WorldWideScience

Sample records for alters immune endocrine

  1. Altered time structure of neuro-endocrine-immune system function in lung cancer patients

    Directory of Open Access Journals (Sweden)

    Carughi Stefano

    2010-06-01

    TcS1 was decreased in cancer patients. The melatonin/cortisol mean nocturnal level ratio was decreased in cancer patients. Conclusion The altered secretion and loss of circadian rhythmicity of many studied factors observed in the subjects suffering from neoplastic disease may be expression of gradual alteration of the integrated function of the neuro-immune-endocrine system

  2. Human disturbance alters endocrine and immune responses in the Galapagos marine iguana (Amblyrhynchus cristatus)

    Science.gov (United States)

    French, Susannah S; DeNardo, Dale F.; Greives, Timothy J.; Strand, Christine R.; Demas, Gregory E.

    2010-01-01

    Anthropogenic disturbance is a relevant and widespread facilitator of environmental change and there is clear evidence that it impacts natural populations. While population-level responses to major anthropogenic changes have been well studied, individual physiological responses to mild disturbance can be equally critical to the long-term survival of a species, yet they remain largely unexamined. The current study investigated the impact of seemingly low-level anthropogenic disturbance (ecotourism) on stress responsiveness and specific fitness-related immune measures in different breeding stages of the marine iguana (Amblyrhynchus cristatus). Specifically, we found stress-induced elevations in plasma corticosterone among tourist-exposed populations relative to undisturbed populations. We also found changes in multiple immunological responses associated with stress-related effects of human disturbance, including bacterial killing ability, cutaneous wound healing, and hemolytic complement activity, and the responses varied according to reproductive state. By identifying health-related consequences of human disturbance, this study provides critical insight into the conservation of a well-known species that has a very distinct ecology. The study also broadens the foundation of knowledge needed to understand the global significance of various levels of human disturbance. PMID:20708010

  3. Human disturbance alters endocrine and immune responses in the Galapagos marine iguana (Amblyrhynchus cristatus).

    Science.gov (United States)

    French, Susannah S; DeNardo, Dale F; Greives, Timothy J; Strand, Christine R; Demas, Gregory E

    2010-11-01

    Anthropogenic disturbance is a relevant and widespread facilitator of environmental change and there is clear evidence that it impacts natural populations. While population-level responses to major anthropogenic changes have been well studied, individual physiological responses to mild disturbance can be equally critical to the long-term survival of a species, yet they remain largely unexamined. The current study investigated the impact of seemingly low-level anthropogenic disturbance (ecotourism) on stress responsiveness and specific fitness-related immune measures in different breeding stages of the marine iguana (Amblyrhynchus cristatus). Specifically, we found stress-induced elevations in plasma corticosterone among tourist-exposed populations relative to undisturbed populations. We also found changes in multiple immunological responses associated with stress-related effects of human disturbance, including bacterial killing ability, cutaneous wound healing, and hemolytic complement activity, and the responses varied according to reproductive state. By identifying health-related consequences of human disturbance, this study provides critical insight into the conservation of a well-known species that has a very distinct ecology. The study also broadens the foundation of knowledge needed to understand the global significance of various levels of human disturbance. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Altered neuro-endocrine-immune pathways in the irritable bowel syndrome: the top-down and the bottom-up model.

    Science.gov (United States)

    Stasi, Cristina; Rosselli, Massimo; Bellini, Massimo; Laffi, Giacomo; Milani, Stefano

    2012-11-01

    The interaction between the brain and the gut as a pathological mechanism of functional gastrointestinal disorders has been recently recognized in the pathophysiology of the irritable bowel syndrome. Communication between central nervous system and enteric nervous system is two-directional: the brain can influence the function of the enteric nervous system and the gut can influence the brain via vagal and sympathetic afferents. In patients with irritable bowel syndrome, symptoms may be caused by alterations either primarily in the central nervous system (top-down model), or in the gut (bottom-up model), or in a combination of both. The brain-gut axis may be stimulated by various stressors either directed to the central nervous system (exteroreceptive stress) or to the gut (interoceptive stress). Particularly, clinical evidence suggest that in complex and multifactorial diseases such as irritable bowel syndrome, psychological disorders represent significant factors in the pathogenesis and course of the syndrome. Neuroimaging techniques have shown functional differences between central process in healthy subjects and patients with irritable bowel syndrome. Moreover, a high prevalence of psychological/psychiatric disorders have been reported in IBS patients compared to controls. Several data also suggest an alteration of neuro-endocrine and autonomic output to the periphery in these patients. This review will examine and discuss the complex interplay of neuro-endocrine-immune pathways, closely associated with neuropsychiatric disorders.

  5. Alterations in polyadenylation and its implications for endocrine disease

    Directory of Open Access Journals (Sweden)

    Anders eRehfeld

    2013-05-01

    Full Text Available IntroductionPolyadenylation is the process in which the pre-mRNA is cleaved at the poly(A site and a poly(A tail is added - a process necessary for normal mRNA formation. Genes with multiple poly(A sites can undergo alternative polyadenylation, producing distinct mRNA isoforms with different 3’ untranslated regions (3’ UTRs and in some cases different coding regions. Two thirds of all human genes undergo alternative polyadenylation. The efficiency of the polyadenylation process regulates gene expression and alternative polyadenylation plays an important part in post-transcriptional regulation, as the 3’ UTR contains various cis-elements associated with post-transcriptional regulation, such as target sites for microRNAs and RNA-binding proteins.Implications of alterations in polyadenylation for endocrine diseaseAlterations in polyadenylation have been found to be causative of neonatal diabetes and IPEX (immune dysfunction, polyendocrinopathy, enteropathy, X-linked and to be associated with type I and II diabetes, pre-eclampsia, fragile X-associated premature ovarian insufficiency, ectopic Cushing syndrome and many cancer diseases, including several types of endocrine tumor diseases.PerspectivesRecent developments in high-throughput sequencing have made it possible to characterize polyadenylation genome-wide. Antisense elements inhibiting or enhancing specific poly(A site usage can induce desired alterations in polyadenylation, and thus hold the promise of new therapeutic approaches. SummaryThis review gives a detailed description of alterations in polyadenylation in endocrine disease, an overview of the current literature on polyadenylation and summarizes the clinical implications of the current state of research in this field.

  6. Clock genes alterations and endocrine disorders.

    Science.gov (United States)

    Angelousi, Anna; Kassi, Eva; Nasiri-Ansari, Narjes; Weickert, Martin O; Randeva, Harpal; Kaltsas, Gregory

    2018-03-25

    Various endocrine signals oscillate over the 24-hour period and so does the responsiveness of target tissues. These daily oscillations do not occur solely in response to external stimuli but are also under the control of an intrinsic circadian clock. We searched the PubMed database to identify studies describing the associations of clock genes with endocrine diseases. Various human single nucleotide polymorphisms of BMAL1 and CLOCK genes exhibited significant associations with type 2 diabetes mellitus. ARNTL2 gene expression and upregulation of BMAL1 and PER1 were associated with the development of type 1 diabetes mellitus. Thyroid hormones modulated PER2 expression in a tissue specific way whereas BMAL1 regulated the expression of type 2 iodothyronine deiodinase in specific tissues. Adrenal gland and adrenal adenoma expressed PER1, PER2, CRY2, CLOCK, and BMAL1 genes. Adrenal sensitivity to adrenocorticotrophin was also affected by circadian oscilliations. A significant correlation between the expression of propio-melanocorticotrophin and PER 2 as well as between prolactin and CLOCK was found in corticotroph and lactosomatotroph cells, respectively, in the pituitary. Clock genes and especially BMAL1 showed an important role in fertility whereas estradiol and androgens exhibited tissue-specific effects on clock gene expression. Metabolic disorders were also associated with circadian dysregulation according to studies in shift workers. Clock genes are associated with various endocrine disorders through complex mechanisms. However data on humans are scarce. Moreover, clock genes exhibit a tissue-specific expression representing an additional level of regulation. Their specific role in endocrine disorders and their potential implications remain to be further clarified. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Endocrine Control of Mucosal Immunity in the Female Reproductive Tract: Impact of Environmental Disruptors

    Science.gov (United States)

    Dunbar, B.; Patel, M.; Fahey, J.; Wira, C.

    2015-01-01

    The complexity of the human female reproductive tract (FRT) with its multiple levels of hormonally controlled immune protection has only begun to be understood. Dissecting the functions and roles of the immune system in the FRT is complicated by the differential hormonal regulation of its distinct anatomical structures that vary throughout the menstrual cycle. Although many fundamental mechanisms of steroid regulation of reproductive tract immune function have been determined, the effects of exogenous synthetic steroids or endocrine disruptors on immune function and disease susceptibility in the FRT have yet to be evaluated in detail. There is increasing evidence that environmental or synthetic molecules can alter normal immune function. This review provides an overview of the innate and adaptive immune systems, the current status of immune function in the FRT and the potential risks of environmental or pharmacological molecules that may perturb this system. PMID:22289638

  8. Rare endocrine cancers have novel genetic alterations

    Science.gov (United States)

    A molecular characterization of adrenocortical carcinoma, a rare cancer of the adrenal cortex, analyzed 91 cases for alterations in the tumor genomes and identified several novel genetic mutations as likely mechanisms driving the disease as well as whole genome doubling as a probable driver of the disease.

  9. Phytochemicals for taming agitated immune-endocrine-neural axis.

    Science.gov (United States)

    Patel, Seema

    2017-07-01

    Homeostasis of immune-endocrine-neural axis is paramount for human health. If this axis gets agitated due to age, genetic variations, environmental exposures or lifestyle assaults, a cascade of adverse reactions occurs in human body. Cytokines, hormones and neurotransmitters, the effector molecules of this axis behave erratically, leading to a gamut of neural, endocrine, autoimmune, and metabolic diseases. Current panel of drugs can tackle some of them but not in a sustainable, benign way as a myriad of side effects, causal of them have been documented. In this context, phytochemicals, the secondary metabolites of plants seem beneficial. These bioactive constituents encompassing polyphenols, alkaloids, flavonoids, terpenoids, tannins, lignans, stilbenoids (resveratrol), saponins, polysaccharides, glycosides, and lectins etc. have been proven to exert antioxidant, anti-inflammatory, hypolipidemic, hypotensive, antidiabetic, anticancer, immunomodulatory, anti-allergic, analgesic, hepatoprotective, neuroprotective, dermatoprotective, and antimicrobial properties, among a litany of other biological effects. This review presents a holistic perspective of common afflictions resultant of immune-endocrine-neural axis disruption, and the phytochemicals capable of restoring their normalcy and mitigating the ailments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Convergence of neuro-endocrine-immune pathways in the pathophysiology of irritable bowel syndrome.

    Science.gov (United States)

    Buckley, Maria M; O'Mahony, Siobhain M; O'Malley, Dervla

    2014-07-21

    Disordered signalling between the brain and the gut are generally accepted to underlie the functional bowel disorder, irritable bowel syndrome (IBS). However, partly due to the lack of disease-defining biomarkers, understanding the aetiology of this complex and multifactorial disease remains elusive. This common gastrointestinal disorder is characterised by alterations in bowel habit such as diarrhoea and/or constipation, bloating and abdominal pain, and symptom exacerbation has been linked with periods of stress, both psychosocial and infection-related. Indeed, a high level of comorbidity exists between IBS and stress-related mood disorders such as anxiety and depression. Moreover, studies have observed alterations in autonomic output and neuro-endocrine signalling in IBS patients. Accumulating evidence indicates that a maladaptive stress response, probably mediated by the stress hormone, corticotropin-releasing factor contributes to the initiation, persistence and severity of symptom flares. Other risk factors for developing IBS include a positive family history, childhood trauma, dietary factors and prior gastrointestinal infection. An emerging role has been attributed to the importance of immune factors in the pathophysiology of IBS with evidence of altered cytokine profiles and increased levels of mucosal immune cells. These factors have also been shown to have direct effects on neural signalling. This review discusses how pathological changes in neural, immune and endocrine pathways, and communication between these systems, contribute to symptom flares in IBS.

  11. An exploratory study into the effect of exhausting bicycle exercise on endocrine and immune responses in post-menopausal women : Relationships between vigour and plasma cortisol concentrations and lymphocyte proliferation following exercise

    NARCIS (Netherlands)

    van der Pompe, G; Bernards, N; Kavelaars, A; Heijnen, C

    It is well-established that bicycle exercise alters the endocrine and immune responses in men, but little information is available for women, especially middle-aged, post-menopausal women. The purpose of our study was to document the endocrine and immune reactivity to exhausting bicycle exercise in

  12. Maternal bisphenol A alters fetal endocrine system: Thyroid adipokine dysfunction.

    Science.gov (United States)

    Ahmed, R G

    2016-09-01

    Because bisphenol A (BPA) has been detected in animals, the aim of this study was to investigate the possible effects of maternal BPA exposure on the fetal endocrine system (thyroid-adipokine axis). BPA (20 or 40 μg/kg body weight) was orally administered to pregnant rats from gestation day (GD) 1-20. In both treated groups, the dams and their fetuses had lower serum thyroxine (T4) and triiodothyronine (T3) levels, and higher thyrotropin (TSH) level than control dams and fetuses at GD 20. Some histopathological changes in fetal thyroid glands were observed in both maternal BPA groups at embryonic day (ED) 20, including fibroblast proliferation, hyperplasia, luminal obliteration, oedema, and degeneration. These disorders resulted in the suppression of fetal serum growth hormone (GH), insulin growth factor-1 (IGF1) and adiponectin (ADP) levels, and the elevation of fetal serum leptin, insulin and tumor necrosis factor-alpha (TNFα) levels in both treated groups with respect to control. The depraved effects of both treated groups were associated with reduced maternal and fetal body weight compared to the control group. These alterations were dose dependent. Thus, BPA might penetrate the placental barrier and perturb the fetal thyroid adipokine axis to influence fat metabolism and the endocrine system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Molecular biology and functional genomics of immune-endocrine interactions in the Japanese eel, Anguilla japonica.

    Science.gov (United States)

    Yada, Takashi; Mekuchi, Miyuki; Ojima, Nobuhiko

    2018-02-01

    Immune-endocrine interactions are an important pathogen resistance mechanism in fish. We review the immune-endocrine interactions in the Japanese eel, Anguilla japonica, with special reference to high throughput gene sequencing. These data may be relevant to the significant decrease in the eel harvest in recent years and will aid in the selection of appropriate disease-resistant strains for aquaculture. More than 1000 sequences that whose expression in elvers responded to air exposure were identified through comprehensive gene expression analysis using next-generation sequencing. These included transcription factors within the MAPK pathway. Significant changes in expression after air exposure were detected by quantitative polymerase chain reaction analysis in many genes related to disease resistance. These factors include innate immune system factors and cytokines that interact with the endocrine system during the stress response. Other applications of immune-endocrine interactions in eel culture are discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Epigenetic Mediation of Endocrine and Immune Response in an Animal Model of Gulf War Illness

    Science.gov (United States)

    2016-10-01

    epidemiological and animal experimental data that indicate the risk of developing complex diseases is influenced by persistent epigenetic adaptations...1 AWARD NUMBER: W81XWH-14-1-0550 TITLE: Epigenetic Mediation of Endocrine and Immune Response in an Animal Model of Gulf War Illness...Sept 2015-29 Sep 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Epigenetic Mediation of Endocrine and Immune Response in an Animal Model of Gulf War

  15. Endocrine and Metabolic Disorders Associated with Human Immune ...

    African Journals Online (AJOL)

    BACKGROUND: Many reports have described endocrine and metabolic disorders in the human immunodeficiency virus (HIV) infection . This article reviewed various reports in the literature in order to increase the awareness and thus the need for early intervention when necessary. DATA SOURCE: Data were obtained from ...

  16. Diffuse endocrine system, neuroendocrine tumors and immunity: what's new?

    Science.gov (United States)

    Ameri, Pietro; Ferone, Diego

    2012-01-01

    During the last two decades, research into the modulation of immunity by the neuroendocrine system has flourished, unravelling significant effects of several neuropeptides, including somatostatin (SRIH), and especially cortistatin (CST), on immune cells. Scientists have learnt that the diffuse neuroendocrine system can regulate the immune system at all its levels: innate immunity, adaptive immunity, and maintenance of immune tolerance. Compelling studies with animal models have demonstrated that some neuropeptides may be effective in treating inflammatory disorders, such as sepsis, and T helper 1-driven autoimmune diseases, like Crohn's disease and rheumatoid arthritis. Here, the latest findings concerning the neuroendocrine control of the immune system are discussed, with emphasis on SRIH and CST. The second part of the review deals with the immune response to neuroendocrine tumors (NETs). The anti-NET immune response has been described in the last years and it is still being characterized, similarly to what is happening for several other types of cancer. In parallel with investigations addressing the mechanisms by which the immune system contrasts NET growth and spreading, ground-breaking clinical trials of dendritic cell vaccination as immunotherapy for metastatic NETs have shown in principle that the immune reaction to NETs can be exploited for treatment. Copyright © 2012 S. Karger AG, Basel.

  17. Stress-Induced Endocrine and Immune Dysfunctions in Caregivers of People with Eating Disorders

    Directory of Open Access Journals (Sweden)

    Ángel Romero-Martínez

    2017-12-01

    Full Text Available Caregivers have to cope repeatedly with acute stressors in their daily lives, and this is associated with disturbances in the hypothalamic–pituitary–adrenal (HPA axis and the immune system. Such disturbances could contribute to the development of health problems in informal caregivers of people with chronic illnesses, such as eating disorders (EDs. The main objective of this study was to examine endocrine (salivary cortisol levels (Csal, immune (immunoglobulin-A (IgA, and psychological (anxiety, mood, and anger feelings responses to an acute psychological stressor in a sample of informal caregivers of individuals with EDs compared to a sample of non-caregivers. In addition, it also aimed to analyze the potential relationship of the aforementioned endocrine and immune response parameters with psychological variables in the caregivers. Caregivers had lower Csal and IgA levels at all assessment points except baseline. Moreover, they also exhibited lower Csal and IgA responses and greater worsening of mood in response to acute psychosocial stress than the non-caregivers, which suggests that caregivers had dampened endocrine and immune reactivity to acute stress. On the other hand, endocrine and immune parameters were unrelated to psychological variables. These findings advance our understanding of how a chronically stressed population reacts to acute stress, and should be considered for the development of effective interventions focused on stress management that could help caregivers to reduce their stress levels, which, in turn, would improve their health.

  18. Corticosteroids and interleukin-1, messengers for communication between the endocrine and immune system in carp

    NARCIS (Netherlands)

    Weyts, F.A.A.

    1998-01-01

    Summary

    Stress-induced inummosuppression is a well known phenomenon and mostly attributed to actions of steroid hormones released upon activation of the hypothalamus-pituitary-adrenal (HPA)-axis. In mammals, this endocrine-immune interaction is part of a

  19. Coincident nonlinear changes in the endocrine and immune systems due to low-frequency magnetic fields.

    Science.gov (United States)

    Marino, A A; Wolcott, R M; Chervenak, R; Jourd'heuil, F; Nilsen, E; Frilot, C; Pruett, S B

    2001-01-01

    The characteristic biological effects of low-frequency electromagnetic fields (EMFs) appear to be functional changes in the central nervous, endocrine and immune systems. For unapparent reasons, however, the results of similar studies have often differed markedly from one another. We recognized that it had generally been assumed, in the studies, that EMF effects would exhibit a dose-effect relationship, which is a basic property of linear systems. Prompted by recent developments in the theory on nonlinear systems, we hypothesized that there was a nonlinear relationship between EMFs and the effects they produced in the endocrine and immune systems. We developed a novel analytical method that could be used to distinguish between linear and nonlinear effects, and we employed it to examine the effect of EMFs on the endocrine and immune systems. Mice exposed to 5 G, 60 Hz for 1-175 days in 7 independent experiments reliably exhibited changes in serum corticosterone and lymphoid phenotype when the data were analyzed while allowing that the field exposure and the resulting effects could be nonlinearly related. When the analysis was restricted to linear relationships, no effects due to the field were found. The results indicated that transduction of EMFs resulted in changes in both the endocrine and immune systems, and that the laws governing the changes in each system were not the type that govern conventional dose-effect relationships. Evidence based on mathematical modeling was found suggesting that the coincident changes could have been causally related. Copyright 2001 S. Karger AG, Basel

  20. Immune System: An Emerging Player in Mediating Effects of Endocrine Disruptors on Metabolic Health.

    Science.gov (United States)

    Bansal, Amita; Henao-Mejia, Jorge; Simmons, Rebecca A

    2018-01-01

    The incidence of metabolic disorders like type 2 diabetes and obesity continues to increase. In addition to the well-known contributors to these disorders, such as food intake and sedentary lifestyle, recent research in the exposure science discipline provides evidence that exposure to endocrine-disrupting chemicals like bisphenol A and phthalates via multiple routes (e.g., food, drink, skin contact) also contribute to the increased risk of metabolic disorders. Endocrine-disrupting chemicals (EDCs) can disrupt any aspect of hormone action. It is becoming increasingly clear that EDCs not only affect endocrine function but also adversely affect immune system function. In this review, we focus on human, animal, and in vitro studies that demonstrate EDC exposure induces dysfunction of the immune system, which, in turn, has detrimental effects on metabolic health. These findings highlight how the immune system is emerging as a novel player by which EDCs may mediate their effects on metabolic health. We also discuss studies highlighting mechanisms by which EDCs affect the immune system. Finally, we consider that a better understanding of the immunomodulatory roles of EDCs will provide clues to enhance metabolic function and contribute toward the long-term goal of reducing the burden of environmentally induced diabetes and obesity. Copyright © 2018 Endocrine Society.

  1. The immune system of geriatric mice is modulated by estrogenic endocrine disruptors (diethylstilbestrol, α-zearalanol, and genistein): Effects on interferon-γ

    International Nuclear Information System (INIS)

    Calemine, Jillian; Zalenka, Julie; Karpuzoglu-Sahin, Ebru; Ward, Daniel L.; Lengi, Andrea; Ahmed, S. Ansar

    2003-01-01

    The immune system is a potential target for estrogenic endocrine disrupters. To date, there is limited information on whether estrogenic endocrine disruptors modulate the immune system of aged individuals. To address this issue, groups of 74-week-old mice were given nine oral doses of selected estrogenic endocrine disrupters: diethylstilbestrol (DES, 3 μg/100 g bw), α-zearalanol (0.5 mg/100 g bw), or genistein (0.15 mg/100 g bw) in corn oil, or corn oil alone, over 2.5 weeks. Both developmental (thymus) and mature (spleen) lymphoid organs were affected, although specific effects varied with the chemical. DES significantly decreased thymocyte numbers. However, relative percentages of thymocyte subsets were not altered. While splenic cellularity and percentages of T and B cells were unchanged, splenocytes from DES-exposed mice had significantly decreased ability to proliferate in response to Concanavalin-A (Con-A). Con-A-activated splenocytes from mice treated with genistein or α-zearalanol had decreased levels of interferon-γ (IFNγ) protein in their culture supernatants compared to similar cultures from oil-treated mice. RT-PCR analysis of Con-A-activated splenocytes revealed that the expression of IFNγ gene is altered by DES or genistein treatment. Together, these results suggest that estrogenic endocrine disruptors modulate the immune system of aged mice

  2. The effects of estrogenic and androgenic endocrine disruptors on the immune system of fish: a review.

    Science.gov (United States)

    Milla, Sylvain; Depiereux, Sophie; Kestemont, Patrick

    2011-03-01

    During the last decade, a number of studies have shown that, in addition to their classically described reproductive function, estrogens and androgens also regulate the immune system in teleosts. Today, several molecules are known to interfere with the sex-steroid signaling. These chemicals are often referred to as endocrine disrupting contaminants (EDCs). We review the growing evidence that these compounds interfere with the fish immune system. These studies encompass a broad range of approaches from field studies to those at the molecular level. This integrative overview improves our understanding of the various endocrine-disrupting processes triggered by these chemicals. Furthermore, the research also explains why fish that have been exposed to EDCs are more sensitive to pathogens during gametogenesis. In this review, we first discuss the primary actions of sex-steroid-like endocrine disruptors in fish and the specificity of the fish immune system in comparison to mammals. Then, we review the known interactions between the immune system and EDCs and interpret the primary effects of sex steroids (estrogens and androgens) and their related endocrine disruptors on immune modulation. The recent literature suggests that immune parameters may be used as biomarkers of contamination by EDCs. However, caution should be used in the assessment of such immunotoxicity. In particular, more attention should be paid to the specificity of these biomarkers, the external/internal factors influencing the response, and the transduction pathways induced by these molecules in fish. The use of the well-known mammalian models provides a useful guide for future research in fish.

  3. Evidence of endocrine alteration in the red mullet, Mullus barbatus from the NW Mediterranean

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Skilton, Rebeca [Department of Environmental Chemistry, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona (Spain); Lavado, Ramon [Department of Environmental Chemistry, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona (Spain); Thibaut, Remi [Department of Environmental Chemistry, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona (Spain); Minier, Christophe [Laboratoire d' Ecotoxicologie, Universite du Havre, 25 rue Philippe Lebon, B.P. 540, F-76058 Le Havre (France); Porte, Cinta [Department of Environmental Chemistry, IIQAB-CSIC, Jordi Girona 18, 08034 Barcelona (Spain)]. E-mail: cpvqam@cid.csic.es

    2006-05-15

    Red mullet (Mullus barbatus) were collected from different sampling sites (NW Mediterranean) in spring and autumn, with the aim of assessing potential alterations of the endocrine system. Alkylphenols were measured in fish bile as an indicator of estrogenic exposure. Key enzymatic activities involved in both synthesis (ovarian 17{beta}-hydroxysteroid dehydrogenases and P450 aromatase) and metabolism of steroids were assessed together with histological alterations of the gonads. During the spring sampling, delayed gamete maturation, intersexuality, fibrosis, and depressed ovarian P450 aromatase activity were observed in organisms from the most polluted sites. During the autumn sampling, those effects were less evident, indicating that fish might be more susceptible to endocrine disrupting chemicals during the reproductive period. Nonetheless, enhanced glucuronidation of testosterone and estradiol was observed. Overall, this work provides first evidences of significant alterations in the endocrine system of red mullet from highly impacted areas in the NW Mediterranean. - Red mullet may be more susceptible to endocrine disruptors during the reproductive period.

  4. Evidence of endocrine alteration in the red mullet, Mullus barbatus from the NW Mediterranean

    International Nuclear Information System (INIS)

    Martin-Skilton, Rebeca; Lavado, Ramon; Thibaut, Remi; Minier, Christophe; Porte, Cinta

    2006-01-01

    Red mullet (Mullus barbatus) were collected from different sampling sites (NW Mediterranean) in spring and autumn, with the aim of assessing potential alterations of the endocrine system. Alkylphenols were measured in fish bile as an indicator of estrogenic exposure. Key enzymatic activities involved in both synthesis (ovarian 17β-hydroxysteroid dehydrogenases and P450 aromatase) and metabolism of steroids were assessed together with histological alterations of the gonads. During the spring sampling, delayed gamete maturation, intersexuality, fibrosis, and depressed ovarian P450 aromatase activity were observed in organisms from the most polluted sites. During the autumn sampling, those effects were less evident, indicating that fish might be more susceptible to endocrine disrupting chemicals during the reproductive period. Nonetheless, enhanced glucuronidation of testosterone and estradiol was observed. Overall, this work provides first evidences of significant alterations in the endocrine system of red mullet from highly impacted areas in the NW Mediterranean. - Red mullet may be more susceptible to endocrine disruptors during the reproductive period

  5. Endocrine-reproductive-immune interactions in female and male Galápagos marine iguanas.

    Science.gov (United States)

    Neuman-Lee, Lorin A; French, Susannah S

    2017-02-01

    Endocrine-immune interactions are variable across species and contexts making it difficult to discern consistent patterns. There is a paucity of data in non-model systems making these relationships even more nebulous, particularly in reptiles. In the present study, we have completed a more comprehensive test of the relationship among steroid hormones and ecologically relevant immune measures. We tested the relationship between baseline and stress-induced levels of sex and adrenal steroid hormones and standard ecoimmunological metrics in both female and male Galápagos marine iguanas (Amblyrhynchus cristatus). We found significant associations between adrenal activity and immunity, whereby females that mounted greater corticosterone responses to stress had lower basal and stress-induced immunity (i.e., bactericidal ability). Males showed the opposite relationship, suggesting sex-specific immunomodulatory actions of corticosterone. In both sexes, we observed a stress-induced increase in corticosterone, and in females a stress-induced increase in bactericidal ability. Consistent with other taxa, we also found that baseline corticosterone and testosterone in males was inversely related to baseline bactericidal ability. However, in females, we found a positive relationship between both testosterone and progesterone and bactericidal ability. Multivariate analysis did not discern any further endocrine-immune relationships, suggesting that interactions between adrenal, sex steroid hormones, and the immune system may not be direct and instead may be responding to other common stimuli, (i.e., reproductive status, energy). Taken together, these data illustrate significant endocrine-immune interactions that are highly dependent on sex and the stress state of the animal. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. An alteration of the endocrine pancreas involved in cancer.

    Science.gov (United States)

    Israël, Maurice

    2014-12-01

    Tumor cells display hybrid metabolic features: some of their enzymes are phosphorylated as normally observed when catabolic hormones stimulate Gs-coupled receptors, whereas other enzymes adopt a configuration normally found in anabolic situations, mediated via tyrosine kinase receptors. Consequently, tumor cells have to rewire their metabolic pathways differently, whereas differentiated cells seem to respond preferentially to catabolic hormones. This gives mitotic cells a selective advantage since they deplete other cell reserves for their benefit. The pancreatic gamma aminobutyric acid selection switch between anabolism and catabolism explains the process, that is, a deficient release of gamma aminobutyric acid from beta cells leads to a concomitant release of catabolic glucagon and anabolic insulin and to a progressive desensitisation of insulin receptors on differentiated cells. New stem cells, with non-desensitised insulin receptors, respond to the dual anabolic and catabolic signals and rewire their metabolism in cancer mode. The aim of this letter was to discuss the causal pancreatic alteration of the anabolic-catabolic selection switch.

  7. Psycho-neuro-endocrine-immune mechanisms of action of yoga in type II diabetes.

    Science.gov (United States)

    Singh, Vijay Pratap; Khandelwal, Bidita; Sherpa, Namgyal T

    2015-01-01

    Yoga has been found to benefit all the components of health viz. physical, mental, social and spiritual well being by incorporating a wide variety of practices. Pathophysiology of Type II DM and co-morbidities in Type II DM has been correlated with stress mechanisms. Stress suppresses body's immune system and neuro-humoral actions thereby aff ecting normal psychological state. It would not be wrong to state that correlation of diabetes with stress, anxiety and other psychological factors are bidirectional and lead to difficulty in understanding the interrelated mechanisms. Type II DM cannot be understood in isolation with psychological factors such as stress, anxiety and depression, neuro-endocrine and immunological factors. There is no review which tries to understand these mechanisms exclusively. The present literature review aims to understand interrelated Psycho-Neuro-Endocrine and Immunological mechanisms of action of Yoga in Type II Diabetes Mellitus. Published literature concerning mechanisms of action of Yoga in Type II DM emphasizing psycho-neuro-endocrine or immunological relations was retrieved from Pubmed using key words yoga, Type II diabetes mellitus, psychological, neural, endocrine, immune and mechanism of action. Those studies which explained the psycho-neuroendocrine and immune mechanisms of action of yoga were included and rest were excluded. Although primary aim of this study is to explain these mechanisms in Type II DM, some studies in non-diabetic population which had a similar pathway of stress mechanism was included because many insightful studies were available in that area. Search was conducted using terms yoga OR yogic AND diabetes OR diabetic IN title OR abstract for English articles. Of the 89 articles, we excluded non-English articles (22), editorials (20) and letters to editor (10). 37 studies were considered for this review. The postulated mechanism of action of yoga is through parasympathetic activation and the associated anti

  8. The environment as a driver of immune and endocrine responses in dolphins (Tursiops truncatus.

    Directory of Open Access Journals (Sweden)

    Patricia A Fair

    Full Text Available Immune and endocrine responses play a critical role in allowing animals to adjust to environmental perturbations. We measured immune and endocrine related markers in multiple samples from individuals from two managed-care care dolphin groups (n = 82 samples from 17 dolphins and single samples collected from two wild dolphin populations: Indian River Lagoon, (IRL FL (n = 26; and Charleston, (CHS SC (n = 19. The immune systems of wild dolphins were more upregulated than those of managed-care-dolphins as shown by higher concentrations of IgG and increases in lysozyme, NK cell function, pathogen antibody titers and leukocyte cytokine transcript levels. Collectively, managed-care care dolphins had significantly lower levels of transcripts encoding pro-inflammatory cytokine TNF, anti-viral MX1 and INFα and regulatory IL-10. IL-2Rα and CD69, markers of lymphocyte activation, were both lower in managed-care care dolphins. IL-4, a cytokine associated with TH2 activity, was lower in managed-care care dolphins compared to the free-ranging dolphins. Differences in immune parameters appear to reflect the environmental conditions under which these four dolphin populations live which vary widely in temperature, nutrition, veterinary care, pathogen/contaminant exposures, etc. Many of the differences found were consistent with reduced pathogenic antigenic stimulation in managed-care care dolphins compared to wild dolphins. Managed-care care dolphins had relatively low TH2 lymphocyte activity and fewer circulating eosinophils compared to wild dolphins. Both of these immunologic parameters are associated with exposure to helminth parasites which is uncommon in managed-care care dolphins. Less consistent trends were observed in a suite of hormones but significant differences were found for cortisol, ACTH, total T4, free T3, and epinephrine. While the underlying mechanisms are likely multiple and complex, the marked differences observed in the immune and endocrine

  9. The environment as a driver of immune and endocrine responses in dolphins (Tursiops truncatus).

    Science.gov (United States)

    Fair, Patricia A; Schaefer, Adam M; Houser, Dorian S; Bossart, Gregory D; Romano, Tracy A; Champagne, Cory D; Stott, Jeffrey L; Rice, Charles D; White, Natasha; Reif, John S

    2017-01-01

    Immune and endocrine responses play a critical role in allowing animals to adjust to environmental perturbations. We measured immune and endocrine related markers in multiple samples from individuals from two managed-care care dolphin groups (n = 82 samples from 17 dolphins and single samples collected from two wild dolphin populations: Indian River Lagoon, (IRL) FL (n = 26); and Charleston, (CHS) SC (n = 19). The immune systems of wild dolphins were more upregulated than those of managed-care-dolphins as shown by higher concentrations of IgG and increases in lysozyme, NK cell function, pathogen antibody titers and leukocyte cytokine transcript levels. Collectively, managed-care care dolphins had significantly lower levels of transcripts encoding pro-inflammatory cytokine TNF, anti-viral MX1 and INFα and regulatory IL-10. IL-2Rα and CD69, markers of lymphocyte activation, were both lower in managed-care care dolphins. IL-4, a cytokine associated with TH2 activity, was lower in managed-care care dolphins compared to the free-ranging dolphins. Differences in immune parameters appear to reflect the environmental conditions under which these four dolphin populations live which vary widely in temperature, nutrition, veterinary care, pathogen/contaminant exposures, etc. Many of the differences found were consistent with reduced pathogenic antigenic stimulation in managed-care care dolphins compared to wild dolphins. Managed-care care dolphins had relatively low TH2 lymphocyte activity and fewer circulating eosinophils compared to wild dolphins. Both of these immunologic parameters are associated with exposure to helminth parasites which is uncommon in managed-care care dolphins. Less consistent trends were observed in a suite of hormones but significant differences were found for cortisol, ACTH, total T4, free T3, and epinephrine. While the underlying mechanisms are likely multiple and complex, the marked differences observed in the immune and endocrine systems of wild

  10. Endocrine and Local IGF-I in the Bony Fish Immune System.

    Science.gov (United States)

    Franz, Anne-Constance; Faass, Oliver; Köllner, Bernd; Shved, Natallia; Link, Karl; Casanova, Ayako; Wenger, Michael; D'Cotta, Helena; Baroiller, Jean-François; Ullrich, Oliver; Reinecke, Manfred; Eppler, Elisabeth

    2016-01-26

    A role for GH and IGF-I in the modulation of the immune system has been under discussion for decades. Generally, GH is considered a stimulator of innate immune parameters in mammals and teleost fish. The stimulatory effects in humans as well as in bony fish often appear to be correlated with elevated endocrine IGF-I (liver-derived), which has also been shown to be suppressed during infection in some studies. Nevertheless, data are still fragmentary. Some studies point to an important role of GH and IGF-I particularly during immune organ development and constitution. Even less is known about the potential relevance of local (autocrine/paracrine) IGF-I within adult and developing immune organs, and the distinct localization of IGF-I in immune cells and tissues of mammals and fish has not been systematically defined. Thus far, IGF-I has been localized in different mammalian immune cell types, particularly macrophages and granulocytes, and in supporting cells, but not in T-lymphocytes. In the present study, we detected IGF-I in phagocytic cells isolated from rainbow trout head kidney and, in contrast to some findings in mammals, in T-cells of a channel catfish cell line. Thus, although numerous analogies among mammals and teleosts exist not only for the GH/IGF-system, but also for the immune system, there are differences that should be further investigated. For instance, it is unclear whether the primarily reported role of GH/IGF-I in the innate immune response is due to the lack of studies focusing on the adaptive immune system, or whether it truly preferentially concerns innate immune parameters. Infectious challenges in combination with GH/IGF-I manipulations are another important topic that has not been sufficiently addressed to date, particularly with respect to developmental and environmental influences on fish growth and health.

  11. Stress/aggressiveness-induced immune changes are altered in adult rats submitted to neonatal malnutrition.

    Science.gov (United States)

    Barreto-Medeiros, Jairza; Queiros-Santos, Adenilda; Cabral-Filho, José Eulálio; Ferreira E Silva, Wylla Tatiana; Leandro, Carol Góis; Deiró, Tereza Cristina; Manhaes-de-Castro, Raul; Machado Barbosa de-Castro, Célia Maria

    2007-01-01

    Neonatal malnutrition induces metabolic and endocrine changes that have beneficial effects on the neonatal in the short term but, in the longer term, these alterations lead to maladaptations. We investigated the effect of neonatal malnutrition on immune responses in adult rats submitted or not to an aggressiveness test. Male Wistar rats were distributed to one of two groups according to their mothers' diet during lactation: the well-nourished group (group C, n = 42, receiving 23% of protein) and the malnourished group (group MN, n = 42, receiving 8% of protein). After weaning, all rats received normoproteic diet. Ninety days after birth, each group was subdivided into three subgroups: control rats (n = 14, respectively), aggressive rats (n = 14, respectively) and rats receiving foot shock (FS; n = 14, respectively). Plasma corticosterone concentration was measured after FS sessions. Leukocyte counts and humoral immunity were evaluated. In neonatal malnourished animals, FS-induced stress reduced plasma corticosterone concentration. Intraspecific aggressiveness induced alterations in leukocyte counts and antibody titers 7 and 15 days after immunization. Neonatal malnourished animals showed no changes in the immune parameters evaluated. Expression of intraspecific aggressiveness activates the immune system. Neonatal malnutrition seems to have a long-lasting effect on components of both neuroendocrine and immune functions.

  12. Immune and endocrine responses of adult spring Chinook salmon during freshwater migration and sexual maturation

    Science.gov (United States)

    Maule, A.G.; Schrock, R.M.; Slater, C.; Fitzpatrick, M.S.; Schreck, C. B.

    1996-01-01

    The immuneendocrine responses in spring chinook salmon (Oncorhynchus tshawytscha) were examined during their freshwater migration and final maturation. In 1990, migrating fish had high plasma cortisol titres (means 200 ng ml−1) and generated relatively few antibody-producing cells (APC) from peripheral blood leukocytes (PBL) (100 –200 per culture). After three weeks acclimation in constant environmental conditions, plasma cortisol was reduced and APC increased. There were no changes in number or affinity of glucocorticoid receptors. Concentrations of several sex steroids correlated with APC in females, but there were no such correlations in males. In 1993, fish in a hatchery had significantly greater cortisol concentrations in primary circulation than in secondary circulation, but sex steroid concentrations did not differ between circulations. Mean lysozyme activity in the primary and secondary circulation did not differ in June. In August, activity in the primary circulation was significantly less than that of the secondary, perhaps the result of acute stress associated with sampling. While some sex steroids correlated with lysozyme activity, the fact that in both years all endocrine and immune variables that correlated with each other also correlated with the date of sample, raises the question as to whether or not these are cause-and-effect relations.

  13. Immune Alterations in Male and Female Mice after 2-Deoxy-D-Glucose Administration

    Science.gov (United States)

    Dreau, Didier; Morton, Darla S.; Foster, Mareva; Swiggett, Jeanene P.; Sonnenfeld, Gerald

    1995-01-01

    Administration of 2-deoxy-D-glucose (2-DG), an analog of glucose which inhibits glycolysis by competitive antagonism for phosphohexose isomerase, results in acute periods of intracellular glucoprivation and hyperglycemia resulting in hyperphagia. In addition to these changes in the carbohydrate metabolism, injection of 2-DG results in alterations of both the endocrine and neurological systems as suggested by modifications in oxytocin and glucocorticoid levels and norepinephrine production. Moreover, alterations of the immune response, such as a decrease in the in vitro proliferation of splenocytes after mitogen-stimulation, were observed in mice injected with 2-DG. Sex, genotype and environment are among the factors that may modulate effects of catecholamines and hypothalamo-pituitary-adrenal axis on these immune changes. Sexual dimorphism in immune function resulting from the effects of sex hormones on immune effector cells has been shown in both animals and humans. These observations have important implications, especially with regard to higher incidence of many autoimmune diseases in females. Evidence exists that reproductive hormones influence the immune system and increase the risk of immunologically related disorders in both animals and humans. Indeed, immunological responses in stressful situations may also be confounded by fluctuations of sex hormones especially in females. Lymphocyte distribution, cytoldne production, and the ability of lymphocyte to proliferate in vitro were analyzed in male and female mice to determine if sex influenced 2-DG immunomodulation. In addition, the influence of hormones, especially sex hormones, on these changes were evaluated.

  14. Host adaptive immunity alters gut microbiota.

    Science.gov (United States)

    Zhang, Husen; Sparks, Joshua B; Karyala, Saikumar V; Settlage, Robert; Luo, Xin M

    2015-03-01

    It has long been recognized that the mammalian gut microbiota has a role in the development and activation of the host immune system. Much less is known on how host immunity regulates the gut microbiota. Here we investigated the role of adaptive immunity on the mouse distal gut microbial composition by sequencing 16 S rRNA genes from microbiota of immunodeficient Rag1(-/-) mice, versus wild-type mice, under the same housing environment. To detect possible interactions among immunological status, age and variability from anatomical sites, we analyzed samples from the cecum, colon, colonic mucus and feces before and after weaning. High-throughput sequencing showed that Firmicutes, Bacteroidetes and Verrucomicrobia dominated mouse gut bacterial communities. Rag1(-) mice had a distinct microbiota that was phylogenetically different from wild-type mice. In particular, the bacterium Akkermansia muciniphila was highly enriched in Rag1(-/-) mice compared with the wild type. This enrichment was suppressed when Rag1(-/-) mice received bone marrows from wild-type mice. The microbial community diversity increased with age, albeit the magnitude depended on Rag1 status. In addition, Rag1(-/-) mice had a higher gain in microbiota richness and evenness with increase in age compared with wild-type mice, possibly due to the lack of pressure from the adaptive immune system. Our results suggest that adaptive immunity has a pervasive role in regulating gut microbiota's composition and diversity.

  15. Immune system alterations in amyotrophic lateral sclerosis

    DEFF Research Database (Denmark)

    Hovden, H; Frederiksen, J L; Pedersen, S W

    2013-01-01

    Amyotrophic lateral sclerosis is a disease of which the underlying cause and pathogenesis are unknown. Cumulatative data clearly indicates an active participation by the immune system in the disease. An increasingly recognized theory suggests a non-cell autonomous mechanism, meaning that multiple...

  16. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Science.gov (United States)

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  17. The psychosocial, endocrine and immune consequences of caring for a child with autism or ADHD.

    Science.gov (United States)

    Lovell, Brian; Moss, Mark; Wetherell, Mark

    2012-04-01

    Research that has assessed the psychophysiological consequences of caregiver stress in young and middle aged caregivers, that is, in populations not contending with age associated decline of the endocrine and immune systems, has been scarce and yielded inconsistent findings. To extend work in this area, this study assessed the psychosocial, endocrine and immune consequences of caregiver stress in a cross sectional sample of young and middle aged caregivers of children with autism and attention deficit hyperactivity disorder (ADHD) compared against parents of typically developing children. Caregivers (n=56) and parent controls (n=22) completed measures of psychological distress (perceived stress, anxiety/depression), social support and physical health complaints. To capture important indices of the diurnal cortisol pattern, cortisol was measured at waking, 30 min post waking, 1200 h and 2200 h on two consecutive weekdays. Venous blood was taken to assess systemic concentrations of proinflammatory biomarkers, interleukin-6 (IL-6) and C-reactive protein (CRP). Caregivers scored markedly higher on all measures of psychological distress; scores on social support subscales, however, were significantly lower in this group. Diurnal patterns of cortisol secretion did not differentiate between the groups; however, caregivers displayed elevated systemic concentrations of the proinflammatory biomarker, CRP and reported more frequent episodes of physical ill health. The stress of caregiving exacts a significant psychophysiological toll, that is, even in the absence of HPA dysregulation, caregivers demonstrated elevated concentrations of proinflammatory biomarkers and, therefore, might be at greater risk for diseases fostered by disinhibition of the inflammatory response. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Dietary selenium and nutritional plane alter specific aspects of maternal endocrine status during pregnancy and lactation.

    Science.gov (United States)

    Lemley, C O; Meyer, A M; Neville, T L; Hallford, D M; Camacho, L E; Maddock-Carlin, K R; Wilmoth, T A; Wilson, M E; Perry, G A; Redmer, D A; Reynolds, L P; Caton, J S; Vonnahme, K A

    2014-01-01

    Objectives were to examine effects of selenium (Se) supply and maternal nutritional plane during gestation on placental size at term and maternal endocrine profiles throughout gestation and early lactation. Ewe lambs (n = 84) were allocated to treatments that included Se supply of adequate Se (ASe; 11.5 μg/kg BW) or high Se (HSe; 77 μg/kg BW) initiated at breeding and nutritional plane of 60% (RES), 100% (CON), or 140% (EXC) of requirements beginning on day 40 of gestation. At parturition, lambs were removed from their dams, and ewes were transitioned to a common diet that met requirements of lactation. Blood samples were taken from a subset of ewes (n = 42) throughout gestation, during parturition, and throughout lactation to determine hormone concentrations. Cotyledon number was reduced (P = 0.03) in RES and EXC ewes compared with CON ewes. Placental delivery time tended (P = 0.08) to be shorter in HSe ewes than in ASe ewes, whereas placental delivery time was longer (P = 0.02) in RES ewes than in CON and EXC ewes. During gestation, maternal progesterone, estradiol-17β, and GH were increased (P maternal cortisol, IGF-I, prolactin, triiodothyronine, and thyroxine were decreased in RES ewes and increased in EXC ewes compared with CON ewes during gestation. Selenium supply did not alter maternal hormone profiles during gestation. During parturition and lactation, maternal hormone concentrations were influenced by both Se and maternal nutritional plane. During the parturient process, HSe ewes tended to have greater (P = 0.06) concentrations of estradiol-17β than ASe ewes. Three hours after parturition a surge of GH was observed in ASe-RES ewes that was muted in HSe-RES ewes and not apparent in other ewes. Growth hormone area under the curve during the parturient process was increased (P < 0.05) in ASe-RES vs HSe-RES ewes. Ewes that were overfed during gestation had reduced (P < 0.05) estradiol-17β but greater IGF-I, triiodothyronine, and thyroxine (P < 0

  19. Exposure to the endocrine disruptor nonylphenol alters structure and function of thyroid gland in rats.

    Science.gov (United States)

    Xi, Yue; Li, Dehua; San, Wei

    2013-08-10

    Nonylphenol (NP) is an estrogenic-like compound which can induce vitellogenin synthesis in males and immature teleostean species. Known as an endocrine disruptor, it has been reported to affect endocrine glands; however, little is known about its effects on thyroid function. The present study aimed to evaluate whether exposure to NP alters the structure and function of the thyroid gland of rats and/or the underlying mechanisms. Rats were gavaged with NP (40, 80 and 200 mg/kg/d) for 15 days. Serum levels of thyroid-stimulating hormone were determined by radioimmunoassay. Ultramicroscopic structure of follicular cells was examined by a transmission electron microscope. Histopathology was conducted with hematoxylin-eosin (HE) staining. We found that NP exposure induced a decrease in serum levels of free tetraiodothyronine (FT) 3 and FT4 while it induced an increase in serum levels of thyroid-stimulating hormone (TSH) in a dose-dependent manner. There was a negative correlation between different doses of NP with serum levels of FT3 and FT4 (FT4 r=-0.932; FT3 r=-0.926) and a positive correlation with serum levels of TSH (r=0.967). Histological and morphometric study in the NP-exposed group revealed dilation of endoplasmic reticulum into cystic in thyroid follicular cells. Mitochondrion was damaged in the 80 and 200 mg/kg/d groups. Exposure to NP may lead to thyroid dysfunction. It may be a potential contributor to thyroid disruption. © 2013 Elsevier B.V. All rights reserved.

  20. IMMUNE AND NEUROIMMUNE ALTERATIONS IN MOOD DISORDERS AND SCHIZOPHRENIA

    NARCIS (Netherlands)

    Drexhage, Roosmarijn C.; Weigelt, Karin; van Beveren, Nico; Cohen, Dan; Versnell, Marjan A.; Nolen, Willem A.; Drexhage, Hemmo A.; Guest, PC; Bahn, S

    2011-01-01

    A large number of publications over the past 20 years have indicated that immune system function is altered in schizophrenia and mood disorder patients. This chapter reviews the evidence, which suggests that a proinflammatory state of the cytokine network induces psychopathologic symptoms and may be

  1. Detoxification, endocrine, and immune responses of tree swallow nestlings naturally exposed to air contaminants from the Alberta oil sands.

    Science.gov (United States)

    Cruz-Martinez, Luis; Fernie, Kim J; Soos, Catherine; Harner, Tom; Getachew, Fitsum; Smits, Judit E G

    2015-01-01

    Changes in environmental and wildlife health from contaminants in tailings water on the Canadian oil sands have been well-studied; however, effects of air contaminants on wildlife health have not. A field study was conducted to assess biological costs of natural exposure to oil sands-related air emissions on birds. Nest boxes for tree swallows (Tachycineta bicolor) were erected at two sites; within 5 km of active oil sands mining and extraction, and ≥ 60 km south, at one reference site. Passive air monitors were deployed at the nest boxes to measure nitrogen dioxide, sulfur dioxide, ozone, volatile organic compounds, and polycyclic aromatic hydrocarbons (PAHs). Nestlings were examined at day 9 post hatching to assess T cell function and morphometry. At day 14 post hatching, a subset of nestlings was euthanized to measure detoxification enzymes, endocrine changes, and histological alterations of immune organs. Except for ozone, all air contaminants were higher at the two oil sands sites than the reference site (up to 5-fold). Adult birds had similar reproductive performance among sites (p>0.05). Nestlings from industrial sites showed higher hepatic ethoxyresorufin O-dealkylase (EROD) induction (p0.6), and no histological alterations in the spleen or bursa of Fabricius (p>0.05). This is the first report examining toxicological responses in wild birds exposed to air contaminants from industrial activity in the oil sands. It is also the first time that small, individual air contaminant monitors have been used to determine local contaminant levels in ambient air around nest boxes of wild birds. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Trypanosoma cruzi Disrupts Thymic Homeostasis by Altering Intrathymic and Systemic Stress-Related Endocrine Circuitries

    Science.gov (United States)

    Lepletier, Ailin; de Carvalho, Vinicius Frias; e Silva, Patricia Machado Rodrigues; Villar, Silvina; Pérez, Ana Rosa; Savino, Wilson; Morrot, Alexandre

    2013-01-01

    We have previously shown that experimental infection caused by Trypanosoma cruzi is associated with changes in the hypothalamus-pituitary-adrenal axis. Increased glucocorticoid (GC) levels are believed to be protective against the effects of acute stress during infection but result in depletion of CD4+CD8+ thymocytes by apoptosis, driving to thymic atrophy. However, very few data are available concerning prolactin (PRL), another stress-related hormone, which seems to be decreased during T. cruzi infection. Considering the immunomodulatory role of PRL upon the effects caused by GC, we investigated if intrathymic cross-talk between GC and PRL receptors (GR and PRLR, respectively) might influence T. cruzi-induced thymic atrophy. Using an acute experimental model, we observed changes in GR/PRLR cross-activation related with the survival of CD4+CD8+ thymocytes during infection. These alterations were closely related with systemic changes, characterized by a stress hormone imbalance, with progressive GC augmentation simultaneously to PRL reduction. The intrathymic hormone circuitry exhibited an inverse modulation that seemed to counteract the GC-related systemic deleterious effects. During infection, adrenalectomy protected the thymus from the increase in apoptosis ratio without changing PRL levels, whereas an additional inhibition of circulating PRL accelerated the thymic atrophy and led to an increase in corticosterone systemic levels. These results demonstrate that the PRL impairment during infection is not caused by the increase of corticosterone levels, but the opposite seems to occur. Accordingly, metoclopramide (MET)-induced enhancement of PRL secretion protected thymic atrophy in acutely infected animals as well as the abnormal export of immature and potentially autoreactive CD4+CD8+ thymocytes to the periphery. In conclusion, our findings clearly show that Trypanosoma cruzi subverts mouse thymus homeostasis by altering intrathymic and systemic stress

  3. MONITORING TRAINING LOADS, STRESS, IMMUNE-ENDOCRINE RESPONSES AND PERFORMANCE IN TENNIS PLAYERS

    Directory of Open Access Journals (Sweden)

    Rodrigo Vitasovic Gomes

    2013-06-01

    Full Text Available The study aim was to investigate the effect of a periodised pre-season training plan on internal training load and subsequent stress tolerance, immune-endocrine responses and physical performance in tennis players. Well-trained young tennis players (n = 10 were monitored across the pre-season period, which was divided into 4 weeks of progressive overloading training and a 1-week tapering period. Weekly measures of internal training load, training monotony and stress tolerance (sources and symptoms of stress were taken, along with salivary testosterone, cortisol and immunoglobulin A. One repetition maximum strength, running endurance, jump height and agility were assessed before and after training. The periodised training plan led to significant weekly changes in training loads (i.e. increasing in weeks 3 and 4, decreasing in week 5 and post-training improvements in strength, endurance and agility (P < 0.05. Cortisol concentration and the symptoms of stress also increased in weeks 3 and/or 4, before returning to baseline in week 5 (P < 0.05. Conversely, the testosterone to cortisol ratio decreased in weeks 3 and 4, before returning to baseline in week 5 (P < 0.05. In conclusion, the training plan evoked adaptive changes in stress tolerance and hormonal responses, which may have mediated the improvements in physical performance.

  4. The influence of surgical stress on the psychoneuro-endocrine-immune axis.

    Directory of Open Access Journals (Sweden)

    Dahanukar S

    1996-01-01

    Full Text Available Stress is known to depress the immune system severely. This study was done to evaluate whether surgical stress influenced polymorphonuclear (PMN and monocyte functions in association with serum cortisol and the anxiety score as measured on the HARS Rating Scale. We found that surgery (irrespective of whether it was major or minor significantly depressed PMN and monocyte functions and increased serum cortisol levels. PMN phagocytosis correlated significantly (p < 0.05 with the rise in serum cortisol. In spite of these changes, postoperative clinical recovery was uneventful. No major alterations in the HARS scores were noted pre and post operatively. This study demonstrates that surgical stress depresses the immune system with a concomitant rise in cortisol.

  5. Alterations of Cellular Immune Reactions in Crew Members Overwintering in the Antarctic Research Station Concordia

    Science.gov (United States)

    Crucian, Brian; Feuerecker, Matthias; Moreels, Marjan; Crucian, Brian; Kaufmann, Ines; Salam, Alex Paddy; Rybka, Alex; Ulrike, Thieme; Quintens, Roel; Sams, Clarence F.; hide

    2012-01-01

    Background: Concordia Station is located inside Antarctica about 1000km from the coast at an altitude of 3200m (Dome C). Hence, individuals living in this harsh environment are exposed to two major conditions: 1.) hypobaric hypoxia and 2.) confinement and extreme isolation. Both hypoxia and confinement can affect human immunity and health, and are likely to be present during exploration class space missions. This study focused on immune alterations measured by a new global immunity test assay, similar to the phased out delayed type hypersensitivity (DTH) skin test. Methods: After informed written consent 14 healthy male subjects were included to the CHOICE-study (Consequences-of-longterm-Confinement-and-Hypobaric-HypOxia-on-Immunity-in-the Antarctic-Concordia-Environment). Data collection occurred during two winter-over periods lasting each one year. During the first campaign 6 healthy male were enrolled followed by a second campaign with 8 healthy males. Blood was drawn monthly and incubated for 48h with various bacterial, viral and fungal antigens followed by an analysis of plasma cytokine levels (TNF-alpha, IL2, IFN-gamma, IL10). As a control, blood was incubated without stimulation ("resting condition"). Goals: The scope of this study was to assess the consequences of hypoxia and confinement on cellular immunity as assessed by a new in vitro DTH-like test. Results: Initial results indicate that under resting conditions the in vitro DTH-like test showed low cytokine levels which remained almost unchanged during the entire observation period. However, cytokine responses to viral, bacterial and fungal antigens were remarkably reduced at the first month after arrival at Concordia when compared to levels measured in Europe prior to departure for Antarctica. With incrementing months of confinement this depressed DTH-like response tended to reverse, and in fact to show an "overshooting" immune reaction after stimulation. Conclusion: The reduced in vitro DTH-like test

  6. Behavioural, endocrine and immune responses to repeated social stress in pregnant gilts.

    Science.gov (United States)

    Couret, D; Otten, W; Puppe, B; Prunier, A; Merlot, E

    2009-01-01

    Pregnant sows are exposed to various stressors in intensive pig husbandry that may have negative consequences on their health, reproductive performances and welfare. Social stress is one of these challenges, because gestating sows have to be housed in groups according to EU guidelines (2001/88/CE). The purpose of this study was to determine the consequences of repeated social stress in pregnant female pigs on their behavioural, endocrine and immunological responses and on pregnancy outcome. Pregnant gilts were submitted to a repeated social stress procedure induced by housing unfamiliar gilts in pairs changed twice a week between days 77 and 105 of gestation (S group, n = 18). Control gilts were housed in stable pairs during the same period (C group, n = 18). Agonistic behaviour was observed during the first 3 h after each grouping. Skin lesions were numbered 2 h after each grouping. Salivary cortisol was measured before and repeatedly during the 4 weeks of grouping. Gilts were immunized against keyhole limpet haemocyanin (KLH) on days 81 and 95 of gestation. Immunoglobulins G against KLH, proliferative responses to concanavalin A, lipopolysaccharide, pokeweed mitogen and KLH and peripheral blood leukocyte numbers were evaluated 1 week before the first grouping and 3 days after the last one. Agonistic interactions and skin lesions were observed in S gilts at each grouping, although there was a decline between the first and the last grouping (P gilts compared to C gilts. The cellular as well as the humoral immunity and the leukocyte numbers were not influenced by social stress. Gestation length tended to be shorter in S gilts (P = 0.09), but litter size, piglet weight or mortality at birth were not affected. Variability of the response of S gilts to groupings was partly explained by their average success value determined according to the outcome (defeat or win) of all the groupings. In conclusion, our study demonstrates that the application of repeated social stress

  7. Smoking-Induced Changes in the Maternal Immune, Endocrine, and Metabolic Pathways and Their Impact on Fetal Growth: A Topical Review.

    Science.gov (United States)

    Sabra, Sally; Gratacós, Eduard; Gómez Roig, Maria Dolores

    2017-01-01

    Perinatal maternal smoking exposure (PMSE) is one of the major environmental risk factors encountered by the fetus. PMSE is usually associated with adverse pregnancy outcomes that may manifest at different stages of life. Nevertheless, fetal growth restriction is the most common smoking-induced side effect. PMSE induces changes in the maternal multiple organ systems. These alterations may affect placentation, which subsequently affects fetal growth. It is worthy to note, however, that the extent of maternal smoking-induced changes depends mainly on the maternal level of susceptibility. Hence, the perinatal pregnancy outcomes vary depending on the interaction between the triad: the maternal, fetal, and placental modifications, making it more complex. In this review, we try to unveil the effect of smoking-induced maternal changes on the maternal immune, endocrine, and metabolic pathways and their impact on fetal growth. © 2017 S. Karger AG, Basel.

  8. Altered immunity in crowded locust reduced fungal (Metarhizium anisopliae pathogenesis.

    Directory of Open Access Journals (Sweden)

    Yundan Wang

    2013-01-01

    Full Text Available The stress of living conditions, similar to infections, alters animal immunity. High population density is empirically considered to induce prophylactic immunity to reduce the infection risk, which was challenged by a model of low connectivity between infectious and susceptible individuals in crowded animals. The migratory locust, which exhibits polyphenism through gregarious and solitary phases in response to population density and displays different resistance to fungal biopesticide (Metarhizium anisopliae, was used to observe the prophylactic immunity of crowded animals. We applied an RNA-sequencing assay to investigate differential expression in fat body samples of gregarious and solitary locusts before and after infection. Solitary locusts devoted at least twice the number of genes for combating M. anisopliae infection than gregarious locusts. The transcription of immune molecules such as pattern recognition proteins, protease inhibitors, and anti-oxidation proteins, was increased in prophylactic immunity of gregarious locusts. The differentially expressed transcripts reducing gregarious locust susceptibility to M. anisopliae were confirmed at the transcriptional and translational level. Further investigation revealed that locust GNBP3 was susceptible to proteolysis while GNBP1, induced by M. anisopliae infection, resisted proteolysis. Silencing of gnbp3 by RNAi significantly shortened the life span of gregarious locusts but not solitary locusts. By contrast, gnbp1 silencing did not affect the life span of both gregarious and solitary locusts after M. anisopliae infection. Thus, the GNBP3-dependent immune responses were involved in the phenotypic resistance of gregarious locusts to fungal infection, but were redundant in solitary locusts. Our results indicated that gregarious locusts prophylactically activated upstream modulators of immune cascades rather than downstream effectors, preferring to quarantine rather than eliminate pathogens to

  9. May genetic factors in fibromyalgia help to identify patients with differentially altered frequencies of immune cells?

    Science.gov (United States)

    Carvalho, L S C; Correa, H; Silva, G C; Campos, F S; Baião, F R; Ribeiro, L S; Faria, A M; d'Avila Reis, D

    2008-12-01

    There is common agreement that fibromyalgia (FM) is an extremely heterogeneous entity. Patients differ in their clinical symptoms, endocrine and immune parameters. In this study we evaluated endocrine and immunological features of distinct subsets of FM patients. In contrast to previous attempts to identify subsets of FM patients, based solely on their psychological and cognitive features, herein we propose to separate FM patients by genetic features. Allelic expression of the polymorphic promoter region of the serotonin transporter (5-HTTLPR) was analysed as a relevant genetic factor for FM. Seventy-five patients meeting the American College of Rheumatology criteria and 27 healthy age-matched controls participated in this study. All controls and FM patients were submitted to genotyping of 5-HTTLPR. Twenty-seven FM patients, who were able to discontinue hypnotic, sedative or psychotropic prescription medications for at least 2 weeks, were then subdivided into L (homozygote LL) or S groups (genotypes LS and SS). They were evaluated for salivary cortisol levels, absolute number of leucocyte subpopulations, including natural killer (NK) cells and activated T and B lymphocytes. Both groups presented decreased cortisol levels, more intense in the L group, increased all B lymphocytes subsets and reduced CD4+CD25high T lymphocytes. The L group had increased CD4+CD25low activated T lymphocytes, while the S group displayed elevated CD4+ human leucocyte antigen D-related (HLA-DR)+ activated T lymphocytes and decreased NK cells. We demonstrate that genetic factors may help to identify FM individuals with differentially altered frequencies of immune cells.

  10. Strain specific induction of pyometra and differences in immune responsiveness in mice exposed to 17α-ethinyl estradiol or the endocrine disrupting chemical bisphenol A.

    Science.gov (United States)

    Kendziorski, Jessica A; Kendig, Eric L; Gear, Robin B; Belcher, Scott M

    2012-08-01

    Pyometra is an inflammatory disease of the uterus that can be caused by chronic exposure to estrogens. It is unknown whether weakly estrogenic endocrine disruptors can cause pyometra. We investigated whether dietary exposures to the estrogenic endocrine disruptor bisphenol A (BPA) induced pyometra. Pyometra did not occur in CD1 mice exposed to different dietary doses of BPA ranging from 4.1 to >4000μg/kg-d or 17α-ethinyl estradiol (EE; 1.2 to >150μg/kg-d). In the C57BL/6 strain, pyometra occurred in the 15μg/kg-d EE and 33μg/kg-d BPA treatment groups. At the effective concentration of BPA, histological analysis revealed pathological alterations of uterine morphology associated with a >5.3-fold increase in macrophage numbers in non-pyometra uteri of C57BL/6 mice exposed to BPA. These results suggest that BPA enhances immune responsiveness of the uterus and that heightened responsiveness in C57BL/6 females is related to increased susceptibility to pyometra. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Early endocrine alterations reflect prolonged stress and relate to one year functional outcome in patients with severe brain injury

    DEFF Research Database (Denmark)

    Marina, Djordje; Klose, Marianne; Nordenbo, Annette

    2015-01-01

    OBJECTIVE: Severe brain injury poses a risk of developing acute and chronic hypopituitarism. Pituitary hormone alterations developed in the early recovery phase after brain injury may have implications for long-term functional recovery. The objective was to assess the pattern and prevalence...... of pituitary hormone alterations three months after severe brain injury with relation to functional outcome at one year follow-up. DESIGN: Prospective study at a tertiary university referral centre. METHODS: A total of 163 patients admitted to neurorehabilitation after severe traumatic (N=111) or non......-traumatic (N=52) brain injury were included. Main outcome measures were endocrine alterations 3.3 months (median) after the brain injury and their relationship to functioning and ability of the patients at one year follow-up, as measured by Functional Independence Measure and Glasgow Outcome Scale...

  12. Altered steroid metabolism in several teleost species exposed to endocrine disrupting substances in refuse dump leachate

    NARCIS (Netherlands)

    Noaksson, E.; Linderoth, M.; Bosveld, A.T.C.; Balk, L.

    2003-01-01

    Endocrine disruption associated with reproductive failure has been reported previously in female perch (Perca fluviatilis) and roach (Rutilus rutilus) from Lake Molnbyggen in Sweden and in female brook trout (Salvelinus fontinalis) from Vadbäcken, a stream emptying into Molnbyggen. Both Molnbyggen

  13. The endocrine system controlling sexual reproduction in animals: Part of the evolutionary ancient but well conserved immune system?

    Science.gov (United States)

    De Loof, Arnold; Schoofs, Liliane; Huybrechts, Roger

    2016-01-15

    Drastic changes in hormone titers, in particular of steroid hormones, are intuitively interpreted as necessary and beneficial for optimal functioning of animals. Peaks in progesterone- and estradiol titers that accompany the estrus cycle in female vertebrates as well as in ecdysteroids at each molt and during metamorphosis of holometabolous insects are prominent examples. A recent analysis of insect metamorphosis yielded the view that, in general, a sharp rise in sex steroid hormone titer signals that somewhere in the body some tissue(s) is undergoing programmed cell death/apoptosis. Increased steroid production is part of this process. Typical examples are ovarian follicle cells in female vertebrates and invertebrates and the prothoracic gland cells, the main production site of ecdysteroids in larval insects. A duality emerges: programmed cell death-apoptosis is deleterious at the cellular level, but it may yield beneficial effects at the organismal level. Reconciling both opposites requires reevaluating the probable evolutionary origin and role of peptidic brain hormones that direct steroid hormone synthesis. Do e.g. Luteinizing Hormone in vertebrates and Prothoracicotropic Hormone (PTTH: acting through the Torso receptor) in insects still retain an ancient role as toxins in the early immune system? Does the functional link of some neuropeptides with Ca(2+)-induced apoptosis make sense in endocrine archeology? The endocrine system as a remnant of the ancient immune system is undoubtedly counterintuitive. Yet, we will argue that such paradigm enables the logical framing of many aspects, the endocrine one inclusive of both male and female reproductive physiology. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. RET-mediated modulation of tumor microenvironment and immune response in multiple endocrine neoplasia type 2 (MEN2).

    Science.gov (United States)

    Castellone, Maria Domenica; Melillo, Rosa Marina

    2018-02-01

    Medullary thyroid carcinomas (MTC) arise from thyroid parafollicular, calcitonin-producing C-cells and can occur either as sporadic or as hereditary diseases in the context of familial syndromes, including multiple endocrine neoplasia 2A (MEN2A), multiple endocrine neoplasia 2B (MEN2B) and familial MTC (FMTC). In a large fraction of sporadic cases, and virtually in all inherited cases of MTC, activating point mutations of the RET proto-oncogene are found. RET encodes for a receptor tyrosine kinase protein endowed with transforming potential on thyroid parafollicular cells. As in other cancer types, microenvironmental factors play a critical role in MTC. Tumor-associated extracellular matrix, stromal cells and immune cells interact and influence the behavior of cancer cells both in a tumor-promoting and in a tumor-suppressing manner. Several studies have shown that, besides the neoplastic transformation of thyroid C-cells, a profound modification of tumor microenvironment has been associated to the RET FMTC/MEN2-associated oncoproteins. They influence the surrounding stroma, activating cancer-associated fibroblasts (CAFs), promoting cancer-associated inflammation and suppressing anti-cancer immune response. These mechanisms might be exploited to develop innovative anti-cancer therapies and novel prognostic tools in the context of familial, RET-associated MTC. © 2018 Society for Endocrinology.

  15. Genomic profiling of ER+ breast cancers after short-term estrogen suppression reveals alterations associated with endocrine resistance

    Science.gov (United States)

    Giltnane, J.M.; Hutchinson, K.E.; Stricker, T.P.; Formisano, L.; Young, C.D.; Estrada, M.V.; Nixon, M.J.; Du, L.; Sanchez, V.; Ericsson, P. Gonzalez; Kuba, M.G.; Sanders, M.E.; Mu, X.J.; Van Allen, E.M.; Wagle, N.; Mayer, I.; Abramson, V.; Gómez, H.; Rizzo, M.; Toy, W.; Chandarlapaty, S.; Mayer, E.L.; Christiansen, J.; Murphy, D.; Fitzgerald, K.; Wang, K.; Ross, J.S.; Miller, V.A.; Stephens, P.J.; Yelensky, R.; Garraway, L.; Shyr, Y.; Meszoely, I.; Balko, J.M.; Arteaga, C.L.

    2017-01-01

    Proliferative inhibition of estrogen-receptor positive (ER+) breast cancers after short-term antiestrogen therapy correlates with long-term patient outcome. We profiled 155 ER+/HER2– early breast cancers from 143 patients treated with the aromatase inhibitor letrozole for 10-21 days before surgery. Twenty-one percent of tumors remained highly proliferative suggesting these tumors harbor alterations associated with intrinsic endocrine therapy resistance. Whole-exome sequencing revealed a correlation between 8p11-12 and 11q13 gene amplifications, including FGFR1 and CCND1, respectively, and high Ki67. We corroborated these findings in a separate cohort of serial pre-treatment, post-neoadjuvant chemotherapy, and recurrent ER+ tumors. Combined inhibition of FGFR1 and CDK4/6 reversed antiestrogen resistance in ER+ FGFR1/CCND1 co-amplified CAMA1 breast cancer cells. RNA sequencing of letrozole-treated tumors revealed intrachromosomal ESR1 fusion transcripts and gene expression signatures in cancers with high Ki67, indicative of enhanced E2F-mediated transcription and cell cycle processes. These data suggest short-term pre-operative estrogen deprivation followed by genomic profiling can be used to identify druggable alterations potentially causal to intrinsic endocrine therapy resistance. PMID:28794284

  16. Behavioural, endocrine and immune responses to repeated social stress in pregnant gilts

    OpenAIRE

    Couret, David; Otten, W.; Puppe, B.; Prunier, Armelle; Merlot, Elodie

    2009-01-01

    Pregnant sows are exposed to various stressors in intensive pig husbandry that may have negative consequences on their health, reproductive performances and welfare. Social stress is one of these challenges, because gestating sows have to be housed in groups according to EU guidelines (2001/88/CE). The purpose of this study was to determine the consequences of repeated social stress in pregnant female pigs on their behavioural, endocrine and immunological responses and on pregnancy outcome. P...

  17. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    Science.gov (United States)

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. Published by Elsevier Ltd.

  18. Endocrine alterations from concentric vs. eccentric muscle actions: a brief review.

    Science.gov (United States)

    Kraemer, Robert R; Castracane, V Daniel

    2015-02-01

    Resistance exercise has a positive effect on many tissues, including heart, bone, skeletal muscle, and nervous tissue. Eccentric muscle actions offer a unique and a potentially beneficial form of exercise for maintaining and improving health. During resistance exercise, the effects of gravity, and mechanical properties of the sarcomere and connective tissue in skeletal muscle allow a greater muscle load during an eccentric (lengthening) muscle contraction than a concentric (shortening) muscle contraction. Consequently, older patients, patients with muscle or limb movement limitations or injuries, as well as cancer patients may be able to benefit from isolated eccentric muscle actions. There are specific physiological responses to eccentric muscle contractions. This review will describe the effects of different eccentric muscle contraction protocols on endocrine responses that could have positive effects on different tissues and recommend direction for future research. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Depresión y neuroplasticidad: Interacción de los sistemas nervioso, endocrino e inmune Depression and neuroplasticity: Interaction of nervous, endocrine and immune systems

    Directory of Open Access Journals (Sweden)

    Paola Cassano

    2010-04-01

    Full Text Available La depresión clínica es una enfermedad física y psíquica que presenta bases neuropatológicas, sin embargo aún no se tiene un conocimiento exacto del origen o causas de esta enfermedad. Se conoce que existe un componente genético, aunque el componente ambiental en el desarrollo de la depresión es innegable. El estrés juega un rol esencial en el desencadenamiento de la depresión. La interacción y respuesta del sistema endocrino, inmune y nervioso se encuentran afectadas en este desorden. La observación de los efectos de los antidepresivos sobre la neurotransmisión monoaminérgica ha llevado hace muchos años a la hipótesis de las monoaminas de la depresión. Sin embargo, esta hipótesis ya no puede explicar muchos de los efectos de las drogas antidepresivas. La nueva hipótesis para explicar los efectos de los antidepresivos es la de neuroplasticidad neuronal. Esta hipótesis propone que los cambios que esas drogas producen sobre diversos sistemas, entre ellos el sistema nervioso, el inmune y el endocrino, son capaces de inducir cambios neuroadaptativos en el cerebro. La neuroplasticidad ha sido definida como la habilidad del cerebro para reorganizarse a sí mismo y formar nuevas conexiones neuronales a lo largo de la vida. Se propone que el mecanismo por el cual los antidepresivos logran sus efectos es mediante la neuroplasticidad.Clinical depression is a physical and psychic disease that has neuropathological basis, although the clear understanding of its ethiopathology is still missing. There is evidence of a genetic component in depression, however, the participation of environment is crucial. Stress plays an essential role in the onset of depression. The interaction and the response of the endocrine system with the immune and nervous system are altered in depression. The observation of the effect of antidepressants on monoaminergic transmitters leads to the hypothesis of monoamines. However this hypothesis cannot explain many of

  20. Modulatory effects of defense and coping on stress-induced changes in endocrine and immune parameters

    NARCIS (Netherlands)

    Olff, M.; Brosschot, J. F.; Godaert, G.; Benschop, R. J.; Ballieux, R. E.; Heijnen, C. J.; de Smet, M. B.; Ursin, H.

    1995-01-01

    We examined whether habitual defense and coping affect the response of hormones (ACTH. cortisol, prolactin. endorphins, and noradrenaline) and immune parameters (numbers of T cells. B cells. natural killer [NK] cells, and proliferative responses to mitogens or antigens) to an acute laboratory

  1. Does Exercise Alter Immune Function and Respiratory Infections?

    Science.gov (United States)

    Nieman, David C.

    2001-01-01

    This paper examines whether physical activity influences immune function as a consequence risk of infection from the common cold and other upper respiratory tract infections (URTI) and whether the immune system responds differently to moderate versus intense physical exertion. Research indicates that people who participate in regular moderate…

  2. Diuron metabolites act as endocrine disruptors and alter aggressive behavior in Nile tilapia (Oreochromis niloticus).

    Science.gov (United States)

    Boscolo, Camila Nomura Pereira; Pereira, Thiago Scremin Boscolo; Batalhão, Isabela Gertrudes; Dourado, Priscila Leocadia Rosa; Schlenk, Daniel; de Almeida, Eduardo Alves

    2018-01-01

    Diuron and its biodegradation metabolites were recently reported to cause alterations in plasma steroid hormone concentrations with subsequent impacts on reproductive development in fish. Since steroid hormone biosynthesis is regulated through neurotransmission of the central nervous system (CNS), studies were conducted to determine whether neurotransmitters that control hormone biosynthesis could be affected after diuron and diuron metabolites treatment. As the same neurotransmitters and steroid hormones regulate behavioral outcomes, aggression was also evaluated in male Nile tilapia (Oreochromis niloticus). Male tilapias were exposed for 10 days to waterborne diuron and the metabolites 3,4-dichloroaniline (DCA), 3,4-dichlorophenyl-N-methylurea (DCPMU), at nominal concentrations of 100 ng L -1 . In contrast to Diuron, DCA and DCPMU significantly diminished plasma testosterone concentrations (39.4% and 36.8%, respectively) and reduced dopamine levels in the brain (47.1% and 44.2%, respectively). In addition, concentrations of the stress steroid, cortisol were increased after DCA (71.0%) and DCPMU (57.8-%) exposure. A significant decrease in aggressive behavior was also observed in animals treated with the metabolites DCA (50.9%) and DCPMU (68.8%). These results indicate that biotransformation of diuron to active metabolites alter signaling pathways of the CNS which may impact androgen and the stress response as well as behavior necessary for social dominance, growth, and reproduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Active behavioral coping alters the behavioral but not the endocrine response to stress

    Science.gov (United States)

    Helmreich, Dana L.; Tylee, Daniel; Christianson, John P.; Kubala, Kenneth H.; Govindarajan, Sindhuja T.; O’Neill, William E.; Becoats, Kyeesha; Watkins, Linda; Maier, Steve F.

    2012-01-01

    Summary Exposure to traumatic stressors typically causes lasting changes in emotionality and behavior. However, coping strategies have been shown to prevent and alleviate many stress consequences and the biological mechanisms that underlie coping are of great interest. Whereas the laboratory stressor inescapable tail-shock induces anxiety-like behaviors, here we demonstrate that permitting a rat to chew on a wooden dowel during administration of tail-shock prevented the development of anxiety like behaviors in the open field and juvenile social exploration tests. Uncontrollable stressors increase corticosterone and decrease thyroid hormone, and we hypothesized that coping would blunt these changes. While tail-shock did produce these effects, active coping did not alter hormone levels. The dissociation between behavioral resilience and circulating hormones is discussed with regard to the utility of these molecules as biomarkers for psychiatric disease. PMID:22578266

  4. Ovulatory and endocrine responses after active immunization of gilts against a synthetic fragment of bovine inhibin.

    Science.gov (United States)

    King, B F; Britt, J H; Esbenshade, K L; Flowers, W L; Sesti, L A; Martin, T L; Ireland, J J

    1993-04-01

    The objective of this study was to determine whether neutralizing endogenous inhibin would affect ovulation rate and serum concentrations of FSH, LH, estradiol-17 beta, and progesterone in gilts. At wk 0, during their second postpubertal estrous cycle, gilts (195 +/- 2.4 d of age) were given a primary immunization against the 1-26 gly-tyr NH-terminal amino acid sequence of bovine inhibin-alpha conjugated to human alpha globulin (INH; n = 10) or against human alpha globulin alone (control; n = 10). The primary immunization mixed with Freund's complete adjuvant contained .915 mg of the inhibin peptide. Booster immunizations in Freund's incomplete adjuvant contained .3 and .183 mg of the inhibin peptide and were given at wk 8 and 12, respectively. Free, unconjugated inhibin was given to INH gilts at 16 wk. Blood samples for determination of hormones were collected every 4 h beginning on d 15 of the first estrous cycle beyond wk 16 (first cycle) and continuing until d 5 of the second estrous cycle following wk 16 (second cycle). Ovulation rate was estimated by laparoscopy during the second cycle. Antibody titers were estimated by determining the percentage of [125I]-INH bound by serum diluted 1:4,000. The antibody titers were 17 +/- 2, 22 +/- 3, and 9 +/- 1% at wk 9, 17, and 23 for INH gilts, respectively, and 0% at all times for control gilts. Duration of three consecutive estrous cycles terminating with the first experimental cycle did not differ between treatments (INH, 20.7 +/- .3 vs control, 20.4 +/- .3 d).(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Cupping regulates local immunomodulation to activate neural-endocrine-immune worknet.

    Science.gov (United States)

    Guo, Yang; Chen, Bo; Wang, Dong-Qiang; Li, Ming-Yue; Lim, Calista Hui-Min; Guo, Yi; Chen, Zelin

    2017-08-01

    Research on cupping therapy is lacking at home and abroad. However, cupping and acupuncture therapy are both surface stimulation therapies. This paper suggests the mechanism of cupping therapy and proposes that the same mechanism underlies both cupping and acupuncture therapy. The microenvironment is changed when stimulating the surface of the skin, and physical signals transform into biological signals, which also interact with each other in the body. These signalling cascades activate the neuroendocrine-immune system, which produces the therapeutic effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Convergence of neuro-endocrine-immune pathways in the pathophysiology of irritable bowel syndrome

    OpenAIRE

    Buckley, Maria M; O’Mahony, Siobhain M; O’Malley, Dervla

    2014-01-01

    Disordered signalling between the brain and the gut are generally accepted to underlie the functional bowel disorder, irritable bowel syndrome (IBS). However, partly due to the lack of disease-defining biomarkers, understanding the aetiology of this complex and multifactorial disease remains elusive. This common gastrointestinal disorder is characterised by alterations in bowel habit such as diarrhoea and/or constipation, bloating and abdominal pain, and symptom exacerbation has been linked w...

  7. [Effects of mixed cypermethrin and methylparathion on endocrine hormone levels and immune functions in rats: II. Interaction].

    Science.gov (United States)

    Liu, Ping; Song, Xiao-Xiao; Wen, Wei-Hua; Yuan, Wei-Hong; Chen, Xue-min

    2006-09-01

    To study interaction of mixed pesticides cypermethrin and methyl parathion on reproductive hormones, thyroid hormones, and immune functions in rats. Eighty 2-month old Wistar rats (40 male and 40 female) were divided randomly by body weight into 8 groups. The dose 1/30 LD50 were chosen for the single or combined exposure representing respective doses of 0, cypermethrin 8.0 mg/kg bw, methylparathion 0.23 mg/kg bw, and 1/30 LD50 cypermethrin plus 1/30 LD50 methylparathion. The control group received vehicle solvent only. All groups were force-fed every two days for 30 days. Body weight gain and organ weights were determined. Serum levels of IgG and IgA, reproductive hormones [luteinizing hormone (LH), follicle stimulating hormone (FSH), estradiol (E2), and testosterone], as well as the thyroid hormones [triiodothyronine (T3), tetraiodothyronine (T4), and thyroid stimulating hormone (TSH) were measured using radioimmunoassay (RIA). In addition, two immunological parameters (rate of neutrophil phagocytosis, rate of lymphocyte transformation] were being measured in blood samples. The most of index indicated addictive interaction, while the effects on relative weights of ovaries and adrenals, IgA and rate of lymphocyte transformation were antagonistic. It was of interest that the effect on estradiol was synergistic interaction in female rats, whereas it was addictive interaction in male rats, whose estradiol level could be increased 64.64% by cypermethrin exposure. Our results showed that exposure to cypermethrin and methyl parathion mixture at 1/30 LD50 dose had interaction on endocrine hormone levels, and immune functions in rats. Estradiol was very sensitive, the mixture can enhance estradiol level both in male and female rats.

  8. Evidence Report: Risk of Crew Adverse Health Event Due to Altered Immune Response

    Science.gov (United States)

    Crucian, Brian; Sams, Clarence F.

    2013-01-01

    The Risk of Crew Adverse Health Event Due to Altered Immune Response is identified by the National Aeronautics and Space Administration (NASA) Human Research Program (HRP) as a recognized risk to human health and performance in space. The HRP Program Requirements Document (PRD) defines these risks. This Evidence Report provides a summary of the evidence that has been used to identify and characterize this risk. It is known that human immune function is altered in- and post-flight, but it is unclear at present if such alterations lead to increased susceptibility to disease. Reactivation of latent viruses has been documented in crewmembers, although this reactivation has not been directly correlated with immune changes or with observed diseases. As described in this report, further research is required to better characterize the relationships between altered immune response and susceptibility to disease during and after spaceflight. This is particularly important for future deep-space exploration missions.

  9. Vitamin D endocrine system and the immune response in rheumatic diseases.

    Science.gov (United States)

    Cutolo, Maurizio; Plebani, M; Shoenfeld, Yehuda; Adorini, Luciano; Tincani, Angela

    2011-01-01

    Epidemiological evidence indicates a significant association between vitamin D deficiency and an increased incidence of autoimmune diseases. The presence of vitamin D receptors (VDRs) in the cells of the immune system and the fact that several of these cells produce the vitamin D hormone suggested that vitamin D could have immunoregulatory properties, and now potent immunomodulatory activities on dendritic cells, Th1 and Th17 cells, as well as B cells have been confirmed. Serum levels of vitamin D have been found to be significantly lower in patients with systemic lupus erythematosus, undifferentiated connective tissue disease, and type-1 diabetes mellitus than in the healthy population. In addition, it was also found that lower levels of vitamin D were associated with higher disease activity in rheumatoid arthritis. Promising clinical results together with evidence for the regulation of multiple immunomodulatory mechanisms by VDR agonists represent a sound basis for further exploration of their potential in the treatment of rheumatic autoimmune disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Immune Alterations in Rats Exposed to Airborne Lunar Dust

    Science.gov (United States)

    Crucian, Brian; Quiriarte, Heather; Nelman, Mayra; Lam, Chiu-wing; James, John T.; Sams, Clarence

    2014-01-01

    The lunar surface is covered by a layer of fine, reactive dust. Very little is known regarding the toxicity of lunar dust on human physiology. This study assessed the toxicity of airborne lunar dust exposure in rats on pulmonary and systemic immune parameters.

  11. Transcriptome analysis of Aedes aegypti transgenic mosquitoes with altered immunity.

    Science.gov (United States)

    Zou, Zhen; Souza-Neto, Jayme; Xi, Zhiyong; Kokoza, Vladimir; Shin, Sang Woon; Dimopoulos, George; Raikhel, Alexander

    2011-11-01

    The mosquito immune system is involved in pathogen-elicited defense responses. The NF-κB factors REL1 and REL2 are downstream transcription activators of Toll and IMD immune pathways, respectively. We have used genome-wide microarray analyses to characterize fat-body-specific gene transcript repertoires activated by either REL1 or REL2 in two transgenic strains of the mosquito Aedes aegypti. Vitellogenin gene promoter was used in each transgenic strain to ectopically express either REL1 (REL1+) or REL2 (REL2+) in a sex, tissue, and stage specific manner. There was a significant change in the transcript abundance of 297 (79 up- and 218 down-regulated) and 299 (123 up- and 176 down-regulated) genes in fat bodies of REL1+ and REL2+, respectively. Over half of the induced genes had predicted functions in immunity, and a large group of these was co-regulated by REL1 and REL2. By generating a hybrid transgenic strain, which ectopically expresses both REL1 and REL2, we have shown a synergistic action of these NF-κB factors in activating immune genes. The REL1+ immune transcriptome showed a significant overlap with that of cactus (RNAi)-depleted mosquitoes (50%). In contrast, the REL2+ -regulated transcriptome differed from the relatively small group of gene transcripts regulated by RNAi depletion of a putative inhibitor of the IMD pathway, caspar (35 up- and 140 down-regulated), suggesting that caspar contributes to regulation of a subset of IMD-pathway controlled genes. Infections of the wild type Ae. aegypti with Plasmodium gallinaceum elicited the transcription of a distinct subset of immune genes (76 up- and 25 down-regulated) relative to that observed in REL1+ and REL2+ mosquitoes. Considerable overlap was observed between the fat body transcriptome of Plasmodium-infected mosquitoes and that of mosquitoes with transiently depleted PIAS, an inhibitor of the JAK-STAT pathway. PIAS gene silencing reduced Plasmodium proliferation in Ae. aegypti, indicating the

  12. Transcriptome analysis of Aedes aegypti transgenic mosquitoes with altered immunity.

    Directory of Open Access Journals (Sweden)

    Zhen Zou

    2011-11-01

    Full Text Available The mosquito immune system is involved in pathogen-elicited defense responses. The NF-κB factors REL1 and REL2 are downstream transcription activators of Toll and IMD immune pathways, respectively. We have used genome-wide microarray analyses to characterize fat-body-specific gene transcript repertoires activated by either REL1 or REL2 in two transgenic strains of the mosquito Aedes aegypti. Vitellogenin gene promoter was used in each transgenic strain to ectopically express either REL1 (REL1+ or REL2 (REL2+ in a sex, tissue, and stage specific manner. There was a significant change in the transcript abundance of 297 (79 up- and 218 down-regulated and 299 (123 up- and 176 down-regulated genes in fat bodies of REL1+ and REL2+, respectively. Over half of the induced genes had predicted functions in immunity, and a large group of these was co-regulated by REL1 and REL2. By generating a hybrid transgenic strain, which ectopically expresses both REL1 and REL2, we have shown a synergistic action of these NF-κB factors in activating immune genes. The REL1+ immune transcriptome showed a significant overlap with that of cactus (RNAi-depleted mosquitoes (50%. In contrast, the REL2+ -regulated transcriptome differed from the relatively small group of gene transcripts regulated by RNAi depletion of a putative inhibitor of the IMD pathway, caspar (35 up- and 140 down-regulated, suggesting that caspar contributes to regulation of a subset of IMD-pathway controlled genes. Infections of the wild type Ae. aegypti with Plasmodium gallinaceum elicited the transcription of a distinct subset of immune genes (76 up- and 25 down-regulated relative to that observed in REL1+ and REL2+ mosquitoes. Considerable overlap was observed between the fat body transcriptome of Plasmodium-infected mosquitoes and that of mosquitoes with transiently depleted PIAS, an inhibitor of the JAK-STAT pathway. PIAS gene silencing reduced Plasmodium proliferation in Ae. aegypti, indicating

  13. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti

  14. Tumor-altered dendritic cell function: implications for anti-tumor immunity.

    Science.gov (United States)

    Hargadon, Kristian M

    2013-01-01

    Dendritic cells (DC) are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programing of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor immunity.

  15. Endocrine system and obesity.

    Science.gov (United States)

    Ashburn, Doyle D; Reed, Mary Jane

    2010-10-01

    Obesity is associated with significant alterations in endocrine function. An association with type 2 diabetes mellitus and dyslipidemia has been well documented. This article highlights the complexities of treating endocrine system disorders in obese patients. Copyright © 2010. Published by Elsevier Inc.

  16. Prenatal cadmium exposure alters postnatal immune cell development and function

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Miranda L.; Holásková, Ida; Elliott, Meenal; Brundage, Kathleen M.; Schafer, Rosana; Barnett, John B., E-mail: jbarnett@hsc.wvu.edu

    2012-06-01

    Cadmium (Cd) is generally found in low concentrations in the environment due to its widespread and continual use, however, its concentration in some foods and cigarette smoke is high. Although evidence demonstrates that adult exposure to Cd causes changes in the immune system, there are limited reports of immunomodulatory effects of prenatal exposure to Cd. This study was designed to investigate the effects of prenatal exposure to Cd on the immune system of the offspring. Pregnant C57Bl/6 mice were exposed to an environmentally relevant dose of CdCl{sub 2} (10 ppm) and the effects on the immune system of the offspring were assessed at two time points following birth (2 and 7 weeks of age). Thymocyte and splenocyte phenotypes were analyzed by flow cytometry. Prenatal Cd exposure did not affect thymocyte populations at 2 and 7 weeks of age. In the spleen, the only significant effect on phenotype was a decrease in the number of macrophages in male offspring at both time points. Analysis of cytokine production by stimulated splenocytes demonstrated that prenatal Cd exposure decreased IL-2 and IL-4 production by cells from female offspring at 2 weeks of age. At 7 weeks of age, splenocyte IL-2 production was decreased in Cd-exposed males while IFN-γ production was decreased from both male and female Cd-exposed offspring. The ability of the Cd-exposed offspring to respond to immunization with a S. pneumoniae vaccine expressing T-dependent and T-independent streptococcal antigens showed marked increases in the levels of both T-dependent and T-independent serum antibody levels compared to control animals. CD4{sup +}FoxP3{sup +}CD25{sup +} (nTreg) cell percentages were increased in the spleen and thymus in all Cd-exposed offspring except in the female spleen where a decrease was seen. CD8{sup +}CD223{sup +} T cells were markedly decreased in the spleens in all offspring at 7 weeks of age. These findings suggest that even very low levels of Cd exposure during gestation can

  17. Integrated analysis of HPV-mediated immune alterations in cervical cancer.

    Science.gov (United States)

    Chen, Long; Luan, Shaohong; Xia, Baoguo; Liu, Yansheng; Gao, Yuan; Yu, Hongyan; Mu, Qingling; Zhang, Ping; Zhang, Weina; Zhang, Shengmiao; Wei, Guopeng; Yang, Min; Li, Ke

    2018-03-20

    Human papillomavirus (HPV) infection is the primary cause of cervical cancer. HPV-mediated immune alterations are known to play crucial roles in determining viral persistence and host cell transformation. We sought to thoroughly understand HPV-directed immune alterations in cervical cancer by exploring publically available datasets. 130 HPV positive and 7 HPV negative cervical cancer cases from The Cancer Genome Atlas were compared for differences in gene expression levels and functional enrichment. Analyses for copy number variation (CNV) and genetic mutation were conducted for differentially expressed immune genes. Kaplan-Meier analysis was performed to assess survival and relapse differences across cases with or without alterations of the identified immune signature genes. Genes up-regulated in HPV positive cervical cancer were enriched for various gene ontology terms of immune processes (P=1.05E-14~1.00E-05). Integrated analysis of the differentially expressed immune genes identified 9 genes that displayed either CNV, genetic mutation and/or gene expression changes in at least 10% of the cases of HPV positive cervical cancer. Genomic amplification may cause elevated levels of these genes in some HPV positive cases. Finally, patients with alterations in at least one of the nine signature genes overall had earlier relapse compared to those without any alterations. The altered expression of either TFRC or MMP13 may indicate poor survival for a subset of cervical cancer patients (P=1.07E-07). We identified a novel immune gene signature for HPV positive cervical cancer that is potentially associated with early relapse of cervical cancer. Copyright © 2018. Published by Elsevier Inc.

  18. Alteration of cellular immune responses in the seastar Asterias rubens following dietary exposure to cadmium

    International Nuclear Information System (INIS)

    Coteur, G.; Gillan, D.; Pernet, Ph.; Dubois, Ph.

    2005-01-01

    Several parameters of cellular immunity in seastars fed Cd-contaminated mussels were analyzed. The accumulation of cadmium in the seastars did not alter the concentration of amoebocytes in the coelomic fluid. On the contrary, the immune cells showed a reduced phagocytic activity and an increased production of reactive oxygen species. These effects may lead to an inability of the seastars to cope with bacterial infections and to oxidative damages to self tissue that could threaten the survival of the animals

  19. Immune system handling time may alter the outcome of competition between pathogens and the immune system.

    Science.gov (United States)

    Greenspoon, Philip B; Banton, Sydney; Mideo, Nicole

    2018-06-14

    Predators may be limited in their ability to kill prey (i.e., have type II or III functional responses), an insight that has had far-reaching consequences in the ecological literature. With few exceptions, however, this possibility has not been extended to the behaviour of immune cells, which kill pathogens much as predators kill their prey. Rather, models of the within-host environment have tended to tacitly assume that immune cells have an unlimited ability to target and kill pathogens (i.e., a type I functional response). Here we explore the effects of changing this assumption on infection outcomes (i.e., pathogen loads). We incorporate immune cell handling time into an ecological model of the within-host environment that considers both the predatory nature of the pathogen-immune cell interaction as well as competition between immune cells and pathogens for host resources. Unless pathogens can preempt immune cells for host resources, adding an immune cell handling time increases equilibrium pathogen load. We find that the shape of the relationship between energy intake and pathogen load can change: with a type I functional response, pathogen load is maximised at intermediate inputs, while for a type II or III functional response, pathogen load is solely increasing. With a type II functional response, pathogen load can fluctuate rather than settling to an equilibrium, a phenomenon unobserved with type I or III functional responses. Our work adds to a growing literature highlighting the role of resource availability in host-parasite interactions. Implications of our results for adaptive anorexia are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Comprehensive immune profiling reveals substantial immune system alterations in a subset of patients with amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Michael P Gustafson

    Full Text Available Amyotrophic lateral sclerosis (ALS is a fatal neurodegenerative disease with a median lifespan of 2-3 years after diagnosis. There are few meaningful treatments that alter progression in this disease. Preclinical and clinical studies have demonstrated that neuroinflammation may play a key role in the progression rate of ALS. Despite this, there are no validated biomarkers of neuroinflammation for use in clinical practice or clinical trials. Biomarkers of neuroinflammation could improve patient management, provide new therapeutic targets, and possibly help stratify clinical trial selection and monitoring. However, attempts to identify a singular cause of neuroinflammation have not been successful. Here, we performed multi-parameter flow cytometry to comprehensively assess 116 leukocyte populations and phenotypes from lymphocytes, monocytes, and granulocytes in a cohort of 80 ALS patients. We identified 32 leukocyte phenotypes that were altered in ALS patients compared to age and gender matched healthy volunteers (HV that included phenotypes of both inflammation and immune suppression. Unsupervised hierarchical clustering and principle component analysis of ALS and HV immunophenotypes revealed two distinct immune profiles of ALS patients. ALS patients were clustered into a profile distinct from HVs primarily due to differences in a multiple T cell phenotypes, CD3+CD56+ T cells and HLA-DR on monocytes. Patients clustered into an abnormal immune profile were younger, more likely to have a familial form of the disease, and survived longer than those patients who clustered similarly with healthy volunteers (344 weeks versus 184 weeks; p = 0.012. The data set generated from this study establishes an extensive accounting of immunophenotypic changes readily suitable for biomarker validation studies. The extensive immune system changes measured in this study indicate that normal immune homeostatic mechanisms are disrupted in ALS patients, and that

  1. The effects of different endocrine disruptors defining compound-specific alterations of gene expression profiles in the developing testis

    NARCIS (Netherlands)

    López-Casas, Pedro P.; Mizrak, Sefika C.; López-Fernández, Luis A.; Paz, María; de Rooij, Dirk G.; del Mazo, Jesús

    2012-01-01

    Environmental contaminants considered endocrine disruptors have been shown to affect testis development and function but the mechanisms of action are not clear. We now have analyzed the effects on the transcriptome in testes of mice exposed to mono-(2-ethylhexyl)-phthalate (9.2; 46.3 or 92.7

  2. Altered metabolism of gut microbiota contributes to chronic immune activation in HIV-infected individuals.

    Science.gov (United States)

    Vázquez-Castellanos, J F; Serrano-Villar, S; Latorre, A; Artacho, A; Ferrús, M L; Madrid, N; Vallejo, A; Sainz, T; Martínez-Botas, J; Ferrando-Martínez, S; Vera, M; Dronda, F; Leal, M; Del Romero, J; Moreno, S; Estrada, V; Gosalbes, M J; Moya, A

    2015-07-01

    Altered interplay between gut mucosa and microbiota during treated HIV infection may possibly contribute to increased bacterial translocation and chronic immune activation, both of which are predictors of morbidity and mortality. Although a dysbiotic gut microbiota has recently been reported in HIV+ individuals, the metagenome gene pool associated with HIV infection remains unknown. The aim of this study is to characterize the functional gene content of gut microbiota in HIV+ patients and to define the metabolic pathways of this bacterial community, which is potentially associated with immune dysfunction. We determined systemic markers of innate and adaptive immunity in a cohort of HIV-infected individuals on successful antiretroviral therapy without comorbidities and in healthy non-HIV-infected subjects. Metagenome sequencing revealed an altered functional profile, with enrichment of the genes involved in various pathogenic processes, lipopolysaccharide biosynthesis, bacterial translocation, and other inflammatory pathways. In contrast, we observed depletion of genes involved in amino acid metabolism and energy processes. Bayesian networks showed significant interactions between the bacterial community, their altered metabolic pathways, and systemic markers of immune dysfunction. This study reveals altered metabolic activity of microbiota and provides novel insight into the potential host-microbiota interactions driving the sustained inflammatory state in successfully treated HIV-infected patients.

  3. Update in endocrine autoimmunity.

    Science.gov (United States)

    Anderson, Mark S

    2008-10-01

    The endocrine system is a common target in pathogenic autoimmune responses, and there has been recent progress in our understanding, diagnosis, and treatment of autoimmune endocrine diseases. Rapid progress has recently been made in our understanding of the genetic factors involved in endocrine autoimmune diseases. Studies on monogenic autoimmune diseases that include endocrine phenotypes like autoimmune polyglandular syndrome type 1 and immune dysregulation, polyendocrinopathy, enteropathy, X-linked have helped reveal the role of key regulators in the maintenance of immune tolerance. Highly powered genetic studies have found and confirmed many new genes outside of the established role of the human leukocyte antigen locus with these diseases, and indicate an essential role of immune response pathways in these diseases. Progress has also been made in identifying new autoantigens and the development of new animal models for the study of endocrine autoimmunity. Finally, although hormone replacement therapy is still likely to be a mainstay of treatment in these disorders, there are new agents being tested for potentially treating and reversing the underlying autoimmune process. Although autoimmune endocrine disorders are complex in etiology, these recent advances should help contribute to improved outcomes for patients with, or at risk for, these disorders.

  4. Risk of Crew Adverse Health Event Due to Altered Immune Response

    Science.gov (United States)

    Crucian, Brian; Kunz, Hawley; Sams, Clarence F.

    2015-01-01

    Determining the effect of space travel on the human immune system has proven to be extremely challenging. Limited opportunities for in-flight studies, varying mission durations, technical and logistical obstacles, small subject numbers, and a broad range of potential assays have contributed to this problem. Additionally, the inherent complexity of the immune system, with its vast array of cell populations, sub-populations, diverse regulatory molecules, and broad interactions with other physiological systems, makes determining precise variables to measure very difficult. There is also the challenge of determining the clinical significance of any observed immune alterations. Will such a change lead to disease, or is it a transient subclinical observation related to short-term stress? The effect of this problem may be observed by scanning publications associated with immunity and spaceflight, which began to appear during the 1970s. Although individually they are each valid studies, the comprehensive literature to date suffers from widely varying sampling methods and assay techniques, low subject counts, and sometimes a disparate focus on narrow aspects of immunity. The most clinically relevant data are derived from in-flight human studies, which have demonstrated altered cell-mediated immunity and reactivation of latent herpes viruses. Much more data are available from post-flight testing of humans, with clear evidence of altered cytokine production patterns, altered leukocyte distribution, continued latent viral reactivation, and evidence of dramatically altered virus-specific immunity. It is unknown if post-flight assessments relate to the in-flight condition or are a response to landing stress and readaptation. In-flight culture of cells has clearly demonstrated that immune cells are gravity-sensitive and display altered functional characteristics. It is unknown if these data are related to in vivo immune cell function or are an artifact of microgravity culture

  5. Altered immune response in mallard ducklings exposed to lead through maternal transfer in the wild

    International Nuclear Information System (INIS)

    Vallverdú-Coll, Núria; López-Antia, Ana; Martinez-Haro, Monica; Ortiz-Santaliestra, Manuel E.; Mateo, Rafael

    2015-01-01

    Lead (Pb) poisoning has caused significant mortality in waterfowl populations worldwide. In spite of having been banned since 2003, prevalence of Pb shot ingestion in mallards (Anas platyrhynchos) from the Ebro delta was still 15.5% in 2011–12. We collected mallard eggs from this area to study the effects of maternally transferred Pb on eggshell properties and on immune response and oxidative balance of ducklings. Eggshell Pb levels were positively correlated with Pb levels in the blood of ducklings. Ducklings with blood Pb levels above 180 ng mL −1 showed reduced body mass and died during the first week post hatching. Blood Pb levels positively correlated with humoral immune response, endogenous antioxidants and oxidative stress biomarkers, and negatively correlated with cellular immune response. Pb shot ingestion in birds can result in maternal transfer to the offspring that can affect their developing immune system and reduce their survival in early life stages. - Highlights: • Pb was transferred from mallard hens to eggs and ducklings. • Maternal Pb transfer was enough to inhibit blood ALAD activity in ducklings. • Cellular immune response was negatively affected by blood Pb levels. • Humoral immune response was exacerbated by Pb exposure. • Pb induced oxidative stress and increased levels of antioxidants in blood. - Maternal transfer of Pb alters immune responses and oxidative balance of ducklings and compromises the survival of individuals

  6. Long-term altered immune responses following fetal priming in a non-human primate model of maternal immune activation.

    Science.gov (United States)

    Rose, Destanie R; Careaga, Milo; Van de Water, Judy; McAllister, Kim; Bauman, Melissa D; Ashwood, Paul

    2017-07-01

    Infection during pregnancy can lead to activation of the maternal immune system and has been associated with an increased risk of having an offspring later diagnosed with a neurodevelopmental disorders (NDD) such as autism spectrum disorder (ASD) or schizophrenia (SZ). Most maternal immune activation (MIA) studies to date have been in rodents and usually involve the use of lipopolysaccharide (LPS) or polyinosinic:polycytidylic acid (poly I:C). However, since NDD are based on behavioral changes, a model of MIA in non-human primates could potentially provide data that helps illuminate complex behavioral and immune outputs in human NDD. In this study twenty-one pregnant rhesus macaques were either given three injections over 72 hours of poly I:C-LC, a double stranded RNA analog (viral mimic), or saline as a control. Injections were given near the end of the first trimester or near the end of the second trimester to determine if there were differences in immune output due to the timing of MIA.An additional three non-treated animals were used as controls. The offspring were followed until 4 years of age, with blood collected at the end of their first (year 1) and fourth (year 4) years to assess dynamic cellular immune function. Induced responses from peripheral immune cells were measured using multiplex assays.At one year of age, MIA exposed offspring displayed elevated production of innate inflammatory cytokines including: interleukin (IL)-1β, IL-6, IL-12p40, and tumor necrosis factor (TNF)α at baseline and following stimulation. At four years of age, the MIA exposed offspring continued to display elevated IL-1β, and there was also a pattern of an increased production of T-cell helper type (T H )-2 cytokines, IL-4 and IL-13. Throughout this time period, the offspring of MIA treated dams exhibited altered behavioral phenotypes including increased stereotyped behaviors. During the first two years, stereotyped behaviors were associated with innate cytokine production

  7. Changes of serum endocrine hormone levels in patients with cancerrelated fatigue and their correlation with anti-tumor immune response and tumor load

    Directory of Open Access Journals (Sweden)

    Lu Yang

    2017-08-01

    Full Text Available Objective: To study the changes of serum endocrine hormone levels in patients with cancerrelated fatigue (CRF and their correlation with anti-tumor immune response and tumor load. Methods: A total of 137 patients who were diagnosed with primary lung cancer in West China Hospital, Sichuan University between June 2014 and November 2016 were selected and then divided into CRF group and control group according to their self-reported symptoms, serum was collected to determine the levels of endocrine hormones and tumor markers, and peripheral blood was collected to detect the levels of immune cells. Results: Serum ACTH and TSH levels of CRF group were significantly higher than those of control group while Cor, FT3 and FT4 levels were significantly lower than those of control group; peripheral blood CD11b+ CD15 - CD33+ CD14+ M-MDSC, CD11b+ CD15-CD33+ CD14- G-MDSC, CD4+ CD25+ CD127lowTreg and CD19+ CD5+ CD1d+ Breg levels as well as serum CEA, Cyfra21-1, SCC-Ag, HE4, GDF- 15 and PCNA levels of CRF group were significantly higher than those of control group, positively correlated with serum ACTH and TSH levels, and negatively correlated with Cor, FT3 and FT4 levels. Conclusion: The changes of thyroid hormone and adrenal cortical hormone levels in patients with cancer-related fatigue are closely related to the inhibited antitumor immune response and increased tumor load.

  8. Endocrine disorders in pregnancy

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, Ulla; Mathiesen, Elisabeth R

    2011-01-01

    hormones and their precursors across the foeto-maternal interface. The endocrine system is the earliest system developing in foetal life, and it is functional from early intrauterine existence through old age. Regulation of the foetal endocrine system relies, to some extent, on precursors secreted......The endocrinology of pregnancy involves endocrine and metabolic changes as a consequence of physiological alterations at the foetoplacental boundary between mother and foetus. The vast changes in maternal hormones and their binding proteins complicate assessment of the normal level of most hormones...

  9. Estrogenic compounds -endocrine disruptors

    OpenAIRE

    Munteanu Constantin; Hoteteu Mihai

    2011-01-01

    Endocrine disruptors (polychlorinated biphenyls, dichlorodiphenyl-trichloroethane [DDT], dioxin, and some pesticides) are estrogen-like and anti-androgenic chemicals in the environment. They mimic natural hormones, inhibit the action of hormones, or alter the normal regulatory function of the endocrine system and have potential hazardous effects on male reproductive axis causing infertility. Although testicular and prostate cancers, abnormal sexual development, undescended testis, chronic inf...

  10. Arterial and venous thrombosis in endocrine diseases

    NARCIS (Netherlands)

    van Zaane, Bregje; Stuijver, Danka J. F.; Squizzato, Alessandro; Gerdes, Victor E. A.

    2013-01-01

    Endocrine diseases have been associated with cardiovascular events. Both altered coagulation and fibrinolysis markers and thrombotic disorders have been described in several endocrine diseases. This review summarizes the evidence on the influence of thyroid diseases, cortisol excess and deficiency,

  11. Will Global Climate Change Alter Fundamental Human Immune Reactivity: Implications for Child Health?

    Science.gov (United States)

    Swaminathan, Ashwin; Lucas, Robyn M; Harley, David; McMichael, Anthony J

    2014-11-11

    The human immune system is an interface across which many climate change sensitive exposures can affect health outcomes. Gaining an understanding of the range of potential effects that climate change could have on immune function will be of considerable importance, particularly for child health, but has, as yet, received minimal research attention. We postulate several mechanisms whereby climate change sensitive exposures and conditions will subtly impair aspects of the human immune response, thereby altering the distribution of vulnerability within populations-particularly for children-to infection and disease. Key climate change-sensitive pathways include under-nutrition, psychological stress and exposure to ambient ultraviolet radiation, with effects on susceptibility to infection, allergy and autoimmune diseases. Other climate change sensitive exposures may also be important and interact, either additively or synergistically, to alter health risks. Conducting directed research in this area is imperative as the potential public health implications of climate change-induced weakening of the immune system at both individual and population levels are profound. This is particularly relevant for the already vulnerable children of the developing world, who will bear a disproportionate burden of future adverse environmental and geopolitical consequences of climate change.

  12. Will Global Climate Change Alter Fundamental Human Immune Reactivity: Implications for Child Health?

    Directory of Open Access Journals (Sweden)

    Ashwin Swaminathan

    2014-11-01

    Full Text Available The human immune system is an interface across which many climate change sensitive exposures can affect health outcomes. Gaining an understanding of the range of potential effects that climate change could have on immune function will be of considerable importance, particularly for child health, but has, as yet, received minimal research attention. We postulate several mechanisms whereby climate change sensitive exposures and conditions will subtly impair aspects of the human immune response, thereby altering the distribution of vulnerability within populations—particularly for children—to infection and disease. Key climate change-sensitive pathways include under-nutrition, psychological stress and exposure to ambient ultraviolet radiation, with effects on susceptibility to infection, allergy and autoimmune diseases. Other climate change sensitive exposures may also be important and interact, either additively or synergistically, to alter health risks. Conducting directed research in this area is imperative as the potential public health implications of climate change-induced weakening of the immune system at both individual and population levels are profound. This is particularly relevant for the already vulnerable children of the developing world, who will bear a disproportionate burden of future adverse environmental and geopolitical consequences of climate change.

  13. Neuroimmune endocrine effects of antidepressants

    Directory of Open Access Journals (Sweden)

    Antonioli M

    2012-02-01

    Full Text Available Marco Antonioli, Joanna Rybka, LA CarvalhoPsychoimmunology Translational Laboratory, Health Science Research Centre, Roehampton University, London, UKAbstract: Antidepressant pharmacotherapy is to date the most often used treatment for depression, but the exact mechanism of action underlying its therapeutic effect is still unclear. Many theories have been put forward to account for depression, as well as antidepressant activity, but none of them is exhaustive. Neuroimmune endocrine impairment is found in depressed patients; high levels of circulating corticosteroids along with hyperactivation of the immune system, high levels of proinflammatory cytokines, low levels of melatonin in plasma and urine, and disentrainment of circadian rhythms have been demonstrated. Moreover, antidepressant treatment seems to correct or at least to interfere with these alterations. In this review, we summarize the complex neuroimmune endocrine and chronobiological alterations found in patients with depression and how these systems interact with each other. We also explain how antidepressant therapy can modify these systems, along with some possible mechanisms of action shown in animal and human models.Keywords: antidepressant agents, biological markers, human, cytokines, neuroinflammation, psychoneuroimmunology, endophenotype

  14. Plasma omega 3 polyunsaturated fatty acid status and monounsaturated fatty acids are altered by chronic social stress and predict endocrine responses to acute stress in titi monkeys

    Science.gov (United States)

    Disturbances in fatty acid (FA) metabolism may link chronic psychological stress, endocrine responsiveness, and psychopathology. Therefore, lipid metabolome-wide responses and their relationships with endocrine (cortisol; insulin; adiponectin) responsiveness to acute stress (AS) were assessed in a ...

  15. Estrogenic compounds -endocrine disruptors

    Directory of Open Access Journals (Sweden)

    Munteanu Constantin

    2011-11-01

    Full Text Available Endocrine disruptors (polychlorinated biphenyls, dichlorodiphenyl-trichloroethane [DDT], dioxin, and some pesticides are estrogen-like and anti-androgenic chemicals in the environment. They mimic natural hormones, inhibit the action of hormones, or alter the normal regulatory function of the endocrine system and have potential hazardous effects on male reproductive axis causing infertility. Although testicular and prostate cancers, abnormal sexual development, undescended testis, chronic inflammation, Sertoli-cell-only pattern, hypospadias, altered pituitary and thyroid gland functions are also observed, the available data are insufficient to deduce worldwide conclusions.

  16. Association of nutrition and immune-endocrine dysfunction with muscle mass and performance in cognitively impaired older adults.

    Science.gov (United States)

    Tay, L; Leung, B P; Wee, S; Tay, K S; Ali, N; Chan, M; Lim, W S

    With lean mass declining early in Alzheimer's disease, muscle quality beyond quantity is relevant to physical performance. We sought to identify potentially modifiable factors for the differential loss of muscle mass (pre-sarcopenia) and its performance (sarcopenia) in older adults with mild cognitive impairment (MCI) and mild-to-moderate Alzheimer's disease (AD). This is a cross-sectional study of 108 community-dwelling older adults with MCI and mild-to-moderate AD. Participants were categorized as: (i) No sarcopenia (normal muscle mass), (ii) Pre-sarcopenia (low muscle mass without weakness or slowness), (iii) Sarcopenia (low muscle mass AND weak grip strength and/or slow gait speed) using Asian cut-offs. Muscle quality was defined as the ratio of grip and knee extension strength to average arm and leg lean mass respectively. We measured cognitive, functional and physical (Short Physical Performance Battery, SPPB) performance; physical activity level; nutritional status; and blood biomarkers of inflammation and endocrine dysfunction. SPPB (p=0.033) and activity level (p=0.010) were highest in the pre-sarcopenic group. Pre-sarcopenic group had highest arm muscle quality [10.6 (7.7-12.2) vs 13.9 (12.6-15.7) vs 11.3 (9.7-12.8), p<0.001], despite significantly lower appendicular lean mass than non-sarcopenic group. In multi-nomial logistic regression reference to non-sarcopenic group, malnutrition independently increased risk for both pre-sarcopenia (Relative risk=7.53, 95% C.I 1.20-47.51, p=0.032) and sarcopenia (Relative risk=11.91, 95% C.I 2.85-49.77, p=0.001). A combined pro-inflammatory and endocrine deficient state significantly increased the risk of sarcopenia (Relative risk=5.17, 95% C.I 1.31-20.37, p=0.019). Malnutrition is a precursor for progressive loss of muscle mass, but a pro-inflammatory and endocrine deficient state may potentially aggravate decline in muscle quality to culminate in frank sarcopenia. Copyright © 2017 Elsevier B.V. All rights

  17. Insights on the impact of diet-mediated microbiota alterations on immunity and diseases.

    Science.gov (United States)

    Harusato, Akihito; Chassaing, Benoit

    2018-03-01

    The intestinal tract is inhabited by a large and diverse community of bacteria collectively referred to as the gut microbiota. The intestinal microbiota is composed by 500-1000 distinct species, and alterations in its composition are associated with a variety of diseases including obesity, diabetes, and inflammatory bowel disease (IBD). Importantly, microbiota transplantation from diseased patients or mice (IBD, metabolic syndrome, etc.) to germ-free mice was found to be sufficient to transfer some aspects of disease phenotypes, indicating that altered microbiota is playing a direct role in those particular conditions. Moreover, it is now well admitted that the intestinal microbiota is involved in shaping and maturating the immune system, with for example the observation that germ-free animals harbor a poorly developed intestinal immune system and that some single bacteria species, such as segmented filamentous bacteria (SFB), are sufficient to induce the expansion of Th17 cells (CD4 + T helper cells producing IL-17). We will present herein an overview of the interactions occurring between the intestinal microbiota and the immune system, and we will discuss how a dietary-induced disruption of the intestinal environment may influence transplantation outcomes. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  18. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Broderick Nichole A

    2010-04-01

    Full Text Available Abstract Background The gut comprises an essential barrier that protects both invertebrate and vertebrate animals from invasion by microorganisms. Disruption of the balanced relationship between indigenous gut microbiota and their host can result in gut bacteria eliciting host responses similar to those caused by invasive pathogens. For example, ingestion of Bacillus thuringiensis by larvae of some species of susceptible Lepidoptera can result in normally benign enteric bacteria exerting pathogenic effects. Results We explored the potential role of the insect immune response in mortality caused by B. thuringiensis in conjunction with gut bacteria. Two lines of evidence support such a role. First, ingestion of B. thuringiensis by gypsy moth larvae led to the depletion of their hemocytes. Second, pharmacological agents that are known to modulate innate immune responses of invertebrates and vertebrates altered larval mortality induced by B. thuringiensis. Specifically, Gram-negative peptidoglycan pre-treated with lysozyme accelerated B. thuringiensis-induced killing of larvae previously made less susceptible due to treatment with antibiotics. Conversely, several inhibitors of the innate immune response (eicosanoid inhibitors and antioxidants increased the host's survival time following ingestion of B. thuringiensis. Conclusions This study demonstrates that B. thuringiensis infection provokes changes in the cellular immune response of gypsy moth larvae. The effects of chemicals known to modulate the innate immune response of many invertebrates and vertebrates, including Lepidoptera, also indicate a role of this response in B. thuringiensis killing. Interactions among B. thuringiensis toxin, enteric bacteria, and aspects of the gypsy moth immune response may provide a novel model to decipher mechanisms of sepsis associated with bacteria of gut origin.

  19. Association of Fusobacterium nucleatum with immunity and molecular alterations in colorectal cancer.

    Science.gov (United States)

    Nosho, Katsuhiko; Sukawa, Yasutaka; Adachi, Yasushi; Ito, Miki; Mitsuhashi, Kei; Kurihara, Hiroyoshi; Kanno, Shinichi; Yamamoto, Itaru; Ishigami, Keisuke; Igarashi, Hisayoshi; Maruyama, Reo; Imai, Kohzoh; Yamamoto, Hiroyuki; Shinomura, Yasuhisa

    2016-01-14

    The human intestinal microbiome plays a major role in human health and diseases, including colorectal cancer. Colorectal carcinogenesis represents a heterogeneous process with a differing set of somatic molecular alterations, influenced by diet, environmental and microbial exposures, and host immunity. Fusobacterium species are part of the human oral and intestinal microbiota. Metagenomic analyses have shown an enrichment of Fusobacterium nucleatum (F. nucleatum) in colorectal carcinoma tissue. Using 511 colorectal carcinomas from Japanese patients, we assessed the presence of F. nucleatum. Our results showed that the frequency of F. nucleatum positivity in the Japanese colorectal cancer was 8.6% (44/511), which was lower than that in United States cohort studies (13%). Similar to the United States studies, F. nucleatum positivity in Japanese colorectal cancers was significantly associated with microsatellite instability (MSI)-high status. Regarding the immune response in colorectal cancer, high levels of infiltrating T-cell subsets (i.e., CD3+, CD8+, CD45RO+, and FOXP3+ cells) have been associated with better patient prognosis. There is also evidence to indicate that molecular features of colorectal cancer, especially MSI, influence T-cell-mediated adaptive immunity. Concerning the association between the gut microbiome and immunity, F. nucleatum has been shown to expand myeloid-derived immune cells, which inhibit T-cell proliferation and induce T-cell apoptosis in colorectal cancer. This finding indicates that F. nucleatum possesses immunosuppressive activities by inhibiting human T-cell responses. Certain microRNAs are induced during the macrophage inflammatory response and have the ability to regulate host-cell responses to pathogens. MicroRNA-21 increases the levels of IL-10 and prostaglandin E2, which suppress antitumor T-cell-mediated adaptive immunity through the inhibition of the antigen-presenting capacities of dendritic cells and T-cell proliferation in

  20. CREB-mediated alterations in the amygdala transcriptome: coordinated regulation of immune response genes following cocaine.

    Science.gov (United States)

    Ecke, Laurel E; Cleck, Jessica N; White, Peter; Schug, Jonathan; Mifflin, Lauren; Blendy, Julie A

    2011-09-01

    The neuronal circuitry underlying stress- and drug-induced reinstatement of cocaine-seeking has been relatively well characterized; however, less is known regarding the long-term molecular changes following cocaine administration that may promote future reinstatement. The transcription factor cAMP response element-binding protein (CREB) is necessary for stress- but not cocaine-induced reinstatement of conditioned reward, suggesting that different molecular mechanisms may underlie these two types of reinstatement. To explore the relationship between this transcription factor and reinstatement, we utilized the place-conditioning paradigm to examine alterations in gene expression in the amygdala, a neural substrate critically involved in stress-induced reinstatement, following the development of cocaine reward and subsequent extinction. Our findings demonstrate that the amygdala transcriptome was altered by CREB deficiency more than by previous cocaine experience, with an over-representation of genes involved in the immune response. However, a subset of genes involved in stress and immune response demonstrated a drug×genotype interaction, indicating that cocaine produces different long-term alterations in gene expression depending on the presence or absence of CREB. This profile of gene expression in the context of addiction enhances our understanding of the long-term molecular changes that occur throughout the addiction cycle and identifies novel genes and pathways that might lead to the creation of better therapeutic agents.

  1. Enterotoxigenic Escherichia coli infection alters intestinal immunity in mice.

    Science.gov (United States)

    Yang, Xiangwu; Xiao, Zhiming; Liu, Fen; Chen, Shuai; Tang, Wuliang; Zhang, Decai; Liu, Shaojun

    2016-07-01

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in humans and piglets. However, research regarding alterations of intestinal immunity following ETEC infection remains limited and the results controversial. The present study investigated the effects of ETEC on the expression levels of pro‑inflammatory cytokines and innate immune regulators from plasma cells, goblet cells and Paneth cells, and the activation of toll‑like receptor 4-nuclear factor (NF)‑κB and mitogen‑activated protein kinase (MAPK) pathways using reverse transcription‑quantitative polymerase chain reaction and western blot analysis, in a mouse model infected with a porcine isolated ETEC strain. ETEC infection significantly reduced the expression of pro‑inflammatory cytokines in the mouse jejunum (Pinfection significantly affected the expression of immune regulators of plasma cells, goblet cells and Paneth cells in the mouse intestine (Pimmunity via the NF‑κB and MAPK signaling pathways. In conclusion, ETEC colonization affects intestinal immunity as observed in a mouse model. This study provides a greater understanding of the pathogenesis of ETEC infection in animals and humans.

  2. Estrogen mediates innate and adaptive immune alterations to influenza infection in pregnant mice.

    Directory of Open Access Journals (Sweden)

    Michael A Pazos

    Full Text Available Pregnancy is a leading risk factor for severe complications during an influenza virus infection. Women infected during their second and third trimesters are at increased risk for severe cardiopulmonary complications, premature delivery, and death. Here, we establish a murine model of aerosolized influenza infection during pregnancy. We find significantly altered innate antiviral responses in pregnant mice, including decreased levels of IFN-β, IL-1α, and IFN-γ at early time points of infection. We also find reduced cytotoxic T cell activity and delayed viral clearance. We further demonstrate that pregnancy levels of the estrogen 17-β-estradiol are able to induce key anti-inflammatory phenotypes in immune responses to the virus independently of other hormones or pregnancy-related stressors. We conclude that elevated estrogen levels result in an attenuated anti-viral immune response, and that pregnancy-associated morbidities occur in the context of this anti-inflammatory phenotype.

  3. Estrogen mediates innate and adaptive immune alterations to influenza infection in pregnant mice.

    Science.gov (United States)

    Pazos, Michael A; Kraus, Thomas A; Muñoz-Fontela, César; Moran, Thomas M

    2012-01-01

    Pregnancy is a leading risk factor for severe complications during an influenza virus infection. Women infected during their second and third trimesters are at increased risk for severe cardiopulmonary complications, premature delivery, and death. Here, we establish a murine model of aerosolized influenza infection during pregnancy. We find significantly altered innate antiviral responses in pregnant mice, including decreased levels of IFN-β, IL-1α, and IFN-γ at early time points of infection. We also find reduced cytotoxic T cell activity and delayed viral clearance. We further demonstrate that pregnancy levels of the estrogen 17-β-estradiol are able to induce key anti-inflammatory phenotypes in immune responses to the virus independently of other hormones or pregnancy-related stressors. We conclude that elevated estrogen levels result in an attenuated anti-viral immune response, and that pregnancy-associated morbidities occur in the context of this anti-inflammatory phenotype.

  4. Critical disease windows shaped by stress exposure alter allocation trade-offs between development and immunity.

    Science.gov (United States)

    Kirschman, Lucas J; Crespi, Erica J; Warne, Robin W

    2018-01-01

    Ubiquitous environmental stressors are often thought to alter animal susceptibility to pathogens and contribute to disease emergence. However, duration of exposure to a stressor is likely critical, because while chronic stress is often immunosuppressive, acute stress can temporarily enhance immune function. Furthermore, host susceptibility to stress and disease often varies with ontogeny; increasing during critical developmental windows. How the duration and timing of exposure to stressors interact to shape critical windows and influence disease processes is not well tested. We used ranavirus and larval amphibians as a model system to investigate how physiological stress and pathogenic infection shape development and disease dynamics in vertebrates. Based on a resource allocation model, we designed experiments to test how exposure to stressors may induce resource trade-offs that shape critical windows and disease processes because the neuroendocrine stress axis coordinates developmental remodelling, immune function and energy allocation in larval amphibians. We used wood frog larvae (Lithobates sylvaticus) to investigate how chronic and acute exposure to corticosterone, the dominant amphibian glucocorticoid hormone, mediates development and immune function via splenocyte immunohistochemistry analysis in association with ranavirus infection. Corticosterone treatments affected immune function, as both chronic and acute exposure suppressed splenocyte proliferation, although viral replication rate increased only in the chronic corticosterone treatment. Time to metamorphosis and survival depended on both corticosterone treatment and infection status. In the control and chronic corticosterone treatments, ranavirus infection decreased survival and delayed metamorphosis, although chronic corticosterone exposure accelerated rate of metamorphosis in uninfected larvae. Acute corticosterone exposure accelerated metamorphosis increased survival in infected larvae. Interactions

  5. Altered expression of immune-related genes in children with Down syndrome.

    Directory of Open Access Journals (Sweden)

    Bruna Lancia Zampieri

    Full Text Available Individuals with Down syndrome (DS have a high incidence of immunological alterations with increased susceptibility to bacterial and viral infections and high frequency of different types of hematologic malignancies and autoimmune disorders. In the current study, we profiled the expression pattern of 92 immune-related genes in peripheral blood mononuclear cells (PBMCs of two different groups, children with DS and control children, to identify differentially expressed genes that might be of pathogenetic importance for the development and phenotype of the immunological alterations observed in individuals with DS. PBMCs samples were obtained from six DS individuals with karyotypically confirmed full trisomy 21 and six healthy control individuals (ages 2-6 years. Gene expression was profiled in duplicate according to the manufacturer's instructions provided by commercially available TaqMan Human Immune Array representing 92 immune function genes and four reference genes on a 96-plex gene card. A set of 17 differentially expressed genes, not located on chromosome 21 (HSA21, involved in immune and inflammatory pathways was identified including 13 genes (BCL2, CCL3, CCR7, CD19, CD28, CD40, CD40LG, CD80, EDN1, IKBKB, IL6, NOS2 and SKI significantly down-regulated and four genes (BCL2L1, CCR2, CCR5 and IL10 significantly up-regulated in children with DS. These findings highlight a list of candidate genes for further investigation into the molecular mechanism underlying DS pathology and reinforce the secondary effects of the presence of a third copy of HSA21.

  6. Mechanisms of alteration of the immune system by ionizing radiations: a basis for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Bourguignon, M. [Direction Generale de la Surete Nucleaire et de la Radioprotection, 75 - Paris (France); Perez, M.; Dubner, D.; Michelin, S. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina); Carosella, E. [CEA, Service de Recherches en Hemato -Immunologie, 75 - Paris (France)

    2006-07-01

    Full text of publication follows: Alterations of the immune system appear in relationship with exposure to ionizing radiation (IR) in different situations, e.g., accidents, radiation therapy of cancer, prenatal irradiation, some human diseases with hypersensitivity to IR and aging. Thus, the comprehension of the mechanisms of the alterations of the immune system by IR is necessary to elaborate strategies of protection and to pave the way for future possible therapies. At least 9 mechanisms of alterations can be identified: 1- Apoptosis. Apoptosis is a key mechanism of the natural regulation of the immune system and plays also a key role in the response to IR: lymphocytes die rapidly by apoptosis after exposure. Different pathways of induction of apoptosis have been identified, and include p53 dependent and mitochondria mediated pathways, as well as CD95 and ROS initiation; 2- TCR mutations. The T cell antigen receptor is responsible to discriminate between self and non self. Mutations of the TCR may result from exposure to IR; 3- Modification of the Th1-Th2 balance. T helper cells may express 2 distinct secretion patterns: Th1 cytokines promote cell-mediated immunity while Th2 cytokines favor humoral immunity. Although the effects of IR on the Th1/Th2 balance remains controversial, an imbalance towards a Th2 profile is likely and patients with cancer and systemic auto-immune disease often present a switch from Th1 to Th2; 4- Bystander effects and genetic instability. Stimulatory effect or genomic instability have been observed in haematopoietic cells exposed to IR and related to a bystander mechanism. 5- Shift toward an inflammatory profile. Ionizing radiation may induce a persistent inflammatory profile as a result of dis-regulation of cytokine production; such a status of persistent inflammation has been observed in Hiroshima and Nagasaki survivors. 6- Modification of antigen presentation. Antigen presentation by dendritic cells is an essential function preceding

  7. Mechanisms of alteration of the immune system by ionizing radiations: a basis for radiation protection

    International Nuclear Information System (INIS)

    Bourguignon, M.; Perez, M.; Dubner, D.; Michelin, S.; Carosella, E.

    2006-01-01

    Full text of publication follows: Alterations of the immune system appear in relationship with exposure to ionizing radiation (IR) in different situations, e.g., accidents, radiation therapy of cancer, prenatal irradiation, some human diseases with hypersensitivity to IR and aging. Thus, the comprehension of the mechanisms of the alterations of the immune system by IR is necessary to elaborate strategies of protection and to pave the way for future possible therapies. At least 9 mechanisms of alterations can be identified: 1- Apoptosis. Apoptosis is a key mechanism of the natural regulation of the immune system and plays also a key role in the response to IR: lymphocytes die rapidly by apoptosis after exposure. Different pathways of induction of apoptosis have been identified, and include p53 dependent and mitochondria mediated pathways, as well as CD95 and ROS initiation; 2- TCR mutations. The T cell antigen receptor is responsible to discriminate between self and non self. Mutations of the TCR may result from exposure to IR; 3- Modification of the Th1-Th2 balance. T helper cells may express 2 distinct secretion patterns: Th1 cytokines promote cell-mediated immunity while Th2 cytokines favor humoral immunity. Although the effects of IR on the Th1/Th2 balance remains controversial, an imbalance towards a Th2 profile is likely and patients with cancer and systemic auto-immune disease often present a switch from Th1 to Th2; 4- Bystander effects and genetic instability. Stimulatory effect or genomic instability have been observed in haematopoietic cells exposed to IR and related to a bystander mechanism. 5- Shift toward an inflammatory profile. Ionizing radiation may induce a persistent inflammatory profile as a result of dis-regulation of cytokine production; such a status of persistent inflammation has been observed in Hiroshima and Nagasaki survivors. 6- Modification of antigen presentation. Antigen presentation by dendritic cells is an essential function preceding

  8. PATHOGENESIS OF IMMUNE ALTERATIONS AND CORRECTIVE ROLE OF AMLODIPINE IN EXPERIMENTAL CHRONIC RENAL FAILURE

    Directory of Open Access Journals (Sweden)

    M. V. Osikov

    2016-01-01

    Full Text Available The purpose of this study was to assess some mechanisms of changes in immune state, and to evaluate a role of amlodipine, a known calcium channel blocker, as a potential corrective drug in experimental chronic renal failure (CRF. An animal CRF model was produced in rats by a two-stage operative resection of 5/6 of the renal tissue. Amlodipine is used per os at a daily dose of 0.25 mg/kg for 7 days. Flow cytofluorimetric approach was used to discern peripheral blood lymphocytes: CD3+ (mainly, T lymphocytes, CD45RA+ (mainly, B cells, as well as the following cell markers: Annexin 5-FITC+/7-AAD- (early apoptosis, Annexin 5-FITC+/7-AAD+ (late apoptosis and, in part, necrotic cells. Moreover, we have measured serum concentrations of urea, creatinine, phosphate, total calcium, parathyroid hormone (PTH, IL-1β, IL-4, interferon-γ, superoxide dismutase (SOD and catalase activities. Evaluation of Th1- and Th2-dependent immune response was carried out, respectively, by detection of delayed-type hypersensitivity, and scoring the antibody-forming cells in rat spleen induced by immunization with allogeneic erythrocytes. Primary, secondary and final products of lipid peroxidation were evaluated in lipid extracts from peripheral blood lymphocytes. Changes of immune state in CRF included depression of Th1 and Th2 dependent immune response, reduced number of lymphocytes bearing T and В cell markers, increased IL-1β concentrations in blood, along with decreased amounts of IFNγ and IL-4. Probable pathogenesis of the altered immune state may be associated with increased number of peripheral lymphocytes being at early and late stages of apoptosis/necrosis, elevated blood levels of IL-1β, total calcium, parathyroid hormone, reduced concentrations of IFNγ, and increased contents of primary, secondary and final peroxidation products in peripheral blood lymphocytes, being accompanied by inhibition of the SOD and catalase activity in blood plasma

  9. Gestational Diabetes Alters Offspring DNA Methylation Profiles in Human and Rat: Identification of Key Pathways Involved in Endocrine System Disorders, Insulin Signaling, Diabetes Signaling, and ILK Signaling.

    Science.gov (United States)

    Petropoulos, Sophie; Guillemin, Claire; Ergaz, Zivanit; Dimov, Sergiy; Suderman, Matthew; Weinstein-Fudim, Liza; Ornoy, Asher; Szyf, Moshe

    2015-06-01

    Gestational diabetes is associated with risk for metabolic disease later in life. Using a cross-species approach in rat and humans, we examined the hypothesis that gestational diabetes during pregnancy triggers changes in the methylome of the offspring that might be mediating these risks. We show in a gestation diabetes rat model, the Cohen diabetic rat, that gestational diabetes triggers wide alterations in DNA methylation in the placenta in both candidate diabetes genes and genome-wide promoters, thus providing evidence for a causal relationship between diabetes during pregnancy and DNA methylation alterations. There is a significant overlap between differentially methylated genes in the placenta and the liver of the rat offspring. Several genes differentially methylated in rat placenta exposed to maternal diabetes are also differentially methylated in the human placenta of offspring exposed to gestational diabetes in utero. DNA methylation changes inversely correlate with changes in expression. The changes in DNA methylation affect known functional gene pathways involved in endocrine function, metabolism, and insulin responses. These data provide support to the hypothesis that early-life exposures and their effects on metabolic disease are mediated by DNA methylation changes. This has important diagnostic and therapeutic implications.

  10. Environmental disruption of the circadian clock leads to altered sleep and immune responses in mouse.

    Science.gov (United States)

    Phillips, Derrick J; Savenkova, Marina I; Karatsoreos, Ilia N

    2015-07-01

    In mammals, one of the most salient outputs of the circadian (daily) clock is the timing of the sleep-wake cycle. Modern industrialized society has led to a fundamental breakdown in the relationship between our endogenous timekeeping systems and the solar day, disrupting normal circadian rhythms. We have argued that disrupted circadian rhythms could lead to changes in allostatic load, and the capacity of organisms to respond to other environmental challenges. In this set of studies, we apply a model of circadian disruption characterized in our lab in which mice are housed in a 20h long day, with 10h of light and 10h of darkness. We explored the effects of this environmental disruption on sleep patterns, to establish if this model results in marked sleep deprivation. Given the interaction between circadian, sleep, and immune systems, we further probed if our model of circadian disruption also alters the innate immune response to peripheral bacterial endotoxin challenge. Our results demonstrate that this model of circadian disruption does not lead to marked sleep deprivation, but instead affects the timing and quality of sleep. We also show that while circadian disruption does not lead to basal changes in the immune markers we explored, the immune response is affected, both in the brain and the periphery. Together, our findings further strengthen the important role of the circadian timing system in sleep regulation and immune responses, and provide evidence that disrupting the circadian clock increases vulnerability to further environmental stressors, including immunological challenges. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Immunosenescence Is Associated With Altered Gene Expression And Epigenetic Regulation In Primary And Secondary Immune Organs

    Directory of Open Access Journals (Sweden)

    Corinne eSidler

    2013-10-01

    Full Text Available Deterioration of the immune system (immunosenescence with age is associated with an increased susceptibility to infection, autoimmune disease and cancer, and reduced responsiveness to vaccination. Immunosenescence entails a reduced supply of naïve T cells from the thymus and increased specialization of peripheral T cell clones. Both thymic involution and peripheral T cell homeostasis are thought to involve cellular senescence. In order to analyze this at the molecular level, we studied gene expression profiles, epigenetic status and genome stability in the thymus and spleen of 1-month, 4-month and 18-month-old Long Evans rats. In the thymus, altered gene expression, DNA and histone hypomethylation, increased genome instability and apoptosis were observed in 18-month-old animals compared to 1- and 4-month-old animals. In the spleen, alterations in gene expression and epigenetic regulation occurred already by the age of 4 months compared to 1 month and persisted in 18-month-old compared to 1-month-old rats. In both organs, these changes were accompanied by the altered composition of resident T cell populations. Our study suggests that both senescence and apoptosis may be involved in altered organ function.

  12. Endocrine immune interactions during chronic Toxocariasis caused by Toxocara canis in a murine model: New insights into the pathophysiology of an old infection.

    Science.gov (United States)

    Del Río-Araiza, Víctor Hugo; Nava-Castro, Karen Elizabeth; Alba-Hurtado, Fernando; Quintanar-Stephano, Andrés; Muñoz-Guzmán, Marco Antonio; CUenca-Micò, Olga; Morales-Montor, Jorge

    2018-03-15

    Toxocara canis is the helminth causing Toxocariasis, a parasitic disease with medical and veterinary implications. Their final host are members of the family Canidae and as paratenic hosts, most of the mammals are sensitive (man, rat, mouse, among others). It has been reported that a pituitary hormone, prolactin, it is responsible for reactivation and migration of larvae to the uterus and mammary gland during the last third of gestation in bitches. In addition, this hormone has been shown to play an important role in the regulation of the immune response. Thus, the aim of this study, was to evaluate the effect of hypophysectomy in the rat model of Toxocariasis, on the immune response against this parasite during a chronic infection, for which parasite loads were analyzed in different organs (lung and brain). Furthermore, serum specific antibody titers, and percentages of different cells of the immune system were also determined. The results showed a decrease in the number of larvae recovered from lung and brain in the hypophysectomized animals. In this same group of animals, there was no production of specific antibodies against the parasite. As for the percentages of the cells of the immune system, there are differences in some subpopulations due to surgery and others due to infection. Our results demonstrated that the lack of pituitary hormones alters parasite loads and the immune response to the helminth parasite Toxocara canis. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. 2013 Immune Risk Standing Review Panel Evidence Review for: The Risk of Crew Adverse Health Event Due to Altered Immune Response

    Science.gov (United States)

    Steinberg, Susan

    2014-01-01

    The 2013 Immune Risk Standing Review Panel (from here on referred to as the SRP) met for a site visit in Houston, TX on February 3-4, 2014. The SRP reviewed the new Evidence Report for the Risk of Crew Adverse Health Event Due to Altered Immune Response (from here on referred to as the 2013 Immune Evidence Report), as well as the Research Plan for this Risk that is in the current version of the Human Research Program’s (HRP) Integrated Research Plan (IRP).

  14. Endocrine modulation, inhibition of ovarian development and hepatic alterations in rainbow trout exposed to polluted river water

    Energy Technology Data Exchange (ETDEWEB)

    Vigano, Luigi, E-mail: vigano@irsa.cnr.i [Water Research Institute, National Council of Research, Brugherio, Milan (Italy); Benfenati, Emilio [Mario Negri Institute, Laboratory of Environmental Chemistry and Toxicology, Milan (Italy); Bottero, Sergio; Cevasco, Alessandra; Monteverde, Martino; Mandich, Alberta [Department of Environmental, Experimental and Applied Biology, University of Genoa, Genoa (Italy)

    2010-12-15

    Under laboratory conditions, female rainbow trout were exposed to graded concentrations of water from the River Lambro, a polluted tributary of the River Po, and to the effluent of a large wastewater treatment plant which flows into the River Lambro. In field exposures, trout were held in cages in the River Po upstream and downstream from the confluence of the River Lambro. After 10-day (laboratory) and 30-day (laboratory and field) exposures, trout were examined for several chemical, biochemical and histological endpoints. The results indicated that exposure to complex mixtures of chemicals, including estrogen receptor agonists, aryl-hydrocarbon receptor agonists, and probably antiandrogens, had occurred. Exposure altered the plasma levels of 17{beta}-estradiol and testosterone, and some treatments also enhanced the activity of hepatic ethoxyresorufin O-deethylase. Gonadal histology showed varying levels of degenerative processes characterised by oocyte atresia, haemorrhages, melano-macrophage centres (MMCs), and oogonia proliferation. Liver histology showed less severe effects. - This study examined the progression of hormonal and gonadal alterations in female trout exposed to river water from an area known to affect resident fish species.

  15. Early-life immune activation increases song complexity and alters phenotypic associations between sexual ornaments.

    Science.gov (United States)

    Merrill, Loren; Naylor, Madeleine F; Dalimonte, Merria; McLaughlin, Sean; Stewart, Tara E; Grindstaff, Jennifer L

    2017-12-01

    Early-life adversity can have long-lasting effects on physiological, behavioural, cognitive, and somatic processes. Consequently, these effects may alter an organism's life-history strategy and reproductive tactics.In response to early-life immune activation, we quantified levels of the acute phase protein haptoglobin (Hp) during development in male zebra finches ( Taeniopygia guttata ). Then, we examined the long-term impacts of early-life immune activation on an important static sexual signal, song complexity, as well as effects of early-life immune activation on the relationship between song complexity and a dynamic sexual signal, beak colouration. Finally, we performed mate-choice trials to determine if male early-life experience impacted female preference.Challenge with keyhole limpet hemocyanin (KLH) resulted in increased song complexity compared to lipopolysaccharide (LPS) treatment or the control. Hp levels were inversely correlated with song complexity. Moreover, KLH-treatment resulted in negative associations between the two sexual signals (beak colouration and song complexity). Females demonstrated some preference for KLH-treated males over controls and for control males over LPS-treated males in mate choice trials.Developmental immune activation has variable effects on the expression of secondary sexual traits in adulthood, including enhancing the expression of some traits. Because developmental levels of Hp and adult song complexity were correlated, future studies should explore a potential role for exposure to inflammation during development on song learning.Early-life adversity may differentially impact static versus dynamic signals. The use of phenotypic correlations can be a powerful tool for examining the impact of early-life experience on the associations among different traits, including sexual signals.

  16. Endocrine Disrupting Chemicals (EDCs)

    Science.gov (United States)

    ... Center Pacientes y Cuidadores Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone ... Hormones and Health › Endocrine Disrupting Chemicals (EDCs) The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) EDCs Myth vs. ...

  17. [Effects of mixed cypermethrin and methylparathion on endocrine hormone levels and immune functions in rats: I. Dose-response relationship].

    Science.gov (United States)

    Liu, Ping; Wen, Wei-Hua; Song, Xiao-Xiao; Yuan, Wei-Hong

    2006-05-01

    To study dose-response relationship effects of mixed cypermethrin and methyl parathion on reproductive hormones, thyroid hormones, and immune functions in rats. Eighty 2-month old Wistar rats (40 males and 40 females) were divided randomly by bodyweight into 4 groups. Four doses (0, 1/600 LD50, 1/135 LD50 and 1/30 LD50) were chosen for the combined exposure representing respective doses of cypermethrin 0, 0.4, 1.8 and 8.0 mg/kg body weight and of methylparathion 0, 0.0115, 0.0518 and 0.2300 mg/kg body weight. The control group received vehicle solvent only. All groups were force-fed every two days for 30 days with these dose combinations. Body weight gain and organ weights were determined. Serum levels of IgG and IgA, reproductive hormones (luteinizing hormone (LH), follicle stimulating hormone (FSH), estradiol (E2), and testosterone), as well as the thyroid hormones (triiodothyronine (T3), tetraiodothyronine (T4), and thyroid stimulating hormone (TSH) were measured using radioimmunoassay (RIA). In addition, two immunological parameters (rate of neutrophil phagocytosis, rate of lymphocyte transformation) were being measured in blood samples. The body weight gains were similar in all 4 groups. The weights of adrenal glands in exposed rats were heavier than those in control (P hormone levels, and immune functions in rats.

  18. Endocrine Diseases

    Science.gov (United States)

    ... Endocrine diseases and disorders also occur if your body does not respond to hormones the way it is supposed ... for Cystic Fibrosis An Important Proof of Principle for the "Combination Therapy" Approach to ...

  19. Endocrine Diseases

    Science.gov (United States)

    ... low, you may have a hormone disorder. Hormone diseases also occur if your body does not respond ... In the United States, the most common endocrine disease is diabetes. There are many others. They are ...

  20. Different Candida parapsilosis clinical isolates and lipase deficient strain trigger an altered cellular immune response.

    Science.gov (United States)

    Tóth, Renáta; Alonso, Maria F; Bain, Judith M; Vágvölgyi, Csaba; Erwig, Lars-Peter; Gácser, Attila

    2015-01-01

    Numerous human diseases can be associated with fungal infections either as potential causative agents or as a result of changed immune status due to a primary disease. Fungal infections caused by Candida species can vary from mild to severe dependent upon the site of infection, length of exposure, and past medical history. Patients with impaired immune status are at increased risk for chronic fungal infections. Recent epidemiologic studies have revealed the increasing incidence of candidiasis caused by non-albicans species such as Candida parapsilosis. Due to its increasing relevance we chose two distinct C. parapsilosis strains, to describe the cellular innate immune response toward this species. In the first section of our study we compared the interaction of CLIB 214 and GA1 cells with murine and human macrophages. Both strains are commonly used to investigate C. parapsilosis virulence properties. CLIB 214 is a rapidly pseudohyphae-forming strain and GA1 is an isolate that mainly exists in a yeast form. Our results showed, that the phagocyte response was similar in terms of overall uptake, however differences were observed in macrophage migration and engulfment of fungal cells. As C. parapsilosis releases extracellular lipases in order to promote host invasion we further investigated the role of these secreted components during the distinct stages of the phagocytic process. Using a secreted lipase deficient mutant strain and the parental strain GA1 individually and simultaneously, we confirmed that fungal secreted lipases influence the fungi's virulence by detecting altered innate cellular responses. In this study we report that two isolates of a single species can trigger markedly distinct host responses and that lipase secretion plays a role on the cellular level of host-pathogen interactions.

  1. Altered Sympathetic-to-Immune Cell Signaling via β2-Adrenergic Receptors in Adjuvant Arthritis

    Directory of Open Access Journals (Sweden)

    Dianne Lorton

    2013-01-01

    Full Text Available Adjuvant-induced arthritic (AA differentially affects norepinephrine concentrations in immune organs, and in vivo β-adrenergic receptor (β-AR agonist treatment distinctly regulates ex vivo cytokine profiles in different immune organs. We examined the contribution of altered β-AR functioning in AA to understand these disparate findings. Twenty-one or 28 days after disease induction, we examined β2-AR expression in spleen and draining lymph nodes (DLNs for the arthritic limbs using radioligand binding and western blots and splenocyte β-AR-stimulated cAMP production using enzyme-linked immunoassay (EIA. During severe disease, β-AR agonists failed to induce splenocyte cAMP production, and β-AR affinity and density declined, indicating receptor desensitization and downregulation. Splenocyte β2-AR phosphorylation (pβ2-AR by protein kinase A (pβ2-ARPKA decreased in severe disease, and pβ2-AR by G protein-coupled receptor kinases (pβ2-ARGRK increased in chronic disease. Conversely, in DLN cells, pβ2-ARPKA rose during severe disease, but fell during chronic disease, and pβ2-ARGRK increased during both disease stages. A similar pβ2-AR pattern in DLN cells with the mycobacterial cell wall component of complete Freund’s adjuvant suggests that pattern recognition receptors (i.e., toll-like receptors are important for DLN pβ2-AR patterns. Collectively, our findings indicate lymphoid organ- and disease stage-specific sympathetic dysregulation, possibly explaining immune compartment-specific differences in β2-AR-mediated regulation of cytokine production in AA and rheumatoid arthritis.

  2. Different Candida parapsilosis clinical isolates and lipase deficient strain trigger an altered cellular immune response

    Directory of Open Access Journals (Sweden)

    Renata eToth

    2015-10-01

    Full Text Available Numerous human diseases can be associated with fungal infections either as potential causative agents or as a result of changed immune status due to a primary disease. Fungal infections caused by Candida species can vary from mild to severe dependent upon the site of infection, length of exposure and past medical history. Patients with impaired immune status are at increased risk for chronic fungal infections. Recent epidemiologic studies have revealed the increasing incidence of candidiasis caused by non-albicans species such as C. parapsilosis. Due to its increasing relevance we chose two distinct C. parapsilosis strains, to describe the cellular innate immune response towards this species. In the first section of our study we compared the interaction of CLIB 214 and GA1 cells with murine and human macrophages. Both strains are commonly used to investigate C. parapsilosis virulence properties. CLIB 214 is a rapidly pseudohyphae-forming strain and GA1 is an isolate that mainly exists in a yeast form. Our results showed, that the phagocyte response was similar in terms of overall uptake, however differences were observed in macrophage migration and engulfment of fungal cells. As C. parapsilosis releases extracellular lipases in order to promote host invasion we further investigated the role of these secreted components during the distinct stages of the phagocytic process. Using a secreted lipase deficient mutant strain and the parental strain GA1 individually and simultaneously, we confirmed that fungal secreted lipases influence the fungi’s virulence by detecting altered innate cellular responses.In this study we report that two isolates of a single species can trigger markedly distinct host responses and that lipase secretion plays a role on the cellular level of host pathogen interactions.

  3. Altered Sympathetic-to-Immune Cell Signaling via β 2-Adrenergic Receptors in Adjuvant Arthritis

    Science.gov (United States)

    Bellinger, Denise L.; Schaller, Jill A.; Osredkar, Tracy

    2013-01-01

    Adjuvant-induced arthritic (AA) differentially affects norepinephrine concentrations in immune organs, and in vivo β-adrenergic receptor (β-AR) agonist treatment distinctly regulates ex vivo cytokine profiles in different immune organs. We examined the contribution of altered β-AR functioning in AA to understand these disparate findings. Twenty-one or 28 days after disease induction, we examined β 2-AR expression in spleen and draining lymph nodes (DLNs) for the arthritic limbs using radioligand binding and western blots and splenocyte β-AR-stimulated cAMP production using enzyme-linked immunoassay (EIA). During severe disease, β-AR agonists failed to induce splenocyte cAMP production, and β-AR affinity and density declined, indicating receptor desensitization and downregulation. Splenocyte β 2-AR phosphorylation (pβ 2-AR) by protein kinase A (pβ 2-ARPKA) decreased in severe disease, and pβ 2-AR by G protein-coupled receptor kinases (pβ 2-ARGRK) increased in chronic disease. Conversely, in DLN cells, pβ 2-ARPKA rose during severe disease, but fell during chronic disease, and pβ 2-ARGRK increased during both disease stages. A similar pβ 2-AR pattern in DLN cells with the mycobacterial cell wall component of complete Freund's adjuvant suggests that pattern recognition receptors (i.e., toll-like receptors) are important for DLN pβ 2-AR patterns. Collectively, our findings indicate lymphoid organ- and disease stage-specific sympathetic dysregulation, possibly explaining immune compartment-specific differences in β 2-AR-mediated regulation of cytokine production in AA and rheumatoid arthritis. PMID:24194774

  4. The immune-endocrine loop during aging: role of growth hormone and insulin-like growth factor-I.

    Science.gov (United States)

    Burgess, W; Liu, Q; Zhou, J; Tang, Q; Ozawa, A; VanHoy, R; Arkins, S; Dantzer, R; Kelley, K W

    1999-01-01

    Why a primary lymphoid organ such as the thymus involutes during aging remains a fundamental question in immunology. Aging is associated with a decrease in plasma growth hormone (somatotropin) and IGF-I, and this somatopause of aging suggests a connection between the neuroendocrine and immune systems. Several investigators have demonstrated that treatment with either growth hormone or IGF-I restores architecture of the involuted thymus gland by reversing the loss of immature cortical thymocytes and preventing the decline in thymulin synthesis that occurs in old or GH-deficient animals and humans. The proliferation, differentiation and functions of other components of the immune system, including T and B cells, macrophages and neutrophils, also demonstrate age-associated decrements that can be restored by IGF-I. Knowledge of the mechanism by which cytokines and hormones influence hematopoietic cells is critical to improving the health of aged individuals. Our laboratory has recently demonstrated that IGF-I prevents apoptosis in promyeloid cells, which subsequently permits these cells to differentiate into neutrophils. We also demonstrated that IL-4 acts much like IGF-I to promote survival of promyeloid cells and to activate the enzyme phosphatidylinositol 3'-kinase (PI 3-kinase). However, the receptors for IGF-I and IL-4 are completely different, with the intracellular beta chains of the IGF receptor possessing intrinsic tyrosine kinase activity and the alpha and gammac subunit of the heterodimeric IL-4 receptor utilizing the Janus kinase family of nonreceptor protein kinases to tyrosine phosphorylate downstream targets. Both receptors share many of the components of the PI 3-kinase signal transduction pathway, converging at the level of insulin receptor substrate-1 or insulin receptor subtrate-2 (formally known as 4PS, or IL-4 Phosphorylated Substrate). Our investigations with IGF-I and IL-4 suggest that PI 3-kinase inhibits apoptosis by maintaining high levels of

  5. Effects of resistance training periodization on performance and salivary immune-endocrine responses of elite female basketball players.

    Science.gov (United States)

    Nunes, J A; Crewther, B T; Viveiros, L; De Rose, D; Aoki, M S

    2011-12-01

    The aim of this paper was to examine the effects of resistance training periodization on the performance and salivary hormone-immune responses of elite female basketball players. Twelve female athletes were monitored across a 50 day period of resistance training that emphasized strength, endurance and power. One repetition maximum (1RM) strength, maximal repetitions at 50% 1RM and vertical jump performance was assessed pre- and post-training. Saliva samples were also collected at 0700, 0930, 1100 and 1730 hours and analyzed for testosterone (T), cortisol (C) and immunoglobulin A (IgA). Improvements in 1RM strength, maximal repetitions and vertical jump performance were identified post-training (PTraining had no effect on salivary T and C concentrations, but the T:C ratio increased at 0730 hours (Ptraining) in strength and T concentrations were positively correlated at 0730 hours (Ptraining increased muscle performance in elite female basketball players, but only minor changes in the salivary T:C ratio and IgA were noted. Correlational analysis identified a possible role for early morning changes in T as a regulator of individual strength changes.

  6. Alterations of Innate Immunity Reactants in Transition Dairy Cows before Clinical Signs of Lameness

    Science.gov (United States)

    Zhang, Guanshi; Hailemariam, Dagnachew; Dervishi, Elda; Deng, Qilan; Goldansaz, Seyed A.; Dunn, Suzanna M.; Ametaj, Burim N.

    2015-01-01

    Simple Summary Lameness is prevalent in dairy cows and early diagnosis and timely treatment of the disease can lower animal suffering, improve recovery rate, increase longevity, and minimize cow loss. However, there are no indications of disease until it appears clinically, and presently the only approach to deal with the sick cow is intensive treatment or culling. The results suggest that lameness affected serum concentrations of the several parameters related to innate immunity and carbohydrate metabolism that might be used to monitor health status of transition dairy cows in the near future. Abstract The objectives of this study were to evaluate metabolic and innate immunity alterations in the blood of transition dairy cows before, during, and after diagnosis of lameness during periparturient period. Blood samples were collected from the coccygeal vain once per week before morning feeding from 100 multiparous Holstein dairy cows during −8, −4, disease diagnosis, and +4 weeks (wks) relative to parturition. Six healthy cows (CON) and six cows that showed clinical signs of lameness were selected for intensive serum analyses. Concentrations of interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor (TNF), haptoglobin (Hp), serum amyloid A (SAA), lipopolysaccharide binding protein (LBP), lactate, non-esterified fatty acids (NEFA), and β-hydroxybutyrate (BHBA) were measured in serum by ELISA or colorimetric methods. Health status, DMI, rectal temperature, milk yield, and milk composition also were monitored for each cow during the whole experimental period. Results showed that cows affected by lameness had greater concentrations of lactate, IL-6, and SAA in the serum vs. CON cows. Concentrations of TNF tended to be greater in cows with lameness compared with CON. In addition, there was a health status (Hs) by time (week) interaction for IL-1, TNF, and Hp in lameness cows vs. CON ones. Enhanced serum concentrations of lactate, IL-6, and SAA at −8 and

  7. Peripheral Immune Alterations in Major Depression: The Role of Subtypes and Pathogenetic Characteristics

    Directory of Open Access Journals (Sweden)

    Frank Euteneuer

    2017-11-01

    Full Text Available Depression has been associated with peripheral inflammatory processes and alterations in cellular immunity. Growing evidence suggests that immunological alterations may neither be necessary nor sufficient to induce depression in general, but seem to be associated with specific features. Using baseline data from the Outcome of Psychological Interventions in Depression trial, this exploratory study examines associations between depression subtypes and pathogenetic characteristics (i.e., melancholic vs non-melancholic depression, chronic vs non-chronic depression, age of onset, cognitive-affective and somatic symptom dimensions with plasma levels of C-reactive protein (CRP, interleukin (IL-6, IL-10, and numbers of leukocyte subpopulations in 98 patients with major depression (MD and 30 age and sex-matched controls. Patients with MD exhibited higher CRP levels, higher neutrophil and monocyte counts, lower IL-10 levels, and an increased neutrophil to lymphocyte ratio (NLR than controls. Patient with later age of onset had higher levels of two inflammatory markers (CRP, NLR and lower cytotoxic T cell counts after adjusting for sociodemographics, lifestyle factors, and antidepressants. Furthermore, lower anti-inflammatory IL-10 levels were related to more severe somatic depressive symptoms. These results confirm and extend previous findings suggesting that increased levels of CRP are associated with a later onset of depression and demonstrate that also NLR as a subclinical inflammatory marker is related to a later onset of depression.

  8. Radiofrequency radiation alters the immune system. II. Modulation of in vivo lymphocyte circulation

    International Nuclear Information System (INIS)

    Liburdy, R.P.

    1980-01-01

    In vivo lymphocyte circulation was significantly altered in mice exposed to whole-body radiofrequency radiation (RFR). In vivo lymphocyte circulation was followed by quantitating activity of sodium chromate-51-labeled lymphocytes in the lung, spleen, liver, and bone marrow of animals at different times after iv spleen lymphocyte injection. Immediately after cell injection, animals were exposed to 2.6-GHz RFR (CW) at 25 or 5 mW/cm 2 (3.8 W/kg) for 1 h. At 1,6, and 24 h aftr lymphocyte injection target organs were removed, weighed, and counted. Sham RFR, warm-air, and steroid-treated groups were included as controls. Hyperthermic RFR exposure (25 mW/cm 2 , 2.0 0 C increase in core temperature) led to a 37% reduction in lymphocytes leaving the lung to migrate into the spleen. In addition, a threefold increse in spleen lymphocytes entering the bone marrow occurred. Significantly, this pattern was also observed in the steroid-treated group; nonthermogenic RFR exposure (5 mWcm 2 ) and warm-air exposures did not lead to altered lymphocyte traffic. These results support the idea that steroid release associated with thermal stress and the process of thermoregulation is a significant operatnt factor responsible for RFR effects on the immune system

  9. Impact of visceral obesity and metabolic syndrome on the postoperative immune, inflammatory, and endocrine response following surgery for esophageal adenocarcinoma.

    Science.gov (United States)

    Doyle, S L; Mongan, A M; Donohoe, C L; Pidgeon, G P; Sherlock, M; Reynolds, J V; Lysaght, J

    2017-06-01

    Visceral obesity and metabolic syndrome (MetSyn) represent a constellation of inflammation, insulin resistance, and hyperglycemia and are established risk factors for gastrointestinal cancer. However, their impact on the immune and inflammatory response after major upper gastrointestinal oncologic surgery is unknown. In 125 consecutive patients who underwent esophagectomy, C-reactive protein (CRP) and CRP:albumin levels were recorded preoperatively and on days 1, 3, 7, and 14 postoperatively. In a subset of 30 patients, circulating levels of IL-6, IL-8, IL-10, IL-12p70, IFN-γ, TNF-α, TGF-β, and cortisol were measured. Incidences of postoperative complications were prospectively recorded. In the study cohort, 51% of patients were viscerally obese, 40.7% had MetSyn, and 33.6% were hyperglycemic. Viscerally obese and MetSyn-positive patients demonstrated greater postoperative CRP levels and CRP:albumin levels on day 7 and day 14 compared with nonobese and MetSyn-negative patients (P levels of cortisol were observed in the viscerally obese and hyperglycemic patients compared to nonobese and normoglycemic patients. No association was observed between visceral obesity, MetSyn or hyperglycemia, and postoperative cytokine profile. Viscerally obese patients had an increased overall incidence of postoperative complications compared to nonobese patients (67.2% vs. 47.5%, P = 0.031) on univariate but not multivariate analysis (P = 0.078) and visceral obesity was not associated with an increased incidence of specific complications. Visceral obesity, MetSyn, and hyperglycemia are prevalent in patients undergoing major upper gastrointestinal resection and are associated with an exaggerated acute-phase inflammatory response postoperatively. Further research is warranted to determine whether this association is directly causal. © The Authors 2017. Published by Oxford University Press on behalf of International Society for Diseases of the Esophagus. All rights reserved. For

  10. [Dementia due to Endocrine Diseases].

    Science.gov (United States)

    Matsunaga, Akiko; Yoneda, Makoto

    2016-04-01

    Endocrine diseases affecting various organs, such as the pituitary gland, the thyroid, the parathyroid, the adrenal glands and the pancreas, occasionally cause dementia. While Alzheimer's disease (AD) is the main cause of dementia in the elderly and is untreatable, dementia caused by endocrine diseases is treatable in most cases. However, patients with dementia associated with endocrine diseases show memory impairments similar to those found in AD, often leading to misdiagnoses. Patients with endocrine diseases often present with other characteristic systemic and neuropsychiatric symptoms caused by altered hormone levels. Such neuropsychiatric symptoms include involuntary movements, depression, seizures, and muscle weakness. In these cases, abnormalities in imaging and blood or urine tests are helpful in making a differential diagnosis. As delays in the diagnosis and treatment of these patients may cause irreversible brain damage, it is imperative for clinicians to carefully exclude the possibility of latent endocrine diseases when treating patients with dementia.

  11. Fatty acid intake alters growth and immunity in milk-fed calves.

    Science.gov (United States)

    Hill, T M; Vandehaar, M J; Sordillo, L M; Catherman, D R; Bateman, H G; Schlotterbeck, R L

    2011-08-01

    The aim of the present study was to determine the effect of supplementing milk replacer (MR) with NeoTec4 (Provimi North America, Brookville, OH), a commercially available blend of butyric acid, coconut oil, and flax oil, on calf growth, efficiency, and indices of immune function. In trial 1a, 48 male Holstein calves were fed either a control MR that contained only animal fat or the same MR with NeoTec4 (treatment) along with free-choice starter. The MR (28.7% crude protein, 15.6% fat) was fed at an average of 1 kg of dry matter (DM)/d. In trial 1b, weaned calves from trial 1a were all fed dry starter for 28 d without NeoTec4 (phase 1), and then half the calves were fed NeoTec4 for 28 d (phase 2). In trial 2, 40 male Holstein calves were fed a control MR with lard, coconut oil, and soy lecithin or the same MR supplemented with NeoTec4 (treatment). The MR (22.8% crude protein, 18.9% fat) was fed at an average of 1 kg of DM/d; no starter was fed. In trial 1a, NeoTec4 improved average daily gain, feed intake, and feed efficiency, reduced the number of days that calves experienced scours, and reduced the medical treatments for clostridium sickness. In trials 1a and 2, NeoTec4 altered the inflammatory response to vaccination with Pasteurella at 5 wk of age and to challenge with Salmonella toxin at less than 2 wk of age (fed NeoTec4 for 6 d), as observed by reduced hyperthermia and hypophagia, and altered the tumor necrosis factor-α response. In addition, NeoTec4 enhanced the response in IL-4 and globular protein estimates postchallenge and enhanced titers for bovine viral diarrhea and respiratory parainfluenza-3. Postchallenge serum concentrations of albumin were lower and urea nitrogen concentrations were greater in control calves than in calves fed NeoTec4. In trial 1b, performance did not differ during the first 28 d when no calves received NeoTec4, but calves receiving NeoTec4 in the second 28 d had greater average daily gain and feed efficiency. We conclude that

  12. Monitoring training load, recovery-stress state, immune-endocrine responses, and physical performance in elite female basketball players during a periodized training program.

    Science.gov (United States)

    Nunes, João A; Moreira, Alexandre; Crewther, Blair T; Nosaka, Ken; Viveiros, Luis; Aoki, Marcelo S

    2014-10-01

    This study investigated the effect of a periodized training program on internal training load (ITL), recovery-stress state, immune-endocrine responses, and physical performance in 19 elite female basketball players. The participants were monitored across a 12-week period before an international championship, which included 2 overloading and tapering phases. The first overloading phase (fourth to sixth week) was followed by a 1-week tapering, and the second overloading phase (eighth to 10th week) was followed by a 2-week tapering. ITL (session rating of perceived exertion method) and recovery-stress state (RESTQ-76 Sport questionnaire) were assessed weekly and bi-weekly, respectively. Pretraining and posttraining assessments included measures of salivary IgA, testosterone and cortisol concentrations, strength, jumping power, running endurance, and agility. Internal training load increased across all weeks from 2 to 11 (p ≤ 0.05). After the first tapering period (week 7), a further increase in ITL was observed during the second overloading phase (p ≤ 0.05). After the second tapering period, a decrease in ITL was detected (p ≤ 0.05). A disturbance in athlete stress-recovery state was noted during the second overloading period (p ≤ 0.05), before returning to baseline level in end of the second tapering period. The training program led to significant improvements in the physical performance parameters evaluated. The salivary measures did not change despite the fluctuations in ITL. In conclusion, a periodized training program evoked changes in ITL in elite female basketball players, which appeared to influence their recovery-stress state. The training plan was effective in preparing participants for competition, as indicated by improvements in recovery-stress state and physical performance after tapering.

  13. Differential effect of severe and moderate social stress on blood immune and endocrine measures and susceptibility to collagen type II arthritis in male rats.

    Science.gov (United States)

    Stefanski, Volker; Hemschemeier, Susanne K; Schunke, Kerstin; Hahnel, Anja; Wolff, Christine; Straub, Rainer H

    2013-03-01

    The effects of social stress on several blood immune measures and collagen-induced arthritis (CIA) were investigated in Wistar rats using the resident-intruder confrontation paradigm to induce stress of different intensity. Male intruders were exposed for one week to a dominant opponent either repeatedly for 4h daily (moderate stress) or continuously (severe stress). Arthritis was induced by intradermal injection of collagen type II (CII) into the tail skin at the end of day 3 of confrontation. Only severe stress was associated with decreased CD4 and CD8 T cells, and the increase in granulocyte numbers and body mass loss was more pronounced under these conditions. Only severe stress reduced the susceptibility to arthritis by about 50%. Severity scores did not differ in the first five days after disease onset between all groups. Subsequent experiments focused on severely stressed rats indicated that disease progressed until day 10 only in control animals, but not in severely stressed males. Stressor exposure resulted in increased blood monocyte numbers, but these males failed to accumulate macrophages into the skin at the site of CII injection. High numbers of attacks experienced by intruders correlated with delayed disease onset in severely stressed rats. We hypothesize that severe stress persisting after disease induction exhibits beneficial effects on the susceptibility of CIA and propose that the specific endocrine and immunological profile associated with severe stress is an important factor for disease outcome--a factor which probably explains many of the conflicting data of previous stress studies on CIA. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Alterations in the gut microbiota of patients with acquired immune deficiency syndrome.

    Science.gov (United States)

    Zhou, Youlian; Ou, Zhitao; Tang, Xiaoping; Zhou, Yongjian; Xu, Haoming; Wang, Xianfei; Li, Kang; He, Jie; Du, Yanlei; Wang, Hong; Chen, Ye; Nie, Yuqiang

    2018-02-07

    Acquired immune deficiency syndrome (AIDS), caused by infection with human immunodeficiency virus (HIV), is associated with gastrointestinal disease, systemic immune activation and changes in the gut microbiota. Here, we aim to investigate the gut microbiota patterns of HIV-infected individuals and HIV-uninfected individuals in populations from South China. We enrolled 33 patients with HIV (14 participants treated with highly active antiretroviral therapy [HAART] for more than 3 months; the remaining 19 individuals had not received treatment) and 35 healthy controls (HC) for a cross-sectional comparison of gut microbiota using stool samples. Gut microbial communities were profiled by sequencing the bacterial 16S rRNA genes. Dysbiosis was more common among patients with AIDS compared with healthy individuals. Dysbiosis was characterized by decreased α-diversity, low mean counts of Bacteroidetes, Faecalibacterium, Prevotella, Bacteroides vulgatus, Dialister and Roseburia inulnivorans, and high mean counts of Proteobacteria, Enterococcus, Streptococcus, Lactobacillus, Lachnociostridium, Ruminococcus gnavus and Streptococcus vestibularis. Increased abundance of Bacilli was observed in homosexual patients. Proteobacteria were higher among heterosexual patients with HIV infections. Tenericutes were higher among patients with history of intravenous drug abuse. Restoration of gut microbiota diversity and a significant increase in abundance of Faecalibacterium, Blautia and Bacteroides were found in patients receiving HAART compared to those who did not receive. HIV infection-associated dysbiosis is characterized by decreased levels of α-diversity and Bacteroidetes, increased levels of Proteobacteria and the alterations of gut microbiota correlate with the route of HIV transmission. The imbalanced faecal microbiota of HIV infection is partially restored after therapy. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and

  15. Endocrine disorders in pregnancy

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, Ulla; Mathiesen, Elisabeth R

    2011-01-01

    The endocrinology of pregnancy involves endocrine and metabolic changes as a consequence of physiological alterations at the foetoplacental boundary between mother and foetus. The vast changes in maternal hormones and their binding proteins complicate assessment of the normal level of most hormones...... during gestation. The neuroendocrine events and their timing in the placental, foetal and maternal compartments are critical for initiation and maintenance of pregnancy, for foetal growth and development, and for parturition. As pregnancy advances, the relative number of trophoblasts increase...

  16. Viral miRNAs Alter Host Cell miRNA Profiles and Modulate Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Afsar R. Naqvi

    2018-03-01

    Full Text Available Prevalence of the members of herpesvirus family in oral inflammatory diseases is increasingly acknowledged suggesting their likely role as an etiological factor. However, the underlying mechanisms remain obscure. In our recent miRNA profiling of healthy and diseased human tooth pulps, elevated expression of human herpesvirus encoded viral microRNAs (v-miRs were identified. Based on the fold induction and significance values, we selected three v-miRs namely miR-K12-3-3p [Kaposi sarcoma-associated virus (KSHV], miR-H1 [herpes simplex virus 1 (HSV1], and miR-UL-70-3p [human cytomegalovirus (HCMV] to further examine their impact on host cellular functions. We examined their impact on cellular miRNA profiles of primary human oral keratinocytes (HOK. Our results show differential expression of several host miRNAs in v-miR-transfected HOK. High levels of v-miRs were detected in exosomes derived from v-miR transfected HOK as well as the KSHV-infected cell lines. We show that HOK-derived exosomes release their contents into macrophages (Mφ and alter expression of endogenous miRNAs. Concurrent expression analysis of precursor (pre-miRNA and mature miRNA suggest transcriptional or posttranscriptional impact of v-miRs on the cellular miRNAs. Employing bioinformatics, we predicted several pathways targeted by deregulated cellular miRNAs that include cytoskeletal organization, endocytosis, and cellular signaling. We validated three novel targets of miR-K12-3-3p and miR-H1 that are involved in endocytic and intracellular trafficking pathways. To evaluate the functional consequence of this regulation, we performed phagocytic uptake of labeled bacteria and noticed significant attenuation in miR-H1 and miR-K12-3-3p but not miR-UL70-3p transfected primary human Mφ. Multiple cytokine analysis of E. coli challenged Mφ revealed marked reduction of secreted cytokine levels with important roles in innate and adaptive immune responses suggesting a role of v-miRs in

  17. Deep brain stimulation during early adolescence prevents microglial alterations in a model of maternal immune activation.

    Science.gov (United States)

    Hadar, Ravit; Dong, Le; Del-Valle-Anton, Lucia; Guneykaya, Dilansu; Voget, Mareike; Edemann-Callesen, Henriette; Schweibold, Regina; Djodari-Irani, Anais; Goetz, Thomas; Ewing, Samuel; Kettenmann, Helmut; Wolf, Susanne A; Winter, Christine

    2017-07-01

    In recent years schizophrenia has been recognized as a neurodevelopmental disorder likely involving a perinatal insult progressively affecting brain development. The poly I:C maternal immune activation (MIA) rodent model is considered as a neurodevelopmental model of schizophrenia. Using this model we and others demonstrated the association between neuroinflammation in the form of altered microglia and a schizophrenia-like endophenotype. Therapeutic intervention using the anti-inflammatory drug minocycline affected altered microglia activation and was successful in the adult offspring. However, less is known about the effect of preventive therapeutic strategies on microglia properties. Previously we found that deep brain stimulation of the medial prefrontal cortex applied pre-symptomatically to adolescence MIA rats prevented the manifestation of behavioral and structural deficits in adult rats. We here studied the effects of deep brain stimulation during adolescence on microglia properties in adulthood. We found that in the hippocampus and nucleus accumbens, but not in the medial prefrontal cortex, microglial density and soma size were increased in MIA rats. Pro-inflammatory cytokine mRNA was unchanged in all brain areas before and after implantation and stimulation. Stimulation of either the medial prefrontal cortex or the nucleus accumbens normalized microglia density and soma size in main projection areas including the hippocampus and in the area around the electrode implantation. We conclude that in parallel to an alleviation of the symptoms in the rat MIA model, deep brain stimulation has the potential to prevent the neuroinflammatory component in this disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Altered Gut Microbiota Composition and Immune Response in Experimental Steatohepatitis Mouse Models.

    Science.gov (United States)

    Ishioka, Mitsuaki; Miura, Kouichi; Minami, Shinichiro; Shimura, Yoichiro; Ohnishi, Hirohide

    2017-02-01

    Although several types of diet have been used in experimental steatohepatitis models, comparison of gut microbiota and immunological alterations in the gut among diets has not yet been performed. We attempted to clarify the difference in the gut environment between mice administrated several experimental diets. Male wild-type mice were fed a high-fat (HF) diet, a choline-deficient amino acid-defined (CDAA) diet, and a methionine-choline-deficient (MCD) diet for 8 weeks. We compared the severity of steatohepatitis, the composition of gut microbiota, and the intestinal expression of interleukin (IL)-17, an immune modulator. Steatohepatitis was most severe in the mice fed the CDAA diet, followed by the MCD diet, and the HF diet. Analysis of gut microbiota showed that the composition of the Firmicutes phylum differed markedly at order level between the mice fed the CDAA and HF diet. The CDAA diet increased the abundance of Clostridiales, while the HF diet increased that of lactate-producing bacteria. In addition, the CDAA diet decreased the abundance of lactate-producing bacteria and antiinflammatory bacterium Parabacteroides goldsteinii in the phylum Bacteroidetes. In CDAA-fed mice, IL-17 levels were increased in ileum as well as portal vein. In addition, the CDAA diet also elevated hepatic expression of chemokines, downstream targets of IL-17. The composition of gut microbiota and IL-17 expression varied considerably between mice administrated different experimental diets to induce steatohepatitis.

  19. Altered Innate and Lymphocytic Immunity in Murine Splenocytes Following Short-Duration Spaceflight

    Science.gov (United States)

    Crucian, Brian E.; Hwang, Shen-An; Actor, Jeffrey K.; Quiriarte, Heather; Sams, Clarence F.

    2011-01-01

    Immune dysregulation has been demonstrated following spaceflight of varying durations and limited in-flight studies indicate this phenomenon may persist during spaceflight. Causes may include microgravity, physiological stress, isolation, confinement and disrupted circadian rhythms. To further investigate the mechanisms associated with flight-associated immune changes, murine splenocytes immune parameters were assessed following 14 day space flight on Space Shuttle mission STS-135.

  20. The BPA-substitute bisphenol S alters the transcription of genes related to endocrine, stress response and biotransformation pathways in the aquatic midge Chironomus riparius (Diptera, Chironomidae.

    Directory of Open Access Journals (Sweden)

    Óscar Herrero

    Full Text Available Bisphenol S (BPS is an industrial alternative to the endocrine disruptor bisphenol A (BPA, and can be found in many products labeled "BPA-free". Its use has grown in recent years, and presently it is considered a ubiquitous emerging pollutant. To date there is a lack of information on the effects of BPS on invertebrates, although they represent more than 95% of known species in the animal kingdom and are crucial for the structure and proper function of ecosystems. In this study, real-time RT-PCR was used to determine the early detrimental effects of BPS on the transcriptional rate of genes in the model species Chironomus riparius, specifically those related to the ecdysone pathway (EcR, ERR, E74, Vtg, cyp18a1 crucial for insect development and metamorphosis, stress and biotransformation mechanisms (hsp70, hsp40, cyp4g, GPx, GSTd3 that regulate adaptive responses and determine survival, and ribosome biogenesis (its2, rpL4, rpL13 which is essential for protein synthesis and homeostasis. While 24-hour exposure to 0.5, 5, 50, and 500 μg/L BPS had no effect on larval survival, almost all the studied genes were upregulated following a non-monotonic dose-response curve. Genes with the greatest increases in transcriptional activity (fold change relative to control were EcR (3.8, ERR (2, E74 (2.4, cyp18a1 (2.5, hsp70 (1.7, hsp40 (2.5, cyp4g (6.4, GPx (1.8, and GST (2.1, while others including Vtg, GAPDH, and selected ribosomal genes remained stable. We also measured the transcriptional activity of these genes 24 hours after BPS withdrawal and a general downregulation compared to controls was observed, though not significant in most cases. Our findings showed that BPS exposure altered the transcriptional profile of these genes, which may have consequences for the hormone system and several metabolic pathways. Although further research is needed to elucidate its mode of action, these results raise new concerns about the safety of BPA alternatives.

  1. The BPA-substitute bisphenol S alters the transcription of genes related to endocrine, stress response and biotransformation pathways in the aquatic midge Chironomus riparius (Diptera, Chironomidae).

    Science.gov (United States)

    Herrero, Óscar; Aquilino, Mónica; Sánchez-Argüello, Paloma; Planelló, Rosario

    2018-01-01

    Bisphenol S (BPS) is an industrial alternative to the endocrine disruptor bisphenol A (BPA), and can be found in many products labeled "BPA-free". Its use has grown in recent years, and presently it is considered a ubiquitous emerging pollutant. To date there is a lack of information on the effects of BPS on invertebrates, although they represent more than 95% of known species in the animal kingdom and are crucial for the structure and proper function of ecosystems. In this study, real-time RT-PCR was used to determine the early detrimental effects of BPS on the transcriptional rate of genes in the model species Chironomus riparius, specifically those related to the ecdysone pathway (EcR, ERR, E74, Vtg, cyp18a1) crucial for insect development and metamorphosis, stress and biotransformation mechanisms (hsp70, hsp40, cyp4g, GPx, GSTd3) that regulate adaptive responses and determine survival, and ribosome biogenesis (its2, rpL4, rpL13) which is essential for protein synthesis and homeostasis. While 24-hour exposure to 0.5, 5, 50, and 500 μg/L BPS had no effect on larval survival, almost all the studied genes were upregulated following a non-monotonic dose-response curve. Genes with the greatest increases in transcriptional activity (fold change relative to control) were EcR (3.8), ERR (2), E74 (2.4), cyp18a1 (2.5), hsp70 (1.7), hsp40 (2.5), cyp4g (6.4), GPx (1.8), and GST (2.1), while others including Vtg, GAPDH, and selected ribosomal genes remained stable. We also measured the transcriptional activity of these genes 24 hours after BPS withdrawal and a general downregulation compared to controls was observed, though not significant in most cases. Our findings showed that BPS exposure altered the transcriptional profile of these genes, which may have consequences for the hormone system and several metabolic pathways. Although further research is needed to elucidate its mode of action, these results raise new concerns about the safety of BPA alternatives.

  2. Abnormal Savda syndrome: long-term consequences of emotional and physical stress on endocrine and immune activities in an animal model.

    Science.gov (United States)

    Ablimit, Adiljan; Kühnel, Harald; Strasser, Alois; Upur, Halmurat

    2013-08-01

    To investigate the relationship between emotional status, cold-dry environment and long-term immune responses to the stressors, and the potential pathological mechanisms between causative factors of abnormal Savda syndrome (ASS) and the susceptibility to disease; thus to clarify the ASS, and secondly to identify the optimal ASS animal model for further studies on traditional Uighur therapeutical formulations. Sixty mice were randomly and equally divided into 4 groups: control and 3 stress groups. The cold-dry environment was applied by keeping the mice in a climatic chamber. The emotional stress was induced by the application of the repeated electric foot-shocks in the electric foot-shock apparatus. The mice of the combined stress group underwent the repeated electric foot-shock treatment before being housed in the climatic chamber. The experimental routine was repeated for 21 days. In order to look into endocrine and immune stress responses, ELISA was used to determine the serum levels of the hormones corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), Beta-endorphin (β-END) and corticosterone (CORT), of the cytokines interleukin 2 (IL-2), interleukin 6 (IL-6), interferon-gamma (INF-γ) and tumor necrosis factor-alpha (TNF-α), and of the immunoglobulins immunoglobulin A (IgA), immunoglobulin M (IgM) and immunoglobulin G (IgG). Lymphocyte subsets were analyzed in duplicate in order to determine differences in the T cell ratio. In the cold-dry environment group, the serum levels of CRH, ACTH and CORT were significantly higher than those of the control group, whereas serum β-END was not found significantly different. In both the repeated electric foot-shock group as well as in the combined stress group the serum levels of CRH, ACTH, β-END and CORT were significantly higher. Compared to the control animals, the serum concentration of INF-γ was significantly lower in all three different stress groups. The serum level of IL-2 was decreased in

  3. 2013 Immune Risk Standing Review Panel Research Plan Review for: The Risk of Crew Adverse Health Event Due to Altered Immune Response

    Science.gov (United States)

    Steinberg, Susan

    2014-01-01

    The 2013 Immune Risk Standing Review Panel (from here on referred to as the SRP) participated in a meeting with representatives from the Human Research Program (HRP) Human Health Countermeasures (HHC) Element and HRP management on February 3-4, 2014 in Houston, TX to review the updated Research Plan for the Risk of Crew Adverse Health Event Due to Altered Immune Response in the HRP Integrated Research Plan. The SRP is impressed with the work the immune discipline has done since the 2012 SRP review and agrees with the new wording of the Gaps, no longer questions, now statements. The SRP also likes the addition of adding targets for closing the Gaps, but it is not clear how they got to some of the interim stages (interval percentages). A major concern that the SRP has mentioned since the initial 2009 SRP meeting is that there is still not enough emphasis on the interdisciplinary aspect of the immune risk associated with other risks (i.e., nutrition, radiation, etc.). The SRP recommends that a "translational SRP" or advisory group be developed that is composed of members from all of the HRP SRPs. The SRP also thinks that the immune discipline should consider a more systems biology approach. Lastly, the SRP is concerned that the risks observed in research from low Earth orbit (LEO) missions may not accurately reflect all the risks of longer duration flight beyond LEO. Also, there does not seem to be a concern for immune responses that may occur when someone is in space longer than six months, for example, a Mars mission would take three years. The absence of disease in past and current flight scenarios does not mean the risk may not be there in future flight settings.

  4. Altered Immune Activation and IL-23 Signaling in Response to Candida albicans in Autoimmune Polyendocrine Syndrome Type 1

    Directory of Open Access Journals (Sweden)

    Øyvind Bruserud

    2017-09-01

    Full Text Available ObjectiveAutoimmune polyendocrine syndrome type 1 (APS-1 is a rare, childhood onset disease caused by mutations in the autoimmune regulator (AIRE gene. Chronic mucocutaneous candidiasis (CMC is one of the three major disease components and is, to date, mainly explained by the presence of neutralizing auto-antibodies against cytokines [interleukin (IL-17A, IL-17F, and IL-22] from T helper 17 cells, which are critical for the protection against fungal infections. However, patients without current auto-antibodies also present CMC and we, therefore, hypothesized that other immune mechanisms contribute to CMC in APS-1.MethodsWhole blood was stimulated with Candida albicans (C. albicans in a standardized assay, and immune activation was investigated by analyzing 46 secreted immune mediators. Then, peripheral blood mononuclear cells were stimulated with curdlan, a Dectin-1 agonist and IL-23 inducer, and the IL-23p19 response in monocytes was analyzed by flow cytometry.ResultsWe found an altered immune response in APS-1 patients compared with healthy controls. Patients fail to increase the essential ILs, such as IL-2, IL-17A, IL-22, and IL-23, when stimulating whole blood with C. albicans. A significantly altered IL-23p19 response was detected in patients’ monocytes upon stimulation with curdlan.ConclusionAPS-1 patients have an altered immune response to C. albicans including a dysregulation of IL-23p19 production in monocytes. This probably contributes to the selective susceptibility to CMC found in the majority of patients.

  5. Immunization

    Science.gov (United States)

    ... a lot worse. Some are even life-threatening. Immunization shots, or vaccinations, are essential. They protect against things like measles, ... B, polio, tetanus, diphtheria, and pertussis (whooping cough). Immunizations are important for adults as well as children. ...

  6. Immunization against recombinant GnRH-I alters testicular structure in an experimental boar model.

    Science.gov (United States)

    Li, Yunsheng; Liu, Ya; Su, Shiping; Pu, Yong; Zhang, Xiaorong; Fang, Fugui

    2015-02-01

    The aim of this study was to evaluate and to compare testicular tissue in immunized and control boars. Eighteen male piglets, aged 12 weeks, were vaccinated twice intramuscularly with a maltose-binding protein-gonadotropin-releasing hormone I hexamer peptide (MBP-GnRH-I6). Blood samples were taken at 12, 18, 21 and 24 weeks of age. Serum concentrations of testosterone and GnRH-I antibodies were determined by radioimmunoassay. The pigs were sacrificed 6 weeks after the second immunization. Testicular weight and size were recorded and tissue samples were collected for histological examination. The results demonstrated that active immunization against MBP-GnRH-I6 increased serum GnRH-I antibody levels (P immunized pigs, and a significant reduction (P immunized boars.

  7. Effect of Endocrine Disruptor Pesticides: A Review

    Science.gov (United States)

    Mnif, Wissem; Hassine, Aziza Ibn Hadj; Bouaziz, Aicha; Bartegi, Aghleb; Thomas, Olivier; Roig, Benoit

    2011-01-01

    Endocrine disrupting chemicals (EDC) are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soil, air). For several years, there have been enquiries about the impact of environmental factors on the occurrence of human pathologies. This paper reviews the current knowledge of the potential impacts of endocrine disruptor pesticides on human health. PMID:21776230

  8. Effect of Endocrine Disruptor Pesticides: A Review

    Directory of Open Access Journals (Sweden)

    Benoit Roig

    2011-06-01

    Full Text Available Endocrine disrupting chemicals (EDC are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soil, air. For several years, there have been enquiries about the impact of environmental factors on the occurrence of human pathologies. This paper reviews the current knowledge of the potential impacts of endocrine disruptor pesticides on human health.

  9. Immune interactions in endometriosis

    Science.gov (United States)

    Herington, Jennifer L; Bruner-Tran, Kaylon L; Lucas, John A; Osteen, Kevin G

    2011-01-01

    Endometriosis is a common, complex gynecologic disorder characterized by the presence of endometrial glands and stroma at extrauterine (ectopic) sites. In women who develop this disease, alterations in specific biological processes involving both the endocrine and immune systems have been observed, which may explain the survival and growth of displaced endometrial tissue in affected women. In the past decade, a considerable amount of research has implicated a role for alterations in progesterone action at both eutopic and ectopic sites of endometrial growth which may contribute to the excessive inflammation associated with progression of endometriosis; however, it remains unclear whether these anomalies induce the condition or are simply a consequence of the disease process. In this article, we summarize current knowledge of alterations within the immune system of endometriosis patients and discuss how endometrial cells from women with this disease not only have the capacity to escape immunosurveillance, but also use inflammatory mechanisms to promote their growth within the peritoneal cavity. Finally, we discuss evidence that exposure to an environmental endocrine disruptor, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, can mediate the development of an endometrial phenotype that exhibits both reduced progesterone responsiveness and hypersensitivity to proinflammatory stimuli mimicking the endometriosis phenotype. Future studies in women with endometriosis should consider whether a heightened inflammatory response within the peritoneal microenvironment contributes to the development and persistence of this disease. PMID:21895474

  10. Secretion of Interferon gamma (IFNγ) from Human Immune Cells is Altered by Exposure to Tributyltin (TBT) and Dibutyltin (DBT)

    Science.gov (United States)

    Lawrence, Shanieek; Reid, Jacqueline; Whalen, Margaret

    2013-01-01

    Tributyltin (TBT) and dibutyltin (DBT) are widespread environmental contaminants found in food, beverages, and human blood samples. Both of these butyltins (BTs) interfere with the ability of human natural killer (NK) cells to lyse target cells and also alter secretion of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) from human immune cells in vitro. The capacity of BTs to interfere with secretion of other pro-inflammatory cytokines has not been examined. Interferon gamma (IFNγ) is a modulator of adaptive and innate immune responses, playing an important role in overall immune competence. This study shows that both TBT and DBT alter secretion of IFNγ from human immune cells. Peripheral blood cell preparations that were increasingly reconstituted were used to determine if exposures to either TBT or DBT affected IFNγ secretion and how the makeup of the cell preparation influenced that effect. IFNγ secretion was examined after 24 h, 48 h and 6 day exposures to TBT (200- 2.5 nM) and DBT (5- 0.05 μM) in highly enriched human NK cells, a monocyte-depleted preparation of PBMCs, and monocyte-containing PBMCs. Both BTs altered IFNγ secretion from NK cells at most of the conditions tested (either increasing or decreasing secretion). However, there was significant variability among donors as to the concentrations and time points that showed changes as well as the baseline secretion of IFNγ. The majority of donors showed an increase in IFNγ secretion in response to at least one concentration of TBT or DBT at a minimum of one length of exposure. PMID:24357260

  11. Endocrine Disruptors (Chapter 14) in Mammalian Toxicology Book

    Science.gov (United States)

    Endocrine disrupting chemicals (EDCs) are exogenous substances that alter endocrine system function(s) and consequently cause adverse health effects in intact organisms or its progeny. The endocrine system is important for a wide range of biological processes, from normal cell si...

  12. Vaccination targeting human HER3 alters the phenotype of infiltrating T cells and responses to immune checkpoint inhibition.

    Science.gov (United States)

    Osada, Takuya; Morse, Michael A; Hobeika, Amy; Diniz, Marcio A; Gwin, William R; Hartman, Zachary; Wei, Junping; Guo, Hongtao; Yang, Xiao-Yi; Liu, Cong-Xiao; Kaneko, Kensuke; Broadwater, Gloria; Lyerly, H Kim

    2017-01-01

    Expression of human epidermal growth factor family member 3 (HER3), a critical heterodimerization partner with EGFR and HER2, promotes more aggressive biology in breast and other epithelial malignancies. As such, inhibiting HER3 could have broad applicability to the treatment of EGFR- and HER2-driven tumors. Although lack of a functional kinase domain limits the use of receptor tyrosine kinase inhibitors, HER3 contains antigenic targets for T cells and antibodies. Using novel human HER3 transgenic mouse models of breast cancer, we demonstrate that immunization with recombinant adenoviral vectors encoding full length human HER3 (Ad-HER3-FL) induces HER3-specific T cells and antibodies, alters the T cell infiltrate in tumors, and influences responses to immune checkpoint inhibitions. Both preventative and therapeutic Ad-HER3-FL immunization delayed tumor growth but were associated with both intratumoral PD-1 expressing CD8 + T cells and regulatory CD4 + T cell infiltrates. Immune checkpoint inhibition with either anti-PD-1 or anti-PD-L1 antibodies increased intratumoral CD8 + T cell infiltration and eliminated tumor following preventive vaccination with Ad-HER3-FL vaccine. The combination of dual PD-1/PD-L1 and CTLA4 blockade slowed the growth of tumor in response to Ad-HER3-FL in the therapeutic model. We conclude that HER3-targeting vaccines activate HER3-specific T cells and induce anti-HER3 specific antibodies, which alters the intratumoral T cell infiltrate and responses to immune checkpoint inhibition.

  13. Different Candida parapsilosis clinical isolates and lipase deficient strain trigger an altered cellular immune response

    OpenAIRE

    T?th, Ren?ta; Alonso, Maria F.; Bain, Judith M.; V?gv?lgyi, Csaba; Erwig, Lars-Peter; G?cser, Attila

    2015-01-01

    Numerous human diseases can be associated with fungal infections either as potential causative agents or as a result of changed immune status due to a primary disease. Fungal infections caused by Candida species can vary from mild to severe dependent upon the site of infection, length of exposure, and past medical history. Patients with impaired immune status are at increased risk for chronic fungal infections. Recent epidemiologic studies have revealed the increasing incidence of candidiasis...

  14. Update in Endocrine Autoimmunity

    OpenAIRE

    Anderson, Mark S.

    2008-01-01

    Context: The endocrine system is a common target in pathogenic autoimmune responses, and there has been recent progress in our understanding, diagnosis, and treatment of autoimmune endocrine diseases.

  15. μ-opioid Receptor-Mediated Alterations of Allergen-Induced Immune Responses of Bronchial Lymph Node Cells in a Murine Model of Stress Asthma

    Directory of Open Access Journals (Sweden)

    Kaori Okuyama

    2012-01-01

    Conclusions: Restraint stress aggravated allergic airway inflammation in association with alterations in local immunity characterized by greater Th2-associated cytokine production and a reduced development of regulatory T cells, mediated by MORs.

  16. Immune activation alters cellular and humoral responses to yellow fever 17D vaccine.

    Science.gov (United States)

    Muyanja, Enoch; Ssemaganda, Aloysius; Ngauv, Pearline; Cubas, Rafael; Perrin, Helene; Srinivasan, Divya; Canderan, Glenda; Lawson, Benton; Kopycinski, Jakub; Graham, Amanda S; Rowe, Dawne K; Smith, Michaela J; Isern, Sharon; Michael, Scott; Silvestri, Guido; Vanderford, Thomas H; Castro, Erika; Pantaleo, Giuseppe; Singer, Joel; Gillmour, Jill; Kiwanuka, Noah; Nanvubya, Annet; Schmidt, Claudia; Birungi, Josephine; Cox, Josephine; Haddad, Elias K; Kaleebu, Pontiano; Fast, Patricia; Sekaly, Rafick-Pierre; Trautmann, Lydie; Gaucher, Denis

    2014-07-01

    Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. We showed that YF-17D-induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D-neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. Registration is not required for observational studies. This study was funded by Canada's Global Health Research Initiative, Defense Threat Reduction Agency, National Institute of Allergy and Infectious Diseases

  17. [The immuno-endocrine system. A new endocrine theory: the problem of the packed transport].

    Science.gov (United States)

    Csaba, György

    2011-05-15

    Since the eighties of the last century hormone content was justified in immune cells (lymphocytes, granulocytes, monocytes, macrophages and mast cells), which produce, store and secrete these hormones. Although the amount of these materials in immune cells is relatively small, the mass of the producers (immune cells) is so large, that the phenomenon must be considered from endocrinological point of view, underlying the important differences between the "classical" and immuno-endocrine systems. Cells of the classic (built-in) endocrine system are mono-producers, while immune cells can synthesize many types of hormones (polyproducers). In addition, these cells can transport the whole hormone-producing machinery to the site of need, producing a local effect. This can be observed, for example, in the case of endorphin producing immune cells during inflammation and during early pregnancy around the chorionic villi. Hormone producing immune cells also have receptors for many hormones, so that they are poly-receivers. Via hormone producing and receiving capacity there is a bidirectional connection between the neuro-endocrine and immuno-endocrine systems. In addition, there is a network inside the immuno-endocrine system. The packed transport theory attempts to explain the mechanism and importance of the immuno-endocrine system.

  18. Lack of host gut microbiota alters immune responses and intestinal granuloma formation during schistosomiasis.

    Science.gov (United States)

    Holzscheiter, M; Layland, L E; Loffredo-Verde, E; Mair, K; Vogelmann, R; Langer, R; Wagner, H; Prazeres da Costa, C

    2014-02-01

    Fatalities from schistosome infections arise due to granulomatous, immune-mediated responses to eggs that become trapped in host tissues. Schistosome-specific immune responses are characterized by initial T helper type 1 (Th1) responses and our previous studies demonstrated that myeloid differentiation primary response gene 88 (Myd88)-deficient mice failed to initiate such responses in vivo. Paradoxically, schistosomal antigens fail to stimulate innate cells to release proinflammatory cytokines in vitro. Since Schistosoma mansoni infection is an intestinal disease, we hypothesized that commensal bacteria could act as bystander activators of the intestinal innate immune system to instigate Th1 responses. Using a broad spectrum of orally administered antibiotics and anti-mycotics we analysed schistosome-infected mice that were simultaneously depleted of gut bacteria. After depletion there was significantly less inflammation in the intestine, which was accompanied by decreased intestinal granuloma development. In contrast, liver pathology remained unaltered. In addition, schistosome-specific immune responses were skewed and faecal egg excretion was diminished. This study demonstrates that host microbiota can act as a third partner in instigating helminth-specific immune responses. © 2013 British Society for Immunology.

  19. Celiac disease and endocrine autoimmunity.

    Science.gov (United States)

    Kahaly, George J; Schuppan, Detlef

    2015-01-01

    Celiac disease (CD) is a small-intestinal inflammatory disease that is triggered by the ingestion of the storage proteins (gluten) of wheat, barley and rye. Endocrine autoimmunity is prevalent in patients with CD and their relatives. The genes that predispose to endocrine autoimmune diseases, e.g. type 1 diabetes, autoimmune thyroid diseases, and Addison's disease, i.e. DR3-DQ2 and DR4-DQ8, are also the major genetic determinants of CD, which is the best understood HLA-linked disease. Thus, up to 30% of first-degree relatives both of patients with CD and/or endocrine autoimmunity are affected by the other disease. In CD, certain gluten proteins bind with high affinity to HLA-DQ2 or -DQ8 in the small-intestinal mucosa, to activate gluten-specific T cells which are instrumental in the destruction of the resorptive villi. Here, the autoantigen tissue transglutaminase increases the T cell response by generating deamidated gluten peptides that bind more strongly to DQ2 or DQ8. Classical symptoms such as diarrhea and consequences of malabsorption like anemia and osteoporosis are often absent in patients with (screening-detected) CD, but this absence does not significantly affect these patients' incidence of endocrine autoimmunity. Moreover, once autoimmunity is established, a gluten-free diet is not able to induce remission. However, ongoing studies attempt to address how far a gluten-free diet may prevent or retard the development of CD and endocrine autoimmunity in children at risk. The close relationship between CD and endocrine autoimmunity warrants a broader immune genetic and endocrine screening of CD patients and their relatives. © 2015 S. Karger AG, Basel.

  20. Fetal and neonatal endocrine disruptors.

    Science.gov (United States)

    Unüvar, Tolga; Büyükgebiz, Atilla

    2012-06-01

    Endocrine disruptors are substances commonly encountered in every setting and condition in the modern world. It is virtually impossible to avoid the contact with these chemical compounds in our daily life. Molecules defined as endocrine disruptors constitute an extremely heterogeneous group and include synthetic chemicals used as industrial solvents/lubricants and their by-products. Natural chemicals found in human and animal food (phytoestrogens) also act as endocrine disruptors. Different from adults, children are not exposed only to chemical toxins in the environment but may also be exposed during their intrauterine life. Hundreds of toxic substances, which include neuro-immune and endocrine toxic chemical components that may influence the critical steps of hormonal, neurological and immunological development, may affect the fetus via the placental cord and these substances may be excreted in the meconium. Children and especially newborns are more sensitive to environmental toxins compared to adults. Metabolic pathways are immature, especially in the first months of life. The ability of the newborn to metabolize, detoxify and eliminate many toxins is different from that of the adults. Although exposures occur during fetal or neonatal period, their effects may sometimes be observed in later years. Further studies are needed to clarify the effects of these substances on the endocrine system and to provide evidence for preventive measures.

  1. Rim Pathway-Mediated Alterations in the Fungal Cell Wall Influence Immune Recognition and Inflammation

    Directory of Open Access Journals (Sweden)

    Kyla S. Ost

    2017-01-01

    Full Text Available Compared to other fungal pathogens, Cryptococcus neoformans is particularly adept at avoiding detection by innate immune cells. To explore fungal cellular features involved in immune avoidance, we characterized cell surface changes of the C. neoformans rim101Δ mutant, a strain that fails to organize and shield immunogenic epitopes from host detection. These cell surface changes are associated with an exaggerated, detrimental inflammatory response in mouse models of infection. We determined that the disorganized strain rim101Δ cell wall increases macrophage detection in a contact-dependent manner. Using biochemical and microscopy methods, we demonstrated that the rim101Δ strain shows a modest increase in the levels of both cell wall chitin and chitosan but that it shows a more dramatic increase in chito-oligomer exposure, as measured by wheat germ agglutinin staining. We also created a series of mutants with various levels of cell wall wheat germ agglutinin staining, and we demonstrated that the staining intensity correlates with the degree of macrophage activation in response to each strain. To explore the host receptors responsible for recognizing the rim101Δ mutant, we determined that both the MyD88 and CARD9 innate immune signaling proteins are involved. Finally, we characterized the immune response to the rim101Δ mutant in vivo, documenting a dramatic and sustained increase in Th1 and Th17 cytokine responses. These results suggest that the Rim101 transcription factor actively regulates the C. neoformans cell wall to prevent the exposure of immune stimulatory molecules within the host. These studies further explored the ways in which immune cells detect C. neoformans and other fungal pathogens by mechanisms that include sensing N-acetylglucosamine-containing structures, such as chitin and chitosan.

  2. Altered CD45 expression in C77G carriers influences immune function and outcome of hepatitis C infection.

    Science.gov (United States)

    Dawes, R; Hennig, B; Irving, W; Petrova, S; Boxall, S; Ward, V; Wallace, D; Macallan, D C; Thursz, M; Hill, A; Bodmer, W; Beverley, P C L; Tchilian, E Z

    2006-08-01

    A polymorphism in exon 4 (C77G) of CD45 that alters CD45 splicing has been associated with autoimmune and infectious diseases in humans. To investigate the effect of C77G in hepatitis C virus (HCV) infected individuals and study the phenotype and function of peripheral blood mononuclear cells (PBMC) from healthy and hepatitis C infected C77G carriers. C77G individuals showed an increased proportion of primed CD45RA and effector memory CD8 T cells and more rapid activation of the lymphocyte specific protein tyrosine kinase (Lck) following CD3 stimulation. Transgenic mice with CD45 expression mimicking that in human C77G variants had more activated/memory T cells, more rapid proliferative responses, and activation of Lck. Changes in CD45 isoform expression can alter immune function in human C77G variants and CD45 transgenic mice. The C77G allele may influence the outcome of HCV infection.

  3. Iodinated contrast media alter immune responses in pro-inflammatory states.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2010-07-01

    Hypertonic saline causes a transient elevation of blood osmolality and has been shown to alter cellular inflammatory responses in pro-inflammatory states. Intravascular administration of iodine contrast media also causes a transient elevation of blood osmolarity.

  4. The clandestine organs of the endocrine system.

    Science.gov (United States)

    Garcia-Reyero, Natàlia

    2018-02-01

    This review analyzes what could be regarded as the "clandestine organs" of the endocrine system: the gut microbiome, the immune system, and the stress system. The immune system is very closely related to the endocrine system, with many intertwined processes and signals. Many researchers now consider the microbiome as an 'organ' that affects the organism at many different levels. While stress is certainly not an organ, it affects so many processes, including endocrine-related processes, that the stress response system deserved a special section in this review. Understanding the connections, effects, and feedback mechanisms between the different "clandestine organs" and the endocrine system will provide us with a better understanding of how an organism functions, as well as reinforce the idea that there are no independent organs or systems, but a complex, interacting network of molecules, cells, tissues, signaling pathways, and mechanisms that constitute an individual. Published by Elsevier Inc.

  5. Adaptive immunity alters distinct host feeding pathways during nematode induced inflammation, a novel mechanism in parasite expulsion.

    Directory of Open Access Journals (Sweden)

    John J Worthington

    2013-01-01

    Full Text Available Gastrointestinal infection is often associated with hypophagia and weight loss; however, the precise mechanisms governing these responses remain poorly defined. Furthermore, the possibility that alterations in feeding during infection may be beneficial to the host requires further study. We used the nematode Trichinella spiralis, which transiently inhabits the small intestine before migrating to skeletal muscle, as a biphasic model of infection to determine the cellular and molecular pathways controlling feeding during enteric and peripheral inflammation. Through the infection of genetically modified mice lacking cholecystokinin, Tumor necrosis factor α receptors and T and B-cells, we observed a biphasic hypophagic response to infection resulting from two separate immune-driven mechanisms. The enteroendocrine I-cell derived hormone cholecystokinin is an essential mediator of initial hypophagia and is induced by CD4+ T-cells during enteritis. In contrast, the second hypophagic response is extra-intestinal and due to the anorectic effects of TNFα during peripheral infection of the muscle. Moreover, via maintaining naive levels of the adipose secreted hormone leptin throughout infection we demonstrate a novel feedback loop in the immunoendocrine axis. Immune driven I-cell hyperplasia and resultant weight loss leads to a reduction in the inflammatory adipokine leptin, which in turn heightens protective immunity during infection. These results characterize specific immune mediated mechanisms which reduce feeding during intestinal or peripheral inflammation. Importantly, the molecular mediators of each phase are entirely separate. The data also introduce the first evidence that I-cell hyperplasia is an adaptively driven immune response that directly impinges on the outcome to infection.

  6. Alteration of the number and percentage of innate immune cells in preschool children from an e-waste recycling area.

    Science.gov (United States)

    Zhang, Yu; Xu, Xijin; Sun, Di; Cao, Junjun; Zhang, Yuling; Huo, Xia

    2017-11-01

    Heavy metal lead (Pb) and cadmium (Cd) are widespread environmental contaminants and exert detrimental effects on the immune system. We evaluated the association between Pb/Cd exposures and innate immune cells in children from an electronic waste (e-waste) recycling area. A total number of 294 preschool children were recruited, including 153 children from Guiyu (e-waste exposed group), and 141 from Haojiang (reference group). Pb and Cd levels in peripheral blood were measured by graphite furnace atomic absorption spectrophotometer, NK cell percentages were detected by flow cytometer, and other innate immune cells including monocytes, eosinophils, neutrophils and basophils were immediately measured by automated hematology analyzer. Results showed children in Guiyu had significantly higher Pb and Cd levels than in reference group. Absolute counts of monocytes, eosinophils, neutrophils and basophils, as well as percentages of eosinophils and neutrophils were significantly higher in the Guiyu group. In contrast, NK cell percentages were significantly lower in Guiyu group. Pb elicited significant escalation in counts of monocytes, eosinophils and basophils, as well as percentages of monocytes, but decline in percentages of neutrophils in different quintiles with respect to the first quintile of Pb concentrations. Cd induced significant increase in counts and percentages of neutrophils in the highest quintile compared with the first quintile of Cd concentrations. We concluded alteration of the number and percentage of innate immune cells are linked to higher levels of Pb and Cd, which indicates Pb and Cd exposures might affect the innate and adaptive immune response in Guiyu children. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Endotoxemia is associated with altered innate and adaptive immune responses in untreated HIV-1 infected individuals.

    Directory of Open Access Journals (Sweden)

    Anne Roslev Bukh

    Full Text Available BACKGROUND: Microbial translocation may contribute to the immunopathogenesis in HIV infection. We investigated if microbial translocation and inflammation were associated with innate and adaptive immune responses in adults with HIV. METHODOLOGY/PRINCIPAL FINDINGS: This was an observational cohort study. Sera from HIV-infected and HIV-uninfected individuals were analyzed for microbial translocation (soluble CD14, lipopolysaccharides [LPS], endotoxin core antibody, and anti-α-galactosyl antibodies and inflammatory markers (high sensitivity C-reactive protein, IL-6, IL-1 receptor antagonist, soluble tumor necrosis factor receptor II, and IL-10 with enzyme-linked immunosorbent assays. Peripheral blood mononuclear cells (PBMC from HIV-infected persons and healthy controls (primed with single-stranded HIV-1-derived RNA were stimulated with LPS, and cytokine production was measured. Finally, HIV-infected patients were immunized with Prevnar 7vPnC±CpG 7909 followed by Pneumo Novum PPV-23. Effects of microbial translocation and inflammation on immunization were analyzed in a predictive regression model. We included 96 HIV-infected individuals, 76 on highly active antiretroviral therapy (HAART, 20 HAART-naive, and 50 healthy controls. Microbial translocation and inflammatory markers were higher among HIV-infected persons than controls. Cytokine levels following LPS stimulation were increased in PBMCs from HAART-naive compared to HAART-treated HIV-infected persons. Further, RNA-priming of PBMCs from controls acted synergistically with LPS to augment cytokine responses. Finally, high serum LPS levels predicted poor vaccine responses among HAART-naive, but not among HAART-treated HIV-infected individuals. CONCLUSIONS/SIGNIFICANCE: LPS acts synergistically with HIV RNA to stimulate innate immune responses in vitro and increasing serum LPS levels seem to predict poor antibody responses after vaccination among HAART-naive HIV-infected persons. Thus, our

  8. Effects of Antibiotic Use on the Microbiota of the Gut and Associated Alterations of Immunity and Metabolism

    Directory of Open Access Journals (Sweden)

    M. Pilar Francino

    2013-11-01

    Full Text Available The excessively widespread use of antibiotics has created many threats. A well-known problem is the increasing bacterial resistance to antibiotics, which has clearly become a worldwide challenge to the effective control of infections by many pathogens. But, beyond affecting the pathogenic agents for which it is intended, antibiotic treatment also affects the mutualistic communities of microbes that inhabit the human body. As they inhibit susceptible organisms and select for resistant ones, antibiotics can have strong immediate effects on the composition of these communities, such as the proliferation of resistant opportunists that can cause accute disease. Furthermore, antibiotic-induced microbiota alterations are also likely to have more insidious effects on long-term health. In the case of the gut microbiota, this community interacts with many crucial aspects of human biology, including the regulation of immune and metabolic homeostasis, in the gut and beyond. It follows that antibiotic treatments bear the risk of altering these basic equilibria. Here, we review the growing literature on the effects of antibiotic use on gut microbiota composition and function, and their consequences for immunity, metabolism, and health.

  9. Endocannabinod Signal Dysregulation in Autism Spectrum Disorders: A Correlation Link between Inflammatory State and Neuro-Immune Alterations

    Directory of Open Access Journals (Sweden)

    Anna Lisa Brigida

    2017-07-01

    Full Text Available Several studies highlight a key involvement of endocannabinoid (EC system in autism pathophysiology. The EC system is a complex network of lipid signaling pathways comprised of arachidonic acid-derived compounds (anandamide, AEA and 2-arachidonoyl glycerol (2-AG, their G-protein-coupled receptors (cannabinoid receptors CB1 and CB2 and the associated enzymes. In addition to autism, the EC system is also involved in several other psychiatric disorders (i.e., anxiety, major depression, bipolar disorder and schizophrenia. This system is a key regulator of metabolic and cellular pathways involved in autism, such as food intake, energy metabolism and immune system control. Early studies in autism animal models have demonstrated alterations in the brain’s EC system. Autism is also characterized by immune system dysregulation. This alteration includes differential monocyte and macrophage responses, and abnormal cytokine and T cell levels. EC system dysfunction in a monocyte and macrophagic cellular model of autism has been demonstrated by showing that the mRNA and protein for CB2 receptor and EC enzymes were significantly dysregulated, further indicating the involvement of the EC system in autism-associated immunological disruptions. Taken together, these new findings offer a novel perspective in autism research and indicate that the EC system could represent a novel target option for autism pharmacotherapy.

  10. Low internal radiation alters innate immune status in children with clinical symptom of irritable bowel syndrome.

    Science.gov (United States)

    Sheikh Sajjadieh, Mohammad Reza; Kuznetsova, L V; Bojenko, V B

    2010-09-01

    Adverse health effect of low radiation is clear. The aim of this study was to determine effect of internal low radiation on innate immune status in Ukrainian children with spastic colitis as a result of Chernobyl disaster. The test population consisted of 95 participants: 75 rural participants with clinical symptom of irritable bowel syndrome, aged 4 to 18, who lived in a contaminated area exposed to radio nucleotide due to the disaster in reactor in Chernobyl nuclear power plant (categorized in three groups) and 20 healthy urban participants from Kiev, aged 5 to 15, as the control group. Internal radiation activity has been measured by gamma-ray spectrometry. Peripheral blood leukocytes were analyzed for CD16(+) subset, serum concentration of circulation immune complex was measured by the polyethylene glycol method. Phagocytic activity function was assessed by using latex article and phagocytic index were calculated. p control group (p control group (p control group (p reactor in Chernobyl nuclear power plant.

  11. Altered Innate and Lymphocytic Immune Responses in Mouse Splenocytes Post-Flight

    Science.gov (United States)

    Hwang, ShenAn; Crucian, Brian E.; Sams, Clarence F.; Actor, Jeffrey K.

    2011-01-01

    Space flight is known to affect immune responses of astronauts and animals, decreasing lymphocytic responses to mitogenic stimuli, delayed typed hypersensitivity reactions, and T-cell activation. Despite changes in immune suppression, there are no reports of consistent adverse clinical events post flight. To further investigate the spectrum of affected immune responses, murine splenocytes were stimulated immediately post-shuttle flight (14 days on STS-135) with T-cell stimulators or toll-like receptor agonists. Comparisons were made to ground control splenocytes from age-matched mice. Cell phenotypes were assessed, as well as activation markers and associated cytokine production. The CD4+ population decreased with no concurrent decrease in CD8+ cells from shuttle mice post flight compared to ground controls. Regarding antigen presenting cell populations, the number of CD11c+ cells were slightly elevated post flight, compared to ground controls, with increased MHC Class I expression (I-A(sup b)) and no change in Class II expression (H-2K(sup b)). CD86+ populations were also significantly diminished. However, the decreased markers did not correlate with activity. Stimulation of splenocytes post flight showed significant increase in bead uptake, increased Class I expression, increased TNF-alpha and IL-6 production in response to TLR-2 (zymosan) and TLR-4 (LPS) agonists. While most activated (ConA or anti-CD3/anti-CD28) CD4+ cells showed markedly diminished responses (reduced IL-2 production), non-specific T cell responses to superantigen (SEA/SEB) increased post flight as determined by expression of early activation markers. Production of additional cytokines was also dysregulated postflight. Overall, persistent immune changes during space flight could represent unique clinical risks for exploration class missions. The consequences of pathogenic encounter remain an important concern that should be addressed.

  12. Larval Environment Alters Amphibian Immune Defenses Differentially across Life Stages and Populations.

    Directory of Open Access Journals (Sweden)

    Katherine L Krynak

    Full Text Available Recent global declines, extirpations and extinctions of wildlife caused by newly emergent diseases highlight the need to improve our knowledge of common environmental factors that affect the strength of immune defense traits. To achieve this goal, we examined the influence of acidification and shading of the larval environment on amphibian skin-associated innate immune defense traits, pre and post-metamorphosis, across two populations of American Bullfrogs (Rana catesbeiana, a species known for its wide-ranging environmental tolerance and introduced global distribution. We assessed treatment effects on 1 skin-associated microbial communities and 2 post-metamorphic antimicrobial peptide (AMP production and 3 AMP bioactivity against the fungal pathogen Batrachochytrium dendrobatidis (Bd. While habitat acidification did not affect survival, time to metamorphosis or juvenile mass, we found that a change in average pH from 7 to 6 caused a significant shift in the larval skin microbial community, an effect which disappeared after metamorphosis. Additionally, we found shifts in skin-associated microbial communities across life stages suggesting they are affected by the physiological or ecological changes associated with amphibian metamorphosis. Moreover, we found that post-metamorphic AMP production and bioactivity were significantly affected by the interactions between pH and shade treatments and interactive effects differed across populations. In contrast, there were no significant interactions between treatments on post-metamorphic microbial community structure suggesting that variation in AMPs did not affect microbial community structure within our study. Our findings indicate that commonly encountered variation in the larval environment (i.e. pond pH and degree of shading can have both immediate and long-term effects on the amphibian innate immune defense traits. Our work suggests that the susceptibility of amphibians to emerging diseases could be

  13. Sleep influences the immune response and the rejection process alters sleep pattern: Evidence from a skin allograft model in mice.

    Science.gov (United States)

    Ruiz, Francieli Silva; Andersen, Monica Levy; Guindalini, Camila; Araujo, Leandro Pires; Lopes, José Daniel; Tufik, Sergio

    2017-03-01

    Sleep generally regulates immune functions in a supportive manner and can affect parameters that are directly involved in the rejection process. The first objective was to assess whether sleep deprivation (SD) or sleep restriction (SR) affects the allograft rejection process in mice. The second objective was to investigate whether the rejection process itself modulates the sleep pattern of allografted mice. Adult BALB/c and C57BL/6J male mice were used as the donors and recipients, respectively, except for the syngeneic group (ISOTX), which received skin from mice of the same strain (C57BL/6J). The recipients were randomly assigned to either one of two control groups - TX (allogenic) or ISOTX (syngeneic) - which underwent stereotaxic surgery to enable sleep recording prior to the allograft but were not sleep deprived; one of two paradoxical sleep deprived groups - SDTX and TXSD - which underwent 72h of continuous SD either before or after the allograft respectively, and one of two sleep restricted groups - SRTX and TXSR - which underwent 21h of SD and 3h of sleep for 15days either before or after the allograft respectively. The skin allograft was inspected daily to determine the survival time, expected as 8.0±0.4days in this transplant model under no treatment. The sleep pattern was controlled throughout the rejection process in the SD and SR groups. Draining lymph nodes, spleen, blood and skin grafts were harvested on the 5th day after transplantation for evaluation of the immune parameters related to allograft rejection. In the control groups, we observed a reduction in paradoxical sleep throughout the entire allograft rejection process. Acute and chronic experimental sleep loss in the SD and SR groups produced marked alterations in the immune response. Both SD and SR prolonged allograft survival compared to the non-sleep-deprived group. There were reductions in the following parameters involved in the allograft rejection under sleep loss: CD4 + and CD8 + T cell

  14. Neutrophil Attack Triggers Extracellular Trap-Dependent Candida Cell Wall Remodeling and Altered Immune Recognition.

    Directory of Open Access Journals (Sweden)

    Alex Hopke

    2016-05-01

    Full Text Available Pathogens hide immunogenic epitopes from the host to evade immunity, persist and cause infection. The opportunistic human fungal pathogen Candida albicans, which can cause fatal disease in immunocompromised patient populations, offers a good example as it masks the inflammatory epitope β-glucan in its cell wall from host recognition. It has been demonstrated previously that β-glucan becomes exposed during infection in vivo but the mechanism behind this exposure was unknown. Here, we show that this unmasking involves neutrophil extracellular trap (NET mediated attack, which triggers changes in fungal cell wall architecture that enhance immune recognition by the Dectin-1 β-glucan receptor in vitro. Furthermore, using a mouse model of disseminated candidiasis, we demonstrate the requirement for neutrophils in triggering these fungal cell wall changes in vivo. Importantly, we found that fungal epitope unmasking requires an active fungal response in addition to the stimulus provided by neutrophil attack. NET-mediated damage initiates fungal MAP kinase-driven responses, particularly by Hog1, that dynamically relocalize cell wall remodeling machinery including Chs3, Phr1 and Sur7. Neutrophil-initiated cell wall disruptions augment some macrophage cytokine responses to attacked fungi. This work provides insight into host-pathogen interactions during disseminated candidiasis, including valuable information about how the C. albicans cell wall responds to the biotic stress of immune attack. Our results highlight the important but underappreciated concept that pattern recognition during infection is dynamic and depends on the host-pathogen dialog.

  15. Virulence-Dependent Alterations in the Kinetics of Immune Cells during Pulmonary Infection by Mycobacterium tuberculosis

    Science.gov (United States)

    Han, Seung Jung; Kim, HongMin; Kwon, Kee Woong; Kim, So Jeong; Eum, Seok-Yong; Cho, Sang-Nae; Shin, Sung Jae

    2015-01-01

    A better understanding of the kinetics of accumulated immune cells that are involved in pathophysiology during Mycobacterium tuberculosis (Mtb) infection may help to facilitate the development of vaccines and immunological interventions. However, the kinetics of innate and adaptive cells that are associated with pathogenesis during Mtb infection and their relationship to Mtb virulence are not clearly understood. In this study, we used a mouse model to compare the bacterial burden, inflammation and kinetics of immune cells during aerogenic infection in the lung between laboratory-adapted strains (Mtb H37Rv and H37Ra) and Mtb K strain, a hyper-virulent W-Beijing lineage strain. The Mtb K strain multiplied more than 10- and 3.54-fold more rapidly than H37Ra and H37Rv, respectively, during the early stage of infection (at 28 days post-infection) and resulted in exacerbated lung pathology at 56 to 112 days post-infection. Similar numbers of innate immune cells had infiltrated, regardless of the strain, by 14 days post-infection. High, time-dependent frequencies of F4/80-CD11c+CD11b-Siglec-H+PDCA-1+ plasmacytoid DCs and CD11c-CD11b+Gr-1int cells were observed in the lungs of mice that were infected with the Mtb K strain. Regarding adaptive immunity, Th1 and Th17 T cells that express T-bet and RORγt, respectively, significantly increased in the lungs that were infected with the laboratory-adapted strains, and the population of CD4+CD25+Foxp3+ regulatory T cells was remarkably increased at 112 days post-infection in the lungs of mice that were infected with the K strain. Collectively, our findings indicate that the highly virulent Mtb K strain may trigger the accumulation of pDCs and Gr1intCD11b+ cells with the concomitant down-regulation of the Th1 response and the maintenance of an up-regulated Th2 response without inducing a Th17 response during chronic infection. These results will help to determine which immune system components must be considered for the development

  16. Antibiotic-Induced Changes to the Host Metabolic Environment Inhibit Drug Efficacy and Alter Immune Function

    DEFF Research Database (Denmark)

    Yang, Jason H.; Bhargava, Prerna; McCloskey, Douglas

    2017-01-01

    Bactericidal antibiotics alter microbial metabolism as part of their lethality and can damage mitochondria in mammalian cells. In addition, antibiotic susceptibility is sensitive to extracellular metabolites, but it remains unknown whether metabolites present at an infection site can affect eithe...... the immunomodulatory potential of antibiotics and reveal the local metabolic microenvironment to be an important determinant of infection resolution....

  17. Plasma immune protein analysis in the orange-spotted grouper Epinephelus coioides: Evidence for altered expressions of immune factors associated with a choline-supplemented diet.

    Science.gov (United States)

    Shiu, Ya-Li; Chiu, Kuo-Hsun; Huynh, Truong-Giang; Liu, Ping-Chung; Liu, Chun-Hung

    2017-06-01

    This study aimed to unravel the regulatory roles of choline in activating immune responses and disease resistance of the orange-spotted grouper Epinephelus coioides. Fish were fed a choline-supplemented diet at 1 g kg -1 of feed for 30 days. Fish fed a fish meal basal diet without choline-supplement served as controls. At the end of the feeding trial, fish were challenged with Vibrio alginolyticus. Meanwhile, plasma proteomics of fish in each group were also evaluated by two-dimensional gel electrophoresis (2-DE), and differentially expressed proteins were identified by tandem mass spectrophotometry (MS/MS), then a Western blot analysis or real-time polymerase chain reaction was used to confirm differential expressions of immune-enhancing proteins. Results showed that choline significantly increased survival of E. coioides 48 days after being injected with V. alginolyticus. From maps of plasma proteins, a comparative analysis between the control and choline groups revealed that 111 spots matched, with 26 altered expression spots in the choline group. Of these 26 spots, 16 were upregulated and 10 downregulated. After protein identification by reverse-phase nano-high-performance liquid chromatography-electrospray ionization MS/MS analysis, eight of 26 proteins were found to be immune-related proteins, all of which were upregulated, including complement 3 (C3), alpha-2-macroglobulin-P-like isoform (A2M), fibrinogen beta chain precursor (FBG), and immunoglobulin heavy constant mu (Ighm) proteins. Expression of the A2M protein and A2M enzyme activity in plasma of fish fed choline significantly increased compared to the control group. Additionally, A2M messenger (m)RNA transcripts were also upregulated in the liver and kidneys. Significantly higher C3 expressions at both the mRNA and protein levels were detected in the liver of fish in the choline group. Moreover, FBG gene expressions in the liver and kidneys significantly increased, while Ighm increased in the

  18. The molecular classification of hereditary endocrine diseases.

    Science.gov (United States)

    Ye, Lei; Ning, Guang

    2015-12-01

    Hereditary endocrine diseases are an important group of diseases with great heterogeneity. The current classification for hereditary endocrine disease is mostly based upon anatomy, which is helpful for pathophysiological interpretation, but does not address the pathogenic variability associated with different underlying genetic causes. Identification of an endocrinopathy-associated genetic alteration provides evidence for differential diagnosis, discovery of non-classical disease, and the potential for earlier diagnosis and targeted therapy. Molecular diagnosis should be routinely applied when managing patients with suspicion of hereditary disease. To enhance the accurate diagnosis and treatment of patients with hereditary endocrine diseases, we propose categorization of endocrine diseases into three groups based upon the function of the mutant gene: cell differentiation, hormone synthesis and action, and tumorigenesis. Each category was further grouped according to the specific gene function. We believe that this format would facilitate practice of precision medicine in the field of hereditary endocrine diseases.

  19. Alterations in the Immune Cell Composition in Premalignant Breast Tissue that Precede Breast Cancer Development.

    Science.gov (United States)

    Degnim, Amy C; Hoskin, Tanya L; Arshad, Muhammad; Frost, Marlene H; Winham, Stacey J; Brahmbhatt, Rushin A; Pena, Alvaro; Carter, Jodi M; Stallings-Mann, Melody L; Murphy, Linda M; Miller, Erin E; Denison, Lori A; Vachon, Celine M; Knutson, Keith L; Radisky, Derek C; Visscher, Daniel W

    2017-07-15

    Purpose: Little is known about the role of the immune system in the earliest stages of breast carcinogenesis. We studied quantitative differences in immune cell types between breast tissues from normal donors and those from women with benign breast disease (BBD). Experimental Design: A breast tissue matched case-control study was created from donors to the Susan G. Komen for the Cure Tissue Bank (KTB) and from women diagnosed with BBD at Mayo Clinic (Rochester, MN) who either subsequently developed cancer (BBD cases) or remained cancer-free (BBD controls). Serial tissue sections underwent immunostaining and digital quantification of cell number per mm 2 for CD4 + T cells, CD8 + T cells, CD20 + B cells, and CD68 + macrophages and quantification of positive pixel measure for CD11c (dendritic cells). Results: In 94 age-matched triplets, BBD lobules showed greater densities of CD8 + T cells, CD11c + dendritic cells, CD20 + B cells, and CD68 + macrophages compared with KTB normals. Relative to BBD controls, BBD cases had lower CD20 + cell density ( P = 0.04). Nearly 42% of BBD cases had no CD20 + B cells in evaluated lobules compared with 28% of BBD controls ( P = 0.02). The absence of CD20 + cells versus the presence in all lobules showed an adjusted OR of 5.7 (95% confidence interval, 1.4-23.1) for subsequent breast cancer risk. Conclusions: Elevated infiltration of both innate and adaptive immune effectors in BBD tissues suggests an immunogenic microenvironment. The reduced B-cell infiltration in women with later breast cancer suggests a role for B cells in preventing disease progression and as a possible biomarker for breast cancer risk. Clin Cancer Res; 23(14); 3945-52. ©2017 AACR . ©2017 American Association for Cancer Research.

  20. Ionizing radiation selectively reduces skin regulatory T cells and alters immune function.

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    Full Text Available The skin serves multiple functions that are critical for life. The protection from pathogens is achieved by a complicated interaction between aggressive effectors and controlling functions that limit damage. Inhomogeneous radiation with limited penetration is used in certain types of therapeutics and is experienced with exposure to solar particle events outside the protection of the Earth's magnetic field. This study explores the effect of ionizing radiation on skin immune function. We demonstrate that radiation, both homogeneous and inhomogeneous, induces inflammation with resultant specific loss of regulatory T cells from the skin. This results in a hyper-responsive state with increased delayed type hypersensitivity in vivo and CD4+ T cell proliferation in vitro. The effects of inhomogeneous radiation to the skin of astronauts or as part of a therapeutic approach could result in an unexpected enhancement in skin immune function. The effects of this need to be considered in the design of radiation therapy protocols and in the development of countermeasures for extended space travel.

  1. Rodent vertical sleeve gastrectomy alters maternal immune health and fetoplacental development.

    Science.gov (United States)

    Spann, Redin A; Lawson, William J; Bidwell, Gene L; Zamarripa, C Austin; Maranon, Rodrigo O; Bandyopadhyay, Sibali; Taylor, Erin R; Reckelhoff, Jane F; Garrett, Michael R; Grayson, Bernadette E

    2018-01-31

    Bariatric surgery is increasingly employed to improve fertility and reduce obesity-related co-morbidities in obese women. Surgical weight loss not only improves the chance of conception but reduces the risk of pregnancy complications including pre-eclampsia, gestational diabetes, and macrosomia. However, bariatric procedures increase the incidence of intrauterine growth restriction (IUGR), fetal demise, thromboembolism, and other gestational disorders. Using our rodent model of vertical sleeve gastrectomy (VSG), we tested the hypothesis that VSG in diet-induced, obese dams would cause immune and placental structural abnormalities that may be responsible for fetal demise during pregnancy. VSG dams studied on gestational day (G) 19 had reduced circulating T-cell (CD3 + and CD8 + ) populations compared with lean or obese controls. Further, local interleukin (IL) 1β and IL 1 receptor antagonist ( il1rn ) cmRNA were increased in placenta of VSG dams. Placental barrier function was also affected, with increased transplacental permeability to small molecules, increased matrix metalloproteinase 9 expression, and increased apoptosis in VSG. Furthermore, we identified increased placental mTOR signaling that may contribute to preserving the body weight of the fetuses during gestation. These changes occurred in the absence of a macronutrient deficit or gestational hypertension in the VSG dams. In summary, previous VSG in dams may contribute to fetal demise by affecting maternal immune system activity and compromise placental integrity. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  2. Altered levels of soluble CD18 may associate immune mechanisms with outcome in sepsis

    DEFF Research Database (Denmark)

    Kragstrup, Tue Wenzel; Juul-Madsen, Kristian; Hill Christiansen, Stig

    2017-01-01

    The pathogenesis of sepsis involves a dual inflammatory response, with a hyper-inflammatory phase followed by, or in combination with, a hypo-inflammatory phase. The adhesion molecules LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18) support leukocyte adhesion to intercellular adhesion molecules...... and phagocytosis through complement opsonisation, both processes relevant to the immune response during sepsis. Here, we investigate the role of soluble (s)CD18 in sepsis with emphasis on sCD18 as a mechanistic biomarker of immune reactions and outcome of sepsis. sCD18 levels were measured in fifteen septic...... and fifteen critically ill non-septic patients. Fifteen healthy volunteers served as controls. CD18 shedding from human mononuclear cells was increased in vitro by several pro-inflammatory mediators relevant in sepsis. sCD18 inhibited cell adhesion to the complement fragment iC3b, which is a ligand for CD11b...

  3. SECONDARY (ENDOCRINE HYPERTENSION: LECTURE

    Directory of Open Access Journals (Sweden)

    M. Yu. Yukina

    2016-01-01

    Full Text Available Hypertension is a  very common disease with high morbidity and reduction in quality of life. Endocrine disorders are the most common cause of secondary hypertension affecting ~3% of the population. Primary aldosteronism can be the cause of endocrine hypertension more often than other endocrine disorders. Other less common causes of endocrine hypertension include Cushing syndrome, pheochromocytoma, thyroid disorders, and hyperparathyroidism. Endocrine hypertension is potentially curable if the underlying cause is identified and treated accordingly. Younger age at manifestation of resistance to multiple antihypertensive drugs, together with other clinical signs of an endocrine disorder, should raise the suspicion and prompt the appropriate evaluation.

  4. Effects of alcohol on the endocrine system.

    Science.gov (United States)

    Rachdaoui, Nadia; Sarkar, Dipak K

    2013-09-01

    Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine, and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiologic and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease, and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Are endocrine and reproductive biomarkers altered in contaminant-exposed wild male Largemouth Bass (Micropterus salmoides) of Lake Mead, Nevada/Arizona, USA?

    Science.gov (United States)

    Goodbred, Steven L.; Patino, Reynaldo; Torres, Leticia; Echols, Kathy R.; Jenkins, Jill A.; Rosen, Michael R.; Orsak, Erik

    2015-01-01

    Male Largemouth Bass were sampled from two locations in Lake Mead (USA), a site influenced by treated municipal wastewater effluent and urban runoff (Las Vegas Bay), and a reference site (Overton Arm). Samples were collected in summer (July '07) and spring (March '08) to assess general health, endocrine and reproductive biomarkers, and compare contaminant body burdens by analyzing 252 organic chemicals. Sperm count and motility were measured in spring. Contaminants were detected at much higher frequencies and concentrations in fish from Las Vegas Bay than Overton Arm. Those with the highest concentrations included PCBs, DDTs, PBDEs, galaxolide, and methyl triclosan. Fish from Las Vegas Bay also had higher Fulton condition factor, hepatosomatic index, and hematocrit, and lower plasma 11-ketotestosterone concentration (KT). Gonadosomatic index (GSI) and sperm motility did not differ between sites, but sperm count was lower by nearly 50% in fish from Las Vegas Bay. A positive association between KT and GSI was identified, but this association was nonlinear. On average, maximal GSI was reached at sub-maximal KT concentrations. In conclusion, the higher concentration of contaminant body burdens coupled with reduced levels of KT and sperm count in fish from Las Vegas Bay suggest that male reproductive condition was influenced by contaminant exposures. Also, the nonlinear KT-GSI association provided a framework to understand why GSI was similar between male bass from both sites despite their large difference in KT, and also suggested the existence of post-gonadal growth functions of KT at high concentrations.

  6. The effects of nanomaterials as endocrine disruptors.

    Science.gov (United States)

    Iavicoli, Ivo; Fontana, Luca; Leso, Veruscka; Bergamaschi, Antonio

    2013-08-14

    In recent years, nanoparticles have been increasingly used in several industrial, consumer and medical applications because of their unique physico-chemical properties. However, in vitro and in vivo studies have demonstrated that these properties are also closely associated with detrimental health effects. There is a serious lack of information on the potential nanoparticle hazard to human health, particularly on their possible toxic effects on the endocrine system. This topic is of primary importance since the disruption of endocrine functions is associated with severe adverse effects on human health. Consequently, in order to gather information on the hazardous effects of nanoparticles on endocrine organs, we reviewed the data available in the literature regarding the endocrine effects of in vitro and in vivo exposure to different types of nanoparticles. Our aim was to understand the potential endocrine disrupting risks posed by nanoparticles, to assess their underlying mechanisms of action and identify areas in which further investigation is needed in order to obtain a deeper understanding of the role of nanoparticles as endocrine disruptors. Current data support the notion that different types of nanoparticles are capable of altering the normal and physiological activity of the endocrine system. However, a critical evaluation of these findings suggests the need to interpret these results with caution since information on potential endocrine interactions and the toxicity of nanoparticles is quite limited.

  7. Stimulation of the Drosophila immune system alters genome-wide nucleosome occupancy

    Directory of Open Access Journals (Sweden)

    Yingxue Ren

    2015-03-01

    Full Text Available In eukaryotes, nucleosomes participate in all DNA-templated events by regulating access to the underlying DNA sequence. However, nucleosome dynamics during a genome response have not been well characterized [1,2]. We stimulated Drosophila S2 cells with heat-killed Gram-negative bacteria Salmonella typhimurium, and mapped genome-wide nucleosome occupancy at high temporal resolution by MNase-seq using Illumina HiSeq 2500. We show widespread nucleosome occupancy change in S2 cells during the immune response, with the significant nucleosomal loss occurring at 4 h after stimulation. Data have been deposited to the Gene Expression Omnibus (GEO database repository with the dataset identifier GSE64507.

  8. Children after Chernobyl: immune cells adaptive changes and stable alterations under low-dose irradiation

    International Nuclear Information System (INIS)

    Bazyka, D.A.; Chumak, A.A.; Bebeshko, V.G.; Beliaeva, N.V.

    1997-01-01

    Early changes of immune parameters in children evacuated from 30-km zone were characterized by E-rossette forming cells decrease and E-receptor non-stability in theophylline assay, surface Ig changes. Immunological follow-up of children inhabitants of territories contaminated with radionuclides after Chernobyl accident revealed TCR/CD3, CD4 and MHC CD3+, CD4+, CD57+ subsets, RIL-2, TrT expression and calcium channel activity. PMNC percentage with cortical thymocyte phenotype (CD1+, CD4+8+) was elevated during the first years after the accident and seemed to be of a compensatory origin. Combination of heterogenic activation and suppression subset reactions and changes in fine subset (Th1/Th2) organization were suggested. Adaptive and compensatory reactions were supposed and delayed hypersensitivity reactions increase as well. (author)

  9. Ficolins do not alter host immune responses to lipopolysaccharide-induced inflammation in vivo

    DEFF Research Database (Denmark)

    Genster, Ninette; Østrup, Olga; Schjalm, Camilla

    2017-01-01

    Ficolins are a family of pattern recognition molecules that are capable of activating the lectin pathway of complement. A limited number of reports have demonstrated a protective role of ficolins in animal models of infection. In addition, an immune modulatory role of ficolins has been suggested....... Yet, the contribution of ficolins to inflammatory disease processes remains elusive. To address this, we investigated ficolin deficient mice during a lipopolysaccharide (LPS)-induced model of systemic inflammation. Although murine serum ficolin was shown to bind LPS in vitro, there was no difference...... an unaltered spleen transcriptome profile in ficolin deficient mice compared to wildtype mice. Collectively, results from this study demonstrate that ficolins are not involved in host response to LPS-induced systemic inflammation....

  10. Thirty Minutes of Hypobaric Hypoxia Provokes Alterations of Immune Response, Haemostasis, and Metabolism Proteins in Human Serum

    Directory of Open Access Journals (Sweden)

    Jochen Hinkelbein

    2017-08-01

    Full Text Available Hypobaric hypoxia (HH during airline travel induces several (patho- physiological reactions in the human body. Whereas severe hypoxia is investigated thoroughly, very little is known about effects of moderate or short-term hypoxia, e.g. during airline flights. The aim of the present study was to analyse changes in serum protein expression and activation of signalling cascades in human volunteers staying for 30 min in a simulated altitude equivalent to airline travel. After approval of the local ethics committee, 10 participants were exposed to moderate hypoxia (simulation of 2400 m or 8000 ft for 30 min in a hypobaric pressure chamber. Before and after hypobaric hypoxia, serum was drawn, centrifuged, and analysed by two-dimensional gel electrophoresis (2-DIGE and matrix-assisted laser desorption/ionization followed by time-of-flight mass spectrometry (MALDI-TOF. Biological functions of regulated proteins were identified using functional network analysis (GeneMania®, STRING®, and Perseus® software. In participants, oxygen saturation decreased from 98.1 ± 1.3% to 89.2 ± 1.8% during HH. Expression of 14 spots (i.e., 10 proteins: ALB, PGK1, APOE, GAPDH, C1QA, C1QB, CAT, CA1, F2, and CLU was significantly altered. Bioinformatic analysis revealed an association of the altered proteins with the signalling cascades “regulation of haemostasis” (four proteins, “metabolism” (five proteins, and “leukocyte mediated immune response” (five proteins. Even though hypobaric hypoxia was short and moderate (comparable to an airliner flight, analysis of protein expression in human subjects revealed an association to immune response, protein metabolism, and haemostasis

  11. Combining Growth Factor and Bone Marrow Cell Therapy Induces Bleeding and Alters Immune Response After Stroke in Mice.

    Science.gov (United States)

    Strecker, Jan-Kolja; Olk, Joanna; Hoppen, Maike; Gess, Burkhard; Diederich, Kai; Schmidt, Antje; Schäbitz, Wolf-Rüdiger; Schilling, Matthias; Minnerup, Jens

    2016-03-01

    Bone marrow cell (BMC)-based therapies, either the transplantation of exogenous cells or stimulation of endogenous cells by growth factors like the granulocyte colony-stimulating factor (G-CSF), are considered a promising means of treating stroke. In contrast to large preclinical evidence, however, a recent clinical stroke trial on G-CSF was neutral. We, therefore, aimed to investigate possible synergistic effects of co-administration of G-CSF and BMCs after experimental stroke in mice to enhance the efficacy compared with single treatments. We used an animal model for experimental stroke as paradigm to study possible synergistic effects of co-administration of G-CSF and BMCs on the functional outcome and the pathophysiological mechanism. G-CSF treatment alone led to an improved functional outcome, a reduced infarct volume, increased blood vessel stabilization, and decreased overall inflammation. Surprisingly, the combination of G-CSF and BMCs abrogated G-CSFs' beneficial effects and resulted in increased hemorrhagic infarct transformation, altered blood-brain barrier, excessive astrogliosis, and altered immune cell polarization. These increased rates of infarct bleeding were mainly mediated by elevated matrix metalloproteinase-9-mediated blood-brain barrier breakdown in G-CSF- and BMCs-treated animals combined with an increased number of dilated and thus likely more fragile vessels in the subacute phase after cerebral ischemia. Our results provide new insights into both BMC-based therapies and immune cell biology and help to understand potential adverse and unexpected side effects. © 2016 American Heart Association, Inc.

  12. Larval exposure to predator cues alters immune function and response to a fungal pathogen in post-metamorphic wood frogs.

    Science.gov (United States)

    Groner, Maya L; Buck, Julia C; Gervasi, Stephanie; Blaustein, Andrew R; Reinert, Laura K; Rollins-Smith, Louise A; Bier, Mark E; Hempel, John; Relyea, Rick A

    2013-09-01

    For the past several decades, amphibian populations have been decreasing around the globe at an unprecedented rate. Batrachochytrium dendrobatidis (Bd), the fungal pathogen that causes chytridiomycosis in amphibians, is contributing to amphibian declines. Natural and anthropogenic environmental factors are hypothesized to contribute to these declines by reducing the immunocompetence of amphibian hosts, making them more susceptible to infection. Antimicrobial peptides (AMPs) produced in the granular glands of a frog's skin are thought to be a key defense against Bd infection. These peptides may be a critical immune defense during metamorphosis because many acquired immune functions are suppressed during this time. To test if stressors alter AMP production and survival of frogs exposed to Bd, we exposed wood frog (Lithobates sylvaticus) tadpoles to the presence or absence of dragonfly predator cues crossed with a single exposure to three nominal concentrations of the insecticide malathion (0, 10, or 100 parts per billion [ppb]). We then exposed a subset of post-metamorphic frogs to the presence or absence of Bd zoospores and measured frog survival. Although predator cues and malathion had no effect on survival or size at metamorphosis, predator cues increased the time to metamorphosis by 1.5 days and caused a trend of a 20% decrease in hydrophobic skin peptides. Despite this decrease in peptides determined shortly after metamorphosis, previous exposure to predator cues increased survival in both Bd-exposed and unexposed frogs several weeks after metamorphosis. These results suggest that exposing tadpoles to predator cues confers fitness benefits later in life.

  13. The Bacterial Second Messenger Cyclic di-GMP Regulates Brucella Pathogenesis and Leads to Altered Host Immune Response.

    Science.gov (United States)

    Khan, Mike; Harms, Jerome S; Marim, Fernanda M; Armon, Leah; Hall, Cherisse L; Liu, Yi-Ping; Banai, Menachem; Oliveira, Sergio C; Splitter, Gary A; Smith, Judith A

    2016-12-01

    Brucella species are facultative intracellular bacteria that cause brucellosis, a chronic debilitating disease significantly impacting global health and prosperity. Much remains to be learned about how Brucella spp. succeed in sabotaging immune host cells and how Brucella spp. respond to environmental challenges. Multiple types of bacteria employ the prokaryotic second messenger cyclic di-GMP (c-di-GMP) to coordinate responses to shifting environments. To determine the role of c-di-GMP in Brucella physiology and in shaping host-Brucella interactions, we utilized c-di-GMP regulatory enzyme deletion mutants. Our results show that a ΔbpdA phosphodiesterase mutant producing excess c-di-GMP displays marked attenuation in vitro and in vivo during later infections. Although c-di-GMP is known to stimulate the innate sensor STING, surprisingly, the ΔbpdA mutant induced a weaker host immune response than did wild-type Brucella or the low-c-di-GMP guanylate cyclase ΔcgsB mutant. Proteomics analysis revealed that c-di-GMP regulates several processes critical for virulence, including cell wall and biofilm formation, nutrient acquisition, and the type IV secretion system. Finally, ΔbpdA mutants exhibited altered morphology and were hypersensitive to nutrient-limiting conditions. In summary, our results indicate a vital role for c-di-GMP in allowing Brucella to successfully navigate stressful and shifting environments to establish intracellular infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Multiple Endocrine Neoplasia Syndromes

    Science.gov (United States)

    ... switch to the Professional version Home Hormonal and Metabolic Disorders Multiple Endocrine Neoplasia Syndromes Multiple Endocrine Neoplasia Syndromes Types Type 1 disease Type 2A disease Type 2B disease Diagnosis Treatment Resources In This Article Drugs Mentioned In This ...

  15. Landscape structure and management alter the outcome of a pesticide ERA: Evaluating impacts of endocrine disruption using the ALMaSS European Brown Hare model.

    Science.gov (United States)

    Topping, Chris J; Dalby, Lars; Skov, Flemming

    2016-01-15

    There is a gradual change towards explicitly considering landscapes in regulatory risk assessment. To realise the objective of developing representative scenarios for risk assessment it is necessary to know how detailed a landscape representation is needed to generate a realistic risk assessment, and indeed how to generate such landscapes. This paper evaluates the contribution of landscape and farming components to a model based risk assessment of a fictitious endocrine disruptor on hares. In addition, we present methods and code examples for generation of landscape structures and farming simulation from data collected primarily for EU agricultural subsidy support and GIS map data. Ten different Danish landscapes were generated and the ERA carried out for each landscape using two different assumed toxicities. The results showed negative impacts in all cases, but the extent and form in terms of impacts on abundance or occupancy differed greatly between landscapes. A meta-model was created, predicting impact from landscape and farming characteristics. Scenarios based on all combinations of farming and landscape for five landscapes representing extreme and middle impacts were created. The meta-models developed from the 10 real landscapes failed to predict impacts for these 25 scenarios. Landscape, farming, and the emergent density of hares all influenced the results of the risk assessment considerably. The study indicates that prediction of a reasonable worst case scenario is difficult from structural, farming or population metrics; rather the emergent properties generated from interactions between landscape, management and ecology are needed. Meta-modelling may also fail to predict impacts, even when restricting inputs to combinations of those used to create the model. Future ERA may therefore need to make use of multiple scenarios representing a wide range of conditions to avoid locally unacceptable risks. This approach could now be feasible Europe wide given the

  16. Lymphocyte GH-axis hormones in immunity.

    Science.gov (United States)

    Weigent, Douglas A

    2013-01-01

    The production and utilization of common ligands and their receptors by cells of the immune and neuroendocrine systems constitutes a biochemical information circuit between and within the immune and neuroendocrine systems. The sharing of ligands and receptors allows the immune system to serve as the sixth sense notifying the nervous system of the presence of foreign entities. Within this framework, it is also clear that immune cell functions can be altered by neuroendocrine hormones and that cells of the immune system have the ability to produce neuroendocrine hormones. This review summarizes a part of this knowledge with particular emphasis on growth hormone (GH). The past two decades have uncovered a lot of detail about the actions of GH, acting through its receptor, at the molecular and cellular level and its influence on the immune system. The production and action of immune cell-derived GH is less well developed although its important role in immunity is also slowly emerging. Here we discuss the production of GH, GH-releasing hormone (GHRH) and insulin-like growth factor-1 (IGF-1) and their cognate receptors on cells of the immune system and their influence via endocrine/autocrine/paracrine and intracrine pathways on immune function. The intracellular mechanisms of action of immune cell-derived GH are still largely unexplored, and it is anticipated that further work in this particular area will establish an important role for this source of GH in normal physiology and in pathologic situations. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Necrosis-Driven Systemic Immune Response Alters SAM Metabolism through the FOXO-GNMT Axis

    Directory of Open Access Journals (Sweden)

    Fumiaki Obata

    2014-05-01

    Full Text Available Sterile inflammation triggered by endogenous factors is thought to contribute to the pathogenesis of acute and chronic inflammatory diseases. Here, we demonstrate that apoptosis-deficient mutants spontaneously develop a necrosis-driven systemic immune response in Drosophila and provide an in vivo model for studying the organismal response to sterile inflammation. Metabolomic analysis of hemolymph from apoptosis-deficient mutants revealed increased sarcosine and reduced S-adenosyl-methionine (SAM levels due to glycine N-methyltransferase (Gnmt upregulation. We showed that Gnmt was elevated in response to Toll activation induced by the local necrosis of wing epidermal cells. Necrosis-driven inflammatory conditions induced dFoxO hyperactivation, leading to an energy-wasting phenotype. Gnmt was cell-autonomously upregulated by dFoxO in the fat body as a possible rheostat for controlling energy loss, which functioned during fasting as well as inflammatory conditions. We propose that the dFoxO-Gnmt axis is essential for the maintenance of organismal SAM metabolism and energy homeostasis.

  18. Altered Innate Immune Responses in Neutrophils from Patients with Well- and Suboptimally Controlled Asthma

    Directory of Open Access Journals (Sweden)

    Francesca S. M. Tang

    2015-01-01

    Full Text Available Background. Respiratory infections are a major cause of asthma exacerbations where neutrophilic inflammation dominates and is associated with steroid refractory asthma. Structural airway cells in asthma differ from nonasthmatics; however it is unknown if neutrophils differ. We investigated neutrophil immune responses in patients who have good (AGood and suboptimal (ASubopt asthma symptom control. Methods. Peripheral blood neutrophils from AGood (ACQ 0.75, n=7, and healthy controls (HC (n=9 were stimulated with bacterial (LPS (1 μg/mL, fMLF (100 nM, and viral (imiquimod (3 μg/mL, R848 (1.5 μg/mL, and poly I:C (10 μg/mL surrogates or live rhinovirus (RV 16 (MOI1. Cell-free supernatant was collected after 1 h for neutrophil elastase (NE and matrix metalloproteinase- (MMP- 9 measurements or after 24 h for CXCL8 release. Results. Constitutive NE was enhanced in AGood neutrophils compared to HC. fMLF stimulated neutrophils from ASubopt but not AGood produced 50% of HC levels. fMLF induced MMP-9 was impaired in ASubopt and AGood compared to HC. fMLF stimulated CXCL8 but not MMP-9 was positively correlated with FEV1 and FEV1/FVC. ASubopt and AGood responded similarly to other stimuli. Conclusions. Circulating neutrophils are different in asthma; however, this is likely to be related to airflow limitation rather than asthma control.

  19. Endocrine autoimmune diseases and female infertility.

    Science.gov (United States)

    Sen, Aritro; Kushnir, Vitaly A; Barad, David H; Gleicher, Norbert

    2014-01-01

    An increasing body of evidence suggests that immune-mediated processes affect female reproductive success at multiple levels. Crosstalk between endocrine and immune systems regulates a large number of biological processes that affect target tissues, and this crosstalk involves gene expression, cytokine and/or lymphokine release and hormone action. In addition, endocrine-immune interactions have a major role in the implantation process of the fetal (paternally derived) semi-allograft, which requires a reprogramming process of the maternal immune system from rejection to temporary tolerance for the length of gestation. Usually, the female immune system is supportive of all of these processes and, therefore, facilitates reproductive success. Abnormalities of the female immune system, including autoimmunity, potentially interfere at multiple levels. The relevance of the immune system to female infertility is increasingly recognized by investigators, but clinically is often not adequately considered and is, therefore, underestimated. This Review summarizes the effect of individual autoimmune endocrine diseases on female fertility, and points towards selected developments expected in the near future.

  20. Routine exercise alters measures of immunity and the acute phase reaction.

    Science.gov (United States)

    Horn, P L; West, N P; Pyne, D B; Koerbin, G; Lehtinen, S J; Fricker, P A; Cripps, A W

    2015-02-01

    To expand our understanding of the overall anti-inflammatory nature of routine exercise; we compared resting blood values from adults who habitually undertake frequent, moderate levels of exercise to reference interval values assumed to reflect values largely from non-exercisers. This information would be useful for clinicians interpreting blood tests assessing inflammatory, immune and acute phase responses. Blood samples were collected from 119 community adult self-reported routine exercisers (61 males and 58 females aged 18-60 years). Samples were analysed for 20 cellular and non-cellular biomarkers which included 11 immunological and 9 acute phase reactants. These data were compared to reference intervals from the same hospital laboratory that performed the analyses on our participants' samples. Individual analyte values were also compared with participants' self-reported 150 day exercise patterns which included exercise frequency, intensity and duration. In general, mean values for routine exercise participants fell at the lower end of laboratory reference interval for most inflammatory analytes. More than 10 % of participants had numbers of CD19(+), CD8(+) and 16/56(+) NK cells below the low end of the respective reference interval. More than 10 % of observed acute phase reactant values (for C3, haptoglobin and ferritin) were also below the low end of the reference interval. At rest IgM (r = -0.22) and IgG (r = -0.31) values correlated negatively (p acute phase reactants. These wide-ranging systemic effects are presumably adaptive changes, not pathology and collectively confirm the well-reported and clinically important anti-inflammatory effects of exercise.

  1. Exposure to Silver Nanospheres Leads to Altered Respiratory Mechanics and Delayed Immune Response in an in Vivo Murine Model

    Directory of Open Access Journals (Sweden)

    Danielle Botelho

    2018-03-01

    Full Text Available Here we examine the organ level toxicology of both carbon black (CB and silver nanoparticles (AgNP. We aim to determine metal-specific effects to respiratory function, inflammation and potential interactions with lung lining fluid (LLF. C57Bl6/J male mice were intratracheally instilled with saline (control, low (0.05 μg/g or high (0.5 μg/g doses of either AgNP or CB 15 nm nanospheres. Lung histology, cytology, surfactant composition and function, inflammatory gene expression, and pulmonary function were measured at 1, 3, and 7 days post-exposure. Acutely, high dose CB resulted in an inflammatory response, increased neutrophilia and cytokine production, without alteration in surfactant composition or respiratory mechanics. Low dose CB had no effect. Neither low nor high dose AgNPs resulted in an acute inflammatory response, but there was an increase in work of breathing. Three days post-exposure with CB, a persistent neutrophilia was noted. High dose AgNP resulted in an elevated number of macrophages and invasion of lymphocytes. Additionally, AgNP treated mice displayed increased expression of IL1B, IL6, CCL2, and IL10. However, there were no significant changes in respiratory mechanics. At day 7, inflammation had resolved in AgNP-treated mice, but tissue stiffness and resistance were significantly decreased, which was accompanied by an increase in surfactant protein D (SP-D content. These data demonstrate that the presence of metal alters the response of the lung to nanoparticle exposure. AgNP-surfactant interactions may alter respiratory function and result in a delayed immune response, potentially due to modified airway epithelial cell function.

  2. Molecular mechanisms of cis-urocanic acid and permethrin-induced alterations in cutaneous immunity.

    Science.gov (United States)

    Prater, M R; Blaylock, B L; Holladay, S D

    2003-12-01

    Cutaneous cis-urocanic acid (cUCA) or ultraviolet B exposure has been shown to cause diminished cutaneous contact hypersensitivity (CH) and to induce systemic tolerance (increased regulatory T lymphocytes) in mice. Permethrin is also a known CH inhibitor, but the molecular mechanisms are currently poorly understood. In this study, CH was evaluated in four strains of mice: an immunosensitive strain (C57BL/6N), an immunoresistant strain (SvImJ), a strain developed from C57BL/6N mice but genetically altered at both the tumor necrosis factor-alpha receptors (TNFalphap55R and p75R), and a strain developed from C57BL/6N but genetically deleted at the interferon-gamma (IFNgamma) locus. CH was evaluated in each group via oxazolone challenge following a 5-day exposure to intradermal (ID) cUCA or a single exposure to topical permethrin, or co-exposure to both chemicals in 5-week-old female C57BL/6N, SvImJ, and C57BL/6N mice genetically altered at the TNFalpha or IFNgamma locus. A 5-day exposure to ID cUCA or a single exposure to topical permethrin resulted in diminished CH response in C57BL/6N mice, and this effect was exacerbated with concurrent exposure to both chemicals. CH in SvImJ was both cUCA- and permethrin-resistant relative to C57BL/6N mice, as 5-day cUCA or a single exposure to permethrin did not diminish CH, nor did concurrent exposure to cUCA and permethrin. Mice deleted at both TNFalphaR loci displayed similar but somewhat blunted diminished CH responses to cUCA or permethrin. This trend became significant with combined chemical exposure. IFNgamma knockout mice displayed similar diminished CH responses to cUCA or permethrin alone. Unlike C57BL/6N mice, the IFNgamma knockout mice did not show a further reduction in CH with combined chemical exposure. These results suggest the following: (1)Mouse strains show variable susceptibility to permethrin- and cUCA-induced immunomodulation. (2)TNFalpha may be involved in the immunomodulatory effects of cUCA and permethrin

  3. Alteration of immune function in women collegiate soccer players and college students.

    Science.gov (United States)

    Putlur, Praveen; Foster, Carl; Miskowski, Jennifer A; Kane, Melissa K; Burton, Sara E; Scheett, Timothy P; McGuigan, Michael R

    2004-12-01

    The purpose of this study was to monitor the stress-induced alteration in concentrations of salivary immunoglobulin (S-IgA) and cortisol and the incidence of upper respiratory tract infections (URTI) over the course of a 9-week competitive season in college student-athletes and college students. The subjects consisted of 14 NCAA Division III collegiate female soccer athletes (19.8 ± 1.0 years, mean ± SD) and 14 female college students (22.5 ± 2.6 years). Salivary samples were collected for 9 weeks during a competitive soccer season. S-IgA and cortisol concentrations were determined by enzyme linked immunosorbent assay (ELISA). A training and performance questionnaire was given to the subjects every week, to record the subjects' session rating of perceived exertion (RPE) for all the training, load, monotony and strain, as well as any injuries or illnesses experienced. The between groups ANOVA procedure for repeated measures showed no changes in salivary concentrations of IgA and cortisol. Chi-square analysis showed that during the 9-week training season injury and illness occurred at a higher rate among the soccer players. There was a significant difference at baseline between soccer and control S-IgA levels (p≤0.05). Decreased levels of S-IgA and increases in the indices of training (load, strain and monotony) were associated with an increase in the incidence of illness during the 9-week competitive soccer season. Key PointsThere was a significant difference at baseline between soccer and control S-IgA levelsEighty-two percent of illnesses could be explained by a preceding decrease in S-IgA.Increases in the indices of training (load, strain and monotony) were associated with an increase in the incidence of illness.

  4. ALTERATION OF IMMUNE FUNCTION IN WOMEN COLLEGIATE SOCCER PLAYERS AND COLLEGE STUDENTS

    Directory of Open Access Journals (Sweden)

    Michael R. McGuigan

    2004-12-01

    Full Text Available The purpose of this study was to monitor the stress-induced alteration in concentrations of salivary immunoglobulin (S-IgA and cortisol and the incidence of upper respiratory tract infections (URTI over the course of a 9-week competitive season in college student-athletes and college students. The subjects consisted of 14 NCAA Division III collegiate female soccer athletes (19.8 ¡À 1.0 years, mean ¡À SD and 14 female college students (22.5 ¡À 2.6 years. Salivary samples were collected for 9 weeks during a competitive soccer season. S-IgA and cortisol concentrations were determined by enzyme linked immunosorbent assay (ELISA. A training and performance questionnaire was given to the subjects every week, to record the subjects' session rating of perceived exertion (RPE for all the training, load, monotony and strain, as well as any injuries or illnesses experienced. The between groups ANOVA procedure for repeated measures showed no changes in salivary concentrations of IgA and cortisol. Chi-square analysis showed that during the 9-week training season injury and illness occurred at a higher rate among the soccer players. There was a significant difference at baseline between soccer and control S-IgA levels (p¡Ü0.05. Decreased levels of S-IgA and increases in the indices of training (load, strain and monotony were associated with an increase in the incidence of illness during the 9-week competitive soccer season.

  5. Pesticides Provoke Endocrine Disruption A Review

    International Nuclear Information System (INIS)

    Aly, M.A.S.

    2006-01-01

    Increasing numbers of environmental chemicals,including pesticides, have the ability to produce endocrine disruption by various mechanisms. such substances may affect hormone secretion from an endocrine gland and may alter the rate of hormone elimination from the body. environmental chemicals may also disrupt regulatory feedback mechanisms that exist between two endocrine organs; or may interact with a hormone receptor either by mimicking or antagonizing the actions of the natural hormone. these chemicals are referred to endocrine disruptive chemicals (EDC's). EDC's act to alter the blood hormone levels or the subsequent action of hormones . the use of radioimmunoassay(RIA) constitutes a superior and unrivalled tool for the determination and quantification of hormones.the endocrine system participates in virtually all important functions of an organism, such as sexual differentiation before birth, sexual maturation during puberty, reproduction in adulthood, growth, metabolism, digestion, cardiovascular function and excretion. hormones are also implicated in the etiology of certain cancers of hormone- dependent tissues, such as those of the breast, uterus, and prostate gland. therefore, endocrine disruption can potentially produce widespread effects. scientists should not stick to the past belief which presumes that pesticides have limited effect on some hormones. A paradigm shift in which a wider vision of understanding of the wholesome complex effects of pesticides on the whole body rather than a narrow limited understanding should take place

  6. Phosphodiesterases in endocrine physiology and disease.

    Science.gov (United States)

    Vezzosi, Delphine; Bertherat, Jérôme

    2011-08-01

    The cAMP-protein kinase A pathway plays a central role in the development and physiology of endocrine tissues. cAMP mediates the intracellular effects of numerous peptide hormones. Various cellular and molecular alterations of the cAMP-signaling pathway have been observed in endocrine diseases. Phosphodiesterases (PDEs) are key regulatory enzymes of intracellular cAMP levels. Indeed, PDEs are the only known mechanism for inactivation of cAMP by catalysis to 5'-AMP. It has been suggested that disruption of PDEs could also have a role in the pathogenesis of many endocrine diseases. This review summarizes the most recent advances concerning the role of the PDEs in the physiopathology of endocrine diseases. The potential significance of this knowledge can be easily envisaged by the development of drugs targeting specific PDEs.

  7. Fusobacterium nucleatum Alters Atherosclerosis Risk Factors and Enhances Inflammatory Markers with an Atheroprotective Immune Response in ApoEnull Mice

    Science.gov (United States)

    Rivera-Kweh, Mercedes. F.; Chen, Hao; Zheng, Donghang; Bhattacharyya, Indraneel; Gangula, Pandu R.; Lucas, Alexandra R.; Kesavalu, Lakshmyya

    2015-01-01

    The American Heart Association supports an association between periodontal disease (PD) and atherosclerotic vascular disease (ASVD) but does not as of yet support a causal relationship. Recently, we have shown that major periodontal pathogens Porphyromonas gingivalis and Treponema denticola are causally associated with acceleration of aortic atherosclerosis in ApoEnull hyperlipidemic mice. The aim of this study was to determine if oral infection with another significant periodontal pathogen Fusobacterium nucleatum can accelerate aortic inflammation and atherosclerosis in the aortic artery of ApoEnull mice. ApoEnull mice (n = 23) were orally infected with F. nucleatum ATCC 49256 and euthanized at 12 and 24 weeks. Periodontal disease assessments including F. nucleatum oral colonization, gingival inflammation, immune response, intrabony defects, and alveolar bone resorption were evaluated. Systemic organs were evaluated for infection, aortic sections were examined for atherosclerosis, and inflammatory markers were measured. Chronic oral infection established F. nucleatum colonization in the oral cavity, induced significant humoral IgG (P=0.0001) and IgM (P=0.001) antibody response (12 and 24 weeks), and resulted in significant (P=0.0001) alveolar bone resorption and intrabony defects. F. nucleatum genomic DNA was detected in systemic organs (heart, aorta, liver, kidney, lung) indicating bacteremia. Aortic atherosclerotic plaque area was measured and showed a local inflammatory infiltrate revealed the presence of F4/80+ macrophages and CD3+ T cells. Vascular inflammation was detected by enhanced systemic cytokines (CD30L, IL-4, IL-12), oxidized LDL and serum amyloid A, as well as altered serum lipid profile (cholesterol, triglycerides, chylomicrons, VLDL, LDL, HDL), in infected mice and altered aortic gene expression in infected mice. Despite evidence for systemic infection in several organs and modulation of known atherosclerosis risk factors, aortic atherosclerotic

  8. Neuropsychiatry phenotype in asthma: Psychological stress-induced alterations of the neuroendocrine-immune system in allergic airway inflammation

    Directory of Open Access Journals (Sweden)

    Isao Ohno

    2017-09-01

    Full Text Available Since the recognition of asthma as a syndrome with complex pathophysiological signs and symptoms, recent research has sought to classify asthma phenotypes based on its clinical and molecular pathological features. Psychological stress was first recognized as a potential immune system modulator of asthma at the end of the 19th century. The activation of the central nervous system (CNS upon exposure to psychological stress is integral for the initiation of signal transduction processes. The stress hormones, including glucocorticoids, epinephrine, and norepinephrine, which are secreted following CNS activation, are involved in the immunological alterations involved in psychological stress-induced asthma exacerbation. The mechanisms underlying this process may involve a pathological series of events from the brain to the lungs, which is attracting attention as a conceptually advanced phenotype in asthma pathogenesis. This review presents insights into the critical role of psychological stress in the development and exacerbation of allergic asthma, with a special focus on our own data that emphasizes on the continuity from the central sensing of psychological stress to enhanced eosinophilic airway inflammation.

  9. Neuropsychiatry phenotype in asthma: Psychological stress-induced alterations of the neuroendocrine-immune system in allergic airway inflammation.

    Science.gov (United States)

    Ohno, Isao

    2017-09-01

    Since the recognition of asthma as a syndrome with complex pathophysiological signs and symptoms, recent research has sought to classify asthma phenotypes based on its clinical and molecular pathological features. Psychological stress was first recognized as a potential immune system modulator of asthma at the end of the 19th century. The activation of the central nervous system (CNS) upon exposure to psychological stress is integral for the initiation of signal transduction processes. The stress hormones, including glucocorticoids, epinephrine, and norepinephrine, which are secreted following CNS activation, are involved in the immunological alterations involved in psychological stress-induced asthma exacerbation. The mechanisms underlying this process may involve a pathological series of events from the brain to the lungs, which is attracting attention as a conceptually advanced phenotype in asthma pathogenesis. This review presents insights into the critical role of psychological stress in the development and exacerbation of allergic asthma, with a special focus on our own data that emphasizes on the continuity from the central sensing of psychological stress to enhanced eosinophilic airway inflammation. Copyright © 2017 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.

  10. Role of macrophages in the altered epithelial function during a type 2 immune response induced by enteric nematode infection.

    Directory of Open Access Journals (Sweden)

    Luigi Notari

    Full Text Available Parasitic enteric nematodes induce a type 2 immune response characterized by increased production of Th2 cytokines, IL-4 and IL-13, and recruitment of alternatively activated macrophages (M2 to the site of infection. Nematode infection is associated with changes in epithelial permeability and inhibition of sodium-linked glucose absorption, but the role of M2 in these effects is unknown. Clodronate-containing liposomes were administered prior to and during nematode infection to deplete macrophages and prevent the development of M2 in response to infection with Nippostrongylus brasiliensis. The inhibition of epithelial glucose absorption that is associated with nematode infection involved a macrophage-dependent reduction in SGLT1 activity, with no change in receptor expression, and a macrophage-independent down-regulation of GLUT2 expression. The reduced transport of glucose into the enterocyte is compensated partially by an up-regulation of the constitutive GLUT1 transporter consistent with stress-induced activation of HIF-1α. Thus, nematode infection results in a "lean" epithelial phenotype that features decreased SGLT1 activity, decreased expression of GLUT2 and an emergent dependence on GLUT1 for glucose uptake into the enterocyte. Macrophages do not play a role in enteric nematode infection-induced changes in epithelial barrier function. There is a greater contribution, however, of paracellular absorption of glucose to supply the energy demands of host resistance. These data provide further evidence of the ability of macrophages to alter glucose metabolism of neighboring cells.

  11. The heart of the matter: Cardiac manifestations of endocrine disease

    Directory of Open Access Journals (Sweden)

    Aditya John Binu

    2017-01-01

    Full Text Available Endocrine disorders manifest as a disturbance in the milieu of multiple organ systems. The cardiovascular system may be directly affected or alter its function to maintain the state of homeostasis. In this article, we aim to review the pathophysiology, diagnosis, clinical features and management of cardiac manifestations of various endocrine disorders.

  12. Endocrine system: part 1.

    Science.gov (United States)

    Johnstone, Carolyn; Hendry, Charles; Farley, Alistair; McLafferty, Ella

    2014-05-27

    This article, which forms part of the life sciences series and is the first of two articles on the endocrine system, examines the structure and function of the organs of the endocrine system. It is important that nurses understand how the endocrine system works and its role in maintaining health. The role of the endocrine system and the types, actions and control of hormones are explored. The gross structure of the pituitary and thyroid glands are described along with relevant physiology. Several disorders of the thyroid gland are outlined. The second article examines growth hormone, the pancreas and adrenal glands.

  13. Eukaryotic translation initiation factor 5A inhibition alters physiopathology and immune responses in a “humanized” transgenic mouse model of type 1 diabetes

    OpenAIRE

    Imam, Shahnawaz; Mirmira, Raghavendra G.; Jaume, Juan C.

    2014-01-01

    Therapeutic options for treatment of type 1 diabetes (T1D) are still missing. New avenues for immune modulation need to be developed. Here we attempted at altering the diabetes outcome of our humanized model of T1D by inhibiting translation-initiation factor eIF5A hypusination in vivo. Double-transgenic (DQ8-GAD65) mice were immunized with adenoviral vectors carrying GAD65 for diabetes induction. Animals were subsequently treated with deoxyhypusine synthase (DHS) inhibitor GC7 and monitored f...

  14. Preliminary investigation into the possible endocrine disrupting ...

    African Journals Online (AJOL)

    ... reduction (p<0.05). The estrogen level in the female rats showed a general significant increase (p<0.05) in all the groups when compared with the female control group. This preliminary result suggest that Bonny-Light crude oil may have the potential to alter reproductive activity and hence a possible endocrine disruptor.

  15. CONTAMINANT-ASSOCIATED ENDOCRINE DISRUPTION IN REPTILES.

    Science.gov (United States)

    The data presented suggest that contaminants can alter the endocrine and reproductive system of reptiles by mimicking hormones and by various mechanisms other than direct hormonal mimicry. However, these data indicate, as do many other studies using various vertebrates, that a fo...

  16. System chemical biology studies of endocrine disruptors

    DEFF Research Database (Denmark)

    Taboureau, Olivier; Oprea, Tudor I.

    Endocrine disrupting chemicals (EDCs) alter hormonal balance and other physiological systems through inappropriate developmental or adult exposure, perturbing the reproductive function of further generations. While disruption of key receptors (e.g., estrogen, androgen, and thyroid) at the ligand...... effects resulting in the perturbation of different proteins associated to particular diseases (e.g., cryptorchidism) were evaluated....

  17. Parasitoid polydnaviruses and immune interaction with secondary hosts.

    Science.gov (United States)

    Ye, Xi-Qian; Shi, Min; Huang, Jian-Hua; Chen, Xue-Xin

    2018-01-17

    Polydnaviruses (PDVs) are obligatory symbionts with parasitoid wasps. The PDV virions are produced solely in wasp (the primary host) calyx cells. They are injected into caterpillar hosts (the secondary host) during parasitoid oviposition, where they express irreplaceable actions to ensure survival and development of wasp larvae. Some of PDV gene products suppress host immune responses while others alter host growth, metabolism or endocrine system. Here, we treat new findings on PDV gene products and their action on immunity within secondary hosts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. [Obesity and the immune system].

    Science.gov (United States)

    Muñoz, M; Mazure, R A; Culebras, J M

    2004-01-01

    With an increased prevalence of obesity in developed countries, associated chronic diseases rise in a parallel way. Morbidity secondary to overweight and obesity include type 2 diabetes, dislipemia, hypertension, heart disease, cerebrovascular disease, cholelithiasis, osteoarthritis, heart insufficiency, sleep apnoea, menstrual changes, sterility and psychological alterations. There is also a greater susceptibility to suffer some types of cancer, infections, greater risk of bacteremia and a prolonged time of wound healing after surgical operations. All these factors indicate that obesity exerts negative effects upon the immune system. Immune changes found in obesity and their possible interrelations are described in this article. Changes produced during obesity affect both humoral and cellular immunity. It is known that adipose tissue, together with its role as energy reserve in form of triglycerides, has important endocrine functions, producing several hormones and other signal molecules. Immune response can be deeply affected by obesity, playing leptin an important role. Properties of leptin, alterations of leptin levels in different situations and its changes with different medical and surgical therapies for obesity are described in this article.

  19. From immunotoxicity to carcinogenicity: the effects of carbamate pesticides on the immune system.

    Science.gov (United States)

    Dhouib, Ines; Jallouli, Manel; Annabi, Alya; Marzouki, Soumaya; Gharbi, Najoua; Elfazaa, Saloua; Lasram, Mohamed Montassar

    2016-05-01

    The immune system can be the target of many chemicals, with potentially severe adverse effects on the host's health. In the literature, carbamate (CM) pesticides have been implicated in the increasing prevalence of diseases associated with alterations of the immune response, such as hypersensitivity reactions, some autoimmune diseases and cancers. CMs may initiate, facilitate, or exacerbate pathological immune processes, resulting in immunotoxicity by induction of mutations in genes coding for immunoregulatory factors and modifying immune tolerance. In the present study, direct immunotoxicity, endocrine disruption and inhibition of esterases activities have been introduced as the main mechanisms of CMs-induced immune dysregulation. Moreover, the evidence on the relationship between CM pesticide exposure, dysregulation of the immune system and predisposition to different types of cancers, allergies, autoimmune and infectious diseases is criticized. In addition, in this review, we will discuss the relationship between immunotoxicity and cancer, and the advances made toward understanding the basis of cancer immune evasion.

  20. Epigenetic regulation of non-lymphoid cells by Bisphenol-A, a model endocrine disrupter: Potential Implications for Immunoregulation

    Directory of Open Access Journals (Sweden)

    Deena eKhan

    2015-06-01

    Full Text Available Endocrine disrupting chemicals (EDC abound in the environment since many compounds are released from chemical, agricultural, pharmaceutical and consumer product industries. Many of the EDCs such as Bisphenol A (BPA have estrogenic activity or interfere with endogenous sex hormones. Experimental studies have reported a positive correlation of BPA with reproductive toxicity, altered growth and immune dysregulation. Although the precise relevance of these studies to the environmental levels is unclear, nevertheless, their potential health implications remain a concern. One possible mechanism by which BPA can alter genes is by regulating epigenetics, including microRNA, alteration of methylation and histone acetylation. There is now wealth of information on BPA effects on non-lymphoid cells and by comparison, paucity of data on effects of BPA on the immune system. In this mini review, we will highlight BPA regulation of estrogen receptor-mediated immune cell functions and in different inflammatory conditions. In addition, BPA-mediated epigenetic regulation of non-lymphoid cells is emphasized. We recognize that most of these studies are on non-lymphoid cells, and given that BPA also affects the immune system, it is plausible that BPA could have similar epigenetic regulation in immune cells. It is hoped that this review will stimulate studies in this area to ascertain whether or not BPA epigenetically regulates the cells of the immune system.

  1. Active immunization against ghrelin decreases weight gain and alters plasma concentrations of growth hormone in growing pigs.

    Science.gov (United States)

    Vizcarra, J A; Kirby, J D; Kim, S K; Galyean, M L

    2007-08-01

    Ghrelin has been implicated in the control of food intake and in the long-term regulation of body weight. We theorize that preventing the ability of ghrelin to interact with its receptors, would eventually lead to decreased appetite and thereby decrease body weight gain. To test our hypothesis, pigs were actively immunized against ghrelin. Ghrelin((1-10)) was conjugated to BSA and emulsified in Freund's incomplete adjuvant and diethylaminoethyl-dextran. Primary immunization was given at 19 weeks of age (WOA), with booster immunizations given 20 and 40 days after primary immunization. Body weight (BW) and plasma samples were collected weekly beginning at 19 WOA, and feed intake was measured daily. Fourteen days after primary immunization, the percentage of bound (125)I-ghrelin in plasma from immunized pigs was increased compared with control animals (Pactively immunized against ghrelin compared with controls. By the end of the experiment, immunized pigs weighed 10% less than control animals (Pimmunized pigs. Apoptosis was not observed in post-mortem samples obtained from the fundic region of the stomach. Our observations suggest that immunization against ghrelin induces mild anorexia. This procedure could potentially be used as a treatment to control caloric intake and obesity.

  2. Immune disorders in anorexia

    Directory of Open Access Journals (Sweden)

    Sylwia Małgorzata Słotwińska

    2017-10-01

    Full Text Available Anorexia nervosa is a disease involving eating disorders. It mainly affects young people, especially teenage women. The disease is often latent and occurs in many sub-clinical and partial forms. Approximately from 0.3% to 1% of the population suffers from anorexia. It has been shown that patients with anorexia develop neurotransmitter-related disorders, leading to uncontrolled changes in the immune and endocrine systems. Interactions between cytokines, neuropeptides, and neurotransmitters play an important role in disease development. Significant malnutrition induces disorders and alterations in T-cell populations. The cellular response in patients with anorexia nervosa has been shown to be normal, although opinions on this issue are controversial. Laboratory studies on neutrophils in anorexia patients showed decreased adhesion and reduced bactericidal and cell activities. Despite such unfavourable results, patients with anorexia are resistant to infections, which are very rare in this group. Glutamine improves the performance of the human immune system. The administration of glutamine to anorexia patients, as a supplement to parenteral nutrition, has resulted in significant improvements in immune system parameters. The results of previous studies on the causes and risk factors in the development of anorexia nervosa are still ambiguous. One can hope that the differences and similarities between patients with anorexia nervosa and those with other forms of protein-calorie malnutrition may be helpful in determining the relationship between nutritional status and body defences and susceptibility to infection, and can help to broaden the knowledge about the aetiopathogenesis of anorexia nervosa.

  3. Models of Stress in Nonhuman Primates and Their Relevance for Human Psychopathology and Endocrine Dysfunction

    Science.gov (United States)

    Meyer, Jerrold S.; Hamel, Amanda F.

    2014-01-01

    Stressful life events have been linked to the onset of severe psychopathology and endocrine dysfunction in many patients. Moreover, vulnerability to the later development of such disorders can be increased by stress or adversity during development (e.g., childhood neglect, abuse, or trauma). This review discusses the methodological features and results of various models of stress in nonhuman primates in the context of their potential relevance for human psychopathology and endocrine dysfunction, particularly mood disorders and dysregulation of the hypothalamic-pituitary-adrenocortical (HPA) system. Such models have typically examined the effects of stress on the animals' behavior, endocrine function (primarily the HPA and hypothalamic-pituitary-gonadal systems), and, in some cases, immune status. Manipulations such as relocation and/or removal of an animal from its current social group or, alternatively, formation of a new social group can have adverse effects on all of these outcome measures that may be either transient or more persistent depending on the species, sex, and other experimental conditions. Social primates may also experience significant stress associated with their rank in the group's dominance hierarchy. Finally, stress during prenatal development or during the early postnatal period may have long-lasting neurobiological and endocrine effects that manifest in an altered ability to cope behaviorally and physiologically with later challenges. Whereas early exposure to severe stress usually results in deficient coping abilities, certain kinds of milder stressors can promote subsequent resilience in the animal. We conclude that studies of stress in nonhuman primates can model many features of stress exposure in human populations and that such studies can play a valuable role in helping to elucidate the mechanisms underlying the role of stress in human psychopathology and endocrine dysfunction. PMID:25225311

  4. Models of stress in nonhuman primates and their relevance for human psychopathology and endocrine dysfunction.

    Science.gov (United States)

    Meyer, Jerrold S; Hamel, Amanda F

    2014-01-01

    Stressful life events have been linked to the onset of severe psychopathology and endocrine dysfunction in many patients. Moreover, vulnerability to the later development of such disorders can be increased by stress or adversity during development (e.g., childhood neglect, abuse, or trauma). This review discusses the methodological features and results of various models of stress in nonhuman primates in the context of their potential relevance for human psychopathology and endocrine dysfunction, particularly mood disorders and dysregulation of the hypothalamic-pituitary-adrenocortical (HPA) system. Such models have typically examined the effects of stress on the animals' behavior, endocrine function (primarily the HPA and hypothalamic-pituitary-gonadal systems), and, in some cases, immune status. Manipulations such as relocation and/or removal of an animal from its current social group or, alternatively, formation of a new social group can have adverse effects on all of these outcome measures that may be either transient or more persistent depending on the species, sex, and other experimental conditions. Social primates may also experience significant stress associated with their rank in the group's dominance hierarchy. Finally, stress during prenatal development or during the early postnatal period may have long-lasting neurobiological and endocrine effects that manifest in an altered ability to cope behaviorally and physiologically with later challenges. Whereas early exposure to severe stress usually results in deficient coping abilities, certain kinds of milder stressors can promote subsequent resilience in the animal. We conclude that studies of stress in nonhuman primates can model many features of stress exposure in human populations and that such studies can play a valuable role in helping to elucidate the mechanisms underlying the role of stress in human psychopathology and endocrine dysfunction. © The Author 2014. Published by Oxford University Press on

  5. Mycobacterium tuberculosis co-operonic PE32/PPE65 proteins alter host immune responses by hampering Th1 response

    Directory of Open Access Journals (Sweden)

    Mohd eKhubaib

    2016-05-01

    Full Text Available PE/PPE genes, present in cluster with ESAT-6 like genes, are suspected to have a role in antigenic variation and virulence of Mycobacterium tuberculosis. Their roles in immune evasion and immune modulation of host are also well documented. We present evidence that PE32/PPE65 present within the RD8 region are co-operonic, co-transcribed and co-translated, and play role in modulating host immune responses. Experiments with macrophage cell lines revealed that this protein complex suppresses pro-inflammatory cytokines such as TNF-α and IL-6 whereas also inducing high expression of anti-inflammatory IL-10. Immunization of mice with these recombinant proteins dampens an effective Th1 response as evident from reduced frequency of IFN-g and IL-2 producing CD4+ and CD8+ T cells. IgG sub-typing from serum of immunized mice revealed high levels of IgG1 when compared with IgG2a and IgG2b. Further IgG1/IgG2a ratio clearly demonstrated that the protein complex manipulates the host immune response favourable to the pathogen. Our results demonstrate that the co-transcribed and co-translated PE32 and PPE65 antigens are involved specifically in modulating anti-mycobacterial host immune response by hampering Th1 response.

  6. A benign helminth alters the host immune system and the gut microbiota in a rat model system.

    Science.gov (United States)

    Wegener Parfrey, Laura; Jirků, Milan; Šíma, Radek; Jalovecká, Marie; Sak, Bohumil; Grigore, Karina; Jirků Pomajbíková, Kateřina

    2017-01-01

    Helminths and bacteria are major players in the mammalian gut ecosystem and each influences the host immune system and health. Declines in helminth prevalence and bacterial diversity appear to play a role in the dramatic rise of immune mediated inflammatory diseases (IMIDs) in western populations. Helminths are potent modulators of immune system and their reintroduction is a promising therapeutic avenue for IMIDs. However, the introduction of helminths represents a disturbance for the host and it is important to understand the impact of helminth reintroduction on the host, including the immune system and gut microbiome. We tested the impact of a benign tapeworm, Hymenolepis diminuta, in a rat model system. We find that H. diminuta infection results in increased interleukin 10 gene expression in the beginning of the prepatent period, consistent with induction of a type 2 immune response. We also find induction of humoral immunity during the patent period, shown here by increased IgA in feces. Further, we see an immuno-modulatory effect in the small intestine and spleen in patent period, as measured by reductions in tissue immune cells. We observed shifts in microbiota community composition during the patent period (beta-diversity) in response to H. diminuta infection. However, these compositional changes appear to be minor; they occur within families and genera common to both treatment groups. There was no change in alpha diversity. Hymenolepis diminuta is a promising model for helminth therapy because it establishes long-term, stable colonization in rats and modulates the immune system without causing bacterial dysbiosis. These results suggest that the goal of engineering a therapeutic helminth that can safely manipulate the mammalian immune system without disrupting the rest of the gut ecosystem is in reach.

  7. Endocrine System (For Teens)

    Science.gov (United States)

    ... in the middle of the brain. It secretes melatonin (pronounced: meh-luh-TOE-nin), a hormone that ... cycle. These hormones also play a role in pregnancy. Although the endocrine glands are the body's main ...

  8. Research on Endocrine Disruptors

    Science.gov (United States)

    EPA researchers are developing innovative approaches, tools, models and data to improve the understanding of potential risks to human health and wildlife from chemicals that could disrupt the endocrine system.

  9. Endocrine disrupting compounds

    DEFF Research Database (Denmark)

    Bøgh, I B; Christensen, P; Dantzer, V

    2001-01-01

    processes, and exposure during critical periods of prenatal development might affect reproductive performance over several generations. Alkylphenols and their metabolites are lipophilic substances exerting apparent estrogenic action in in vitro and in vivo testing systems. With the widespread industrial use...... or embryo models for the evaluation of possible consequences of human exposure to endocrine disrupting compounds is discussed. Furthermore, possible consequences of exposure to endocrine disrupting compounds for the embryo transfer industry are addressed....

  10. Endocrine system: part 2.

    Science.gov (United States)

    Hendry, Charles; Farley, Alistair; McLafferty, Ella; Johnstone, Carolyn

    2014-06-03

    This article, the last in the life sciences series, is the second of two articles on the endocrine system. It discusses human growth hormone, the pancreas and adrenal glands. The relationships between hormones and their unique functions are also explored. It is important that nurses understand how the endocrine system works and its role in maintaining health to provide effective care to patients. Several disorders caused by human growth hormone or that affect the pancreas and adrenal glands are examined.

  11. Immune alterations induced by chronic noise exposure: comparison with restraint stress in BALB/c and C57Bl/6 mice.

    Science.gov (United States)

    Pascuan, Cecilia G; Uran, Soledad L; Gonzalez-Murano, María R; Wald, Miriam R; Guelman, Laura R; Genaro, Ana M

    2014-01-01

    Exposure to loud noise levels represents a problem in all regions of the world. Noise exposure is known to affect auditory structures in living organisms. However, it should not be ignored that many of the effects of noise are extra-auditory. In particular, it has been proposed that noise could affect immune system similarly to other stressors. Nevertheless, only a few studies so far have investigated the effects of noise on the immune function. The aim of the present work was to investigate the effect of chronic (2 weeks) noise (95-97 dBA) exposure on immune responses in BALB/c and C57 mice. To ascertain if the effect of noise is similar to other psychological stressors, the effect of chronic restraint--applied for the same time--on immune response was also analyzed. It was found that chronic noise impaired immune-related end-points in vivo and ex vivo depending on the strain used. Noise, but not restraint, affected C57Bl/6 mouse T-cell-dependent antibody production and ex vivo stimulated T-cell proliferation, but had no effect on these parameters in BALB/c mice or their cells. In fact, none of the stressors altered T-cell responses associated with the BALB/c mice. Further, noise exposure induced a decrease in corticosterone and catecholamines levels in BALB/c mice. In contrast, no differences were seen in these parameters for those BALB/c mice under restraint or for that matter C57Bl/6 mice exposed to restraint or noise. The results of these studies indicate that noise could seriously affect immune responses in susceptible individuals. In addition, it may also be concluded that noise possibility should not be considered a classic stressor.

  12. Endocrine disrupting chemicals as potential risk factor for estrogen-dependent cancers.

    Science.gov (United States)

    Rutkowska, Aleksandra Z; Szybiak, Aleksandra; Serkies, Krystyna; Rachoń, Dominik

    2016-08-09

    Civilization, industrialization, and urbanization create an environment where humans are continuously exposed to endocrine disrupting chemicals (EDCs). Some of breast cancers and endometrial cancer, which are the most common female malignant neoplasms, are estrogen-dependent tumors. Prolonged exposure to estrogens or substances with estrogenic properties may be a risk factor for their development. This paper aimed to discuss the potential adverse effect of EDCs on human health, including the role of EDCs in hormone-dependent carcinogenesis. A review of literature regarding the sources of environmental exposure to EDCs and molecular mechanisms of their action was performed. We analyzed the possible mechanisms of how these substances alter the function of the endocrine system, resulting in adverse health effects. Hundreds of substances with endocrine disrupting potential have been identified in our environment. There is accumulating evidence linking exposure to EDCs with the development of mammary and endometrial cancer. By interacting with steroid receptors, EDCs can impact the cellular processes potentially leading to carcinogenesis. There are also data showing the effect of EDCs on immune dysfunction. During lifespan, people are usually exposed to a mixture of various EDCs, which complicates the assessment of individual substances or compounds implicated in cancer development. As the prevalence of hormone-dependent tumors among women continues to increase, their successful prevention is of human benefit. Institutions representing medicine, science, industry, and governments should develop joint strategies to decrease exposure to EDC, and thus to reduce the risk of hormonedependent tumors in women.

  13. Altered Polarization, Morphology, and Impaired Innate Immunity Germane to Resident Peritoneal Macrophages in Mice with Long-Term Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Hui-Fang Liu

    2012-01-01

    Full Text Available Type 2 diabetes (T2D is associated with perturbed innate immunity. Macrophages, bridging innate immunity and metabolic disturbances, play important roles in controlling immune homeostasis. However, the effect of long-term diabetic milieu (DM on the functions and phenotypes of macrophages is still not clear. In this study, we used resident peritoneal macrophages (RPMs from 5-month-old db/db mice to investigate the changes of macrophages. It was found that RPMs in db/db mice significantly reduced phagocytosis and adhesion capacity. After standardization with body weight, the number of F4/80+ RPMs markedly reduced in db/db mice, and, furthermore, the macrophages skewed to M2-polarizated macrophages. The results of morphology found that the RPMs shape of db/db mice was nearly round, but the RPMs shape of control mice was spindle-shaped and irregular. In this study, we found the cell numbers, morphology, and innate immunity functions of RPMs in 5-month-old type 2 diabetic mice (db/db mice obtained by abdominal cavity lavage were significantly altered. Importantly, we also found the remarkably increased M2-RPMs in diabetic mice for the first time.

  14. [Alterations and clinical signifecance of exosome-containing innate immunity related lncRNAs in patients of hemorrhagic fever with renal syndrome].

    Science.gov (United States)

    Zheng, Xuyang; Ye, Chuantao; Zhao, Jieru; Bian, Peiyu; Zhang, Ying; Jia, Zhansheng

    2016-11-01

    Objective To observe the alterations of innate immunity related long non-coding RNAs (lncRNAs) in exosomes extracted from the plasma of hemorrhagic fever with renal syndrome (HFRS) patients, and analyze their relationship with the disease stage and severity. Methods Exosomes were extracted from the plasma samples of HFRS patients, healthy controls and recovered HFRS patients. Transmission electronic microscopy and Western blotting were performed to confirm the efficiency of the extraction. lncRNA profiles in the different groups were determined by high-throughput sequencing. The contents of several innate immunity related lncRNAs were detected by quantitative real-time PCR, and their relationship with the disease stage and severity was analyzed. Results Exosomes from the plasma were accurately extracted. Innate immunity related lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1), negative regulator of interferon response (NRIR), negative regulator of antiviral response (NRAV) were found in exosomes. NEAT1 content was significantly reduced in the exosomes from HFRS patients compared with healthy controls and it was significantly restored in recovered HFRS patients. The exosome NEAT1 content was correlated with the epidemic of HFRS but had no relationship with the stage and severity of the disease. Conclusion Several innate immunity related lncRNAs exist in the exosome from HFRS patients, among which NEAT1 content significantly decreases in HFRS patients compared with healthy controls and recovered HFRS patients. The reduced NEAT1 level is correlated with the epidemic of HFRS.

  15. Endocrine causes of nonalcoholic fatty liver disease.

    Science.gov (United States)

    Marino, Laura; Jornayvaz, François R

    2015-10-21

    Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. The prevalence of NAFLD is increasing, becoming a substantial public health burden. NAFLD includes a broad spectrum of disorders, from simple conditions such as steatosis to severe manifestations such as fibrosis and cirrhosis. The relationship of NAFLD with metabolic alterations such as type 2 diabetes is well described and related to insulin resistance, with NAFLD being recognized as the hepatic manifestation of metabolic syndrome. However, NAFLD may also coincide with endocrine diseases such as polycystic ovary syndrome, hypothyroidism, growth hormone deficiency or hypercortisolism. It is therefore essential to remember, when discovering altered liver enzymes or hepatic steatosis on radiological exams, that endocrine diseases can cause NAFLD. Indeed, the overall prognosis of NAFLD may be modified by treatment of the underlying endocrine pathology. In this review, we will discuss endocrine diseases that can cause NALFD. Underlying pathophysiological mechanisms will be presented and specific treatments will be reviewed.

  16. The agr Inhibitors Solonamide B and Analogues Alter Immune Responses to Staphylococccus aureus but Do Not Exhibit Adverse Effects on Immune Cell Functions.

    Directory of Open Access Journals (Sweden)

    Mara Baldry

    Full Text Available Staphylococcus aureus infections are becoming increasingly difficult to treat due to antibiotic resistance with the community-associated methicillin-resistant S. aureus (CA-MRSA strains such as USA300 being of particular concern. The inhibition of bacterial virulence has been proposed as an alternative approach to treat multi-drug resistant pathogens. One interesting anti-virulence target is the agr quorum-sensing system, which regulates virulence of CA-MRSA in response to agr-encoded autoinducing peptides. Agr regulation confines exotoxin production to the stationary growth phase with concomitant repression of surface-expressed adhesins. Solonamide B, a non-ribosomal depsipeptide of marine bacterial origin, was recently identified as a putative anti-virulence compound that markedly reduced expression of α-hemolysin and phenol-soluble modulins. To further strengthen solonamide anti-virulence candidacy, we report the chemical synthesis of solonamide analogues, investigation of structure-function relationships, and assessment of their potential to modulate immune cell functions. We found that structural differences between solonamide analogues confer significant differences in interference with agr, while immune cell activity and integrity is generally not affected. Furthermore, treatment of S. aureus with selected solonamides was found to only marginally influence the interaction with fibronectin and biofilm formation, thus addressing the concern that application of compounds inducing an agr-negative state may have adverse interactions with host factors in favor of host colonization.

  17. Omega-3 polyunsaturated fatty acids enrichment alters performance and immune response in infectious bursal disease challenged broilers

    Directory of Open Access Journals (Sweden)

    Maroufyan Elham

    2012-01-01

    Full Text Available Abstract Background Infectious bursal disease (IBD results in economic loss due to mortality, reduction in production efficiency and increasing the usage of antibiotics. This study was carried out to investigate the modulatory roles of dietary n-3 polyunsaturated fatty acids (PUFA enrichment in immune response and performance of IBD challenged broiler chickens. Methods A total of 300 day old male broiler chicks were assigned to four dietary n-3 PUFA ascending levels as the treatment groups (T1: 0.5; T2: 8.0; T3: 11.5; T4: 16.5 using combinations of tuna oil and sunflower oil. All diets were isocaloric and isonitrogenous. On day 28, all birds were challenged with IBD virus. Antibody titer, cytokine production, bursa lesion pre and post-challenge and lymphoid organ weight were recorded. Results On d 42 the highest body weight was observed in the T2 and T3 and the lowest in T4 chickens. Feed conversion ratio of the T2 broilers was significantly better than the other groups. Although productive parameters were not responded to the dietary n-3 PUFA in a dose-dependent manner, spleen weight, IBD and Newcastle disease antibody titers and IL-2 and IFN-γ concentrations were constantly elevated by n-3 PUFA enrichment. Conclusions Dietary n-3 PUFA enrichment may improve the immune response and IBD resistance, but the optimum performance does not coincide with the optimum immune response. It seems that dietary n-3 PUFA modulates the broiler chicken performance and immune response in a dose-dependent manner. Thus, a moderate level of dietary n-3 PUFA enrichment may help to put together the efficiency of performance and relative immune response enhancement in broiler chickens.

  18. Immunoendocrine alterations following Marine Corps Martial Arts training are associated with changes in moral cognitive processes.

    Science.gov (United States)

    Siedlik, Jacob A; Deckert, Jake A; Clopton, Aaron W; Gigliotti, Nicole; Chan, Marcia A; Benedict, Stephen H; Herda, Trent J; Gallagher, Philip M; Vardiman, John P

    2016-02-01

    Combined physical and psychological stress events have been associated with exacerbated endocrine responses and increased alterations in immune cell trafficking when compared to exercise stress alone. Military training programs are rigorous in nature and often purposefully delivered in environments combining high levels of both physical and mental stress. The objective of this study was to assess physiological and cognitive changes following U.S. Marine Corps Martial Arts training. Seven active-duty, male Marines were observed during a typical Marine Corps Martial Arts training session. Immune parameters, including immunomodulatory cytokines, and hormone concentrations were determined from blood samples obtained at baseline, immediately post training (IP) and at 15min intervals post-training to 1h (R15, R30, R45, R60). Assessments of cognitive moral functioning (moral judgment and intent) were recorded at intervals during recovery. There were significant fluctuations in immunoendocrine parameters. Peak endocrine measures were observed within the IP-R15 time interval. Distributions of circulating immune cells were significantly altered with neutrophils and all lymphocyte subsets elevated at IP. IFN-γ and IL-17a exhibited small, non-significant, parallel increases over the recovery period. Moral functioning was informed by different social identities during the recovery resulting in changes in moral decision-making. These data demonstrate that the Marine Corps Martial Arts Program induces significant alterations in lymphocyte and leukocyte distributions, but does not shift the balance of Th1/Th2 cytokines or induce a systemic inflammatory response. The program does, however, induce alterations in moral decision-making ability associated with the observed endocrine responses, even suggesting a potential interaction between one's social identities and endocrine responses upon moral decision-making. Copyright © 2015. Published by Elsevier Inc.

  19. Environmental signaling: from environmental estrogens to endocrine-disrupting chemicals and beyond.

    Science.gov (United States)

    McLachlan, J A

    2016-07-01

    The landmark report (Herbst et al. 1971) linking prenatal treatment with a synthetic estrogen, diethylstilbestrol (DES), to cancer at puberty in women whose mothers took the drug while pregnant ushered in an era of research on delayed effects of such exposures on functional outcomes in offspring. An animal model developed in our laboratory at the National Institute of Environmental Health Sciences confirmed that DES was the carcinogen and exposure to DES caused, as well, functional alterations in the reproductive, endocrine, and immune systems of male and female mice treated in utero. DES was also being used in agriculture and we discovered, at the first meeting on Estrogens in the Environment in 1979 (Estrogens in the Environment, 1980), that many environmental contaminants were also estrogenic. Many laboratories sought to discern the basis for estrogenicity in environmental chemicals and to discover other hormonally active xenobiotics. Our laboratory elucidated how DES and other estrogenic compounds worked by altering differentiation through epigenetic gene imprinting, helping explain the transgenerational effects found in mice and humans. At the Wingspread Conference on the Human-Wildlife Connection in 1991 (Advances in Modern Environmental Toxicology, 1992), we learned that environmental disruption of the endocrine system occurred in many species and phyla, and the term endocrine disruption was introduced. Further findings of transgenerational effects of environmental agents that mimicked or blocked various reproductive hormones and the ubiquity of environmental signals, such as bisphenol A increased concern for human and ecological health. Scientists began to look at other endocrine system aspects, such as cardiovascular and immune function, and other nuclear receptors, with important observations regarding obesity and metabolism. Laboratories, such as ours, are now using stem cells to try to understand the mechanisms by which various environmental signals

  20. Endocrine disruptors in female reproductive tract development and carcinogenesis

    OpenAIRE

    Ma, Liang

    2009-01-01

    Growing concerns over endocrine disrupting chemicals (EDCs) and their effects on human fetal development and adult health have promoted research into the underlying molecular mechanisms of endocrine disruption. Gene targeting technology has allowed insight into the genetic pathways governing reproductive tract development and how exposure to EDCs during a critical developmental window can alter reproductive tract development, potentially forming the basis for adult diseases. This review prima...

  1. Endocrine disorders in pregnancy

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, Ulla; Mathiesen, Elisabeth R

    2011-01-01

    during gestation. The neuroendocrine events and their timing in the placental, foetal and maternal compartments are critical for initiation and maintenance of pregnancy, for foetal growth and development, and for parturition. As pregnancy advances, the relative number of trophoblasts increase...... hormones and their precursors across the foeto-maternal interface. The endocrine system is the earliest system developing in foetal life, and it is functional from early intrauterine existence through old age. Regulation of the foetal endocrine system relies, to some extent, on precursors secreted...

  2. PET and endocrine tumors

    International Nuclear Information System (INIS)

    Rigo, P.; Belhocine, T.; Hustinx, R.; Foidart-Willems, J.

    2000-01-01

    The authors review the main indications of PET examination, and specifically of 18 FDG, in the assessment of endocrine tumors: of the thyroid, of the parathyroid, of the adrenal and of the pituitary glands. Neuroendocrine tumors, gastro-entero-pancreatic or carcinoid tumors are also under the scope. Usually, the most differentiated tumors show only poor uptake of the FDG as they have a weak metabolic and proliferative activity. In the assessment of endocrine tumors, FDG-PET should be used only after most specific nuclear examinations been performed. (author)

  3. Management of endocrine orbitopathy

    International Nuclear Information System (INIS)

    Kahaly, G.J.

    2001-01-01

    Endocrine orbitopathy is the most common extrathyroidal manifestation of Basedow's disease and is characterized by a lymphocyte infiltration of the peribulbar space. Infiltrating and activated T cells react with orbital target cells and secrete cytokines, leading to accumulation of glycosaminoglycans, interstitial edema, and enlargement of the extra ocular muscels. Interdisciplinary management is recommended for rapid diagnosis and effective therapy of patients with endocrine orbitopathy. Immunosuppressive treatment is often used initially, and by suppressing inflammatory changes, it can result in subjective and objective improvement of thyroid eye disease. (orig.) [de

  4. Dairy cows affected by ketosis show alterations in innate immunity and lipid and carbohydrate metabolism during the dry off period and postpartum.

    Science.gov (United States)

    Zhang, Guanshi; Hailemariam, Dagnachew; Dervishi, Elda; Goldansaz, Seyed Ali; Deng, Qilan; Dunn, Suzanna M; Ametaj, Burim N

    2016-08-01

    The objective of this investigation was to search for alterations in blood variables related to innate immunity and carbohydrate and lipid metabolism during the transition period in cows affected by ketosis. One hundred multiparous Holstein dairy cows were involved in the study. Blood samples were collected at -8, -4, week of disease diagnosis (+1 to +3weeks), and +4weeks relative to parturition from 6 healthy cows (CON) and 6 cows with ketosis and were analyzed for serum variables. Results showed that cows with ketosis had greater concentrations of serum β-hydroxybutyric acid (BHBA), interleukin (IL)-6, tumor necrosis factor (TNF), serum amyloid A (SAA), and lactate in comparison with the CON animals. Serum concentrations of BHBA, IL-6, TNF, and lactate were greater starting at -8 and -4weeks prior to parturition in cows with ketosis vs those of CON group. Cows with ketosis also had lower DMI and milk production vs CON cows. Milk fat also was lower in ketotic cows at diagnosis of disease. Cows affected by ketosis showed an activated innate immunity and altered carbohydrate and lipid metabolism several weeks prior to diagnosis of disease. Serum IL-6 and lactate were the strongest discriminators between ketosis cows and CON ones before the occurrence of ketosis, which might be useful as predictive biomarkers of the disease state. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Multiple Endocrine Neoplasia Type I

    Science.gov (United States)

    ... hormone (GnRH). GnRH is normally secreted by the hypothalamus and stimulates the pituitary gland to release follicle ... do not require treatment. Treatment of Pancreatic Endocrine Cancer in MEN1 Because the type of pancreatic endocrine ...

  6. Multiple endocrine neoplasia (MEN) II

    Science.gov (United States)

    ... medlineplus.gov/ency/article/000399.htm Multiple endocrine neoplasia (MEN) II To use the sharing features on this page, please enable JavaScript. Multiple endocrine neoplasia, type II (MEN II) is a disorder passed ...

  7. Plasma Cytokine Concentrations Indicate In-vivo Hormonal Regulation of Immunity is Altered During Long-Duration Spaceflight

    Science.gov (United States)

    Crician, Brian E.; Zwart, Sara R.; Mehta, Satish; Uchakin, Peter; Quiriarte, Heather A.; Pierson, Duane; Sams, Clarence F.; Smith, Scott M.

    2013-01-01

    Background: Aspects of immune system dysregulation associated with long-duration spaceflight have yet to be fully characterized, and may represent a clinical risk to crewmembers during deep space missions. Plasma cytokine concentration may serve as an indicator of in vivo physiological changes or immune system mobilization. Methods: The plasma concentrations of 22 cytokines were monitored in 28 astronauts during long-duration spaceflight onboard the International Space Station. Blood samples were collected three times before flight, 3-5 times during flight (depending on mission duration), at landing and 30 days post-landing. Analysis was performed by bead array immunoassay. Results: With few exceptions, minimal detectable mean plasma levels (inflammation, leukocyte recruitment, angiogenesis and thrombocyte regulation.

  8. Comparison of altered expression of histocompatibility antigens with altered immune function in murine spleen cells treated with ultraviolet radiation and/or TPA

    Energy Technology Data Exchange (ETDEWEB)

    Pretell, J.O.; Cone, R.E.

    1985-02-01

    Previous studies in our laboratory demonstrated that several treatments that inhibited the ability of cells to stimulate the mixed lymphocyte reaction (MLR) also blocked the shedding of histocompatibility antigens and Ia antigens from murine spleen cells. In the present studies, one of these treatments, ultraviolet radiation (UV), was shown to cause an initial loss in the density of H-2K, IA, and IE antigens prior to the block in shedding observed after culture of these cells. Further analysis revealed that the UV-induced loss of antigens could be prevented by the presence of colchicine during irradiation. Biosynthetic analyses revealed the IA antigen synthesis was also inhibited in the UV-irradiated cells. Examination of the effects of a second agent, 12-0-tetradecanoylphorbol-13-acetate (TPA) on the turnover of histocompatibility antigens revealed that the biosynthesis and shedding of these antigens were accelerated by this agent. However, addition of TPA to UV-irradiated cells did not result in a reversal of the UV-induced block in biosynthesis of IA antigens. Results of immune function assays correlated with the biochemical studies: UV-irradiation inhibited the generation of the MLR, but TPA enhanced this reaction, and addition of TPA to mixed lymphocyte cultures with UV-irradiated stimulators did not reverse the UV-induced inhibition. These results suggest that, although the turnover of histocompatibility antigens may be affected by TPA and UV in an antagonistic fashion, additional factors other than the expression of histocompatibility antigens are operating in the inhibition of stimulation of an MLR by UV radiation or its enhancement by TPA.

  9. Natural functional SNPs in miR-155 alter its expression level, blood cell counts and immune responses

    Directory of Open Access Journals (Sweden)

    Congcong Li

    2016-08-01

    Full Text Available miR-155 has been confirmed to be a key factor in immune responses in humans and other mammals. Therefore, investigation of variations in miR-155 could be useful for understanding the differences in immunity between individuals. In this study, four SNPs in miR-155 were identified in mice (Mus musculus and humans (Homo sapiens. In mice, the four SNPs were closely linked and formed two miR-155 haplotypes (A and B. Ten distinct types of blood parameters were associated with miR-155 expression under normal conditions. Additionally, 4 and 14 blood parameters were significantly different between these two genotypes under normal and lipopolysaccharide (LPS stimulation conditions, respectively. Moreover, the expression levels of miR-155, the inflammatory response to LPS stimulation and the lethal ratio following Salmonella typhimurium infection were significantly increased in mice harboring the AA genotype. Further, two SNPs, one in the loop region and the other near the 3' terminal of pre-miR-155, were confirmed to be responsible for the differential expression of miR-155 in mice. Interestingly, two additional SNPs, one in the loop region and the other in the middle of miR-155*, modulated the function of miR-155 in humans. Predictions of secondary RNA structure using RNAfold showed that these SNPs affected the structure of miR-155 in both mice and humans. Our results provide novel evidence of the natural functional SNPs of miR-155 in both mice and humans, which may affect the expression levels of mature miR-155 by modulating its secondary structure. The SNPs of human miR-155 may be considered as causal mutations for some immune-related diseases in the clinic. The two genotypes of mice could be used as natural models for studying the mechanisms of immune diseases caused by abnormal expression of miR-155 in humans.

  10. Toxoplasma gondii is dependent on glutamine and alters migratory profile of infected host bone marrow derived immune cells through SNAT2 and CXCR4 pathways.

    Directory of Open Access Journals (Sweden)

    I-Ping Lee

    Full Text Available The obligate intracellular parasite, Toxoplasma gondii, disseminates through its host inside infected immune cells. We hypothesize that parasite nutrient requirements lead to manipulation of migratory properties of the immune cell. We demonstrate that 1 T. gondii relies on glutamine for optimal infection, replication and viability, and 2 T. gondii-infected bone marrow-derived dendritic cells (DCs display both "hypermotility" and "enhanced migration" to an elevated glutamine gradient in vitro. We show that glutamine uptake by the sodium-dependent neutral amino acid transporter 2 (SNAT2 is required for this enhanced migration. SNAT2 transport of glutamine is also a significant factor in the induction of migration by the small cytokine stromal cell-derived factor-1 (SDF-1 in uninfected DCs. Blocking both SNAT2 and C-X-C chemokine receptor 4 (CXCR4; the unique receptor for SDF-1 blocks hypermotility and the enhanced migration in T. gondii-infected DCs. Changes in host cell protein expression following T. gondii infection may explain the altered migratory phenotype; we observed an increase of CD80 and unchanged protein level of CXCR4 in both T. gondii-infected and lipopolysaccharide (LPS-stimulated DCs. However, unlike activated DCs, SNAT2 expression in the cytosol of infected cells was also unchanged. Thus, our results suggest an important role of glutamine transport via SNAT2 in immune cell migration and a possible interaction between SNAT2 and CXCR4, by which T. gondii manipulates host cell motility.

  11. Innate immune humoral factors, C1q and factor H, with differential pattern recognition properties, alter macrophage response to carbon nanotubes.

    Science.gov (United States)

    Pondman, Kirsten M; Pednekar, Lina; Paudyal, Basudev; Tsolaki, Anthony G; Kouser, Lubna; Khan, Haseeb A; Shamji, Mohamed H; Ten Haken, Bennie; Stenbeck, Gudrun; Sim, Robert B; Kishore, Uday

    2015-11-01

    Interaction between the complement system and carbon nanotubes (CNTs) can modify their intended biomedical applications. Pristine and derivatised CNTs can activate complement primarily via the classical pathway which enhances uptake of CNTs and suppresses pro-inflammatory response by immune cells. Here, we report that the interaction of C1q, the classical pathway recognition molecule, with CNTs involves charge pattern and classical pathway activation that is partly inhibited by factor H, a complement regulator. C1q and its globular modules, but not factor H, enhanced uptake of CNTs by macrophages and modulated the pro-inflammatory immune response. Thus, soluble complement factors can interact differentially with CNTs and alter the immune response even without complement activation. Coating CNTs with recombinant C1q globular heads offers a novel way of controlling classical pathway activation in nanotherapeutics. Surprisingly, the globular heads also enhance clearance by phagocytes and down-regulate inflammation, suggesting unexpected complexity in receptor interaction. Carbon nanotubes (CNTs) maybe useful in the clinical setting as targeting drug carriers. However, it is also well known that they can interact and activate the complement system, which may have a negative impact on the applicability of CNTs. In this study, the authors functionalized multi-walled CNT (MWNT), and investigated the interaction with the complement pathway. These studies are important so as to gain further understanding of the underlying mechanism in preparation for future use of CNTs in the clinical setting. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Sarcopenia, obesity, and natural killer cell immune senescence in aging: altered cytokine levels as a common mechanism.

    Science.gov (United States)

    Lutz, Charles T; Quinn, LeBris S

    2012-08-01

    Human aging is characterized by both physical and physiological frailty. A key feature of frailty, sarcopenia is the age-associated decline in skeletal muscle mass, strength, and endurance that characterize even the healthy elderly. Increases in adiposity, particularly in visceral adipose tissue, are almost universal in aging individuals and can contribute to sarcopenia and insulin resistance by increasing levels of inflammatory cytokines known collectively as adipokines. Aging also is associated with declines in adaptive and innate immunity, known as immune senescence, which are risk factors for cancer and all-cause mortality. The cytokine interleukin-15 (IL-15) is highly expressed in skeletal muscle tissue and declines in aging rodent models. IL-15 inhibits fat deposition and insulin resistance, is anabolic for skeletal muscle in certain situations, and is required for the development and survival of natural killer (NK) lymphocytes. We review the effect that adipokines and myokines have on NK cells, with special emphasis on IL-15. We posit that increased adipokine and decreased IL-15 levels during aging constitute a common mechanism for sarcopenia, obesity, and immune senescence.

  13. Shifting the circadian rhythm of feeding in mice induces gastrointestinal, metabolic and immune alterations which are influenced by ghrelin and the core clock gene Bmal1.

    Directory of Open Access Journals (Sweden)

    Jorien Laermans

    Full Text Available BACKGROUND: In our 24-hour society, an increasing number of people are required to be awake and active at night. As a result, the circadian rhythm of feeding is seriously compromised. To mimic this, we subjected mice to restricted feeding (RF, a paradigm in which food availability is limited to short and unusual times of day. RF induces a food-anticipatory increase in the levels of the hunger hormone ghrelin. We aimed to investigate whether ghrelin triggers the changes in body weight and gastric emptying that occur during RF. Moreover, the effect of genetic deletion of the core clock gene Bmal1 on these physiological adaptations was studied. METHODS: Wild-type, ghrelin receptor knockout and Bmal1 knockout mice were fed ad libitum or put on RF with a normal or high-fat diet (HFD. Plasma ghrelin levels were measured by radioimmunoassay. Gastric contractility was studied in vitro in muscle strips and in vivo (13C breath test. Cytokine mRNA expression was quantified and infiltration of immune cells was assessed histologically. RESULTS: The food-anticipatory increase in plasma ghrelin levels induced by RF with normal chow was abolished in HFD-fed mice. During RF, body weight restoration was facilitated by ghrelin and Bmal1. RF altered cytokine mRNA expression levels and triggered contractility changes resulting in an accelerated gastric emptying, independent from ghrelin signaling. During RF with a HFD, Bmal1 enhanced neutrophil recruitment to the stomach, increased gastric IL-1α expression and promoted gastric contractility changes. CONCLUSIONS: This is the first study demonstrating that ghrelin and Bmal1 regulate the extent of body weight restoration during RF, whereas Bmal1 controls the type of inflammatory infiltrate and contractility changes in the stomach. Disrupting the circadian rhythm of feeding induces a variety of diet-dependent metabolic, immune and gastrointestinal alterations, which may explain the higher prevalence of obesity and

  14. The Interplay between Radioresistant Caco-2 Cells and the Immune System Increases Epithelial Layer Permeability and Alters Signaling Protein Spectrum

    Science.gov (United States)

    Morini, Jacopo; Babini, Gabriele; Barbieri, Sofia; Baiocco, Giorgio; Ottolenghi, Andrea

    2017-01-01

    Colorectal cancer is one of the most frequent type of cancer, with a higher incidence in the developed countries. Colorectal cancer is usually managed with both surgeries, chemotherapy and radiotherapy. Radiotherapy has the well-known advantage of targeting the tumor, minimizing normal tissue exposure. Nevertheless, during radiation treatment, exposure of healthy tissues is of great concern, in particular because of the effects on the intestinal barrier functions and on cells belonging to the immune system. The functional role of intestinal barrier in avoiding paracellular trafficking and controlling bacterial spread from gut it is well known and it is due to the presence of tight junction complexes. However, intestinal barrier is fundamental in participating to the interplay with immune system, especially considering the gut-associated lymphoid tissue. Until few years ago, radiotherapy was considered to bear only a depressive action on the immune system. However, it is now recognized that the release of pro-inflammatory signals and phenotypic changes in tumoral cells due to ionizing radiation could trigger the immune system against the tumor. In this work, we address how intestinal barrier functions are perturbed by X-ray doses in the range 0–10 Gy, focusing on the interplay between tumoral cells and the immune system. To this aim, we adopted a coculture model in which Caco-2 cells can be grown in presence/absence of peripheral blood mononuclear cells (PBMC). We focused our attention on changes in the proliferation, trans-epithelial electrical resistance (TEER), cytokine release, and proteins of the junctional complexes. Our results indicate a high radioresistance of Caco-2 in the investigated dose range, and an increased permeability of the tumoral cell layer due to the presence of PBMC. This is found to be correlated with activation of PBMC, inhibiting the apoptotic pathway, with the enhancement of cytokine release and with variation of tight junction

  15. Sleep and the endocrine system.

    Science.gov (United States)

    Morgan, Dionne; Tsai, Sheila C

    2015-07-01

    In this article, the effect of sleep and sleep disorders on endocrine function and the influence of endocrine abnormalities on sleep are discussed. Sleep disruption and its associated endocrine consequences in the critically ill patient are also reviewed. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Imaging of endocrine system

    International Nuclear Information System (INIS)

    Das, B.K.; Noreen Norfaraheen Lee Abdullah

    2012-01-01

    In recent years, the role of nuclear medicine in the study of morphology and pathophysiology of various endocrine organs has greatly expanded. Newly developed radiopharmaceuticals, new instrumentation, innovative study designs and dual isotope techniques have contributed significantly to the evaluation of parathyroid and adrenal diseases. In selected cases, patients with metabolic bone disorders and infertility have greatly been benefited. (author)

  17. Nigerian Endocrine Practice: Submissions

    African Journals Online (AJOL)

    Original Articles should be restricted to clinical or basic studies, particularly translational research, which add new information to the etiology, treatment, and outcomes of endocrine disorders that have not been published previously. These manuscripts should be restricted to 3,500 words, no more than 40 references, and no ...

  18. Nigerian Endocrine Practice

    African Journals Online (AJOL)

    The journal accepts original contributions related to the practice and science of clinical endocrinology, articles updating the clinical endocrinologist on current areas of interest in the diagnosis and treatment of endocrine disorders, articles discussing dilemma facing endocrinologists in the clinical, social, and ethical arena of ...

  19. Heavy Metals Acting as Endocrine Disrupters

    Directory of Open Access Journals (Sweden)

    Bogdan Georgescu

    2011-10-01

    Full Text Available Last years researches focused on several natural and synthetic compounds that may interfere with the major functionsof the endocrine system and were termed endocrine disrupters. Endocrine disrupters are defined as chemicalsubstances with either agonist or antagonist endocrine effects in human and animals. These effects may be achievedby interferences with the biosynthesis or activity of several endogenous hormones. Recently, it was demonstratedthat heavy metals such as cadmium (Cd, arsen (As, mercury (Hg, nickel (Ni, lead (Pb and zinc (Zn may exhibitendocrine-disrupting activity in animal experiments. Emerging evidence of the intimate mechanisms of action ofthese heavy metals is accumulating. It was revealed, for example, that the Zn atom from the Zn fingers of theestrogen receptor can be replaced by several heavy metal molecules such as copper, cobalt, Ni and Cd. By replacingthe Zn atom with Ni or copper, binding of the estrogen receptor to the DNA hormone responsive elements in the cellnucleus is prevented. In both males and females, low-level exposure to Cd interferes with the biological effects ofsteroid hormones in reproductive organs. Arsen has the property to bind to the glucocorticoid receptor thusdisturbing glucocorticoids biological effects. With regard to Hg, this may induce alterations in male and femalefertility, may affect the function of the hypothalamo-pituitary-thyroid axis or the hypothalamo-pituitary-adrenal axis,and disrupt biosynthesis of steroid hormones.

  20. Endocrine-related reproductive effects in molluscs.

    Science.gov (United States)

    Ketata, Imen; Denier, Xavier; Hamza-Chaffai, Amel; Minier, Christophe

    2008-04-01

    Research on endocrine disruption has been a major topic of the past decade. Although most studies concentrated on vertebrate species, invertebrates are now gaining more attention. In particular, data on molluscs is increasing. One of the best-documented and more relevant examples of endocrine disruption is the imposex phenomenon affecting some gastropod species. But the increasing interest is also due to the fact that molluscs, especially bivalves, are good bioindicators used for decades in environmental studies and that progress have been made in the understanding of the physiology and endocrinology of some mollusc species. Recent results suggest that molluscs can be adversely affected by compounds that alter their reproduction and that vertebrate-type sex-steroids metabolism or mechanism of action could be involved in these effects. Nevertheless, the endocrine system of molluscs appears to be dissimilar in many aspects to those of vertebrates and sex-steroids might not have the same importance in all mollusc species. This diversity constitutes an important opportunity to examine and understand new and alternative mechanisms for endocrine disruption.

  1. Levetiracetam differentially alters CD95 expression of neuronal cells and the mitochondrial membrane potential of immune and neuronal cells in vitro

    Directory of Open Access Journals (Sweden)

    Susannah K Rogers

    2014-02-01

    Full Text Available Epilepsy is a neurological seizure disorder that affects over 100 million people worldwide. Levetiracetam, either alone, as monotherapy, or as adjunctive treatment, is widely used to control certain types of seizures. Despite its increasing popularity as a relatively safe and effective anti-convulsive treatment option, its mechanism(s of action are poorly understood. Studies have suggested neuronal, glial, and immune mechanisms of action. Understanding the precise mechanisms of action of Levetiracetam would be extremely beneficial in helping to understand the processes involved in seizure generation and epilepsy. Moreover, a full understanding of these mechanisms would help to create more efficacious treatments while minimizing side effects. The current study examined the effects of Levetiracetam on the mitochondrial membrane potential of neuronal and non-neuronal cells, in vitro, in order to determine if Levetiracetam influences metabolic processes in these cell types. In addition, this study sought to address possible immune-mediated mechanisms by determining if Levetiracetam alters the expression of immune receptor-ligand pairs. The results show that Levetiracetam induces expression of CD95 and CD178 on NGF-treated C17.2 neuronal cells. The results also show that Levetiracetam increases mitochondrial membrane potential on C17.2 neuronal cells in the presence of nerve growth factor. In contrast, Levetiracetam decreases the mitochondrial membrane potential of splenocytes and this effect was dependent on intact invariant chain, thus implicating immune cell interactions. These results suggest that both neuronal and non-neuronal anti-epileptic activities of Levetiracetam involve control over energy metabolism, more specifically, mΔΨ. Future studies are needed to further investigate this potential mechanism of action.

  2. An altered immune response, but not individual cationic antimicrobial peptides, is associated with the oral attenuation of Ara4N-deficient Salmonella enterica serovar Typhimurium in mice.

    Directory of Open Access Journals (Sweden)

    Kristi L Strandberg

    Full Text Available Salmonella enterica serovar Typhimurium (S. Typhimurium uses two-component regulatory systems (TCRS to respond to stimuli in the local microenvironment. Upon infection, the Salmonella TCRSs PhoP-PhoQ (PhoPQ and PmrA-PmrB (PmrAB are activated by environmental signals in the intestinal lumen and within host cells. TCRS-mediated gene expression results in lipopolysaccharide (LPS modification and cationic antimicrobial peptide resistance. The PmrA-regulated pmrHFIJKLM operon mediates 4-amino-4-deoxy-L-arabinose (Ara4N production and attachment to the lipid A of LPS. A ΔpmrF S. Typhimurium strain cannot produce Ara4N, exhibits increased sensitivity to cationic antimicrobial peptide (CAMP-mediated killing, and attenuated virulence in mice upon oral infection. CAMPs are predicted to play a role in elimination of Salmonella, and may activate PhoPQ and PmrAB in vivo, which could increase bacterial resistance to host defenses. Competition experiments between wild type (WT and ΔpmrF mutant strains of S. Typhimurium indicated that selection against this mutant first occurs within the intestinal lumen early during infection. However, CRAMP and active cryptdins alone are not responsible for elimination of Ara4N-deficient bacteria in vivo. Investigation into the early immune response to ΔpmrF showed that it differed slightly from the early immune response to WT S. Typhimurium. Further investigation into the early immune response to infection of Peyer's patches suggests a role for IL-13 in the attenution of the ΔpmrF mutant strain. Thus, prominent CAMPs present in the mouse intestine are not responsible for the selection against the ΔpmrF strain in this location, but limited alterations in innate immune induction were observed that affect bacterial survival and virulence.

  3. Moderate alcohol consumption alters both leucocyte gene expression profiles and circulating proteins related to immune response and lipid metabolism in men.

    Science.gov (United States)

    Joosten, Michel M; van Erk, Marjan J; Pellis, Linette; Witkamp, Renger F; Hendriks, Henk F J

    2012-08-01

    Moderate alcohol consumption has various effects on immune and inflammatory processes, which could accumulatively modulate chronic disease risk. So far, no comprehensive, integrative profiling has been performed to investigate the effects of longer-term alcohol consumption. Therefore, we studied the effects of alcohol consumption on gene expression patterns using large-scale profiling of whole-genome transcriptomics in blood cells and on a number of proteins in blood. In a randomised, open-label, cross-over trial, twenty-four young, normal-weight men consumed 100 ml vodka (30 g alcohol) with 200 ml orange juice or only orange juice daily during dinner for 4 weeks. After each period, blood was sampled for measuring gene expression and selected proteins. Pathway analysis of 345 down-regulated and 455 up-regulated genes revealed effects of alcohol consumption on various signalling responses, immune processes and lipid metabolism. Among the signalling processes, the most prominently changed was glucocorticoid receptor signalling. A network on immune response showed a down-regulated NF-κB gene expression together with increased plasma adiponectin and decreased pro-inflammatory IL-1 receptor antagonist and IL-18, and acute-phase proteins ferritin and α1-antitrypsin concentrations (all P alcohol consumption. Furthermore, a network of gene expression changes related to lipid metabolism was observed, with a central role for PPARα which was supported by increased HDL-cholesterol and several apo concentrations (all P alcohol consumption. In conclusion, an integrated approach of profiling both genes and proteins in blood showed that 4 weeks of moderate alcohol consumption altered immune responses and lipid metabolism.

  4. [Autoimmune thyroid disease and other non-endocrine autoimmune diseases].

    Science.gov (United States)

    Dilas, Ljiljana Todorović; Icin, Tijana; Paro, Jovanka Novaković; Bajkin, Ivana

    2011-01-01

    Autoimmune diseases are chronic conditions initiated by the loss of immunological tolerance to self-antigens. They constitute heterogeneous group of disorders, in which multiple alterations in the immune system result in a spectrum of syndromes that either target specific organs or affect the body systematically. Recent epidemiological studies have shown a possible shift of one autoimmune disease to another or the fact that more than one autoimmune disease may coexist in a single patient or in the same family. Numerous autoimmune diseases have been shown to coexist frequently with thyroid autoimmune diseases. AUTOIMMNUNE THYROID DISEASE AND OTHER ORGAN SPECIFIC NON-ENDOCRINE AUTOIMMUNE DISEASES: This part of the study reviews the prevalence of autoimmune thyroid disease coexisting with: pernicious anaemia, vitiligo, celiac disease, autoimmune liver disease, miastenia gravis, alopecia areata and sclerosis multiplex, and several recommendations for screening have been given. AUTOIMMUNE THYROID DISEASE AND OTHER ORGAN NON-SPECIFIC NON-ENDOCRINE AUTOIMMUNE DISEASES: Special attention is given to the correlation between autoimmune thyroid disease and rheumatoid arthritis, systemic lupus erythematosus, syndrome Sjögren, systemic sclerosis and mixed connective tissue disease. Screening for autoimmune thyroid diseases should be recommended in everyday clinical practice, in patients with primary organ-specific or organ non-specific autoimmune disease. Otherwise, in patients with primary thyroid autoimmune disease, there is no good reason of seeking for all other autoimmune diseases, although these patients have a greater risk of developing other autoimmune disease. Economic aspects of medicine require further analyzing of these data, from cost/benefit point of view to justified either mandatory screening or medical practitioner judgment.

  5. Long time enzyme replacement therapy stabilizes obstructive lung disease and alters peripheral immune cell subsets in Fabry patients.

    Science.gov (United States)

    Odler, Balázs; Cseh, Áron; Constantin, Tamás; Fekete, György; Losonczy, György; Tamási, Lilla; Benke, Kálmán; Szilveszter, Bálint; Müller, Veronika

    2017-11-01

    Fabry disease is an X-linked lysosomal storage disorder, causing accumulation of globotriaosylceramid in different organs. Glycolipids are activators of different immune cell subsets the resulting inflammation is responsible for organ damage. Pulmonary involvement leads to airway inflammation; however, data on severity, as well as the effect of enzyme replacement therapy on lung function parameters and changes in peripheral immune cell subsets on lung involvement are sparse. Seven Fabry patients and four carriers underwent detailed clinical examinations screening for pulmonary manifestations. Repetitive measurements were performed on five patients on ERT (average follow-up 5 years). Patients with Fabry disease and control volunteers were included into peripheral blood cell measurements. Lung involvement was present in all patients. Symptoms suggestive for lung disease were mild, however, obstructive ventilatory disorder, dominantly affecting small airways accompanied by hyperinflation was demonstrated in all affected patients. ERT resulted in small improvement of FEV1 in most treated patients. Decreased ratio of myeloid DC, Th17 cells while increase in T helper (Th)1 cells, and no change in Th2 and regulatory T (Treg) cells were detected in Fabry patients. Fabry disease results mainly in mild symptoms related to lung involvement, characterized by moderate non-reversible obstructive ventilatory disorder. Stabilization of airway obstruction during follow-up was observed using ERT in most patients, emphasizing the importance of this treatment in respect of pulmonary manifestations. Changes of immune cell subsets in the peripheral blood might play a role in inflammatory process, including small airways in Fabry patient's lung. © 2016 John Wiley & Sons Ltd.

  6. Comparison of Watermelon and Carbohydrate Beverage on Exercise-Induced Alterations in Systemic Inflammation, Immune Dysfunction, and Plasma Antioxidant Capacity

    Directory of Open Access Journals (Sweden)

    R. Andrew Shanely

    2016-08-01

    Full Text Available Consuming carbohydrate- and antioxidant-rich fruits during exercise as a means of supporting and enhancing both performance and health is of interest to endurance athletes. Watermelon (WM contains carbohydrate, lycopene, l-citrulline, and l-arginine. WM may support exercise performance, augment antioxidant capacity, and act as a countermeasure to exercise-induced inflammation and innate immune changes. Trained cyclists (n = 20, 48 ± 2 years participated in a randomized, placebo controlled, crossover study. Subjects completed two 75 km cycling time trials after either 2 weeks ingestion of 980 mL/day WM puree or no treatment. Subjects drank either WM puree containing 0.2 gm/kg carbohydrate or a 6% carbohydrate beverage every 15 min during the time trials. Blood samples were taken pre-study and pre-, post-, 1 h post-exercise. WM ingestion versus no treatment for 2-weeks increased plasma l-citrulline and l-arginine concentrations (p < 0.0125. Exercise performance did not differ between WM puree or carbohydrate beverage trials (p > 0.05, however, the rating of perceived exertion was greater during the WM trial (p > 0.05. WM puree versus carbohydrate beverage resulted in a similar pattern of increase in blood glucose, and greater increases in post-exercise plasma antioxidant capacity, l-citrulline, l-arginine, and total nitrate (all p < 0.05, but without differences in systemic markers of inflammation or innate immune function. Daily WM puree consumption fully supported the energy demands of exercise, and increased post-exercise blood levels of WM nutritional components (l-citrulline and l-arginine, antioxidant capacity, and total nitrate, but without an influence on post-exercise inflammation and changes in innate immune function.

  7. Altered Immune Profiles of Natural Killer Cells in Chronic Hepatitis B Patients: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Qiong-Fang Zhang

    Full Text Available Natural killer (NK cells are the main effective component of the innate immune system that responds to chronic hepatitis B (CHB infection. Although numerous studies have reported the immune profiles of NK cells in CHB patients, they are limited by inconsistent results. Thus, we performed a meta-analysis to characterize reliably the immune profiles of NK cells after CHB infection, specifically frequency, phenotype, and function.A literature search of the computer databases MEDLINE, PUBMED, EMBASE, and Cochrane Center Register of Controlled Trails was performed and 19 studies were selected. The standard mean difference (SMD and 95% confidence interval (CI of each continuous variable was estimated with a fixed effects model when I2 < 50% for the test for heterogeneity, or the random effects model otherwise. Publication bias was evaluated using Begg's and Egger's tests.The meta-analysis of publications that reported frequency of peripheral NK cells showed that NK cell levels in CHB patients were significantly lower compared with that of healthy controls. A higher frequency of CD56bright NK subsets was found in CHB patients, but the CD56dim NK subsets of CHB patients and healthy controls were similar. CHB patients before and after antiviral therapy with nucleotide analogues (NUCs showed no statistical difference in NK frequency. The activating receptors were upregulated, whereas inhibitory receptors were comparable in the peripheral NK cells of CHB individuals and healthy controls. NK cells of CHB patients displayed higher cytotoxic potency as evidenced by CD107a protein levels and conserved potency to produce interferon-gamma (IFNγ, compared with their healthy counterparts.Our results revealed that CHB patients had a lower frequency of NK cells compared with healthy individuals not treatable with antiviral NUC therapy. With an activating phenotype, NK cells in CHB patients showed better cytotoxic potency and conserved IFNγ production.

  8. Carbendazim has the potential to induce oxidative stress, apoptosis, immunotoxicity and endocrine disruption during zebrafish larvae development.

    Science.gov (United States)

    Jiang, Jinhua; Wu, Shenggan; Wang, Yanhua; An, Xuehua; Cai, Leiming; Zhao, Xueping; Wu, Changxing

    2015-10-01

    Increasing evidence have suggested deleterious effects of carbendazim on reproduction, apoptosis, immunotoxicity and endocrine disruption in mice and rats, however, the developmental toxicity of carbendazim to aquatic organisms remains obscure. In the present study, we utilized zebrafish as an environmental monitoring model to characterize the effects of carbendazim on expression of genes related to oxidative stress, apoptosis, immunotoxicity and endocrine disruption during larval development. Different trends in gene expression were observed upon exposing the larvae to 4, 20, 100, and 500 μg/L carbendazim for 4 and 8d. The mRNA levels of catalase, glutathione peroxidase and manganese superoxide dismutase (CAT, GPX, and Mn/SOD) were up-regulated after exposure to different concentrations of carbendazim for 4 or 8d. The up-regulation of p53, Apaf1, Cas8 and the down-regulation of Bcl2, Mdm2, Cas3 in the apoptosis pathway, as well as the increased expression of cytokines and chemokines, including CXCL-C1C, CCL1, IL-1b, IFN, IL-8, and TNFα, suggested carbendazim might trigger apoptosis and immune response during zebrafish larval development. In addition, the alteration of mRNA expression of VTG, ERα, ERβ1, ERβ2, TRα, TRβ, Dio1, and Dio2 indicated the potential of carbendazim to induce endocrine disruption in zebrafish larvae. These data suggested that carbendazim could simultaneously induce multiple responses during zebrafish larval development, and bidirectional interactions among oxidative stress, apoptosis pathway, immune and endocrine systems might be present. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Fermented milk supplemented with probiotics and prebiotics can effectively alter the intestinal microbiota and immunity of host animals.

    Science.gov (United States)

    Wang, S; Zhu, H; Lu, C; Kang, Z; Luo, Y; Feng, L; Lu, X

    2012-09-01

    Fermented milk supplemented with 2 probiotic strains, Bifidobacterium lactis Bi-07 and Lactobacillus acidophilus NCFM, and a prebiotic, isomaltooligosaccharide, was orally administered to 100 healthy adults at 480 g/d for 2 wk in a randomized controlled trial. The fecal bacterial compositions of these subjects were examined by culture before and after the intervention. The same fermented milk was also orally fed to BALB/c mice, and immune as well as fecal bacteria analyses were conducted using the same culturing methods. After the intervention, increases in fecal bifidobacteria and lactobacilli were observed among the subjects compared with the subjects in the control group. In contrast, after the intervention, fecal enterobacilli were significantly decreased in the test group compared with the control group. The same effects on the composition of the intestinal microbiota were observed in mice. Furthermore, the tested mice were found to have significantly increased delayed-type hypersensitivity, plaque-forming cells, and half-hemolysis values after the intervention with the fermented milk. In summary, the synbiotic fermented milk containing probiotics and a prebiotic may contribute to improve intestinal health and may have a positive effect on the humoral and cell-mediated immunity of host animals. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Future oceanic warming and acidification alter immune response and disease status in a commercial shellfish species, Mytilus edulis L.

    Directory of Open Access Journals (Sweden)

    Clara L Mackenzie

    Full Text Available Increases in atmospheric carbon dioxide are leading to physical changes in marine environments including parallel decreases in ocean pH and increases in seawater temperature. This study examined the impacts of a six month exposure to combined decreased pH and increased temperature on the immune response and disease status in the blue mussel, Mytilus edulis L. Results provide the first confirmation that exposure to future acidification and warming conditions via aquarium-based simulation may have parallel implications for bivalve health. Collectively, the data suggests that temperature more than pH may be the key driver affecting immune response in M. edulis. Data also suggests that both increases in temperature and/or lowered pH conditions may lead to changes in parasite abundance and diversity, pathological conditions, and bacterial incidence in M. edulis. These results have implications for future management of shellfish under a predicted climate change scenario and future sustainability of shellfisheries. Examination of the combined effects of two stressors over an extended exposure period provides key preliminary data and thus, this work represents a unique and vital contribution to current research efforts towards a collective understanding of expected near-future impacts of climate change on marine environments.

  11. Immunization against recombinant GnRH-I alters ultrastructure of gonadotropin cell in an experimental boar model.

    Science.gov (United States)

    Fang, Fugui; Su, Shiping; Liu, Ya; Zhang, Yunhai; Pu, Yong; Zhao, Xijie; Li, Yunsheng; Cao, Hongguo; Wang, Juhua; Zhou, Jie; Zhang, Xiaorong

    2013-07-15

    Gonadotropin cell is the main responsible for the secretion of follicle stimulating hormone (FSH) and luteinizing hormone (LH), and immunocastration reduces the concentrations of serum FSH and LH. A few studies have reported the histological structure of gonadotropin cells obtained from immunocastration animals at the light microscopy level. However, the ultrastructure of gonadotropin cells remains largely unexplored. The aim of this study was to evaluate and to compare ultrastructure of gonadotropin cell in gonadally intact boars and immunologically castrated male animals. In this study, serum and adenohypophysis tissue were collected from nine gonadally intact boars and nine male pigs treated with recombinant gonadotropin releasing hormone I (GnRH-I). Anti-GnRH-I antibodies in serum and the ultrastructure of gonadotropin cell in adenohypophysis were determined by enzymelinked immunosorbent assay and electron microscopy, respectively. The results demonstrated that active immunization against recombinant GnRH-I increased serum GnRH-I antibody levels (Pimmunized animals. We conclude that immunization against recombinant GnRH-I induces severe atrophy of granules in gonadotropin cell of boars, possibly reflecting GnRH-I regulation of gonadotropin cell.

  12. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Kent Reifschneider

    2015-07-01

    Full Text Available Traumatic brain injuries (TBI are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children’s quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6–12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life.

  13. The Bidirectional Relationship between Sleep and Immunity against Infections

    Directory of Open Access Journals (Sweden)

    Elizabeth G. Ibarra-Coronado

    2015-01-01

    Full Text Available Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed.

  14. The Bidirectional Relationship between Sleep and Immunity against Infections.

    Science.gov (United States)

    Ibarra-Coronado, Elizabeth G; Pantaleón-Martínez, Ana Ma; Velazquéz-Moctezuma, Javier; Prospéro-García, Oscar; Méndez-Díaz, Mónica; Pérez-Tapia, Mayra; Pavón, Lenin; Morales-Montor, Jorge

    2015-01-01

    Sleep is considered an important modulator of the immune response. Thus, a lack of sleep can weaken immunity, increasing organism susceptibility to infection. For instance, shorter sleep durations are associated with a rise in suffering from the common cold. The function of sleep in altering immune responses must be determined to understand how sleep deprivation increases the susceptibility to viral, bacterial, and parasitic infections. There are several explanations for greater susceptibility to infections after reduced sleep, such as impaired mitogenic proliferation of lymphocytes, decreased HLA-DR expression, the upregulation of CD14+, and variations in CD4+ and CD8+ T lymphocytes, which have been observed during partial sleep deprivation. Also, steroid hormones, in addition to regulating sexual behavior, influence sleep. Thus, we hypothesize that sleep and the immune-endocrine system have a bidirectional relationship in governing various physiological processes, including immunity to infections. This review discusses the evidence on the bidirectional effects of the immune response against viral, bacterial, and parasitic infections on sleep patterns and how the lack of sleep affects the immune response against such agents. Because sleep is essential in the maintenance of homeostasis, these situations must be adapted to elicit changes in sleep patterns and other physiological parameters during the immune response to infections to which the organism is continuously exposed.

  15. Early life ozone exposure results in dysregulated innate immune function and altered microRNA expression in airway epithelium.

    Directory of Open Access Journals (Sweden)

    Candice C Clay

    Full Text Available Exposure to ozone has been associated with increased incidence of respiratory morbidity in humans; however the mechanism(s behind the enhancement of susceptibility are unclear. We have previously reported that exposure to episodic ozone during postnatal development results in an attenuated peripheral blood cytokine response to lipopolysaccharide (LPS that persists with maturity. As the lung is closely interfaced with the external environment, we hypothesized that the conducting airway epithelium of neonates may also be a target of immunomodulation by ozone. To test this hypothesis, we evaluated primary airway epithelial cell cultures derived from juvenile rhesus macaque monkeys with a prior history of episodic postnatal ozone exposure. Innate immune function was measured by expression of the proinflammatory cytokines IL-6 and IL-8 in primary cultures established following in vivo LPS challenge or, in response to in vitro LPS treatment. Postnatal ozone exposure resulted in significantly attenuated IL-6 mRNA and protein expression in primary cultures from juvenile animals; IL-8 mRNA was also significantly reduced. The effect of antecedent ozone exposure was modulated by in vivo LPS challenge, as primary cultures exhibited enhanced cytokine expression upon secondary in vitro LPS treatment. Assessment of potential IL-6-targeting microRNAs miR-149, miR-202, and miR-410 showed differential expression in primary cultures based upon animal exposure history. Functional assays revealed that miR-149 is capable of binding to the IL-6 3' UTR and decreasing IL-6 protein synthesis in airway epithelial cell lines. Cumulatively, our findings suggest that episodic ozone during early life contributes to the molecular programming of airway epithelium, such that memory from prior exposures is retained in the form of a dysregulated IL-6 and IL-8 response to LPS; differentially expressed microRNAs such as miR-149 may play a role in the persistent modulation of the

  16. [Xenoestrogens: endocrine disrupting compounds].

    Science.gov (United States)

    Wozniak, Milena; Murias, Marek

    2008-11-01

    In recent years much attention has been paid to the issues of chemicals that disrupt the normal function of endocrine system, namely xenoestrogens. These chemicals can mimic the activity of endogenous estrogens, antagonize their interaction with estrogen receptors or disrupt the synthesis, metabolism and functions of endogenous female hormones. Due to the fact that they act thanks to many different mechanisms, it is very difficult to estimate their estrogenic activity by means of a simple tests. The important issue remains the fact that xenoestrogens may have a positive or negative influence on the function of the endocrine system. It seems to be very important that there are many sources of xenoestrogens, that is not only vegetables and fruit (phytoestrogens), but also metals (Co, Cu, Ni, Cr, Pb), dental appliances (alkilphenols), food containers or blood containers (PVC--polyvinyl chloride, DEHP--di-(2-ethylhexyl) phthalate), cosmetics (parabens) and pesticides (DDT--dichlor-diphenyl-trichlorethylane, endosulfane).

  17. Endocrine Abnormalities in Patients with Chronic Kidney Disease.

    Science.gov (United States)

    Kuczera, Piotr; Adamczak, Marcin; Wiecek, Andrzej

    2015-01-01

    In patients with chronic kidney disease the alterations of the endocrine system may arise from several causes. The kidney is the site of degradation as well as synthesis of many different hormones. Moreover, a number of concomitant pathological conditions such as inflammation, metabolic acidosis and malnutrition may participate in the pathogenesis of endocrine abnormalities in this group of patients. The most pronounced endocrine abnormalities in patients with chronic kidney disease are the deficiencies of: calcitriol, testosterone, insulin-like growth factor and, erythropoietin (EPO). Additionally accumulation of several hormones, such as: prolactin, growth hormone and insulin frequently also occur. The clinical consequences of the abovementioned endocrine abnormalities are among others: anemia, infertility and bone diseases.

  18. Endocrine Pancreas Regeneration

    Science.gov (United States)

    2010-06-01

    endocrine hormone-producing cells. PNAS 2002;99(12):8078- 83. 30. Horb ME, Shen CN, Tosh D, Slack JM. Experimental conversion of liver to pancreas...Transplantation, Rock - ville, MD; United Network for Organ Sharing, Richmond, VA; University Renal Research and Education Association, Ann Arbor, MI. 10. R. W. G...and incubated for 1 h at room temperature on a rocking plate. Non-adherent U-937 cells were removed and adherent cells fixed in 1% glutaraldehyde. The

  19. Radiotherapy of endocrine orbitopathy

    International Nuclear Information System (INIS)

    Weischedel, U.; Wieland, C.

    1985-01-01

    After a review of the history and a discussion of recent theories about pathogenesis of endocrine ophthalmopathy the authros give a report on their radiotherapeutical treatment results with cobalt-60-γ-rays in 50 patients. Amelioration was achieved in 50% of the cases, in the other 50% no progression was seen. Radiotherapy is of antiphlogistic and functional effectivity and should be integrated in the treatment regime in early stages. (orig.) [de

  20. [Endocrine function in obesity].

    Science.gov (United States)

    Álvarez-Castro, Paula; Sangiao-Alvarellos, Susana; Brandón-Sandá, Iria; Cordido, Fernando

    2011-10-01

    Obesity is associated to significant disturbances in endocrine function. Hyper insulinemia and insulin resistance are the best known changes in obesity, but their mechanisms and clinical significance are not clearly established. Adipose tissue is considered to be a hormone-secreting endocrine organ; and increased leptin secretion from the adipocyte, a satiety signal, is a well-established endocrine change in obesity. In obesity there is a decreased GH secretion. Impairment of somatotropic function in obesity is functional and may be reversed in certain circumstances. The pathophysiological mechanism responsible for low GH secretion in obesity is probably multifactorial. There are many data suggesting that a chronic state of somatostatin hypersecretion results in inhibition of GH release. Increased FFA levels, as well as a deficient ghrelin secretion, probably contribute to the impaired GH secretion. In women, abdominal obesity is associated to hyperandrogenism and low sex hormone-binding globulin levels. Obese men, particularly those with morbid obesity, have decreased testosterone and gonadotropin levels. Obesity is associated to an increased cortisol production rate, which is compensated for by a higher cortisol clearance, resulting in plasma free cortisol levels that do not change when body weight increases. Ghrelin is the only known circulating orexigenic factor, and has been found to be decreased in obese people. In obesity there is also a trend to increased TSH and free T3 levels. Copyright © 2011 SEEN. Published by Elsevier Espana. All rights reserved.

  1. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis

    Science.gov (United States)

    Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.; hide

    2001-01-01

    Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.

  2. Sodium methyldithiocarbamate inhibits MAP kinase activation through toll-like receptor 4, alters cytokine production by mouse peritoneal macrophages, and suppresses innate immunity.

    Science.gov (United States)

    Pruett, Stephen B; Zheng, Qiang; Schwab, Carlton; Fan, Ruping

    2005-09-01

    Sodium methyldithiocarbamate (SMD; trade name, Metam Sodium) is an abundantly used soil fumigant that can cause adverse health effects in humans, including some immunological manifestations. The mechanisms by which SMD acts, and its targets within the immune system are not fully understood. Initial experiments demonstrated that SMD administered by oral gavage substantially decreased IL-12 production and increased IL-10 production induced by lipopolysaccharide in mice. The present study was conducted to further characterize these effects and to evaluate our working hypothesis that the mechanism for these effects involves alteration in signaling through toll-like receptor 4 and that this would suppress innate immunity to infection. SMD decreased the activation of MAP kinases and AP-1 but not NF-kappaB in peritoneal macrophages. The expression of mRNA for IL-1alpha, IL-1beta, IL-18, IFN-gamma, IL-12 p35, IL-12 p40, and macrophage migration inhibitory factor (MIF) was inhibited by SMD, whereas mRNA for IL-10 was increased. SMD increased the IL-10 concentration in the peritoneal cavity and serum and decreased the concentration of IL-12 p40 in the serum, peritoneal cavity, and intracellularly in peritoneal cells (which are >80% macrophages). Similar effects on LPS-induced cytokine production were observed following dermal administration of SMD. The major breakdown product of SMD, methylisothiocyanate (MITC), caused similar effects on cytokine production at dosages as low as 17 mg/kg, a dosage relevant to human exposure levels associated with agricultural use of SMD. Treatment of mice with SMD decreased survival following challenge with non-pathogenic Escherichia coli within 24-48 h, demonstrating suppression of innate immunity.

  3. Endocrine autoimmune disease: genetics become complex.

    Science.gov (United States)

    Wiebolt, Janneke; Koeleman, Bobby P C; van Haeften, Timon W

    2010-12-01

    The endocrine system is a frequent target in pathogenic autoimmune responses. Type 1 diabetes and autoimmune thyroid disease are the prevailing examples. When several diseases cluster together in one individual, the phenomenon is called autoimmune polyglandular syndrome. Progress has been made in understanding the genetic factors involved in endocrine autoimmune diseases. Studies on monogenic autoimmune diseases such as autoimmune polyglandular syndrome type 1, immunodysregulation, polyendocrinopathy, enteropathy, X-linked and primary immune deficiencies helped uncover the role of key regulators in the preservation of immune tolerance. Alleles of the major histocompatibility complex have been known to contribute to the susceptibility to most forms of autoimmunity for more than 3 decades. Furthermore, sequencing studies revealed three non-major histocompatibility complex loci and some disease specific loci, which control T lymphocyte activation or signalling. Recent genome-wide association studies (GWAS) have enabled acceleration in the identification of novel (non-HLA) loci and hence other relevant immune response pathways. Interestingly, several loci are shared between autoimmune diseases, and surprisingly some work in opposite direction. This means that the same allele which predisposes to a certain autoimmune disease can be protective in another. Well powered GWAS in type 1 diabetes has led to the uncovering of a significant number of risk variants with modest effect. These studies showed that the innate immune system may also play a role in addition to the adaptive immune system. It is anticipated that next generation sequencing techniques will uncover other (rare) variants. For other autoimmune disease (such as autoimmune thyroid disease) GWAS are clearly needed. © 2010 The Authors. European Journal of Clinical Investigation © 2010 Stichting European Society for Clinical Investigation Journal Foundation.

  4. Host genetic background influences the response to the opportunistic Pseudomonas aeruginosa infection altering cell-mediated immunity and bacterial replication.

    Science.gov (United States)

    De Simone, Maura; Spagnuolo, Lorenza; Lorè, Nicola Ivan; Rossi, Giacomo; Cigana, Cristina; De Fino, Ida; Iraqi, Fuad A; Bragonzi, Alessandra

    2014-01-01

    Pseudomonas aeruginosa is a common cause of healthcare-associated infections including pneumonia, bloodstream, urinary tract, and surgical site infections. The clinical outcome of P. aeruginosa infections may be extremely variable among individuals at risk and patients affected by cystic fibrosis. However, risk factors for P. aeruginosa infection remain largely unknown. To identify and track the host factors influencing P. aeruginosa lung infections, inbred immunocompetent mouse strains were screened in a pneumonia model system. A/J, BALB/cJ, BALB/cAnNCrl, BALB/cByJ, C3H/HeOuJ, C57BL/6J, C57BL/6NCrl, DBA/2J, and 129S2/SvPasCRL mice were infected with P. aeruginosa clinical strain and monitored for body weight and mortality up to seven days. The most deviant survival phenotypes were observed for A/J, 129S2/SvPasCRL and DBA/2J showing high susceptibility while BALB/cAnNCrl and C3H/HeOuJ showing more resistance to P. aeruginosa infection. Next, one of the most susceptible and resistant mouse strains were characterized for their deviant clinical and immunological phenotype by scoring bacterial count, cell-mediated immunity, cytokines and chemokines profile and lung pathology in an early time course. Susceptible A/J mice showed significantly higher bacterial burden, higher cytokines and chemokines levels but lower leukocyte recruitment, particularly neutrophils, when compared to C3H/HeOuJ resistant mice. Pathologic scores showed lower inflammatory severity, reduced intraluminal and interstitial inflammation extent, bronchial and parenchymal involvement and diminished alveolar damage in the lungs of A/J when compared to C3H/HeOuJ. Our findings indicate that during an early phase of infection a prompt inflammatory response in the airways set the conditions for a non-permissive environment to P. aeruginosa replication and lock the spread to other organs. Host gene(s) may have a role in the reduction of cell-mediated immunity playing a critical role in the control of P

  5. Delayed BCG immunization does not alter antibody responses to EPI vaccines in HIV-exposed and -unexposed South African infants.

    Science.gov (United States)

    Hesseling, Anneke C; Blakney, Anna K; Jones, Christine E; Esser, Monika M; de Beer, Corena; Kuhn, Louise; Cotton, Mark F; Jaspan, Heather B

    2016-07-12

    Bacille Calmette-Guérin (BCG) is routinely given at birth in tuberculosis-endemic settings due to its protective effect against disseminated tuberculosis in infants. BCG is however contraindicated in HIV-infected infants. We investigated whether delaying BCG vaccination to 14 weeks of age affected vaccine-induced antibody responses to Haemophilus influenzae type b (Hib)-conjugate, pertussis, tetanus and Hepatitis B (HBV) vaccines, in HIV-exposed uninfected (HEU) and -unexposed uninfected (HUU) infants. Infants were randomized to receive BCG at birth or at 14 weeks of age. Blood was taken at 14, 24, and 52 weeks of age and analyzed for Hib, pertussis, tetanus and HBV specific antibodies. BCG was given either at birth (106 infants, 51 HEU) or at 14 weeks of age (74 infants, 50 HEU). The timing of BCG vaccination did not influence the antibody response to any antigen studied. However, in a non-randomized comparison, HEU infants had higher Hib antibody concentrations at weeks 14 and 24 (p=0.001 and BCG vaccination, was associated with antibody concentrations to Hib, pertussis, HBV and tetanus primary immunization. DOH-27-1106-1520. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Direct and indirect endocrine disruption : aromatase and estrogen receptor-mediated processes in breast cancer development

    NARCIS (Netherlands)

    Heneweer, Marjoke

    2005-01-01

    Endocrine disrupting chemicals (EDCs) have been defined by the World Health Organization as: “exogenous substances or mixtures that alters function(s) of the endocrine system and causes adverse health effects in an intact organism, or its progeny, or (sub)populations”. Synthetic, as well as,

  7. Neuroendocrine targets of endocrine disruptors.

    Science.gov (United States)

    Gore, Andrea C

    2010-01-01

    The central neuroendocrine systems are responsible for the control of homeostatic processes in the body, including reproduction, growth, metabolism and energy balance, as well as stress responsiveness. These processes are initiated by signals in the central nervous system, specifically the hypothalamus, and are conveyed first by neural and then by endocrine effectors. The neuroendocrine systems, as the links between the brain and peripheral endocrine organs, play critical roles in the ability of an organism to respond to its environment under normal circumstances. When neuroendocrine homeostasis is disrupted by environmental endocrine-disrupting chemicals, a variety of perturbations can ensue, particularly when endocrine disruption occurs during critical developmental time periods. This article will discuss the evidence for environmental endocrine disruption of neuroendocrine systems and the effects on endocrine and reproductive functions.

  8. Exposure to benzene induces oxidative stress, alters the immune response and expression of p53 in gasoline filling workers.

    Science.gov (United States)

    Uzma, Nazia; Kumar, B Santhosh; Hazari, Mohammed Abdul Hannan

    2010-12-01

    Chronic exposure to benzene can lead to deleterious effects on many biological systems including blood and blood-forming organs. We investigated the adverse effects of benzene among workers occupationally exposed to benzene in India. Four hundred twenty-eight gasoline filling workers occupationally exposed to benzene and 78 unexposed individuals were recruited for this study. Benzene concentration was determined by gas chromatography, reactive oxygen species (ROS) by dichlorofluorescin diacetate (DCFH-DA) method, malondialdehyde (MDA) by thiobarbituric acid reactive substances assay (TBARS), total superoxide dismutase (T-SOD) by RANSOD kit and glutathione (GSH) by 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) reaction, respectively. CD4, CD8, IgG were carried out by using fluorescence activated cell sorter (FACS Calibur) and mRNA expression of p53 by reverse transcriptase PCR (RT-PCR). A significant increase in the concentration of benzene and its byproducts in both blood and urine were found in the workers compared with the controls. The levels of ROS and MDA were significantly elevated, and GSH and total T-SOD were decreased in the workers compared with the controls. A statistically significant decrease in the immunoglobulin levels, CD4T cells, CD4/CD8 ratio was observed in workers (vs. controls), whereas no significant difference was observed in CD8T cells. p53 gene expression was markedly higher in workers than in controls. Occupational exposure to benzene causes oxidative stress, immune suppression and increases the expression of tumor-suppressing gene p53 in gasoline filling workers. These bio-functional markers might be useful in screening and surveillance for occupational hazard.

  9. Radiological imaging in endocrine hypertension

    Directory of Open Access Journals (Sweden)

    Chandan J Das

    2011-01-01

    Full Text Available While different generations of assays have played important role in elucidating causes of different endocrine disorders, radiological techniques are instrumental in localizing the pathology. This statement cannot be truer in any disease entity other than endocrine hypertension. This review makes an effort to highlight the role of different radiological modalities, especially ultrasonography, computed tomography and magnetic resonance imaging, in the evaluation of different causes of endocrine hypertension.

  10. Alterations in innate immunity reactants and carbohydrate and lipid metabolism precede occurrence of metritis in transition dairy cows.

    Science.gov (United States)

    Dervishi, Elda; Zhang, Guanshi; Hailemariam, Dagnachew; Goldansaz, Seyed Ali; Deng, Qilan; Dunn, Suzanna M; Ametaj, Burim N

    2016-02-01

    The overall purpose of the present study was to search for early screening biomarkers of disease state. Therefore the objectives of this study were to evaluate metabolites related to carbohydrate metabolism, acute phase proteins, and proinflammatory cytokines in the blood of transition dairy cows starting at -8 weeks before calving. Blood samples were collected from 100 multiparous Holstein dairy cows during -8, -4, disease diagnosis, +4 and +8 weeks relative to parturition. Six healthy cows and 6 cows that showed clinical signs of metritis were selected for serum analysis. Overall the results showed that cows with metritis had greater concentration of lactate, interleukin-6 (IL-6), tumor necrosis factor (TNF), and serum amyloid A (SAA) versus healthy cows throughout the experiment. The disease was associated with decrease in milk production and fat: protein ratio. Cows with metritis showed alteration in metabolites related to carbohydrate metabolism, acute phase proteins, and proinflammatory cytokines starting at -8 weeks prior to parturition and appearance of clinical signs of the disease. This study suggests a possible use of cytokines as early markers of disease in dairy cows. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Do endocrine disruptors cause hypospadias?

    Science.gov (United States)

    Botta, Sisir; Cunha, Gerald R.

    2014-01-01

    Introduction Endocrine disruptors or environmental agents, disrupt the endocrine system, leading to various adverse effects in humans and animals. Although the phenomenon has been noted historically in the cases of diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT), the term “endocrine disruptor” is relatively new. Endocrine disruptors can have a variety of hormonal activities such as estrogenicity or anti-androgenicity. The focus of this review concerns on the induction of hypospadias by exogenous estrogenic endocrine disruptors. This has been a particular clinical concern secondary to reported increased incidence of hypospadias. Herein, the recent literature is reviewed as to whether endocrine disruptors cause hypospadias. Methods A literature search was performed for studies involving both humans and animals. Studies within the past 5 years were reviewed and categorized into basic science, clinical science, epidemiologic, or review studies. Results Forty-three scientific articles were identified. Relevant sentinel articles were also reviewed. Additional pertinent studies were extracted from the reference of the articles that obtained from initial search results. Each article was reviewed and results presented. Overall, there were no studies which definitely stated that endocrine disruptors caused hypospadias. However, there were multiple studies which implicated endocrine disruptors as one component of a multifactorial model for hypospadias. Conclusions Endocrine disruption may be one of the many critical steps in aberrant development that manifests as hypospadias. PMID:26816789

  12. Do endocrine disruptors cause hypospadias?

    Science.gov (United States)

    Botta, Sisir; Cunha, Gerald R; Baskin, Laurence S

    2014-12-01

    Endocrine disruptors or environmental agents, disrupt the endocrine system, leading to various adverse effects in humans and animals. Although the phenomenon has been noted historically in the cases of diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT), the term "endocrine disruptor" is relatively new. Endocrine disruptors can have a variety of hormonal activities such as estrogenicity or anti-androgenicity. The focus of this review concerns on the induction of hypospadias by exogenous estrogenic endocrine disruptors. This has been a particular clinical concern secondary to reported increased incidence of hypospadias. Herein, the recent literature is reviewed as to whether endocrine disruptors cause hypospadias. A literature search was performed for studies involving both humans and animals. Studies within the past 5 years were reviewed and categorized into basic science, clinical science, epidemiologic, or review studies. Forty-three scientific articles were identified. Relevant sentinel articles were also reviewed. Additional pertinent studies were extracted from the reference of the articles that obtained from initial search results. Each article was reviewed and results presented. Overall, there were no studies which definitely stated that endocrine disruptors caused hypospadias. However, there were multiple studies which implicated endocrine disruptors as one component of a multifactorial model for hypospadias. Endocrine disruption may be one of the many critical steps in aberrant development that manifests as hypospadias.

  13. The endocrine function of adipose tissue

    Directory of Open Access Journals (Sweden)

    Wagner de Jesus Pinto

    2014-09-01

    Full Text Available Currently it is considered the adipose tissue as a dynamic structure involved in many physiological and metabolic processes, produces and releases a variety of active peptides known by the generic name of adipokines that act performing endocrine, paracrine and autocrine. Furthermore, numbers expressed receptors that respond allows the afferent signals from endocrine organs, and also central nervous system. In 1987, the adipose tissue has been identified as the major site of metabolism of steroid hormones, thereafter, in 1994, it was recognized as an endocrine organ and the leptin being an early secretory products identified. In addition other biologically active substances were being isolated, such as adiponectin, resistin, TNF-a, interleukin-6 and others. The adipokines derived from adipose tissue modulate many metabolic parameters such as control of food intake, energy balance and peripheral insulin sensitivity, for example. Thus, the altered secretion of adipokines by adipose tissue may have metabolic effects may present complex relations with the pathophysiological process of obesity, endothelial dysfunction, inflammation, atherosclerosis and Diabetes mellitus. The understanding of the molecular processes occurring in the adipocytes may provide new tools for the treatment of pathophysiological conditions such as, for example, metabolic syndrome, obesity and diabetes mellitus.

  14. The impact of endocrine disruptors on endocrine targets.

    Science.gov (United States)

    Diamanti-Kandarakis, E; Palioura, E; Kandarakis, S A; Koutsilieris, M

    2010-07-01

    Endocrine disruption represents one of the most controversial environmental issues of our époque. So far, many substances, both natural and artificial, have been recognized to interfere with endocrine signaling pathways. In intact laboratory animals, this interaction has been documented to generate adverse health outcomes by impairing normal functions. With regard to humans, evidence is limited and inconsistent to clearly establish a causal inference, however, accumulating data incriminate endocrine disrupting chemicals to reproductive disorders and disturbed thyroid homeostasis. Recently, as a result of animal models and preliminary human studies, a new area of interest has arisen concerning the implication of endocrine disruptors in the etiology of obesity and diabetes, the two major, life-threatening, epidemics of modern world. This article reviews the evidence linking endocrine disrupting chemicals to a broad spectrum of clinical perturbations from reproduction and thyroid to metabolic regulation. (c) Georg Thieme Verlag KG Stuttgart . New York.

  15. Endocrine Disruptor Screening Program Reports to Congress

    Science.gov (United States)

    This page includes EPA reports to congress on pesticide licensing and endocrine disruptor screening activities, Endocrine Disruptor Methods Validation Subcomittee (EDMVS) progress, and Endocrine Disruptor Screening Program (EDSP) implementation progress.

  16. Two Virus Based Endocrine Disruptor Assays Effective Across Vertebrate Classes.

    Science.gov (United States)

    The presence of hormone mimics, or endocrine disrupting compounds (EDC’s), in the environment are increasing. Sources range from agricultural run–off, pharmaceuticals in waste water, to industrial operations. Current levels of contamination are sufficient to alter sexual develo...

  17. Effects of endocrine disrupting heavy metals on pituitary and ...

    African Journals Online (AJOL)

    Association of hypogonadism and visceral obesity (VO) was recently demonstrated in male auto-mechanics occupationally exposed to endocrine disruptors (ED)-lead, cadmium, mercury and arsenic, known to alter the hypothalamic-pituitary-testicular axis. The effects of exposure to these EDs on pituitary and gonadal ...

  18. Dietary β-glucan (MacroGard®) enhances survival of first feeding turbot (Scophthalmus maximus) larvae by altering immunity, metabolism and microbiota.

    Science.gov (United States)

    Miest, Joanna J; Arndt, Carmen; Adamek, Mikolaj; Steinhagen, Dieter; Reusch, Thorsten B H

    2016-01-01

    Reflecting the natural biology of mass spawning fish aquaculture production of fish larvae is often hampered by high and unpredictable mortality rates. The present study aimed to enhance larval performance and immunity via the oral administration of an immunomodulator, β-glucan (MacroGard(®)) in turbot (Scophthalmus maximus). Rotifers (Brachionus plicatilis) were incubated with or without yeast β-1,3/1,6-glucan in form of MacroGard(®) at a concentration of 0.5 g/L. Rotifers were fed to first feeding turbot larvae once a day. From day 13 dph onwards all tanks were additionally fed untreated Artemia sp. nauplii (1 nauplius ml/L). Daily mortality was monitored and larvae were sampled at 11 and 24 dph for expression of 30 genes, microbiota analysis, trypsin activity and size measurements. Along with the feeding of β-glucan daily mortality was significantly reduced by ca. 15% and an alteration of the larval microbiota was observed. At 11 dph gene expression of trypsin and chymotrypsin was elevated in the MacroGard(®) fed fish, which resulted in heightened tryptic enzyme activity. No effect on genes encoding antioxidative proteins was observed, whilst the immune response was clearly modulated by β-glucan. At 11 dph complement component c3 was elevated whilst cytokines, antimicrobial peptides, toll like receptor 3 and heat shock protein 70 were not affected. At the later time point (24 dph) an anti-inflammatory effect in form of a down-regulation of hsp 70, tnf-α and il-1β was observed. We conclude that the administration of MacroGard(®) induced an immunomodulatory response and could be used as an effective measure to increase survival in rearing of turbot. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Functional Connectivity Alterations between Networks and Associations with Infant Immune Health within Networks in HIV Infected Children on Early Treatment: A Study at 7 Years

    Directory of Open Access Journals (Sweden)

    Jadrana T. F. Toich

    2018-01-01

    Full Text Available Although HIV has been shown to impact brain connectivity in adults and youth, it is not yet known to what extent long-term early antiretroviral therapy (ART may alter these effects, especially during rapid brain development in early childhood. Using both independent component analysis (ICA and seed-based correlation analysis (SCA, we examine the effects of HIV infection in conjunction with early ART on resting state functional connectivity (FC in 7 year old children. HIV infected (HIV+ children were from the Children with HIV Early Antiretroviral Therapy (CHER trial and all initiated ART before 18 months; uninfected children were recruited from an interlinking vaccine trial. To better understand the effects of current and early immune health on the developing brain, we also investigated among HIV+ children the association of FC at 7 years with CD4 count and CD4%, both in infancy (6–8 weeks and at scan. Although we found no differences within any ICA-generated resting state networks (RSNs between HIV+ and uninfected children (27 HIV+, 18 uninfected, whole brain connectivity to seeds located at RSN connectivity peaks revealed several loci of FC differences, predominantly from seeds in midline regions (posterior cingulate cortex, paracentral lobule, cuneus, and anterior cingulate. Reduced long-range connectivity and increased short-range connectivity suggest developmental delay. Within the HIV+ children, clinical measures at age 7 years were not associated with FC values in any of the RSNs; however, poor immune health during infancy was associated with localized FC increases in the somatosensory, salience and basal ganglia networks. Together these findings suggest that HIV may affect brain development from its earliest stages and persist into childhood, despite early ART.

  20. Metabolic targets of endocrine disrupting chemicals assessed by cord blood transcriptome profiling

    DEFF Research Database (Denmark)

    Remy, Sylvie; Govarts, Eva; Wens, Britt

    2016-01-01

    Early life exposure to endocrine disrupting chemicals (EDCs) has been frequently associated with impaired perinatal growth, an important risk factor for later onset of metabolic disorders. We analyzed whether the cord blood transcriptome showed early indications of alterations in metabolic...

  1. Endocrine Disruptors and Obesity.

    Science.gov (United States)

    Darbre, Philippa D

    2017-03-01

    The purpose of this review was to summarise current evidence that some environmental chemicals may be able to interfere in the endocrine regulation of energy metabolism and adipose tissue structure. Recent findings demonstrate that such endocrine-disrupting chemicals, termed "obesogens", can promote adipogenesis and cause weight gain. This includes compounds to which the human population is exposed in daily life through their use in pesticides/herbicides, industrial and household products, plastics, detergents, flame retardants and as ingredients in personal care products. Animal models and epidemiological studies have shown that an especially sensitive time for exposure is in utero or the neonatal period. In summarising the actions of obesogens, it is noteworthy that as their structures are mainly lipophilic, their ability to increase fat deposition has the added consequence of increasing the capacity for their own retention. This has the potential for a vicious spiral not only of increasing obesity but also increasing the retention of other lipophilic pollutant chemicals with an even broader range of adverse actions. This might offer an explanation as to why obesity is an underlying risk factor for so many diseases including cancer.

  2. Distribution of intrahepatic T, NK and CD3(+)CD56(+)NKT cells alters after liver transplantation: Shift from innate to adaptive immunity?

    Science.gov (United States)

    Werner, Jens M; Lang, Corinna; Scherer, Marcus N; Farkas, Stefan A; Geissler, Edward K; Schlitt, Hans J; Hornung, Matthias

    2011-07-01

    The liver is an immunological organ containing a large number of T, NK and NKT cells, but little is known about intrahepatic immunity after LTx. Here, we investigated whether the distribution of T, NK and CD3(+)CD56(+)NKT cells is altered in transplanted livers under different circumstances. Core biopsies of transplanted livers were stained with antibodies against CD3 and CD56. Several cell populations including T (CD3(+)CD56(-)), NK (CD3(-)CD56(+)) and NKT cells (CD3(+)CD56(+)) were studied by fluorescence microscopy. Cell numbers were analyzed in relation to the time interval after LTx, immunosuppressive therapy and stage of acute graft rejection (measured with the rejection activity index: RAI) compared to tumor free liver tissue from patients after liver resection due to metastatic disease as control. Recruitment of CD3(+)CD56(+)NKT cells revealed a significant decrease during high RAI scores in comparison to low and middle RAI scores (RAI 7-9: 0.03±0.01/HPF vs. RAI 4-6: 0.1±0.005/HPF). CD3(+)CD56(+)NKT cells were also lower during immunosuppressive therapy with tacrolimus (0.03±0.01/HPF) than with cyclosporine (0.1±0.003/HPF), cyclosporine/MMF (0.1±0.003/HPF) or sirolimus (0.1±0.01/HPF) treatment. Intrahepatic T cell numbers increased significantly 50days after LTx compared to control liver tissue (4.5±0.2/HPF vs. 1.9±0.1/HPF). In contrast, NK cells (0.3±0.004/HPF) were significantly fewer in all biopsies after LTx compared to the control (0.7±0.04/HPF). These data indicate significant alterations in the hepatic recruitment of T, NK and CD3(+)CD56(+)NKT cells after LTx. The increase in T cells and the decrease in NK and CD3(+)CD56(+)NKT cells suggest a shift from innate to adaptive hepatic immunity in the liver graft. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Mitochondrial disease and endocrine dysfunction.

    Science.gov (United States)

    Chow, Jasmine; Rahman, Joyeeta; Achermann, John C; Dattani, Mehul T; Rahman, Shamima

    2017-02-01

    Mitochondria are critical organelles for endocrine health; steroid hormone biosynthesis occurs in these organelles and they provide energy in the form of ATP for hormone production and trafficking. Mitochondrial diseases are multisystem disorders that feature defective oxidative phosphorylation, and are characterized by enormous clinical, biochemical and genetic heterogeneity. To date, mitochondrial diseases have been found to result from >250 monogenic defects encoded across two genomes: the nuclear genome and the ancient circular mitochondrial genome located within mitochondria themselves. Endocrine dysfunction is often observed in genetic mitochondrial diseases and reflects decreased intracellular production or extracellular secretion of hormones. Diabetes mellitus is the most frequently described endocrine disturbance in patients with inherited mitochondrial diseases, but other endocrine manifestations in these patients can include growth hormone deficiency, hypogonadism, adrenal dysfunction, hypoparathyroidism and thyroid disease. Although mitochondrial endocrine dysfunction frequently occurs in the context of multisystem disease, some mitochondrial disorders are characterized by isolated endocrine involvement. Furthermore, additional monogenic mitochondrial endocrine diseases are anticipated to be revealed by the application of genome-wide next-generation sequencing approaches in the future. Understanding the mitochondrial basis of endocrine disturbance is key to developing innovative therapies for patients with mitochondrial diseases.

  4. Putative Environmental-Endocrine Disruptors and Obesity: A Review

    Science.gov (United States)

    Elobeid, Mai A.; Allison, David B.

    2008-01-01

    Purpose of the review There has been a substantial increase in the prevalence of obesity in the last several decades. Recent evidence suggests that endocrine disrupting chemicals, e.g. halogenated aromatic hydrocarbons, may cause perturbations in endogenous hormonal regulation and alter other mechanisms involved in weight homeostasis, which may lead to weight gain by increased volume of adipose tissue. Synthetic chemicals derived from industrial processes are suspected to play a contributory role. Yet of the approximately 70,000 documented synthetic chemicals, few have been examined to determine their effects on the endocrine system. Recent findings The present study examines prior laboratory, epidemiological and experimental research findings. Data demonstrate migration of endocrine disruptors in the environment and are beginning to catalogue their effects on adiposity. We present postulated relationships between these chemicals, their mechanisms of action, and the obesity epidemic. Summary Endocrine disruptors may adversely impact human and environmental health by altering physiological control mechanism. Obesity, which is known to increase medical costs and reduce quality and length of life, may be increasing as a function of endocrine disruptor exposure. This merits concern among scientists and public health officials and warrants additional vigorous research in this area. PMID:18769210

  5. Immune regulation by glucocorticoids.

    Science.gov (United States)

    Cain, Derek W; Cidlowski, John A

    2017-04-01

    Endogenous glucocorticoids are crucial to various physiological processes, including metabolism, development and inflammation. Since 1948, synthetic glucocorticoids have been used to treat various immune-related disorders. The mechanisms that underlie the immunosuppressive properties of these hormones have been intensely scrutinized, and it is widely appreciated that glucocorticoids have pleiotropic effects on the immune system. However, a clear picture of the cellular and molecular basis of glucocorticoid action has remained elusive. In this Review, we distil several decades of intense (and often conflicting) research that defines the interface between the endocrine stress response and the immune system.

  6. Fusobacterium nucleatum Alters Atherosclerosis Risk Factors and Enhances Inflammatory Markers with an Atheroprotective Immune Response in ApoE(null) Mice.

    Science.gov (United States)

    Velsko, Irina M; Chukkapalli, Sasanka S; Rivera-Kweh, Mercedes F; Chen, Hao; Zheng, Donghang; Bhattacharyya, Indraneel; Gangula, Pandu R; Lucas, Alexandra R; Kesavalu, Lakshmyya

    2015-01-01

    The American Heart Association supports an association between periodontal disease (PD) and atherosclerotic vascular disease (ASVD) but does not as of yet support a causal relationship. Recently, we have shown that major periodontal pathogens Porphyromonas gingivalis and Treponema denticola are causally associated with acceleration of aortic atherosclerosis in ApoEnull hyperlipidemic mice. The aim of this study was to determine if oral infection with another significant periodontal pathogen Fusobacterium nucleatum can accelerate aortic inflammation and atherosclerosis in the aortic artery of ApoEnull mice. ApoEnull mice (n = 23) were orally infected with F. nucleatum ATCC 49256 and euthanized at 12 and 24 weeks. Periodontal disease assessments including F. nucleatum oral colonization, gingival inflammation, immune response, intrabony defects, and alveolar bone resorption were evaluated. Systemic organs were evaluated for infection, aortic sections were examined for atherosclerosis, and inflammatory markers were measured. Chronic oral infection established F. nucleatum colonization in the oral cavity, induced significant humoral IgG (P=0.0001) and IgM (P=0.001) antibody response (12 and 24 weeks), and resulted in significant (P=0.0001) alveolar bone resorption and intrabony defects. F. nucleatum genomic DNA was detected in systemic organs (heart, aorta, liver, kidney, lung) indicating bacteremia. Aortic atherosclerotic plaque area was measured and showed a local inflammatory infiltrate revealed the presence of F4/80+ macrophages and CD3+ T cells. Vascular inflammation was detected by enhanced systemic cytokines (CD30L, IL-4, IL-12), oxidized LDL and serum amyloid A, as well as altered serum lipid profile (cholesterol, triglycerides, chylomicrons, VLDL, LDL, HDL), in infected mice and altered aortic gene expression in infected mice. Despite evidence for systemic infection in several organs and modulation of known atherosclerosis risk factors, aortic atherosclerotic

  7. Endocrine disorders in mitochondrial disease.

    Science.gov (United States)

    Schaefer, Andrew M; Walker, Mark; Turnbull, Douglass M; Taylor, Robert W

    2013-10-15

    Endocrine dysfunction in mitochondrial disease is commonplace, but predominantly restricted to disease of the endocrine pancreas resulting in diabetes mellitus. Other endocrine manifestations occur, but are relatively rare by comparison. In mitochondrial disease, neuromuscular symptoms often dominate the clinical phenotype, but it is of paramount importance to appreciate the multi-system nature of the disease, of which endocrine dysfunction may be a part. The numerous phenotypes attributable to pathogenic mutations in both the mitochondrial (mtDNA) and nuclear DNA creates a complex and heterogeneous catalogue of disease which can be difficult to navigate for novices and experts alike. In this article we provide an overview of the endocrine disorders associated with mitochondrial disease, the way in which the underlying mitochondrial disorder influences the clinical presentation, and how these factors influence subsequent management. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. Il-6 Serum Levels and Production Is Related to an Altered Immune Response in Polycystic Ovary Syndrome Girls with Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Anna M. Fulghesu

    2011-01-01

    Full Text Available Polycystic ovarian syndrome (PCOS is frequently characterized by obesity and metabolic diseases including hypertension, insulin resistance, and diabetes in adulthood, all leading to an increased risk of atherosclerosis. The present study aimed to evaluate serum and production of inflammatory markers in adolescent Sardinian PCOS. On the basis of HOMA findings, patients were divided into noninsulin resistant (NIR and insulin resistant (IR, and were weight- and age-matched with healthy girls. Inflammatory cytokines (TNF-α, IL-6, Il-10, TGF-β and lipokines (leptin, adiponectin, the reactant hs-CRP, and in vitro inflammatory lympho-monocyte response to microbial stimulus were evaluated. In healthy and PCOS subjects, leptin and hs-CRP were correlated with BMI, whereas adiponectin was significantly reduced in all PCOS groups. Although cytokines were similar in all groups, Interleukin-6 (IL-6 was significantly higher in IR PCOS. Moreover, in the latter group lipopolysaccharide-activated monocytes secreted significantly higher levels of IL-6 compared to NIR and control subjects. To conclude, IR PCOS displayed increased IL-6 serum levels and higher secretion in LPS-activated monocytes, whilst revealing no differences for other inflammatory cytokines. These results suggest that in PCOS patients an altered immune response to inflammatory stimuli is present in IR, likely contributing towards determining onset of a low grade inflammation.

  9. Endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Mandrup, Karen

    BACKGROUND: Endocrine disrupting chemicals (EDCs) may contribute to reproductive changes in boys in the Western world, however, less is known about influence of EDCs in women. The incidence of precocious breast development is increasing in USA and Europe and mammary gland development has been...... gland development before puberty in whole mounted mammary glands and in adults in histological sections of the mammary glands. Moreover, female offspring were evaluated for external genital malformations. The EDCs studied for mammary gland effects were the estrogenic compounds ethinyl estradiol...... were sensitive to EDCs. EDCs with estrogenic mode of action appeared to increase mammary outgrowth in prepubertal female rats and a potent model compound, ethinyl estradiol, increased the density in females and males and the number of terminal end buds in male rats. Histological examination showed...

  10. Endocrine disrupting compounds

    DEFF Research Database (Denmark)

    Bøgh, I B; Christensen, P; Dantzer, V

    2001-01-01

    of alkylphenols, these are disseminated in the environment with sewage sludge, and domestic animals and humans are likely to be exposed via the food chain. Using the pig as an in vivo model, we studied the effect of intrauterine exposure to tertiary octylphenol (OP) on essential reproductive parameters over 3......With the growing concern that environmental chemicals might impair human and animal fertility, it is important to investigate the possible influence of these substances on sexual differentiation and genital development of mammals. Many of these substances are suspected to interfere with endocrine...... processes, and exposure during critical periods of prenatal development might affect reproductive performance over several generations. Alkylphenols and their metabolites are lipophilic substances exerting apparent estrogenic action in in vitro and in vivo testing systems. With the widespread industrial use...

  11. Elucidating the links between endocrine disruptors and neurodevelopment.

    Science.gov (United States)

    Schug, Thaddeus T; Blawas, Ashley M; Gray, Kimberly; Heindel, Jerrold J; Lawler, Cindy P

    2015-06-01

    Recent data indicate that approximately 12% of children in the United States are affected by neurodevelopmental disorders, including attention deficit hyperactivity disorder, learning disorders, intellectual disabilities, and autism spectrum disorders. Accumulating evidence indicates a multifactorial etiology for these disorders, with social, physical, genetic susceptibility, nutritional factors, and chemical toxicants acting together to influence risk. Exposure to endocrine-disrupting chemicals during the early stages of life can disrupt normal patterns of development and thus alter brain function and disease susceptibility later in life. This article highlights research efforts and pinpoints approaches that could shed light on the possible associations between environmental chemicals that act on the endocrine system and compromised neurodevelopmental outcomes.

  12. Desired Turbulence? Gut-Lung Axis, Immunity, and Lung Cancer

    Directory of Open Access Journals (Sweden)

    Rea Bingula

    2017-01-01

    Full Text Available The microbiota includes different microorganisms consisting of bacteria, fungi, viruses, and protozoa distributed over many human body surfaces including the skin, vagina, gut, and airways, with the highest density found in the intestine. The gut microbiota strongly influences our metabolic, endocrine, and immune systems, as well as both the peripheral and central nervous systems. Recently, a dialogue between the gut and lung microbiota has been discovered, suggesting that changes in one compartment could impact the other compartment, whether in relation to microbial composition or function. Further, this bidirectional axis is evidenced in an, either beneficial or malignant, altered immune response in one compartment following changes in the other compartment. Stimulation of the immune system arises from the microbial cells themselves, but also from their metabolites. It can be either direct or mediated by stimulated immune cells in one site impacting the other site. Additionally, this interaction may lead to immunological boost, assisting the innate immune system in its antitumour response. Thus, this review offers an insight into the composition of these sites, the gut and the lung, their role in shaping the immune system, and, finally, their role in the response to lung cancer.

  13. Indoleamine 2,3-Dioxygenase (IDO) Enzyme Links Innate Immunity and Altered T-Cell Differentiation in Non-ST Segment Elevation Acute Coronary Syndrome.

    Science.gov (United States)

    Zara, Chiara; Severino, Anna; Flego, Davide; Ruggio, Aureliano; Pedicino, Daniela; Giglio, Ada Francesca; Trotta, Francesco; Lucci, Claudia; D'Amario, Domenico; Vinci, Ramona; Pisano, Eugenia; La Rosa, Giulio; Biasucci, Luigi Marzio; Crea, Filippo; Liuzzo, Giovanna

    2017-12-26

    Atherosclerosis is a chronic inflammatory disease characterized by a complex interplay between innate and adaptive immunity. Dendritic cells (DCs) play a key role in T-cell activation and regulation by promoting a tolerogenic environment through the expression of the immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO), an intracellular enzyme involved in tryptophan catabolism. IDO expression and activity was analyzed in monocytes derived DCs (MDDCs) from non-ST segment elevation myocardial infarction (NSTEMI) patients, stable angina (SA) patients and healthy controls (HC) by real-time quantitative polymerase chain reaction (RT-qPCR) before and after in vitro maturation with lipopolysaccharide (LPS). The amount of tryptophan catabolite; kynurenine; was evaluated in the culture supernatants of mature-MDDCs by ELISA assay. Autologous mixed lymphocyte reaction (MLR) between mature-MDDCs and naïve T-cells was carried out to study the differentiation towards T-helper 1 (Th1) and induced regulatory T-cells (iTreg). Analysis of IDO mRNA transcripts in mature-MDDCs revealed a significant reduction in cells isolated from NSTEMI (625.0 ± 128.2; mean ± SEM) as compared with those from SA (958.5 ± 218.3; p = 0.041) and from HC (1183.6 ± 231.6; p = 0.034). Furthermore; the concentration of kynurenine was lower in NSTEMI patients (2.78 ± 0.2) and SA (2.98 ± 0.25) as compared with HC (5.1 ± 0.69 ng/mL; p = 0.002 and p = 0.016; respectively). When IDO-competent mature-MDDCs were co-cultured with allogeneic naïve T-cells, the ratio between the percentage of generated Th1 and iTreg was higher in NSTEMI (4.4 ± 2.9) than in SA (1.8 ± 0.6; p = 0.056) and HC (0.9 ± 0.3; p = 0.008). In NSTEMI, the tolerogenic mechanism of the immune response related to IDO production by activated MDDCs is altered, supporting their role in T-cell dysregulation.

  14. Indoleamine 2,3-Dioxygenase (IDO Enzyme Links Innate Immunity and Altered T-Cell Differentiation in Non-ST Segment Elevation Acute Coronary Syndrome

    Directory of Open Access Journals (Sweden)

    Chiara Zara

    2017-12-01

    Full Text Available Atherosclerosis is a chronic inflammatory disease characterized by a complex interplay between innate and adaptive immunity. Dendritic cells (DCs play a key role in T-cell activation and regulation by promoting a tolerogenic environment through the expression of the immunosuppressive enzyme indoleamine 2,3-dioxygenase (IDO, an intracellular enzyme involved in tryptophan catabolism. IDO expression and activity was analyzed in monocytes derived DCs (MDDCs from non-ST segment elevation myocardial infarction (NSTEMI patients, stable angina (SA patients and healthy controls (HC by real-time quantitative polymerase chain reaction (RT-qPCR before and after in vitro maturation with lipopolysaccharide (LPS. The amount of tryptophan catabolite; kynurenine; was evaluated in the culture supernatants of mature-MDDCs by ELISA assay. Autologous mixed lymphocyte reaction (MLR between mature-MDDCs and naïve T-cells was carried out to study the differentiation towards T-helper 1 (Th1 and induced regulatory T-cells (iTreg. Analysis of IDO mRNA transcripts in mature-MDDCs revealed a significant reduction in cells isolated from NSTEMI (625.0 ± 128.2; mean ± SEM as compared with those from SA (958.5 ± 218.3; p = 0.041 and from HC (1183.6 ± 231.6; p = 0.034. Furthermore; the concentration of kynurenine was lower in NSTEMI patients (2.78 ± 0.2 and SA (2.98 ± 0.25 as compared with HC (5.1 ± 0.69 ng/mL; p = 0.002 and p = 0.016; respectively. When IDO-competent mature-MDDCs were co-cultured with allogeneic naïve T-cells, the ratio between the percentage of generated Th1 and iTreg was higher in NSTEMI (4.4 ± 2.9 than in SA (1.8 ± 0.6; p = 0.056 and HC (0.9 ± 0.3; p = 0.008. In NSTEMI, the tolerogenic mechanism of the immune response related to IDO production by activated MDDCs is altered, supporting their role in T-cell dysregulation.

  15. A review on endocrine disruptors and their possible impacts on human health.

    Science.gov (United States)

    Kabir, Eva Rahman; Rahman, Monica Sharfin; Rahman, Imon

    2015-07-01

    Endocrine disruption is a named field of research which has been very active for over 10 years, although the effects of endocrine disruptors in wildlife have been studied mainly in vast since the 1940s. A large number of chemicals have been identified as endocrine disruptors and humans can be exposed to them either due to their occupations or through dietary and environmental exposure (water, soil and air). Endocrine disrupting chemicals are compounds that alter the normal functioning of the endocrine system of both humans and wildlife. In order to understand the vulnerability and risk factors of people due to endocrine disruptors as well as the remedies for these, methods need to be developed in order to predict effects on populations and communities from the knowledge of effects on individuals. For several years there have been a growing interest on the mechanism and effect of endocrine disruptors and their relation with environment and human health effect. This paper, based on extensive literature survey, briefly studies the progress mainly in human to provide information concerning causative substances, mechanism of action, ubiquity of effects and important issues related to endocrine disruptors. It also reviews the current knowledge of the potential impacts of endocrine disruptors on human health so that the effects can be known and remedies applied for the problem as soon as possible. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Carcinogenetic mechanisms of endocrine disruptors in female cancers (Review).

    Science.gov (United States)

    Del Pup, Lino; Mantovani, Alberto; Cavaliere, Carla; Facchini, Gaetano; Luce, Amalia; Sperlongano, Pasquale; Caraglia, Michele; Berretta, Massimiliano

    2016-08-01

    Endocrine disruptors (EDs) are pollutants that alter the endocrine system and are involved in carcinogenesis. EDs have multiple and complex levels of action. They can affect the synthesis, release and transport of natural hormones. In target tissues, EDs can reduce or increase the effects of natural hormones on their receptors and change signaling cascades. When ED exposure happens at critical periods of life, from embryo to puberty, they can act at doses considered safe for an adult. Furthermore, their epigenetic effects can also influence the cancer risk of future generations. The cancer mechanisms of known EDs are hereby reviewed, There are thousands of newly introduced substances whose potential endocrine-disrupting and cancer effects are completely unknown. Although there are still gaps in our knowledge, these data support the urgent need for health and environmental policies aimed at protecting the public and in particular, the developing fetus and women of reproductive age.

  17. What Is Women's Endocrine Health?

    Science.gov (United States)

    ... aimed directly at them such as commercials on TV, radio and print magazines. Young girls receive so ... endocrine disorders during this age is pivotal. Young Women At this time of life, young women are ...

  18. Endocrine causes of dangerous fever.

    Science.gov (United States)

    Tenner, Andrea G; Halvorson, Karin M

    2013-11-01

    This article provides an overview of the pathogenesis and signs and symptoms of dangerous endocrine causes of hyperthermia. Treatment strategies based on specific causes are discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Skin Manifestations of Endocrine Diseases.

    Science.gov (United States)

    Demirkesen, Cuyan

    2015-01-01

    Endocrine diseases may result in changes in cutaneous function and morphology, which cause various skin manifestations, including nonspecific or pathognomonic signs. Some of these manifestations are already known dermatologic diseases with only increased frequency in this patient group. As a result the skin may the play role of a screen displaying endocrine disorders, either due to hormone excess or deficiency. Awareness of the skin manifestations may permit prompt and adequate approach to the patients, and therefore facilitate the early diagnosis of the endocrine disease and even be life saving. Some of these manifestations may be recognized clinically, but sometimes they need to be confirmed histopathologically. In this article, many endocrine diseases and their associated skin lesions will be reviewed briefly.

  20. Endocrine Therapy of Breast Cancer

    National Research Council Canada - National Science Library

    Clarke, Robert

    2008-01-01

    ...) or TAM should be given as first line endocrine therapy. Unfortunately, response rates are lower, and response durations are shorter, on crossover than when these agents are given as first line therapies, e.g., ̃40...

  1. Endocrine Therapy of Breast Cancer

    National Research Council Canada - National Science Library

    Clarke, Robert S

    2005-01-01

    ...) or TAM should be given as first line endocrine therapy. Unfortunately, response rates are lower, and response durations are shorter, on crossover than when these agents are given as first line therapies, e.g., -40...

  2. Endocrine Therapy of Breast Cancer

    National Research Council Canada - National Science Library

    Clarke, Robert

    2007-01-01

    ...) or TAM should be given as first line endocrine therapy. Unfortunately, response rates are lower, and response durations are shorter, on crossover than when these agents are given as first line therapies, e.g., ̃40...

  3. Nutrient and immune sensing are obligate pathways in metabolism, immunity, and disease.

    Science.gov (United States)

    Iyer, Abishek; Brown, Lindsay; Whitehead, Jonathan P; Prins, Johannes B; Fairlie, David P

    2015-09-01

    The growth and survival of multicellular organisms depend upon their abilities to acquire and metabolize nutrients, efficiently store and harness energy, and sense and fight infection. Systems for sensing and using nutrients have consequently coevolved alongside systems for sensing and responding to danger signals, including pathogens, and share many of the same cell signaling proteins and networks. Diets rich in carbohydrates and fats can overload these systems, leading to obesity, metabolic dysfunction, impaired immunity, and cardiovascular disease. Excessive nutrient intake promotes adiposity, typically altering adipocyte function and immune cell distribution, both of which trigger metabolic dysfunction. Here, we discuss novel mechanistic links between metabolism and immunity that underlie metabolic dysfunction in obesity. We aim to stimulate debate about how the endocrine and immune systems are connected through autocrine, paracrine, and neuroendocrine signaling in sophisticated networks that are only now beginning to be resolved. Understanding the expression and action of signaling proteins, together with modulating their receptors or pattern recognition using agonists or antagonists, will enable rational intervention in immunometabolism that may lead to novel treatments for obesity and metabolic dysfunction. © FASEB.

  4. Trauma and the endocrine system.

    Science.gov (United States)

    Mesquita, Joana; Varela, Ana; Medina, José Luís

    2010-12-01

    The endocrine system may be the target of different types of trauma with varied consequences. The present article discusses trauma of the hypothalamic-pituitary axes, adrenal glands, gonads, and pancreas. In addition to changes in circulating hormone levels due to direct injury to these structures, there may be an endocrine response in the context of the stress caused by the trauma. Copyright © 2010 SEEN. Published by Elsevier Espana. All rights reserved.

  5. Tributyltin: Advancing the science on assessing endocrine disruption with an unconventional endocrine-disrupting compound

    Science.gov (United States)

    Lagadic, Laurent; Katsiadaki, Ioanna; Biever, Ronald C.; Guiney, Patrick; Karouna-Renier, Natalie; Schwarz, Tamar; Meador, James P.

    2018-01-01

    Tributyltin (TBT) has been recognized as an endocrine disrupting chemical (EDC) for several decades. However, only in the last decade, was its primary endocrine mechanism of action (MeOA) elucidated—interactions with the nuclear retinoid-X receptor (RXR), peroxisome proliferator-activated receptor γ (PPARγ), and their heterodimers. This molecular initiating event (MIE) alters a range of reproductive, developmental, and metabolic pathways at the organism level. It is noteworthy that a variety of MeOAs have been proposed over the years for the observed endocrine-type effects of TBT; however, convincing data for the MIE was provided only recently and now several researchers have confirmed and refined the information on this MeOA. One of the most important lessons learned from years of research on TBT concerns apparent species sensitivity. Several aspects such as the rates of uptake and elimination, chemical potency, and metabolic capacity are all important for identifying the most sensitive species for a given chemical, including EDCs. For TBT, much of this was discovered by trial and error, hence important relationships and important sensitive taxa were not identified until several decades after its introduction to the environment. As recognized for many years, TBT-induced responses are known to occur at very low concentrations for molluscs, a fact that has more recently also been observed in fish species. This review explores the MeOA and effects of TBT in different species (aquatic molluscs and other invertebrates, fish, amphibians, birds, and mammals) according to the OECD Conceptual Framework for Endocrine Disruptor Testing and Assessment (CFEDTA). The information gathered on biological effects that are relevant for populations of aquatic animals was used to construct Species Sensitivity Distributions (SSDs) based on No Observed Effect Concentrations (NOECs) and Lowest Observed Effect Concentrations (LOECs). Fish appear at the lower end of these distributions

  6. Reproduction Alters Hydration State but Does Not Impact the Positive Effects of Dehydration on Innate Immune Function in Children's Pythons (Antaresia childreni).

    Science.gov (United States)

    Brusch, George A; Billy, Gopal; Blattman, Joseph N; DeNardo, Dale F

    Resource availability can impact immune function, with the majority of studies of such influences focusing on the allocation of energy investment into immune versus other physiological functions. When energy is a limited resource, performance trade-offs can result, compromising immunity. Dehydration is also considered a physiological challenge resulting from the limitation of a vital resource, yet previous research has found a positive relationship between dehydration and innate immune performance. However, these studies did not examine the effects of dehydration on immunity when there was another concurrent, substantial physiological challenge. Thus, we examined the impact of reproduction and water deprivation, individually and in combination, on immune performance in Children's pythons (Antaresia childreni). We collected blood samples from free-ranging A. childreni to evaluate osmolality and innate immune function (lysis, agglutination, bacterial growth inhibition) during the austral dry season, when water availability is limited and this species is typically reproducing. To examine how reproduction and water imbalance, both separately and combined, impact immune function, we used a laboratory-based 2 × 2 experiment. Our results demonstrate that A. childreni experience significant dehydration during the dry season and that, overall, osmolality, regardless of the underlying cause (seasonal rainfall, water deprivation, or reproduction), is positively correlated with increased innate immune performance.

  7. Environmental endocrine disruptors: Effects on the human male reproductive system.

    Science.gov (United States)

    Sweeney, M F; Hasan, N; Soto, A M; Sonnenschein, C

    2015-12-01

    Incidences of altered development and neoplasia of male reproductive organs have increased during the last 50 years, as shown by epidemiological data. These data are associated with the increased presence of environmental chemicals, specifically "endocrine disruptors," that interfere with normal hormonal action. Much research has gone into testing the effects of specific endocrine disrupting chemicals (EDCs) on the development of male reproductive organs and endocrine-related cancers in both in vitro and in vivo models. Efforts have been made to bridge the accruing laboratory findings with the epidemiological data to draw conclusions regarding the relationship between EDCs, altered development and carcinogenesis. The ability of EDCs to predispose target fetal and adult tissues to neoplastic transformation is best explained under the framework of the tissue organization field theory of carcinogenesis (TOFT), which posits that carcinogenesis is development gone awry. Here, we focus on the available evidence, from both empirical and epidemiological studies, regarding the effects of EDCs on male reproductive development and carcinogenesis of endocrine target tissues. We also critique current research methodology utilized in the investigation of EDCs effects and outline what could possibly be done to address these obstacles moving forward.

  8. Endocrine disorders and the neurologic manifestations

    Directory of Open Access Journals (Sweden)

    Jeesuk Yu

    2014-12-01

    Full Text Available The nervous system and the endocrine system are closely interrelated and both involved intimately in maintaining homeostasis. Endocrine dysfunctions may lead to various neurologic manifestations such as headache, myopathy, and acute encephalopathy including coma. It is important to recognize the neurologic signs and symptoms caused by the endocrine disorders while managing endocrine disorders. This article provides an overview of the neurologic manifestations found in various endocrine disorders that affect pediatric patients. It is valuable to think about 'endocrine disorder' as a cause of the neurologic manifestations. Early diagnosis and treatment of hormonal imbalance can rapidly relieve the neurologic symptoms. Better understanding of the interaction between the endocrine system and the nervous system, combined with the knowledge about the pathophysiology of the neurologic manifestations presented in the endocrine disorders might allow earlier diagnosis and better treatment of the endocrine disorders.

  9. Avian endocrine responses to environmental pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Rattner, B.A.; Eroschenko, V.P.; Fox, G.A.; Fry, D.M.; Gorsline, J.

    1984-12-01

    Many environmental contaminants are hazardous to populations of wild birds. Chlorinated hydrocarbon pesticides and industrial pollutants are thought to be responsible for population declines of several species of predatory birds through eggshell thinning. Studies have demonstrated that these contaminants have estrogenic potency and may affect the functioning of the gonadal and thyroidal endocrine subsystems. Petroleum crude oil exerts toxicity externally, by oiling of plumage, and internally, by way of ingestion of oil while feeding or preening. Extensive ultrastructural damage to the inner zone of the adrenal, diminished adrenal responsiveness to adrenocorticotrophic hormone, and reduced corticosterone secretion rate suggest that low levels of plasma corticosterone reflect a direct effect of petroleum on the adrenal gland. Suppressive effects of oil on the ovary and decreases in circulating prolactin have been associated with impaired reproductive function. Large-scale field studies of free-living seabirds have confirmed some of the inhibitory effects of oil on reproduction that have been observed in laboratory studies. Organophosphorus insecticides, representing the most widely used class of pesticides in North America, have been shown to impair reproductive function, possibly by altering secretion of luteinizing hormone and progesterone. Relevant areas of future research on the effects of contaminants on avian endocrine function are discussed.

  10. Impact of Physical Exercise on Endocrine Aging.

    Science.gov (United States)

    Janssen, Joseph A M J L

    2016-01-01

    Physical exercise may be vital to the maintenance of the endocrine system with aging and its helps to restore loss of activity of the endocrine system with aging. There is evidence that physical exercise induces activity of the growth hormone-insulin-like growth factor-1 axis and so produces anabolic effects in skeletal muscles. Mechano growth factor (MGF), a locally produced isoform of IGF-1, has been hypothesized to be important for the maintenance of skeletal muscles with aging. Short-term high-resistance exercise results in an increase of MGF mRNA in young but not in elderly subjects. Reported changes in levels of circulating sex steroid hormones in men after different types of (acute and chronic) physical exercise are mixed and not consistent. In addition, physical exercise may increase local effects of sex steroid hormones, and this may be more important than levels of circulating sex steroids for the maintenance and function of skeletal muscles. In elderly women, both increased physical exercise and reduced body fat may decrease levels of circulating sex hormones. Aging is further associated with changes in the dynamic functions of the hypothalamic-pituitary axis, but these changes may be attenuated/modified by aerobic training. Chronic exercise does not alter circulating cortisol levels in elderly subjects. © 2016 S. Karger AG, Basel.

  11. Bile Acid Alters Male Mouse Fertility in Metabolic Syndrome Context.

    Directory of Open Access Journals (Sweden)

    Aurélie Vega

    Full Text Available Bile acids have recently been demonstrated as molecules with endocrine activities controlling several physiological functions such as immunity and glucose homeostases. They act mainly through two receptors, the nuclear receptor Farnesol-X-Receptor alpha (FXRα and the G-protein coupled receptor (TGR5. These recent studies have led to the idea that molecules derived from bile acids (BAs and targeting their receptors must be good targets for treatment of metabolic diseases such as obesity or diabetes. Thus it might be important to decipher the potential long term impact of such treatment on different physiological functions. Indeed, BAs have recently been demonstrated to alter male fertility. Here we demonstrate that in mice with overweight induced by high fat diet, BA exposure leads to increased rate of male infertility. This is associated with the altered germ cell proliferation, default of testicular endocrine function and abnormalities in cell-cell interaction within the seminiferous epithelium. Even if the identification of the exact molecular mechanisms will need more studies, the present results suggest that both FXRα and TGR5 might be involved. We believed that this work is of particular interest regarding the potential consequences on future approaches for the treatment of metabolic diseases.

  12. Bile Acid Alters Male Mouse Fertility in Metabolic Syndrome Context

    Science.gov (United States)

    Baptissart, Marine; De Haze, Angélique; Vaz, Frederic; Kulik, Wim; Damon-Soubeyrand, Christelle; Baron, Silvère; Caira, Françoise; Volle, David H.

    2015-01-01

    Bile acids have recently been demonstrated as molecules with endocrine activities controlling several physiological functions such as immunity and glucose homeostases. They act mainly through two receptors, the nuclear receptor Farnesol-X-Receptor alpha (FXRα) and the G-protein coupled receptor (TGR5). These recent studies have led to the idea that molecules derived from bile acids (BAs) and targeting their receptors must be good targets for treatment of metabolic diseases such as obesity or diabetes. Thus it might be important to decipher the potential long term impact of such treatment on different physiological functions. Indeed, BAs have recently been demonstrated to alter male fertility. Here we demonstrate that in mice with overweight induced by high fat diet, BA exposure leads to increased rate of male infertility. This is associated with the altered germ cell proliferation, default of testicular endocrine function and abnormalities in cell-cell interaction within the seminiferous epithelium. Even if the identification of the exact molecular mechanisms will need more studies, the present results suggest that both FXRα and TGR5 might be involved. We believed that this work is of particular interest regarding the potential consequences on future approaches for the treatment of metabolic diseases. PMID:26439743

  13. Scintigraphic imaging of endocrine organs

    International Nuclear Information System (INIS)

    Gross, M.D.; Shapiro, B.; Thrall, J.H.; Freitas, J.E.; Beierwaltes, W.H.

    1984-01-01

    The nuclear medicine approach to the portrayal of endocrine organs is unique; the scintigraphic images provide not only anatomic and localization information, but in many instances allow a quantitative assessment of organ function. The ability to image endocrine glands is based upon the design of radionuclides and radiopharmaceuticals with characteristics to take advantage of many unique and specific biochemical and advantage of many unique and specific biochemical and metabolic functions of these tissues. The recent introduction of new radiopharmaceutical and tracers has provided the consulting endocrinologist with imaging procedures that allow localization and functional characterization not available by other single, noninvasive diagnostic modalities. This review will serve as an update of the available techniques to image and quantitate the function of the endocrine glands using the nuclear medicine approach

  14. Multiple endocrine neoplasia type 1

    Directory of Open Access Journals (Sweden)

    Luzi Ettore

    2006-10-01

    Full Text Available Abstract Multiple Endocrine Neoplasia type 1 (MEN1 is a rare autosomal dominant hereditary cancer syndrome presented mostly by tumours of the parathyroids, endocrine pancreas and anterior pituitary, and characterised by a very high penetrance and an equal sex distribution. It occurs in approximately one in 30,000 individuals. Two different forms, sporadic and familial, have been described. The sporadic form presents with two of the three principal MEN1-related endocrine tumours (parathyroid adenomas, entero-pancreatic tumours and pituitary tumours within a single patient, while the familial form consists of a MEN1 case with at least one first degree relative showing one of the endocrine characterising tumours. Other endocrine and non-endocrine lesions, such as adrenal cortical tumours, carcinoids of the bronchi, gastrointestinal tract and thymus, lipomas, angiofibromas, collagenomas have been described. The responsible gene, MEN1, maps on chromosome 11q13 and encodes a 610 aminoacid nuclear protein, menin, with no sequence homology to other known human proteins. MEN1 syndrome is caused by inactivating mutations of the MEN1 tumour suppressor gene. This gene is probably involved in the regulation of several cell functions such as DNA replication and repair and transcriptional machinery. The combination of clinical and genetic investigations, together with the improving of molecular genetics knowledge of the syndrome, helps in the clinical management of patients. Treatment consists of surgery and/or drug therapy, often in association with radiotherapy or chemotherapy. Currently, DNA testing allows the early identification of germline mutations in asymptomatic gene carriers, to whom routine surveillance (regular biochemical and/or radiological screenings to detect the development of MEN1-associated tumours and lesions is recommended.

  15. Public speaking stress-induced neuroendocrine responses and circulating immune cell redistribution in irritable bowel syndrome.

    Science.gov (United States)

    Elsenbruch, Sigrid; Lucas, Ayscha; Holtmann, Gerald; Haag, Sebastian; Gerken, Guido; Riemenschneider, Natalie; Langhorst, Jost; Kavelaars, Annemieke; Heijnen, Cobi J; Schedlowski, Manfred

    2006-10-01

    Augmented neuroendocrine stress responses and altered immune functions may play a role in the manifestation of functional gastrointestinal (GI) disorders. We tested the hypothesis that IBS patients would demonstrate enhanced psychological and endocrine responses, as well as altered stress-induced redistribution of circulating leukocytes and lymphocytes, in response to an acute psychosocial stressor when compared with healthy controls. Responses to public speaking stress were analyzed in N = 17 IBS patients without concurrent psychiatric conditions and N = 12 healthy controls. At baseline, immediately following public speaking, and after a recovery period, state anxiety, acute GI symptoms, cardiovascular responses, serum cortisol and plasma adrenocorticotropic hormone (ACTH) were measured, and numbers of circulating leukocytes and lymphocyte subpopulations were analyzed by flow cytometry. Public speaking led to significant cardiovascular activation, a significant increase in ACTH, and a redistribution of circulating leukocytes and lymphocyte subpopulations, including significant increases in natural killer cells and cytotoxic/suppressor T cells. IBS patients demonstrated significantly greater state anxiety both at baseline and following public speaking. However, cardiovascular and endocrine responses, as well as the redistribution of circulating leukocytes and lymphocyte subpopulations after public speaking stress, did not differ for IBS patients compared with controls. In IBS patients without psychiatric comorbidity, the endocrine response as well as the circulation pattern of leukocyte subpopulations to acute psychosocial stress do not differ from healthy controls in spite of enhanced emotional responses. Future studies should discern the role of psychopathology in psychological and biological stress responses in IBS.

  16. Endocrine ophthalmopathy and radioiodine therapy

    International Nuclear Information System (INIS)

    Karlsson, F. Anders

    2006-01-01

    Endocrine ophthalmopathy is to some degree present in most patients with Graves' disease. In few cases, a severe form of the condition develops and in the majority of these cases, the course of the eye problems has been influenced by the treatment for thyrotoxicosis. In this regard, radioiodine therapy has been increasingly recognized as carrying a special risk. Here, the current understanding of endocrine ophthalmopathy and the risks associated with the development of severe eye disease are discussed. The results of a retrospective investigation of patients with severe eye disease in our hospital, and the experience with corticosteroid administration following radioiodine in order to reduce the risk of ophthalmopathy, are also presented

  17. Systemic dystrophic alterations of skeleton

    International Nuclear Information System (INIS)

    Zedgenidze, G.A.; Kishkovskij, A.N.; Elashov, Yu.G.

    1984-01-01

    A roentgenologic picture of dystrophic alterations of bones following hard, acute and chronic infections diseases, distinct disorders of vitanium balance, diseases of endocrine system, disorder of metabolism and diet, long-term exogenous intoxications including medicinal is given. Distinct dystrophic disorders are characterized both by quantitative and qualitative deviations in physiological change of bones

  18. Endocrine tumor of the digestive tract - clinical case study

    International Nuclear Information System (INIS)

    Szwedziak, K.; Olejniczak, W.; Brichkovkiy, V.

    2008-01-01

    Introduction: Endocrine tumors of the digestive tract (ETDT) are neoplasms which stem from the APUD (amine precursors uptake and decarboxylation) cells. There are neuroendocrine pancreatic and gastroenteral carcinoid tumors which stand for 2% of digestive tract tumors, 0,5% of all human malignant neoplasms. All of them have secretion granulations in the cytoplasm. That is why a number of immune histochemic techniques is used in search for biogenic amines and hormones such as gastrin, CCK, GIP, VIP, motilin, glucagon, GRP, PP, GHRH and the others. In the majority of cases neuroendocrine tumors of the rectum are described as dysfunctional, which means that specific clinical symptoms are not connected with their hormonal overproduction. Material and methods: We describe a case of fifty seven years old male patient admitted to the Department of General and Transplant Surgery for the diagnosis and treatment of the rectal tumor. Per rectum examination revealed hard tumor. The pathologic examination of the biopsy taken from the lesion and CT scanning confirmed the presence of endocrine tumor of the digestive tract. Results: Anterior resection of the rectum was performed, the postoperative course was uneventful. At present patient is subjected to complementary treatment with the use of somatostatin analogue of the prolonged action. Conclusion: The endocrine tumors of the rectum are extremely rare, they occur in this localization in 0,26-0,52 out of 100.000 all rectal tumors. Diagnosis is usually made upon the microscopic examination and the immune histochemic reactions. (author)

  19. Evasion and Immuno-Endocrine Regulation in Parasite Infection: Two Sides of the Same Coin in Chagas Disease?

    Science.gov (United States)

    Morrot, Alexandre; Villar, Silvina R; González, Florencia B; Pérez, Ana R

    2016-01-01

    Chagas disease is a serious illness caused by the protozoan parasite Trypanosoma cruzi. Nearly 30% of chronically infected people develop cardiac, digestive, or mixed alterations, suggesting a broad range of host-parasite interactions that finally impact upon chronic disease outcome. The ability of T. cruzi to persist and cause pathology seems to depend on diverse factors like T. cruzi strains, the infective load and the route of infection, presence of virulence factors, the parasite capacity to avoid protective immune response, the strength and type of host defense mechanisms and the genetic background of the host. The host-parasite interaction is subject to a constant neuro-endocrine regulation that is thought to influence the adaptive immune system, and as the infection proceeds it can lead to a broad range of outcomes, ranging from pathogen elimination to its continued persistence in the host. In this context, T. cruzi evasion strategies and host defense mechanisms can be envisioned as two sides of the same coin, influencing parasite persistence and different outcomes observed in Chagas disease. Understanding how T. cruzi evade host's innate and adaptive immune response will provide important clues to better dissect mechanisms underlying the pathophysiology of Chagas disease.

  20. Endocrine emergencies in dogs and cats.

    Science.gov (United States)

    Koenig, Amie

    2013-07-01

    Success in treatment of endocrine emergencies is contingent on early recognition and treatment. Many endocrine diseases presenting emergently have nonspecific signs and symptoms. In addition, these endocrine crises are often precipitated by concurrent disease, further making early identification difficult. This article concentrates on recognition and emergency management of the most common endocrine crises in dogs and cats. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Review: Environmental endocrine disruptors of testicular function ...

    African Journals Online (AJOL)

    Many of these chemicals found in our environment and households have oestrogenic properties (“xenoestrogens”) and are toxic because they affect the endocrine system (“endocrine disruptors”). Evidence of the health hazards of endocrine disrupting chemicals continues to mount. In terms of male fertility, it now seems that ...

  2. Vitamin A, endocrine tissues and hormones: interplay and interactions

    Directory of Open Access Journals (Sweden)

    J Brossaud

    2017-09-01

    Full Text Available Vitamin A (retinol is a micronutrient critical for cell proliferation and differentiation. In adults, vitamin A and metabolites such as retinoic acid (RA play major roles in vision, immune and brain functions and tissue remodelling and metabolism. This review presents the physiological interactions of retinoids and endocrine tissues and hormonal systems. Two endocrine systems have been particularly studied. In the pituitary, retinoids target the corticotrophs with a possible therapeutic use in corticotropinomas. In the thyroid, retinoids interfere with iodine metabolism and vitamin A deficiency aggravates thyroid dysfunction caused by iodine-deficient diets. Retinoids use in thyroid cancer appears less promising than expected. Recent and still controversial studies investigated the relations between retinoids and metabolic syndrome. Indeed, retinoids contribute to pancreatic development and modify fat and glucose metabolism. However, more detailed studies are needed before planning any therapeutic use. Finally, retinoids probably play more minor roles in adrenal and gonads development and function apart from their major effects on spermatogenesis.

  3. ENDOCRINE DISORDERS IN THE ELDERLY

    African Journals Online (AJOL)

    Enrique

    falls, cognitive dysfunction, depression, pain, erectile dysfunction and polypharmacy. ... in the elderly, so this article covers three common problems: type 2 diabetes mellitus, thyroid disorders and metabolic bone disease. ENDOCRINE DISORDERS IN THE. ELDERLY .... than 90% of women and 60% of men have nodules.

  4. [Environmental contaminants and endocrine disruptors].

    Science.gov (United States)

    Fontenele, Eveline Gadelha Pereira; Martins, Manoel Ricardo Alves; Quidute, Ana Rosa Pinto; Montenegro, Renan Magalhães

    2010-02-01

    The toxicity of various pollutants has been routinely investigated according to their teratogenic and carcinogenic effects. In the last few decades, however, many of such pollutants have been shown to adversely affect the endocrine system of human beings and other species. Currently, more than eleven million chemical substances are known in the world, and approximately 3,000 are produced on a large scale. Numerous chemical composites of domestic, industrial and agricultural use have been shown to influence hormonal activity. Examples of such chemical products with estrogenic activity are substances used in cosmetics, anabolizing substances for animal feeding, phytoestrogens and persistent organic pollutants (POPs). These agents are seen in residential, industrial and urban sewerage system effluents and represent an important source of environmental contamination. The International Programme on Chemical Safety (IPCS) defines as endocrine disruptors substances or mixtures seen in the environment capable of interfering with endocrine system functions resulting in adverse effects in an intact organism or its offspring. In this article the authors present a current literature review about the role of these pollutants in endocrine and metabolic diseases, probable mechanisms of action, and suggest paths of investigation and possible strategies for prevention and reduction of its possible damages.

  5. Endocrine Function after Bariatric Surgery.

    Science.gov (United States)

    Kim, Ki-Suk; Sandoval, Darleen A

    2017-06-18

    Obesity increases the risks of metabolic disorders including type 2 diabetes mellitus (T2DM). Bariatric surgery is the most successful therapeutic option that causes sustained weight loss and improvements in obesity comorbidities. Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) are two of the most frequently performed bariatric surgeries. Despite their different anatomical rearrangement, they have remarkably similar success in both weight loss and T2DM remission. Interestingly, they also both cause a wide range of endocrine changes. Many of these endocrine changes are reflected specifically within the intestine and are implicated as mechanisms for the metabolic success of surgery. However, while most of the work shows that these hormonal changes are associated with the metabolic changes after surgery, causation has been difficult to ascertain. Here, we review the endocrine changes after RYGB and VSG and explore their mechanistic role in the success of bariatric surgery. Further, we explore important changes in gastrointestinal function and the role of these changes in the increase in postprandial endocrine responses after bariatric surgery. © 2017 American Physiological Society. Compr Physiol 7:783-798, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  6. The Vitamin D Endocrine System.

    Science.gov (United States)

    Norman, Anthony W.

    1985-01-01

    Discusses the physiology and biochemistry of the vitamin D endocrine system, including role of biological calcium and phosphorus, vitamin D metabolism, and related diseases. A 10-item, multiple-choice test which can be used to obtain continuing medical education credit is included. (JN)

  7. Multiple endocrine neoplasia type I

    International Nuclear Information System (INIS)

    Fischer, H.J.; Lois, J.F.; Gomes, A.S.

    1985-01-01

    A case of multiple endocrine neoplasia (Men) consisting of an unusual combination of an insulin-producing islet cell tumour and an adrenal adenoma is reported. CT clearly demonstrated the adrenal mass whereas the pancreatic lesion remained questionable. Conversely angiography located the pancreatic tumour but the adrenal findings were subtle. (orig.)

  8. Surgical treatment of pancreatic endocrine tumors in multiple endocrine neoplasia type 1

    Directory of Open Access Journals (Sweden)

    Marcel Cerqueira Cesar Machado

    Full Text Available Surgical approaches to pancreatic endocrine tumors associated with multiple endocrine neoplasia type 1 may differ greatly from those applied to sporadic pancreatic endocrine tumors. Presurgical diagnosis of multiple endocrine neoplasia type 1 is therefore crucial to plan a proper intervention. Of note, hyperparathyroidism/multiple endocrine neoplasia type 1 should be surgically treated before pancreatic endocrine tumors/multiple endocrine neoplasia type 1 resection, apart from insulinoma. Non-functioning pancreatic endocrine tumors/multiple endocrine neoplasia type 1 >1 cm have a high risk of malignancy and should be treated by a pancreatic resection associated with lymphadenectomy. The vast majority of patients with gastrinoma/multiple endocrine neoplasia type 1 present with tumor lesions at the duodenum, so the surgery of choice is subtotal or total pancreatoduodenectomy followed by regional lymphadenectomy. The usual surgical treatment for insulinoma/multiple endocrine neoplasia type 1 is distal pancreatectomy up to the mesenteric vein with or without spleen preservation, associated with enucleation of tumor lesions in the pancreatic head. Surgical procedures for glucagonomas, somatostatinomas, and vipomas/ multiple endocrine neoplasia type 1 are similar to those applied to sporadic pancreatic endocrine tumors. Some of these surgical strategies for pancreatic endocrine tumors/multiple endocrine neoplasia type 1 still remain controversial as to their proper extension and timing. Furthermore, surgical resection of single hepatic metastasis secondary to pancreatic endocrine tumors/multiple endocrine neoplasia type 1 may be curative and even in multiple liver metastases surgical resection is possible. Hepatic trans-arterial chemo-embolization is usually associated with surgical resection. Liver transplantation may be needed for select cases. Finally, pre-surgical clinical and genetic diagnosis of multiple endocrine neoplasia type 1 syndrome and

  9. A potential microRNA regulation of immune-related genes in invertebrate haemocytes.

    Science.gov (United States)

    Burgos-Aceves, Mario Alberto; Cohen, Amit; Smith, Yoav; Faggio, Caterina

    2018-04-15

    Bivalve mollusks have been employed as sentinel organisms in environmental health programs due to their sedentary lifestyle, filter-feeding behavior and their ability to accumulate pathogens or toxin molecules inside tissues. Endocrine disrupting chemicals (EDCs) can be up taken and bioaccumulated, and due to sensibility of mollusks to these EDCs, being able to cause immune alterations. Recently, microRNAs (miRNAs) were shown to be involved in modulation and buffering developmental processes against the effects of environmental alterations and pathogenic microorganisms. Moreover, it is suggested that this miRNAs are incorporated into the estrogen-controlled immune network, regulating mechanism of immune gene expression at the posttranscriptional level, modulating immune responses as phagocytosis, redox reaction and apoptosis in bivalve haemocytes. Thus, miRNAs can be used as biomarkers that specifically elucidate immunotoxic effects caused by exogenous biotic or abiotic factors, and can act as useful tools in integrated monitoring environmental health programs. In this review, we aim to describe the investigations that have been carried out on miRNAs in bivalve mollusks, especially those associated with immune responses against infectious agents and xenobiotic exposure. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Immunity by equilibrium.

    Science.gov (United States)

    Eberl, Gérard

    2016-08-01

    The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.

  11. HMBPP-deficient Listeria mutant immunization alters pulmonary/systemic responses, effector functions, and memory polarization of Vγ2Vδ2 T cells.

    Science.gov (United States)

    Frencher, James T; Shen, Hongbo; Yan, Lin; Wilson, Jessica O; Freitag, Nancy E; Rizzo, Alicia N; Chen, Crystal Y; Chen, Zheng W

    2014-12-01

    Whereas infection or immunization of humans/primates with microbes coproducing HMBPP/IPP can remarkably activate Vγ2Vδ2 T cells, in vivo studies have not been done to dissect HMBPP- and IPP-driven expansion, pulmonary trafficking, effector functions, and memory polarization of Vγ2Vδ2 T cells. We define these phosphoantigen-host interplays by comparative immunizations of macaques with the HMBPP/IPP-coproducing Listeria ΔactA prfA* and HMBPP-deficient Listeria ΔactA ΔGCPE: prfA* mutant. The HMBPP-deficient ΔGCPE: mutant shows lower ability to expand Vγ2Vδ2 T cells in vitro than the parental HMBPP-producing strain but displays comparably attenuated infectivity or immunogenicity. Respiratory immunization of macaques with the HMBPP-deficient mutant elicits lower pulmonary and systemic responses of Vγ2Vδ2 T cells compared with the HMBPP-producing vaccine strain. Interestingly, HMBPP-deficient mutant reimmunization or boosting elicits enhanced responses of Vγ2Vδ2 T cells, but the magnitude is lower than that by HMBPP-producing listeria. HMBPP-deficient listeria differentiated fewer Vγ2Vδ2 T effector cells capable of coproducing IFN-γ and TNF-α and inhibiting intracellular listeria than HMBPP-producing listeria. Furthermore, HMBPP deficiency in listerial immunization influences memory polarization of Vγ2Vδ2 T cells. Thus, both HMBPP and IPP production in listerial immunization or infection elicit systemic/pulmonary responses and differentiation of Vγ2Vδ2 T cells, but a role for HMBPP is more dominant. Findings may help devise immune intervention. © 2014 Society for Leukocyte Biology.

  12. HMBPP-deficient Listeria mutant immunization alters pulmonary/systemic responses, effector functions, and memory polarization of Vγ2Vδ2 T cells

    Science.gov (United States)

    Frencher, James T.; Shen, Hongbo; Yan, Lin; Wilson, Jessica O.; Freitag, Nancy E.; Rizzo, Alicia N.; Chen, Crystal Y.; Chen, Zheng W.

    2014-01-01

    Whereas infection or immunization of humans/primates with microbes coproducing HMBPP/IPP can remarkably activate Vγ2Vδ2 T cells, in vivo studies have not been done to dissect HMBPP- and IPP-driven expansion, pulmonary trafficking, effector functions, and memory polarization of Vγ2Vδ2 T cells. We define these phosphoantigen-host interplays by comparative immunizations of macaques with the HMBPP/IPP-coproducing Listeria ΔactA prfA* and HMBPP-deficient Listeria ΔactAΔgcpE prfA* mutant. The HMBPP-deficient ΔgcpE mutant shows lower ability to expand Vγ2Vδ2 T cells in vitro than the parental HMBPP-producing strain but displays comparably attenuated infectivity or immunogenicity. Respiratory immunization of macaques with the HMBPP-deficient mutant elicits lower pulmonary and systemic responses of Vγ2Vδ2 T cells compared with the HMBPP-producing vaccine strain. Interestingly, HMBPP-deficient mutant reimmunization or boosting elicits enhanced responses of Vγ2Vδ2 T cells, but the magnitude is lower than that by HMBPP-producing listeria. HMBPP-deficient listeria differentiated fewer Vγ2Vδ2 T effector cells capable of coproducing IFN-γ and TNF-α and inhibiting intracellular listeria than HMBPP-producing listeria. Furthermore, HMBPP deficiency in listerial immunization influences memory polarization of Vγ2Vδ2 T cells. Thus, both HMBPP and IPP production in listerial immunization or infection elicit systemic/pulmonary responses and differentiation of Vγ2Vδ2 T cells, but a role for HMBPP is more dominant. Findings may help devise immune intervention. PMID:25114162

  13. Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid

    Directory of Open Access Journals (Sweden)

    Cribbs David H

    2008-04-01

    Full Text Available Abstract Background Inflammation is associated with Aβ pathology in Alzheimer's disease (AD and transgenic AD models. Previously, it has been demonstrated that chronic stimulation of the immune response induces pro-inflammatory cytokines IL-1β and TNF-α which contribute to neurodegeneration. However, recent evidence has shown that inducing the adaptive immune response reduces Aβ pathology and is neuroprotective. Low concentrations of IFN-γ modulate the adaptive immune response by directing microglia to differentiate to antigen presenting cells. Our objective was to determine if exercise could induce a shift from the immune profile in aged (17–19 months Tg2576 mice to a response that reduces Aβ pathology. Methods TG (n = 29 and WT (n = 27 mice were divided into sedentary (SED and exercised (RUN groups. RUN animals were provided an in-cage running wheel for 3 weeks. Tissue was harvested and hippocampus and cortex dissected out. Quantitative data was analyzed using 2 × 2 ANOVA and student's t-tests. Results IL-1β and TNF-α were significantly greater in hippocampi from sedentary Tg2576 (TGSED mice than in wildtype (WTSED (p = 0.04, p = 0.006. Immune response proteins IFN-γ and MIP-1α are lower in TGSED mice than in WTSED (p = 0.03, p = 0.07. Following three weeks of voluntary wheel running, IL-1β and TNF-α decreased to levels indistinguishable from WT. Concurrently, IFN-γ and MIP-1α increased in TGRUN. Increased CD40 and MHCII, markers of antigen presentation, were observed in TGRUN animals compared to TGSED, as well as CD11c staining in and around plaques and vasculature. Additional vascular reactivity observed in TGRUN is consistent with an alternative activation immune pathway, involving perivascular macrophages. Significant decreases in soluble Aβ40 (p = 0.01 and soluble fibrillar Aβ (p = 0.01 were observed in the exercised transgenic animals. Conclusion Exercise shifts the immune response from innate to an adaptive or

  14. Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid.

    Science.gov (United States)

    Nichol, Kathryn E; Poon, Wayne W; Parachikova, Anna I; Cribbs, David H; Glabe, Charles G; Cotman, Carl W

    2008-04-09

    Inflammation is associated with Abeta pathology in Alzheimer's disease (AD) and transgenic AD models. Previously, it has been demonstrated that chronic stimulation of the immune response induces pro-inflammatory cytokines IL-1beta and TNF-alpha which contribute to neurodegeneration. However, recent evidence has shown that inducing the adaptive immune response reduces Abeta pathology and is neuroprotective. Low concentrations of IFN-gamma modulate the adaptive immune response by directing microglia to differentiate to antigen presenting cells. Our objective was to determine if exercise could induce a shift from the immune profile in aged (17-19 months) Tg2576 mice to a response that reduces Abeta pathology. TG (n = 29) and WT (n = 27) mice were divided into sedentary (SED) and exercised (RUN) groups. RUN animals were provided an in-cage running wheel for 3 weeks. Tissue was harvested and hippocampus and cortex dissected out. Quantitative data was analyzed using 2 x 2 ANOVA and student's t-tests. IL-1beta and TNF-alpha were significantly greater in hippocampi from sedentary Tg2576 (TGSED) mice than in wildtype (WTSED) (p = 0.04, p = 0.006). Immune response proteins IFN-gamma and MIP-1alpha are lower in TGSED mice than in WTSED (p = 0.03, p = 0.07). Following three weeks of voluntary wheel running, IL-1beta and TNF-alpha decreased to levels indistinguishable from WT. Concurrently, IFN-gamma and MIP-1alpha increased in TGRUN. Increased CD40 and MHCII, markers of antigen presentation, were observed in TGRUN animals compared to TGSED, as well as CD11c staining in and around plaques and vasculature. Additional vascular reactivity observed in TGRUN is consistent with an alternative activation immune pathway, involving perivascular macrophages. Significant decreases in soluble Abeta40 (p = 0.01) and soluble fibrillar Abeta (p = 0.01) were observed in the exercised transgenic animals. Exercise shifts the immune response from innate to an adaptive or alternative response

  15. Endocrine Regulation of T-cell Development and Peripheral T-cell Maturation

    OpenAIRE

    Weerd, Kim

    2013-01-01

    markdownabstract__Abstract__ During the last century a large number of studies have demonstrated that complex interplay exists between the immune and the neuro-endocrine systems. This interplay, via shared cytokines, hormones and their respective receptors and nervous innervations, results in a highly organized integrated surveillance system capable of preserving homeostasis of the body to a large numbers of disturbances. Within this surveillance system the immune system recognizes external (...

  16. Moderate alcohol consumption alters both leucocyte gene expression profiles and circulating proteins related to immune response and lipid metabolism in men

    NARCIS (Netherlands)

    Joosten, M.M.; Erk, van M.J.; Pellis, E.P.M.; Witkamp, R.F.; Hendriks, H.F.J.

    2012-01-01

    Moderate alcohol consumption has various effects on immune and inflammatory processes, which could accumulatively modulate chronic disease risk. So far, no comprehensive, integrative profiling has been performed to investigate the effects of longer-term alcohol consumption. Therefore, we studied the

  17. Endocrine Regulation of T-cell Development and Peripheral T-cell Maturation

    NARCIS (Netherlands)

    K. van der Weerd (Kim)

    2013-01-01

    markdownabstract__Abstract__ During the last century a large number of studies have demonstrated that complex interplay exists between the immune and the neuro-endocrine systems. This interplay, via shared cytokines, hormones and their respective receptors and nervous innervations, results in a

  18. Altered Immune Response of the Rice Frog Fejervarya limnocharis Living in Agricultural Area with Intensive Herbicide Utilization at Nan Province, Thailand

    Directory of Open Access Journals (Sweden)

    Khattapan Jantawongsri

    2015-01-01

    Full Text Available Herbicides (atrazine, glyphosate and paraquat have been intensively used in Nan Province for a long time. Prior observations indicated that herbicide contamination and adverse health effects were found on the rice frog Fejervarya limnocharis living in paddy fields at Nan Province. Contamination of herbicides may influence disease emergence by acting directly or indirectly upon the immune system of amphibian or by causing disruptions in homeostasis, it is thus interesting to investigate potential effects of herbicide contamination in Nan Province on immune responses of the rice frog living in agricultural areas. Frogs were caught from a paddy field with no history of herbicide utilization (reference site and a paddy field with intensive herbicide utilization (contaminated site during 2010-2011. After dissection, frog livers were fixed in 10% neutral buffer formalin, processed by paraffin method and stained with hematoxylin and eosin. Number of melanomacrophage and melanomacrophage center (MMC were counted under a light microscope and used as markers of non-specific immune response. It was found that there was no significant sex-related difference in these numbers. However, there were significant seasonal differences in these numbers in both reference and contaminated site frogs, suggesting that seasonal difference in herbicide usage tend to affect frog's immune system in agricultural areas. Furthermore, numbers of melanomacrophage and MMC in early wet, late wet and early dry periods were markedly higher in the contaminated site frogs compared to those of the reference site frogs. The observation on amphibian's immune response to environmental contaminants could indicate the impacts of herbicide utilization on other vertebrates, as well as its role in amphibian declines.

  19. Endocrine Regulation of Compensatory Growth in Fish

    Directory of Open Access Journals (Sweden)

    Eugene T. Won

    2013-07-01

    Full Text Available Compensatory growth (CG is a period of accelerated growth that occurs following the alleviation of growth-stunting conditions during which an organism can make up for lost growth opportunity and potentially catch-up in size with non-stunted cohorts. Fish show a particularly robust capacity for the response and have been the focus of numerous studies that demonstrate their ability to compensate for periods of fasting once food is made available again. Compensatory growth is characterized by an elevated growth rate resulting from enhanced feed intake, mitogen production and feed conversion efficiency. Because little is known about the underlying mechanisms that drive the response, this review describes the sequential endocrine adaptations that lead to CG; namely during the precedent catabolic phase (fasting that taps endogenous energy reserves, and the following hyperanabolic phase (refeeding when accelerated growth occurs. In order to elicit a CG response, endogenous energy reserves must first be moderately depleted, which alters endocrine profiles that enhance appetite and growth potential. During this catabolic phase, elevated ghrelin and growth hormone (GH production increase appetite and protein-sparing lipolysis, while insulin-like growth factors (IGFs are suppressed, primarily due to hepatic GH resistance. During refeeding, temporal hyperphagia provides an influx of energy and metabolic substrates that are then allocated to somatic growth by resumed IGF signaling. Under the right conditions, refeeding results in hyperanabolism and a steepened growth trajectory relative to constantly fed controls. The response wanes as energy reserves are re-accumulated and homeostasis is restored. We ascribe possible roles for select appetite and growth-regulatory hormones in the context of these catabolic and hyperanabolic phases of the CG response in teleosts, with emphasis on GH, IGFs, cortisol, somatostatin, neuropeptide Y, ghrelin and leptin.

  20. Occult endocrine dysfunction in patients of cerebrovascular accident

    Directory of Open Access Journals (Sweden)

    K. V. S. Hari Kumar

    2016-01-01

    Full Text Available Background: Cerebrovascular disorders are common conditions leading to significant morbidity and mortality in the population. Occult endocrine disorders also contribute to the morbidity and we studied the prevalence of endocrine dysfunction in patients of cerebrovascular accident (CVA. Materials and Methods: We evaluated 30 patients of CVA (aged 18-75, admission within 72 h of symptoms and positive neuroimaging in this prospective, observational study. All subjects were assessed clinically and biochemically for hormonal dysfunction at admission and for mortality at the end of 1 month. The patients were divided into two groups: Group 1 (infarct, n = 20 and Group 2 (hemorrhage, n = 10 and the data were analyzed with appropriate statistical tests using GraphPad Prism Software, version 6. Results: The study participants (24M:6F had a mean age of 60.7 ± 11.4 years and body weight of 67.2 ± 11.4 kg. Fourteen out of 30 patients showed results consistent with an endocrine disorder, including sick euthyroid syndrome (SES and central hypothyroidism (n = 10, secondary hypogonadism (n = 3, subclinical hypothyroidism (n = 1, and growth hormone (GH deficiency in two patients. The endocrine conditions did not differ significantly between both the groups and nine out of 30 patients succumbed to their illness within 1 month. None of the hormonal parameters studied, could predict the 30 day mortality. Conclusion: Endocrine disorders are common in acute stage of CVA and commonest finding is a SES. Hormonal dysfunction did not differ based on the etiology of the CVA. Long-term follow-up is essential to understand the morbidity contributed by the hormonal alterations.

  1. Genetics of Common Endocrine Disease: The Present and the Future.

    Science.gov (United States)

    Goodarzi, Mark O

    2016-03-01

    In honor of the 75th issue of the Journal of Clinical Endocrinology and Metabolism, the author was invited to present his perspectives on genetics in human endocrinology. This paper reviews what the field has achieved in the genetics of common endocrine disease, and offers predictions on where the field will move in the future and its impact on endocrine clinical practice. The October 2015 data release of the National Human Genome Research Institute-European Bioinformatics Institute (NHGRI-EBI) Catalog of Published Genome-wide Association Studies was queried regarding endocrinologic diseases and traits. PubMed searches were focused on genetic prediction of disease, genetic findings and drug targets, functional interrogation of genetic loci, use of genetics to subtype disease, missing heritability, systems genomics, and higher order chromatin structures as regulators of gene function. Nearly a quarter of genome wide association study findings concern endocrinologic diseases and traits. While these findings have not yet dramatically altered clinical care, genetics will have a major impact by providing the drug targets of tomorrow, facilitated by experimental and bioinformatic advances that will shorten the time from gene discovery to drug development. Use of genetic findings to subtype common endocrine disease will allow more precise prevention and treatment efforts. Future advances will allow us to move away from the common view of DNA as a string of letters, allowing exploration of higher order structure that likely explains much "missing heritability." The future will see a greater role of genetics at the bedside, with genetic epidemiologic discoveries leading not only to new treatments of endocrine disease, but also helping us prescribe the right drug to the right patients by allowing subclassification of common heterogeneous endocrine conditions. Future technological breakthroughs will reveal the heritable mysteries hidden in chromatin structure, leading to a

  2. Afferent Endocrine Control of Eating

    DEFF Research Database (Denmark)

    Langhans, Wolfgang; Holst, Jens Juul

    2016-01-01

    The afferent endocrine factors that control eating can be separated into different categories. One obvious categorization is by the time course of their effects, with long-term factors that signal adiposity and short-term factors that operate within the time frame of single meals. The second...... obvious categorization is by the origin of the endocrine signalling molecules. The level of knowledge concerning the physiological mechanisms and relevance of the hormones that are implicated in the control of eating is clearly different. With the accumulating knowledge about the hormones' actions......, various criteria have been developed for when the effect of a hormone can be considered 'physiologic'. This chapter treats the hormones separately and categorizes them by origin. It discusses ALL hormones that are implicated in eating control such as Gastrointestinal (GI) hormone and glucagon-like peptide...

  3. Radiological imaging of endocrine diseases

    International Nuclear Information System (INIS)

    Bruneton, J.N.

    1999-01-01

    Imaging studies are playing an increasingly role in the evaluation of endocrine diseases; accordingly, familiarity with the specific indications for the various modalities, and with the characteristic findings, is essential. This multi-author work, which is intended for both radiologists and endocrinologists, considers the role of all the recent imaging techniques, including ultrasound (particular color Doppler), computed tomography, MRI, and scintigraphy. Following an extensive introduction on the pituitary, subsequent chapters discuss in detail the normal anatomy and pathology of the female and male reproductive systems. Remaining chapters provide state-of-the-art data on the thyroid, parathyroids, pancreatic endocrine tumors, adrenal glands, hormonal tumors (carcinoids and MEN), and imaging of the complications of hormone therapy. (orig.)

  4. Early and late endocrine effects in pediatric central nervous system diseases.

    Science.gov (United States)

    Aslan, Ivy R; Cheung, Clement C

    2014-01-01

    Endocrinopathies are frequently linked to central nervous system disease, both as early effects prior to the disease diagnosis and/or late effects after the disease has been treated. In particular, tumors and infiltrative diseases of the brain and pituitary, such as craniopharyngioma, optic pathway and hypothalamic gliomas, intracranial germ cell tumor, and Langerhans cell histiocytosis, can present with abnormal endocrine manifestations that precede the development of neurological symptoms. Early endocrine effects include diabetes insipidus, growth failure, obesity, and precocious or delayed puberty. With improving prognosis and treatment of childhood brain tumors, many survivors experience late endocrine effects related to medical and surgical interventions. Chemotherapeutic agents and radiation therapy can affect the hypothalamic-pituitary axes governing growth, thyroid, gonadal, and adrenal function. In addition, obesity and metabolic alterations are frequent late manifestations. Diagnosing and treating both early and late endocrine manifestations can dramatically improve the growth, well-being, and quality of life of patients with childhood central nervous system diseases.

  5. Endocrine manifestations in celiac disease

    OpenAIRE

    Freeman, Hugh James

    2016-01-01

    Celiac disease (CD) is an autoimmune small intestinal mucosal disorder that often presents with diarrhea, malabsorption and weight loss. Often, one or more associated endocrine disorders may be associated with CD. For this review, methods involved an extensive review of published English-language materials. In children and adolescents, prospective studies have demonstrated a significant relationship to insulin-dependent or type 1 diabetes, whereas in adults, autoimmune forms of thyroid diseas...

  6. Familiar and novel reproductive endocrine disruptors: xenoestrogens, dioxins and nanoparticles.

    Science.gov (United States)

    Hutz, R J; Carvan, M J; Larson, J K; Liu, Q; Stelzer, R V; King-Heiden, T C; Baldridge, M G; Shahnoor, N; Julien, K

    Environmental contaminants are known to exert endocrine-disrupting effects on the reproductive axis of animals. Many of these molecules can affect steroid biosynthesis or estrogen-receptor signaling by behaving as estrogen-like molecules ("xenoestrogens"), or by exerting estrogenmodulatory effects. Exposure to some compounds has been correlated with the skewing of sex ratios in aquatic species, feminization and demasculinization of male animals, declines in human sperm counts, and overall diminution in fertility of birds, fish, and mammals. We herein devote space to several classes of endocrine-disrupting compounds (EDCs), including estrogenic substances such as bisphenol A (BPA), molecules that can behave at times anti-estrogenically while activating the aromatic hydrocarbon receptor (AHR), such as dioxins (a known human carcinogen), and novel, ubiquitous molecules such as nanoparticles, particularly gold nanoparticles (GNPs), that appear to alter the sexsteroid biosynthetic pathway.

  7. Endocrine-disrupting chemicals and the regulation of energy balance.

    Science.gov (United States)

    Nadal, Angel; Quesada, Ivan; Tudurí, Eva; Nogueiras, Rubén; Alonso-Magdalena, Paloma

    2017-09-01

    Energy balance involves the adjustment of food intake, energy expenditure and body fat reserves through homeostatic pathways. These pathways include a multitude of biochemical reactions, as well as hormonal cues. Dysfunction of this homeostatic control system results in common metabolism-related pathologies, which include obesity and type 2 diabetes mellitus. Metabolism-disrupting chemicals (MDCs) are a particular class of endocrine-disrupting chemicals that affect energy homeostasis. MDCs affect multiple endocrine mechanisms and thus different cell types that are implicated in metabolic control. MDCs affect gene expression and the biosynthesis of key enzymes, hormones and adipokines that are essential for controlling energy homeostasis. This multifaceted spectrum of actions precludes compensatory responses and favours metabolic disorders. Herein, we review the main mechanisms used by MDCs to alter energy balance. This work should help to identify new MDCs, as well as novel targets of their action.

  8. Endocrine manifestations in celiac disease.

    Science.gov (United States)

    Freeman, Hugh James

    2016-10-14

    Celiac disease (CD) is an autoimmune small intestinal mucosal disorder that often presents with diarrhea, malabsorption and weight loss. Often, one or more associated endocrine disorders may be associated with CD. For this review, methods involved an extensive review of published English-language materials. In children and adolescents, prospective studies have demonstrated a significant relationship to insulin-dependent or type 1 diabetes, whereas in adults, autoimmune forms of thyroid disease, particularly hypothyroidism, may commonly co-exist. In some with CD, multiple glandular endocrinopathies may also occur and complicate the initial presentation of the intestinal disease. In others presenting with an apparent isolated endocrine disorder, serological screening for underlying subclinical CD may prove to be positive, particularly if type 1 diabetes, autoimmune thyroid or other autoimmune endocrine diseases, such as Addison's disease are first detected. A number of reports have also recorded hypoparathyroidism or hypopituitarism or ovarian failure in CD and these may be improved with a strict gluten-free diet.

  9. Alterations in polyadenylation and its implications for endocrine disease

    DEFF Research Database (Denmark)

    Rehfeld, Anders Aagaard; Plass, Mireya; Krogh, Anders

    2013-01-01

    Introduction: Polyadenylation is the process in which the pre-mRNA is cleaved at the poly(A) site and a poly(A) tail is added - a process necessary for normal mRNA formation. Genes with multiple poly(A) sites can undergo alternative polyadenylation (APA), producing distinct mRNA isoforms with dif......Introduction: Polyadenylation is the process in which the pre-mRNA is cleaved at the poly(A) site and a poly(A) tail is added - a process necessary for normal mRNA formation. Genes with multiple poly(A) sites can undergo alternative polyadenylation (APA), producing distinct mRNA isoforms...... with different 3' untranslated regions (3' UTRs) and in some cases different coding regions. Two thirds of all human genes undergo APA. The efficiency of the polyadenylation process regulates gene expression and APA plays an important part in post-transcriptional regulation, as the 3' UTR contains various cis...

  10. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease.

    Science.gov (United States)

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.

  11. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals

    Science.gov (United States)

    Chappell, V. A.; Fenton, S. E.; Flaws, J. A.; Nadal, A.; Prins, G. S.; Toppari, J.; Zoeller, R. T.

    2015-01-01

    The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans—especially during development—may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the

  12. Spectrum of Endocrine Disorders in Central Ghana

    Directory of Open Access Journals (Sweden)

    Osei Sarfo-Kantanka

    2017-01-01

    Full Text Available Background. Although an increasing burden of endocrine disorders is recorded worldwide, the greatest increase is occurring in developing countries. However, the spectrum of these disorders is not well described in most developing countries. Objective. The objective of this study was to profile the frequency of endocrine disorders and their basic demographic characteristics in an endocrine outpatient clinic in Kumasi, central Ghana. Methods. A retrospective review was conducted on endocrine disorders seen over a five-year period between January 2011 and December 2015 at the outpatient endocrine clinic of Komfo Anokye Teaching Hospital. All medical records of patients seen at the endocrine clinic were reviewed by endocrinologists and all endocrinological diagnoses were classified according to ICD-10. Results. 3070 adults enrolled for care in the endocrine outpatient service between 2011 and 2015. This comprised 2056 females and 1014 males (female : male ratio of 2.0 : 1.0 with an overall median age of 54 (IQR, 41–64 years. The commonest primary endocrine disorders seen were diabetes, thyroid, and adrenal disorders at frequencies of 79.1%, 13.1%, and 2.2%, respectively. Conclusions. Type 2 diabetes and thyroid disorders represent by far the two commonest disorders seen at the endocrine clinic. The increased frequency and wide spectrum of endocrine disorders suggest the need for well-trained endocrinologists to improve the health of the population.

  13. Myeloid cell sirtuin-1 expression does not alter host immune responses to Gram-negative endotoxemia or Gram-positive bacterial infection.

    Directory of Open Access Journals (Sweden)

    Laura E Crotty Alexander

    Full Text Available The role of sirtuin-1 (SIRT1 in innate immunity, and in particular the influence of SIRT1 on antimicrobial defense against infection, has yet to be reported but is important to define since SIRT1 inhibitors are being investigated as therapeutic agents in the treatment of cancer, Huntington's disease, and autoimmune diseases. Given the therapeutic potential of SIRT1 suppression, we sought to characterize the role of SIRT1 in host defense. Utilizing both pharmacologic methods and a genetic knockout, we demonstrate that SIRT1 expression has little influence on macrophage and neutrophil antimicrobial functions. Myeloid SIRT1 expression does not change mortality in gram-negative toxin-induced shock or gram-positive bacteremia, suggesting that therapeutic suppression of SIRT1 may be done safely without suppression of myeloid cell-specific immune responses to severe bacterial infections.

  14. Bacteria in the vaginal microbiome alter the innate immune response and barrier properties of the human vaginal epithelia in a species-specific manner.

    Science.gov (United States)

    Doerflinger, Sylvie Y; Throop, Andrea L; Herbst-Kralovetz, Melissa M

    2014-06-15

    Bacterial vaginosis increases the susceptibility to sexually transmitted infections and negatively affects women's reproductive health. To investigate host-vaginal microbiota interactions and the impact on immune barrier function, we colonized 3-dimensional (3-D) human vaginal epithelial cells with 2 predominant species of vaginal microbiota (Lactobacillus iners and Lactobacillus crispatus) or 2 prevalent bacteria associated with bacterial vaginosis (Atopobium vaginae and Prevotella bivia). Colonization of 3-D vaginal epithelial cell aggregates with vaginal microbiota was observed with direct attachment to host cell surface with no cytotoxicity. A. vaginae infection yielded increased expression membrane-associated mucins and evoked a robust proinflammatory, immune response in 3-D vaginal epithelial cells (ie, expression of CCL20, hBD-2, interleukin 1β, interleukin 6, interleukin 8, and tumor necrosis factor α) that can negatively affect barrier function. However, P. bivia and L. crispatus did not significantly upregulate pattern-recognition receptor-signaling, mucin expression, antimicrobial peptides/defensins, or proinflammatory cytokines in 3-D vaginal epithelial cell aggregates. Notably, L. iners induced pattern-recognition receptor-signaling activity, but no change was observed in mucin expression or secretion of interleukin 6 and interleukin 8. We identified unique species-specific immune signatures from vaginal epithelial cells elicited by colonization with commensal and bacterial vaginosis-associated bacteria. A. vaginae elicited a signature that is consistent with significant disruption of immune barrier properties, potentially resulting in enhanced susceptibility to sexually transmitted infections during bacterial vaginosis. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Moderate alcohol consumption alters both leucocyte gene expression profiles and circulating proteins related to immune response and lipid metabolism in men

    OpenAIRE

    Joosten, M.M.; Erk, M.J. van; Pellis, L; Witkamp, R.F.; Hendriks, H.F.

    2012-01-01

    Moderate alcohol consumption has various effects on immune and inflammatory processes, which could accumulatively modulate chronic disease risk. So far, no comprehensive, integrative profiling has been performed to investigate the effects of longer-term alcohol consumption. Therefore, we studied the effects of alcohol consumption on gene expression patterns using large-scale profiling of whole-genome transcriptomics in blood cells and on a number of proteins in blood. In a randomised, open-la...

  16. Environmental Endocrine Disruptor Affects Voluntary Physical Activity in Mice

    Science.gov (United States)

    Schmitt, Emily E.; Vellers, Heather L.; Porter, Weston W.; Lightfoot, J. Timothy

    2016-01-01

    INTRODUCTION Voluntary physical activity levels are regulated by sex hormones. The purpose of this study was to determine the effect of the endocrine disruptor benzyl butyl phthalate (BBP) on the regulation of physical activity in mice. METHODS Mouse dams were treated with 500 mg·kg−1·day−1 of BBP or vehicle on gestation days 9–16. Pups were weaned and analyzed for voluntary physical activity levels, puberty development, sex hormone levels, and body composition over a 20 week period. RESULTS Seventy-three offspring from BBP treated dams were studied (n=43 males, n=30 females). Endocrine disruption was indicated by decreased anogenital distances in BBP-treated male offspring at 10 (p=0.001) and 20 weeks (p=0.038) and delayed vaginal openings in BBP-treated female offspring (p=0.001). Further, there was a significant decrease in serum testosterone concentration in male mice between control and BBP at 10 weeks (p=0.039) and at 20 weeks (p=0.022). In female mice there was a significant increase in serum testosterone concentration in BBP mice at 20 weeks (p=0.002), and a significant increase in estrogen (estradiol) concentrations at 20 weeks in the control female mice (p=0.015). Overall, BBP mice ran significantly less distance (males, p=0.008; females, p=0.042) than controls. Other than a significant increase in BBP-treated males in fat mass at 20 weeks (p=0.040), there was no significant decrease in weight, lean mass, or fat mass in either female or male mice, regardless of treatment. CONCLUSION Maternal endocrine disruption altered hormone response, but not body composition in either sex of offspring, with a corresponding decreased activity throughout early adulthood in all offspring. These results suggest that exposure to common environmental endocrine disruptors in utero, can reduce and alter physical activity levels in offspring. PMID:26895396

  17. Sympathetic and Catecholaminergic Alterations in Sleep Apnea with Particular Emphasis on Children.

    Directory of Open Access Journals (Sweden)

    Fahed eHakim

    2012-01-01

    Full Text Available Sleep is involved in the regulation of major organ functions in the human body, and disruption of sleep potentially can elicit organ dysfunction. Obstructive sleep apnea (OSA is the most prevalent sleep disorder of breathing in adults and children, and its manifestations reflect the interactions between intermittent hypoxia (IH, intermittent hypercapnia, increased intra-thoracic pressure swings, and sleep fragmentation, as elicited by the episodic changes in upper airway resistance during sleep. The sympathetic nervous system is an important modulator of the cardiovascular, immune, endocrine and metabolic systems, and alterations in autonomic activity may lead to metabolic imbalance and organ dysfunction. Here we review how OSA and its constitutive components can lead to perturbation of the autonomic nervous system in general, and to altered regulation of catecholamines, both of which then playing an important role in some of the mechanisms underlying OSA-induced morbidities.

  18. Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System.

    Science.gov (United States)

    Rachdaoui, Nadia; Sarkar, Dipak K

    2017-01-01

    Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body's most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-gonadal axis, the hypothalamic-pituitary-thyroid axis, the hypothalamic-pituitary-growth hormone/insulin-like growth factor-1 axis, and the hypothalamic-posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol's effects on various components of the endocrine system and their consequences.

  19. [Endocrine disruptors: echoes of congress of Endocrinology in 2012].

    Science.gov (United States)

    Nassouri, A S; Archambeaud, F; Desailloud, R

    2012-10-01

    The increased prevalence of certain diseases, along with the development of new technologies and industrialization raised the possibility of the involvement of environmental factors, industrial products, nutritional factors, infections, drugs... and endocrine disruptors. These factors may interfere via signaling pathways specific to the organism. Endocrine Disrupting Chemicals (EDCs) have been redefined by the Endocrine Society in 2012 as "exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action". They have therefore potentially deleterious effects on development, growth, metabolism, reproduction, the nervous, immune and cardiovascular systems. Therefore, they constitute a real public health issue. Their long half-life may explain delayed effects and their often lipophilic character may promote maternofetal transmission. Except diethylstilbestrol (DES), few formal proofs have been made on the direct role of EDCs ; arguments are based on cross-sectional studies, in vitro models and animal models. Basic research puts insight into mechanisms of action of EDCs but many questions remain unanswered. Epidemiological data are difficult to interpret because of interindividual differences in susceptibility to EDCs and of nonlinear/nonmonotonique action (as opposed to toxic dose effect), multiple interactions between environmental agents (additive effects and/or synergistic and/or antagonists), the role of the window of exposure, latency, and the possibility of transgenerational effects. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. B cell, CD8 + T cell and gamma delta T cell infiltration alters alveolar immune cell homeostasis in HIV-infected Malawian adults [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Andrew Mwale

    2017-12-01

    Full Text Available Background: HIV infection is associated with increased risk to lower respiratory tract infections (LRTI. However, the impact of HIV infection on immune cell populations in the lung is not well defined. We sought to comprehensively characterise the impact of HIV infection on immune cell populations in the lung. Methods: Twenty HIV-uninfected controls and 17 HIV-1 infected ART-naïve adults were recruited from Queen Elizabeth Central Hospital, Malawi. Immunophenotyping of lymphocyte and myeloid cell populations was done on bronchoalveolar lavage fluid and peripheral blood cells. Results: We found that the numbers of CD8 + T cells, B cells and gamma delta T cells were higher in BAL fluid of HIV-infected adults compared to HIV-uninfected controls (all p<0.05. In contrast, there was no difference in the numbers of alveolar CD4 + T cells in HIV-infected adults compared to HIV-uninfected controls (p=0.7065. Intermediate monocytes were the predominant monocyte subset in BAL fluid (HIV-, 63%; HIV+ 81%, while the numbers of classical monocytes was lower in HIV-infected individuals compared to HIV-uninfected adults (1 × 10 5 vs. 2.8 × 10 5 cells/100ml of BAL fluid, p=0.0001. The proportions of alveolar macrophages and myeloid dendritic cells was lower in HIV-infected adults compared to HIV-uninfected controls (all p<0.05. Conclusions: Chronic HIV infection is associated with broad alteration of immune cell populations in the lung, but does not lead to massive depletion of alveolar CD4 + T cells. Disruption of alveolar immune cell homeostasis likely explains in part the susceptibility for LRTIs in HIV-infected adults.

  1. [Disperse endocrine system and APUD concept].

    Science.gov (United States)

    Mil'to, I V; Sukhodolo, I V; Gereng, E A; Shamardina, L A

    2011-01-01

    This review describes the problems of disperse endocrine system and APUD-system morphology, summarizes some debatable issues of single endocrine cell biology. The data presented refer to the history of both systems discovery, morphological methods of their study, developmental sources, their structural organization and physiological roles of their cells. The significance of single endocrine cells in the regulation of the organism functions is discussed.

  2. Update on endocrine disturbances in anorexia nervosa

    DEFF Research Database (Denmark)

    Støving, R K; Hangaard, J; Hagen, C

    2001-01-01

    The marked endocrine changes that occur in anorexia nervosa have aroused a great deal of interest, and over the last decade much research has been conducted in this field. The endocrine disturbances are not specific to this disorder, as they also occur in starvation states secondary to other causes...... of the large body of literature concerning endocrine aspects of anorexia nervosa with the main focus on the latest results, which provide leads for potential etiological theories....

  3. Radiotherapy for unresectable endocrine pancreatic carcinomas

    International Nuclear Information System (INIS)

    Tennvall, J.; Ljungberg, O.; Ahren, B.; Gustavsson, A.; Nillson, L.O.

    1992-01-01

    Surgery, when possible, is the treatment of choice for the uncommon endocrine tumours of pancreas. Unresectable cases are usually treated with cytostatic drugs or α-interferon. We describe a patient with unresectable, locally advanced endocrine pancreatic carcinoma (measuring 5 x 5 x 6 cm) that was totally cured by external radiation therapy only (40 Gy). This case together with four cases in the literature indicate that external radiation therapy should be considered in locally unresectable endocrine pancreatic carcinomas. (author)

  4. ENDOCRINE OPHTHALMOPATHY: ETIOLOGY, PATHOGENESIS, CLINICAL PICTURE, DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    Nikonova L. V.

    2018-03-01

    Full Text Available The relevance of the study of endocrine ophthalmopathy is due to the high prevalence of this disease and a high risk of developing impaired vision that leads to disability of patients. This lecture presents the main genetic, immunological, clinical manifestations of endocrine ophthalmopathy in order to improve the diagnosis and treatment of this pathology. The clinical picture of endocrine ophthalmopathy is various, unique for every patient and depends on the activity and severity of the process, which requires combined etiopathogenetic therapy. The importance of timely diagnosis for endocrine ophthalmopathy with an assessment of the activity of the process for choosing the right tactics for managing patients is very high.

  5. Endocrine aspects of cancer gene therapy.

    Science.gov (United States)

    Barzon, Luisa; Boscaro, Marco; Palù, Giorgio

    2004-02-01

    The field of cancer gene therapy is in continuous expansion, and technology is quickly moving ahead as far as gene targeting and regulation of gene expression are concerned. This review focuses on the endocrine aspects of gene therapy, including the possibility to exploit hormone and hormone receptor functions for regulating therapeutic gene expression, the use of endocrine-specific genes as new therapeutic tools, the effects of viral vector delivery and transgene expression on the endocrine system, and the endocrine response to viral vector delivery. Present ethical concerns of gene therapy and the risk of germ cell transduction are also discussed, along with potential lines of innovation to improve cell and gene targeting.

  6. Vitamin D endocrine system involvement in autoimmune rheumatic diseases.

    Science.gov (United States)

    Cutolo, Maurizio; Pizzorni, Carmen; Sulli, Alberto

    2011-12-01

    Vitamin D is synthesized from cholesterol in the skin (80-90%) under the sunlight and then metabolized into an active D hormone in liver, kidney and peripheral immune/inflammatory cells. These endocrine-immune effects include also the coordinated activities of the vitamin D-activating enzyme, 1alpha-hydroxylase (CYP27B1), and the vitamin D receptor (VDR) on cells of the immune system in mediating intracrine and paracrine actions. Vitamin D is implicated in prevention and protection from chronic infections (i.e. tubercolosis), cancer (i.e. breast cancer) and autoimmune rheumatic diseases since regulates both innate and adaptive immunity potentiating the innate response (monocytes/macrophages with antimicrobial activity and antigen presentation), but suppressing the adaptive immunity (T and B lymphocyte functions). Vitamin D has modulatory effects on B lymphocytes and Ig production and recent reports have demonstrated that 1,25(OH)2D3 does indeed exert direct effects on B cell homeostasis. A circannual rhythm of trough vitamin D levels in winter and peaks in summer time showed negative correlation with clinical status at least in rheumatoid arthritis and systemic lupus erythematosus. Recently, the onset of symptoms of early arthritis during winter or spring have been associated with greater radiographic evidence of disease progression at 12 months possibly are also related to seasonal lower vitamin D serum levels. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. [A case of pancreatic endocrine tumor developing from intraductal papillary mucinous neoplasm (IPMN)].

    Science.gov (United States)

    Abue, Makoto; Suzuki, Masaki; Onodera, Hiroyoshi; Suzuki, Shinichi; Noguchi, Tetsuya; Uchimi, Kiyoshi; Nomura, Eiki; Fujiya, Tsuneaki; Yamanami, Hideaki; Tateno, Hiroo

    2009-07-01

    In March, 2004, a 64-year-old man was given a diagnosis of IPMN of the pancreas in postoperative CT of left shoulder blade chondrosarcoma. In October, 2007, because a tumor in the pancreas body was found, distal pancreatectomy was performed a diagnosis of the poorly differentiated adenocarcinoma. Histopathologic diagnosis revealed as pancreatic endocrine tumor and immunity dyeing was useful for differential diagnosis. A case of pancreatic endocrine tumor developing from IPMN has a possibility not rare for frequency, but few reports are available so far.

  8. Alterations in early cytokine-mediated immune responses to Plasmodium falciparum infection in Tanzanian children with mineral element deficiencies: a cross-sectional survey

    Directory of Open Access Journals (Sweden)

    Jeurink Prescilla V

    2010-05-01

    Full Text Available Abstract Background Deficiencies in vitamins and mineral elements are important causes of morbidity in developing countries, possibly because they lead to defective immune responses to infection. The aim of the study was to assess the effects of mineral element deficiencies on early innate cytokine responses to Plasmodium falciparum malaria. Methods Peripheral blood mononuclear cells from 304 Tanzanian children aged 6-72 months were stimulated with P. falciparum-parasitized erythrocytes obtained from in vitro cultures. Results The results showed a significant increase by 74% in geometric mean of TNF production in malaria-infected individuals with zinc deficiency (11% to 240%; 95% CI. Iron deficiency anaemia was associated with increased TNF production in infected individuals and overall with increased IL-10 production, while magnesium deficiency induced increased production of IL-10 by 46% (13% to 144% in uninfected donors. All donors showed a response towards IL-1β production, drawing special attention for its possible protective role in early innate immune responses to malaria. Conclusions In view of these results, the findings show plasticity in cytokine profiles of mononuclear cells reacting to malaria infection under conditions of different micronutrient deficiencies. These findings lay the foundations for future inclusion of a combination of precisely selected set of micronutrients rather than single nutrients as part of malaria vaccine intervention programmes in endemic countries.

  9. Endocrine Disease in Aged Horses.

    Science.gov (United States)

    Durham, Andy E

    2016-08-01

    Aging horses may be at particular risk of endocrine disease. Two major equine endocrinopathies, pituitary pars intermedia dysfunction and equine metabolic syndrome, are commonly encountered in an aging population and may present with several recognizable signs, including laminitis. Investigation, treatment, and management of these diseases are discussed. Additionally, aging may be associated with development of rarer endocrinopathic problems, often associated with neoplasia, including diabetes mellitus and other confounders of glucose homeostasis, as well as thyroid, parathyroid, and adrenal diseases. Brief details of the recognition and management of these conditions are presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Endocrine disruptors and female cancer: Informing the patients (Review).

    Science.gov (United States)

    Del Pup, Lino; Mantovani, Alberto; Luce, Amalia; Cavaliere, Carla; Facchini, Gaetano; Di Francia, Raffaele; Caraglia, Michele; Berretta, Massimiliano

    2015-07-01

    Pollutants altering the endocrine system, known as endocrine disruptors (ED), may modify the risk of female cancers. The carcinogenic effect of ED on humans has been confirmed by experimental studies for various substances including pesticides, DDT, dioxins, phthalates, bisphenol A, diethylstilbestrol, as well as heavy metals, but it is difficult to quantify precisely for several reasons hereby reviewed. Carcinogenesis is a complex and multifactorial mechanism that manifests itself over a long period of time, making difficult the detection of the specific contribution of the pollutants, whose absorbed dose is often unknown. The combined effect of various substances leads to complex interactions whose outcome is difficult to predict. These substances may accumulate and carry out their harmful effect on critical periods of life, probably also at doses considered harmless to an adult. ED can also have epigenetic adverse effects on the health of future generations. In conclusion, the carcinogenic effects of endocrine disruptors on female cancer types is plausible although additional studies are needed to clarify their mechanisms and entities. In the last part of the review we suggest ways to reduce ED exposure as it is mandatory to implement necessary measures to limit exposure, particularly during those periods of life most vulnerable to the impact of oncogenic environmental causes, such as the embryonic period and puberty.

  11. Endocrine surgery: where are we today? A national survey of young endocrine surgeons.

    Science.gov (United States)

    Solorzano, Carmen C; Sosa, Julie A; Lechner, Suzanne C; Lew, John I; Roman, Sanziana A

    2010-04-01

    In recent years, there has been a growing interest in endocrine surgery. Educational objectives have been published by the American Association of Endocrine Surgeons (AAES), but data have not been collected describing the recruitment pool, fellowship, or postfellowship experiences. A survey was distributed to endocrine surgeons in practice <7 years and endocrine surgery fellows. Demographic, training, and practice data were collected. The survey response rate was 69% (46/67); 85% were practicing endocrine surgeons and 15% were fellows. In all, 72% of respondents completed an endocrine surgery fellowship, 17% completed surgical oncology, and the remaining individuals completed no fellowship. The mean age was 38 (32-49) years; 39% were women, 67% were white, 26% were Asian, 11% were Hispanic, and 2% were black. A total of 89% completed residency at academic centers. Endocrine surgery fellows performed significantly more endocrine surgery cases in residency than the average graduating chief resident. Mentorship was a critical factor in fellows' decisions to pursue endocrine surgery. Fellows graduated with a median (range) of 150 (50-300) thyroid, 80 (35-200) parathyroid, 10 (2-50) neck dissection, 13 (0-60) laparoscopic adrenal, and 3 (0-35) endocrine-pancreas. Fellows felt the least prepared in neck dissection and pancreas. Of the respondents, 76% of endocrine surgeons in practice are at academic centers, and 75% have practices where most cases are endocrine based. Exposure to endocrine surgery and mentorship are powerful factors that influence residents to pursue careers in endocrine surgery. Significant variation is found in the case distribution of fellowships with a relative paucity in neck dissection, pancreas procedures, and research. Recruitment to endocrine surgery should begin in residency, and the standardization of training should be a goal. Copyright 2010 Mosby, Inc. All rights reserved.

  12. Overview of the Pathophysiological Implications of Organotins on the Endocrine System.

    Science.gov (United States)

    Marques, Vinicius Bermond; Faria, Rodrigo Alves; Dos Santos, Leonardo

    2018-01-01

    Organotins (OTs) are pollutants that are used widely by industry as disinfectants, pesticides, and most frequently as biocides in antifouling paints. This mini-review presents the main evidences from the literature about morphophysiological changes induced by OTs in the mammal endocrine system, focusing on the metabolism and reproductive control. Similar to other toxic compounds, the main effects with potential health risks to humans and experimental animals are not only related to dose and time of exposure but also to age, gender, and tissue/cell exposed. Regarding the underlying mechanisms, current literature indicates that OTs can directly damage endocrine glands, as well as interfere with neurohormonal control of endocrine function (i.e., in the hypothalamic-pituitary axis), altering hormone synthesis and/or bioavailability or activity of hormone receptors in the target cells. Importantly, OTs induces biochemical and morphological changes in gonads, abnormal steroidogenesis, both associated with reproductive dysfunctions such as irregular estrous cyclicity in female or spermatogenic disorders in male animals. Additionally, due to their role on endocrine systems predisposing to obesity, OTs are also included in the metabolism disrupting chemical hypothesis, either by central (e.g., accurate nucleus and lateral hypothalamus) or peripheral (e.g., adipose tissue) mechanisms. Thus, OTs should be indeed considered a major endocrine disruptor, being indispensable to understand the main toxic effects on the different tissues and its causative role for endocrine, metabolic, and reproductive dysfunctions observed.

  13. Overview of the Pathophysiological Implications of Organotins on the Endocrine System

    Directory of Open Access Journals (Sweden)

    Vinicius Bermond Marques

    2018-03-01

    Full Text Available Organotins (OTs are pollutants that are used widely by industry as disinfectants, pesticides, and most frequently as biocides in antifouling paints. This mini-review presents the main evidences from the literature about morphophysiological changes induced by OTs in the mammal endocrine system, focusing on the metabolism and reproductive control. Similar to other toxic compounds, the main effects with potential health risks to humans and experimental animals are not only related to dose and time of exposure but also to age, gender, and tissue/cell exposed. Regarding the underlying mechanisms, current literature indicates that OTs can directly damage endocrine glands, as well as interfere with neurohormonal control of endocrine function (i.e., in the hypothalamic–pituitary axis, altering hormone synthesis and/or bioavailability or activity of hormone receptors in the target cells. Importantly, OTs induces biochemical and morphological changes in gonads, abnormal steroidogenesis, both associated with reproductive dysfunctions such as irregular estrous cyclicity in female or spermatogenic disorders in male animals. Additionally, due to their role on endocrine systems predisposing to obesity, OTs are also included in the metabolism disrupting chemical hypothesis, either by central (e.g., accurate nucleus and lateral hypothalamus or peripheral (e.g., adipose tissue mechanisms. Thus, OTs should be indeed considered a major endocrine disruptor, being indispensable to understand the main toxic effects on the different tissues and its causative role for endocrine, metabolic, and reproductive dysfunctions observed.

  14. Altering the balance between immune activation versus regulation in the skin to promote CD8+ T-cell activity within epithelial cancers

    DEFF Research Database (Denmark)

    Bridge, Jennifer A.; Overgaard, Nana Haahr; Steptoe, Raymond

    . The expression, in a mouse model (“E7”), of the HPV16 E7 gene in keratinocytes under the control of the K14 promoter, leads to a local immune suppressive environment, as evidenced by the lack of graft rejection when E7 skin grafts are placed on WT recipient mice. Furthermore, well healed (>30 days) E7 skin......-cells respond to vaccination and differentiate into CTL capable of killing E7-expressing target cells. We hypothesised that the removal of regulatory T-cells (T-reg) might lead to E7 graft rejection in immunised mice. The co-administration of an anti-CD4-depeting antibody at the time of immunisation led...

  15. The anatomy and physiology of the avian endocrine system.

    Science.gov (United States)

    Ritchie, Midge; Pilny, Anthony A

    2008-01-01

    The endocrine system of birds is comparable to that of mammals, although there are many unique aspects to consider when studying the anatomy, physiology, and biochemistry. Avian endocrinology is a field of veterinary medicine that is unfamiliar to many practitioners; however, it is important to have a comprehensive understanding when evaluating companion birds in clinical practice. This article covers the anatomy and physiology of the normal avian, and readers are referred to other articles for a more detailed explanation of altered physiology and pathology.

  16. Asian Citrus Psyllid Expression Profiles Suggest Candidatus Liberibacter Asiaticus-Mediated Alteration of Adult Nutrition and Metabolism, and of Nymphal Development and Immunity.

    Directory of Open Access Journals (Sweden)

    Meenal Vyas

    Full Text Available The Asian citrus psyllid (ACP Diaphorina citri Kuwayama (Hemiptera: Psyllidae is the insect vector of the fastidious bacterium Candidatus Liberibacter asiaticus (CLas, the causal agent of citrus greening disease, or Huanglongbing (HLB. The widespread invasiveness of the psyllid vector and HLB in citrus trees worldwide has underscored the need for non-traditional approaches to manage the disease. One tenable solution is through the deployment of RNA interference technology to silence protein-protein interactions essential for ACP-mediated CLas invasion and transmission. To identify psyllid interactor-bacterial effector combinations associated with psyllid-CLas interactions, cDNA libraries were constructed from CLas-infected and CLas-free ACP adults and nymphs, and analyzed for differential expression. Library assemblies comprised 24,039,255 reads and yielded 45,976 consensus contigs. They were annotated (UniProt, classified using Gene Ontology, and subjected to in silico expression analyses using the Transcriptome Computational Workbench (TCW (http://www.sohomoptera.org/ACPPoP/. Functional-biological pathway interpretations were carried out using the Kyoto Encyclopedia of Genes and Genomes databases. Differentially expressed contigs in adults and/or nymphs represented genes and/or metabolic/pathogenesis pathways involved in adhesion, biofilm formation, development-related, immunity, nutrition, stress, and virulence. Notably, contigs involved in gene silencing and transposon-related responses were documented in a psyllid for the first time. This is the first comparative transcriptomic analysis of ACP adults and nymphs infected and uninfected with CLas. The results provide key initial insights into host-parasite interactions involving CLas effectors that contribute to invasion-virulence, and to host nutritional exploitation and immune-related responses that appear to be essential for successful ACP-mediated circulative, propagative CLas

  17. Effects of endocrine disrupting chemicals on in vitro global DNA methylation and adipocyte differentation

    NARCIS (Netherlands)

    Bastos Sales, L.; Kamstra, J.H.; Cenijn, P.H.; van Rijt, L.S.; Hamers, T.; Legler, J.

    2013-01-01

    Recent studies suggest that endocrine disrupting chemicals (EDCs) may form a risk factor for obesity by altering energy metabolism through epigenetic gene regulation. The goal of this study is to investigate the effects of a range of EDCs with putative obesogenic properties on global DNA methylation

  18. Mixtures of environmentally relevant endocrine disrupting chemicals affect mammary gland development in female and male rats

    DEFF Research Database (Denmark)

    Mandrup, Karen Riiber; Johansson, Hanna Katarina Lilith; Boberg, Julie

    2015-01-01

    Estrogenic chemicals are able to alter mammary gland development in female rodents, but little is known on the effects of anti-androgens and mixtures of endocrine disrupting chemicals (EDCs) with dissimilar modes of action. Pregnant rat dams were exposed during gestation and lactation to mixtures...

  19. Effects of endocrine disrupting chemicals on in vitro global DNA methylation and adipocyte differentiation

    NARCIS (Netherlands)

    Bastos Sales, L.; Kamstra, J. H.; Cenijn, P. H.; van Rijt, L. S.; Hamers, T.; Legler, J.

    2013-01-01

    Recent studies suggest that endocrine disrupting chemicals (EDCs) may form a risk factor for obesity by altering energy metabolism through epigenetic gene regulation. The goal of this study is to investigate the effects of a range of EDCs with putative obesogenic properties on global DNA methylation

  20. Oestrogen levels and humoral immune parameters in Nigerian ...

    African Journals Online (AJOL)

    Objectives: Endocrine and immune interactions mediate breast cancer which is currently incurable. This study attempts at elucidating mechanisms by which breast cancer progresses by determining the levels of oestradiol and humoral immune parameters at different stages of breast cancer compared with women without ...

  1. Update on endocrine disturbances in anorexia nervosa

    DEFF Research Database (Denmark)

    Støving, R K; Hangaard, J; Hagen, C

    2001-01-01

    The marked endocrine changes that occur in anorexia nervosa have aroused a great deal of interest, and over the last decade much research has been conducted in this field. The endocrine disturbances are not specific to this disorder, as they also occur in starvation states secondary to other causes...

  2. Diagnosis and pathology of endocrine diseases

    International Nuclear Information System (INIS)

    Shriver, B.D.

    1988-01-01

    This book contains 22 papers under the headings of Diagnosis and Pathology of endocrine diseases. Topics covered include: Laboratory tests in the diagnosis and management of thyroid disorders, Pathology of thyroid diseases, Diagnosis of adrenourtical disease, Radiologic techniques in evaluating endocrine disorders; and the Pituitary and adrenal glands

  3. Diagnosis and pathology of endocrine diseases

    Energy Technology Data Exchange (ETDEWEB)

    Shriver, B.D.

    1988-01-01

    This book contains 22 papers under the headings of Diagnosis and Pathology of endocrine diseases. Topics covered include: Laboratory tests in the diagnosis and management of thyroid disorders, Pathology of thyroid diseases, Diagnosis of adrenourtical disease, Radiologic techniques in evaluating endocrine disorders; and the Pituitary and adrenal glands.

  4. Endocrine pathology: past, present and future.

    Science.gov (United States)

    Asa, Sylvia L; Mete, Ozgur

    2018-01-01

    Endocrine pathology is the subspecialty of diagnostic pathology which deals with the diagnosis and characterisation of neoplastic and non-neoplastic diseases of the endocrine system. This relatively young subspecialty was initially focused mainly on thyroid and parathyroid pathology, with some participants also involved in studies of the pituitary, the endocrine pancreas, and the adrenal glands. However, the endocrine system involves much more than these traditional endocrine organs and the discipline has grown to encompass lesions of the dispersed neuroendocrine cells, including neuroendocrine tumours (NETs) of the lungs, gastrointestinal tract, thymus, breast and prostate, as well as paraganglia throughout the body, not just in the adrenals. Indeed, the production of hormones is the hallmark of the endocrine system, and some aspects of gynecological/testicular, bone and liver pathology also fall into the realm of this specialty. Many of the lesions that are the focus of this discipline are increasing in incidence and their pathology is becoming more complex with increased understanding of molecular pathology and a high incidence of familial disease. The future of endocrine pathology will demand a depth of understanding of structure, function, prognosis and prediction as pathologists play a key role in the multidisciplinary care team of patients with endocrine diseases. It is anticipated that new technologies will allow increased subspecialisation in pathology and growth of this important area of expertise. Copyright © 2017 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.

  5. Intestinal endocrine cells in radiation enteritis

    International Nuclear Information System (INIS)

    Pietroletti, R.; Blaauwgeers, J.L.; Taat, C.W.; Simi, M.; Brummelkamp, W.H.; Becker, A.E.

    1989-01-01

    In this study, the intestinal endocrine cells were investigated in 13 surgical specimens affected by radiation enteritis. Endocrine cells were studied by means of Grimelius' silver staining and immunostaining for chromogranin, a general marker of endocrine cells. Positively stained cells were quantified by counting their number per unit length of muscularis mucosa. Results in radiation enteritis were compared with matched control specimens by using Student's t test. Chromogranin immunostaining showed a statistically significant increase of endocrine cells in radiation enteritis specimens compared with controls both in small and large intestine (ileum, 67.5 +/- 23.5 cells per unit length of muscularis mucosa in radiation enteritis versus 17.0 +/- 6.1 in controls; colon, 40.9 +/- 13.7 cells per unit length of muscularis mucosa in radiation enteritis versus 9.5 +/- 4.1 in controls--p less than 0.005 in both instances). Increase of endocrine cells was demonstrated also by Grimelius' staining; however, without reaching statistical significance. It is not clear whether or not the increase of endocrine cells in radiation enteritis reported in this study is caused by a hyperplastic response or by a sparing phenomenon. We should consider that increased endocrine cells, when abnormally secreting their products, may be involved in some of the clinical features of radiation enteropathy. In addition, as intestinal endocrine cells produce trophic substances to the intestine, their increase could be responsible for the raised risk of developing carcinoma of the intestine in long standing radiation enteritis

  6. Genetic testing by cancer site: endocrine system.

    Science.gov (United States)

    Pilarski, Robert; Nagy, Rebecca

    2012-01-01

    Numerous hereditary syndromes, caused by mutations in multiple tumor suppressor genes and oncogenes, can cause tumors in organs of the endocrine system. The primary syndromes (and genes) addressed here include multiple endocrine neoplasia types 1 and 2 (MEN1 and RET genes), Cowden syndrome (PTEN), hereditary pheochromocytoma/paraganglioma syndromes (multiple genes), and von Hippel-Lindau disease (VHL). Clinical genetic testing is available for each of these syndromes and is generally directed to individuals with endocrine or other tumors and additional features suggestive of a hereditary syndrome. However, for some endocrine tumors, the proportion because of heredity is so high that genetic testing may be appropriate for all affected individuals. Management for hereditary cases typically involves aggressive screening and/or surgical protocols, starting at young ages to minimize morbidity and mortality. Endocrine tumors can be less commonly seen in a number of other hereditary syndromes (eg, neurofibromatosis), which are not reviewed in this section.

  7. Mechanistic evaluation of endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Taxvig, Camilla

    BACKGROUND: This PhD project is part of the research area concerning effects of endocrine disrupters at the National Food Institute at DTU in Denmark. Endocrine disrupting chemicals (EDCs) have proved to be important for improper development of the male reproductive organs and subsequent for the ......BACKGROUND: This PhD project is part of the research area concerning effects of endocrine disrupters at the National Food Institute at DTU in Denmark. Endocrine disrupting chemicals (EDCs) have proved to be important for improper development of the male reproductive organs and subsequent...... metabolising system using liver S9 mixtures or hepatic rat microsomes could be a convenient method for the incorporation of metabolic aspects into in vitro testing for endocrine disrupting effects....

  8. Gonadotrophin stimulation in IVF alters the immune cell profile in follicular fluid and the cytokine concentrations in follicular fluid and serum.

    Science.gov (United States)

    Kollmann, Z; Schneider, S; Fux, M; Bersinger, N A; von Wolff, M

    2017-04-01

    Are the immune cell profiles and the cytokine concentrations in follicular fluid (FF) and serum at the preovulatory stage different in conventional exogenous gonadotrophin stimulated IVF (c-IVF) compared with natural cycle IVF (NC-IVF)? The cell counts of CD45+ leucocytes and T cell subpopulations and the cytokine concentrations in FF and serum are different in c-IVF compared to NC-IVF. FF-derived cells are heterogeneous. Immune cells are involved in intra-ovarian processes and cytokines are required for normal follicular development. Gonadotrophins stimulate the regulatory intrafollicular system and influence the local distribution of immune cells and the intrafollicular release of cytokines. Administration of exogenous gonadotrophins may have a significant effect on this local regulatory system, which then in turn could influence oocyte quality. The study included 105 patients, 69 undergoing c-IVF and 36 undergoing NC-IVF. c-IVF was performed by exogenous ovarian stimulation with hMG and GnRH antagonists. FF samples were collected from the first dominant follicle in c-IVF without pooling and from single leading preovulatory follicles in NC-IVF. Three different approaches were used to analyze FF samples: (i) microscopic investigation of CD45+ leucocytes, (ii) fluorescence-activated cell sorting to determine CD19+ B cells and CD3+ T cells including T cell subpopulations (CD4+, CD8+), and (iii) evaluation of tumour necrosis factor-alpha (TNF-α), interferon-gamma (INF-γ), interleukins (IL)-2, -6, -8, -10 and vascular endothelial growth factor (VEGF) levels in matched FF and serum samples using the Bio-Plex® platform. FF obtained from c-IVF contained proportionally more CD45+ leucocytes (P = 0.0384), but fewer CD8+ cytotoxic T cells than FF from NC-IVF. CD3+ T lymphocytes were the most common type of lymphocytes, and the number thereof was comparable in the two study groups. In c-IVF, serum VEGF levels were higher (P = 0.007) than in NC-IVF while FF contained

  9. Dysregulation in microRNA expression is associated with alterations in immune functions in combat veterans with post-traumatic stress disorder.

    Directory of Open Access Journals (Sweden)

    Juhua Zhou

    Full Text Available While the immunological dysfunction in combat Veterans with post-traumatic stress disorder (PTSD has been well documented, the precise mechanisms remain unclear. The current study evaluated the role of microRNA (miR in immunological dysfunction associated with PTSD. The presence of peripheral blood mononuclear cells (PBMC and various lymphocyte subsets in blood collected from PTSD patients were analyzed. Our studies demonstrated that the numbers of both PBMC and various lymphocyte subsets increased significantly in PTSD patients. When T cells were further analyzed, the percentage of Th1 cells and Th17 cells increased, regulatory T cells(Tregs decreased, while Th2 cells remained unaltered in PTSD patients. These data correlated with increased plasma levels of IFN-γ and IL-17 while IL-4 showed no significant change. The increase in PBMC counts, Th1 and Th17 cells seen in PTSD patients correlated with the clinical scores. High-throughput analysis of PBMCs for 1163 miRs showed that the expression of a significant number of miRs was altered in PTSD patients. Pathway analysis of dysregulated miRs seen in PTSD patients revealed relationship between selected miRNAs and genes that showed direct/indirect role in immunological signaling pathways consistent with the immunological changes seen in these patients. Of interest was the down-regulation of miR-125a in PTSD, which specifically targeted IFN-γ production. Together, the current study demonstrates for the first time that PTSD was associated with significant alterations in miRNAs, which may promote pro-inflammatory cytokine profile. Such epigenetic events may provide useful tools to identify potential biomarkers for diagnosis, and facilitate therapy of PTSD.

  10. [Endocrine disruptors and obesity: obesogens].

    Science.gov (United States)

    García-Mayor, Ricardo V; Larrañaga Vidal, Alejandra; Docet Caamaño, Maria F; Lafuente Giménez, Anunciación

    2012-04-01

    Incidence and prevalence of owerweight and obesity have greatly increased over the past three decades in almost all countries around the world. This phenomenon is not easily explained by lifestyle changes in populations with very different initial habits. This has led to consider the influence of other factors, the so-called endocrine disruptors, and more specifically obesogens. This study reviewed the available evidence about polluting chemical substances which may potentially be obesogens in humans: DES, genistein, bisphenol A, organotins (TBT, TPT), and phthalates. The first three groups of substances mainly act upon estrogen receptors, while organotins and phthalates activate PPARγ. It was concluded that evidence exists of the obesogenic effect of these chemical substances in tissues and experimental animals, but few data are available in humans. Copyright © 2011 SEEN. Published by Elsevier Espana. All rights reserved.

  11. Endocrine Consequences of Anorexia Nervosa

    Science.gov (United States)

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Summary Anorexia nervosa (AN) is prevalent in adolescents and young adults, and endocrine changes include hypothalamic amenorrhea, a nutritionally acquired growth hormone resistance with low insulin like growth factor-1 (IGF-1), relative hypercortisolemia, decreases in leptin, insulin, amylin and incretins, and increases in ghrelin, PYY and adiponectin. These changes in turn have deleterious effects on bone, and may affect neurocognition, anxiety, depression and eating disorder psychopathology. Low bone density is particularly concerning; clinical fractures occur and changes in both bone microarchitecture and strength estimates have been reported. Recovery causes improvement of many, but not all, hormonal changes, and deficits in bone accrual may persist despite recovery. Physiologic, primarily transdermal, estrogen replacement increases bone density in adolescents, although catch-up is incomplete. In adults, oral estrogen co-administered with rhIGF-1 in one study, and bisphosphonates in another increased bone density, though not to normal. More studies are necessary to determine the optimal therapeutic approach in AN. PMID:24731664

  12. Humoral immune alterations caused by lead: studies on an adult toad model Alteraciones inmunes humorales causadas por plomo: estudios en un modelo de sapo adulto

    Directory of Open Access Journals (Sweden)

    Carolina E. Rosenberg

    2007-07-01

    Full Text Available There is evidence that environmental metal levels affect the immune function. In the particular case of the impact of heavy metals, information available suggests that the immune system is a target for low-dose Pb exposure. Among vertebrates it was shown that amphibians are capable of forming antibodies against a variety of antigens, causing several responses such as anaphylactic response and rejecting grafts. In this study, the production of antibodies was assessed against sheep red blood cells (SRBC in the anuran Bufo arenarum after six weekly injections of sublethal doses of lead (50 mg.kg-1, as lead acetate. Natural antibodies (natural heteroagglutinins were also quantified against SRBC. Both assessments were carried out employing an ELISA method developed to this end, measuring absorbance (A. For natural anti-SRBC antibodies in both control (C and Pb treated (T toads, there was a non significant tendency to increase the initial absorbances (C initial: 0.69±0.39 A; T initial: 0.54±0.30 A, relative to those registered at the end of the experiments (C final: 0.89±0.49 A; T final: 0.76±0.31A; the T/C ratios also did not show changes. The only significant difference was found between initial and final samples from lead-treated toads (pExiste evidencia de que los niveles de metal ambientales afectan la función inmune. En el caso particular del impacto de metales pesados, la información disponible sugiere que el sistema inmune es un blanco para la exposición a bajas dosis de Pb. Entre los vertebrados, se ha mostrado que los anfibios son capaces de formar anticuerpos contra una variedad de antígenos, que causan diversas respuestas, tales como respuesta anafiláctica y rechazo de injertos. En este estudio, la producción de anticuerpos fue evaluada contra eritrocitos de oveja (EO en el anuro Bufo arenarum, luego de seis inyecciones semanales de dosis subletales de plomo (50 mg.kg-1, como acetato de Pb. Los anticuerpos naturales

  13. Immune activation in lactating dams alters sucklings' brain cytokines and produces non-overlapping behavioral deficits in adult female and male offspring: A novel neurodevelopmental model of sex-specific psychopathology.

    Science.gov (United States)

    Arad, Michal; Piontkewitz, Yael; Albelda, Noa; Shaashua, Lee; Weiner, Ina

    2017-07-01

    Early immune activation (IA) in rodents, prenatal through the mother or early postnatal directly to the neonate, is widely used to produce behavioral endophenotypes relevant to schizophrenia and depression. Given that maternal immune response plays a crucial role in the deleterious effects of prenatal IA, and lactation is a critical vehicle of immunological support to the neonate, we predicted that immune activation of the lactating dam will produce long-term abnormalities in the sucklings. Nursing dams were injected on postnatal day 4 with the viral mimic poly-I:C (4mg/kg) or saline. Cytokine assessment was performed in dams' plasma and milk 2h, and in the sucklings' hippocampus, 6h and 24h following poly-I:C injection. Male and female sucklings were assessed in adulthood for: a) performance on behavioral tasks measuring constructs considered relevant to schizophrenia (selective attention and executive control) and depression (despair and anhedonia); b) response to relevant pharmacological treatments; c) brain structural changes. Maternal poly-I:C injection caused cytokine alterations in the dams' plasma and milk, as well as in the sucklings' hippocampus. Lactational poly-I:C exposure led to sex-dimorphic (non-overlapping) behavioral abnormalities in the adult offspring, with male but not female offspring exhibiting attentional and executive function abnormalities (manifested in persistent latent inhibition and slow reversal) and hypodopaminergia, and female but not male offspring exhibiting despair and anhedonia (manifested in increased immobility in the forced swim test and reduced saccharine preference) and hyperdopaminergia, mimicking the known sex-bias in schizophrenia and depression. The behavioral double-dissociation predicted distinct pharmacological profiles, recapitulating the pharmacology of negative/cognitive symptoms and depression. In-vivo imaging revealed hippocampal and striatal volume reductions in both sexes, as found in both disorders. This is

  14. Exome and Transcriptome Sequencing of Aedes aegypti Identifies a Locus That Confers Resistance to Brugia malayi and Alters the Immune Response

    KAUST Repository

    Juneja, Punita

    2015-03-27

    Many mosquito species are naturally polymorphic for their abilities to transmit parasites, a feature which is of great interest for controlling vector-borne disease. Aedes aegypti, the primary vector of dengue and yellow fever and a laboratory model for studying lymphatic filariasis, is genetically variable for its capacity to harbor the filarial nematode Brugia malayi. The genome of Ae. aegypti is large and repetitive, making genome resequencing difficult and expensive. We designed exome captures to target protein-coding regions of the genome, and used association mapping in a wild Kenyan population to identify a single, dominant, sex-linked locus underlying resistance. This falls in a region of the genome where a resistance locus was previously mapped in a line established in 1936, suggesting that this polymorphism has been maintained in the wild for the at least 80 years. We then crossed resistant and susceptible mosquitoes to place both alleles of the gene into a common genetic background, and used RNA-seq to measure the effect of this locus on gene expression. We found evidence for Toll, IMD, and JAK-STAT pathway activity in response to early stages of B. malayi infection when the parasites are beginning to die in the resistant genotype. We also found that resistant mosquitoes express anti-microbial peptides at the time of parasite-killing, and that this expression is suppressed in susceptible mosquitoes. Together, we have found that a single resistance locus leads to a higher immune response in resistant mosquitoes, and we identify genes in this region that may be responsible for this trait.

  15. Analyzing endocrine system conservation and evolution.

    Science.gov (United States)

    Bonett, Ronald M

    2016-08-01

    Analyzing variation in rates of evolution can provide important insights into the factors that constrain trait evolution, as well as those that promote diversification. Metazoan endocrine systems exhibit apparent variation in evolutionary rates of their constituent components at multiple levels, yet relatively few studies have quantified these patterns and analyzed them in a phylogenetic context. This may be in part due to historical and current data limitations for many endocrine components and taxonomic groups. However, recent technological advancements such as high-throughput sequencing provide the opportunity to collect large-scale comparative data sets for even non-model species. Such ventures will produce a fertile data landscape for evolutionary analyses of nucleic acid and amino acid based endocrine components. Here I summarize evolutionary rate analyses that can be applied to categorical and continuous endocrine traits, and also those for nucleic acid and protein-based components. I emphasize analyses that could be used to test whether other variables (e.g., ecology, ontogenetic timing of expression, etc.) are related to patterns of rate variation and endocrine component diversification. The application of phylogenetic-based rate analyses to comparative endocrine data will greatly enhance our understanding of the factors that have shaped endocrine system evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Altered hepatic mRNA expression of immune response-associated DNA damage in mice liver induced by potassium bromate: Protective role of vanillin.

    Science.gov (United States)

    Ben Saad, Hajer; Driss, Dorra; Ben Amara, Ibtissem; Boudawara, Ons; Boudawara, Tahia; Ellouz Chaabouni, Samia; Mounir Zeghal, Khaled; Hakim, Ahmed

    2016-12-01

    Chronic exposure to potassium bromate (KBrO 3 ), a toxic halogen existing widely in the environment, environment through contaminated drinking water, has become a global problem of public health. The present study investigates the protective role of vanillin against KBrO 3 induced oxidative stress, distruption in inflammatory cytokines expression, DNA damage, and histopathological changes. Adult mice were exposed orally to KBrO 3 (2g/L of drinking water) for 2 weeks The co-administration of vanillin to the KBrO 3 -treated mice significantly prevented the plasma transaminases increase in. Furthermore, it inhibited hepatic lipid peroxidation (malondialdehyde), advanced oxidation protein product (AOPP) and protein carbonyl (PCO) formation and attenuated the KBrO 3 -mediated depletion of enzymatic and non enzymatic antioxidants catalase, superoxide dismutase, and glutathione peroxidase activities and glutathione level in the liver. In addition, vanillin markedly attenuated the expression levels of proinflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, interleukin-6, and COX2 and prevented KBrO 3 -induced hepatic cell alteration and necrosis, as indicated by histopathological data. DNA damage, as assessed by the alkaline comet assay, was also found to be low in the co-treated group. Thus, these findings show that vanillin acts as potent chemopreventive agent against KBrO 3 -mediated liver oxidative stress and genotoxicity through its antioxidant properties. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1796-1807, 2016. © 2015 Wiley Periodicals, Inc.

  17. Rhinovirus infection results in stronger and more persistent genomic dysregulation: Evidence for altered innate immune response in asthmatics at baseline, early in infection, and during convalescence.

    Directory of Open Access Journals (Sweden)

    Peter W Heymann

    Full Text Available Rhinovirus (HRV is associated with the large majority of virus-induced asthma exacerbations in children and young adults, but the mechanisms remain poorly defined.Asthmatics and non-asthmatic controls were inoculated with HRV-A16, and nasal epithelial samples were obtained 7 days before, 36 hours after, and 7 days after viral inoculation. RNA was extracted and subjected to RNA-seq analysis.At baseline, 57 genes were differentially expressed between asthmatics and controls, and the asthmatics had decreased expression of viral replication inhibitors and increased expression of genes involved in inflammation. At 36 hours (before the emergence of peak symptoms, 1329 genes were significantly altered from baseline in the asthmatics compared to 62 genes in the controls. At this time point, asthmatics lacked an increase in IL-10 signaling observed in the controls. At 7 days following HRV inoculation, 222 genes were significantly dysregulated in the asthmatics, whereas only 4 genes were dysregulated among controls. At this time point, the controls but not asthmatics demonstrated upregulation of SPINK5.As judged by the magnitude and persistence of dysregulated genes, asthmatics have a substantially different host response to HRV-A16 infection compared with non-asthmatic controls. Gene expression differences illuminate biologically plausible mechanisms that contribute to a better understanding of the pathogenesis of HRV-induced asthma exacerbations.

  18. Epigenetic impacts of endocrine disruptors in the brain☆

    Science.gov (United States)

    Walker, Deena M.; Gore, Andrea C.

    2017-01-01

    The acquisition of reproductive competence is organized and activated by steroid hormones acting upon the hypothalamus during critical windows of development. This review describes the potential role of epigenetic processes, particularly DNA methylation, in the regulation of sexual differentiation of the hypothalamus by hormones. We examine disruption of these processes by endocrine-disrupting chemicals (EDCs) in an age-, sex-, and region-specific manner, focusing on how perinatal EDCs act through epigenetic mechanisms to reprogram DNA methylation and sex steroid hormone receptor expression throughout life. These receptors are necessary for brain sexual differentiation and their altered expression may underlie disrupted reproductive physiology and behavior. Finally, we review the literature on histone modifications and non-coding RNA involvement in brain sexual differentiation and their perturbation by EDCs. By putting these data into a sex and developmental context we conclude that perinatal EDC exposure alters the developmental trajectory of reproductive neuroendocrine systems in a sex-specific manner. PMID:27663243

  19. Effects of Anorexia Nervosa on the Endocrine System.

    Science.gov (United States)

    Baskaran, Charumathi; Misra, Madhusmita; Klibanski, Anne

    2017-03-01

    Anorexia nervosa (AN) is characterized by severe undernutrition associated with alterations in multiple endocrine axes, which are primarily adaptive to the state of caloric deprivation. Hormonal changes include growth hormone (GH) resistance with low insulin like growth factor-1 (IGF-1) levels, hypothalamic hypogonadism, relative hypercortisolemia and changes in appetite regulating hormones, including leptin, ghrelin, and peptide YY. These alterations contribute to abnormalities in bone metabolism leading to low bone mass, impaired bone microarchitecture, and increased risk for fracture, and may also negatively impact cognition, emotions and mood. The best strategy to improve all biologic outcomes is weight and menstrual recovery. Physiological estrogen replacement improves bone accrual rates and measures of trait anxiety in adolescents with AN. Other therapies including testosterone and IGF-1 replacement, and use of DHEA with oral estrogen-progesterone combination pills, bisphosphonates and teriparatide have also been studied to improve bone outcomes. Copyright© of YS Medical Media ltd.

  20. Report on Criteria for Endocrine Disrupters

    DEFF Research Database (Denmark)

    Holbech, Henrik

    2011-01-01

    This report has been prepared by the Danish Centre on Endocrine Disrupters as a project contracted by the Danish Environmental Protection Agency. The Danish Centre on Endocrine Disrupters is an interdisciplinary scientific network without walls. The main purpose of the Centre is to build and gather....... The overall aim of this project is to provide a science based proposal for criteria for endocrine disrupters. The terms of reference for the project specify elements to be included and/or addressed when developing the criteria (Annex 1). Also, several international reports and papers dealing with assessment...

  1. Neurocutaneous spectrum of multiple endocrine neoplasia-1

    Directory of Open Access Journals (Sweden)

    Shireen Furtado

    2012-01-01

    Full Text Available Multiple endocrine neoplasia type I or Wermer syndrome is characterized by primary hyperparathyroidism, enteropancreatic endocrine tumor, and a pituitary pathology. A 35-year-old male presented with visual field defects, hyperprolactinemia, and hypogonadism. He also had multiple infraumbilical skin-colored nodules. A syndromal association of Wermer syndrome was derived using the dermal, pituitary, parathyroid, and gastrointestinal hormonal manifestations of the tumor. The radiological and histological findings of lesion which underwent biopsy are discussed. The presence of collagenomas, lipomas, and hypopigmented macules in a patient with neuroendocrine symptoms should raise the suspicion of an underlying multiple endocrine neoplasia.

  2. Many Putative Endocrine Disruptors Inhibit Prostaglandin Synthesis

    DEFF Research Database (Denmark)

    Kristensen, David M.; Skalkam, Maria L.; Audouze, Karine Marie Laure

    2011-01-01

    Background: Prostaglandins (PGs) play key roles in development and maintenance of homeostasis of the adult body. Despite these important roles, it remains unclear whether the PG pathway is a target for endocrine disruption. However, several known endocrine disrupting compounds (EDCs) share a high...... of endocrine disruption. Results: We found that many known EDCs inhibit the PG pathway in a mouse Sertoli cell line and in human primary mast cells. The EDCs also reduced PG synthesis in ex vivo rat testis and it was correlated with a reduced testosterone production. The inhibition of PG synthesis occurs...

  3. E-Cigarette Use Causes a Unique Innate Immune Response in the Lung, Involving Increased Neutrophilic Activation and Altered Mucin Secretion.

    Science.gov (United States)

    Reidel, Boris; Radicioni, Giorgia; Clapp, Phillip W; Ford, Amina A; Abdelwahab, Sabri; Rebuli, Meghan E; Haridass, Prashamsha; Alexis, Neil E; Jaspers, Ilona; Kesimer, Mehmet

    2018-02-15

    E-cigarettes have become increasingly popular and little is known about their potential adverse health effects. To determine the effects of e-cigarette use on the airways. Induced sputum samples from cigarette smokers, e-cigarette users, and nonsmokers were analyzed by quantitative proteomics, and the total and individual concentrations of mucins MUC5AC and MUC5B were determined by light scattering/refractometry and labeled mass spectrometry, respectively. Neutrophil extracellular trap (NET) formation rates were also determined for the same groups. E-cigarette users exhibited significant increases in aldehyde-detoxification and oxidative stress-related proteins associated with cigarette smoke compared with nonsmokers. The levels of innate defense proteins associated with chronic obstructive pulmonary disease, such as elastase and matrix metalloproteinase-9, were significantly elevated in e-cigarette users as well. E-cigarette users' sputum also uniquely exhibited significant increases in neutrophil granulocyte-related and NET-related proteins, such as myeloperoxidase, azurocidin, and protein-arginine deiminase 4, despite no significant elevation in neutrophil cell counts. Peripheral neutrophils from e-cigarette users showed increased susceptibility to phorbol 12-myristate 13-acetate-induced NETosis. Finally, a compositional change in the gel-forming building blocks of airway mucus (i.e., an elevated concentration of mucin MUC5AC) was observed in both cigarette smokers and e-cigarette users. Together, our results indicate that e-cigarette use alters the profile of innate defense proteins in airway secretions, inducing similar and unique changes relative to cigarette smoking. These data challenge the concept that e-cigarettes are a healthier alternative to cigarettes.

  4. Neuroendocrine-immune interactions and responses to exercise.

    Science.gov (United States)

    Fragala, Maren S; Kraemer, William J; Denegar, Craig R; Maresh, Carl M; Mastro, Andrea M; Volek, Jeff S

    2011-08-01

    This article reviews the interaction between the neuroendocrine and immune systems in response to exercise stress, considering gender differences. The body's response to exercise stress is a system-wide effort coordinated by the integration between the immune and the neuroendocrine systems. Although considered distinct systems, increasing evidence supports the close communication between them. Like any stressor, the body's response to exercise triggers a systematic series of neuroendocrine and immune events directed at bringing the system back to a state of homeostasis. Physical exercise presents a unique physiological stress where the neuroendocrine and immune systems contribute to accommodating the increase in physiological demands. These systems of the body also adapt to chronic overload, or exercise training. Such adaptations alleviate the magnitude of subsequent stress or minimize the exercise challenge to within homeostatic limits. This adaptive capacity of collaborating systems resembles the acquired, or adaptive, branch of the immune system, characterized by the memory capacity of the cells involved. Specific to the adaptive immune response, once a specific antigen is encountered, memory cells, or lymphocytes, mount a response that reduces the magnitude of the immune response to subsequent encounters of the same stress. In each case, the endocrine response to physical exercise and the adaptive branch of the immune system share the ability to adapt to a stressful encounter. Moreover, each of these systemic responses to stress is influenced by gender. In both the neuroendocrine responses to exercise and the adaptive (B lymphocyte) immune response, gender differences have been attributed to the 'protective' effects of estrogens. Thus, this review will create a paradigm to explain the neuroendocrine communication with leukocytes during exercise by reviewing (i) endocrine and immune interactions; (ii) endocrine and immune systems response to physiological stress

  5. [Endocrine disruptors are a novel direction of endocrinologic scientific investigation].

    Science.gov (United States)

    Iaglova, N V; Iaglov, V V

    2012-01-01

    Endocrine disruptors are exogenous anthropogenic chemicals (pesticides, herbicides, polychlorinated biphenyls, bisphenol A, polybrominated diphenyl ethers, phthalates and others), that are able to bind hormonal receptors of endocrine and other cells in vivo and act like hormones. These substances disrupt endocrine regulation of metabolism, reproduction and adaptive reactions of organisms and promote human and animal endocrine disorders.

  6. Somatostatin receptors in the immune system and immune-mediated disease

    NARCIS (Netherlands)

    A.M. ten Bokum (Annemieke)

    1999-01-01

    textabstractThe veitebrate body has at its disposal three different systems, which together help it to maintain homeostasis and to respond to environmental signals: the nervous system. the endocrine system and the immune system. Traditionally, these systems have been studied as separate entities.

  7. Endocrine effects on heart function

    Directory of Open Access Journals (Sweden)

    M.R. Gamberini

    2011-12-01

    Full Text Available Among the factors associated with thalassemic heart disease, endocrine disturbance is also a contributing factor. We present a retrospective, cross sectional study, which aims to establish the prevalence of cardiac complications in thalassaemia major (TM patients with endocrine complications and to evaluate the influence of endocrine disease on cardiac complications. Endocrinological and cardiological parameters were considered on 957 TM patients who are enrolled in the Myocardial Iron Overload in Thalassemia (MIOT network in 68 sites in Italy. Patients with pubertal hypogonadism (163 males and 175 females, hypothyroidism (192, diabetes mellitus (87 and hypoparathyroidism (61, were compared according to cardiac complications: global heart T2*, cardiac dysfunction, heart failure, arrythmias, pulmonary hypertension and myocardial fibrosis. Control groups were made up according to the age range of patients with the corresponding endocrinopathy. The prevalence of cardiac dysfunction, arrhythmias and heart failure was significantly increased in patients with endocrinopathies. Cardiac complications tended to increase according to the number of endocrinologies affecting the patient. 与地中海贫血心脏疾病相关的因素中,内分泌失调也是一个促进因素。 我们进行了回顾和断面研究,旨在患有内分泌并发症的重型地中海贫血患者中建立心脏并发症的患病率,以及评估内分泌疾病对心脏并发症的影响。 曾考虑到意大利地中海贫血心肌铁过载(MIOT)网络的68个站点上注册的957名重型地中海贫血患者的内分泌和心脏病学参数。 根据以下心脏并发症对青春期性腺机能减退的患者(男性163名、女性175名)、甲状腺机能减退患者(192名)、糖尿病患者(87名)和甲状旁腺机能减退患者(61名)进行了比较: 心脏 T2*、心功能障碍、心脏衰竭、心率不齐、肺动脉高

  8. Global pollution by organochlorinated endocrine disruptors - possible challenge for mankind at the onset of millennium.

    Science.gov (United States)

    Langer, P

    2015-01-01

    Author of this review submits a comprehensive report of his long-lasting research regarding the global pollution by endocrine disruptors (EDs), EDs and diabetes and obesity, EDs and the thyroid in highly polluted Slovakia, Ah-receptor: the central pivot responsible for such global "EDs disaster", EDs and immune system, EDs and testosterone, EDs in mothers and newborns, EDs and human genome, and EDs at the beginning of the millennium.

  9. Remote postradiation immunodeficiency a disorder of endocrine regulation and thymic function. Role of intersystems interactions

    International Nuclear Information System (INIS)

    Savina, N.P.

    1999-01-01

    A total of 265 reports on radiation effects on the immune, nervous, and endocrine systems are reviewed. The role of the thymus, hypothalamus, and pituitary in remote manifestations of immunodeficiency in patients with cancer of the head and neck, treated by radiotherapy, is discussed. The pathogenesis of stubborn postradiation disturbances in immunoendocrine homeostasis after local exposure of the thymus and hypothalamus-pituitary at doses of 1-10 Gy, characterized as a syndrome, is analyzed [ru

  10. Contribution of the Endocrine Perspective in the Evaluation of Endocrine Disrupting Chemical Effects

    DEFF Research Database (Denmark)

    Bourguignon, Jean-Pierre; Juul, Anders; Franssen, Delphine

    2016-01-01

    Debate makes science progress. In the field of endocrine disruption, endocrinology has brought up findings that substantiate a specific perspective on the definition of endocrine disrupting chemicals (EDCs), the role of the endocrine system and the endpoints of hormone and EDC actions among other...... issues. This paper aims at discussing the relevance of the endocrine perspective with regard to EDC effects on pubertal timing. Puberty involves particular sensitivity to environmental conditions. Reports about the advancing onset of puberty in several countries have led to the hypothesis...

  11. Prenatal immune challenge in rats: altered responses to dopaminergic and glutamatergic agents, prepulse inhibition of acoustic startle, and reduced route-based learning as a function of maternal body weight gain after prenatal exposure to poly IC.

    Science.gov (United States)

    Vorhees, Charles V; Graham, Devon L; Braun, Amanda A; Schaefer, Tori L; Skelton, Matthew R; Richtand, Neil M; Williams, Michael T

    2012-08-01

    Prenatal maternal immune activation has been used to test the neurodevelopmental hypothesis of schizophrenia. Most of the data are in mouse models; far less is available for rats. We previously showed that maternal weight change in response to the immune activator polyinosinic-polycytidylic acid (Poly IC) in rats differentially affects offspring. Therefore, we treated gravid Harlan Sprague-Dawley rats i.p. on embryonic day 14 with 8 mg/kg of Poly IC or Saline. The Poly IC group was divided into those that lost or gained the least weight, Poly IC (L), versus those that gained the most weight, Poly IC (H), following treatment. The study design controlled for litter size, litter sampling, sex distribution, and test experience. We found no effects of Poly IC on elevated zero maze, open-field activity, object burying, light-dark test, straight channel swimming, Morris water maze spatial acquisition, reversal, or shift navigation or spatial working or reference memory, or conditioned contextual or cued fear or latent inhibition. The Poly IC (H) group showed a significant decrease in the rate of route-based learning when visible cues were unavailable in the Cincinnati water maze and reduced prepulse inhibition of acoustic startle in females, but not males. The Poly IC (L) group exhibited altered responses to acute pharmacological challenges: exaggerated hyperactivity in response to (+)-amphetamine and an attenuated hyperactivity in response to MK-801. This model did not exhibit the cognitive, or latent inhibition deficits reported in Poly IC-treated rats but showed changes in response to drugs acting on neurotransmitter systems implicated in the pathophysiology of schizophrenia (dopaminergic hyperfunction and glutamatergic hypofunction). Copyright © 2012 Wiley Periodicals, Inc.

  12. Endocrine and Nutritional Management After Bariatric Surgery

    Science.gov (United States)

    ... Endocrine Society. www.hormone.org How are postoperative nutritional deficiencies managed? Because your body absorbs fewer nutrients after bariatric surgery, especially malabsorptive procedures, you need to keep a ...

  13. Neuro-endocrine disruption in molluscs

    DEFF Research Database (Denmark)

    Holbech, Henrik; Bech Sanderhoff, Lene; Waller, Stine P.

    The Mollusca phylum is the second largest animal phylum with around 85,000 registered mollusc species and increasing attention to effects of chemicals on the molluscan endocrine system have been given during the last years. This includes initiation of the development of OECD test guidelines (TG) ...... embryo rotation test system.......The Mollusca phylum is the second largest animal phylum with around 85,000 registered mollusc species and increasing attention to effects of chemicals on the molluscan endocrine system have been given during the last years. This includes initiation of the development of OECD test guidelines (TG......) to assess the effect of chemicals in molluscs. To date no endocrine specific mollusc biomarkers have though been validated and included in draft test guidelines due to lack of knowledge of the endocrine system. Here we investigate effects of pharmaceuticals targeting serotonin and dopamine in a cost...

  14. Skin manifestations of endocrine and neuroendocrine tumors.

    Science.gov (United States)

    Leventhal, Jonathan S; Braverman, Irwin M

    2016-06-01

    The skin signs of benign and malignant endocrine and neuroendocrine tumors are manifold and early identification of these dermatologic features is crucial in initiating timely diagnosis and management. This article reviews the salient cutaneous features of these tumors that arise in the classic endocrine glands, lung and gastrointestinal tract either as individual neoplasms or as part of a syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Transgenerational Social Stress, Immune Factors, Hormones, and Social Behavior

    Directory of Open Access Journals (Sweden)

    Christopher Anthony Murgatroyd

    2016-01-01

    Full Text Available A social signal transduction theory of depression has been proposed that states that exposure to social adversity alters the immune response and these changes mediate symptoms of depression such as anhedonia and impairments in social behavior. The exposure of maternal rats to the chronic social stress (CSS of a male intruder depresses maternal care and impairs social behavior in the F1 and F2 offspring of these dams. The objective of the present study was to characterize basal peripheral levels of several immune factors and related hormone levels in the adult F2 offspring of CSS exposed dams and assess whether changes in these factors are associated with previously reported deficits in allogrooming behavior. CSS decreased acid glycoprotein (α1AGP and intercellular adhesion molecule-1 (ICAM-1 in F2 females, and increased granulocyte macrophage-colony stimulating factor (GM-CSF in F2 males. There were also sex dependent changes in IL-18, tissue inhibitors of metalloproteinases 1 (TIMP-1, and vascular endothelial growth factor (VEGF. Progesterone was decreased and alpha melanocyte stimulating hormone (α-MSH was increased in F2 males, and brain-derived neurotrophic factor (BDNF was decreased in F2 females. Changes in α1AGP, GM-CSF, progesterone and α-MSH were correlated with decreased allogrooming in the F2 offspring of stressed dams. These results support the hypothesis that transgenerational social stress affects both the immune system and social behavior, and also support previous studies on the adverse effects of early life stress on immune functioning and stress associated immunological disorders, including the increasing prevalence of asthma. The immune system may represent an important transgenerational etiological factor in disorders which involve social and/or early life stress associated changes in social behavior, such as depression, anxiety, and autism, as well as comorbid immune disorders. Future studies involving immune and

  16. Disruption of the endocrine control of final oocyte maturation in teleosts by xenobiotic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, P.

    1999-07-01

    Final oocyte maturation (FOM) in fish and other vertebrates is under precise endocrine control and involves changes in hormone secretion at all levels of the hypothalamus-pituitary-gonadal axis. Several potential sites and mechanisms of chemical disruption of the endocrine system controlling FOM by are discussed. Neurotoxic chemicals such as lead and PCBs can alter monoamine neurotransmitter function and xenoestrogens can interfere with steroid feedback mechanisms at the hypothalamus and pituitary to impair the neuroendocrine control of gonadotropin secretion. Chemicals which disrupt calcium homeostasis such as cadmium can interfere with calcium-dependent signal transduction pathway activated by reproductive hormones in the pituitary and gonads. Other xenobiotics may disrupt maturation-inducing steroid (MIS) function by impairing its synthesis or receptor binding. The problems in assessing endocrine disruption of FOM are discussed. The relatively few investigations reported in the literature on endocrine disruption of FOM in fishes by chemicals indicate that organochlorine and organophosphorus pesticides at concentrations less than one ppb can impair induction of FOM in response to gonadotropin and the MIS. Moreover, evidence is presented that certain organochlorine pesticides block MIS action by binding to the MIS receptor which is localized on the oocyte plasma membrane. Steroid membrane receptor function may be particularly susceptible to interference by hydrophilic chemicals. Finally, an in vitro bioassay capable of screening many chemicals simultaneously for their ability to disrupt the endocrine control of FOM is described.

  17. Epigenetic regulation in the tumorigenesis of MEN1-associated endocrine cell types.

    Science.gov (United States)

    Iyer, Sucharitha; Agarwal, Sunita K

    2018-04-03

    Epigenetic regulation is emerging as a key feature in the molecular characteristics of various human diseases. Epigenetic aberrations can occur from mutations in genes associated with epigenetic regulation, improper deposition, removal or reading of histone modifications, DNA methylation/demethylation, and impaired non-coding RNA interactions in chromatin. Menin, the protein product of the gene causative for the multiple endocrine neoplasia type 1 (MEN1) syndrome, interacts with chromatin-associated protein complexes and also regulates some non-coding RNAs, thus participating in epigenetic control mechanisms. Germline inactivating mutations in the MEN1 gene that encodes menin predispose patients to develop endocrine tumors of the parathyroids, anterior pituitary and the duodenopancreatic neuroendocrine tissues. Therefore, functional loss of menin in the various MEN1-associated endocrine cell types can result in epigenetic changes that promote tumorigenesis. Because epigenetic changes are reversible, they can be targeted to develop therapeutics for restoring the tumor epigenome to the normal state. Irrespective of whether epigenetic alterations are the cause or consequence of the tumorigenesis process, targeting the endocrine tumor-associated epigenome offers opportunities for exploring therapeutic options. This review presents epigenetic control mechanisms relevant to the interactions and targets of menin, and the contribution of epigenetics in the tumorigenesis of endocrine cell types from menin loss.

  18. [Immune dysfunction and cognitive deficit in stress and physiological aging (Part I): Pathogenesis and risk factors].

    Science.gov (United States)

    Pukhal'skiĭ, A L; Shmarina, G V; Aleshkin, V A

    2014-01-01

    The concept of stressful cognitive dysfunction, which is under consideration in this review, allows picking out several therapeutic targets. The brain, immune and endocrine systems being the principal adaptive systems in the body permanently share information both in the form of neural impulses and soluble mediators. The CNS differs from other organs due to several peculiarities that affect local immune surveillance. The brain cells secluded from the blood flow by a specialized blood-brain-barrier (BBB) can endogenously express pro- and anti-inflammatory cytokines without the intervention of the immune system. In normal brain the cytokine signaling rather contributes to exclusive brain function (e.g. long-term potentiation, synaptic plasticity, adult neurogenesis) than serves as immune communicator. The stress of different origin increases the serum cytokine levels and disrupts BBB. As a result peripheral cytokines penetrate into the brain where they begin to perform new functions. Mass intrusion of biologically active peptides having a lot of specific targets alters the brain work that we can observe both in humans and in animal experiments. In addition owing to BBB disruption dendritic cells and T cells also penetrate into the brain where they take up a perivascular position. The changes observed in stressed subject may accumulate during repeated episodes of stress forming a picture typical of the aging brain. Moreover long-term stress as well as physiological aging result in hormonal and immunological disturbances including hypothalamic-pituitary-adrenal axis depletion, regulatory T-cell accumulation and dehydroepiandrosterone decrease.

  19. Endocrine Dysregulation in Anorexia Nervosa Update

    Science.gov (United States)

    2011-01-01

    Context: Anorexia nervosa is a primary psychiatric disorder with serious endocrine consequences, including dysregulation of the gonadal, adrenal, and GH axes, and severe bone loss. This Update reviews recent advances in the understanding of the endocrine dysregulation observed in this state of chronic starvation, as well as the mechanisms underlying the disease itself. Evidence Acquisition: Findings of this update are based on a PubMed search and the author's knowledge of this field. Evidence Synthesis: Recent studies have provided insights into the mechanisms underlying endocrine dysregulation in states of chronic starvation as well as the etiology of anorexia nervosa itself. This includes a more complex understanding of the pathophysiologic bases of hypogonadism, hypercortisolemia, GH resistance, appetite regulation, and bone loss. Nevertheless, the etiology of the disease remains largely unknown, and effective therapies for the endocrine complications and for the disease itself are lacking. Conclusions: Despite significant progress in the field, further research is needed to elucidate the mechanisms underlying the development of anorexia nervosa and its endocrine complications. Such investigations promise to yield important advances in the therapeutic approach to this disease as well as to the understanding of the regulation of endocrine function, skeletal biology, and appetite regulation. PMID:21976742

  20. Endocrine manifestations of Down syndrome.

    Science.gov (United States)

    Whooten, Rachel; Schmitt, Jessica; Schwartz, Alison

    2018-02-01

    To summarize the recent developments in endocrine disorders associated with Down syndrome. Current research regarding bone health and Down syndrome continues to show an increased prevalence of low bone mass and highlights the importance of considering short stature when interpreting dual energy x-ray absorptiometry. The underlying cause of low bone density is an area of active research and will shape treatment and preventive measures. Risk of thyroid disease is present throughout the life course in individuals with Down syndrome. New approaches and understanding of the pathophysiology and management of subclinical hypothyroidism continue to be explored. Individuals with Down syndrome are also at risk for other autoimmune conditions, with recent research revealing the role of the increased expression of the Autoimmune Regulatory gene on 21st chromosome. Lastly, Down-syndrome-specific growth charts were recently published and provide a better assessment of growth. Recent research confirms and expands on the previously known endocrinopathies in Down syndrome and provides more insight into potential underlying mechanisms.

  1. The endocrine milieu and CD4 T-lymphocyte polarization during pregnancy

    OpenAIRE

    Polese, Barbara; Gridelet, Virginie; Arakioti, Eleni; Martens, Henri; Perrier d'Hauterive, Sophie; Geenen, Vincent

    2014-01-01

    Acceptance of the fetal semi-allograft by the mother’s immune system has become the focus of intensive research. CD4+ T cells are important actors in the establishment of pregnancy. Th1/Th2 paradigm has been expanded to include CD4+ regulatory T (Treg) and T helper 17 (Th17) cells. Pregnancy hormones exert very significant modulatory properties on the maternal immune system. In this review, we describe mechanisms by which the endocrine milieu modulates CD4 T cell polarization during pregnancy...

  2. The endocrine milieu and CD4 T-lymphocyte polarisation during pregnancy

    OpenAIRE

    Barbara ePolese; Virginie eGridelet; Eleni eAraklioti; Henri Joseph Martens; Sophie ePerrier d'Hauterive; Vincent eGeenen

    2014-01-01

    Acceptance of the fetal semi-allograft by the mother’s immune system has become the focus of intensive research. CD4+ T cells are important actors in the establishment of pregnancy. Th1/Th2 paradigm has been expanded to include CD4+ regulatory T (Treg) and Th17 cells. Pregnancy hormones exert very significant modulatory properties on the maternal immune system. In this review, we describe mechanisms by which the endocrine milieu modulates CD4 T-cell polarisation during pregnancy. We first foc...

  3. The Endocrine Milieu and CD4 T-Lymphocyte Polarization during Pregnancy

    OpenAIRE

    Polese, Barbara; Gridelet, Virginie; Araklioti, Eleni; Martens, Henri; Perrier d’Hauterive, Sophie; Geenen, Vincent

    2014-01-01

    Acceptance of the fetal semi-allograft by the mother’s immune system has become the focus of intensive research. CD4+ T cells are important actors in the establishment of pregnancy. Th1/Th2 paradigm has been expanded to include CD4+ regulatory T (Treg) and T helper 17 (Th17) cells. Pregnancy hormones exert very significant modulatory properties on the maternal immune system. In this review, we describe mechanisms by which the endocrine milieu modulates CD4 T cell polarization during pregnancy...

  4. Molasses as a possible cause of an ''endocrine disruptive syndrome'' in calves

    Directory of Open Access Journals (Sweden)

    M.S. Masgoret

    2009-09-01

    Full Text Available During the mid 1990s a potentially serious, chronic syndrome was reported in well-managed beef and dairy herds from unrelated parts of South Africa. Farmers reported that it manifested as various combinations of decreased production, decreased weaning masses, apparent immune breakdown in previously immunocompetent animals, increased reproductive disorders, various mineral imbalances in non-deficient areas and goitre, noticeable as enlarged thyroid glands. The farmers associated this syndrome with certain batches of sugar cane molasses and molasses-based products. The syndrome was reminiscent of an ''endocrine disruptive syndrome''. The objective of this study was to evaluate the suspected endocrine disruptive effect of molasses included in cattle feed. Using existing in vitro assays, four batches of molasses syrup were screened for possible inclusion in a calf feeding trial. Two batches were selected for the trial. Thirty-two, 4- to 6-week-old, weaned Holstein bull calves were included in the single phase, three treatment, parallel design experiment. In two of the groups of calves, two different batches of molasses were included in their rations respectively. The control group was fed a ration to which no molasses was added, but which was balanced for energy and mineral content. The mass gain of the calves was recorded over the 6-month study period. The calves were clinically examined every week and clinical pathology parameters, immune responses and endocrine effects were regularly evaluated. Even though endocrine disrupting effects were detected with the in vitro screening assays, these could not be reproduced in the calves in the experiment. The two batches of molasses utilized in the calf feeding trial did not induce major differences in any of the parameters measured, with the exception of a lower mass gain in one of the molasses-fed groups (Group 1, which tended towards significance. The results of the study indicate that the two batches

  5. [The crisis of the hormonal system: the health-effects of endocrine disruptors].

    Science.gov (United States)

    Csaba, György

    2017-09-01

    The endocrine disruptors are natural or arteficial molecules wich are present in the animal (human) environment and entering into the organism. They are bound by hormone receptors, simulating or inhibiting the normal hormonal message. This way they are able to stimulate or hinder the function of the given cell, as well as the synthesis and transport of hormones or receptors. They can cause faulty hormonal imprinting in critical periods of development with lifelong consequences, as alteration of hormone-influenced cell functions, inclination to or manifestation of diseases, so they have medical importance. The number of endocrine disruptors as well as their amount are large and continously growing. Numerous, in adult age manifested disease (e.g. malignant tumors) can be deduced to perinatal harms. Their long-lasting effect can cause the alteration of basal human developmental characteristics (e.g. start of menarche). Vitamins A and D are hormones (exohormones) and could be endocrine disruptors. Perinatal imprinting caused by endocrine disruptors is transmitted to the progenies epigenetically, which also can influence the drug-sensitivity of offspring' receptors. If the epigenetic change is continuously transmitted to the progeny generations, this could have human-evolutionary importance. Orv Hetil. 2017; 158(37): 1443-1451.

  6. Neuroendocrine and behavioral implications of endocrine disrupting chemicals in quail

    Science.gov (United States)

    Ottinger, M.A.; Abdelnabi, M.A.; Henry, P.; McGary, S.; Thompson, N.; Wu, J.M.

    2001-01-01

    Japanese quail. The Japanese quail provides an excellent avian model for testing EDCs because this species has well-characterized reproductive endocrine and behavioral responses. Considerable research has been conducted in quail in which the effects of embryonic steroid exposure have been studied relative to reproductive behavior. Moreover, developmental processes have been studied extensively and include investigations of the reproductive axis, thyroid system, and stress and immune responses. We have conducted a number of studies, which have considered long-term neuroendocrine consequences as well as behavioral responses to steroids. Some of these studies have specifically tested the effects of embryonic steroid exposure on later reproductive function in a multigenerational context. A multigenerational exposure provides a basis for understanding potential exposure scenarios in the field. In addition, potential routes of exposure to EDCs for avian species are being considered, as well as differential effects due to stage of the life cycle at exposure to an EDC. The studies in our laboratory have used both diet and egg injection as modes of exposure for Japanese quail. In this way, birds were exposed to a specific dose of an EDC at a selected stage in development by injection. Alternatively, dietary exposure appears to be a primary route of exposure; therefore experimental exposure through the diet mimics potential field situations. Thus, experiments should consider a number of aspects of exposure when attempting to replicate field exposures to EDCs.

  7. Developmental Programming and Endocrine Disruptor Effects on Reproductive Neuroendocrine Systems

    Science.gov (United States)

    Gore, Andrea C.

    2009-01-01

    The ability of a species to reproduce successfully requires the careful orchestration of developmental processes during critical time points, particularly the late embryonic and early postnatal periods. This article begins with a brief presentation of the evidence for how gonadal steroid hormones exert these imprinting effects upon the morphology of sexually differentiated hypothalamic brain regions, the mechanisms underlying these effects, and their implications in adulthood. Then, I review the evidence that aberrant exposure to hormonally-active substances such as exogenous endocrine-disrupting chemicals (EDCs), may result in improper hypothalamic programming, thereby decreasing reproductive success in adulthood. The field of endocrine disruption has shed new light on the discipline of basic reproductive neuroendocrinology through studies on how early life exposures to EDCs may alter gene expression via non-genomic, epigenetic mechanisms, including DNA methylation and histone acetylation. Importantly, these effects may be transmitted to future generations if the germline is affected via transgenerational, epigenetic actions. By understanding the mechanisms by which natural hormones and xenobiotics affect reproductive neuroendocrine systems, we will gain a better understanding of normal developmental processes, as well as to develop the potential ability to intervene when development is disrupted. PMID:18394690

  8. Immune responses to metastases

    International Nuclear Information System (INIS)

    Herberman, R.B.; Wiltrout, R.H.; Gorelik, E.

    1987-01-01

    The authors present the changes in the immune system in tumor-bearing hosts that may influence the development of progression of metastases. Included are mononuclear cell infiltration of metastases; alterations in natural resistance mediated by natural killer cells and macrophages; development of specific immunity mediated by T-lymphocytes or antibodies; modulation of tumor-associated antigen expression; and the down-regulation of the immune response to the tumor by several suppressor mechanisms; the augmentation of the immune response and its potential for therapeutic application; includes the prophylaxis of metastases formation by NK cells; the therapy of metastases by augmentation NK-, macrophage-, or T-lymphocyte-mediated responses by biological response modifiers; and the transfer of anticancer activity by cytoxic T-lymphocytes or immunoconjugates of monoclonal antibodies with specificity for tumors

  9. Purinergic Signaling Pathways in Endocrine System

    Science.gov (United States)

    Bjelobaba, Ivana; Janjic, Marija M.; Stojilkovic, Stanko S.

    2015-01-01

    Adenosine-5′-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5′-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5′-triphosphate hydrolysis to adenosine-5′-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. PMID:25960051

  10. The effects of metals as endocrine disruptors.

    Science.gov (United States)

    Iavicoli, Ivo; Fontana, Luca; Bergamaschi, Antonio

    2009-03-01

    This review reports current knowledge regarding the roles that cadmium (Cd), mercury (Hg), arsenic (As), lead (PB), manganese (Mn), and zinc (Zn) play as endocrine-disrupting chemicals (EDCs). The influence of these metals on the endocrine system, possible mechanisms of action, and consequent health effects were correlated between experimental animals and humans. Analysis of the studies prompted us to identify some critical issues related to this area and showed the need for more rigorous and innovative studies. Consequently, it was recommended that future studies need to: (1) identify the mechanisms of action, because at the present time only a few have been elucidated-in this context, the possible presence of hormesis need to be determined, as currently this was reported only for exposure Cd and As; (2) study the possible additive, synergistic, or antagonistic effects on the endocrine system following exposure to a mixture of metals since there is a lack of these studies available, and in general or occupational environments, humans are simultaneously exposed to different classes of xenobiotics, including metals, but also to organic compounds that might also be EDCs; (3) assess the potential adverse effects on the endocrine system of low-level exposures to metals, as most of the information currently available on EDCs originates from studies in which exposure levels were particularly high; and (4) assess the effects on the endocrine and reproductive systems of other metals that are present in the general and occupational environment that have not yet been evaluated.

  11. Purinergic signaling pathways in endocrine system.

    Science.gov (United States)

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. Published by Elsevier B.V.

  12. Endocrine neoplasms in familial syndromes of hyperparathyroidism.

    Science.gov (United States)

    Li, Yulong; Simonds, William F

    2016-06-01

    Familial syndromes of hyperparathyroidism, including multiple endocrine neoplasia type 1 (MEN1), multiple endocrine neoplasia type 2A (MEN2A), and the hyperparathyroidism-jaw tumor (HPT-JT), comprise 2-5% of primary hyperparathyroidism cases. Familial syndromes of hyperparathyroidism are also associated with a range of endocrine and nonendocrine tumors, including potential malignancies. Complications of the associated neoplasms are the major causes of morbidities and mortalities in these familial syndromes, e.g., parathyroid carcinoma in HPT-JT syndrome; thymic, bronchial, and enteropancreatic neuroendocrine tumors in MEN1; and medullary thyroid cancer and pheochromocytoma in MEN2A. Because of the different underlying mechanisms of neoplasia, these familial tumors may have different characteristics compared with their sporadic counterparts. Large-scale clinical trials are frequently lacking due to the rarity of these diseases. With technological advances and the development of new medications, the natural history, diagnosis, and management of these syndromes are also evolving. In this article, we summarize the recent knowledge on endocrine neoplasms in three familial hyperparathyroidism syndromes, with an emphasis on disease characteristics, molecular pathogenesis, recent developments in biochemical and radiological evaluation, and expert opinions on surgical and medical therapies. Because these familial hyperparathyroidism syndromes are associated with a wide variety of tumors in different organs, this review is focused on those endocrine neoplasms with malignant potential. © 2016 Society for Endocrinology.

  13. Oxidative stress and the ageing endocrine system.

    Science.gov (United States)

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  14. [Effect of forest therapy on the human psycho-neuro-endocrino-immune network].

    Science.gov (United States)

    Li, Qing; Kawada, Tomoyuki

    2011-09-01

    Traditional thinking considered the nervous system, endocrine system and immune system to be independent of each other. However, it is now widely accepted that these systems interact through the psycho-neuro-endocrino-immune network. The nervous system affects the endocrine and immune systems by releasing neurotransmitters through the hypothalamus in the hypothalamic-pituitary portal circulation. The endocrine system affects the nervous and immune systems by secreting hormones and the immune system feeds back to the nervous and endocrine systems via cytokines. Forest therapy reduces sympathetic nervous activity, increases parasympathetic nervous activity, and regulates the balance of autonomic nerves. As a result, forest therapy decreases blood pressure and heart rate and has a relaxing effect. Forest therapy affects psychological responses via the brain and nervous system thereby decreasing the scores for anxiety, depression, anger, fatigue, and confusion, and increasing the score for vigor in the POMS test. Forest therapy acts on the endocrine system to reduce stress hormone levels such as urinary adrenaline, urinary noradrenaline, salivary cortisol, and blood cortisol levels and shows a relaxing effect. Forest therapy also acts directly and indirectly on the immune system to promote NK activity by increasing the number of NK cells and intracellular levels of anticancer proteins such as perforin, granulysin and granzymes. Taken together, forest therapy brings various effects on human health via the psycho-neuro-endocrino-immune network.

  15. Ibuprofen alters human testicular physiology to produce a state of compensated hypogonadism

    DEFF Research Database (Denmark)

    Kristensen, David Møbjerg; Desdoits-Lethimonier, Christèle; Mackey, Abigail L

    2018-01-01

    and Sertoli cells, including testosterone production, were suppressed through transcriptional repression. This effect was also observed in a human steroidogenic cell line. Our data demonstrate that ibuprofen alters the endocrine system via selective transcriptional repression in the human testes, thereby...

  16. Proteomic response of Macrobrachium rosenbergii hepatopancreas exposed to chlordecone: Identification of endocrine disruption biomarkers?

    Science.gov (United States)

    Lafontaine, Anne; Baiwir, Dominique; Joaquim-Justo, Célia; De Pauw, Edwin; Lemoine, Soazig; Boulangé-Lecomte, Céline; Forget-Leray, Joëlle; Thomé, Jean-Pierre; Gismondi, Eric

    2017-07-01

    The present work is the first study investigating the impacts of chlordecone, an organochlorine insecticide, on the proteome of the decapod crustacean Macrobrachium rosenbergii, by gel-free proteomic analysis. The hepatopancreas protein expression variations were analysed in organisms exposed to three environmental relevant concentrations of chlordecone (i.e. 0.2, 2 and 20µg/L). Results revealed that 62 proteins were significantly up- or down-regulated in exposed prawns compared to controls. Most of these proteins are involved in important physiological processes such as ion transport, defense mechanisms and immune system, cytoskeleton dynamics, or protein synthesis and degradation. Moreover, it appears that 6% of the deregulated protein are involved in the endocrine system and in the hormonal control of reproduction or development processes of M. rosenbergii (e.g. vitellogenin, farnesoic acid o-methyltransferase). These results indicate that chlordecone is potentially an endocrine disruptor compound for decapods, as already observed in vertebrates. These protein modifications could lead to disruptions of M. rosenbergii growth and reproduction, and therefore of the fitness population on the long-term. Besides, these disrupted proteins could be suggested as biomarkers of exposure for endocrine disruptions in invertebrates. However, further investigations are needed to complete understanding of action mechanisms of chlordecone on proteome and endocrine system of crustaceans. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Rebuilding immunity with Remune.

    Science.gov (United States)

    Whitfield, L

    1998-01-01

    Remune, an immune response therapy composed of inactivated HIV, is designed to enhance the immune system's ability to recognize and kill HIV proteins. Developed by Dr. Jonas Salk, researchers hope Remune's actions can alter the course of HIV infection and slow disease progression. Remune has gained Food and Drug Administration (FDA) approval to enter the critical Phase III trial stage. Two clinical trials are tracking Remune's immunogenicity (ability to provoke an immune response), its immunogenicity relative to dose level, and its effect on viral load. An ongoing trial, approved in February of 1996, enrolled 2,500 patients at 74 sites. The manufacturer, Immune Response Corporation (IRC), announced earlier this year that treatment with Remune induces an immune response to HIV that cross-reacts with different strains of the virus. This immune response is crucial for developing an effective worldwide treatment. Remune decreases levels of tumor necrosis factor alpha (TNF-a). IRC recently began a Phase I clinical trial in Great Britain that combines Remune with a protease inhibitor, two antiviral nucleoside analogues, and Interleukin-2. The trial is designed to determine the role that the drug may play in restoring immune response.

  18. Immune System Toxicity and Immunotoxicity Hazard Identification

    Science.gov (United States)

    Exposure to chemicals may alter immune system health, increasing the risk of infections, allergy and autoimmune diseases. The chapter provides a concise overview of the immune system, host factors that affect immune system heal, and the effects that xenobiotic exposure may have ...

  19. A review of endocrine changes in anorexia nervosa

    DEFF Research Database (Denmark)

    Støving, R K; Hangaard, J; Hansen-Nord, M

    1999-01-01

    Anorexia nervosa is a syndrome of unknown etiology. It is associated with multiple endocrine abnormalities. Hypothalamic monoamines (especially serotonin), neuropeptides (especially neuropeptide Y and cholecystokinin) and leptin are involved in the regulation of human appetite, and in several ways...... they are changed in anorexia nervosa. However, it remains to be clarified whether the altered appetite regulation is secondary or etiologic. Increased secretion of corticotropin-releasing hormone and proopiomelanocortin seems to be secondary to starvation, however, there is evidence that it may maintain...... and intensify anorexia, excessive physical activity and amenorrhea. Hypothalamic amenorrhea, which is a diagnostic criterion in anorexia nervosa, is not solely related to the low body weight and exercise. Growth hormone resistance with low production of insulin-like growth factor I and high growth hormone...

  20. A review of endocrine changes in anorexia nervosa

    DEFF Research Database (Denmark)

    Støving, R K; Hangaard, J; Hansen-Nord, M

    1999-01-01

    and intensify anorexia, excessive physical activity and amenorrhea. Hypothalamic amenorrhea, which is a diagnostic criterion in anorexia nervosa, is not solely related to the low body weight and exercise. Growth hormone resistance with low production of insulin-like growth factor I and high growth hormone......Anorexia nervosa is a syndrome of unknown etiology. It is associated with multiple endocrine abnormalities. Hypothalamic monoamines (especially serotonin), neuropeptides (especially neuropeptide Y and cholecystokinin) and leptin are involved in the regulation of human appetite, and in several ways...... they are changed in anorexia nervosa. However, it remains to be clarified whether the altered appetite regulation is secondary or etiologic. Increased secretion of corticotropin-releasing hormone and proopiomelanocortin seems to be secondary to starvation, however, there is evidence that it may maintain...

  1. Genetic polymorphisms and metabolism of endocrine disruptors in cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Hatagima Ana

    2002-01-01

    Full Text Available Epidemiological studies have estimated that approximately 80% of all cancers are related to environmental factors. Individual cancer susceptibility can be the result of several host factors, including differences in metabolism, DNA repair, altered expression of tumor suppressor genes and proto-oncogenes, and nutritional status. Xenobiotic metabolism is the principal mechanism for maintaining homeostasis during the body's exposure to xenobiotics. The balance of xenobiotic absorption and elimination rates in metabolism can be important in the prevention of DNA damage by chemical carcinogens. Thus the ability to metabolize and eliminate xenobiotics can be considered one of the body's first protective mechanisms. Variability in individual metabolism has been related to the enzymatic polymorphisms involved in activation and detoxification of chemical carcinogens. This paper is a contemporary literature review on genetic polymorphisms involved in the metabolism of endocrine disruptors potentially related to cancer development.

  2. Endocrine Disruption of Vasopressin Systems and Related Behaviors

    Directory of Open Access Journals (Sweden)

    Heather B. Patisaul

    2017-06-01

    Full Text Available Endocrine disrupting chemicals (EDCs are chemicals that interfere with the organizational or activational effects of hormones. Although the vast majority of the EDC literature focuses on steroid hormone signaling related impacts, growing evidence from a myriad of species reveals that the nonapeptide hormones vasopressin (AVP and oxytocin (OT may also be EDC targets. EDCs shown to alter pathways and behaviors coordinated by AVP and/or OT include the plastics component bisphenol A (BPA, the soy phytoestrogen genistein (GEN, and various flame retardants. Many effects are sex specific and likely involve action at nuclear estrogen receptors. Effects include the elimination or reversal of well-characterized sexually dimorphic aspects of the AVP system, including innervation of the lateral septum and other brain regions critical for social and other non-reproductive behaviors. Disruption of magnocellular AVP function has also been reported in rats, suggesting possible effects on hemodynamics and cardiovascular function.

  3. Alcohol, aging, and innate immunity.

    Science.gov (United States)

    Boule, Lisbeth A; Kovacs, Elizabeth J

    2017-07-01

    The global population is aging: in 2010, 8% of the population was older than 65 y, and that is expected to double to 16% by 2050. With advanced age comes a heightened prevalence of chronic diseases. Moreover, elderly humans fair worse after acute diseases, namely infection, leading to higher rates of infection-mediated mortality. Advanced age alters many aspects of both the innate and adaptive immune systems, leading to impaired responses to primary infection and poor development of immunologic memory. An often overlooked, yet increasingly common, behavior in older individuals is alcohol consumption. In fact, it has been estimated that >40% of older adults consume alcohol, and evidence reveals that >10% of this group is drinking more than the recommended limit by the National Institute on Alcohol Abuse and Alcoholism. Alcohol consumption, at any level, alters host immune responses, including changes in the number, phenotype, and function of innate and adaptive immune cells. Thus, understanding the effect of alcohol ingestion on the immune system of older individuals, who are already less capable of combating infection, merits further study. However, there is currently almost nothing known about how drinking alters innate immunity in older subjects, despite innate immune cells being critical for host defense, resolution of inflammation, and maintenance of immune homeostasis. Here, we review the effects of aging and alcohol consumption on innate immune cells independently and highlight the few studies that have examined the effects of alcohol ingestion in aged individuals. © Society for Leukocyte Biology.

  4. Endocrine aspects of obstructive sleep apnea.

    Science.gov (United States)

    Attal, Pierre; Chanson, Philippe

    2010-02-01

    Some endocrine and metabolic disorders are associated with a high frequency of obstructive sleep apnea (OSA), and treatment of the underlying endocrine disorder can improve and occasionally cure OSA. On the other hand, epidemiological and interventional studies suggest that OSA increases the cardiovascular risk, and a link between OSA and glucose metabolism has been suggested, via reduced sleep duration and/or quality. We reviewed the medical literature for key articles through June 2009. Some endocrine and metabolic conditions (obesity, acromegaly, hypothyroidism, polycystic ovary disease, etc.) can be associated with OSA. The pathophysiological mechanisms of OSA in these cases are reviewed. In rare instances, OSA may be improved or even cured by treatment of underlying endocrine disorders: this is the case of hypothyroidism and acromegaly, situations in which OSA is mainly related to upper airways narrowing due to reversible thickening of the pharyngeal walls. However, when irreversible skeletal defects and/or obesity are present, OSA may persist despite treatment of endocrine disorders and may thus require complementary therapy. This is also frequently the case in patients with obesity, even after substantial weight reduction. Given the potential neurocognitive consequences and increased cardiovascular risk associated with OSA, specific therapy such as continuous positive airway pressure is recommended if OSA persists despite effective treatment of its potential endocrine and metabolic causes. "Apropos of sleep, that sinister adventure of all our nights, we might say that men go to bed daily with an audacity that would be incomprehensible if we did not know that it is the result of ignorance of the danger." Charles Baudelaire, in "Fusées, IX"

  5. Immunization Coverage

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Immunization coverage Fact sheet Reviewed January 2018 Key facts ... at least 90% coverage of DTP3 vaccine. Global immunization coverage 2016 A summary of global vaccination coverage ...

  6. Immunizations - diabetes

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000331.htm Immunizations - diabetes To use the sharing features on this page, please enable JavaScript. Immunizations (vaccines or vaccinations) help protect you from some ...

  7. Immune response

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000821.htm Immune response To use the sharing features on this page, please enable JavaScript. The immune response is how your body recognizes and defends itself ...

  8. Purinergic Signaling Pathways in Endocrine System

    OpenAIRE

    Bjelobaba, Ivana; Janjic, Marija M.; Stojilkovic, Stanko S.

    2015-01-01

    Adenosine-5′-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors,...

  9. Point-of-Care Endocrine Diagnostics.

    Science.gov (United States)

    Ehrenkranz, Joel

    2017-09-01

    Endocrinology relies on hormone and metabolite measurement for public health screening, diagnostics, and disease management. Advances in microfluidics, immunoassay technology, electronics, and software are moving in vitro endocrine diagnostics from the laboratory to the point of care. Point-of-care endocrine diagnostics provide results clinically equivalent to those produced by expensive laboratory instrumentation for a fraction of the cost and with a substantially more rapid turnaround time. Similar to the transformation of mainframe computers into laptops, tablets, and smartphones, clinical laboratories are evolving into point-of-care technologies. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Metabolic, endocrine, and related bone diseases

    International Nuclear Information System (INIS)

    Rogers, L.F.

    1987-01-01

    Bone is living tissue, and old bone is constantly removed and replaced with new bone. Normally this exchange is in balance, and the mineral content remains relatively constant. This balance may be disturbed as a result of certain metabolic and endocrinologic disorders. The term dystrophy, referring to a disturbance of nutrition, is applied to metabolic and endocrine bone diseases and should be distinguished from the term dysplasia, referring to a disturbance of bone growth. The two terms are easily confused but are not interchangeable. Metabolic bone disease is caused by endocrine imbalance, vitamin deficiency or excess, and other disturbances in bone metabolism leading to osteoporosis and osteomalacia

  11. Radiologic techniques in evaluation endocrine disorders

    International Nuclear Information System (INIS)

    Martino, C.R.; Schultz, C.L.; Butler, H.E.; Haaga, J.R.

    1988-01-01

    This paper discusses evaluation of normal and diseased endocrine organs that has been facilitated by the development of new radiologic-imaging techniques including nuclear medicine, ultrasound, computed tomography, and magnetic resonance imaging. With improvement in resolution and tissue contrast, abnormalities as small as 5 mm can now be imaged with these modalities. Endocrinologists and clinicians involved in the evaluation and diagnosis of patients with endocrine diseases can be substantially aided by a proper radiologic workup. The authors describe and illustrate various radiologic techniques that are useful for evaluating thyroid and parathyroid derangements

  12. Bile Acid Alters Male Mouse Fertility in Metabolic Syndrome Context

    NARCIS (Netherlands)

    Vega, Aurélie; Martinot, Emmanuelle; Baptissart, Marine; de Haze, Angélique; Vaz, Frederic; Kulik, Wim; Damon-Soubeyrand, Christelle; Baron, Silvère; Caira, Françoise; Volle, David H.

    2015-01-01

    Bile acids have recently been demonstrated as molecules with endocrine activities controlling several physiological functions such as immunity and glucose homeostases. They act mainly through two receptors, the nuclear receptor Farnesol-X-Receptor alpha (FXRα) and the G-protein coupled receptor

  13. In immune defense: redefining the role of the immune system in chronic disease.

    Science.gov (United States)

    Rubinow, Katya B; Rubinow, David R

    2017-03-01

    The recognition of altered immune system function in many chronic disease states has proven to be a pivotal advance in biomedical research over the past decade. For many metabolic and mood disorders, this altered immune activity has been characterized as inflammation, with the attendant assumption that the immune response is aberrant. However, accumulating evidence challenges this assumption and suggests that the immune system may be mounting adaptive responses to chronic stressors. Further, the inordinate complexity of immune function renders a simplistic, binary model incapable of capturing critical mechanistic insights. In this perspective article, we propose alternative paradigms for understanding the role of the immune system in chronic disease. By invoking allostasis or systems biology rather than inflammation, we can ascribe greater functional significance to immune mediators, gain newfound appreciation of the adaptive facets of altered immune activity, and better avoid the potentially disastrous effects of translating erroneous assumptions into novel therapeutic strategies.

  14. Biomonitoring of Human Exposure to Prestige Oil: Effects on DNA and Endocrine Parameters

    Directory of Open Access Journals (Sweden)

    Beatriz Pérez-Cadahía

    2008-01-01

    Full Text Available Since 1960, about 400 tankers spilled more than 377765 tons of oil, with the Prestige accident (Galician coast, NW Spain, November 2002 the most recent. Taking into account the consistent large number of individuals exposed to oil that exists all over the world, it seems surprising the absence in the literature of studies focused on the chronic effects of this exposure on human health. In this work we evaluated the level of DNA damage by means of comet assay, and the potential endocrine alterations (prolactin and cortisol caused by Prestige oil exposure in a population of 180 individuals, classified in 3 groups according to the tasks performed, and 60 controls. Heavy metals in blood were determined as exposure biomarkers, obtaining significant increases of aluminum, nickel and lead in the exposed groups as compared to controls. Higher levels of genetic damage and endocrine alterations were also observed in the exposed population. DNA damage levels were influenced by age, sex, and the use of protective clothes, and prolactin concentrations by the last two factors. Surprisingly, the use of mask did not seem to protect individuals from genetic or endocrine alterations. Moreover, polymorphisms in genes encoding for the main enzymes involved in the metabolism of oil components were analyzed as susceptibility biomarkers. CYP1A1-3’UTR and EPHX1 codons 113 and 139 variant alleles were related to higher damage levels, while lower DNA damage was observed in GSTM1 and GSTT1 null individuals.

  15. Long-term effects of environmental endocrine disruptors on reproductive physiology and behavior

    Directory of Open Access Journals (Sweden)

    Heather B Patisaul

    2009-06-01

    Full Text Available It is well established that, over the course of development, hormones shape the vertebrate brain such that sex specific physiology and behaviors emerge. Much of this occurs in discrete developmental windows that span gestation through the prenatal period, although it is now becoming clear that at least some of this process continues through puberty. Perturbation of this developmental progression can permanently alter the capacity for reproductive success. Wildlife studies have revealed that exposure to endocrine disrupting compounds (EDCs, either naturally occurring or man made, can profoundly alter reproductive physiology and ultimately impact entire populations. Laboratory studies in rodents and other species have elucidated some of the mechanisms by which this occurs and strongly indicate that humans are also vulnerable to disruption. Use of hormonally active compounds in human medicine has also unfortunately revealed that the developing fetus can be exposed to and affected by endocrine disruptors, and that it might take decades for adverse effects to manifest. Research within the field of environmental endocrine disruption has also contributed to the general understanding of how early life experiences can alter reproductive physiology and behavior through non-genomic, epigenetic mechanisms such as DNA methylation and histone acetylation. These types of effects have the potential to impact future generations if the germ line is affected. This review provides an overview of how exposure to EDCs, particularly those that interfere with estrogen action, impacts reproductive physiology and behaviors in vertebrates.

  16. Long-Term Effects of Environmental Endocrine Disruptors on Reproductive Physiology and Behavior

    Science.gov (United States)

    Patisaul, Heather B.; Adewale, Heather B.

    2009-01-01

    It is well established that, over the course of development, hormones shape the vertebrate brain such that sex specific physiology and behaviors emerge. Much of this occurs in discrete developmental windows that span gestation through the prenatal period, although it is now becoming clear that at least some of this process continues through puberty. Perturbation of this developmental progression can permanently alter the capacity for reproductive success. Wildlife studies have revealed that exposure to endocrine disrupting compounds (EDCs), either naturally occurring or man made, can profoundly alter reproductive physiology and ultimately impact entire populations. Laboratory studies in rodents and other species have elucidated some of the mechanisms by which this occurs and strongly indicate that humans are also vulnerable to disruption. Use of hormonally active compounds in human medicine has also unfortunately revealed that the developing fetus can be exposed to and affected by endocrine disruptors, and that it might take decades for adverse effects to manifest. Research within the field of environmental endocrine disruption has also contributed to the general understanding of how early life experiences can alter reproductive physiology and behavior through non-genomic, epigenetic mechanisms such as DNA methylation and histone acetylation. These types of effects have the potential to impact future generations if the germ line is affected. This review provides an overview of how exposure to EDCs, particularly those that interfere with estrogen action, impacts reproductive physiology and behaviors in vertebrates. PMID:19587848

  17. Immunization Schedule

    Science.gov (United States)

    ... may be given as part of a combination vaccine so that a child gets fewer shots. Talk with your doctor about ... Kids Teens Frequently Asked Questions About Immunizations Your Child's Immunizations Is the Flu Vaccine a Good Idea for Your Family? Word! Immunizations ...

  18. Endocrine Disruptor Screening Program (EDSP) 1998 Federal Register Notices

    Science.gov (United States)

    EPA outlined the Endocrine Disruptor Screening Program (EDSP), which incorporated many of the Endocrine Disruptor Screening and Testing Advisory Committee's (EDSTAC) recommendations, in two Federal Register Notices published in 1998.

  19. Integrated Neural and Endocrine Control of Gastrointestinal Function.

    Science.gov (United States)

    Furness, John B

    The activity of the digestive system is dynamically regulated by external factors, including body nutritional and activity states, emotions and the contents of the digestive tube. The gut must adjust its activity to assimilate a hugely variable mixture that is ingested, particularly in an omnivore such as human for which a wide range of food choices exist. It must also guard against toxins and pathogens. These nutritive and non-nutritive components of the gut contents interact with the largest and most vulnerable surface in the body, the lining of the gastrointestinal tract. This requires a gut sensory system that can detect many classes of nutrients, non-nutrient components of food, physicochemical conditions, toxins, pathogens and symbionts (Furness et al., Nat Rev Gastroenterol Hepatol 10:729-740, 2013). The gut sensors are in turn coupled to effector systems that can respond to the sensory information. The responses are exerted through enteroendocrine cells (EEC), the enteric nervous system (ENS), the central nervous system (CNS) and the gut immune and tissue defence systems. It is apparent that the control of the digestive organs is an integrated function of these effectors. The peripheral components of the EEC, ENS and CNS triumvirate are extensive. EEC cells have traditionally been classified into about 12 types (disputed in this review), releasing about 20 hormones, together making the gut endocrine system the largest endocrine organ in the body. Likewise, in human the ENS contains about 500 million neurons, far more than the number of neurons in the remainder of the peripheral autonomic nervous system. Together gut hormones, the ENS and the CNS control or influence functions including satiety, mixing and propulsive activity, release of digestive enzymes, induction of nutrient transporters, fluid transport, local blood flow, gastric acid secretion, evacuation and immune responses. Gut content receptors, including taste, free fatty acid, peptide and

  20. Environmental endocrine disruptors and developmental abnormalities in wildlife; Kankyo horumon (gaiinsei naibunpi kakuran kagaku busshitsu) no kankyo seibutsu ni taisuru eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Iguchi, T. [Yokohama City Univ., Yokohama (Japan)

    1998-04-15

    The environmental endocrine disruptor, or the so-called environmental hormone, is outlined. Hormones are secreted from endocrine glands in trace amounts, transported by blood, and exert influence on the target organs and distal cells, this to sustain constancy in living organisms. There are two types: peptide hormones which are rows of amino acids and steroid hormones which are composed of cholesterol. Endocrine disruptors are chemical substances discharged into the environment which, once taken into human organisms, disrupt endocrine systems, some acting like female sex hormones and others resisting male sex hormones. Many a wild animal are found affected by them. They are accumulating in human organisms too. Synthesized chemical substances such as DDT, PCB, dioxins, and alkylphenols present in the water system affect a fish by disrupting its endocrine, immunity, nerve, growth, and regeneration. Embryos and larvae are quite susceptible, easy to turn abnormal. Voices are high across the world for the study of environmental endocrine disruptors. Introduced in this report are some animal experiments, typical cases of impact on the ecosystem, and systems for detecting environmental endocrine disruptors. 36 refs., 1 tab.

  1. Schedule for Rating Disabilities; the Endocrine System. Final rule.

    Science.gov (United States)

    2017-11-02

    This document amends the Department of Veterans Affairs (VA) Schedule for Rating Disabilities (VASRD) by revising the portion of the Schedule that addresses endocrine conditions and disorders of the endocrine system. The effect of this action is to ensure that the VASRD uses current medical terminology and to provide detailed and updated criteria for evaluation of endocrine disorders.

  2. Science and policy on endocrine disrupters must not be mixed

    DEFF Research Database (Denmark)

    Bergman, Åke; Andersson, Anna-Maria; Becher, Georg

    2013-01-01

    The "common sense" intervention by toxicology journal editors regarding proposed European Union endocrine disrupter regulations ignores scientific evidence and well-established principles of chemical risk assessment. In this commentary, endocrine disrupter experts express their concerns about...... of views detrimental to reaching a consensus about scientific foundations for endocrine disrupter regulation in the EU....

  3. Echinoderm immunity.

    Science.gov (United States)

    Smith, L Courtney; Ghosh, Julie; Buckley, Katherine M; Clow, Lori A; Dheilly, Nolwenn M; Haug, Tor; Henson, John H; Li, Chun; Lun, Cheng Man; Majeske, Audrey J; Matranga, Valeria; Nair, Sham V; Rast, Jonathan P; Raftos, David A; Roth, Mattias; Sacchi, Sandro; Schrankel, Catherine S; Stensvåg, Klara

    2010-01-01

    A survey for immune genes in the genome for the purple sea urchin has shown that the immune system is complex and sophisticated. By inference, immune responses of all echinoderms maybe similar. The immune system is mediated by several types of coelomocytes that are also useful as sensors of environmental stresses. There are a number of large gene families in the purple sea urchin genome that function in immunity and of which at least one appears to employ novel approaches for sequence diversification. Echinoderms have a simpler complement system, a large set of lectin genes and a number of antimicrobial peptides. Profiling the immune genes expressed by coelomocytes and the proteins in the coelomic fluid provide detailed information about immune functions in the sea urchin. The importance of echinoderms in maintaining marine ecosystem stability and the disastrous effects of their removal due to disease will require future collaborations between ecologists and immunologists working towards understanding and preserving marine habitats.

  4. Immunizing Children

    Directory of Open Access Journals (Sweden)

    Geraldine Jody Macdonald

    2014-11-01

    Full Text Available This article addresses the complex contexts within which Canadian health professionals engage in immunizing children and focuses on the Canadian practice guidelines and current scientific evidence that direct Canadian health professional competencies. The article begins by presenting two current global vaccine initiatives and links these to immunization in Canada. A selected literature review identifies current best immunization practices. With the purpose of promoting quality improvement, three key Canadian immunization competencies for health professional are highlighted: communication with parents, including those who are experiencing vaccine hesitancy; administration of immunizing agents; and documentation of immunizations. Health professionals are encouraged to reflect on immunization competencies and ensure evidence-based practices underpin vaccine delivery in their primary care settings.

  5. Early endocrine disruptors exposure acts on 3T3-L1 differentiation and endocrine activity

    Directory of Open Access Journals (Sweden)

    Sofiane Boudalia

    2017-06-01

    Conclusion: This study confirms that EDs singularly or in mixtures, introduced during early stages of life, could affect the differentiation and the endocrine activity of adipocytes, and can act as potential factors for obesity.

  6. Endocrine and Metabolic Aspects of OSA

    Directory of Open Access Journals (Sweden)

    Ravinder Goswami

    2014-03-01

    Full Text Available Obstructive sleep apnea (OSA is characterized by repeated spells of apnea.Collapsibility of hypopharynx due to multiple factors involving pharyngeal dilatormuscles and deposition of fat or fluid in the surrounding soft tissues are importantcontributing factors in its pathogenesis. OSA commonly affects obese individuals.Males are more commonly affected than the females probably due to the disturbingeffect of testosterone on sleep.The impact of OSA on human health include disturbances in endocrine and metabolicsystem affecting hypothalamic-pituitary-gonadal axis, adrenocorticotrophic-cortisolaxis, growth hormone, antidiuretic hormones and insulin resistance. There is atendency for predisposition of the metabolic syndrome or its components includingglycemic dysregulation, hypertension, hyperlipidemia and physical parameters relatedto adiposity. On the other hand, several endocrine disorders such as hypothyroidism,growth hormone excess, polycystic ovarian disease and testosterone replacement areassociated with increased prevalence of OSA.There is limited information on the effect of treatment of OSA by continuous positiveairway pressure (CPAP on the endocrine and metabolic disturbances. There is a needto conduct randomized controlled trials using CPAP therapy in patients with OSA andto study its cause and effect relationship with endocrine and metabolic disturbances.

  7. Spreeta-based biosensor for endocrine disruptors

    NARCIS (Netherlands)

    Marchesini, G.R.; Koopal, K.; Meulenberg, E.; Haasnoot, W.; Irth, H.

    2007-01-01

    The construction and performance of an automated low-cost Spreeta¿-based prototype biosensor system for the detection of endocrine disrupting chemicals (EDCs) is described. The system consists primarily of a Spreeta miniature liquid sensor incorporated into an aluminum flow cell holder, dedicated to

  8. Preliminary investigation into the possible endocrine disrupting ...

    African Journals Online (AJOL)

    JTEkanem

    Preliminary investigation into the possible endocrine disrupting activity of Bonny light crude oil contaminated - diet on ... rats (twenty male and twenty five females) were expose to Bonny –light crude oil contaminated diet at concentrations of 1%, 5% and 10% .... also being implicated in possessing antiestrogenic activity9.

  9. Endocrine Disruptor Screening Program Tier 1 Assessments

    Science.gov (United States)

    EPA has completed weight-of-evidence (WoE) assessments under the Endocrine Distruptor Screening Program (EDSP) for 52 pesticides included in the final list of chemicals for Tier 1 screening. See weight of evidence reports and data evaluation records.

  10. Evaluating endocrine endpoints relative to reproductive success in Japanese quail exposed to estrogenic chemicals [poster

    Science.gov (United States)

    Henry, P.F.P.; Russek-Cohen, E.; Casey, C.S.; Abdelnabi, M.A.; Ottinger, M.A.

    2000-01-01

    The standard US EPA guidelines for avian reproductive testing may not be sufficiently sensitive to detect effects of sublethal and chronic exposure to endocrine disrupting toxins. There is a need to evaluate endocrine endpoints as potential markers for contaminant effects, and to determine their effectiveness and sensitivity when applied to wildlife. To this end, a three generational test was conducted using the Japanese quail (Coturnix japonica) and a proven estrogenic PCB. Birds were exposed during embryonic development via maternal deposition and/or direct egg injection at day 4. Standard measures of reproductive success and productivity used in toxicological studies, as well as multiple measures of physiological and behavioral responses used in endocrine studies were collected. Long term effects on growth and apparent development were similar between treated and control offspring. Fertility of treated eggs decreased from 75%+ 4.4 (x + se) for P1, to 59% + 12.5 for F1 and 54% + 14.2 for F2. All paired control birds mated to produce viable eggs, whereas 27 % of the F1 and 41 % of the F2 treated pairs failed to produce at least 1 viable egg. Although some decreases in productivity can be related to direct toxic exposure, the response from one generation to the next was not linear with treatment, indicating a potential effect from behavioral or other endocrine alterations.

  11. Aging, immunity, and cancer.

    Science.gov (United States)

    Burns, E A; Leventhal, E A

    2000-01-01

    The prime function of the immune system is to protect the entire organism from a variety of insults and illnesses, including the development of cancer. The question of how age-related declines in immune function contribute to an increasing incidence of malignancies continues to be a focus of discussion and speculation. The recent literature from the National Library of Medicine database (1990 through the present) was searched for articles using the medical subject headings (MeSH terms) of aging, immunity, cancer, senescence, and apoptosis. Bibliographies of articles retrieved were also scanned. Data from in vitro and in vivo animal and human studies demonstrate clear age-related alterations in both the cellular and humoral components of the immune system, but there is little evidence supporting direct causal links between immune senescence and most malignancies. Senescent decline in immune surveillance leads to the accumulation of cellular and DNA mutations that could be a significant factor in the development of malignancy and programmed cell death or apoptosis observed in the elderly.

  12. [Early endocrine complications in childhood cancer survivors].

    Science.gov (United States)

    Sánchez González, Cristina; Andrades Toledo, Mónica; Cárdeno Morales, Álvaro; Gutiérrez Carrasco, Ignacio; Ramírez Villar, Gema Lucía; Pérez Hurtado, José María; García García, Emilio

    2016-10-21

    The treatment of childhood cancers has increased survival rates, but also the risk of sequelae, such as endocrine complications. The objective of this study is to evaluate the endocrine disorders in survivors of childhood malignant tumors within the first years after treatment and analyze the variables related to their appearance. A retrospective medical record review of patients referred to pediatric endocrinology after treatment of malignancy. Outcome measures were frequency and types of endocrine dysfunction and new-onset obesity. Clinical and laboratory evaluations were performed every 6 months. Statistics tests were: chi square and multiple logistic regression. Fifty five patients (26 women) were included with an age at diagnosis of tumour (mean±standard deviation) 6.0±4.4 years and followed up for 6.8±3.6 years. Thirty endocrine disorders were diagnosed in 26 patients (47.3%), 17 women (P=.01). Eleven adolescents had primary hypogonadism (26.2% to 0.6±0.5 years of follow-up) in relation to local irradiation (adjusted odds ratio [OR] 3.99, P=.005). Eleven patients had a pituitary disorder (20.0%) 5.2±2.4 years after diagnosis in relation to brain irradiation (OR 1.54, P=.039). Six children (10.9%) had primary hypothyroidism from 3.2±1.0 years of follow-up. Two children developed obesity. Endocrine disorders are frequently seen within the first years after diagnosis of a childhood cancer, so hormonal evaluation should start early and be repeated periodically. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  13. Endocrine treatment of transsexual persons: an Endocrine Society clinical practice guideline.

    Science.gov (United States)

    Hembree, Wylie C; Cohen-Kettenis, Peggy; Delemarre-van de Waal, Henriette A; Gooren, Louis J; Meyer, Walter J; Spack, Norman P; Tangpricha, Vin; Montori, Victor M

    2009-09-01

    The aim was to formulate practice guidelines for endocrine treatment of transsexual persons. This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) system to describe the strength of recommendations and the quality of evidence, which was low or very low. Committees and members of The Endocrine Society, European Society of Endocrinology, European Society for Paediatric Endocrinology, Lawson Wilkins Pediatric Endocrine Society, and World Professional Association for Transgender Health commented on preliminary drafts of these guidelines. Transsexual persons seeking to develop the physical characteristics of the desired gender require a safe, effective hormone regimen that will 1) suppress endogenous hormone secretion determined by the person's genetic/biologic sex and 2) maintain sex hormone levels within the normal range for the person's desired gender. A mental health professional (MHP) must recommend endocrine treatment and participate in ongoing care throughout the endocrine transition and decision for surgical sex reassignment. The endocrinologist must confirm the diagnostic criteria the MHP used to make these recommendations. Because a diagnosis of transsexualism in a prepubertal child cannot be made with certainty, we do not recommend endocrine treatment of prepubertal children. We recommend treating transsexual adolescents (Tanner stage 2) by suppressing puberty with GnRH analogues until age 16 years old, after which cross-sex hormones may be given. We suggest suppressing endogenous sex hormones, maintaining physiologic levels of gender-appropriate sex hormones and monitoring for known risks in adult transsexual persons.

  14. Shift Work and Endocrine Disorders

    Directory of Open Access Journals (Sweden)

    M. A. Ulhôa

    2015-01-01

    Full Text Available The objective of this review was to investigate the impact of shift and night work on metabolic processes and the role of alterations in the sleep-wake cycle and feeding times and environmental changes in the occurrence of metabolic disorders. The literature review was performed by searching three electronic databases for relevant studies published in the last 10 years. The methodological quality of each study was assessed, and best-evidence synthesis was applied to draw conclusions. The literature has shown changes in concentrations of melatonin, cortisol, ghrelin, and leptin among shift workers. Melatonin has been implicated for its role in the synthesis and action of insulin. The action of this hormone also regulates the expression of transporter glucose type 4 or triggers phosphorylation of the insulin receptor. Therefore, a reduction in melatonin can be associated with an increase in insulin resistance and a propensity for the development of diabetes. Moreover, shift work can negatively affect sleep and contribute to sedentarism, unhealthy eating habits, and stress. Recent studies on metabolic processes have increasingly revealed their complexity. Physiological changes induced in workers who invert their activity-rest cycle to fulfill work hours include disruptions in metabolic processes.

  15. Changes in cognitive functions and cerebral grey matter and their associations with inflammatory markers, endocrine markers, and APOE genotypes in testicular cancer patients undergoing treatment

    DEFF Research Database (Denmark)

    Amidi, Ali; Agerbæk, Mads; Wu, Lisa M.

    2017-01-01

    patients undergoing treatment, and to explore associations with immune markers, endocrine markers, and genotype. Sixty-five patients with stage I-III TC underwent assessment after surgery but prior to further treatment a