its receptors (sst1-5, and ghrelin and its receptors (GHS-R are two highly interrelated neuropeptide systems with a broad range of overlapping biological actions at central, cardiovascular and immune levels among others. Besides their potent regulatory role on GH release, its endocrine actions are highlighted by SST/CORT and ghrelin influence on insulin secretion, glucose homeostasis and insulin resistance. Interestingly, most components of these systems are expressed at the endocrine pancreas and are actively involved in the modulation of pancreatic islet function and, consequently influence glucose homeostasis. In addition, some of them also participate in islet survival and regeneration. Furthermore, under severe metabolic condition as well as in endocrine pathologies, their expression profile is severely deregulated. These finding suggest that SST/CORT and ghrelin systems could play a relevant role in pancreatic function under metabolic and endocrine pathologies. Accordingly, these systems have been therapeutically targeted for the prevention or amelioration of certain metabolic conditions (obesity as well as for tumor growth inhibition and/or hormonal regulation in endocrine pathologies (neuroendocrine tumors. This review focuses on the interrelationship between SST/CORT and ghrelin systems and their role in severe metabolic conditions and some endocrine disorders.

  5. Introduction of environmental endocrine disrupters; Kankyo horumon ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, S. [Japan Society for the Promotion of Science, Tokyo (Japan); Hosomi, M. [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan). Faculty of Technology

    1998-11-05

    This paper describes environmental hormones. Hormones are directly secreted from endocrine gland into blood flow, and play an important role of the differentiation of textures of organisms, reproductive function, metabolism, and adjustment of nervous/immunity system. There are some substances with hormone and anti-hormone reactions within the body of organisms, which are discharged as chemical substances in the natural environment by the artificial production activities. These are extrinsic endocrine disrupters, i.e., environmental hormones. There are 67 kinds of doubtful substances. When the environmental hormones work on the certain reaction stage of hormones, the normal action of hormones is disturbed. Various anomalies of wild animals have been reported in the world, which are suggested to be caused by the environmental hormones. Effects are known on the health of Homo sapiens, such as malignant tumor. In the current stage, test methods are under development, by which the presence of endocrine disruption can be screened. The effects depend on the growing stages of organisms, and it is necessary to consider the effects on various generations. 20 refs., 2 figs., 4 tabs.

  6. [Endocrine disruptors: echoes of congress of Endocrinology in 2012].

    Science.gov (United States)

    Nassouri, A S; Archambeaud, F; Desailloud, R

    2012-10-01

    The increased prevalence of certain diseases, along with the development of new technologies and industrialization raised the possibility of the involvement of environmental factors, industrial products, nutritional factors, infections, drugs... and endocrine disruptors. These factors may interfere via signaling pathways specific to the organism. Endocrine Disrupting Chemicals (EDCs) have been redefined by the Endocrine Society in 2012 as "exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action". They have therefore potentially deleterious effects on development, growth, metabolism, reproduction, the nervous, immune and cardiovascular systems. Therefore, they constitute a real public health issue. Their long half-life may explain delayed effects and their often lipophilic character may promote maternofetal transmission. Except diethylstilbestrol (DES), few formal proofs have been made on the direct role of EDCs ; arguments are based on cross-sectional studies, in vitro models and animal models. Basic research puts insight into mechanisms of action of EDCs but many questions remain unanswered. Epidemiological data are difficult to interpret because of interindividual differences in susceptibility to EDCs and of nonlinear/nonmonotonique action (as opposed to toxic dose effect), multiple interactions between environmental agents (additive effects and/or synergistic and/or antagonists), the role of the window of exposure, latency, and the possibility of transgenerational effects.

  7. Exogenous insulin enhances humoural immune responses in short-day, but not long-day, Siberian hamsters (Phodopus sungorus).

    Science.gov (United States)

    Garcia, Nicholas W; Greives, Timothy J; Zysling, Devin A; French, Susannah S; Chester, Emily M; Demas, Gregory E

    2010-07-22

    Many animals experience marked seasonal fluctuations in environmental conditions. In response, animals display adaptive alterations in physiology and behaviour, including seasonal changes in immune function. During winter, animals must reallocate finite energy stores from relatively costly, less exigent systems (e.g. reproduction and immunity) to systems critical for immediate survival (e.g. thermoregulation). Seasonal changes in immunity are probably mediated by neuroendocrine factors signalling current energetic state. One potential hormonal candidate is insulin, a metabolic hormone released in response to elevated blood glucose levels. The aim of the present study was to explore the potential role of insulin in signalling energy status to the immune system in a seasonally breeding animal, the Siberian hamster (Phodopus sungorus). Specifically, exogenous insulin was administered to male hamsters housed in either long 'summer-like' or short 'winter-like' days. Animals were then challenged with an innocuous antigen and immune responses were measured. Insulin treatment significantly enhanced humoural immune responses in short, but not long days. In addition, insulin treatment increased food intake and decreased blood glucose levels across photoperiodic treatments. Collectively, these data support the hypothesis that insulin acts as an endocrine signal integrating seasonal energetic changes and immune responses in seasonally breeding rodents.

  8. Public health implications of altered puberty timing

    DEFF Research Database (Denmark)

    Golub, Mari S; Collman, Gwen W; Foster, Paul M D

    2008-01-01

    . Altered timing of puberty also has implications for behavioral disorders. For example, an early maturation is associated with a greater incidence of conduct and behavior disorders during adolescence. Finally, altered puberty timing is considered an adverse effect in reproductive toxicity risk assessment...... for chemicals. Recent US legislation has mandated improved chemical testing approaches for protecting children's health and screening for endocrine-disrupting agents, which has led to changes in the US Environmental Protection Agency's risk assessment and toxicity testing guidelines to include puberty......-related assessments and to the validation of pubertal male and female rat assays for endocrine screening....

  9. [Arterial hypertension secondary to endocrine disorders].

    Science.gov (United States)

    Minder, Anna; Zulewski, Henryk

    2015-06-01

    Endocrine hypertension offers a potentially curative therapy if the underlying cause is identified and treated accordingly. In contrast to the high prevalence of arterial hypertension especially in the elderly, the classical endocrine causes remain a rare entity. Among patients with arterial hypertension the prevalence of Cushing's syndrome or pheochromocytoma is less than 1%. Primary hyperaldosteronism is more frequent with a reported prevalence of up to 9%. In order to avoid unnecessary, costly and potentially harmful evaluations and therapies due to the limited sensitivity and specificity of the critical endocrine tests it is mandatory to limit the exploration for endocrine causes to preselected patients with high pretest probability for an endocrine disorder. Younger age at manifestation of arterial hypertension or drug resistant hypertension together with other clinical signs of an endocrine disorder should raise the suspicion and prompt the appropriate evaluation.

  10. [Disperse endocrine system and APUD concept].

    Science.gov (United States)

    Mil'to, I V; Sukhodolo, I V; Gereng, E A; Shamardina, L A

    2011-01-01

    This review describes the problems of disperse endocrine system and APUD-system morphology, summarizes some debatable issues of single endocrine cell biology. The data presented refer to the history of both systems discovery, morphological methods of their study, developmental sources, their structural organization and physiological roles of their cells. The significance of single endocrine cells in the regulation of the organism functions is discussed.

  11. Update on endocrine disturbances in anorexia nervosa

    DEFF Research Database (Denmark)

    Støving, R K; Hangaard, J; Hagen, C

    2001-01-01

    The marked endocrine changes that occur in anorexia nervosa have aroused a great deal of interest, and over the last decade much research has been conducted in this field. The endocrine disturbances are not specific to this disorder, as they also occur in starvation states secondary to other causes...... of the large body of literature concerning endocrine aspects of anorexia nervosa with the main focus on the latest results, which provide leads for potential etiological theories....

  12. Manufacturing doubt about endocrine disrupter science

    DEFF Research Database (Denmark)

    Bergman, Åke; Becher, Georg; Blumberg, Bruce;

    2015-01-01

    We present a detailed response to the critique of "State of the Science of Endocrine Disrupting Chemicals 2012" (UNEP/WHO, 2013) by financial stakeholders, authored by Lamb et al. (2014). Lamb et al.'s claim that UNEP/WHO (2013) does not provide a balanced perspective on endocrine disruption...... not intimately familiar with the topic of endocrine disruption and therefore susceptible to false generalizations of bias and subjectivity....

  13. Genetics Home Reference: multiple endocrine neoplasia

    Science.gov (United States)

    ... Tumor Encyclopedia: Pheochromocytoma Encyclopedia: Pituitary Tumor Health Topic: Endocrine Diseases Health Topic: Parathyroid Disorders Health Topic: Pheochromocytoma Health Topic: Thyroid Cancer Genetic ...

  14. Vitamin D endocrine system involvement in autoimmune rheumatic diseases.

    Science.gov (United States)

    Cutolo, Maurizio; Pizzorni, Carmen; Sulli, Alberto

    2011-12-01

    Vitamin D is synthesized from cholesterol in the skin (80-90%) under the sunlight and then metabolized into an active D hormone in liver, kidney and peripheral immune/inflammatory cells. These endocrine-immune effects include also the coordinated activities of the vitamin D-activating enzyme, 1alpha-hydroxylase (CYP27B1), and the vitamin D receptor (VDR) on cells of the immune system in mediating intracrine and paracrine actions. Vitamin D is implicated in prevention and protection from chronic infections (i.e. tubercolosis), cancer (i.e. breast cancer) and autoimmune rheumatic diseases since regulates both innate and adaptive immunity potentiating the innate response (monocytes/macrophages with antimicrobial activity and antigen presentation), but suppressing the adaptive immunity (T and B lymphocyte functions). Vitamin D has modulatory effects on B lymphocytes and Ig production and recent reports have demonstrated that 1,25(OH)2D3 does indeed exert direct effects on B cell homeostasis. A circannual rhythm of trough vitamin D levels in winter and peaks in summer time showed negative correlation with clinical status at least in rheumatoid arthritis and systemic lupus erythematosus. Recently, the onset of symptoms of early arthritis during winter or spring have been associated with greater radiographic evidence of disease progression at 12 months possibly are also related to seasonal lower vitamin D serum levels.

  15. Maternal immune activation affects litter success, size and neuroendocrine responses related to behavior in adult offspring.

    Science.gov (United States)

    French, Susannah S; Chester, Emily M; Demas, Gregory E

    2013-07-02

    It is increasingly evident that influences other than genetics can contribute to offspring phenotype. In particular, maternal influences are an important contributing factor to offspring survival, development, physiology and behavior. Common environmental pathogens such as viral or bacterial microorganisms can induce maternal immune responses, which have the potential to alter the prenatal environment via multiple independent pathways. The effects of maternal immune activation on endocrine responses and behavior are less well studied and provide the basis for the current study. Our approach in the current study was two-pronged: 1) quantify sickness responses during pregnancy in adult female hamsters experiencing varying severity of immune responsiveness (i.e., differing doses of lipopolysaccharide [LPS]), and 2) assess the effects of maternal immune activation on offspring development, immunocompetence, hormone profiles, and social behavior during adulthood. Pregnancy success decreased with increasing doses of LPS, and litter size was reduced in LPS dams that managed to successfully reproduce. Unexpectedly, pregnant females treated with LPS showed a hypothermic response in addition to the more typical anorexic and body mass changes associated with sickness. Significant endocrine changes related to behavior were observed in the offspring of LPS-treated dams; these effects were apparent in adulthood. Specifically, offspring from LPS treated dams showed significantly greater cortisol responses to stressful resident-intruder encounters compared with offspring from control dams. Post-behavior cortisol was elevated in male LPS offspring relative to the offspring of control dams, and was positively correlated with the frequency of bites during agonistic interactions, and cortisol levels in both sexes were related to defensive behaviors, suggesting that changes in hypothalamo-pituitary-adrenal axis responsiveness may play a regulatory role in the observed behavioral

  16. Multiple sclerosis and fatigue: A review on the contribution of inflammation and immune-mediated neurodegeneration.

    Science.gov (United States)

    Patejdl, Robert; Penner, Iris K; Noack, Thomas K; Zettl, Uwe K

    2016-03-01

    Multiple sclerosis (MS) is an immune mediated disease of the central nervous system (CNS) and the leading cause of non-traumatic disability among young and middle-aged adults in the western world. One of its most prevalent and debilitating symptoms is fatigue. Despite the general acceptance of the idea of an immune pathogenesis of MS itself, the role of autoimmunity in the course of MS-fatigue is a matter of debate. Both immune-related processes (acute inflammation, chronic inflammation, immune-mediated neurodegeneration, immune-mediated alterations of endocrine functions related to fatigue) and presumably non-immune-mediated disturbances and factors (sleep disturbances, depression, cognitive alterations, chronic infections, adverse effects of medications) contribute to the clinical picture. Data from in vitro and animal experiments has provided evidence for a role of cytokines as IL-1 and TNF-alpha. This association could not be verified directly in blood samples from humans whereas whole blood stimulation protocols gave some indirect evidence for a role of cytokines in MS-fatigue. MRI being able to detect acute and chronic immune mediated damage to the CNS could depict that global atrophy of gray or white matter does not correlate with fatigue. Rather, distinctive clusters of lesions and atrophy at different locations, mostly bifrontal or in subcortical structures, correlate specifically with fatigue. Regardless of the difficulties in pinpointing the immunogenesis of MS-fatigue, an important role of autoimmunity is strongly supported by an indirect route: A growing amount of data shows that the highly effective immunotherapeutics which have been introduced to MS-treatment over the last years effectively and sustainably stabilize and ameliorate fatigue in parallel to their dampening effects on the neuroinflammatory process. This review summarizes the existing data on the relation between inflammation, patterns of CNS-lesions and the effects of immunotherapeutics

  17. Humoral and Cellular Immune Response in Canine Hypothyroidism.

    Science.gov (United States)

    Miller, J; Popiel, J; Chełmońska-Soyta, A

    2015-07-01

    Hypothyroidism is one of the most common endocrine diseases in dogs and is generally considered to be autoimmune in nature. In human hypothyroidism, the thyroid gland is destroyed by both cellular (i.e. autoreactive helper and cytotoxic T lymphocytes) and humoral (i.e. autoantibodies specific for thyroglobulin, thyroxine and triiodothyronine) effector mechanisms. Other suggested factors include impaired peripheral immune suppression (i.e. the malfunction of regulatory T cells) or an additional pro-inflammatory effect of T helper 17 lymphocytes. The aim of this study was to evaluate immunological changes in canine hypothyroidism. Twenty-eight clinically healthy dogs, 25 hypothyroid dogs without thyroglobulin antibodies and eight hypothyroid dogs with these autoantibodies were enrolled into the study. There were alterations in serum proteins in hypothyroid dogs compared with healthy controls (i.e. raised concentrations of α-globulins, β2- and γ-globulins) as well as higher concentration of acute phase proteins and circulating immune complexes. Hypothyroid animals had a lower CD4:CD8 ratio in peripheral blood compared with control dogs and diseased dogs also had higher expression of interferon γ (gene and protein expression) and CD28 (gene expression). Similar findings were found in both groups of hypothyroid dogs. Canine hypothyroidism is therefore characterized by systemic inflammation with dominance of a cellular immune response.

  18. Endocrine disruption in soil invertebrates: assessing multigeneration effects of insect growth regulators on "Folsomia Candida" and developing a toxicoproteomic approach

    OpenAIRE

    Campiche, Sophie; Tarradellas, Joseph

    2007-01-01

    In the past years, it has been observed that some compounds present in our environment can disturb the reproduction and development of animals like fishes, birds, or reptiles by interfering with their endocrine system. Indeed, these endocrine disrupting compounds (EDC) can mimic or antagonize the effects of hormones, alter the pattern of synthesis and metabolism of hormones or modify hormone receptor levels. These substances represent a risk for wildlife, and possibly for humans. Up to now, e...

  19. Endocrine disruptors and female cancer: Informing the patients (Review).

    Science.gov (United States)

    Del Pup, Lino; Mantovani, Alberto; Luce, Amalia; Cavaliere, Carla; Facchini, Gaetano; Di Francia, Raffaele; Caraglia, Michele; Berretta, Massimiliano

    2015-07-01

    Pollutants altering the endocrine system, known as endocrine disruptors (ED), may modify the risk of female cancers. The carcinogenic effect of ED on humans has been confirmed by experimental studies for various substances including pesticides, DDT, dioxins, phthalates, bisphenol A, diethylstilbestrol, as well as heavy metals, but it is difficult to quantify precisely for several reasons hereby reviewed. Carcinogenesis is a complex and multifactorial mechanism that manifests itself over a long period of time, making difficult the detection of the specific contribution of the pollutants, whose absorbed dose is often unknown. The combined effect of various substances leads to complex interactions whose outcome is difficult to predict. These substances may accumulate and carry out their harmful effect on critical periods of life, probably also at doses considered harmless to an adult. ED can also have epigenetic adverse effects on the health of future generations. In conclusion, the carcinogenic effects of endocrine disruptors on female cancer types is plausible although additional studies are needed to clarify their mechanisms and entities. In the last part of the review we suggest ways to reduce ED exposure as it is mandatory to implement necessary measures to limit exposure, particularly during those periods of life most vulnerable to the impact of oncogenic environmental causes, such as the embryonic period and puberty.

  20. Asian Citrus Psyllid Expression Profiles Suggest Candidatus Liberibacter Asiaticus-Mediated Alteration of Adult Nutrition and Metabolism, and of Nymphal Development and Immunity.

    Science.gov (United States)

    Vyas, Meenal; Fisher, Tonja W; He, Ruifeng; Nelson, William; Yin, Guohua; Cicero, Joseph M; Willer, Mark; Kim, Ryan; Kramer, Robin; May, Greg A; Crow, John A; Soderlund, Carol A; Gang, David R; Brown, Judith K

    2015-01-01

    The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama (Hemiptera: Psyllidae) is the insect vector of the fastidious bacterium Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus greening disease, or Huanglongbing (HLB). The widespread invasiveness of the psyllid vector and HLB in citrus trees worldwide has underscored the need for non-traditional approaches to manage the disease. One tenable solution is through the deployment of RNA interference technology to silence protein-protein interactions essential for ACP-mediated CLas invasion and transmission. To identify psyllid interactor-bacterial effector combinations associated with psyllid-CLas interactions, cDNA libraries were constructed from CLas-infected and CLas-free ACP adults and nymphs, and analyzed for differential expression. Library assemblies comprised 24,039,255 reads and yielded 45,976 consensus contigs. They were annotated (UniProt), classified using Gene Ontology, and subjected to in silico expression analyses using the Transcriptome Computational Workbench (TCW) (http://www.sohomoptera.org/ACPPoP/). Functional-biological pathway interpretations were carried out using the Kyoto Encyclopedia of Genes and Genomes databases. Differentially expressed contigs in adults and/or nymphs represented genes and/or metabolic/pathogenesis pathways involved in adhesion, biofilm formation, development-related, immunity, nutrition, stress, and virulence. Notably, contigs involved in gene silencing and transposon-related responses were documented in a psyllid for the first time. This is the first comparative transcriptomic analysis of ACP adults and nymphs infected and uninfected with CLas. The results provide key initial insights into host-parasite interactions involving CLas effectors that contribute to invasion-virulence, and to host nutritional exploitation and immune-related responses that appear to be essential for successful ACP-mediated circulative, propagative CLas transmission.

  1. Endocrine profile of patients with post-tubal-ligation syndrome.

    Science.gov (United States)

    Hargrove, J T; Abraham, G E

    1981-07-01

    The endocrine profile of the midluteal phase was assessed in 29 patients with the post-tubal-ligation syndrome, consisting of pain, bleeding and premenstrual tension. Compared to normal controls, the patients had a high serum estradiol and a low serum progesterone level. This abnormal luteal function may be responsible for the symptoms observed and may also explain the failure to conceive following successful reversal of tubal ligation. It is recommended that patients seeking sterilization reversal be screened for abnormal luteal function preoperatively. Selection of sterilization procedures that minimize alteration in luteal function should be given high priority.

  2. Pancreatic endocrine and exocrine changes in celiac disease

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Although there is a great deal of information on celiac disease and associated involvement of other nonintestinal sites, data on concomitant changes in the structure and function of the pancreas is limited. The present review critically examines pancreatic endocrine changes that have been well documented in the literature, including insulin-dependent diabetes mellitus. Pancreatic exocrine alterations may also occur, and if severe, marked malnutrition with pancreatic failure and ductal calcification have been observed. Finally, other pancreatic disorders have been recorded with celiac disease.

  3. The anatomy and physiology of the avian endocrine system.

    Science.gov (United States)

    Ritchie, Midge; Pilny, Anthony A

    2008-01-01

    The endocrine system of birds is comparable to that of mammals, although there are many unique aspects to consider when studying the anatomy, physiology, and biochemistry. Avian endocrinology is a field of veterinary medicine that is unfamiliar to many practitioners; however, it is important to have a comprehensive understanding when evaluating companion birds in clinical practice. This article covers the anatomy and physiology of the normal avian, and readers are referred to other articles for a more detailed explanation of altered physiology and pathology.

  4. Metabolic Effects of Obesity and Its Interaction with Endocrine Diseases.

    Science.gov (United States)

    Clark, Melissa; Hoenig, Margarethe

    2016-09-01

    Obesity in pet dogs and cats is a significant problem in developed countries, and seems to be increasing in prevalence. Excess body fat has adverse metabolic consequences, including insulin resistance, altered adipokine secretion, changes in metabolic rate, abnormal lipid metabolism, and fat accumulation in visceral organs. Obese cats are predisposed to endocrine and metabolic disorders such as diabetes and hepatic lipidosis. A connection likely also exists between obesity and diabetes mellitus in dogs. No system has been developed to identify obese pets at greatest risk for development of obesity-associated metabolic diseases, and further study in this area is needed.

  5. Fetal Hematopoietic Stem Cells Are the Canaries in the Coal Mine That Portend Later Life Immune Deficiency.

    Science.gov (United States)

    Laiosa, Michael D; Tate, Everett R

    2015-10-01

    Disorders of the blood system are a significant and growing global health concern and include a spectrum of diseases ranging from aplastic anemia and leukemias to immune suppression. This array of hematological disorders is attributed to the fact that the blood system undergoes a perpetual cycle of turn over with aged and exhausted red and white blood cells undergoing daily replacement. The foundational cells of this replenishment process are comprised of rare hematopoietic stem cells (HSCs) located in the bone marrow that possess the dual function of long-term self-renewal and multilineage differentiation. This constant turnover makes the hematopoietic system uniquely vulnerable to changes in the environment that impact multilineage differentiation, self-renewal, or both. Notably, environmental endocrine-disrupting exposures occurring during development, when HSCs are first emerging, can lead to alterations in HSC programming that impacts the blood and immune systems throughout life. In this review, we describe the process of fetal hematopoiesis and provide an overview of the intrauterine environmental and endocrine-disrupting compounds that disrupt this process. Finally, we describe research opportunities for fetal HSCs as potential sentinels of later-life blood and immune system disorders.

  6. Mouse models for inherited endocrine and metabolic disorders.

    Science.gov (United States)

    Piret, Siân E; Thakker, Rajesh V

    2011-12-01

    In vivo models represent important resources for investigating the physiological mechanisms underlying endocrine and metabolic disorders, and for pre-clinical translational studies that may include the assessments of new treatments. In the study of endocrine diseases, which affect multiple organs, in vivo models provide specific advantages over in vitro models, which are limited to investigation of isolated systems. In recent years, the mouse has become the popular choice for developing such in vivo mammalian models, as it has a genome that shares ∼85% identity to that of man, and has many physiological systems that are similar to those in man. Moreover, methods have been developed to alter the expression of genes in the mouse, thereby generating models for human diseases, which may be due to loss- or gain-of-function mutations. The methods used to generate mutations in the mouse genome include: chemical mutagenesis; conventional, conditional and inducible knockout models; knockin models and transgenic models, and these strategies are often complementary. This review describes some of the different strategies that are utilised for generating mouse models. In addition, some mouse models that have been successfully generated by these methods for some human hereditary endocrine and metabolic disorders are reviewed. In particular, the mouse models generated for parathyroid disorders, which include: the multiple endocrine neoplasias; hyperparathyroidism-jaw tumour syndrome; disorders of the calcium-sensing receptor and forms of inherited hypoparathyroidism are discussed. The advances that have been made in our understanding of the mechanisms of these human diseases by investigations of these mouse models are described.

  7. Endocrine FGFs: evolution, physiology, pathophysiology, and pharmacotherapy

    Directory of Open Access Journals (Sweden)

    Nobuyuki eItoh

    2015-09-01

    Full Text Available The human fibroblast growth factor (FGF family comprises 22 structurally related polypeptides that play crucial roles in neuronal functions, development, and metabolism. FGFs are classified as intracrine, paracrine, and endocrine FGFs based on their action mechanisms. Paracrine and endocrine FGFs are secreted signaling molecules by acting via cell-surface FGF receptors (FGFRs. Paracrine FGFs require heparan sulfate as a co-factor for FGFRs. In contrast, endocrine FGFs, comprising FGF19, FGF21, and FGF23, require α−Klotho or β−Klotho as a co-factor for FGFRs. Endocrine FGFs, which are specific to vertebrates, lost heparan sulfate-binding affinity and acquired a systemic signaling system with αKlotho or βKlotho during early vertebrate evolution. The phenotypes of endocrine FGF knockout mice indicate that they play roles in metabolism including bile acid, energy, and phosphate/active vitamin D metabolism. Accumulated evidence for the involvement of endocrine FGFs in human genetic and metabolic diseases also indicates their pathophysiological roles in metabolic diseases, potential risk factors for metabolic diseases, and useful biomarkers for metabolic diseases. The therapeutic utility of endocrine FGFs is currently being developed. These findings provide new insights into the physiological and pathophysiological roles of endocrine FGFs and potential diagnostic and therapeutic strategies for metabolic diseases.

  8. Tailoring endocrine treatment for early breast cancer

    NARCIS (Netherlands)

    Fontein, Duveken Berthe Yvonne

    2014-01-01

    This thesis describes several important aspects of adjuvant endocrine therapy for postmenopausal women with endocrine-sensitive, early-stage breast cancer. In our ongoing efforts to tailor treatment so as to provide the best possible care to each of our patients, we studied the influence of various

  9. Skin manifestations of endocrine and neuroendocrine tumors.

    Science.gov (United States)

    Leventhal, Jonathan S; Braverman, Irwin M

    2016-06-01

    The skin signs of benign and malignant endocrine and neuroendocrine tumors are manifold and early identification of these dermatologic features is crucial in initiating timely diagnosis and management. This article reviews the salient cutaneous features of these tumors that arise in the classic endocrine glands, lung and gastrointestinal tract either as individual neoplasms or as part of a syndrome.

  10. Genetic testing by cancer site: endocrine system.

    Science.gov (United States)

    Pilarski, Robert; Nagy, Rebecca

    2012-01-01

    Numerous hereditary syndromes, caused by mutations in multiple tumor suppressor genes and oncogenes, can cause tumors in organs of the endocrine system. The primary syndromes (and genes) addressed here include multiple endocrine neoplasia types 1 and 2 (MEN1 and RET genes), Cowden syndrome (PTEN), hereditary pheochromocytoma/paraganglioma syndromes (multiple genes), and von Hippel-Lindau disease (VHL). Clinical genetic testing is available for each of these syndromes and is generally directed to individuals with endocrine or other tumors and additional features suggestive of a hereditary syndrome. However, for some endocrine tumors, the proportion because of heredity is so high that genetic testing may be appropriate for all affected individuals. Management for hereditary cases typically involves aggressive screening and/or surgical protocols, starting at young ages to minimize morbidity and mortality. Endocrine tumors can be less commonly seen in a number of other hereditary syndromes (eg, neurofibromatosis), which are not reviewed in this section.

  11. ENDOCRINE DISRUPTING EFFECTS OF BUTYLPARABEN: A REVIEW

    Directory of Open Access Journals (Sweden)

    Pallabi Goswami

    2013-01-01

    Full Text Available In recent years, there has been an increasing concern in the field of endocrine disruption over the presence of various endocrine disrupting chemicals in Pharmaceuticals and Personal care products (PPCPs. This concern has also been as PPCPs are most widely used and had led to introduction of thousands of new and complex chemicals that enter the environment in large quantities. The effect of the chemicals has not only been restricted to human who are exposed directly to the chemicals or the animals which gets exposed to the chemicals through wide variety of veterinary drugs, but also the aquatic organisms and other form of Wildlife which are non target and indirectly gets exposed to the chemicals through individual human activity. Parabens includes a group of compound of which methylparaben, butylparaben, ethylparaben, propylparaben are most widely used as preservatives in various PPCPs. Recent concern over the use of parabens has been drawn by the scientific community as these chemicals are reported to exert a weak estrogenic activity, with butylparaben showing the most potent activity among methyl-, ethyl- and propyl esters in in vitro recombinant yeast assay and in in vivo uterotrophic assay. Human exposure to butylparaben which occur mainly through inhalation, ingestion, or eye or skin contact, from intake of foods or drugs or use of cosmetics and personal care products where butylparaben is mainly used as a preservative. Effects of butylparaben are studied in various animal model systems like rodents to determine the possible effects in human which showed various effects which include defects in male reproductive system like increase in weight of epididymis, also change in serum testosterone level and a significant increase in uterine weight in ovariectomized and immature rats. Other effects include irritation to the respiratory tract, allergic skin reactions, atrophy of lymphoid tissue in the spleen, thymus, and lymph nodes and multifocal

  12. 78 FR 57859 - Draft Guidance for Industry on Endocrine Disruption Potential of Drugs: Nonclinical Evaluation...

    Science.gov (United States)

    2013-09-20

    ... entitled ``Endocrine Disruption Potential of Drugs: Nonclinical Evaluation.'' Endocrine disruptors are... its progeny. Any component of the endocrine system can be a target of endocrine disruptors, although... HUMAN SERVICES Food and Drug Administration Draft Guidance for Industry on Endocrine...

  13. Humoral immune alterations caused by lead: studies on an adult toad model Alteraciones inmunes humorales causadas por plomo: estudios en un modelo de sapo adulto

    Directory of Open Access Journals (Sweden)

    Carolina E. Rosenberg

    2007-07-01

    Full Text Available There is evidence that environmental metal levels affect the immune function. In the particular case of the impact of heavy metals, information available suggests that the immune system is a target for low-dose Pb exposure. Among vertebrates it was shown that amphibians are capable of forming antibodies against a variety of antigens, causing several responses such as anaphylactic response and rejecting grafts. In this study, the production of antibodies was assessed against sheep red blood cells (SRBC in the anuran Bufo arenarum after six weekly injections of sublethal doses of lead (50 mg.kg-1, as lead acetate. Natural antibodies (natural heteroagglutinins were also quantified against SRBC. Both assessments were carried out employing an ELISA method developed to this end, measuring absorbance (A. For natural anti-SRBC antibodies in both control (C and Pb treated (T toads, there was a non significant tendency to increase the initial absorbances (C initial: 0.69±0.39 A; T initial: 0.54±0.30 A, relative to those registered at the end of the experiments (C final: 0.89±0.49 A; T final: 0.76±0.31A; the T/C ratios also did not show changes. The only significant difference was found between initial and final samples from lead-treated toads (pExiste evidencia de que los niveles de metal ambientales afectan la función inmune. En el caso particular del impacto de metales pesados, la información disponible sugiere que el sistema inmune es un blanco para la exposición a bajas dosis de Pb. Entre los vertebrados, se ha mostrado que los anfibios son capaces de formar anticuerpos contra una variedad de antígenos, que causan diversas respuestas, tales como respuesta anafiláctica y rechazo de injertos. En este estudio, la producción de anticuerpos fue evaluada contra eritrocitos de oveja (EO en el anuro Bufo arenarum, luego de seis inyecciones semanales de dosis subletales de plomo (50 mg.kg-1, como acetato de Pb. Los anticuerpos naturales

  14. Exome and Transcriptome Sequencing of Aedes aegypti Identifies a Locus That Confers Resistance to Brugia malayi and Alters the Immune Response

    KAUST Repository

    Juneja, Punita

    2015-03-27

    Many mosquito species are naturally polymorphic for their abilities to transmit parasites, a feature which is of great interest for controlling vector-borne disease. Aedes aegypti, the primary vector of dengue and yellow fever and a laboratory model for studying lymphatic filariasis, is genetically variable for its capacity to harbor the filarial nematode Brugia malayi. The genome of Ae. aegypti is large and repetitive, making genome resequencing difficult and expensive. We designed exome captures to target protein-coding regions of the genome, and used association mapping in a wild Kenyan population to identify a single, dominant, sex-linked locus underlying resistance. This falls in a region of the genome where a resistance locus was previously mapped in a line established in 1936, suggesting that this polymorphism has been maintained in the wild for the at least 80 years. We then crossed resistant and susceptible mosquitoes to place both alleles of the gene into a common genetic background, and used RNA-seq to measure the effect of this locus on gene expression. We found evidence for Toll, IMD, and JAK-STAT pathway activity in response to early stages of B. malayi infection when the parasites are beginning to die in the resistant genotype. We also found that resistant mosquitoes express anti-microbial peptides at the time of parasite-killing, and that this expression is suppressed in susceptible mosquitoes. Together, we have found that a single resistance locus leads to a higher immune response in resistant mosquitoes, and we identify genes in this region that may be responsible for this trait.

  15. Endocrine disruptors targeting ERbeta function.

    Science.gov (United States)

    Swedenborg, E; Pongratz, I; Gustafsson, J-A

    2010-04-01

    Endocrine disruptive chemicals (EDCs) circulating in the environment constitute a risk to ecosystems, wildlife and human health. Oestrogen receptor (ER) alpha and beta are targeted by various kinds of EDCs but the molecular mechanisms and long-term consequences of exposure are largely unknown. Some biological effects of EDCs are mediated by the aryl hydrocarbon receptor (AhR), which is a key player in the cellular defence against xenobiotic substances. Adding complexity to the picture, there is also accumulating evidence that AhR-ER pathways have an intricate interplay at multiple levels. In this review, we discuss some EDCs that affect the oestrogen pathway by targeting ERbeta. Furthermore, we describe some effects of AhR activities on the oestrogen system. Mechanisms as well as potential adverse effects on human health are discussed.

  16. [Endocrine disruptors and obesity: obesogens].

    Science.gov (United States)

    García-Mayor, Ricardo V; Larrañaga Vidal, Alejandra; Docet Caamaño, Maria F; Lafuente Giménez, Anunciación

    2012-04-01

    Incidence and prevalence of owerweight and obesity have greatly increased over the past three decades in almost all countries around the world. This phenomenon is not easily explained by lifestyle changes in populations with very different initial habits. This has led to consider the influence of other factors, the so-called endocrine disruptors, and more specifically obesogens. This study reviewed the available evidence about polluting chemical substances which may potentially be obesogens in humans: DES, genistein, bisphenol A, organotins (TBT, TPT), and phthalates. The first three groups of substances mainly act upon estrogen receptors, while organotins and phthalates activate PPARγ. It was concluded that evidence exists of the obesogenic effect of these chemical substances in tissues and experimental animals, but few data are available in humans.

  17. Analyzing endocrine system conservation and evolution.

    Science.gov (United States)

    Bonett, Ronald M

    2016-08-01

    Analyzing variation in rates of evolution can provide important insights into the factors that constrain trait evolution, as well as those that promote diversification. Metazoan endocrine systems exhibit apparent variation in evolutionary rates of their constituent components at multiple levels, yet relatively few studies have quantified these patterns and analyzed them in a phylogenetic context. This may be in part due to historical and current data limitations for many endocrine components and taxonomic groups. However, recent technological advancements such as high-throughput sequencing provide the opportunity to collect large-scale comparative data sets for even non-model species. Such ventures will produce a fertile data landscape for evolutionary analyses of nucleic acid and amino acid based endocrine components. Here I summarize evolutionary rate analyses that can be applied to categorical and continuous endocrine traits, and also those for nucleic acid and protein-based components. I emphasize analyses that could be used to test whether other variables (e.g., ecology, ontogenetic timing of expression, etc.) are related to patterns of rate variation and endocrine component diversification. The application of phylogenetic-based rate analyses to comparative endocrine data will greatly enhance our understanding of the factors that have shaped endocrine system evolution.

  18. Fluid/electrolyte and endocrine changes in space flight

    Science.gov (United States)

    Huntoon, Carolyn Leach

    1989-01-01

    The primary effects of space flight that influence the endocrine system and fluid and electrolyte regulation are the reduction of hydrostatic gradients, reduction in use and gravitational loading of bone and muscle, and stress. Each of these sets into motion a series of responses that culminates in alteration of some homeostatic set points for the environment of space. Set point alterations are believed to include decreases in venous pressure; red blood cell mass; total body water; plasma volume; and serum sodium, chloride, potassium, and osmolality. Serum calcium and phosphate increase. Hormones such as erythropoietin, atrial natriuretic peptide, aldosterone, cortisol, antidiuretic hormone, and growth hormone are involved in the dynamic processes that bring about the new set points. The inappropriateness of microgravity set points for 1-G conditions contributes to astronaut postflight responses.

  19. Neurocutaneous spectrum of multiple endocrine neoplasia-1

    Directory of Open Access Journals (Sweden)

    Shireen Furtado

    2012-01-01

    Full Text Available Multiple endocrine neoplasia type I or Wermer syndrome is characterized by primary hyperparathyroidism, enteropancreatic endocrine tumor, and a pituitary pathology. A 35-year-old male presented with visual field defects, hyperprolactinemia, and hypogonadism. He also had multiple infraumbilical skin-colored nodules. A syndromal association of Wermer syndrome was derived using the dermal, pituitary, parathyroid, and gastrointestinal hormonal manifestations of the tumor. The radiological and histological findings of lesion which underwent biopsy are discussed. The presence of collagenomas, lipomas, and hypopigmented macules in a patient with neuroendocrine symptoms should raise the suspicion of an underlying multiple endocrine neoplasia.

  20. Many Putative Endocrine Disruptors Inhibit Prostaglandin Synthesis

    DEFF Research Database (Denmark)

    Kristensen, David M.; Skalkam, Maria L.; Audouze, Karine Marie Laure

    2011-01-01

    Background: Prostaglandins (PGs) play key roles in development and maintenance of homeostasis of the adult body. Despite these important roles, it remains unclear whether the PG pathway is a target for endocrine disruption. However, several known endocrine disrupting compounds (EDCs) share a high...... of endocrine disruption. Results: We found that many known EDCs inhibit the PG pathway in a mouse Sertoli cell line and in human primary mast cells. The EDCs also reduced PG synthesis in ex vivo rat testis and it was correlated with a reduced testosterone production. The inhibition of PG synthesis occurs...

  1. Amphibians as model to study endocrine disrupters.

    Science.gov (United States)

    Kloas, Werner; Lutz, Ilka

    2006-10-13

    Environmental compounds can interfere with endocrine systems of wildlife and humans. These so-called endocrine disrupters (ED) are known to affect reproductive biology and thyroid system. The classical model species for these endocrine systems are amphibians and therefore they can serve as sentinels for detection of the modes of action (MOAs) of ED. Recently, amphibians are being reviewed as suitable models to assess (anti)estrogenic and (anti)androgenic MOAs influencing reproductive biology as well as (anti)thyroidal MOAs interfering with the thyroid system. The development of targeted bioassays in combination with adequate chemical analyses is the prerequisite for a concise risk assessment of ED.

  2. Immunity and immunization in elderly.

    Science.gov (United States)

    Bourée, Patrice

    2003-12-01

    As the average life expectancy increases, retired people want to travel. Five to 8% of travellers in tropical areas are old persons. Immune system suffers of old age as the other organs. The number and the functions of the T-lymphocytes decrease, but the B-lymphocytes are not altered. So, the response to the vaccinations is slower and lower in the elderly. Influenza is a great cause of death rate in old people. The seroconversion, after vaccine, is 50% from 60 to 70 years old, 31% from 70 to 80 years old, and only 11% after 80 years old. But in public health, the vaccination reduced the morbidity by 25%, admission to hospital by 20%, pneumonia by 50%, and mortality by 70%. Antipoliomyelitis vaccine is useful for travellers, as the vaccines against hepatitis and typhoid fever. Pneumococcal vaccine is effective in 60%. Tetanus is fatal in at last 32% of the people above 80 years, therefore this vaccine is very important.

  3. [Endocrine disruptors are a novel direction of endocrinologic scientific investigation].

    Science.gov (United States)

    Iaglova, N V; Iaglov, V V

    2012-01-01

    Endocrine disruptors are exogenous anthropogenic chemicals (pesticides, herbicides, polychlorinated biphenyls, bisphenol A, polybrominated diphenyl ethers, phthalates and others), that are able to bind hormonal receptors of endocrine and other cells in vivo and act like hormones. These substances disrupt endocrine regulation of metabolism, reproduction and adaptive reactions of organisms and promote human and animal endocrine disorders.

  4. Prenatal immune challenge in rats: altered responses to dopaminergic and glutamatergic agents, prepulse inhibition of acoustic startle, and reduced route-based learning as a function of maternal body weight gain after prenatal exposure to poly IC.

    Science.gov (United States)

    Vorhees, Charles V; Graham, Devon L; Braun, Amanda A; Schaefer, Tori L; Skelton, Matthew R; Richtand, Neil M; Williams, Michael T

    2012-08-01

    Prenatal maternal immune activation has been used to test the neurodevelopmental hypothesis of schizophrenia. Most of the data are in mouse models; far less is available for rats. We previously showed that maternal weight change in response to the immune activator polyinosinic-polycytidylic acid (Poly IC) in rats differentially affects offspring. Therefore, we treated gravid Harlan Sprague-Dawley rats i.p. on embryonic day 14 with 8 mg/kg of Poly IC or Saline. The Poly IC group was divided into those that lost or gained the least weight, Poly IC (L), versus those that gained the most weight, Poly IC (H), following treatment. The study design controlled for litter size, litter sampling, sex distribution, and test experience. We found no effects of Poly IC on elevated zero maze, open-field activity, object burying, light-dark test, straight channel swimming, Morris water maze spatial acquisition, reversal, or shift navigation or spatial working or reference memory, or conditioned contextual or cued fear or latent inhibition. The Poly IC (H) group showed a significant decrease in the rate of route-based learning when visible cues were unavailable in the Cincinnati water maze and reduced prepulse inhibition of acoustic startle in females, but not males. The Poly IC (L) group exhibited altered responses to acute pharmacological challenges: exaggerated hyperactivity in response to (+)-amphetamine and an attenuated hyperactivity in response to MK-801. This model did not exhibit the cognitive, or latent inhibition deficits reported in Poly IC-treated rats but showed changes in response to drugs acting on neurotransmitter systems implicated in the pathophysiology of schizophrenia (dopaminergic hyperfunction and glutamatergic hypofunction).

  5. Global pollution by organochlorinated endocrine disruptors - possible challenge for mankind at the onset of millennium.

    Science.gov (United States)

    Langer, P

    2015-01-01

    Author of this review submits a comprehensive report of his long-lasting research regarding the global pollution by endocrine disruptors (EDs), EDs and diabetes and obesity, EDs and the thyroid in highly polluted Slovakia, Ah-receptor: the central pivot responsible for such global "EDs disaster", EDs and immune system, EDs and testosterone, EDs in mothers and newborns, EDs and human genome, and EDs at the beginning of the millennium.

  6. Endocrine effects on heart function

    Directory of Open Access Journals (Sweden)

    M.R. Gamberini

    2011-12-01

    Full Text Available Among the factors associated with thalassemic heart disease, endocrine disturbance is also a contributing factor. We present a retrospective, cross sectional study, which aims to establish the prevalence of cardiac complications in thalassaemia major (TM patients with endocrine complications and to evaluate the influence of endocrine disease on cardiac complications. Endocrinological and cardiological parameters were considered on 957 TM patients who are enrolled in the Myocardial Iron Overload in Thalassemia (MIOT network in 68 sites in Italy. Patients with pubertal hypogonadism (163 males and 175 females, hypothyroidism (192, diabetes mellitus (87 and hypoparathyroidism (61, were compared according to cardiac complications: global heart T2*, cardiac dysfunction, heart failure, arrythmias, pulmonary hypertension and myocardial fibrosis. Control groups were made up according to the age range of patients with the corresponding endocrinopathy. The prevalence of cardiac dysfunction, arrhythmias and heart failure was significantly increased in patients with endocrinopathies. Cardiac complications tended to increase according to the number of endocrinologies affecting the patient. 与地中海贫血心脏疾病相关的因素中,内分泌失调也是一个促进因素。 我们进行了回顾和断面研究,旨在患有内分泌并发症的重型地中海贫血患者中建立心脏并发症的患病率,以及评估内分泌疾病对心脏并发症的影响。 曾考虑到意大利地中海贫血心肌铁过载(MIOT)网络的68个站点上注册的957名重型地中海贫血患者的内分泌和心脏病学参数。 根据以下心脏并发症对青春期性腺机能减退的患者(男性163名、女性175名)、甲状腺机能减退患者(192名)、糖尿病患者(87名)和甲状旁腺机能减退患者(61名)进行了比较: 心脏 T2*、心功能障碍、心脏衰竭、心率不齐、肺动脉高

  7. DIAGNOSIS OF ENDOCRINE DISEASE: Endocrine late-effects of childhood cancer and its treatments.

    Science.gov (United States)

    Chemaitilly, Wassim; Cohen, Laurie E

    2017-04-01

    Endocrine complications are frequently observed in childhood cancer survivors (CCS). One of two CCS will experience at least one endocrine complication during the course of his/her lifespan, most commonly as a late-effect of cancer treatments, especially radiotherapy and alkylating agent chemotherapy. Endocrine late-effects include impairments of the hypothalamus/pituitary, thyroid and gonads, as well as decreased bone mineral density and metabolic derangements leading to obesity and/or diabetes mellitus. A systematic approach where CCS are screened for endocrine late-effects based on their cancer history and treatment exposures may improve health outcomes by allowing the early diagnosis and treatment of these complications.

  8. Multiple Primary Endocrine Failure: A Case Report

    OpenAIRE

    1988-01-01

    A case of type III autoimmune polyendocrine deficiency syndrome is discussed. This case initially presented as macrocytic anemia and was later followed by other endocrine abnormalities. Suggestions for initial investigation and follow-up are discussed.

  9. Endocrine disruption in aquatic insects: a review.

    Science.gov (United States)

    Soin, Thomas; Smagghe, Guy

    2007-02-01

    There is mounting evidence that a wide variety of compounds can have endocrine disrupting effects on humans and wildlife. However, investigations so far have focused primarily on exposure to human and other vertebrates, with invertebrate findings largely restricted to marine mollusks or to the ecdysteroid and juvenile hormone agonists as purposely synthesized endocrine disrupters for the pest management of insects. This article provides a brief description of the insect hormone system, a short sum-up of the relevant insect groups with aquatic life stages, and an overview of the additional evidence for endocrine disruption in aquatic insects from laboratory and field studies since 1999. In addition, the suitability of insects as sentinels for endocrine disrupting chemicals in aquatic ecosystems is discussed. Conclusions are drawn and research needs are defined.

  10. Report on Criteria for Endocrine Disrupters

    DEFF Research Database (Denmark)

    Holbech, Henrik

    2011-01-01

    This report has been prepared by the Danish Centre on Endocrine Disrupters as a project contracted by the Danish Environmental Protection Agency. The Danish Centre on Endocrine Disrupters is an interdisciplinary scientific network without walls. The main purpose of the Centre is to build and gather...... new knowledge on endocrine disrupters with the focus on providing information requested for the preventive work of the regulatory authorities. The Centre is financed by the Ministry of the Environment and the scientific work programme is followed by an international scientific advisory board....... The overall aim of this project is to provide a science based proposal for criteria for endocrine disrupters. The terms of reference for the project specify elements to be included and/or addressed when developing the criteria (Annex 1). Also, several international reports and papers dealing with assessment...

  11. Acupuncture in endocrine disorders: a critical appraisal.

    Science.gov (United States)

    Deng, Y Z; Li, L B; Xu, L G; Zhou, D; Wei, L J; Liu, Y

    2016-01-01

    Acupuncture is an integral part of ancient Chinese medical practice. The technique has been used extensively in pain relief and is being tried for many other chronic conditions. Industrial development and affluence lead to the increase in the prevalence of many endocrine disorders such as diabetes, obesity, and polycystic ovarian disease. The rising prevalence of the endocrine morbidity is observed in both the developing and developed nations. The management of these disorders involves major lifestyle modification coupled with a long-term drug intake. In such situations, patients often look at alternative therapeutic options existing in complementary and alternative medicine. The globalization of the world medical practice has led to the spread of acupuncture beyond China to other parts of the world. Acupuncture has been tried extensively in the management of various endocrine disorders with inconsistent results. In this review, we highlight the principles of acupuncture and its role in the management of various endocrine disorders.

  12. [Diabetes and prediabetes in endocrine disorders].

    Science.gov (United States)

    Krysiak, Robert; Rudzki, Henryk; Okopień, Bogusław

    2012-01-01

    Complex hormonal regulation of carbohydrate metabolism causes that presence of many endocrine disorders may disturb glucose homeostasis. Impaired fasting glucose, impaired glucose tolerance and frank diabetes are observed in patients with both common and rare endocrine disorders, particularly in patients with polycystic ovary syndrome, hyperthyroidism, Cushing's syndrome, pheochromocytoma, primary aldosteronism, acromegaly, growth hormone deficiency and endocrine tumors of the digestive system. Because most of these disorders may be effectively treated and the treatment often results in a restoration of normal insulin secretion and receptor action as well as glucose absorption, production and metabolism, it is important to differentiate these disorders from other more common types of diabetes. This article reviews the etiology, clinical manifestation, diagnosis and management of endocrine disorders leading to diabetes and prediabetic states with special emphasis on the pathogenesis and clinical consequences of these disorders.

  13. Endocrine-Active Pharmaceuticals: An Environmental Concern?

    Science.gov (United States)

    Recently, there has been growing interest in pharmaceuticals that are specifically designed to have endocrine activity, such as the estrogens used in birth control pills, exerting unintended effects on fish and other aquatic organisms. These pharmaceuticals may not be persistent...

  14. Innate immune memory in plants.

    Science.gov (United States)

    Reimer-Michalski, Eva-Maria; Conrath, Uwe

    2016-08-01

    The plant innate immune system comprises local and systemic immune responses. Systemic plant immunity develops after foliar infection by microbial pathogens, upon root colonization by certain microbes, or in response to physical injury. The systemic plant immune response to localized foliar infection is associated with elevated levels of pattern-recognition receptors, accumulation of dormant signaling enzymes, and alterations in chromatin state. Together, these systemic responses provide a memory to the initial infection by priming the remote leaves for enhanced defense and immunity to reinfection. The plant innate immune system thus builds immunological memory by utilizing mechanisms and components that are similar to those employed in the trained innate immune response of jawed vertebrates. Therefore, there seems to be conservation, or convergence, in the evolution of innate immune memory in plants and vertebrates.

  15. Subtle sabotage: endocrine disruption in wild populations

    OpenAIRE

    Cheek, Ann Oliver

    2016-01-01

    How important is endocrine disruption as a threat to wildlife populations? This review applies causal criteria to existing studies of wild populations of fish, amphibians, reptiles, birds, and mammals to answer three questions: (1) Have endocrine-mediated effects of contaminant exposure been documented? (2) Have individual adverse effects that could lead to population effects been documented? (3) Have population level effects been documented? In fish, the possibility of population level effec...

  16. ENDOCRINE DISRUPTING EFFECTS OF BUTYLPARABEN: A REVIEW

    OpenAIRE

    Pallabi Goswami; J.C Kalita

    2013-01-01

    In recent years, there has been an increasing concern in the field of endocrine disruption over the presence of various endocrine disrupting chemicals in Pharmaceuticals and Personal care products (PPCPs). This concern has also been as PPCPs are most widely used and had led to introduction of thousands of new and complex chemicals that enter the environment in large quantities. The effect of the chemicals has not only been restricted to human who are exposed directly to the chemicals or the a...

  17. Development and Regeneration in the Endocrine Pancreas

    OpenAIRE

    Mansouri, Ahmed

    2012-01-01

    The pancreas is composed of two compartments that deliver digestive enzymes and endocrine hormones to control the blood sugar level. The endocrine pancreas consists of functional units organized into cell clusters called islets of Langerhans where insulin-producing cells are found in the core and surrounded by glucagon-, somatostatin-, pancreatic polypeptide-, and ghrelin-producing cells. Diabetes is a devastating disease provoked by the depletion or malfunction of insulin-producing beta-cell...

  18. Research on the Changes of Endocrine Hormones in Mammary Cancer and Hyperplasia of Mammary Glands

    Institute of Scientific and Technical Information of China (English)

    CHEN Chengqi

    2002-01-01

    Objective Based on a comparison of endocrine hormones between patients of mammary cancer and those of hyperplasia of mammary glands, a preliminary analysis of the interaction between endocrine hormones and the immune system was oonducted. Methods The experiment involved 50 cases of mammary cancer and hyperplasia of mammary glands each.Blood samples were taken from pre - menopausal and menopausal patients; six kinds of hypophyseal hommones(PRL, GH, TSH,ACTH, FSH and LH) and three kinds of sex hormones ( E2,P and T) were subjected to RIA tests.Results Wilcoxon matchpaired assay and normal approximation of the experiment indicated that the FSH level before pre - menopause and the ACTH level during menopause in patients with mammary canoer were higher that those of patients suffering hyperplasia of mamary glands. Conclusion Statistics show the the normal rhythm between endocrine hormones and the immune system is disrupted in mammary cancer patients, the feedback mechanism of the hypothalamo- hypophyseal- adrenal system is maladjusted,resulting in inhibition of the immune function. Female hormones induce the gene mutation and the sensitivity of the cells is increased, resulting in a significant acceleration of the hyperplasia of cancer cells.

  19. The endocrine system in diabetes mellitus.

    Science.gov (United States)

    Alrefai, Hisham; Allababidi, Hisham; Levy, Shiri; Levy, Joseph

    2002-07-01

    The pathophysiology of diabetes mellitus is complex and not fully understood. However, it emerges as an abnormal metabolic condition associated with a systemic damage to the vascular bed. Cumulative evidence also reveals that the endocrine system is not intact in patients with diabetes mellitus. It is not clear whether the changes observed in the endocrine system represent a primary defect or reflect the effects of the impaired insulin action and abnormal carbohydrate and lipid metabolism on the hormonal milieu. Review of the literature reveals that the function of the entire endocrine system including the functions of hormones from the hypothalamus, pituitary, adrenal, thyroid, parathyroid, the vitamin D system, the gonads, and the endocrine function of the adipose tissue, is impaired. Good metabolic control and insulin treatment may reverse some of these abnormalities. It remains unanswered as to what extent these changes in the endocrine system contribute to the vascular pathologies observed in individuals affected by diabetes mellitus and whether part of the abnormalities observed in the endocrine system reflect a basic cellular defect in the diabetic syndrome.

  20. Telomerase and the endocrine system.

    Science.gov (United States)

    Pacini, Furio; Cantara, Silvia; Capezzone, Marco; Marchisotta, Stefania

    2011-03-29

    Telomeres are nucleoprotein complexes located at the ends of chromosomes that have a critical role in the maintenance of chromosomal integrity. This involvement is based on complex secondary and tertiary structures that rely on DNA-DNA, DNA-protein and protein-protein interactions. De novo synthesis and maintenance of telomere repeats is controlled by telomerase, a specialized complex that consists of a telomerase RNA component and a protein component--telomerase reverse transcriptase. When telomerase is silent (its default state in differentiated somatic cells), chromosomes shorten with every cell division, thus limiting the lifespan of the cells (the process of senescence) and preventing unlimited cell proliferation, which might eventually lead to the development of cancer. During this process, occasionally, a cell can activate telomerase, which stabilizes short telomeres and enables immortalization-a process essential for malignant transformation. Thus, although telomere erosion is a barrier to malignant progression, paradoxically, in certain circumstances it might also trigger tumorigenesis. A number of studies have demonstrated unequivocally that reactivation of telomerase in the presence of short telomeres is one of the most common features of human cancers, including those of the endocrine system.

  1. Effect of Selenium Supplementation on Growth Performance, Immune Function and Endocrine of Growing Laying Ducks%饲粮添加硒对生长期蛋鸭生长性能、免疫机能及内分泌的影响

    Institute of Scientific and Technical Information of China (English)

    冯婧; 王安; 霍思远

    2011-01-01

    本试验旨在研究饲粮添加不同水平硒对生长期(5 ~11周)蛋鸭生长性能、免疫机能及内分泌的影响.试验选用5周龄、平均体重为(0.36±0.01) kg的金定蛋鸭150只,采用单因素试验设计,随机分为5个组,每组6个重复,每个重复5只鸭,分别饲喂在基础饲粮(硒含量0.04 mg/kg)中添加0(对照组)、0.08、0.16、0.36和0.66 mg/kg硒(实际添加物为亚硒酸钠)的试验饲粮,试验期为7周.结果表明:1)饲粮中添加0.08和0.16 mg/kg硒可显著提高蛋鸭平均日增重,降低料重比(P<0.05).2)与对照组相比,0.08 mg/kg硒添加组的脾脏鲜重、法氏囊鲜重及法氏囊指数显著升高(P<0.05),0.08和0.16 mg/kg硒添加组的血清白细胞介素-2( IL-2)含量显著升高(P<0.05).硒水平对脾脏指数、胸腺指数及胸腺鲜重以及血清总蛋白(TP)含量的影响差异不显著(P>0.05).3)血清三碘甲状腺原氨酸(T3)含量随硒水平的升高呈先升高后降低的趋势,而四碘甲状腺原氨酸(T4)含量则随硒水平的升高呈先降低后升高的趋势,但各组间差异均不显著(P>0.05).饲粮添加0.16 mg/kg硒时,血清生长激素(GH)含量显著高于对照组和0.66 mg/kg硒添加组(P<0.05).综合分析,添加0.08 ~0.16 mg/kg硒可提高生长期蛋鸭的生长性能和免疫机能,调节相关激素分泌.%The experiment was conducted to study the effect of different levels of dietary selenium (Se) on growth performance, immune function and endocrine of growing laying ducks (5 to 11 weeks). One hundred and fifty 5-week-old Jinding laying ducks with average body weight of (0. 36 ±0. 01) kg were chosen and randomly divided into 5 groups with 6 replicates per group and 5 ducks per replicate. The ducks in the 5 groups were fed basal diets (Se content was 0.04 mg/kg) supplemented with 0 (control group), 0.08, 0.16, 0.36 and 0.66 mg/kg Se (actual additives was sodium selenite), respectively. The trial lasted for 7 weeks. The results

  2. Molasses as a possible cause of an ''endocrine disruptive syndrome'' in calves

    Directory of Open Access Journals (Sweden)

    M.S. Masgoret

    2009-09-01

    Full Text Available During the mid 1990s a potentially serious, chronic syndrome was reported in well-managed beef and dairy herds from unrelated parts of South Africa. Farmers reported that it manifested as various combinations of decreased production, decreased weaning masses, apparent immune breakdown in previously immunocompetent animals, increased reproductive disorders, various mineral imbalances in non-deficient areas and goitre, noticeable as enlarged thyroid glands. The farmers associated this syndrome with certain batches of sugar cane molasses and molasses-based products. The syndrome was reminiscent of an ''endocrine disruptive syndrome''. The objective of this study was to evaluate the suspected endocrine disruptive effect of molasses included in cattle feed. Using existing in vitro assays, four batches of molasses syrup were screened for possible inclusion in a calf feeding trial. Two batches were selected for the trial. Thirty-two, 4- to 6-week-old, weaned Holstein bull calves were included in the single phase, three treatment, parallel design experiment. In two of the groups of calves, two different batches of molasses were included in their rations respectively. The control group was fed a ration to which no molasses was added, but which was balanced for energy and mineral content. The mass gain of the calves was recorded over the 6-month study period. The calves were clinically examined every week and clinical pathology parameters, immune responses and endocrine effects were regularly evaluated. Even though endocrine disrupting effects were detected with the in vitro screening assays, these could not be reproduced in the calves in the experiment. The two batches of molasses utilized in the calf feeding trial did not induce major differences in any of the parameters measured, with the exception of a lower mass gain in one of the molasses-fed groups (Group 1, which tended towards significance. The results of the study indicate that the two batches

  3. Neuroendocrine-immune interactions in rheumatoid arthritis: mechanisms of glucocorticoid resistance.

    Science.gov (United States)

    Silverman, Marni N; Sternberg, Esther M

    2008-01-01

    Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovial membrane, leading to joint destruction. Many autoimmune diseases and disease states of chronic inflammation are accompanied by alterations in the complex interactions between the endocrine, nervous and immune systems. Glucocorticoids, an end product of the hypothalamic-pituitary-adrenal axis, are a mainstay treatment for many autoimmune diseases, including RA, because of their potent anti-inflammatory action. However, about 30% of patients with RA fail to respond to steroid therapy. There are various mechanisms that may contribute to the development of glucocorticoid resistance in inflammatory disorders, which will be the subject of this review. In addition, glucocorticoid resistance may be a contributing factor in the development of inflammatory/autoimmune diseases themselves. Therefore, further elucidation of these mechanisms will reveal new targets for therapeutic intervention in the treatment of RA.

  4. Endocrine dysfunction in hereditary hemochromatosis.

    Science.gov (United States)

    Pelusi, C; Gasparini, D I; Bianchi, N; Pasquali, R

    2016-08-01

    Hereditary hemochromatosis (HH) is a genetic disorder of iron overload and subsequent organ damage. Five types of HH are known, classified by age of onset, genetic cause, clinical manifestations and mode of inheritance. Except for the rare form of juvenile haemochromatosis, symptoms do not usually appear until after decades of progressive iron loading and may be triggered by environmental and lifestyle factors. Despite the last decades discovery of genetic and phenotype diversity of HH, early studies showed a frequent involvement of the endocrine glands where diabetes and hypogonadism are the most common encountered endocrinopathies. The pathogenesis of diabetes is still relatively unclear, but the main mechanisms include the loss of insulin secretory capacity and insulin resistance secondary to liver damage. The presence of obesity and/or genetic predisposition may represent addictive risk factor for the development of this metabolic disease. Although old cases of primary gonad involvement are described, hypogonadism is mainly secondary to selective deposition of iron on the gonadotropin-producing cells of the pituitary gland, leading to hormonal impaired secretion. Cases of hypopituitarism or selected tropin defects, and abnormalities of adrenal, thyroid and parathyroid glands, even if rare, are reported. The prevalence of individual gland dysfunction varies enormously within studies for several bias due to small numbers of and selected cases analyzed, mixed genotypes and missing data on medical history. Moreover, in the last few years early screening and awareness of the disease among physicians have allowed hemochromatosis to be diagnosed in most cases at early stages when patients have no symptoms. Therefore, the clinical presentation of this disease has changed significantly and the recognized common complications are encountered less frequently. This review summarizes the current knowledge on HH-associated endocrinopathies.

  5. Neuroendocrine and behavioral implications of endocrine disrupting chemicals in quail

    Science.gov (United States)

    Ottinger, M.A.; Abdelnabi, M.A.; Henry, P.; McGary, S.; Thompson, N.; Wu, J.M.

    2001-01-01

    Japanese quail. The Japanese quail provides an excellent avian model for testing EDCs because this species has well-characterized reproductive endocrine and behavioral responses. Considerable research has been conducted in quail in which the effects of embryonic steroid exposure have been studied relative to reproductive behavior. Moreover, developmental processes have been studied extensively and include investigations of the reproductive axis, thyroid system, and stress and immune responses. We have conducted a number of studies, which have considered long-term neuroendocrine consequences as well as behavioral responses to steroids. Some of these studies have specifically tested the effects of embryonic steroid exposure on later reproductive function in a multigenerational context. A multigenerational exposure provides a basis for understanding potential exposure scenarios in the field. In addition, potential routes of exposure to EDCs for avian species are being considered, as well as differential effects due to stage of the life cycle at exposure to an EDC. The studies in our laboratory have used both diet and egg injection as modes of exposure for Japanese quail. In this way, birds were exposed to a specific dose of an EDC at a selected stage in development by injection. Alternatively, dietary exposure appears to be a primary route of exposure; therefore experimental exposure through the diet mimics potential field situations. Thus, experiments should consider a number of aspects of exposure when attempting to replicate field exposures to EDCs.

  6. Endocrine disruption of oestrogen action and female reproductive tract cancers.

    Science.gov (United States)

    Gibson, Douglas A; Saunders, Philippa T K

    2014-04-01

    Endocrine disrupting chemicals (EDC) are ubiquitous and persistent compounds that have the capacity to interfere with normal endocrine homoeostasis. The female reproductive tract is exquisitely sensitive to the action of sex steroids, and oestrogens play a key role in normal reproductive function. Malignancies of the female reproductive tract are the fourth most common cancer in women, with endometrial cancer accounting for most cases. Established risk factors for development of endometrial cancer include high BMI and exposure to oestrogens or synthetic compounds such as tamoxifen. Studies on cell and animal models have provided evidence that many EDC can bind oestrogen receptors and highlighted early life exposure as a window of risk for adverse lifelong effects on the reproductive system. The most robust evidence for a link between early life exposure to EDC and adverse reproductive health has come from studies on women who were exposed in utero to diethylstilbestrol. Demonstration that EDC can alter expression of members of the HOX gene cluster highlights one pathway that might be vulnerable to their actions. In summary, evidence for a direct link between EDC exposure and cancers of the reproductive system is currently incomplete. It will be challenging to attribute causality to any single EDC when exposure and development of malignancy may be separated by many years and influenced by lifestyle factors such as diet (a source of phytoestrogens) and adiposity. This review considers some of the evidence collected to date.

  7. Endocrine disruption in crustaceans due to pollutants: a review.

    Science.gov (United States)

    Rodríguez, Enrique M; Medesani, Daniel A; Fingerman, Milton

    2007-04-01

    The main endocrine-regulated processes of crustaceans have been reviewed in relation to the effects of endocrine-disrupting compounds (EDCs). Molting has been shown to be inhibited by several organic pollutants, such as xenoestrogens and related compounds, as well as by some pesticides. Most of these disrupters are thought to interfere with ecdysone at target tissues, although only for a few has this action been demonstrated in vitro. The heavy metal cadmium appears to inhibit some ecdysone secretion. Juvenoid compounds have also been shown to inhibit molting, likely by interfering with the stimulatory effect of methyl farnesoate. A molt-promoting effect of emamectin benzoate, a pesticide, has also been reported. As for reproduction, a variety of organic compounds, including xenoestrogens, juvenoids and ecdysteroids, has produced abnormal development of male and female secondary sexual characters, as well as alteration of the sex ratio. Cadmium and copper have been shown to interfere with hormones that stimulate reproduction, such as methyl farnesoate, as well as with secretion of the gonad inhibiting hormone, therefore affecting, for example, ovarian growth. Several heavy metals were able to produce hyperglycemia in crustaceans during short times of exposure; while a hypoglycemic response was noted after longer exposures, due to inhibition of secretion of the crustacean hyperglycemic hormone. The ecological relevance of EDCs on crustaceans is discussed, mainly in relation to the identification of useful biomarkers and sentinel species. New experimental approaches are also proposed.

  8. [Effect of forest therapy on the human psycho-neuro-endocrino-immune network].

    Science.gov (United States)

    Li, Qing; Kawada, Tomoyuki

    2011-09-01

    Traditional thinking considered the nervous system, endocrine system and immune system to be independent of each other. However, it is now widely accepted that these systems interact through the psycho-neuro-endocrino-immune network. The nervous system affects the endocrine and immune systems by releasing neurotransmitters through the hypothalamus in the hypothalamic-pituitary portal circulation. The endocrine system affects the nervous and immune systems by secreting hormones and the immune system feeds back to the nervous and endocrine systems via cytokines. Forest therapy reduces sympathetic nervous activity, increases parasympathetic nervous activity, and regulates the balance of autonomic nerves. As a result, forest therapy decreases blood pressure and heart rate and has a relaxing effect. Forest therapy affects psychological responses via the brain and nervous system thereby decreasing the scores for anxiety, depression, anger, fatigue, and confusion, and increasing the score for vigor in the POMS test. Forest therapy acts on the endocrine system to reduce stress hormone levels such as urinary adrenaline, urinary noradrenaline, salivary cortisol, and blood cortisol levels and shows a relaxing effect. Forest therapy also acts directly and indirectly on the immune system to promote NK activity by increasing the number of NK cells and intracellular levels of anticancer proteins such as perforin, granulysin and granzymes. Taken together, forest therapy brings various effects on human health via the psycho-neuro-endocrino-immune network.

  9. Spaceflight alters immune cell function and distribution

    Science.gov (United States)

    Sonnenfeld, Gerald; Mandel, Adrian D.; Konstantinova, Irina V.; Berry, Wallace D.; Taylor, Gerald R.; Lesniak, A. T.; Fuchs, Boris B.; Rakhmilevich, Alexander L.

    1992-01-01

    Experiments are described which were performed onboard Cosmos 2044 to determine spaceflight effects on immunologically important cell function and distribution. Results indicate that bone marrow cells from flown and suspended rats exhibited a decreased response to a granulocyte/monocyte colony-stimulating factor compared with the bone marrow cells from control rats. Bone marrow cells showed an increase in the percentage of cells expressing markers for helper T-cells in the myelogenous population and increased percentages of anti-asialo granulocyte/monocyte-1-bearing interleulin-2 receptor bearing pan T- and helper T-cells in the lymphocytic population.

  10. Side Effects of Neem Oil on the Midgut Endocrine Cells of the Green Lacewing Ceraeochrysa claveri (Navás) (Neuroptera: Chrysopidae).

    Science.gov (United States)

    Scudeler, E L; Santos, D C

    2014-04-01

    We described the ultrastructure of Ceraeochrysa claveri (Navás) midgut endocrine cells in larva, pupa, and adult, and evaluated the side effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree (Azadirachta indica), on these cells. During the larval period, C. claveri were fed (ad libitum) Diatraea saccharalis (F.) eggs treated with neem oil at concentrations of 0.5%, 1%, or 2%. Transmission electron microscopy showed that two subtypes of endocrine cells, namely granular and vesicular, occurred in the midgut epithelium during the three stages of the life cycle. Both cell types did not reach the midgut lumen and were positioned basally in the epithelium. The endocrine cells did not show extensive infoldings of the basal plasma membrane, and there were numerous secretory granules in the basal region of the cytoplasm. In the granular endocrine cells, the granules were completely filled with a dense matrix. In the vesicular endocrine cells, the main secretory products consisted of haloed vesicles. Ultrastructural examination indicated that only the granular endocrine cells exhibited signs of morphologic changes of cell injury present in all life cycle stages after the larvae were chronically exposed to neem oil by ingestion. The major cellular damage consisted of dilatation and vesiculation of the rough endoplasmic reticulum and the development of smooth endoplasmic reticulum and mitochondrial swelling. Our data suggest that cytotoxic effects on midgut endocrine cells can contribute to a generalized disruption of the physiological processes in this organ due to a general alteration of endocrine function.

  11. Clinical case: multiple endocrine neoplasia type 1 (MEN 1

    Directory of Open Access Journals (Sweden)

    A K Lipatenkova

    2012-12-01

    Full Text Available Multiple endocrine neoplasia syndrome type 1 (MEN1, Wermer syndrome – group o а heterogeneous inherited deseases, caused by hyperlasia or neoplasia of several endocrine glands. The phenotype of MEN1 is broad, and over 20 different combinations of endocrine and non-endocrine metabolic manifestations have been described. This case demonstrates multiple formations of endocrine organs, starting non-classical with macroprolactonoma resistant to dopamine agonists therapy, other endocrine disorders developed gradually eventually: hyperparathyreoidism and hypoglycemia caused by pancreas lesions, produced proinsulin in high levels.

  12. Exercise and the Regulation of Endocrine Hormones.

    Science.gov (United States)

    Hackney, Anthony C; Lane, Amy R

    2015-01-01

    The endocrine system has profound regulatory effects within the human body and thus the ability to control and maintain appropriate function within many physiological systems (i.e., homeostasis). The hormones associated with the endocrine system utilize autocrine, paracrine, or endocrine actions on the cells of their target tissues within these physiologic systems to adjust homeostasis. The introduction of exercise as a stressor to disrupt homeostasis can greatly amplify and impact the actions of these hormones. To that end, the endocrine response to an acute exercise session occurs in a progression of phases with the magnitude of the response being relative to the exercise work intensity or volume. Various physiologic mechanisms are considered responsible for these responses, although not all are completely understood or elucidated. Chronic exercise training does not eliminate the acute exercise response but may attenuate the overall effect of the responsiveness as the body adapts in a positive fashion to the training stimulus. Regrettably, an excessive intensity and/or volume of training may lead to maladaptation and is associated with inappropriate endocrine hormonal responses. The mechanisms leading to a deleterious maladaptive state are not well understood and require additional research for elucidation.

  13. Oxidative stress and the ageing endocrine system.

    Science.gov (United States)

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  14. Purinergic signaling pathways in endocrine system.

    Science.gov (United States)

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling.

  15. The effects of metals as endocrine disruptors.

    Science.gov (United States)

    Iavicoli, Ivo; Fontana, Luca; Bergamaschi, Antonio

    2009-03-01

    This review reports current knowledge regarding the roles that cadmium (Cd), mercury (Hg), arsenic (As), lead (PB), manganese (Mn), and zinc (Zn) play as endocrine-disrupting chemicals (EDCs). The influence of these metals on the endocrine system, possible mechanisms of action, and consequent health effects were correlated between experimental animals and humans. Analysis of the studies prompted us to identify some critical issues related to this area and showed the need for more rigorous and innovative studies. Consequently, it was recommended that future studies need to: (1) identify the mechanisms of action, because at the present time only a few have been elucidated-in this context, the possible presence of hormesis need to be determined, as currently this was reported only for exposure Cd and As; (2) study the possible additive, synergistic, or antagonistic effects on the endocrine system following exposure to a mixture of metals since there is a lack of these studies available, and in general or occupational environments, humans are simultaneously exposed to different classes of xenobiotics, including metals, but also to organic compounds that might also be EDCs; (3) assess the potential adverse effects on the endocrine system of low-level exposures to metals, as most of the information currently available on EDCs originates from studies in which exposure levels were particularly high; and (4) assess the effects on the endocrine and reproductive systems of other metals that are present in the general and occupational environment that have not yet been evaluated.

  16. [Affective disorders: endocrine and metabolic comorbidities].

    Science.gov (United States)

    Cermolacce, M; Belzeaux, R; Adida, M; Azorin, J-M

    2014-12-01

    Links between affective and endocrine-metabolic disorders are numerous and complex. In this review, we explore most frequent endocrine-metabolic comorbidities. On the one hand, these comorbidities imply numerous iatrogenic effects from antipsychotics (metabolic side-effects) or from lithium (endocrine side-effects). On the other hand, these comorbidities are also associated with affective disorders independently from medication. We will successively examine metabolic syndrome, glycemic disturbances, obesity and thyroid disorders among patients with affective disorders. Endocrinemetabolic comorbidities can be individually encountered, but can also be associated. Therefore, they substantially impact morbidity and mortality by increasing cardiovascular risk factors. Two distinct approaches give an account of processes involved in these comorbidities: common environmental factors (iatrogenic effects, lifestyle), and/or shared physiological vulnerabilities. In conclusion, we provide a synthesis of important results and recommendations related to endocrine-metabolic comorbidities in affective disorders : heavy influence on morbidity and mortality, undertreatment of somatic diseases, importance of endocrine and metabolic side effects from main mood stabilizers, impact from sex and age on the prevalence of comorbidities, influence from previous depressive episodes in bipolar disorders, and relevance of systematic screening for subclinical (biological) disturbances.

  17. Dendritic cell based immunotherapy--a promising therapeutic approach for endocrine malignancies.

    Science.gov (United States)

    Sbiera, S; Wortmann, S; Fassnacht, M

    2008-02-01

    Dendritic cells (DCs) are the most potent antigen presenting cells in the human organism. Ever since the discovery of their function in the self/nonself discrimination, DCs have been seen as potential candidates for therapy in malignant tumors. With the exception of differentiated thyroid cancer, endocrine malignancies are rare tumors and apart from surgical intervention there is no truly established method for their treatment. Therefore, the prognosis of many endocrine carcinomas is still poor and new therapeutic options are needed. In the last decade, different immunotherapeutic approaches have shown promising results in other solid tumors. In recent studies, immunotherapy using DCs has been proven to be safe and effective to induce antitumor immune responses leading to tumor regression and even rejection of cancer in some cases. This review will summarize the latest progress in DCs based immunotherapy with special focus on the limited experience in endocrine malignancies. With regard to these tumors, it is of special interest which antigens could serve as potential target antigens for future trials. We also discuss what steps have to be taken to develop a better immunotherapy in endocrine tumors.

  18. Annelid Endocrine Disruptors and a Survey of Invertebrate FMRFamide-Related Peptides.

    Science.gov (United States)

    Krajniak, Kevin G

    2005-01-01

    There is a growing body of literature describing the actions of endocrine disruptors on annelids. These pollutants cause decreases in growth and reproductive output, delay sexual maturation, and inhibit the immune system in annelids. More studies are needed to determine the mechanisms that underlie these responses. Most invertebrate endocrine disruptor research focuses on steroids. In recent years many new invertebrate peptide hormones including those related to the molluscan peptide FMRFamide have been identified. Since the storage of these peptides can be inhibited by steroids during insect metamorphosis, they may be affected by endocrine disruptors. Therefore, it is worthwhile to give a brief overview of this peptide family to those studying endocrine disruption in invertebrates with the hope that they may begin to consider these peptides in their future research. In 1977 Price and Greenberg isolated FMRFamide from the cerebral ganglia of the clam, Macrocallista nimbosa. Since then researchers have used bioassays and immunoassays to identify a large number of FMRFamide-related peptides (FaRPs) from many invertebrate phyla. Even more peptides are predicted by the FaRP genes that have been sequenced. FaRPs have a variety of functions and act as neurotransmitters, neuromodulators, or neurohormones. Each function is species and tissue specific. Most FaRP receptors are linked to a second messenger system. However, at least one is a ligand gated sodium channel. On going studies are examining FaRPs from the molecular to organismal level.

  19. Immune System Toxicity and Immunotoxicity Hazard Identification

    Science.gov (United States)

    Exposure to chemicals may alter immune system health, increasing the risk of infections, allergy and autoimmune diseases. The chapter provides a concise overview of the immune system, host factors that affect immune system heal, and the effects that xenobiotic exposure may have ...

  20. Metabolic targets of endocrine disrupting chemicals assessed by cord blood transcriptome profiling

    DEFF Research Database (Denmark)

    Remy, Sylvie; Govarts, Eva; Wens, Britt

    2016-01-01

    Early life exposure to endocrine disrupting chemicals (EDCs) has been frequently associated with impaired perinatal growth, an important risk factor for later onset of metabolic disorders. We analyzed whether the cord blood transcriptome showed early indications of alterations in metabolic......’ pathways were significantly enriched in relation to p,p′-DDE. Transcriptional changes at birth suggest a role for specific metabolic targets as a link between prenatal EDC exposure and metabolic disorders later in life. © 2016 Elsevier Inc....

  1. Genetic polymorphisms and metabolism of endocrine disruptors in cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Hatagima Ana

    2002-01-01

    Full Text Available Epidemiological studies have estimated that approximately 80% of all cancers are related to environmental factors. Individual cancer susceptibility can be the result of several host factors, including differences in metabolism, DNA repair, altered expression of tumor suppressor genes and proto-oncogenes, and nutritional status. Xenobiotic metabolism is the principal mechanism for maintaining homeostasis during the body's exposure to xenobiotics. The balance of xenobiotic absorption and elimination rates in metabolism can be important in the prevention of DNA damage by chemical carcinogens. Thus the ability to metabolize and eliminate xenobiotics can be considered one of the body's first protective mechanisms. Variability in individual metabolism has been related to the enzymatic polymorphisms involved in activation and detoxification of chemical carcinogens. This paper is a contemporary literature review on genetic polymorphisms involved in the metabolism of endocrine disruptors potentially related to cancer development.

  2. A review of endocrine changes in anorexia nervosa

    DEFF Research Database (Denmark)

    Støving, R K; Hangaard, J; Hansen-Nord, M

    1999-01-01

    Anorexia nervosa is a syndrome of unknown etiology. It is associated with multiple endocrine abnormalities. Hypothalamic monoamines (especially serotonin), neuropeptides (especially neuropeptide Y and cholecystokinin) and leptin are involved in the regulation of human appetite, and in several ways...... they are changed in anorexia nervosa. However, it remains to be clarified whether the altered appetite regulation is secondary or etiologic. Increased secretion of corticotropin-releasing hormone and proopiomelanocortin seems to be secondary to starvation, however, there is evidence that it may maintain...... and intensify anorexia, excessive physical activity and amenorrhea. Hypothalamic amenorrhea, which is a diagnostic criterion in anorexia nervosa, is not solely related to the low body weight and exercise. Growth hormone resistance with low production of insulin-like growth factor I and high growth hormone...

  3. Growth hormone, insulin and aging: the benefits of endocrine defects.

    Science.gov (United States)

    Bartke, Andrzej

    2011-01-01

    Longevity of mice can be increased by spontaneous or experimentally induced mutations that interfere with the biosynthesis or actions of growth hormone (GH), insulin-like growth factor 1 (IGF-1), or insulin in the adipose tissue. The effects of GH resistance and deficiency of GH (along with thyrotropin and prolactin) on aging and lifespan are the most pronounced and best established of these mutations. Potential mechanisms linking these endocrine deficits with delayed aging and extended longevity include increased stress resistance, alterations in insulin and mammalian target of rapamycin (mTOR) signaling and metabolic adjustments. Physiological relationships deduced from the extreme phenotypes of long-lived mouse mutants appear to apply broadly, encompassing genetically normal ("wild-type") mice and other mammalian species. The role of GH in the control of human aging continues to be hotly debated, but recent data indicate that reduced somatotropic signaling provides protection from cancer and other age-related diseases and may promote old age survival.

  4. Genetic polymorphisms and metabolism of endocrine disruptors in cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Ana Hatagima

    2002-04-01

    Full Text Available Epidemiological studies have estimated that approximately 80% of all cancers are related to environmental factors. Individual cancer susceptibility can be the result of several host factors, including differences in metabolism, DNA repair, altered expression of tumor suppressor genes and proto-oncogenes, and nutritional status. Xenobiotic metabolism is the principal mechanism for maintaining homeostasis during the body's exposure to xenobiotics. The balance of xenobiotic absorption and elimination rates in metabolism can be important in the prevention of DNA damage by chemical carcinogens. Thus the ability to metabolize and eliminate xenobiotics can be considered one of the body's first protective mechanisms. Variability in individual metabolism has been related to the enzymatic polymorphisms involved in activation and detoxification of chemical carcinogens. This paper is a contemporary literature review on genetic polymorphisms involved in the metabolism of endocrine disruptors potentially related to cancer development.

  5. ENDOCRINE DISORDERS AND THEIR EFFECTS IN ORTHODONTICS

    Directory of Open Access Journals (Sweden)

    Sunil Kumar KHARE

    2013-12-01

    Full Text Available the periodontal tissue to orthodontic forces, which leads to modeling and remodeling of the surrounding alveolar bone. The endocrine system is responsible for hormonal secretion, being closely related to the central nervous sys‑ tem, as it diversifies its functions through the hypothala‑ mus and pituitary glands. It controls physiological processes and maintains homeostasis. The neuroendocrine system is responsible for adaptation to environmental changes. Also, the nervous system may provide a correct organic response, of primary type, with the release of neu‑ rotransmitters or, if the stimulus prevails, the endocrine system secretes hormones. This is especially important in dentistry because many of the patients attending dental clinics face stressful situations. Awareness is therefore nec‑ essary on the risks and difficulties that may arise during the dental and orthodontic management of patients with endocrine disorders and most common oral manifesta‑ tions.

  6. Multiple endocrine neoplasia: the Chilean experience

    Directory of Open Access Journals (Sweden)

    René E. Diaz

    2012-01-01

    Full Text Available Multiple endocrine neoplasia (MEN types 1 and 2 are genetic diseases that are inherited as autosomal traits. The major clinical manifestations of multiple endocrine neoplasia type 1 include the so-called "3 P's": parathyroid, pituitary, and pancreatic tumors, including gastroenteroneuroendocrine tumors. Genetic testing can be performed on patients and the potential carriers of the menin gene mutation, but the genotype-phenotype correlation in multiple endocrine neoplasia type 1 is less straightforward than multiple endocrine neoplasia type 2. Most likely, the main advantage of genetic testing in MEN1 is to exclude from further studies those who are negative for the genetic mutation if they belong to a family with a known history of MEN1. In Chile, we started with rearranged during transfection proto-oncogene genetic testing (MEN2 15 years ago. We carried out a prophylactic total thyroidectomy to prevent medullary thyroid carcinoma in a three-year-old girl who presented with microscopic medullary thyroid carcinoma. More than 90% of the individuals who tested positive using a genetic test achieved a biochemical cure compared with only 27% of patients who receive a clinical diagnosis. Mutations are mainly located in exon 11; the most common is C634W, rather than C634R. Hypertensive crisis was the cause of death in three patients, and extensive distant metastases occurred in nine (including two patients with multiple endocrine neoplasia type 2B of 14 patients. Earlier recognition of medullary thyroid carcinoma and the other features of the disease, especially pheochromocytoma, will improve the survival rate of patients with multiple endocrine neoplasia.

  7. Endocrine disruptors and estrogenic effects on male reproductive axis

    Institute of Scientific and Technical Information of China (English)

    Suresh C. Sikka; Run Wang

    2008-01-01

    Endocrine disruptors (e.g., polychlorinated biphenyls [PCBs], dichlorodiphenyl-trichloroethane [DDT], dioxin,and some pesticides) are estrogen-like and anti-androgenic chemicals in the environment. They mimic natural hormones,inhibit the action of hormones, or alter the normal regulatory function of the endocrine system and have potential hazardous effects on male reproductive axis causing infertility. Although testicular and prostate cancers, abnormal sexual development, undescended testis, chronic inflammation, Sertoli-cell-only pattern, hypospadias, altered pituitary and thyroid gland functions are also observed, the available data are insufficient to deduce worldwide conclusions.The development of intra-cytoplasmic sperm injection (ICSI) is beyond doubt the most important recent breakthrough in the treatment of male infertility, but it does not necessarily treat the cause and may inadvertently pass on adverse genetic consequences. Many well-controlled clinical studies and basic scientific discoveries in the physiology,biochemistry, and molecular and cellular biology of the male reproductive system have helped in the identification of greater numbers of men with male factor problems. Newer tools for the detection of Y-chromosome deletions have further strengthened the hypothesis that the decline in male reproductive health and fertility may be related to the presence of certain toxic chemicals in the environment. Thus the etiology, diagnosis, and treatment of male factor infertility remain a real challenge. Clinicians should always attempt to identify the etiology of a possible testicular toxicity, assess the degree of risk to the patient being evaluated for infertility, and initiate a plan to control and prevent exposure to others once an association between occupation/toxicant and infertility has been established.

  8. Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination.

    Science.gov (United States)

    Chang, Hung-Shu; Anway, Matthew D; Rekow, Stephen S; Skinner, Michael K

    2006-12-01

    Embryonic exposure to the endocrine disruptor vinclozolin at the time of gonadal sex determination was previously found to promote transgenerational disease states. The actions of vinclozolin appear to be due to epigenetic alterations in the male germline that are transmitted to subsequent generations. Analysis of the transgenerational epigenetic effects on the male germline (i.e. sperm) identified 25 candidate DNA sequences with altered methylation patterns in the vinclozolin generation sperm. These sequences were identified and mapped to specific genes and noncoding DNA regions. Bisulfite sequencing was used to confirm the altered methylation pattern of 15 of the candidate DNA sequences. Alterations in the epigenetic pattern (i.e. methylation) of these genes/DNA sequences were found in the F2 and F3 generation germline. Therefore, the reprogramming of the male germline involves the induction of new imprinted-like genes/DNA sequences that acquire an apparent permanent DNA methylation pattern that is passed at least through the paternal allele. The expression pattern of several of the genes during embryonic development were found to be altered in the vinclozolin F1 and F2 generation testis. A number of the imprinted-like genes/DNA sequences identified are associated with epigenetic linked diseases. In summary, an endocrine disruptor exposure during embryonic gonadal sex determination was found to promote an alteration in the epigenetic (i.e. induction of imprinted-like genes/DNA sequences) programming of the male germline, and this is associated with the development of transgenerational disease states.

  9. Biomonitoring of Human Exposure to Prestige Oil: Effects on DNA and Endocrine Parameters

    Science.gov (United States)

    Pérez-Cadahía, Beatriz; Méndez, Josefina; Pásaro, Eduardo; Lafuente, Anunciación; Cabaleiro, Teresa; Laffon, Blanca

    2008-01-01

    Since 1960, about 400 tankers spilled more than 377765 tons of oil, with the Prestige accident (Galician coast, NW Spain, November 2002) the most recent. Taking into account the consistent large number of individuals exposed to oil that exists all over the world, it seems surprising the absence in the literature of studies focused on the chronic effects of this exposure on human health. In this work we evaluated the level of DNA damage by means of comet assay, and the potential endocrine alterations (prolactin and cortisol) caused by Prestige oil exposure in a population of 180 individuals, classified in 3 groups according to the tasks performed, and 60 controls. Heavy metals in blood were determined as exposure biomarkers, obtaining significant increases of aluminum, nickel and lead in the exposed groups as compared to controls. Higher levels of genetic damage and endocrine alterations were also observed in the exposed population. DNA damage levels were influenced by age, sex, and the use of protective clothes, and prolactin concentrations by the last two factors. Surprisingly, the use of mask did not seem to protect individuals from genetic or endocrine alterations. Moreover, polymorphisms in genes encoding for the main enzymes involved in the metabolism of oil components were analyzed as susceptibility biomarkers. CYP1A1-3′UTR and EPHX1 codons 113 and 139 variant alleles were related to higher damage levels, while lower DNA damage was observed in GSTM1 and GSTT1 null individuals. PMID:21572833

  10. Long-term effects of environmental endocrine disruptors on reproductive physiology and behavior

    Directory of Open Access Journals (Sweden)

    Heather B Patisaul

    2009-06-01

    Full Text Available It is well established that, over the course of development, hormones shape the vertebrate brain such that sex specific physiology and behaviors emerge. Much of this occurs in discrete developmental windows that span gestation through the prenatal period, although it is now becoming clear that at least some of this process continues through puberty. Perturbation of this developmental progression can permanently alter the capacity for reproductive success. Wildlife studies have revealed that exposure to endocrine disrupting compounds (EDCs, either naturally occurring or man made, can profoundly alter reproductive physiology and ultimately impact entire populations. Laboratory studies in rodents and other species have elucidated some of the mechanisms by which this occurs and strongly indicate that humans are also vulnerable to disruption. Use of hormonally active compounds in human medicine has also unfortunately revealed that the developing fetus can be exposed to and affected by endocrine disruptors, and that it might take decades for adverse effects to manifest. Research within the field of environmental endocrine disruption has also contributed to the general understanding of how early life experiences can alter reproductive physiology and behavior through non-genomic, epigenetic mechanisms such as DNA methylation and histone acetylation. These types of effects have the potential to impact future generations if the germ line is affected. This review provides an overview of how exposure to EDCs, particularly those that interfere with estrogen action, impacts reproductive physiology and behaviors in vertebrates.

  11. Biomonitoring of Human Exposure to Prestige Oil: Effects on DNA and Endocrine Parameters

    Directory of Open Access Journals (Sweden)

    Beatriz Pérez-Cadahía

    2008-01-01

    Full Text Available Since 1960, about 400 tankers spilled more than 377765 tons of oil, with the Prestige accident (Galician coast, NW Spain, November 2002 the most recent. Taking into account the consistent large number of individuals exposed to oil that exists all over the world, it seems surprising the absence in the literature of studies focused on the chronic effects of this exposure on human health. In this work we evaluated the level of DNA damage by means of comet assay, and the potential endocrine alterations (prolactin and cortisol caused by Prestige oil exposure in a population of 180 individuals, classified in 3 groups according to the tasks performed, and 60 controls. Heavy metals in blood were determined as exposure biomarkers, obtaining significant increases of aluminum, nickel and lead in the exposed groups as compared to controls. Higher levels of genetic damage and endocrine alterations were also observed in the exposed population. DNA damage levels were influenced by age, sex, and the use of protective clothes, and prolactin concentrations by the last two factors. Surprisingly, the use of mask did not seem to protect individuals from genetic or endocrine alterations. Moreover, polymorphisms in genes encoding for the main enzymes involved in the metabolism of oil components were analyzed as susceptibility biomarkers. CYP1A1-3’UTR and EPHX1 codons 113 and 139 variant alleles were related to higher damage levels, while lower DNA damage was observed in GSTM1 and GSTT1 null individuals.

  12. Adipose tissue as an endocrine organ.

    Science.gov (United States)

    McGown, Christine; Birerdinc, Aybike; Younossi, Zobair M

    2014-02-01

    Obesity is one of the most important health challenges faced by developed countries and is increasingly affecting adolescents and children. Obesity is also a considerable risk factor for the development of numerous other chronic diseases, such as insulin resistance, type 2 diabetes, heart disease and nonalcoholic fatty liver disease. The epidemic proportions of obesity and its numerous comorbidities are bringing into focus the highly complex and metabolically active adipose tissue. Adipose tissue is increasingly being considered as a functional endocrine organ. This article discusses the endocrine effects of adipose tissue during obesity and the systemic impact of this signaling.

  13. Manufacturing doubt about endocrine disrupter science

    DEFF Research Database (Denmark)

    Bergman, Åke; Becher, Georg; Blumberg, Bruce

    2015-01-01

    We present a detailed response to the critique of "State of the Science of Endocrine Disrupting Chemicals 2012" (UNEP/WHO, 2013) by financial stakeholders, authored by Lamb et al. (2014). Lamb et al.'s claim that UNEP/WHO (2013) does not provide a balanced perspective on endocrine disruption......) report is not particularly erudite and that their critique is not intended to be convincing to the scientific community, but to confuse the scientific data. Consequently, it promotes misinterpretation of the UNEP/WHO (2013) report by non-specialists, bureaucrats, politicians and other decision makers...

  14. Immune response

    Science.gov (United States)

    ... and tetanus antitoxin are examples of passive immunization. BLOOD COMPONENTS The immune system includes certain types of white ... lymphocytes develop, they normally learn to tell the difference between your own body tissues and substances that ...

  15. Environmental endocrine disruptors and developmental abnormalities in wildlife; Kankyo horumon (gaiinsei naibunpi kakuran kagaku busshitsu) no kankyo seibutsu ni taisuru eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, T. [Yokohama City Univ., Yokohama (Japan)

    1998-04-15

    The environmental endocrine disruptor, or the so-called environmental hormone, is outlined. Hormones are secreted from endocrine glands in trace amounts, transported by blood, and exert influence on the target organs and distal cells, this to sustain constancy in living organisms. There are two types: peptide hormones which are rows of amino acids and steroid hormones which are composed of cholesterol. Endocrine disruptors are chemical substances discharged into the environment which, once taken into human organisms, disrupt endocrine systems, some acting like female sex hormones and others resisting male sex hormones. Many a wild animal are found affected by them. They are accumulating in human organisms too. Synthesized chemical substances such as DDT, PCB, dioxins, and alkylphenols present in the water system affect a fish by disrupting its endocrine, immunity, nerve, growth, and regeneration. Embryos and larvae are quite susceptible, easy to turn abnormal. Voices are high across the world for the study of environmental endocrine disruptors. Introduced in this report are some animal experiments, typical cases of impact on the ecosystem, and systems for detecting environmental endocrine disruptors. 36 refs., 1 tab.

  16. Human biological monitoring of suspected endocrine-disrupting compounds

    OpenAIRE

    Moosa Faniband; Lindh, Christian H; Bo AG Jönsson

    2014-01-01

    Endocrine-disrupting compounds are exogenous agents that interfere with the natural hormones of the body. Human biological monitoring is a powerful method for monitoring exposure to endocrine disrupting compounds. In this review, we describe human biological monitoring systems for different groups of endocrine disrupting compounds, polychlorinated biphenyls, brominated flame retardants, phthalates, alkylphenols, pesticides, metals, perfluronated compounds, parabens, ultraviolet filters, and o...

  17. Endocrine and metabolic characteristics in polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Glintborg, Dorte

    2016-01-01

    endocrine disorders. The majority of these examinations can be performed by the patient's general practitioner. PCOS is a diagnosis of exclusion and is a multiorgan disease affecting most endocrine organs including ovaries, adrenals, pituitary, fat cells, and endocrine pancreas. The manifestations of PCOS...

  18. Endocrine links between food reward and caloric homeostasis.

    Science.gov (United States)

    Lattemann, Dianne Figlewicz

    2008-11-01

    Both intrinsic and extrinsic (endocrine) inputs to the central nervous system (CNS) modulate motivation for feeding. Endocrine inputs such as insulin and leptin can have very rapid effects, but also the potential for chronic actions to decrease rewarding attributes of food. Future studies should elucidate the neural and cellular mechanisms which underlie these endocrine actions in the CNS.

  19. Endocrine disrupters in the Llobregat river basin; Disruptores endocrinos en la cuenca del rio Llobregat

    Energy Technology Data Exchange (ETDEWEB)

    Romero, J.; Ventura, F.; Marti, I.; Cancho, B. [AGBAR Societat General d' Aigues de Barcelona S. A. (Spain)

    1999-07-01

    Endocrine disrupters are chemicals capable of modulating the endocrine system. These chemicals may have a natural or an anthropogenic origin. The latter are the most important to international organisms due to their potential hazardous effects on human health and wildlife. An important group of substances such as pesticides, surfactants, alkylphenols, phthalates and bisphenol A are considered as endocrine disrupters: adverse effects like cancer, infertility and alterations of sexual organs are related with their presence. Phthalates and alkylphenols (ethoxylated nonylphenols and their acidic metabolites) are the main endocrine disrupters identified in the Llobregat river water using different analytical techniques. No pesticides have been identified in significative concentrations due to the low agricultural activity in this area. The contamination levels, at the {mu} g/l values, are in agreement with those cited by other authors in the literature. Llobregat raw water is treated in the Sant Joan Despi plant with a complex treatment able to reduce and/or eliminate these compounds. Only phthalates and ethoxylated nonylphenols are identified in treated water (at sub-{mu}g/l levels). Brominated ethoxylated nonylphenols are formed in the water treatment plant due to the high bromide level in Llobregat raw water. (Author) 23 refs.

  20. Effects of endocrine disruptors in the development of the female reproductive tract.

    Science.gov (United States)

    Costa, Elaine Maria Frade; Spritzer, Poli Mara; Hohl, Alexandre; Bachega, Tânia A S S

    2014-03-01

    Environmental agencies have identified a growing number of environmental contaminants that have endocrine disrupting activity, and these can become a major public health problem. It is suggested that endocrine disruptors could account for the higher-than-expected increase in the prevalence of some non-communicable diseases, such as obesity, diabetes, thyroid diseases, and some cancers. Several endocrine Disrupting Chemicals (EDCs), such as pesticides, bisphenol A, phthalates, dioxins, and phytoestrogens, can interact with the female reproductive system and lead to endocrine disruption. Initially, it was assumed that EDCs exert their effects by binding to hormone receptors and transcription factors, but it is currently known that they may also alter the expression of enzymes involved in the synthesis or catabolism of steroids. Biomonitoring studies have identified these compounds in adults, children, pregnant women, and fetuses. Among the diseases of the female reproductive tract associated with EDCs exposure are the following: precocious puberty, polycystic ovary syndrome, and premature ovarian failure. The different populations of the world are exposed to a great number of chemicals through different routes of infection; despite the various available studies, there is still much doubt regarding the additive effect of a mixture of EDCs with similar mechanisms of action.

  1. Problem on environmental hormone (endocrine disturbing chemicals); Kankyo horumon (naibunpi kakuran kagaku busshitsu) mondai ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Tawarada, T. [Kansai Electric Power Co. Inc., Osaka (Japan)

    2000-02-10

    This paper describes a problem on environmental hormone. Various chemicals discharged into environment act as hormone- like or anti-hormone-like substance. Since many such chemicals act as female hormone-like substance, those are called '(exogenous) endocrine disturbing chemicals' or 'environmental hormone'. Such chemicals include already regulated toxic PCB and dioxin, and a large amount of plastic raw materials, plasticizer and surfactant with no acute toxicity. The action mechanism of endocrine disturbing chemicals is as follows. Those bond with acceptors in place of hormone, and give incorrect directions to genes. Those may cause various disorders such as reproduction anomaly, development anomaly, immune toxicity and neuro-toxicity over several ages. For wild animals, some conceivable effects are being revealed. Since living organisms have various specificities and various experiments possible for animals are impossible for mankind, many obscure points remain unsolved. This paper presents various approaches in Japan. (NEDO)

  2. Neuro-endocrine disruption in molluscs

    DEFF Research Database (Denmark)

    Holbech, Henrik; Bech Sanderhoff, Lene; Waller, Stine P.

    The Mollusca phylum is the second largest animal phylum with around 85,000 registered mollusc species and increasing attention to effects of chemicals on the molluscan endocrine system have been given during the last years. This includes initiation of the development of OECD test guidelines (TG) ...

  3. Endocrine Ophthalmopathy in Autoimmune Thyroid Diseases

    OpenAIRE

    Pashkovska, N.V.

    2014-01-01

    The article presents modern data about risk factors, mechanisms of development, clinical features of endocrine ophthalmopathy, as well as information regarding current approaches to diagnosis, treatment and prevention of this disease according to the latest global recommendations developed from the position of evidence-based medicine.

  4. Endocrine and Nutritional Management After Bariatric Surgery

    Science.gov (United States)

    Endocrine and Nutritional Management After Bariatric Surgery A Patient’s Guide Bariatric (weight loss) surgery is a treatment option for people who ... After surgery, you need to follow your doctor’s nutritional recommendations and exercise regularly (150 minutes per week ...

  5. Study of Endocrine Disrupting Chemicals in Environment

    Directory of Open Access Journals (Sweden)

    Zoltán Juvancz

    2008-06-01

    Full Text Available Endocrine disrupting chemicals (EDC cause more and more seriousenvironmental pollutions. The EDCs show only ng-μg/l concentration level in theenvironment, therefore their determinations require multistep sample preparationprocesses and highly sophisticated instrumentation. This paper discuss the EDC effects,and show examples for determination of such compounds.

  6. E