WorldWideScience

Sample records for alters high light

  1. Human alteration of natural light cycles: causes and ecological consequences

    OpenAIRE

    Gaston, Kevin J; Duffy, James P.; Gaston, Sian; Bennie, Jonathan; Davies, Thomas W

    2014-01-01

    Artificial light at night is profoundly altering natural light cycles, particularly as perceived by many organisms, over extensive areas of the globe. This alteration comprises the introduction of light at night at places and times at which it has not previously occurred, and with different spectral signatures. Given the long geological periods for which light cycles have previously been consistent, this constitutes a novel environmental pressure, and one for which there is evidence for biolo...

  2. High efficiency incandescent lighting

    Science.gov (United States)

    Bermel, Peter; Ilic, Ognjen; Chan, Walker R.; Musabeyoglu, Ahmet; Cukierman, Aviv Ruben; Harradon, Michael Robert; Celanovic, Ivan; Soljacic, Marin

    2014-09-02

    Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.

  3. Light-Induced Alterations in Striatal Neurochemical Profiles

    Science.gov (United States)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.

    1997-01-01

    Much of our present knowledge regarding circadian rhythms and biological activity during space flight has been derived from those missions orbiting the Earth. During space missions, astronauts can become exposed to bright/dark cycles that vary considerably from those that entrain the mammalian biological timing system to the 24-hour cycle found on Earth. As a spacecraft orbits the Earth, the duration of the light/dark period experienced becomes a function of the time it takes to circumnavigate the planet which in turn depends upon the altitude of the craft. Orbiting the Earth at an altitude of 200-800 km provides a light/dark cycle lasting between 80 and 140 minutes, whereas a voyage to the moon or even another planet would provide a light condition of constant light. Currently, little is known regarding the effects of altered light/dark cycles on neurochemical levels within the central nervous system (CNS). Many biochemical, physiological and behavioral phenomena are under circadian control, governed primarily by the hypothalamic suprachiasmatic nucleus. As such, these phenomena are subject to influence by the environmental light/dark cycle. Circadian variations in locomotor and behavioral activities have been correlated to both the environmental light/dark cycle and to dopamine (DA) levels within the CNS. It has been postulated by Martin-Iverson et al. that DA's role in the control of motor activity is subject to modulation by circadian rhythms (CR), environmental lighting and excitatory amino acids (EAAs). In addition, DA and EAA receptor regulated pathways are involved in both the photic entrainment of CR and the control of motor activity. The cellular mechanisms by which DA and EAA-receptor ligands execute these functions, is still unclear. In order to help elucidate these mechanisms, we set out to determine the effects of altered environmental light/dark cycles on CNS neurotransmitter levels. In this study, we focused on the striatum, a region of the brain

  4. High power cladding light strippers

    Science.gov (United States)

    Wetter, Alexandre; Faucher, Mathieu; Sévigny, Benoit

    2008-02-01

    The ability to strip cladding light from double clad fiber (DCF) fibers is required for many different reasons, one example is to strip unwanted cladding light in fiber lasers and amplifiers. When removing residual pump light for example, this light is characterized by a large numerical aperture distribution and can reach power levels into the hundreds of watts. By locally changing the numerical aperture (N.A.) of the light to be stripped, it is possible to achieve significant attenuation even for the low N.A. rays such as escaped core modes in the same device. In order to test the power-handling capability of this device, one hundred watts of pump and signal light is launched from a tapered fusedbundle (TFB) 6+1x1 combiner into a high power-cladding stripper. In this case, the fiber used in the cladding stripper and the output fiber of the TFB was a 20/400 0.06/0.46 N.A. double clad fiber. Attenuation of over 20dB in the cladding was measured without signal loss. By spreading out the heat load generated by the unwanted light that is stripped, the package remained safely below the maximum operating temperature internally and externally. This is achieved by uniformly stripping the energy along the length of the fiber within the stripper. Different adhesive and heat sinking techniques are used to achieve this uniform removal of the light. This suggests that these cladding strippers can be used to strip hundreds of watts of light in high power fiber lasers and amplifiers.

  5. Altered pupillary light reflex in PACAP receptor 1-deficient mice.

    Science.gov (United States)

    Engelund, Anna; Fahrenkrug, Jan; Harrison, Adrian; Luuk, Hendrik; Hannibal, Jens

    2012-05-01

    The pupillary light reflex (PLR) is regulated by the classical photoreceptors, rods and cones, and by intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin. IpRGCs receive input from rods and cones and project to the olivary pretectal nucleus (OPN), which is the primary visual center involved in PLR. Mice lacking either the classical photoreceptors or melanopsin exhibit some changes in PLR, whereas the reflex is completely lost in mice deficient of all three photoreceptors. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is co-stored with melanopsin in ipRGCs and mediates light signaling to the brain via the specific PACAP receptor 1 (PAC1R). Here, we examined the occurrence of PACAP and PAC1R in the mouse OPN, and studied if lack of PAC1R affected the PLR. PACAP-immunoreactive nerve fibers were shown in the mouse OPN, and by in situ hybridization histochemistry, we demonstrated the presence of PAC1R mRNA. Mice lacking PAC1R exhibited a significantly attenuated PLR compared to wild type mice upon light stimulation, and the difference became more pronounced as light intensity was increased. Our findings accord well with observations of the PLR in the melanopsin-deficient mouse. We conclude that PACAP/PAC1R signaling is involved in the sustained phase of the PLR at high irradiances.

  6. High intensity portable fluorescent light

    Science.gov (United States)

    Kendall, F. B.

    1972-01-01

    Eight high intensity portable fluorescent lights were produced. Three prototype lights were also produced, two of which were subsequently updated to the physical and operational configuration of the qualification and flight units. Positioning of lamp apertures and reflectors in these lights is such that the light is concentrated and intensified in a specific pattern rather than widely diffused. Indium amalgam control of mercury vapor pressure in the lamp gives high output at lamp ambient temperatures up to 105 C. A small amount of amalgam applied to each electrode stem helps to obtain fast warm-up. Shrinking a Teflon sleeve on the tube and potting metal caps on each end of the lamp minimizes dispersion of mercury vapor and glass particles in the event of accidental lamp breakage. Operation at 20 kHz allows the lamps to consume more power than at low frequency, thus increasing their light output and raising their efficiency. When used to expose color photographic film, light from the lamps produces results approximately equal to sunlight.

  7. Systematic alteration induced in mice by ultraviolet light irradiation and its relationship to ultraviolet carcinogenesis

    International Nuclear Information System (INIS)

    Chronic irradiation of mice with ultraviolet (uv) light produces a systemic alteration of an immunologic nature. This alteration is detectable in mice long before primary skin cancers induced by uv light begin to appear. The alteration results in the failure of uv-irradiated mice to reject highly antigenic, transplanted uv-induced tumors that are rejected by unirradiated syngeneic recipients. The immunologic aspect of this systemic alteration was demonstrated by transferring lymphoid cells from uv-irradiated mice to lethally x-irradiated recipients. These recipients were unable to resist a later challenge with a syngeneic uv-induced tumor, whereas those given lymphoid cells from normal donors were resistant to tumor growth. Parabiosis of normal mice with uv-irradiated mice, followed by tumor challenge of both parabionts with a uv-induced tumor, resulted in the growth of the challenge tumors in both uv-irradiated and unirradiated mice. Splenic lymphocytes from tumor-implanted uv-treated mice were not cytotoxic in vitro against uv-induced tumors, whereas under identical conditions cells from tumor-implanted, unirradiated mice were highly cytotoxic. Our findings suggest that repeated uv irradiation can circumvent an immunologic mechanism that might otherwise destroy nascent uv-induced primary tumors that are strongly antigenic

  8. Light, Luminosity and the High Luminosity LHC

    CERN Multimedia

    2015-01-01

    Short interview to Lucio Rossi, project leader of the High Luminosity LHC, about the concept of light in physics, light and luminosity in particle accelerators and the High Luminosity LHC project. On the occasion of International Year of Light 2015.

  9. Artificial light alters natural regimes of night-time sky brightness

    OpenAIRE

    Davies, Thomas W.; Bennie, Jonathan; Inger, Richard; Gaston, Kevin J.

    2013-01-01

    Artificial light is globally one of the most widely distributed forms of anthropogenic pollution. However, while both the nature and ecological effects of direct artificial lighting are increasingly well documented, those of artificial sky glow have received little attention. We investigated how city lights alter natural regimes of lunar sky brightness using a novel ten month time series of measurements recorded across a gradient of increasing light pollution. In the city, artificial lights i...

  10. Strategy Guideline: High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  11. Environmental lighting alters the infection process in an animal model of AIDS.

    Science.gov (United States)

    McEachron, D L; Tumas, K M; Blank, K J; Prystowsky, M B

    1995-08-01

    In this study, we examined the effects of altered environmental lighting on the infection process of a murine leukemia virus, E-55(+), which induces a thymic lymphoma/leukemia in 100% of BALB.K mice inoculated as adults. One to two weeks after inoculation, high levels of proviral DNA are usually found. This is followed by an asymptomatic period of many weeks during which proviral DNA becomes essentially undetectable. Leukemia develops approximately 28 weeks postinoculation. In this experiment, one group of mice was exposed a consistent 10L: 14D cycle while a second was maintained in constant light (LL). A third group was exposed to a rotating cycle characterized by phase shifting a 10L: 14D cycle every three 24-h days (rLD). All cycles began 2 weeks prior to inoculation and were maintained thereafter. Animals were sacrificed at 1, 5, 10, and 15 weeks, and hematopoietic tissue was examined for proviral DNA content. At 1 week, LL- and rLD-exposed animals showed considerably less proviral DNA in bone marrow and spleen compared with controls. At 15 weeks, thymuses from controls were showing signs of infection whereas tissue from LL and rLD mice remained at background levels. We conclude that environmental lighting does alter the infective pattern displayed by this retrovirus, although whether this effect is mediated by changes in the target stem cells or through immunoenhancement has not yet been determined. PMID:7675882

  12. Light-Induced Alterations in Basil Ganglia Kynurenic Acid Levels

    Science.gov (United States)

    Sroufe, Angela E.; Whittaker, J. A.; Patrickson, J. W.; Orr, M. C.

    1997-01-01

    The metabolic synthesis, release and breakdown of several known CNS neurotransmitters have been shown to follow a circadian pattern entrained to the environmental light/dark cycle. The levels of excitatory amino acid (EAA) transmitters such as glutamate, have been shown to vary with environmental lighting conditions. Kynurenic Acid (KA), an endogenous tryptophan metabolite and glutamate receptor antagonist, has been reported to have neuroprotective effects against EAA-induced excitotoxic cell damage. Changes in KA's activity within the mammalian basal ganglia has been proposed as being contributory to neurotoxicity in Huntington's Disease. It is not known whether CNS KA levels follow a circadian pattern or exhibit light-induced fluctuations. However, because the symptoms of certain degenerative motor disorders seem to fluctuate with daily 24 hour rhythm, we initiated studies to determine if basal ganglia KA were influenced by the daily light/dark cycle and could influence motor function. Therefore in this study, HPLC-EC was utilized to determine if basal ganglia KA levels in tissue extracts from adult male Long-Evans rats (200-250g) entrained to 24 and 48 hours constant light and dark conditions, respectively. Samples were taken one hour before the onset of the subjective day and one hour prior to the onset of the subjective night in order to detect possible phase differences in KA levels and to allow for accumulation of factors expressed in association with the light or dark phase. Data analysis revealed that KA levels in the basal ganglia vary with environmental lighting conditions; being elevated generally during the dark. Circadian phase differences in KA levels were also evident during the subjective night and subjective day, respectively. Results from these studies are discussed with respect to potential cyclic changes in neuronal susceptibility to excitotoxic damage during the daily 24 hour cycle and its possible relevance to future therapeutic approaches in

  13. Light stimuli control neuronal migration by altering of insulin-like growth factor 1 (IGF-1) signaling.

    Science.gov (United States)

    Li, Ying; Komuro, Yutaro; Fahrion, Jennifer K; Hu, Taofang; Ohno, Nobuhiko; Fenner, Kathleen B; Wooton, Jessica; Raoult, Emilie; Galas, Ludovic; Vaudry, David; Komuro, Hitoshi

    2012-02-14

    The role of genetic inheritance in brain development has been well characterized, but little is known about the contributions of natural environmental stimuli, such as the effect of light-dark cycles, to brain development. In this study, we determined the role of light stimuli in neuronal cell migration to elucidate how environmental factors regulate brain development. We show that in early postnatal mouse cerebella, granule cell migration accelerates during light cycles and decelerates during dark cycles. Furthermore, cerebellar levels of insulin-like growth factor 1 (IGF-1) are high during light cycles and low during dark cycles. There are causal relationships between light-dark cycles, speed of granule cell migration, and cerebellar IGF-1 levels. First, changes in light-dark cycles result in corresponding changes in the fluctuations of both speed of granule cell migration and cerebellar IGF-1 levels. Second, in vitro studies indicate that exogenous IGF-1 accelerates the migration of isolated granule cells through the activation of IGF-1 receptors. Third, in vivo studies reveal that inhibiting the IGF-1 receptors decelerates granule cell migration during light cycles (high IGF-1 levels) but does not alter migration during dark cycles (low IGF-1 levels). In contrast, stimulating the IGF-1 receptors accelerates granule cell migration during dark cycles (low IGF-1 levels) but does not alter migration during light cycles (high IGF-1 levels). These results suggest that during early postnatal development light stimuli control granule cell migration by altering the activity of IGF-1 receptors through modification of cerebellar IGF-1 levels.

  14. Altered pupillary light reflex in PACAP receptor 1-deficient mice

    DEFF Research Database (Denmark)

    Engelund, Anna; Fahrenkrug, Jan; Harrison, Adrian Paul;

    2012-01-01

    The pupillary light reflex (PLR) is regulated by the classical photoreceptors, rods and cones, and by intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin. IpRGCs receive input from rods and cones and project to the olivary pretectal nucleus (OPN......), which is the primary visual center involved in PLR. Mice lacking either the classical photoreceptors or melanopsin exhibit some changes in PLR, whereas the reflex is completely lost in mice deficient of all three photoreceptors. The neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP...

  15. Strategy Guideline. High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J. [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  16. Entangling light in high dimensions

    NARCIS (Netherlands)

    Pors, Jan Bardeus

    2011-01-01

    Quantum entanglement is a fundamental trait of quantum mechanics that causes the information about the properties of two (or more) objects to be inextricably linked. When a measurement on one of the objects is performed, the state of the other object is immediately altered, even when these objects a

  17. Impact of the altered light vector relative to gravity vector on plant growth and development

    Science.gov (United States)

    Berkovich, Yu. A.; Smolyanina, S. O.; Krivobok, N. M.; Erokhin, A. N.; Ivanov, V. B.

    We studied effects of gravity force and photosynthetic photon flux (PPF) direction on growth and development of Triticum aestivum L. cv. Apogee. In our ground experiments, light flux was set relatively to gravity vector unidirectional or in opposite direction. In the first set of tests initial seedlings orientation was natural (vertical), inverse or perpendicular to the gravity vector. In the second set of tests plant orientation relative to gravity vector was vertical or inverse. Wheat seeds were grown in a 2-mm layer of fibrous ion-exchange resin substrate overlaying horizontal hydrophilic plates (membranes) of porous titanium. In the other case, seeds were anchored to porous ceramic tubes by plastic rings. High pressure sodium lamp with PPF of 55 ± 5 or 550 ± 20 μmol m -2 s -1 24 h per day were used for lighting. Water potential (WP) at the membrane surface varied from 0 to (-10) kPa. It was demonstrated that irrespective of light direction plants grown at PPF of 550 μmol m -2 s -1 and WP of (-1.0) kPa remained nearly unchanged and produced viable seeds. In the inverse light orientation, 25% increase in shoot dry mass at complete ripeness and doubled number of productive tillers as compared to control were observed. Root dry mass and shoot length were lowered by 50% and 35%, respectively. Given reduced PPF (55 μmol m -2 s -1), shoot dry mass of inverted plants was 22% lower compared to control whereas this parameter decreased by 63% when WP was -10 kPa. Root dry mass of the inverted plants was lower than of naturally grown plants regardless of growth conditions. These results allow suggest similar changes in morphology and harvest index of plants grown in altered gravity conditions.

  18. Night-time lighting alters the composition of marine epifaunal communities

    OpenAIRE

    Davies, Thomas W; Coleman, Matthew; Griffith, Katherine M.; Stuart R Jenkins

    2015-01-01

    Marine benthic communities face multiple anthropogenic pressures that compromise the future of some of the most biodiverse and functionally important ecosystems in the world. Yet one of the pressures these ecosystems face, night-time lighting, remains unstudied. Light is an important cue in guiding the settlement of invertebrate larvae, and altering natural regimes of nocturnal illumination could modify patterns of recruitment among sessile epifauna. We present the first evidence of night-tim...

  19. Artificial light alters natural regimes of night-time sky brightness

    Science.gov (United States)

    Davies, Thomas W.; Bennie, Jonathan; Inger, Richard; Gaston, Kevin J.

    2013-04-01

    Artificial light is globally one of the most widely distributed forms of anthropogenic pollution. However, while both the nature and ecological effects of direct artificial lighting are increasingly well documented, those of artificial sky glow have received little attention. We investigated how city lights alter natural regimes of lunar sky brightness using a novel ten month time series of measurements recorded across a gradient of increasing light pollution. In the city, artificial lights increased sky brightness to levels six times above those recorded in rural locations, nine and twenty kilometers away. Artificial lighting masked natural monthly and seasonal regimes of lunar sky brightness in the city, and increased the number and annual regime of full moon equivalent hours available to organisms during the night. The changes have potentially profound ecological consequences.

  20. Night-time lighting alters the composition of marine epifaunal communities.

    Science.gov (United States)

    Davies, Thomas W; Coleman, Matthew; Griffith, Katherine M; Jenkins, Stuart R

    2015-04-01

    Marine benthic communities face multiple anthropogenic pressures that compromise the future of some of the most biodiverse and functionally important ecosystems in the world. Yet one of the pressures these ecosystems face, night-time lighting, remains unstudied. Light is an important cue in guiding the settlement of invertebrate larvae, and altering natural regimes of nocturnal illumination could modify patterns of recruitment among sessile epifauna. We present the first evidence of night-time lighting changing the composition of temperate epifaunal marine invertebrate communities. Illuminating settlement surfaces with white light-emitting diode lighting at night, to levels experienced by these communities locally, both inhibited and encouraged the colonization of 39% of the taxa analysed, including three sessile and two mobile species. Our results indicate that ecological light pollution from coastal development, shipping and offshore infrastructure could be changing the composition of marine epifaunal communities. PMID:25926694

  1. Polymorphic Variants of LIGHT (TNF Superfamily-14) Alter Receptor Avidity and Bioavailability1

    OpenAIRE

    Cheung, Timothy C.; Coppieters, Ken; Sanjo, Hideki; Oborne, Lisa M.; Norris, Paula S.; Coddington, Amy; Granger, Steven W.; Elewaut, Dirk; Ware, Carl F.

    2010-01-01

    The TNF superfamily member, LIGHT (TNFSF14) is a key cytokine that activates T cells and dendritic cells, and is implicated as a mediator of inflammatory, metabolic and malignant diseases. LIGHT engages the Lymphotoxin-β receptor (LTβR) and herpesvirus entry mediator (HVEM, TNFRSF14), but is competitively limited in activating these receptors by soluble decoy receptor-3 (DcR3, TNFRSF6B). Two variants in the human LIGHT alter the protein at E214K (rs344560) in the receptor-binding domain and S...

  2. High accuracy & long timescale light curves

    OpenAIRE

    Hodgkin S.; Mislis D.

    2013-01-01

    We present a theoretical analysis of the optical light curves (LCs) for short-period high-mass transiting extrasolar planet systems. Our method considers the primary transit, the secondary eclipse, and the overall phase shape of the LC between the occultations. Phase variations arise from (i) reflected and thermally emitted light by the planet, (ii) the ellipsoidal shape of the star due to the gravitational pull of the planet, and (iii) the Doppler shift of the stellar light as the star orbit...

  3. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults.

    Science.gov (United States)

    Cheung, Ivy N; Zee, Phyllis C; Shalman, Dov; Malkani, Roneil G; Kang, Joseph; Reid, Kathryn J

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism. PMID:27191727

  4. Altering the axial light gradient affects photomorphogenesis in emerging seedlings of Zea mays L

    Science.gov (United States)

    Parks, B. M.; Poff, K. L.

    1986-01-01

    The axial (longitudinal) red light gradient (632 nanometers) of 4 day old dark-grown maize seedlings is increased by staining the peripheral cells of the coleoptile. The magnitude of increase in the light gradient is dependent solely on the light-absorbing qualities of the stain used. Metanil yellow has no effect on the axial red-light gradient, while methylene blue causes a large increase in this light gradient. These stains did not affect growth in darkness or the sensitivity of mesocotyl elongation to red light. However, mesocotyl elongation was altered for the dark-grown seedlings stained with methylene blue when these seedlings were transplanted, covered with soil, and permitted to emerge under natural lighting conditions. These observations are consistent with the idea that there is a single perceptive site below the coleoptilar node, and suggest that this perceptive site gives the actinic light which has traveled downward through the length of the shoot from an entry point in the plant tip region.

  5. Novel and highly recurrent chromosomal alterations in Sezary syndrome

    NARCIS (Netherlands)

    Vermeer, Maarten H.; van Doorn, Remco; Dijkman, Remco; Mao, Xin; Whittaker, Sean; Vader, Pieter C. van Voorst; Gerritsen, Marie-Jeanne P.; Geerts, Marie-Louise; Gellrich, Sylke; Soderberg, Ola; Leuchowius, Karl-Johan; Landegren, Ulf; Out-Luiting, Jacoba J.; Knijnenburg, Jeroen; Ijszenga, Marije; Szuhai, Karoly; Willemze, Rein; Tensen, Cornelis P.

    2008-01-01

    This study was designed to identify highly recurrent genetic alterations typical of Sezary syndrome (Sz), an aggressive cutaneous T-cell lymphoma/leukemia, possibly revealing pathogenetic mechanisms and novel therapeutic targets. High-resolution array-based comparative genomic hybridization was done

  6. Light pollution alters the phenology of dawn and dusk singing in common European songbirds.

    Science.gov (United States)

    Da Silva, Arnaud; Valcu, Mihai; Kempenaers, Bart

    2015-05-01

    Artificial night lighting is expanding globally, but its ecological consequences remain little understood. Animals often use changes in day length as a cue to time seasonal behaviour. Artificial night lighting may influence the perception of day length, and may thus affect both circadian and circannual rhythms. Over a 3.5 month period, from winter to breeding, we recorded daily singing activity of six common songbird species in 12 woodland sites, half of which were affected by street lighting. We previously reported on analyses suggesting that artificial night lighting affects the daily timing of singing in five species. The main aim of this study was to investigate whether the presence of artificial night lighting is also associated with the seasonal occurrence of dawn and dusk singing. We found that in four species dawn and dusk singing developed earlier in the year at sites exposed to light pollution. We also examined the effects of weather conditions and found that rain and low temperatures negatively affected the occurrence of dawn and dusk singing. Our results support the hypothesis that artificial night lighting alters natural seasonal rhythms, independently of other effects of urbanization. The fitness consequences of the observed changes in seasonal timing of behaviour remain unknown. PMID:25780238

  7. High-Energy Compton Scattering Light Sources

    CERN Document Server

    Hartemann, Fred V; Barty, C; Crane, John; Gibson, David J; Hartouni, E P; Tremaine, Aaron M

    2005-01-01

    No monochromatic, high-brightness, tunable light sources currently exist above 100 keV. Important applications that would benefit from such new hard x-ray sources include: nuclear resonance fluorescence spectroscopy, time-resolved positron annihilation spectroscopy, and MeV flash radiography. The peak brightness of Compton scattering light sources is derived for head-on collisions and found to scale with the electron beam brightness and the drive laser pulse energy. This gamma 2

  8. Light at night alters daily patterns of cortisol and clock proteins in female Siberian hamsters.

    Science.gov (United States)

    Bedrosian, T A; Galan, A; Vaughn, C A; Weil, Z M; Nelson, R J

    2013-06-01

    Humans and other organisms have adapted to a 24-h solar cycle in response to life on Earth. The rotation of the planet on its axis and its revolution around the sun cause predictable daily and seasonal patterns in day length. To successfully anticipate and adapt to these patterns in the environment, a variety of biological processes oscillate with a daily rhythm of approximately 24 h in length. These rhythms arise from hierarchally-coupled cellular clocks generated by positive and negative transcription factors of core circadian clock gene expression. From these endogenous cellular clocks, overt rhythms in activity and patterns in hormone secretion and other homeostatic processes emerge. These circadian rhythms in physiology and behaviour can be organised by a variety of cues, although they are most potently entrained by light. In recent history, there has been a major change from naturally-occurring light cycles set by the sun, to artificial and sometimes erratic light cycles determined by the use of electric lighting. Virtually every individual living in an industrialised country experiences light at night (LAN) but, despite its prevalence, the biological effects of such unnatural lighting have not been fully considered. Using female Siberian hamsters (Phodopus sungorus), we investigated the effects of chronic nightly exposure to dim light on daily rhythms in locomotor activity, serum cortisol concentrations and brain expression of circadian clock proteins (i.e. PER1, PER2, BMAL1). Although locomotor activity remained entrained to the light cycle, the diurnal fluctuation of cortisol concentrations was blunted and the expression patterns of clock proteins in the suprachiasmatic nucleus and hippocampus were altered. These results demonstrate that chronic exposure to dim LAN can dramatically affect fundamental cellular function and emergent physiology.

  9. Rapidly pulsed, high intensity, incoherent light source

    Science.gov (United States)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1974-01-01

    A rapid pulsing, high intensity, incoherent light is produced by selectively energizing a plurality of discharge lamps with a triggering circuit. Each lamp is connected to a capacitor, and a power supply is electrically connected to all but one of the capacitors. This last named capacitor is electrically connected to a discharge lamp which is connected to the triggering circuit.

  10. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition.

    Science.gov (United States)

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Qian, Ruizhe; Lu, Chao

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation. PMID:27631008

  11. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition.

    Science.gov (United States)

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Qian, Ruizhe; Lu, Chao

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  12. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    Directory of Open Access Journals (Sweden)

    Zhu Zhu

    2016-01-01

    Full Text Available Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice by altering exposure to light. C57 BL/6J mice (C57 mice and ApoE-KO mice (ApoE-KO mice exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1 levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  13. Artificial light at night alters delayed-type hypersensitivity reaction in response to acute stress in Siberian hamsters.

    Science.gov (United States)

    Bedrosian, Tracy A; Aubrecht, Taryn G; Kaugars, Katherine E; Weil, Zachary M; Nelson, Randy J

    2013-11-01

    Several physiological and behavioral processes rely on precisely timed light information derived from the natural solar cycle. Using this information, traits have adapted to allow individuals within specific niches to optimize survival and reproduction, but urbanization by humans has significantly altered natural habitats. Nighttime light exposure alters immune function in several species, which could lead to decreased fitness or survival, particularly in the face of an environmental challenge. We exposed male Siberian hamsters (Phodopus sungorus) to five lux of light at night for four weeks, and then administered six hours of acute restraint stress. Delayed-type hypersensitivity (DTH) response was assessed immediately following stress. Acute restraint increased the DTH reaction in dark nights, but exposure to nighttime light prevented this response. Exposure to light at night prolonged the DTH response in non-stressed control hamsters. These results suggest that light pollution may significantly alter physiological responses in Siberian hamsters, particularly in response to a salient environmental challenge such as stress.

  14. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts.

    Science.gov (United States)

    Maldini, Mariateresa; Natella, Fausta; Baima, Simona; Morelli, Giorgio; Scaccini, Cristina; Langridge, James; Astarita, Giuseppe

    2015-01-01

    The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird's-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle). We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant's developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the potential of an

  15. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts

    Directory of Open Access Journals (Sweden)

    Mariateresa Maldini

    2015-06-01

    Full Text Available The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle. We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant’s developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the

  16. High accuracy & long timescale light curves

    Directory of Open Access Journals (Sweden)

    Hodgkin S.

    2013-04-01

    Full Text Available We present a theoretical analysis of the optical light curves (LCs for short-period high-mass transiting extrasolar planet systems. Our method considers the primary transit, the secondary eclipse, and the overall phase shape of the LC between the occultations. Phase variations arise from (i reflected and thermally emitted light by the planet, (ii the ellipsoidal shape of the star due to the gravitational pull of the planet, and (iii the Doppler shift of the stellar light as the star orbits the center of mass of the system. Our full model of the out-of-eclipse variations contains information about the planetary mass, orbital eccentricity, the orientation of periastron and the planet's albedo. For a range of hypothetical systems we demonstrate that the ellipsoidal variations (ii. can be large enough to be distinguished from the remaining components and that this effect can be used to constrain the planet's mass. As an example we presend KOI-13b (candidate exoplanet system included in the September 2011 Kepler data release. The Kepler light curve shows both primary and secondary eclipses, as well as significant out-of-eclipse light curve variations. We model the relative contributions from (i thermal emission from the companion, (ii planetary reflected light, (iii doppler beaming, and (iv ellipsoidal variations in the host-star arising from the tidal distortion of the host star by its companion. Our analysis, based on the light curve alone, enables us to constrain the mass of the KOI-13.01 companion to be MC = 8.3 ± 1.25 MJ and thus demonstrates that the transiting companion is a planet. The teqnique is useful for current and future space missions such as Kepler and PLATO.

  17. High-speed milling of light metals

    OpenAIRE

    F. Cus; U. Zuperl; V. Gecevska

    2007-01-01

    Purpose: of this paper: Introduction applicability of high-speed cutting of light metals is presented in this paper.Design/methodology/approach: HSC is the result of numerous technical advances ensuring that milling has become faster than conventional milling and has gained importance as a cutting process. The advantages of the HSC milling are higher productivity owing to the reduction of machining times increase of the flow time of production, reduction of the number of technological operati...

  18. Altered circadian rhythm and metabolic gene profile in rats subjected to advanced light phase shifts.

    Directory of Open Access Journals (Sweden)

    Laura Herrero

    Full Text Available The circadian clock regulates metabolic homeostasis and its disruption predisposes to obesity and other metabolic diseases. However, the effect of phase shifts on metabolism is not completely understood. We examined whether alterations in the circadian rhythm caused by phase shifts induce metabolic changes in crucial genes that would predispose to obesity. Three-month-old rats were maintained on a standard diet under lighting conditions with chronic phase shifts consisting of advances, delays or advances plus delays. Serum leptin, insulin and glucose levels decreased only in rats subjected to advances. The expression of the clock gene Bmal 1 increased in the hypothalamus, white adipose tissue (WAT, brown adipose tissue (BAT and liver of the advanced group compared to control rats. The advanced group showed an increase in hypothalamic AgRP and NPY mRNA, and their lipid metabolism gene profile was altered in liver, WAT and BAT. WAT showed an increase in inflammation and ER stress and brown adipocytes suffered a brown-to-white transformation and decreased UCP-1 expression. Our results indicate that chronic phase advances lead to significant changes in neuropeptides, lipid metabolism, inflammation and ER stress gene profile in metabolically relevant tissues such as the hypothalamus, liver, WAT and BAT. This highlights a link between alteration of the circadian rhythm and metabolism at the transcriptional level.

  19. Light-Emitting Diodes (LED) for Primary Animal Habitat Lighting in Highly Controlled Environments

    Science.gov (United States)

    Winget, C. M.; Syrkin, N.; Heeke, D.; Mele, G.; Holley, D. C.; Dalton, Bonnie P. (Technical Monitor)

    1996-01-01

    Significant alterations in Biological Clock responses have been reported following sidereal time changes (e.g., Jet-lag), and exposure to microgravity (e.g., daytime sleepiness). Additionally, light reduces circulating melatonin (spectral specificity greatest between 450-500 nm). It was hypothesized that LEDs can replace the current light sources used in zero gravity and terrestrial research laboratories because of their small size, low mass, low energy consumption and long functional life. This report evaluates the capacity of LEDs to entrain the circadian system of rats as judged by measurement of overt behavioral circadian rhythms (activity, feeding, drinking). These data were collected in highly controlled environments similar to the shuttle Animal Enclosure Modules. Two groups were compared: control - animals exposed to standard cool-white fluorescent lights, and test - animals exposed to LEDs with a spectral power distribution matching the fluorescent lights. Gross locomotor activity, feeding and drinking frequencies were continuously monitored and stored at 10 minute intervals. Animals were exposed to the following photoperiods: 28 days of 12L:12D, 19 days of 24L:0D and 16 days of 12L:12D. Light intensities tested varied between 0.1 to 100 lux. Rats received food and water ad libitum, and temperature and humidity were controlled throughout the study. The general health status of all rats was acceptable for each day of this study. No incidents of aggressive behavior were observed. Growth, locomotor activity, food and water consumption were comparable for all groups of animals, i.e, the circadian characteristics of the animals under these conditions were comparable. These results indicate that LED arrays are as effective in maintaining circadian rhythm stability as the commonly used cool-white fluorescent light sources. LEDs with their flexible spectrum, low energy requirements and minimal heat production have advantages for some chronopharmacology studies and

  20. High Quantum Efficiency OLED Lighting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shiang, Joseph [General Electric (GE) Global Research, Fairfield, CT (United States)

    2011-09-30

    The overall goal of the program was to apply improvements in light outcoupling technology to a practical large area plastic luminaire, and thus enable the product vision of an extremely thin form factor high efficiency large area light source. The target substrate was plastic and the baseline device was operating at 35 LPW at the start of the program. The target LPW of the program was a >2x improvement in the LPW efficacy and the overall amount of light to be delivered was relatively high 900 lumens. Despite the extremely difficult challenges associated with scaling up a wet solution process on plastic substrates, the program was able to make substantial progress. A small molecule wet solution process was successfully implemented on plastic substrates with almost no loss in efficiency in transitioning from the laboratory scale glass to large area plastic substrates. By transitioning to a small molecule based process, the LPW entitlement increased from 35 LPW to 60 LPW. A further 10% improvement in outcoupling efficiency was demonstrated via the use of a highly reflecting cathode, which reduced absorptive loss in the OLED device. The calculated potential improvement in some cases is even larger, ~30%, and thus there is considerable room for optimism in improving the net light coupling efficacy, provided absorptive loss mechanisms are eliminated. Further improvements are possible if scattering schemes such as the silver nanowire based hard coat structure are fully developed. The wet coating processes were successfully scaled to large area plastic substrate and resulted in the construction of a 900 lumens luminaire device.

  1. High-resolution light microscopy of nanoforms

    Science.gov (United States)

    Vodyanoy, Vitaly; Pustovyy, Oleg; Vainrub, Arnold

    2007-09-01

    We developed a high resolution light imaging system. Diffraction gratings with 100 nm width lines as well as less than 100 nm size features of different-shaped objects are clearly visible on a calibrated microscope test slide (Vainrub et al., Optics Letters, 2006, 31, 2855). The two-point resolution increase results from a known narrowing of the central diffraction peak for the annular aperture. Better visibility and advanced contrast of the smallest features in the image are due to enhancement of high spatial frequencies in the optical transfer function. The imaging system is portable, low energy, and battery operated. It has been adapted to use in both transmitting and reflecting light. It is particularly applicable for motile nanoform systems where structure and functions can be depicted in real time. We have isolated micrometer and submicrometer particles, termed proteons, from human and animal blood. Proteons form by reversible seeded aggregation of proteins around proteon nucleating centers (PNCs). PNCs are comprised of 1-2nm metallic nanoclusters containing 40-300 atoms. Proteons are capable of spontaneous assembling into higher nanoform systems assuming structure of complicated topology. The arrangement of complex proteon system mimics the structure of a small biological cell. It has structures that imitate membrane and nucleolus or nuclei. Some of these nanoforms are motile. They interact and divide. Complex nanoform systems can spontaneously reduce to simple proteons. The physical properties of these nanoforms could shed some light on the properties of early life forms or forms at extreme conditions.

  2. Absorption spectra and light penetration depth of normal and pathologically altered human skin

    Science.gov (United States)

    Barun, V. V.; Ivanov, A. P.; Volotovskaya, A. V.; Ulashchik, V. S.

    2007-05-01

    A three-layered skin model (stratum corneum, epidermis, and dermis) and engineering formulas for radiative transfer theory are used to study absorption spectra and light penetration depths of normal and pathologically altered skin. The formulas include small-angle and asymptotic approximations and a layer-addition method. These characteristics are calculated for wavelengths used for low-intensity laser therapy. We examined several pathologies such as vitiligo, edema, erythematosus lupus, and subcutaneous wound, for which the bulk concentrations of melanin and blood vessels or tissue structure (for subcutaneous wound) change compared with normal skin. The penetration depth spectrum is very similar to the inverted blood absorption spectrum. In other words, the depth is minimal at blood absorption maxima. The calculated absorption spectra enable the power and irradiation wavelength providing the required light effect to be selected. Relationships between the penetration depth and the diffuse reflectance coefficient of skin (unambiguously expressed through the absorption coefficient) are analyzed at different wavelengths. This makes it possible to find relationships between the light fields inside and outside the tissue.

  3. High-speed milling of light metals

    Directory of Open Access Journals (Sweden)

    F. Cus

    2007-09-01

    Full Text Available Purpose: of this paper: Introduction applicability of high-speed cutting of light metals is presented in this paper.Design/methodology/approach: HSC is the result of numerous technical advances ensuring that milling has become faster than conventional milling and has gained importance as a cutting process. The advantages of the HSC milling are higher productivity owing to the reduction of machining times increase of the flow time of production, reduction of the number of technological operations, increase of the surface quality and longer service life of tools. The machining conditions for execution of the HSC (36000min-1 and feeding 20m/min require modernly built machine tools to meet those machining conditions.Findings: Continuous development of new materials is more and more dynamical, particularly, in the automobile, aircraft and electronic industry and in the manufacture of various mechanical parts. Also the achievements in the area of building of machines and tools, ensuring high cutting speeds (highly efficient machining have contributed to development of the process.Research limitations/implications: High quality of the surfaces, the quality of this so-called HSC milling can be compared to grinding.Practical implications: High-speed milling of light metals from aluminium and magnesium is more and more frequently used in practice. This result is high quality of the surface and shorter machining times. In some cases when machining by grinding is specified, the latter is omitted.Originality/value: The applicability of high-speed milling has proved to be successful, when aluminum and magnesium alloying materials are machined.

  4. The JLab high power ERL light source

    Energy Technology Data Exchange (ETDEWEB)

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  5. High Efficiency, Illumination Quality OLEDs for Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown

  6. Injecting light of high-power LEDs into thin light guides

    NARCIS (Netherlands)

    Cornelissen, H.J.; Ho, C.; Ma, H.; Krijn, M.P.C.M.; Van Sprang, H.A.

    2010-01-01

    A new method using a thin-film multilayer filter is described to couple light from high-power LEDs into a thin light guide such as an LCD backlight. Light emitted below the critical angle is reflected back to the LED and recycled. Largeangle emitted light passes the filter and is transported by tota

  7. Injecting Light of High-Power LEDs into Thin Light Guides

    NARCIS (Netherlands)

    Cornelissen, H.J.; Krijn, M.P.C.; Ma, H.; Van Sprang, H.A.

    2010-01-01

    A new method using a thin-film multilayer filter is described to couple light from high-power LEDs into a thin light guide such as an LCD backlight. Light emitted below the critical angle is reflected back to the LED and recycled. Large-angle emitted light passes the filter and is transported by tot

  8. The Jefferson Lab High Power Light Source

    Energy Technology Data Exchange (ETDEWEB)

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  9. Antigen presentation by murine epidermal langerhans cells and its alteration by ultraviolet B light

    International Nuclear Information System (INIS)

    Mice that are chronically exposed in vivo to ultraviolet B light (UV-B) display altered immunologic reactivity to various antigenic stimuli. A possible mode of UV-B action is that it exerts adverse effects on antigen-presenting cell function. Because the epidermis is the only tissue that is naturally subject to UV exposure we investigated if murine epidermal cells (EC) could perform an antigen presentation function and, if so, could this function be altered by UV-B irradiation. For this purpose, T cells immune to purified protein derivative of tuberculin (PPD) and dinitrophenylated ovalbumin (DNP6-OVA) from either BALB/c or C3H/He mice were incubated with syngeneic, semisyngeneic, or allogeneic EC or, for control purposes, with peritoneal exudate cells (PEC) that had been pulse-exposed to either the immunizing antigens or, as controls, left unpulsed, or pulsed to human serum albumin (HSA). After 4 days of culture, T cell proliferation was assessed by 3H-thymidine incorporation. PPD- and DNP/6-OVA pulsed, but not HSA-pulsed EC and PEC, induced vigorous proliferation of syngeneic and semisyngeneic, but not allogeneic, immune T cells. Pretreatment of stimulator cells with specific anti-Ia serum and complement virtually abolished this response, which indicated that among EC, Ia-bearing Langerhans cells are the critical stimulators. Exposure of EC either before or after pulsing to UV-B resulted in a dose-dependent impairment of antigen-specific T cell proliferation; the T proliferative response was abolished after administration of 20 mJ/cm2 UV-B. UV-B in the dose range employed did not produce immediate lethal cell damage, premature death of cultured EC, or toxic factors inhibitory for T cell proliferation

  10. Does light pollution alter daylength? A test using light loggers on free-ranging European blackbirds (Turdus merula)

    OpenAIRE

    Dominoni, Davide M.; Partecke, Jesko

    2015-01-01

    Artificial light at night is one of the most apparent environmental changes accompanying anthropogenic habitat change. The global increase in light pollution poses new challenges to wild species, but we still have limited understanding of the temporal and spatial pattern of exposure to light at night. In particular, it has been suggested by several studies that animals exposed to light pollution, such as songbirds, perceive a longer daylength compared with conspecifics living in natural darke...

  11. New High Efficiency LED Lighting Solution

    Institute of Scientific and Technical Information of China (English)

    DING Ke; NIU Ping-juan; FU Xian-song

    2008-01-01

    As the quality of power LED improves and the cost of power LED reduces, semiconductor lighting will replace incandescent and fluorescent lighting gradually, causing another revolution on the lighting history. And its driving solution has been greatly accelerated. Based on the white power LED I-V characteristics and the application ambiance, proposed is a new LED lighting solution, suiting indoor and outdoor illumination. According to the test results, the design is optimized, and the electrical efficiency is 95% and the output current deviation is 13.0%.

  12. Elk herbivory alters small mammal assemblages in high elevation drainages

    Science.gov (United States)

    Parsons, Elliott W.R.; Maron, John L.; Martin, Thomas E.

    2012-01-01

    Heavy herbivory by ungulates can substantially alter habitat, but the indirect consequences of habitat modification for animal assemblages that rely on that habitat are not well studied. This is a particularly important topic given that climate change can alter plant–herbivore interactions.

  13. HELIX: The High Energy Light Isotope Experiment

    Science.gov (United States)

    Wakely, Scott

    This is the lead proposal for a new suborbital program, HELIX (High-Energy Light Isotope eXperiment), designed to make measurements of the isotopic composition of light cosmic-ray nuclei from ~200 MeV/nuc to ~10 GeV/nuc. Past measurements of this kind have provided profound insights into the nature and origin of cosmic rays, revealing, for instance, information on acceleration and confinement time scales, and exposing some conspicuous discrepancies between solar and cosmic-ray abundances. The most detailed information currently available comes from the ACE/CRIS mission, but is restricted to energies below a few 100 MeV/nuc. HELIX aims at extending this energy range by over an order of magnitude, where, in most cases, no measurements of any kind exist, and where relativistic time dilation affects the apparent lifetime of radioactive clock nuclei. The HELIX measurements will provide essential information for understanding the propagation history of cosmic rays in the galaxy. This is crucial for properly interpreting several intriguing anomalies reported in recent cosmic-ray measurements, pertaining to the energy spectra of protons, helium, and heavier nuclei, and to the anomalous rise in the positron fraction at higher energy. HELIX employs a high-precision magnet spectrometer to provide measurements which are not achievable by any current or planned instrument. The superconducting magnet originally used for the HEAT payload in five successful high-altitude flights will be combined with state-of-the-art detectors to measure the charge, time-of-flight, magnetic rigidity, and velocity of cosmic-ray particles with high precision. The instrumentation includes plastic scintillators, silicon-strip detectors repurposed from Fermilab's CDF detector, a high-performance gas drift chamber, and a ring-imaging Cherenkov counter employing aerogel radiators and silicon photomultipliers. To reduce cost and technical risk, the HELIX program will be structured in two stages. The first

  14. Organic light-emitting diodes: High-throughput virtual screening

    Science.gov (United States)

    Hirata, Shuzo; Shizu, Katsuyuki

    2016-10-01

    Computer networks, trained with data from delayed-fluorescence materials that have been successfully used in organic light-emitting diodes, facilitate the high-speed prediction of good emitters for display and lighting applications.

  15. High-flux focusable color-tunable and efficient white-light-emitting diode light engine for stage lighting

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Pedersen, Henrik Chresten; Petersen, Paul Michael;

    2016-01-01

    A color mixing light-emitting diode (LED) light engine that can replace 2-kW halogen–Fresnel spotlightwith high-luminous flux in excess of 20,000 lm is reported for applications in professional stage and studio lighting.The light engine focuses and mixes the light from 210 LEDs of five different......%. The design, simulation, and optimization of the lightengine is described and compared to the experimental characterization of a prototype. The light engine is optimizedthrough the simulated design of reflector, total internal reflection lens, and MA, as well as the number ofLEDs. An optical efficiency of 59......% and a luminous efficacy of 33 lm∕W are achieved, which is three times higherthan the 2-kW halogen–Fresnel spotlight. In addition to having color rendering of color rendering indexRa > 85 and television lighting consistency index 12 > 70, the dimmable and tunable white light can becolor controlled during...

  16. High Extraction Phosphors for Solid State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Chris [Phosphortech Corporation, Kennesaw, GA (United States); Menkara, Hisham [Phosphortech Corporation, Kennesaw, GA (United States); Wagner, Brent [Phosphortech Corporation, Kennesaw, GA (United States)

    2011-09-01

    We have developed high-index, high efficiency bulk luminescent materials and novel nano-sized phosphors for improved solid-state white LED lamps. These advances can potentially contribute to reducing the loss in luminous efficiencies due to scattering, re-absorption, and thermal quenching. The bulk and nanostructured luminescent materials investigated are index matched to GaN and have broad and size-tunable absorption bands, size and impurity tuned emission bands, size-driven elimination of scattering effects, and a separation between absorption and emission bands. These innovations were accomplished through the use of novel synthesis techniques suitable for high volume production for LED lamp applications. The program produced a full-color set of high quantum yield phosphors with high chemical stability. In the bulk phosphor study, the ZnSeS:Cu,Ag phosphor was optimized to achieve >91% efficiency using erbium (Er) and other activators as sensitizers. Detailed analysis of temperature quenching effects on a large number of ZnSeS:Cu,Ag,X and strontium- and calcium-thiogallate phosphors lead to a breakthrough in the understanding of the anti-quenching behavior and a physical bandgap model was developed of this phenomena. In a follow up to this study, optimized phosphor blends for high efficiency and color performance were developed and demonstrated a 2-component phosphor system with good white chromaticity, color temperature, and high color rendering. By extending the protocols of quantum dot synthesis, large nanocrystals, greater than 20 nm in diameter were synthesized and exhibited bulk-like behavior and blue light absorption. The optimization of ZnSe:Mn nanophosphors achieved ~85% QE The limitations of core-shell nanocrystal systems were addressed by investigating alternative deltadoped structures. To address the manufacturability of these systems, a one-pot manufacturing protocol was developed for ZnSe:Mn nanophosphors. To enhance the stability of these material

  17. Alteration in Non-Classicality of Light on Passing Through a Linear Polarization Beam Splitter

    CERN Document Server

    Shukla, Namrata

    2016-01-01

    We observe the polarization squeezing in the mixture of a two mode squeezed vacuum and simple coherent light through a linear polarization beam splitter. Squeezed vacuum not being squeezed in polarization, generates polarization squeezed light when superposed with coherent light. All the three stokes parameters of the light produced on the output port of polarization beam splitter are found to be squeezed and squeezing factor also depends upon the parameters of coherent light.

  18. Ioxaglate-induced light and electron microscopic alterations in the renal proximal tubular epithelium of rats.

    Science.gov (United States)

    Battenfeld, R; Khater A el-R; Drommer, W; Guenzel, P; Kaup, F J

    1991-01-01

    Vacuolization of the proximal tubular epithelial cells was produced in rats by the intravenous administration of the radiographic contrast medium ioxaglate at high multiples of the human diagnostic dose. Samples of the renal cortex and outer zone of the medulla were examined by light and electron microscopy. We observed enlargement, confluence, and migration of vacuoles containing pleomorphic dense material and distinct inclusion bodies. With time, vacuolization disappeared, though single vacuoles partly engaged in extruding their contents into the tubular lumen were still visible. We concluded that radiographic contrast medium at high dose levels can produce a reversible disturbance in the transport vesicular system of the proximal tubular epithelial cells without affecting the specific cell organelles. PMID:2022451

  19. Light pollution alters the phenology of dawn and dusk singing in common European songbirds

    OpenAIRE

    Da Silva, Arnaud; Valcu, Mihai; Kempenaers, Bart

    2015-01-01

    Artificial night lighting is expanding globally, but its ecological consequences remain little understood. Animals often use changes in day length as a cue to time seasonal behaviour. Artificial night lighting may influence the perception of day length, and may thus affect both circadian and circannual rhythms. Over a 3.5 month period, from winter to breeding, we recorded daily singing activity of six common songbird species in 12 woodland sites, half of which were affected by street lighting...

  20. Visible light metasurfaces based on gallium nitride high contrast gratings

    Science.gov (United States)

    Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei

    2016-05-01

    We propose visible-light metasurfaces (VLMs) capable of serving as lens and beam deflecting element based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wavefront of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 86.3%, and a VLM with beam deflection angle of 6.09° and transmissivity as high as 91.4%. The proposed all-dielectric metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.

  1. Using high-power light emitting diodes for photoacoustic imaging

    DEFF Research Database (Denmark)

    Hansen, René Skov

    The preliminary result of using a high-power light emitting diode, LED, for photoacoustic imaging is presented. The pulsed light source is created by a 1Watt red Luxeon LED. The LED delivers light pulses with 25W peak power when supplied by 40A peak, 60ns wide current pulses. The phantom used...... for the experiment consists of a 3mm high x 5mm wide slice of green colored gelatine overlaid by a 3cm layer of colorless gelatine. The light pulses from the LED is focused on the green gelatine. The photoacoustic response from the green gelatine is detected by a single transducer on the opposite (top) surface...

  2. High extraction efficiency ultraviolet light-emitting diode

    Science.gov (United States)

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (efficiently inject carriers in all the QWs, are preferred.

  3. Stray-light suppression with high-collection efficiency in laser light-scattering experiments

    Science.gov (United States)

    Deilamian, K.; Gillaspy, J. D.; Kelleher, D. E.

    1992-01-01

    An optical system is described for collecting a large fraction of fluorescent light emitted isotropically from a cylindrical interaction region. While maintaining an overall detection efficiency of 9 percent, the system rejects, by more than 12 orders of magnitude, incident laser light along a single axis that intersects the interaction region. Such a system is useful for a wide variety of light-scattering experiments in which high-collection efficiency is desirable, but in which light from an incident laser beam must be rejected without resorting to spectral filters.

  4. Trapping light into high orbital momentum modes of fiber tapers.

    Science.gov (United States)

    Strekalov, Dmitry V; Savchenkov, Anatoliy A; Savchenkova, Ekaterina A; Matsko, Andrey B

    2015-08-15

    A tapered cylindrical dielectric optical waveguide acts as a high quality factor white-light cavity providing high field concentration as well as long optical group delay. It is possible to optimize shape of a lossless taper to suppress reflection of the input light and to achieve infinitely high field concentration. These tapers can be used in sensing and optoelectronics applications instead of conventional microcavities. PMID:26274659

  5. Online analysis of protein inclusion bodies produced in E. coli by monitoring alterations in scattered and reflected light.

    Science.gov (United States)

    Ude, Christian; Ben-Dov, Nadav; Jochums, André; Li, Zhaopeng; Segal, Ester; Scheper, Thomas; Beutel, Sascha

    2016-05-01

    The online monitoring of recombinant protein aggregate inclusion bodies during microbial cultivation is an immense challenge. Measurement of scattered and reflected light offers a versatile and non-invasive measurement technique. Therefore, we investigated two methods to detect the formation of inclusion bodies and monitor their production: (1) online 180° scattered light measurement (λ = 625 nm) using a sensor platform during cultivation in shake flask and (2) online measurement of the light reflective interference using a porous Si-based optical biosensor (SiPA). It could be shown that 180° scattered light measurement allows monitoring of alterations in the optical properties of Escherichia coli BL21 cells, associated with the formation of inclusion bodies during cultivation. A reproducible linear correlation between the inclusion body concentration of the non-fluorescent protein human leukemia inhibitory factor (hLIF) carrying a thioredoxin tag and the shift ("Δamp") in scattered light signal intensity was observed. This was also observed for the glutathione-S-transferase-tagged green fluorescent protein (GFP-GST). Continuous online monitoring of reflective interference spectra reveals a significant increase in the bacterium refractive index during hLIF production in comparison to a non-induced reference that coincide with the formation of inclusion bodies. These online monitoring techniques could be applied for fast and cost-effective screening of different protein expression systems.

  6. Exposure of fluid milk to LED light negatively affects consumer perception and alters underlying sensory properties.

    Science.gov (United States)

    Martin, Nicole; Carey, Nancy; Murphy, Steven; Kent, David; Bang, Jae; Stubbs, Tim; Wiedmann, Martin; Dando, Robin

    2016-06-01

    Fluid milk consumption per capita in the United States has been steadily declining since the 1940s. Many factors have contributed to this decline, including the increasing consumption of carbonated beverages and bottled water. To meet the challenge of stemming the decline in consumption of fluid milk, the dairy industry must take a systematic approach to identifying and correcting for factors that negatively affect consumers' perception of fluid milk quality. To that end, samples of fluid milk were evaluated to identify factors, with a particular focus on light-emitting diode (LED) light exposure, which negatively affect the perceived sensory quality of milk, and to quantify their relative effect on the consumer's experience. Fluid milk samples were sourced from 3 processing facilities with varying microbial postprocessing contamination patterns based on historical testing. The effect of fat content, light exposure, age, and microbiological content were assayed across 23 samples of fluid milk, via consumer, descriptive sensory, and instrumental analyses. Most notably, light exposure resulted in a broad negative reaction from consumers, more so than samples with microbiological contamination exceeding 20,000 cfu/mL on days approaching code. The predominant implication of the study is that a component of paramount importance in ensuring the success of the dairy industry would be to protect fluid milk from all sources of light exposure, from processing plant to consumer.

  7. Structural Alterations of the Glomerular Wall And Vessels in Early Stages of Diabetes Mellitus: Light and Transmission Electron Microscopic Study

    Directory of Open Access Journals (Sweden)

    Dkhil MA

    2007-01-01

    Full Text Available Objective: The capillary changes at the initial stage of diabetes may show an angioarchitecture clearly different from those of later stages and,/or very severe glomerular change. However, the onset of alterations in the early phases is unclear. This study attempts to determine the functional and structural alterations of the glomerular wall and vesicles in the early stage of diabetes.Material and Methods: Twenty-five adult rats were used in this study. They were divided into two groups: the first group of five was used as a control .The second group of 20 (the experimental group was injected intraperitoneally by a single dose of streptozotocin to induce hyperglycemia. Rats were sacrificed after ten days, two months, and four months.Five rats at two months of age with hyperglycemia were treated with insulin for eight weeks. Renal tissues were prepared by routine technique for light and transmission electron microscopic evaluation. Results: By light microscopy after ten days of induced hyperglycemia, there were no structural modifications detected either in renal glomerular fine vessels or in the glomerular basement membrane of the glomerular capillaries. After two months, there was a moderate glomerular enlargement and dilatation of glomerular capillaries, afferent, and efferent arterioles. After four months, glomerular basement membrane thickening was the only structural alteration observed. Recovery of the glomerular alterations was observed after two months of treatment with insulin. Conclusion: In early stages of diabetes mellitus in rats, there was an increase in the diameter of glomerular vessels. In later stages of the disease, the reverse was seen, but insulin treatment had a positive role in reversing these changes in the study subjects.

  8. High Efficiency Lighting with Integrated Adaptive Control (HELIAC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation of the proposed project is the development of High Efficiency Lighting with Integrated Adaptive Control (HELIAC) systems to drive plant growth. Solar...

  9. High Efficiency Lighting with Integrated Adaptive Control (HELIAC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project is the continued development of the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system. Solar radiation is not a viable...

  10. High efficiency III-nitride light-emitting diodes

    Science.gov (United States)

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  11. High-output LED-based light engine for profile lighting fixtures with high color uniformity using freeform reflectors.

    Science.gov (United States)

    Gadegaard, Jesper; Jensen, Thøger Kari; Jørgensen, Dennis Thykjær; Kristensen, Peter Kjær; Søndergaard, Thomas; Pedersen, Thomas Garm; Pedersen, Kjeld

    2016-02-20

    In the stage lighting and entertainment market, light engines (LEs) for lighting fixtures are often based on high-intensity discharge (HID) bulbs. Switching to LED-based light engines gives possibilities for fast switching, additive color mixing, a longer lifetime, and potentially, more energy-efficient systems. The lumen output of a single LED is still not sufficient to replace an HID source in high-output profile fixtures, but combining multiple LEDs can create an LE with a similar output, but with added complexity. This paper presents the results of modeling and testing such a light engine. Custom ray-tracing software was used to design a high-output red, green and blue LED-based light engine with twelve CBT-90 LEDs using a dual-reflector principle. The simulated optical system efficiency was 0.626 with a perfect (R=1) reflector coating for light delivered on a target surface through the entire optical system. A profile lighting fixture prototype was created, and provided an output of 6744 lumen and an efficiency of 0.412. The lower efficiency was mainly due to a non-optimal reflector coating, and the optimized design is expected to reach a significantly higher efficiency. PMID:26906589

  12. High-output LED-based light engine for profile lighting fixtures with high color uniformity using freeform reflectors.

    Science.gov (United States)

    Gadegaard, Jesper; Jensen, Thøger Kari; Jørgensen, Dennis Thykjær; Kristensen, Peter Kjær; Søndergaard, Thomas; Pedersen, Thomas Garm; Pedersen, Kjeld

    2016-02-20

    In the stage lighting and entertainment market, light engines (LEs) for lighting fixtures are often based on high-intensity discharge (HID) bulbs. Switching to LED-based light engines gives possibilities for fast switching, additive color mixing, a longer lifetime, and potentially, more energy-efficient systems. The lumen output of a single LED is still not sufficient to replace an HID source in high-output profile fixtures, but combining multiple LEDs can create an LE with a similar output, but with added complexity. This paper presents the results of modeling and testing such a light engine. Custom ray-tracing software was used to design a high-output red, green and blue LED-based light engine with twelve CBT-90 LEDs using a dual-reflector principle. The simulated optical system efficiency was 0.626 with a perfect (R=1) reflector coating for light delivered on a target surface through the entire optical system. A profile lighting fixture prototype was created, and provided an output of 6744 lumen and an efficiency of 0.412. The lower efficiency was mainly due to a non-optimal reflector coating, and the optimized design is expected to reach a significantly higher efficiency.

  13. High-fat diet alters gut microbiota physiology in mice

    OpenAIRE

    Daniel, Hannelore; Gholami, Amin Moghaddas; Berry, David; Desmarchelier, Charles; Hahne, Hannes; Loh, Gunnar; Mondot, Stanislas; Lepage, Patricia; Rothballer, Michael; Walker, Alesia; Böhm, Christoph; Wenning, Mareike; Wagner, Michael; Blaut, Michael; Schmitt-Kopplin, Philippe

    2013-01-01

    The intestinal microbiota is known to regulate host energy homeostasis and can be influenced by high-calorie diets. However, changes affecting the ecosystem at the functional level are still not well characterized. We measured shifts in cecal bacterial communities in mice fed a carbohydrate or high-fat (HF) diet for 12 weeks at the level of the following: (i) diversity and taxa distribution by high-throughput 16S ribosomal RNA gene sequencing; (ii) bulk and single-cell chemical composition by...

  14. Morphological alterations on Citrobacter freundii bacteria induced by erythrosine dye and laser light.

    Science.gov (United States)

    Silva, Josmary R; Cardoso, Gleidson; Maciel, Rafael R G; de Souza, Nara C

    2015-01-01

    The effect of the laser irradiation (532 nm) on films prepared from Citrobacter freundii mixed with erythrosine dye was investigated by using atomic force microscopy. It was observed that morphological changes of bacterial surfaces after irradiations, which were attributed to cellular damage of the outer membranes, are a result of a photodynamic effect. The results suggested that the combination of erythrosine and laser light at 532 nm could be a candidate to a photodynamic therapy against C. freundii.

  15. Spermatogenic alterations in men with high testiculo epididymal temperatures

    Directory of Open Access Journals (Sweden)

    Dada Rima

    2002-01-01

    Full Text Available Sperms are produced by a highly complex and poorly understood differentiation process known as spermatogenesis. Occupational exposure to high temperatures adversely affect testicular function causing partial or complete spermatogenic arrest. Dyers, cooks, blast furnace workers and men with varicocele are known to develop testicular hyperthermia, which leads to oligoasthenoteratozoospermia (OAT and azoospermia. Semen analysis of 125 infertile men (and 25 fertile controls following the WHO guidelines, 1999 showed azoospermia in 109 men and oligozoospermia in 16 men. Twenty azoospermic and 14 oligozoospermic men had high testiculoepididymal temperatures either due to occupational exposure to high temperature or varicocele. All the 14 oligozoospermic men showed a very high percentage of sperms with abnormal morphology, impaired motility and they were subclassified as OAT group. Observations made in this study reiterates that high intratesticular temperature causes partial or complete spermatogenic arrest and may lead to increased production of morphologically abnormal sperms with impaired motility. This inverse relationship of sperm function with elevated temperature has implications in clinical medicine both in understanding pathological states and for therapeutic measures.

  16. LED white lights with high CRI and high luminous efficacy

    Science.gov (United States)

    He, Guoxing; Zheng, Lihong; Yan, Huafeng

    2010-11-01

    The models for spectra of a phosphor-coated white (p-W) LED and a white light LED cluster are developed based on the principle of additive color mixture. The simulation results show that p-W LEDs consisting of a blue chip (450nm), green phosphor (507 nm), yellow phosphor (580 nm) and red phosphor (655 nm) could realize color rendering indices (CRIs) above 97.7 and special CRIs of R1 to R14 above 91.1, but luminous efficacies of radiation (LERs) below 250.3 lm/W, that white/red clusters consisting of red LEDs and p-W LEDs with a blue chip (450nm), green (507 nm) and yellow (580 nm) phosphors could realize given color temperature white light with CRIs above 97.9 and special CRIs of R1 to R14 above 89.6, as well as LERs above 296.3 lm/W, and that a neutral-white /red//blue cluster consisting of blue LEDs (465 nm), red LEDs (628 nm) and neutral-white LEDs with a blue chip (452 nm), green (530 nm) and yellow (586 nm) phosphors could realize CCT tunable white lights with CRIs above 97.9 and special CRIs of R1 to R14 above 89.6, as well as LER above 296.3 lm/W.

  17. Overexpression of Glycolate Oxidase Confers Improved Photosynthesis under High Light and High Temperature in Rice

    Science.gov (United States)

    Cui, Li-Li; Lu, Yu-sheng; Li, Yong; Yang, Chengwei; Peng, Xin-Xiang

    2016-01-01

    While glycolate oxidase (GLO) is well known as a key enzyme for the photorespiratory metabolism in plants, its physiological function and mechanism remains to be further clarified. Our previous studies have shown that suppression of GLO in rice leads to stunted growth and inhibited photosynthesis (Pn) which is positively and linearly correlated with decreased GLO activities. It is, therefore, of interest to further understand whether Pn can be improved when GLO is up-regulated? In this study, four independent overexpression rice lines, with gradient increases in GLO activity, were generated and functionally analyzed. Phenotypic observations showed that the growth could be improved when GLO activities were increased by 60 or 100%, whereas reduced growth was noticed when the activity was further increased by 150 or 210%. As compared with WT plants, all the overexpression plants exhibited significantly improved Pn under conditions of high light and high temperature, but not under normal conditions. In addition, the overexpression plants were more resistant to the MV-induced photooxidative stress. It was further demonstrated that the antioxidant enzymes, and the antioxidant metabolite glutathione was not significantly altered in the overexpression plants. In contrast, H2O2 and salicylic acid (SA) were correspondingly induced upon the GLO overexpression. Taken together, the results suggest that GLO may play an important role for plants to cope with high light and high temperature, and that H2O2 and SA may serve as signaling molecules to trigger stress defense responses but antioxidant reactions appear not to be involved in the defense. PMID:27540387

  18. LED light engine concept with ultra-high scalable luminance

    Science.gov (United States)

    Hoelen, Christoph; de Boer, Dick; Bruls, Dominique; van der Eyden, Joost; Koole, Rolf; Li, Yun; Mirsadeghi, Mo; Vanbroekhoven, Vincent; Van den Bergh, John-John; Van de Voorde, Patrick

    2016-03-01

    Although LEDs have been introduced successfully in many general lighting applications during the past decade, high brightness light source applications are still suffering from the limited luminance of LEDs. High power LEDs are generally limited in luminance to ca 100 Mnit (108 lm/m2sr) or less, while dedicated devices for projection may achieve luminance values up to ca 300 Mnit with phosphor converted green. In particular for high luminous flux applications with limited étendue, like in front projection systems, only very modest luminous flux values in the beam can be achieved with LEDs compared to systems based on discharge lamps. In this paper we introduce a light engine concept based on a light converter rod pumped with blue LEDs that breaks through the étendue and brightness limits of LEDs, enabling LED light source luminance values that are more than 4 times higher than what can be achieved with LEDs so far. In LED front projection systems, green LEDs are the main limiting factor. With our green light emitting modules, peak luminance values well above 1.2 Gnit have been achieved, enabling doubling of the screen brightness of LED based DLP projection systems, and even more when this technology is applied to other colors as well. This light source concept, introduced as the ColorSpark High Lumen Density (HLD) LED technology, enables a breakthrough in the performance of LED-based light engines not only for projection, where >2700 ANSI lm was demonstrated, but for a wide variety of high brightness applications.

  19. Highly efficient light management for perovskite solar cells

    CERN Document Server

    Wang, Dong-Lin; Hou, Guo-Jiao; Zhu, Zhen-Gang; Yan, Qing-Bo; Su, Gang

    2015-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for perovskite solar cells. In our scheme, the slotted and inverted prism structured SiO2 layers are adopted to trap more light into the solar cells, and a better transparent conducting oxide layer is employed to reduce the parasitic absorption. For such an implementation, the efficiency and the serviceable angle of the perovskite solar cell can be promoted impressively. This proposal would shed new light on developing the high-performance perovskite solar cells.

  20. Dietary High Fluorine Alters Intestinal Microbiota in Broiler Chickens.

    Science.gov (United States)

    Luo, Qin; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Liu, Juan; Deng, Yubing

    2016-10-01

    This study investigated the effects of dietary high fluorine on ileal and cecal microbiota in broiler chickens. Two hundred eighty 1-day-old broiler chickens were randomly assigned to four groups and raised for 42 days. The control group was fed a corn-soybean basal diet (fluorine 22.6 mg/kg). The other three groups were fed the same basal diet, but supplemented with 400, 800, and 1200 mg/kg fluorine (high fluorine groups I, II, and III), administered in the form of sodium fluoride. The microbiota of ileal and cecal digesta was assessed with plate counts and polymerase chain reaction-based denaturing gradient gel electrophoresis (PCR-DGGE). It was found that, compared with those in the control group, the counts of Lactobacillus spp. and Bifidobacterium spp. were markedly decreased (P diversity and composition of intestinal microbiota in broiler chickens, a finding which implies that dietary high fluorine can disrupt the natural balance and structure of the intestinal microbiota. PMID:26997344

  1. Color temperature tunable white-light light-emitting diode clusters with high color rendering index.

    Science.gov (United States)

    He, Guoxing; Zheng, Lihong

    2010-08-20

    A model for LED spectra at different drive currents is established. The simulation program of color rendering of a white-light LED cluster is developed according to the principle of additive color mixtures. The program can predict not only the spectral power distribution, chromaticity coordinates, correlated color temperature (CCT), and color rendering index (CRI), but also the drive currents of LEDs, luminous flux, input power, and luminous efficacy of white-light LED clusters. Three types of CCT tunable white-light LED clusters [warm-white/red/green/blue (WW/R/G/B), neutral-white (NW)/R/G/B, and cool-white/R/amber/G clusters] with high CRI are found by simulation analysis and realized in our laboratory. The experimental results show that the WW/R/G/B cluster can realize CCT tunable white light with high CRIs (above 90) but lower luminous efficacies (below 65 lm/W), and that the NW/R/G/B cluster can realize CCT tunable white light with high CRIs (above 86), as well as high luminous efficacies (above 64 lm/W). PMID:20733639

  2. Highly efficient light management for perovskite solar cells

    OpenAIRE

    Dong-Lin Wang; Hui-Juan Cui; Guo-Jiao Hou; Zhen-Gang Zhu; Qing-Bo Yan; Gang Su

    2016-01-01

    Organic-inorganic halide perovskite solar cells have enormous potential to impact the existing photovoltaic industry. As realizing a higher conversion efficiency of the solar cell is still the most crucial task, a great number of schemes were proposed to minimize the carrier loss by optimizing the electrical properties of the perovskite solar cells. Here, we focus on another significant aspect that is to minimize the light loss by optimizing the light management to gain a high efficiency for ...

  3. High Precision Signal Processing Algorithm for White Light Interferometry

    OpenAIRE

    Kim, Jeonggon Harrison

    2008-01-01

    A new signal processing algorithm for absolute temperature measurement using white light interferometry has been proposed and investigated theoretically. The proposed algorithm determines the phase delay of an interferometer with very high precision (≪ one fringe) by identifying the zero order fringe peak of cross-correlation of two fringe scans of white light interferometer. The algorithm features cross-correlation of interferometer fringe scans, hypothesis testing and fine tuning. The hypot...

  4. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    Energy Technology Data Exchange (ETDEWEB)

    Tarsa, Eric [Cree, Inc., Goleta, CA (United States)

    2015-08-31

    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimally distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.

  5. The high-order quantum coherence of thermal light

    Science.gov (United States)

    Chen, Hui

    Thermal light, such as sunlight, is usually considered classical light. In a macroscopic picture, classical theory successfully explained the first-order coherence phenomena of thermal light. The macroscopic theory, based on the statistical behavior of light intensity fluctuations, however, can only phenomenologically explain the second- or higher-order coherence phenomena of thermal light. This thesis introduces a microscopic quantum picture, based on the interferences of a large number of randomly distributed and randomly radiated subfields, wavepackets or photons, to the study of high-order coherence of thermal light. This thesis concludes that the second-order intensity fluctuation correlation is caused by nonlocal interference: a pair of wavepackets, which are randomly paired together, interferes with the pair itself at two distant space-time coordinates. This study has the following practical motivations: (1) to simulate N-qbits. Practical quantum computing requires quantum bits(qubits) of N-digit to represent all possible integers from 0 to 2N-1 simultaneously. A large number of independent particles can be prepared to represent a large set of N orthogonal |0> and |1> bits. In fact, based on our recent experiments of simulating the high-order correlation of entangled photons, thermal radiation is suggested as a promising source for quantum information processing. (2) to achieve sunlight ghost imaging. Ghost imaging has three attractive non-classical features: (a) the ghost camera can "see" targets that can never be seen by a classic camera; (2) it is turbulence-free; and (3) its spatial resolution is mainly determined by the angular diameter of the light source. For example, a sunlight ghost image of an object on earth may achieve a spatial resolution of 200 micrometer because the angular diameter of sun is 0.53 degree with respect to Earth. Although ghost imaging has been experimental demonstrated by using entangled photon pairs and "pseudo-thermal light

  6. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    Science.gov (United States)

    Li, Ting

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  7. Altered arterial stiffness and subendocardial viability ratio in young healthy light smokers after acute exercise.

    Directory of Open Access Journals (Sweden)

    Robert J Doonan

    Full Text Available BACKGROUND: Studies showed that long-standing smokers have stiffer arteries at rest. However, the effect of smoking on the ability of the vascular system to respond to increased demands (physical stress has not been studied. The purpose of this study was to estimate the effect of smoking on arterial stiffness and subendocardial viability ratio, at rest and after acute exercise in young healthy individuals. METHODS/RESULTS: Healthy light smokers (n = 24, pack-years = 2.9 and non-smokers (n = 53 underwent pulse wave analysis and carotid-femoral pulse wave velocity measurements at rest, and 2, 5, 10, and 15 minutes following an exercise test to exhaustion. Smokers were tested, 1 after 12h abstinence from smoking (chronic condition and 2 immediately after smoking one cigarette (acute condition. At rest, chronic smokers had higher augmentation index and lower aortic pulse pressure than non-smokers, while subendocardial viability ratio was not significantly different. Acute smoking increased resting augmentation index and decreased subendocardial viability ratio compared with non-smokers, and decreased subendocardial viability ratio compared with the chronic condition. After exercise, subendocardial viability ratio was lower, and augmentation index and aortic pulse pressure were higher in non-smokers than smokers in the chronic and acute conditions. cfPWV rate of recovery of was greater in non-smokers than chronic smokers after exercise. Non-smokers were also able to achieve higher workloads than smokers in both conditions. CONCLUSION: Chronic and acute smoking appears to diminish the vascular response to physical stress. This can be seen as an impaired 'vascular reserve' or a blunted ability of the blood vessels to accommodate the changes required to achieve higher workloads. These changes were noted before changes in arterial stiffness or subendocardial viability ratio occurred at rest. Even light smoking in young healthy individuals

  8. Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting

    Science.gov (United States)

    Krames, Michael R.; Shchekin, Oleg B.; Mueller-Mach, Regina; Mueller, Gerd O.; Zhou, Ling; Harbers, Gerard; Craford, M. George

    2007-06-01

    Status and future outlook of III-V compound semiconductor visible-spectrum light-emitting diodes (LEDs) are presented. Light extraction techniques are reviewed and extraction efficiencies are quantified in the 60%+ (AlGaInP) and ~80% (InGaN) regimes for state-of-the-art devices. The phosphor-based white LED concept is reviewed and recent performance discussed, showing that high-power white LEDs now approach the 100-lm/W regime. Devices employing multiple phosphors for “warm” white color temperatures (~3000 4000 K) and high color rendering (CRI > 80), which provide properties critical for many illumination applications, are discussed. Recent developments in chip design, packaging, and high current performance lead to very high luminance devices (~50 Mcd/m2 white at 1 A forward current in 1 x 1 mm2 chip) that are suitable for application to automotive forward lighting. A prognosis for future LED performance levels is considered given further improvements in internal quantum efficiency, which to date lag achievements in light extraction efficiency for InGaN LEDs.

  9. High Efficiency LED Lamp for Solid-State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    James Ibbetson

    2006-12-31

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  10. High resolution map of light pollution over Poland

    Science.gov (United States)

    Netzel, Henryka; Netzel, Paweł

    2016-09-01

    In 1976 Berry introduced a simple mathematical equation to calculate artificial night sky brightness at zenith. In the original model cities, considered as points with given population, are only sources of light emission. In contrary to Berry's model, we assumed that all terrain surface can be a source of light. Emission of light depends on percent of built up area in a given cell. We based on Berry's model. Using field measurements and high-resolution data we obtained the map of night sky brightness over Poland in 100-m resolution. High resolution input data, combined with a very simple model, makes it possible to obtain detailed structures of the night sky brightness without complicating the calculations.

  11. Simplified Generation of High-Angular-Momentum Light Beams

    Science.gov (United States)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Strekalov, Dmitry; Grudinin, Ivan

    2007-01-01

    A simplified method of generating a beam of light having a relatively high value of angular momentum (see figure) involves the use of a compact apparatus consisting mainly of a laser, a whispering- gallery-mode (WGM) resonator, and optical fibers. The method also can be used to generate a Bessel beam. ( Bessel beam denotes a member of a class of non-diffracting beams, so named because their amplitudes are proportional to Bessel functions of the radii from their central axes. High-order Bessel beams can have high values of angular momentum.) High-angular-momentum light beams are used in some applications in biology and nanotechnology, wherein they are known for their ability to apply torque to make microscopic objects rotate. High-angular-momentum light beams could also be used to increase bandwidths of fiber-optic communication systems. The present simplified method of generating a high-angular-momentum light beam was conceived as an alternative to prior such methods, which are complicated and require optical setups that include, variously, holograms, modulating Fabry-Perot cavities, or special microstructures. The present simplified method exploits a combination of the complex structure of the electromagnetic field inside a WGM resonator, total internal reflection in the WGM resonator, and the electromagnetic modes supported by an optical fiber. The optical fiber used to extract light from the WGM resonator is made of fused quartz. The output end of this fiber is polished flat and perpendicular to the fiber axis. The input end of this fiber is cut on a slant and placed very close to the WGM resonator at an appropriate position and orientation. To excite the resonant whispering- gallery modes, light is introduced into the WGM resonator via another optical fiber that is part of a pigtailed fiber-optic coupler. Light extracted from the WGM resonator is transformed into a high-angular- momentum beam inside the extraction optical fiber and this beam is emitted from the

  12. High Output LED-Based Profile Lighting Fixture

    DEFF Research Database (Denmark)

    Török, Lajos; Beczkowski, Szymon; Munk-Nielsen, Stig;

    2011-01-01

    the grid and delivers the required voltage to the LEDdriver which is a dual interleaved buck converter. Twelve highpower CBT-90 LEDs have been connected in a 4xRGBconfiguration to deliver high output of saturated colors without the need for subtractive color filters. More than 6000 lm of fixture light...

  13. Light gluinos in high-q(2) deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.G.; Stirling, W.J.

    1993-06-01

    A slight incompatibility in recent low-energy and high-energy alpha[sub s] measurements can be interpreted as evidence for new light color degrees of freedom. Assuming that these are the gluinos of a supersymmetric extension of the Standard Model, the authors investigate to what extent they change the standard QCD predictions for deep inelastic structure functions, and in particular whether they can be detected in such measurements at HERA. The authors present a modified set of parton distributions which includes a light gluino distribution and which can be used for further phenomenological investigations.

  14. High-Efficiency Nitride-Based Solid-State Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Paul T. Fini; Shuji Nakamura

    2005-07-30

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 {micro}m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of {approx} 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light

  15. Performance and trends of high power light emitting diodes

    Science.gov (United States)

    Bierhuizen, Serge; Krames, Michael; Harbers, Gerard; Weijers, Gon

    2007-09-01

    We will discuss the performance, progress and trend of High Power Light Emitting Diodes (HP-LEDs), suitable for high luminance applications like micro-display projection, car headlamps, spot lamps, theatre lamps, etc. Key drivers for the high luminance applications are LED parameters such as internal quantum efficiency, extraction efficiency, drive current, operating temperature and optical coupling efficiency, which are important for most applications as they also enable higher lumen/$ ratios. Historical progress, prospects for improving these parameters and potential optical luminance enhancement methods to meet the demands for the various illumination applications are presented.

  16. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    Energy Technology Data Exchange (ETDEWEB)

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  17. Light gluinos in high-Q2 deep inelastic scattering

    OpenAIRE

    Stirling, W. J.; Roberts, R G

    1993-01-01

    A slight incompatibility in recent low-energy and high-energy \\alpha_s measurements can be interpreted as evidence for new light colour degrees of freedom. Assuming that these are the gluinos of a supersymmetric extension of the Standard Model, we investigate to what extent they change the standard QCD predictions for deep inelastic structure functions, and in particular whether thay can be detected in such measurements at HERA. We present a modified set of parton distributions which includes...

  18. A squeezed light source operated under high vacuum

    OpenAIRE

    Wade, Andrew R.; Georgia L. Mansell; Sheon S. Y. Chua; Ward, Robert L.; Slagmolen, Bram J. J.; Shaddock, Daniel A.; McClelland, David E.

    2015-01-01

    Non-classical squeezed states of light are becoming increasingly important to a range of metrology and other quantum optics applications in cryptography, quantum computation and biophysics. Applications such as improving the sensitivity of advanced gravitational wave detectors and the development of space-based metrology and quantum networks will require robust deployable vacuum-compatible sources. To date non-linear photonics devices operated under high vacuum have been simple single pass sy...

  19. Highly Automated Module Production Incorporating Advanced Light Management

    Energy Technology Data Exchange (ETDEWEB)

    Perelli-Minetti, Michael [SolarWorld Americas Inc., Hillsboro, OR (United States); Roof, Kyle [SolarWorld Americas Inc., Hillsboro, OR (United States)

    2015-08-11

    The objective was to enable a high volume, cost effective solution for increasing the amount of light captured by PV modules through utilization of an advanced Light Re-directing Film and to follow a phased approach to develop and implement this new technology in order to achieve an expected power gain of up to 12 watts per module. Full size PV modules were manufactured using a new Light Redirecting Film (LRF) material applied to two different areas of PV modules in order to increase the amount of light captured by the modules. One configuration involved applying thin strips of LRF film over the tabbing ribbon on the cells in order to redirect the light that is normally absorbed by the tabbing ribbon to the active areas of the cells. A second configuration involved applying thin strips of LRF film over the white spaces between cells within a module in order to capture some of the light that is normally reflected from the white areas back through the front glass of the modules. Significant power increases of 1.4% (3.9 watts) and 1.0% (3.2 watts), respectively, compared to standard PV modules were measured under standard test conditions. The performance of PV modules with LRF applied to the tabbing ribbon was modeled. The results showed that the power increase provided by LRF depended greatly on the angle of incident light with the optimum performance only occurring when the light was within a narrow range of being perpendicular to the solar module. The modeling showed that most of the performance gain would be lost when the angle of incident light was greater than 28 degrees off axis. This effect made the orientation of modules with LRF applied to tabbing ribbons very important as modules mounted in “portrait” mode were predicted to provide little to no power gain from LRF under real world conditions. Based on these results, modules with LRF on tabbing ribbons would have to be mounted in “landscape” mode to realize a performance advantage. In addition

  20. Development of high-performance solar LED lighting system

    KAUST Repository

    Huang, B.J.

    2010-08-01

    The present study developed a high-performance charge/discharge controller for stand-alone solar LED lighting system by incorporating an nMPPO system design, a PWM battery charge control, and a PWM battery discharge control to directly drive the LED. The MPPT controller can then be removed from the stand-alone solar system and the charged capacity of the battery increases 9.7%. For LED driven by PWM current directly from battery, a reliability test for the light decay of LED lamps was performed continuously for 13,200 h. It has shown that the light decay of PWM-driven LED is the same as that of constant-current driven LED. The switching energy loss of the MOSFET in the PWM battery discharge control is less than 1%. Three solar-powered LED lighting systems (18 W, 100 W and 150 W LED) were designed and built. The long-term outdoor field test results have shown that the system performance is satisfactory with the control system developed in the present study. The loss of load probability for the 18 W solar LED system is 14.1% in winter and zero in summer. For the 100 W solar LED system, the loss of load probability is 3.6% in spring. © 2009 Elsevier Ltd. All rights reserved.

  1. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-04-30

    In this semiannual report we summarize the progress obtained in the first six months with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  2. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Paul T. Fini; Prof. Shuji Nakamura

    2002-09-01

    In this annual report we summarize the progress obtained in the first year with the support of DoE contract No.DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has made significant progress in the development of GaN vertical cavity surface-emitting lasers (VCSELs) as well as light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV). The Rensselaer team has developed target specifications for some of the key parameters for the proposed solid-state lighting system, including a luminous flux requirement matrix for various lighting applications, optimal spectral power distributions, and the performance characteristics of currently available commercial LEDs for eventual comparisons to the devices developed in the scope of this project.

  3. In high-light-acclimated coffee plants the metabolic machinery is adjusted to avoid oxidative stress rather than to benefit from extra light enhancement in photosynthetic yield.

    Directory of Open Access Journals (Sweden)

    Samuel C V Martins

    Full Text Available Coffee (Coffea arabica L. has been traditionally considered as shade-demanding, although it performs well without shade and even out-yields shaded coffee. Here we investigated how coffee plants adjust their metabolic machinery to varying light supply and whether these adjustments are supported by a reprogramming of the primary and secondary metabolism. We demonstrate that coffee plants are able to adjust its metabolic machinery to high light conditions through marked increases in its antioxidant capacity associated with enhanced consumption of reducing equivalents. Photorespiration and alternative pathways are suggested to be key players in reductant-consumption under high light conditions. We also demonstrate that both primary and secondary metabolism undergo extensive reprogramming under high light supply, including depression of the levels of intermediates of the tricarboxylic acid cycle that were accompanied by an up-regulation of a range of amino acids, sugars and sugar alcohols, polyamines and flavonoids such as kaempferol and quercetin derivatives. When taken together, the entire dataset is consistent with these metabolic alterations being primarily associated with oxidative stress avoidance rather than representing adjustments in order to facilitate the plants from utilizing the additional light to improve their photosynthetic performance.

  4. In high-light-acclimated coffee plants the metabolic machinery is adjusted to avoid oxidative stress rather than to benefit from extra light enhancement in photosynthetic yield.

    Science.gov (United States)

    Martins, Samuel C V; Araújo, Wagner L; Tohge, Takayuki; Fernie, Alisdair R; DaMatta, Fábio M

    2014-01-01

    Coffee (Coffea arabica L.) has been traditionally considered as shade-demanding, although it performs well without shade and even out-yields shaded coffee. Here we investigated how coffee plants adjust their metabolic machinery to varying light supply and whether these adjustments are supported by a reprogramming of the primary and secondary metabolism. We demonstrate that coffee plants are able to adjust its metabolic machinery to high light conditions through marked increases in its antioxidant capacity associated with enhanced consumption of reducing equivalents. Photorespiration and alternative pathways are suggested to be key players in reductant-consumption under high light conditions. We also demonstrate that both primary and secondary metabolism undergo extensive reprogramming under high light supply, including depression of the levels of intermediates of the tricarboxylic acid cycle that were accompanied by an up-regulation of a range of amino acids, sugars and sugar alcohols, polyamines and flavonoids such as kaempferol and quercetin derivatives. When taken together, the entire dataset is consistent with these metabolic alterations being primarily associated with oxidative stress avoidance rather than representing adjustments in order to facilitate the plants from utilizing the additional light to improve their photosynthetic performance.

  5. High-Efficiency Nitride-Base Photonic Crystal Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    James Speck; Evelyn Hu; Claude Weisbuch; Yong-Seok Choi; Kelly McGroddy; Gregor Koblmuller; Elison Matioli; Elizabeth Rangel; Fabian Rol; Dobri Simeonov

    2010-01-31

    The research activities performed in the framework of this project represent a major breakthrough in the demonstration of Photonic Crystals (PhC) as a competitive technology for LEDs with high light extraction efficiency. The goals of the project were to explore the viable approaches to manufacturability of PhC LEDS through proven standard industrial processes, establish the limits of light extraction by various concepts of PhC LEDs, and determine the possible advantages of PhC LEDs over current and forthcoming LED extraction concepts. We have developed three very different geometries for PhC light extraction in LEDs. In addition, we have demonstrated reliable methods for their in-depth analysis allowing the extraction of important parameters such as light extraction efficiency, modal extraction length, directionality, internal and external quantum efficiency. The information gained allows better understanding of the physical processes and the effect of the design parameters on the light directionality and extraction efficiency. As a result, we produced LEDs with controllable emission directionality and a state of the art extraction efficiency that goes up to 94%. Those devices are based on embedded air-gap PhC - a novel technology concept developed in the framework of this project. They rely on a simple and planar fabrication process that is very interesting for industrial implementation due to its robustness and scalability. In fact, besides the additional patterning and regrowth steps, the process is identical as that for standard industrially used p-side-up LEDs. The final devices exhibit the same good electrical characteristics and high process yield as a series of test standard LEDs obtained in comparable conditions. Finally, the technology of embedded air-gap patterns (PhC) has significant potential in other related fields such as: increasing the optical mode interaction with the active region in semiconductor lasers; increasing the coupling of the incident

  6. High Precision Signal Processing Algorithm for White Light Interferometry

    Directory of Open Access Journals (Sweden)

    Jeonggon Harrison Kim

    2008-12-01

    Full Text Available A new signal processing algorithm for absolute temperature measurement using white light interferometry has been proposed and investigated theoretically. The proposed algorithm determines the phase delay of an interferometer with very high precision (<< one fringe by identifying the zero order fringe peak of cross-correlation of two fringe scans of white light interferometer. The algorithm features cross-correlation of interferometer fringe scans, hypothesis testing and fine tuning. The hypothesis test looks for a zero order fringe peak candidate about which the cross-correlation is symmetric minimizing the uncertainty of mis-identification. Fine tuning provides the proposed algorithm with high precision subsample resolution phase delay estimation capability. The shot noise limited performance of the proposed algorithm has been analyzed using computer simulations. Root-mean-square (RMS phase error of the estimated zero order fringe peak has been calculated for the changes of three different parameters (SNR, fringe scan sample rate, coherence length of light source. Computer simulations showed that the proposed signal processing algorithm identified the zero order fringe peak with a miss rate of 3 x 10-4 at 31 dB SNR and the extrapolated miss rate at 35 dB was 3 x 10-8. Also, at 35 dB SNR, RMS phase error less than 10-3 fringe was obtained. The proposed signal processing algorithm uses a software approach that is potentially inexpensive, simple and fast.

  7. Highly Bright White Organic Light-Emitting Diode

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ A highly bright white organic light-emitting diode (OLED) was realized by using a highly bright blue emitting layer, 1,7-diphenyl-4-biphenyl-3,5-dimethyl-l,7-dihydrodipyrazolo[3,4-b;4',3'-e]pyridine (PAP-Ph), together with a 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)-doped Alq [tris(8-hydroxyquinolinato) aluminum (Ⅲ)] layer to provide the blue, red and green emission for color mixing. With appropriate thickness control, the white-light OLED has a performance that reaches 24700 cd/m2 at 15 V, 1.93 lm/W at 6.5 V, and >300 cd/m2 at 7.7 mA/em2. The Commission Internationale de l'Eclairage (CIE) coordinates of the emitted light vary in a very small range, from (0.35, 0.34) to (0.34, 0.35), when forward voltages change from 6 to 12 V.

  8. Highly Bright White Organic Light-Emitting Diode

    Institute of Scientific and Technical Information of China (English)

    KO; C.; W.

    2001-01-01

    A highly bright white organic light-emitting diode (OLED) was realized by using a highly bright blue emitting layer, 1,7-diphenyl-4-biphenyl-3,5-dimethyl-l,7-dihydrodipyrazolo[3,4-b;4',3'-e]pyridine (PAP-Ph), together with a 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM)-doped Alq [tris(8-hydroxyquinolinato) aluminum (Ⅲ)] layer to provide the blue, red and green emission for color mixing. With appropriate thickness control, the white-light OLED has a performance that reaches 24700 cd/m2 at 15 V, 1.93 lm/W at 6.5 V, and >300 cd/m2 at 7.7 mA/em2. The Commission Internationale de l'Eclairage (CIE) coordinates of the emitted light vary in a very small range, from (0.35, 0.34) to (0.34, 0.35), when forward voltages change from 6 to 12 V.  ……

  9. Light-induced transpiration alters cell water relations in figleaf gourd (Cucurbita ficifolia) seedlings exposed to low root temperatures.

    Science.gov (United States)

    Lee, Seong Hee; Zwiazek, Janusz J; Chung, Gap Chae

    2008-06-01

    Water relation parameters including elastic modulus (epsilon), half-times of water exchange (T(w)(1/2)), hydraulic conductivity and turgor pressure (P) were measured in individual root cortical and cotyledon midrib cells in intact figleaf gourd (Cucurbita ficifolia) seedlings, using a cell pressure probe. Transpiration rates (E) of cotyledons were also measured using a steady-state porometer. The seedlings were exposed to low ambient (approximately 10 micromol m(-2) s(-1)) or high supplemental irradiance (approximately 300 micromol m(-2) s(-1) PPF density) at low (8 degrees C) or warm (22 degrees C) root temperatures. When exposed to low irradiance, all the water relation parameters of cortical cells remained similar at both root temperatures. The exposure of cotyledons to supplemental light at warm root temperatures, however, resulted in a two- to three-fold increase in T(w)(1/2) values accompanied with the reduced hydraulic conductivity in both root cortical (Lp) and cotyledon midrib cells (Lp(c)). Low root temperature (LRT) further reduced Lp(c) and E, whether it was measured under low or high irradiance levels. The reductions of Lp as the result of respective light and LRT treatments were prevented by the application of 1 microM ABA. Midrib cells required higher concentrations of ABA (2 microM) in order to prevent the reduction in Lp(c). When the exposure of cotyledons to light was accompanied by LRT, however, ABA proved ineffective in reversing the inhibition of Lp. LRT combined with high irradiance triggered a drastic 10-fold reduction in water permeability of cortical and midrib cells and increased epsilon and T(w)(1/2) values. Measurement of E indicated that the increased water demand by the transpiring plants was fulfilled by an increase in the apoplastic pathway as principal water flow route. The importance of water transport regulation by transpiration affecting the hydraulic conductivity of the roots is discussed. PMID:18346079

  10. Architecture of a highly modular lighting simulation system

    CERN Document Server

    CERN. Geneva

    2014-01-01

    This talk will discuss the challenges before designing a highly modular, parallel, heterogeneous rendering system and their solutions. It will review how different lighting simulation algorithms could be combined to work together using an unified framework. We will discuss how the system can be instrumented for collecting data about the algorithms' runtime performance. The talk includes an overview of how collected data could be visualised in the computational domain of the lighting algorithms and be used for visual debugging and analysis. About the speaker Hristo Lesev has been working in the software industry for the last ten years. He has taken part in delivering a number of desktop and mobile applications. Computer Graphics programming is Hristo's main passion and he has experience writing extensions for 3D software like 3DS Max, Maya, Blender, Sketchup, and V-Ray. Since 2006 Hristo teaches Photorealistic Ray Tracing in the Faculty of Mathematics and Informatics at the Paisii Hilendarski...

  11. High mobility solution-processed hybrid light emitting transistors

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Bright; Kim, Jin Young [School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Ullah, Mujeeb; Burn, Paul L.; Namdas, Ebinazar B., E-mail: e.namdas@uq.edu.au, E-mail: seojh@dau.ac.kr [Centre for Organic Photonics and Electronics, University of Queensland, Brisbane, Queensland 4072 (Australia); Chae, Gil Jo [Department of Materials Physics, Dong-A University, Busan 604-714 (Korea, Republic of); Department of Physics and EHSRC, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Cho, Shinuk [Department of Physics and EHSRC, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Seo, Jung Hwa, E-mail: e.namdas@uq.edu.au, E-mail: seojh@dau.ac.kr [Department of Materials Physics, Dong-A University, Busan 604-714 (Korea, Republic of)

    2014-11-03

    We report the design, fabrication, and characterization of high-performance, solution-processed hybrid (inorganic-organic) light emitting transistors (HLETs). The devices employ a high-mobility, solution-processed cadmium sulfide layer as the switching and transport layer, with a conjugated polymer Super Yellow as an emissive material in non-planar source/drain transistor geometry. We demonstrate HLETs with electron mobilities of up to 19.5 cm{sup 2}/V s, current on/off ratios of >10{sup 7}, and external quantum efficiency of 10{sup −2}% at 2100 cd/m{sup 2}. These combined optical and electrical performance exceed those reported to date for HLETs. Furthermore, we provide full analysis of charge injection, charge transport, and recombination mechanism of the HLETs. The high brightness coupled with a high on/off ratio and low-cost solution processing makes this type of hybrid device attractive from a manufacturing perspective.

  12. Thin Film Packaging Solutions for High Efficiency OLED Lighting Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-06-30

    The objective of the 'Thin Film Packaging Solutions for High Efficiency OLED Lighting Products' project is to demonstrate thin film packaging solutions based on SiC hermetic coatings that, when applied to glass and plastic substrates, support OLED lighting devices by providing longer life with greater efficiency at lower cost than is currently available. Phase I Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on optical glass with lifetime of 1,000 hour life, CRI greater than 75, and 15 lm/W. Phase II Objective: Demonstrate thin film encapsulated working phosphorescent OLED devices on plastic or glass composite with 25 lm/W, 5,000 hours life, and CRI greater than 80. Phase III Objective: Demonstrate 2 x 2 ft{sup 2} thin film encapsulated working phosphorescent OLED with 40 lm/W, 10,000 hour life, and CRI greater than 85. This report details the efforts of Phase III (Budget Period Three), a fourteen month collaborative effort that focused on optimization of high-efficiency phosphorescent OLED devices and thin-film encapsulation of said devices. The report further details the conclusions and recommendations of the project team that have foundation in all three budget periods for the program. During the conduct of the Thin Film Packaging Solutions for High Efficiency OLED Lighting Products program, including budget period three, the project team completed and delivered the following achievements: (1) a three-year marketing effort that characterized the near-term and longer-term OLED market, identified customer and consumer lighting needs, and suggested prototype product concepts and niche OLED applications lighting that will give rise to broader market acceptance as a source for wide area illumination and energy conservation; (2) a thin film encapsulation technology with a lifetime of nearly 15,000 hours, tested by calcium coupons, while stored at 16 C and 40% relative humidity ('RH'). This encapsulation technology

  13. Scalability of buried microreflector light-emitting diodes for high-current applications

    Science.gov (United States)

    Illek, Stefan; Pietzonka, Ines; Ploessl, Andreas; Stauss, Peter; Wegleiter, Walter; Windisch, Reiner; Wirth, Ralph; Zull, Heribert; Streubel, Klaus P.

    2003-07-01

    The combination of wafer soldering using metal layers and the introduction of buried micro-reflector structures has proven to be a promising approach to fabricate high brightness, substrate-less LEDs in the AlGaInP material system. In addition to the enhanced light output, the scalability of this approach has been predicted as a major advantage. In contrast to other approaches, larger area LEDs can be fabricated without altering the epitaxial structure and thickness of layers simply by offering a larger area for light generation. First samples of amber (λ = 615 nm) buried micro-reflector LEDs with side-length up to 1000 μm have been realized. Devices mounted in packages with improved heat sinks are capable of low voltage CW operation with currents as high as 600 mA (Vfwlumen. Already these first experiments demonstrate the potential of the concept of buried micro-reflector LEDs not only for high-brightness but also for high-current operation. The results are among the best values of high-flux LEDs in this wavelength range.

  14. High-Voltage LED Light Engine with Integrated Driver

    Energy Technology Data Exchange (ETDEWEB)

    Soer, Wouter [Lumileds LLC, San Jose, CA (United States)

    2016-02-29

    LED luminaires have seen dramatic changes in cost breakdown over the past few years. The LED component cost, which until recently was the dominant portion of luminaire cost, has fallen to a level of the same order as the other luminaire components, such as the driver, housing, optics etc. With the current state of the technology, further luminaire performance improvement and cost reduction is realized most effectively by optimization of the whole system, rather than a single component. This project focuses on improving the integration between LEDs and drivers. Lumileds has developed a light engine platform based on low-cost high-power LEDs and driver topologies optimized for integration with these LEDs on a single substrate. The integration of driver and LEDs enables an estimated luminaire cost reduction of about 25% for targeted applications, mostly due to significant reductions in driver and housing cost. The high-power LEDs are based on Lumileds’ patterned sapphire substrate flip-chip (PSS-FC) technology, affording reduced die fabrication and packaging cost compared to existing technology. Two general versions of PSS-FC die were developed in order to create the desired voltage and flux increments for driver integration: (i) small single-junction die (0.5 mm2), optimal for distributed lighting applications, and (ii) larger multi-junction die (2 mm2 and 4 mm2) for high-power directional applications. Two driver topologies were developed: a tapped linear driver topology and a single-stage switch-mode topology, taking advantage of the flexible voltage configurations of the new PSS-FC die and the simplification opportunities enabled by integration of LEDs and driver on the same board. A prototype light engine was developed for an outdoor “core module” application based on the multi-junction PSS-FC die and the single-stage switch-mode driver. The light engine meets the project efficacy target of 128 lm/W at a luminous flux

  15. High-Voltage LED Light Engine with Integrated Driver

    Energy Technology Data Exchange (ETDEWEB)

    Soer, Wouter [Lumileds LLC, San Jose, CA (United States)

    2016-02-29

    LED luminaires have seen dramatic changes in cost breakdown over the past few years. The LED component cost, which until recently was the dominant portion of luminaire cost, has fallen to a level of the same order as the other luminaire components, such as the driver, housing, optics etc. With the current state of the technology, further luminaire performance improvement and cost reduction is realized most effectively by optimization of the whole system, rather than a single component. This project focuses on improving the integration between LEDs and drivers. Lumileds has developed a light engine platform based on low-cost high-power LEDs and driver topologies optimized for integration with these LEDs on a single substrate. The integration of driver and LEDs enables an estimated luminaire cost reduction of about 25% for targeted applications, mostly due to significant reductions in driver and housing cost. The high-power LEDs are based on Lumileds’ patterned sapphire substrate flip-chip (PSS-FC) technology, affording reduced die fabrication and packaging cost compared to existing technology. Two general versions of PSS-FC die were developed in order to create the desired voltage and flux increments for driver integration: (i) small single-junction die (0.5 mm2), optimal for distributed lighting applications, and (ii) larger multi-junction die (2 mm2 and 4 mm2) for high-power directional applications. Two driver topologies were developed: a tapped linear driver topology and a single-stage switch-mode topology, taking advantage of the flexible voltage configurations of the new PSS-FC die and the simplification opportunities enabled by integration of LEDs and driver on the same board. A prototype light engine was developed for an outdoor “core module” application based on the multi-junction PSS-FC die and the single-stage switch-mode driver. The light engine meets the project efficacy target of 128 lm/W at a luminous flux greater than 4100 lm, a correlated

  16. High-current quasi-square-wave millisecond light source for high-speed photography

    Science.gov (United States)

    Lin, Wenzheng; Jiang, Aibao; Zhuo, Meizhen

    1993-01-01

    A novel powerful strobe for high-speed photography is described which can replace the high power cw light source, to save energy and synchroflash with the camera. In this strobe, three- phase transformerless direct rectifier, high current SCR switch and pre-ionization technique are used so that the energy consumption goes down greatly, and its total weight is less than 25 Kg. Its principal parameters are as follows: average power, 50 KW; light emitting pulse width, 1 - 100 ms; pulse rise time, less than 0.05 ms; pulse fall time, less than 0.1 ms.

  17. High-resolution TFT-LCD for spatial light modulator

    Science.gov (United States)

    Lee, JaeWon; Kim, Yong-Hae; Byun, Chun-Won; Pi, Jae-Eun; Oh, Himchan; Kim, GiHeon; Lee, Myung-Lae; Chu, Hye-Yong; Hwang, Chi-Sun

    2014-06-01

    SLM with very fine pixel pitch is needed for the holographic display system. Among various kinds of SLMs, commercially available high resolution LCoS has been widely used as a spatial light modulator. But the size of commercially available LCoS SLM is limited because the manufacturing technology of LCoS is based on the semiconductor process developed on small size Si wafer. Recently very high resolution flat panel display panel (~500ppi) was developed as a "retina display". Until now, the pixel pitch of flat panel display is several times larger than the pixel pitch of LCoS. But considering the possibility of shrink down the pixel pitch with advanced lithographic tools, the application of flat panel display will make it possible to build a SLM with high spatial bandwidth product. We simulated High resolution TFT-LCD panel on glass substrate using oxide semiconductor TFT with pixel pitch of 20um. And we considered phase modulation behavior of LC(ECB) mode. The TFT-LCD panel is reflective type with 4-metal structure with organic planarization layers. The technical challenge for high resolution large area SLM will be discussed with very fine pixel.

  18. Radiation-induced epigenetic alterations after low and high LET irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut, E-mail: uaypa001@umaryland.edu [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Morgan, William F. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Baulch, Janet E. [Department of Radiation Oncology, Radiation Oncology Research Laboratory, University of Maryland School of Medicine, Baltimore, MD 21201 (United States)

    2011-02-10

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding radiation-induced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET X-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NF{kappa}B), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. We demonstrate that miRNA expression levels can be altered after X-ray irradiation and that these miRNA are involved in chromatin remodeling and DNA methylation. A higher incidence of epigenetic changes was observed after exposure to X-rays than Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This distinction is apparent at miRNA analyses at which only three miRNA involved in two major pathways were altered after high LET irradiations while six miRNA involved in five major pathways were altered after low LET irradiations. This study also shows that the irradiated cells acquire epigenetic changes suggesting that epigenetic aberrations may arise

  19. Highly efficient light-emitting diodes based on intramolecular rotation

    CERN Document Server

    Di, Dawei; Yang, Le; Jones, Saul; Friend, Richard H; Linnolahti, Mikko; Bochmann, Manfred; Credgington, Dan

    2016-01-01

    The efficiency of an organic light-emitting diode (OLED) is fundamentally governed by the spin of recombining electron-hole pairs (singlet and triplet excitons), since triplets cannot usually emit light. The singlet-triplet energy gap, a key factor for efficient utilization of triplets, is normally positive. Here we show that in a family of materials with amide donor and carbene acceptor moieties linked by a metal, this energy gap for singlet and triplet excitons with charge-transfer character can be tuned from positive to negative values via the rotation of donor and acceptor about the metal-amide bond. When the gap is close to zero, facile intersystem crossing is possible, enabling efficient emission from singlet excitons. We demonstrate solution-processed LEDs with exceptionally high quantum efficiencies (near-100% internal and >27% external quantum efficiencies), and current and power efficiencies (87 cd/A and 75 lm/W) comparable to, or exceeding, those of state-of-the-art vacuum-processed OLEDs and quant...

  20. HIGH-EFFICIENCY NITRIDE-BASED SOLID-STATE LIGHTING

    Energy Technology Data Exchange (ETDEWEB)

    Paul T. Fini; Shuji Nakamura

    2003-10-30

    In this second annual report we summarize the progress in the second-year period of Department of Energy contract DE-FC26-01NT41203, entitled ''High- Efficiency Nitride-Based Solid-State Lighting''. The two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and Rensselaer Polytechnic Institute (led by Dr. N. Narendran), are pursuing the goals of this contract from thin film growth, characterization, and packaging standpoints. The UCSB team has recently made significant progress in the development of light-emitting diodes (LEDs) with AlGaN active regions emitting in the ultraviolet (UV), resonant-cavity LEDs (RCLEDs), as well as lateral epitaxial overgrowth (LEO) techniques to obtain large-area non-polar GaN films with low average dislocation density. The Rensselaer team has benchmarked the performance of commercially available LED systems and has also conducted efforts to develop an optimized RCLED packaging scheme, including development of advanced epoxy encapsulant chemistries.

  1. High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress.

    Directory of Open Access Journals (Sweden)

    Eui Seok Shin

    Full Text Available Astrocytes are macroglial cells that have a crucial role in development of the retinal vasculature and maintenance of the blood-retina-barrier (BRB. Diabetes affects the physiology and function of retinal vascular cells including astrocytes (AC leading to breakdown of BRB. However, the detailed cellular mechanisms leading to retinal AC dysfunction under high glucose conditions remain unclear. Here we show that high glucose conditions did not induce the apoptosis of retinal AC, but instead increased their rate of DNA synthesis and adhesion to extracellular matrix proteins. These alterations were associated with changes in intracellular signaling pathways involved in cell survival, migration and proliferation. High glucose conditions also affected the expression of inflammatory cytokines in retinal AC, activated NF-κB, and prevented their network formation on Matrigel. In addition, we showed that the attenuation of retinal AC migration under high glucose conditions, and capillary morphogenesis of retinal endothelial cells on Matrigel, was mediated through increased oxidative stress. Antioxidant proteins including heme oxygenase-1 and peroxiredoxin-2 levels were also increased in retinal AC under high glucose conditions through nuclear localization of transcription factor nuclear factor-erythroid 2-related factor-2. Together our results demonstrated that high glucose conditions alter the function of retinal AC by increased production of inflammatory cytokines and oxidative stress with significant impact on their proliferation, adhesion, and migration.

  2. High performance light-colored nitrile-butadiene rubber nanocomposites.

    Science.gov (United States)

    Lei, Yanda; Guo, Baochun; Chen, Feng; Zhu, Lixin; Zhou, Wenyou; Jia, Demin

    2011-12-01

    High mechanical performance nitrile-butadiene rubber (NBR) with light color was fabricated by the method of in situ formation of zinc disorbate (ZDS) or magnesium disorbate (MDS). The in situ formed ZDS and its polymerization via internal mixing was confirmed by X-ray diffaraction. The mechanical properties, ageing resistance, morphology and the dynamic mechanical analysis were fully studied. It was found that with increasing loading of metallic disorbate both the curing rate and the ionic crosslink density was largely increased. The modulus, tensile strength and tear strength were largely increased. With a comparison between internal mixing and opening mixing, the mechanical performance for the former one was obviously better than the latter one. The high performance was ascribed to the finely dispersion nano domains with irregular shape and obscure interfacial structures. Except for the NBR vulcanizate with a high loading of MDS, the others' ageing resistance with incorporation of these two metallic disorbate was found to be good. Dynamic mechanical analysis (DMA) showed that, with increasing loading of metallic disorbate, the highly increased storage modulus above -20 degrees C, the up-shifted glass transition temperature (Tg) and the reduced mechanical loss were ascribed to strengthened interfacial interactions. PMID:22408977

  3. Melanopsin as a sleep modulator: circadian gating of the direct effects of light on sleep and altered sleep homeostasis in Opn4(-/- mice.

    Directory of Open Access Journals (Sweden)

    Jessica W Tsai

    2009-06-01

    other light-encoding pathways such as rod and cones. Our study, furthermore, demonstrates that lack of melanopsin alters sleep homeostasis. These findings call for a reevaluation of the role of light on mammalian physiology and behavior.

  4. New application of superconductors: high sensitivity cryogenic light detectors

    CERN Document Server

    Cardani, L; Casali, N; Casellano, M G; Colantoni, I; Coppolecchia, A; Cosmelli, C; Cruciani, A; D'Addabbo, A; Di Domizio, S; Martinez, M; Tomei, C; Vignati, M

    2016-01-01

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs), that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results ob...

  5. High Order Harmonics in Light Curves of Kepler Planets

    CERN Document Server

    Armstrong, Caden

    2015-01-01

    The Kepler mission was launched in 2009 and has discovered thousands of planet candidates. In a recent paper, Esteves et al. (2013) found a periodic signal in the light curves of KOI-13 and HAT-P-7, with a frequency triple the orbital frequency of a transiting planet. We found similar harmonics in many systems with a high occurrence rate. At this time, the origins of the signal are not entirely certain. We look carefully at the possibility of errors being introduced through our data processing routines but conclude that the signal is real. The harmonics on multiples of the orbital frequency are a result of non-sinusoidal periodic signals. We speculate on their origin and generally caution that these harmonics could lead to wrong estimates of planet albedos, beaming mass estimates, and ellipsoidal variations.

  6. High efficient light-emittingdiodes using polystyrene as matrix

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    High efficient polymer light-emitting diodes(PLEDs) were obtained by using a blend of conjugatedpolymer G-PF, a copolymer of fluorene and thiophene, andpolystyrene (PS). The maximum electroluminescent (EL)efficiency of the device is 12 cd/A when G-PF/PS weight ratiois at 80/20, while that of pure G-PF device is 6.5 cd/A. Studieson photoluminescence and electroluminescence of the blendsindicate that inter-chain interactions were tremendouslysuppressed due to the dilution effect. However, after PS con-centration exceeds 20% the EL efficiency of the devices de-creases with further increase of PS concentration. This maybe due to the decrease of the recombination probability ofelectrons and holes with the excessive addition of PS insulator.

  7. Modifying the high rate algal pond light environment and its effects on light absorption and photosynthesis.

    Science.gov (United States)

    Sutherland, Donna L; Montemezzani, Valerio; Howard-Williams, Clive; Turnbull, Matthew H; Broady, Paul A; Craggs, Rupert J

    2015-03-01

    The combined use of high rate algal ponds (HRAPs) for wastewater treatment and commercial algal production is considered to be an economically viable option. However, microalgal photosynthesis and biomass productivity is constrained in HRAPs due to light limitation. This paper investigates how the light climate in the HRAP can be modified through changes in pond depth, hydraulic retention time (HRT) and light/dark turnover rate and how this impacts light absorption and utilisation by the microalgae. Wastewater treatment HRAPs were operated at three different pond depth and HRT during autumn. Light absorption by the microalgae was most affected by HRT, significantly decreasing with increasing HRT, due to increased internal self-shading. Photosynthetic performance (as defined by Pmax, Ek and α), significantly increased with increasing pond depth and decreasing HRT. Despite this, increasing pond depth and/or HRT, resulted in decreased pond light climate and overall integrated water column net oxygen production. However, increased light/dark turnover was able to compensate for this decrease, bringing the net oxygen production in line with shallower ponds operated at shorter HRT. On overcast days, modelled daily net photosynthesis significantly increased with increased light/dark turnover, however, on clear days such increased turnover did not enhance photosynthesis. This study has showed that light absorption and photosynthetic performance of wastewater microalgae can be modified through changes to pond depth, HRT and light/dark turnover.

  8. High-speed Light Peak optical link for high energy applications

    Science.gov (United States)

    Chang, F. X.; Chiang, F.; Deng, B.; Hou, J.; Hou, S.; Liu, C.; Liu, T.; Teng, P. K.; Wang, C. H.; Xu, T.; Ye, J.

    2014-11-01

    Optical links provide high speed data transmission with low mass fibers favorable for applications in high energy experiments. We report investigation of a compact Light Peak optical engine designed for data transmission at 4.8 Gbps. The module is assembled with bare die VCSEL, PIN diodes and a control IC aligned within a prism receptacle for light coupling to fiber ferrule. Radiation damage in the receptacle was examined with 60Co gamma ray. Radiation induced single event effects in the optical engine were studied with protons, neutrons and X-ray tests.

  9. High-speed Light Peak optical link for high energy applications

    International Nuclear Information System (INIS)

    Optical links provide high speed data transmission with low mass fibers favorable for applications in high energy experiments. We report investigation of a compact Light Peak optical engine designed for data transmission at 4.8 Gbps. The module is assembled with bare die VCSEL, PIN diodes and a control IC aligned within a prism receptacle for light coupling to fiber ferrule. Radiation damage in the receptacle was examined with 60Co gamma ray. Radiation induced single event effects in the optical engine were studied with protons, neutrons and X-ray tests

  10. High-speed Light Peak optical link for high energy applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, F.X. [Academia Sinica, Taipei, Taiwan (China); Chiang, F. [FOCI Fiber Optic Comm., Inc., Hsinchu, Taiwan (China); Deng, B. [Hubei Polytechnic University, Huangshi, Hubei (China); Southern Methodist University, Dallas, TX (United States); Hou, J. [FOCI Fiber Optic Comm., Inc., Hsinchu, Taiwan (China); Hou, S., E-mail: suen@gate.sinica.edu.tw [Academia Sinica, Taipei, Taiwan (China); Liu, C.; Liu, T. [Southern Methodist University, Dallas, TX (United States); Teng, P.K. [Academia Sinica, Taipei, Taiwan (China); Wang, C.H. [National United University, Miaoli, Taiwan (China); Xu, T. [Shandong University, Ji' nan (China); Southern Methodist University, Dallas, TX (United States); Ye, J. [Southern Methodist University, Dallas, TX (United States)

    2014-11-21

    Optical links provide high speed data transmission with low mass fibers favorable for applications in high energy experiments. We report investigation of a compact Light Peak optical engine designed for data transmission at 4.8 Gbps. The module is assembled with bare die VCSEL, PIN diodes and a control IC aligned within a prism receptacle for light coupling to fiber ferrule. Radiation damage in the receptacle was examined with {sup 60}Co gamma ray. Radiation induced single event effects in the optical engine were studied with protons, neutrons and X-ray tests.

  11. Cumulative-Phase-Alteration of Galactic-Light Passing Through the Cosmic-Microwave-Background: A New Mechanism for Some Observed Spectral-Shifts

    Directory of Open Access Journals (Sweden)

    Tank H. K.

    2012-07-01

    Full Text Available Currently, whole of the measured “cosmological-red-shift ” is interpreted as due to the “metric-expansion-of-space”; so for the required “closer -density” of the universe, we need twenty times more mass-energy than the visible baryonic-matter contained in the universe. This paper proposes a new mechanism, which can account for good per- centage of the red-shift in the extra-galactic-light, greatly reducing the requirement of dark matter-energy. Also, this mechanism can cause a new kin d of blue-shift reported here, and their observational evidences. These spectral-s hifts are proposed to result due to cumulative phase-alteration of extra-galactic-light b ecause of vector-addition of: (i electric-field of extra-galactic-light and (ii that of the cosmic-microwave-background (CMB. Since the center-frequency of CMB is much lower than extra-galactic-light, the cumulative-phase-alteration results in red -shift, observed as an additional contribu- tor to the measured “cosmological red-shift”; and since the center-frequency of CMB is higher than the radio-frequency-signals used to measure velocity of space-probes like: Pioneer-10, Pioneer-11, Galileo and Ulysses, the cum ulative-phase-alteration re- sulted in blue-shift, leading to the interpretation of deceleration of these space-probes. While the galactic-light experiences the red-shift, and th e ranging-signals of the space- probes experience blue -shift, they are comparable in magnitude, providing a supportive- evidence for the new mechanism proposed here. More confirmative-experiments for this new mechanism are also proposed.

  12. Handling high data rate detectors at Diamond Light Source

    Science.gov (United States)

    Pedersen, U. K.; Rees, N.; Basham, M.; Ferner, F. J. K.

    2013-03-01

    An increasing number of area detectors, in use at Diamond Light Source, produce high rates of data. In order to capture, store and process this data High Performance Computing (HPC) systems have been implemented. This paper will present the architecture and usage for handling high rate data: detector data capture, large volume storage and parallel processing. The EPICS area Detector frame work has been adopted to abstract the detectors for common tasks including live processing, file format and storage. The chosen data format is HDF5 which provides multidimensional data storage and NeXuS compatibility. The storage system and related computing infrastructure include: a centralised Lustre based parallel file system, a dedicated network and a HPC cluster. A well defined roadmap is in place for the evolution of this to meet demand as the requirements and technology advances. For processing the science data the HPC cluster allow efficient parallel computing, on a mixture of ×86 and GPU processing units. The nature of the Lustre storage system in combination with the parallel HDF5 library allow efficient disk I/O during computation jobs. Software developments, which include utilising optimised parallel file reading for a variety of post processing techniques, are being developed in collaboration as part of the Pan-Data EU Project (www.pan-data.eu). These are particularly applicable to tomographic reconstruction and processing of non crystalline diffraction data.

  13. Integrated Automotive High-Power LED-Lighting Systems in 3D-MID Technology

    NARCIS (Netherlands)

    Thomas, W.

    2014-01-01

    The growing energy consumption of lighting as well as rising luminous efficacies and -fluxes of high-power Light Emitting Diodes (LEDs) have contributed to the widespread use of LEDs in modern lighting systems. One of the most prominent users of the LED-technology is automotive (exterior) lighting.

  14. Alteration Development of the Simulated HLW Glass at High Temperature in Beishan Underground Water

    Directory of Open Access Journals (Sweden)

    Zhentao Zhang

    2012-01-01

    Full Text Available The simulated HLW glass was found to be altered in Beishan underground water at high temperature in two different stages starting with slow leaching of the immobilized elements for a period followed by a sharp degradation of the glass matrix. Immersed at 150°C in Beishan underground water with glass-surface-area-to-solution-volume ratio of 6000 m-1, the glass was alterated rapidly with the sharp release of B, Na, Li, Cs, and Mo from the cold HLW glass after a stable period of 180 days. The glass was degraded up to 73.6% for the immersion period of 730 days resulting in the release of Mo and Cs up to 73.6% and 2.7% from the glass, respectively. With the alteration underway, new minerals were identified to be zeolite P, mordenite, nontronite, dickite, okonite, quartz, saponite, and tincalconite. However, at low temperature of 90°C, the glass was very stable with limited leaching of Na, B, and Li.

  15. High Energy Density Science at the Linac Coherent Light Source

    International Nuclear Information System (INIS)

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded descriptions (Ch. V), and a

  16. High Energy Density Science at the Linac Coherent Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R W

    2007-10-19

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded

  17. Final Report, Photocathodes for High Repetition Rate Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Zvi, Ilan [Stony Brook University

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes b) Development and testing of a diamond amplifier for photocathodes c) Tests of both cathodes in superconducting RF photoguns and copper RF photoguns

  18. Cluster structure in highly-excited states of light nuclei

    International Nuclear Information System (INIS)

    The cluster structure in the highly-excited states of light nuclei are investigated using the multi-cluster model. For this purpose, we propose a developed treatment method of the multi-cluster model. The method consists of two parts: One is a systematic construction method of the multi-cluster Pauli-allowed states. Another is a truncation method of the large model space of the multi-cluster system. We show that we can easily solve the equation of the orthogonality condition model (OCM) for complex multi-cluster systems by the use of the method. We apply the multi-cluster models 3α, 4α, 12C + 2α and 16O + 2α to 12C, 16O, 20Ne and 24Mg, respectively. As shown in the Ikeda diagram, these models open a very interesting problem not only of the cluster structure in the highly-excited states of those nuclei but also of the structure change between different cluster structures. We show a typical example of the 16O + 2α model for 24Mg ; 1) many excited states with the 20Ne-α cluster structure are obtained at excitation energies above 10 MeV, 2) the 16O-8Be cluster states are obtained at the energy region higher than 20 MeV, and 3) the very interesting states with the α-16O-α linear-chain-like structure are predicted at about 20 MeV excitation energy. (author)

  19. Listeria monocytogenes Mutants with Altered Growth Phenotypes at Refrigeration Temperature and High Salt Concentrations

    OpenAIRE

    Burall, Laurel S.; Laksanalamai, Pongpan; Datta, Atin R.

    2012-01-01

    Listeria monocytogenes can survive and grow in refrigerated temperatures and high-salt environments. In an effort to better understand the associated mechanisms, a library of ∼ 5,200 transposon mutants of LS411, a food isolate from the Jalisco cheese outbreak, were screened for their ability to grow in brain heart infusion (BHI) broth at 5°C or in the presence of 7% NaCl and two mutants with altered growth profiles were identified. The LS522 mutant has a transposon insertion between secA2 and...

  20. The Significance of Acid Alteration in the Los Humeros High-Temperature Geothermal Field, Puebla, Mexico.

    Science.gov (United States)

    Elders, W. A.; Izquierdo, G.

    2014-12-01

    The Los Humeros geothermal field is a high-enthalpy hydrothermal system with more than 40 drilled deep wells, mostly producing high steam fractions at > 300oC. However, although it has a large resource potential, low permeability and corrosive acid fluids have hampered development so that it currently has an installed electrical generating capacity of only 40 MWe. The widespread production of low pH fluids from the reservoir is inconsistent with the marked absence in the reservoir rocks of hydrothermal minerals typical of acid alteration. Instead the hydrothermal alteration observed is typical of that due to neutral to alkaline pH waters reacting with the volcanic rocks of the production zones. Thus it appears that since the reservoir has recently suffered a marked drop in fluid pressure and is in process of transitioning from being water-dominated to being vapor-dominated. However sparse examples of acid leaching are observed locally at depths of about 2 km in the form of bleached, intensely silicified zones, in low permeability and very hot (>350oC) parts of reservoir. Although these leached rocks retain their primary volcanic and pyroclastic textures, they are altered almost entirely to microcrystalline quartz, with some relict pseudomorphs of plagioclase phenocrysts and traces of earlier-formed hydrothermal chlorite and pyrite. These acid-altered zones are usually only some tens of meters thick and deeper rocks lack such silicification. The acid fluids responsible for their formation could either be magmatic volatiles, or could be formed during production (e.g. reaction of water and salts forming hydrogen chloride by hydrolysis at high temperatures). The very high boron content of the fluids produced by the Los Humeros wells suggests that their ultimate source is most likely magmatic gases. However, these acid gases did not react widely with the rocks. We suggest that the silicified zones are forming locally where colder descending waters are encountering

  1. Light

    CERN Document Server

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  2. High light extraction efficiency in bulk-GaN based volumetric violet light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    David, Aurelien, E-mail: adavid@soraa.com; Hurni, Christophe A.; Aldaz, Rafael I.; Cich, Michael J.; Ellis, Bryan; Huang, Kevin; Steranka, Frank M.; Krames, Michael R. [Soraa Inc., 6500 Kaiser Dr., Fremont, California 94555 (United States)

    2014-12-08

    We report on the light extraction efficiency of III-Nitride violet light-emitting diodes with a volumetric flip-chip architecture. We introduce an accurate optical model to account for light extraction. We fabricate a series of devices with varying optical configurations and fit their measured performance with our model. We show the importance of second-order optical effects like photon recycling and residual surface roughness to account for data. We conclude that our devices reach an extraction efficiency of 89%.

  3. An assessment of high-power light-emitting diodes for high frame rate schlieren imaging

    Science.gov (United States)

    Willert, Christian E.; Mitchell, Daniel M.; Soria, Julio

    2012-08-01

    The feasibility of using high-power light-emitting diodes (LED) as a light source for high frame rate schlieren imaging is investigated. Continuous sequences of high-intensity light pulses are achieved by overdriving the LED with current pulses up to a factor of ten beyond its specifications. In comparison to commonly used pulsed light sources such as gas discharge lamps and pulsed lasers, the pulsed LED has several attractive advantages: the pulse-to-pulse intensity variation is on the same order of magnitude as the detector (camera) noise permitting quantitative intensity measurements. The LED's narrow emission bandwidth reduces chromatic abberations, yet it is spectrally wide enough to prevent the appearance of speckle and diffraction effects in the images. Most importantly, the essentially lag-free light emission within tens of nanoseconds of the applied current pulse allows the LED to be operated at varying frequencies (i.e., asynchronously), which generally is not possible with neither lasers nor discharge lamps. The pulsed LED source, driven by a simple driver circuit, is demonstrated on two schlieren imaging setups. The first configuration visualizes the temporal evolution of shock structures and sound waves of an under-expanded jet that is impinging on a rigid surface at frame rates of 500 kHz to 1 MHz. In a second application, long sequences of several thousand high-resolution images are acquired on a free jet at a frame rate of 1 kHz. The low-intensity fluctuation and large sample number allow a reliable computation of two-point correlation data from the image sequences.

  4. Subthalamic nucleus high-frequency stimulation restores altered electrophysiological properties of cortical neurons in parkinsonian rat.

    Directory of Open Access Journals (Sweden)

    Bertrand Degos

    Full Text Available Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized the impact of high-frequency electrical stimulation of the subthalamic nucleus, a procedure alleviating parkinsonian symptoms. We provided evidence that a lesion restricted to the substantia nigra pars compacta resulted in a marked increase in the mean firing rate and bursting pattern of pyramidal neurons of the motor cortex. These alterations were underlain by changes of the electrical membranes properties of pyramidal cells including depolarized resting membrane potential and increased input resistance. The modifications induced by the dopaminergic loss were more pronounced in cortico-striatal than in cortico-subthalamic neurons. Furthermore, subthalamic nucleus high-frequency stimulation applied at parameters alleviating parkinsonian signs regularized the firing pattern of pyramidal cells and restored their electrical membrane properties.

  5. Liver disease alters high-density lipoprotein composition, metabolism and function.

    Science.gov (United States)

    Trieb, Markus; Horvath, Angela; Birner-Gruenberger, Ruth; Spindelboeck, Walter; Stadlbauer, Vanessa; Taschler, Ulrike; Curcic, Sanja; Stauber, Rudolf E; Holzer, Michael; Pasterk, Lisa; Heinemann, Akos; Marsche, Gunther

    2016-07-01

    High-density lipoproteins (HDL) are important endogenous inhibitors of inflammatory responses. Functional impairment of HDL might contribute to the excess mortality experienced by patients with liver disease, but the effect of cirrhosis on HDL metabolism and function remain elusive. To get an integrated measure of HDL quantity and quality, we assessed several metrics of HDL function using apolipoprotein (apo) B-depleted sera from patients with compensated cirrhosis, patients with acutely decompensated cirrhosis and healthy controls. We observed that sera of cirrhotic patients showed reduced levels of HDL-cholesterol and profoundly suppressed activities of several enzymes involved in HDL maturation and metabolism. Native gel electrophoresis analyses revealed that cirrhotic serum HDL shifts towards the larger HDL2 subclass. Proteomic assessment of isolated HDL identified several proteins, including apoA-I, apoC-III, apoE, paraoxonase 1 and acute phase serum amyloid A to be significantly altered in cirrhotic patients. With regard to function, these alterations in levels, composition and structure of HDL were strongly associated with metrics of function of apoB-depleted sera, including cholesterol efflux capability, paraoxonase activity, the ability to inhibit monocyte production of cytokines and endothelial regenerative activities. Of particular interest, cholesterol efflux capacity appeared to be strongly associated with liver disease mortality. Our findings may be clinically relevant and improve our ability to monitor cirrhotic patients at high risk.

  6. Altered gene expression in highly purified enterocytes from patients with active coeliac disease

    Directory of Open Access Journals (Sweden)

    Jackson John

    2008-08-01

    Full Text Available Abstract Background Coeliac disease is a multifactorial inflammatory disorder of the intestine caused by ingestion of gluten in genetically susceptible individuals. Genes within the HLA-DQ locus are considered to contribute some 40% of the genetic influence on this disease. However, information on other disease causing genes is sparse. Since enterocytes are considered to play a central role in coeliac pathology, the aim of this study was to examine gene expression in a highly purified isolate of these cells taken from patients with active disease. Epithelial cells were isolated from duodenal biopsies taken from five coeliac patients with active disease and five non-coeliac control subjects. Contaminating T cells were removed by magnetic sorting. The gene expression profile of the cells was examined using microarray analysis. Validation of significantly altered genes was performed by real-time RT-PCR and immunohistochemistry. Results Enterocyte suspensions of high purity (98–99% were isolated from intestinal biopsies. Of the 3,800 genes investigated, 102 genes were found to have significantly altered expression between coeliac disease patients and controls (p Conclusion This study provides a profile of the molecular changes that occur in the intestinal epithelium of coeliac patients with active disease. Novel candidate genes were revealed which highlight the contribution of the epithelial cell to the pathogenesis of coeliac disease.

  7. Liver disease alters high-density lipoprotein composition, metabolism and function.

    Science.gov (United States)

    Trieb, Markus; Horvath, Angela; Birner-Gruenberger, Ruth; Spindelboeck, Walter; Stadlbauer, Vanessa; Taschler, Ulrike; Curcic, Sanja; Stauber, Rudolf E; Holzer, Michael; Pasterk, Lisa; Heinemann, Akos; Marsche, Gunther

    2016-07-01

    High-density lipoproteins (HDL) are important endogenous inhibitors of inflammatory responses. Functional impairment of HDL might contribute to the excess mortality experienced by patients with liver disease, but the effect of cirrhosis on HDL metabolism and function remain elusive. To get an integrated measure of HDL quantity and quality, we assessed several metrics of HDL function using apolipoprotein (apo) B-depleted sera from patients with compensated cirrhosis, patients with acutely decompensated cirrhosis and healthy controls. We observed that sera of cirrhotic patients showed reduced levels of HDL-cholesterol and profoundly suppressed activities of several enzymes involved in HDL maturation and metabolism. Native gel electrophoresis analyses revealed that cirrhotic serum HDL shifts towards the larger HDL2 subclass. Proteomic assessment of isolated HDL identified several proteins, including apoA-I, apoC-III, apoE, paraoxonase 1 and acute phase serum amyloid A to be significantly altered in cirrhotic patients. With regard to function, these alterations in levels, composition and structure of HDL were strongly associated with metrics of function of apoB-depleted sera, including cholesterol efflux capability, paraoxonase activity, the ability to inhibit monocyte production of cytokines and endothelial regenerative activities. Of particular interest, cholesterol efflux capacity appeared to be strongly associated with liver disease mortality. Our findings may be clinically relevant and improve our ability to monitor cirrhotic patients at high risk. PMID:27106140

  8. Activity and High-Order Effective Connectivity Alterations in Sanfilippo C Patient-Specific Neuronal Networks

    Science.gov (United States)

    Canals, Isaac; Soriano, Jordi; Orlandi, Javier G.; Torrent, Roger; Richaud-Patin, Yvonne; Jiménez-Delgado, Senda; Merlin, Simone; Follenzi, Antonia; Consiglio, Antonella; Vilageliu, Lluïsa; Grinberg, Daniel; Raya, Angel

    2015-01-01

    Summary Induced pluripotent stem cell (iPSC) technology has been successfully used to recapitulate phenotypic traits of several human diseases in vitro. Patient-specific iPSC-based disease models are also expected to reveal early functional phenotypes, although this remains to be proved. Here, we generated iPSC lines from two patients with Sanfilippo type C syndrome, a lysosomal storage disorder with inheritable progressive neurodegeneration. Mature neurons obtained from patient-specific iPSC lines recapitulated the main known phenotypes of the disease, not present in genetically corrected patient-specific iPSC-derived cultures. Moreover, neuronal networks organized in vitro from mature patient-derived neurons showed early defects in neuronal activity, network-wide degradation, and altered effective connectivity. Our findings establish the importance of iPSC-based technology to identify early functional phenotypes, which can in turn shed light on the pathological mechanisms occurring in Sanfilippo syndrome. This technology also has the potential to provide valuable readouts to screen compounds, which can prevent the onset of neurodegeneration. PMID:26411903

  9. Activity and High-Order Effective Connectivity Alterations in Sanfilippo C Patient-Specific Neuronal Networks

    Directory of Open Access Journals (Sweden)

    Isaac Canals

    2015-10-01

    Full Text Available Induced pluripotent stem cell (iPSC technology has been successfully used to recapitulate phenotypic traits of several human diseases in vitro. Patient-specific iPSC-based disease models are also expected to reveal early functional phenotypes, although this remains to be proved. Here, we generated iPSC lines from two patients with Sanfilippo type C syndrome, a lysosomal storage disorder with inheritable progressive neurodegeneration. Mature neurons obtained from patient-specific iPSC lines recapitulated the main known phenotypes of the disease, not present in genetically corrected patient-specific iPSC-derived cultures. Moreover, neuronal networks organized in vitro from mature patient-derived neurons showed early defects in neuronal activity, network-wide degradation, and altered effective connectivity. Our findings establish the importance of iPSC-based technology to identify early functional phenotypes, which can in turn shed light on the pathological mechanisms occurring in Sanfilippo syndrome. This technology also has the potential to provide valuable readouts to screen compounds, which can prevent the onset of neurodegeneration.

  10. Activity and High-Order Effective Connectivity Alterations in Sanfilippo C Patient-Specific Neuronal Networks.

    Science.gov (United States)

    Canals, Isaac; Soriano, Jordi; Orlandi, Javier G; Torrent, Roger; Richaud-Patin, Yvonne; Jiménez-Delgado, Senda; Merlin, Simone; Follenzi, Antonia; Consiglio, Antonella; Vilageliu, Lluïsa; Grinberg, Daniel; Raya, Angel

    2015-10-13

    Induced pluripotent stem cell (iPSC) technology has been successfully used to recapitulate phenotypic traits of several human diseases in vitro. Patient-specific iPSC-based disease models are also expected to reveal early functional phenotypes, although this remains to be proved. Here, we generated iPSC lines from two patients with Sanfilippo type C syndrome, a lysosomal storage disorder with inheritable progressive neurodegeneration. Mature neurons obtained from patient-specific iPSC lines recapitulated the main known phenotypes of the disease, not present in genetically corrected patient-specific iPSC-derived cultures. Moreover, neuronal networks organized in vitro from mature patient-derived neurons showed early defects in neuronal activity, network-wide degradation, and altered effective connectivity. Our findings establish the importance of iPSC-based technology to identify early functional phenotypes, which can in turn shed light on the pathological mechanisms occurring in Sanfilippo syndrome. This technology also has the potential to provide valuable readouts to screen compounds, which can prevent the onset of neurodegeneration.

  11. Antimicrobial Photoinactivation Using Visible Light Plus Water-Filtered Infrared-A (VIS + wIRA) Alters In Situ Oral Biofilms.

    Science.gov (United States)

    Al-Ahmad, A; Bucher, M; Anderson, A C; Tennert, C; Hellwig, E; Wittmer, A; Vach, K; Karygianni, L

    2015-01-01

    Recently, growing attention has been paid to antimicrobial photodynamic therapy (aPDT) in dentistry. Changing the microbial composition of initial and mature oral biofilm by aPDT using visible light plus water-filtered infrared-A wavelengths (VIS + wIRA) has not yet been investigated. Moreover, most aPDT studies have been conducted on planktonic bacterial cultures. Therefore, in the present clinical study we cultivated initial and mature oral biofilms in six healthy volunteers for 2 hours or 3 days, respectively. The biofilms were treated with aPDT using VIS+wIRA (200 mW cm(-2)), toluidine blue (TB) and chlorine e6 (Ce6) for 5 minutes. Chlorhexidine treated biofilm samples served as positive controls, while untreated biofilms served as negative controls. After aPDT treatment the colony forming units (CFU) of the biofilm samples were quantified, and the surviving bacteria were isolated in pure cultures and identified using MALDI-TOF, biochemical tests and 16S rDNA-sequencing. aPDT killed more than 99.9% of the initial viable bacterial count and 95% of the mature oral biofilm in situ, independent of the photosensitizer. The number of surviving bacterial species was highly reduced to 6 (TB) and 4 (Ce6) in the treated initial oral biofilm compared to the 20 different species of the untreated biofilm. The proportions of surviving bacterial species were also changed after TB- and Ce6-mediated aPDT of the mature oral biofilm, resulting in a shift in the microbial composition of the treated biofilm compared to that of the control biofilm. In conclusion, aPDT using VIS + wIRA showed a remarkable potential to eradicate both initial and mature oral biofilms, and also to markedly alter the remaining biofilm. This encourages the clinical use of aPDT with VIS + wIRA for the treatment of periimplantitis and periodontitis.

  12. πSPIM: high NA high resolution isotropic light-sheet imaging in cell culture dishes.

    Science.gov (United States)

    Theer, Patrick; Dragneva, Denitsa; Knop, Michael

    2016-01-01

    Light-sheet fluorescence microscopy (LSFM), also termed single plane illumination microscopy (SPIM), enables live cell fluorescence imaging with optical sectioning capabilities superior to confocal microscopy and without any out-of-focus exposure of the specimen. However, the need of two objective lenses, one for light-sheet illumination and one for imaging, imposes geometrical constraints that require LSFM setups to be adapted to the specific needs of different types of specimen in order to obtain optimal imaging conditions. Here we demonstrate the use of an oblique light-sheet configuration adapted to provide the highest possible Gaussian beam enabled resolution in LSFM. The oblique light-sheet configuration furthermore enables LSFM imaging at the surface of a cover slip, without the need of specific sample mounting. In addition, the system is compatible with simultaneous high NA wide-field epi-fluorescence imaging of the specimen contained in a glass-bottom cell culture dish. This prevents cumbersome sample mounting and enables rapid screening of large areas of the specimen followed by high-resolution LSFM imaging of selected cells. We demonstrate the application of this microscope for in toto imaging of endocytosis in yeast, showing for the first time imaging of all endocytic events of a given cell over a period of >5 minutes with sub-second resolution. PMID:27619647

  13. Use of high frequency ultrasound to monitor cervical lymph node alterations in mice.

    Directory of Open Access Journals (Sweden)

    Elyse L Walk

    Full Text Available Cervical lymph node evaluation by clinical ultrasound is a non-invasive procedure used in diagnosing nodal status, and when combined with fine-needle aspiration cytology (FNAC, provides an effective method to assess nodal pathologies. Development of high-frequency ultrasound (HF US allows real-time monitoring of lymph node alterations in animal models. While HF US is frequently used in animal models of tumor biology, use of HF US for studying cervical lymph nodes alterations associated with murine models of head and neck cancer, or any other model of lymphadenopathy, is lacking. Here we utilize HF US to monitor cervical lymph nodes changes in mice following exposure to the oral cancer-inducing carcinogen 4-nitroquinoline-1-oxide (4-NQO and in mice with systemic autoimmunity. 4-NQO induces tumors within the mouse oral cavity as early as 19 wks that recapitulate HNSCC. Monitoring of cervical (mandibular lymph nodes by gray scale and power Doppler sonography revealed changes in lymph node size eight weeks after 4-NQO treatment, prior to tumor formation. 4-NQO causes changes in cervical node blood flow resulting from oral tumor progression. Histological evaluation indicated that the early 4-NQO induced changes in lymph node volume were due to specific hyperproliferation of T-cell enriched zones in the paracortex. We also show that HF US can be used to perform image-guided fine needle aspirate (FNA biopsies on mice with enlarged mandibular lymph nodes due to genetic mutation of Fas ligand (Fasl. Collectively these studies indicate that HF US is an effective technique for the non-invasive study of cervical lymph node alterations in live mouse models of oral cancer and other mouse models containing cervical lymphadenopathy.

  14. Use of high frequency ultrasound to monitor cervical lymph node alterations in mice.

    Science.gov (United States)

    Walk, Elyse L; McLaughlin, Sarah; Coad, James; Weed, Scott A

    2014-01-01

    Cervical lymph node evaluation by clinical ultrasound is a non-invasive procedure used in diagnosing nodal status, and when combined with fine-needle aspiration cytology (FNAC), provides an effective method to assess nodal pathologies. Development of high-frequency ultrasound (HF US) allows real-time monitoring of lymph node alterations in animal models. While HF US is frequently used in animal models of tumor biology, use of HF US for studying cervical lymph nodes alterations associated with murine models of head and neck cancer, or any other model of lymphadenopathy, is lacking. Here we utilize HF US to monitor cervical lymph nodes changes in mice following exposure to the oral cancer-inducing carcinogen 4-nitroquinoline-1-oxide (4-NQO) and in mice with systemic autoimmunity. 4-NQO induces tumors within the mouse oral cavity as early as 19 wks that recapitulate HNSCC. Monitoring of cervical (mandibular) lymph nodes by gray scale and power Doppler sonography revealed changes in lymph node size eight weeks after 4-NQO treatment, prior to tumor formation. 4-NQO causes changes in cervical node blood flow resulting from oral tumor progression. Histological evaluation indicated that the early 4-NQO induced changes in lymph node volume were due to specific hyperproliferation of T-cell enriched zones in the paracortex. We also show that HF US can be used to perform image-guided fine needle aspirate (FNA) biopsies on mice with enlarged mandibular lymph nodes due to genetic mutation of Fas ligand (Fasl). Collectively these studies indicate that HF US is an effective technique for the non-invasive study of cervical lymph node alterations in live mouse models of oral cancer and other mouse models containing cervical lymphadenopathy. PMID:24955984

  15. In vivo high-resolution 7 Tesla MRI shows early and diffuse cortical alterations in CADASIL.

    Directory of Open Access Journals (Sweden)

    François De Guio

    Full Text Available Recent data suggest that early symptoms may be related to cortex alterations in CADASIL (Cerebral Autosomal-Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy, a monogenic model of cerebral small vessel disease (SVD. The aim of this study was to investigate cortical alterations using both high-resolution T2* acquisitions obtained with 7 Tesla MRI and structural T1 images with 3 Tesla MRI in CADASIL patients with no or only mild symptomatology (modified Rankin's scale ≤1 and Mini Mental State Examination (MMSE ≥24.Complete reconstructions of the cortex using 7 Tesla T2* acquisitions with 0.7 mm isotropic resolution were obtained in 11 patients (52.1±13.2 years, 36% male and 24 controls (54.8±11.0 years, 42% male. Seven Tesla T2* within the cortex and cortical thickness and morphology obtained from 3 Tesla images were compared between CADASIL and control subjects using general linear models.MMSE, brain volume, cortical thickness and global sulcal morphology did not differ between groups. By contrast, T2* measured by 7 Tesla MRI was significantly increased in frontal, parietal, occipital and cingulate cortices in patients after correction for multiple testing. These changes were not related to white matter lesions, lacunes or microhemorrhages in patients having no brain atrophy compared to controls.Seven Tesla MRI, by contrast to state of the art post-processing of 3 Tesla acquisitions, shows diffuse T2* alterations within the cortical mantle in CADASIL whose origin remains to be determined.

  16. Alteration of light-dependent gene regulation by the absence of the RCO-1/RCM-1 repressor complex in the fungus Neurospora crassa.

    Directory of Open Access Journals (Sweden)

    Carmen Ruger-Herreros

    Full Text Available The activation of transcription by light in the fungus Neurospora crassa requires the White Collar Complex (WCC, a photoreceptor and transcription factor complex. After light reception two WCCs interact and bind the promoters of light-regulated genes to activate transcription. This process is regulated by VVD, a small photoreceptor that disrupts the interaction between WCCs and leads to a reduction in transcription after long exposures to light. The N. crassa RCO-1/RCM-1 repressor complex is the homolog of the Tup1-Ssn6 repressor complex in yeast, and its absence modifies photoadaptation. We show that the absence of the RCO-1/RCM-1 repressor complex leads to several alterations in transcription that are gene-specific: an increase in the accumulation of mRNAs in the dark, a repression of transcription, and a derepression of transcription after long exposures to light. The absence of the RCO-1/RCM-1 repressor complex leads to lower VVD levels that are available for the regulation of the activity of the WCC. The reduction in the amount of VVD results in increased WCC binding to the promoters of light-regulated genes in the dark and after long exposures to light, leading to the modification of photoadaptation that has been observed in rco-1 and rcm-1 mutants. Our results show that the photoadaptation phenotype of mutants in the RCO-1/RCM-1 repressor complex is, at least in part, an indirect consequence of the reduction of vvd transcription, and the resulting modification in the regulation of transcription by the WCC.

  17. High-Efficiency Power-Saving Lights Promoted

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The State Development and Reform Commission is to promote the use of enengy-saving lighting systems, including primary color triphosphor fluorescent bulbs, in public offices, hotels, stores, office buildings, gymnasiums and householdS, over the next five years,

  18. WETTABILITY ALTERATION OF CARBONATE ROCK MEDIATED BY BIOSURFACTANT PRODUCED FROM HIGH-STARCH AGRICULTURAL EFFLUENTS

    Energy Technology Data Exchange (ETDEWEB)

    Mehdi Salehi; Stephen Johnson; Gregory Bala; Jenn-Tai Liang

    2006-09-01

    Surfactants can be used to alter wettability of reservoir rock, increasing spontaneous imbibition and thus improving oil yields. Commercial synthetic surfactants are often prohibitively expensive and so a crude preparation of the anionic biosurfactant, surfactin, from Bacillus subtilis grown on high-starch industrial and agricultural effluents has been proposed as an economical alternative. To assess the effectiveness of the surfactin, it is compared to commercially available surfactants. In selecting a suitable benchmark surfactant, two metrics are examined: the ability of the surfactants to alter wettability at low concentrations, and the degree to which they are absorbed onto reservoir matrix. We review the literature to survey the adsorption models that have been developed to describe surfactant adsorption in porous media. These models are evaluated using the experimental data from this study. Crushed carbonate rock samples are cleaned and aged in crude oil. The wettability change mediated by dilute solutions of commercial anionic surfactants and surfactin is assessed using a two-phase separation; and surfactant loss due to retention and adsorption the rock is determined.

  19. Indoor Positioning in High Speed OFDM Visible Light Communications

    OpenAIRE

    Aminikashani, Mohammadreza; Gu, Wenjun; Kavehrad, Mohsen

    2015-01-01

    Visible Light Communication (VLC) technology using light emitting diodes (LEDs) has been gaining increasing attention in recent years as it is appealing for a wide range of applications such as indoor positioning. Orthogonal frequency division multiplexing (OFDM) has been applied to indoor wireless optical communications in order to mitigate the effect of multipath distortion of the optical channel as well as increasing data rate. In this paper, we investigate the indoor positioning accuracy ...

  20. Light

    CERN Document Server

    Ditchburn, R W

    2011-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  1. Radiation-Induced Epigenetic Alterations after Low and High LET Irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Epigenetics, including DNA methylation and microRNA (miRNA) expression, could be the missing link in understanding the delayed, non-targeted effects of radiation including radiationinduced genomic instability (RIGI). This study tests the hypothesis that irradiation induces epigenetic aberrations, which could eventually lead to RIGI, and that the epigenetic aberrations induced by low linear energy transfer (LET) irradiation are different than those induced by high LET irradiations. GM10115 cells were irradiated with low LET x-rays and high LET iron (Fe) ions and evaluated for DNA damage, cell survival and chromosomal instability. The cells were also evaluated for specific locus methylation of nuclear factor-kappa B (NFκB), tumor suppressor in lung cancer 1 (TSLC1) and cadherin 1 (CDH1) gene promoter regions, long interspersed nuclear element 1 (LINE-1) and Alu repeat element methylation, CpG and non-CpG global methylation and miRNA expression levels. Irradiated cells showed increased micronucleus induction and cell killing immediately following exposure, but were chromosomally stable at delayed times post-irradiation. At this same delayed time, alterations in repeat element and global DNA methylation and miRNA expression were observed. Analyses of DNA methylation predominantly showed hypomethylation, however hypermethylation was also observed. MiRNA shown to be altered in expression level after x-ray irradiation are involved in chromatin remodeling and DNA methylation. Different and higher incidence of epigenetic changes were observed after exposure to low LET x-rays than high LET Fe ions even though Fe ions elicited more chromosomal damage and cell killing. This study also shows that the irradiated cells acquire epigenetic changes even though they are chromosomally stable suggesting that epigenetic aberrations may arise in the cell without initiating RIGI.

  2. Chemical Alteration Pathways Resulting in High-Silica Deposits on Mars

    Science.gov (United States)

    Yen, A. S.; Gellert, R.; Clark, B. C.; Ming, D. W.; Morris, R. V.; Mittlefehldt, D. W.

    2015-12-01

    The chemical compositions of nearly 1000 targets at the surface of Mars have been established by the cross-calibrated Alpha-Particle X-ray Spectrometers (APXS) onboard the Mars Science Laboratory (MSL) and the two Mars Exploration Rovers (MER). Comparing and contrasting these measurements provides greater insight into martian surface processes than the standalone use of data from an individual mission. For example, the combination of MER and MSL APXS data indicate two distinct pathways for silicate weathering: 1. Open system alteration at circumneutral pH. Fracture-filling deposits in impact breccias at the rim of Endeavour Crater analyzed by the Opportunity rover show the highest SiO2 concentrations at Meridiani Planum (62 wt%) with correlated Si and Al (Si:Al ~0.3). These Mg and Fe-depleted veins have chemical signatures consistent with an Al-rich smectite and likely formed as a precipitate from non-acidic aqueous solutions. Similar high Si and Al deposits found at the Gusev landing site by the Spirit rover were interpreted as montmorillonite. 2. Open system, acid-sulfate alteration. In sharp contrast to Si and Al-rich deposits, a group of high-Si targets have low concentrations of Al. Deposits in Gusev Crater near "Home Plate," a hydrothermal locale with nearby fumarolic deposits, fall into this category. Acid-sulfate processes are likely responsible for mobilizing most other elements, including Al, leaving behind a Si-rich, and generally Ti-rich, residue. Recent high-Si samples (up to 72 wt% SiO2) analyzed by the Curiosity rover exhibit similar chemical patterns, including elevated TiO2 concentrations, suggestive that acidic leaching may also have been an important process in the development of deposits found within Gale Crater. The framework of chemical analyses established through years of Mars surface operations provides the basis against which future measurements by Opportunity, Curiosity and the Mars 2020 rover can be compared.

  3. Examination of Poststroke Alteration in Motor Unit Firing Behavior Using High-Density Surface EMG Decomposition.

    Science.gov (United States)

    Li, Xiaoyan; Holobar, Ales; Gazzoni, Marco; Merletti, Roberto; Rymer, William Zev; Zhou, Ping

    2015-05-01

    Recent advances in high-density surface electromyogram (EMG) decomposition have made it a feasible task to discriminate single motor unit activity from surface EMG interference patterns, thus providing a noninvasive approach for examination of motor unit control properties. In the current study, we applied high-density surface EMG recording and decomposition techniques to assess motor unit firing behavior alterations poststroke. Surface EMG signals were collected using a 64-channel 2-D electrode array from the paretic and contralateral first dorsal interosseous (FDI) muscles of nine hemiparetic stroke subjects at different isometric discrete contraction levels between 2 to 10 N with a 2 N increment step. Motor unit firing rates were extracted through decomposition of the high-density surface EMG signals and compared between paretic and contralateral muscles. Across the nine tested subjects, paretic FDI muscles showed decreased motor unit firing rates compared with contralateral muscles at different contraction levels. Regression analysis indicated a linear relation between the mean motor unit firing rate and the muscle contraction level for both paretic and contralateral muscles (p < 0.001), with the former demonstrating a lower increment rate (0.32 pulses per second (pps)/N) compared with the latter (0.67 pps/N). The coefficient of variation (averaged over the contraction levels) of the motor unit firing rates for the paretic muscles (0.21 ± 0.012) was significantly higher than for the contralateral muscles (0.17 ± 0.014) (p < 0.05). This study provides direct evidence of motor unit firing behavior alterations poststroke using surface EMG, which can be an important factor contributing to hemiparetic muscle weakness.

  4. High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids

    Institute of Scientific and Technical Information of China (English)

    Lotta K Stenman; Reetta Holma; Riitta Korpela

    2012-01-01

    AIM:To investigate whether high-fat-feeding is associated with increased intestinal permeability via alterations in bile acid metabolism.METHODS:Male C57B1/6J mice were fed on a high-fat (n =26) or low-fat diet (n =24) for 15 wk.Intestinal permeability was measured from duodenum,jejunum,ileum and colon in an Ussing chamber system using 4 kDa FITC-labeled dextran as an indicator.Fecal bile acids were analyzed with gas chromatography.Segments of jejunum and colon were analyzed for the expression of farnesoid X receptor (FXR) and tumor necrosis factor (TNF).RESULTS:Intestinal permeability was significantly increased by high-fat feeding in jejunum (median 0.334 for control vs 0.393 for high-fat,P =0.03) and colon (0.335 for control vs 0.433 for high-fat,P =0.01),but not in duodenum or ileum.The concentration of nearly all identified bile acids was significantly increased by high-fat feeding (P < 0.001).The proportion of ursodeoxycholic acid (UDCA) in all bile acids was decreased (1.4% ± 0.1% in high-fat vs 2.8% ± 0.3% in controls,P < 0.01) and correlated inversely with intestinal permeability (r =-0.72,P =0.01).High-fat feeding also increased jejunal FXR expression,as well as TNF expression along the intestine,especially in the colon.CONCLUSION:High-fat-feeding increased intestinal permeability,perhaps by a mechanism related to bile acid metabolism,namely a decreased proportion of fecal UDCA and increased FXR expression.

  5. High illumination resolution test of low-light-level image intensifier

    Science.gov (United States)

    Bai, Xiaofeng; Yin, Lei; Zhu, Yufeng; He, Yingping; Miao, Zhuang; Hu, Wen; Hou, Zhipeng; Shi, Hongli

    2013-08-01

    High illumination resolution, which directly determines the applied characteristic of night vision system in flashlight or high light level condition, is an important performance parameter for evaluating the characteristic of low light level image intensifier used in high light level condition. In this article, according to the limited resolution test technique, the test principle, test condition and test method to high illumination resolution are described in detail associated with operation mode and protective way of low light level image intensifier. Test system for measuring the high illumination resolution has been founded based on the limited resolution test system. The value of high illumination for measuring the high illumination resolution has been calculated in theory and measured by illuminometer. High illumination resolution of low light level image intensifiers have been measured in test system, results show that high illumination resolution test system is satisfied the need for measuring high illumination resolution of low light level image intensifier, and test system output light illumination must be greater than 1×103 lux. Light of high illumination, which can be correctly measured by illuminometer, is transferred legitimately. That is worthwhile to evaluate the operational characteristic of low light level image intensifier.

  6. Altered dark- and photoconversion of phytochrome B mediate extreme light sensitivity and loss of photoreversibility of the phyB-401 mutant.

    Directory of Open Access Journals (Sweden)

    Éva Ádám

    Full Text Available The phyB-401 mutant is 10(3 fold more sensitive to red light than its wild-type analogue and shows loss of photoreversibility of hypocotyl growth inhibition. The phyB-401 photoreceptor displays normal spectral properties and shows almost no dark reversion when expressed in yeast cells. To gain insight into the molecular mechanism underlying this complex phenotype, we generated transgenic lines expressing the mutant and wild-type phyB in phyB-9 background. Analysis of these transgenic lines demonstrated that the mutant photoreceptor displays a reduced rate of dark-reversion but normal P(fr to P(r photoconversion in vivo and shows an altered pattern of association/dissociation with nuclear bodies compared to wild-type phyB. In addition we show (i an enhanced responsiveness to far-red light for hypocotyl growth inhibition and CAB2 expression and (ii that far-red light mediated photoreversibility of red light induced responses, including inhibition of hypocotyl growth, formation of nuclear bodies and induction of CAB2 expression is reduced in these transgenic lines. We hypothesize that the incomplete photoreversibility of signalling is due to the fact that far-red light induced photoconversion of the chromophore is at least partially uncoupled from the P(fr to P(r conformation change of the protein. It follows that the phyB-401 photoreceptor retains a P(fr-like structure (P(r (* for a few hours after the far-red light treatment. The greatly reduced rate of dark reversion and the formation of a biologically active P(r (* conformer satisfactorily explain the complex phenotype of the phyB-401 mutant and suggest that amino acid residues surrounding the position 564 G play an important role in fine-tuning phyB signalling.

  7. Retinal Targets ALDH Positive Cancer Stem Cell and Alters the Phenotype of Highly Metastatic Osteosarcoma Cells

    Directory of Open Access Journals (Sweden)

    Xiaodong Mu

    2015-01-01

    Full Text Available Aldehyde dehydrogenase (ALDH is a cancer stem cell marker. Retinoic acid has antitumor properties, including the induction of apoptosis and inhibition of proliferation. Retinal, the precursor of retinoic acid, can be oxidized to retinoic acid by dehydrogenases, including ALDH. We hypothesized that retinal could potentially be transformed to retinoic acid with higher efficiency by cancer stem cells, due to the higher ALDH activity. We previously observed that ALDH activity is greater in highly metastatic K7M2 osteosarcoma (OS cells than in nonmetastatic K12 OS cells. We also demonstrated that ALDH activity correlates with clinical metastases in bone sarcoma patients, suggesting that ALDH may be a therapeutic target specific to cells with high metastatic potential. Our current results demonstrated that retinal preferentially affected the phenotypes of ALDH-high K7M2 cells in contrast to ALDH-low K12 cells, which could be mediated by the more efficient transformation of retinal to retinoic acid by ALDH in K7M2 cells. Retinal treatment of highly metastatic K7M2 cells decreased their proliferation, invasion capacity, and resistance to oxidative stress. Retinal altered the expression of metastasis-related genes. These observations indicate that retinal may be used to specifically target metastatic cancer stem cells in OS.

  8. High physical activity in young children suggests positive effects by altering autoantigen-induced immune activity.

    Science.gov (United States)

    Carlsson, E; Ludvigsson, J; Huus, K; Faresjö, M

    2016-04-01

    Physical activity in children is associated with several positive health outcomes such as decreased cardiovascular risk factors, improved lung function, enhanced motor skill development, healthier body composition, and also improved defense against inflammatory diseases. We examined how high physical activity vs a sedentary lifestyle in young children influences the immune response with focus on autoimmunity. Peripheral blood mononuclear cells, collected from 55 5-year-old children with either high physical activity (n = 14), average physical activity (n = 27), or low physical activity (n = 14), from the All Babies In Southeast Sweden (ABIS) cohort, were stimulated with antigens (tetanus toxoid and beta-lactoglobulin) and autoantigens (GAD65 , insulin, HSP60, and IA-2). Immune markers (cytokines and chemokines), C-peptide and proinsulin were analyzed. Children with high physical activity showed decreased immune activity toward the autoantigens GAD65 (IL-5, P < 0.05), HSP60 and IA-2 (IL-10, P < 0.05) and also low spontaneous pro-inflammatory immune activity (IL-6, IL-13, IFN-γ, TNF-α, and CCL2 (P < 0.05)) compared with children with an average or low physical activity. High physical activity in young children seems to have positive effects on the immune system by altering autoantigen-induced immune activity. PMID:25892449

  9. Productivity of Chlorella sorokiniana in a short light-path (SLP) panel photobioreactor under high irradiance

    NARCIS (Netherlands)

    Cuaresma, M.; Janssen, M.G.J.; Vilchez, C.; Wijffels, R.H.

    2009-01-01

    Maximal productivity of a 14 mm light-path panel photobioreactor under high irradiance was determined. Under continuous illumination of 2,100 µmol photons m-2 s-1 with red light emitting diodes (LEDs) the effect of dilution rate on photobioreactor productivity was studied. The light intensity used i

  10. Light sources and light pollution

    International Nuclear Information System (INIS)

    From the dawn of mankind fire and light sources in general played an essential role in everyday life and protection over night. The development of new light sources went through many stages and is now an immense technological achievement, but also a threat for the wildlife at night, mainly because of the so-called light pollution. This paper discusses several very successful light sources connected with low pressure mercury and sodium vapour electric discharges. The luminous efficacy, colour rendering index and other lighting features cannot be always satisfactory, but at least some of the features can be much better than those met by the standard tungsten filament bulbs. High-pressure metal-vapour discharge lamps definitely have a good colour rendering index and a relatively high luminosity. Different light sources with burners at high pressure are discussed, paying special attention to their spectrum. The paper investigates new trends in development through a number of examples with non-toxic elements and pulsed electric discharge, which may be good news in terms of clean environment and energy savings. Light emitting diodes have recently appeared as worthy competitors to conventional light sources. White LEDs have approached 100 lumen/Watt efficacy in laboratories. This suggests that in some not very distant future they could completely replace high-pressure lamps, at least in indoor lighting. The article speculates on new developments which combine trends in nano technology and material science. The paper concludes with light pollution in view of several recent observations of plant and animal life at night in the vicinity of strong light sources. Photo-induced changes at the cell level may completely alter the normal life of plants and animals.(author)

  11. CNT Reinforced Light Metal Composites Produced by Melt Stirring and by High Pressure Die Casting

    OpenAIRE

    Li, Qianqian; Rottmair, Christian A.; Singer, Robert F.

    2010-01-01

    Abstract Light metal matrix composites are of great interest due to their potential for reducing CO2 emission through lightweight design e.g. in the automotive sector. Carbon nanotubes can be considered as ideal reinforcements, due to their high strength, high aspect ratio and thermo-mechanic properties. In this research, CNT reinforced light metal composites were produced by melt stirring and by high pressure die casting, which can be both easily scaled up. The light metal composi...

  12. Different methods to alter surface morphology of high aspect ratio structures

    Science.gov (United States)

    Leber, M.; Shandhi, M. M. H.; Hogan, A.; Solzbacher, F.; Bhandari, R.; Negi, S.

    2016-03-01

    In various applications such as neural prostheses or solar cells, there is a need to alter the surface morphology of high aspect ratio structures so that the real surface area is greater than geometrical area. The change in surface morphology enhances the devices functionality. One of the applications of altering the surface morphology is of neural implants such as the Utah electrode array (UEA) that communicate with single neurons by charge injection induced stimulation or by recording electrical neural signals. For high selectivity between single cells of the nervous system, the electrode surface area is required to be as small as possible, while the impedance is required to be as low as possible for good signal to noise ratios (SNR) during neural recording. For stimulation, high charge injection and charge transfer capacities of the electrodes are required, which increase with the electrode surface. Traditionally, researchers have worked with either increasing the roughness of the existing metallization (platinum grey, black) or other materials such as Iridium Oxide and PEDOT. All of these previously investigated methods lead to more complicated metal deposition processes that are difficult to control and often have a critical impact on the mechanical properties of the metal films. Therefore, a modification of the surface underneath the electrode's coating will increase its surface area while maintaining the standard and well controlled metal deposition process. In this work, the surfaces of the silicon micro-needles were engineered by creating a defined microstructure on the electrodes surface using several methods such as laser ablation, focused ion beam, sputter etching, reactive ion etching (RIE) and deep reactive ion etching (DRIE). The surface modification processes were optimized for the high aspect ratio silicon structures of the UEA. The increase in real surface area while maintaining the geometrical surface area was verified using scanning electron

  13. Spatio-Temporal Imaging of Light Transport in Highly Scattering Media under White Light Illumination

    CERN Document Server

    Badon, Amaury; Lerosey, Geoffroy; Boccara, Albert C; Fink, Mathias; Aubry, Alexandre

    2016-01-01

    Imaging the propagation of light in time and space is crucial in optics, notably for the study of complex media. We here demonstrate the passive measurement of time-dependent Green's functions between every point at the surface of a strongly scattering medium by means of low coherence interferometry. The experimental access to this Green's matrix is essential since it contains all the information about the complex trajectories of light within the medium. In particular, the spatio-temporal spreading of the diffusive halo can be locally investigated in the vicinity of each point then acting as a virtual source. On the one hand, this approach allows a quantitative imaging of the diffusion constant in the scattering medium with a spatial resolution of the order of a few transport mean free paths. On the other hand, our approach is able to reveal and quantify the anisotropy of light diffusion, which can be of great interest for optical characterization purposes. This study opens important perspectives both in opti...

  14. High resolution 2D image upconversion of incoherent light

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    An optimized method for continuous wave 2-dimensional (2-D) upconversion of incoherent or thermal light is demonstrated and quantified. Using standard resolution targets a resolution of 200×1000 pixels is obtained. The suggested method is viewed in scope of modern CCD cameras operating in the nea...

  15. Prolonged high fat diet reduces dopamine reuptake without altering DAT gene expression.

    Directory of Open Access Journals (Sweden)

    Jackson J Cone

    Full Text Available The development of diet-induced obesity (DIO can potently alter multiple aspects of dopamine signaling, including dopamine transporter (DAT expression and dopamine reuptake. However, the time-course of diet-induced changes in DAT expression and function and whether such changes are dependent upon the development of DIO remains unresolved. Here, we fed rats a high (HFD or low (LFD fat diet for 2 or 6 weeks. Following diet exposure, rats were anesthetized with urethane and striatal DAT function was assessed by electrically stimulating the dopamine cell bodies in the ventral tegmental area (VTA and recording resultant changes in dopamine concentration in the ventral striatum using fast-scan cyclic voltammetry. We also quantified the effect of HFD on membrane associated DAT in striatal cell fractions from a separate group of rats following exposure to the same diet protocol. Notably, none of our treatment groups differed in body weight. We found a deficit in the rate of dopamine reuptake in HFD rats relative to LFD rats after 6 but not 2 weeks of diet exposure. Additionally, the increase in evoked dopamine following a pharmacological challenge of cocaine was significantly attenuated in HFD relative to LFD rats. Western blot analysis revealed that there was no effect of diet on total DAT protein. However, 6 weeks of HFD exposure significantly reduced the 50 kDa DAT isoform in a synaptosomal membrane-associated fraction, but not in a fraction associated with recycling endosomes. Our data provide further evidence for diet-induced alterations in dopamine reuptake independent of changes in DAT production and demonstrates that such changes can manifest without the development of DIO.

  16. Steady State Microbunching for High Brilliance and High Repetition Rate Storage Ring-Based Light Sources

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alex; Ratner, Daniel; /SLAC; Jiao, Yi; /Beijing, Inst. High Energy Phys.

    2012-09-06

    Electron-based light sources have proven to be effective sources of high brilliance, high frequency radiation. Such sources are typically either linac-Free Electron Laser (FEL) or storage ring types. The linac-FEL type has high brilliance (because the beam is microbunched) but low repetition rate. The storage ring type has high repetition rate (rapid beam circulation) but comparatively low brilliance or coherence. We propose to explore the feasibility of a microbunched beam in a storage ring that promises high repetition rate and high brilliance. The steady-state-micro-bunch (SSMB) beam in storage ring could provide CW sources for THz, EUV, or soft X-rays. Several SSMB mechanisms have been suggested recently, and in this report, we review a number of these SSMB concepts as promising directions for high brilliance, high repetition rate light sources of the future. The trick of SSMB lies in the RF system, together with the associated synchrotron beam dynamics, of the storage ring. Considering various different RF arrangements, there could be considered a number of scenarios of the SSMB. In this report, we arrange these scenarios more or less in order of the envisioned degree of technical challenge to the RF system, and not in the chronological order of their original references. Once the stored beam is steady-state microbunched in a storage ring, it passes through a radiator repeatedly every turn (or few turns). The radiator extracts a small fraction of the beam energy as coherent radiation with a wavelength corresponding to the microbunched period of the beam. In contrast to an FEL, this radiator is not needed to generate the microbunching (as required e.g. by SASE FELs or seeded FELs), so the radiator can be comparatively simple and short.

  17. White organic light-emitting diodes with top-emitting structure for high color quality and forward-directed light emission

    Science.gov (United States)

    Freitag, Patricia; Reineke, Sebastian; Furno, Mauro; Lüssem, Björn; Leo, Karl

    2010-04-01

    In this contribution, we demonstrate white organic light-emitting diodes (OLEDs) with a top-emissive layer structure containing a cavity. Two highly efficient phosphorescent emitter materials ((Ir(MDQ)2(acac) and Ir(ppy)3) are combined with the stable fluorescent emission system MADN:TBPe in a multilayer hybrid pin-OLED between two highly reflecting metal layers. Different materials for the anode mirror are tested to support the blue components from the arising mircrocavity, in order to optically balance the white emission spectrum and modify the color quality. We enhance the OLED performance by altering the electron blocking material and the transport layer thicknesses. Our devices exhibit improved forward directed radiation, which is usually preferred for applications in lighting industries. We achieve luminous efficacies up to 13.3 lm/W as well as external quantum efficiencies of 5.3% for 1000 cd/m2. An optimal p-/ntransport layer ratio permits to reach even 17.9 lm/W and 6.3% at 500 cd/m2.The emission shows very good Commission Internationale d'Eclairage chromaticity coordinates (CIE 1931) (e.g. x, y=0.443, 0.413) near the warm white point A and color rendering indices up to 77.

  18. Light-Emitting Diodes with Hierarchical and Multifunctional Surface Structures for High Light Extraction and an Antifouling Effect.

    Science.gov (United States)

    Leem, Young-Chul; Park, Jung Su; Kim, Joon Heon; Myoung, NoSoung; Yim, Sang-Youp; Jeong, Sehee; Lim, Wantae; Kim, Sung-Tae; Park, Seong-Ju

    2016-01-13

    Bioinspired hierarchical structures on the surface of vertical light-emitting diodes (VLEDs) are demonstrated by combining a self-assembled dip-coating process and nanopatterning transfer method using thermal release tape. This versatile surface structure can efficiently reduce the total internal reflection and add functions, such as superhydrophobicity and high oleophobicity, to achieve an antifouling effect for VLEDs.

  19. Designing large, high-efficiency, high-numerical-aperture, transmissive meta-lenses for visible light

    CERN Document Server

    Byrnes, Steven J; Aieta, Francesco; Capasso, Federico

    2015-01-01

    A metasurface lens (meta-lens) is a lens that bends light with an array of nanostructures on a flat surface, rather than by refraction. Macroscopic meta-lenses (mm- to cm-scale diameter) have been quite difficult to simulate and optimize, due to the large area, the lack of periodicity, and the billions of adjustable parameters. We describe a method for designing a large-area meta-lens that allows not only prediction of the efficiency and far-field, but also optimization of the shape and position of each individual nanostructure, with a computational cost that is almost independent of the lens size. Loosely speaking, the technique consists of designing a series of metasurface beam deflectors (blazed gratings), and then gluing them together. As a test of this framework, we design some high-numerical-aperture (NA=0.94) meta-lenses for visible light, based on TiO2 nano-pillars on a glass substrate. One of our designs is predicted to focus unpolarized 580nm light with 79% predicted efficiency; another focuses 580n...

  20. Use of a backpack alters gait initiation of high school students.

    Science.gov (United States)

    Vieira, Marcus Fraga; Lehnen, Georgia Cristina; Noll, Matias; Rodrigues, Fábio Barbosa; de Avelar, Ivan Silveira; da Costa, Paula Hentschel Lobo

    2016-06-01

    We assessed how backpack carriage influences the gait initiation (GI) process in high school students, who extensively use backpacks. GI involves different dynamics from gait itself, while the excessive use of backpacks can result in adverse effects. 117 high school students were evaluated in three experimental conditions: no backpack (NB), bilateral backpack (BB), and unilateral backpack (UB). Two force plates were used to acquire ground reaction forces (GRFs) and moments for each foot separately. Center of pressure (COP) scalar variables were extracted, and statistical parametric mapping analysis was performed over the entire COP/GRFs time series. GI anticipatory postural adjustments (APAs) were reduced and were faster in backpack conditions; medial-lateral COP excursion was smaller in this phase. The uneven distribution of the extra load in the UB condition led to a larger medial-lateral COP shift in the support-foot unloading phase, with a corresponding vertical GRF change that suggests a more pronounced unloading swing foot/loading support foot mechanism. The anterior-posterior GRFs were altered, but the COP was not. A possible explanation for these results may be the forward trunk lean and the center of mass proximity of the base of support boundary, which induced smaller and faster APA, increased swing foot/support foot weight transfer, and increased load transfer to the first step. PMID:27088395

  1. Phosphorescent organic light emitting diodes with high efficiency and brightness

    Science.gov (United States)

    Forrest, Stephen R; Zhang, Yifan

    2015-11-12

    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  2. A single Eu2+-activated high-color-rendering oxychloride white-light phosphor for white-light-emitting diodes

    Institute of Scientific and Technical Information of China (English)

    Peng-Peng Dai; Cong Li; Xin-Tong Zhang; Jun Xu; Xi Chen; Xiu-Li Wang; Yan Jia

    2016-01-01

    Single-phased,high-color-rendering index (CRI) white-light phosphors are emerging as potential phosphor-converted white-light-emitting diodes (WLEDs) and as an alternative to blends of tricolor phosphors.However,it is a challenge to create a high CRI white light from a single-doped activator.Here,we present a high CRI (Ra =91) white-light phosphor,Sr5(PO4)3-x(BO3)xCl:Eu2+,composed of Sr5(PO4)3Cl as the beginning member and Sr5(BO3)3Cl as the end member.This work utilized the solid-solution method,and tunable EU2+ emission was achieved.Color-tunable Eu2+ emissions in response to structural variation were observed in Sr5(PO4)3-x(BO3)xCl solid solutions.This was further confirmed using X-ray Rietveld refinement,electron paramagnetic resonance spectroscopy,and in the photoluminescence spectra.The color-tunable emissions included the white light that originated from the combination of the blue emission of Sr5(PO4)3Cl:Eu2+ and an induced Eu2+ yellow emission at approximately 550 nm in the solid solution.Importantly,the white-light phosphors showed a greater R9 =90.2 under excitation at 365 nm.This result has rarely been reported in the literature and is greater than that of (R9 =14.3) commercial Y3A15O12:Ce3+-based WLEDs.These findings demonstrate the great potential of Sr5(PO4)3-x(BO3)xCl:O.O4Eu2+ as a white-light phosphor for near-UV phosphor-converted WLEDs.These results also provide a shortcut for developing a high CRI white-light phosphor from a single Eu2+-doped compound.

  3. High luminance low etendue white light source using blue laser over static phosphor

    Science.gov (United States)

    Farooq, Tayyab; Qian, KeYuan

    2015-10-01

    A High Luminance White Light source for Etendue limited application has been demonstrated in this research paper by using blue InGaN laser diode beam over static source of phosphor Ce: YAG layer. Phosphor target has kept static because moving phosphor target light output is not constant and uniform. Different color temperatures had been obtained by varying phosphor concentration and thickness of the layer. When laser beam has focused on phosphor target spot, it induced very high temperature at that spot area. Temperature induced in the layer by laser beam depends on the layer thickness. All the layer thickness, surface temperature, output light flux, efficiency, and light color temperature are interrelate with each other. Uniform laser beam distribution, surface temperature, laser spot size, phosphor layer thickness are successfully calculated. Luminous efficiency, light color temperature, flux, wavelength spectrum, and light output power of laser driven white light source had been successfully observed at different laser beam powers.

  4. Titanium oxide nanotube arrays for high light extraction efficiency of GaN-based vertical light-emitting diodes.

    Science.gov (United States)

    Leem, Young-Chul; Seo, Okkyun; Jo, Yong-Ryun; Kim, Joon Heon; Chun, Jaeyi; Kim, Bong-Joong; Noh, Do Young; Lim, Wantae; Kim, Yong-Il; Park, Seong-Ju

    2016-05-21

    TiO2 nanotube (NT) arrays were fabricated on the surface of n-GaN through a liquid-phase conversion process using ZnO nanorods (NRs) as a template for high-efficiency InGaN/GaN multiple quantum well (MQW) vertical light-emitting diodes (VLEDs). The optical output power of the VLEDs with TiO2 NTs was remarkably enhanced by 23% and 189% at an injection current of 350 mA compared to those of VLEDs with ZnO NRs and planar VLEDs, respectively. The large enhancement in optical output is attributed to a synergistic effect of efficient light injection from the n-GaN layer of the VLED to TiO2 NTs because of the well-matched refractive indices and superior light extraction into air at the end of the TiO2 NTs. Light propagation along various configurations of TiO2 NTs on the VLEDs was investigated using finite-difference time domain simulations and the results indicated that the wall thickness of the TiO2 NTs should be maintained close to 20 nm for superior light extraction from the VLEDs. PMID:27121775

  5. Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species.

    Science.gov (United States)

    Haque, Mohammad S; Kjaer, Katrine H; Rosenqvist, Eva; Ottosen, Carl-Otto

    2015-01-01

    Cultivated tomato species develop leaf injury while grown in continuous light (CL). Growth, photosynthesis, carbohydrate metabolism and antioxidative enzyme activities of a cultivated (Solanum lycopersicum L. 'Aromata') and a wild tomato species (Solanum pimpinellifolium L.) were compared in this study aiming to analyze the species-specific differences and thermoperiod effects in responses to CL. The species were subjected to three photoperiodic treatments for 12 days in climate chambers: 16-h photoperiod with a light/dark temperature of 26/16°C (P16D10 or control); CL with a constant temperature of 23°C (P24D0); CL with a variable temperature of 26/16°C (P24D10). The results showed that both species grown in CL had higher dry matter production due to the continuous photosynthesis and a subsequent increase in carbon gain. In S. lycopersicum, the rate of photosynthesis and the maximum photochemical efficiency of photosystem II declined in CL with the development of leaf chlorosis, reduction in the leaf chlorophyll content and a higher activity of antioxidative enzymes. The normal diurnal patterns of starch and sugar were only present under control conditions. The results demonstrated that CL conditions mainly affected the photosynthetic apparatus of a cultivated species (S. lycopersicum), and to a less degree to the wild species (S. pimpinellifolium). The negative effects of the CL could be alleviated by diurnal temperature variations, but the physiological mechanisms behind these are less clear. The results also show that the genetic potential for reducing the negative effects of CL does exist in the tomato germplasm. PMID:26217371

  6. Continuous light increases growth, daily carbon gain, antioxidants and alters carbohydrate metabolism in a cultivated and a wild tomato species

    Directory of Open Access Journals (Sweden)

    Mohammad Sabibul Haque

    2015-07-01

    Full Text Available Cultivated tomato species develop leaf injury while grown in continuous light (CL. Growth, photosynthesis, carbohydrate metabolism and antioxidative enzyme activities of a cultivated (Solanum lycopersicum L. ‘Aromata’ and a wild tomato species (Solanum pimpinellifolium L. were compared in this study aiming to analyse the species-specific differences and thermoperiod effects in responses to CL. The species were subjected to three photoperiodic treatments for 12 days in climate chambers: 16-h photoperiod with a light/dark temperature of 26/16ºC (P16D10 or control; CL with a constant temperature of 23ºC (P24D0; CL with a variable temperature of 26/16ºC (P24D10. The results showed that both species grown in CL had higher dry matter production due to the continuous photosynthesis and a subsequent increase in carbon gain. In S. lycopersicum, the rate of photosynthesis and the maximum photochemical efficiency of photosystem II declined in CL with the development of leaf chlorosis, reduction in the leaf chlorophyll content and a higher activity of antioxidative enzymes. The normal diurnal patterns of starch and sugar were only present under control conditions. The results demonstrated that CL conditions mainly affected the photosynthetic apparatus of a cultivated species (S. lycopersicum, and to a less degree to the wild species (S. pimpinellifolium. The negative effects of the CL could be alleviated by diurnal temperature variations, but the physiological mechanisms behind these are less clear. The results also show that the genetic potential for reducing the negative effects of CL does exist in the tomato germplasm.

  7. Designing High Efficient Solar Powered OLED Lighting Systems

    DEFF Research Database (Denmark)

    Ploug, Rasmus Overgaard; Poulsen, Peter Behrensdorff; Thorsteinsson, Sune;

    2016-01-01

    for the 10 Wp version. Furthermore, we present measurements of state-of-the-art commercial available OLED with regards to the luminous flux, luminous efficacy, luminance homogeneity, temperature dependency and IV characteristic of the OLED panels. In addition, solar powered OLED product concepts are proposed.......OLEDs used in solar powered lighting applications is a market of the future. This paper reports the development of electronic Three-Port-Converters for PV OLED product integration in the low-power area respectively for 1-10 Wp and 10-50 Wp with a peak efficiency of 97% at 1.8 W of PV power...

  8. Functional alterations in neural substrates of geometric reasoning in adults with high-functioning autism.

    Directory of Open Access Journals (Sweden)

    Takashi Yamada

    Full Text Available Individuals with autism spectrum condition (ASC are known to excel in some perceptual cognitive tasks, but such developed functions have been often regarded as "islets of abilities" that do not significantly contribute to broader intellectual capacities. However, recent behavioral studies have reported that individuals with ASC have advantages for performing Raven's (Standard Progressive Matrices (RPM/RSPM, a standard neuropsychological test for general fluid intelligence, raising the possibility that ASC's cognitive strength can be utilized for more general purposes like novel problem solving. Here, the brain activity of 25 adults with high-functioning ASC and 26 matched normal controls (NC was measured using functional magnetic resonance imaging (fMRI to examine neural substrates of geometric reasoning during the engagement of a modified version of the RSPM test. Among the frontal and parietal brain regions involved in fluid intelligence, ASC showed larger activation in the left lateral occipitotemporal cortex (LOTC during an analytic condition with moderate difficulty than NC. Activation in the left LOTC and ventrolateral prefrontal cortex (VLPFC increased with task difficulty in NC, whereas such modulation of activity was absent in ASC. Furthermore, functional connectivity analysis revealed a significant reduction of activation coupling between the left inferior parietal cortex and the right anterior prefrontal cortex during both figural and analytic conditions in ASC. These results indicate altered pattern of functional specialization and integration in the neural system for geometric reasoning in ASC, which may explain its atypical cognitive pattern, including performance on the Raven's Matrices test.

  9. High-intensity exercise of short duration alters bovine bone density and shape.

    Science.gov (United States)

    Hiney, K M; Nielsen, B D; Rosenstein, D; Orth, M W; Marks, B P

    2004-06-01

    The ability of short-duration high-intensity exercise to stimulate bone formation in confinement was investigated using immature Holstein bull calves as a model. Eighteen bull calves, 8 wk of age, were assigned to one of three treatment groups: 1) group-housed (GR, which served as a control), 2) confined with no exercise (CF), or 3) confined with exercise (EX). The exercise protocol consisted of running 50 m on a concrete surface once daily, 5 d/wk. Confined calves remained stalled for the 42-d duration of the trial. Blood samples were taken to analyze concentrations of osteocalcin and deoxypyridinoline, markers of bone formation and resorption. At the completion of the trial, calves were humanely killed, and both forelegs were collected. The fused third and fourth metacarpal bone was scanned using computed tomography for determination of cross-sectional geometry and bone mineral density. Three-point bending tests to failure were performed on metacarpal bones. The exercise protocol resulted in the formation of a rounder bone in EX as well as in increased dorsal cortex thickness compared with those in the GR and CF. The exercised calves had a significantly smaller medullary cavity than CF and GR (P CF (P CF (P CF (P CF (P < 0.05). Therefore, the exercise protocol altered bone shape and seemed to increase bone formation comparison with the stalled and group-housed calves. PMID:15216986

  10. Microdischarge Array Flexible Light Source for High-Efficiency Irradiation of Spaced-Based Crops Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is desirable to develop a high-efficiency lighting source for large-area irradiation of space-based crops. The key requirements for such a system include high...

  11. Highly Efficient Nondoped Green Organic Light-Emitting Diodes with Combination of High Photoluminescence and High Exciton Utilization.

    Science.gov (United States)

    Wang, Chu; Li, Xianglong; Pan, Yuyu; Zhang, Shitong; Yao, Liang; Bai, Qing; Li, Weijun; Lu, Ping; Yang, Bing; Su, Shijian; Ma, Yuguang

    2016-02-10

    Photoluminescence (PL) efficiency and exciton utilization efficiency are two key parameters to harvest high-efficiency electroluminescence (EL) in organic light-emitting diodes (OLEDs). But it is not easy to simultaneously combine these two characteristics (high PL efficiency and high exciton utilization) into a fluorescent material. In this work, an efficient combination was achieved through two concepts of hybridized local and charge-transfer (CT) state (HLCT) and "hot exciton", in which the former is responsible for high PL efficiency while the latter contributes to high exciton utilization. On the basis of a tiny chemical modification in TPA-BZP, a green-light donor-acceptor molecule, we designed and synthesized CzP-BZP with this efficeient combination of high PL efficiency of η(PL) = 75% in the solid state and maximal exciton utilization efficiency up to 48% (especially, the internal quantum efficiency of η(IQE) = 35% substantially exceed 25% of spin statistics limit) in OLED. The nondoped OLED of CzP-BZP exhibited an excellent performance: a green emission with a CIE coordinate of (0.34, 0.60), a maximum current efficiency of 23.99 cd A(-1), and a maximum external quantum efficiency (EQE, η(EQE)) of 6.95%. This combined HLCT state and "hot exciton" strategy should be a practical way to design next-generation, low-cost, high-efficiency fluorescent OLED materials. PMID:26785427

  12. Alterations in cell migration and cell viability of wounded human skin fibroblasts following visible red light exposure

    Science.gov (United States)

    Prabhu, Vijendra; Rao, Bola Sadashiva S.; Mahato, Krishna Kishore

    2014-02-01

    The present study intended to examine the effect of visible red light on structural and cellular parameters on wounded skin fibroblast cells. To achieve the stated objective, uniform scratch was created on confluent monolayered human skin fibroblast cells, and were exposed to single dose of He-Ne laser (15 mm spot, 6.6808 mWcm-2) at 1, 2, 3, 4, 5, 6 and 7 Jcm-2 in the presence and absence of 10% fetal bovine serum (FBS). Beam profile measurements of the expanded laser beam were conducted to ensure the beam uniformity. The influence of laser dose on the change in temperature was recorded using sensitive temperature probe. Additionally, following laser exposure cell migration and cell survival were documented at different time intervals on wounded human skin fibroblast cells grown in vitro. Beam profile measurements indicated more or less uniform power distribution over the whole beam area. Temperature monitoring of sham irradiated control and laser treatment groups displayed negligible temperature change indicating the absence of thermal effect at the tested laser doses. In the absence of 10% FBS, single exposure of different laser doses failed to produce any significant effects on cell migration or cell survival. However, in the presence of serum single exposure of 5 J/cm2 on wounded skin fibroblasts significantly enhanced the cell migration (PLLLT acts by improving cell migration and cell proliferation to produce measurable changes in wounded fibroblast cells.

  13. Does variation in mineral composition alter the short-wave light scattering properties of desert dust aerosol?

    International Nuclear Information System (INIS)

    Mineral dust aerosol is a major component of natural airborne particulates. Using satellite measurements from the visible and near-infrared, there is insufficient information to retrieve a full microphysical and chemical description of an aerosol distribution. As such, refractive index is one of many parameters that must be implicitly assumed in order to obtain an optical depth retrieval. This is essentially a proxy for the dust mineralogy. Using a global soil map, it is shown that as long as a reasonable refractive index for dust is assumed, global dust variability is unlikely to cause significant variation in the optical properties of a dust aerosol distribution in the short-wave, and so should not greatly affect retrievals of mineral dust aerosol from space by visible and near-infrared radiometers. Errors in aerosol optical depth due to this variation are expected to be ≲1%. The work is framed around the ORAC AATSR aerosol retrieval, but is equally applicable to similar satellite retrievals. In this case, variations in the top-of-atmosphere reflectance caused by mineral variation are within the noise limits of the instrument. -- Highlights: • Global variation in dust aerosol refractive index is quantified using soil maps. • Resulting visible light scattering properties have limited variability. • Satellite aerosol retrievals do not need to account for varying dust refractive indices

  14. Chlorophyll b degradation by chlorophyll b reductase under high-light conditions.

    Science.gov (United States)

    Sato, Rei; Ito, Hisashi; Tanaka, Ayumi

    2015-12-01

    The light-harvesting chlorophyll a/b binding protein complex of photosystem II (LHCII) is the main antenna complex of photosystem II (PSII). Plants change their LHCII content depending on the light environment. Under high-light conditions, the content of LHCII should decrease because over-excitation damages the photosystem. Chlorophyll b is indispensable for accumulating LHCII, and chlorophyll b degradation induces LHCII degradation. Chlorophyll b degradation is initiated by chlorophyll b reductase (CBR). In land plants, NON-YELLOW COLORING 1 (NYC1) and NYC1-Like (NOL) are isozymes of CBR. We analyzed these mutants to determine their functions under high-light conditions. During high-light treatment, the chlorophyll a/b ratio was stable in the wild-type (WT) and nol plants, and the LHCII content decreased in WT plants. The chlorophyll a/b ratio decreased in the nyc1 and nyc1/nol plants, and a substantial degree of LHCII was retained in nyc1/nol plants after the high-light treatment. These results demonstrate that NYC1 degrades the chlorophyll b on LHCII under high-light conditions, thus decreasing the LHCII content. After the high-light treatment, the maximum quantum efficiency of the PSII photochemistry was lower in nyc1 and nyc1/nol plants than in WT and nol plants. A larger light-harvesting system would damage PSII in nyc1 and nyc1/nol plants. The fluorescence spectroscopy of the leaves indicated that photosystem I was also damaged by the excess LHCII in nyc1/nol plants. These observations suggest that chlorophyll b degradation by NYC1 is the initial reaction for the optimization of the light-harvesting capacity under high-light conditions.

  15. High resolution Cerenkov light imaging of induced positron distribution in proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp; Fujii, Kento; Morishita, Yuki; Okumura, Satoshi; Komori, Masataka [Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine, Aichi 461-8673 (Japan); Toshito, Toshiyuki [Department of Proton Therapy Physics, Nagoya Proton Therapy Center, Nagoya City West Medical Center, Aichi 462-8508 (Japan)

    2014-11-01

    Purpose: In proton therapy, imaging of the positron distribution produced by fragmentation during or soon after proton irradiation is a useful method to monitor the proton range. Although positron emission tomography (PET) is typically used for this imaging, its spatial resolution is limited. Cerenkov light imaging is a new molecular imaging technology that detects the visible photons that are produced from high-speed electrons using a high sensitivity optical camera. Because its inherent spatial resolution is much higher than PET, the authors can measure more precise information of the proton-induced positron distribution with Cerenkov light imaging technology. For this purpose, they conducted Cerenkov light imaging of induced positron distribution in proton therapy. Methods: First, the authors evaluated the spatial resolution of our Cerenkov light imaging system with a {sup 22}Na point source for the actual imaging setup. Then the transparent acrylic phantoms (100 × 100 × 100 mm{sup 3}) were irradiated with two different proton energies using a spot scanning proton therapy system. Cerenkov light imaging of each phantom was conducted using a high sensitivity electron multiplied charge coupled device (EM-CCD) camera. Results: The Cerenkov light’s spatial resolution for the setup was 0.76 ± 0.6 mm FWHM. They obtained high resolution Cerenkov light images of the positron distributions in the phantoms for two different proton energies and made fused images of the reference images and the Cerenkov light images. The depths of the positron distribution in the phantoms from the Cerenkov light images were almost identical to the simulation results. The decay curves derived from the region-of-interests (ROIs) set on the Cerenkov light images revealed that Cerenkov light images can be used for estimating the half-life of the radionuclide components of positrons. Conclusions: High resolution Cerenkov light imaging of proton-induced positron distribution was possible. The

  16. A novel light tracing system with high-precision and high-sensitivity sensors setup

    Science.gov (United States)

    Lin, Chern-Sheng; Wu, Pin Yi; Tsai, Jen Min; Tseng, Yu Hung; Chen, Hsin-Hung; Hwang, Jiann-Lih

    2013-11-01

    This paper presents a novel light source tracing system, which is comprised of a light-tracing board, with four photo-sensors of different incline angles, correspondingly disposed on its four edges, which are adjustable according to the movement range of the light source in order to achieve light-tracing purposes. This system introduces the algorithm of four-edge-sensors with servo motors in each site to improve sensor's sensitivity. The measurement values of light perception can be feedback to the programmable logic controller by wireless transceiver module. After proportional-integral-derivative operation, the system can obtain the situation of light source. In a normal mode, the light source movement range is large, the range of the incline angle of the light sensors are also set to large to obtain wide detection angle. But in a locking mode, the incline angle of the light sensing plane decreases, thus, the measurement range reduces, and the sensitivity is higher.

  17. The risk of retina damage from high intensity light sources.

    Science.gov (United States)

    Pollak, V A; Romanchuk, K G

    1980-05-01

    The risk of thermal damage to the retina of the eye by exposure to excessive light intensities from continuous and pulsed man-made sources is discussed. The probability of injury increases, the larger the radiant power absorbed by the retina and the smaller the size of the retinal image of the source. A mehtod of estimating the temperature increase of the immediately affected area of the retina is presented. The time constants involved are also briefly considered. Using numerical values from literature for the relevant parameters of the eye, threshold values for a variety of conditions can be established. Below these values little risk of retina damage should exist. The degree of hazard when these values are exceeded depends upon the circumstances. A case study of a welding accident showed good agreement between the conclusions of the theoretical analysis and clinical findings.

  18. HIGH LEVEL MODELLING OF REAL TIME TRAFFIC LIGHT CONTROLLER

    Directory of Open Access Journals (Sweden)

    ADITYA MANDLOI

    2012-12-01

    Full Text Available The objective of this paper is to design and implement traffic control system. The system developed is able to sense the presence of vehicles within certain range by setting the appropriate duration for the traffic signals to react accordingly. By employing logical functions to calculate the appropriate timing for the signals toilluminate, the system can help to solve the problem of traffic congestion. The use of FPGAs (Field Programmable Gate Arrays is an interesting new phenomenon in VLSI development. FPGAs offer all of thefeatures needed to implement most complex designs. Hardware simulation tests were successfully performed on the algorithm implemented into a FPGA (Field Programmable Gate Arrays. The main object of the paper is to design a Real Time Traffic Light Controller (RTTLC using VHDL and implement the RTTLC in XILINX SPARTAN - 3 FPGA.

  19. Light thermal structures and materials for high speed flight

    Science.gov (United States)

    Thornton, Earl A.

    1992-01-01

    Over the last twenty years, unified viscoplastic constitutive models have evolved to meet this need. These constitutive models provide a means for representing a material's response from the elastic through the plastic range including strain-rate dependent plastic flow, creep, and stress relaxation. Rate-dependent plasticity effects are known to be important at elevated temperatures. The purpose of this paper is to describe computational and experimental research programs underway at the Light Thermal Structures Center focused on the investigation of the response of structures and materials to local heating. In the first part of the paper, finite element thermoviscoplastic analysis is highlighted. In the second part of the paper, the thermal-structures experimental program is outlined.

  20. Visible light photon counters (VLPCs) for high rate tracking medical imaging and particle astrophysics

    International Nuclear Information System (INIS)

    This paper is on the operation principles of the Visible Light Photon Counters (VLPCs), application to high luminosity-high multiplicity tracking for High Energy Charged Particle Physics, and application to Medical Imaging and Particle Astrophysics. The VLPCs as Solid State Photomultipliers (SSPMS) with high quantum efficiency can detect down to single photons very efficiently with excellent time resolution and high avalanche gains

  1. Visible light photon counters (VLPCs) for high rate tracking medical imaging and particle astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Atac, M.

    1998-02-01

    This paper is on the operation principles of the Visible Light Photon Counters (VLPCs), application to high luminosity-high multiplicity tracking for High Energy Charged Particle Physics, and application to Medical Imaging and Particle Astrophysics. The VLPCs as Solid State Photomultipliers (SSPMS) with high quantum efficiency can detect down to single photons very efficiently with excellent time resolution and high avalanche gains.

  2. High-speed video-oculography applied to assess pupil light reflex

    OpenAIRE

    Roig Hernández, Ana Belén; Espinosa Tomás, Julián; Pérez Rodríguez, Jorge; Mas Candela, David

    2014-01-01

    Eye response to light exposure is usually described through the pupillary light reflex, which controls the pupil diameter and allows for testing the sensory and motor functions of the eye. We have arranged an experimental setup and developed a procedure in order to improve the video-oculography experiment through high-speed imaging. The technique has been applied over eleven people distinguishing between consensual and direct pupillary light reflexes and analyzing the eye dominance. We found ...

  3. Volume-scalable high-brightness three-dimensional visible light source

    Science.gov (United States)

    Subramania, Ganapathi; Fischer, Arthur J; Wang, George T; Li, Qiming

    2014-02-18

    A volume-scalable, high-brightness, electrically driven visible light source comprises a three-dimensional photonic crystal (3DPC) comprising one or more direct bandgap semiconductors. The improved light emission performance of the invention is achieved based on the enhancement of radiative emission of light emitters placed inside a 3DPC due to the strong modification of the photonic density-of-states engendered by the 3DPC.

  4. The transparent testa4 mutation prevents flavonoid synthesis and alters auxin transport and the response of Arabidopsis roots to gravity and light.

    Science.gov (United States)

    Buer, Charles S; Muday, Gloria K

    2004-05-01

    We examined whether flavonoids act as endogenous auxin transport regulators during gravity vector and light intensity changes in Arabidopsis thaliana roots. Flavonoid deficient transparent testa4 [tt4(2YY6)] seedlings had elevated root basipetal auxin transport compared with the wild type, consistent with the absence of a negative auxin transport regulator. The tt4(2YY6) roots had delayed gravitropism that was chemically complemented with a flavonoid intermediate. Flavonoid accumulation was found in wild-type columella cells, the site of gravity perception, and in epidermal and cortical cells, the site of differential growth, but flavonoid accumulation was absent in tt4(2YY6) roots. Flavonoid accumulation was higher in gravity-stimulated root tips as compared with vertical controls, with maximum differences coinciding with the timing of gravitropic bending, and was located in epidermal cells. Exogenous indole-3-acetic acid (IAA) also elevated flavonoid accumulation, suggesting that flavonoid changes in response to gravity might be partly as a result of changing IAA distribution. Acropetal IAA transport was also elevated in roots of tt4(2YY6). Flavonoid synthesis was repressed in the dark, as were differences in root acropetal transport in tt4(2YY6). These results are consistent with light- and gravity-induced flavonoid stimulation that alters auxin transport in roots and dependent physiological processes, including gravitropic bending and root development.

  5. High-resolution light field reconstruction using a hybrid imaging system.

    Science.gov (United States)

    Wang, Xiang; Li, Lin; Hou, GuangQi

    2016-04-01

    Recently, light field cameras have drawn much attraction for their innovative performance in photographic and scientific applications. However, narrow baselines and constrained spatial resolution of current light field cameras impose restrictions on their usability. Therefore, we design a hybrid imaging system containing a light field camera and a high-resolution digital single lens reflex camera, and these two kinds of cameras share the same optical path with a beam splitter so as to achieve the reconstruction of high-resolution light fields. The high-resolution 4D light fields are reconstructed with a phase-based perspective variation strategy. First, we apply complex steerable pyramid decomposition on the high-resolution image from the digital single lens reflex camera. Then, we perform phase-based perspective-shift processing with the disparity value, which is extracted from the upsampled light field depth map, to create high-resolution synthetic light field images. High-resolution digital refocused images and high-resolution depth maps can be generated in this way. Furthermore, controlling the magnitude of the perspective shift enables us to change the depth of field rendering in the digital refocused images. We show several experimental results to demonstrate the effectiveness of our approach.

  6. Androgen Deficiency Exacerbates High-Fat Diet-Induced Metabolic Alterations in Male Mice.

    Science.gov (United States)

    Dubois, Vanessa; Laurent, Michaël R; Jardi, Ferran; Antonio, Leen; Lemaire, Katleen; Goyvaerts, Lotte; Deldicque, Louise; Carmeliet, Geert; Decallonne, Brigitte; Vanderschueren, Dirk; Claessens, Frank

    2016-02-01

    Androgen deficiency is associated with obesity, metabolic syndrome, and type 2 diabetes mellitus in men, but the mechanisms behind these associations remain unclear. In this study, we investigated the combined effects of androgen deficiency and high-fat diet (HFD) on body composition and glucose homeostasis in C57BL/6J male mice. Two models of androgen deficiency were used: orchidectomy (ORX) and androgen receptor knockout mice. Both models displayed higher adiposity and serum leptin levels upon HFD, whereas no differences were seen on a regular diet. Fat accumulation in HFD ORX animals was accompanied by increased sedentary behavior and occurred in spite of reduced food intake. HFD ORX mice showed white adipocyte hypertrophy, correlated with decreased mitochondrial content but not function as well as increased lipogenesis and decreased lipolysis suggested by the up-regulation of fatty acid synthase and the down-regulation of hormone-sensitive lipase. Both ORX and androgen receptor knockout exacerbated HFD-induced glucose intolerance by impairing insulin action in liver and skeletal muscle, as evidenced by the increased triglyceride and decreased glycogen content in these tissues. In addition, serum IL-1β levels were elevated, and pancreatic insulin secretion was impaired after ORX. Testosterone but not dihydrotestosterone supplementation restored the castration effects on body composition and glucose homeostasis. We conclude that sex steroid deficiency in combination with HFD exacerbates adiposity, insulin resistance, and β-cell failure in 2 preclinical male mouse models. Our findings stress the importance of a healthy diet in a clinical context of androgen deficiency and may have implications for the prevention of metabolic alterations in hypogonadal men.

  7. High fat-fed diabetic mice present with profound alterations of the osteocyte network.

    Science.gov (United States)

    Mabilleau, Guillaume; Perrot, Rodolphe; Flatt, Peter R; Irwin, Nigel; Chappard, Daniel

    2016-09-01

    Diabetes mellitus is considered to be an independent risk factor for bone fragility fractures. Reductions in bone mass, observed only with type 1 diabetes mellitus, as well as modifications of bone microarchitectures and tissue material properties are landmarks of diabetes-related bone alterations. An interesting feature observed in type 2 diabetes mellitus (T2DM) is the augmented concentration in circulating sclerostin. This observation prompts us to hypothesize that modifications of osteocyte network and perilacunar mineralization occur in T2DM. As such, the aims of the present study were to ascertain by quantitative backscattered electron imaging, confocal microscopy and image analysis, modifications of perilacunar tissue mineral density, osteocyte morphology and osteocyte network topology in a mouse model of high fat-induced type 2 diabetes. As compared with lean control animals, diabetic mice exhibited a significant 48% decrease in perilacunar mineralization heterogeneity although mean perilacunar mineralization was unchanged. Furthermore, in diabetic animals, osteocyte volume was significantly augmented by 34% with no change in the overall number of dendrite processes. Finally, the network topology was profoundly modified in diabetic mice with increases in the mean node degree, mean node volume and hub numbers whilst the mean link length was reduced. Overall, it appeared that in diabetic animals, the dendritic network exhibited features of a scale-free network as opposed to the single-scale characteristic observed in lean controls. However, it is important to ascertain whether diabetic patients exhibit such modifications of the osteocyte network and whether anti-diabetic drugs could restore normal osteocyte and network parameters, thereby improving bone quality and protecting against fragility fractures. PMID:27312542

  8. High fat diet alters lactation outcomes: possible involvement of inflammatory and serotonergic pathways.

    Directory of Open Access Journals (Sweden)

    Laura L Hernandez

    Full Text Available Delay in the onset of lactogenesis has been shown to occur in women who are obese, however the mechanism altered within the mammary gland causing the delay remains unknown. Consumption of high fat diets (HFD has been previously determined to result decreased litters and litter numbers in rodent models due to a decrease in fertility. We examined the effects of feeding a HFD (60% kcal from fat diet versus a low-fat diet (LFD; 10% kcal from fat to female Wistar rats on lactation outcomes. Feeding of HFD diet resulted in increased pup weights compared to pups from LFD fed animals for 4 d post-partum. Lactation was delayed in mothers on HFD but they began to produce copious milk volumes beginning 2 d post-partum, and milk yield was similar to LFD by day 3. Mammary glands collected from lactating animals on HFD diet, displayed a disrupted morphologies, with very few and small alveoli. Consistently, there was a significant decrease in the mRNA expression of milk protein genes, glucose transporter 1 (GLUT1 and keratin 5 (K5, a luminobasal cell marker in the mammary glands of HFD lactating animals. Expression of tryptophan hydroxylase 1 (TPH1, the rate-limiting enzyme in serotonin (5-HT biosynthesis, and the 5-HT(7 receptor (HTR7, which regulates mammary gland involution, were significantly increased in mammary glands of HFD animals. Additionally, we saw elevation of the inflammatory markers interleukin-6 (IL-6 and tumor necrosis factor-α (TNF- α. These results indicate that consumption of HFD impairs mammary parenchymal tissue and impedes its ability to synthesize and secrete milk, possibly through an increase in 5-HT production within the mammary gland leading to an inflammatory process.

  9. High-base vector beam encoding/decoding for visible-light communications.

    Science.gov (United States)

    Zhao, Yifan; Wang, Jian

    2015-11-01

    Polarization is a basic property of light. Different from well-known linear, circular, and elliptical polarizations, which are spatially homogeneous, a vector light beam with spatially variant polarization states has received increasing interest for its expanded functionalities. In this Letter, we present a visible-light communication link exploiting high-base vector beam encoding/decoding. Using a single phase-only spatial light modulator, we generate 16 states of vector beams representing hexadecimal numbers. In the visible-light communication link experiment, we transmit a random high-base number sequence with 10,000 hexadecimal numbers and a 64×64 pixel Lena gray image with 8192 hexadecimal numbers. The bit error rate is evaluated, and zero error among all received hexadecimal numbers is achieved, showing favorable link communication performance using the high-base vector beam encoding/decoding. PMID:26512464

  10. OZONE UPTAKE OF DIFFERENT-SIZED BLACK CHERRY TREES IN HIGH- AND LOW-LIGHT ENVIRONMENTS

    Science.gov (United States)

    Ozone uptake rates of different-sized black cherry trees located in both high and low light environments were calculated from measurements of ambient ozone concentration and stomatal conductance. he objective of the study was to determine how tree size and light conditions may di...

  11. Shedding Light on Filovirus Infection with High-Content Imaging

    Directory of Open Access Journals (Sweden)

    Rekha G. Panchal

    2012-08-01

    Full Text Available Microscopy has been instrumental in the discovery and characterization of microorganisms. Major advances in high-throughput fluorescence microscopy and automated, high-content image analysis tools are paving the way to the systematic and quantitative study of the molecular properties of cellular systems, both at the population and at the single-cell level. High-Content Imaging (HCI has been used to characterize host-virus interactions in genome-wide reverse genetic screens and to identify novel cellular factors implicated in the binding, entry, replication and egress of several pathogenic viruses. Here we present an overview of the most significant applications of HCI in the context of the cell biology of filovirus infection. HCI assays have been recently implemented to quantitatively study filoviruses in cell culture, employing either infectious viruses in a BSL-4 environment or surrogate genetic systems in a BSL-2 environment. These assays are becoming instrumental for small molecule and siRNA screens aimed at the discovery of both cellular therapeutic targets and of compounds with anti-viral properties. We discuss the current practical constraints limiting the implementation of high-throughput biology in a BSL-4 environment, and propose possible solutions to safely perform high-content, high-throughput filovirus infection assays. Finally, we discuss possible novel applications of HCI in the context of filovirus research with particular emphasis on the identification of possible cellular biomarkers of virus infection.

  12. High-resolution Fourier hologram synthesis from photographic images through computing the light field.

    Science.gov (United States)

    Chen, Ni; Ren, Zhenbo; Lam, Edmund Y

    2016-03-01

    We present a technique for synthesizing the Fourier hologram of a three-dimensional scene from its light field. The light field captures the volumetric information of an object, and an important advantage is that it does not require coherent illumination, as in conventional holography. In this work, we show how to obtain a high-resolution digital hologram with the light field obtained from a series of photographic images captured along the optical axis. The method is verified both by simulations and experimentally captured light field.

  13. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting.

    Science.gov (United States)

    Song, Young Hyun; Ji, Eun Kyung; Jeong, Byung Woo; Jung, Mong Kwon; Kim, Eun Young; Yoon, Dae Ho

    2016-01-01

    We report on Y3Al5O12: Ce(3+) ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce(3+) concentration. The luminous properties of the Y3Al5O12: Ce(3+) CPP nano phosphor are improved when compared to the Y3Al5O12: Ce(3+) CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce(3+) CPP with an optimal Ce(3+) content of 0.5 mol % shows 2733 lm/mm(2) value under high power blue radiant flux density of 19.1 W/mm(2). The results indicate that Y3Al5O12: Ce(3+) CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications. PMID:27502730

  14. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting.

    Science.gov (United States)

    Song, Young Hyun; Ji, Eun Kyung; Jeong, Byung Woo; Jung, Mong Kwon; Kim, Eun Young; Yoon, Dae Ho

    2016-08-09

    We report on Y3Al5O12: Ce(3+) ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce(3+) concentration. The luminous properties of the Y3Al5O12: Ce(3+) CPP nano phosphor are improved when compared to the Y3Al5O12: Ce(3+) CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce(3+) CPP with an optimal Ce(3+) content of 0.5 mol % shows 2733 lm/mm(2) value under high power blue radiant flux density of 19.1 W/mm(2). The results indicate that Y3Al5O12: Ce(3+) CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications.

  15. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting

    Science.gov (United States)

    Song, Young Hyun; Ji, Eun Kyung; Jeong, Byung Woo; Jung, Mong Kwon; Kim, Eun Young; Yoon, Dae Ho

    2016-08-01

    We report on Y3Al5O12: Ce3+ ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce3+ concentration. The luminous properties of the Y3Al5O12: Ce3+ CPP nano phosphor are improved when compared to the Y3Al5O12: Ce3+ CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce3+ CPP with an optimal Ce3+ content of 0.5 mol % shows 2733 lm/mm2 value under high power blue radiant flux density of 19.1 W/mm2. The results indicate that Y3Al5O12: Ce3+ CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications.

  16. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting

    Science.gov (United States)

    Song, Young Hyun; Ji, Eun Kyung; Jeong, Byung Woo; Jung, Mong Kwon; Kim, Eun Young; Yoon, Dae Ho

    2016-01-01

    We report on Y3Al5O12: Ce3+ ceramic phosphor plate (CPP) using nano phosphor for high power laser diode (LD) application for white light in automotive lighting. The prepared CPP shows improved luminous properties as a function of Ce3+ concentration. The luminous properties of the Y3Al5O12: Ce3+ CPP nano phosphor are improved when compared to the Y3Al5O12: Ce3+ CPP with bulk phosphor, and hence, the luminous emittance, luminous flux, and conversion efficiency are improved. The Y3Al5O12: Ce3+ CPP with an optimal Ce3+ content of 0.5 mol % shows 2733 lm/mm2 value under high power blue radiant flux density of 19.1 W/mm2. The results indicate that Y3Al5O12: Ce3+ CPP using nano phosphor can serve as a potential material for solid-state laser lighting in automotive applications. PMID:27502730

  17. Conical photonic crystals for enhancing light extraction efficiency from high refractive index materials.

    Science.gov (United States)

    Kim, Jeong-Gil; Hsieh, Chih-Hung; Choi, Hyungryul J; Gardener, Jules; Singh, Bipin; Knapitsch, Arno; Lecoq, Paul; Barbastathis, George

    2015-08-24

    We propose, analyze and optimize a two-dimensional conical photonic crystal geometry to enhance light extraction from a high refractive index material, such as an inorganic scintillator. The conical geometry suppresses Fresnel reflections at an optical interface due to adiabatic impedance matching from a gradient index effect. The periodic array of cone structures with a pitch larger than the wavelength of light diffracts light into higher-order modes with different propagating angles, enabling certain photons to overcome total internal reflection (TIR). The numerical simulation shows simultaneous light yield gains relative to a flat surface both below and above the critical angle and how key parameters affect the light extraction efficiency. Our optimized design provides a 46% gain in light yield when the conical photonic crystals are coated on an LSO (cerium-doped lutetium oxyorthosilicate) scintillator. PMID:26368241

  18. High Quality Down Lighting Luminaire with 73% Overall System Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Robert Harrison; Steven C. Allen; Joseph Bernier; Robert Harrison

    2010-08-31

    This report summarizes work to develop a high flux, high efficiency LED-based downlight at OSRAM SYLVANIA under US Department of Energy contract DE-FC26-08NT01582. A new high power LED and electronic driver were developed for these downlights. The LED achieved 100 lumens per watt efficacy and 1700 lumen flux output at a correlated color temperature of 3500K. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.99, and total harmonic distortion <10%. Two styles of downlights using the LED and driver were shown to exceed the project targets for steady-state luminous efficacy and flux of 70 lumens per watt and 1300 lumens, respectively. Compared to similar existing downlights using compact fluorescent or LED sources, these downlights had much higher efficacy at nearly the same luminous flux.

  19. Light energy matching method in high-resolution image reconstruction

    Institute of Scientific and Technical Information of China (English)

    Ling Wang(王凌); Zhihai Xu(徐之海); Huajun Feng(冯华君); Ping Zhang(张平)

    2003-01-01

    Many approaches for high-resolution image reconstruction have been proposed in some literatures. One ofthe most commonly ways is to reconstruct a high-resolution image from a number of rotated and translatedimages with low resolution. In this process, the exposure difference among original images will decreasethe quality of the reconstructed image. In order to remove the influence of the exposure difference, alight energy matching method is proposed in this paper. The theoretical analysis is illustrated in details.Experimental results show that the theoretical analysis is correct and the proposed method is valid.

  20. High intensity Discharge lighting; Alumbrado de alta intensidad de descarga

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza E, Ernesto J. [Manufacturera de Reactores, S. A., Mexico, D. F. (Mexico)

    1993-12-31

    This paper gets into contact with some fundamentals in the operation of high discharge intensity lamps. There are useful definitions, as well as the study of the operation of high pressure sodium lamps and of metallic additives operating at less than nominal power. [Espanol] Este trabajo pone al lector en contacto con algunos fundamentos de la operacion de las lamparas de alta intensidad de descarga (HID). Se encuentra con definiciones utiles, asi como el estudio de la operacion de las lamparas de sodio en alta presion y de aditivos metalicos operando a una potencia menor que la nominal.

  1. Structural alterations of foreskin caused by chronic smoking may explain high levels of urethral reconstruction failure using foreskin flaps

    Directory of Open Access Journals (Sweden)

    João P. Rosado

    2012-08-01

    Full Text Available OBJECTIVES: The aim of the present study was to perform a stereological and biochemical analysis of the foreskin of smoker subjects. MATERIALS AND METHODS: Foreskin samples were obtained from 20 young adults (mean = 27.2 years old submitted to circumcision. Of the patients analyzed, one group (n = 10 had previous history of chronic smoking (a half pack to 3 packs per day for 3 to 13 years (mean = 5.8 ± 3.2. The control group included 10 nonsmoking patients. Masson's trichrome stain was used to quantify the foreskin vascular density. Weigert’s resorcin-fucsin stain was used to assess the elastic system fibers and Picrosirius red stain was applied to study the collagen. Stereological analysis was performed using the Image J software to determine the volumetric densities. For biochemical analysis, the total collagen was determined as µg of hydroxyproline per mg of dry tissue. Means were compared using the unpaired t-test (p < 0.05. RESULTS: Elastic system fibers of smokers was 42.5% higher than in the control group (p = 0.002. In contrast, smooth muscle fibers (p = 0.42 and vascular density (p = 0.16 did not show any significant variation. Qualitative analysis using Picrosirius red stain with polarized light evidenced the presence of type I and III collagen in the foreskin tissue, without significant difference between the groups. Total collagen concentration also did not differ significantly between smokers and non-smokers (73.1µg/mg ± 8.0 vs. 69.2µg/mg ± 5.9, respectively, p = 0.23. CONCLUSIONS: The foreskin tissue of smoking patients had a significant increase of elastic system fibers. Elastic fibers play an important role in this tissue’s turnover and this high concentration in smokers possibly causes high extensibility of the foreskin. The structural alterations in smokers’ foreskins could possibly explain the poor results in smoking patients submitted to foreskin fasciocutaneous flaps in urethral reconstruction surgery.

  2. CdSe/ZnS quantum dot films for high performance flexible lighting and display applications

    Science.gov (United States)

    Altintas, Yemliha; Genc, Sinan; Younis Talpur, Mohammad; Mutlugun, Evren

    2016-07-01

    Colloidal quantum dots have attracted significant interest in recent years for lighting and display applications and have recently appeared in high-end market products. The integration of quantum dots with light emitting diodes has made them promising candidates for superior lighting applications with tunable optical characteristics. In this work we propose and demonstrate high quality colloidal quantum dots in their novel free-standing film forms to allow high quality white light generation to address flexible lighting and display applications. High quality quantum dots have been characterized using transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, steady state and time resolved photoluminescence and dynamic light scattering methods. The engineering of colloidal quantum dot composition and its optical properties in stand-alone film form has led to the experimentally high NTSC color gamut of 122.5 (CIE-1931) for display applications, color rendering index of 88.6, luminous efficacy of optical radiation value of 290 lm/Wopt and color temperature of 2763 K for lighting applications.

  3. CdSe/ZnS quantum dot films for high performance flexible lighting and display applications.

    Science.gov (United States)

    Altintas, Yemliha; Genc, Sinan; Talpur, Mohammad Younis; Mutlugun, Evren

    2016-07-22

    Colloidal quantum dots have attracted significant interest in recent years for lighting and display applications and have recently appeared in high-end market products. The integration of quantum dots with light emitting diodes has made them promising candidates for superior lighting applications with tunable optical characteristics. In this work we propose and demonstrate high quality colloidal quantum dots in their novel free-standing film forms to allow high quality white light generation to address flexible lighting and display applications. High quality quantum dots have been characterized using transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, steady state and time resolved photoluminescence and dynamic light scattering methods. The engineering of colloidal quantum dot composition and its optical properties in stand-alone film form has led to the experimentally high NTSC color gamut of 122.5 (CIE-1931) for display applications, color rendering index of 88.6, luminous efficacy of optical radiation value of 290 lm/Wopt and color temperature of 2763 K for lighting applications. PMID:27284908

  4. High-resolution computed tomography of the middle ear and mastoid. Part III. Surgically altered anatomy and pathology

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, J.D.; Goodman, R.S.; Russell, K.B.; Ladenheim, S.F.; Wolfson, R.J.

    1983-08-01

    High-resolution computed tomography (CT) provides an excellent method for examination of the surgically altered middle ear and mastoid. Closed-cavity and open-cavity types of mastoidectomy are illustrated. Recurrent cholesteatoma in the mastoid bowl is easily diagnosed. Different types of tympanoplasty are discussed and illustrated, as are tympanostomy tubes and various ossicular reconstructive procedures. Baseline high-resolution CT of the postoperative middle ear and mastoid is recommended at approximately 3 months following the surgical procedure.

  5. Human longevity is characterised by high thyroid stimulating hormone secretion without altered energy metabolism

    DEFF Research Database (Denmark)

    Jansen, S W; Akintola, A A; Roelfsema, F;

    2015-01-01

    hormone (TH) in an inverse relationship. Greater longevity has been associated with higher TSH and lower TH levels, but mechanisms underlying TSH/TH differences and longevity remain unknown. The HPT axis plays a pivotal role in growth, development and energy metabolism. We report that offspring...... may favour longevity without altering energy metabolism....

  6. Heat transfer and structure stress analysis of micro packaging component of high power light emitting diode

    Directory of Open Access Journals (Sweden)

    Hsu Chih-Neng

    2013-01-01

    Full Text Available This paper focuses on the heat transfer and structural stress analysis of the micro- scale packaging structure of a high-power light emitting diode. The thermal-effect and thermal-stress of light emitting diode are determined numerically. Light emitting diode is attached to the silicon substrate through the wire bonding process by using epoxy as die bond material. The silicon substrate is etched with holes at the bottom and filled with high conductivity copper material. The chip temperature and structure stress increase with input power consumption. The micro light emitting diode is mounted on the heat sink to increase the heat dissipation performance, to decrease chip temperature, to enhance the material structure reliability and safety, and to avoid structure failure as well. This paper has successfully used the finite element method to the micro-scale light emitting diode heat transfer and stress concentration at the edges through etched holes.

  7. Formation of alteration products during dissolution of vitrified ILW in a high-pH calcium-rich solution

    International Nuclear Information System (INIS)

    To simulate the possible disposition of a vitrified intermediate-level waste (ILW) in a cementitious environment within a geological disposal facility (GDF), the durability of a laboratory simulant ILW vitrified in a borosilicate glass in a saturated Ca(OH)2 solution (pH ∼12.5) was measured. Both a low surface area to volume (SA/V) ratio (∼10 m−1) Materials Characterisation Center test 1 (MCC-1) and a high SA/V ratio (∼10,000 m−1) product consistency test type B (PCT-B) were used at 50 °C for up to 170 days. The formation of alteration layers and products was followed. The surfaces of the monoliths were analysed using SEM/EDX and showed the formation of magnesium-rich precipitates and distinct calcium silicate hydrate (CSH) precipitates. Cross sections showed the development of a calcium-rich alteration layer, which was observed from 14 days. The altered layer was up to 5 μm thick after 170 days and showed accumulation of zirconium, iron and magnesium and to a lesser extent aluminium, along with calcium and silicon. Based on comparison of the rate data, it is suggested that the presence of this layer may offer some protection to the underlying glass. However, the high SA/V ratio experiments showed resumed alteration after 56 days, indicating that the altered layer may not be protective in the long term (under accelerated conditions). The formation of a magnesium-containing smectite clay (likely saponite) in addition to CSH(II), a jennite-like CSH phase, were identified in the high SA/V experiment by X-ray diffraction after 170 days. These results suggest that calcium and magnesium have important roles in both the long and shorter-term durability of vitrified wastes exposed to high pH

  8. High-Redshift galaxies light from the early universe

    CERN Document Server

    Appenzeller, Immo

    2008-01-01

    This book provides a comprehensive account of the scientific results on high-redshift galaxies accumulated during the past ten years. Apart from summarizing and critically discussing the wealth of observational data, the observational methods which made it possible to study these very distant and extremely faint objects are described in detail. Moreover, the technical feasibilities and physical limitations for existing and for future ground-based and space-based telescopes are discussed. Thus, apart from summarizing the knowledge accumulated so far, the book is designed as a tool for planning future observational and instrumental programs and projects. In view of the potential importance of the observational results of the high-redshift universe for basic physics the book is written for astronomers as well as for physicists without prior astronomical knowledge. For this purpose it contains introductory chapters describing the basic concepts and notations used in modern astronomy and a brief overview of the pr...

  9. High-light-output scintillator for photodiode readout: LuI3:Ce3+

    NARCIS (Netherlands)

    Birowosuto, M.D.; Dorenbos, P.; Van Eijk, C.W.E.; Krämer, K.W.; Güdel, H.U.

    2006-01-01

    In this paper, we investigated the scintillation properties of LuI3:Ce3+. Radioluminescence, light output, energy resolution, and γ-scintillation decay are reported. We find an extremely high light output of 98 000±10 000 photons/MeV. LuI3:Ce3+ also gives a very high electron-hole (e-h) pair respons

  10. SPIM-fluid: open source light-sheet based platform for high-throughput imaging.

    Science.gov (United States)

    Gualda, Emilio J; Pereira, Hugo; Vale, Tiago; Estrada, Marta Falcão; Brito, Catarina; Moreno, Nuno

    2015-11-01

    Light sheet fluorescence microscopy has recently emerged as the technique of choice for obtaining high quality 3D images of whole organisms/embryos with low photodamage and fast acquisition rates. Here we present an open source unified implementation based on Arduino and Micromanager, which is capable of operating Light Sheet Microscopes for automatized 3D high-throughput imaging on three-dimensional cell cultures and model organisms like zebrafish, oriented to massive drug screening. PMID:26601007

  11. Spring Ephemerals Adapt to Extremely High Light Conditions via an Unusual Stabilization of Photosystem II

    OpenAIRE

    Tu, Wenfeng; Li, Yang; Liu, Wu; Wu, Lishuan; Xie, Xiaoyan; Zhang, Yuanming; Wilhelm, Christian; Yang, Chunhong

    2016-01-01

    Ephemerals, widely distributed in the Gobi desert, have developed significant characteristics to sustain high photosynthetic efficiency under high light (HL) conditions. Since the light reaction is the basis for photosynthetic conversion of solar energy to chemical energy, the photosynthetic performances in thylakoid membrane of the spring ephemerals in response to HL were studied. Three plant species, namely two C3 spring ephemeral species of Cruciferae: Arabidopsis pumila (A. pumila) and Si...

  12. Preparation of high activity HTO using recovered tritium from expired beta light sources

    International Nuclear Information System (INIS)

    In this paper the technological procedures for treatment of expired beta light sources as radioactive wastes with tritium recovering and use in synthesis of high specific activity HTO were analyzed. Technological procedures for treatment of beta light sources consist in: envelope breaking into vacuumed enclosure, the radioactive gaseous mixture pumping and its storing onto metallic sodium. The obtained 3T2-3He mixture was used in the synthesis of HTO with high radioactivity concentration. (authors)

  13. NG2 cells response to axonal alteration in the spinal cord white matter in mice with genetic disruption of neurofilament light subunit expression

    Directory of Open Access Journals (Sweden)

    Xiao Zhi

    2008-10-01

    Full Text Available Abstract Background Chondroitin sulphate proteoglycan (NG2 expressing cells, morphologically characterized by multi-branched processes and small cell bodies, are the 4th commonest cell population of non-neuronal cell type in the central nervous system (CNS. They can interact with nodes of Ranvier, receive synaptic input, generate action potential and respond to some pathological stimuli, but the function of the cells is still unclear. We assumed the NG2 cells may play an active role in neuropathogenesis and aimed to determine if NG2 cells could sense and response to the alterations in the axonal contents caused by disruption of neurofilament light subunit (NFL expression. Results In the early neuropathological development stage, our study showed that the diameter of axons of upper motor neurons of NFL-/- mice decreased significantly while the thickness of their myelin sheath increased remarkably. Although there was an obvious morphological distortion in axons with occasionally partial demyelination, no obvious changes in expression of myelin proteins was detected. Parallel to these changes in the axons and their myelination, the processes of NG2 cells were disconnected from the nodes of Ranvier and extended further, suggesting that these cells in the spinal cord white matter could sense the alteration in axonal contents caused by disruption of NFL expression before astrocytic and microglial activation. Conclusion The structural configuration determined by the NFL gene may be important for maintenance of normal morphology of myelinated axons. The NG2 cells might serve as an early sensor for the delivery of information from impaired neurons to the local environment.

  14. Ultra-high resolution of radiocesium distribution detection based on Cherenkov light imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Seiichi, E-mail: s-yama@met.nagoya-u.ac.jp [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Ogata, Yoshimune [Department of Radiological and Medical Laboratory Sciences, Nagoya University Graduate School of Medicine (Japan); Kawachi, Naoki; Suzui, Nobuo; Yin, Yong-Gen; Fujimaki, Shu [Radiotracer Imaging Group, Japan Atomic Energy Agency (Japan)

    2015-03-21

    After the nuclear disaster in Fukushima, radiocesium contamination became a serious scientific concern and research of its effects on plants increased. In such plant studies, high resolution images of radiocesium are required without contacting the subjects. Cherenkov light imaging of beta radionuclides has inherently high resolution and is promising for plant research. Since {sup 137}Cs and {sup 134}Cs emit beta particles, Cherenkov light imaging will be useful for the imaging of radiocesium distribution. Consequently, we developed and tested a Cherenkov light imaging system. We used a high sensitivity cooled charge coupled device (CCD) camera (Hamamatsu Photonics, ORCA2-ER) for imaging Cherenkov light from {sup 137}Cs. A bright lens (Xenon, F-number: 0.95, lens diameter: 25 mm) was mounted on the camera and placed in a black box. With a 100-μm {sup 137}Cs point source, we obtained 220-μm spatial resolution in the Cherenkov light image. With a 1-mm diameter, 320-kBq {sup 137}Cs point source, the source was distinguished within 2-s. We successfully obtained Cherenkov light images of a plant whose root was dipped in a {sup 137}Cs solution, radiocesium-containing samples as well as line and character phantom images with our imaging system. Cherenkov light imaging is promising for the high resolution imaging of radiocesium distribution without contacting the subject.

  15. A compact high brightness laser synchrotron light source for medical applications

    International Nuclear Information System (INIS)

    The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy

  16. High Power Light Gas Helicon Plasma Source For VASMIR

    Science.gov (United States)

    Squire, J. P.; Chang-Diaz, F. R.; Glover, T. W.; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.; Baity, F. W.; Carter, M. D.; Goulding, R. H.

    2004-01-01

    The VASIMR space propulsion development effort relies on a high power (greater than 10kW) helicon source to produce a dense flowing plasma (H, D and He) target for ion cyclotron resonance (ICR) acceleration of the ions. Subsequent expansion in an expanding magnetic field (magnetic nozzle) converts ion lunetic energy to directed momentum. This plasma source must have critical features to enable an effective propulsion device. First, it must ionize most of the input neutral flux of gas, thus producing a plasma stream with a high degree of ionization for application of ICR power. This avoids propellant waste and potential power losses due to charge exchange. Next, the plasma stream must flow into a region of high magnetic field (approximately 0.5 T) for efficient ICR acceleration. Third, the ratio of input power to plasma flux must be low, providing an energy per ion-electron pair approaching 100 eV. Lastly, the source must be robust and capable of very long life-times (years). In our helicon experiment (VX-10) we have measured a ratio of input gas to plasma flux near 100%. The plasma flows from the helicon region (B approximately 0.1 T) into a region with a peak magnetic field of 0.8 T. The energy input per ion-electron pair has been measured at 300 plus or minus 100 eV. Recent results at Oak Ridge National Laboratory (ORNL) show an enhanced efficiency mode of operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 3.5 kW of input power. An upgrade to a power level of 10 kW is underway. Much of our recent work has been with a Boswell double-saddle antenna design. We are also converting the antenna design to a helical type. With these modifications, we anticipate an improvement in the ionization efficiency. This paper presents the results from scaling the helicon in the VX-10 device from 3.5 to 10 kW. We also compare the operation with a double-saddle to a helical antenna design. Finally, we

  17. Design criteria for light high speed desert air cushion vehicles

    Science.gov (United States)

    Abulnaga, B. E.

    An evaluation is made of the applicability and prospective performance of ACVs in trans-Saharan cargo transport, in view of the unique characteristics of the dry sand environment. The lightweight/high-speed ACV concept envisioned is essentially ground effect aircraftlike, with conventional wheels as a low-speed backup suspension system. A propeller is used in ground effect cruise. Attention is given to the effects on vehicle stability and performance of sandy surface irregularities of the desert topography and of cross-winds from various directions relative to vehicle movement.

  18. High resolution sea floor bathymetry using high frequency multibeam sonar and structured light laser imaging

    Science.gov (United States)

    Roman, C.; Inglis, G.; Smart, C.; Vaughn, I.; Carey, S.

    2011-12-01

    Detailed bathymetric maps of the sea floor with centimeter level resolution can be produced by underwater vehicles using multibeam sonars and structured light laser imaging. Over spatial scales up to tens of thousands of square meters it is possible to produce maps gridded to sub centimeter levels. This level of accuracy demands detailed treatments of the sensor relative data, the vehicle navigation data and the vehicle to sensor position and rotational offsets. The presented results will show comparisons between these two sensor modalities. Data have a been collected during recent field programs to the Kolumbo volcanic crater and the Southern Aegean Sea. Our data processing and map making technique is based on the Simultaneous Localization and Mapping (SLAM) concept, which is an active research area in both the marine and land robotics communities. The SLAM method provides a common framework for addressing both sensor and navigation errors in a self consistent manner. Using automated patch registration and filter techniques both the multibeam and laser data can be processed by the same algorithm. Structured light imaging has been a common machine vision technique for 3D shape estimation in industrial applications, but has had limited use underwater. By using a camera to image a projected laser line on the sea floor it is possible to determine the 3D profile of the bottom with sub centimeter resolution. Sequential images taken during a survey can be processed and merged into a bathymetric map in a similar manner as individual multibeam sonar pings. The resulting maps can be gridded down to 2.5 millimeter resolution and clearly show objects just a few centimeters in size. The structured light data have been compared to multibeam sonar data taken with BlueView Technologies sonars operating at both 1375 kHz and 2250 kHz. Such high frequency sonars offer centimeter resolution over ranges to 30 and 10 meters respectively. The difference between the broader footprint

  19. High-precision heliostat for long-path light tracking

    Science.gov (United States)

    Hawat, Tom; Stephen, Thomas M.; DeMaziere, Martine M.; Neefs, Eddy

    2003-08-01

    A heliostat has been designed and built for use in optical remote sensing of the atmosphere. The heliostat uses two flat mirrors to track the sun and direct the sunlight to optical instruments. A stepper motor driven horizontal turntable is used to track the sun in azimuth and support an elevation assembly and a mechanical tower. The stepper motor driven elevation assembly drives an acquisition mirror that tracks the sun in elevation. This mirror directs the solar beam to a secondary mirror fixed on the mechanical tower. The secondary mirror then directs the solar beam along the axis of the tracker for use in measurements. A sensitive, high resolution CCD camera, receives a small part of the solar beam to analyze for fine servo-control. Ground based tests have demonstrated this instrument"s tracking capability for the sun, the moon, stars and for long pathlength sources. Presently, this system is coupled with a high-resolution Brucker 120M spectrometer used to obtain solar absorption spectra. The heliostat directs the solar radiation along the spectrometer optical axis. The pointing precision was measured to be better than 0.5 arcsec. A description of the heliostat is presented, as well as the results of ground tests.

  20. Mobile learning and high-lighting language education

    DEFF Research Database (Denmark)

    Vinther, Jane

    participating schools. The individual projects were selected through an application process and assessed before being allocated funds. The overall project as well as individual minor projects were monitored and assisted by a select group of researchers who through seminars and individual consultations helped......Mobile learning and high-profiling language education. The number of students learning a second or foreign language and participating in instruction in languages other than English has been in decline for some time. There seems to be such a general tendency across nations albeit for a variety...... of reasons idiosyncratic to the particular national conditions. This paper gives an account of a diversified national project designed to infuse foreign language learning classes in upper secondary schools in Denmark with renewed enthusiasm through systematically experimenting with the new media by taking...

  1. High-Energy Neutrinos in Light of Fermi-LAT

    CERN Document Server

    Ahlers, Markus

    2015-01-01

    The production of high-energy astrophysical neutrinos is tightly linked to the emission of hadronic gamma-rays. I will discuss the recent observation of TeV to PeV neutrinos by the IceCube Cherenkov telescope in the context of gamma-ray astronomy. The corresponding energy range of hadronic gamma-rays is not directly accessible by extragalactic gamma-ray astronomy due to interactions with cosmic radiation backgrounds. Nevertheless, the isotropic sub-TeV gamma-ray background observed by the Fermi Large Area Telescope (LAT) contains indirect information from secondary emission produced in electromagnetic cascades and constrains hadronic emission scenarios. On the other hand, observation of PeV gamma-rays would provide a smoking-gun signal for Galactic emission. In general, the cross-correlation of neutrino emission with (extended) Galactic and extragalactic gamma-ray sources will serve as the most sensitive probe for a future identification of neutrino sources.

  2. High Power Light Gas Helicon Plasma Source for VASIMR

    Science.gov (United States)

    Squire, Jared P.; Chang-Diaz, Franklin R.; Glover, Timothy W.; Jacobson, Verlin T.; Baity, F. Wally; Carter, Mark D.; Goulding, Richard H.

    2004-01-01

    In the Advanced Space Propulsion Laboratory (ASPL) helicon experiment (VX-10) we have measured a plasma flux to input gas rate ratio near 100% for both helium and deuterium at power levels up to 10 kW. Recent results at Oak Ridge National Laboratory (ORNL) show enhanced efficiency operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 10 kW of input power. The data here uses a Boswell double-saddle antenna design with a magnetic cusp just upstream of the antenna. Similar to ORNL, for deuterium at near 10 kW, we find an enhanced performance of operation at magnetic fields above the lower hybrid matching condition.

  3. High-efficiency organic light-emitting diodes with fluorescent emitters

    Science.gov (United States)

    Nakanotani, Hajime; Higuchi, Takahiro; Furukawa, Taro; Masui, Kensuke; Morimoto, Kei; Numata, Masaki; Tanaka, Hiroyuki; Sagara, Yuta; Yasuda, Takuma; Adachi, Chihaya

    2014-05-01

    Fluorescence-based organic light-emitting diodes have continued to attract interest because of their long operational lifetimes, high colour purity of electroluminescence and potential to be manufactured at low cost in next-generation full-colour display and lighting applications. In fluorescent molecules, however, the exciton production efficiency is limited to 25% due to the deactivation of triplet excitons. Here we report fluorescence-based organic light-emitting diodes that realize external quantum efficiencies as high as 13.4-18% for blue, green, yellow and red emission, indicating that the exciton production efficiency reached nearly 100%. The high performance is enabled by utilization of thermally activated delayed fluorescence molecules as assistant dopants that permit efficient transfer of all electrically generated singlet and triplet excitons from the assistant dopants to the fluorescent emitters. Organic light-emitting diodes employing this exciton harvesting process provide freedom for the selection of emitters from a wide variety of conventional fluorescent molecules.

  4. Distinct microRNA alterations characterize high- and low-grade bladder cancer.

    OpenAIRE

    Catto, J W F; Miah, S; Owen, H C; Bryant, H.; Myers, K.; Dudziec, E.; Larre, S.; Milo, M.; Rehman, I; Rosario, D. J.; Di Martino, E; Knowles, M. A.; Meuth, M; Harris, A.L.; Hamdy, F C

    2009-01-01

    Urothelial carcinoma of the bladder (UCC) is a common disease that arises by at least two different molecular pathways. The biology of UCC is incompletely understood, making the management of this disease difficult. Recent evidence implicates a regulatory role for microRNA in cancer. We hypothesized that altered microRNA expression contributes to UCC carcinogenesis. To test this hypothesis, we examined the expression of 322 microRNAs and their processing machinery in 78 normal and malignant u...

  5. Subthalamic Nucleus High-Frequency Stimulation Restores Altered Electrophysiological Properties of Cortical Neurons in Parkinsonian Rat

    OpenAIRE

    Bertrand Degos; Jean-Michel Deniau; Mario Chavez; Nicolas Maurice

    2013-01-01

    Electrophysiological recordings performed in parkinsonian patients and animal models have confirmed the occurrence of alterations in firing rate and pattern of basal ganglia neurons, but the outcome of these changes in thalamo-cortical networks remains unclear. Using rats rendered parkinsonian, we investigated, at a cellular level in vivo, the electrophysiological changes induced in the pyramidal cells of the motor cortex by the dopaminergic transmission interruption and further characterized...

  6. High-intensity light-ion beam research at NRL

    International Nuclear Information System (INIS)

    High-brightness proton beams (.4 MA, 1 MV) have recently been extracted from 20 cm2 axial pinch-reflex diodes (PRDs) mounted on the NRL Gamble II generator. A source power brightness of GT 10 TW/cm2 rad 2 was achieved in these experiments. A new barrel-shaped equitorial PRD that can be coupled to PBFA-II has also been operated on Gamble II and has demonstrated 50% proton efficiency with predominately azimuthally-symmetric charged-particle flow. In other experiments the stopping power of deuterons in hot plasmas was measured using a PRD on Gamble II. Results show about 40% enhancement in stopping power over that in cold targets when the beam was focused to about .25 MA/cm2. Research is also being performed on transporting ion beams in large-diameter channels (>= 2.5 cm) and on a post-transport, plasma-filled, magnetic-focusing section to bring the beam to pellet dimensions. (author)

  7. Acceleration of small, light projectiles (including hydrogen isotopes) to high speeds using a two-stage light gas gun

    International Nuclear Information System (INIS)

    Small, light projectiles have been accelerated to high speeds using a two-stage light gas gun at Oak Ridge National Laboratory. With 35-mg plastic projectiles (4 mm in diameter), speeds of up to 4.5 km/s have been recorded. The ''pipe gun'' technique for freezing hydrogen isotopes in situ in the gun barrel has been used to accelerate deuterium pellets (nominal diameter of 4 mm) to velocities of up to 2.85 km/s. The primary application of this technology is for plasma fueling of fusion devices via pellet injection of hydrogen isotopes. Conventional pellet injectors are limited to pellet speeds in the range 1-2 km/s. Higher velocities are desirable for plasma fueling applications, and the two-stage pneumatic technique offers performance in a higher velocity regime. However, experimental results indicate that the use of sabots to encase the cryogenic pellets and protect them for the high peak pressures will be required to reliably attain intact pellets at speeds of ∼3 km/s or greater. In some limited tests, lithium hydride pellets were accelerated to speeds of up to 4.2 km/s. Also, repetitive operation of the two-stage gun (four plastic pellets fired at ∼0.5 Hz) was demonstrated for the first time in preliminary tests. The equipment and operation are described, and experimental results and some comparisons with a theoretical model are presented. 17 refs., 6 figs., 2 tabs

  8. Direct Bandgap Light Emission from Strained Ge Nanowires Coupled with High-Q Optical Cavities

    CERN Document Server

    Petykiewicz, Jan; Sukhdeo, David S; Gupta, Shashank; Buckley, Sonia; Piggott, Alexander Y; Vučković, Jelena; Saraswat, Krishna C

    2015-01-01

    A silicon-compatible light source is the final missing piece for completing high-speed, low-power on-chip optical interconnects. In this paper, we present a germanium-based light emitter that encompasses all the aspects of potential low-threshold lasers: highly strained germanium gain medium, strain-induced pseudo-heterostructure, and high-Q optical cavity. Our light emitting structure presents greatly enhanced photoluminescence into cavity modes with measured quality factors of up to 2,000. The emission wavelength is tuned over more than 400 nm with a single lithography step. We find increased optical gain in optical cavities formed with germanium under high (>2.3%) tensile strain. Through quantitative analysis of gain/loss mechanisms, we find that free carrier absorption from the hole bands dominates the gain, resulting in no net gain even from highly strained, n-type doped germanium.

  9. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts

    Science.gov (United States)

    Qu, Dan; Zheng, Min; Du, Peng; Zhou, Yue; Zhang, Ligong; Li, Di; Tan, Huaqiao; Zhao, Zhao; Xie, Zhigang; Sun, Zaicheng

    2013-11-01

    A facile hydrothermal synthesis route to N and S, N co-doped graphene quantum dots (GQDs) was developed by using citric acid as the C source and urea or thiourea as N and S sources. Both N and S, N doped GQDs showed high quantum yield (78% and 71%), excitation independent under excitation of 340-400 nm and single exponential decay under UV excitation. A broad absorption band in the visible region appeared in S, N co-doped GQDs due to doping with sulfur, which alters the surface state of GQDs. However, S, N co-doped GQDs show different color emission under excitation of 420-520 nm due to their absorption in the visible region. The excellent photocatalytic performance of the S, N co-doped GQD/TiO2 composites was demonstrated by degradation of rhodamine B under visible light. The apparent rate of S, N:GQD/TiO2 is 3 and 10 times higher than that of N:GQD/TiO2 and P25 TiO2 under visible light irradiation, respectively.A facile hydrothermal synthesis route to N and S, N co-doped graphene quantum dots (GQDs) was developed by using citric acid as the C source and urea or thiourea as N and S sources. Both N and S, N doped GQDs showed high quantum yield (78% and 71%), excitation independent under excitation of 340-400 nm and single exponential decay under UV excitation. A broad absorption band in the visible region appeared in S, N co-doped GQDs due to doping with sulfur, which alters the surface state of GQDs. However, S, N co-doped GQDs show different color emission under excitation of 420-520 nm due to their absorption in the visible region. The excellent photocatalytic performance of the S, N co-doped GQD/TiO2 composites was demonstrated by degradation of rhodamine B under visible light. The apparent rate of S, N:GQD/TiO2 is 3 and 10 times higher than that of N:GQD/TiO2 and P25 TiO2 under visible light irradiation, respectively. Electronic supplementary information (ESI) available: More XPS and UV-Vis spectra. See DOI: 10.1039/c3nr04402e

  10. Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y. L., E-mail: yilu.chang@mail.utoronto.ca; Gong, S., E-mail: sgong@chem.utoronto.ca; White, R.; Lu, Z. H., E-mail: zhenghong.lu@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, 184 College St., Toronto, Ontario M5S 3E4 (Canada); Wang, X.; Wang, S., E-mail: wangs@chem.queensu.ca [Department of Chemistry, Queen' s University, 90 Bader Lane, Kingston, Ontario K7L 3N6 (Canada); Yang, C. [Department of Chemistry, Wuhan University, Wuhan 430072 (China)

    2014-04-28

    We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8 lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.

  11. High-coherence light extraction through a compact Brillouin/erbium fiber laser

    Science.gov (United States)

    Chen, Mo; Wang, Jianfei; Chen, Wei; Sun, Shilin; Meng, Zhou

    2016-05-01

    High-coherence light is stringently demanded in high-accuracy interferometric optical fiber sensors, where the phase noise of the light source greatly affects the sensitivity of the whole system. Distributed-feedback laser diodes with a phase noise of -80 ~ -90 dB/Hz1/2 at 1 kHz (with 1 m optical path difference) is now easily obtained, but the interferometric fiber sensors requires the laser source with the phase noise lower than -100 dB/Hz1/2. Lasers with ultra-low-noise usually require complicated and sophisticated techniques. We propose a novel structure to realize high-coherence light extraction through a compact Brillouin/erbium fiber laser (BEFL) which uses a length of 4 m erbium-doped fiber as both the Brillouin and linear gain media. The phase noise of the Brillouin pump light is greatly smoothed and suppressed after being transferred to the Brillouin Stokes light. High-coherence light with the phase noise of about -104 dB/Hz1/2 at 1 kHz is extracted through the compact BEFL from a commercialized laser diode with the phase noise of about -89 dB/Hz1/2. The capability of phase noise suppression in the compact BEFL presents much importance especially in large-array interferometric fiber sensor systems.

  12. Determining contrast sensitivity functions for monochromatic light emitted by high-brightness LEDs

    Science.gov (United States)

    Ramamurthy, Vasudha; Narendran, Nadarajah; Freyssinier, Jean Paul; Raghavan, Ramesh; Boyce, Peter

    2004-01-01

    Light-emitting diode (LED) technology is becoming the choice for many lighting applications that require monochromatic light. However, one potential problem with LED-based lighting systems is uneven luminance patterns. Having a uniform luminance distribution is more important in some applications. One example where LEDs are becoming a viable alternative and luminance uniformity is an important criterion is backlighted monochromatic signage. The question is how much uniformity is required for these applications. Presently, there is no accepted metric that quantifies luminance uniformity. A recent publication proposed a method based on digital image analysis to quantify beam quality of reflectorized halogen lamps. To be able to employ such a technique to analyze colored beams generated by LED systems, it is necessary to have contrast sensitivity functions (CSFs) for monochromatic light produced by LEDs. Several factors including the luminance, visual field size, and spectral power distribution of the light affect the CSFs. Although CSFs exist for a variety of light sources at visual fields ranging from 2 degrees to 20 degrees, CSFs do not exist for red, green, and blue light produced by high-brightness LEDs at 2-degree and 10-degree visual fields and at luminances typical for backlighted signage. Therefore, the goal of the study was to develop a family of CSFs for 2-degree and 10-degree visual fields illuminated by narrow-band LEDs at typical luminances seen in backlighted signs. The details of the experiment and the results are presented in this manuscript.

  13. An integrated analysis of molecular acclimation to high light in the marine diatom Phaeodactylum tricornutum.

    Directory of Open Access Journals (Sweden)

    Marianne Nymark

    Full Text Available Photosynthetic diatoms are exposed to rapid and unpredictable changes in irradiance and spectral quality, and must be able to acclimate their light harvesting systems to varying light conditions. Molecular mechanisms behind light acclimation in diatoms are largely unknown. We set out to investigate the mechanisms of high light acclimation in Phaeodactylum tricornutum using an integrated approach involving global transcriptional profiling, metabolite profiling and variable fluorescence technique. Algae cultures were acclimated to low light (LL, after which the cultures were transferred to high light (HL. Molecular, metabolic and physiological responses were studied at time points 0.5 h, 3 h, 6 h, 12 h, 24 h and 48 h after transfer to HL conditions. The integrated results indicate that the acclimation mechanisms in diatoms can be divided into an initial response phase (0-0.5 h, an intermediate acclimation phase (3-12 h and a late acclimation phase (12-48 h. The initial phase is recognized by strong and rapid regulation of genes encoding proteins involved in photosynthesis, pigment metabolism and reactive oxygen species (ROS scavenging systems. A significant increase in light protecting metabolites occur together with the induction of transcriptional processes involved in protection of cellular structures at this early phase. During the following phases, the metabolite profiling display a pronounced decrease in light harvesting pigments, whereas the variable fluorescence measurements show that the photosynthetic capacity increases strongly during the late acclimation phase. We show that P. tricornutum is capable of swift and efficient execution of photoprotective mechanisms, followed by changes in the composition of the photosynthetic machinery that enable the diatoms to utilize the excess energy available in HL. Central molecular players in light protection and acclimation to high irradiance have been identified.

  14. Highly sensitivity adhesion molecules detection in hereditary haemochromatosis patients reveals altered expression.

    LENUS (Irish Health Repository)

    Norris, S

    2012-02-01

    Several abnormalities in the immune status of patients with hereditary haemochromatosis (HH) have been reported, suggesting an imbalance in their immune function. This may include persistent production of, or exposure to, altered immune signalling contributing to the pathogenesis of this disorder. Adhesion molecules L-, E- and P-Selectin, intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) are some of the major regulators of the immune processes and altered levels of these proteins have been found in pathological states including cardiovascular diseases, arthritis and liver cancer. The aim of this study was to assess L-, E- and P-Selectin, ICAM-1 and VCAM-1 expression in patients with HH and correlate these results with HFE mutation status and iron indexes. A total of 139 subjects were diagnosed with HH (C282Y homozygotes = 87, C282Y\\/H63D = 26 heterozygotes, H63D homozygotes = 26), 27 healthy control subjects with no HFE mutation (N\\/N), 18 normal subjects heterozygous for the H63D mutation served as age-sex-matched controls. We observed a significant decrease in L-selectin (P = 0.0002) and increased E-selectin and ICAM-1 (P = 0.0006 and P = 0.0059) expression in HH patients compared with healthy controls. This study observes for the first time that an altered adhesion molecules profile occurs in patients with HH that is associated with specific HFE genetic component for iron overload, suggesting that differential expression of adhesion molecules may play a role in the pathogenesis of HH.

  15. Production of a diffuse very high reflectivity material for light collection in nuclear detectors

    CERN Document Server

    Pichler, B J; Mirzoyan, R; Weiss, L; Ziegler, S I

    2000-01-01

    A diffuse very high reflectivity material, based on polytetrafluorethylene (PTFE) for optimization of light-collection efficiency has been developed. PTFE powder was used to produce reflector block material. The powder was pressed with 525 kPa in a form and sintered at 375 deg. C. The reflectivity was above 98% within the spectral range from 350 to 1000 nm. The blocks of this material are machinable with saws, drilling and milling machines. The reflector is used as a housing for scintillating crystals in a nuclear medicine application (small animal positron emission tomograph). It is also used as a light collector in very high-energy gamma-ray astrophysicas experiments, HEGRA and MAGIC. The application of this inexpensive, easy to make diffuse reflector may allow the optimization of light collection in a wide range of low-level light-detector configurations.

  16. A high-performance stand-alone solar PV power system for LED lighting

    KAUST Repository

    Huang, B. J.

    2010-06-01

    The present study developed a high-performance solar PV power technology for the LED lighting of a solar home system. The nMPPO (near-Maximum-Power- Point- Operation) design is employed in system design to eliminate MPPT. A feedback control system using pulse width modulation (PWM) technique was developed for battery charging control which can increase the charging capacity by 78%. For high-efficiency lighting, the LED is directly driven by battery using a PWM discharge control to eliminate a DC/DC converter. Two solar-powered LED lighting systems (50W and 100W LED) were built. The long-term outdoor tests have shown that the loss of load probability for full-night lighting requirement is zero for 50W LED and 3.6% for 100W LED. © 2010 IEEE.

  17. High luminous flux from single crystal phosphor-converted laser-based white lighting system

    KAUST Repository

    Cantore, Michael

    2015-12-14

    The efficiency droop of light emitting diodes (LEDs) with increasing current density limits the amount of light emitted per wafer area. Since low current densities are required for high efficiency operation, many LED die are needed for high power white light illumination systems. In contrast, the carrier density of laser diodes (LDs) clamps at threshold, so the efficiency of LDs does not droop above threshold and high efficiencies can be achieved at very high current densities. The use of a high power blue GaN-based LD coupled with a single crystal Ce-doped yttrium aluminum garnet (YAG:Ce) sample was investigated for white light illumination applications. Under CW operation, a single phosphor-converted LD (pc-LD) die produced a peak luminous efficacy of 86.7 lm/W at 1.4 A and 4.24 V and a peak luminous flux of 1100 lm at 3.0 A and 4.85 V with a luminous efficacy of 75.6 lm/W. Simulations of a pc-LD confirm that the single crystal YAG:Ce sample did not experience thermal quenching at peak LD operating efficiency. These results show that a single pc-LD die is capable of emitting enough luminous flux for use in a high power white light illumination system.

  18. High fidelity detection of the orbital angular momentum of light by time mapping

    International Nuclear Information System (INIS)

    We demonstrate high-fidelity detection of the orbital angular momentum (OAM) of light using a compact and practical OAM spectrometer that maps the OAM spectrum to time. The spectrometer consists of a single optical delay loop to achieve timing mapping, a vortex phase plate that iteratively decreases the OAM value and a single mode fiber to distinguish zero from non-zero OAM states. Light with arbitrarily OAM compositions can be measured. For light with OAM up to 4ℏ, we measured an average crosstalk of −21.3 dB, which is mainly limited by the purity of the input states and optical alignment. (paper)

  19. High light-extraction-efficiency OLED based on photonic crystal slab structures with taper unit cells

    Institute of Scientific and Technical Information of China (English)

    YAN Rong-jin; WANG Qing-kang

    2006-01-01

    To improve the light-extraction-efficiency of OLED,we introduced PCS (Photonic Crystal Slab) structures into the interface of ITO layer and glass substrate.PCS structures with Taper unit cells are proved to be effective in reducing the energy of guided wave trapped in high refractive index material,and an increase of light-extraction-efficiency to 95.26% is gained.This enhancement is much greater than the traditional PCS with cylinder unit cells (60%-70%).Physical mechanisms of light-extraction-efficiency enhancement in these structures are further discussed.

  20. INFLUENCE OF HIGH LIGHT INTENSITY ON THE CELLS OF CYANOBACTERIA ANABAENA VARIABILIS SP. ATCC 29413

    Directory of Open Access Journals (Sweden)

    OPRIŞ SANDA

    2012-12-01

    Full Text Available In this article is presented the result of research regardind the effect of high light intensity on the cells of Anabaena variabilis sp. ATCC 29413, the main objective is to study the adaptation of photosynthetic apparatus to light stress. Samples were analyzed in the present of herbicide diuron (DCMU which blocks electron flow from photosystem II and without diuron. During treatment maximum fluorescence and photosystems efficiency are significantly reduced, reaching very low values compared with the blank, as a result of photoinhibition installation. Also by this treatment is shown the importance of the mechanisms by which cells detect the presence of light stress and react accordingly.

  1. DIFFERENTIAL RESPONSES OF SEVEN CONTRASTING SPECIES TO HIGH LIGHT USING PIGMENT AND CHLOROPHYLL A FLUORESCENCE

    OpenAIRE

    Mittal S; Kumari, N.; Sharma, V.

    2011-01-01

    High light intensity may induce severe photodamage to chloroplast and consequently cause decreases in the yield capacity of plants and destruction of pigments, causing an overall yellowing of the foliage. Thus, study related to light adaptation becomes necessary to understand adaptation processes in higher plants on the basis of which they are characterized as full sunlight or shade plants. Chlorophyll can be regarded as an intrinsic fluorescent probe of the photosynthetic system. The ecophys...

  2. A Dual Strategy to Cope with High Light in Chlamydomonas reinhardtii.

    OpenAIRE

    Allorent, G; Tokutsu, R; Roach, T; Peers, G; Cardol, Pierre; Girard-Bascou, J; Seigneurin-Berny, P; KUNTZ, M; Breyton, C; Franck, Fabrice; Wollman, F-A; Niyogi, K; Krieger-Liszkay, A; Minagawa, J.; Finazzi, G

    2013-01-01

    International audience Absorption of light in excess of the capacity for photosynthetic electron transport is damaging to photosynthetic organisms. Several mechanisms exist to avoid photodamage, which are collectively referred to as nonphotochemical quenching. This term comprises at least two major processes. State transitions (qT) represent changes in the relative antenna sizes of photosystems II and I. High energy quenching (qE) is the increased thermal dissipation of light energy trigge...

  3. High light-induced hydrogen peroxide production in Chlamydomonas reinhardtii is increased by high CO2 availability.

    Science.gov (United States)

    Roach, Thomas; Na, Chae Sun; Krieger-Liszkay, Anja

    2015-03-01

    The production of reactive oxygen species (ROS) is an unavoidable part of photosynthesis. Stress that accompanies high light levels and low CO2 availability putatively includes enhanced ROS production in the so-called Mehler reaction. Such conditions are thought to encourage O2 to become an electron acceptor at photosystem I, producing the ROS superoxide anion radical (O2·-) and hydrogen peroxide (H2 O2 ). In contrast, here it is shown in Chlamydomonas reinhardtii that CO2 depletion under high light levels lowered cellular H2 O2 production, and that elevated CO2 levels increased H2 O2 production. Using various photosynthetic and mitochondrial mutants of C. reinhardtii, the chloroplast was identified as the main source of elevated H2 O2 production under high CO2 availability. High light levels under low CO2 availability induced photoprotective mechanisms called non-photochemical quenching, or NPQ, including state transitions (qT) and high energy state quenching (qE). The qE-deficient mutant npq4 produced more H2 O2 than wild-type cells under high light levels, although less so under high CO2 availability, whereas it demonstrated equal or greater enzymatic H2 O2 -degrading capacity. The qT-deficient mutant stt7-9 produced the same H2 O2 as wild-type cells under high CO2 availability. Physiological levels of H2 O2 were able to hinder qT and the induction of state 2, providing an explanation for why under high light levels and high CO2 availability wild-type cells behaved like stt7-9 cells stuck in state 1. PMID:25619314

  4. A Rotating-Frame Perspective on High-Harmonic Generation of Circularly Polarized Light

    CERN Document Server

    Reich, Daniel M

    2016-01-01

    We employ a rotating frame of reference to elucidate high-harmonic generation of circularly polarized light by bicircular driving fields. In particular, we show how the experimentally observed circular components of the high-harmonic spectrum can be directly related to the corresponding quantities in the rotating frame. Supported by numerical simulations of the time-dependent Schr\\"{o}dinger equation, we deduce an optimal strategy for maximizing the cutoff in the high-harmonic plateau while keeping the two circular components of the emitted light spectrally distinct. Moreover, we show how the rotating-frame picture can be more generally employed for elliptical drivers. Finally, we point out how circular and elliptical driving fields show a near-duality to static electric and static magnetic fields in a rotating-frame description. This demonstrates how high-harmonic generation of circularly polarized light under static electromagnetic fields can be emulated in practice even at static field strengths beyond cur...

  5. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    Science.gov (United States)

    Nishide, Jun-ichi; Nakanotani, Hajime; Hiraga, Yasuhide; Adachi, Chihaya

    2014-06-01

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  6. Compact stacking of diode lasers for pulsed light sources of high brightness.

    Science.gov (United States)

    Alahautala, Taito; Lassila, Erkki; Hernberg, Rolf

    2004-07-20

    A compact stacking architecture for high-power diode-laser arrays is proposed and compared with traditional stacks. The objective of compact stacking is to achieve high brightness values without the use of microlenses. The calculated brightness for a compact stack is over 300 W mm(-2) sr(-1), which is approximately 40 times higher than that of a traditional stack made of similar laser emitters. Even higher brightness values of over 600 W mm(-2) sr(-1) were reached in practice. A laser head was manufactured in which the light from several compact laser stacks could be fiber coupled or the light could be transformed to a highly uniform beam.

  7. Highly polarized light emission by isotropic quantum dots integrated with magnetically aligned segmented nanowires

    International Nuclear Information System (INIS)

    In this work, we demonstrate a proof-of-concept system for generating highly polarized light from colloidal quantum dots (QDs) coupled with magnetically aligned segmented Au/Ni/Au nanowires (NWs). Optical characterizations reveal that the optimized QD-NW coupled structures emit highly polarized light with an s-to p-polarization (s/p) contrast as high as 15:1 corresponding to a degree of polarization of 0.88. These experimental results are supported by the finite-difference time-domain simulations, which demonstrate the interplay between the inter-NW distance and the degree of polarization.

  8. High fat and/or high salt intake during pregnancy alters maternal meta‐inflammation and offspring growth and metabolic profiles

    OpenAIRE

    Reynolds, Clare M.; Vickers, Mark H; Harrison, Claudia J; Stephanie A. Segovia; Gray, Clint

    2014-01-01

    Abstract A high intake of fat or salt during pregnancy perturbs placental function, alters fetal development, and predisposes offspring to metabolic disease in adult life. Despite its relevance to modern dietary habits, the developmental programming effects of excessive maternal fat and salt, fed in combination, have not been examined. We investigated the effects of moderately high maternal fat and/or salt intake on maternal metainflammation and its consequences on fetal and weanling growth a...

  9. Ultrathin Semiconductor Perfect Light Absorbers with High Spectral, Polarization, and Angle Selectivity for Arbitrary Wavelengths

    CERN Document Server

    Huang, Lujun; Cao, Linyou

    2014-01-01

    Enabling perfect light absorption in ultrathin materials promises the development of exotic photonic devices. Here we demonstrate new strategies that can provide capabilities to rationally design ultrathin (thickness < {\\lambda}/10~{\\lambda}/5) semiconductor perfect absorbers for arbitrary wavelengths, including those at which the intrinsic absorption of the semiconductor is weak, e.g. Si for near-IR wavelengths. This is in stark contrast with the existing studies on ultrathin perfect absorbers, which have focused on metallic materials or highly-absorptive semiconductors. Our design strategies are built upon an intuitive model, coupled leaky mode theory that we recently developed and can turn the design for perfect absorbers to the design for leaky modes. The designed absorber is featured with extraordinary absorption enhancement, miniaturized dimension, and high selectivity for the wavelength, polarization, and angle of incident light. It can enable the development of flexible, light-weight, high-performa...

  10. Highly Transparent, Visible-Light Photodetector Based on Oxide Semiconductors and Quantum Dots.

    Science.gov (United States)

    Shin, Seung Won; Lee, Kwang-Ho; Park, Jin-Seong; Kang, Seong Jun

    2015-09-01

    Highly transparent phototransistors that can detect visible light have been fabricated by combining indium-gallium-zinc oxide (IGZO) and quantum dots (QDs). A wide-band-gap IGZO film was used as a transparent semiconducting channel, while small-band-gap QDs were adopted to absorb and convert visible light to an electrical signal. Typical IGZO thin-film transistors (TFTs) did not show a photocurrent with illumination of visible light. However, IGZO TFTs decorated with QDs showed enhanced photocurrent upon exposure to visible light. The device showed a responsivity of 1.35×10(4) A/W and an external quantum efficiency of 2.59×10(4) under illumination by a 635 nm laser. The origin of the increased photocurrent in the visible light was the small band gap of the QDs combined with the transparent IGZO films. Therefore, transparent phototransistors based on IGZO and QDs were fabricated and characterized in detail. The result is relevant for the development of highly transparent photodetectors that can detect visible light.

  11. Highly Transparent, Visible-Light Photodetector Based on Oxide Semiconductors and Quantum Dots.

    Science.gov (United States)

    Shin, Seung Won; Lee, Kwang-Ho; Park, Jin-Seong; Kang, Seong Jun

    2015-09-01

    Highly transparent phototransistors that can detect visible light have been fabricated by combining indium-gallium-zinc oxide (IGZO) and quantum dots (QDs). A wide-band-gap IGZO film was used as a transparent semiconducting channel, while small-band-gap QDs were adopted to absorb and convert visible light to an electrical signal. Typical IGZO thin-film transistors (TFTs) did not show a photocurrent with illumination of visible light. However, IGZO TFTs decorated with QDs showed enhanced photocurrent upon exposure to visible light. The device showed a responsivity of 1.35×10(4) A/W and an external quantum efficiency of 2.59×10(4) under illumination by a 635 nm laser. The origin of the increased photocurrent in the visible light was the small band gap of the QDs combined with the transparent IGZO films. Therefore, transparent phototransistors based on IGZO and QDs were fabricated and characterized in detail. The result is relevant for the development of highly transparent photodetectors that can detect visible light. PMID:26293387

  12. Multilayer tungsten-alumina-based broadband light absorbers for high-temperature applications

    DEFF Research Database (Denmark)

    Chirumamilla, Manohar; Roberts, Alexander Sylvester; Ding, Fei;

    2016-01-01

    Efficient broadband absorption of visible and near-infrared light by low quality-factor metal-insulator-metal (MIM) resonators using refractory materials is reported. Omnidirectional absorption of incident light for broad angles of incidence and polarization insensitivity are observed for the fab......Efficient broadband absorption of visible and near-infrared light by low quality-factor metal-insulator-metal (MIM) resonators using refractory materials is reported. Omnidirectional absorption of incident light for broad angles of incidence and polarization insensitivity are observed...... the potential for a wide range of applications, including the use in commonly used infrared bands or absorbers for (solar) thermo-photovoltaic energy conversion, where high absorbance and simultaneously low (thermal) re-radiation is of paramount importance....

  13. Highly efficient light-trapping structure design inspired by natural evolution.

    Science.gov (United States)

    Wang, Chen; Yu, Shuangcheng; Chen, Wei; Sun, Cheng

    2013-01-01

    Recent advances in nanophotonic light trapping open up the new gateway to enhance the absorption of solar energy beyond the so called Yablonovitch Limit. It addresses the urgent needs in developing low cost thin-film solar photovoltaic technologies. However, current design strategy mainly relies on the parametric approach that is subject to the predefined topological design concepts based on physical intuition. Incapable of dealing with the topological variation severely constrains the design of optimal light trapping structure. Inspired by natural evolution process, here we report a design framework driven by topology optimization based on genetic algorithms to achieve a highly efficient light trapping structure. It has been demonstrated that the optimal light trapping structures obtained in this study exhibit more than 3-fold increase over the Yablonovitch Limit with the broadband absorption efficiency of 48.1%, beyond the reach of intuitive designs.

  14. System Integration of High Level Applications during the Commissioning of the Swiss Light Source

    OpenAIRE

    Luedeke, A.

    2001-01-01

    The commissioning of the Swiss Light Source (SLS) started in Feb. 2000 with the Linac, continued in May 2000 with the booster synchrotron and by Dec. 2000 first light in the storage ring were produced. The first four beam lines had to be operational by August 2001. The thorough integration of all subsystems to the control system and a high level of automation was prerequisite to meet the tight time schedule. A careful balanced distribution of functionality into high level and low level applic...

  15. High-performance AlGaInP light-emitting diodes

    Science.gov (United States)

    Maranowski, Steven A.; Camras, Michael D.; Chen, Changhua; Cook, Lou W.; Craford, M. G.; DeFevere, Dennis C.; Fletcher, Robert M.; Hofler, Gloria E.; Kish, Frederick A.; Kuo, Chihping; Moll, A. J.; Osentowski, Tim; Park, K. G.; Peanasky, Michael J.; Rudaz, S. L.; Steigerwald, Dan A.; Steranka, Frank M.; Stockman, Steve A.; Tan, I. H.; Tarn, J.; Yu, Jingxi; Ludowise, Mike J.; Robbins, Virginia M.

    1997-04-01

    A new class of LEDs based on the AlGaInP material system first became commercially available in the early 1990's. These devices benefit from a direct bandgap from the red to the yellow-green portion of the spectrum. The high efficiencies possible in AlGaInP across this spectrum have enabled new applications for LEDs including automotive lighting, outdoor variable message signs, outdoor large screen video displays, and traffic signal lights. A review of high-brightness AlGaInP LED technology will be presented.

  16. Resonant transmission of light in arrays of high-index dielectric nanoparticles

    CERN Document Server

    Savelev, Roman S; Petrov, Mihail I; Krasnok, Alexander E; Belov, Pavel A; Kivshar, Yuri S

    2015-01-01

    We study numerically, analytically and experimentally the resonant transmission of light in a waveguide formed by a periodic array of high-index dielectric nanoparticles with a side-coupled resonator. We demonstrate that a resonator with high enough Q-factor provides the conditions for the Fano-type interference allowing to control the resonant transmission of light. We suggest a practical realization of this resonant effect based on the quadrupole resonance of a dielectric particle and demonstrate it experimentally for ceramic spheres at microwaves.

  17. Resonant transmission of light in chains of high-index dielectric particles

    Science.gov (United States)

    Savelev, Roman S.; Filonov, Dmitry S.; Petrov, Mihail I.; Krasnok, Alexander E.; Belov, Pavel A.; Kivshar, Yuri S.

    2015-10-01

    We study numerically, analytically, and experimentally the resonant transmission of light in a waveguide formed by a periodic array of high-index dielectric nanoparticles with a side-coupled resonator. We demonstrate that a resonator with high enough Q -factor provides the conditions for the Fano-type interference allowing one to control the resonant transmission of light. We suggest a practical realization of this resonant effect based on the quadrupole resonance of a dielectric particle and demonstrate it experimentally for ceramic disks at microwave frequencies.

  18. Highly Efficient, Simplified, Solution-Processed Thermally Activated Delayed-Fluorescence Organic Light-Emitting Diodes.

    Science.gov (United States)

    Kim, Young-Hoon; Wolf, Christoph; Cho, Himchan; Jeong, Su-Hun; Lee, Tae-Woo

    2016-01-27

    Highly efficient, simplified, solution-processed thermally activated delayed-fluorescence organic light-emitting diodes can be realized by using pure-organic thermally activated delayed fluorescence emitters and a multifunctional buffer hole-injection layer, in which high EQE (≈24%) and current efficiency (≈73 cd A(-1) ) are demonstrated. High-efficiency fluorescence red-emitting and blue-emitting devices can also be fabricated in this manner.

  19. High efficiency light source using solid-state emitter and down-conversion material

    Science.gov (United States)

    Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul

    2010-10-26

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  20. Achieving High Performance in AC-Field Driven Organic Light Sources.

    Science.gov (United States)

    Xu, Junwei; Carroll, David L; Smith, Gregory M; Dun, Chaochao; Cui, Yue

    2016-04-11

    Charge balance in organic light emitting structures is essential to simultaneously achieving high brightness and high efficiency. In DC-driven organic light emitting devices (OLEDs), this is relatively straight forward. However, in the newly emerging, capacitive, field-activated AC-driven organic devices, charge balance can be a challenge. In this work we introduce the concept of gating the compensation charge in AC-driven organic devices and demonstrate that this can result in exceptional increases in device performance. To do this we replace the insulator layer in a typical field-activated organic light emitting device with a nanostructured, wide band gap semiconductor layer. This layer acts as a gate between the emitter layer and the voltage contact. Time resolved device characterization shows that, at high-frequencies (over 40 kHz), the semiconductor layer allows for charge accumulation in the forward bias, light generating part of the AC cycle and charge compensation in the negative, quiescent part of the AC cycle. Such gated AC organic devices can achieve a non-output coupled luminance of 25,900 cd/m(2) with power efficiencies that exceed both the insulator-based AC devices and OLEDs using the same emitters. This work clearly demonstrates that by realizing balanced management of charge, AC-driven organic light emitting devices may well be able to rival today's OLEDs in performance.

  1. A dual strategy to cope with high light in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Allorent, Guillaume; Tokutsu, Ryutaro; Roach, Thomas; Peers, Graham; Cardol, Pierre; Girard-Bascou, Jacqueline; Seigneurin-Berny, Daphné; Petroutsos, Dimitris; Kuntz, Marcel; Breyton, Cécile; Franck, Fabrice; Wollman, Francis-André; Niyogi, Krishna K; Krieger-Liszkay, Anja; Minagawa, Jun; Finazzi, Giovanni

    2013-02-01

    Absorption of light in excess of the capacity for photosynthetic electron transport is damaging to photosynthetic organisms. Several mechanisms exist to avoid photodamage, which are collectively referred to as nonphotochemical quenching. This term comprises at least two major processes. State transitions (qT) represent changes in the relative antenna sizes of photosystems II and I. High energy quenching (qE) is the increased thermal dissipation of light energy triggered by lumen acidification. To investigate the respective roles of qE and qT in photoprotection, a mutant (npq4 stt7-9) was generated in Chlamydomonas reinhardtii by crossing the state transition-deficient mutant (stt7-9) with a strain having a largely reduced qE capacity (npq4). The comparative phenotypic analysis of the wild type, single mutants, and double mutants reveals that both state transitions and qE are induced by high light. Moreover, the double mutant exhibits an increased photosensitivity with respect to the single mutants and the wild type. Therefore, we suggest that besides qE, state transitions also play a photoprotective role during high light acclimation of the cells, most likely by decreasing hydrogen peroxide production. These results are discussed in terms of the relative photoprotective benefit related to thermal dissipation of excess light and/or to the physical displacement of antennas from photosystem II. PMID:23424243

  2. Achieving High Performance in AC-Field Driven Organic Light Sources

    Science.gov (United States)

    Xu, Junwei; Carroll, David L.; Smith, Gregory M.; Dun, Chaochao; Cui, Yue

    2016-04-01

    Charge balance in organic light emitting structures is essential to simultaneously achieving high brightness and high efficiency. In DC-driven organic light emitting devices (OLEDs), this is relatively straight forward. However, in the newly emerging, capacitive, field-activated AC-driven organic devices, charge balance can be a challenge. In this work we introduce the concept of gating the compensation charge in AC-driven organic devices and demonstrate that this can result in exceptional increases in device performance. To do this we replace the insulator layer in a typical field-activated organic light emitting device with a nanostructured, wide band gap semiconductor layer. This layer acts as a gate between the emitter layer and the voltage contact. Time resolved device characterization shows that, at high-frequencies (over 40 kHz), the semiconductor layer allows for charge accumulation in the forward bias, light generating part of the AC cycle and charge compensation in the negative, quiescent part of the AC cycle. Such gated AC organic devices can achieve a non-output coupled luminance of 25,900 cd/m2 with power efficiencies that exceed both the insulator-based AC devices and OLEDs using the same emitters. This work clearly demonstrates that by realizing balanced management of charge, AC-driven organic light emitting devices may well be able to rival today’s OLEDs in performance.

  3. Range imaging behind semi-transparent surfaces by high-speed modulated light

    Science.gov (United States)

    Geerardyn, D.; Ingelberts, H.; Deleener, R.; Kuijk, M.

    2015-05-01

    Range-imaging is a measurement technique able to generate an image which contains the distance information from the camera to all the points of a scene. This distance information can be captured by, amongst others, the Time-of-Flight principle which measures the time a light pulse needs to travel back and forth from the camera to the scene and converts this time into a depth value. For a good operation of the Time-of-Flight principle, a high-power, fast-modulated light source is required. Currently, most 3D cameras use laser diodes or LEDs. Moreover, most systems use square-wave modulation of the light source, requiring high bandwidths of the optical driver. To enhance both bandwidth and optical power, we developed a light source consisting of 16 high-power (50 mW) laser diodes using GHz laser drivers, combined with GHz buffers. Moreover, this light source can be integrated in a Time-of-Flight camera. Specifically, we designed and experimentally validated this new light source, based on ultra-fast laser diodes, allowing an increased performance of the current Time-of-Flight cameras. In this paper, we first discuss the development of a high-power illumination board, with a large beam divergence and suitable for high-speed square-wave modulation with a chosen duty-cycle. Our light source can be modulated faster than 1 GHz, which corresponds to optical pulses shorter than 500 ps. Moreover, the pulses can be shifted in time with sub-nanosecond precision. Secondly, we integrated this light source into a Time-of-Flight setup, able to measure the distances of objects behind a semi-transparent surface. The resulting images are compared with the image quality of commercially available Time-of-Flight cameras. From these results, we can conclude that our light source is suitable for Time-of-Flight measurements and gives a low-cost alternative for imaging purposes. Moreover, it can handle both pulsed as continuous-wave Time-of-Flight, to allow a broader range of applications.

  4. Alteration of Na+ and K+ ion composition of microbial consortium isolated from oil reservoir at high salinities

    DEFF Research Database (Denmark)

    Rudyk, Svetlana Nikolayevna; Søgaard, Erik Gydesen

    2010-01-01

    The microbes being injected into the oil layers for the purpose of Microbial Enhanced Oil Recovery (MEOR) undergo the influence of extreme environment of oil reservoir like high salinity, high temperature and high pressure which can suppress their viability and production of the desired by-products...... such as gases, acids, surfactants and the others. To plan MEOR projects for implementation in the oil reservoirs in the North Sea fields, it needs to take into consideration that the salinity of the formation waters is high, varies in a wide range and depends on the closeness to the salt domes. For the most...... of bacteria salinity above 50 g/l would have an inhibiting effect. The limits of the optimal conditions for microbial propagation can be overcome through the adaptation processes the bacteria-MEOR candidates go through during laboratory studying. Alteration of the ionic composition is known as playing role...

  5. Light water cooled, high temperature and high performance nuclear power plants concept of once-through coolant cycle, supercritical-pressure, light water cooled nuclear reactors

    International Nuclear Information System (INIS)

    Supercritical-pressure, light water cooled nuclear reactors corresponding to nuclear reactors of once-through boilers, are of theoretical development from LWR. Under supercritical pressure, a steam turbine can be driven directly with cooled water with high enthalpy, as not seen boiling and required for recycling. The reactor has no steam-water separation and recycling systems on comparison with the boiling water type LWR, and is the same once-through type as supercritical-pressure thermal power generation plants. Then, all of cooling water at reactor core are sent to turbine. The reactor has no steam generator, and pressurizer, on comparison with PWR. As it requires no steam-water separator, steam drier, and recycling system on comparison with BWR, it becomes of smaller size and has shape and size nearly equal to those of PWR. And, its control bars can be inserted from upper direction like PWR, and can use its driving system. Here was introduced some concepts on high-temperature and high-performance light water reactor, nuclear power generation using a technology on supercritical-pressure thermal power generation. (G.K.)

  6. Highly conductive copper nano/microparticles ink via flash light sintering for printed electronics

    International Nuclear Information System (INIS)

    In this study, the size effect of copper particles on the flash light sintering of copper (Cu) ink was investigated using Cu nanoparticles (20–50 nm diameter) and microparticles (2 μm diameter). Also, the mixed Cu nano-/micro-inks were fabricated, and the synergetic effects between the Cu nano-ink and micro-ink on flash light sintering were assessed. The ratio of nanoparticles to microparticles in Cu ink and the several flash light irradiation conditions (irradiation energy density, pulse number, on-time, and off-time) were optimized to obtain high conductivity of Cu films. In order to precisely monitor the milliseconds-long flash light sintering process, in situ monitoring of electrical resistance and temperature changes of Cu films was conducted during the flash light irradiation using a real-time Wheatstone bridge electrical circuit, thermocouple-based circuit, and a high-rate data acquisition system. Also, several microscopic and spectroscopic characterization techniques such as scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were used to characterize the flash light sintered Cu nano-/micro-films. In addition, the sheet resistance of Cu film was measured using a four-point probe method. This work revealed that the optimal ratio of nanoparticles to microparticles is 50:50 wt%, and the optimally fabricated and flash light sintered Cu nano-/micro-ink films have the lowest resistivity (80 μΩ cm) among nano-ink, micro-ink, or nano-micro mixed films. (papers)

  7. Differential responses of seven contrasting species to high light using pigment and chlorophyll a fluorescence

    Directory of Open Access Journals (Sweden)

    Mittal S.

    2011-05-01

    Full Text Available High light intensity may induce severe photodamage to chloroplast and consequently cause decreases in the yield capacity of plants and destruction of pigments, causing an overall yellowing of the foliage. Thus, study related to light adaptation becomes necessary to understand adaptation processes in higher plants on the basis of which they are characterized as full sunlight or shade plants. Chlorophyll can be regarded as an intrinsic fluorescent probe of the photosynthetic system. The ecophysiological parameter related to plant performance and fitness i.e. in-situ chlorophyll fluorescence measurements were determined for different plant species in the medicinal plant garden of Banasthali University, Rajasthan. Miniaturized Pulse Amplitude Modulated Photosynthetic Yield Analyzers are primarily designed for measuring effective quantum yield (ΔF/Fm’ of photosystem II under momentary ambient light in the field. Photosynthetic yield measurements and light-response curves suggested a gradation of sun-adapted to shade-adapted behaviour of these plants in following order Withania somnifera> Catharanthus roseus> Datura stamonium> Vasica minora> Vasica adulta> Rauwolfia serpentina. As indicated by light response curves and pigment analysis, Datura stramonium, Withania somnifera and Catharanthus roseus competed well photosynthetically and are favoured while Rauwolfia serpentina, Vasica minora, Vasica adulta and Plumbago zeylanica were observed to be less competent photosynthetically. These light response curves and resultant cardinal points study gave insight into the ecophysiological characterization of the photosynthetic capacity of the plant and provides highly interesting parameters like electron transport rate, photo-inhibition, photosynthetically active photon flux density and yield on the basis of which light adaptability was screened for seven medicinally important plants.

  8. Altered intracellular pH regulation in cells with high levels of P-glycoprotein expression.

    Science.gov (United States)

    Young, Gregory; Reuss, Luis; Altenberg, Guillermo A

    2011-01-01

    P-glycoprotein is an ATP-binding-cassette transporter that pumps many structurally unrelated drugs out of cells through an ATP-dependent mechanism. As a result, multidrug-resistant cells that overexpress P-glycoprotein have reduced intracellular steady-state levels of a variety of chemotherapeutic agents. In addition, increased cytosolic pH has been a frequent finding in multidrug-resistant cells that express P-glycoprotein, and it has been proposed that this consequence of P-glycoprotein expression may contribute to the lower intracellular levels of chemotherapeutic agents. In these studies, we measured intracellular pH and the rate of acid extrusion in response to an acid load in two cells with very different levels of P-glycoprotein expression: V79 parental cells and LZ-8 multidrug resistant cells. Compared to the wild-type V79 cells, LZ-8 cells have a lower intracellular pH and a slower recovery of intracellular pH after an acid load. The data also show that LZ-8 cells have reduced ability to extrude acid, probably due to a decrease in Na(+)/H(+) exchanger activity. The alterations in intracellular pH and acid extrusion in LZ-8 cells are reversed by 24-h exposure to the multidrug-resistance modulator verapamil. The lower intracellular pH in LZ-8 indicates that intracellular alkalinization is not necessary for multidrug resistance. The reversal by verapamil of the decreased acid-extrusion suggests that P-glycoprotein can affect other membrane transport mechanism. PMID:22003434

  9. Achieving Energy Savings with Highly-Controlled Lighting in an Open-Plan Office

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, Francis; Enscoe, Abby

    2010-04-19

    An installation in a Federal building tested the effectiveness of a highly-controlled, workstation-specific lighting retrofit. The study took place in an open-office area with 86 cubicles and low levels of daylight. Each cubicle was illuminated by a direct/indirectpendant luminaire with three 32 watt lamps, two dimmable DALI ballasts, and an occupancy sensor. A centralized control system programmed all three lamps to turn on and off according to occupancy on a workstation-by-workstation basis. Field measurements taken over the course of several monthsdemonstrated 40% lighting energy savings compared to a baseline without advanced controls that conforms to GSA's current retrofit standard. A photometric analysis found that the installation provided higher desktop light levels than the baseline, while an occupant survey found that occupants in general preferred the lighting system to thebaseline.Simple payback is fairly high; projects that can achieve lower installation costs and/or higher energy savings and those in which greenhouse gas reduction and occupant satisfaction are significant priorities provide the ideal setting for workstation-specific lighting retrofits.

  10. High-Efficiency Light-Emitting Diodes of Organometal Halide Perovskite Amorphous Nanoparticles.

    Science.gov (United States)

    Xing, Jun; Yan, Fei; Zhao, Yawen; Chen, Shi; Yu, Huakang; Zhang, Qing; Zeng, Rongguang; Demir, Hilmi Volkan; Sun, Xiaowei; Huan, Alfred; Xiong, Qihua

    2016-07-26

    Organometal halide perovskite has recently emerged as a very promising family of materials with augmented performance in electronic and optoelectronic applications including photovoltaic devices, photodetectors, and light-emitting diodes. Herein, we propose and demonstrate facile solution synthesis of a series of colloidal organometal halide perovskite CH3NH3PbX3 (X = halides) nanoparticles with amorphous structure, which exhibit high quantum yield and tunable emission from ultraviolet to near-infrared. The growth mechanism and photoluminescence properties of the perovskite amorphous nanoparticles were studied in detail. A high-efficiency green-light-emitting diode based on amorphous CH3NH3PbBr3 nanoparticles was demonstrated. The perovskite amorphous nanoparticle-based light-emitting diode shows a maximum luminous efficiency of 11.49 cd/A, a power efficiency of 7.84 lm/W, and an external quantum efficiency of 3.8%, which is 3.5 times higher than that of the best colloidal perovskite quantum-dot-based light-emitting diodes previously reported. Our findings indicate the great potential of colloidal perovskite amorphous nanoparticles in light-emitting devices.

  11. A comparison of light-coupling into high and low index nanostructured photovoltaic thin films

    Directory of Open Access Journals (Sweden)

    T. Pfadler

    2015-06-01

    Full Text Available Periodically structured electrodes are typically introduced to thin-film photovoltaics for the purpose of light management. Highly effective light-trapping and optimal in-coupling of light is crucial to enhance the overall device performance in such thin-film systems. Here, wavelength-scale structures are transferred via direct laser interference patterning to electron-selective TiO2 electrodes. Two representative thin-film solar cell architectures are deposited on top: an organic solar cell featuring blended P3HT:PCBM as active material, and a hybrid solar cell with Sb2S3 as inorganic active material. A direct correlation in the asymmetry in total absorption enhancement and in structure-induced light in-coupling is spectroscopically observed for the two systems. The structuring is shown to be beneficial for the total absorption enhancement if a high n active material is deposited on TiO2, but detrimental for a low n material. The refractive indices of the employed materials are determined via spectroscopic ellipsometry. The study outlines that the macroscopic Fresnel equations can be used to investigate the spectroscopically observed asymmetry in light in-coupling at the nanostructured TiO2 active material interfaces by visualizing the difference in reflectivity caused by the asymmetry in refractive indices.

  12. Fabrication of High-power White LEDs and White Light Uniformity Testing

    Institute of Scientific and Technical Information of China (English)

    YU Xin-mei; RAO Hai-bo; HU Yue; LI Jun-fei; HOU Bin

    2007-01-01

    As the blue and yellow lights are complementary colors,a blue InGaN LED chip is coated by a yellow phosphor film to generate white light based on luminescence conversion mechanism.The emitted light of a blue LED is used as the primary source for exciting fluorescent material such as cerium doped yttrium aluminum garnet with the formula Y3Al5O12:Ce3+(in short:YAG:Ce3+).The matching of the spectrum of the blue LED chips and the YAG:Ce3+ yellow phosphor is studied to improve the conversion efficiency.The packaging methods and manufacturing processes for high-power single-chip-white-LEDs are introduced.The uniformity of the output white light is investigated.Based on the characteristics of the high-power white LEDs,some approaches and processes are suggested to improve the light uniformity when they are fabricated.The effectiveness of those approaches on the improvement of LEDs is discussed in detail and some interesting conclusions are also presented.

  13. Prospects for high-gain, high yield NIF targets driven by 2ω (green) light

    Science.gov (United States)

    Suter, L. J.; Glenzer, S.; Haan, S.; Hammel, B.; Manes, K.; Meezan, N.; Moody, J.; Spaeth, M.; Oades, K.; Stevenson, M.

    2016-10-01

    For several years we have been exploring the possibility of using green (2w) light for indirect drive ignition on NIF. The rationale for this work is the possibility of extracting significantly more energy from NIF in green light, as compared to blue (3w) light, and driving far more energetic capsules than we originally envisioned when we started planning NIF in the early 1990's. This paper attempts to provide a comprehensive picture of the progress we have made exploring 2w for NIF ignition. First we describe the potential operating regime for NIF at 2w and how that can translate into a very large "design space" for exploring ignition target designs. We then present the results of 2w ignition target design studies indicating that we can achieving adequate drive and symmetry with 2w and showing how we might capitalize on the large amount of energy available by electing to trade-off coupling efficiency for, say, better symmetry or plasma conditions. These simulations also define plasma conditions for ignition-relevant 2w laser-plasma interaction experiments that have been recently performed. We summarize the results of these experiments which indicate that 2w LPI is not very different from 3w's. Finally, we show how recent experimental findings on mitigating 2w laser plasma interactions through reduced intensity and/or judicious choice of plasma composition can be incorporated into ignition target designs.

  14. Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers.

    Science.gov (United States)

    Yang, Xuyong; Mutlugun, Evren; Dang, Cuong; Dev, Kapil; Gao, Yuan; Tan, Swee Tiam; Sun, Xiao Wei; Demir, Hilmi Volkan

    2014-08-26

    Flexible information displays are key elements in future optoelectronic devices. Quantum dot light-emitting diodes (QLEDs) with advantages in color quality, stability, and cost-effectiveness are emerging as a candidate for single-material, full color light sources. Despite the recent advances in QLED technology, making high-performance flexible QLEDs still remains a big challenge due to limited choices of proper materials and device architectures as well as poor mechanical stability. Here, we show highly efficient, large-area QLED tapes emitting in red, green, and blue (RGB) colors with top-emitting design and polyimide tapes as flexible substrates. The brightness and quantum efficiency are 20,000 cd/m(2) and 4.03%, respectively, the highest values reported for flexible QLEDs. Besides the excellent electroluminescence performance, these QLED films are highly flexible and mechanically robust to use as electrically driven light-emitting stickers by placing on or removing from any curved surface, facilitating versatile LED applications. Our QLED tapes present a step toward practical quantum dot based platforms for high-performance flexible displays and solid-state lighting.

  15. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Prost, L. R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2016-02-17

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  16. Core-shell structured TiO2@polydopamine for highly active visible-light photocatalysis.

    Science.gov (United States)

    Mao, Wen-Xin; Lin, Xi-Jie; Zhang, Wei; Chi, Zi-Xiang; Lyu, Rong-Wen; Cao, An-Min; Wan, Li-Jun

    2016-06-01

    This communication reports that the TiO2@polydopamine nanocomposite with a core-shell structure could be a highly active photocatalyst working under visible light. A very thin layer of polydopamine at around 1 nm was found to be critical for the degradation of Rhodamine B. PMID:27165843

  17. Very High Frequency Resonant DC/DC Converters for LED Lighting

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents a very high frequency DC/DC converter for LED lighting. Several resonant topologies are compared and their usability discussed. At the end the resonant SEPIC converter is chosen based on the achievable power density and total bill of material. Simulations of a 51 MHz converter...

  18. Selected List of Low Energy Beam Transport Facilities for Light-Ion, High-Intensity Accelerators

    CERN Document Server

    Prost, Lionel R

    2016-01-01

    This paper presents a list of Low Energy Beam Transport (LEBT) facilities for light-ion, high-intensity accelerators. It was put together to facilitate comparisons with the PXIE LEBT design choices. A short discussion regarding the importance of the beam perveance in the choice of the transport scheme follows.

  19. How do Turkish High School Graduates Use the Wave Theory of Light to Explain Optics Phenomena?

    Science.gov (United States)

    Sengoren, S. K.

    2010-01-01

    This research was intended to investigate whether Turkish students who had graduated from high school used the wave theory of light properly in explaining optical phenomena. The survey method was used in this research. The data, which were collected from 175 first year university students in Turkey, were analysed quantitatively and qualitatively.…

  20. Alunite in the Pascua-Lama high-sulfidation deposit: Constraints on alteration and ore deposition using stable isotope geochemistry

    Science.gov (United States)

    Deyell, C.L.; Leonardson, R.; Rye, R.O.; Thompson, J.F.H.; Bissig, T.; Cooke, D.R.

    2005-01-01

    The Pascua-Lama high-sulfidation system, located in the El Indio-Pascua belt of Chile and Argentina, contains over 16 million ounces (Moz) Au and 585 Moz Ag. The deposit is hosted primarily in granite rocks of Triassic age with mineralization occurring in several discrete Miocene-age phreatomagmatic breccias and related fracture networks. The largest of these areas is Brecha Central, which is dominated by a mineralizing assemblage of alunite-pyrite-enargite and precious metals. Several stages of hydrothermal alteration related to mineralization are recognized, including all types of alunite-bearing advanced argillic assemblages (magmatic-hydrothermal, steam-heated, magmatic steam, and supergene). The occurrence of alunite throughout the paragenesis of this epithermal system is unusual and detailed radiometric, mineralogical, and stable isotope studies provide constraints on the timing and nature of alteration and mineralization of the alunite-pyiite-enargite assemblage in the deposit. Early (preore) alteration occurred prior to ca. 9 Ma and consists of intense silicic and advanced argillic assemblages with peripheral argillic and widespread propylitic zones. Alunite of this stage occurs as fine intergrowths of alunite-quartz ?? kaolinite, dickite, and pyrophyllite that selectively replaced feldspars in the host rock. Stable isotope systematics suggest a magmatic-hydrothermal origin with a dominantly magmatic fluid source. Alunite is coeval with the main stage of Au-Ag-Cu mineralization (alunite-pyrite-enargite assemblage ore), which has been dated at approximately 8.8 Ma. Ore-stage alunite has an isotopic signature similar to preore alunite, and ?? 34Salun-py data indicate depositional temperatures of 245?? to 305??C. The ??D and ?? 18O data exclude significant involvement of meteoric water during mineralization and indicate that the assemblage formed from H2S-dominated magmatic fluids. Thick steam-heated alteration zones are preserved at the highest elevations in

  1. An optical fan for light beams for high-precision optical measurements and optical switching

    CERN Document Server

    Zhou, Zhi-Yuan; Ding, Dong-Sheng; Jiang, Yun-Kun; Zhang, Wei; Shi, Shuai; Shi, Bao-Sen; Guo, Guang-Can

    2014-01-01

    The polarization and orbital angular momentum properties of light are of great importance in optical science and technology in the fields of high precision optical measurements and high capacity and high speed optical communications. Here we show, a totally new method, based on a combination of these two properties and using the thermal dispersion and electro-optical effect of birefringent crystals, the construction of a simple and robust scheme to rotate a light beam like a fan. Using a computer-based digital image processing technique, we determine the temperature and the thermal dispersion difference of the crystal with high resolution. We also use the rotation phenomenon to realize thermo-optic and electro-optic switches. The basic operating principles for measurement and switching processes are presented in detail. The methods developed here will have wide practical applicability in various fields, including remote sensing, materials science and optical communication networks.

  2. Polarization-independent and high-efficiency dielectric metasurfaces for visible light.

    Science.gov (United States)

    Li, Qi-Tong; Dong, Fengliang; Wang, Bong; Gan, Fengyuan; Chen, Jianjun; Song, Zhiwei; Xu, Lixua; Chu, Weiguo; Xiao, Yun-Feng; Gong, Qihuang; Li, Yan

    2016-07-25

    Dielectric metasurfaces are capable of completely manipulating the phase, amplitude, and polarization of light with high spatial resolutions. The emerging design based on high-index and low-loss dielectrics has led to the realization of novel metasurfaces with high transmissions, but these devices usually operate at the limited bandwidth, and are sensitive to the incident polarization. Here, we report the realization of the polarization-independent and high-efficiency silicon metasurfaces spanning the visible wavelengths about 200 nm. The fabricated computer-generated meta-holograms exhibit a 90% diffraction efficiency, which are verified by gradient metasurfaces with measured efficiencies up to 93% at 670 nm, and exceeding 75% at the wavelengths from 600 to 800 nm for the two orthogonally polarized incidences. These dielectric metasurfaces effectively decouple the phase modulation from the polarization states and frequencies for visible light, which hold great potential for novel flat optical devices operating over a broad spectrum. PMID:27464084

  3. PARTICLE-HOLE NATURE OF THE LIGHT HIGH-SPIN TOROIDAL ISOMERS

    Energy Technology Data Exchange (ETDEWEB)

    Staszczak, A. [Maria Curie-Sklodowska University, Poland; Wong, Cheuk-Yin [ORNL

    2015-01-01

    Nuclei under non-collective rotation with a large angular momentum above some threshold can assume a toroidal shape. In our previous work, we showed by using cranked Skyrme Hartree Fock approach that even even, N = Z, high-K, toroidal isomeric states may have general occurrences for light nuclei with 28 < A < 52. We present here some additional results and systematics on the particle-hole nature of these high-spin toroidal isomers.

  4. Low insertion loss highly mode-selective spatial multiplexers using multi-plane light conversion

    Science.gov (United States)

    Morizur, Jean-François; Barré, Nicolas; Pinel, Olivier; Lenglé, Kevin; Garcia, Lionel; Jaffres, Lionel; Jian, Pu; Labroille, Guillaume

    2016-02-01

    Multi-Plane Light Conversion enables novel beam shaping devices, including spatial multiplexers. After a presentation of the achievable performances of these spatial multiplexers, which can combine 10 spatial modes with cross-talk below -22 dB and insertion loss below 4 dB, we review the performances of Multi-Plane Light Con-version in multiple application cases. These application cases include mode-multiplexed optical amplification, high-power beam shaping and combining and LAN fiber capacity upgrade.

  5. Light gluinos in high-Q{sup 2} deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.G. [Rutherford Appleton Lab., Chilton (United Kingdom); Stirling, W.J. [Durham Univ. (United Kingdom). Dept. of Physics

    1993-05-01

    A slight incompatibility in recent low-energy and high-energy {alpha}, measurements can be interpreted as evidence for new light colour degrees of freedom. Assuming that these are the gluinos of a supersymmetric extension of the Standard Model, we investigate to what extent they change the standard Quantum Chromo Dynamic (QCD) predictions for deep inelastic structure functions, and in particular whether they can be detected in such measurements at Hadron-Elektron-Ring Anlage (HERA). We present a modified set of parton distributions which includes a light gluino distribution and which can be used for further phenomenological investigations. (author).

  6. Light-induced Voc increase and decrease in high-efficiency amorphous silicon solar cells

    OpenAIRE

    Stuckelberger, Michael; Riesen, Yannick Samuel; Despeisse, Matthieu; Schüttauf, Jan-Willem Alexander; Haug, Franz-Josef; Ballif, Christophe

    2014-01-01

    High-efficiency amorphous silicon (a-Si:H) solar cells were deposited with different thicknesses of the p-type amorphous silicon carbide layer on substrates of varying roughness. We observed a light-induced open-circuit voltage (Voc) increase upon light soaking for thin p-layers, but a decrease for thick p-layers. Further, the Voc increase is enhanced with increasing substrate roughness. After correction of the p-layer thickness for the increased surface area of rough substrates, we can exclu...

  7. High-output-power deep ultraviolet light-emitting diode assembly using direct bonding

    Science.gov (United States)

    Ichikawa, Masatsugu; Fujioka, Akira; Kosugi, Takao; Endo, Shinya; Sagawa, Harunobu; Tamaki, Hiroto; Mukai, Takashi; Uomoto, Miyuki; Shimatsu, Takehito

    2016-07-01

    We fabricated high-output-power 255 and 280 nm light-emitting diodes (LEDs) using direct bonding. The LED chips were bonded to sapphire lenses at room temperature using either atomic diffusion bonding or surface-activated bonding. The LEDs with lenses had a higher light extraction efficiency than conventionally structured LEDs. As a result, at a forward current of 350 mA, the output power of the 255 nm LED increased by a factor of 2.8, reaching 73.6 mW, while that of the 280 nm LED increased by a factor of 2.3, reaching 153 mW.

  8. Very high coupling of TM polarised light in photonic crystal directional couplers

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Thorhauge, Morten; Frandsen, Lars Hagedorn;

    2003-01-01

    The experimental and simulated spectra for TE and TM polarised light for the transmission through photonic crystal directional couplers are presented. The 3D FDTD simulations successfully explain all the major features of the experimental spectra as well as the actual transmission level. Especially...... noteworthy is the transmission level, experimentally found to be above -3 dB in the wavelength range 1520-1690 nm, for TM polarised light in the coupled channel. It is noted that even though band calculations show that the propagation of the TM polarisation takes place below the TM valence band, very high...... and spectrally smooth coupling is observed for the TM polarisation in this wavelength range....

  9. cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment.

    Science.gov (United States)

    Qian, Airong; Di, Shengmeng; Gao, Xiang; Zhang, Wei; Tian, Zongcheng; Li, Jingbao; Hu, Lifang; Yang, Pengfei; Yin, Dachuan; Shang, Peng

    2009-07-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has been widely applied in many fields. In this study, a special designed superconducting magnet, which can produce three apparent gravity levels (0, 1, and 2 g), namely high magneto-gravitational environment (HMGE), was used to simulate space gravity environment. The effects of HMGE on osteoblast gene expression profile were investigated by microarray. Genes sensitive to diamagnetic levitation environment (0 g), gravity changes, and high magnetic field changes were sorted on the basis of typical cell functions. Cytoskeleton, as an intracellular load-bearing structure, plays an important role in gravity perception. Therefore, 13 cytoskeleton-related genes were chosen according to the results of microarray analysis, and the expressions of these genes were found to be altered under HMGE by real-time PCR. Based on the PCR results, the expressions of WASF2 (WAS protein family, member 2), WIPF1 (WAS/WASL interacting protein family, member 1), paxillin, and talin 1 were further identified by western blot assay. Results indicated that WASF2 and WIPF1 were more sensitive to altered gravity levels, and talin 1 and paxillin were sensitive to both magnetic field and gravity changes. Our findings demonstrated that HMGE can affect osteoblast gene expression profile and cytoskeleton-related genes expression. The identification of mechanosensitive genes may enhance our understandings to the mechanism of bone loss induced by microgravity and may provide some potential targets for preventing and treating bone loss or osteoporosis.

  10. The high frequency characteristics of laser reflection and visible light during solid state disk laser welding

    Science.gov (United States)

    Gao, Xiangdong; You, Deyong; Katayama, Seiji

    2015-07-01

    Optical properties are related to weld quality during laser welding. Visible light radiation generated from optical-induced plasma and laser reflection is considered a key element reflecting weld quality. An in-depth analysis of the high-frequency component of optical signals is conducted. A combination of a photoelectric sensor and an optical filter helped to obtain visible light reflection and laser reflection in the welding process. Two groups of optical signals were sampled at a high sampling rate (250 kHz) using an oscilloscope. Frequencies in the ranges 1-10 kHz and 10-125 kHz were investigated respectively. Experimental results showed that there was an obvious correlation between the high-frequency signal and the laser power, while the high-frequency signal was not sensitive to changes in welding speed. In particular, when the defocus position was changed, only a high frequency of the visible light signal was observed, while the high frequency of the laser reflection signal remained unchanged. The basic correlation between optical features and welding status during the laser welding process is specified, which helps to provide a new research focus for investigating the stability of welding status.

  11. Inhibition of enteric pathogens and surrogates using integrated, high intensity 405nm led light on the surface of almonds

    Science.gov (United States)

    The disinfecting properties of 405 nm light were investigated against Escherichia coli O157:H7, Salmonella, and their non-pathogenic surrogate bacteria on the surface of almonds. High intensity monochromatic blue light (MBL) was generated from an array of narrow-band 405 nm light-emitting diodes (LE...

  12. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    Science.gov (United States)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application. PMID:26813491

  13. Measuring the 3D shape of high temperature objects using blue sinusoidal structured light

    Science.gov (United States)

    Zhao, Xianling; Liu, Jiansheng; Zhang, Huayu; Wu, Yingchun

    2015-12-01

    The visible light radiated by some high temperature objects (less than 1200 °C) almost lies in the red and infrared waves. It will interfere with structured light projected on a forging surface if phase measurement profilometry (PMP) is used to measure the shapes of objects. In order to obtain a clear deformed pattern image, a 3D measurement method based on blue sinusoidal structured light is proposed in this present work. Moreover, a method for filtering deformed pattern images is presented for correction of the unwrapping phase. Blue sinusoidal phase-shifting fringe pattern images are projected on the surface by a digital light processing (DLP) projector, and then the deformed patterns are captured by a 3-CCD camera. The deformed pattern images are separated into R, G and B color components by the software. The B color images filtered by a low-pass filter are used to calculate the fringe order. Consequently, the 3D shape of a high temperature object is obtained by the unwrapping phase and the calibration parameter matrixes of the DLP projector and 3-CCD camera. The experimental results show that the unwrapping phase is completely corrected with the filtering method by removing the high frequency noise from the first harmonic of the B color images. The measurement system can complete the measurement in a few seconds with a relative error of less than 1 : 1000.

  14. Measuring the 3D shape of high temperature objects using blue sinusoidal structured light

    International Nuclear Information System (INIS)

    The visible light radiated by some high temperature objects (less than 1200 °C) almost lies in the red and infrared waves. It will interfere with structured light projected on a forging surface if phase measurement profilometry (PMP) is used to measure the shapes of objects. In order to obtain a clear deformed pattern image, a 3D measurement method based on blue sinusoidal structured light is proposed in this present work. Moreover, a method for filtering deformed pattern images is presented for correction of the unwrapping phase. Blue sinusoidal phase-shifting fringe pattern images are projected on the surface by a digital light processing (DLP) projector, and then the deformed patterns are captured by a 3-CCD camera. The deformed pattern images are separated into R, G and B color components by the software. The B color images filtered by a low-pass filter are used to calculate the fringe order. Consequently, the 3D shape of a high temperature object is obtained by the unwrapping phase and the calibration parameter matrixes of the DLP projector and 3-CCD camera. The experimental results show that the unwrapping phase is completely corrected with the filtering method by removing the high frequency noise from the first harmonic of the B color images. The measurement system can complete the measurement in a few seconds with a relative error of less than 1 : 1000. (paper)

  15. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    Science.gov (United States)

    Qu, Yuanyuan; Li, Feng; Zhou, Hongcai; Zhao, Mingwen

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculations, we theoretically demonstrated that highly efficient light isotopes separation, such as 3He/4He, can be reached in a porous graphene-like carbon nitride material via quantum sieving effect. Under moderate tensile strain, the quantum sieving of the carbon nitride membrane can be effectively tuned in a continuous way, leading to a temperature window with high 3He/4He selectivity and permeance acceptable for efficient isotopes harvest in industrial application. This mechanism also holds for separation of other light isotopes, such as H2/D2, H2/T2. Such tunable quantum sieving opens a promising avenue for light isotopes separation for industrial application.

  16. High-efficiency blue light generation at 426 nm in low pump regime

    Science.gov (United States)

    Tian, Jianfeng; Yang, Chen; Xue, Jia; Zhang, Yuchi; Li, Gang; Zhang, Tiancai

    2016-05-01

    We report high-efficiency Ti:sapphire-laser-based frequency doubling at the cesium D2 line 852 nm using a 20 mm-long periodically-poled potassium titanyl phosphate crystal in a bow-tie four-mirror ring enhancement cavity. The relatively complete cavity design procedure is presented. Focusing that is over twice as loose as optimal focusing is used, and both the fundamental frequency wave and second harmonic beam absorption-induced thermal lensing effects are weakened. Blue light of 210 mW at 426 nm, where absorption is severe, was obtained with 310 mW mode-matched fundamental light, corresponding to conversion efficiency of up to 67%. The blue light beam power showed 1.5% RMS fluctuation over 40 min.

  17. Investigating the Mobility of Light Autonomous Tracked Vehicles using a High Performance Computing Simulation Capability

    Science.gov (United States)

    Negrut, Dan; Mazhar, Hammad; Melanz, Daniel; Lamb, David; Jayakumar, Paramsothy; Letherwood, Michael; Jain, Abhinandan; Quadrelli, Marco

    2012-01-01

    This paper is concerned with the physics-based simulation of light tracked vehicles operating on rough deformable terrain. The focus is on small autonomous vehicles, which weigh less than 100 lb and move on deformable and rough terrain that is feature rich and no longer representable using a continuum approach. A scenario of interest is, for instance, the simulation of a reconnaissance mission for a high mobility lightweight robot where objects such as a boulder or a ditch that could otherwise be considered small for a truck or tank, become major obstacles that can impede the mobility of the light autonomous vehicle and negatively impact the success of its mission. Analyzing and gauging the mobility and performance of these light vehicles is accomplished through a modeling and simulation capability called Chrono::Engine. Chrono::Engine relies on parallel execution on Graphics Processing Unit (GPU) cards.

  18. GaN-based high-voltage light-emitting diodes with backside reflector

    International Nuclear Information System (INIS)

    High-voltage light-emitting diodes (HV-LED) withbackside reflector, including Ti3O5/SiO2 distributed Bragg reflector (DBR) or hybrid reflector combining DBR and Al or Ag metal layer, are investigated using Monte Carlo ray tracing method. The hybrid reflector leads to more enhancement of light-extraction efficiency (LEE). Moreover, the LEE can also be improved by redesigning the thicknesses of DBR. HV-LED with four redesigned DBR pairs (4-MDBR), and those with a hybrid reflector combining 4-MDBR and Al metal layer (4-MDBR-Al), are fabricated. Compared to 4-MDBR, the enhancement of light-output power induced by 4-MDBR-Al is 4.6%, which is consistent with the simulated value of 4.9%. (semiconductor devices)

  19. High luminous efficacy green light-emitting diodes with AlGaN cap layer.

    Science.gov (United States)

    Alhassan, Abdullah I; Farrell, Robert M; Saifaddin, Burhan; Mughal, Asad; Wu, Feng; DenBaars, Steven P; Nakamura, Shuji; Speck, James S

    2016-08-01

    We demonstrate very high luminous efficacy green light-emitting diodes employing Al0.30Ga0.70N cap layer grown on patterned sapphire substrates by metal organic chemical vapor deposition. The peak external quantum efficiency and luminous efficacies were 44.3% and 239 lm/w, respectively. At 20 mA (20 A/cm2) the light output power was 14.3 mW, the forward voltage was 3.5 V, the emission wavelength was 526.6 nm, and the external quantum efficiency was 30.2%. These results are among the highest reported luminous efficacy values for InGaN based green light-emitting diodes.

  20. Diffractive charmonium spectrum in high energy collisions in the basis light-front quantization approach

    CERN Document Server

    Chen, Guangyao; Maris, Pieter; Tuchin, Kirill; Vary, James P

    2016-01-01

    Using the charmonium light-front wavefunctions obtained by diagonalizing an effective Hamiltonian with the one-gluon exchange interaction and a confining potential inspired by light-front holography in the basis light-front quantization formalism, we compute production of charmonium states in diffractive deep inelastic scattering and ultra-peripheral heavy ion collisions within the dipole picture. Our method allows us to predict yields of all excited charmonium and bottomonium states below the open flavor thresholds in high-energy deep inelastic scattering, proton-nucleus and ultra-peripheral heavy ion collisions. The obtained charmonium cross section is in reasonable agreement with experimental data at HERA, RHIC and LHC. We observe that the cross-section ratio $\\sigma_{\\Psi(2s)}/\\sigma_{J/\\Psi}$ reveals significant independence of model parameters.

  1. General approach to high power, coherent visible and ultraviolet light sources

    DEFF Research Database (Denmark)

    Andersen, Martin Thalbitzer

    The main goal of this project is to develop a generic approach to synthesise any wavelength in the visible and UV spectral region based on sum frequency generation. The approach is based on a hybrid system combining solid state and semiconductor technology. The generation of light in the UV...... phasematching by co-doping of these crystals makes them promising candidates for generation of light in the blue-UV region. A novel method for cavity dumping based on nonlinear frequency conversion is investigated. A high finesse laser is constructed with an intracavity nonlinear material inserted in a beam...... can easily be frequency doubled in a single pass configuration, therefore the nonlinear cavity dumping approach is suggested for the generation of 340nm UV light, using 532nm pulses to cavity dump a 946nm Nd:YAG laser. Furthermore experiments are conducted tripling a Q-switched 1064nm laser to 355nm...

  2. Light Effects on High Q-Resonators for Hybrid Quantum Systems

    International Nuclear Information System (INIS)

    Full text: Over the last years hybrid quantum systems have drawn attention in the field of quantum information processing, because of their ability to combine the advantages of different quantum worlds (e.g. cold atoms, NV centers, superconducting Qubits...). The heart of these hybrid systems are superconducting microwave resonators with high quality factors (on the order of one million). The response of these resonators under the influence of light is very crucial, since many of the hybrid applications involve laser light with different intensity. We will present measurements of the shift of resonator frequency as a function of the applied light power. Furthermore, we show the effects on the Q value due to the generation of quasiparticles and the saturation of two-level fluctuators in the superconducting thin films. We will also put these facts in perspective with resent measurements of resonators strongly coupled to an ensemble of NV centers. (author)

  3. Wide-angle and high-efficiency achromatic metasurfaces for visible light

    CERN Document Server

    Deng, Zi-Lan; Wang, Guo Ping

    2016-01-01

    Recently, an achromatic metasurface was successfully demonstrated to deflect light of multiple wavelengths in the same direction and it was further applied to the design of planar lenses without chromatic aberrations [Science, 347, 1342(2015)]. However, such metasurface can only work for normal incidence and exhibit low conversion efficiency. Here, we present an ultrawide-angle and high-efficiency metasurface without chromatic aberration for wavefront shaping in visible range. The metasurface is constructed by multiple metallic nano-groove gratings, which support enhanced diffractions for an ultrawide incident angle range from 10o to 80o due to the excitations of localized gap plasmon modes at different resonance wavelengths. Incident light at these resonance wavelengths can be efficiently diffracted into the same direction with complete suppression of the specular reflection. This approach is applied to the design of an achromatic flat lens for focusing light of different wavelengths into the same position. ...

  4. High temperature, drought and their interaction induced protein alterations in sensitive and tolerant wheat varieties

    Directory of Open Access Journals (Sweden)

    Vikender Kaur, Reena Mahla And R.K.Behl

    2014-12-01

    Full Text Available Two contrasting wheat (Triticum aestivum L. cultivars WH730 (high temperature tolerant and UP2565 (high temperature sensitive were tested for differential response to combined and individually applied high temperature (HT and drought (D stress at seedling stage for peptide profile. Initial profile of the stress induced peptides was outlined via SDS electrophoresis of leaf extracts. Electrophoretic pattern of proteins revealed expression of new bands as well as disappearance of certain others in HT, D and interactive HT+D stress treated and revived samples in both wheat varieties relative to untreated control samples. Some of the bands that appeared in stress treated seedlings were also present after revival indicating their protective role, while some new peptides synthesized after stress but disappeared after revival period may be designated true stress proteins. However, all the plants from heat, drought and their interactive stress treatments continued to grow during recovery period. This suggests that these proteins and other newly synthesized proteins may have protective effects at high temperature (40°C and water scarcity and provide plants for healthy growth during the recovery period. Furthermore, elucidating the functions of proteins expressed by genes in stress tolerant and susceptible plants may provide important information for designing new strategies for crop improvement.

  5. Nano-ferrites for water splitting: Unprecedented high photocatalytic hydrogen production under visible light

    KAUST Repository

    Mangrulkar, Priti A.

    2012-01-01

    In the present investigation, hydrogen production via water splitting by nano-ferrites was studied using ethanol as the sacrificial donor and Pt as co-catalyst. Nano-ferrite is emerging as a promising photocatalyst with a hydrogen evolution rate of 8.275 μmol h -1 and a hydrogen yield of 8275 μmol h -1 g -1 under visible light compared to 0.0046 μmol h -1 for commercial iron oxide (tested under similar experimental conditions). Nano-ferrites were tested in three different photoreactor configurations. The rate of hydrogen evolution by nano-ferrite was significantly influenced by the photoreactor configuration. Altering the reactor configuration led to sevenfold (59.55 μmol h -1) increase in the hydrogen evolution rate. Nano-ferrites have shown remarkable stability in hydrogen production up to 30 h and the cumulative hydrogen evolution rate was observed to be 98.79 μmol h -1. The hydrogen yield was seen to be influenced by several factors like photocatalyst dose, illumination intensity, irradiation time, sacrificial donor and presence of co-catalyst. These were then investigated in detail. It was evident from the experimental data that nano-ferrites under optimized reaction conditions and photoreactor configuration could lead to remarkable hydrogen evolution activity under visible light. Temperature had a significant role in enhancing the hydrogen yield. © 2012 The Royal Society of Chemistry.

  6. The formation of chlorine-induced alterations in daguerreotype image particles: a high resolution SEM-EDS study

    Science.gov (United States)

    Centeno, Silvia A.; Schulte, Franziska; Kennedy, Nora W.; Schrott, Alejandro G.

    2011-10-01

    The daguerreotype image, composed of nanosized silver-mercury or silver-mercury-gold amalgam particles formed on a polished silver substrate, is particularly sensitive to deterioration by chlorine-containing compounds resulting in the formation of AgCl that generates redeposited silver upon exposure to UV and visible lights. In the present study, alterations caused by chlorides on daguerreotype test samples prepared following 19th century recipes were studied. The dependence of variations in the production steps of daguerreotypes, such as multiple sensitization and gilding, on the impact of the exposure to chlorine were analyzed by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS) and atomic force microscopy (AFM), complemented by X-ray fluorescence (XRF) and Raman spectroscopy. It was observed that AgCl nucleates on the image particles and in the substrate defects, regardless of the particle density or the sensitization process. In gilded samples, Au was observed over the image particles and the polished silver substrate as a tightly packed grainy layer, which conformably follows the polishing irregularities. For the first time it is shown that Au preferentially accumulates on top of the image particles. This gold layer does not protect the image from chlorine-induced deterioration.

  7. Response of the diatom Phaeodactylum tricornutum to photooxidative stress resulting from high light exposure.

    Directory of Open Access Journals (Sweden)

    Nuno Domingues

    Full Text Available The response of microalgae to photooxidative stress resulting from high light exposure is a well-studied phenomenon. However, direct analyses of photosystem II (PSII D1 protein (the main target of photoinhibition in diatoms are scarce. In this study, the response of the diatom model species Phaeodactylum tricornutum to short-term exposure to high light was examined and the levels of D1 protein determined immunochemically. Low light (LL acclimated cells (40 µmol photons m(-2 s(-1 subjected to high light (HL, 1,250 µmol photons m(-2 s(-1 showed rapid induction of non-photochemical quenching (NPQ and ca. 20-fold increase in diatoxanthin (DT concentration. This resulted from the conversion of diadinoxanthin (DD to DT through the activation of the DD-cycle. D1 protein levels under LL decreased about 30% after 1 h of the addition of lincomycin (LINC, a chloroplast protein synthesis inhibitor, showing significant D1 degradation and repair under low irradiance. Exposure to HL lead to a 3.2-fold increase in D1 degradation rate, whereas average D1 repair rate was 1.3-x higher under HL than LL, leading to decreased levels of D1 protein under HL. There were significant effects of both HL and LINC on P. tricornutum maximum quantum yield of PSII (F(v/F(m, showing a reduction of active PSII reaction centres. Partial recovery of F(v/F(m in the dark demonstrates the photosynthetic resilience of this diatom to changes in the light regime. P. tricornutum showed high allocation of total protein to D1 and an active D1-repair cycle to limit photoinhibition.

  8. High Incidence of Breast Cancer in Light-Polluted Areas with Spatial Effects in Korea.

    Science.gov (United States)

    Kim, Yun Jeong; Park, Man Sik; Lee, Eunil; Choi, Jae Wook

    2016-01-01

    We have reported a high prevalence of breast cancer in light-polluted areas in Korea. However, it is necessary to analyze the spatial effects of light polluted areas on breast cancer because light pollution levels are correlated with region proximity to central urbanized areas in studied cities. In this study, we applied a spatial regression method (an intrinsic conditional autoregressive [iCAR] model) to analyze the relationship between the incidence of breast cancer and artificial light at night (ALAN) levels in 25 regions including central city, urbanized, and rural areas. By Poisson regression analysis, there was a significant correlation between ALAN, alcohol consumption rates, and the incidence of breast cancer. We also found significant spatial effects between ALAN and the incidence of breast cancer, with an increase in the deviance information criterion (DIC) from 374.3 to 348.6 and an increase in R2 from 0.574 to 0.667. Therefore, spatial analysis (an iCAR model) is more appropriate for assessing ALAN effects on breast cancer. To our knowledge, this study is the first to show spatial effects of light pollution on breast cancer, despite the limitations of an ecological study. We suggest that a decrease in ALAN could reduce breast cancer more than expected because of spatial effects. PMID:26838238

  9. Circulating adiponectin concentration and body composition are altered in response to high-intensity interval training.

    Science.gov (United States)

    Shing, Cecilia M; Webb, Jessica J; Driller, Matthew W; Williams, Andrew D; Fell, James W

    2013-08-01

    Adiponectin influences metabolic adaptations that would prove beneficial to endurance athletes, and yet to date there is little known about the response of adiponectin concentrations to exercise, and, in particular, the response of this hormone to training in an athlete population. This study aimed to determine the response of plasma adiponectin concentrations to acute exercise after 2 different training programs and to determine the influence of the training on body composition. Seven state-level representative rowers (age: 19 ± 1.2 years [mean ± SD], height: 1.77 ± 0.10 m, body mass: 74.0 ± 10.7 kg, VO2peak 62.1 ± 7.0 ml·kg·min) participated in the double-blind, randomized crossover investigation. Rowers performed an incremental graded exercise test before and after completing 4 weeks of high-intensity interval ergometer training and 4 weeks of traditional ergometer rowing training. Rowers' body composition was assessed at baseline and after each training program. Significant increases in plasma adiponectin concentration occurred in response to maximal exercise after completion of the high-intensity interval training (p = 0.016) but not after traditional ergometer rowing training (p = 0.69). The high-intensity interval training also resulted in significant increases in mean 4-minute power output (p = 0.002) and VO2peak (p = 0.05), and a decrease in body fat percentage (p = 0.022). Mean 4-minute power output, VO2peak, and body fat percentage were not significantly different after 4 weeks of traditional ergometer rowing training (p > 0.05). Four weeks of high-intensity interval training is associated with an increase in adiponectin concentration in response to maximal exercise and a reduction in body fat percentage. The potential for changes in adiponectin concentration to reflect positive training adaptations and athlete performance level should be further explored.

  10. Alterations in DNA methylation and genome structure in two rice mutant lines induced by high pressure

    Institute of Scientific and Technical Information of China (English)

    SHEN; Sile; WANG; Zhenwei; SHAN; Xiaohui; WANG; Hua; LI; Ling; LIN; Xuyun; LONG; Likun; WENG; Kenan; LIU; Bao; ZOU; Guangtian

    2006-01-01

    By using high-pressure treatment, two mutant lines were obtained from a genetically stable japonica rice cultivar Bijing38. Genomic DNA of the mutant lines, together with the original line (Bijing38), was either undigested or digested by Hpa II/Msp I, and then subjected to molecular analysis using two markers, ISSR and RAPD. Results indicated that changes in the PCR amplification profiles of both markers are apparent in the two mutant lines compared with the original rice cultivar, suggesting that there had been both sequence changes and DNA methylation modifications in the mutant lines. Southern blot analysis using diverse sequences, including two cellular genes (S2 and S3), a set of retrotransposons (Osr7, Osr36, Tos19 and more), and a MITE transposon family (mPing and Pong), confirmed the results, and indicated that changes in DNA methylation pattern, genomic structure, and possible activation of some transposons indeed occurred in the mutant lines. Moreover, these changes are stably maintained through selfed generations and in different organs. Thus, our results indicate that it is possible to obtain stable mutants in rice by high pressure treatments, and the molecular basis of the mutants may include both genetic and epigenetic changes. Therefore, high hydrostatic pressure seems a promising approach for plant mutagenesis.

  11. High-Efficiency Nitride-Based Solid-State Lighting. Final Technical Progress Report

    International Nuclear Information System (INIS)

    In this final technical progress report we summarize research accomplished during Department of Energy contract DE-FC26-01NT41203, entitled ''High-Efficiency Nitride-Based Solid-State Lighting''. Two teams, from the University of California at Santa Barbara (Principle Investigator: Dr. Shuji Nakamura) and the Lighting Research Center at Rensselaer Polytechnic Institute (led by Dr. N. Narendran), pursued the goals of this contract from thin film growth, characterization, and packaging/luminaire design standpoints. The UCSB team initially pursued the development of blue gallium nitride (GaN)-based vertical-cavity surface-emitting lasers, as well as ultraviolet GaN-based light emitting diodes (LEDs). In Year 2, the emphasis shifted to resonant-cavity light emitting diodes, also known as micro-cavity LEDs when extremely thin device cavities are fabricated. These devices have very directional emission and higher light extraction efficiency than conventional LEDs. Via the optimization of thin-film growth and refinement of device processing, we decreased the total cavity thickness to less than 1 (micro)m, such that micro-cavity effects were clearly observed and a light extraction efficiency of over 10% was reached. We also began the development of photonic crystals for increased light extraction, in particular for so-called ''guided modes'' which would otherwise propagate laterally in the device and be re-absorbed. Finally, we pursued the growth of smooth, high-quality nonpolar a-plane and m-plane GaN films, as well as blue light emitting diodes on these novel films. Initial nonpolar LEDs showed the expected behavior of negligible peak wavelength shift with increasing drive current. M-plane LEDs in particular show promise, as unpackaged devices had unsaturated optical output power of ∼ 3 mW at 200 mA drive current. The LRC's tasks were aimed at developing the subcomponents necessary for packaging UCSB's light emitting diodes, and packaging them to produce a white light

  12. Expansion of highly activated invariant natural killer T cells with altered phenotype in acute dengue infection.

    Science.gov (United States)

    Kamaladasa, A; Wickramasinghe, N; Adikari, T N; Gomes, L; Shyamali, N L A; Salio, M; Cerundolo, V; Ogg, G S; Malavige, G Neelika

    2016-08-01

    Invariant natural killer T (iNKT) cells are capable of rapid activation and production of cytokines upon recognition of antigenic lipids presented by CD1d molecules. They have been shown to play a significant role in many viral infections and were observed to be highly activated in patients with acute dengue infection. In order to characterize further their role in dengue infection, we investigated the proportion of iNKT cells and their phenotype in adult patients with acute dengue infection. The functionality of iNKT cells in patients was investigated by both interferon (IFN)-γ and interleukin (IL)-4 ex-vivo enzyme-linked immunospot (ELISPOT) assays following stimulation with alpha-galactosyl-ceramide (αGalCer). We found that circulating iNKT cell proportions were significantly higher (P = 0·03) in patients with acute dengue when compared to healthy individuals and were predominantly of the CD4(+) subset. iNKT cells of patients with acute dengue had reduced proportions expressing CD8α and CD161 when compared to healthy individuals. The iNKT cells of patients were highly activated and iNKT activation correlated significantly with dengue virus-specific immunoglobulin (Ig)G antibody levels. iNKT cells expressing Bcl-6 (P = 0·0003) and both Bcl-6 and inducible T cell co-stimulator (ICOS) (P = 0·006) were increased significantly in patients when compared to healthy individuals. Therefore, our data suggest that in acute dengue infection there is an expansion of highly activated CD4(+) iNKT cells, with reduced expression of CD161 markers. PMID:26874822

  13. High Dietary Folate in Mice Alters Immune Response and Reduces Survival after Malarial Infection.

    Directory of Open Access Journals (Sweden)

    Danielle N Meadows

    Full Text Available Malaria is a significant global health issue, with nearly 200 million cases in 2013 alone. Parasites obtain folate from the host or synthesize it de novo. Folate consumption has increased in many populations, prompting concerns regarding potential deleterious consequences of higher intake. The impact of high dietary folate on the host's immune function and response to malaria has not been examined. Our goal was to determine whether high dietary folate would affect response to malarial infection in a murine model of cerebral malaria. Mice were fed control diets (CD, recommended folate level for rodents or folic acid-supplemented diets (FASD, 10x recommended level for 5 weeks before infection with Plasmodium berghei ANKA. Survival, parasitemia, numbers of immune cells and other infection parameters were assessed. FASD mice had reduced survival (p<0.01, Cox proportional hazards and higher parasitemia (p< 0.01, joint model of parasitemia and survival compared with CD mice. FASD mice had lower numbers of splenocytes, total T cells, and lower numbers of specific T and NK cell sub-populations, compared with CD mice (p<0.05, linear mixed effects. Increased brain TNFα immunoreactive protein (p<0.01, t-test and increased liver Abca1 mRNA (p<0.01, t-test, a modulator of TNFα, were observed in FASD mice; these variables correlated positively (rs = 0.63, p = 0.01. Bcl-xl/Bak mRNA was increased in liver of FASD mice (p<0.01, t-test, suggesting reduced apoptotic potential. We conclude that high dietary folate increases parasite replication, disturbs the immune response and reduces resistance to malaria in mice. These findings have relevance for malaria-endemic regions, when considering anti-folate anti-malarials, food fortification or vitamin supplementation programs.

  14. Alterations in the upper facial growth of Macaca mulatta resulting from high-pull headgear.

    Science.gov (United States)

    Meldrum, R J

    1975-04-01

    Four prepubertal Macaca mulatta monkeys, ranging in age from 13 to 24 months, were used in an investigation of the effects of high-pull headgear (to a face-bow) therapy on the growth of the upper facial skeleton. Amalgam bone implants were placed across the frontomaxillary, frontozygomatic, zygomaticomaxillary, and zygomaticotemporal sutures in each animal. Three of the monkeys wore appliances consisting of a maxillary dental spling, a face-bow, two coil springs, and an acrylic helmet. The fourth monkey (control) wore only a dental splint and a face-bow. A continuous high-pull headgear force of 300 grams per side was applied to the three monkeys for 81, 87 and 89 days, respectively, before death. Procion brilliant red 8-HBS vital stain was administered to all four animals at the start of and 3 days before the end of the treatment period. The facial growth patterns were determined from lateral cephalograms taken before and after treatment, from direct measurement of implant separation at the sutures, and from histologic sections of the four mentioned facial sutures.

  15. The pathways of high school science teachers and policy efforts to alter the pipeline

    Science.gov (United States)

    Sass, Tim

    2012-03-01

    There is currently much interest in improving the quality of science education in K-12 schools and encouraging more students, particularly minorities and women, to pursue careers in STEM fields. Two interrelated issues are at the forefront: the quality of science teachers and the supply of science teachers. Education research in general finds that the single most important school-based factor affecting student achievement is teacher quality. While there is little evidence that teacher credentials matter for student achievement in the lower grades, there is at least some evidence that content knowledge is an important determinant of teacher quality in middle and secondary schools. However, little is known about the pre-service preparation of high school science teachers and how the training of science teachers affects their performance in the classroom. While there are many efforts underway to increase the supply of science teachers, little is known about the supply of science teachers from different pathways and the factors that lead science teachers to leave the profession. In this presentation I discuss recent work on the supply of teachers from alternative pathways, focusing on high school science teachers. I also summarize the literature on teacher quality and attrition, emphasizing the current state of knowledge on secondary school teachers. Finally, I present current policy initiatives and discuss the likelihood of their success given current research findings.

  16. Pressure-induced alteration in effects of high CO2 on marine bacteria

    Science.gov (United States)

    Yamada, N.; Tsukasaki, A.; Tsurushima, N.; Suzumura, M.

    2013-12-01

    Carbon capture and storage (CCS) is a key mitigation technology to reduce the release of carbon dioxide (CO2) into the atmosphere. Current CCS research is dominated by improvements of the efficiency of the capturing, transport or storage of CO2. Also, it is important to estimate potential impacts on marine environments related to potential CO2 leakage. It has been demonstrated that seawater acidification effects on marine community structure and food chains. Bacteria are the basis of marine microbial food web and responsible for a significant part of marine biogeochemical cycles in both water column and bottom sediments. We used a high pressure incubation system which is composed of an HPLC pump and stainless-steel pressure vessels. The system could maintain stably the pressure up to 30 MPa. Using the system, we investigated the effects of high CO2 concentration on a deep-sea bacterium, Pseudoalteromonas sp., isolated from the western North Pacific Ocean. The isolate was incubated in acidified seawaters at various CO2 concentrations under simulated pressure conditions between 0.1 MPa and 30 MPa. We determined bacterial growth rate and live/dead cell viability. It was found that both CO2 concentration and pressure influenced substantially the growth rate of the isolate. In order to assess potential effects of leaked CO2 on microbial assemblages in marine environments, it was suggested that hydraulic pressure is one essential variable to be considered.

  17. Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding

    OpenAIRE

    Yu Han; Jie Lin; Yuxuan Liu; Hao Fu; Yuan Ma; Peng Jin; Jiubin Tan

    2016-01-01

    Our daily electromagnetic environment is becoming increasingly complex with the rapid development of consumer electronics and wireless communication technologies, which in turn necessitates the development of electromagnetic interference (EMI) shielding, especially for transparent components. We engineered a transparent EMI shielding film with crack-template based metallic mesh (CT-MM) that shows highly homogeneous light transmission and strong microwave shielding efficacy. The CT-MM film is ...

  18. Influences of high-flow events on a stream channel altered by construction of a highway bridge: a case study

    Science.gov (United States)

    Hedrick, Lara B.; Welsh, Stuart A.; Anderson, James T.

    2009-01-01

    Impacts of highway construction on streams in the central Appalachians are a growing concern as new roads are created to promote tourism and economic development in the area. Alterations to the streambed of a first-order stream, Sauerkraut Run, Hardy County, WV, during construction of a highway overpass included placement and removal of a temporary culvert, straightening and regrading of a section of stream channel, and armourment of a bank with a reinforced gravel berm. We surveyed longitudinal profiles and cross sections in a reference reach and the altered reach of Sauerkraut Run from 2003 through 2007 to measure physical changes in the streambed. During the four-year period, three high-flow events changed the streambed downstream of construction including channel widening and aggradation and then degradation of the streambed. Upstream of construction, at a reinforced gravel berm, bank erosion was documented. The reference section remained relatively unchanged. Knowledge gained by documenting channel changes in response to natural and anthropogenic variables can be useful for managers and engineers involved in highway construction projects.

  19. (Alpha, gamma) irradiation effect on the alteration of high-level radioactive wastes matrices (UO2, hollandite, glass SON68)

    International Nuclear Information System (INIS)

    The aim of this work is to determine the effect of irradiation on the alteration of high level nuclear waste forms matrices. The matrices investigated are UO2 to simulate the spent fuel, the hollandite for the specific conditioning of Cs, and the inactive glass SON68 representing the nuclear glass R7T7) The alpha irradiation experiments on UO2 colloids in aqueous carbonate media have enabled to distinguish between the oxidation of UO2 matrix as initial and dissolution as subsequent step. The simultaneous presence of carbonate and H2O2 (product resulting from water radiolysis) increased the dissolution rate of UO2 to its maximum value governed by the oxidation rate. ii) The study of hollandite alteration under gamma irradiation confirmed the good retention capacity for Cs and Ba. Gamma irradiation had brought only a little influence on releasing of Cs and Ba in solution. Electronic irradiation had conducted to the amorphization of the hollandite only for a dose 1000 times higher than the auto-induced dose of Ba over millions of years. iii) The experiences of glass irradiation under alpha beam and of helium implantation in the glass SON68 were analyzed by positon annihilation spectroscopy. No effect has been observed on the solid surface for an irradiation dose equal to 1000 years of storage. (author)

  20. Dynamic alterations of serotonergic metabolism and receptors during social isolation of low- and high-active mice.

    Science.gov (United States)

    Rilke, O; Freier, D; Jähkel, M; Oehler, J

    1998-04-01

    Alterations induced by social isolation (1 day to 18 weeks) in low- and high-active mice (LAM and HAM) were studied in respect to serotonin metabolism, [3H]-8-OH-DPAT binding of presynaptic (midbrain), postsynaptic (hippocampus) 5-HT1A receptors and [3H]-ketanserin binding of cortical 5-HT2A receptors. Individual housing of mice was associated with reduction of serotonin metabolism, depending on isolation time and brain structure. Whereas a transient decrease in the striatum and cortex was detected between 1 week and 6 weeks, reduction of cerebellar and hippocampal serotonin metabolism was found later (12-18 weeks). Serotonergic systems of HAM were found to be more reactive to environmental disturbances, and their serotonin metabolism was more affected by social isolation. Isolation-induced upregulation of cortical 5-HT2A receptors was measured only in HAM. Densities of postsynaptic 5-HT1A receptors in the hippocampus did differ either in grouped or isolated mice. However, there were significant differences in hippocampal 5-HT1A receptor affinity, especially between 1 day and 3 weeks. Transient downregulation of presynaptic 5-HT1A receptors in the midbrain was found in isolated mice between 3 and 6 weeks. These results are discussed in terms of interactions between serotonergic alterations and isolation-induced aggression.

  1. High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform.

    Science.gov (United States)

    Cabrera-Bosquet, Llorenç; Fournier, Christian; Brichet, Nicolas; Welcker, Claude; Suard, Benoît; Tardieu, François

    2016-10-01

    Light interception and radiation-use efficiency (RUE) are essential components of plant performance. Their genetic dissections require novel high-throughput phenotyping methods. We have developed a suite of methods to evaluate the spatial distribution of incident light, as experienced by hundreds of plants in a glasshouse, by simulating sunbeam trajectories through glasshouse structures every day of the year; the amount of light intercepted by maize (Zea mays) plants via a functional-structural model using three-dimensional (3D) reconstructions of each plant placed in a virtual scene reproducing the canopy in the glasshouse; and RUE, as the ratio of plant biomass to intercepted light. The spatial variation of direct and diffuse incident light in the glasshouse (up to 24%) was correctly predicted at the single-plant scale. Light interception largely varied between maize lines that differed in leaf angles (nearly stable between experiments) and area (highly variable between experiments). Estimated RUEs varied between maize lines, but were similar in two experiments with contrasting incident light. They closely correlated with measured gas exchanges. The methods proposed here identified reproducible traits that might be used in further field studies, thereby opening up the way for large-scale genetic analyses of the components of plant performance.

  2. High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform.

    Science.gov (United States)

    Cabrera-Bosquet, Llorenç; Fournier, Christian; Brichet, Nicolas; Welcker, Claude; Suard, Benoît; Tardieu, François

    2016-10-01

    Light interception and radiation-use efficiency (RUE) are essential components of plant performance. Their genetic dissections require novel high-throughput phenotyping methods. We have developed a suite of methods to evaluate the spatial distribution of incident light, as experienced by hundreds of plants in a glasshouse, by simulating sunbeam trajectories through glasshouse structures every day of the year; the amount of light intercepted by maize (Zea mays) plants via a functional-structural model using three-dimensional (3D) reconstructions of each plant placed in a virtual scene reproducing the canopy in the glasshouse; and RUE, as the ratio of plant biomass to intercepted light. The spatial variation of direct and diffuse incident light in the glasshouse (up to 24%) was correctly predicted at the single-plant scale. Light interception largely varied between maize lines that differed in leaf angles (nearly stable between experiments) and area (highly variable between experiments). Estimated RUEs varied between maize lines, but were similar in two experiments with contrasting incident light. They closely correlated with measured gas exchanges. The methods proposed here identified reproducible traits that might be used in further field studies, thereby opening up the way for large-scale genetic analyses of the components of plant performance. PMID:27258481

  3. High-fat diet and glucocorticoid treatment cause hyperglycemia associated with adiponectin receptor alterations

    Directory of Open Access Journals (Sweden)

    Oller do Nascimento Cláudia

    2011-01-01

    Full Text Available Abstract Background Adiponectin is the most abundant plasma protein synthesized for the most part in adipose tissue, and it is an insulin-sensitive hormone, playing a central role in glucose and lipid metabolism. In addition, it increases fatty acid oxidation in the muscle and potentiates insulin inhibition of hepatic gluconeogenesis. Two adiponectin receptors have been identified: AdipoR1 is the major receptor expressed in skeletal muscle, whereas AdipoR2 is mainly expressed in liver. Consumption of high levels of dietary fat is thought to be a major factor in the promotion of obesity and insulin resistance. Excessive levels of cortisol are characterized by the symptoms of abdominal obesity, hypertension, glucose intolerance or diabetes and dyslipidemia; of note, all of these features are shared by the condition of insulin resistance. Although it has been shown that glucocorticoids inhibit adiponectin expression in vitro and in vivo, little is known about the regulation of adiponectin receptors. The link between glucocorticoids and insulin resistance may involve the adiponectin receptors and adrenalectomy might play a role not only in regulate expression and secretion of adiponectin, as well regulate the respective receptors in several tissues. Results Feeding of a high-fat diet increased serum glucose levels and decreased adiponectin and adipoR2 mRNA expression in subcutaneous and retroperitoneal adipose tissues, respectively. Moreover, it increased both adipoR1 and adipoR2 mRNA levels in muscle and adipoR2 protein levels in liver. Adrenalectomy combined with the synthetic glucocorticoid dexamethasone treatment resulted in increased glucose and insulin levels, decreased serum adiponectin levels, reduced adiponectin mRNA in epididymal adipose tissue, reduction of adipoR2 mRNA by 7-fold in muscle and reduced adipoR1 and adipoR2 protein levels in muscle. Adrenalectomy alone increased adiponectin mRNA expression 3-fold in subcutaneous adipose

  4. High and low protein∶ carbohydrate dietary ratios during gestation alter maternal-fetal cortisol regulation in pigs.

    Directory of Open Access Journals (Sweden)

    Ellen Kanitz

    Full Text Available Imbalanced maternal nutrition during gestation can cause alterations of the hypothalamic-pituitary-adrenal (HPA system in offspring. The present study investigated the effects of maternal low- and high-protein diets during gestation in pigs on the maternal-fetal HPA regulation and expression of the glucocorticoid receptor (GR, mineralocorticoid receptor (MR, 11β-hydroxysteroid dehydrogenase 1 and 2 (11β-HSD1 and 11β-HSD2 and c-fos mRNAs in the placenta and fetal brain. Twenty-seven German Landrace sows were fed diets with high (HP, 30%, low (LP, 6.5% or adequate (AP, 12.1% protein levels made isoenergetic by varying the carbohydrate levels. On gestational day 94, fetuses were recovered under general anesthesia for the collection of blood, brain and placenta samples. The LP diet in sows increased salivary cortisol levels during gestation compared to the HP and AP sows and caused an increase of placental GR and c-fos mRNA expression. However, the diurnal rhythm of plasma cortisol was disturbed in both LP and HP sows. Total plasma cortisol concentrations in the umbilical cord vessels were elevated in fetuses from HP sows, whereas corticosteroid-binding globulin levels were decreased in LP fetuses. In the hypothalamus, LP fetuses displayed an enhanced mRNA expression of 11β-HSD1 and a reduced expression of c-fos. Additionally, the 11β-HSD2 mRNA expression was decreased in both LP and HP fetuses. The present results suggest that both low and high protein∶carbohydrate dietary ratios during gestation may alter the expression of genes encoding key determinants of glucocorticoid hormone action in the fetus with potential long-lasting consequences for stress adaptation and health.

  5. High-resolution two-dimensional image upconversion of incoherent light

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2010-01-01

    We consider a technique for high-resolution image upconversion of thermal light. Experimentally, we demonstrate cw upconversion with a resolution of more than 200 × 1000 pixels of thermally illuminated objects. This is the first demonstration (to our knowledge) of high-resolution cw image...... upconversion. The upconversion method promises an alternative route to high-quantum-efficiency all-optical imaging in the mid-IR wavelength region and beyond using standard CCD cameras. A particular advantage of CCD cameras compared to state-of-the-art thermal cameras is the possibility to tailor and tune...... the spectral response leading to functional spectral imaging....

  6. Theoretical studies of possible toroidal high-spin isomers in the light-mass region

    CERN Document Server

    Staszczak, Andrzej

    2015-01-01

    We review our theoretical knowledge of possible toroidal high-spin isomers in the light mass region in 28$\\le$$A$$\\le$52 obtained previously in cranked Skyrme-Hartree-Fock calculations. We report additional toroidal high-spin isomers in $^{56}$Ni with $I$=114$\\hbar$ and 140$\\hbar$, which follow the same (multi-particle)--(multi-hole) systematics as other toroidal high-spin isomers. We examine the production of these exotic nuclei by fusion of various projectiles on $^{20}$Ne or $^{28}$Si as an active target in time-projection-chamber (TCP) experiments.

  7. A high quality liquid-type quantum dot white light-emitting diode

    Science.gov (United States)

    Sher, Chin-Wei; Lin, Chin-Hao; Lin, Huang-Yu; Lin, Chien-Chung; Huang, Che-Hsuan; Chen, Kuo-Ju; Li, Jie-Ru; Wang, Kuan-Yu; Tu, Hsien-Hao; Fu, Chien-Chung; Kuo, Hao-Chung

    2015-12-01

    This study demonstrates a novel package design to store colloidal quantum dots in liquid format and integrate them with a standard LED. The high efficiency and high quality color performance at a neutral white correlated color temperature is demonstrated. The experimental results indicate that the liquid-type quantum dot white light-emitting diode (LQD WLED) is highly efficient and reliable. The luminous efficiency and color rendering index (CRI) of the LQD WLED can reach 271 lm Wop-1 and 95, respectively. Moreover, a glass box is employed to prevent humidity and oxygen erosion. With this encapsulation design, our quantum dot box can survive over 1000 hours of storage time.

  8. The Properties of Light Pressure Force with High Order in Laser Fields

    Institute of Scientific and Technical Information of China (English)

    陈险峰; 方建兴; 朱士群

    2002-01-01

    In this paper, the light pressure force in low and high intensity laser fields is derived. The exact numerical results of forces Fn∥(n=0,1,2,3,4,5,6…) through the matrix continued fraction method are presented. At low intensity field (G=1), the spatially averaged force F0∥ gives a cooling effect at the negative detuning. At high intensity (G=64), the effects of the forces with higher order (n≥2) appear and the contributes of the forces with odd or even order are opposite. It is great different from no high order force at low intensity.

  9. Theoretical studies of possible toroidal high-spin isomers in the light-mass region

    Science.gov (United States)

    Staszczak, Andrzej; Wong, Cheuk-Yin

    2016-05-01

    We review our theoretical knowledge of possible toroidal high-spin isomers in the light mass region in 28≤A≤52 obtained previously in cranked Skyrme-Hartree-Fock calculations. We report additional toroidal high-spin isomers in 56Ni with I=114ħ and 140ħ, which follow the same (multi-particle)-(multi-hole) systematics as other toroidal high-spin isomers. We examine the production of these exotic nuclei by fusion of various projectiles on 20Ne or 28Si as an active target in time-projection-chamber (TPC) experiments.

  10. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Amtorp, Cecilie;

    2015-01-01

    Nitrogen (N) mineralization, nutrient availability, and plant growth in the Arctic are often restricted by low temperatures. Predicted increases of cold-season temperatures may be important for plant nutrient availability and growth, given that N mineralization is also taking place during the cold...... season. Changing nutrient availability may be reflected in plant N and chlorophyll content and lead to increased photosynthetic capacity, plant growth, and ultimately carbon (C) assimilation by plants. In this study, we increased snow depth and thereby cold-season soil temperatures in high Arctic...... vegetation types, but the leaf sizes were unchanged. Leaves of Bistorta and Luzula were significantly larger but only significantly so in one moist vegetation type. Increased N and chlorophyll concentrations in leaves indicate a potential for increased growth (C uptake), supported by large leaf sizes...

  11. Temporal and spatial distribution of alteration, mineralization and fluid inclusions in the transitional high-sulfidation epithermal-porphyry copper system at Red Mountain, Arizona

    Science.gov (United States)

    Lecumberri-Sanchez, Pilar; Newton, M. Claiborne; Westman, Erik C.; Kamilli, Robert J.; Canby, Vertrees M.; Bodnar, Robert J.

    2013-01-01

    Red Mountain, Arizona, is a Laramide porphyry Cu system (PCD) that has experienced only a modest level of erosion compared to most other similar deposits in the southwestern United States. As a result, the upper portion of the magmatic–hydrothermal system, which represents the transition from shallower high-sulfidation epithermal mineralization to deeper porphyry Cu mineralization, is well preserved. Within the Red Mountain system, alteration, mineralization and fluid inclusion assemblages show a systematic distribution in both time and space. Early-potassic alteration (characterized by the minerals biotite and magnetite) is paragenetically earlier than late-potassic alteration (K-feldspar–anhydrite) and both are followed by later phyllic (sericite–pyrite) alteration. Advanced argillic alteration (pyrophyllite–alunite–other clay minerals) is thought to be coeval with or postdate phyllic alteration. Minerals characteristic of advanced argillic alteration are present in the near surface. Phyllic alteration extends to greater depths compared to advanced argillic alteration. Early-potassic and late-potassic alteration are only observed in the deepest part of the system. Considerable overlap of phyllic alteration with both early-potassic and late-potassic alteration zones is observed. The hypogene mineralization contains 0.4–1.2% Cu and is spatially and temporally related to the late-potassic alteration event. Molybdenum concentration is typically In the deepest part of the system, an early generation of low-to-moderate density and salinity liquid + vapor inclusions with opaque daughter minerals is followed in time by halite-bearing inclusions that also contain opaque daughter minerals indicating that an early intermediate-density magmatic fluid evolved to a high-density, high-salinity mineralizing fluid. The increase in density and salinity of fluids with time observed in the deeper parts of the system may be the result of immiscibility (“boiling”) of

  12. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Chemical controls on alteration and mineralization

    Science.gov (United States)

    Henley, R.W.; Berger, B.R.

    2011-01-01

    Large bulk-tonnage high-sulfidation gold deposits, such as Yanacocha, Peru, are the surface expression of structurally-controlled lode gold deposits, such as El Indio, Chile. Both formed in active andesite-dacite volcanic terranes. Fluid inclusion, stable isotope and geologic data show that lode deposits formed within 1500. m of the paleo-surface as a consequence of the expansion of low-salinity, low-density magmatic vapor with very limited, if any, groundwater mixing. They are characterized by an initial 'Sulfate' Stage of advanced argillic wallrock alteration ?? alunite commonly with intense silicification followed by a 'Sulfide' Stage - a succession of discrete sulfide-sulfosalt veins that may be ore grade in gold and silver. Fluid inclusions in quartz formed during wallrock alteration have homogenization temperatures between 100 and over 500 ??C and preserve a record of a vapor-rich environment. Recent data for El Indio and similar deposits show that at the commencement of the Sulfide Stage, 'condensation' of Cu-As-S sulfosalt melts with trace concentrations of Sb, Te, Bi, Ag and Au occurred at > 600 ??C following pyrite deposition. Euhedral quartz crystals were simultaneously deposited from the vapor phase during crystallization of the vapor-saturated melt occurs to Fe-tennantite with progressive non-equilibrium fractionation of heavy metals between melt-vapor and solid. Vugs containing a range of sulfides, sulfosalts and gold record the changing composition of the vapor. Published fluid inclusion and mineralogical data are reviewed in the context of geological relationships to establish boundary conditions through which to trace the expansion of magmatic vapor from source to surface and consequent alteration and mineralization. Initially heat loss from the vapor is high resulting in the formation of acid condensate permeating through the wallrock. This Sulfate Stage alteration effectively isolates the expansion of magmatic vapor in subsurface fracture arrays

  13. Effect of burn-up and high burn-up structure on spent nuclear fuel alteration

    Energy Technology Data Exchange (ETDEWEB)

    Clarens, F.; Gonzalez-Robles, E.; Gimenez, F. J.; Casas, I.; Pablo, J. de; Serrano, D.; Wegen, D.; Glatz, J. P.; Martinez-Esparza, A.

    2009-07-01

    In this report the results of the experimental work carried out within the collaboration project between ITU-ENRESA-UPC/CTM on spent fuel (SF) covering the period 2005-2007 were presented. Studies on both RN release (Fast Release Fraction and matrix dissolution rate) and secondary phase formation were carried out by static and flow through experiments. Experiments were focussed on the study of the effect of BU with two PWR SF irradiated in commercial reactors with mean burn-ups of 48 and 60 MWd/KgU and; the effect of High Burn-up Structure (HBS) using powdered samples prepared from different radial positions. Additionally, two synthetic leaching solutions, bicarbonate and granitic bentonite ground wa ter were used. Higher releases were determined for RN from SF samples prepared from the center in comparison with the fuel from the periphery. However, within the studied range, no BU effect was observed. After one year of contact time, secondary phases were observed in batch experiments, covering the SF surface. Part of the work was performed for the Project NF-PRO of the European Commission 6th Framework Programme under contract no 2389. (Author)

  14. Persons with reconstructed ACL exhibit altered knee mechanics during high-speed maneuvers.

    Science.gov (United States)

    Lee, S-P; Chow, J W; Tillman, M D

    2014-06-01

    Anterior cruciate ligament (ACL) injury is a sports trauma that causes long-term disability. The function of the knee during dynamic activities can be severely limited even after successful surgical reconstruction. This study examined the effects of approach velocity during side-step cutting on knee joint mechanics in persons with reconstructed ACL (ACLR). 22 participants (11 with unilateral ACLR, 11 matched-controls) participated. Knee joint mechanics were tested in 3 approach conditions: counter-movement, one-step, and running. Dependent variables, including peak knee flexion, extension, valgus, varus, internal rotation, external rotation angles and corresponding peak joint moments, were assessed during the stance phase of cutting. Two 2×3 ("group" by "approach condition") mixed MANOVA tests were used to examine the effects of ACLR and approach velocity on knee mechanics. ACLR participants exhibited higher knee internal rotator moment (0.22 vs. 0.13 Nm/kg, p=0.003). Inter-group comparisons revealed that the ACLR participants exhibited significantly higher abductor and internal rotator moments only in the running condition (1.86 vs. 1.16 Nm/kg, p=0.018; 0.28 vs. 0.17 Nm/kg, p=0.010, respectively). Our findings suggested that patients with ACLR may be at increased risk of re-injury when participating in high-demand physical activities. Task demand should be considered when prescribing progressive therapeutic interventions to ACLR patients. PMID:24408765

  15. Interstitial pulmonary alterations in visceral leishmaniasis: evaluation with high-resolution computed tomography

    International Nuclear Information System (INIS)

    Visceral leishmaniasis, also called kala-azar, is a disease caused by a protozoan, the Leishmania donovani chagasi, that comprises reticuloendothelial system with involvement of the liver, spleen and bone marrow. It is endemic in some areas of northeastern Brazil and other countries of Latin America and Africa. The pathogenesis is related to the immunologic system of patients that present with the inability to activate the phagocytosis of the macrophages. As occurs in the liver and kidneys, the lungs are also involved with interstitial abnormalities caused by Leishmania that are not dependent upon the presence of the parasite.The histopathologic changes described are the involvement of inter alveolar septal in three different phases, irregularly and diffusely throughout the whole pulmonary parenchyma. This work analyzed high-resolution computed tomography (HRCT) of the thorax in 17 patients with visceral leishmaniasis in order to detect and characterize the abnormalities described in the anatomo pathologic findings reported in the literature. The HRCT is being used to evaluate chronic interstitial lung disease in a good correlation with histologic findings. THe mos common findings detected by HRCT were the reticular opacities that include peribronchovascular interstitial thickening and interlobular septal thickening an ground-glass opacity. The HRCT suggests that similar changes to that found in alveolar structures may occur int he secondary pulmonary lobule and that the involvement in the parenchymal interstitium represents the findings reported by pathological studies in visceral leishmaniasis. (author)

  16. Radiation Hard & High Light Yield Scintillator Search for CMS Phase II Upgrade

    CERN Document Server

    Tiras, Emrah

    2015-01-01

    The CMS detector at the LHC requires a major upgrade to cope with the higher instantaneous luminosity and the elevated radiation levels. The active media of the forward backing hadron calorimeters is projected to be radiation-hard, high light yield scintillation materials or similar alternatives. In this context, we have studied various radiation-hard scintillating materials such as Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN), High Efficiency Mirror (HEM) and quartz plates with various coatings. The quartz plates are pure Cerenkov radiators and their radiation hardness has been confirmed. In order to increase the light output, we considered organic and inorganic coating materials such as p-Terphenyl (pTp), Anthracene and Gallium-doped Zinc Oxide (ZnO:Ga) that are applied as thin layers on the surface of the quartz plates. Here, we present the results of the related test beam activities, laboratory measurements and recent developments.

  17. Radiation Hard and High Light Yield Scintillator Search for CMS Phase II Upgrade

    CERN Document Server

    Tiras, Emrah

    2015-01-01

    The CMS detector at the LHC requires a major upgrade to cope with the higher instantaneous luminosity and the elevated radiation levels. The active media of the forward backing hadron calorimeters is projected to be radiation-hard, high light yield scintillation materials or similar alternatives. In this context, we have studied various radiation-hard scintillating materials such as Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN), High Efficiency Mirror (HEM) and quartz plates with various coatings. The quartz plates are pure Cerenkov radiators and their radiation hardness has been confirmed. In order to increase the light output, we considered organic and inorganic coating materials such as p-Terphenyl (pTp), Anthracene and Gallium-doped Zinc Oxide (ZnO Ga) that are applied as thin layers on the surface of the quartz plates. Here, we present the results of the related test beam activities, laboratory measurements and recent developments.

  18. Numerical Analysis of Nano-Aperture Light Source for High-Density Optical Data Storage

    Institute of Scientific and Technical Information of China (English)

    XU Ji-Ying; WANG Jia; TIAN Qian; WANG Bo-Xiong

    2007-01-01

    Two unconventional nano-aperture light sources, an L-shaped nano-aperture source and a 3D nano-aperture source for high-density optical data storage, are numerically investigated. With incidence of a Gaussian beam, the spot size of the Poynting vector coupled into the recording medium is 130 × 175 nm2 for the L-aperture and 120 × 135 nm2 for the 3D nano-aperture. The quantitative analyses indicate that the unconventional nanoaperture sources can provide enough power density to record marks in the commercial recording medium. It is feasible to use a laser diode with a nano-aperture as an active nanometer light source for high-density optical data storage.

  19. Effect of very high magnetic field on the optical properties of firefly light emitter oxyluciferin

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weihang; Nakamura, Daisuke [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Wang, Yu [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (China); Mochizuki, Toshimitsu [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Fukushima Renewable Energy Institute, National Institute of Advanced Industrial Science and Technology, 2-2-9 Machiike-dai, Koriyama, Fukushima 963-0215 (Japan); Akiyama, Hidefumi [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan); Takeyama, Shojiro, E-mail: takeyama@issp.u-tokyo.ac.jp [Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2015-09-15

    Magnetic field effect on enzymatic reactions is under intensive study in the past decades. Recently, it was reported that firefly bioluminescence was suppressed and red-shifted significantly when exposed to external magnetic field. However in this work, by means of selective excitation, we confirmed that emission properties of firefly light emitter “oxyluciferin” are completely immune to external magnetic field of up to 53 T. These findings pose strong contrast to existing relevant results. Potential reasons for the discrepancies found and the underlying physics towards the understanding of firefly bioluminescence were discussed. - Highlights: • Effect of ultra-high magnetic field on the optical properties of firefly light emitter oxyluciferin was reported. • Emission properties of oxyluciferin were confirmed to be immune to external high magnetic fields up to 53 T. • .Potential reasons for the discrepancies between our results and previous reports and the underlying physics were discussed.

  20. High efficiency light-induced dielectrophoresis biochip prepared using CVD techniques.

    Science.gov (United States)

    Wu, Hung-Wei; Huang, Yao-Sheng; Lee, Hsin-Ying; Tsai, Wu-Han; Chen, Kuan-Yu; Jian, Li-Yi

    2016-10-01

    This article describes a high-efficiency light-induced dielectrophoresis biochip containing a thin film prepared through inductively coupled plasma chemical vapor deposition (ICPCVD). The biochip comprises two ITO glass substrates and a photoconductive amorphous silicon thin film. The biochip can effectively sort particular particles (or cells) by projecting visible light onto the surface of the silicon thin film. The sorting efficiency of biochips is highly associated with the quality of the deposited amorphous silicon thin films; therefore, the choice of deposition technique is extremely critical. However, no study has examined this problem. Hence, the current study thoroughly compared the efficiency of the biochip when films produced through plasma-enhanced chemical vapor deposition and ICPCVD are used. PMID:27530346

  1. A high-power spatial filter for Thomson scattering stray light reduction

    Science.gov (United States)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  2. Optimum Forward Light Scattering by Spherical and Spheroidal Dielectric Nanoparticles with High Refractive Index

    CERN Document Server

    Luk`yanchuk, Boris S; Paniagua-Dominguez, Ramon; Kuznetsov, Arseniy I

    2014-01-01

    High-refractive index dielectric nanoparticles may exhibit strong directional forward light scattering at visible and near-infrared wavelengths due to interference of simultaneously excited electric and magnetic dipole resonances. For a spherical high-index dielectric, the so-called first Kerker's condition can be realized, at which the backward scattering practically vanishes for some combination of refractive index and particle size. However, Kerker's condition for spherical particles is only possible at the tail of the scattering resonances, when the particle scatters light weakly. Here we demonstrate that significantly higher forward scattering can be realized if spheroidal particles are considered instead. For each value of refractive index exists an optimum shape of the particle, which produces minimum backscattering efficiency together with maximum forward scattering. This effect is achieved due to the overlapping of magnetic and electric dipole resonances of the spheroidal particle at the resonance fr...

  3. High-confinement photonic structures for light propagation in the visible range

    Science.gov (United States)

    Turner, Amy C.; Almeida, Vilson R.; Lipson, Michal F.

    2004-10-01

    Planar integrated photonic devices are typically designed for telecommunications wavelengths in the 1.55 micron range. For strong mode-confinement at these wavelengths, very high index contrasts are required and semiconductor materials are often used for the waveguide core. Recently, planar devices designed for the visible range were demonstrated with relatively large dimensions on the order of 0.5 - 5 mm. Here in contrast we demonstrate micron-size photonic devices with single-mode operation in the visible range. Devices made for light propagation in the visible range are designed for tapping specific wavelengths of light vertically out of the plane of integration. The structures are based on high confinement waveguides with an effective mode size on the order of 0.5 μm2.

  4. Pulsed high harmonic generation of light due to pumped Bloch oscillations in noninteracting metals

    CERN Document Server

    Freericks, J K; Kemper, A F; Devereaux, T P; 10.1088/0031-8949/2012/T151/014062

    2012-01-01

    We derive a simple theory for high-order harmonic generation due to pumping a noninteracting metal with a large amplitude oscillating electric field. The model assumes that the radiated light field arises from the acceleration of electrons due to the time-varying current generated by the pump, and also assumes that the system has a constant density of photoexcited carriers, hence it ignores the dipole excitation between bands (which would create carriers in semiconductors). We examine the circumstances under which odd harmonic frequencies would be expected to dominate the spectrum of radiated light, and we also apply the model to real materials like ZnO, for which high-order harmonic generation has already been demonstrated in experiments.

  5. Time and angle resolved photoemission spectroscopy using femtosecond visible and high-harmonic light

    Energy Technology Data Exchange (ETDEWEB)

    Mathias, S; Deicke, F; Ruffing, A; Aeschlimann, M [Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern (Germany); Wiesenmayer, M; Bauer, M [Institut fuer experimentelle und angewandte Physik, Christian-Albrechts Universitaet zu Kiel, 24118 Kiel (Germany); Miaja-Avila, L; Murnane, M M; Kapteyn, H C, E-mail: SMathias@gmx.d [JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440 (United States)

    2009-02-01

    The angle resolved photoelectron spectroscopy (ARPES) has emerged as a leading technique in identifying static key properties of complex systems such as the electronic band structure of adsorbed molecules, ultrathin quantum-well films or high temperature superconductors. We efficiently combined ARPES by using a two-dimensional analyzer for parallel energy (E) and momentum (k{sub ||}) detection with femtosecond time-resolved spectroscopies. Using time and angle resolved two photon photoemission (2PPE) with visible light pulses, the hot electron dynamics in complex electronic structures are directly accessible by means of angle resolved hot electron lifetime mapping. Furthermore, femtosecond ARPES spectra recorded with high harmonic generation (HHG) light pulses are presented, showing the potential of this technique for future investigations of surface dynamics and photo-induced phase transition processes.

  6. Effect of very high magnetic field on the optical properties of firefly light emitter oxyluciferin

    International Nuclear Information System (INIS)

    Magnetic field effect on enzymatic reactions is under intensive study in the past decades. Recently, it was reported that firefly bioluminescence was suppressed and red-shifted significantly when exposed to external magnetic field. However in this work, by means of selective excitation, we confirmed that emission properties of firefly light emitter “oxyluciferin” are completely immune to external magnetic field of up to 53 T. These findings pose strong contrast to existing relevant results. Potential reasons for the discrepancies found and the underlying physics towards the understanding of firefly bioluminescence were discussed. - Highlights: • Effect of ultra-high magnetic field on the optical properties of firefly light emitter oxyluciferin was reported. • Emission properties of oxyluciferin were confirmed to be immune to external high magnetic fields up to 53 T. • .Potential reasons for the discrepancies between our results and previous reports and the underlying physics were discussed

  7. Measurement of Cerenkov light in a fiber-optic radiation sensor by using high-energy photon and electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Kyoung Won; Cho, Dong Hyun; Yoo, Wook Jae; Seo, Jeong Ki; Heo, Ji Yeon; Lee, Bong Soo [Konkuk University, Chungju (Korea, Republic of); Cho, Young Ho [Catholic University, Daegu (Korea, Republic of); Park, Byung Gi [Soonchunhyang University, Asan (Korea, Republic of); Moon, Joo Hyun [Dongguk University, Gyeongju (Korea, Republic of); Kim, Sin [Cheju National University, Cheju (Korea, Republic of)

    2010-03-15

    In this study, we used a charge coupled device to measure scintillating and Cerenkov light generated in a scintillating fiber-optic radiation sensor irradiated by high-energy photon and electron beams. The intensities of Cerenkov light are measured and characterized as a function of the incident angles of the high-energy photon and electron beams from a clinical linear accelerator. To minimize or remove Cerenkov light, we investigated a subtraction method using a dummy optical fiber and a wavelength discrimination method using optical filters. Also, the intensities of Cerenkov light induced by high-energy photon and electron beams are compared.

  8. Self-focusing and filamentation of laser light in high Z plasmas

    International Nuclear Information System (INIS)

    Self-focusing and filamentation of short wavelength laser light in high Z plasmas of interest to laser fusion are discussed. It is found that self-focusing behavior is very dependent on the details of the characteristics of the laser beam, the plasma conditions, and the energy transport processes. Laser light absorption and self-focusing are strongly competitive processes. At. 0.26 μm wavelength the collisional absorption is often so great that there is no intensity amplification of the beam despite the fact that strong self-focusing is present. Wide variations are found in laser light penetration, affected by several factors. Diverging optics reduce the likelihood of self-focusing. Large scale length density gradients have little effect on focusing behavior. The self-focusing behavior is very dependent on beam shape. Large scale hot spots can have a significant effect on whole beam self-focusing early in the pulse. The behavior of small scale hot spots can be qualitatively different than the standard picture. The calculations indicate that small scale hot spots do not achieve a steady state in some cases. Sound waves cause chaotic interactions among neighboring hot spots. It is found that sub-beam size structures are also generated when nonlocal thermodynamic equilibrium (non-LTE) radiation and atomic physics are used in the calculations. The nature of the heat flux and thermoelectric magnetic field generation are examined with a kinetic model. Stimulated Raman backscattering levels in self-focused light are significantly reduced for short wavelengths and high Z plasmas Landau damping plays an important role in determining the Raman levels. Implications for suprathermal electron production, symmetric illumination, x-ray conversion efficiency, and laser light absorption are discussed

  9. Quantum dots/silica/polymer nanocomposite films with high visible light transmission and UV shielding properties

    Science.gov (United States)

    Mumin, Md Abdul; Xu, William Z.; Charpentier, Paul A.

    2015-08-01

    The dispersion of light-absorbing inorganic nanomaterials in transparent plastics such as poly(ethylene-co-vinyl acetate) (PEVA) is of enormous current interest in emerging solar materials, including photovoltaic (PV) modules and commercial greenhouse films. Nanocrystalline semiconductor or quantum dots (QDs) have the potential to absorb UV light and selectively emit visible light, which can control plant growth in greenhouses or enhance PV panel efficiencies. This work provides a new and simple approach for loading mesoporous silica-encapsulated QDs into PEVA. Highly luminescent CdS and CdS-ZnS core-shell QDs with 5 nm size were synthesized using a modified facile approach based on pyrolysis of the single-molecule precursors and capping the CdS QDs with a thin layer of ZnS. To make both the bare and core-shell structure QDs more resistant against photochemical reactions, a mesoporous silica layer was grown on the QDs through a reverse microemulsion technique based on hydrophobic interactions. By careful experimental tuning, this encapsulation technique enhanced the quantum yield (˜65%) and photostability compared to the bare QDs. Both the encapsulated bare and core-shell QDs were then melt-mixed with EVA pellets using a mini twin-screw extruder and pressed into thin films with controlled thickness. The results demonstrated for the first time that mesoporous silica not only enhanced the quantum yield and photostability of the QDs but also improved the compatibility and dispersibility of QDs throughout the PEVA films. The novel light selective films show high visible light transmission (˜90%) and decreased UV transmission (˜75%).

  10. Shortening Infusion Time for High-Dose Methotrexate Alters Antileukemic Effects: A Randomized Prospective Clinical Trial

    Science.gov (United States)

    Mikkelsen, Torben S.; Sparreboom, Alex; Cheng, Cheng; Zhou, Yinmei; Boyett, James M.; Raimondi, Susana C.; Panetta, John C.; Bowman, W. Paul; Sandlund, John T.; Pui, Ching-Hon; Relling, Mary V.; Evans, William E.

    2011-01-01

    Purpose To determine whether shortening the infusion duration of high-dose methotrexate (HDMTX; 1 g/m2) affects the in vivo accumulation of active methotrexate polyglutamates (MTXPG1-7) in leukemia cells and whether this differs among major acute lymphoblastic leukemia (ALL) subtypes. Methods From June 2000 through October 2007, 356 children with ALL were randomly assigned to receive initial single-agent treatment with HDMTX (1 g/m2) as either a 24-hour infusion or a 4-hour infusion at two pediatric hospitals in the United States. The primary outcome measures were the accumulation of MTXPG1-7 in leukemia cells and the antileukemic effects (eg, inhibition of de novo purine synthesis in bone marrow ALL cells, and decrease in circulating ALL cells). Results The 24-hour infusion resulted in significantly higher amounts of MTXPG1-7 in bone marrow leukemia cells (median: 1,695 v 1,150 pmol/109 cells, P = .0059), and better antileukemic effects. The 24-hour infusion had the greatest effect on MTXPG1-7 accumulation in hyperdiploid ALL (median: 3,919 v 2,417 pmol/109 cells, P = .0038); T-cell ALL exhibited smaller differences in MTXPG1-7 but greater antileukemic effects with the longer infusion (median decrease in leukemia cells: 88.4% v 51.8%, P = .0075). In contrast, infusion duration had no significant impact on MTXPG1-7 accumulation or antileukemic effects in ALL with the t(12;21)/(ETV6-RUNX1) chromosomal translocation. Conclusion Shortening the infusion time of HDMTX reduces accumulation of active methotrexate in leukemia cells and decreases antileukemic effects, with differing consequences among major ALL subtypes. PMID:21444869

  11. High frequency application of nanosecond pulsed electric fields alters cellular membrane disruption and fluorescent dye uptake

    Science.gov (United States)

    Steelman, Zachary A.; Tolstykh, Gleb P.; Beier, Hope T.; Ibey, Bennett L.

    2016-03-01

    Cells exposed to nanosecond-pulsed electric fields (nsPEF) exhibit a wide variety of nonspecific effects, including blebbing, swelling, intracellular calcium bursts, apoptotic and necrotic cell death, formation of nanopores, and depletion of phosphatidylinositol 4,5-biphosphate (PIP2) to induce activation of the inositol trisphosphate/diacylglycerol pathway. While several studies have taken place in which multiple pulses were delivered to cells, the effect of pulse repetition rate (PRR) is not well understood. To better understand the effects of PRR, a laser scanning confocal microscope was used to observe CHO-K1 cells exposed to ten 600ns, 200V pulses at varying repetition rates (5Hz up to 500KHz) in the presence of either FM 1-43, YO-PRO-1, or Propidium Iodide (PI) fluorescent dyes, probes frequently used to indicate nanoporation or permeabilization of the plasma membrane. Dye uptake was monitored for 30 seconds after pulse application at a rate of 1 image/second. In addition, a single long pulse of equivalent energy (200V, 6 μs duration) was applied to test the hypothesis that very fast PRR will approximate the biological effects of a single long pulse of equal energy. Upon examination of the data, we found strong variation in the relationship between PRR and uptake in each of the three dyes. In particular, PI uptake showed little frequency dependence, FM 1-43 showed a strong inverse relationship between frequency and internal cell fluorescence, and YO-PRO-1 exhibited a "threshold" point of around 50 KHz, after which the inverse trend observed in FM 1-43 was seen to reverse itself. Further, a very high PRR of 500 KHz only approximated the biological effects of a single 6 μs pulse in cells stained with YO-PRO-1, suggesting that uptake of different dyes may proceed by different physical mechanisms.

  12. High-speed delay tuning of slow light in pin-diode-incorporated photonic crystal waveguide.

    Science.gov (United States)

    Hayakawa, Ryo; Ishikura, Norihiro; Nguyen, Hong C; Baba, Toshihiko

    2013-08-01

    We demonstrate the high-speed electrical delay tuning of slow light pulses using Si photonic crystal waveguides. The device has an i-region-chirped pin diode, within which thermo-optic and carrier plasma effects are generated by forward bias. The former changes the delay up to 62 ps for the DC bias. The latter changes the delay for 1 Gbps pseudo random bit sequence tuning signals, which will be applicable to advanced time-domain optical signal processing. PMID:23903110

  13. Light-weight materials selection for High-Speed Naval Craft

    OpenAIRE

    Torrez, Joseph B.

    2007-01-01

    CIVINS A decision analysis study was conducted on the process of materials selection for high-speed naval craft using the Modified Digital Logic (MDL) method. The purpose is to show how this method along with Ashby's material selection process can be integrated to provide a comprehensive tool designed specifically for light-weight material optimization. Using Ashby's Material Selection Charts and the MDL method, a step by step material selection process is outlined. Furthermore, a comparis...

  14. Attitudes of nursing professionals in light of the cost of care with high-dependency patients

    OpenAIRE

    Antônio Fernandes Costa Lima; Valéria Castilho; Juliana Ribeiro Gonçalves

    2014-01-01

    The objective was to identify the attitudes of nurses regarding the results of a study on the cost of nursing care with high-dependency patients admitted to a university hospital. Eleven recorded interviews were transcribed, coded, and analyzed by the technique of content analysis and discussed in light of the theoretical framework on cost management. Respondents showed favorable attitudes as to having knowledge of the direct cost of human and material resources and how they contribute to man...

  15. General approach to high power, coherent visible and ultraviolet light sources

    OpenAIRE

    Andersen, Martin Thalbitzer; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2009-01-01

    The main goal of this project is to develop a generic approach to synthesise any wavelength in the visible and UV spectral region based on sum frequency generation. The approach is based on a hybrid system combining solid state and semiconductor technology. The generation of light in the UV spectral region require nonlinear materials with a transparency range extending into the ultraviolet, the ability to sustain high photon energies and with the ability to obtain phasematching for the desire...

  16. Continuous Digital Light Processing (cDLP): Highly Accurate Additive Manufacturing of Tissue Engineered Bone Scaffolds

    OpenAIRE

    Dean, David; Wallace, Jonathan; Siblani, Ali; Wang, Martha O.; Kim, Kyobum; Mikos, Antonios G.; Fisher, John P.

    2012-01-01

    Highly accurate rendering of the external and internal geometry of bone tissue engineering scaffolds effects fit at the defect site, loading of internal pore spaces with cells, bioreactor-delivered nutrient and growth factor circulation, and scaffold resorption. It may be necessary to render resorbable polymer scaffolds with 50 μm or less accuracy to achieve these goals. This level of accuracy is available using Continuous Digital Light processing (cDLP) which utilizes a DLP® (Texas Instrumen...

  17. Highly Efficient Perovskite Nanocrystal Light-Emitting Diodes Enabled by a Universal Crosslinking Method.

    Science.gov (United States)

    Li, Guangru; Rivarola, Florencia Wisnivesky Rocca; Davis, Nathaniel J L K; Bai, Sai; Jellicoe, Tom C; de la Peña, Francisco; Hou, Shaocong; Ducati, Caterina; Gao, Feng; Friend, Richard H; Greenham, Neil C; Tan, Zhi-Kuang

    2016-05-01

    The preparation of highly efficient perovskite nanocrystal light-emitting diodes is shown. A new trimethylaluminum vapor-based crosslinking method to render the nanocrystal films insoluble is applied. The resulting near-complete nanocrystal film coverage, coupled with the natural confinement of injected charges within the perovskite crystals, facilitates electron-hole capture and give rise to a remarkable electroluminescence yield of 5.7%.

  18. Analytical Investigation On Temperature Distribution Of High Wattage White Light Lamp.

    Directory of Open Access Journals (Sweden)

    Akshay Andhare

    2015-03-01

    Full Text Available Abstract In the recent times the usage of floodlight is increasing. But for developing high power more than 200W of power consumption floodlight the problem on radiant heat has not been resolved clearly as ever. So in this paper the numerical study was conducted to analyze the temperature distributions of general 500 W floodlights. The temperature distribution on lamp was calculated at the instance where lamp gives white light under ideal conditions to see optimum conditions of the life.

  19. Analytical Investigation On Temperature Distribution Of High Wattage White Light Lamp.

    OpenAIRE

    Akshay Andhare; Samer Khan

    2015-01-01

    Abstract In the recent times the usage of floodlight is increasing. But for developing high power more than 200W of power consumption floodlight the problem on radiant heat has not been resolved clearly as ever. So in this paper the numerical study was conducted to analyze the temperature distributions of general 500 W floodlights. The temperature distribution on lamp was calculated at the instance where lamp gives white light under ideal conditions to see optimum conditions of the life.

  20. Highly Efficient Quantum Sieving in Porous Graphene-like Carbon Nitride for Light Isotopes Separation

    OpenAIRE

    Yuanyuan Qu; Feng Li; Hongcai Zhou; Mingwen Zhao

    2016-01-01

    Light isotopes separation, such as 3He/4He, H2/D2, H2/T2, etc., is crucial for various advanced technologies including isotope labeling, nuclear weapons, cryogenics and power generation. However, their nearly identical chemical properties made the separation challenging. The low productivity of the present isotopes separation approaches hinders the relevant applications. An efficient membrane with high performance for isotopes separation is quite appealing. Based on first-principles calculati...

  1. High-throughput spatial light modulation two-photon microscopy for fast functional imaging

    OpenAIRE

    Pozzi, Paolo; Gandolfi, Daniela; Tognolina, Marialuisa; Chirico, Giuseppe; Mapelli, Jonathan; D’Angelo, Egidio

    2015-01-01

    The optical monitoring of multiple single neuron activities requires high-throughput parallel acquisition of signals at millisecond temporal resolution. To this aim, holographic two-photon microscopy (2PM) based on spatial light modulators (SLMs) has been developed in combination with standard laser scanning microscopes. This requires complex coordinate transformations for the generation of holographic patterns illuminating the points of interest. We present a simpler and fully digital setup ...

  2. Highly active modulators of indole signaling alter pathogenic behaviors in Gram-negative and Gram-positive bacteria.

    Science.gov (United States)

    Minvielle, Marine J; Eguren, Kristen; Melander, Christian

    2013-12-16

    Indole is a universal signal that regulates various bacterial behaviors, such as biofilm formation and antibiotic resistance. To generate mechanistic probes of indole signaling and control indole-mediated pathogenic phenotypes in both Gram-positive and Gram-negative bacteria, we have investigated the use of desformylflustrabromine (dFBr) derivatives to generate highly active indole mimetics. We have developed non-microbicidal dFBr derivatives that are 27-2000 times more active than indole in modulating biofilm formation, motility, acid resistance, and antibiotic resistance. The activity of these analogues parallels indole, because they are dependent on temperature, the enzyme tryptophanase TnaA, and the transcriptional regulator SdiA. This investigation demonstrates that molecules based on the dFBr scaffold can alter pathogenic behaviors by mimicking indole-signaling pathways.

  3. Cyclophosphamide alters the gene expression profile in patients treated with high doses prior to stem cell transplantation.

    Directory of Open Access Journals (Sweden)

    Ibrahim El-Serafi

    Full Text Available BACKGROUND: Hematopoietic stem cell transplantation is a curative treatment for several haematological malignancies. However, treatment related morbidity and mortality still is a limiting factor. Cyclophosphamide is widely used in condition regimens either in combination with other chemotherapy or with total body irradiation. METHODS: We present the gene expression profile during cyclophosphamide treatment in 11 patients conditioned with cyclophosphamide for 2 days followed by total body irradiation prior to hematopoietic stem cell transplantation. 299 genes were identified as specific for cyclophosphamide treatment and were arranged into 4 clusters highly down-regulated genes, highly up-regulated genes, early up-regulated but later normalized genes and moderately up-regulated genes. RESULTS: Cyclophosphamide treatment down-regulated expression of several genes mapped to immune/autoimmune activation and graft rejection including CD3, CD28, CTLA4, MHC II, PRF1, GZMB and IL-2R, and up-regulated immune-related receptor genes, e.g. IL1R2, IL18R1, and FLT3. Moreover, a high and significant expression of ANGPTL1 and c-JUN genes was observed independent of cyclophosphamide treatment. CONCLUSION: This is the first investigation to provide significant information about alterations in gene expression following cyclophosphamide treatment that may increase our understanding of the cyclophosphamide mechanism of action and hence, in part, avoid its toxicity. Furthermore, ANGPTL1 remained highly expressed throughout the treatment and, in contrast to several other alkylating agents, cyclophosphamide did not influence c-JUN expression.

  4. High precision radially-polarized-light pupil-filtering differential confocal measurement

    Science.gov (United States)

    Wang, Yun; Qiu, Lirong; Zhao, Weiqian

    2016-08-01

    A new method, high precision radially-polarized light pupil-filtering differential confocal measurement (RPDCM), is proposed to improve the 3D measurement resolution of confocal system. SPDCM uses the property that the radially-polarized-light can produce a strong longitudinal field component after being focused by a high numerical aperture objective to reduce the lateral size of the focus spot, and relies on the pupil-filtering technique to optimize the pupil function of the optical system by the designed pupil filter, which therefore improves the lateral resolution of confocal system, and it uses the differential confocal technology to improve the axial measurement resolution of the confocal system, thereby improves the 3D measurement resolution of the confocal system. Based on RPDCM, we developed a high precision radially-polarized light pupil-filtering differential confocal setup, and use it to verify the effectiveness of RPDCM by experiments. The theoretical analysis and experimental results show that the RPDCM can reach the lateral and axial measurement resolutions of 150 nm and 1 nm, respectively, which are an improvement of 20-32% and 3.7 times compared with a confocal system.

  5. cDNA microarray reveals the alterations of cytoskeleton-related genes in osteoblast under high magneto-gravitational environment

    Institute of Scientific and Technical Information of China (English)

    Airong Qian; Shengmeng Di; Xiang Gao; Wei Zhang; Zongcheng Tian; Jingbao Li; Lifang Hu; Pengfei Yang; Dachuan Yin; Peng Shang

    2009-01-01

    The diamagnetic levitation as a novel ground-based model for simulating a reduced gravity environment has been widely applied in many fields.In this study,a special designed superconducting magnet,which can produce three apparent gravity levels (0,1,and 2 g),namely high magneto-gravitational environment (HMGE),was used to simulate space gravity environment.The effects of HMGE on osteoblast gene expression profile were investigated by microarray.Genes sensitive to diamagnetic levitation environment (0 g),gravity changes,and high magnetic field changes were sorted on the basis of typical cell func-tions.Cytoskeleton,as an intracellular load-bearing struc-ture,plays an important role in gravity perception.Therefore,13 cytoskeleton-related genes were chosen according to the results of microarray analysis,and the expressions of these genes were found to be altered under HMGE by real-time PCR.Based on the PCR results,the expressions of WASF2 (WAS protein family,member 2),WIPFI (WAS/WASL interacting protein family,member 1),paxillin:and talin 1 were further identified by western blot assay.Results indicated that WASF2 and WIPF1 were more sensitive to altered gravity levels,and talin 1 and paxillin were sensitive to both magnetic field and gravity changes.Our findings demonstrated that HMGE can affect osteoblast gene expression profile and cytoskele-ton-related genes expression.The identification of mechanosensitive genes may enhance our understandings to the mechanism of bone loss induced by microgravity and may provide some potential targets for preventing and treating bone loss or osteoporosis.

  6. Squeezed Light for the Interferometric Detection of High Frequency Gravitational Waves

    CERN Document Server

    Schnabel, R; Strain, K A; Danzmann, K

    2004-01-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called Standard-Quantum-Limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyze the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO600 detector with present design parameters will benefit from frequency d...

  7. Ultraviolet Plasmonic Aluminium Nanoparticles for Highly Efficient Light Incoupling on Silicon Solar Cells

    Directory of Open Access Journals (Sweden)

    Yinan Zhang

    2016-05-01

    Full Text Available Plasmonic metal nanoparticles supporting localized surface plasmon resonances have attracted a great deal of interest in boosting the light absorption in solar cells. Among the various plasmonic materials, the aluminium nanoparticles recently have become a rising star due to their unique ultraviolet plasmonic resonances, low cost, earth-abundance and high compatibility with the complementary metal-oxide semiconductor (CMOS manufacturing process. Here, we report some key factors that determine the light incoupling of aluminium nanoparticles located on the front side of silicon solar cells. We first numerically study the scattering and absorption properties of the aluminium nanoparticles and the influence of the nanoparticle shape, size, surface coverage and the spacing layer on the light incoupling using the finite difference time domain method. Then, we experimentally integrate 100-nm aluminium nanoparticles on the front side of silicon solar cells with varying silicon nitride thicknesses. This study provides the fundamental insights for designing aluminium nanoparticle-based light trapping on solar cells.

  8. Development of a High Output Fluorescent Light Module for the Commercial Plant Biotechnology Facility

    Science.gov (United States)

    Turner, Mark; Zhou, Wei-Jia; Doty, Laura (Technical Monitor)

    2000-01-01

    To maximize the use of available resources provided onboard the International Space Station, the development of an efficient lighting 1 system is critical to the overall performance of the CPBF. Not only is it important to efficiently generate photon energy, but thermal loads on the CPBF Temperature and Humidity Control System must be minimized. By utilizing optical coatings designed to produce highly diffuse reflectance in the visible wavelengths while minimizing reflectance in the infrared region, the design of the fluorescent light module for the CPBF is optimized for maximum photon flux, spatial uniformity and energy efficiency. Since the Fluorescent Light Module must be fully enclosed to meet (ISS) requirements for containment of particulates and toxic materials, heat removal from the lights presented some unique design challenges. By using the Express Rack moderate C, temperature-cooling loop, heat is rejected by means of a liquid/air coolant manifold. Heat transfer to the manifold is performed by conduction using copper fins, by forced air convection using miniature fans, and by radiation using optically selective coatings that absorb in the infrared wavelengths. Using this combination of heat transfer mechanisms builds in redundancy to prevent thermal build up and premature bulb failure.

  9. Alteration of MX-80 by hydrothermal treatment under high salt content conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pusch, R. [Geodevelopment AB, Lund (Sweden); Kasbohm, J. [Greifswald Univ. (Germany). Geological Dep.

    2002-02-01

    If brammalit, i.e. sodium illite, is formed from smectite in Na-rich salt water at high temperature such conversion can also take place in the buffer clay that surrounds the canisters in a KBS-3 repository. The present study comprised two laboratory test series with MX-80 clay, one with compacted clay powder with a dry density of 1200 to 1300 kg/m{sup 3} and saturation with 10% and 20% NaCl solutions followed by heating to 110 deg C under closed conditions for 30 days. In the second series air-dry compacted clay powder in a cell was heated at 110 deg C for the same period of time and connected to vessels with 10% and 20% NaCl solutions. The first series represents the conditions in the buffer clay after saturation with Na-rich salt water while the second one corresponds to the conditions in the course of saturation with such water. All laboratory tests were made after short-term percolation with distilled water for making sure that the hydro-thermally treated samples were fully fluid-saturated. The results from the physical testing showed that the hydraulic conductivity and swelling pressure of the hydrothermally treated clay samples were on the same order of magnitude as for untreated clay. Comparison with illitic clays shows that the latter are at least a hundred times more permeable than the hydrothermally treated salt clays in the present study, which hence indicates that conversion to illite was insignificant. This is obvious also from the fact that while illitic clays have very low swelling pressures the hydrothermally treated clays exhibited swelling pressures on the same order of magnitude as untreated MX-80. XRD analysis showed a clear difference in mineral constitution between the two test series. Thus, while no significant change from the typical mineralogy of untreated MX-80 was found for hydrothermal treatment of clay saturated with 10 and 20% NaCl solution, except for some very slight neoformation of illite-smectite mixed layers or irreversible

  10. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study.

    Science.gov (United States)

    Raider, Kayla; Ma, Delin; Harris, Janna L; Fuentes, Isabella; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M; Stanford, John A

    2016-07-01

    Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy ((1)H-MRS) to measure neurochemicals in the hippocampus and striatum of rats fed a high fat diet vs. normal low fat chow. We detected lower concentrations of total creatine (tCr) and a lower glutamate-to-glutamine ratio in the hippocampus of high fat rats. Additional effects observed in the hippocampus of high fat rats included higher N-acetylaspartylglutamic acid (NAAG), and lower myo-inositol (mIns) and serine (Ser) concentrations. Post-mortem tissue analyses revealed lower phosphorylated AMP-activated protein kinase (pAMPK) in the striatum but not in the hippocampus of high fat rats. Hippocampal pAMPK levels correlated significantly with tCr, aspartate (Asp), phosphoethanolamine (PE), and taurine (Tau), indicating beneficial effects of AMPK activation on brain metabolic and energetic function, membrane turnover, and edema. A negative correlation between pAMPK and glucose (Glc) indicates a detrimental effect of brain Glc on cellular energy response. Overall, these changes indicate alterations in neurotransmission and in metabolic and bioenergetic function in the hippocampus and in the striatum of rats fed a high fat diet. PMID:27125544

  11. Dynamic miniature lighting system with low correlated colour temperature and high colour rendering index for museum lighting of fragile artefacts

    DEFF Research Database (Denmark)

    Thorseth, Anders; Corell, Dennis Dan; Poulsen, Peter Behrensdorff;

    2013-01-01

    of historical artefacts in display cases at museums and other exhibitions, which can replace 3-5 Watt incandescent light bulbs with a correlated colour temperature (CCT) from 2000 K to 2400 K. The solution decreases the energy consumption by up to 80 %, while maintaining colour rendering indices (Ra) above 90......Illumination of fragile and irreplaceable historical objects exhibited to the public presents challenges with regards to: good colour rendering, low photochemical degradation of sensitive materials and general energy consumption. We present a dynamic tri-colour LED lighting system for illumination...

  12. A novel high-brightness broadband light-source technology from the VUV to the IR

    Science.gov (United States)

    Horne, Stephen; Smith, Don; Besen, Matthew; Partlow, Matthew; Stolyarov, Daniil; Zhu, Huiling; Holber, William

    2010-04-01

    A novel technology has been developed which enables high-brightness, broadband light output from the VUV to the IR spectral regions. A focused laser is used to sustain a high-pressure xenon discharge inside a bulb, creating a smaller, hotter discharge than can be obtained by using an electrically-driven discharge. This allows for continuous output down to 120 nm wavelength and into the infrared. Application areas include hyperspectral imaging, standoff detection, surveillance, bioanalytical instrumentation, microscopy, and materials studies. Laser-driven optical discharges were first investigated over 30 years ago, providing the initial technical understanding of such discharges. However it took the convergence of two separate elements - the availability of low-cost, high-efficiency CW diode lasers; and a market need for high-brightness, broadband light source - to provide the impetus for further development in this area. Using near-IR CW diode lasers at power levels from 15 W to over 2000 W, we have generated high-pressure xenon discharges having temperatures as high as 10,000 C. The optical brightness of these discharges can be over an order of magnitude higher than those obtainable from the brightest xenon arc lamps, and can be several orders of magnitude brighter than deuterium lamps. Results from modeling of these discharges as well as experimental measurements will be presented.

  13. Damage characteristics at optical fiber connector for high power light transmission

    Science.gov (United States)

    Matsuda, S.; Shibuya, T.; Wakaki, M.

    2008-01-01

    In the field of optical communication, either fusion splicing of optical fibers or physical contact between optical-fibers using a fiber connector has been utilized as the typical method of optical fiber connection. Optical fiber connectors have been widely employed in optical transmission systems according to their features of easy and quick connection without special apparatus to connect fibers. The power of laser diodes for light sources became more intense and the multiplexing of wavelength (WDM) of a light source was enhanced with increasing traffic data. As a result, intense light transmits through the optical fiber. The high power transmission characteristics of the optical fiber connector are important factors to realize dense wavelength division multiplexing systems (DWDM). In this paper, we present an experimental investigation about the degradation of the transmission properties through the optical fiber connector by introducing the contamination between the end faces of a connector. The metal foils to simulate the contamination at the end of the core were inserted between the optical fibers to cover the core of an optical fiber partially. As metal foils, Nickel, SUS304, and Phosphor Bronze which were typically used as the components of the ferrule and sleeve were selected. The Nd: YAG laser with the wavelength of 1064 nm was used as a high power light source at various output powers. The transmission loss was set by adjusting the insertion of a metal foil into the core region of the fiber and the temperature rising of the connector induced by the absorption of incident light was measured at a sleeve portion. The damage at the end face of the physical contact region was observed using an optical microscope. The temperatures increase of the core of the fiber was estimated for the fiber connector with a zirconia ferrule through the thermal simulation using the MSC Visual Nastran. The damage of the fiber end face was recognized depending on the species of

  14. Chlamydomonas reinhardtii PsbS Protein Is Functional and Accumulates Rapidly and Transiently under High Light.

    Science.gov (United States)

    Tibiletti, Tania; Auroy, Pascaline; Peltier, Gilles; Caffarri, Stefano

    2016-08-01

    Photosynthetic organisms must respond to excess light in order to avoid photo-oxidative stress. In plants and green algae the fastest response to high light is non-photochemical quenching (NPQ), a process that allows the safe dissipation of the excess energy as heat. This phenomenon is triggered by the low luminal pH generated by photosynthetic electron transport. In vascular plants the main sensor of the low pH is the PsbS protein, while in the green alga Chlamydomonas reinhardtii LhcSR proteins appear to be exclusively responsible for this role. Interestingly, Chlamydomonas also possesses two PsbS genes, but so far the PsbS protein has not been detected and its biological function is unknown. Here, we reinvestigated the kinetics of gene expression and PsbS and LhcSR3 accumulation in Chlamydomonas during high light stress. We found that, unlike LhcSR3, PsbS accumulates very rapidly but only transiently. In order to determine the role of PsbS in NPQ and photoprotection in Chlamydomonas, we generated transplastomic strains expressing the algal or the Arabidopsis psbS gene optimized for plastid expression. Both PsbS proteins showed the ability to increase NPQ in Chlamydomonas wild-type and npq4 (lacking LhcSR3) backgrounds, but no clear photoprotection activity was observed. Quantification of PsbS and LhcSR3 in vivo indicates that PsbS is much less abundant than LhcSR3 during high light stress. Moreover, LhcSR3, unlike PsbS, also accumulates during other stress conditions. The possible role of PsbS in photoprotection is discussed. PMID:27329221

  15. Toroidal high-spin isomers in light nuclei with N not equal to Z

    CERN Document Server

    Staszczak, Andrzej

    2014-01-01

    The combined considerations of both the bulk liquid-drop-type behavior and the quantized aligned rotation with cranked Skyrme-Hartree-Fock approach revealed previously that even-even, N=Z, toroidal high-spin isomeric states have general occurrences for light nuclei with A between 28 and 52. We find that in this mass region there are in addition N not equal to Z toroidal high-spin isomers when the single-particle shells for neutrons and protons occur at the same cranked frequency $\\hbar \\omega$. Examples of N not equal to Z toroidal high-spin isomers, $^{36}_{16}$S$_{20}$($I$=74$\\hbar$) and $^{40}_{18}$Ar$_{22}$($I$=80,102$\\hbar$), are located and examined. The systematic properties of these N not equal to Z toroidal high-spin isomers fall into the same regular (muti-particle)-(muti-hole) patterns as other N=Z toroidal high-spin isomers.

  16. Highly efficient white organic light-emitting devices consisting of undoped ultrathin yellow phosphorescent layer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shengqiang [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Ma, Zhu; Zhao, Juan [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2013-02-15

    High-efficiency white organic light-emitting devices (WOLEDs) based on an undoped ultrathin yellow light-emitting layer and a doped blue light-emitting layer were demonstrated. While the thickness of blue light-emitting layer, formed by doping a charge-trapping phosphor, iridium(III) bis(4 Prime ,6 Prime -difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6) in a wide bandgap host, was kept constant, the thickness of neat yellow emissive layer of novel phosphorescent material, bis[2-(4-tertbutylphenyl)benzothiazolato-N,C{sup 2 Prime }]iridium (acetylacetonate) [(t-bt){sub 2}Ir(acac)] was varied to optimize the device performance. The optimized device exhibited maximum luminance, current efficiency and power efficiency of 24,000 cd/m{sup 2} (at 15.2 V), 79.0 cd/A (at 1550 cd/m{sup 2}) and 40.5 lm/W (at 1000 cd/m{sup 2}), respectively. Besides, the white-light emission covered a wide range of visible spectrum, and the Commission Internationale de l'Eclairage coordinates were (0.32, 0.38) with a color temperature of 5800 K at 8 V. Moreover, high external quantum efficiency was also obtained in the high-efficiency WOLEDs. The performance enhancement was attributed to the proper thickness of (t-bt){sub 2}Ir(acac) layer that enabled adequate current density and enough phosphorescent dye to trap electrons. - Highlights: Black-Right-Pointing-Pointer Highly efficient WOLEDs based on two complementary layers were fabricated. Black-Right-Pointing-Pointer The yellow emissive layer was formed by utilizing undoping system. Black-Right-Pointing-Pointer The blue emissive layer was made by host-guest doping system. Black-Right-Pointing-Pointer The thickness of the yellow emissive layer was varied to make device optimization. Black-Right-Pointing-Pointer The optimized device achieved high power efficiency of 40.5 lm/W.

  17. Injector Beam Dynamics for a High-Repetition Rate 4th-Generation Light Source

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, C. F.; Corlett, J.; Emma, P.; Filippetto, D.; Penn, G.; Qiang, J.; Reinsch, M.; Sannibale, F.; Steier, C.; Venturini, M.; Wells, R.

    2013-05-20

    We report on the beam dynamics studies and optimization methods for a high repetition rate (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beamcompression and reservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.

  18. Development of Advanced High Uranium Density Fuels for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, James [Univ. of Wisconsin, Madison, WI (United States); Butt, Darryl [Boise State Univ., ID (United States); Meyer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Corporation, Pittsburgh, PA (United States)

    2016-02-15

    This work conducts basic materials research (fabrication, radiation resistance, thermal conductivity, and corrosion response) on U3Si2 and UN, two high uranium density fuel forms that have a high potential for success as advanced light water reactor (LWR) fuels. The outcome of this proposed work will serve as the basis for the development of advance LWR fuels, and utilization of such fuel forms can lead to the optimization of the fuel performance related plant operating limits such as power density, power ramp rate and cycle length.

  19. Reducing Barriers To The Use of High-Efficiency Lighting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Peter Morante

    2005-12-31

    With funding from the U.S. Department of Energy (DOE), the Lighting Research Center (LRC) at Rensselaer Polytechnic Institute completed the four-year research project, Reducing Barriers to the Use of High-Efficiency Lighting Systems. The initial objectives were: (1) identifying barriers to widespread penetration of lighting controls in commercial/industrial (C/I) applications that employ fluorescent lamp technologies, and (2) making recommendations to overcome these barriers. The addition of a fourth year expanded the original project objectives to include an examination of the impact on fluorescent lamps from dimming utilizing different lamp electrode heating and dimming ratios. The scope of the project was narrowed to identify barriers to the penetration of lighting controls into commercial-industrial (C/I) applications that employ fluorescent lamp technologies, and to recommend means for overcoming these barriers. Working with lighting manufacturers, specifiers, and installers, the project identified technological and marketing barriers to the widespread use of lighting controls, specifically automatic-off controls, occupancy sensors, photosensors, dimming systems, communication protocols and load-shedding ballasts. The primary barriers identified include cost effectiveness of lighting controls to the building owner, lack of standard communication protocols to allow different part of the control system to communicate effectively, and installation and commissioning issues. Overcoming the identified barriers requires lighting control products on the market to achieve three main goals: (1) Achieve sufficient functionality to meet the key requirements of their main market. (2) Allow significant cost reduction compared to current market standard systems. Cost should consider: hardware capital cost including wiring, design time required by the specifier and the control system manufacturer, installation time required by the electrician, and commissioning time and

  20. Squeezed light for the interferometric detection of high-frequency gravitational waves

    Science.gov (United States)

    Schnabel, R.; Harms, J.; Strain, K. A.; Danzmann, K.

    2004-03-01

    The quantum noise of the light field is a fundamental noise source in interferometric gravitational-wave detectors. Injected squeezed light is capable of reducing the quantum noise contribution to the detector noise floor to values that surpass the so-called standard quantum limit (SQL). In particular, squeezed light is useful for the detection of gravitational waves at high frequencies where interferometers are typically shot-noise limited, although the SQL might not be beaten in this case. We theoretically analyse the quantum noise of the signal-recycled laser interferometric gravitational-wave detector GEO 600 with additional input and output optics, namely frequency-dependent squeezing of the vacuum state of light entering the dark port and frequency-dependent homodyne detection. We focus on the frequency range between 1 kHz and 10 kHz, where, although signal recycled, the detector is still shot-noise limited. It is found that the GEO 600 detector with present design parameters will benefit from frequency-dependent squeezed light. Assuming a squeezing strength of -6 dB in quantum noise variance, the interferometer will become thermal noise limited up to 4 kHz without further reduction of bandwidth. At higher frequencies the linear noise spectral density of GEO 600 will still be dominated by shot noise and improved by a factor of 106dB/20dB ap 2 according to the squeezing strength assumed. The interferometer might reach a strain sensitivity of 6 × 10-23 above 1 kHz (tunable) with a bandwidth of around 350 Hz. We propose a scheme to implement the desired frequency-dependent squeezing by introducing an additional optical component into GEO 600's signal-recycling cavity.

  1. Emission Characteristics of High Color Rendering Index Low-Pressure Xe and CO ICP's Light Source

    Science.gov (United States)

    Nazri, Ahmad; Kondo, Akira; Motomura, Hideki; Jinno, Masafumi

    High color rendering index (CRI) has been obtained from mercury-free ICP’s lamp. Due to the strong demand on the development of mercury-free light sources, the authors investigated xenon and CO as an alternative element. These rare (Xe) and molecule (CO) gases have been used as a substitute for mercury as the environmental problems related necessitate the development of new type of light sources. The target of this study is to develop a new type of mercury-free lamp without using a phosphor where the authors concentrate on how to obtain a strong visible light instead of UV. In this paper, the colors, luminance and emission characteristics of these types of mercury-free ICP’s lamp is discussed. Without the use of phosphor, the authors obtained a good color rendering from xenon and CO ICP’s lamp where their CRI’s above 90. A strong continuum emission in visible region is obtained where luminance are ranged from 2000 to 25000 cd/m2 at 100 W of input power. Spectral distribution shows the continuum emissions are similar to the daylight distribution and chromaticity diagrams shows they are close to white region in color coordinates and color temperatures bringing a high index of the lamp’s color rendering.

  2. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology.

    Science.gov (United States)

    Strle, Drago; Nahtigal, Uroš; Batistell, Graciele; Zhang, Vincent Chi; Ofner, Erwin; Fant, Andrea; Sturm, Johannes

    2015-01-01

    This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode's current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm(2) of silicon area (including three photodiodes and the analog part of the ADC). The DSP is currently implemented on FPGA. PMID:26205275

  3. Integrated High Resolution Digital Color Light Sensor in 130 nm CMOS Technology

    Directory of Open Access Journals (Sweden)

    Drago Strle

    2015-07-01

    Full Text Available This article presents a color light detection system integrated in 130 nm CMOS technology. The sensors and corresponding electronics detect light in a CIE XYZ color luminosity space using on-chip integrated sensors without any additional process steps, high-resolution analog-to-digital converter, and dedicated DSP algorithm. The sensor consists of a set of laterally arranged integrated photodiodes that are partly covered by metal, where color separation between the photodiodes is achieved by lateral carrier diffusion together with wavelength-dependent absorption. A high resolution, hybrid, ∑∆ ADC converts each photo diode’s current into a 22-bit digital result, canceling the dark current of the photo diodes. The digital results are further processed by the DSP, which calculates normalized XYZ or RGB color and intensity parameters using linear transformations of the three photo diode responses by multiplication of the data with a transformation matrix, where the coefficients are extracted by training in combination with a pseudo-inverse operation and the least-mean square approximation. The sensor system detects the color light parameters with 22-bit accuracy, consumes less than 60 μA on average at 10 readings per second, and occupies approx. 0.8 mm2 of silicon area (including three photodiodes and the analog part of the ADC. The DSP is currently implemented on FPGA.

  4. Near-infrared roll-off-free electroluminescence from highly stable diketopyrrolopyrrole light emitting diodes

    Science.gov (United States)

    Sassi, Mauro; Buccheri, Nunzio; Rooney, Myles; Botta, Chiara; Bruni, Francesco; Giovanella, Umberto; Brovelli, Sergio; Beverina, Luca

    2016-01-01

    Organic light emitting diodes (OLEDs) operating in the near-infrared spectral region are gaining growing relevance for emerging photonic technologies, such as lab-on-chip platforms for medical diagnostics, flexible self-medicated pads for photodynamic therapy, night vision and plastic-based telecommunications. The achievement of efficient near-infrared electroluminescence from solution-processed OLEDs is, however, an open challenge due to the low photoluminescence efficiency of most narrow-energy-gap organic emitters. Diketopyrrolopyrrole-boron complexes are promising candidates to overcome this limitation as they feature extremely high photoluminescence quantum yield in the near-infrared region and high chemical stability. Here, by incorporating suitably functionalized diketopyrrolopyrrole derivatives emitting at ~760 nm in an active matrix of poly(9,9-dioctylfluorene-alt-benzothiadiazole) and without using complex light out-coupling or encapsulation strategies, we obtain all-solution-processed NIR-OLEDs with external quantum efficiency as high as 0.5%. Importantly, our test-bed devices show no efficiency roll-off even for high current densities and high operational stability, retaining over 50% of the initial radiant emittance for over 50 hours of continuous operation at 10 mA/cm2, which emphasizes the great applicative potential of the proposed strategy. PMID:27677240

  5. The high frequency light load fatigue testing machine based on giant magnetostrictive material and stroke multiplier

    Science.gov (United States)

    Wang, M. D.; Li, D. S.; Huang, Y.; Zhang, C.; Zhong, K. M.; Sun, L. N.

    2013-08-01

    In the notebook and clamshell mobile phone, data communication wire often requires repeated bending. Generally, communication wire with the actual application conditions, the test data cannot assess bending resistance performance of data communication wire is tested conventionally using wires with weights of 90 degree to test bending number, this test method and device is not fully reflect the fatigue performance in high frequency and light load application condition, at the same time it has a large difference between the test data of the long-term reliability of high frequency and low load conditions. In this paper, high frequency light load fatigue testing machine based on the giant magnetostrictive material and stroke multiplier is put forward, in which internal reflux stroke multiplier is driven by giant magnetostrictive material to realize the rapid movement of light load. This fatigue testing device has the following advantages: (1) When the load is far less than the friction, reducing friction is very effective to improve the device performance. Because the body is symmetrical, the friction loss of radial does not exist in theory, so the stress situation of mechanism is good with high transmission efficiency and long service life. (2) The installation position of the output hydraulic cylinder, can be arranged conveniently as ordinary cylinder. (3) Reciprocating frequency, displacement and speed of high frequency movement can be programmed easily to change with higher position precision. (4)Hydraulic oil in this device is closed to transmit, which does not produce any environment pollution. The device has no hydraulic pump and tank, and less energy conversion processes, so it is with the trend of green manufacturing.

  6. Lingonberries alter the gut microbiota and prevent low-grade inflammation in high-fat diet fed mice

    Directory of Open Access Journals (Sweden)

    Lovisa Heyman-Lindén

    2016-04-01

    Full Text Available Background: The gut microbiota plays an important role in the development of obesity and obesity-associated impairments such as low-grade inflammation. Lingonberries have been shown to prevent diet-induced obesity and low-grade inflammation. However, it is not known whether the effect of lingonberry supplementation is related to modifications of the gut microbiota. The aim of the present study was to describe whether consumption of different batches of lingonberries alters the composition of the gut microbiota, which could be relevant for the protective effect against high fat (HF-induced metabolic alterations. Methods: Three groups of C57BL/6J mice were fed HF diet with or without a supplement of 20% lingonberries from two different batches (Lingon1 and Lingon2 during 11 weeks. The composition and functionality of the cecal microbiota were assessed by 16S rRNA sequencing and PICRUSt. In addition, parameters related to obesity, insulin sensitivity, hepatic steatosis, inflammation and gut barrier function were examined. Results: HF-induced obesity was only prevented by the Lingon1 diet, whereas both batches of lingonberries reduced plasma levels of markers of inflammation and endotoxemia (SAA and LBP as well as modified the composition and functionality of the gut microbiota, compared to the HF control group. The relative abundance of Akkermansia and Faecalibacterium, genera associated with healthy gut mucosa and anti-inflammation, was found to increase in response to lingonberry intake. Conclusions: Our results show that supplementation with lingonberries to an HF diet prevents low-grade inflammation and is associated with significant changes of the microbiota composition. Notably, the anti-inflammatory properties of lingonberries seem to be independent of effects on body weight gain.

  7. Convergent Findings of Altered Functional and Structural Brain Connectivity in Individuals with High Functioning Autism: A Multimodal MRI Study.

    Science.gov (United States)

    Mueller, Sophia; Keeser, Daniel; Samson, Andrea C; Kirsch, Valerie; Blautzik, Janusch; Grothe, Michel; Erat, Okan; Hegenloh, Michael; Coates, Ute; Reiser, Maximilian F; Hennig-Fast, Kristina; Meindl, Thomas

    2013-01-01

    Brain tissue changes in autism spectrum disorders seem to be rather subtle and widespread than anatomically distinct. Therefore a multimodal, whole brain imaging technique appears to be an appropriate approach to investigate whether alterations in white and gray matter integrity relate to consistent changes in functional resting state connectivity in individuals with high functioning autism (HFA). We applied diffusion tensor imaging (DTI), voxel-based morphometry (VBM) and resting state functional connectivity magnetic resonance imaging (fcMRI) to assess differences in brain structure and function between 12 individuals with HFA (mean age 35.5, SD 11.4, 9 male) and 12 healthy controls (mean age 33.3, SD 9.0, 8 male). Psychological measures of empathy and emotionality were obtained and correlated with the most significant DTI, VBM and fcMRI findings. We found three regions of convergent structural and functional differences between HFA participants and controls. The right temporo-parietal junction area and the left frontal lobe showed decreased fractional anisotropy (FA) values along with decreased functional connectivity and a trend towards decreased gray matter volume. The bilateral superior temporal gyrus displayed significantly decreased functional connectivity that was accompanied by the strongest trend of gray matter volume decrease in the temporal lobe of HFA individuals. FA decrease in the right temporo-parietal region was correlated with psychological measurements of decreased emotionality. In conclusion, our results indicate common sites of structural and functional alterations in higher order association cortex areas and may therefore provide multimodal imaging support to the long-standing hypothesis of autism as a disorder of impaired higher-order multisensory integration.

  8. Convergent Findings of Altered Functional and Structural Brain Connectivity in Individuals with High Functioning Autism: A Multimodal MRI Study.

    Directory of Open Access Journals (Sweden)

    Sophia Mueller

    Full Text Available Brain tissue changes in autism spectrum disorders seem to be rather subtle and widespread than anatomically distinct. Therefore a multimodal, whole brain imaging technique appears to be an appropriate approach to investigate whether alterations in white and gray matter integrity relate to consistent changes in functional resting state connectivity in individuals with high functioning autism (HFA. We applied diffusion tensor imaging (DTI, voxel-based morphometry (VBM and resting state functional connectivity magnetic resonance imaging (fcMRI to assess differences in brain structure and function between 12 individuals with HFA (mean age 35.5, SD 11.4, 9 male and 12 healthy controls (mean age 33.3, SD 9.0, 8 male. Psychological measures of empathy and emotionality were obtained and correlated with the most significant DTI, VBM and fcMRI findings. We found three regions of convergent structural and functional differences between HFA participants and controls. The right temporo-parietal junction area and the left frontal lobe showed decreased fractional anisotropy (FA values along with decreased functional connectivity and a trend towards decreased gray matter volume. The bilateral superior temporal gyrus displayed significantly decreased functional connectivity that was accompanied by the strongest trend of gray matter volume decrease in the temporal lobe of HFA individuals. FA decrease in the right temporo-parietal region was correlated with psychological measurements of decreased emotionality. In conclusion, our results indicate common sites of structural and functional alterations in higher order association cortex areas and may therefore provide multimodal imaging support to the long-standing hypothesis of autism as a disorder of impaired higher-order multisensory integration.

  9. Altered expression of MGMT in high-grade gliomas results from the combined effect of epigenetic and genetic aberrations.

    Directory of Open Access Journals (Sweden)

    João Ramalho-Carvalho

    Full Text Available MGMT downregulation in high-grade gliomas (HGG has been mostly attributed to aberrant promoter methylation and is associated with increased sensitivity to alkylating agent-based chemotherapy. However, HGG harboring 10q deletions also benefit from treatment with alkylating agents. Because the MGMT gene is mapped at 10q26, we hypothesized that both epigenetic and genetic alterations might affect its expression and predict response to chemotherapy. To test this hypothesis, promoter methylation and mRNA levels of MGMT were determined by quantitative methylation-specific PCR (qMSP or methylation-specific multiplex ligation dependent probe amplification (MS-MLPA and quantitative RT-PCR, respectively, in a retrospective series of 61 HGG. MGMT/chromosome 10 copy number variations were determined by FISH or MS-MLPA analysis. Molecular findings were correlated with clinical parameters to assess their predictive value. Overall, MGMT methylation ratios assessed by qMSP and MS-MLPA were inversely correlated with mRNA expression levels (best coefficient value obtained with MS-MLPA. By FISH analysis in 68.3% of the cases there was loss of 10q26.1 and in 15% of the cases polysomy was demonstrated; the latter displayed the highest levels of transcript. When genetic and epigenetic data were combined, cases with MGMT promoter methylation and MGMT loss depicted the lowest transcript levels, although an impact in response to alkylating agent chemotherapy was not apparent. Cooperation between epigenetic (promoter methylation and genetic (monosomy, locus deletion changes affecting MGMT in HGG is required for effective MGMT silencing. Hence, evaluation of copy number alterations might add relevant prognostic and predictive information concerning response to alkylating agent-based chemotherapy.

  10. Comparison of Depth of Cure, Hardness and Heat Generation of LED and High Intensity QTH Light Sources

    OpenAIRE

    Mousavinasab, Sayed Mostafa; Meyers, Ian

    2011-01-01

    Objectives: To compare curing performance of a second generation LED curing light with a high power tungsten quartz halogen (QTH). Methods: A hybrid composite resin (Filtek Z 250, 3M, USA) was used as test material and cured using a second generation LED light (Translux Power Blue™, Heraus Kulzer ,Germany) or a very high power QTH light unit (EMS, Switzerland). A two split aluminum mold was used to prepare ten samples with LED light source cured for forty seconds and ten samples prepared usin...

  11. Infrared High-Resolution Integrated Light Spectral Analyses of M31 Globular Clusters from APOGEE

    CERN Document Server

    Sakari, Charli M; Schiavon, Ricardo P; Bizyaev, Dmitry; Prieto, Carlos Allende; Beers, Timothy C; Caldwell, Nelson; Garcia-Hernandez, Domingo Anibal; Lucatello, Sara; Majewski, Steven; O'Connell, Robert W; Pan, Kaike; Strader, Jay

    2016-01-01

    Chemical abundances are presented for 25 M31 globular clusters (GCs), based on moderately high resolution (R = 22, 500) H-band integrated light spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). Infrared spectra offer lines from new elements, of different strengths, and at higher excitation potentials compared to the optical. Integrated abundances of C, N, and O are derived from CO, CN, and OH molecular features, while Fe, Na, Mg, Al, Si, K, Ca, and Ti abundances are derived from atomic features. These abundances are compared to previous results from the optical, demonstrating the validity and value of infrared integrated light analyses. The CNO abundances are consistent with typical tip of the red giant branch stellar abundances, but are systematically offset from optical, Lick index abundances. With a few exceptions, the other abundances agree between the optical and the infrared within the 1{\\sigma} uncertainties. The first integrated K abundances are also presented, and demo...

  12. Highly Efficient Polymer Light-Emitting Devices Using a New Phosphorescent Material

    Institute of Scientific and Technical Information of China (English)

    王建华; 段炼; 王立铎; 邱勇

    2003-01-01

    A new phosphorescent material bis(2-phenyl-benzoimiazole) acetylacetonato iridium ((PBI)2IrAcac) is designed and synthesized. The absorption, photoluminescence and electroluminescence are measured. The polymer-based light-emitting devices which use polyvinylcarbazole (PVK) as host and (PBI)2IrAcac as emitter were fabricated.These light-emitting devices show a bright green emission at 548 nm. The device ITO/(PBI)2IrAcac:PVK/BCP/Alq3/Mg:Ag shows a very high efficiency. A peak external quantum efficiency of 21.5cd/A (5.8%) was obtained at 0.1 mA/cm2. The maximum brightness is 3840 cd/m2.

  13. High-Resolution Organic Light-Emitting Diodes Patterned via Contact Printing.

    Science.gov (United States)

    Li, Jinhai; Xu, Lisong; Tang, Ching W; Shestopalov, Alexander A

    2016-07-01

    In this study, we report a contact printing technique that uses polyurethane-acrylate (PUA) polymers as the printing stamps to pattern electroluminescent layers of organic light emitting diodes (OLEDs). We demonstrate that electroluminescent thin films can be printed with high uniformity and resolution. We also show that the performance of the printed devices can be improved via postprinting thermal annealing, and that the external quantum efficiency of the printed devices is comparable with the efficiency of the vacuum-deposited OLEDs. Our results suggest that the PUA-based contact printing can be used as an alternative to the traditional shadow mask deposition, permitting manufacturing of OLED displays with the resolution up to the diffraction limit of visible-light emission.

  14. An unbinned test for Quantum Gravity effects in high-energy light-curves

    CERN Document Server

    de Almeida, U Barres

    2009-01-01

    Some models of quantum gravity can predict observable effects on the propagation of light: most notably an energy dependent dispersion, where the speed of light is seen to vary with the energy of the photon. As quantum gravity effects should appear at the Planck scale they will be very small and so require very high energy photons to travel large distances before even becoming noticeable. Precisely because this effect is greater for the most energetic photons (dt ~ 10 s/TeV/Gpc), ground-based gamma-ray measurements of large AGN flares are the ideal resource for performing such tests. The modest photon flux combined with the fact that these experiments are capable of recording the photon times with great resolution suggests the use of unbinned algorithms as an optimal solution for testing models of quantum gravity. In this paper we discuss the application of a non-parametric test to such datasets, analysing its limitations and exploring the potential benefits.

  15. High-efficiency frequency doubling of continuous-wave laser light

    CERN Document Server

    Ast, Stefan; Schönbeck, Axel; Lastzka, Nico; Steinlechner, Jessica; Eberle, Tobias; Mehmet, Moritz; Steinlechner, Sebastian; Schnabel, Roman

    2011-01-01

    We report on the observation of high efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of (95 \\pm 1)%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the non-perfect mode-matching into the nonlinear cavity and the pump power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.

  16. Highly sensitive ammonia sensor using reflection of light at a glass - photonic crystal interface

    CERN Document Server

    Kuchyanov, A S; Spisser, H; Plekhanov, A I

    2013-01-01

    We have discovered and studied the effect of the asymmetric deformation of a photonic crystal in the form of a change in the slope of the crystal planes as it is filled with a gaseous analyte. We have demonstrated that the use of a new effect leading to the displacement of the stop band against the unchanged spectrum of diffracted white light at the (glass-thin opal film) interface can be used as fast, compact, high sensitive and reproducible optical chemical sensor for ammonia. Low cost and simplicity of sensor fabrication, the response of which can be easily observed without resorting to spectral instruments are therefore likely to be attractive. The basis for high sensitivity (1 ppm), fast response (120 ms) is capillary vapor condensation. On the basis of this effect a cheap high-speed and highly sensitive gas sensors has been built.

  17. Optical properties of highly polarized InGaN light-emitting diodes modified by plasmonic metallic grating.

    Science.gov (United States)

    Chen, Hong; Fu, Houqiang; Lu, Zhijian; Huang, Xuanqi; Zhao, Yuji

    2016-05-16

    We implement finite-difference time-domain (FDTD) method to simulate the optical properties of highly polarized InGaN light emitting diodes (LEDs) coupled with metallic grating structure. The Purcell factor (Fp), light extraction efficiency (LEE), internal quantum efficiency (IQE), external quantum efficiency (EQE), and modulation frequency are calculated for different polarized emissions. Our results show that light polarization has a strong impact on Fp and LEE of LEDs due to their coupling effects with the surface plasmons (SPs) generated by metallic grating. Fp as high as 34 and modulation frequency up to 5.4 GHz are obtained for a simulated LED structure. Furthermore, LEE, IQE and EQE can also be enhanced by tuning the coupling between polarized emission and SPs. These results can serve as guidelines for the design and fabrication of high efficiency and high speed LEDs for the applications of solid-state lighting and visible-light communication. PMID:27409958

  18. High-thermal-stability white light-emitting-diodes employing broadband glass phosphor

    Science.gov (United States)

    Cheng, Wood-Hi; Chen, Li-Yin; Cheng, Wei-Chih

    2014-09-01

    We report the high-thermal-stability white light-emitting-diodes (WLEDs) employing broadband glass phosphors. The broadband glass phosphors were fabricated by sintering the mixture of multiple phosphors and SiO2-based glass (SiO2-Na2O-Al2O3-CaO) at 680°. Y3Al5O12:Ce 3+ (YAG), Lu3Al5O12:Ce3+ (LuAG), and CaAlSiN3: Eu2+ (Nitride) phosphor crystals were chosen as the yellow, green, and red emitters of the glass phosphors, respectively. The results showed that the broadband phosphors exhibited high quantum-yield of 54% and color-rendering index (CRI) of 90. The lumen degradation, chromaticity shift, and transmittance loss in the broadband glass-based WLEDs under thermal aging temperature at 150, 250, 350 and 450° were also presented and compared with those of silicone-based WLEDs under thermal aging temperature at 150 and 250°. The results demonstrated that the broadband glass-based WLEDs exhibited better thermal stability in lumen degradation, chromaticity shift, and transmittance loss than the silicone-based WLEDs. The excellent thermal stability of the broadband glass-based WLEDs with high CRI is essentially beneficial to the applications for next-generation solid-state indoor lighting, especially in the area where high power and absolute reliability are required.

  19. The High-Temperature Synthesis of the Nanoscaled White-Light Phosphors Applied in the White-Light LEDs

    Directory of Open Access Journals (Sweden)

    Hao-Ying Lu

    2015-01-01

    Full Text Available The white-light phosphors consisting of Dy3+ doped YPO4 and Dy3+ doped YP1-XVXO4 were prepared by the chemical coprecipitation method. After the 1200°C thermal treatment in the air atmosphere, the white-light phosphors with particle sizes around 90 nm can be obtained. In order to reduce the average particle size of phosphors, the alkaline washing method was applied to the original synthesis process, which reduces the particle sizes to 65 nm. From the PLE spectra, four absorption peaks locating at 325, 352, 366, and 390 nm can be observed in the YPO4-based phosphors. These peaks appear due to the following electron transitions: 6H15/2→4K15/2, 6H15/2→4M15/2+6P7/2, 6H15/2→4I11/2, and 6H15/2→4M19/2. Besides, the emission peaks of wavelengths 484 nm and 576 nm can be observed in the PL spectra. In order to obtain the white-light phosphors, the vanadium ions were applied to substitute the phosphorus ions to compose the YP1-XVXO4 phosphors. From the PL spectra, the strongest PL intensity can be obtained with 30% vanadium ions. As the concentration of vanadium ions increases to 40%, the phosphors with the CIE coordinates locating at the white-light area can be obtained.

  20. Medial opening wedge high tibial osteotomy alters knee moments in multiple planes during walking and stair ascent.

    Science.gov (United States)

    Leitch, Kristyn M; Birmingham, Trevor B; Dunning, Cynthia E; Giffin, J Robert

    2015-07-01

    Medial opening wedge high tibial osteotomy is a surgical procedure intended to redistribute loads on the knee in patients with medial compartment knee osteoarthritis (OA). The surgery may affect moments in multiple planes during ambulation, with potential beneficial or detrimental effects on joint loads. The objective of this study was to investigate three-dimensional external knee moments before and after medial opening wedge high tibial osteotomy during level walking and during stair ascent. Fourteen patients with varus alignment and osteoarthritis primarily affecting the medial compartment of the tibiofemoral joint were assessed. Three-dimensional motion analyses during level walking and stair ascent was evaluated using inverse dynamics before, 6 and 12 months after surgery. Mean changes at 12 months suggested decreases in the peak knee adduction, flexion and internal rotation moments, with standardized response means ranging from 0.15 to 2.54. These decreases were observed despite increases in speed. Changes in alignment were associated with changes in the adduction and internal rotation moments, but not the flexion moment. Both pre- and postoperatively, the peak knee adduction moment was significantly lower (p=0.001) during stair ascent than during level walking, while the flexion and internal rotation moments were significantly higher (pplanes of motion during ambulation, suggesting substantial alterations of the loads on the knee during ambulation.

  1. Geochemical behavior of radionuclides in highly altered zircon above the Bangombé natural fission reactor, Gabon

    Science.gov (United States)

    Kikuchi, Makiko; Hidaka, Hiroshi; Horie, Kenji

    The isotopic compositions of rare earth elements (REE), Pb and U of highly altered zircons from the clay and black shale layers above the Bangombé natural reactor, Gabon, were determined by a sensitive high resolution ion microprobe (SHRIMP) to discuss the redistribution processes of elements into zircons under the supergene weathering. The clay layer trapped most of the fissiogenic Nd, Sm and Eu derived from the reactor and prevented them migrating into the black shale layer. On the other hand, only the Ce isotopic ratios of the clay and black shale layers have about 2 times larger variations than the other REE. This result suggests that a large chemical fractionation between Ce and other REE above the reactor occurred under the oxidizing condition. The U-Pb data of zircons suggest that the U-Pb system was largely disturbed by migration of chemically fractionated Pb and U from the 2.0 Ga-old uraninite in association with recent weathering.

  2. A High-Fat Diet Causes Impairment in Hippocampal Memory and Sex-Dependent Alterations in Peripheral Metabolism

    Directory of Open Access Journals (Sweden)

    Erica L. Underwood

    2016-01-01

    Full Text Available While high-fat diets are associated with rising incidence of obesity/type-2 diabetes and can induce metabolic and cognitive deficits, sex-dependent comparisons are rarely systematically made. Effects of exclusive consumption of a high-fat diet (HFD on systemic metabolism and on behavioral measures of hippocampal-dependent memory were compared in young male and female LE rats. Littermates were fed from weaning either a HFD or a control diet (CD for 12 wk prior to testing. Sex-different effects of the HFD were observed in classic metabolic signs associated with type-2 diabetes. Males fed the HFD became obese, and had elevated fasted blood glucose levels, elevated corticosterone, and impaired glucose-tolerance, while females on the HFD exhibited only elevated corticosterone. Regardless of peripheral metabolism alteration, rats of both sexes fed the HFD were equally impaired in a spatial object recognition memory task associated with impaired hippocampal function. While the metabolic changes reported here have been characterized previously in males, the set of diet-induced effects observed here in females are novel. Impaired memory can have significant cognitive consequences, over the short-term and over the lifespan. A significant need exists for comparative research into sex-dependent differences underlying obesity and metabolic syndromes relating systemic, cognitive, and neural plasticity mechanisms.

  3. A High-Fat Diet Causes Impairment in Hippocampal Memory and Sex-Dependent Alterations in Peripheral Metabolism.

    Science.gov (United States)

    Underwood, Erica L; Thompson, Lucien T

    2016-01-01

    While high-fat diets are associated with rising incidence of obesity/type-2 diabetes and can induce metabolic and cognitive deficits, sex-dependent comparisons are rarely systematically made. Effects of exclusive consumption of a high-fat diet (HFD) on systemic metabolism and on behavioral measures of hippocampal-dependent memory were compared in young male and female LE rats. Littermates were fed from weaning either a HFD or a control diet (CD) for 12 wk prior to testing. Sex-different effects of the HFD were observed in classic metabolic signs associated with type-2 diabetes. Males fed the HFD became obese, and had elevated fasted blood glucose levels, elevated corticosterone, and impaired glucose-tolerance, while females on the HFD exhibited only elevated corticosterone. Regardless of peripheral metabolism alteration, rats of both sexes fed the HFD were equally impaired in a spatial object recognition memory task associated with impaired hippocampal function. While the metabolic changes reported here have been characterized previously in males, the set of diet-induced effects observed here in females are novel. Impaired memory can have significant cognitive consequences, over the short-term and over the lifespan. A significant need exists for comparative research into sex-dependent differences underlying obesity and metabolic syndromes relating systemic, cognitive, and neural plasticity mechanisms. PMID:26819773

  4. Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations.

    Science.gov (United States)

    Narayanan, Sruthi; Tamura, Pamela J; Roth, Mary R; Prasad, P V Vara; Welti, Ruth

    2016-04-01

    Understanding how wheat (Triticum aestivum L.) plants under high temperature (HT) regulate lipid composition is critical to developing climate-resilient varieties. We measured 165 glycerolipids and sterol derivatives under optimum and high day and night temperatures in wheat leaves using electrospray ionization-tandem mass spectrometry. Levels of polar lipid fatty acyl chain unsaturation were lower in both heat-tolerant genotype Ventnor and susceptible genotype Karl 92 under HT, compared with optimum temperature. The lower unsaturation was predominantly because of lower levels of 18:3 acyl chains and higher levels of 18:1 and 16:0 acyl chains. Levels of 18:3-containing triacylglycerols increased threefold/more under HT, consistent with their possible role in sequestering fatty acids during membrane lipid remodelling. Phospholipids containing odd-numbered or oxidized acyl chains accumulated in leaves under HT. Sterol glycosides (SG) and 16:0-acylated sterol glycosides (ASG) were higher under HT than optimum temperatures. Ventnor had lower amounts of phospholipids with oxidized acyl chains under HT and higher amounts of SG and 16:0-ASG than Karl 92. Taken together, the data demonstrate that wheat leaf lipid composition is altered by HT, in which some lipids are particularly responsive to HT, and that two wheat genotypes, chosen for their differing physiological responses to HT, differ in lipid profile under HT. PMID:26436679

  5. Thermo chemical stability of cadmium sulfide nanoparticles under intense pulsed light irradiation and high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Colorado, H.A., E-mail: hcoloradolopera@ucla.edu [Materials Science and Engineering Department, University of California, Los Angeles, CA 90095 (United States); Universidad de Antioquia, Mechanical Engineering, Medellin (Colombia); Dhage, S.R. [International Advanced Research Center for Powder Metallurgy and New Materials (ARCI), Hyderabad 500005 (India); Hahn, H.T. [Materials Science and Engineering Department, University of California, Los Angeles, CA 90095 (United States); Mechanical and Aerospace Engineering Department, University of California, Los Angeles (United States)

    2011-09-15

    Highlights: > In this paper is about the thermochemical stability of CdS nanoparticles under Intense Pulsed Light (IPL) irradiation. > After few irradiation shots over the nano-particles, CdS pillars appeared without phase transformation. > No oxidation was observed during the treatment process. > CdS nanoparticles are thermally stable until around 400 deg. C and 600 deg. C for air and argon atmospheres respectively. > It has been studied and demonstrated the stability of CdS nanoparticles under intense pulsed light and under high temperature conditions. - Abstract: Thermo chemical stability of CdS nanoparticles under an Intense Pulsed Light from a xenon flash lamp and high temperature X-ray Diffraction (XRD) were investigated. The CdS nanoparticles were obtained with a chemical bath method. The CdSO{sub 4} (0.16 M) solution was added to an NH{sub 3} (7.5 M) solution under constant stirring. Afterwards, a thiourea (0.6 M) solution was added. The bath temperature and pH were maintained at 65 deg. C and 10, respectively and the mixture was stirred constantly until a solid precipitate of yellow CdS was produced. Its microstructure was investigated with Scanning Electron Microscopy, and its electronic properties were determined by UV-visible and Photo luminescence Spectroscopy. The microstructure of the sintered CdS nanoparticles, obtained the high temperature XRD, was investigated with EDAX and X-ray micro Tomography. In addition, high temperature XRD and Themogravimetric Analysis tests were conducted over the samples. The CdS nanoparticles' crystallinity increased with the irradiation exposure and they were thermally stable until 600 deg. C in argon atmosphere. However new phases start to appear after annealing at 400 deg. C for 30 min in air atmosphere. The main contribution of this paper was to investigate the stability of CdS nanoparticles under intense light and high temperature conditions. It was found that the number of irradiation shots conducted with the

  6. Light treatment improves sleep quality and negative affectiveness in high arctic residents during winter.

    Science.gov (United States)

    Paul, Michel A; Love, Ryan J; Hawton, Andrea; Brett, Kaighley; McCreary, Donald R; Arendt, Josephine

    2015-01-01

    The seasonal extremes of photoperiod in the high Arctic place particular strain on the human circadian system, which leads to trouble sleeping and increased feelings of negative affect in the winter months. To qualify for our study, potential participants had to have been at Canadian Forces Station (CFS) Alert (82° 30' 00″ N) for at least 2 weeks. Subjects filled out questionnaires regarding sleep difficulty, psychological well-being and mood and wore Actigraphs to obtain objective sleep data. Saliva was collected at regular intervals on two occasions, 2 weeks apart, to measure melatonin and assess melatonin onset. Individuals with a melatonin rhythm that was in disaccord with their sleep schedule were given individualized daily light treatment interventions based on their pretreatment salivary melatonin profile. The light treatment prescribed to seven of the twelve subjects was effective in improving sleep quality both subjectively, based on questionnaire results, and objectively, based on the actigraphic data. The treatment also caused a significant reduction in negative affect among the participants. Since the treatment is noninvasive and has minimal associated side effects, our results support the use of the light visors at CFS Alert and other northern outposts during the winter for individuals who are experiencing sleep difficulty or low mood. PMID:25580574

  7. GAMMA-LIGHT: High-Energy Astrophysics above 10 MeV

    CERN Document Server

    Morselli, Aldo; Barbiellini, Guido; Bonvicini, Walter; Bulgarelli, Andrea; Cardillo, Martina; Chen, Andrew; Coppi, Paolo; Di Giorgio, Anna Maria; Donnarumma, Immacolata; Del Monte, Ettore; Fioretti, Valentina; Galli, Marcello; Giusti, Manuela; Ferrari, Attilio; Fuschino, Fabio; Giommi, Paolo; Giuliani, Andrea; Labanti, Claudio; Lipari, Paolo; Longo, Francesco; Marisaldi, Martino; Molinari, Sergio; Muñoz, Carlos; Neubert, Torsten; Orleanski, Piotr; Paredes, Josep M; Pérez-García, M Ángeles; Piano, Giovanni; Picozza, Piergiorgio; Pilia, Maura; Pittori, Carlotta; Pucella, Gianluca; Sabatini, Sabina; Striani, Edoardo; Tavani, Marco; Trois, Alessio; Vacchi, Andrea; Vercellone, Stefano; Verrecchia, Francesco; Vittorini, Valerio; Zdziarski, Andrzej

    2014-01-01

    High-energy phenomena in the cosmos, and in particular processes leading to the emission of gamma- rays in the energy range 10 MeV - 100 GeV, play a very special role in the understanding of our Universe. This energy range is indeed associated with non-thermal phenomena and challenging particle acceleration processes. The technology involved in detecting gamma-rays is challenging and drives our ability to develop improved instruments for a large variety of applications. GAMMA-LIGHT is a Small Mission which aims at an unprecedented advance of our knowledge in many sectors of astrophysical and Earth studies research. The Mission will open a new observational window in the low-energy gamma-ray range 10-50 MeV, and is configured to make substantial advances compared with the previous and current gamma-ray experiments (AGILE and Fermi). The improvement is based on an exquisite angular resolution achieved by GAMMA-LIGHT using state-of-the-art Silicon technology with innovative data acquisition. GAMMA-LIGHT will add...

  8. Ice Fog and Light Snow Measurements Using a High-Resolution Camera System

    Science.gov (United States)

    Kuhn, Thomas; Gultepe, Ismail

    2016-09-01

    Ice fog, diamond dust, and light snow usually form over extremely cold weather conditions, and they affect both visibility and Earth's radiative energy budget. Prediction of these hydrometeors using models is difficult because of limited knowledge of the microphysical properties at the small size ranges due to measurement issues. These phenomena need to be better represented in forecast and climate models; therefore, in addition to remote sensing accurate measurements using ground-based instrumentation are required. An imaging instrument, aimed at measuring ice fog and light snow particles, has been built and is presented here. The ice crystal imaging (ICI) probe samples ice particles into a vertical, tapered inlet with an inlet flow rate of 11 L min-1. A laser beam across the vertical air flow containing the ice crystals allows for their detection by a photodetector collecting the scattered light. Detected particles are then imaged with high optical resolution. An illuminating LED flash and image capturing are triggered by the photodetector. In this work, ICI measurements collected during the fog remote sensing and modeling (FRAM) project, which took place during Winter of 2010-2011 in Yellowknife, NWT, Canada, are summarized and challenges related to measuring small ice particles are described. The majority of ice particles during the 2-month-long campaign had sizes between 300 and 800 μm. During ice fog events the size distribution measured had a lower mode diameter of 300 μm compared to the overall campaign average with mode at 500 μm.

  9. Ice Fog and Light Snow Measurements Using a High-Resolution Camera System

    Science.gov (United States)

    Kuhn, Thomas; Gultepe, Ismail

    2016-07-01

    Ice fog, diamond dust, and light snow usually form over extremely cold weather conditions, and they affect both visibility and Earth's radiative energy budget. Prediction of these hydrometeors using models is difficult because of limited knowledge of the microphysical properties at the small size ranges due to measurement issues. These phenomena need to be better represented in forecast and climate models; therefore, in addition to remote sensing accurate measurements using ground-based instrumentation are required. An imaging instrument, aimed at measuring ice fog and light snow particles, has been built and is presented here. The ice crystal imaging (ICI) probe samples ice particles into a vertical, tapered inlet with an inlet flow rate of 11 L min-1. A laser beam across the vertical air flow containing the ice crystals allows for their detection by a photodetector collecting the scattered light. Detected particles are then imaged with high optical resolution. An illuminating LED flash and image capturing are triggered by the photodetector. In this work, ICI measurements collected during the fog remote sensing and modeling (FRAM) project, which took place during Winter of 2010-2011 in Yellowknife, NWT, Canada, are summarized and challenges related to measuring small ice particles are described. The majority of ice particles during the 2-month-long campaign had sizes between 300 and 800 μm. During ice fog events the size distribution measured had a lower mode diameter of 300 μm compared to the overall campaign average with mode at 500 μm.

  10. Use of filtered combustion light and backlit high-speed images in combustion stability studies

    Science.gov (United States)

    Pomeroy, B.; Wierman, M.; Anderson, W. E.

    2013-03-01

    The measurement of the heat release is a key part of characterizing the combustion instability, but it is extremely difficult to directly measure in a rocket combustion chamber due to high temperatures and pressures, as well as the complexity of the turbulent reacting flowfield, which can often have more than one phase. Measuring the light emission from excited species during a combustion is a nonintrusive method to approximate a global heat release in combustion chambers. CH∗ and OH∗ are the most often measured species. This paper outlines methods of using a filtered combustion light to obtain a better understanding of the physical mechanisms active in the combustion instability, and to provide partial validation data for predictive models of the combustion instability. Methods that are discussed include Rayleigh index, phase-angle plots, a proper orthogonal decomposition (POD), and a simultaneous imaging of combustion light and backlit flow structures. The methods are applied to an experiment that studies the effects of imposed transverse oscillations on a gas-centered, swirl-coaxial injector element.

  11. Highly efficient non-doped blue organic light emitting devices based on anthracene–pyridine derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Haykir, Gulcin; Tekin, Emine; Atalar, Taner; Türksoy, Figen

    2013-12-02

    Four different 2-(10-aryl)anthracen-9-yl)pyridine derivatives 5a–d were synthesized via the Suzuki cross-coupling reaction. Photo-physical characteristics of these materials having strong electron donating or electron withdrawing groups were explored. Multilayer small molecule organic light emitting diodes without any dopant were fabricated in the following sequence: Indium tin oxide/4,4′-bis(N-(1-naphthyl)-N-phenylamino)biphenyl (50 nm)/5a–d (30 nm)/4,7-diphenyl-1,10-phenanthroline (30 nm)/LiF/Al. The electroluminescent property of the device fabricated with 5d as an emitter exhibited a high external quantum efficiency of 3.80% (at around 1 mA/cm{sup 2}) with Commission Internationale De L'Eclairage coordinates of (0.14, 0.25). - Highlights: • Synthesis and characterization of 2-(10-aryl)anthracen-9-yl)pyridine derivatives • Thermal, photophysical and electrochemical properties of anthracene derivatives • Emitters from blue to greenish blue for organic light emitting device applications • Organic light emitting device fabrication and characterization of 2-(10-aryl)anthracen-9-yl)pyridine derivatives.

  12. ZnO PN Junctions for Highly-Efficient, Low-Cost Light Emitting Diodes

    Energy Technology Data Exchange (ETDEWEB)

    David P. Norton; Stephen Pearton; Fan Ren

    2007-09-30

    By 2015, the US Department of Energy has set as a goal the development of advanced solid state lighting technologies that are more energy efficient, longer lasting, and more cost-effective than current technology. One approach that is most attractive is to utilize light-emitting diode technologies. Although III-V compound semiconductors have been the primary focus in pursuing this objective, ZnO-based materials present some distinct advantages that could yield success in meeting this objective. As with the nitrides, ZnO is a direct bandgap semiconductor whose gap energy (3.2 eV) can be tuned from 3.0 to 4 eV with substitution of Mg for higher bandgap, Cd for lower bandgap. ZnO has an exciton binding energy of 60 meV, which is larger than that for the nitrides, indicating that it should be a superior light emitting semiconductor. Furthermore, ZnO thin films can be deposited at temperatures on the order of 400-600 C, which is significantly lower than that for the nitrides and should lead to lower manufacturing costs. It has also been demonstrated that functional ZnO electronic devices can be fabricated on inexpensive substrates, such as glass. Therefore, for the large-area photonic application of solid state lighting, ZnO holds unique potential. A significant impediment to exploiting ZnO in light-emitting applications has been the absence of effective p-type carrier doping. However, the recent realization of acceptor-doped ZnO material overcomes this impediment, opening the door to ZnO light emitting diode development In this project, the synthesis and properties of ZnO-based pn junctions for light emitting diodes was investigated. The focus was on three issues most pertinent to realizing a ZnO-based solid state lighting technology, namely (1) achieving high p-type carrier concentrations in epitaxial and polycrystalline films, (2) realizing band edge emission from pn homojunctions, and (3) investigating pn heterojunction constructs that should yield efficient light

  13. High-Efficiency Saturated Red Bilayer Light-Emitting Diodes: Comparative Studies with Devices from Blend of the Same Light-Emitting Polymers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yong; HOU Qiong; MO Yue-Qi; PENG Jun-Biao; CAO Yong

    2006-01-01

    @@ High-efficient saturated red light-emitting diodes are realized based on a bilayer of phenyl-substituted poly [p-phenylene vinylene] derivative (P-PPV) and copolymer (PFO-DBT15) of 9,9-dioctylfluorene (DOF) and 4,7-di2-thienyl-2,1,3-benzothiadiazole (DBT).

  14. Light dark sector searches at low-energy high-luminosity e + e - colliders

    Science.gov (United States)

    Yin, Peng-Fei; Zhu, Shou-Hua

    2016-10-01

    Although the standard model (SM) is extremely successful, there are various motivations for considering the physics beyond the SM. For example, the SM includes neither dark energy nor dark matter, which has been confirmed through astrophysical observations. Examination of the dark sector, which contains new, light, weakly-coupled particles at the GeV scale or lower, is well motivated by both theory and dark-matter detection experiments. In this mini-review, we focus on one particular case in which these new particles can interact with SM particles through a kinematic mixing term between U(1) gauge bosons. The magnitude of the mixing can be parameterized by a parameter є. Following a brief overview of the relevant motivations and the constraints determined from numerous experiments, we focus on the light dark sector phenomenology at low-energy high-luminosity e + e - colliders. These colliders are ideal for probing the new light particles, because of their large production rates and capacity for precise resonance reconstruction. Depending on the details of a given model, the typical observed signatures may also contain multi lepton pairs, displaced vertices, and/or missing energy. Through the use of extremely large data samples from existing experiments, such as KLOE, CLEO, BABAR, Belle, and BESIII, the magnitude of the mixing can be parameterized by a parameter є experiments with larger datasets will provide opportunities for the discovery of new particles in the dark sector, or for stricter upper limits on є. Once the light dark sector is confirmed, the particle physics landscape will be changed significantly.

  15. Light dark sector searches at low-energy high-luminosity e + e - colliders

    Science.gov (United States)

    Yin, Peng-Fei; Zhu, Shou-Hua

    2016-10-01

    Although the standard model (SM) is extremely successful, there are various motivations for considering the physics beyond the SM. For example, the SM includes neither dark energy nor dark matter, which has been confirmed through astrophysical observations. Examination of the dark sector, which contains new, light, weakly-coupled particles at the GeV scale or lower, is well motivated by both theory and dark-matter detection experiments. In this mini-review, we focus on one particular case in which these new particles can interact with SM particles through a kinematic mixing term between U(1) gauge bosons. The magnitude of the mixing can be parameterized by a parameter є. Following a brief overview of the relevant motivations and the constraints determined from numerous experiments, we focus on the light dark sector phenomenology at low-energy high-luminosity e + e - colliders. These colliders are ideal for probing the new light particles, because of their large production rates and capacity for precise resonance reconstruction. Depending on the details of a given model, the typical observed signatures may also contain multi lepton pairs, displaced vertices, and/or missing energy. Through the use of extremely large data samples from existing experiments, such as KLOE, CLEO, BABAR, Belle, and BESIII, the magnitude of the mixing can be parameterized by a parameter є < 10-4-10-3 constraint can be obtained. Obviously, future experiments with larger datasets will provide opportunities for the discovery of new particles in the dark sector, or for stricter upper limits on є. Once the light dark sector is confirmed, the particle physics landscape will be changed significantly.

  16. Dimming-discrete-multi-tone (DMT) for simultaneous color control and high speed visible light communication.

    Science.gov (United States)

    Sung, Jiun-Yu; Chow, Chi-Wai; Yeh, Chien-Hung

    2014-04-01

    Visible light communication (VLC) using LEDs has attracted significant attention recently for the future secure, license-free and electromagnetic-interference (EMI)-free optical wireless communication. Dimming technique in LED lamp is advantageous for energy efficiency. Color control can be performed in the red-green-blue (RGB) LEDs by using dimming technique. It is highly desirable to employ dimming technique to provide simultaneous color and dimming control and high speed VLC. Here, we proposed and demonstrated a LED dimming control using dimming-discrete-multi-tone (DMT) modulation. High speed DMT-based VLC with simultaneous color and dimming control is demonstrated for the first time to the best of our knowledge. Demonstration and analyses for several modulation conditions and transmission distances are performed, for instance, demonstrating the data rate of 103.5 Mb/s (using RGB LED) with fast Fourier transform (FFT) size of 512.

  17. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    Science.gov (United States)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  18. High-power light-emitting diode based facility for plant cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Tamulaitis, G [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Duchovskis, P [Lithuanian Institute of Horticulture, Babtai, LT-54333 Kaunas District (Lithuania); Bliznikas, Z [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Breive, K [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Ulinskaite, R [Lithuanian Institute of Horticulture, Babtai, LT-54333 Kaunas District (Lithuania); Brazaityte, A [Lithuanian Institute of Horticulture, Babtai, LT-54333 Kaunas District (Lithuania); Novickovas, A [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania); Zukauskas, A [Institute of Materials Science and Applied Research, Vilnius University, Sauletekio al. 9-III, LT-10222 Vilnius (Lithuania)

    2005-09-07

    Based on perspectives of the development of semiconductor materials systems for high-power light-emitting diodes (LEDs), an illumination facility for greenhouse plant cultivation was designed with the dominating 640 nm photosynthetically active component delivered by AlGaInP LEDs and supplementary components from AlGaN (photothropic action, 455 nm) and AlGaAs (photosynthetic 660 nm and photomorphogenetic 735 nm) LEDs. Photosynthesis intensity, photosynthetic productivity and growth morphology as well as chlorophyll and phytohormone concentrations were investigated in radish and lettuce grown in phytotron chambers under the LED-based illuminators and under high-pressure sodium (HPS) lamps with an equivalent photon flux density. Advantages of the high-power LED-based illuminators over conventional HPS lamps, applicability of AlGaInP LEDs for photosynthesis and control of plant growth by circadian manipulation of a relatively weak far-red component were demonstrated.

  19. High-power light-emitting diode based facility for plant cultivation

    International Nuclear Information System (INIS)

    Based on perspectives of the development of semiconductor materials systems for high-power light-emitting diodes (LEDs), an illumination facility for greenhouse plant cultivation was designed with the dominating 640 nm photosynthetically active component delivered by AlGaInP LEDs and supplementary components from AlGaN (photothropic action, 455 nm) and AlGaAs (photosynthetic 660 nm and photomorphogenetic 735 nm) LEDs. Photosynthesis intensity, photosynthetic productivity and growth morphology as well as chlorophyll and phytohormone concentrations were investigated in radish and lettuce grown in phytotron chambers under the LED-based illuminators and under high-pressure sodium (HPS) lamps with an equivalent photon flux density. Advantages of the high-power LED-based illuminators over conventional HPS lamps, applicability of AlGaInP LEDs for photosynthesis and control of plant growth by circadian manipulation of a relatively weak far-red component were demonstrated

  20. High security chaotic multiple access scheme for visible light communication systems with advanced encryption standard interleaving

    Science.gov (United States)

    Qiu, Junchao; Zhang, Lin; Li, Diyang; Liu, Xingcheng

    2016-06-01

    Chaotic sequences can be applied to realize multiple user access and improve the system security for a visible light communication (VLC) system. However, since the map patterns of chaotic sequences are usually well known, eavesdroppers can possibly derive the key parameters of chaotic sequences and subsequently retrieve the information. We design an advanced encryption standard (AES) interleaving aided multiple user access scheme to enhance the security of a chaotic code division multiple access-based visible light communication (C-CDMA-VLC) system. We propose to spread the information with chaotic sequences, and then the spread information is interleaved by an AES algorithm and transmitted over VLC channels. Since the computation complexity of performing inverse operations to deinterleave the information is high, the eavesdroppers in a high speed VLC system cannot retrieve the information in real time; thus, the system security will be enhanced. Moreover, we build a mathematical model for the AES-aided VLC system and derive the theoretical information leakage to analyze the system security. The simulations are performed over VLC channels, and the results demonstrate the effectiveness and high security of our presented AES interleaving aided chaotic CDMA-VLC system.

  1. Graded Heterojunction of AlGaInP High-brightness Light Emitting Diodes

    Institute of Scientific and Technical Information of China (English)

    LIU Lu; FAN Guang-han; LIAO Chang-jun

    2004-01-01

    A simple model of the graded heterojunction in AlGaInP compound semiconductors was introduced to analyze the band profile. The band profiles are analyzed with the different grading ways but the same grading length and under the different doping densities. The effect of the different grading lengths on the surplus of the potential of the spike to the potential of N region are also analyzed under the different doping densities.Through the experiments,it proves that the performances of high brightness light emitting diodes can be improved by the effects of the graded heterojunction.

  2. High Resolution X-Ray and Light Scattering Studies of Bilayer Smectic A Compounds

    DEFF Research Database (Denmark)

    Litster, J. D.; Als-Nielsen, Jens Aage; Birgeneau, R. J.;

    1979-01-01

    We summarize the results of high resolution X-ray and light scattering studies of the smectic A-nematic transition in cyanobenzylidene-octyloxyaniline, octyloxy-cyanobiphenyl, and octyl-cyanobiphenyl. Pretransitional behavior in the nematic phase is essentially consistent with the He4 analogue pr...... proposed by de Gennes with subtle effects arising from the lack of true long range order in the smectic phase. Elastic constants in the smectic phase show anomalous behavior probably associated with the logarithmically divergent phase fluctuations....

  3. Growth of highly bright-white silica nanowires as diffusive reflection coating in LED lighting.

    Science.gov (United States)

    Xi, Shuang; Shi, Tielin; Zhang, Lei; Liu, Dan; Lai, Wuxing; Tang, Zirong

    2011-12-19

    Large quantities of silica nanowires were synthesized through thermal treatment of silicon wafer in the atmosphere of N(2)/H(2)(5%) under 1200 °C with Cu as catalyst. These nanowires grew to form a natural bright-white mat, which showed highly diffusive reflectivity over the UV-visible range, with more than 60% at the whole range and up to 88% at 350 nm. The utilization of silica nanowires in diffusive coating on the reflector cup of LED is demonstrated, which shows greatly improved light distribution comparing with the specular reflector cup. It is expected that these nanowires can be promising coating material for optoelectronic applications.

  4. Characterization of a High Efficiency, Ultrashort Pulse Shaper Incorporating a Reflective 4096-Element Spatial Light Modulator.

    Science.gov (United States)

    Field, Jeffrey J; Planchon, Thomas A; Amir, Wafa; Durfee, Charles G; Squier, Jeff A

    2007-10-15

    We demonstrate pulse shaping via arbitrary phase modulation with a reflective, 1×4096 element, liquid crystal spatial light modulator (SLM). The unique construction of this device provides a very high efficiency when the device is used for phase modulation only in a prism based pulse shaper, namely 85%. We also present a single shot characterization of the SLM in the spatial domain and a single shot characterization of the pulse shaper in the spectral domain. These characterization methods provide a detailed picture of how the SLM modifies the spectral phase of an ultrashort pulse.

  5. Organic solar cells as high-speed data detectors for visible light communication

    OpenAIRE

    Zhang, Shuyu; Tsonev, Dobroslav; Videv, Stefan; Ghosh, Sanjay; Turnbull, Graham A.; Ifor D. W. Samuel; Haas, Harald

    2015-01-01

    Engineering and Physical Sciences Research Council (EPSRC) (EP/I00243X, EP/K00042X/1, EP/K008757/1). We show that solar cells, widely used in portable devices for power generation, can simultaneously extract a high-speed data signal in an optical wireless communication link. This Letter reports, to the best of our knowledge, the first use of an organic solar cell as an energy-harvesting receiver for visible light communications (VLCs). While generating maximum power in the cell, the commun...

  6. Synthesis of highly functionalized polycyclic quinoxaline derivatives using visible-light photoredox catalysis.

    Science.gov (United States)

    He, Zhi; Bae, Minwoo; Wu, Jie; Jamison, Timothy F

    2014-12-22

    A mild and facile method for preparing highly functionalized pyrrolo[1,2-a]quinoxalines and other nitrogen-rich heterocycles, each containing a quinoxaline core or an analogue thereof, has been developed. The novel method features a visible-light-induced decarboxylative radical coupling of ortho-substituted arylisocyanides and radicals generated from phenyliodine(III) dicarboxylate reagents and exhibits excellent functional group compatibility. A wide range of quinoxaline heterocycles have been prepared. Finally, a telescoped preparation of these polycyclic compounds by integration of the in-line isocyanide formation and photochemical cyclization has been established in a three-step continuous-flow system.

  7. Engineering for high heat loads on ALS [Advanced Light Source] beamlines

    International Nuclear Information System (INIS)

    This paper discussed general thermal engineering problems and specific categories of thermal design issues for high photon flux beam lines at the LBL Advanced Light Source: thermal distortion of optical surfaces and elevated temperatures of thermal absorbers receiving synchrotron radiation. A generic design for water-cooled heat absorbers is described for use with ALS photon shutters, beam defining apertures, and heat absorbing masks. Also, results of in- situ measurements of thermal distortion of a water-cooled mirror in a synchrotron radiation beam line are compared with calculated performance estimates. 17 refs., 2 figs

  8. Search for light-speed anisotropies using Compton scattering of high-energy electrons

    CERN Document Server

    Rebreyend, Dominique

    2010-01-01

    Based on the high sensitivity of Compton scattering off ultra relativistic electrons, the possibility of anisotropies in the speed of light is investigated. The result discussed in this contribution is based on the gamma-ray beam of the ESRF's GRAAL facility (Grenoble, France) and the search for sidereal variations in the energy of the Compton-edge photons. The absence of oscillations yields the two-sided limit of 1.6 x 10^{-14} at 95 % confidence level on a combination of photon and electron coefficients of the minimal Standard Model Extension (mSME). This new constraint provides an improvement over previous bounds by one order of magnitude.

  9. High flux, narrow bandwidth compton light sources via extended laser-electron interactions

    Energy Technology Data Exchange (ETDEWEB)

    Barty, V P

    2015-01-13

    New configurations of lasers and electron beams efficiently and robustly produce high flux beams of bright, tunable, polarized quasi-monoenergetic x-rays and gamma-rays via laser-Compton scattering. Specifically, the use of long-duration, pulsed lasers and closely-spaced, low-charge and low emittance bunches of electron beams increase the spectral flux of the Compton-scattered x-rays and gamma rays, increase efficiency of the laser-electron interaction and significantly reduce the overall complexity of Compton based light sources.

  10. Highly predictable photosynthetic production in natural macroalgal communities from incoming and absorbed light

    DEFF Research Database (Denmark)

    Middelboe, Anne Lise; Sand-Jensen, Kaj; Binzer, Thomas

    2006-01-01

    (canopy absorptance, species number and thallus metabolism). Detached thalli of dominant species performed optimally at different times of the year, but showed no general seasonal changes in photosynthetic features. Production capacity of communities at high light varied only 1.8-fold over the year...... metabolically active, and (3) maximum possible absorptance at 100% constrains the total photosynthesis of all species. Our results imply that the photosynthetic production of macroalgal communities is more predictable than their complex and dynamic nature suggest and that predictions are possible over wide...

  11. Fundamental algorithm and computational codes for the light beam propagation in high power laser system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fundamental algorithm of light beam propagation in high powerlaser system is investigated and the corresponding computational codes are given. It is shown that the number of modulation ring due to the diffraction is related to the size of the pinhole in spatial filter (in terms of the times of diffraction limitation, i.e. TDL) and the Fresnel number of the laser system; for the complex laser system with multi-spatial filters and free space, the system can be investigated by the reciprocal rule of operators.

  12. Fatty acids by high-performance liquid chromatography and evaporative light-scattering detector.

    Science.gov (United States)

    Bravi, Elisabetta; Perretti, Giuseppe; Montanari, Luigi

    2006-11-17

    A high-performance liquid chromatographic (HPLC) separation method with an evaporative light-scattering detector (ELSD) has been developed for the separation and quantitative analysis of fatty acid methyl esters (FAME) in three different oils. Reverse-phased C18 HPLC separation of 13 FAME is achieved using a methanol/water eluent mixture. The retention times (RT) reflect the elution behavior of these compounds on C18 reversed-phase HPLC. The proposed method is tested on: soybean oil (Glycine max L.) as reference sample, rice bran oil (Oryza sativa L.), pumpkin seed oil (Cucurbita pepo L.) and algal oil (Arthrospira platensis Nordst.). PMID:17007865

  13. Amplified light storage with high fidelity based on electromagnetically induced transparency in rubidium atomic vapor

    Science.gov (United States)

    Zhou, Wei; Wang, Gang; Tang, Guoyu; Xue, Yan

    2016-06-01

    By using slow and stored light based on electromagnetically induced transparency (EIT), we theoretically realize the storage of optical pulses with enhanced efficiency and high fidelity in ensembles of warm atoms in 85Rb vapor cells. The enhancement of storage efficiency is achieved by introducing a pump field beyond three-level configuration to form a N-type scheme, which simultaneously inhibits the undesirable four-wave mixing effect while preserves its fidelity. It is shown that the typical storage efficiency can be improved from 29% to 53% with the application of pump field. Furthermore, we demonstrate that this efficiency decreases with storage time and increases over unity with optical depth.

  14. High luminance organic light-emitting diodes with efficient multi-walled carbon nanotube hole injectors

    OpenAIRE

    Shi, S; Silva, SRP

    2012-01-01

    We report high luminance organic light-emitting diodes by use of acid functionalized multi-walled carbon nanotube (o-MWCNTs) as efficient hole injector electrodes with a simple and solution processable device structure. At only 10 V, the luminance can reach nearly 50,000 cd/m2 with an external quantum efficiency over 2% and a current efficiency greater than 21 cd/A. The investigation of hole-only devices shows that the mechanism for hole injection is changed from injection limited to bulk lim...

  15. Spectrometer control subsystem with high level functionality for use at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    We have developed a subsystem capable of controlling stepping motors in a wide variety of vuv and x-ray spectrometers to be used at the National Sychrotron Light Source. The subsystem is capable of controlling up to 15 motors with encoder readback and ramped acceleration/deceleration. Both absolute and incremental encoders may be used in any mixture. Function commands to the subsystem are communicated via ASCII characters over an asynchronous serial link in a well-defined protocol in decipherable English. Thus the unit can be controlled via write statements in a high-level language. Details of hardware implementation will be presented

  16. Nanocarbon Paper: Flexible, High Temperature, Planar Lighting with Large Scale Printable Nanocarbon Paper (Adv. Mater. 23/2016).

    Science.gov (United States)

    Bao, Wenzhong; Pickel, Andrea D; Zhang, Qing; Chen, Yanan; Yao, Yonggang; Wan, Jiayu; Fu, Kun Kelvin; Wang, Yibo; Dai, Jiaqi; Zhu, Hongli; Drew, Dennis; Fuhrer, Michael; Dames, Chris; Hu, Liangbing

    2016-06-01

    On page 4684, C. Dames, L. Hu and co-workers report highly efficient, broadband lighting from printed hybrid nanocarbon structures with carbon nanotubes and reduced graphene oxides. The fast response and excellent stability of the flexible lighting can find applications in a range of emerging applications where the shape and format, as well as being lightweight, are important. PMID:27281044

  17. Altered depth of the olfactory sulcus in ultra high-risk individuals and patients with psychotic disorders.

    Science.gov (United States)

    Takahashi, Tsutomu; Wood, Stephen J; Yung, Alison R; Nelson, Barnaby; Lin, Ashleigh; Yücel, Murat; Phillips, Lisa J; Nakamura, Yumiko; Suzuki, Michio; Brewer, Warrick J; Proffitt, Tina M; McGorry, Patrick D; Velakoulis, Dennis; Pantelis, Christos

    2014-03-01

    A shallow olfactory sulcus has been reported in schizophrenia, possibly reflecting abnormal forebrain development during early gestation. However, it remains unclear whether this anomaly exists prior to the onset of psychosis and/or differs according to illness stage. In the current study, magnetic resonance imaging was used to investigate the length and depth of the olfactory sulcus in 135 ultra high-risk (UHR) individuals [of whom 52 later developed psychosis (UHR-P) and 83 did not (UHR-NP)], 162 patients with first-episode psychosis (FEP), 89 patients with chronic schizophrenia, and 87 healthy controls. While there was no group difference in the length of the sulcus, UHR-P subjects had significantly shallower olfactory sulcus at baseline as compared with UHR-NP and control subjects. The depth of this sulcus became increasingly more superficial as one moved from UHR-P subjects to FEP patients to chronic schizophrenia patients. Finally, the depth of the olfactory sulcus in the UHR-P subjects was negatively correlated with the severity of negative symptoms. These findings suggest that the altered depth of the olfactory sulcus, which exists before psychosis onset, could be predictive of transition to psychosis, but also suggest ongoing changes of the sulcus morphology during the course of the illness.

  18. Altered hypothalamo-pituitary-adrenal and sympatho-adrenomedullary activities in rats bred for high anxiety: central and peripheral correlates.

    Science.gov (United States)

    Salomé, Nicolas; Viltart, Odile; Lesage, Jean; Landgraf, Rainer; Vieau, Didier; Laborie, Christine

    2006-07-01

    Wistar rats have been selectively bred for high (HABs) or low (LABs) anxiety-related behavior based on results obtained in the elevated-plus maze. They also display robust behavioral differences in a variety of additional anxiety tests. The present study was undertaken to further characterize physiological substrates that contribute to the expression of this anxious trait. We report changes in brain and peripheral structures involved in the regulation of both the hypothalamo-pituitary-adrenal (HPA) and sympatho-adrenal systems. Following exposure to a mild stressor, HABs displayed a hyper-reactivity of the HPA axis associated with a hypo-reactivity of the sympatho-adrenal system and a lower serotonin turnover in the lateral septum and amygdala. At rest, HABs showed a higher adrenal weight and lower tyrosine hydroxylase and phenylethanolamine-N-methyltransferase mRNAs expression in their adrenals than LABs. In the anterior pituitary, HABs also exhibited increased proopiomelanocortin and decreased vasopressin V1b receptor mRNAs expression, whereas glucocorticoid receptor mRNA levels remained unchanged. These results indicate that the behavioral phenotype of HABs is associated with peripheral and central alterations of endocrine mechanisms involved in stress response regulation. Data are discussed in relation to coping strategies adopted to manage stressful situations. In conclusion, HABs can be considered as an useful model to study the etiology and pathophysiology of stress-related disorders and their neuroendocrine substrates. PMID:16632209

  19. Fabrication and property analysis of AIGalnP red light LED with high bright

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The LED with DBR and enhancing transmission film was grown by MOCVD. At 20 mA DC injection current, the LED peak wavelength was 623 nm, the light intensity was 200 mcd, and the output light power was 2.14 mW. The light intensity and output light power have been improved than traditional LED.

  20. Single objective light-sheet microscopy for high-speed whole-cell 3D super-resolution.

    Science.gov (United States)

    Meddens, Marjolein B M; Liu, Sheng; Finnegan, Patrick S; Edwards, Thayne L; James, Conrad D; Lidke, Keith A

    2016-06-01

    We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet. PMID:27375939

  1. High-brightness semipolar (2021¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications.

    Science.gov (United States)

    Shen, Chao; Ng, Tien Khee; Leonard, John T; Pourhashemi, Arash; Nakamura, Shuji; DenBaars, Steven P; Speck, James S; Alyamani, Ahmed Y; El-Desouki, Munir M; Ooi, Boon S

    2016-06-01

    A high-brightness, droop-free, and speckle-free InGaN/GaN quantum well blue superluminescent diode (SLD) was demonstrated on a semipolar (2021¯) GaN substrate. The 447-nm emitting SLD has a broad spectral linewidth of 6.3 nm at an optical power of 123 mW. A peak optical power of 256 mW was achieved at 700 mA CW injection current. By combining YAG:Ce phosphor, SLD-generated white light shows a color-rendering index (CRI) of 68.9 and a correlated color temperature (CCT) of 4340 K. The measured frequency response of the SLD revealed a -3  dB bandwidth of 560 MHz, thus demonstrating the feasibility of the device for both solid-state lighting (SSL) and visible-light communication (VLC) applications. PMID:27244426

  2. High-brightness semipolar (2021¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications

    KAUST Repository

    Shen, Chao

    2016-05-25

    A high-brightness, droop-free, and speckle-free InGaN/GaN quantum well blue superluminescent diode (SLD) was demonstrated on a semipolar (2021) GaN substrate. The 447-nm emitting SLD has a broad spectral linewidth of 6.3 nm at an optical power of 123 mW. A peak optical power of 256 mW was achieved at 700 mA CW injection current. By combining YAG:Ce phosphor, SLD-generated white light shows a color-rendering index (CRI) of 68.9 and a correlated color temperature (CCT) of 4340 K. The measured frequency response of the SLD revealed a -3 dB bandwidth of 560 MHz, thus demonstrating the feasibility of the device for both solid-state lighting (SSL) and visible-light communication (VLC) applications. © 2016 Optical Society of America.

  3. Performance of a ruthenium beam separator used to separate soft x rays from light generated by a high-order harmonic light source.

    Science.gov (United States)

    Ichimaru, Satoshi; Hatayama, Masatoshi; Ohchi, Tadayuki; Gullikson, Eric M; Oku, Satoshi

    2016-02-10

    We describe the design and fabrication of a ruthenium beam separator used to simultaneously attenuate infrared light and reflect soft x rays. Measurements in the infrared and soft x-ray regions showed the beam separator to have a reflectivity of 50%-85% in the wavelength region from 6 to 10 nm at a grazing incidence angle of 7.5 deg and 4.3% at 800 nm and the same angle of grazing incidence, indicating that the amount of attenuation is 0.05-0.09. These results show that this beam separator could provide an effective means for separating IR light from soft x rays in light generated by high-order harmonic generation sources. PMID:26906363

  4. 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication.

    Science.gov (United States)

    Lee, Changmin; Zhang, Chong; Cantore, Michael; Farrell, Robert M; Oh, Sang Ho; Margalith, Tal; Speck, James S; Nakamura, Shuji; Bowers, John E; DenBaars, Steven P

    2015-06-15

    We demonstrate high-speed data transmission with a commercial high power GaN laser diode at 450 nm. 2.6 GHz bandwidth was achieved at an injection current of 500 mA using a high-speed visible light communication setup. Record high 4 Gbps free-space data transmission rate was achieved at room temperature. PMID:26193595

  5. 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication.

    Science.gov (United States)

    Lee, Changmin; Zhang, Chong; Cantore, Michael; Farrell, Robert M; Oh, Sang Ho; Margalith, Tal; Speck, James S; Nakamura, Shuji; Bowers, John E; DenBaars, Steven P

    2015-06-15

    We demonstrate high-speed data transmission with a commercial high power GaN laser diode at 450 nm. 2.6 GHz bandwidth was achieved at an injection current of 500 mA using a high-speed visible light communication setup. Record high 4 Gbps free-space data transmission rate was achieved at room temperature.

  6. 4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication

    KAUST Repository

    Lee, Changmin

    2015-06-10

    We demonstrate high-speed data transmission with a commercial high power GaN laser diode at 450 nm. 2.6 GHz bandwidth was achieved at an injection current of 500 mA using a high-speed visible light communication setup. Record high 4 Gbps free-space data transmission rate was achieved at room temperature.

  7. Graphene–Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M., E-mail: mzkhm73@gmail.com [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Ahmed, E. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Hong, Z.L., E-mail: hong_zhanglian@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Khalid, N.R. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Ahmed, W.; Elhissi, A. [Institute of Nanotechnology and Bioengineering, University of Central Lancashire, School of Medicine and Dentistry, Preston PR1 2HE (United Kingdom)

    2013-11-15

    , great adsorption of dyes, enhanced visible light absorption and fast transfer processes. This research has the potential to provide new avenues for the in situ fabrication of the Graphene–Ag/ZnO composites as highly efficient photocatalysts.

  8. Parallel optical control of spatiotemporal neuronal spike activity using high-frequency digital light processingtechnology

    Directory of Open Access Journals (Sweden)

    Jason eJerome

    2011-08-01

    Full Text Available Neurons in the mammalian neocortex receive inputs from and communicate back to thousands of other neurons, creating complex spatiotemporal activity patterns. The experimental investigation of these parallel dynamic interactions has been limited due to the technical challenges of monitoring or manipulating neuronal activity at that level of complexity. Here we describe a new massively parallel photostimulation system that can be used to control action potential firing in in vitro brain slices with high spatial and temporal resolution while performing extracellular or intracellular electrophysiological measurements. The system uses Digital-Light-Processing (DLP technology to generate 2-dimensional (2D stimulus patterns with >780,000 independently controlled photostimulation sites that operate at high spatial (5.4 µm and temporal (>13kHz resolution. Light is projected through the quartz-glass bottom of the perfusion chamber providing access to a large area (2.76 x 2.07 mm2 of the slice preparation. This system has the unique capability to induce temporally precise action potential firing in large groups of neurons distributed over a wide area covering several cortical columns. Parallel photostimulation opens up new opportunities for the in vitro experimental investigation of spatiotemporal neuronal interactions at a broad range of anatomical scales.

  9. High-contrast top-emitting organic light-emitting devices

    Institute of Scientific and Technical Information of China (English)

    Chen Shu-Fen; Chen Chun-Yan; Yang Yang; Xie Jun; Huang Wei; Shi Hong-Ying; Cheng Fan

    2012-01-01

    In this paper we report on a high-contrast top-emitting organic light-emitting device utilizing a moderate-reflection contrast-enhancement stack and a high refractive index anti-reflection layer.The contrast-enhancement stack consists of a thin metal anode layer,a dielectric bilayer,and a thick metal underlayer.The resulting device,with the optimized contrast-enhancement stack thicknesses of Ni (30 nm)/MgF2 (62 nm)/ZnS (16 nm)/Ni (20 nm) and the 25-nm-thick ZnS anti-reflection layer,achieves a luminous reflectance of 4.01% in the visible region and a maximum current efficiency of 0.99 cd/A (at 62.3 mA/cm2) together with a very stable chromaticity.The contrast ratio reaches 561∶1 at an on-state brightness of 1000 cd/m2 under an ambient illumination of 140 lx.In addition,the anti-reflection layer can als0 enhance the transmissivity of the cathode and improve light out-coupling by the effective restraint of microcavity effects.

  10. Effect of high temperature and excessive light on glutathione content in apple peel

    Institute of Scientific and Technical Information of China (English)

    Jianguang ZHANG; Shaochun CHEN; Yingli LI; Bao DI; Jianqiang ZHANG; Yufang LIU

    2008-01-01

    The present experiment was conducted to examine the changing patterns of glutathione (GSH) contents in apple peel stressed by high temperature and excessive solar radiation. By comparing the parameters of temperature and light conditions where fruits grow with the GSH contents in them, the mutual relationship was disclosed. Meanwhile, the changes of antioxidant capacity of fruits stressed at different levels were studied under artificially controlled conditions in a laboratory. Also, the effect of applying various types of exogenous substances was evaluated on endogenous GSH contents. The results indicated that within a certain range, a positive correlation was found between the stressed extents to which fruits were subject by high temperature and exces-sive light, and GSH contents in fruit peel. Moreover, fruits on southwest (SW) exposure contained a very significantly higher amount of GSH than those on other exposures. In laboratory experiments, it was proved that fruit GSH contents increased with temperatures within a certain range but they declined beyond a given limit. The temperature rising modes had a great influence on fruit GSH contents, and gradual tem-perature increase was favorable to an increase of antioxidant capability in fruit peel, thus providing a theoretical basis for exerting appropriate acclimation on fruits. It was also docu-mented that application of four exogenous formulations could significantly increase the endogenous GSH contents, among which AsA (ascorbit acid)+BA (benzoic acid) and SA (sali-cylic acid) treatments exhibited better results, 33.97% and 31.81% higher than the control, respectively.

  11. Boechera species exhibit species-specific responses to combined heat and high light stress.

    Science.gov (United States)

    Gallas, Genna; Waters, Elizabeth R

    2015-01-01

    As sessile organisms, plants must be able to complete their life cycle in place and therefore tolerance to abiotic stress has had a major role in shaping biogeographical patterns. However, much of what we know about plant tolerance to abiotic stresses is based on studies of just a few plant species, most notably the model species Arabidopsis thaliana. In this study we examine natural variation in the stress responses of five diverse Boechera (Brassicaceae) species. Boechera plants were exposed to basal and acquired combined heat and high light stress. Plant response to these stresses was evaluated based on chlorophyll fluorescence measurements, induction of leaf chlorosis, and gene expression. Many of the Boechera species were more tolerant to heat and high light stress than A. thaliana. Gene expression data indicates that two important marker genes for stress responses: APX2 (Ascorbate peroxidase 2) and HsfA2 (Heat shock transcription factor A2) have distinct species-specific expression patterns. The findings of species-specific responses and tolerance to stress indicate that stress pathways are evolutionarily labile even among closely related species.

  12. The effect of high frequency sound on Culicoides numbers collected with suction light traps

    Directory of Open Access Journals (Sweden)

    Gert J. Venter

    2012-04-01

    Full Text Available Culicoides midges (Diptera: Ceratopogonidae, are involved in the transmission of various pathogens that cause important diseases of livestock worldwide. The use of insect repellents to reduce the attack rate of these insects on livestock could play an important role as part of an integrated control programme against diseases transmitted by these midges. The objective of this study was to determine whether high frequency sound has any repellent effect on Culicoides midges. The number of midges collected with 220 V Onderstepoort white light traps fitted with electronic mosquito repellents (EMRs, emitting 5-20 KHz multi-frequency sound waves, was compared with that of two untreated traps. Treatments were rotated in two replicates of a 4 x 4 randomised Latin square design. Although fewer midges were collected in the two traps fitted with EMRs, the average number collected over eight consecutive nights was not significantly different. The EMRs also had no influence on any of the physiological groups of Culicoides imicola Kieffer or the species composition of the Culicoides population as determined with light traps. The results indicate that high frequency sound has no repellent effect on Culicoides midges. There is therefore no evidence to support their promotion or use in the protection of animals against pathogens transmitted by Culicoides midges.

  13. A Flexile and High Precision Calibration Method for Binocular Structured Light Scanning System

    Directory of Open Access Journals (Sweden)

    Jianying Yuan

    2014-01-01

    Full Text Available 3D (three-dimensional structured light scanning system is widely used in the field of reverse engineering, quality inspection, and so forth. Camera calibration is the key for scanning precision. Currently, 2D (two-dimensional or 3D fine processed calibration reference object is usually applied for high calibration precision, which is difficult to operate and the cost is high. In this paper, a novel calibration method is proposed with a scale bar and some artificial coded targets placed randomly in the measuring volume. The principle of the proposed method is based on hierarchical self-calibration and bundle adjustment. We get initial intrinsic parameters from images. Initial extrinsic parameters in projective space are estimated with the method of factorization and then upgraded to Euclidean space with orthogonality of rotation matrix and rank 3 of the absolute quadric as constraint. Last, all camera parameters are refined through bundle adjustment. Real experiments show that the proposed method is robust, and has the same precision level as the result using delicate artificial reference object, but the hardware cost is very low compared with the current calibration method used in 3D structured light scanning system.

  14. Visible light photooxidative performance of a high-nuclearity molecular bismuth vanadium oxide cluster

    Directory of Open Access Journals (Sweden)

    Johannes Tucher

    2014-05-01

    Full Text Available The visible light photooxidative performance of a new high-nuclearity molecular bismuth vanadium oxide cluster, H3[{Bi(dmso3}4V13O40], is reported. Photocatalytic activity studies show faster reaction kinetics under anaerobic conditions, suggesting an oxygen-dependent quenching of the photoexcited cluster species. Further mechanistic analysis shows that the reaction proceeds via the intermediate formation of hydroxyl radicals which act as oxidant. Trapping experiments using ethanol as a hydroxyl radical scavenger show significantly decreased photocatalytic substrate oxidation in the presence of EtOH. Photocatalytic performance analyses using monochromatic visible light irradiation show that the quantum efficiency Φ for indigo photooxidation is strongly dependent on the irradiation wavelength, with higher quantum efficiencies being observed at shorter wavelengths (Φ395nm ca. 15%. Recycling tests show that the compound can be employed as homogeneous photooxidation catalyst multiple times without loss of catalytic activity. High turnover numbers (TON ca. 1200 and turnover frequencies up to TOF ca. 3.44 min−1 are observed, illustrating the practical applicability of the cluster species.

  15. High-precision predictions for the light CP-even Higgs boson mass of the MSSM

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, T.; Hollik, W. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Heinemeyer, S. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Rzehak, H. [Freiburg Univ. (Germany). Physikalisches Inst.; Weiglein, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2014-03-15

    For the interpretation of the signal discovered in the Higgs searches at the LHC it will be crucial in particular to discriminate between the minimal Higgs sector realised in the Standard Model (SM) and its most commonly studied extension, the Minimal Supersymmetric SM (MSSM). The measured mass value, having already reached the level of a precision observable with an experimental accuracy of about 500 MeV, plays an important role in this context. In the MSSM the mass of the light CP-even Higgs boson, M{sub h}, can directly be predicted from the other parameters of the model. The accuracy of this prediction should at least match the one of the experimental result. The relatively high mass value of about 126 GeV has led to many investigations where the scalar top quarks are in the multi-TeV range. We improve the prediction for M{sub h} in the MSSM by combining the existing fixed-order result, comprising the full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the way up to the multi-TeV region of the relevant supersymmetric particles. The results are included in the code FeynHiggs.

  16. High efficiency light harvesting by carotenoids in the LH2 complex from photosynthetic bacteria: unique adaptation to growth under low-light conditions.

    Science.gov (United States)

    Magdaong, Nikki M; LaFountain, Amy M; Greco, Jordan A; Gardiner, Alastair T; Carey, Anne-Marie; Cogdell, Richard J; Gibson, George N; Birge, Robert R; Frank, Harry A

    2014-09-25

    Rhodopin, rhodopinal, and their glucoside derivatives are carotenoids that accumulate in different amounts in the photosynthetic bacterium, Rhodoblastus (Rbl.) acidophilus strain 7050, depending on the intensity of the light under which the organism is grown. The different growth conditions also have a profound effect on the spectra of the bacteriochlorophyll (BChl) pigments that assemble in the major LH2 light-harvesting pigment-protein complex. Under high-light conditions the well-characterized B800-850 LH2 complex is formed and accumulates rhodopin and rhodopin glucoside as the primary carotenoids. Under low-light conditions, a variant LH2, denoted B800-820, is formed, and rhodopinal and rhodopinal glucoside are the most abundant carotenoids. The present investigation compares and contrasts the spectral properties and dynamics of the excited states of rhodopin and rhodopinal in solution. In addition, the systematic differences in pigment composition and structure of the chromophores in the LH2 complexes provide an opportunity to explore the effect of these factors on the rate and efficiency of carotenoid-to-BChl energy transfer. It is found that the enzymatic conversion of rhodopin to rhodopinal by Rbl. acidophilus 7050 grown under low-light conditions results in nearly 100% carotenoid-to-BChl energy transfer efficiency in the LH2 complex. This comparative analysis provides insight into how photosynthetic systems are able to adapt and survive under challenging environmental conditions.

  17. Eight week exposure to a high sugar high fat diet results in adiposity gain and alterations in metabolic biomarkers in baboons (Papio hamadryas sp.

    Directory of Open Access Journals (Sweden)

    Tejero M Elizabeth

    2010-10-01

    Full Text Available Abstract Background Baboons (Papio hamadryas Sp. develop features of the cardiometabolic syndrome and represent a clinically-relevant animal model in which to study the aetiology of the disorder. To further evaluate the baboon as a model for the study of the cardiometabolic syndrome, we developed a high sugar high fat diet and hypothesized that it could be used to induce adiposity gain and affect associated circulating biomarkers. Methods We developed a diet enriched with monosaccharides and saturated fatty acids that was composed of solid and liquid energy sources. We provided a group of baboons (n = 9 ad libitum access to this diet for 8 weeks. Concurrently, a control group (n = 6 was maintained with ad libitum access to a low sugar low fat baseline diet and normal water for 8 weeks. Body composition was determined by dual-energy X-ray absorptiometry and circulating metabolic biomarkers were measured using standard methodology before and after the 8 week study period. Results Neither body composition nor circulating biomarkers changed in the control group. Following the 8 weeks, the intervention group had a significant increase in fat mass (1.71 ± 0.98 vs. 3.23 ± 1.70 kg, p = 0.004, triglyceride (55 ± 13 vs. 109 ± 67 mg/dL, p = 0.006,, and leptin (1.19 ± 1.40 vs. 3.29 ± 2.32 ng/mL, p = 0.001 and a decline in adiponectin concentrations (33530 ± 9744 vs. 23330 ± 7863 ng/mL, p = 0.002. Percentage haemoglobin A1C (4.0 ± 0.3 vs. 6.0 ± 1.4, p = 0.002 also increased in the intervention group. Conclusions Our findings indicate that when exposed to a high sugar high fat diet, young adult male baboons develop increased body fat and triglyceride concentrations, altered adipokine concentrations, and evidence of altered glucose metabolism. Our findings are in keeping with observations in humans and further demonstrate the potential utility of this highly clinically-relevant animal model for studying diet-induced metabolic dysregulation.

  18. High-density G-centers, light-emitting point defects in silicon crystal

    Directory of Open Access Journals (Sweden)

    Koichi Murata

    2011-09-01

    Full Text Available We propose a new method of creating light-emitting point defects, or G-centers, by modifying a silicon surface with hexamethyldisilazane followed by laser annealing of the surface region. This laser annealing process has two advantages: creation of highly dense G-centers by incorporating carbon atoms into the silicon during heating; freezing in the created G-centers during rapid cooling. The method provides a surface region of up to 200 nm with highly dense carbon atoms of up to 4 × 1019 cm−3 to create G-centers, above the solubility limit of carbon atoms in silicon crystal (3 × 1017 cm−3. Photoluminescence measurement reveals that the higher-speed laser annealing produces stronger G-center luminescence. We demonstrate electrically-driven emission from the G-centers in samples made using our new method.

  19. Effect of ion concentration on slow light propagation in highly doped erbium fibers

    Science.gov (United States)

    Melle, Sonia; Calderón, Oscar G.; Carreño, F.; Cabrera, Eduardo; Antón, M. A.; Jarabo, S.

    2007-11-01

    The effect of ion density on slow light propagation enabled by coherent population oscillations has been experimentally investigated for highly doped erbium fibers at room temperature. We found that fractional delay increases with ion density. A saturation effect in the fractional delay has been observed for doping levels above ˜3150 ppm. Ultra-high ion concentration can simultaneously increase the fractional delay and the bandwidth of the signals. We have studied the propagation of Gaussian pulses along the fibers obtaining fractional delays up to 0.7 for the highest doping levels used. It is shown that pulse power can be used as a control parameter to reduce distortion at different pulse bandwidths.

  20. Thermal analysis of high intensity organic light-emitting diodes based on a transmission matrix approach

    Science.gov (United States)

    Qi, Xiangfei; Forrest, Stephen R.

    2011-12-01

    We use a general transmission matrix formalism to determine the thermal response of organic light-emitting diodes (OLEDs) under high currents normally encountered in ultra-bright illumination conditions. This approach, based on Laplace transforms, facilitates the calculation of transient coupled heat transfer in a multi-layer composite characteristic of OLEDs. Model calculations are compared with experimental data on 5 cm × 5 cm green and red-emitting electrophosphorescent OLEDs under various current drive conditions. This model can be extended to study other complex optoelectronic structures under a wide variety of conditions that include heat removal via conduction, radiation, and convection. We apply the model to understand the effects of using high-thermal- conductivity substrates, and the transient thermal response under pulsed-current operation.

  1. New Soluble Polyimides with High Optical Transparency and Light Color Containing Pendant Trifluoromethyl and Methyl Groups

    Institute of Scientific and Technical Information of China (English)

    汪称意; 赵晓燕; 李光

    2012-01-01

    A new aromatic diamine containing trifluoromethyl and methyl groups, namely a,a-bis(4-amino-3-methylphetayl)-4-(trifluoromethyl)phenylmethane (1), was synthesized from 2-methylaniline and 4-(trifluoromethyl)- benzaldehyde. A series of fluorinated polyimides (PIs) were prepared from the diamine with four commercially available aromatic tetracarboxylic dianhydrides using a one-step high-temperature polycondensation procedure. These obtained PIs showed excellent solubility, with the dissolvability at a concentration of 10 wt% in most solvents, and they could afford flexible and strong films. Thin films of these PIs exhibited high optical transparency and light color, with the cutoff wavelength at 324-357 nm and transmittance higher than 74% at 450 nm. Moreover, these Pls possessed eminent thermal stability and good mechanical properties.

  2. High Precision Stokes Polarimetry for Scattering Light using Wide Dynamic Range Intensity Detector

    Directory of Open Access Journals (Sweden)

    Shibata Shuhei

    2015-01-01

    Full Text Available This paper proposes a Stokes polarimetry for scattering light from a sample surface. To achieve a high accuracy measurement two approaches of an intensity detector and analysis algorism of a Stokes parameter were proposed. The dynamic range of this detector can achieve up to 1010 by combination of change of neutral-density (ND filters having different density and photon counting units. Stokes parameters can be measured by dual rotating of a retarder and an analyzer. The algorism of dual rotating polarimeter can be calibrated small linear diattenuation and linear retardance error of the retarder. This system can measured Stokes parameters from −20° to 70° of its scattering angle. It is possible to measure Stokes parameters of scattering of dust and scratch of optical device with high precision. This paper shows accuracy of this system, checking the polarization change of scattering angle and influence of beam size.

  3. Formulating CdSe quantum dots for white light-emitting diodes with high color rendering index

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fei [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100190 (China); Li, Wan-Nan [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Fu, Shao-Yun, E-mail: syfu@mail.ipc.ac.cn [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China); Xiao, Hong-Mei [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-10-25

    Generation of white light using CdSe quantum dots (QDs) alone presents exciting possibilities for solid state lighting technology. In this work, Cd(Ac){sub 2}·2H{sub 2}O and Na{sub 2}SeSO{sub 3} are used as precursors to synthesize CdSe-QDs with an average diameter ranging from 2.77 to 4.65 nm at the low temperature from 60 to 180 °C. Smaller CdSe-QDs with an average diameter of 2.29 nm are got by an oxidation etching process using H{sub 2}O{sub 2} as oxidant. The structural and optical properties of these QDs are investigated and proper formulation of CdSe QDs with various sizes is carefully designed to achieve white light with a high color rendering index (CRI). It is observed for the first time that the as-prepared white light-emitting diodes from single CdSe-QDs show the Commission Inernationale del’Eclairage coordinate (CIE) of (0.30,0.34) very close to that (0.33,0.33) of pure white light and a high CRI of 84. Owing to these advantages, the as-prepared white light-emitting diodes from a single compound are promising for lighting applications. - Highlights: • CdSe-quantum dots (QDs) with a continuously changing size from 2.31 to 4.74 nm are prepared. • The obtained CdSe-QDs emit lights with tunable colors in the whole visible range. • The obtained mixture sample generates white light with a high color rendering index of 84. • The sample yields white light with the CIE coordinate (0.30, 0.34) very close to that of pure white light.

  4. Formulating CdSe quantum dots for white light-emitting diodes with high color rendering index

    International Nuclear Information System (INIS)

    Generation of white light using CdSe quantum dots (QDs) alone presents exciting possibilities for solid state lighting technology. In this work, Cd(Ac)2·2H2O and Na2SeSO3 are used as precursors to synthesize CdSe-QDs with an average diameter ranging from 2.77 to 4.65 nm at the low temperature from 60 to 180 °C. Smaller CdSe-QDs with an average diameter of 2.29 nm are got by an oxidation etching process using H2O2 as oxidant. The structural and optical properties of these QDs are investigated and proper formulation of CdSe QDs with various sizes is carefully designed to achieve white light with a high color rendering index (CRI). It is observed for the first time that the as-prepared white light-emitting diodes from single CdSe-QDs show the Commission Inernationale del’Eclairage coordinate (CIE) of (0.30,0.34) very close to that (0.33,0.33) of pure white light and a high CRI of 84. Owing to these advantages, the as-prepared white light-emitting diodes from a single compound are promising for lighting applications. - Highlights: • CdSe-quantum dots (QDs) with a continuously changing size from 2.31 to 4.74 nm are prepared. • The obtained CdSe-QDs emit lights with tunable colors in the whole visible range. • The obtained mixture sample generates white light with a high color rendering index of 84. • The sample yields white light with the CIE coordinate (0.30, 0.34) very close to that of pure white light

  5. High-color rendering indices performance of glass based phosphor-converted white light-emitting diodes for solid state lighting

    Science.gov (United States)

    Tsai, Chun-Chin; Cheng, Wei-Chih; Chen, Guan-Hao; Lee, Yu-Chun; Kuo, Cheng Ta; Cheng, Wood-Hi

    2014-02-01

    The high-temperature operation of glass based phosphor-converted warm-white light-emitting diodes (PC-WWLEDs) is demonstrated. The fabrication and characteristics of low-temperature phosphor (Yollow:Ce:3+:YAG, Greed:Tb3+:YAG, Red:CaAlClSiN3:Eu2+) doped glass applied to high color rendering indices warm-white-light-emitting diodes was presented. In this property is color coordinates (x, y) = (0.32, 0.28), quantum yield (QY) = 55%, color rending index (CRI) =85, correlated color temperature (CCT) =3900K. The result showed the PC-WLEDs maintained good thermal stability at the high temperature operation. The QY decay, CRI attenuation and chromaticity shift in glass and silicone based high-power PC-WLEDs under thermal aging at 150°C and 250°C are also presented and compared. The result indicated that the glass based PC-WLEDs exhibited better thermal stability than the silicone. And the color rendering indices (CRI) glass phosphor may have potential used as a phosphor layer for high-performance and low-cost PCWLEDs used in next-generation indoors solid-state lighting applications.

  6. Role of light satellites in the high-resolution Earth observation domain

    Science.gov (United States)

    Fishman, Moshe

    1999-12-01

    Current 'classic' applications using and exploring space based earth imagery are exclusive, narrow niche tailored, expensive and hardly accessible. On the other side new, inexpensive and widely used 'consumable' applications will be only developed concurrently to the availability of appropriate imagery allowing that process. A part of these applications can be imagined today, like WWW based 'virtual tourism' or news media, but the history of technological, cultural and entertainment evolution teaches us that most of future applications are unpredictable -- they emerge together with the platforms enabling their appearance. The only thing, which can be ultimately stated, is that the definitive condition for such applications is the availability of the proper imagery platform providing low cost, high resolution, large area, quick response, simple accessibility and quick dissemination of the raw picture. This platform is a constellation of Earth Observation satellites. Up to 1995 the Space Based High Resolution Earth Observation Domain was dominated by heavy, super-expensive and very inflexible birds. The launch of Israeli OFEQ-3 Satellite by MBT Division of Israel Aircraft Industries (IAI) marked the entrance to new era of light, smart and cheap Low Earth Orbited Imaging satellites. The Earth Resource Observation System (EROS) initiated by West Indian Space, is based on OFEQ class Satellites design and it is capable to gather visual data of Earth Surface both at high resolution and large image capacity. The main attributes, derived from its compact design, low weight and sophisticated logic and which convert the EROS Satellite to valuable and productive system, are discussed. The major advantages of Light Satellites in High Resolution Earth Observation Domain are presented and WIS guidelines featuring the next generation of LEO Imaging Systems are included.

  7. High-pressure light scattering apparatus to study pressure-induced phase separation in polymer solutions

    Science.gov (United States)

    Xiong, Yan; Kiran, Erdogan

    1998-03-01

    A new high-pressure time- and angle-resolved light scattering apparatus has been developed to study the kinetics of phase separation in polymer solutions and other fluid mixtures under pressure at near- and supercritical conditions. The system consists of a high-pressure polymer loading chamber, a solvent charge line, a variable-volume scattering cell (with a built-in movable piston connected to a pressure generator, and an expansion rod driven by an air-actuated diaphragm), and a recirculation pump which are all housed in a temperature-controlled oven. The system is operable at pressures up to 70 MPa, and temperatures up to 473 K. The scattering cell is a short path-length cell made of two flat sapphire windows that are separated by 250 μm. It is designed to permit measurements of transmitted and scattered light intensities over an angle range from 0° to 30°. A linear image sensor with 256 elements is used to monitor the time evolution of the scattered light intensities at different angles. With this sensor, the angle range from 2° to 13° is scanned at a sampling rate of 3.2 ms/scan. The pressure quenches are achieved by movement of the air-actuated movable expansion rod, or by the movement of the piston with the aid of the pressure generator to bring about either rapid (at rates approaching 2000 MPa/s) or slow pressure changes in the system. Quench depth is also adjustable, and very deep (70 MPa) or very shallow (as low as 0.1 MPa) pressure quenches are readily achievable. The temperature and the pressure of the solution in the scattering cell, and the transmitted and scattered light intensities at different angles are recorded in real time through a computerized data acquisition system before and during phase separation. The experimental system is especially suited to follow the kinetics of phase separation in polymer solutions and to assess the metastable and unstable regions where phase separation proceeds by the nucleation and growth, and the spinodal

  8. Modular sub-wavelength diffractive light modulator for high-definition holographic displays

    International Nuclear Information System (INIS)

    Holography is undoubtedly the ultimate 3D visualization technology, offering true 3D experience with all the natural depth cues, without the undesirable side-effects of current stereoscopic systems (uncomfortable glasses, strained eyes, fatiguing experience). Realization of a high-definition holographic display however requires a number of breakthroughs from existing prototypes. One of the main challenges lies in technology scaling, as holography is based on light diffraction and interference – to achieve wide viewing angles, the light-modulating pixels need to be spaced close to or below the wavelength of the used visible light. Furthermore, achieving high 3D image quality, hundreds of millions of such individually programmable pixels are needed. As a solution, we develop a modular sub-wavelength light modulator, consisting of three main sub-systems: the optical sub-system, comprising a 2D array of sub-wavelength pixels; the driver sub-system for individual pixel control, and the holographic computational engine. Based on conclusions from our state-of-the art studies, numerous experiments and holographic demonstrators, we have focused on reflective phase-modulating MEMS-based system and its scaling beyond 500nm pitch. We have devised a unique binary-programmable phase-modulating pixel architecture realizing vertical pixel displacement of up to 150nm at 500nm by 500nm pixel pitch, while sustaining low operating voltages compatible with CMOS driver circuitry. IMEC SiGe MEMS technology enables integration of the CMOS pixel-line drivers, scan-line drivers and I/O circuits underneath the 2D MEMS array, resulting in a compact and modular single-chip system design. Refresh rates of few hundred frames per second are achieved using our patented segmented driver-array architecture. Integrated circuits implementing parallel holographic computational engines can be added to the module using advanced 3D stacking technology. Herein we further report on our progress in

  9. Inactivation of thioredoxin f1 leads to decreased light activation of ADP-glucose pyrophosphorylase and altered diurnal starch turnover in leaves of Arabidopsis plants.

    Science.gov (United States)

    Thormählen, Ina; Ruber, Joachim; von Roepenack-Lahaye, Edda; Ehrlich, Sven-Matthias; Massot, Vincent; Hümmer, Christine; Tezycka, Justyna; Issakidis-Bourguet, Emmanuelle; Geigenberger, Peter

    2013-01-01

    Chloroplast thioredoxin f (Trx f) is an important regulator of primary metabolic enzymes. However, genetic evidence for its physiological importance is largely lacking. To test the functional significance of Trx f in vivo, Arabidopsis mutants with insertions in the trx f1 gene were studied, showing a drastic decrease in Trx f leaf content. Knockout of Trx f1 led to strong attenuation in reductive light activation of ADP-glucose pyrophosphorylase (AGPase), the key enzyme of starch synthesis, in leaves during the day and in isolated chloroplasts, while sucrose-dependent redox activation of AGPase in darkened leaves was not affected. The decrease in light-activation of AGPase in leaves was accompanied by a decrease in starch accumulation, an increase in sucrose levels and a decrease in starch-to-sucrose ratio. Analysis of metabolite levels at the end of day shows that inhibition of starch synthesis was unlikely due to shortage of substrates or changes in allosteric effectors. Metabolite profiling by gas chromatography-mass spectrometry pinpoints only a small number of metabolites affected, including sugars, organic acids and ethanolamine. Interestingly, metabolite data indicate carbon shortage in trx f1 mutant leaves at the end of night. Overall, results provide in planta evidence for the role played by Trx f in the light activation of AGPase and photosynthetic carbon partitioning in plants.

  10. Magmatic-vapor expansion and the formation of high-sulfidation gold deposits: Structural controls on hydrothermal alteration and ore mineralization

    Science.gov (United States)

    Berger, B.R.; Henley, R.W.

    2011-01-01

    High-sulfidation copper-gold lode deposits such as Chinkuashih, Taiwan, Lepanto, Philippines, and Goldfield, Nevada, formed within 1500. m of the paleosurface in volcanic terranes. All underwent an early stage of extensive advanced argillic silica-alunite alteration followed by an abrupt change to spatially much more restricted stages of fracture-controlled sulfide-sulfosalt mineral assemblages and gold-silver mineralization. The alteration as well as ore mineralization stages of these deposits were controlled by the dynamics and history of syn-hydrothermal faulting. At the Sulfate Stage, aggressive advanced argillic alteration and silicification were consequent on the in situ formation of acidic condensate from magmatic vapor as it expanded through secondary fracture networks alongside active faults. The reduction of permeability at this stage due to alteration decreased fluid flow to the surface, and progressively developed a barrier between magmatic-vapor expansion constrained by the active faults and peripheral hydrothermal activity dominated by hot-water flow. In conjunction with the increased rock strength resulting from alteration, subsequent fault-slip inversion in response to an increase in compressional stress generated new, highly permeable fractures localized by the embrittled, altered rock. The new fractures focused magmatic-vapor expansion with much lower heat loss so that condensation occurred. Sulfide Stage sulfosalt, sulfide, and gold-silver deposition then resulted from destabilization of vapor phase metal species due to vapor decompression through the new fracture array. The switch from sulfate to sulfide assemblages is, therefore, a logical consequence of changes in structural permeability due to the coupling of alteration and fracture dynamics rather than to changes in the chemistry of the fluid phase at its magmatic source. ?? 2010.

  11. The measurements of light high-energy ions in NINA-2 experiment

    Directory of Open Access Journals (Sweden)

    A. Leonov

    2007-10-01

    Full Text Available The flux of energetic light ions at low altitude is both an important input and output for self-consistent calculations of albedo particles resulting from the interaction of trapped and cosmic ray particles, with the upper atmosphere. In addition, data on the flux of light ions are needed to evaluate radiation damages on space-borne instruments and on space mission crews. In spite of that, sources of data on the flux of energetic ions at LEO are roughly limited to the AP-8 model, CREME/CREME96 codes and the SAMPEX, NOAA/TIROS satellites. The existing and operational European SAC-C/ICARE and PROBA-1/SREM instruments could also be potential sources for proton data at LEO. Although AP-8 and SAMPEX/PSB97 may be publicly accessed through the SPENVIS, they exhibit an order of magnitude difference in low altitude proton fluxes and they do not contain helium fluxes. Therefore, improved light ion radiation models are still needed.

    In this paper we present a procedure to identify and measure the energy of ions that are not stopped in the NINA-2 instrument. Moreover, problems related to particles that cross the instrument in the opposite direction are addressed and shown to be a possible cause of particle misidentification. Measuring fluxes of low abundance elements like energetic helium ions requires a good characterisation of all possible sources of backgrounds in the detector. Hints to determine the several contributions to the background are presented herein and may be applied to extract an order of magnitude of energetic ions fluxes from existing data sets, while waiting for dedicated high performance instruments.

  12. Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch

    Directory of Open Access Journals (Sweden)

    R. Fierz-Schmidhauser

    2009-09-01

    Full Text Available Ambient relative humidity (RH determines the water content of atmospheric aerosol particles and thus has an important influence on the amount of visible light scattered by particles. The RH dependence of the particle light scattering coefficient (σsp is therefore an important variable for climate forcing calculations. We used a humidification system for a nephelometer which allows for the measurement of σsp at a defined RH in the range of 20–95%. In this paper we present measurements of light scattering enhancement factors f(RH=σsp(RH/σsp(dry from a 1-month campaign (May 2008 at the high alpine site Jungfraujoch (3580 m a.s.l., Switzerland. At this site, f(RH=85% varied between 1.2 and 3.3. Measured f(RH agreed well with f(RH calculated with Mie theory using measurements of the size distribution, chemical composition and hygroscopic diameter growth factors as input. Good f(RH predictions at RH<85% were also obtained with a simplified model, which uses the Ångström exponent of σsp(dry as input. RH influences further intensive optical aerosol properties. The backscatter fraction decreased by about 30% from 0.128 to 0.089, and the single scattering albedo increased on average by 0.05 at 85% RH compared to dry conditions. These changes in σsp, backscatter fraction and single scattering albedo have a distinct impact on the radiative forcing of the Jungfraujoch aerosol.

  13. Measured and predicted aerosol light scattering enhancement factors at the high alpine site Jungfraujoch

    Directory of Open Access Journals (Sweden)

    R. Fierz-Schmidhauser

    2010-03-01

    Full Text Available Ambient relative humidity (RH determines the water content of atmospheric aerosol particles and thus has an important influence on the amount of visible light scattered by particles. The RH dependence of the particle light scattering coefficient (σsp is therefore an important variable for climate forcing calculations. We used a humidification system for a nephelometer which allows for the measurement of σsp at a defined RH in the range of 20–95%. In this paper we present measurements of light scattering enhancement factors f(RH=σsp(RH/σsp(dry from a 1-month campaign (May 2008 at the high alpine site Jungfraujoch (3580 m a.s.l., Switzerland. Measurements at the Jungfraujoch are representative for the lower free troposphere above Central Europe. For this aerosol type hardly any information about the f(RH is available so far. At this site, f(RH=85% varied between 1.2 and 3.3. Measured f(RH agreed well with f(RH calculated with Mie theory using measurements of the size distribution, chemical composition and hygroscopic diameter growth factors as input. Good f(RH predictions at RH<85% were also obtained with a simplified model, which uses the Ångström exponent of σsp(dry as input. RH influences further intensive optical aerosol properties. The backscatter fraction decreased by about 30% from 0.128 to 0.089, and the single scattering albedo increased on average by 0.05 at 85% RH compared to dry conditions. These changes in σsp, backscatter fraction and single scattering albedo have a distinct impact on the radiative forcing of the Jungfraujoch aerosol.

  14. p53 alteration in morphologically normal/benign breast tissue in patients with triple-negative high-grade breast carcinomas: breast p53 signature?

    Science.gov (United States)

    Wang, Xi; Stolla, Moritz; Ring, Brian Z; Yang, Qi; Laughlin, Todd S; Rothberg, Paul G; Skinner, Kristin; Hicks, David G

    2016-09-01

    p53 alterations have been identified in approximately 23% of breast carcinomas, particularly in hormone receptor-negative high-grade carcinomas. It is considered to be an early event in breast carcinogenesis. Nevertheless, the putative precursor lesion of high-grade breast carcinoma remains elusive. Breast excision specimens from 93 triple-negative high-grade invasive ductal carcinomas, 48 estrogen receptor (ER)-positive/progesterone receptor-positive/Her2-negative non-high-grade invasive ductal carcinomas, and 50 mammoplasty breasts were selected. At least 2 tissue blocks with tumor and adjacent benign tissue were sectioned and subjected to immunohistochemistry staining for p53. TP53 gene sequencing was performed on select tumors. Further immunohistochemistry staining for ER and Ki-67 was performed on consecutive sections of tissue with p53-positive normal/benign cells. Of the 93 high-grade carcinomas, 51 (55%) were positive for p53 alteration, whereas only 3 (6.25%) of the 48 non-high-grade carcinomas were p53 altered. Focal p53 positivity in adjacent normal/benign breast tissue was identified in 19 cases, and 18 of them also had p53 alteration in their carcinomas. Only 1 case had focal p53 staining in normal/benign tissue, but the tumor was negative for p53 alteration. No p53 staining positivity was identified in the mammoplasty specimens. The p53-stained normal/benign cells were ER negative and did not show an increase in the Ki-67 labeling index. These findings indicate that the p53 staining positivity in normal/benign breast tissue is not a random event. It could be considered as the "p53 signature" in breast and serve as an indicator for future potential risk of p53-positive high-grade breast carcinoma. PMID:27246177

  15. Highly efficient photocatalytic hydrogen evolution of graphene/YInO3 nanocomposites under visible light irradiation

    Science.gov (United States)

    Ding, Jianjun; Yan, Wenhao; Xie, Wei; Sun, Song; Bao, Jun; Gao, Chen

    2014-01-01

    Visible-light-driven hydrogen evolution with high efficiency is important in the current photocatalysis research. Here we report for the first time the design and synthesis of a new graphene-semiconductor nanocomposite consisting of YInO3 nanoparticles and two-dimensional graphene sheets as efficient photocatalysts for hydrogen evolution under visible light irradiation. The graphene/YInO3 nanocomposites were synthesized using a facile solvothermal method in which the formation of graphene and the deposition of YInO3 nanoparticles on the graphene sheets can be achieved simultaneously. The addition of graphene as a cocatalyst can narrow the band gap of YInO3 to visible photon energy and prolong the separation and lifetime of electron-hole pairs by the chemical bonding between YInO3 and graphene. The photocatalytic reaction with this nanocomposite reaches a high H2 evolution rate of 400.4 μmol h-1 g-1 when the content of graphene is 0.5 wt%, over 127 and 3.7 times higher than that of pure YInO3 and Pt/YInO3, respectively. This work can provide an effective approach to the fabrication of graphene-based photocatalysts with high performance in the field of energy conversion.Visible-light-driven hydrogen evolution with high efficiency is important in the current photocatalysis research. Here we report for the first time the design and synthesis of a new graphene-semiconductor nanocomposite consisting of YInO3 nanoparticles and two-dimensional graphene sheets as efficient photocatalysts for hydrogen evolution under visible light irradiation. The graphene/YInO3 nanocomposites were synthesized using a facile solvothermal method in which the formation of graphene and the deposition of YInO3 nanoparticles on the graphene sheets can be achieved simultaneously. The addition of graphene as a cocatalyst can narrow the band gap of YInO3 to visible photon energy and prolong the separation and lifetime of electron-hole pairs by the chemical bonding between YInO3 and graphene. The

  16. Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding

    Science.gov (United States)

    Han, Yu; Lin, Jie; Liu, Yuxuan; Fu, Hao; Ma, Yuan; Jin, Peng; Tan, Jiubin

    2016-05-01

    Our daily electromagnetic environment is becoming increasingly complex with the rapid development of consumer electronics and wireless communication technologies, which in turn necessitates the development of electromagnetic interference (EMI) shielding, especially for transparent components. We engineered a transparent EMI shielding film with crack-template based metallic mesh (CT-MM) that shows highly homogeneous light transmission and strong microwave shielding efficacy. The CT-MM film is fabricated using a cost-effective lift-off method based on a crackle template. It achieves a shielding effectiveness of ~26 dB, optical transmittance of ~91% and negligible impact on optical imaging performance. Moreover, high–quality CT-MM film is demonstrated on a large–calibre spherical surface. These excellent properties of CT-MM film, together with its advantages of facile large-area fabrication and scalability in processing on multi-shaped substrates, make CT-MM a powerful technology for transparent EMI shielding in practical applications.

  17. High average power CO II laser MOPA system for Tin target LPP EUV light source

    Science.gov (United States)

    Ariga, Tatsuya; Hoshino, Hideo; Endo, Akira

    2007-02-01

    Extreme ultraviolet lithography (EUVL) is the candidate for next generation lithography to be introduced by the semiconductor industry to HVM (high volume manufacturing) in 2013. The power of the EUVL light source has to be at least 115W at a wavelength of 13.5nm. A laser produced plasma (LPP) is the main candidate for this light source but a cost effective laser driver is the key requirement for the realization of this concept. We are currently developing a high power and high repetition rate CO II laser system to achieve 50 W intermediate focus EUV power with a Tin droplet target. We have achieved CE of 2.8% with solid Tin wire target by a transversely excited atmospheric (TEA) CO II laser MOPA system with pulse width, pulse energy and pulse repetition rate as 10~15 ns, 30 mJ and 10 Hz, respectively. A CO II laser system with a short pulse length less than 15 ns, a nominal average power of a few kW, and a repetition rate of 100 kHz, based on RF-excited, fast axial flow CO II laser amplifiers is under development. Output power of about 3 kW has been achieved with a pulse length of 15 ns at 130 kHz repletion rate in a small signal amplification condition with P(20) single line. The phase distortion of the laser beam after amplification is negligible and the beam can be focused to about 150μm diameter in 1/e2. The CO II laser system is reported on short pulse amplification performance using RF-excited fast axial flow lasers as amplifiers. And the CO II laser average output power scaling is shown towards 5~10 kW with pulse width of 15 ns from a MOPA system.

  18. Dynamics and structure of light nuclei through (e,e'p) reactions with high momentum

    International Nuclear Information System (INIS)

    The (e,e'p) reaction is an efficient and accurate means to probe nuclear structure because of its simplicity (in the case of light nuclei exact calculations can be made) and because the entire nuclear volume is probed. Now high energy electron beams are available which allows nuclear matter to be investigated on distances shorter than the nucleon diameter, and as a consequence the measurement of effects linked to the internal structure of the nucleon appears reachable. Recent experiments performed at the Jefferson Laboratory on deuterium and helium targets have shown that the cross-section (e,e'p) with high momentum missing is dominated by many-body processes involving the propagation of a nucleon in the nuclear matter. The importance of these re-diffusion mechanisms can be amplified or minimized by acting on the value of the missing momentum or on the angle of the recoil particle. These experiments highlight the sensitivity of the He3(e,e'p)pn reactions to nucleon-nucleon correlations and their importance at high momentum missing. Theoretical results predict a very narrow window in anti-parallel kinematics through which an important reduction of the many-body mechanism is expected. The study of the color transparency effect through quasi-elastic scattering in light nuclei uses the re-diffusion features to show the existence of a small spatial extension of the nucleon's wave function. Recent development in the formalism of generalized parton distributions open the way for a systematic and complete study of the internal structure of the nucleon. (A.C.)

  19. Solution-processed, high-performance light-emitting diodes based on quantum dots

    Science.gov (United States)

    Dai, Xingliang; Zhang, Zhenxing; Jin, Yizheng; Niu, Yuan; Cao, Hujia; Liang, Xiaoyong; Chen, Liwei; Wang, Jianpu; Peng, Xiaogang

    2014-11-01

    Solution-processed optoelectronic and electronic devices are attractive owing to the potential for low-cost fabrication of large-area devices and the compatibility with lightweight, flexible plastic substrates. Solution-processed light-emitting diodes (LEDs) using conjugated polymers or quantum dots as emitters have attracted great interest over the past two decades. However, the overall performance of solution-processed LEDs--including their efficiency, efficiency roll-off at high current densities, turn-on voltage and lifetime under operational conditions--remains inferior to that of the best vacuum-deposited organic LEDs. Here we report a solution-processed, multilayer quantum-dot-based LED with excellent performance and reproducibility. It exhibits colour-saturated deep-red emission, sub-bandgap turn-on at 1.7 volts, high external quantum efficiencies of up to 20.5 per cent, low efficiency roll-off (up to 15.1 per cent of the external quantum efficiency at 100 mA cm-2), and a long operational lifetime of more than 100,000 hours at 100 cd m-2, making this device the best-performing solution-processed red LED so far, comparable to state-of-the-art vacuum-deposited organic LEDs. This optoelectronic performance is achieved by inserting an insulating layer between the quantum dot layer and the oxide electron-transport layer to optimize charge balance in the device and preserve the superior emissive properties of the quantum dots. We anticipate that our results will be a starting point for further research, leading to high-performance, all-solution-processed quantum-dot-based LEDs ideal for next-generation display and solid-state lighting technologies.

  20. Spring Ephemerals Adapt to Extremely High Light Conditions via an Unusual Stabilization of Photosystem II

    Science.gov (United States)

    Tu, Wenfeng; Li, Yang; Liu, Wu; Wu, Lishuan; Xie, Xiaoyan; Zhang, Yuanming; Wilhelm, Christian; Yang, Chunhong

    2016-01-01

    Ephemerals, widely distributed in the Gobi desert, have developed significant characteristics to sustain high photosynthetic efficiency under high light (HL) conditions. Since the light reaction is the basis for photosynthetic conversion of solar energy to chemical energy, the photosynthetic performances in thylakoid membrane of the spring ephemerals in response to HL were studied. Three plant species, namely two C3 spring ephemeral species of Cruciferae: Arabidopsis pumila (A. pumila) and Sisymbrium altissimum (S. altissimum), and the model plant Arabidopsis thaliana (A. thaliana) were chosen for the study. The ephemeral A. pumila, which is genetically close to A. thaliana and ecologically in the same habitat as S. altissimum, was used to avoid complications arising from the superficial differences resulted from comparing plants from two extremely contrasting ecological groups. The findings manifested that the ephemerals showed significantly enhanced activities of photosystem (PS) II under HL conditions, while the activities of PSII in A. thaliana were markedly decreased under the same conditions. Detailed analyses of the electron transport processes revealed that the increased plastoquinone pool oxidization, together with the enhanced PSI activities, ensured a lowered excitation pressure to PSII of both ephemerals, and thus facilitated the photosynthetic control to avoid photodamage to PSII. The analysis of the reaction centers of the PSs, both in terms of D1 protein turnover kinetics and the long-term adaptation, revealed that the unusually stable PSs structure provided the basis for the ephemerals to carry out high photosynthetic performances. It is proposed that the characteristic photosynthetic performances of ephemerals were resulted from effects of the long-term adaptation to the harsh environments. PMID:26779223