WorldWideScience

Sample records for alters dna methylation

  1. DNA methylation alterations in Alzheimer's disease.

    Science.gov (United States)

    Yokoyama, Amy S; Rutledge, John C; Medici, Valentina

    2017-05-01

    The observation that Alzheimer's disease (AD) patients with similar and even identical genetic backgrounds often present with heterogeneous pathologies has prompted the hypothesis that epigenetics may contribute to AD. While the study of epigenetics encompasses a variety of modifications including histone modifications and non-coding RNAs, much of the research on how epigenetics might impact AD pathology has been focused on DNA methylation. To this end, several studies have characterized DNA methylation alterations in various brain regions of individuals with AD, with conflicting results. This review examines the results of studies analyzing both global and gene-specific DNA methylation changes in AD and also assesses the results of studies analyzing DNA hydroxymethylation in patients with AD.

  2. DNA Methylation Alterations in Breast Cancer

    National Research Council Canada - National Science Library

    Yamamoto, Fumiichiro

    2002-01-01

    We have performed the NotI-MseI MS-AFLP experiments using normal and tumor DNA from breast cancer patients and determined the identity of bands exhibiting consistent changes in breast cancer DNA fingerprint...

  3. DNA Methylation Alterations in Breast Cancer

    National Research Council Canada - National Science Library

    Yamamoto, Fumiichiro

    2000-01-01

    .... We performed NotI-MseI MS-AFLP using clinical specimens of normal and tumor breast DNA. We used both combinations of four NotI and four MseI primers with an additional selective residue at the 3' end (4x4 format...

  4. Common DNA methylation alterations in multiple brain regions in autism.

    Science.gov (United States)

    Ladd-Acosta, C; Hansen, K D; Briem, E; Fallin, M D; Kaufmann, W E; Feinberg, A P

    2014-08-01

    Autism spectrum disorders (ASD) are increasingly common neurodevelopmental disorders defined clinically by a triad of features including impairment in social interaction, impairment in communication in social situations and restricted and repetitive patterns of behavior and interests, with considerable phenotypic heterogeneity among individuals. Although heritability estimates for ASD are high, conventional genetic-based efforts to identify genes involved in ASD have yielded only few reproducible candidate genes that account for only a small proportion of ASDs. There is mounting evidence to suggest environmental and epigenetic factors play a stronger role in the etiology of ASD than previously thought. To begin to understand the contribution of epigenetics to ASD, we have examined DNA methylation (DNAm) in a pilot study of postmortem brain tissue from 19 autism cases and 21 unrelated controls, among three brain regions including dorsolateral prefrontal cortex, temporal cortex and cerebellum. We measured over 485,000 CpG loci across a diverse set of functionally relevant genomic regions using the Infinium HumanMethylation450 BeadChip and identified four genome-wide significant differentially methylated regions (DMRs) using a bump hunting approach and a permutation-based multiple testing correction method. We replicated 3/4 DMRs identified in our genome-wide screen in a different set of samples and across different brain regions. The DMRs identified in this study represent suggestive evidence for commonly altered methylation sites in ASD and provide several promising new candidate genes.

  5. Altered DNA methylation associated with a translocation linked to major mental illness

    OpenAIRE

    McCartney, Daniel L; Walker, Rosie M; Morris, Stewart W; Anderson, Susan M; Duff, Barbara J; Marioni, Riccardo E; Millar, J Kirsty; McCarthy, Shane E; Ryan, Niamh M; Lawrie, Stephen M; Watson, Andrew R; Blackwood, Douglas H R; Thomson, Pippa A; McIntosh, Andrew M; McCombie, W Richard

    2018-01-01

    Recent work has highlighted a possible role for altered epigenetic modifications, including differential DNA methylation, in susceptibility to psychiatric illness. Here, we investigate blood-based DNA methylation in a large family where a balanced translocation between chromosomes 1 and 11 shows genome-wide significant linkage to psychiatric illness. Genome-wide DNA methylation was profiled in whole-blood-derived DNA from 41 individuals using the Infinium HumanMethylation450 BeadChip (Illumin...

  6. Salt stress alters DNA methylation levels in alfalfa (Medicago spp).

    Science.gov (United States)

    Al-Lawati, A; Al-Bahry, S; Victor, R; Al-Lawati, A H; Yaish, M W

    2016-02-26

    Modification of DNA methylation status is one of the mechanisms used by plants to adjust gene expression at both the transcriptional and posttranscriptional levels when plants are exposed to suboptimal conditions. Under abiotic stress, different cultivars often show heritable phenotypic variation accompanied by epigenetic polymorphisms at the DNA methylation level. This variation may provide the raw materials for plant breeding programs that aim to enhance abiotic stress tolerance, including salt tolerance. In this study, methylation-sensitive amplified polymorphism (MSAP) analysis was used to assess cytosine methylation levels in alfalfa (Medicago spp) roots exposed to increasing NaCl concentrations (0.0, 8.0, 12.0, and 20.0 dS/m). Eleven indigenous landraces were analyzed, in addition to a salt-tolerant cultivar that was used as a control. There was a slight increase in DNA methylation upon exposure to high levels of soil salinity. Phylogenetic analysis using MSAP showed epigenetic variation within and between the alfalfa landraces when exposed to saline conditions. Based on MSAP and enzyme-linked immunosorbent assay results, we found that salinity increased global DNA methylation status, particularly in plants exposed to the highest level of salinity (20 dS/m). Quantitative reverse transcription-polymerase chain reaction indicated that this might be mediated by the overexpression of methyltransferase homolog genes after exposure to saline conditions. DNA demethylation using 5-azacytidine reduced seedling lengths and dry and fresh weights, indicating a possible decrease in salinity tolerance. These results suggest that salinity affects DNA methylation flexibility.

  7. Inter-species grafting caused extensive and heritable alterations of DNA methylation in Solanaceae plants.

    Directory of Open Access Journals (Sweden)

    Rui Wu

    Full Text Available Grafting has been extensively used to enhance the performance of horticultural crops. Since Charles Darwin coined the term "graft hybrid" meaning that asexual combination of different plant species may generate products that are genetically distinct, highly discrepant opinions exist supporting or against the concept. Recent studies have documented that grafting enables exchanges of both RNA and DNA molecules between the grafting partners, thus providing a molecular basis for grafting-induced genetic variation. DNA methylation is known as prone to alterations as a result of perturbation of internal and external conditions. Given characteristics of grafting, it is interesting to test whether the process may cause an alteration of this epigenetic marker in the grafted organismal products.We analyzed relative global DNA methylation levels and locus-specific methylation patterns by the MSAP marker and locus-specific bisulfite-sequencing in the seed plants (wild-type controls, self- and hetero-grafted scions/rootstocks, selfed progenies of scions and their seed-plant controls, involving three Solanaceae species. We quantified expression of putative genes involved in establishing and/or maintaining DNA methylation by q-(RT-PCR. We found that (1 hetero-grafting caused extensive alteration of DNA methylation patterns in a locus-specific manner, especially in scions, although relative methylation levels remain largely unaltered; (2 the altered methylation patterns in the hetero-grafting-derived scions could be inherited to sexual progenies with some sites showing further alterations or revisions; (3 hetero-grafting caused dynamic changes in steady-state transcript abundance of genes encoding for a set of enzymes functionally relevant to DNA methylation.Our results demonstrate that inter-species grafting in plants could produce extensive and heritable alterations in DNA methylation. We suggest that these readily altered, yet heritable, epigenetic

  8. Inter-species grafting caused extensive and heritable alterations of DNA methylation in Solanaceae plants.

    Science.gov (United States)

    Wu, Rui; Wang, Xiaoran; Lin, Yan; Ma, Yiqiao; Liu, Gang; Yu, Xiaoming; Zhong, Silin; Liu, Bao

    2013-01-01

    Grafting has been extensively used to enhance the performance of horticultural crops. Since Charles Darwin coined the term "graft hybrid" meaning that asexual combination of different plant species may generate products that are genetically distinct, highly discrepant opinions exist supporting or against the concept. Recent studies have documented that grafting enables exchanges of both RNA and DNA molecules between the grafting partners, thus providing a molecular basis for grafting-induced genetic variation. DNA methylation is known as prone to alterations as a result of perturbation of internal and external conditions. Given characteristics of grafting, it is interesting to test whether the process may cause an alteration of this epigenetic marker in the grafted organismal products. We analyzed relative global DNA methylation levels and locus-specific methylation patterns by the MSAP marker and locus-specific bisulfite-sequencing in the seed plants (wild-type controls), self- and hetero-grafted scions/rootstocks, selfed progenies of scions and their seed-plant controls, involving three Solanaceae species. We quantified expression of putative genes involved in establishing and/or maintaining DNA methylation by q-(RT)-PCR. We found that (1) hetero-grafting caused extensive alteration of DNA methylation patterns in a locus-specific manner, especially in scions, although relative methylation levels remain largely unaltered; (2) the altered methylation patterns in the hetero-grafting-derived scions could be inherited to sexual progenies with some sites showing further alterations or revisions; (3) hetero-grafting caused dynamic changes in steady-state transcript abundance of genes encoding for a set of enzymes functionally relevant to DNA methylation. Our results demonstrate that inter-species grafting in plants could produce extensive and heritable alterations in DNA methylation. We suggest that these readily altered, yet heritable, epigenetic modifications due to

  9. Insulin and Glucose Alter Death-Associated Protein Kinase 3 (DAPK3) DNA Methylation in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Mudry, Jonathan M; Lassiter, David G; Nylén, Carolina

    2017-01-01

    of selected genes was determined in muscle from healthy and type 2 diabetic men before and after a glucose tolerance test. Insulin altered DNA methylation in the 3'UTR of the calcium pump ATP2A3 gene. Insulin increased DNA methylation in the gene body of DAPK3, a gene involved in cell proliferation, apoptosis......DNA methylation is altered by environmental factors. We hypothesized DNA methylation is altered in skeletal muscle in response to either insulin or glucose exposure. We performed a genome-wide DNA methylation analysis in muscle from healthy men before and after insulin exposure. DNA methylation...... glucose incorporation to glycogen was unaltered by siRNA against DAPK3, palmitate oxidation was increased. In conclusion, insulin and glucose exposure acutely alter the DNA methylation profile of skeletal muscle, indicating DNA methylation constitutes a rapidly and adaptive epigenetic mark. Furthermore...

  10. Age-associated alterations in the somatic mutation and DNA methylation levels in plants.

    Science.gov (United States)

    Dubrovina, A S; Kiselev, K V

    2016-03-01

    Somatic mutations of the nuclear and mitochondrial DNA and alterations in DNA methylation levels in mammals are well known to play important roles in ageing and various diseases, yet their specific contributions await further investigation. For plants, it has also been proposed that unrepaired DNA damage and DNA polymerase errors accumulate in plant cells and lead to increased somatic mutation rate and alterations in transcription, which eventually contribute to plant ageing. A number of studies also show that DNA methylation levels vary depending on the age of plant tissue and chronological age of a whole plant. Recent studies reveal that prolonged cultivation of plant cells in vitro induces single nucleotide substitutions and increases global DNA methylation level in a time-dependent fashion. Changes in DNA methylation are known to influence DNA repair and can lead to altered mutation rates, and, therefore, it is interesting to investigate both the genetic and epigenetic integrity in relationship to ageing in plants. This review will summarise and discuss the current studies investigating somatic DNA mutation and DNA methylation levels in relation to plant ageing and senescence. The analysis has shown that there still remains a lack of clarity concerning plant biological ageing and the role of the genetic and epigenetic instabilities in this process. © 2015 German Botanical Society and The Royal Botanical Society of the Netherlands.

  11. Altered mucosal DNA methylation in parallel with highly active Helicobacter pylori-related gastritis.

    Science.gov (United States)

    Yoshida, Takeichi; Kato, Jun; Maekita, Takao; Yamashita, Satoshi; Enomoto, Shotaro; Ando, Takayuki; Niwa, Tohru; Deguchi, Hisanobu; Ueda, Kazuki; Inoue, Izumi; Iguchi, Mikitaka; Tamai, Hideyuki; Ushijima, Toshikazu; Ichinose, Masao

    2013-10-01

    Chronic inflammation triggered by Helicobacter pylori causes altered DNA methylation in stomach mucosae, which is deeply involved in gastric carcinogenesis. This study aimed to elucidate the correlation between altered mucosal DNA methylation levels and activity of H. pylori-related gastritis, because inflammatory activity shows particular correlations with the development of diffuse-type cancer. Methylation levels in stomach mucosae of 78 healthy volunteers were determined by real-time methylation-specific PCR or bisulfite pyrosequencing. Examined loci were the promoter CpG islands of six genes (FLNc, HAND1, THBD, p41ARC, HRASLS, and LOX) and the CpG sites of non-coding repetitive elements (Alu and Satα) that are reportedly altered by H. pylori infection. Activity of H. pylori-related gastritis was evaluated using two serum markers: H. pylori antibody titer and pepsinogen II. Methylation levels of the six CpG islands were consistently increased, and those of the two repetitive elements were consistently decreased in a stepwise manner with the activity of gastric inflammation as represented by serum marker levels. Each serum marker level was well correlated with the overall DNA methylation status of stomach mucosa, and these two serologic markers were additive in the detection of the mucosa with severely altered DNA methylation. Alteration in mucosal DNA methylation level was closely correlated with activity of H. pylori-related gastritis as evaluated by serum markers. The observed correlation between altered DNA methylation levels and activity of H. pylori-related gastritis appears to be one of the relevant molecular mechanisms underlying the development of diffuse-type cancer.

  12. DNA methylation alterations induced by transient exposure of MCF-7 cells to maghemite nanoparticles.

    Science.gov (United States)

    Bonadio, Raphael S; Arcanjo, Ana Carolina; Lima, Emilia Cd; Vasconcelos, Alline T; Silva, Renata C; Horst, Frederico H; Azevedo, Ricardo B; Poças-Fonseca, Marcio José; F Longo, João Paulo

    2017-12-01

    To evaluate the DNA methylation profile of MCF-7 cells during and after the treatment with maghemite nanoparticles (MNP-CIT). Noncytotoxic MNP-CIT concentrations and cell morphology were evaluated by standard methods. DNA methylation was assessed by whole genome bisulfite sequencing. DNA methyltransferase (DNMT) genes expression was analyzed by qRT-PCR. A total of 30 and 60 µgFeml -1 MNP-CIT accumulated in cytoplasm but did not present cytotoxic effects. The overall percentage of DNA methylation was not affected, but 58 gene-associated regions underwent DNA methylation reprogramming, including genes related to cancer onset. DNMT transcript levels were also modulated. Transient exposure to MNP-CIT promoted epigenomic changes and altered the DNMT genes regulation in MCF-7 cells. These events should be considered for biomedical applications.

  13. Consistent and heritable alterations of DNA methylation are induced by tissue culture in maize.

    Science.gov (United States)

    Stelpflug, Scott C; Eichten, Steven R; Hermanson, Peter J; Springer, Nathan M; Kaeppler, Shawn M

    2014-09-01

    Plants regenerated from tissue culture and their progenies are expected to be identical clones, but often display heritable molecular and phenotypic variation. We characterized DNA methylation patterns in callus, primary regenerants, and regenerant-derived progenies of maize using immunoprecipitation of methylated DNA (meDIP) to assess the genome-wide frequency, pattern, and heritability of DNA methylation changes. Although genome-wide DNA methylation levels remained similar following tissue culture, numerous regions exhibited altered DNA methylation levels. Hypomethylation events were observed more frequently than hypermethylation following tissue culture. Many of the hypomethylation events occur at the same genomic sites across independent regenerants and cell lines. The DNA methylation changes were often heritable in progenies produced from self-pollination of primary regenerants. Methylation changes were enriched in regions upstream of genes and loss of DNA methylation at promoters was associated with altered expression at a subset of loci. Differentially methylated regions (DMRs) found in tissue culture regenerants overlap with the position of naturally occurring DMRs more often than expected by chance with 8% of tissue culture hypomethylated DMRs overlapping with DMRs identified by profiling natural variation, consistent with the hypotheses that genomic stresses similar to those causing somaclonal variation may also occur in nature, and that certain loci are particularly susceptible to epigenetic change in response to these stresses. The consistency of methylation changes across regenerants from independent cultures suggests a mechanistic response to the culture environment as opposed to an overall loss of fidelity in the maintenance of epigenetic states. Copyright © 2014 by the Genetics Society of America.

  14. Inter-Species Grafting Caused Extensive and Heritable Alterations of DNA Methylation in Solanaceae Plants

    Science.gov (United States)

    Lin, Yan; Ma, Yiqiao; Liu, Gang; Yu, Xiaoming; Zhong, Silin; Liu, Bao

    2013-01-01

    Background Grafting has been extensively used to enhance the performance of horticultural crops. Since Charles Darwin coined the term “graft hybrid” meaning that asexual combination of different plant species may generate products that are genetically distinct, highly discrepant opinions exist supporting or against the concept. Recent studies have documented that grafting enables exchanges of both RNA and DNA molecules between the grafting partners, thus providing a molecular basis for grafting-induced genetic variation. DNA methylation is known as prone to alterations as a result of perturbation of internal and external conditions. Given characteristics of grafting, it is interesting to test whether the process may cause an alteration of this epigenetic marker in the grafted organismal products. Methodology/Principal Findings We analyzed relative global DNA methylation levels and locus-specific methylation patterns by the MSAP marker and locus-specific bisulfite-sequencing in the seed plants (wild-type controls), self- and hetero-grafted scions/rootstocks, selfed progenies of scions and their seed-plant controls, involving three Solanaceae species. We quantified expression of putative genes involved in establishing and/or maintaining DNA methylation by q-(RT)-PCR. We found that (1) hetero-grafting caused extensive alteration of DNA methylation patterns in a locus-specific manner, especially in scions, although relative methylation levels remain largely unaltered; (2) the altered methylation patterns in the hetero-grafting-derived scions could be inherited to sexual progenies with some sites showing further alterations or revisions; (3) hetero-grafting caused dynamic changes in steady-state transcript abundance of genes encoding for a set of enzymes functionally relevant to DNA methylation. Conclusions/Significance Our results demonstrate that inter-species grafting in plants could produce extensive and heritable alterations in DNA methylation. We suggest that

  15. Global DNA methylation is altered by neoadjuvant chemoradiotherapy in rectal cancer and may predict response to treatment - A pilot study.

    LENUS (Irish Health Repository)

    Tsang, J S

    2014-07-28

    In rectal cancer, not all tumours display a response to neoadjuvant treatment. An accurate predictor of response does not exist to guide patient-specific treatment. DNA methylation is a distinctive molecular pathway in colorectal carcinogenesis. Whether DNA methylation is altered by neoadjuvant treatment and a potential response predictor is unknown. We aimed to determine whether DNA methylation is altered by neoadjuvant chemoradiotherapy (CRT) and to determine its role in predicting response to treatment.

  16. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility.

    Science.gov (United States)

    Jenkins, Timothy G; Aston, Kenneth I; Pflueger, Christian; Cairns, Bradley R; Carrell, Douglas T

    2014-07-01

    Recent evidence demonstrates a role for paternal aging on offspring disease susceptibility. It is well established that various neuropsychiatric disorders (schizophrenia, autism, etc.), trinucleotide expansion associated diseases (myotonic dystrophy, Huntington's, etc.) and even some forms of cancer have increased incidence in the offspring of older fathers. Despite strong epidemiological evidence that these alterations are more common in offspring sired by older fathers, in most cases the mechanisms that drive these processes are unclear. However, it is commonly believed that epigenetics, and specifically DNA methylation alterations, likely play a role. In this study we have investigated the impact of aging on DNA methylation in mature human sperm. Using a methylation array approach we evaluated changes to sperm DNA methylation patterns in 17 fertile donors by comparing the sperm methylome of 2 samples collected from each individual 9-19 years apart. With this design we have identified 139 regions that are significantly and consistently hypomethylated with age and 8 regions that are significantly hypermethylated with age. A representative subset of these alterations have been confirmed in an independent cohort. A total of 117 genes are associated with these regions of methylation alterations (promoter or gene body). Intriguingly, a portion of the age-related changes in sperm DNA methylation are located at genes previously associated with schizophrenia and bipolar disorder. While our data does not establish a causative relationship, it does raise the possibility that the age-associated methylation of the candidate genes that we observe in sperm might contribute to the increased incidence of neuropsychiatric and other disorders in the offspring of older males. However, further study is required to determine whether, and to what extent, a causative relationship exists.

  17. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility.

    Directory of Open Access Journals (Sweden)

    Timothy G Jenkins

    2014-07-01

    Full Text Available Recent evidence demonstrates a role for paternal aging on offspring disease susceptibility. It is well established that various neuropsychiatric disorders (schizophrenia, autism, etc., trinucleotide expansion associated diseases (myotonic dystrophy, Huntington's, etc. and even some forms of cancer have increased incidence in the offspring of older fathers. Despite strong epidemiological evidence that these alterations are more common in offspring sired by older fathers, in most cases the mechanisms that drive these processes are unclear. However, it is commonly believed that epigenetics, and specifically DNA methylation alterations, likely play a role. In this study we have investigated the impact of aging on DNA methylation in mature human sperm. Using a methylation array approach we evaluated changes to sperm DNA methylation patterns in 17 fertile donors by comparing the sperm methylome of 2 samples collected from each individual 9-19 years apart. With this design we have identified 139 regions that are significantly and consistently hypomethylated with age and 8 regions that are significantly hypermethylated with age. A representative subset of these alterations have been confirmed in an independent cohort. A total of 117 genes are associated with these regions of methylation alterations (promoter or gene body. Intriguingly, a portion of the age-related changes in sperm DNA methylation are located at genes previously associated with schizophrenia and bipolar disorder. While our data does not establish a causative relationship, it does raise the possibility that the age-associated methylation of the candidate genes that we observe in sperm might contribute to the increased incidence of neuropsychiatric and other disorders in the offspring of older males. However, further study is required to determine whether, and to what extent, a causative relationship exists.

  18. Inhibiting DNA methylation alters olfactory extinction but not acquisition learning in Apis cerana and Apis mellifera.

    Science.gov (United States)

    Gong, Zhiwen; Wang, Chao; Nieh, James C; Tan, Ken

    2016-07-01

    DNA methylation plays a key role in invertebrate acquisition and extinction memory. Honey bees have excellent olfactory learning, but the role of DNA methylation in memory formation has, to date, only been studied in Apis mellifera. We inhibited DNA methylation by inhibiting DNA methyltransferase (DNMT) with zebularine (zeb) and studied the resulting effects upon olfactory acquisition and extinction memory in two honey bee species, Apis cerana and A. mellifera. We used the proboscis extension reflex (PER) assay to measure memory. We provide the first demonstration that DNA methylation is also important in the olfactory extinction learning of A. cerana. DNMT did not reduce acquisition learning in either species. However, zeb bidirectionally and differentially altered extinction learning in both species. In particular, zeb provided 1h before acquisition learning improved extinction memory retention in A. mellifera, but reduced extinction memory retention in A. cerana. The reasons for these differences are unclear, but provide a basis for future studies to explore species-specific differences in the effects of methylation on memory formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  20. Prenatal phthalate exposure and altered patterns of DNA methylation in cord blood.

    Science.gov (United States)

    Solomon, Olivia; Yousefi, Paul; Huen, Karen; Gunier, Robert B; Escudero-Fung, Maria; Barcellos, Lisa F; Eskenazi, Brenda; Holland, Nina

    2017-07-01

    Epigenetic changes such as DNA methylation may be a molecular mechanism through which environmental exposures affect health. Phthalates are known endocrine disruptors with ubiquitous exposures in the general population including pregnant women, and they have been linked with a number of adverse health outcomes. We examined the association between in utero phthalate exposure and altered patterns of cord blood DNA methylation in 336 Mexican-American newborns. Concentrations of 11 phthalate metabolites were analyzed in maternal urine samples collected at 13 and 26 weeks gestation as a measure of fetal exposure. DNA methylation was assessed using the Infinium HumanMethylation 450K BeadChip adjusting for cord blood cell composition. To identify differentially methylated regions (DMRs) that may be more informative than individual CpG sites, we used two different approaches, DMRcate and comb-p. Regional assessment by both methods identified 27 distinct DMRs, the majority of which were in relation to multiple phthalate metabolites. Most of the significant DMRs (67%) were observed for later pregnancy (26 weeks gestation). Further, 51% of the significant DMRs were associated with the di-(2-ethylhexyl) phthalate metabolites. Five individual CpG sites were associated with phthalate metabolite concentrations after multiple comparisons adjustment (FDR), all showing hypermethylation. Genes with DMRs were involved in inflammatory response (IRAK4 and ESM1), cancer (BRCA1 and LASP1), endocrine function (CNPY1), and male fertility (IFT140, TESC, and PRDM8). These results on differential DNA methylation in newborns with prenatal phthalate exposure provide new insights and targets to explore mechanism of adverse effects of phthalates on human health. Environ. Mol. Mutagen. 58:398-410, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Ou Xiufang; Long Likun; Zhang Yunhong; Xue Yiqun; Liu Jingchun; Lin Xiuyun; Liu Bao

    2009-01-01

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  2. Altered histone mark deposition and DNA methylation at homeobox genes in human oral squamous cell carcinoma.

    Science.gov (United States)

    Marcinkiewicz, Katarzyna M; Gudas, Lorraine J

    2014-10-01

    We recently reported a role of polycomb repressive complex 2 (PRC2) and PRC2 trimethylation of histone 3 lysine 27 (H3K27me3) in the regulation of homeobox (HOX) (Marcinkiewicz and Gudas, 2013, Exp Cell Res) gene transcript levels in human oral keratinocytes (OKF6-TERT1R) and tongue squamous cell carcinoma (SCC) cells. Here, we assessed both the levels of various histone modifications at a subset of homeobox genes and genome wide DNA methylation patterns in OKF6-TERT1R and SCC-9 cells by using ERRBS (enhanced reduced representation bisulfite sequencing). We detected the H3K9me3 mark at HOXB7, HOXC10, HOXC13, and HOXD8 at levels higher in OKF6-TERT1R than in SCC-9 cells; at IRX1 and SIX2 the H3K9me3 levels were conversely higher in SCC-9 than in OKF6-TERT1R. The H3K79me3 mark was detectable only at IRX1 in OKF6-TERT1R and at IRX4 in SCC-9 cells. The levels of H3K4me3 and H3K36me3 marks correlate with the transcript levels of the assessed homeobox genes in both OKF6-TERT1R and SCC-9. We detected generally lower CpG methylation levels on DNA in SCC-9 cells at annotated genomic regions which were differentially methylated between OKF6-TERT1R and SCC-9 cells; however, some genomic regions, including the HOX gene clusters, showed DNA methylation at higher levels in SCC-9 than OKF6-TERT1R. Thus, both altered histone modification patterns and changes in DNA methylation are associated with dysregulation of homeobox gene expression in human oral cavity SCC cells, and this dysregulation potentially plays a role in the neoplastic phenotype of oral keratinocytes. © 2014 Wiley Periodicals, Inc.

  3. DNA Methylation Alterations at 5'-CCGG Sites in the Interspecific and Intraspecific Hybridizations Derived from Brassica rapa and B. napus.

    Directory of Open Access Journals (Sweden)

    Wanshan Xiong

    Full Text Available DNA methylation is an important regulatory mechanism for gene expression that involved in the biological processes of development and differentiation in plants. To investigate the association of DNA methylation with heterosis in Brassica, a set of intraspecific hybrids in Brassica rapa and B. napus and interspecific hybrids between B. rapa and B. napus, together with parental lines, were used to monitor alterations in cytosine methylation at 5'-CCGG sites in seedlings and buds by methylation-sensitive amplification polymorphism analysis. The methylation status of approximately a quarter of the methylation sites changed between seedlings and buds. These alterations were related closely to the genomic structure and heterozygous status among accessions. The methylation status in the majority of DNA methylation sites detected in hybrids was the same as that in at least one of the parental lines in both seedlings and buds. However, the association between patterns of cytosine methylation and heterosis varied among different traits and between tissues in hybrids of Brassica, although a few methylation loci were associated with heterosis. Our data suggest that changes in DNA methylation at 5'-CCGG sites are not associated simply with heterosis in the interspecific and intraspecific hybridizations derived from B. rapa and B. napus.

  4. Obesity is associated with depot-specific alterations in adipocyte DNA methylation and gene expression

    DEFF Research Database (Denmark)

    Sonne, Si Brask; Yadav, Rachita; Yin, Guangliang

    2017-01-01

    The present study aimed to identify genes exhibiting concomitant obesity-dependent changes in DNA methylation and gene expression in adipose tissues in the mouse using diet-induced obese (DIO) C57BL/6J and genetically obese ob/ob mice as models. Mature adipocytes were isolated from epididymal...... and inguinal adipose tissues of ob/ob and DIO C57BL/6J mice. DNA methylation was analyzed by MeDIP-sequencing and gene expression by microarray analysis. The majority of differentially methylated regions (DMRs) were hypomethylated in obese mice. Global methylation of long interspersed elements indicated...... that hypomethylation did not reflect methyl donor deficiency. In both DIO and ob/ob mice, we observed more obesity-associated methylation changes in epididymal than in inguinal adipocytes. Assignment of DMRs to promoter, exon, intron and intergenic regions demonstrated that DIO-induced changes in DNA methylation in C...

  5. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans

    NARCIS (Netherlands)

    Houtepen, Lotte C.; Vinkers, Christiaan H.; Carrillo-Roa, Tania; Hiemstra, Marieke; Van Lier, Pol A.; Meeus, Wim; Branje, Susan J. T.; Heim, Christine M.; Nemeroff, Charles B.; Mill, Jonathan; Schalkwyk, Leonard C.; Creyghton, Menno P.; Kahn, René S.; Joëls, Marian; Binder, Elisabeth B.; Boks, Marco P

    2016-01-01

    DNA methylation likely plays a role in the regulation of human stress reactivity. Here we show that in a genome-wide analysis of blood DNA methylation in 85 healthy individuals, a locus in the Kit ligand gene (KITLG; cg27512205) showed the strongest association with cortisol stress reactivity (P=5.8

  6. DNA methylation changes separate allergic patients from healthy controls and may reflect altered CD4+ T-cell population structure.

    Directory of Open Access Journals (Sweden)

    Colm E Nestor

    2014-01-01

    Full Text Available Altered DNA methylation patterns in CD4(+ T-cells indicate the importance of epigenetic mechanisms in inflammatory diseases. However, the identification of these alterations is complicated by the heterogeneity of most inflammatory diseases. Seasonal allergic rhinitis (SAR is an optimal disease model for the study of DNA methylation because of its well-defined phenotype and etiology. We generated genome-wide DNA methylation (N(patients = 8, N(controls = 8 and gene expression (N(patients = 9, Ncontrols = 10 profiles of CD4(+ T-cells from SAR patients and healthy controls using Illumina's HumanMethylation450 and HT-12 microarrays, respectively. DNA methylation profiles clearly and robustly distinguished SAR patients from controls, during and outside the pollen season. In agreement with previously published studies, gene expression profiles of the same samples failed to separate patients and controls. Separation by methylation (N(patients = 12, N(controls = 12, but not by gene expression (N(patients = 21, N(controls = 21 was also observed in an in vitro model system in which purified PBMCs from patients and healthy controls were challenged with allergen. We observed changes in the proportions of memory T-cell populations between patients (N(patients = 35 and controls (N(controls = 12, which could explain the observed difference in DNA methylation. Our data highlight the potential of epigenomics in the stratification of immune disease and represents the first successful molecular classification of SAR using CD4(+ T cells.

  7. Early maternal alcohol consumption alters hippocampal DNA methylation, gene expression and volume in a mouse model.

    Directory of Open Access Journals (Sweden)

    Heidi Marjonen

    Full Text Available The adverse effects of alcohol consumption during pregnancy are known, but the molecular events that lead to the phenotypic characteristics are unclear. To unravel the molecular mechanisms, we have used a mouse model of gestational ethanol exposure, which is based on maternal ad libitum ingestion of 10% (v/v ethanol for the first 8 days of gestation (GD 0.5-8.5. Early neurulation takes place by the end of this period, which is equivalent to the developmental stage early in the fourth week post-fertilization in human. During this exposure period, dynamic epigenetic reprogramming takes place and the embryo is vulnerable to the effects of environmental factors. Thus, we hypothesize that early ethanol exposure disrupts the epigenetic reprogramming of the embryo, which leads to alterations in gene regulation and life-long changes in brain structure and function. Genome-wide analysis of gene expression in the mouse hippocampus revealed altered expression of 23 genes and three miRNAs in ethanol-exposed, adolescent offspring at postnatal day (P 28. We confirmed this result by using two other tissues, where three candidate genes are known to express actively. Interestingly, we found a similar trend of upregulated gene expression in bone marrow and main olfactory epithelium. In addition, we observed altered DNA methylation in the CpG islands upstream of the candidate genes in the hippocampus. Our MRI study revealed asymmetry of brain structures in ethanol-exposed adult offspring (P60: we detected ethanol-induced enlargement of the left hippocampus and decreased volume of the left olfactory bulb. Our study indicates that ethanol exposure in early gestation can cause changes in DNA methylation, gene expression, and brain structure of offspring. Furthermore, the results support our hypothesis of early epigenetic origin of alcohol-induced disorders: changes in gene regulation may have already taken place in embryonic stem cells and therefore can be seen in

  8. Altered DNA methylation and expression of PLAGL1 in cord blood from assisted reproductive technology pregnancies compared with natural conceptions.

    Science.gov (United States)

    Vincent, Rebecca N; Gooding, Luke D; Louie, Kenny; Chan Wong, Edgar; Ma, Sai

    2016-09-01

    To investigate DNA methylation and expression of imprinted genes and an imprinted gene network (IGN) in neonates conceived via assisted reproductive technology (ART). Case control. Research institution. Two hundred sixty-four cases of cord blood and/or placental villi from neonates (101 IVF, 81 ICSI, 82 naturally conceived). Placentas were obtained at birth for biopsy and cord blood extraction. DNA methylation and expression of imprinted genes. DNA methylation at the PLAGL1 differentially methylated region (DMR) was significantly higher in IVF cord blood (48.0%) compared with controls (46.0%). No differences were found in DNA methylation between conception modes for KvDMR1 and LINE-1 in cord blood and placenta as well as PLAGL1 and PEG10 in placenta villi. PLAGL1 expression was lower in both IVF and ICSI cord blood groups than in controls (relative quantification of 0.65, 0.74, 0.89, respectively). Analyzing the expression of 3 genes in a PLAGL1 regulated IGN revealed different expression between conception modes and a significant correlation to PLAGL1 expression in only one (KCNQ1OT1). Our results suggest a stability of DNA methylation at imprinted DMRs; however, we show PLAGL1 methylation/expression to be altered after ART. As PLAGL1 expression correlated with only one of the three IGN genes in cord blood, we propose there is a more complex mechanism of regulating the IGN that may involve other genes and epigenetic modifications in this tissue. Further research investigating IGN-implicated genes in various neonatal tissues is warranted to elucidate the full effects ART-induced alterations to PLAGL1 and the IGN may have on fetal growth/development. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Cocaine Directly Impairs Memory Extinction and Alters Brain DNA Methylation Dynamics in Honey Bees

    Directory of Open Access Journals (Sweden)

    Eirik Søvik

    2018-02-01

    Full Text Available Drug addiction is a chronic relapsing behavioral disorder. The high relapse rate has often been attributed to the perseverance of drug-associated memories due to high incentive salience of stimuli learnt under the influence of drugs. Drug addiction has also been interpreted as a memory disorder since drug associated memories are unusually enduring and some drugs, such as cocaine, interfere with neuroepigenetic machinery known to be involved in memory processing. Here we used the honey bee (an established invertebrate model for epigenomics and behavioral studies to examine whether or not cocaine affects memory processing independently of its effect on incentive salience. Using the proboscis extension reflex training paradigm we found that cocaine strongly impairs consolidation of extinction memory. Based on correlation between the observed effect of cocaine on learning and expression of epigenetic processes, we propose that cocaine interferes with memory processing independently of incentive salience by directly altering DNA methylation dynamics. Our findings emphasize the impact of cocaine on memory systems, with relevance for understanding how cocaine can have such an enduring impact on behavior.

  10. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    Directory of Open Access Journals (Sweden)

    Daniela L Buscariollo

    Full Text Available Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg or vehicle (0.09% NaCl i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  11. Embryonic Caffeine Exposure Acts via A1 Adenosine Receptors to Alter Adult Cardiac Function and DNA Methylation in Mice

    Science.gov (United States)

    Greenwood, Victoria; Xue, Huiling; Rivkees, Scott A.; Wendler, Christopher C.

    2014-01-01

    Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs) mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg) or vehicle (0.09% NaCl) i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2–4 cups of coffee in humans. After dams gave birth, offspring were examined at 8–10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs) within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation. PMID:24475304

  12. Heavy-ion radiation induces both activation of multiple endogenous transposable elements and alterations in DNA methylation in rice

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Li, Xishan; Xiaolin, Cui; Li, Xiang

    2012-07-01

    Space radiation represents a complex environmental condition in which several interacting factors such as electron, neutron, proton, heavy-ion are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic aswell as external perturbations, it is conceivable that epigenetic markers like DNA methylation and transposition may undergo alterations in response to space radiation. Cytosine DNA methylation plays important roles in maintaining genome stability and controlling gene expression. A predominant means for Transposable elements (TEs) to cause genetic instability is via their transpositional activation. To find the detailed molecular characterization of the nature of genomic changes induced by space radiation, the seeds of rice were exposed to 0.02, 0.2, 1, 2 and 20 Gy dose of ^{12}C heavy-ion radiation, respectively. We found that extensive alteration in both DNA methylation and gene expression occurred in rice plants after different dose of heavy-ion radiation. Here we shown that heavy-ion radiation has induced transposition of mPing and Tos17 in rice, which belong to distinct classes including the miniature inverted terminal repeat TEs (MITEs) and long-terminal repeat (LTR) retrotransposons, respectively. mPing and Tos17 mobility were found to correlate with cytosine methylation alteration detected by MSAP and genetic variation detected by AFLP. The result showed that at least in some cases transposition of TEs was associated with cytosine demethylation within the elements. Our results implicate that the heavy-ion radiation represents a potent mutagenic agent that can cause genomic instabilities by eliciting transposition of endogenous TEs in rice. Keywords: Heavy-ion radiation, DNA methylation, Transposable elements, mPing, Tos17

  13. Maternal cocaine administration in mice alters DNA methylation and gene expression in hippocampal neurons of neonatal and prepubertal offspring.

    Directory of Open Access Journals (Sweden)

    Svetlana I Novikova

    2008-04-01

    Full Text Available Previous studies documented significant behavioral changes in the offspring of cocaine-exposed mothers. We now explore the hypothesis that maternal cocaine exposure could alter the fetal epigenetic machinery sufficiently to cause lasting neurochemical and functional changes in the offspring. Pregnant CD1 mice were administered either saline or 20 mg/kg cocaine twice daily on gestational days 8-19. Male pups from each of ten litters of the cocaine and control groups were analyzed at 3 (P3 or 30 (P30 days postnatum. Global DNA methylation, methylated DNA immunoprecipitation followed by CGI(2 microarray profiling and bisulfite sequencing, as well as quantitative real-time RT-PCR gene expression analysis, were evaluated in hippocampal pyramidal neurons excised by laser capture microdissection. Following maternal cocaine exposure, global DNA methylation was significantly decreased at P3 and increased at P30. Among the 492 CGIs whose methylation was significantly altered by cocaine at P3, 34% were hypermethylated while 66% were hypomethylated. Several of these CGIs contained promoter regions for genes implicated in crucial cellular functions. Endogenous expression of selected genes linked to the abnormally methylated CGIs was correspondingly decreased or increased by as much as 4-19-fold. By P30, some of the cocaine-associated effects at P3 endured, reversed to opposite directions, or disappeared. Further, additional sets of abnormally methylated targets emerged at P30 that were not observed at P3. Taken together, these observations indicate that maternal cocaine exposure during the second and third trimesters of gestation could produce potentially profound structural and functional modifications in the epigenomic programs of neonatal and prepubertal mice.

  14. Altered Mitochondrial DNA Methylation Pattern in Alzheimer Disease-Related Pathology and in Parkinson Disease.

    Science.gov (United States)

    Blanch, Marta; Mosquera, Jose Luis; Ansoleaga, Belén; Ferrer, Isidre; Barrachina, Marta

    2016-02-01

    Mitochondrial dysfunction is linked with the etiopathogenesis of Alzheimer disease and Parkinson disease. Mitochondria are intracellular organelles essential for cell viability and are characterized by the presence of the mitochondrial (mt)DNA. DNA methylation is a well-known epigenetic mechanism that regulates nuclear gene transcription. However, mtDNA methylation is not the subject of the same research attention. The present study shows the presence of mitochondrial 5-methylcytosine in CpG and non-CpG sites in the entorhinal cortex and substantia nigra of control human postmortem brains, using the 454 GS FLX Titanium pyrosequencer. Moreover, increased mitochondrial 5-methylcytosine levels are found in the D-loop region of mtDNA in the entorhinal cortex in brain samples with Alzheimer disease-related pathology (stages I to II and stages III to IV of Braak and Braak; n = 8) with respect to control cases. Interestingly, this region shows a dynamic pattern in the content of mitochondrial 5-methylcytosine in amyloid precursor protein/presenilin 1 mice along with Alzheimer disease pathology progression (3, 6, and 12 months of age). Finally, a loss of mitochondrial 5-methylcytosine levels in the D-loop region is found in the substantia nigra in Parkinson disease (n = 10) with respect to control cases. In summary, the present findings suggest mtDNA epigenetic modulation in human brain is vulnerable to neurodegenerative disease states. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  15. DNA methylation in metabolic disorders

    DEFF Research Database (Denmark)

    Barres, Romain; Zierath, Juleen R

    2011-01-01

    DNA methylation is a major epigenetic modification that controls gene expression in physiologic and pathologic states. Metabolic diseases such as diabetes and obesity are associated with profound alterations in gene expression that are caused by genetic and environmental factors. Recent reports h...... a mechanism by which environmental factors, including diet and exercise, can modify genetic predisposition to disease. This article considers the current evidence that defines a role for DNA methylation in metabolic disorders....

  16. Altered Histone Mark Deposition and DNA Methylation at Homeobox Genes in Human Oral Squamous Cell Carcinoma Cells

    Science.gov (United States)

    Marcinkiewicz, Katarzyna M.; Gudas, Lorraine J.

    2014-01-01

    We recently reported a role of Polycomb repressive complex 2 (PRC2) and PRC2 trimethylation of histone 3 lysine 27 (H3K27me3) in the regulation of homeobox (HOX) (Marcinkiewicz and Gudas, 2013) gene transcript levels in human oral keratinocytes (OKF6-TERT1R) and tongue squamous cell carcinoma (SCC) cells. Here, we assessed both the levels of various histone modifications at a subset of homeobox genes and genome wide DNA methylation patterns in OKF6-TERT1R and SCC-9 cells by using ERRBS (enhanced reduced representation bisulfite sequencing). We detected the H3K9me3 mark at HOXB7, HOXC10, HOXC13 and HOXD8 at levels higher in OKF6-TERT1R than in SCC-9 cells; at IRX1 and SIX2 the H3K9me3 levels were conversely higher in SCC-9 than in OKF6-TERT1R. The H3K79me3 mark was detectable only at IRX1 in OKF6-TERT1R and at IRX4 in SCC-9 cells. The levels of H3K4me3 and H3K36me3 marks correlate with the transcript levels of the assessed homeobox genes in both OKF6-TERT1R and SCC-9. We detected generally lower CpG methylation levels on DNA in SCC-9 cells at annotated genomic regions which were differentially methylated between OKF6-TERT1R and SCC-9 cells; however, some genomic regions, including the HOX gene clusters, showed DNA methylation at higher levels in SCC-9 than OKF6-TERT1R. Thus, both altered histone modification patterns and changes in DNA methylation are associated with dysregulation of homeobox gene expression in human oral cavity SCC cells, and this dysregulation potentially plays a role in the neoplastic phenotype of oral keratinocytes. PMID:24519855

  17. Cold acclimation alters DNA methylation patterns and confers tolerance to heat and increases growth rate in Brassica rapa.

    Science.gov (United States)

    Liu, Tongkun; Li, Ying; Duan, Weike; Huang, Feiyi; Hou, Xilin

    2017-02-01

    Epigenetic modifications are implicated in plant adaptations to abiotic stresses. Exposure of plants to one stress can induce resistance to other stresses, a process termed cross-adaptation, which is not well understood. In this study, we aimed to unravel the epigenetic basis of elevated heat-tolerance in cold-acclimated Brassica rapa by conducting a genome-wide DNA methylation analysis of leaves from control (CK) and cold-acclimated (CA) plants. We found that both methylation and demethylation occurred during cold acclimation. Two significantly altered pathways, malate dehydrogenase activity and carbon fixation, and 1562 differentially methylated genes, including BramMDH1, BraKAT2, BraSHM4, and Bra4CL2, were identified in CA plants. Genetic validation and treatment of B. rapa with 5-aza-2-deoxycytidine (Aza) suggested that promoter demethylation of four candidate genes increased their transcriptional activities. Physiological analysis suggested that elevated heat-tolerance and high growth rate were closely related to increases in organic acids and photosynthesis, respectively. Functional analyses demonstrated that the candidate gene BramMDH1 (mMDH: mitochondrial malate dehydrogenase) directly enhances organic acids and photosynthesis to increase heat-tolerance and growth rate in Arabidopsis. However, Aza-treated B. rapa, which also has elevated BramMDH1 levels, did not exhibit enhanced heat-tolerance. We therefore suggest that DNA demethylation alone is not sufficient to increase heat-tolerance. This study demonstrates that altered DNA methylation contributes to cross-adaptation. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. DNA methylation alterations in iPSC- and hESC-derived neurons: potential implications for neurological disease modeling.

    Science.gov (United States)

    de Boni, Laura; Gasparoni, Gilles; Haubenreich, Carolin; Tierling, Sascha; Schmitt, Ina; Peitz, Michael; Koch, Philipp; Walter, Jörn; Wüllner, Ullrich; Brüstle, Oliver

    2018-01-01

    Genetic predisposition and epigenetic alterations are both considered to contribute to sporadic neurodegenerative diseases (NDDs) such as Parkinson's disease (PD). Since cell reprogramming and the generation of induced pluripotent stem cells (iPSCs) are themselves associated with major epigenetic remodeling, it remains unclear to what extent iPSC-derived neurons lend themselves to model epigenetic disease-associated changes. A key question to be addressed in this context is whether iPSC-derived neurons exhibit epigenetic signatures typically observed in neurons derived from non-reprogrammed human embryonic stem cells (hESCs). Here, we compare mature neurons derived from hESC and isogenic human iPSC generated from hESC-derived neural stem cells. Genome-wide 450 K-based DNA methylation and HT12v4 gene array expression analyses were complemented by a deep analysis of selected genes known to be involved in NDD. Our studies show that DNA methylation and gene expression patterns of isogenic hESC- and iPSC-derived neurons are markedly preserved on a genome-wide and single gene level. Overall, iPSC-derived neurons exhibit similar DNA methylation patterns compared to isogenic hESC-derived neurons. Further studies will be required to explore whether the epigenetic patterns observed in iPSC-derived neurons correspond to those detectable in native brain neurons.

  19. Gestational Diabetes Alters Offspring DNA Methylation Profiles in Human and Rat: Identification of Key Pathways Involved in Endocrine System Disorders, Insulin Signaling, Diabetes Signaling, and ILK Signaling.

    Science.gov (United States)

    Petropoulos, Sophie; Guillemin, Claire; Ergaz, Zivanit; Dimov, Sergiy; Suderman, Matthew; Weinstein-Fudim, Liza; Ornoy, Asher; Szyf, Moshe

    2015-06-01

    Gestational diabetes is associated with risk for metabolic disease later in life. Using a cross-species approach in rat and humans, we examined the hypothesis that gestational diabetes during pregnancy triggers changes in the methylome of the offspring that might be mediating these risks. We show in a gestation diabetes rat model, the Cohen diabetic rat, that gestational diabetes triggers wide alterations in DNA methylation in the placenta in both candidate diabetes genes and genome-wide promoters, thus providing evidence for a causal relationship between diabetes during pregnancy and DNA methylation alterations. There is a significant overlap between differentially methylated genes in the placenta and the liver of the rat offspring. Several genes differentially methylated in rat placenta exposed to maternal diabetes are also differentially methylated in the human placenta of offspring exposed to gestational diabetes in utero. DNA methylation changes inversely correlate with changes in expression. The changes in DNA methylation affect known functional gene pathways involved in endocrine function, metabolism, and insulin responses. These data provide support to the hypothesis that early-life exposures and their effects on metabolic disease are mediated by DNA methylation changes. This has important diagnostic and therapeutic implications.

  20. Altered DNA methylation patterns of the H19 differentially methylated region and the DAZL gene promoter are associated with defective human sperm.

    Directory of Open Access Journals (Sweden)

    Bo Li

    Full Text Available DNA methylation disturbance is associated with defective human sperm. However, oligozoospermia (OZ and asthenozoospermia (AZ usually present together, and the relationship between the single-phenotype defects in human sperm and DNA methylation is poorly understood. In this study, 20 infertile OZ patients and 20 infertile AZ patients were compared with 20 fertile normozoospermic men. Bisulfate-specific PCR was used to analyze DNA methylation of the H19-DMR and the DAZL promoter in these subjects. A similar DNA methylation pattern of the H19-DMR was detected in AZ and NZ(control, with only complete methylation and mild hypomethylation(0.05. However, the methylation pattern of severe hypomethylation (>50% unmethylated CpGs and complete unmethylation was only detected in 5 OZ patients, and the occurrence of these two methylation patterns was 8.54±10.86% and 9±6.06%, respectively. Loss of DNA methylation of the H19-DMR in the OZ patients was found to mainly occur in CTCF-binding site 6, with occurrence of 18.15±14.71%, which was much higher than that in patients with NZ (0.84±2.05% and AZ (0.58±1.77% (P20% methylated clones in the DAZL promoter only in infertile patients, there was no significant difference between the AZ and OZ patients in the proportion of moderately-to-severely hypermethylated clones (p>0.05. In all cases, global sperm genome methylation analyses, using LINE1 transposon as the indicator, showed that dysregulation of DNA methylation is specifically associated with the H19-DMR and DAZL promoter. Therefore, abnormal DNA methylation status of H19-DMR, especially at the CTCF-binding site 6, is closely associated with OZ. Abnormal DNA methylation of the DAZL promoter might represent an epigenetic marker of male infertility.

  1. Kidney Dysfunction in Adult Offspring Exposed In Utero to Type 1 Diabetes Is Associated with Alterations in Genome-Wide DNA Methylation.

    Directory of Open Access Journals (Sweden)

    Jean-François Gautier

    Full Text Available Fetal exposure to hyperglycemia impacts negatively kidney development and function.Our objective was to determine whether fetal exposure to moderate hyperglycemia is associated with epigenetic alterations in DNA methylation in peripheral blood cells and whether those alterations are related to impaired kidney function in adult offspring.Twenty nine adult, non-diabetic offspring of mothers with type 1 diabetes (T1D (case group were matched with 28 offspring of T1D fathers (control group for the study of their leukocyte genome-wide DNA methylation profile (27,578 CpG sites, Human Methylation 27 BeadChip, Illumina Infinium. In a subset of 19 cases and 18 controls, we assessed renal vascular development by measuring Glomerular Filtration Rate (GFR and Effective Renal Plasma Flow (ERPF at baseline and during vasodilatation produced by amino acid infusion.Globally, DNA was under-methylated in cases vs. controls. Among the 87 CpG sites differently methylated, 74 sites were less methylated and 13 sites more methylated in cases vs. controls. None of these CpG sites were located on a gene known to be directly involved in kidney development and/or function. However, the gene encoding DNA methyltransferase 1 (DNMT1--a key enzyme involved in gene expression during early development--was under-methylated in cases. The average methylation of the 74 under-methylated sites differently correlated with GFR in cases and controls.Alterations in methylation profile imprinted by the hyperglycemic milieu of T1D mothers during fetal development may impact kidney function in adult offspring. The involved pathways seem to be a nonspecific imprinting process rather than specific to kidney development or function.

  2. Cord blood hematopoietic cells from preterm infants display altered DNA methylation patterns.

    Science.gov (United States)

    de Goede, Olivia M; Lavoie, Pascal M; Robinson, Wendy P

    2017-01-01

    Premature infants are highly vulnerable to infection. This is partly attributable to the preterm immune system, which differs from that of the term neonate in cell composition and function. Multiple studies have found differential DNA methylation (DNAm) between preterm and term infants' cord blood; however, interpretation of these studies is limited by the confounding factor of blood cell composition. This study evaluates the epigenetic impact of preterm birth in isolated hematopoietic cell populations, reducing the concern of cell composition differences. Genome-wide DNAm was measured using the Illumina 450K array in T cells, monocytes, granulocytes, and nucleated red blood cells (nRBCs) isolated from cord blood of 5 term and 5 preterm (blood cells (nRBCs) showed the most extensive changes in DNAm, with 9258 differentially methylated (DM) sites (FDR  0.10) discovered between preterm and term infants compared to the blood cell populations. The direction of DNAm change with gestational age at these prematurity-DM sites followed known patterns of hematopoietic differentiation, suggesting that term hematopoietic cell populations are more epigenetically mature than their preterm counterparts. Consistent shifts in DNAm between preterm and term cells were observed at 25 CpG sites, with many of these sites located in genes involved in growth and proliferation, hematopoietic lineage commitment, and the cytoskeleton. DNAm in preterm and term hematopoietic cells conformed to previously identified DNAm signatures of fetal liver and bone marrow, respectively. This study presents the first genome-wide mapping of epigenetic differences in hematopoietic cells across the late gestational period. DNAm differences in hematopoietic cells between term and <31 weeks were consistent with the hematopoietic origin of these cells during ontogeny, reflecting an important role of DNAm in their regulation. Due to the limited sample size and the high coincidence of prematurity and

  3. Maternal E-Cigarette Exposure in Mice Alters DNA Methylation and Lung Cytokine Expression in Offspring.

    Science.gov (United States)

    Chen, Hui; Li, Gerard; Chan, Yik Lung; Chapman, David G; Sukjamnong, Suporn; Nguyen, Tara; Annissa, Tiara; McGrath, Kristine C; Sharma, Pawan; Oliver, Brian G

    2018-03-01

    E-cigarette usage is increasing, especially among the young, with both the general population and physicians perceiving them as a safe alternative to tobacco smoking. Worryingly, e-cigarettes are commonly used by pregnant women. As nicotine is known to adversely affect children in utero, we hypothesized that nicotine delivered via e-cigarettes would negatively affect lung development. To test this, we developed a mouse model of maternal e-vapor (nicotine and nicotine-free) exposure and investigated the impact on the growth and lung inflammation in both offspring and mothers. Female Balb/c mice were exposed to e-fluid vapor containing nicotine (18 mg/ml nicotine E-cigarette [E-cig18], equivalent to two cigarettes per treatment, twice daily,) or nicotine free (E-cig0 mg/ml) from 6 weeks before mating until pups weaned. Male offspring were studied at Postnatal Day (P) 1, P20, and at 13 weeks. The mothers were studied when the pups weaned. In the mothers' lungs, e-cigarette exposure with and without nicotine increased the proinflammatory cytokines IL-1β, IL-6, and TNF-α. In adult offspring, TNF-α protein levels were increased in both E-cig18 and E-cig0 groups, whereas IL-1β was suppressed. This was accompanied by global changes in DNA methylation. In this study, we found that e-cigarette exposure during pregnancy adversely affected maternal and offspring lung health. As this occurred with both nicotine-free and nicotine-containing e-vapor, the effects are likely due to by-products of vaporization rather than nicotine.

  4. Genome-wide analysis of salinity-stress induced DNA methylation alterations in cotton (Gossypium hirsutum L.) using the Me-DIP sequencing technology.

    Science.gov (United States)

    Lu, X K; Shu, N; Wang, J J; Chen, X G; Wang, D L; Wang, S; Fan, W L; Guo, X N; Guo, L X; Ye, W W

    2017-06-29

    Cytosine DNA methylation is a significant form of DNA modification closely associated with gene expression in eukaryotes, fungi, animals, and plants. Although the reference genomes of cotton (Gossypium hirsutum L.) have been publically available, the salinity-stress-induced DNA methylome alterations in cotton are not well understood. Here, we constructed a map of genome-wide DNA methylation characteristics of cotton leaves under salt stress using the methylated DNA immunoprecipitation sequencing method. The results showed that the methylation reads on chromosome 9 were most comparable with those on the other chromosomes, but the greatest changes occurred on chromosome 8 under salt stress. The DNA methylation pattern analysis indicated that a relatively higher methylation density was found in the upstream2k and downstream2k elements of the CDS region and CG-islands. Almost 94% of the reads belonged to LTR-gspsy and LTR-copia, and the number of methylation reads in LTR-gypsy was four times greater than that in LTR-copia in both control and stressed samples. The analysis of differentially methylated regions (DMRs) showed that the gene elements upstream2k, intron, and downstream2k were hypomethylated, but the CDS regions were hypermethylated. The GO (Gene Ontology) analysis suggested that the methylated genes were most enriched in cellular processes, metabolic processes, cell parts and catalytic activities, which might be closely correlated with response to NaCl stress. In this study, we completed a genomic DNA methylation profile and conducted a DMR analysis under salt stress, which provided valuable information for the better understanding of epigenetics in response to salt stress in cotton.

  5. Maternal obesity alters fatty acid oxidation, AMPK activity, and associated DNA methylation in mesenchymal stem cells from human infants.

    Science.gov (United States)

    Boyle, Kristen E; Patinkin, Zachary W; Shapiro, Allison L B; Bader, Carly; Vanderlinden, Lauren; Kechris, Katerina; Janssen, Rachel C; Ford, Rebecca J; Smith, Brennan K; Steinberg, Gregory R; Davidson, Elizabeth J; Yang, Ivana V; Dabelea, Dana; Friedman, Jacob E

    2017-11-01

    Infants born to mothers with obesity have greater adiposity, ectopic fat storage, and are at increased risk for childhood obesity and metabolic disease compared with infants of normal weight mothers, though the cellular mechanisms mediating these effects are unclear. We tested the hypothesis that human, umbilical cord-derived mesenchymal stem cells (MSCs) from infants born to obese (Ob-MSC) versus normal weight (NW-MSC) mothers demonstrate altered fatty acid metabolism consistent with adult obesity. In infant MSCs undergoing myogenesis in vitro, we measured cellular lipid metabolism and AMPK activity, AMPK activation in response to cellular nutrient stress, and MSC DNA methylation and mRNA content of genes related to oxidative metabolism. We found that Ob-MSCs exhibit greater lipid accumulation, lower fatty acid oxidation (FAO), and dysregulation of AMPK activity when undergoing myogenesis in vitro. Further experiments revealed a clear phenotype distinction within the Ob-MSC group where more severe MSC metabolic perturbation corresponded to greater neonatal adiposity and umbilical cord blood insulin levels. Targeted analysis of DNA methylation array revealed Ob-MSC hypermethylation in genes regulating FAO (PRKAG2, ACC2, CPT1A, SDHC) and corresponding lower mRNA content of these genes. Moreover, MSC methylation was positively correlated with infant adiposity. These data suggest that greater infant adiposity is associated with suppressed AMPK activity and reduced lipid oxidation in MSCs from infants born to mothers with obesity and may be an important, early marker of underlying obesity risk. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  6. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    International Nuclear Information System (INIS)

    Haddad, Rami; Kasneci, Amanda; Mepham, Kathryn; Sebag, Igal A.

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  7. Apoptosis and DNA Methylation

    International Nuclear Information System (INIS)

    Meng, Huan X.; Hackett, James A.; Nestor, Colm; Dunican, Donncha S.; Madej, Monika; Reddington, James P.; Pennings, Sari; Harrison, David J.; Meehan, Richard R.

    2011-01-01

    Epigenetic mechanisms assist in maintaining gene expression patterns and cellular properties in developing and adult tissues. The molecular pathology of disease states frequently includes perturbation of DNA and histone methylation patterns, which can activate apoptotic pathways associated with maintenance of genome integrity. This perspective focuses on the pathways linking DNA methyltransferases and methyl-CpG binding proteins to apoptosis, and includes new bioinformatic analyses to characterize the evolutionary origin of two G/T mismatch-specific thymine DNA glycosylases, MBD4 and TDG

  8. Cafeteria diet differentially alters the expression of feeding-related genes through DNA methylation mechanisms in individual hypothalamic nuclei.

    Science.gov (United States)

    Lazzarino, Gisela Paola; Andreoli, María Florencia; Rossetti, María Florencia; Stoker, Cora; Tschopp, María Virgina; Luque, Enrique Hugo; Ramos, Jorge Guillermo

    2017-07-15

    We evaluated the effect of cafeteria diet (CAF) on the mRNA levels and DNA methylation state of feeding-related neuropeptides, and neurosteroidogenic enzymes in discrete hypothalamic nuclei. Besides, the expression of steroid hormone receptors was analyzed. Female rats fed with CAF from weaning increased their energy intake, body weight, and fat depots, but did not develop metabolic syndrome. The increase in energy intake was related to an orexigenic signal of paraventricular (PVN) and ventromedial (VMN) nuclei, given principally by upregulation of AgRP and NPY. This was mildly counteracted by the arcuate nucleus, with decreased AgRP expression and increased POMC and kisspeptin expression. CAF altered the transcription of neurosteroidogenic enzymes in PVN and VMN, and epigenetic mechanisms associated with differential promoter methylation were involved. The changes observed in the hypothalamic nuclei studied could add information about their differential role in food intake control and how their action is disrupted in obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. DNA methylation in obesity

    Directory of Open Access Journals (Sweden)

    Małgorzata Pokrywka

    2014-11-01

    Full Text Available The number of overweight and obese people is increasing at an alarming rate, especially in the developed and developing countries. Obesity is a major risk factor for diabetes, cardiovascular disease, and cancer, and in consequence for premature death. The development of obesity results from the interplay of both genetic and environmental factors, which include sedentary life style and abnormal eating habits. In the past few years a number of events accompanying obesity, affecting expression of genes which are not directly connected with the DNA base sequence (e.g. epigenetic changes, have been described. Epigenetic processes include DNA methylation, histone modifications such as acetylation, methylation, phosphorylation, ubiquitination, and sumoylation, as well as non-coding micro-RNA (miRNA synthesis. In this review, the known changes in the profile of DNA methylation as a factor affecting obesity and its complications are described.

  10. Methylated DNA in Borrelia species.

    OpenAIRE

    Hughes, C A; Johnson, R C

    1990-01-01

    The DNA of Borrelia species was examined for the presence of methylated GATC sequences. The relapsing-fever Borrelia sp., B. coriaceae, and only 3 of 22 strains of B. burgdorferi contained adenine methylation systems. B. anserina lacked an adenine methylation system. Fundamental differences in DNA methylation exist among members of the genus Borrelia.

  11. Optical biosensing strategies for DNA methylation analysis.

    Science.gov (United States)

    Nazmul Islam, Md; Yadav, Sharda; Hakimul Haque, Md; Munaz, Ahmed; Islam, Farhadul; Al Hossain, Md Shahriar; Gopalan, Vinod; Lam, Alfred K; Nguyen, Nam-Trung; Shiddiky, Muhammad J A

    2017-06-15

    DNA methylation is an epigenetic modification of DNA, where a methyl group is added at the fifth carbon of the cytosine base to form 5 methyl cytosine (5mC) without altering the DNA sequences. It plays important roles in regulating many cellular processes by modulating key genes expression. Alteration in DNA methylation patterns becomes particularly important in the aetiology of different diseases including cancers. Abnormal methylation pattern could contribute to the pathogenesis of cancer either by silencing key tumor suppressor genes or by activating oncogenes. Thus, DNA methylation biosensing can help in the better understanding of cancer prognosis and diagnosis and aid the development of therapies. Over the last few decades, a plethora of optical detection techniques have been developed for analyzing DNA methylation using fluorescence, Raman spectroscopy, surface plasmon resonance (SPR), electrochemiluminescence and colorimetric readouts. This paper aims to comprehensively review the optical strategies for DNA methylation detection. We also present an overview of the remaining challenges of optical strategies that still need to be focused along with the lesson learnt while working with these techniques. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. DNA Methylation Modulates Nociceptive Sensitization after Incision.

    Directory of Open Access Journals (Sweden)

    Yuan Sun

    Full Text Available DNA methylation is a key epigenetic mechanism controlling DNA accessibility and gene expression. Blockade of DNA methylation can significantly affect pain behaviors implicated in neuropathic and inflammatory pain. However, the role of DNA methylation with regard to postoperative pain has not yet been explored. In this study we sought to investigate the role of DNA methylation in modulating incisional pain and identify possible targets under DNA methylation and contributing to incisional pain. DNA methyltranferase (DNMT inhibitor 5-Aza-2'-deoxycytidine significantly reduced incision-induced mechanical allodynia and thermal sensitivity. Aza-2'-deoxycytidine also reduced hindpaw swelling after incision, suggesting an anti-inflammatory effect. Global DNA methylation and DNMT3b expression were increased in skin after incision, but none of DNMT1, DNMT3a or DNMT3b was altered in spinal cord or DRG. The expression of proopiomelanocortin Pomc encoding β-endorphin and Oprm1 encoding the mu-opioid receptor were upregulated peripherally after incision; moreover, Oprm1 expression was further increased under DNMT inhibitor treatment. Finally, local peripheral injection of the opioid receptor antagonist naloxone significantly exacerbated incision-induced mechanical hypersensitivity. These results suggest that DNA methylation is functionally relevant to incisional nociceptive sensitization, and that mu-opioid receptor signaling might be one methylation regulated pathway controlling sensitization after incision.

  13. Adolescent binge-pattern alcohol exposure alters genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve male offspring.

    Science.gov (United States)

    Asimes, AnnaDorothea; Torcaso, Audrey; Pinceti, Elena; Kim, Chun K; Zeleznik-Le, Nancy J; Pak, Toni R

    2017-05-01

    Teenage binge drinking is a major health concern in the United States, with 21% of teenagers reporting binge-pattern drinking behavior in the previous 30 days. Recently, our lab showed that alcohol-naïve offspring of rats exposed to alcohol during adolescence exhibited altered gene expression profiles in the hypothalamus, a brain region involved in stress regulation. We employed Enhanced Reduced Representation Bisulfite Sequencing as an unbiased approach to test the hypothesis that parental exposure to binge-pattern alcohol during adolescence alters DNA methylation profiles in their alcohol-naïve offspring. Wistar rats were administered a repeated binge-ethanol exposure paradigm during early (postnatal day (PND) 37-44) and late (PND 67-74) adolescent development. Animals were mated 24 h after the last ethanol dose and subsequent offspring were produced. Analysis of male PND7 offspring revealed that offspring of alcohol-exposed parents exhibited differential DNA methylation patterns in the hypothalamus. The differentially methylated cytosines (DMCs) were distinct between offspring depending on which parent was exposed to ethanol. Moreover, novel DMCs were observed when both parents were exposed to ethanol and many DMCs from single parent ethanol exposure were not recapitulated with dual parent exposure. We also measured mRNA expression of several differentially methylated genes and some, but not all, showed correlative changes in expression. Importantly, methylation was not a direct predictor of expression levels, underscoring the complexity of transcriptional regulation. Overall, we demonstrate that adolescent binge ethanol exposure causes altered genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. DNA methylation dynamics in neurogenesis

    Science.gov (United States)

    Wang, Zhiqin; Tang, Beisha; He, Yuquan; Jin, Peng

    2016-01-01

    Neurogenesis is not limited to the embryonic stage, but continually proceeds in the adult brain throughout life. Epigenetic mechanisms, including DNA methylation, histone modification and noncoding RNA, play important roles in neurogenesis. For decades, DNA methylation was thought to be a stable modification, except for demethylation in the early embryo. In recent years, DNA methylation has proved to be dynamic during development. In this review, we summarize the latest understanding about DNA methylation dynamics in neurogenesis, including the roles of different methylation forms (5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine), as well as their ‘writers’, ‘readers’ and interactions with histone modifications. PMID:26950681

  15. A preliminary study of endocannabinoid system regulation in psychosis: Distinct alterations of CNR1 promoter DNA methylation in patients with schizophrenia.

    Science.gov (United States)

    D'Addario, Claudio; Micale, Vincenzo; Di Bartolomeo, Martina; Stark, Tibor; Pucci, Mariangela; Sulcova, Alexandra; Palazzo, Mariacarlotta; Babinska, Zuzana; Cremaschi, Laura; Drago, Filippo; Carlo Altamura, A; Maccarrone, Mauro; Dell'Osso, Bernardo

    2017-10-01

    Compelling evidence supports the involvement of the endocannabinoid system (ECS) in psychosis vulnerability. We here evaluated the transcriptional regulation of ECS components in human peripheral blood mononuclear cells (PBMCs) obtained from subjects suffering from bipolar disorder, major depressive disorder and schizophrenia, focusing in particular on the effects of DNA methylation. We observed selective alterations of DNA methylation at the promoter of CNR1, the gene coding for the type-1 cannabinoid receptor, in schizophrenic patients (N=25) with no changes in any other disorder. We confirmed the regulation of CNR1 in a well-validated animal model of schizophrenia, induced by prenatal methylazoxymethanol (MAM) acetate exposure (N=7 per group) where we found, in the prefrontal cortex, a significant increase in CNR1 expression and a consistent reduction in DNA methylation at specific CpG sites of gene promoter. Overall, our findings suggest a selective dysregulation of ECS in psychosis, and highlight the evaluation of CNR1 DNA methylation levels in PBMCs as a potential biomarker for schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: alterations in DNA methylation

    Directory of Open Access Journals (Sweden)

    Patil NA

    2016-09-01

    epigenetic alteration in response to metal oxide NPs and that this effect was dose-dependent. Keywords: nanotoxicity, epigenetics, global DNA methylation, 5-mC, DNA methyltransferase, Dnmt

  17. Ecstasy (MDMA) Alters Cardiac Gene Expression and DNA Methylation: Implications for Circadian Rhythm Dysfunction in the Heart.

    Science.gov (United States)

    Koczor, Christopher A; Ludlow, Ivan; Hight, Robert S; Jiao, Zhe; Fields, Earl; Ludaway, Tomika; Russ, Rodney; Torres, Rebecca A; Lewis, William

    2015-11-01

    MDMA (ecstasy) is an illicit drug that stimulates monoamine neurotransmitter release and inhibits reuptake. MDMA's acute cardiotoxicity includes tachycardia and arrhythmia which are associated with cardiomyopathy. MDMA acute cardiotoxicity has been explored, but neither long-term MDMA cardiac pathological changes nor epigenetic changes have been evaluated. Microarray analyses were employed to identify cardiac gene expression changes and epigenetic DNA methylation changes. To identify permanent MDMA-induced pathogenetic changes, mice received daily 10- or 35-day MDMA, or daily 10-day MDMA followed by 25-day saline washout (10 + 25 days). MDMA treatment caused differential gene expression (p 1.5) in 752 genes following 10 days, 558 genes following 35 days, and 113 genes following 10-day MDMA + 25-day saline washout. Changes in MAPK and circadian rhythm gene expression were identified as early as 10 days. After 35 days, circadian rhythm genes (Per3, CLOCK, ARNTL, and NPAS2) persisted to be differentially expressed. MDMA caused DNA hypermethylation and hypomethylation that was independent of gene expression; hypermethylation of genes was found to be 71% at 10 days, 68% at 35 days, and 91% at 10 + 25 days washout. Differential gene expression paralleled DNA methylation in 22% of genes at 10-day treatment, 17% at 35 days, and 48% at 10 + 25 days washout. We show here that MDMA induced cardiac epigenetic changes in DNA methylation where hypermethylation predominated. Moreover, MDMA induced gene expression of key elements of circadian rhythm regulatory genes. This suggests a fundamental organism-level event to explain some of the etiologies of MDMA dysfunction in the heart. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Maternal high-fat diet associated with altered gene expression, DNA methylation, and obesity risk in mouse offspring

    Science.gov (United States)

    Zaidi, Rabab; Shah, Shyam; Oakley, M. Elsa; Pavlatos, Cassondra; El Idrissi, Samir; Xing, Xiaoyun; Li, Daofeng; Wang, Ting; Cheverud, James M.

    2018-01-01

    We investigated maternal obesity in inbred SM/J mice by assigning females to a high-fat diet or a low-fat diet at weaning, mating them to low-fat-fed males, cross-fostering the offspring to low-fat-fed SM/J nurses at birth, and weaning the offspring onto a high-fat or low-fat diet. A maternal high-fat diet exacerbated obesity in the high-fat-fed daughters, causing them to weigh more, have more fat, and have higher serum levels of leptin as adults, accompanied by dozens of gene expression changes and thousands of DNA methylation changes in their livers and hearts. Maternal diet particularly affected genes involved in RNA processing, immune response, and mitochondria. Between one-quarter and one-third of differentially expressed genes contained a differentially methylated region associated with maternal diet. An offspring high-fat diet reduced overall variation in DNA methylation, increased body weight and organ weights, increased long bone lengths and weights, decreased insulin sensitivity, and changed the expression of 3,908 genes in the liver. Although the offspring were more affected by their own diet, their maternal diet had epigenetic effects lasting through adulthood, and in the daughters these effects were accompanied by phenotypic changes relevant to obesity and diabetes. PMID:29447215

  19. DNA Methylation Signature Analysis: How Easy Is It to Perform?

    Science.gov (United States)

    Piperi, Christina; Farmaki, Elena; Vlastos, Fotis; Papavassiliou, Athanasios G.; Martinet, Nadine

    2008-01-01

    Epigenetic changes, or heritable alterations in gene function that do not affect DNA sequence, are rapidly gaining acceptance as co-conspirators in carcinogenesis. Although DNA methylation signature analysis by methylation-specific polymerase chain reaction has been a breakthrough method in speed and sensitivity for gene methylation studies, several factors still limit its application as a routine diagnostic and prognostic test. PMID:19183791

  20. Altered DNA methylation of glycolytic and lipogenic genes in liver from obese and type 2 diabetic patients

    DEFF Research Database (Denmark)

    Kirchner, Henriette; Sinha, Indranil; Gao, Hui

    2016-01-01

    OBJECTIVE: Epigenetic modifications contribute to the etiology of type 2 diabetes. METHOD: We performed genome-wide methylome and transcriptome analysis in liver from severely obese men with or without type 2 diabetes and non-obese men to discover aberrant pathways underlying the development...... in four of these genes in liver of severely obese non-diabetic and type 2 diabetic patients, suggesting epigenetic regulation of transcription by altered ATF-DNA binding. CONCLUSION: Severely obese non-diabetic and type 2 diabetic patients have distinct alterations in the hepatic methylome...... and transcriptome, with hypomethylation of several genes controlling glucose metabolism within the ATF-motif regulatory site. Obesity appears to shift the epigenetic program of the liver towards increased glycolysis and lipogenesis, which may exacerbate the development of insulin resistance....

  1. DNA methylation abnormalities in congenital heart disease.

    Science.gov (United States)

    Serra-Juhé, Clara; Cuscó, Ivon; Homs, Aïda; Flores, Raquel; Torán, Núria; Pérez-Jurado, Luis A

    2015-01-01

    Congenital heart defects represent the most common malformation at birth, occurring also in ∼50% of individuals with Down syndrome. Congenital heart defects are thought to have multifactorial etiology, but the main causes are largely unknown. We have explored the global methylation profile of fetal heart DNA in comparison to blood DNA from control subjects: an absolute correlation with the type of tissue was detected. Pathway analysis revealed a significant enrichment of differential methylation at genes related to muscle contraction and cardiomyopathies in the developing heart DNA. We have also searched for abnormal methylation profiles on developing heart-tissue DNA of syndromic and non-syndromic congenital heart defects. On average, 3 regions with aberrant methylation were detected per sample and 18 regions were found differentially methylated between groups. Several epimutations were detected in candidate genes involved in growth regulation, apoptosis and folate pathway. A likely pathogenic hypermethylation of several intragenic sites at the MSX1 gene, involved in outflow tract morphogenesis, was found in a fetus with isolated heart malformation. In addition, hypermethylation of the GATA4 gene was present in fetuses with Down syndrome with or without congenital heart defects, as well as in fetuses with isolated heart malformations. Expression deregulation of the abnormally methylated genes was detected. Our data indicate that epigenetic alterations of relevant genes are present in developing heart DNA in fetuses with both isolated and syndromic heart malformations. These epimutations likely contribute to the pathogenesis of the malformation by cis-acting effects on gene expression.

  2. DNA Methylation, Nuclear Organization, and Cancer.

    Science.gov (United States)

    Madakashira, Bhavani P; Sadler, Kirsten C

    2017-01-01

    The dramatic re-organization of the cancer cell nucleus creates telltale morphological features critical for pathological staging of tumors. In addition, the changes to the mutational and epigenetic landscape in cancer cells alter the structure and stability of the genome and directly contribute to malignancy. DNA methylation is one of the best studied epigenetic changes in cancer, as nearly every type of cancer studied shows a loss of DNA methylation spread across most of the genome. This global hypomethylation is accompanied by hypermethylation at distinct loci, and much of the work on DNA methylation in cancer has focused on how local changes contribute to gene expression. However, the emerging picture is that the changes to DNA methylation in cancer cells has little direct effect on gene expression but instead impacts the organization of the genome in the nucleus. Several recent studies that take a broad view of the cancer epigenome find that the most profound changes to the cancer methylome are spread across large segments of the genome, and that the focal changes are reflective of a whole reorganization of epigenome. Hallmarks of nuclear reorganization in cancer are found in the long regions of chromatin marked by histone methylation (LOCKs) and nuclear lamina interactions (LADs). In this review, we focus on a novel perspective that DNA methylation changes in cancer impact the global structure of heterochromatin, LADs and LOCKs, and how these global changes, in turn, contribute to gene expression changes and genomic stability.

  3. DNA Methylation, Nuclear Organization, and Cancer

    Directory of Open Access Journals (Sweden)

    Bhavani P. Madakashira

    2017-06-01

    Full Text Available The dramatic re-organization of the cancer cell nucleus creates telltale morphological features critical for pathological staging of tumors. In addition, the changes to the mutational and epigenetic landscape in cancer cells alter the structure and stability of the genome and directly contribute to malignancy. DNA methylation is one of the best studied epigenetic changes in cancer, as nearly every type of cancer studied shows a loss of DNA methylation spread across most of the genome. This global hypomethylation is accompanied by hypermethylation at distinct loci, and much of the work on DNA methylation in cancer has focused on how local changes contribute to gene expression. However, the emerging picture is that the changes to DNA methylation in cancer cells has little direct effect on gene expression but instead impacts the organization of the genome in the nucleus. Several recent studies that take a broad view of the cancer epigenome find that the most profound changes to the cancer methylome are spread across large segments of the genome, and that the focal changes are reflective of a whole reorganization of epigenome. Hallmarks of nuclear reorganization in cancer are found in the long regions of chromatin marked by histone methylation (LOCKs and nuclear lamina interactions (LADs. In this review, we focus on a novel perspective that DNA methylation changes in cancer impact the global structure of heterochromatin, LADs and LOCKs, and how these global changes, in turn, contribute to gene expression changes and genomic stability.

  4. miRNAting control of DNA methylation

    Indian Academy of Sciences (India)

    2014-05-01

    May 1, 2014 ... stress or infection, DNA methylation within the repetitive regions is lost, resulting into the reactivation ... overexpressed, which help to induce DNA methylation (He et al. 2011). During DNA methylation, the ... these genes work in collaboration with each other and are required to assist DNA methylation in the ...

  5. Prognostic DNA Methylation Markers for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Siri H. Strand

    2014-09-01

    Full Text Available Prostate cancer (PC is the most commonly diagnosed neoplasm and the third most common cause of cancer-related death amongst men in the Western world. PC is a clinically highly heterogeneous disease, and distinction between aggressive and indolent disease is a major challenge for the management of PC. Currently, no biomarkers or prognostic tools are able to accurately predict tumor progression at the time of diagnosis. Thus, improved biomarkers for PC prognosis are urgently needed. This review focuses on the prognostic potential of DNA methylation biomarkers for PC. Epigenetic changes are hallmarks of PC and associated with malignant initiation as well as tumor progression. Moreover, DNA methylation is the most frequently studied epigenetic alteration in PC, and the prognostic potential of DNA methylation markers for PC has been demonstrated in multiple studies. The most promising methylation marker candidates identified so far include PITX2, C1orf114 (CCDC181 and the GABRE~miR-452~miR-224 locus, in addition to the three-gene signature AOX1/C1orf114/HAPLN3. Several other biomarker candidates have also been investigated, but with less stringent clinical validation and/or conflicting evidence regarding their possible prognostic value available at this time. Here, we review the current evidence for the prognostic potential of DNA methylation markers in PC.

  6. Negative regulation of DNA methylation in plants.

    Science.gov (United States)

    Saze, Hidetoshi; Sasaki, Taku; Kakutani, Tetsuji

    2008-01-01

    Cytosine methylation of repeats and genes is important for coordination of genome stability and proper gene function. In plants, DNA methylation is regulated by DNA methyltransferases, chromatin remodeling factors and RNAi machinery. Ectopic DNA hypermethylation at genes causes transcriptional repression and silencing, and the methylation patterns often become heritable over generations. DNA methylation is antagonized by the DNA demethylation enzymes. Recently, we identified a novel jmjC-domain containing gene IBM1 (increase in bonsai methylation1) that also negatively regulates DNA methylation in Arabidopsis. The ibm1 plants show a variety of developmental phenotypes. IBM1 prevents ectopic accumulation of DNA methylation at the BNS genic region, likely through removal of heterochromatic H3K9 methylation mark. DNA and histone demethylation pathways are important for genome-wide patterning of DNA methylation and for epigenetic regulation of plant development.

  7. Cocoa Consumption Alters the Global DNA Methylation of Peripheral Leukocytes in Humans with Cardiovascular Disease Risk Factors: A Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Anna Crescenti

    Full Text Available DNA methylation regulates gene expression and can be modified by different bioactive compounds in foods, such as polyphenols. Cocoa is a rich source of polyphenols, but its role in DNA methylation is still unknown. The objective was to assess the effect of cocoa consumption on DNA methylation and to determine whether the enzymes involved in the DNA methylation process participate in the mechanisms by which cocoa exerts these effects in humans. The global DNA methylation levels in the peripheral blood were evaluated in 214 volunteers who were pre-hypertensive, stage-1 hypertensive or hypercholesterolemic. The volunteers were divided into two groups: 110 subjects who consumed cocoa (6 g/d for two weeks and 104 control subjects. In addition, the peripheral blood mononuclear cells (PBMCs from six subjects were treated with a cocoa extract to analyze the mRNA levels of the DNA methyltransferases (DNMTs, methylenetetrahydrofolate reductase (MTHFR, and methionine synthase reductase (MTRR genes. Cocoa consumption significantly reduced the DNA methylation levels (2.991±0.366 vs. 3.909±0.380, p<0.001. Additionally, we found an association between the cocoa effects on DNA methylation and three polymorphisms located in the MTHFR, MTRR, and DNMT3B genes. Furthermore, in PBMCs, the cocoa extract significantly lowered the mRNA levels of the DNMTs, MTHFR, and MTRR. Our study demonstrates for the first time that the consumption of cocoa decreases the global DNA methylation of peripheral leukocytes in humans with cardiovascular risk factors. In vitro experiments with PBMCs suggest that cocoa may exert this effect partially via the down-regulation of DNMTs, MTHFR and MTRR, which are key genes involved in this epigenetic process.Clinicaltrials.govNCT00511420 and NCT00502047.

  8. Evolution of DNA Methylation across Insects

    Science.gov (United States)

    Vogel, Kevin J.; Moore, Allen J.; Schmitz, Robert J.

    2017-01-01

    DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. PMID:28025279

  9. Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats.

    Directory of Open Access Journals (Sweden)

    Asmita Kulkarni

    Full Text Available Potential adverse effects of excess maternal folic acid supplementation on a vegetarian population deficient in vitamin B(12 are poorly understood. We have previously shown in a rat model that maternal folic acid supplementation at marginal protein levels reduces brain omega-3 fatty acid levels in the adult offspring. We have also reported that reduced docosahexaenoic acid (DHA levels may result in diversion of methyl groups towards DNA in the one carbon metabolic pathway ultimately resulting in DNA methylation. This study was designed to examine the effect of normal and excess folic acid in the absence and presence of vitamin B(12 deficiency on global methylation patterns in the placenta. Further, the effect of maternal omega 3 fatty acid supplementation on the above vitamin B(12 deficient diets was also examined. Our results suggest maternal folic acid supplementation in the absence of vitamin B(12 lowers plasma and placental DHA levels (p<0.05 and reduces global DNA methylation levels (p<0.05. When this group was supplemented with omega 3 fatty acids there was an increase in placental DHA levels and subsequently DNA methylation levels revert back to the levels of the control group. Our results suggest for the first time that DHA plays an important role in one carbon metabolism thereby influencing global DNA methylation in the placenta.

  10. Whole-genome methylation caller designed for methyl-DNA ...

    African Journals Online (AJOL)

    DNA methylation is an indispensable epigenetic modification required for regulating the expression of mammalian genomes. Continued efforts have been made to unravel the methylation states genome-wide, featuring the methyl-DNA immunoprecipitation (MeDIP) coupled with next-generation sequencing. Our method ...

  11. Information Thermodynamics of Cytosine DNA Methylation.

    Directory of Open Access Journals (Sweden)

    Robersy Sanchez

    Full Text Available Cytosine DNA methylation (CDM is a stable epigenetic modification to the genome and a widespread regulatory process in living organisms that involves multicomponent molecular machines. Genome-wide cytosine methylation patterning participates in the epigenetic reprogramming of a cell, suggesting that the biological information contained within methylation positions may be amenable to decoding. Adaptation to a new cellular or organismal environment also implies the potential for genome-wide redistribution of CDM changes that will ensure the stability of DNA molecules. This raises the question of whether or not we would be able to sort out the regulatory methylation signals from the CDM background ("noise" induced by thermal fluctuations. Here, we propose a novel statistical and information thermodynamic description of the CDM changes to address the last question. The physical basis of our statistical mechanical model was evaluated in two respects: 1 the adherence to Landauer's principle, according to which molecular machines must dissipate a minimum energy ε = kBT ln2 at each logic operation, where kB is the Boltzmann constant, and T is the absolute temperature and 2 whether or not the binary stretch of methylation marks on the DNA molecule comprise a language of sorts, properly constrained by thermodynamic principles. The study was performed for genome-wide methylation data from 152 ecotypes and 40 trans-generational variations of Arabidopsis thaliana and 93 human tissues. The DNA persistence length, a basic mechanical property altered by CDM, was estimated with values from 39 to 66.9 nm. Classical methylome analysis can be retrieved by applying information thermodynamic modelling, which is able to discriminate signal from noise. Our finding suggests that the CDM signal comprises a language scheme properly constrained by molecular thermodynamic principles, which is part of an epigenomic communication system that obeys the same thermodynamic

  12. Information Thermodynamics of Cytosine DNA Methylation.

    Science.gov (United States)

    Sanchez, Robersy; Mackenzie, Sally A

    2016-01-01

    Cytosine DNA methylation (CDM) is a stable epigenetic modification to the genome and a widespread regulatory process in living organisms that involves multicomponent molecular machines. Genome-wide cytosine methylation patterning participates in the epigenetic reprogramming of a cell, suggesting that the biological information contained within methylation positions may be amenable to decoding. Adaptation to a new cellular or organismal environment also implies the potential for genome-wide redistribution of CDM changes that will ensure the stability of DNA molecules. This raises the question of whether or not we would be able to sort out the regulatory methylation signals from the CDM background ("noise") induced by thermal fluctuations. Here, we propose a novel statistical and information thermodynamic description of the CDM changes to address the last question. The physical basis of our statistical mechanical model was evaluated in two respects: 1) the adherence to Landauer's principle, according to which molecular machines must dissipate a minimum energy ε = kBT ln2 at each logic operation, where kB is the Boltzmann constant, and T is the absolute temperature and 2) whether or not the binary stretch of methylation marks on the DNA molecule comprise a language of sorts, properly constrained by thermodynamic principles. The study was performed for genome-wide methylation data from 152 ecotypes and 40 trans-generational variations of Arabidopsis thaliana and 93 human tissues. The DNA persistence length, a basic mechanical property altered by CDM, was estimated with values from 39 to 66.9 nm. Classical methylome analysis can be retrieved by applying information thermodynamic modelling, which is able to discriminate signal from noise. Our finding suggests that the CDM signal comprises a language scheme properly constrained by molecular thermodynamic principles, which is part of an epigenomic communication system that obeys the same thermodynamic rules as do current

  13. miRNAting control of DNA methylation

    Indian Academy of Sciences (India)

    DNA methylation is a type of epigenetic modification where a methyl group is added to the cytosine or adenine residue of a given DNA sequence. It has been observed that DNA methylation is achieved by some collaborative agglomeration of certain proteins and non-coding RNAs. The assembly of IDN2 and its ...

  14. Implications of DNA Methylation in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Ernesto Miranda-Morales

    2017-07-01

    Full Text Available It has been 200 years since Parkinson’s disease (PD was first described, yet many aspects of its etiopathogenesis remain unclear. PD is a progressive and complex neurodegenerative disorder caused by genetic and environmental factors including aging, nutrition, pesticides and exposure to heavy metals. DNA methylation may be altered in response to some of these factors; therefore, it is proposed that epigenetic mechanisms, particularly DNA methylation, can have a fundamental role in gene–environment interactions that are related with PD. Epigenetic changes in PD-associated genes are now widely studied in different populations, to discover the mechanisms that contribute to disease development and identify novel biomarkers for early diagnosis and future pharmacological treatment. While initial studies sought to find associations between promoter DNA methylation and the regulation of associated genes in PD brain tissue, more recent studies have described concordant DNA methylation patterns between blood and brain tissue DNA. These data justify the use of peripheral blood samples instead of brain tissue for epigenetic studies. Here, we summarize the current data about DNA methylation changes in PD and discuss the potential of DNA methylation as a potential biomarker for PD. Additionally, we discuss environmental and nutritional factors that have been implicated in DNA methylation. Although the search for significant DNA methylation changes and gene expression analyses of PD-associated genes have yielded inconsistent and contradictory results, epigenetic modifications remain under investigation for their potential to reveal the link between environmental risk factors and the development of PD.

  15. MicroRNA alterations and associated aberrant DNA methylation patterns across multiple sample types in oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Wiklund, Erik Digman; Gao, Shan; Hulf, Toby

    2011-01-01

    MicroRNA (miRNA) expression is broadly altered in cancer, but few studies have investigated miRNA deregulation in oral squamous cell carcinoma (OSCC). Epigenetic mechanisms are involved in the regulation of >30 miRNA genes in a range of tissues, and we aimed to investigate this further in OSCC....

  16. Electronic transport in methylated fragments of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L., E-mail: umbertofulco@gmail.com; Albuquerque, E. L. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Freire, V. N. [Departamento de Física, Universidade Federal do Ceará, 60455-760 Fortaleza, CE (Brazil); Caetano, E. W. S. [Instituto Federal de Educação, Ciência e Tecnologia do Ceará, 60040-531 Fortaleza, CE (Brazil); Moura, F. A. B. F. de; Lyra, M. L. [Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil)

    2015-11-16

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  17. Direct detection of methylation in genomic DNA

    NARCIS (Netherlands)

    Bart, A.; van Passel, M. W. J.; van Amsterdam, K.; van der Ende, A.

    2005-01-01

    The identification of methylated sites on bacterial genomic DNA would be a useful tool to study the major roles of DNA methylation in prokaryotes: distinction of self and nonself DNA, direction of post-replicative mismatch repair, control of DNA replication and cell cycle, and regulation of gene

  18. DNA methylation characteristics of primary melanomas with distinct biological behaviour.

    Directory of Open Access Journals (Sweden)

    Szilvia Ecsedi

    Full Text Available In melanoma, the presence of promoter related hypermethylation has previously been reported, however, no methylation-based distinction has been drawn among the diverse melanoma subtypes. Here, we investigated DNA methylation changes associated with melanoma progression and links between methylation patterns and other types of somatic alterations, including the most frequent mutations and DNA copy number changes. Our results revealed that the methylome, presenting in early stage samples and associated with the BRAF(V600E mutation, gradually decreased in the medium and late stages of the disease. An inverse relationship among the other predefined groups and promoter methylation was also revealed except for histologic subtype, whereas the more aggressive, nodular subtype melanomas exhibited hypermethylation as well. The Breslow thickness, which is a continuous variable, allowed for the most precise insight into how promoter methylation decreases from stage to stage. Integrating our methylation results with a high-throughput copy number alteration dataset, local correlations were detected in the MYB and EYA4 genes. With regard to the effects of DNA hypermethylation on melanoma patients' survival, correcting for clinical cofounders, only the KIT gene was associated with a lower overall survival rate. In this study, we demonstrate the strong influence of promoter localized DNA methylation changes on melanoma initiation and show how hypermethylation decreases in melanomas associated with less favourable clinical outcomes. Furthermore, we establish the methylation pattern as part of an integrated apparatus of somatic DNA alterations.

  19. Inhibition of maintenance DNA methylation by Stella.

    Science.gov (United States)

    Funaki, Soichiro; Nakamura, Toshinobu; Nakatani, Tsunetoshi; Umehara, Hiroki; Nakashima, Hiroyuki; Nakano, Toru

    2014-10-24

    DNA methylation is a key epigenetic regulator in mammals, and the dynamic balance between methylation and demethylation impacts various processes, from development to disease. DNA methylation is erased during replication when DNA methyltransferase 1 (DNMT1) fails to methylate the daughter strand, in a process known as passive DNA demethylation. We found that the enforced expression of Stella (also known as PGC7, Dppa3), a maternal factor required for the maintenance of DNA methylation in early embryos, induced global DNA demethylation in NIH3T3 cells. This demethylation was caused by the binding of Stella to Np95 (also known as Uhrf1, ICBP90) and the subsequent inhibition of DNMT1 recruitment. Considering that impaired DNA methylation profiles are associated with various developmental or disease phenomena, Stella may be a powerful tool with which to study the biological effects of global DNA hypomethylation. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. DNA methylation increases throughout Arabidopsis development.

    Science.gov (United States)

    Ruiz-García, L; Cervera, M T; Martínez-Zapater, J M

    2005-10-01

    We used amplified fragment length polymorphisms (AFLP) to analyze the stability of DNA methylation throughout Arabidopsis development. AFLP can detect genome-wide changes in cytosine methylation produced by DNA demethylation agents, such as 5-azacytidine, or specific mutations at the DDM1 locus. In both cases, cytosine demethylation is associated with a general increase in the presence of amplified fragments. Using this approach, we followed DNA methylation at methylation sensitive restriction sites throughout Arabidopsis development. The results show a progressive DNA methylation trend from cotyledons to vegetative organs to reproductive organs.

  1. Evidence Suggesting Absence of Mitochondrial DNA Methylation

    DEFF Research Database (Denmark)

    Mechta, Mie; Ingerslev, Lars R; Fabre, Odile

    2017-01-01

    Methylation of nuclear genes encoding mitochondrial proteins participates in the regulation of mitochondria function. The existence of cytosine methylation in the mitochondrial genome is debated. To investigate whether mitochondrial DNA (mtDNA) is methylated, we used both targeted- and whole mito...

  2. Evolution of DNA Methylation across Insects.

    Science.gov (United States)

    Bewick, Adam J; Vogel, Kevin J; Moore, Allen J; Schmitz, Robert J

    2017-03-01

    DNA methylation contributes to gene and transcriptional regulation in eukaryotes, and therefore has been hypothesized to facilitate the evolution of plastic traits such as sociality in insects. However, DNA methylation is sparsely studied in insects. Therefore, we documented patterns of DNA methylation across a wide diversity of insects. We predicted that underlying enzymatic machinery is concordant with patterns of DNA methylation. Finally, given the suggestion that DNA methylation facilitated social evolution in Hymenoptera, we tested the hypothesis that the DNA methylation system will be associated with presence/absence of sociality among other insect orders. We found DNA methylation to be widespread, detected in all orders examined except Diptera (flies). Whole genome bisulfite sequencing showed that orders differed in levels of DNA methylation. Hymenopteran (ants, bees, wasps and sawflies) had some of the lowest levels, including several potential losses. Blattodea (cockroaches and termites) show all possible patterns, including a potential loss of DNA methylation in a eusocial species whereas solitary species had the highest levels. Species with DNA methylation do not always possess the typical enzymatic machinery. We identified a gene duplication event in the maintenance DNA methyltransferase 1 (DNMT1) that is shared by some Hymenoptera, and paralogs have experienced divergent, nonneutral evolution. This diversity and nonneutral evolution of underlying machinery suggests alternative DNA methylation pathways may exist. Phylogenetically corrected comparisons revealed no evidence that supports evolutionary association between sociality and DNA methylation. Future functional studies will be required to advance our understanding of DNA methylation in insects. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Whole-genome methylation caller designed for methyl- DNA ...

    African Journals Online (AJOL)

    etchie

    2013-02-20

    Feb 20, 2013 ... DNA methylation is an indispensable epigenetic modification required for regulating the expression of mammalian ... wide, featuring the methyl-DNA immunoprecipitation (MeDIP) coupled with next-generation sequencing. Our method uses a ...... segmentation of chimpanzee genome. In Proceedings of the ...

  4. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Erin M Siegel

    Full Text Available Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2. A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003. Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  5. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Science.gov (United States)

    Siegel, Erin M; Riggs, Bridget M; Delmas, Amber L; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  6. Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.).

    Science.gov (United States)

    Kou, H P; Li, Y; Song, X X; Ou, X F; Xing, S C; Ma, J; Von Wettstein, D; Liu, B

    2011-09-15

    Cytosine methylation is responsive to various biotic- and abiotic-stresses, which may produce heritable epialleles. Nitrogen (N)-deficiency is an abiotic stress being repeatedly experienced by plants. To address possible epigenetic consequences of N-deficiency-stress, we investigated the stability of cytosine methylation in rice (Oryza sativa L.) subsequent to a chronic (a whole-generation) N-deficiency at two levels, moderate (20mg/L) and severe (10mg/L), under hydroponic culture. MSAP analysis revealed that locus-specific methylation alteration occurred in leaf-tissue of the stressed plants (S(0)) experiencing either level of N-deficiency, which was validated by gel-blotting. Analysis on three non-stressed self-fed progenies (S(1), S(2) and S(3)) by gel-blotting indicated that ca. 50% of the altered methylation patterns in somatic cells (leaf) of the stressed S(0) plants were recaptured in S(1), which were then stably inherited to S(2) and S(3). Bisulfite sequencing of two variant MSAP loci with homology to low-copy retrotransposons on one stressed plant (S(0)) and its non-stressed progenies (S(1) and S(2)) showed that whereas one locus exhibited limited and non-heritable CHH methylation alteration, the other locus manifested dramatic heritable hypermethylation at nearly all cytosine sites within the assayed region. Intriguingly, when two groups of S(2) plants descended from the same N-deficiency-stressed S(0) plant were re-subjected to the stress, the group inheriting the modified methylation patterns showed enhanced tolerance to the N-deficiency-stress compared with the group bearing the original patterns. Our results thus demonstrate heritability of an acquired adaptive trait in rice, which was accompanied by epigenetic inheritance of modified cytosine methylation patterns, implicating an epigenetic basis underlying the inheritance of an acquired trait in plants. Copyright © 2011 Elsevier GmbH. All rights reserved.

  7. DNA methylation of methylation complex genes in relation to stress and genome-wide methylation in mother-newborn dyads.

    Science.gov (United States)

    Clukay, Christopher J; Hughes, David A; Rodney, Nicole C; Kertes, Darlene A; Mulligan, Connie J

    2018-01-01

    Early life stress is known to have enduring biological effects, particularly with respect to health. Epigenetic modifications, such as DNA methylation, are a possible mechanism to mediate the biological effect of stress. We previously found correlations between maternal stress, newborn birthweight, and genome-wide measures of DNA methylation. Here we investigate ten genes related to the methylation/demethylation complex in order to better understand the impact of stress on health. DNA methylation and genetic variants at methylation/demethylation genes were assayed. Mean methylation measures were constructed for each gene and tested, in addition to genetic variants, for association with maternal stress measures based on interview and survey data (chronic stress and war trauma), maternal venous, and newborn cord genome-wide mean methylation (GMM), and birthweight. After cell type correction, we found multiple pairwise associations between war trauma, maternal GMM, maternal methylation at DNMT1, DNMT3A, TET3, and MBD2, and birthweight. The association of maternal GMM and maternal methylation at DNMT1, DNMT3A, TET3, and MBD2 is consistent with the role of these genes in establishing, maintaining and altering genome-wide methylation patterns, in some cases in response to stress. DNMT1 produces one of the primary enzymes that reproduces methylation patterns during DNA replication. DNMT3A and TET3 have been implicated in genome-wide hypomethylation in response to glucocorticoid hormones. Although we cannot determine the directionality of the genic and genome-wide changes in methylation, our results suggest that altered methylation of specific methylation genes may be part of the molecular mechanism underlying the human biological response to stress. © 2017 Wiley Periodicals, Inc.

  8. miRNAting control of DNA methylation

    Indian Academy of Sciences (India)

    2014-05-01

    May 1, 2014 ... Studio of Computational Biology & Bioinformatics, Biotechnology Division, ... In this study, it was found that de novo DNA methylation might be regulated by miRNAs through systematic targeting ... Altogether, DNA methylation appears to be a finely tuned process of opposite control systems of DNA-.

  9. Comprehensive analysis of preeclampsia-associated DNA methylation in the placenta.

    Directory of Open Access Journals (Sweden)

    Tianjiao Chu

    Full Text Available A small number of recent reports have suggested that altered placental DNA methylation may be associated with early onset preeclampsia. It is important that further studies be undertaken to confirm and develop these findings. We therefore undertook a systematic analysis of DNA methylation patterns in placental tissue from 24 women with preeclampsia and 24 with uncomplicated pregnancy outcome.We analyzed the DNA methylation status of approximately 27,000 CpG sites in placental tissues in a massively parallel fashion using an oligonucleotide microarray. Follow up analysis of DNA methylation at specific CpG loci was performed using the Epityper MassArray approach and high-throughput bisulfite sequencing.Preeclampsia-specific DNA methylation changes were identified in placental tissue samples irrespective of gestational age of delivery. In addition, we identified a group of CpG sites within specific gene sequences that were only altered in early onset-preeclampsia (EOPET although these DNA methylation changes did not correlate with altered mRNA transcription. We found evidence that fetal gender influences DNA methylation at autosomal loci but could find no clear association between DNA methylation and gestational age.Preeclampsia is associated with altered placental DNA methylation. Fetal gender should be carefully considered during the design of future studies in which placental DNA is analyzed at the level of DNA methylation. Further large-scale analyses of preeclampsia-associated DNA methylation are necessary.

  10. miRNAting control of DNA methylation

    Indian Academy of Sciences (India)

    A comprehensive genome-wide and system-level study of miRNA targeting, transcription factors, DNA-methylation-causing genes and their target genes has provided a clear picture of an interconnected relationship of all these factors which regulate DNA methylation in Arabidopsis. The study has identified a DNA ...

  11. Electrochemical biosensing strategies for DNA methylation analysis.

    Science.gov (United States)

    Hossain, Tanvir; Mahmudunnabi, Golam; Masud, Mostafa Kamal; Islam, Md Nazmul; Ooi, Lezanne; Konstantinov, Konstantin; Hossain, Md Shahriar Al; Martinac, Boris; Alici, Gursel; Nguyen, Nam-Trung; Shiddiky, Muhammad J A

    2017-08-15

    DNA methylation is one of the key epigenetic modifications of DNA that results from the enzymatic addition of a methyl group at the fifth carbon of the cytosine base. It plays a crucial role in cellular development, genomic stability and gene expression. Aberrant DNA methylation is responsible for the pathogenesis of many diseases including cancers. Over the past several decades, many methodologies have been developed to detect DNA methylation. These methodologies range from classical molecular biology and optical approaches, such as bisulfite sequencing, microarrays, quantitative real-time PCR, colorimetry, Raman spectroscopy to the more recent electrochemical approaches. Among these, electrochemical approaches offer sensitive, simple, specific, rapid, and cost-effective analysis of DNA methylation. Additionally, electrochemical methods are highly amenable to miniaturization and possess the potential to be multiplexed. In recent years, several reviews have provided information on the detection strategies of DNA methylation. However, to date, there is no comprehensive evaluation of electrochemical DNA methylation detection strategies. Herein, we address the recent developments of electrochemical DNA methylation detection approaches. Furthermore, we highlight the major technical and biological challenges involved in these strategies and provide suggestions for the future direction of this important field. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue From Subjects With Type 2 Diabetes

    DEFF Research Database (Denmark)

    Nilsson, Emma; Jansson, Per Anders; Perfilyev, Alexander

    2014-01-01

    case-control cohorts. In adipose tissue from diabetic twins, we found decreased expression of genes involved in oxidative phosphorylation; carbohydrate, amino acid, and lipid metabolism; and increased expression of genes involved in inflammation and glycan degradation. The most differentially expressed......Genetics, epigenetics, and environment may together affect the susceptibility for type 2 diabetes (T2D). Our aim was to dissect molecular mechanisms underlying T2D using genome-wide expression and DNA methylation data in adipose tissue from monozygotic twin pairs discordant for T2D and independent...

  13. Radiation effects on DNA methylation in mice

    International Nuclear Information System (INIS)

    Komura, J.; Kurishita, A.; Miyamura, Y.; Ono, T.; Tawa, R.; Sakurai, H.

    1992-01-01

    Effects of ionizing radiation on DNA methylation in liver, brain and spleen were examined by high performance liquid chromatography (HPLC). The total methylated cytosine level in the genome was reduced within 8 hours after 3.8 Gy of irradiation in liver of adult mice. But no appreciable effect was observed in brain and spleen. When mice were irradiated at newborn, liver DNA revealed no change in methylated cytosine level. Even though slight effects of radiation were detected in he methylation of the c-myc and c-fos genes, they were only temporary and no long-term effects were observed. These data suggest that the effect of radiation on DNA methylation in vivo is not prevailing a DNA damage, but rather influenced much through biological parameters. (author)

  14. Cord Blood DNA Methylation Biomarkers for Predicting Neurodevelopmental Outcomes

    Directory of Open Access Journals (Sweden)

    Nicolette A. Hodyl

    2016-12-01

    Full Text Available Adverse environmental exposures in pregnancy can significantly alter the development of the fetus resulting in impaired child neurodevelopment. Such exposures can lead to epigenetic alterations like DNA methylation, which may be a marker of poor cognitive, motor and behavioral outcomes in the infant. Here we review studies that have assessed DNA methylation in cord blood following maternal exposures that may impact neurodevelopment of the child. We also highlight some key studies to illustrate the potential for DNA methylation to successfully identify infants at risk for poor outcomes. While the current evidence is limited, in that observations to date are largely correlational, in time and with larger cohorts analyzed and longer term follow-up completed, we may be able to develop epigenetic biomarkers that not only indicate adverse early life exposures but can also be used to identify individuals likely to be at an increased risk of impaired neurodevelopment even in the absence of detailed information regarding prenatal environment.

  15. Oxidative stress and DNA methylation in prostate cancer.

    Science.gov (United States)

    Donkena, Krishna Vanaja; Young, Charles Y F; Tindall, Donald J

    2010-01-01

    The protective effects of fruits, vegetables, and other foods on prostate cancer may be due to their antioxidant properties. An imbalance in the oxidative stress/antioxidant status is observed in prostate cancer patients. Genome oxidative damage in prostate cancer patients is associated with higher lipid peroxidation and lower antioxidant levels. Oxygen radicals are associated with different steps of carcinogenesis, including structural DNA damage, epigenetic changes, and protein and lipid alterations. Epigenetics affects genetic regulation, cellular differentiation, embryology, aging, cancer, and other diseases. DNA methylation is perhaps the most extensively studied epigenetic modification, which plays an important role in the regulation of gene expression and chromatin architecture, in association with histone modification and other chromatin-associated proteins. This review will provide a broad overview of the interplay of oxidative stress and DNA methylation, DNA methylation changes in regulation of gene expression, lifestyle changes for prostate cancer prevention, DNA methylation as biomarkers for prostate cancer, methods for detection of methylation, and clinical application of DNA methylation inhibitors for epigenetic therapy.

  16. Oxidative Stress and DNA Methylation in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Krishna Vanaja Donkena

    2010-01-01

    Full Text Available The protective effects of fruits, vegetables, and other foods on prostate cancer may be due to their antioxidant properties. An imbalance in the oxidative stress/antioxidant status is observed in prostate cancer patients. Genome oxidative damage in prostate cancer patients is associated with higher lipid peroxidation and lower antioxidant levels. Oxygen radicals are associated with different steps of carcinogenesis, including structural DNA damage, epigenetic changes, and protein and lipid alterations. Epigenetics affects genetic regulation, cellular differentiation, embryology, aging, cancer, and other diseases. DNA methylation is perhaps the most extensively studied epigenetic modification, which plays an important role in the regulation of gene expression and chromatin architecture, in association with histone modification and other chromatin-associated proteins. This review will provide a broad overview of the interplay of oxidative stress and DNA methylation, DNA methylation changes in regulation of gene expression, lifestyle changes for prostate cancer prevention, DNA methylation as biomarkers for prostate cancer, methods for detection of methylation, and clinical application of DNA methylation inhibitors for epigenetic therapy.

  17. Profiling genome-wide DNA methylation.

    Science.gov (United States)

    Yong, Wai-Shin; Hsu, Fei-Man; Chen, Pao-Yang

    2016-01-01

    DNA methylation is an epigenetic modification that plays an important role in regulating gene expression and therefore a broad range of biological processes and diseases. DNA methylation is tissue-specific, dynamic, sequence-context-dependent and trans-generationally heritable, and these complex patterns of methylation highlight the significance of profiling DNA methylation to answer biological questions. In this review, we surveyed major methylation assays, along with comparisons and biological examples, to provide an overview of DNA methylation profiling techniques. The advances in microarray and sequencing technologies make genome-wide profiling possible at a single-nucleotide or even a single-cell resolution. These profiling approaches vary in many aspects, such as DNA input, resolution, genomic region coverage, and bioinformatics analysis, and selecting a feasible method requires knowledge of these methods. We first introduce the biological background of DNA methylation and its pattern in plants, animals and fungi. We present an overview of major experimental approaches to profiling genome-wide DNA methylation and hydroxymethylation and then extend to the single-cell methylome. To evaluate these methods, we outline their strengths and weaknesses and perform comparisons across the different platforms. Due to the increasing need to compute high-throughput epigenomic data, we interrogate the computational pipeline for bisulfite sequencing data and also discuss the concept of identifying differentially methylated regions (DMRs). This review summarizes the experimental and computational concepts for profiling genome-wide DNA methylation, followed by biological examples. Overall, this review provides researchers useful guidance for the selection of a profiling method suited to specific research questions.

  18. Maternal DNA Methylation Regulates Early Trophoblast Development.

    Science.gov (United States)

    Branco, Miguel R; King, Michelle; Perez-Garcia, Vicente; Bogutz, Aaron B; Caley, Matthew; Fineberg, Elena; Lefebvre, Louis; Cook, Simon J; Dean, Wendy; Hemberger, Myriam; Reik, Wolf

    2016-01-25

    Critical roles for DNA methylation in embryonic development are well established, but less is known about its roles during trophoblast development, the extraembryonic lineage that gives rise to the placenta. We dissected the role of DNA methylation in trophoblast development by performing mRNA and DNA methylation profiling of Dnmt3a/3b mutants. We find that oocyte-derived methylation plays a major role in regulating trophoblast development but that imprinting of the key placental regulator Ascl2 is only partially responsible for these effects. We have identified several methylation-regulated genes associated with trophoblast differentiation that are involved in cell adhesion and migration, potentially affecting trophoblast invasion. Specifically, trophoblast-specific DNA methylation is linked to the silencing of Scml2, a Polycomb Repressive Complex 1 protein that drives loss of cell adhesion in methylation-deficient trophoblast. Our results reveal that maternal DNA methylation controls multiple differentiation-related and physiological processes in trophoblast via both imprinting-dependent and -independent mechanisms. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. DNA Methylation Biomarkers: Cancer and Beyond

    Directory of Open Access Journals (Sweden)

    Thomas Mikeska

    2014-09-01

    Full Text Available Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient’s response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease.

  20. Epigenetic DNA Methylation Linked to Social Dominance.

    Directory of Open Access Journals (Sweden)

    Kapa Lenkov

    Full Text Available Social status hierarchies are ubiquitous in vertebrate social systems, including humans. It is well known that social rank can influence quality of life dramatically among members of social groups. For example, high-ranking individuals have greater access to resources, including food and mating prerogatives that, in turn, have a positive impact on their reproductive success and health. In contrast low ranking individuals typically have limited reproductive success and may experience lasting social and physiological costs. Ultimately, social rank and behavior are regulated by changes in gene expression. However, little is known about mechanisms that transduce social cues into transcriptional changes. Since social behavior is a dynamic process, we hypothesized that a molecular mechanism such as DNA methylation might play a role these changes. To test this hypothesis, we used an African cichlid fish, Astatotilapia burtoni, in which social rank dictates reproductive access. We show that manipulating global DNA methylation state strongly biases the outcomes of social encounters. Injecting DNA methylating and de-methylating agents in low status animals competing for status, we found that animals with chemically increased methylation states were statistically highly likely to ascend in rank. In contrast, those with inhibited methylation processes and thus lower methylation levels were statistically highly unlikely to ascend in rank. This suggests that among its many roles, DNA methylation may be linked to social status and more generally to social behavior.

  1. Temperature Shift Alters DNA Methylation and Histone Modification Patterns in Gonadal Aromatase (cyp19a1 Gene in Species with Temperature-Dependent Sex Determination.

    Directory of Open Access Journals (Sweden)

    Yuiko Matsumoto

    Full Text Available The environment surrounding the embryos has a profound impact on the developmental process and phenotypic outcomes of the organism. In species with temperature-dependent sex determination, gonadal sex is determined by the incubation temperature of the eggs. A mechanistic link between temperature and transcriptional regulation of developmental genes, however, remains elusive. In this study, we examine the changes in DNA methylation and histone modification patterns of the aromatase (cyp19a1 gene in embryonic gonads of red-eared slider turtles (Trachemys scripta subjected to a temperature shift during development. Shifting embryos from a male-producing temperature (MPT to a female-producing temperature (FPT at the beginning of the temperature-sensitive period (TSP resulted in an increase in aromatase mRNA expression while a shift from FPT to MPT resulted in decreased expression. DNA methylation levels at CpG sites in the promoter of the aromatase gene were high (70-90% at the beginning of TSP, but decreased in embryos that were incubated at constant FPT and those shifted from MPT to the FPT. This decrease in methylation in the promoter inversely correlated with the expected increase in aromatase expression at the FPT. The active demethylation under the FPT was especially prominent at the CpG site upstream of the gonad-specific TATA box at the beginning of TSP and spread downstream of the gene including exon1 as the gonad development progressed. In embryos incubated at FPT, the promoter region was also labeled by canonical transcriptional activation markers, H3K4me3 and RNA polymerase II. A transcriptional repression marker, H3K27me3, was observed in temperature-shifted gonads of both temperature groups, but was not maintained throughout the development in either group. Our findings suggest that DNA hypomethylation and H3K4me3 modification at the aromatase promoter may be a primary mechanism that releases a transcriptional block of aromatase to

  2. DNA methylation, nucleosome formation and positioning.

    Science.gov (United States)

    Pennings, Sari; Allan, James; Davey, Colin S

    2005-02-01

    Recent mapping of nucleosome positioning on several long gene regions subject to DNA methylation has identified instances of nucleosome repositioning by this base modification. The evidence for an effect of CpG methylation on nucleosome formation and positioning in chromatin is reviewed here in the context of the complex sequence-structure requirements of DNA wrapping around the histone octamer and the role of this epigenetic mark in gene repression.

  3. DNA methylation, genomic silencing, and links to nutrition and cancer.

    Science.gov (United States)

    McCabe, Dale C; Caudill, Marie A

    2005-06-01

    DNA methylation is a heritable epigenetic feature that is associated with transcriptional silencing, X-chromosome inactivation, genetic imprinting, and genomic stability. The addition of the methyl group is catalyzed by a family of DNA methyltransferases whose co-substrates are DNA and S-adenosylmethionine, the latter being derived from the methionine cycle. Aberrant DNA methylation is linked to numerous pathologies, including cancer. The purpose of this review is to describe DNA methylation and its functions, to examine the relationship between dietary methyl insufficiency and DNA methylation, and to evaluate the associations between DNA methylation and cancer.

  4. Multiplexed and Sensitive DNA Methylation Testing Using Methylation-Sensitive Restriction Enzymes "MSRE-qPCR".

    Science.gov (United States)

    Beikircher, Gabriel; Pulverer, Walter; Hofner, Manuela; Noehammer, Christa; Weinhaeusel, Andreas

    2018-01-01

    DNA methylation is a chemically stable key-player in epigenetics. In the vertebrate genome the 5-methyl cytosine (5mC) has been found almost exclusively in the CpG dinucleotide context. CpG dinucleotides are enriched in CpG islands very frequently located within or close to gene promoters. Analyses of DNA methylation changes in human diagnostics have been conducted classically using methylation-sensitive restriction enzymes (MSRE). Since the discovery of bisulfite conversion-based sequencing and PCR assays, MSRE-based PCR assays have been less frequently used, although especially in the field of cancer epigenetics MSRE-based genome-wide discovery and targeted screening applications have been and are still performed successfully. Even though epigenome-wide discovery of altered DNA methylation patterns has found its way into various fields of human disease and molecular genetics research, the validation of findings upon discovery is still a bottleneck. Usually several multiples of 10 up to 100 candidate biomarkers from discovery have to be confirmed or are of interest for further work. In particular, bisulfite PCR assays are often limited in the number of candidates which can be analyzed, due to their low multiplexing capability, especially, if only small amounts of DNA are available from for example clinical specimens. In clinical research and diagnostics a similar situation arises for the analyses of cell-free DNA (cfDNA) in body fluids or circulating tumor cells (CTCs). Although tissue- or disease- (e.g., cancer) specific DNA methylation patterns can be deduced very efficiently in a genome-wide manner if around 100 ng of DNA are available, confirming these candidates and selecting target-sequences for studying methylation changes in liquid biopsies using cfDNA or CTCs remains a big challenge. Along these lines we have developed MSRE-qPCR and introduce here method details, which have been found very suitable for the efficient confirmation and testing of DNA

  5. DNA Methylation Signatures of the Plant Chromomethyltransferases.

    Directory of Open Access Journals (Sweden)

    Quentin Gouil

    2016-12-01

    Full Text Available DNA methylation in plants is traditionally partitioned into CG, CHG and CHH contexts (with H any nucleotide but G. By investigating DNA methylation patterns in trinucleotide contexts in four angiosperm species, we show that such a representation hides spatial and functional partitioning of different methylation pathways and is incomplete. CG methylation (mCG is largely context-independent whereas, at CHG motifs, there is under-representation of mCCG in pericentric regions of A. thaliana and tomato and throughout the chromosomes of maize and rice. In A. thaliana the biased representation of mCCG in heterochromatin is related to specificities of H3K9 methyltransferase SUVH family members. At CHH motifs there is an over-representation of different variant forms of mCHH that, similarly to mCCG hypomethylation, is partitioned into the pericentric regions of the two dicots but dispersed in the monocot chromosomes. The over-represented mCHH motifs in A. thaliana associate with specific types of transposon including both class I and II elements. At mCHH the contextual bias is due to the involvement of various chromomethyltransferases whereas the context-independent CHH methylation in A. thaliana and tomato is mediated by the RNA-directed DNA methylation process that is most active in the gene-rich euchromatin. This analysis therefore reveals that the sequence context of the methylome of plant genomes is informative about the mechanisms associated with maintenance of methylation and the overlying chromatin structure.

  6. DNA Methylation Signatures of the Plant Chromomethyltransferases

    Science.gov (United States)

    Baulcombe, David C.

    2016-01-01

    DNA methylation in plants is traditionally partitioned into CG, CHG and CHH contexts (with H any nucleotide but G). By investigating DNA methylation patterns in trinucleotide contexts in four angiosperm species, we show that such a representation hides spatial and functional partitioning of different methylation pathways and is incomplete. CG methylation (mCG) is largely context-independent whereas, at CHG motifs, there is under-representation of mCCG in pericentric regions of A. thaliana and tomato and throughout the chromosomes of maize and rice. In A. thaliana the biased representation of mCCG in heterochromatin is related to specificities of H3K9 methyltransferase SUVH family members. At CHH motifs there is an over-representation of different variant forms of mCHH that, similarly to mCCG hypomethylation, is partitioned into the pericentric regions of the two dicots but dispersed in the monocot chromosomes. The over-represented mCHH motifs in A. thaliana associate with specific types of transposon including both class I and II elements. At mCHH the contextual bias is due to the involvement of various chromomethyltransferases whereas the context-independent CHH methylation in A. thaliana and tomato is mediated by the RNA-directed DNA methylation process that is most active in the gene-rich euchromatin. This analysis therefore reveals that the sequence context of the methylome of plant genomes is informative about the mechanisms associated with maintenance of methylation and the overlying chromatin structure. PMID:27997534

  7. Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications.

    Science.gov (United States)

    Cao, Yi

    2015-09-01

    Environmental pollution is one of the main causes of human cancer. Exposures to environmental carcinogens result in genetic and epigenetic alterations which induce cell transformation. Epigenetic changes caused by environmental pollution play important roles in the development and progression of environmental pollution-related cancers. Studies on DNA methylation are among the earliest and most conducted epigenetic research linked to cancer. In this review, the roles of DNA methylation in carcinogenesis and their significance in clinical medicine were summarized, and the effects of environmental pollutants, particularly air pollutants, on DNA methylation were introduced. Furthermore, prospective applications of DNA methylation to environmental pollution detection and cancer prevention were discussed.

  8. Yak response to high-altitude hypoxic stress by altering mRNA expression and DNA methylation of hypoxia-inducible factors.

    Science.gov (United States)

    Xiong, Xianrong; Fu, Mei; Lan, Daoliang; Li, Jian; Zi, Xiangdong; Zhong, Jincheng

    2015-01-01

    Hypoxia-inducible factors (HIFs) are oxygen-dependent transcriptional activators, which play crucial roles in tumor angiogenesis and mammalian development, and regulate the transcription of genes involved in oxygen homeostasis in response to hypoxia. However, information on HIF-1α and HIF-2α in yak (Bos grunniens) is scarce. The complete coding region of yak HIF-2α was cloned, its mRNA expression in several tissues were determined, and the expression levels were compared with those of closely related low-altitude cattle (Bos taurus), and the methylation status of promoter regions were analyzed to better understand the roles of HIF-1α and HIF-2α in domesticated yak. The yak HIF-2α cDNA was cloned and sequenced in the present work reveals the evolutionary conservation through multiple sequence alignment, although 15 bases changed, resulting in 8 amino acid substitutions in the translated proteins in cattle. The tissue-specific expression results showed that HIF-1α is ubiquitously expressed, whereas HIF-2α expression is limited to endothelial tissues (kidney, heart, lung, spleen, and liver) and blood in yak. Both HIF-1α and HIF-2α expressions were higher in yak tissues than in cattle. The HIF-1α expression level is much higher in yak than cattle in these organs, except for the lung (P hypoxic stress response mechanism and may assist current medical research to understand hypoxia-related diseases.

  9. Is the fungus Magnaporthe losing DNA methylation?

    Science.gov (United States)

    Ikeda, Ken-ichi; Van Vu, Ba; Kadotani, Naoki; Tanaka, Masaki; Murata, Toshiki; Shiina, Kohta; Chuma, Izumi; Tosa, Yukio; Nakayashiki, Hitoshi

    2013-11-01

    The long terminal repeat retrotransposon, Magnaporthe gypsy-like element (MAGGY), has been shown to be targeted for cytosine methylation in a subset of Magnaporthe oryzae field isolates. Analysis of the F1 progeny from a genetic cross between methylation-proficient (Br48) and methylation-deficient (GFSI1-7-2) isolates revealed that methylation of the MAGGY element was governed by a single dominant gene. Positional cloning followed by gene disruption and complementation experiments revealed that the responsible gene was the DNA methyltransferase, MoDMT1, an ortholog of Neurospora crassa Dim-2. A survey of MAGGY methylation in 60 Magnaporthe field isolates revealed that 42 isolates from rice, common millet, wheat, finger millet, and buffelgrass were methylation proficient while 18 isolates from foxtail millet, green bristlegrass, Japanese panicgrass, torpedo grass, Guinea grass, and crabgrass were methylation deficient. Phenotypic analyses showed that MoDMT1 plays no major role in development and pathogenicity of the fungus. Quantitative polymerase chain reaction analysis showed that the average copy number of genomic MAGGY elements was not significantly different between methylation-deficient and -proficient field isolates even though the levels of MAGGY transcript were generally higher in the former group. MoDMT1 gene sequences in the methylation-deficient isolates suggested that at least three independent mutations were responsible for the loss of MoDMT1 function. Overall, our data suggest that MoDMT1 is not essential for the natural life cycle of the fungus and raise the possibility that the genus Magnaporthe may be losing the mechanism of DNA methylation on the evolutionary time scale.

  10. Genome-wide DNA methylation profile analysis identifies differentially methylated loci associated with ankylosis spondylitis.

    Science.gov (United States)

    Hao, Jiangcan; Liu, Yang; Xu, Jiawen; Wang, Wenyu; Wen, Yan; He, Awen; Fan, Qianrui; Guo, Xiong; Zhang, Feng

    2017-07-25

    Ankylosing spondylitis (AS) is a chronic rheumatic and autoimmune disease. Little is known about the potential role of DNA methylation in the pathogenesis of AS. This study was undertaken to explore the potential role of DNA methylation in the genetic mechanism of AS. In this study, we compared the genome-wide DNA methylation profiles of peripheral blood mononuclear cells (PBMCs) between five AS patients and five healthy subjects, using the Illumina Infinium HumanMethylation450 BeadChip. Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) was performed to validate the relevance of the identified differentially methylated genes for AS, using another independent sample of five AS patients and five healthy subjects. Compared with healthy controls, we detected 1915 differentially methylated CpG sites mapped to 1214 genes. The HLA-DQB1 gene achieved the most significant signal (cg14323910, adjusted P = 1.84 × 10 -6 , β difference = 0.5634) for AS. Additionally, the CpG site cg04777551 of HLA-DQB1 presented a suggestive association with AS (adjusted P = 1.46 × 10 -3 , β difference = 0.3594). qRT-PCR observed that the mRNA expression level of HLA-DQB1 in AS PBMCs was significantly lower than that in healthy control PBMCs (ratio = 0.48 ± 0.10, P pathway enrichment analysis of differentially methylated genes identified four GO terms and 10 pathways for AS, functionally related to antigen dynamics and function. Our results demonstrated the altered DNA methylation profile of AS and implicated HLA-DQB1 in the development of AS.

  11. DNA Methylation and Flavonoids in Genitourinary Cancers.

    Science.gov (United States)

    Mukherjee, Neelam; Kumar, Addanki P; Ghosh, Rita

    2015-04-01

    Malignancies of the genitourinary system have some of the highest cancer incidence and mortality rates. For example prostate cancer is the second most common cancer in men and ovarian cancer mortality and incidence are near equal. In addition to genetic changes modulation of the epigenome is critical to cancer development and progression. In this regard epigenetic changes in DNA methylation state and DNA hypermethylation in particular has garnered a great deal of attention. While hypomethylation occurs mostly in repeated sequence such as tandem and interspersed repeats and segment duplications, hypermethylation is associated with CpG islands. Hypomethylation leads to activation of cancer-causing genes with global DNA hypomethylation being commonly associated with metastatic disease. Hypermethylation-mediated silencing of tumor suppressive genes is commonly associated with cancer development. Bioactive phytochemicals such as flavonoids present in fruits, vegetables, beverages etc. have the ability to modulate DNA methylation status and are therefore very valuable agents for cancer prevention. In this review we discuss several commonly methylated genes and flavonoids used to modulate DNA methylation in the prevention of genitourinary cancers.

  12. Natural history of eukaryotic DNA methylation systems.

    Science.gov (United States)

    Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L

    2011-01-01

    Methylation of cytosines and adenines in DNA is a widespread epigenetic mark in both prokaryotes and eukaryotes. In eukaryotes, it has a profound influence on chromatin structure and dynamics. Recent advances in genomics and biochemistry have considerably elucidated the functions and provenance of these DNA modifications. DNA methylases appear to have emerged first in bacterial restriction-modification (R-M) systems from ancient RNA-modifying enzymes, in transitions that involved acquisition of novel catalytic residues and DNA-recognition features. DNA adenine methylases appear to have been acquired by ciliates, heterolobosean amoeboflagellates, and certain chlorophyte algae. Six distinct clades of cytosine methylases, including the DNMT1, DNMT2, and DNMT3 clades, were acquired by eukaryotes through independent lateral transfer of their precursors from bacteria or bacteriophages. In addition to these, multiple adenine and cytosine methylases were acquired by several families of eukaryotic transposons. In eukaryotes, the DNA-methylase module was often combined with distinct modified and unmodified peptide recognition domains and other modules mediating specialized interactions, for example, the RFD module of DNMT1 which contains a permuted Sm domain linked to a helix-turn-helix domain. In eukaryotes, the evolution of DNA methylases appears to have proceeded in parallel to the elaboration of histone-modifying enzymes and the RNAi system, with functions related to counter-viral and counter-transposon defense, and regulation of DNA repair and differential gene expression being their primary ancestral functions. Diverse DNA demethylation systems that utilize base-excision repair via DNA glycosylases and cytosine deaminases appear to have emerged in multiple eukaryotic lineages. Comparative genomics suggests that the link between cytosine methylation and DNA glycosylases probably emerged first in a novel R-M system in bacteria. Recent studies suggest that the 5mC is not

  13. DNA Methylation and Flavonoids in Genitourinary Cancers

    OpenAIRE

    Mukherjee, Neelam; Kumar, Addanki P; Ghosh, Rita

    2015-01-01

    Malignancies of the genitourinary system have some of the highest cancer incidence and mortality rates. For example prostate cancer is the second most common cancer in men and ovarian cancer mortality and incidence are near equal. In addition to genetic changes modulation of the epigenome is critical to cancer development and progression. In this regard epigenetic changes in DNA methylation state and DNA hypermethylation in particular has garnered a great deal of attention. While hypomethylat...

  14. DNA methylation modifications associated with chronic fatigue syndrome.

    Directory of Open Access Journals (Sweden)

    Wilfred C de Vega

    Full Text Available Chronic Fatigue Syndrome (CFS, also known as myalgic encephalomyelitis, is a complex multifactorial disease that is characterized by the persistent presence of fatigue and other particular symptoms for a minimum of 6 months. Symptoms fail to dissipate after sufficient rest and have major effects on the daily functioning of CFS sufferers. CFS is a multi-system disease with a heterogeneous patient population showing a wide variety of functional disabilities and its biological basis remains poorly understood. Stable alterations in gene function in the immune system have been reported in several studies of CFS. Epigenetic modifications have been implicated in long-term effects on gene function, however, to our knowledge, genome-wide epigenetic modifications associated with CFS have not been explored. We examined the DNA methylome in peripheral blood mononuclear cells isolated from CFS patients and healthy controls using the Illumina HumanMethylation450 BeadChip array, controlling for invariant probes and probes overlapping polymorphic sequences. Gene ontology (GO and network analysis of differentially methylated genes was performed to determine potential biological pathways showing changes in DNA methylation in CFS. We found an increased abundance of differentially methylated genes related to the immune response, cellular metabolism, and kinase activity. Genes associated with immune cell regulation, the largest coordinated enrichment of differentially methylated pathways, showed hypomethylation within promoters and other gene regulatory elements in CFS. These data are consistent with evidence of multisystem dysregulation in CFS and implicate the involvement of DNA modifications in CFS pathology.

  15. Regulation and function of DNA methylation in plants and animals

    KAUST Repository

    He, Xinjian

    2011-02-15

    DNA methylation is an important epigenetic mark involved in diverse biological processes. In plants, DNA methylation can be established through the RNA-directed DNA methylation pathway, an RNA interference pathway for transcriptional gene silencing (TGS), which requires 24-nt small interfering RNAs. In mammals, de novo DNA methylation occurs primarily at two developmental stages: during early embryogenesis and during gametogenesis. While it is not clear whether establishment of DNA methylation patterns in mammals involves RNA interference in general, de novo DNA methylation and suppression of transposons in germ cells require 24-32-nt piwi-interacting small RNAs. DNA methylation status is dynamically regulated by DNA methylation and demethylation reactions. In plants, active DNA demethylation relies on the repressor of silencing 1 family of bifunctional DNA glycosylases, which remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, initiating a base excision repair (BER) pathway. In animals, multiple mechanisms of active DNA demethylation have been proposed, including a deaminase- and DNA glycosylase-initiated BER pathway. New information concerning the effects of various histone modifications on the establishment and maintenance of DNA methylation has broadened our understanding of the regulation of DNA methylation. The function of DNA methylation in plants and animals is also discussed in this review. © 2011 IBCB, SIBS, CAS All rights reserved.

  16. Annotating the genome by DNA methylation.

    Science.gov (United States)

    Cedar, Howard; Razin, Aharon

    2017-01-01

    DNA methylation plays a prominent role in setting up and stabilizing the molecular design of gene regulation and by understanding this process one gains profound insight into the underlying biology of mammals. In this article, we trace the discoveries that provided the foundations of this field, starting with the mapping of methyl groups in the genome and the experiments that helped clarify how methylation patterns are maintained through cell division. We then address the basic relationship between methyl groups and gene repression, as well as the molecular rules involved in controlling this process during development in vivo. Finally, we describe ongoing work aimed at defining the role of this modification in disease and deciphering how it may serve as a mechanism for sensing the environment.

  17. Global DNA methylation of ischemic stroke subtypes.

    Directory of Open Access Journals (Sweden)

    Carolina Soriano-Tárraga

    Full Text Available Ischemic stroke (IS, a heterogeneous multifactorial disorder, is among the leading causes of mortality and long-term disability in the western world. Epidemiological data provides evidence for a genetic component to the disease, but its epigenetic involvement is still largely unknown. Epigenetic mechanisms, such as DNA methylation, change over time and may be associated with aging processes and with modulation of the risk of various pathologies, such as cardiovascular disease and stroke. We analyzed 2 independent cohorts of IS patients. Global DNA methylation was measured by luminometric methylation assay (LUMA of DNA blood samples. Univariate and multivariate regression analyses were used to assess the methylation differences between the 3 most common IS subtypes, large-artery atherosclerosis (LAA, small-artery disease (SAD, and cardio-aortic embolism (CE. A total of 485 IS patients from 2 independent hospital cohorts (n = 281 and n = 204 were included, distributed across 3 IS subtypes: LAA (78/281, 59/204, SAD (97/281, 53/204, and CE (106/281, 89/204. In univariate analyses, no statistical differences in LUMA levels were observed between the 3 etiologies in either cohort. Multivariate analysis, adjusted by age, sex, hyperlipidemia, and smoking habit, confirmed the lack of differences in methylation levels between the analyzed IS subtypes in both cohorts. Despite differences in pathogenesis, our results showed no global methylation differences between LAA, SAD, and CE subtypes of IS. Further work is required to establish whether the epigenetic mechanism of methylation might play a role in this complex disease.

  18. Patterns of DNA methylation in the normal colon vary by anatomical location, gender, and age

    Science.gov (United States)

    Kaz, Andrew M; Wong, Chao-Jen; Dzieciatkowski, Slavomir; Luo, Yanxin; Schoen, Robert E; Grady, William M

    2014-01-01

    Alterations in DNA methylation have been proposed to create a field cancerization state in the colon, where molecular alterations that predispose cells to transformation occur in histologically normal tissue. However, our understanding of the role of DNA methylation in field cancerization is limited by an incomplete characterization of the methylation state of the normal colon. In order to determine the colon’s normal methylation state, we extracted DNA from normal colon biopsies from the rectum, sigmoid, transverse, and ascending colon and assessed the methylation status of the DNA by pyrosequencing candidate loci as well as with HumanMethylation450 arrays. We found that methylation levels of repetitive elements LINE-1 and SAT-α showed minimal variability throughout the colon in contrast to other loci. Promoter methylation of EVL was highest in the rectum and progressively lower in the proximal segments, whereas ESR1 methylation was higher in older individuals. Genome-wide methylation analysis of normal DNA revealed 8388, 82, and 93 differentially methylated loci that distinguished right from left colon, males from females, and older vs. younger individuals, respectively. Although variability in methylation between biopsies and among different colon segments was minimal for repetitive elements, analyses of specific cancer-related genes as well as a genome-wide methylation analysis demonstrated differential methylation based on colon location, individual age, and gender. These studies advance our knowledge regarding the variation of DNA methylation in the normal colon, a prerequisite for future studies aimed at understanding methylation differences indicative of a colon field effect. PMID:24413027

  19. The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status.

    Science.gov (United States)

    Li, Dongming; Palanca, Ana Marie S; Won, So Youn; Gao, Lei; Feng, Ying; Vashisht, Ajay A; Liu, Li; Zhao, Yuanyuan; Liu, Xigang; Wu, Xiuyun; Li, Shaofang; Le, Brandon; Kim, Yun Ju; Yang, Guodong; Li, Shengben; Liu, Jinyuan; Wohlschlegel, James A; Guo, Hongwei; Mo, Beixin; Chen, Xuemei; Law, Julie A

    2017-04-28

    DNA methylation is associated with gene silencing in eukaryotic organisms. Although pathways controlling the establishment, maintenance and removal of DNA methylation are known, relatively little is understood about how DNA methylation influences gene expression. Here we identified a METHYL-CpG-BINDING DOMAIN 7 (MBD7) complex in Arabidopsis thaliana that suppresses the transcriptional silencing of two LUCIFERASE ( LUC) reporters via a mechanism that is largely downstream of DNA methylation. Although mutations in components of the MBD7 complex resulted in modest increases in DNA methylation concomitant with decreased LUC expression, we found that these hyper-methylation and gene expression phenotypes can be genetically uncoupled. This finding, along with genome-wide profiling experiments showing minimal changes in DNA methylation upon disruption of the MBD7 complex, places the MBD7 complex amongst a small number of factors acting downstream of DNA methylation. This complex, however, is unique as it functions to suppress, rather than enforce, DNA methylation-mediated gene silencing.

  20. DNA methylation patterns in cord blood DNA and body size in childhood.

    Directory of Open Access Journals (Sweden)

    Caroline L Relton

    Full Text Available Epigenetic markings acquired in early life may have phenotypic consequences later in development through their role in transcriptional regulation with relevance to the developmental origins of diseases including obesity. The goal of this study was to investigate whether DNA methylation levels at birth are associated with body size later in childhood.A study design involving two birth cohorts was used to conduct transcription profiling followed by DNA methylation analysis in peripheral blood. Gene expression analysis was undertaken in 24 individuals whose biological samples and clinical data were collected at a mean ± standard deviation (SD age of 12.35 (0.95 years, the upper and lower tertiles of body mass index (BMI were compared with a mean (SD BMI difference of 9.86 (2.37 kg/m(2. This generated a panel of differentially expressed genes for DNA methylation analysis which was then undertaken in cord blood DNA in 178 individuals with body composition data prospectively collected at a mean (SD age of 9.83 (0.23 years. Twenty-nine differentially expressed genes (>1.2-fold and p<10(-4 were analysed to determine DNA methylation levels at 1-3 sites per gene. Five genes were unmethylated and DNA methylation in the remaining 24 genes was analysed using linear regression with bootstrapping. Methylation in 9 of the 24 (37.5% genes studied was associated with at least one index of body composition (BMI, fat mass, lean mass, height at age 9 years, although only one of these associations remained after correction for multiple testing (ALPL with height, p(Corrected = 0.017.DNA methylation patterns in cord blood show some association with altered gene expression, body size and composition in childhood. The observed relationship is correlative and despite suggestion of a mechanistic epigenetic link between in utero life and later phenotype, further investigation is required to establish causality.

  1. Differential DNA methylation patterns define status epilepticus and epileptic tolerance.

    Science.gov (United States)

    Miller-Delaney, Suzanne F C; Das, Sudipto; Sano, Takanori; Jimenez-Mateos, Eva M; Bryan, Kenneth; Buckley, Patrick G; Stallings, Raymond L; Henshall, David C

    2012-02-01

    Prolonged seizures (status epilepticus) produce pathophysiological changes in the hippocampus that are associated with large-scale, wide-ranging changes in gene expression. Epileptic tolerance is an endogenous program of cell protection that can be activated in the brain by previous exposure to a non-harmful seizure episode before status epilepticus. A major transcriptional feature of tolerance is gene downregulation. Here, through methylation analysis of 34,143 discrete loci representing all annotated CpG islands and promoter regions in the mouse genome, we report the genome-wide DNA methylation changes in the hippocampus after status epilepticus and epileptic tolerance in adult mice. A total of 321 genes showed altered DNA methylation after status epilepticus alone or status epilepticus that followed seizure preconditioning, with >90% of the promoters of these genes undergoing hypomethylation. These profiles included genes not previously associated with epilepsy, such as the polycomb gene Phc2. Differential methylation events generally occurred throughout the genome without bias for a particular chromosomal region, with the exception of a small region of chromosome 4, which was significantly overrepresented with genes hypomethylated after status epilepticus. Surprisingly, only few genes displayed differential hypermethylation in epileptic tolerance. Nevertheless, gene ontology analysis emphasized the majority of differential methylation events between the groups occurred in genes associated with nuclear functions, such as DNA binding and transcriptional regulation. The present study reports select, genome-wide DNA methylation changes after status epilepticus and in epileptic tolerance, which may contribute to regulating the gene expression environment of the seizure-damaged hippocampus.

  2. The Ageing Brain: Effects on DNA Repair and DNA Methylation in Mice

    Directory of Open Access Journals (Sweden)

    Sabine A. S. Langie

    2017-02-01

    Full Text Available Base excision repair (BER may become less effective with ageing resulting in accumulation of DNA lesions, genome instability and altered gene expression that contribute to age-related degenerative diseases. The brain is particularly vulnerable to the accumulation of DNA lesions; hence, proper functioning of DNA repair mechanisms is important for neuronal survival. Although the mechanism of age-related decline in DNA repair capacity is unknown, growing evidence suggests that epigenetic events (e.g., DNA methylation contribute to the ageing process and may be functionally important through the regulation of the expression of DNA repair genes. We hypothesize that epigenetic mechanisms are involved in mediating the age-related decline in BER in the brain. Brains from male mice were isolated at 3–32 months of age. Pyrosequencing analyses revealed significantly increased Ogg1 methylation with ageing, which correlated inversely with Ogg1 expression. The reduced Ogg1 expression correlated with enhanced expression of methyl-CpG binding protein 2 and ten-eleven translocation enzyme 2. A significant inverse correlation between Neil1 methylation at CpG-site2 and expression was also observed. BER activity was significantly reduced and associated with increased 8-oxo-7,8-dihydro-2′-deoxyguanosine levels. These data indicate that Ogg1 and Neil1 expression can be epigenetically regulated, which may mediate the effects of ageing on DNA repair in the brain.

  3. The Ageing Brain: Effects on DNA Repair and DNA Methylation in Mice.

    Science.gov (United States)

    Langie, Sabine A S; Cameron, Kerry M; Ficz, Gabriella; Oxley, David; Tomaszewski, Bartłomiej; Gorniak, Joanna P; Maas, Lou M; Godschalk, Roger W L; van Schooten, Frederik J; Reik, Wolf; von Zglinicki, Thomas; Mathers, John C

    2017-02-17

    Base excision repair (BER) may become less effective with ageing resulting in accumulation of DNA lesions, genome instability and altered gene expression that contribute to age-related degenerative diseases. The brain is particularly vulnerable to the accumulation of DNA lesions; hence, proper functioning of DNA repair mechanisms is important for neuronal survival. Although the mechanism of age-related decline in DNA repair capacity is unknown, growing evidence suggests that epigenetic events (e.g., DNA methylation) contribute to the ageing process and may be functionally important through the regulation of the expression of DNA repair genes. We hypothesize that epigenetic mechanisms are involved in mediating the age-related decline in BER in the brain. Brains from male mice were isolated at 3-32 months of age. Pyrosequencing analyses revealed significantly increased Ogg1 methylation with ageing, which correlated inversely with Ogg1 expression. The reduced Ogg1 expression correlated with enhanced expression of methyl-CpG binding protein 2 and ten-eleven translocation enzyme 2. A significant inverse correlation between Neil1 methylation at CpG-site2 and expression was also observed. BER activity was significantly reduced and associated with increased 8-oxo-7,8-dihydro-2'-deoxyguanosine levels. These data indicate that Ogg1 and Neil1 expression can be epigenetically regulated, which may mediate the effects of ageing on DNA repair in the brain.

  4. Mechanisms for the induction of gastric cancer by Helicobacter pylori infection: aberrant DNA methylation pathway.

    Science.gov (United States)

    Maeda, Masahiro; Moro, Hiroshi; Ushijima, Toshikazu

    2017-03-01

    Multiple pathogenic mechanisms by which Helicobacter pylori infection induces gastric cancer have been established in the last two decades. In particular, aberrant DNA methylation is induced in multiple driver genes, which inactivates them. Methylation profiles in gastric cancer are associated with specific subtypes, such as microsatellite instability. Recent comprehensive and integrated analyses showed that many cancer-related pathways are more frequently altered by aberrant DNA methylation than by mutations. Aberrant DNA methylation can even be present in noncancerous gastric mucosae, producing an "epigenetic field for cancerization." Mechanistically, H. pylori-induced chronic inflammation, but not H. pylori itself, plays a direct role in the induction of aberrant DNA methylation. The expression of three inflammation-related genes, Il1b, Nos2, and Tnf, is highly associated with the induction of aberrant DNA methylation. Importantly, the degree of accumulated aberrant DNA methylation is strongly correlated with gastric cancer risk. A recent multicenter prospective cohort study demonstrated the utility of epigenetic cancer risk diagnosis for metachronous gastric cancer. Suppression of aberrant DNA methylation by a demethylating agent was shown to inhibit gastric cancer development in an animal model. Induction of aberrant DNA methylation is the major pathway by which H. pylori infection induces gastric cancer, and this can be utilized for translational opportunities.

  5. Environmental Influences on the Epigenome: Exposure- Associated DNA Methylation in Human Populations.

    Science.gov (United States)

    Martin, Elizabeth M; Fry, Rebecca C

    2018-04-01

    DNA methylation is the most well studied of the epigenetic regulators in relation to environmental exposures. To date, numerous studies have detailed the manner by which DNA methylation is influenced by the environment, resulting in altered global and gene-specific DNA methylation. These studies have focused on prenatal, early-life, and adult exposure scenarios. The present review summarizes currently available literature that demonstrates a relationship between DNA methylation and environmental exposures. It includes studies on aflatoxin B 1 , air pollution, arsenic, bisphenol A, cadmium, chromium, lead, mercury, polycyclic aromatic hydrocarbons, persistent organic pollutants, tobacco smoke, and nutritional factors. It also addresses gaps in the literature and future directions for research. These gaps include studies of mixtures, sexual dimorphisms with respect to environmentally associated methylation changes, tissue specificity, and temporal stability of the methylation marks.

  6. DNA Methylation as a Biomarker for Preeclampsia

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Cindy M.; Ralph, Jody L.; Wright, Michelle L.; Linggi, Bryan E.; Ohm, Joyce E.

    2014-10-01

    Background: Preeclampsia contributes significantly to pregnancy-associated morbidity and mortality as well as future risk of cardiovascular disease in mother and offspring, and preeclampsia in offspring. The lack of reliable methods for early detection limits the opportunities for prevention, diagnosis, and timely treatment. Purpose: The purpose of this study was to explore distinct DNA methylation patterns associated with preeclampsia in both maternal cells and fetal-derived tissue that represent potential biomarkers to predict future preeclampsia and inheritance in children. Method: A convenience sample of nulliparous women (N = 55) in the first trimester of pregnancy was recruited for this prospective study. Genome-wide DNA methylation was quantified in first-trimester maternal peripheral white blood cells and placental chorionic tissue from normotensive women and those with preeclampsia (n = 6/group). Results: Late-onset preeclampsia developed in 12.7% of women. Significant differences in DNA methylation were identified in 207 individual linked cytosine and guanine (CpG) sites in maternal white blood cells collected in the first trimester (132 sites with gain and 75 sites with loss of methylation), which were common to approximately 75% of the differentially methylated CpG sites identified in chorionic tissue of fetal origin. Conclusion: This study is the first to identify maternal epigenetic targets and common targets in fetal-derived tissue that represent putative biomarkers for early detection and heritable risk of preeclampsia. Findings may pave the way for diagnosis of preeclampsia prior to its clinical presentation and acute damaging effects, and the potential for prevention of the detrimental long-term sequelae.

  7. DNA methylation as a biomarker for preeclampsia.

    Science.gov (United States)

    Anderson, Cindy M; Ralph, Jody L; Wright, Michelle L; Linggi, Bryan; Ohm, Joyce E

    2014-10-01

    Preeclampsia contributes significantly to pregnancy-associated morbidity and mortality as well as future risk of cardiovascular disease in mother and offspring, and preeclampsia in offspring. The lack of reliable methods for early detection limits the opportunities for prevention, diagnosis, and timely treatment. The purpose of this study was to explore distinct DNA methylation patterns associated with preeclampsia in both maternal cells and fetal-derived tissue that represent potential biomarkers to predict future preeclampsia and inheritance in children. A convenience sample of nulliparous women (N = 55) in the first trimester of pregnancy was recruited for this prospective study. Genome-wide DNA methylation was quantified in first-trimester maternal peripheral white blood cells and placental chorionic tissue from normotensive women and those with preeclampsia (n = 6/group). Late-onset preeclampsia developed in 12.7% of women. Significant differences in DNA methylation were identified in 207 individual linked cytosine and guanine (CpG) sites in maternal white blood cells collected in the first trimester (132 sites with gain and 75 sites with loss of methylation), which were common to approximately 75% of the differentially methylated CpG sites identified in chorionic tissue of fetal origin. This study is the first to identify maternal epigenetic targets and common targets in fetal-derived tissue that represent putative biomarkers for early detection and heritable risk of preeclampsia. Findings may pave the way for diagnosis of preeclampsia prior to its clinical presentation and acute damaging effects, and the potential for prevention of the detrimental long-term sequelae. © The Author(s) 2013.

  8. Identification of methylated deoxyadenosines by DNA immunoprecipitation

    OpenAIRE

    Koziol, Magdalena Justyna; Bradshaw, Charles; Allen, George E; Costa, Ana SH; Frezza, Christian

    2016-01-01

    DNA immunoprecipitation followed by deep sequencing (DIP-Seq) is a key tool in identifying and studying the genome-wide distribution of N-6-methyl-deoxyadenosine (dA$^{6m}$). This protocol describes the method to perform dA$^{6m}$ DNA immunoprecipitation (DIP), as was applied to characterize the first dA$^{6m}$ methylome analysis in higher eukaryotes (Koziol $\\small \\textit{et al}$, 2015). Long-Term Human Frontiers Fellowship (LT000149/2010-L), Medical Research Council (Grant ID: G1001690)...

  9. Comparisons of Non-Gaussian Statistical Models in DNA Methylation Analysis

    Directory of Open Access Journals (Sweden)

    Zhanyu Ma

    2014-06-01

    Full Text Available As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance.

  10. Methylated DNA for monitoring tumor growth and regression

    DEFF Research Database (Denmark)

    Kristiansen, Søren; Nielsen, Dorte; Söletormos, Georg

    2014-01-01

    of gene promoters. Because tumor cells naturally secrete DNA and upon cell death leak DNA, modified methylated DNA can be detected in blood, urine, sputum and other body fluids. At present international guidelines do not include recommendations for monitoring modified methylated DNA. The low level...

  11. Global DNA methylation loss associated with mercury contamination and aging in the American alligator (Alligator mississippiensis).

    Science.gov (United States)

    Nilsen, Frances M; Parrott, Benjamin B; Bowden, John A; Kassim, Brittany L; Somerville, Stephen E; Bryan, Teresa A; Bryan, Colleen E; Lange, Ted R; Delaney, J Patrick; Brunell, Arnold M; Long, Stephen E; Guillette, Louis J

    2016-03-01

    Mercury is a widespread environmental contaminant with exposures eliciting a well-documented catalog of adverse effects. Yet, knowledge regarding the underlying mechanisms by which mercury exposures are translated into biological effects remains incomplete. DNA methylation is an epigenetic modification that is sensitive to environmental cues, and alterations in DNA methylation at the global level are associated with a variety of diseases. Using a liquid chromatography tandem mass spectrometry-based (LC-MS/MS) approach, global DNA methylation levels were measured in red blood cells of 144 wild American alligators (Alligator mississippiensis) from 6 sites with variable levels of mercury contamination across Florida's north-south axis. Variation in mercury concentrations measured in whole blood was highly associated with location, allowing the comparison of global DNA methylation levels across different "treatments" of mercury. Global DNA methylation in alligators across all locations was weakly associated with increased mercury exposure. However, a much more robust relationship was observed in those animals sampled from locations more highly contaminated with mercury. Also, similar to other vertebrates, global DNA methylation appears to decline with age in alligators. The relationship between age-associated loss of global DNA methylation and varying mercury exposures was examined to reveal a potential interaction. These findings demonstrate that global DNA methylation levels are associated with mercury exposure, and give insights into interactions between contaminants, aging, and epigenetics. Published by Elsevier B.V.

  12. Genome-wide DNA methylome alterations in acute coronary syndrome.

    Science.gov (United States)

    Li, Dandan; Yan, Jing; Yuan, Yunlong; Wang, Cheng; Wu, Jia; Chen, Qingwen; Song, Jiaxi; Wang, Junjun

    2018-01-01

    Acute coronary syndrome (ACS) is a common disease with high mortality and morbidity rates. The methylation status of blood DNA may serve as a potential early diagnosis and prevention biomarker for numerous diseases. The present study was designed to explore novel genome-wide aberrant DNA methylation patterns associated with ACS. The Infinium HumanMethylation450 assay was used to examine genome-wide DNA methylation profiles in 3 pairs of ACS and control group samples. Epigenome-wide DNA methylation, genomic distribution, Gene Ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed. The results were confirmed using methylation-specific polymerase chain reaction (MSP) and Sequenom MassARRAY analyses in ACS, stable coronary artery disease (SCAD) and control samples. A total of 11,342 differentially methylated (DM) 5'-C-phosphate-G-3' (CpG) sites were identified, including 8,865 hypomethylated and 2,477 hypermethylated CpG sites in the ACS group compared with the control samples. They varied in frequency across genomic compartments, but were particularly notable in gene bodies and shores. The results of GO term and KEGG pathway enrichment analyses revealed that the methylated genes were associated with certain biological processes and pathways. Despite the considerable variability in methylation data, the candidate selected possessed significant methylation alteration in mothers against decapentaplegic homolog 3 (SMAD3) transcription start site 155 (Chr1:67356838-Chr1:67356942). MSP analysis from 81 ACS samples, 74 SCAD samples and 53 healthy samples, and Sequenom MassARRAY analysis, confirmed that differential CpG methylation of SMAD3 was significantly corrected with the reference results of the HumanMethylation450 array. The data identified an ACS-specific DNA methylation profile with a large number of novel DM CpG sites, some of which may serve as candidate markers for the early diagnosis of ACS.

  13. Prenatal exposure to mixtures of xenoestrogens and repetitive element DNA methylation changes in human placenta.

    Science.gov (United States)

    Vilahur, Nadia; Bustamante, Mariona; Byun, Hyang-Min; Fernandez, Mariana F; Santa Marina, Loreto; Basterrechea, Mikel; Ballester, Ferran; Murcia, Mario; Tardón, Adonina; Fernández-Somoano, Ana; Estivill, Xavier; Olea, Nicolas; Sunyer, Jordi; Baccarelli, Andrea A

    2014-10-01

    Prenatal exposure to endocrine disrupting compounds (EDCs) has previously shown to alter epigenetic marks. In this work we explore whether prenatal exposure to mixtures of xenoestrogens has the potential to alter the placenta epigenome, by studying DNA methylation in retrotransposons as a surrogate of global DNA methylation. The biomarker total effective xenoestrogen burden (TEXB) was measured in 192 placentas from participants in the longitudinal INMA Project. DNA methylation was quantitatively assessed by bisulfite pyrosequencing on 10 different retrotransposons including 3 different long interspersed nuclear elements (LINEs), 4 short interspersed nuclear elements (SINEs) and 3 human endogenous retroviruses (HERVs). Associations were tested using linear mixed-effects regression models and sex interaction was evaluated. A significant sex interaction was observed for AluYb8 (p-value for interaction xenoestrogens during prenatal development, producing shifts in DNA methylation of certain sensitive genomic repetitive sequences in a tissue important for fetal growth and development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. MethylMix 2.0: an R package for identifying DNA methylation genes.

    Science.gov (United States)

    Cedoz, Pierre-Louis; Prunello, Marcos; Brennan, Kevin; Gevaert, Olivier

    2018-04-14

    DNA methylation is an important mechanism regulating gene transcription, and its role in carcinogenesis has been extensively studied. Hyper and hypomethylation of genes is a major mechanism of gene expression deregulation in a wide range of diseases. At the same time, high-throughput DNA methylation assays have been developed generating vast amounts of genome wide DNA methylation measurements. We developed MethylMix, an algorithm implemented in R to identify disease specific hyper and hypomethylated genes. Here we present a new version of MethylMix that automates the construction of DNA-methylation and gene expression datasets from The Cancer Genome Atlas (TCGA). More precisely, MethylMix 2.0 incorporates two major updates: the automated downloading of DNA methylation and gene expression datasets from TCGA and the automated preprocessing of such datasets: value imputation, batch correction and CpG sites clustering within each gene. The resulting datasets can subsequently be analyzed with MethylMix to identify transcriptionally predictive methylation states. We show that the Differential Methylation Values created by MethylMix can be used for cancer subtyping. olivier.gevaert@stanford.edu. https://bioconductor.org/packages/release/bioc/manuals/MethylMix/man/MethylMix.pdf. MethylMix 2.0 was implemented as an R package and is available in bioconductor.

  15. Collaborations between CpG sites in DNA methylation

    Science.gov (United States)

    Song, You; Ren, Honglei; Lei, Jinzhi

    2017-08-01

    DNA methylation patterns have profound impacts on genome stability, gene expression and development. The molecular base of DNA methylation patterns has long been focused at single CpG sites level. Here, we construct a kinetic model of DNA methylation with collaborations between CpG sites, from which a correlation function was established based on experimental data. The function consists of three parts that suggest three possible sources of the correlation: movement of enzymes along DNA, collaboration between DNA methylation and nucleosome modification, and global enzyme concentrations within a cell. Moreover, the collaboration strength between DNA methylation and nucleosome modification is universal for mouse early embryo cells. The obtained correlation function provides insightful understanding for the mechanisms of inheritance of DNA methylation patterns.

  16. Understanding the connection between epigenetic DNA methylation and nucleosome positioning from computer simulations.

    Directory of Open Access Journals (Sweden)

    Guillem Portella

    Full Text Available Cytosine methylation is one of the most important epigenetic marks that regulate the process of gene expression. Here, we have examined the effect of epigenetic DNA methylation on nucleosomal stability using molecular dynamics simulations and elastic deformation models. We found that methylation of CpG steps destabilizes nucleosomes, especially when these are placed in sites where the DNA minor groove faces the histone core. The larger stiffness of methylated CpG steps is a crucial factor behind the decrease in nucleosome stability. Methylation changes the positioning and phasing of the nucleosomal DNA, altering the accessibility of DNA to regulatory proteins, and accordingly gene functionality. Our theoretical calculations highlight a simple physical-based explanation on the foundations of epigenetic signaling.

  17. DNA Methylation: Insights into Human Evolution

    Science.gov (United States)

    Sharp, Andrew J.; Marques-Bonet, Tomas

    2015-01-01

    A fundamental initiative for evolutionary biologists is to understand the molecular basis underlying phenotypic diversity. A long-standing hypothesis states that species-specific traits may be explained by differences in gene regulation rather than differences at the protein level. Over the past few years, evolutionary studies have shifted from mere sequence comparisons to integrative analyses in which gene regulation is key to understanding species evolution. DNA methylation is an important epigenetic modification involved in the regulation of numerous biological processes. Nevertheless, the evolution of the human methylome and the processes driving such changes are poorly understood. Here, we review the close interplay between Cytosine-phosphate-Guanine (CpG) methylation and the underlying genome sequence, as well as its evolutionary impact. We also summarize the latest advances in the field, revisiting the main literature on human and nonhuman primates. We hope to encourage the scientific community to address the many challenges posed by the field of comparative epigenomics. PMID:26658498

  18. Global DNA methylation profiling of manganese-exposed human neuroblastoma SH-SY5Y cells reveals epigenetic alterations in Parkinson’s disease-associated genes

    OpenAIRE

    Tarale, Prashant; Sivanesan, Saravanadevi; Daiwile, Atul P.; Stöger, Reinhard; Bafana, Amit; Naoghare, Pravin K.; Parmar, Devendra; Chakrabarti, Tapan; Kannan, Krishnamurthi

    2016-01-01

    Manganese (Mn) is an essential trace element required for optimal functioning of cellular biochemical pathways in the central nervous system. Elevated exposure to Mn through environmental and occupational exposure can cause neurotoxic effects resulting in manganism, a condition with clinical symptoms identical to idiopathic Parkinson’s disease. Epigenetics is now recognized as a biological mechanism involved in the etiology of various diseases. Here, we investigated the role of DNA methylatio...

  19. Recognition of methylated DNA through methyl-CpG binding domain proteins

    DEFF Research Database (Denmark)

    Zou, Xueqing; Ma, Wen; Solov'yov, Ilia

    2012-01-01

    DNA methylation is a key regulatory control route in epigenetics, involving gene silencing and chromosome inactivation. It has been recognized that methyl-CpG binding domain (MBD) proteins play an important role in interpreting the genetic information encoded by methylated DNA (mDNA). Although...... the function of MBD proteins has attracted considerable attention and is well characterized, the mechanism underlying mDNA recognition by MBD proteins is still poorly understood. In this article, we demonstrate that the methyl-CpG dinucleotides are recognized at the MBD-mDNA interface by two MBD arginines...

  20. Changes of host DNA methylation in domestic chickens infected with ...

    Indian Academy of Sciences (India)

    FEI WANG

    2017-09-15

    Sep 15, 2017 ... to analyse the genomewide DNA methylation changes in domestic chickens after infected with Salmonella. The level of DNA methylation was .... At day 12, the chickens were divided ran- domly into two groups. One group was .... ing strand during DNA replication (Chilkova et al. 2007). In this study, it was ...

  1. [DNA methylation and development abnormalities in cloned animals].

    Science.gov (United States)

    Yang, Rong-Rong; Li, Xiang-Yun

    2007-09-01

    Most cloned animals by nuclear transfer were dead before their births, and only a few can develop to their late gestation or adulthood. Although some cloned offsprings can survive, they often have some development disfigurements and abnormal phenotypes in various degrees. DNA methylation is an important modifiable manner of epigenetic dominating the correct expression of gene. It is a main instrument of regulating genome function and plays a prominent part in the embryonic normal development. Through researching the pattern of DNA methylation, we found that there were many abnormal DNA methylation patterns in cloned animals, which might be the primary reasons for inducing premature death of cloned embryos and development abnormalities of cloned animals. This article discusses the function of DNA methylation, the aberrant DNA methylation patterns in cloned animals, and the reasons of inducing abnormal DNA methylation in cloned animals.

  2. Methylated DNA Immunoprecipitation Analysis of Mammalian Endogenous Retroviruses.

    Science.gov (United States)

    Rebollo, Rita; Mager, Dixie L

    2016-01-01

    Endogenous retroviruses are repetitive sequences found abundantly in mammalian genomes which are capable of modulating host gene expression. Nevertheless, most endogenous retrovirus copies are under tight epigenetic control via histone-repressive modifications and DNA methylation. Here we describe a common method used in our laboratory to detect, quantify, and compare mammalian endogenous retrovirus DNA methylation. More specifically we describe methylated DNA immunoprecipitation (MeDIP) followed by quantitative PCR.

  3. DNA methylation signatures of educational attainment

    Science.gov (United States)

    van Dongen, Jenny; Bonder, Marc Jan; Dekkers, Koen F.; Nivard, Michel G.; van Iterson, Maarten; Willemsen, Gonneke; Beekman, Marian; van der Spek, Ashley; van Meurs, Joyce B. J.; Franke, Lude; Heijmans, Bastiaan T.; van Duijn, Cornelia M.; Slagboom, P. Eline; Boomsma, Dorret I.; BIOS consortium

    2018-03-01

    Educational attainment is a key behavioural measure in studies of cognitive and physical health, and socioeconomic status. We measured DNA methylation at 410,746 CpGs (N = 4152) and identified 58 CpGs associated with educational attainment at loci characterized by pleiotropic functions shared with neuronal, immune and developmental processes. Associations overlapped with those for smoking behaviour, but remained after accounting for smoking at many CpGs: Effect sizes were on average 28% smaller and genome-wide significant at 11 CpGs after adjusting for smoking and were 62% smaller in never smokers. We examined sources and biological implications of education-related methylation differences, demonstrating correlations with maternal prenatal folate, smoking and air pollution signatures, and associations with gene expression in cis, dynamic methylation in foetal brain, and correlations between blood and brain. Our findings show that the methylome of lower-educated people resembles that of smokers beyond effects of their own smoking behaviour and shows traces of various other exposures.

  4. Chronic consumption of a western diet modifies the DNA methylation profile in the frontal cortex of mice.

    Science.gov (United States)

    Yokoyama, Amy S; Dunaway, Keith; Rutkowsky, Jennifer; Rutledge, John C; Milenkovic, Dragan

    2018-02-21

    In our previous work in mice, we have shown that chronic consumption of a Western diet (WD; 42% kcal fat, 0.2% total cholesterol and 34% sucrose) is correlated with impaired cognitive function. Cognitive decline has also been associated with alterations in DNA methylation. Additionally, although there have been many studies analyzing the effect of maternal consumption of a WD on DNA methylation in the offspring, few studies have analyzed how an individual's consumption of a WD can impact his/her DNA methylation. Since the frontal cortex is involved in the regulation of cognitive function and is often affected in cases of cognitive decline, this study aimed to examine how chronic consumption of a WD affects DNA methylation in the frontal cortex of mice. Eight-week-old male mice were fed either a control diet (CD) or a WD for 12 weeks, after which time alterations in DNA methylation were analyzed. Assessment of global DNA methylation in the frontal cortex using dot blot analysis revealed that there was a decrease in global DNA methylation in the WD-fed mice compared with the CD-fed mice. Bioinformatic analysis identified several networks and pathways containing genes displaying differential methylation, particularly those involved in metabolism, cell adhesion and cytoskeleton integrity, inflammation and neurological function. In conclusion, the results from this study suggest that consumption of a WD alters DNA methylation in the frontal cortex of mice and could provide one of the mechanisms by which consumption of a WD impairs cognitive function.

  5. Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium.

    Science.gov (United States)

    Feng, Sheng Jun; Liu, Xue Song; Tao, Hua; Tan, Shang Kun; Chu, Shan Shan; Oono, Youko; Zhang, Xian Duo; Chen, Jian; Yang, Zhi Min

    2016-12-01

    We report genome-wide single-base resolution maps of methylated cytosines and transcriptome change in Cd-exposed rice. Widespread differences were identified in CG and non-CG methylation marks between Cd-exposed and Cd-free rice genomes. There are 2320 non-redundant differentially methylated regions detected in the genome. RNA sequencing revealed 2092 DNA methylation-modified genes differentially expressed under Cd exposure. More genes were found hypermethylated than those hypomethylated in CG, CHH and CHG (where H is A, C or T) contexts in upstream, gene body and downstream regions. Many of the genes were involved in stress response, metal transport and transcription factors. Most of the DNA methylation-modified genes were transcriptionally altered under Cd stress. A subset of loss of function mutants defective in DNA methylation and histone modification activities was used to identify transcript abundance of selected genes. Compared with wide type, mutation of MET1 and DRM2 resulted in general lower transcript levels of the genes under Cd stress. Transcripts of OsIRO2, OsPR1b and Os09g02214 in drm2 were significantly reduced. A commonly used DNA methylation inhibitor 5-azacytidine was employed to investigate whether DNA demethylation affected physiological consequences. 5-azacytidine provision decreased general DNA methylation levels of selected genes, but promoted growth of rice seedlings and Cd accumulation in rice plant. © 2016 John Wiley & Sons Ltd.

  6. [Effect of SET deficiency on the trichloroethylene-induced alteration of cell proliferation and cell apoptosis and DNA methylation in human hepatic L-02 cells].

    Science.gov (United States)

    Xie, G S; Liu, J J; Hong, W X; Zhang, H; Sun, Y; Zhu, W G

    2016-03-20

    To compare the trichloroethylene (TCE) -induced alteration in cell proliferation, cell apoptosis, histone deacetylase activity and expression levels in human hepatic L-02 cells (L-02 cells) and SET deficient cells, and reveal the TCE-induced effect in histone modification and the role of SET on epigenetic pathway. The L-02 cells and preestablished SET deficient cells were treated with different TCE concentrations. For the changes of cell proliferation level and apoptosis rate, The L-02 cells and SET deficiency cells without TCE treatment were served as the control group, the TCE treatment was in the concentration of 2.0 and 8.0 mmol/L for 24 h. For histone deacetylase activity and expression levels, the TCE treatment was in the concentration of 0.25, 0.50, 1.0, 2.0, 4.0, and 8.0 mmol/L for 24 h. After treatment with TCE for 24 h, the cell proliferation level was significantly decreased and the apoptotic rate was significantly increased in both cell lines. When concentration of TCE were reached to 8.0 mmol/L, the difference of cell proliferation level and apoptotic rate between two groups was statistically significant (t=-4.362 for proliferation level and t=23.950 for apoptotic rate, both Pcell lines. When the TCE concentration were high than 0.50 mmol/L, compared with control group of L-02 cells, the enzymes activity were significantly increased (F=403.26, Pcells, the enzyme activity was significantly increased when TCE concentration was reached 1.00 mmol/L (F=44.01, Pcells, TCE exposure can induced a significant increased expression level of HDAC2 in TCE-treated L-02 cells (F values were 79.99, Pcells was not significant. TCE exposure can induce a significant alteration on cell proliferation, apoptotic rate and, the activity and expression on histone deacetylases. SET deficiency can attenuate the TCE-induced alteration in histone modification in L-02 cells. Our results indicated that SET is involved in the mechanism of TCE-induced cytotoxicity and epigenetic

  7. Choline nutrition programs brain development via DNA and histone methylation.

    Science.gov (United States)

    Blusztajn, Jan Krzysztof; Mellott, Tiffany J

    2012-06-01

    Choline is an essential nutrient for humans. Metabolically choline is used for the synthesis of membrane phospholipids (e.g. phosphatidylcholine), as a precursor of the neurotransmitter acetylcholine, and, following oxidation to betaine, choline functions as a methyl group donor in a pathway that produces S-adenosylmethionine. As a methyl donor choline influences DNA and histone methylation--two central epigenomic processes that regulate gene expression. Because the fetus and neonate have high demands for choline, its dietary intake during pregnancy and lactation is particularly important for normal development of the offspring. Studies in rodents have shown that high choline intake during gestation improves cognitive function in adulthood and prevents memory decline associated with old age. These behavioral changes are accompanied by electrophysiological, neuroanatomical, and neurochemical changes and by altered patterns of expression of multiple cortical and hippocampal genes including those encoding key proteins that contribute to the biochemical mechanisms of learning and memory. These actions of choline are observed long after the exposure to the nutrient ended (months) and correlate with fetal hepatic and cerebral cortical choline-evoked changes in global- and gene-specific DNA cytosine methylation and with dramatic changes of the methylation pattern of lysine residues 4, 9 and 27 of histone H3. Moreover, gestational choline modulates the expression of DNA (Dnmt1, Dnmt3a) and histone (G9a/Ehmt2/Kmt1c, Suv39h1/Kmt1a) methyltransferases. In addition to the central role of DNA and histone methylation in brain development, these processes are highly dynamic in adult brain, modulate the expression of genes critical for synaptic plasticity, and are involved in mechanisms of learning and memory. A recent study documented that in a cohort of normal elderly people, verbal and visual memory function correlated positively with the amount of dietary choline consumption

  8. Current trends in electrochemical sensing and biosensing of DNA methylation.

    Science.gov (United States)

    Krejcova, Ludmila; Richtera, Lukas; Hynek, David; Labuda, Jan; Adam, Vojtech

    2017-11-15

    DNA methylation plays an important role in physiological and pathological processes. Several genetic diseases and most malignancies tend to be associated with aberrant DNA methylation. Among other analytical methods, electrochemical approaches have been successfully employed for characterisation of DNA methylation patterns that are essential for the diagnosis and treatment of particular diseases. This article discusses current trends in the electrochemical sensing and biosensing of DNA methylation. Particularly, it provides an overview of applied electrode materials, electrode modifications and biorecognition elements applications with an emphasis on strategies that form the core DNA methylation detection approaches. The three main strategies as (i) bisulfite treatment, (ii) cleavage by restriction endonucleases, and (iii) immuno/affinity reaction were described in greater detail. Additionally, the availability of the reviewed platforms for early cancer diagnosis and the approval of methylation inhibitors for anticancer therapy were discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Target specificity of mammalian DNA methylation and demethylation machinery.

    Science.gov (United States)

    Ravichandran, M; Jurkowska, R Z; Jurkowski, T P

    2018-02-28

    DNA methylation is an essential epigenetic modification for mammalian embryonic development and biology. The DNA methylation pattern across the genome, together with other epigenetic signals, is responsible for the transcriptional profile of a cell and thus preservation of the cell's identity. Equally, the family of TET enzymes which triggers the initiation of the DNA demethylation cycle plays a vital role in the early embryonic development and a lack of these enzymes at later stages leads to a diseased state and dysregulation of the epigenome. DNA methylation has long been considered a very stable modification; however, it has become increasingly clear that for the establishment and maintenance of the methylation pattern, both generation of DNA methylation and its removal are important, and that a delicate balance of ongoing DNA methylation and demethylation shapes the final epigenetic methylation pattern of the cell. Although this epigenetic mark has been investigated in great detail, it still remains to be fully understood how specific DNA methylation imprints are precisely generated, maintained, read or erased in the genome. Here, we provide a biochemist's view on how both DNA methyltransferases and TET enzymes are recruited to specific genomic loci, and how their chromatin interactions, as well as their intrinsic sequence specificities and molecular mechanisms, contribute to the methylation pattern of the cell.

  10. Alterations of ultraviolet irradiated DNA

    International Nuclear Information System (INIS)

    Davila, C.; Garces, F.

    1980-01-01

    Thymine dimers production has been studied in several DNA- 3 H irradiated at various wave lenght of U.V. Light. The influence of dimers on the hydrodynamic and optic properties, thermal structural stability and transformant capacity of DNA have been studied too. At last the recognition and excision of dimers by the DNA-UV-Endonuclease and DNA-Polimerase-I was also studied. (author)

  11. Kaempferol Modulates DNA Methylation and Downregulates DNMT3B in Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Wei Qiu

    2017-03-01

    Full Text Available Background: Genomic DNA methylation plays an important role in both the occurrence and development of bladder cancer. Kaempferol (Kae, a natural flavonoid that is present in many fruits and vegetables, exhibits potent anti-cancer effects in bladder cancer. Similar to other flavonoids, Kae possesses a flavan nucleus in its structure. This structure was reported to inhibit DNA methylation by suppressing DNA methyltransferases (DNMTs. However, whether Kae can inhibit DNA methylation remains unclear. Methods: Nude mice bearing bladder cancer were treated with Kae for 31 days. The genomic DNA was extracted from xenografts and the methylation changes was determined using an Illumina Infinium HumanMethylation 450 BeadChip Array. The ubiquitination was detected using immuno-precipitation assay. Results: Our data indicated that Kae modulated DNA methylation in bladder cancer, inducing 103 differential DNA methylation positions (dDMPs associated with genes (50 hyper-methylated and 53 hypo-methylated. DNA methylation is mostly relied on the levels of DNMTs. We observed that Kae specifically inhibited the protein levels of DNMT3B without altering the expression of DNMT1 or DNMT3A. However, Kae did not downregulate the transcription of DNMT3B. Interestingly, we observed that Kae induced a premature degradation of DNMT3B by inhibiting protein synthesis with cycloheximide (CHX. By blocking proteasome with MG132, we observed that Kae induced an increased ubiquitination of DNMT3B. These results suggested that Kae could induce the degradation of DNMT3B through ubiquitin-proteasome pathway. Conclusion: Our data indicated that Kae is a novel DNMT3B inhibitor, which may promote the degradation of DNMT3B in bladder cancer.

  12. Kaempferol Modulates DNA Methylation and Downregulates DNMT3B in Bladder Cancer.

    Science.gov (United States)

    Qiu, Wei; Lin, Jun; Zhu, Yichen; Zhang, Jian; Zeng, Liping; Su, Ming; Tian, Ye

    2017-01-01

    Genomic DNA methylation plays an important role in both the occurrence and development of bladder cancer. Kaempferol (Kae), a natural flavonoid that is present in many fruits and vegetables, exhibits potent anti-cancer effects in bladder cancer. Similar to other flavonoids, Kae possesses a flavan nucleus in its structure. This structure was reported to inhibit DNA methylation by suppressing DNA methyltransferases (DNMTs). However, whether Kae can inhibit DNA methylation remains unclear. Nude mice bearing bladder cancer were treated with Kae for 31 days. The genomic DNA was extracted from xenografts and the methylation changes was determined using an Illumina Infinium HumanMethylation 450 BeadChip Array. The ubiquitination was detected using immuno-precipitation assay. Our data indicated that Kae modulated DNA methylation in bladder cancer, inducing 103 differential DNA methylation positions (dDMPs) associated with genes (50 hyper-methylated and 53 hypo-methylated). DNA methylation is mostly relied on the levels of DNMTs. We observed that Kae specifically inhibited the protein levels of DNMT3B without altering the expression of DNMT1 or DNMT3A. However, Kae did not downregulate the transcription of DNMT3B. Interestingly, we observed that Kae induced a premature degradation of DNMT3B by inhibiting protein synthesis with cycloheximide (CHX). By blocking proteasome with MG132, we observed that Kae induced an increased ubiquitination of DNMT3B. These results suggested that Kae could induce the degradation of DNMT3B through ubiquitin-proteasome pathway. Our data indicated that Kae is a novel DNMT3B inhibitor, which may promote the degradation of DNMT3B in bladder cancer. © 2017 The Author(s)Published by S. Karger AG, Basel.

  13. Role of DNA Methylation in Type 2 Diabetes Etiology: Using Genotype as a Causal Anchor.

    Science.gov (United States)

    Elliott, Hannah R; Shihab, Hashem A; Lockett, Gabrielle A; Holloway, John W; McRae, Allan F; Smith, George Davey; Ring, Susan M; Gaunt, Tom R; Relton, Caroline L

    2017-06-01

    Several studies have investigated the relationship between genetic variation and DNA methylation with respect to type 2 diabetes, but it is unknown if DNA methylation is a mediator in the disease pathway or if it is altered in response to disease state. This study uses genotypic information as a causal anchor to help decipher the likely role of DNA methylation measured in peripheral blood in the etiology of type 2 diabetes. Illumina HumanMethylation450 BeadChip data were generated on 1,018 young individuals from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. In stage 1, 118 unique associations between published type 2 diabetes single nucleotide polymorphisms (SNPs) and genome-wide methylation (methylation quantitative trait loci [mQTLs]) were identified. In stage 2, a further 226 mQTLs were identified between 202 additional independent non-type 2 diabetes SNPs and CpGs identified in stage 1. Where possible, associations were replicated in independent cohorts of similar age. We discovered that around half of known type 2 diabetes SNPs are associated with variation in DNA methylation and postulated that methylation could either be on a causal pathway to future disease or could be a noncausal biomarker. For one locus ( KCNQ1 ), we were able to provide further evidence that methylation is likely to be on the causal pathway to disease in later life. © 2017 by the American Diabetes Association.

  14. Epigenetic changes in neurology: DNA methylation in multiple sclerosis.

    Science.gov (United States)

    Iridoy Zulet, M; Pulido Fontes, L; Ayuso Blanco, T; Lacruz Bescos, F; Mendioroz Iriarte, M

    2017-09-01

    Epigenetics is defined as the study of the mechanisms that regulate gene expression without altering the underlying DNA sequence. The best known is DNA methylation. Multiple Sclerosis (MS) is a disease with no entirely known etiology, in which it is stated that the involvement of environmental factors on people with a genetic predisposition, may be key to the development of the disease. It is at this intersection between genetic predisposition and environmental factors where DNA methylation may play a pathogenic role. A literature review of the effects of environmental risk factors for the development of MS can have on the different epigenetic mechanisms as well as the implication that such changes have on the development of the disease. Knowledge of epigenetic modifications involved in the pathogenesis of MS, opens a new avenue of research for identification of potential biomarkers, as well as finding new therapeutic targets. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Aberrant DNA methylation patterns of spermatozoa in men with unexplained infertility.

    Science.gov (United States)

    Urdinguio, Rocío G; Bayón, Gustavo F; Dmitrijeva, Marija; Toraño, Estela G; Bravo, Cristina; Fraga, Mario F; Bassas, Lluís; Larriba, Sara; Fernández, Agustín F

    2015-05-01

    Are there DNA methylation alterations in sperm that could explain the reduced biological fertility of male partners from couples with unexplained infertility? DNA methylation patterns, not only at specific loci but also at Alu Yb8 repetitive sequences, are altered in infertile individuals compared with fertile controls. Aberrant DNA methylation of sperm has been associated with human male infertility in patients demonstrating either deficiencies in the process of spermatogenesis or low semen quality. Case and control prospective study. This study compares 46 sperm samples obtained from 17 normospermic fertile men and 29 normospermic infertile patients. Illumina Infinium HD Human Methylation 450K arrays were used to identify genomic regions showing differences in sperm DNA methylation patterns between five fertile and seven infertile individuals. Additionally, global DNA methylation of sperm was measured using the Methylamp Global DNA Methylation Quantification Ultra kit (Epigentek) in 14 samples, and DNA methylation at several repetitive sequences (LINE-1, Alu Yb8, NBL2, D4Z4) measured by bisulfite pyrosequencing in 44 sperm samples. A sperm-specific DNA methylation pattern was obtained by comparing the sperm methylomes with the DNA methylomes of differentiated somatic cells using data obtained from methylation arrays (Illumina 450 K) of blood, neural and glial cells deposited in public databases. In this study we conduct, for the first time, a genome-wide study to identify alterations of sperm DNA methylation in individuals with unexplained infertility that may account for the differences in their biological fertility compared with fertile individuals. We have identified 2752 CpGs showing aberrant DNA methylation patterns, and more importantly, these differentially methylated CpGs were significantly associated with CpG sites which are specifically methylated in sperm when compared with somatic cells. We also found statistically significant (P infertile men could

  16. Effects of DNA methylation inhibitors and conventional antidepressants on mice behaviour and brain DNA methylation levels.

    Science.gov (United States)

    Sales, Amanda Juliana; Joca, Sâmia Regiane Lourenço

    2016-02-01

    Stress increases DNA methylation and decreases the expression of genes involved in neural plasticity, while treatment with DNA methyltransferase inhibitors (DNMTi) increases gene expression and induces antidepressant-like effects in preclinical models. Therefore, the aim of the present work was to further investigate the potential antidepressant-like effect induced by DNMTi by evaluating the behavioural effects induced by associating DNMTi treatment with conventional antidepressant drugs in mice submitted to the forced swimming test (FST). In addition, brain levels of DNA methylation were also investigated. Mice received systemic injections of 5-aza-2'-deoxycytidine (5-AzaD, 0.1, 0.2 mg/kg), RG108 (0.1, 0.2, 0.4 mg/kg), desipramine (DES, 2.5, 5, 10 mg/kg) or fluoxetine (FLX, 5, 10, 20, 30 mg/kg) and were submitted to the FST or to the open field test (OFT). Additional groups received a combination of subeffective doses of 5-AzaD or RG108 (DNMTi) with subeffective doses of DES or FLX (antidepressants). Subeffective doses of RG108 (0.1 mg/kg) or 5-AzaD (0.1 mg/kg) in association with subeffective doses of DES (2.5 mg/kg) or FLX (10 mg/kg) induced significant antidepressant-like effects. Effective doses of RG108 (0.2 mg/kg), 5-AzaD (0.2 mg/kg), DES (10 mg/kg) and FLX (20 mg/kg) atenuated stress-induced changes in DNA methylation levels in the hippocampus and prefrontal cortex. None of the treatments induced locomotor effects in the OFT. These results suggest that DNMTi potentiate the behavioural effects of antidepressant drugs in the FST and that antidepressants, as well as DNMTi, are able to modulate stress-induced changes in DNA methylation in brain regions closely associated with the neurobiology of depression.

  17. Ageing, chronic alcohol consumption and folate are determinants of genomic DNA methylation, p16 promoter methylation and the expression of p16 in the mouse colon

    Science.gov (United States)

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  18. Aging and chronic alcohol consumption are determinants of p16 gene expression, genomic DNA methylation and p16 promoter methylation in the mouse colon

    Science.gov (United States)

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  19. Methylation of cell-free circulating DNA in the diagnosis of cancer

    Directory of Open Access Journals (Sweden)

    Goli eSamimi

    2015-04-01

    Full Text Available A range of molecular alterations found in tumor cells, such as DNA mutations and methylation changes, is also reflected in cell-free circulating DNA (circDNA released from the tumor into the blood, thereby making circDNA an ideal candidate for the basis of a blood-based cancer diagnosis test. In many cancer types, mutations driving tumor development and progression are present in a wide range of oncogenes and tumor suppressor genes. However, even when a gene is consistently mutated in a particular cancer, the mutations can be spread over very large regions of its sequence, making evaluation difficult. This diversity of sequence changes in tumor DNA presents a challenge for the development of blood tests based on DNA mutations for cancer diagnosis. DNA methylation is a common molecular alteration found in many cancer types. Unlike DNA mutations, DNA methylation that can be consistently measured, as it tends to occur in specific regions of the DNA called CpG islands. DNA methylation is reflected within circDNA and therefore detection of tumor-specific DNA methylation in patient plasma is a feasible approach for the development of a blood-based test. Aberrant circDNA methylation has been described in most cancer types and is actively being investigated for clinical applications. A commercial blood test for colorectal cancer based on the methylation of the SEPT9 promoter region in circDNA is under review for approval by the Federal Drug Administration (FDA for clinical use. In this paper, we review the state of research in circDNA methylation as an application for blood-based diagnostic tests in colorectal, breast, lung, pancreatic and ovarian cancers, and we consider some of the future directions and challenges in this field. There are a number of potential circDNA biomarkers currently under investigation, and experience with SEPT9 shows that the time to clinical translation can be relatively rapid, supporting the promise of circDNA as a biomarker.

  20. Changes in DNA methylation levels during seed development in ...

    Indian Academy of Sciences (India)

    User

    1. ONLINE RESOURCES. Changes in DNA methylation levels during seed development in. Jatropha curcas. Short title: DNA methylation in Jatrophacurcas. Authors:Pratima Pandey1,Anoop Anand Malik1,Kamlesh Kumar2, Madan Singh Negi2and. Shashi Bhushan Tripathi12*. Affiliations: 1. TERI University, 10 Institutional ...

  1. Changes of host DNA methylation in domestic chickens infected with ...

    Indian Academy of Sciences (India)

    Cytosine methylation is an effectiveway to modulate gene transcription.However, very little is knownabout the epigenetic changes in the host that is infected with Salmonella enterica. In this study, we usedmethylatedDNA immunoprecipitation sequencing to analyse the genomewide DNA methylation changes in domestic ...

  2. Aberrant DNA methylation associated with Alzheimer's disease in the superior temporal gyrus.

    Science.gov (United States)

    Gao, Zhan; Fu, Hong-Juan; Zhao, Li-Bo; Sun, Zhuo-Yan; Yang, Yu-Fei; Zhu, Hong-Yan

    2018-01-01

    Abnormal DNA methylation patterns have been demonstrated to be associated with the pathogenesis of Alzheimer's disease (AD). The present study aimed to identify differential methylation in the superior temporal gyrus (STG) of patients with late-onset AD based on epigenome-wide DNA methylation data by bioinformatics analysis. The genome-wide DNA methylation data in the STG region of 34 patients with late-onset AD and 34 controls without dementia were recruited from the Gene Expression Omnibus database. Through systemic quality control, differentially methylated CpG sites were determined by the Student's t-test and mean methylation value differences between the two conditions. Hierarchical clustering analysis was applied to assess the classification performance of differentially methylated CpGs. Functional analysis was performed to investigate the biological functions of the genes associated with differentially methylated CpGs. A total of 17,895 differentially methylated CpG sites were initially identified, including 11,822 hypermethylated CpGs and 6,073 hypomethylated CpGs. Further analysis examined 2,211 differentially methylated CpGs (covering 1,991 genes). AD subjects demonstrated distinctive DNA methylation patterns when compared with the controls, with a classification accuracy value of 1. Hypermethylation was mainly detected for genes regulating the cell cycle progression, whereas hypomethylation was observed in genes involved in transcription factor binding. The present study demonstrated widespread and distinctive DNA methylation alterations in late-onset AD. Identification of AD-associated epigenetic biomarkers may allow for the development of novel diagnostic and therapeutic targets.

  3. Phosphate-methylated DNA aimed at HIV-1 RNA loops and integrated DNA inhibits viral infectivity

    NARCIS (Netherlands)

    Buck, H. M.; Koole, L. H.; van Genderen, M. H.; Smit, L.; Geelen, J. L.; Jurriaans, S.; Goudsmit, J.

    1990-01-01

    Phosphate-methylated DNA hybridizes strongly and specifically to natural DNA and RNA. Hybridization to single-stranded and double-stranded DNA leads to site-selective blocking of replication and transcription. Phosphate-methylated DNA was used to interrupt the life cycle of the human

  4. DNA methylation dynamics in muscle development and disease

    Directory of Open Access Journals (Sweden)

    Elvira eCarrio

    2015-03-01

    Full Text Available DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts revealing a more dynamic regulation than originally thought, since active DNA methylation and demethylation occur during cellular differentiation and tissue specification. Satellite cells are the primary stem cells in adult skeletal muscle and are responsible for postnatal muscle growth, hypertrophy, and muscle regeneration. This review outlines the published data regarding DNA methylation changes along the skeletal muscle program, in both physiological and pathological conditions, to better understand the epigenetic mechanisms that control myogenesis

  5. A DNA methylation fingerprint of 1628 human samples

    Science.gov (United States)

    Fernandez, Agustin F.; Assenov, Yassen; Martin-Subero, Jose Ignacio; Balint, Balazs; Siebert, Reiner; Taniguchi, Hiroaki; Yamamoto, Hiroyuki; Hidalgo, Manuel; Tan, Aik-Choon; Galm, Oliver; Ferrer, Isidre; Sanchez-Cespedes, Montse; Villanueva, Alberto; Carmona, Javier; Sanchez-Mut, Jose V.; Berdasco, Maria; Moreno, Victor; Capella, Gabriel; Monk, David; Ballestar, Esteban; Ropero, Santiago; Martinez, Ramon; Sanchez-Carbayo, Marta; Prosper, Felipe; Agirre, Xabier; Fraga, Mario F.; Graña, Osvaldo; Perez-Jurado, Luis; Mora, Jaume; Puig, Susana; Prat, Jaime; Badimon, Lina; Puca, Annibale A.; Meltzer, Stephen J.; Lengauer, Thomas; Bridgewater, John; Bock, Christoph; Esteller, Manel

    2012-01-01

    Most of the studies characterizing DNA methylation patterns have been restricted to particular genomic loci in a limited number of human samples and pathological conditions. Herein, we present a compromise between an extremely comprehensive study of a human sample population with an intermediate level of resolution of CpGs at the genomic level. We obtained a DNA methylation fingerprint of 1628 human samples in which we interrogated 1505 CpG sites. The DNA methylation patterns revealed show this epigenetic mark to be critical in tissue-type definition and stemness, particularly around transcription start sites that are not within a CpG island. For disease, the generated DNA methylation fingerprints show that, during tumorigenesis, human cancer cells underwent a progressive gain of promoter CpG-island hypermethylation and a loss of CpG methylation in non-CpG-island promoters. Although transformed cells are those in which DNA methylation disruption is more obvious, we observed that other common human diseases, such as neurological and autoimmune disorders, had their own distinct DNA methylation profiles. Most importantly, we provide proof of principle that the DNA methylation fingerprints obtained might be useful for translational purposes by showing that we are able to identify the tumor type origin of cancers of unknown primary origin (CUPs). Thus, the DNA methylation patterns identified across the largest spectrum of samples, tissues, and diseases reported to date constitute a baseline for developing higher-resolution DNA methylation maps and provide important clues concerning the contribution of CpG methylation to tissue identity and its changes in the most prevalent human diseases. PMID:21613409

  6. DNA methylation-based variation between human populations.

    Science.gov (United States)

    Kader, Farzeen; Ghai, Meenu

    2017-02-01

    Several studies have proved that DNA methylation affects regulation of gene expression and development. Epigenome-wide studies have reported variation in methylation patterns between populations, including Caucasians, non-Caucasians (Blacks), Hispanics, Arabs, and numerous populations of the African continent. Not only has DNA methylation differences shown to impact externally visible characteristics, but is also a potential biomarker for underlying racial health disparities between human populations. Ethnicity-related methylation differences set their mark during early embryonic development. Genetic variations, such as single-nucleotide polymorphisms and environmental factors, such as age, dietary folate, socioeconomic status, and smoking, impacts DNA methylation levels, which reciprocally impacts expression of phenotypes. Studies show that it is necessary to address these external influences when attempting to differentiate between populations since the relative impacts of these factors on the human methylome remain uncertain. The present review summarises several reported attempts to establish the contribution of differential DNA methylation to natural human variation, and shows that DNA methylation could represent new opportunities for risk stratification and prevention of several diseases amongst populations world-wide. Variation of methylation patterns between human populations is an exciting prospect which inspires further valuable research to apply the concept in routine medical and forensic casework. However, trans-generational inheritance needs to be quantified to decipher the proportion of variation contributed by DNA methylation. The future holds thorough evaluation of the epigenome to understand quantification, heritability, and the effect of DNA methylation on phenotypes. In addition, methylation profiling of the same ethnic groups across geographical locations will shed light on conserved methylation differences in populations.

  7. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liou, Saou-Hsing; Wu, Wei-Te; Liao, Hui-Yi [National Institute of Environmental Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China); Chen, Chao-Yu; Tsai, Cheng-Yen; Jung, Wei-Ting [Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan (China); Lee, Hui-Ling, E-mail: huilinglee3573@gmail.com [Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan (China)

    2017-06-05

    Highlights: • Global methylation and oxidative DNA damage levels in nanomaterial handling workers were assessed. • 8-isoprostane in exhaled breath condensate of workers exposed to nanoparticles was higher. • 8-OHdG was negatively correlated with global methylation. • Exposure to metal oxide nanoparticles may lead to global methylation and DNA oxidative damage. - Abstract: This is the first study to assess global methylation, oxidative DNA damage, and lipid peroxidation in workers with occupational exposure to metal oxide nanomaterials (NMs). Urinary and white blood cell (WBC) 8-hydroxydeoxyguanosine (8-OHdG), and exhaled breath condensate (EBC) 8-isoprostane were measured as oxidative stress biomarkers. WBC global methylation was measured as an epigenetic alteration. Exposure to TiO{sub 2}, SiO{sub 2,} and indium tin oxide (ITO) resulted in significantly higher oxidative biomarkers such as urinary 8-OHdG and EBC 8-isoprostane. However, significantly higher WBC 8-OHdG and lower global methylation were only observed in ITO handling workers. Significant positive correlations were noted between WBC and urinary 8-OHdG (Spearman correlation r = 0.256, p = 0.003). Furthermore, a significant negative correlation was found between WBC 8-OHdG and global methylation (r = −0.272, p = 0.002). These results suggest that exposure to metal oxide NMs may lead to global methylation, DNA oxidative damage, and lipid peroxidation.

  8. Maintenance and regulation of DNA methylation patterns in mammals.

    Science.gov (United States)

    Chen, Zhao-xia; Riggs, Arthur D

    2005-08-01

    Proper establishment and faithful maintenance of epigenetic information is crucial for the correct development of complex organisms. For mammals, it is now accepted that DNA methylation is an important mechanism for establishing stable heritable epigenetic marks. The distribution of methylation in the genome is not random, and patterns of methylated and unmethylated DNA are well regulated during normal development. The molecular mechanisms by which methylation patterns are established and maintained are complex and just beginning to be understood. In this review, we summarize recent progress in understanding the regulation of mammalian DNA methylation patterns, with an emphasis on the emerging roles of several protein and possible RNA factors. We also revisit the stochastic model of maintenance methylation and discuss its implications for epigenetic fidelity and gene regulation.

  9. DNA Methylation Patterns in the Hypothalamus of Female Pubertal Goats.

    Science.gov (United States)

    Yang, Chen; Ye, Jing; Li, Xiumei; Gao, Xiaoxiao; Zhang, Kaifa; Luo, Lei; Ding, Jianping; Zhang, Yunhai; Li, Yunsheng; Cao, Hongguo; Ling, Yinghui; Zhang, Xiaorong; Liu, Ya; Fang, Fugui

    2016-01-01

    Female pubertal development is tightly controlled by complex mechanisms, including neuroendocrine and epigenetic regulatory pathways. Specific gene expression patterns can be influenced by DNA methylation changes in the hypothalamus, which can in turn regulate timing of puberty onset. In order to understand the relationship between DNA methylation changes and gene expression patterns in the hypothalamus of pubertal goats, whole-genome bisulfite sequencing and RNA-sequencing analyses were carried out. There was a decline in DNA methylation levels in the hypothalamus during puberty and 268 differentially methylated regions (DMR) in the genome, with differential patterns in different gene regions. There were 1049 genes identified with distinct expression patterns. High levels of DNA methylation were detected in promoters, introns and 3'-untranslated regions (UTRs). Levels of methylation decreased gradually from promoters to 5'-UTRs and increased from 5'-UTRs to introns. Methylation density analysis demonstrated that methylation level variation was consistent with the density in the promoter, exon, intron, 5'-UTRs and 3'-UTRs. Analyses of CpG island (CGI) sites showed that the enriched gene contents were gene bodies, intergenic regions and introns, and these CGI sites were hypermethylated. Our study demonstrated that DNA methylation changes may influence gene expression profiles in the hypothalamus of goats during the onset of puberty, which may provide new insights into the mechanisms involved in pubertal onset.

  10. DNA methylation profiling of human chromosomes 6, 20 and 22

    Science.gov (United States)

    Eckhardt, Florian; Lewin, Joern; Cortese, Rene; Rakyan, Vardhman K.; Attwood, John; Burger, Matthias; Burton, John; Cox, Tony V.; Davies, Rob; Down, Thomas A.; Haefliger, Carolina; Horton, Roger; Howe, Kevin; Jackson, David K.; Kunde, Jan; Koenig, Christoph; Liddle, Jennifer; Niblett, David; Otto, Thomas; Pettett, Roger; Seemann, Stefanie; Thompson, Christian; West, Tony; Rogers, Jane; Olek, Alex; Berlin, Kurt; Beck, Stephan

    2011-01-01

    DNA methylation constitutes the most stable type of epigenetic modifications modulating the transcriptional plasticity of mammalian genomes. Using bisulfite DNA sequencing, we report high-resolution methylation reference profiles of human chromosomes 6, 20 and 22, providing a resource of about 1.9 million CpG methylation values derived from 12 different tissues. Analysis of 6 annotation categories, revealed evolutionary conserved regions to be the predominant sites for differential DNA methylation and a core region surrounding the transcriptional start site as informative surrogate for promoter methylation. We find 17% of the 873 analyzed genes differentially methylated in their 5′-untranslated regions (5′-UTR) and about one third of the differentially methylated 5′-UTRs to be inversely correlated with transcription. While our study was controlled for factors reported to affect DNA methylation such as sex and age, we did not find any significant attributable effects. Our data suggest DNA methylation to be ontogenetically more stable than previously thought. PMID:17072317

  11. A genome-scale DNA methylation study in women with interstitial cystitis/bladder pain syndrome.

    Science.gov (United States)

    Bradley, Megan S; Burke, Emily E; Grenier, Carole; Amundsen, Cindy L; Murphy, Susan K; Siddiqui, Nazema Y

    2018-01-24

    To assess the feasibility of using voided urine samples to perform a DNA methylation study in females with interstitial cystitis/bladder pain syndrome (IC/BPS) as compared to age- and race-matched controls. A unique methylation profile could lead to a non-invasive, reproducible, and objective biomarker that would aid clinicians in the diagnosis of IC/BPS. Nineteen IC/BPS patients and 17 controls were included. IC/BPS patients had an Interstitial Cystitis Symptom Index score of >8; controls had no bladder symptoms. DNA was extracted from pelleted urine sediment. Samples with >500 ng of genomic DNA underwent quantitative DNA methylation assessment using the Illumina Infinium MethylationEPIC BeadChip. Age- and race-matching was applied prior to analysis. Linear regression models were used to compare average methylation between IC/BPS cases and controls at each cytosine guanine dinucleotide site (loci where methylation can occur). Sixteen participants (eight IC/BPS age- and race-matched to eight controls) had adequate DNA for methylation analysis. The median age was 43.5 years (interquartile range 33.8, 65.0), the median BMI was 27.1 (IQR 22.7, 31.4), and 14 were Caucasian (87.5%). A total of 688 417 CpG sites were analyzed. In exploratory pathway analysis utilizing the top 1000 differentially methylated CpG sites, the mitogen-activated protein kinase (MAPK) pathway was overrepresented by member genes. The results demonstrate the feasibility of using voided urine specimens from women with IC/BPS to perform DNA methylation assessments. Additionally, the data suggest genes within or downstream of the MAPK pathway exhibit altered methylation in IC/BPS. © 2018 Wiley Periodicals, Inc.

  12. The altered promoter methylation of oxytocin receptor gene in autism.

    Science.gov (United States)

    Elagoz Yuksel, Mine; Yuceturk, Betul; Karatas, Omer Faruk; Ozen, Mustafa; Dogangun, Burak

    Autism spectrum disorder (ASD) is one of the lifelong existing disorders. Abnormal methylation status of gene promoters of oxytonergic system has been implicated as among the etiologic factors of ASDs. We, therefore, investigated the methylation frequency of oxytocin receptor gene (OXTR) promoter from peripheral blood samples of children with autistic features. Our sample includes 66 children in total (22-94 months); 27 children with ASDs according to the DSM-IV-TR and the Childhood Autism Rating Scale (CARS) and 39 children who do not have any autistic like symptoms as the healthy control group. We investigated the DNA methylation status of OXTR promoter by methylation specific enzymatic digestion of genomic DNA and polymerase chain reaction. A significant relationship has been found between ASDs and healthy controls for the reduction of methylation frequency of the regions MT1 and MT3 of OXTR. We could not find any association in the methylation frequency of MT2 and MT4 regions of OXTR. Although our findings indicate high frequency of OXTR promoter hypomethylation in ASDs, there is need for independent replication of the results for a bigger sample set. We expect that future studies with the inclusion of larger, more homogeneous samples will attempt to disentangle the causes of ASDs.

  13. [Participation of methylcobalamin in the methylation of Propionibacterium shermanii DNA].

    Science.gov (United States)

    Antoshkina, N V; Vorob'eva, L I; Iordan, E P

    1979-01-01

    Propionibacterium shermanii is characterized by a high content of 5-methylcytosine (5 MC). The level of 5-MC in B12-deficient cells of the culture is twice as low as in the control. The in vitro treatment of DNA isolated from the B12-deficient cells with methyl-cobalamin in the presence of the extract of control cells possessing the activity of DNA-methylase increases the content of 5-MC to the control level. No additional methylation of DNA in vitro takes place in the absence of the methylase system and in the presence of other forms of corrynoids. The methylating activity is displayed either in the presence of methionine or without it. The inhibitor of methylcobalamin, i.e. diftorchlormethyl-cobalamin, blocks methylation of DNA. Small quantities of S-adenosylmethionine are necessary for the reaction of methylation.

  14. Reelin (RELN) DNA methylation in the peripheral blood of schizophrenia.

    Science.gov (United States)

    Nabil Fikri, Rahim Mohd; Norlelawati, A Talib; Nour El-Huda, Abdul Rahim; Hanisah, Mohd Noor; Kartini, Abdullah; Norsidah, Kuzaifah; Nor Zamzila, Abdullah

    2017-05-01

    The epigenetic changes of RELN that are involved in the development of dopaminergic neurons may fit the developmental theory of schizophrenia. However, evidence regarding the association of RELN DNA methylation with schizophrenia is far from sufficient, as studies have only been conducted on a few limited brain samples. As DNA methylation in the peripheral blood may mirror the changes taking place in the brain, the use of peripheral blood for a DNA methylation study in schizophrenia is feasible due to the scarcity of brain samples. Therefore, the aim of our study was to examine the relationship of DNA methylation levels of RELN promoters with schizophrenia using genomic DNA derived from the peripheral blood of patients with the disorder. The case control studies consisted of 110 schizophrenia participants and 122 healthy controls who had been recruited from the same district. After bisufhite conversion, the methylation levels of the DNA samples were calculated based on their differences of the Cq values assayed using the highly sensitive real-time MethyLight TaqMan ® procedure. A significantly higher level of methylation of the RELN promoter was found in patients with schizophrenia compared to controls (p = 0.005) and also in males compared with females (p = 0.004). Subsequently, the RELN expression of the methylated group was 25 fold less than that of the non-methylated group. Based upon the assumption of parallel methylation changes in the brain and peripheral blood, we concluded that RELN DNA methylation might contribute to the pathogenesis of schizophrenia. However, the definite effects of methylation on RELN function during development and also in adult life still require further elaboration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm.

    Directory of Open Access Journals (Sweden)

    Sahar Houshdaran

    2007-12-01

    Full Text Available Male-factor infertility is a common condition, and etiology is unknown for a high proportion of cases. Abnormal epigenetic programming of the germline is proposed as a possible mechanism compromising spermatogenesis of some men currently diagnosed with idiopathic infertility. During germ cell maturation and gametogenesis, cells of the germ line undergo extensive epigenetic reprogramming. This process involves widespread erasure of somatic-like patterns of DNA methylation followed by establishment of sex-specific patterns by de novo DNA methylation. Incomplete reprogramming of the male germ line could, in theory, result in both altered sperm DNA methylation and compromised spermatogenesis.We determined concentration, motility and morphology of sperm in semen samples collected by male members of couples attending an infertility clinic. Using MethyLight and Illumina assays we measured methylation of DNA isolated from purified sperm from the same samples. Methylation at numerous sequences was elevated in DNA from poor quality sperm.This is the first report of a broad epigenetic defect associated with abnormal semen parameters. Our results suggest that the underlying mechanism for these epigenetic changes may be improper erasure of DNA methylation during epigenetic reprogramming of the male germ line.

  16. The impact of endurance exercise on global and AMPK gene-specific DNA methylation

    Energy Technology Data Exchange (ETDEWEB)

    King-Himmelreich, Tanya S.; Schramm, Stefanie; Wolters, Miriam C.; Schmetzer, Julia; Möser, Christine V.; Knothe, Claudia [pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main (Germany); Resch, Eduard [Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group for Translational Medicine & Pharmacology (TMP), 60596, Frankfurt/Main (Germany); Peil, Johannes [Sports Clinic, Bad Nauheim, MCI GmbH, In der Aue 30-32, 61231, Bad Nauheim (Germany); Geisslinger, Gerd [pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main (Germany); Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Project Group for Translational Medicine & Pharmacology (TMP), 60596, Frankfurt/Main (Germany); Niederberger, Ellen, E-mail: e.niederberger@em.uni-frankfurt.de [pharmazentrum frankfurt/ZAFES, Institut für Klinische Pharmakologie, Klinikum der Goethe-Universität Frankfurt, Theodor Stern Kai 7, 60590, Frankfurt am Main (Germany)

    2016-05-27

    Alterations in gene expression as a consequence of physical exercise are frequently described. The mechanism of these regulations might depend on epigenetic changes in global or gene-specific DNA methylation levels. The AMP-activated protein kinase (AMPK) plays a key role in maintenance of energy homeostasis and is activated by increases in the AMP/ATP ratio as occurring in skeletal muscles after sporting activity. To analyze whether exercise has an impact on the methylation status of the AMPK promoter, we determined the AMPK methylation status in human blood samples from patients before and after sporting activity in the context of rehabilitation as well as in skeletal muscles of trained and untrained mice. Further, we examined long interspersed nuclear element 1 (LINE-1) as indicator of global DNA methylation changes. Our results revealed that light sporting activity in mice and humans does not alter global DNA methylation but has an effect on methylation of specific CpG sites in the AMPKα2 gene. These regulations were associated with a reduced AMPKα2 mRNA and protein expression in muscle tissue, pointing at a contribution of the methylation status to AMPK expression. Taken together, these results suggest that exercise influences AMPKα2 gene methylation in human blood and eminently in the skeletal muscle of mice and therefore might repress AMPKα2 gene expression. -- Highlights: •AMPK gene methylation increases after moderate endurance exercise in humans and mice. •AMPKα mRNA and protein decrease after moderate endurance exercise in mice. •Global DNA methylation is not affected under the same conditions.

  17. The impact of endurance exercise on global and AMPK gene-specific DNA methylation

    International Nuclear Information System (INIS)

    King-Himmelreich, Tanya S.; Schramm, Stefanie; Wolters, Miriam C.; Schmetzer, Julia; Möser, Christine V.; Knothe, Claudia; Resch, Eduard; Peil, Johannes; Geisslinger, Gerd; Niederberger, Ellen

    2016-01-01

    Alterations in gene expression as a consequence of physical exercise are frequently described. The mechanism of these regulations might depend on epigenetic changes in global or gene-specific DNA methylation levels. The AMP-activated protein kinase (AMPK) plays a key role in maintenance of energy homeostasis and is activated by increases in the AMP/ATP ratio as occurring in skeletal muscles after sporting activity. To analyze whether exercise has an impact on the methylation status of the AMPK promoter, we determined the AMPK methylation status in human blood samples from patients before and after sporting activity in the context of rehabilitation as well as in skeletal muscles of trained and untrained mice. Further, we examined long interspersed nuclear element 1 (LINE-1) as indicator of global DNA methylation changes. Our results revealed that light sporting activity in mice and humans does not alter global DNA methylation but has an effect on methylation of specific CpG sites in the AMPKα2 gene. These regulations were associated with a reduced AMPKα2 mRNA and protein expression in muscle tissue, pointing at a contribution of the methylation status to AMPK expression. Taken together, these results suggest that exercise influences AMPKα2 gene methylation in human blood and eminently in the skeletal muscle of mice and therefore might repress AMPKα2 gene expression. -- Highlights: •AMPK gene methylation increases after moderate endurance exercise in humans and mice. •AMPKα mRNA and protein decrease after moderate endurance exercise in mice. •Global DNA methylation is not affected under the same conditions.

  18. DNA methylation in a Scottish family multiply affected by bipolar disorder and major depressive disorder.

    Science.gov (United States)

    Walker, Rosie May; Christoforou, Andrea Nikie; McCartney, Daniel L; Morris, Stewart W; Kennedy, Nicholas A; Morten, Peter; Anderson, Susan Maguire; Torrance, Helen Scott; Macdonald, Alix; Sussmann, Jessika Elizabeth; Whalley, Heather Clare; Blackwood, Douglas H R; McIntosh, Andrew Mark; Porteous, David John; Evans, Kathryn Louise

    2016-01-01

    Bipolar disorder (BD) is a severe, familial psychiatric condition. Progress in understanding the aetiology of BD has been hampered by substantial phenotypic and genetic heterogeneity. We sought to mitigate these confounders by studying a multi-generational family multiply affected by BD and major depressive disorder (MDD), who carry an illness-linked haplotype on chromosome 4p. Within a family, aetiological heterogeneity is likely to be reduced, thus conferring greater power to detect illness-related changes. As accumulating evidence suggests that altered DNA methylation confers risk for BD and MDD, we compared genome-wide methylation between (i) affected carriers of the linked haplotype (ALH) and married-in controls (MIs), (ii) well unaffected haplotype carriers (ULH) and MI, (iii) ALH and ULH and (iv) all haplotype carriers (LH) and MI. Nominally significant differences in DNA methylation were observed in all comparisons, with differences withstanding correction for multiple testing when the ALH or LH group was compared to the MIs. In both comparisons, we observed increased methylation at a locus in FANCI, which was accompanied by increased FANCI expression in the ALH group. FANCI is part of the Fanconi anaemia complementation (FANC) gene family, which are mutated in Fanconi anaemia and participate in DNA repair. Interestingly, several FANC genes have been implicated in psychiatric disorders. Regional analyses of methylation differences identified loci implicated in psychiatric illness by genome-wide association studies, including CACNB2 and the major histocompatibility complex. Gene ontology analysis revealed enrichment for methylation differences in neurologically relevant genes. Our results highlight altered DNA methylation as a potential mechanism by which the linked haplotype might confer risk for mood disorders. Differences in the phenotypic outcome of haplotype carriers might, in part, arise from additional changes in DNA methylation that converge on

  19. Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin

    DEFF Research Database (Denmark)

    Tariq, M.; Saze, H.; Probst, A.

    2003-01-01

    In mammals and plants, formation of heterochromatin is associated with hypermethylation of DNA at CpG sites and histone H3 methylation at lysine 9. Previous studies have revealed that maintenance of DNA methylation in Neurospora and Arabidopsis requires histone H3 methylation. A feedback loop from...

  20. Mitochondrial polymerase gamma dysfunction and aging cause cardiac nuclear DNA methylation changes.

    Science.gov (United States)

    Koczor, Christopher A; Ludlow, Ivan; Fields, Earl; Jiao, Zhe; Ludaway, Tomika; Russ, Rodney; Lewis, William

    2016-04-01

    Cardiomyopathy (CM) is an intrinsic weakening of myocardium with contractile dysfunction and congestive heart failure (CHF). CHF has been postulated to result from decreased mitochondrial energy production and oxidative stress. Effects of decreased mitochondrial oxygen consumption also can accelerate with aging. We previously showed DNA methylation changes in human hearts with CM. This was associated with mitochondrial DNA depletion, being another molecular marker of CM. We examined the relationship between mitochondrial dysfunction and cardiac epigenetic DNA methylation changes in both young and old mice. We used genetically engineered C57Bl/6 mice transgenic for a cardiac-specific mutant of the mitochondrial polymerase-γ (termed Y955C). Y955C mice undergo left ventricular hypertrophy (LVH) at a young age (∼ 94 days old), and LVH decompensated to CHF at old age (∼ 255 days old). Results found 95 genes differentially expressed as a result of Y955C expression, while 4,452 genes were differentially expressed as a result of aging hearts. Moreover, cardiac DNA methylation patterns differed between Y955C (4,506 peaks with 68.5% hypomethylation) and aged hearts (73,286 peaks with 80.2% hypomethylated). Correlatively, of the 95 Y955C-dependent differentially expressed genes, 30 genes (31.6%) also displayed differential DNA methylation; in the 4,452 age-dependent differentially expressed genes, 342 genes (7.7%) displayed associated DNA methylation changes. Both Y955C and aging demonstrated significant enrichment of CACGTG-associated E-box motifs in differentially methylated regions. Cardiac mitochondrial polymerase dysfunction alters nuclear DNA methylation. Furthermore, aging causes a robust change in cardiac DNA methylation that is partially associated with mitochondrial polymerase dysfunction. Copyright © 2016 the American Physiological Society.

  1. Dynamics of DNA methylation in recent human and great ape evolution.

    Directory of Open Access Journals (Sweden)

    Irene Hernando-Herraez

    Full Text Available DNA methylation is an epigenetic modification involved in regulatory processes such as cell differentiation during development, X-chromosome inactivation, genomic imprinting and susceptibility to complex disease. However, the dynamics of DNA methylation changes between humans and their closest relatives are still poorly understood. We performed a comparative analysis of CpG methylation patterns between 9 humans and 23 primate samples including all species of great apes (chimpanzee, bonobo, gorilla and orangutan using Illumina Methylation450 bead arrays. Our analysis identified ∼800 genes with significantly altered methylation patterns among the great apes, including ∼170 genes with a methylation pattern unique to human. Some of these are known to be involved in developmental and neurological features, suggesting that epigenetic changes have been frequent during recent human and primate evolution. We identified a significant positive relationship between the rate of coding variation and alterations of methylation at the promoter level, indicative of co-occurrence between evolution of protein sequence and gene regulation. In contrast, and supporting the idea that many phenotypic differences between humans and great apes are not due to amino acid differences, our analysis also identified 184 genes that are perfectly conserved at protein level between human and chimpanzee, yet show significant epigenetic differences between these two species. We conclude that epigenetic alterations are an important force during primate evolution and have been under-explored in evolutionary comparative genomics.

  2. Feedback regulation of DNA methyltransferase gene expression by methylation.

    Science.gov (United States)

    Slack, A; Cervoni, N; Pinard, M; Szyf, M

    1999-08-01

    This paper tests the hypothesis that expression of the DNA methyltransferase, dnmt1, gene is regulated by a methylation-sensitive DNA element. Methylation of DNA is an attractive system for feedback regulation of DNA methyltransferase as the final product of the reaction, methylated DNA, can regulate gene expression in cis. We show that an AP-1-dependent regulatory element of dnmt1 is heavily methylated in most somatic tissues and in the mouse embryonal cell line, P19, and completely unmethylated in a mouse adrenal carcinoma cell line, Y1. dnmt1 is highly over expressed in Y1 relative to P19 cell lines. Global inhibition of DNA methylation in P19 cells by 5-azadeoxycytidine results in demethylation of the AP-1 regulatory region and induction of dnmt1 expression in P19cells, but not Y1 cells. We propose that this regulatory region of dnmt1 acts as a sensor of the DNA methylation capacity of the cell. These results provide an explanation for the documented coexistence of global hypomethylation and high levels of DNA methyltransferase activity in many cancer cells and for the carcinogenic effect of hypomethylating diets.

  3. Overexpression of Human-Derived DNMT3A Induced Intergenerational Inheritance of Active DNA Methylation Changes in Rat Sperm

    Directory of Open Access Journals (Sweden)

    Xiaoguo Zheng

    2017-12-01

    Full Text Available DNA methylation is the major focus of studies on paternal epigenetic inheritance in mammals, but most previous studies about inheritable DNA methylation changes are passively induced by environmental factors. However, it is unclear whether the active changes mediated by variations in DNA methyltransferase activity are heritable. Here, we established human-derived DNMT3A (hDNMT3A transgenic rats to study the effect of hDNMT3A overexpression on the DNA methylation pattern of rat sperm and to investigate whether this actively altered DNA methylation status is inheritable. Our results revealed that hDNMT3A was overexpressed in the testis of transgenic rats and induced genome-wide alterations in the DNA methylation pattern of rat sperm. Among 5438 reliable loci identified with 64 primer-pair combinations using a methylation-sensitive amplification polymorphism method, 28.01% showed altered amplified band types. Among these amplicons altered loci, 68.42% showed an altered DNA methylation status in the offspring of transgenic rats compared with wild-type rats. Further analysis based on loci which had identical DNA methylation status in all three biological replicates revealed that overexpression of hDNMT3A in paternal testis induced hypermethylation in sperm of both genotype-negative and genotype-positive offspring. Among the differentially methylated loci, 34.26% occurred in both positive and negative offspring of transgenic rats, indicating intergenerational inheritance of active DNA methylation changes in the absence of hDNM3A transmission. Furthermore, 75.07% of the inheritable loci were hyper-methylated while the remaining were hypomethylated. Distribution analysis revealed that the DNA methylation variations mainly occurred in introns and intergenic regions. Functional analysis revealed that genes related to differentially methylated loci were involved in a wide range of functions. Finally, this study demonstrated that active DNA methylation

  4. Epigenetic regulation during fetal femur development: DNA methylation matters.

    Directory of Open Access Journals (Sweden)

    María C de Andrés

    Full Text Available Epigenetic modifications are heritable changes in gene expression without changes in DNA sequence. DNA methylation has been implicated in the control of several cellular processes including differentiation, gene regulation, development, genomic imprinting and X-chromosome inactivation. Methylated cytosine residues at CpG dinucleotides are commonly associated with gene repression; conversely, strategic loss of methylation during development could lead to activation of lineage-specific genes. Evidence is emerging that bone development and growth are programmed; although, interestingly, bone is constantly remodelled throughout life. Using human embryonic stem cells, human fetal bone cells (HFBCs, adult chondrocytes and STRO-1(+ marrow stromal cells from human bone marrow, we have examined a spectrum of developmental stages of femur development and the role of DNA methylation therein. Using pyrosequencing methodology we analysed the status of methylation of genes implicated in bone biology; furthermore, we correlated these methylation levels with gene expression levels using qRT-PCR and protein distribution during fetal development evaluated using immunohistochemistry. We found that during fetal femur development DNA methylation inversely correlates with expression of genes including iNOS (NOS2 and COL9A1, but not catabolic genes including MMP13 and IL1B. Furthermore, significant demethylation was evident in the osteocalcin promoter between the fetal and adult developmental stages. Increased TET1 expression and decreased expression of DNA (cytosine-5--methyltransferase 1 (DNMT1 in adult chondrocytes compared to HFBCs could contribute to the loss of methylation observed during fetal development. HFBC multipotency confirms these cells to be an ideal developmental system for investigation of DNA methylation regulation. In conclusion, these findings demonstrate the role of epigenetic regulation, specifically DNA methylation, in bone development

  5. Modulation of DNA methylation by human papillomavirus E6 and E7 oncoproteins in cervical cancer

    Science.gov (United States)

    Sen, Prakriti; Ganguly, Pooja; Ganguly, Niladri

    2018-01-01

    Human papillomaviruses (HPVs) are double stranded circular DNA viruses that infect cutaneous and mucosal epithelial cells. Almost 99% of cervical cancer has a HPV infection. The early oncoproteins E6 and E7 are important in this cellular transformation process. Epigenetic mechanisms have long been known to result in decisive alterations in DNA, leading to alterations in DNA-protein interactions, alterations in chromatin structure and compaction and significant alterations in gene expression. The enzymes responsible for these epigenetic modifications are DNA methyl transferases (DNMTs), histone acetylases and deacetylases. Epigenetics has an important role in cancer development by modifying the cellular micro environment. In this review, the authors discuss the role of HPV oncoproteins E6 and E7 in modulating the epigenetic mechanisms inside the host cell. The oncoproteins induce the expression of DNMTs which lead to aberrant DNA methylations and disruption of the normal epigenetic processes. The E7 oncoprotein may additionally directly bind and induce methyl transferase activity of the enzyme. These modulations lead to altered gene expression levels, particularly the genes involved in apoptosis, cell cycle and cell adhesion. In addition, the present review discusses how epigenetic mechanisms may be targeted for possible therapeutic interventions for HPV mediated cervical cancer. PMID:29285184

  6. Effects of endocrine disrupting chemicals on in vitro global DNA methylation and adipocyte differentation

    NARCIS (Netherlands)

    Bastos Sales, L.; Kamstra, J.H.; Cenijn, P.H.; van Rijt, L.S.; Hamers, T.; Legler, J.

    2013-01-01

    Recent studies suggest that endocrine disrupting chemicals (EDCs) may form a risk factor for obesity by altering energy metabolism through epigenetic gene regulation. The goal of this study is to investigate the effects of a range of EDCs with putative obesogenic properties on global DNA methylation

  7. Effects of endocrine disrupting chemicals on in vitro global DNA methylation and adipocyte differentiation

    NARCIS (Netherlands)

    Bastos Sales, L.; Kamstra, J. H.; Cenijn, P. H.; van Rijt, L. S.; Hamers, T.; Legler, J.

    2013-01-01

    Recent studies suggest that endocrine disrupting chemicals (EDCs) may form a risk factor for obesity by altering energy metabolism through epigenetic gene regulation. The goal of this study is to investigate the effects of a range of EDCs with putative obesogenic properties on global DNA methylation

  8. META2: Intercellular DNA Methylation Pairwise Annotation and Integrative Analysis

    Directory of Open Access Journals (Sweden)

    Binhua Tang

    2016-01-01

    Full Text Available Genome-wide deciphering intercellular differential DNA methylation as well as its roles in transcriptional regulation remains elusive in cancer epigenetics. Here we developed a toolkit META2 for DNA methylation annotation and analysis, which aims to perform integrative analysis on differentially methylated loci and regions through deep mining and statistical comparison methods. META2 contains multiple versatile functions for investigating and annotating DNA methylation profiles. Benchmarked with T-47D cell, we interrogated the association within differentially methylated CpG (DMC and region (DMR candidate count and region length and identified major transition zones as clues for inferring statistically significant DMRs; together we validated those DMRs with the functional annotation. Thus META2 can provide a comprehensive analysis approach for epigenetic research and clinical study.

  9. DNA methylation at stress-related genes is associated with exposure to early life institutionalization.

    Science.gov (United States)

    Non, Amy L; Hollister, Brittany M; Humphreys, Kathryn L; Childebayeva, Ainash; Esteves, Kyle; Zeanah, Charles H; Fox, Nathan A; Nelson, Charles A; Drury, Stacy S

    2016-09-01

    Differences in DNA methylation have been associated with early life adversity, suggesting that alterations in methylation function as one pathway through which adverse early environments are biologically embedded. This study examined associations between exposure to institutional care, quantified as the proportion of time in institutional care at specified follow-up assessment ages, and DNA methylation status in two stress-related genes: FKBP5 and SLC6A4. We analyzed data from the Bucharest Early Intervention Project, which is a prospective study in which children reared in institutional settings were randomly assigned (mean age 22 months) to either newly created foster care or care as usual (to remain in their current placement) and prospectively followed. A group of children from the same geographic area, with no history of institutionalized caregiving, were also recruited. DNA methylation status was determined in DNA extracted from buccal epithelial cells of children at age 12. An inverse association was identified such that more time spent in institutional care was associated with lower DNA methylation at specific CpG sites within both genes. These results suggest a lasting impact of early severe social deprivation on methylation patterns in these genes, and contribute to a growing literature linking early adversity and epigenetic variation in children. Am J Phys Anthropol 161:84-93, 2016.. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  10. Quantitation of DNA methylation by melt curve analysis

    Directory of Open Access Journals (Sweden)

    Jones Michael E

    2009-04-01

    Full Text Available Abstract Background Methylation of DNA is a common mechanism for silencing genes, and aberrant methylation is increasingly being implicated in many diseases such as cancer. There is a need for robust, inexpensive methods to quantitate methylation across a region containing a number of CpGs. We describe and validate a rapid, in-tube method to quantitate DNA methylation using the melt data obtained following amplification of bisulfite modified DNA in a real-time thermocycler. Methods We first describe a mathematical method to normalise the raw fluorescence data generated by heating the amplified bisulfite modified DNA. From this normalised data the temperatures at which melting begins and finishes can be calculated, which reflect the less and more methylated template molecules present respectively. Also the T50, the temperature at which half the amplicons are melted, which represents the summative methylation of all the CpGs in the template mixture, can be calculated. These parameters describe the methylation characteristics of the region amplified in the original sample. Results For validation we used synthesized oligonucleotides and DNA from fresh cells and formalin fixed paraffin embedded tissue, each with known methylation. Using our quantitation we could distinguish between unmethylated, partially methylated and fully methylated oligonucleotides mixed in varying ratios. There was a linear relationship between T50 and the dilution of methylated into unmethylated DNA. We could quantitate the change in methylation over time in cell lines treated with the demethylating drug 5-aza-2'-deoxycytidine, and the differences in methylation associated with complete, clonal or no loss of MGMT expression in formalin fixed paraffin embedded tissues. Conclusion We have validated a rapid, simple in-tube method to quantify methylation which is robust and reproducible, utilizes easily designed primers and does not need proprietary algorithms or software. The

  11. Factors underlying variable DNA methylation in a human community cohort.

    Science.gov (United States)

    Lam, Lucia L; Emberly, Eldon; Fraser, Hunter B; Neumann, Sarah M; Chen, Edith; Miller, Gregory E; Kobor, Michael S

    2012-10-16

    Epigenetics is emerging as an attractive mechanism to explain the persistent genomic embedding of early-life experiences. Tightly linked to chromatin, which packages DNA into chromosomes, epigenetic marks primarily serve to regulate the activity of genes. DNA methylation is the most accessible and characterized component of the many chromatin marks that constitute the epigenome, making it an ideal target for epigenetic studies in human populations. Here, using peripheral blood mononuclear cells collected from a community-based cohort stratified for early-life socioeconomic status, we measured DNA methylation in the promoter regions of more than 14,000 human genes. Using this approach, we broadly assessed and characterized epigenetic variation, identified some of the factors that sculpt the epigenome, and determined its functional relation to gene expression. We found that the leukocyte composition of peripheral blood covaried with patterns of DNA methylation at many sites, as did demographic factors, such as sex, age, and ethnicity. Furthermore, psychosocial factors, such as perceived stress, and cortisol output were associated with DNA methylation, as was early-life socioeconomic status. Interestingly, we determined that DNA methylation was strongly correlated to the ex vivo inflammatory response of peripheral blood mononuclear cells to stimulation with microbial products that engage Toll-like receptors. In contrast, our work found limited effects of DNA methylation marks on the expression of associated genes across individuals, suggesting a more complex relationship than anticipated.

  12. Evidence for gene silencing by endogenous DNA methylation

    Science.gov (United States)

    Holliday, Robin; Ho, Thu

    1998-01-01

    Transformed cells can spontaneously silence genes by de novo methylation, and it is generally assumed that this is due to DNA methyltransferase activity. We have tested the alternative hypothesis that gene silencing could be due to the uptake of 5-methyl-dCMP into DNA, via the di- and triphosphonucleotides. 5-Methyl-dCMP would be present in cells from the ongoing repair of DNA. We have isolated a strain of Chinese hamster ovary (CHO) cells, designated HAM−, which spontaneously silences two tested genes at a very high frequency. We have shown that this strain incorporates 5-[3H]methyldeoxycytidine into 5-methylcytosine and thymine in DNA. It also has low 5-methyl-dCMP deaminase activity. Another HAM+ strain has high deaminase activity and a very low frequency of gene silencing. The starting strain, CHO K1, has a phenotype intermediate between HAM− and HAM+. PMID:9671746

  13. The effect of cryoprotectant agents on DNA methylation patterns and progeny development in the spermatozoa of Colossoma macropomum.

    Science.gov (United States)

    de Mello, Fernanda; Garcia, Juliana Saraiva; Godoy, Leandro C; Depincé, Alexandra; Labbé, Catherine; Streit, Danilo P

    2017-05-01

    DNA methylation patterns are inherited from parents and are imperative for proper embryonic development; however, alterations in these patterns can compromise fertilization and development into a fully functioning adult animal because DNA methylation is part of a complex program of gene transcription. In this study, we investigated the impact of cryoprotectant agents (CPAs) on DNA methylation patterns in spermatozoa and the consequences on embryonic development and the survival rate of progeny. Global methylation was assessed by enzymatic reactions in Colossoma macropomum spermatozoa that were cryopreserved using dimethylsulfoxide, dimethylformamide, methanol, ethyl glycol and glycerol as CPAs. Fertilization was carried out to evaluate survival rates and abnormalities in embryonic development upon treatment with each of the CPAs. Fresh semen served as the control. Our results indicated that, compared to the control group, spermatozoa cryopreservation decreased the fertilization rate and delayed embryonic development from the midblastula stage. Furthermore, spermatozoa cryopreserved in all CPAs had lower methylation levels and exhibited more delays and abnormalities during embryonic development than did fresh semen. Methanol resulted in fertilization, hatching rates and embryonic development that were closer to the control but had lower methylation levels. In conclusion, ours results show significant alterations on spermatozoa DNA methylation patterns caused by CPAs that are used in the semen cryopreservation process. DNA methylation pattern alterations affected the viability of progeny (r=0.48); however, these effects can be minimized by choosing the CPA that will compose the freezing solution. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. DNA methylation supports intrinsic epigenetic memory in mammalian cells.

    Directory of Open Access Journals (Sweden)

    2006-04-01

    Full Text Available We have investigated the role of DNA methylation in the initiation and maintenance of silenced chromatin in somatic mammalian cells. We found that a mutated transgene, in which all the CpG dinucleotides have been eliminated, underwent transcriptional silencing to the same extent as the unmodified transgene. These observations demonstrate that DNA methylation is not required for silencing. The silenced CpG-free transgene exhibited all the features of heterochromatin, including silencing of transcriptional activity, delayed DNA replication, lack of histone H3 and H4 acetylation, lack of H3-K4 methylation, and enrichment in tri-methyl-H3-K9. In contrast, when we tested for transgene reactivation using a Cre recombinase-mediated inversion assay, we observed a marked difference between a CpG-free and an unmodified transgene: the CpG-free transgene resumed transcription and did not exhibit markers of heterochromatin whereas the unmodified transgene remained silenced. These data indicate that methylation of CpG residues conferred epigenetic memory in this system. These results also suggest that replication delay, lack of histone H3 and H4 acetylation, H3-K4 methylation, and enrichment in tri-methyl-H3-K9 are not sufficient to confer epigenetic memory. We propose that DNA methylation within transgenes serves as an intrinsic epigenetic memory to permanently silence transgenes and prevent their reactivation.

  15. DNA methylation and genetic diversity analysis of genus Cycas in ...

    African Journals Online (AJOL)

    10 Cycas species as well as one subspecies localized in Thailand were studied using the methylation sensitive amplification polymorphism (MSAP) technique. 11 MSAP primer combinations were used and 720 MSAP bands were generated. The percentages of DNA methylation estimated from MSAP fingerprints were in ...

  16. DNA methylation and genetic diversity analysis of genus Cycas in ...

    African Journals Online (AJOL)

    mallory

    2012-01-12

    Jan 12, 2012 ... Key words: Cycas, DNA methylation, genetic diversity, methylation sensitive amplification polymorphism .... Cliffs and steep slopes on Khao Chamao mountain (eastern. Thailand). C. clivicola subsp. clivicola (Cli). 7-9, 10-12. M, F. Limestone cliffs, sea shore, evergreen forest, dry ... cytosine at both strands.

  17. Changes of host DNA methylation in domestic chickens infected with ...

    Indian Academy of Sciences (India)

    FEI WANG

    2017-09-15

    Sep 15, 2017 ... Abstract. Cytosine methylation is an effective way to modulate gene transcription. However, very little is known about the epigenetic changes in the host that is infected with Salmonella enterica. In this study, we used methylated DNA immunoprecipitation sequencing to analyse the genomewide DNA ...

  18. DNA methylation and sensitivity to antimetabolites in cancer cell lines.

    Science.gov (United States)

    Sasaki, Shin; Kobunai, Takashi; Kitayama, Joji; Nagawa, Hirokazu

    2008-02-01

    The prediction of the cellular direction of metabolic pathways toward either DNA synthesis or DNA methylation is crucial for determining the susceptibility of cancers to anti-metabolites such as fluorouracil (5-FU). We genotyped the methylenetetrahydrofolate reductase (MTHFR) gene in NCI-60 cancer cell lines, and identified the methylation status of 24 tumor suppressor genes using methylation-specific multiplex ligation-dependent probe amplification. The susceptibility of the cancer cell lines to seven antimetabolites was then determined. Cells homozygous for CC at MTHFR-A1298C were significantly more sensitive to cyclocytidine, cytarabine (AraC) and floxuridine than those with AA or AC (p=0.0215, p=0.0166, and p=0.0323, respectively), and carried more methylated tumor suppressor genes (p=0.0313). Among the 12 tumor suppressor genes which were methylated in >25% of cancer cell lines, the methylation status of TIMP3, APC and IGSF4 significantly correlated with sensitivity to pyrimidine synthesis inhibitors. In particular, cells with methylated TIMP3 had reduced mRNA levels and were significantly more sensitive to aphidicolin-glycinate, AraC and 5-FU than cells with unmethylated TIMP3. We speculate that MTHFR-A1298C homozygous CC might direct the methylation rather than the synthesis of DNA, and result in the methylation of several tumor suppressor genes such as TIMP3. These genes could be useful biological markers for predicting the efficacy of antimetabolites.

  19. Inhibition of DNA methyltransferases regulates cocaine self-administration by rats: a genome-wide DNA methylation study.

    Science.gov (United States)

    Fonteneau, M; Filliol, D; Anglard, P; Befort, K; Romieu, P; Zwiller, J

    2017-03-01

    DNA methylation is a major epigenetic process which regulates the accessibility of genes to the transcriptional machinery. In the present study, we investigated whether modifying the global DNA methylation pattern in the brain would alter cocaine intake by rats, using the cocaine self-administration test. The data indicate that treatment of rats with the DNA methyltransferase inhibitors 5-aza-2'-deoxycytidine (dAZA) and zebularine enhanced the reinforcing properties of cocaine. To obtain some insights about the underlying neurobiological mechanisms, a genome-wide methylation analysis was undertaken in the prefrontal cortex of rats self-administering cocaine and treated with or without dAZA. The study identified nearly 189 000 differentially methylated regions (DMRs), about half of them were located inside gene bodies, while only 9% of DMRs were found in the promoter regions of genes. About 99% of methylation changes occurred outside CpG islands. Gene expression studies confirmed the inverse correlation usually observed between increased methylation and transcriptional activation when methylation occurs in the gene promoter. This inverse correlation was not observed when methylation took place inside gene bodies. Using the literature-based Ingenuity Pathway Analysis, we explored how the differentially methylated genes were related. The analysis showed that increase in cocaine intake by rats in response to DNA methyltransferase inhibitors underlies plasticity mechanisms which mainly concern axonal growth and synaptogenesis as well as spine remodeling. Together with the Akt/PI3K pathway, the Rho-GTPase family was found to be involved in the plasticity underlying the effect of dAZA on the observed behavioral changes. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    International Nuclear Information System (INIS)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong

    2012-01-01

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  1. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  2. High-resolution analysis of cytosine methylation in ancient DNA.

    Directory of Open Access Journals (Sweden)

    Bastien Llamas

    Full Text Available Epigenetic changes to gene expression can result in heritable phenotypic characteristics that are not encoded in the DNA itself, but rather by biochemical modifications to the DNA or associated chromatin proteins. Interposed between genes and environment, these epigenetic modifications can be influenced by environmental factors to affect phenotype for multiple generations. This raises the possibility that epigenetic states provide a substrate for natural selection, with the potential to participate in the rapid adaptation of species to changes in environment. Any direct test of this hypothesis would require the ability to measure epigenetic states over evolutionary timescales. Here we describe the first single-base resolution of cytosine methylation patterns in an ancient mammalian genome, by bisulphite allelic sequencing of loci from late Pleistocene Bison priscus remains. Retrotransposons and the differentially methylated regions of imprinted loci displayed methylation patterns identical to those derived from fresh bovine tissue, indicating that methylation patterns are preserved in the ancient DNA. Our findings establish the biochemical stability of methylated cytosines over extensive time frames, and provide the first direct evidence that cytosine methylation patterns are retained in DNA from ancient specimens. The ability to resolve cytosine methylation in ancient DNA provides a powerful means to study the role of epigenetics in evolution.

  3. Meta-analysis of DNA methylation biomarkers in hepatocellular carcinoma

    OpenAIRE

    Zhang, Cheng; Li, Jinyun; Huang, Tao; Duan, Shiwei; Dai, Dongjun; Jiang, Danjie; Sui, Xinbing; Li, Da; Chen, Yidan; Ding, Fei; Huang, Changxin; Chen, Gongying; Wang, Kaifeng

    2016-01-01

    DNA methylation is an epigenetic mechanism in the pathogenesis of hepatocellular carcinoma (HCC). Here, we conducted a systematic meta-analysis to evaluate the contribution of DNA methylation to the risk of HCC. A total of 2109 publications were initially retrieved from PubMed, Web of Science, Cochrane Library, Embase, CNKI and Wanfang literature database. After a four-step filtration, we harvested 144 case-control articles in the meta-analysis. Our results revealed that 24 genes (carcinoma t...

  4. DNA methylation in states of cell physiology and pathology.

    Directory of Open Access Journals (Sweden)

    Lech Chyczewski

    2007-10-01

    Full Text Available DNA methylation is one of epigenetic mechanisms regulating gene expression. The methylation pattern is determined during embryogenesis and passed over to differentiating cells and tissues. In a normal cell, a significant degree of methylation is characteristic for extragenic DNA (cytosine within the CG dinucleotide while CpG islands located in gene promoters are unmethylated, except for inactive genes of the X chromosome and the genes subjected to genomic imprinting. The changes in the methylation pattern, which may appear as the organism age and in early stages of cancerogenesis, may lead to the silencing of over ninety endogenic genes. It has been found, that these disorders consist not only of the methylation of CpG islands, which are normally unmethylated, but also of the methylation of other dinucleotides, e.g. CpA. Such methylation has been observed in non-small cell lung cancer, in three regions of the exon 5 of the p53 gene (so-called "non-CpG" methylation. The knowledge of a normal methylation process and its aberrations appeared to be useful while searching for new markers enabling an early detection of cancer. With the application of the Real-Time PCR technique (using primers for methylated and unmethylated sequences five new genes which are potential biomarkers of lung cancer have been presented.

  5. Patterns of DNA methylation in development, division of labor and hybridization in an ant with genetic caste determination.

    Science.gov (United States)

    Smith, Chris R; Mutti, Navdeep S; Jasper, W Cameron; Naidu, Agni; Smith, Christopher D; Gadau, Jürgen

    2012-01-01

    DNA methylation is a common regulator of gene expression, including acting as a regulator of developmental events and behavioral changes in adults. Using the unique system of genetic caste determination in Pogonomyrmex barbatus, we were able to document changes in DNA methylation during development, and also across both ancient and contemporary hybridization events. Sodium bisulfite sequencing demonstrated in vivo methylation of symmetric CG dinucleotides in P. barbatus. We also found methylation of non-CpG sequences. This validated two bioinformatics methods for predicting gene methylation, the bias in observed to expected ratio of CpG dinucleotides and the density of CpG/TpG single nucleotide polymorphisms (SNP). Frequencies of genomic DNA methylation were determined for different developmental stages and castes using ms-AFLP assays. The genetic caste determination system (GCD) is probably the product of an ancestral hybridization event between P. barbatus and P. rugosus. Two lineages obligately co-occur within a GCD population, and queens are derived from intra-lineage matings whereas workers are produced from inter-lineage matings. Relative DNA methylation levels of queens and workers from GCD lineages (contemporary hybrids) were not significantly different until adulthood. Virgin queens had significantly higher relative levels of DNA methylation compared to workers. Worker DNA methylation did not vary among developmental stages within each lineage, but was significantly different between the currently hybridizing lineages. Finally, workers of the two genetic caste determination lineages had half as many methylated cytosines as workers from the putative parental species, which have environmental caste determination. These results suggest that DNA methylation may be a conserved regulatory mechanism moderating division of labor in both bees and ants. Current and historic hybridization appear to have altered genomic methylation levels suggesting a possible link

  6. Patterns of DNA methylation in development, division of labor and hybridization in an ant with genetic caste determination.

    Directory of Open Access Journals (Sweden)

    Chris R Smith

    hybridization appear to have altered genomic methylation levels suggesting a possible link between changes in overall DNA methylation and the origin and regulation of genetic caste determination in P. barbatus.

  7. Effects of X-ray irradiation on genomic DNA methylation levels in mouse tissues

    International Nuclear Information System (INIS)

    Tawa, Riichi; Sakurai, Hiromu; Kimura, Yutaka; Komura, Jun-ichiro; Miyamura, Yoshinori; Kurishita, Akihiro; Sasaki, Masao S.; Ono, Tetsuya

    1998-01-01

    Effects of ionizing radiation on the level of genomic DNA methylation in liver, brain and spleen of mouse as well as in two kinds of cultured cells were examined by high-performance liquid chromatography. Ten Gy of whole body X-radiation reduced the 5-methyldeoxycytidine contents by about 40% within 8 hours after irradiation in liver. Similar effects were observed at 4 or 7 Gy of X-ray irradiation. However, no such change was detected in brain, spleen and cultured cells. The data indicate that radiation-induced alteration in genomic DNA methylation is not ubiquitous among different tissues and cells. (author)

  8. Distinct cellular and molecular environments support aging-related DNA methylation changes in the substantia nigra.

    Science.gov (United States)

    Fasolino, Maria; Liu, Shuo; Wang, Yinsheng; Zhou, Zhaolan

    2017-01-01

    We aimed to couple brain region-specific changes in global DNA methylation over aging to underlying cellular and molecular environments. We measured two major forms of DNA methylation and analyzed Dnmt, Tet and metabolite levels in the striatum and substantia nigra (SN) over aging in healthy male mice. The ratio of 5-hydroxymethylcytosine to 5-methylcytosine increases over aging in the SN, and 5-hydroxymethylcytosine increases preferentially in dopaminergic neurons. Additionally, this age-dependent alteration in methylation correlates with a reduction in the ratio of α-ketoglutarate to succinate in the SN. Distinct cellular and molecular environments correlate with aging-associated methylation changes in the SN, implicating this epigenetic mechanism in the susceptibility of this brain region to age-related cell loss.

  9. DNA methylation of retrotransposons, DNA transposons and genes in sugar beet (Beta vulgaris L.).

    Science.gov (United States)

    Zakrzewski, Falk; Schmidt, Martin; Van Lijsebettens, Mieke; Schmidt, Thomas

    2017-06-01

    The methylation of cytosines shapes the epigenetic landscape of plant genomes, coordinates transgenerational epigenetic inheritance, represses the activity of transposable elements (TEs), affects gene expression and, hence, can influence the phenotype. Sugar beet (Beta vulgaris ssp. vulgaris), an important crop that accounts for 30% of worldwide sugar needs, has a relatively small genome size (758 Mbp) consisting of approximately 485 Mbp repetitive DNA (64%), in particular satellite DNA, retrotransposons and DNA transposons. Genome-wide cytosine methylation in the sugar beet genome was studied in leaves and leaf-derived callus with a focus on repetitive sequences, including retrotransposons and DNA transposons, the major groups of repetitive DNA sequences, and compared with gene methylation. Genes showed a specific methylation pattern for CG, CHG (H = A, C, and T) and CHH sites, whereas the TE pattern differed, depending on the TE class (class 1, retrotransposons and class 2, DNA transposons). Along genes and TEs, CG and CHG methylation was higher than that of adjacent genomic regions. In contrast to the relatively low CHH methylation in retrotransposons and genes, the level of CHH methylation in DNA transposons was strongly increased, pointing to a functional role of asymmetric methylation in DNA transposon silencing. Comparison of genome-wide DNA methylation between sugar beet leaves and callus revealed a differential methylation upon tissue culture. Potential epialleles were hypomethylated (lower methylation) at CG and CHG sites in retrotransposons and genes and hypermethylated (higher methylation) at CHH sites in DNA transposons of callus when compared with leaves. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  10. Obesity-induced sperm DNA methylation changes at satellite repeats are reprogrammed in rat offspring

    Directory of Open Access Journals (Sweden)

    Neil A Youngson

    2016-01-01

    Full Text Available There is now strong evidence that the paternal contribution to offspring phenotype at fertilisation is more than just DNA. However, the identity and mechanisms of this nongenetic inheritance are poorly understood. One of the more important questions in this research area is: do changes in sperm DNA methylation have phenotypic consequences for offspring? We have previously reported that offspring of obese male rats have altered glucose metabolism compared with controls and that this effect was inherited through nongenetic means. Here, we describe investigations into sperm DNA methylation in a new cohort using the same protocol. Male rats on a high-fat diet were 30% heavier than control-fed males at the time of mating (16-19 weeks old, n = 14/14. A small (0.25% increase in total 5-methyl-2Ͳ-deoxycytidine was detected in obese rat spermatozoa by liquid chromatography tandem mass spectrometry. Examination of the repetitive fraction of the genome with methyl-CpG binding domain protein-enriched genome sequencing (MBD-Seq and pyrosequencing revealed that retrotransposon DNA methylation states in spermatozoa were not affected by obesity, but methylation at satellite repeats throughout the genome was increased. However, examination of muscle, liver, and spermatozoa from male 27-week-old offspring from obese and control fathers (both groups from n = 8 fathers revealed that normal DNA methylation levels were restored during offspring development. Furthermore, no changes were found in three genomic imprints in obese rat spermatozoa. Our findings have implications for transgenerational epigenetic reprogramming. They suggest that postfertilization mechanisms exist for normalising some environmentally-induced DNA methylation changes in sperm cells.

  11. The role of the epigenetic signal, DNA methylation, in gene regulation during erythroid development.

    Science.gov (United States)

    Ginder, Gordon D; Gnanapragasam, Merlin N; Mian, Omar Y

    2008-01-01

    The sequence complexity of the known vertebrate genomes alone is insufficient to account for the diversity between individuals of a species. Although our knowledge of vertebrate biology has evolved substantially with the growing compilation of sequenced genomes, understanding the temporal and spatial regulation of genes remains fundamental to fully exploiting this information. The importance of epigenetic factors in gene regulation was first hypothesized decades ago when biologists posited that methylation of DNA could heritably alter gene expression [Holliday and Pugh, 1975. Science 187(4173), 226-232; Riggs, 1975. Cytogenet. and Cell Genet.14(1), 9-25; Scarano et al., 1967. Proc. Natl. Acad. Sci. USA 57(5), 1394-1400)]. It was subsequently shown that vertebrate DNA methylation, almost exclusively at the 5' position of cytosine in the dinucleotide CpG, played a role in a number of processes including embryonic development, genetic imprinting, cell differentiation, and tumorigenesis. At the time of this writing, a large and growing list of genes is known to exhibit DNA methylation-dependent regulation, and we understand in some detail the mechanisms employed by cells in using methylation as a regulatory modality. In this context, we revisit one of the original systems in which the role of DNA methylation in vertebrate gene regulation during development was described and studied: erythroid cells. We briefly review the recent advances in our understanding of DNA methylation and, in particular, its regulatory role in red blood cells during differentiation and development. We also address DNA methylation as a component of erythroid chromatin architecture, and the interdependence of CpG methylation and histone modification.

  12. DNA methylation profiles of human active and inactive X chromosomes.

    Science.gov (United States)

    Sharp, Andrew J; Stathaki, Elisavet; Migliavacca, Eugenia; Brahmachary, Manisha; Montgomery, Stephen B; Dupre, Yann; Antonarakis, Stylianos E

    2011-10-01

    X-chromosome inactivation (XCI) is a dosage compensation mechanism that silences the majority of genes on one X chromosome in each female cell. To characterize epigenetic changes that accompany this process, we measured DNA methylation levels in 45,X patients carrying a single active X chromosome (X(a)), and in normal females, who carry one X(a) and one inactive X (X(i)). Methylated DNA was immunoprecipitated and hybridized to high-density oligonucleotide arrays covering the X chromosome, generating epigenetic profiles of active and inactive X chromosomes. We observed that XCI is accompanied by changes in DNA methylation specifically at CpG islands (CGIs). While the majority of CGIs show increased methylation levels on the X(i), XCI actually results in significant reductions in methylation at 7% of CGIs. Both intra- and inter-genic CGIs undergo epigenetic modification, with the biggest increase in methylation occurring at the promoters of genes silenced by XCI. In contrast, genes escaping XCI generally have low levels of promoter methylation, while genes that show inter-individual variation in silencing show intermediate increases in methylation. Thus, promoter methylation and susceptibility to XCI are correlated. We also observed a global correlation between CGI methylation and the evolutionary age of X-chromosome strata, and that genes escaping XCI show increased methylation within gene bodies. We used our epigenetic map to predict 26 novel genes escaping XCI, and searched for parent-of-origin-specific methylation differences, but found no evidence to support imprinting on the human X chromosome. Our study provides a detailed analysis of the epigenetic profile of active and inactive X chromosomes.

  13. Neurospora importin α is required for normal heterochromatic formation and DNA methylation.

    Directory of Open Access Journals (Sweden)

    Andrew D Klocko

    2015-03-01

    Full Text Available Heterochromatin and associated gene silencing processes play roles in development, genome defense, and chromosome function. In many species, constitutive heterochromatin is decorated with histone H3 tri-methylated at lysine 9 (H3K9me3 and cytosine methylation. In Neurospora crassa, a five-protein complex, DCDC, catalyzes H3K9 methylation, which then directs DNA methylation. Here, we identify and characterize a gene important for DCDC function, dim-3 (defective in methylation-3, which encodes the nuclear import chaperone NUP-6 (Importin α. The critical mutation in dim-3 results in a substitution in an ARM repeat of NUP-6 and causes a substantial loss of H3K9me3 and DNA methylation. Surprisingly, nuclear transport of all known proteins involved in histone and DNA methylation, as well as a canonical transport substrate, appear normal in dim-3 strains. Interactions between DCDC members also appear normal, but the nup-6(dim-3 allele causes the DCDC members DIM-5 and DIM-7 to mislocalize from heterochromatin and NUP-6dim-3 itself is mislocalized from the nuclear envelope, at least in conidia. GCN-5, a member of the SAGA histone acetyltransferase complex, also shows altered localization in dim-3, raising the possibility that NUP-6 is necessary to localize multiple chromatin complexes following nucleocytoplasmic transport.

  14. Genome-Wide Analysis of DNA Methylation in Human Amnion

    Science.gov (United States)

    Kim, Jinsil; Pitlick, Mitchell M.; Christine, Paul J.; Schaefer, Amanda R.; Saleme, Cesar; Comas, Belén; Cosentino, Viviana; Gadow, Enrique; Murray, Jeffrey C.

    2013-01-01

    The amnion is a specialized tissue in contact with the amniotic fluid, which is in a constantly changing state. To investigate the importance of epigenetic events in this tissue in the physiology and pathophysiology of pregnancy, we performed genome-wide DNA methylation profiling of human amnion from term (with and without labor) and preterm deliveries. Using the Illumina Infinium HumanMethylation27 BeadChip, we identified genes exhibiting differential methylation associated with normal labor and preterm birth. Functional analysis of the differentially methylated genes revealed biologically relevant enriched gene sets. Bisulfite sequencing analysis of the promoter region of the oxytocin receptor (OXTR) gene detected two CpG dinucleotides showing significant methylation differences among the three groups of samples. Hypermethylation of the CpG island of the solute carrier family 30 member 3 (SLC30A3) gene in preterm amnion was confirmed by methylation-specific PCR. This work provides preliminary evidence that DNA methylation changes in the amnion may be at least partially involved in the physiological process of labor and the etiology of preterm birth and suggests that DNA methylation profiles, in combination with other biological data, may provide valuable insight into the mechanisms underlying normal and pathological pregnancies. PMID:23533356

  15. Recent patents of DNA methylation biomarkers in gastrointestinal oncology.

    Science.gov (United States)

    Corvalan, Alejandro H; Maturana, Maria J

    2010-11-01

    Gastrointestinal malignancies are among the most common malignancies worldwide. Advances in technology and treatment have improved diagnosis and monitoring of these tumors. As a consequence, identification of new biomarkers that can be applied at different levels of disease is urgently needed. DNA methylation is a process in which cytosines acquire a methyl group in 5' position only if they are followed by a guanine. An emerging catalog of specific genes inactivated by DNA methylation in gastrointestinal tumors has been established. In this review we will give a brief overview of the main sources of DNA used to investigate methylation biomarkers and several related patents. One of these is related to multiple genes that predict the risk of development of esophageal adenocarcinoma. Another evaluated methylation status of 24 genes to find one frequently methylated in primary tumors as well as plasma samples from gastric cancer patients. Others patented the epigenetic silencing of miR-342 as a promissory biomarker for colorectal carcinoma. Thus the new field of DNA methylation biomarkers holds the promise of better methods for screening, early detection, disease progression and outcome predictor of therapy response in gastrointestinal oncology.

  16. DNA methylation detection based on difference of base content

    Science.gov (United States)

    Sato, Shinobu; Ohtsuka, Keiichi; Honda, Satoshi; Sato, Yusuke; Takenaka, Shigeori

    2016-04-01

    Methylation frequently occurs in cytosines of CpG sites to regulate gene expression. The identification of aberrant methylation of certain genes is important for cancer marker analysis. The aim of this study was to determine the methylation frequency in DNA samples of unknown length and/or concentration. Unmethylated cytosine is known to be converted to thymine following bisulfite treatment and subsequent PCR. For this reason, the AT content in DNA increases with an increasing number of methylation sites. In this study, the fluorescein-carrying bis-acridinyl peptide (FKA) molecule was used for the detection of methylation frequency. FKA contains fluorescein and two acridine moieties, which together allow for the determination of the AT content of double-stranded DNA fragments. Methylated and unmethylated human genomes were subjected to bisulfide treatment and subsequent PCR using primers specific for the CFTR, CDH4, DBC1, and NPY genes. The AT content in the resulting PCR products was estimated by FKA, and AT content estimations were found to be in good agreement with those determined by DNA sequencing. This newly developed method may be useful for determining methylation frequencies of many PCR products by measuring the fluorescence in samples excited at two different wavelengths.

  17. Quantification of 5-methyl-2'-deoxycytidine in the DNA.

    Science.gov (United States)

    Giel-Pietraszuk, Małgorzata; Insińska-Rak, Małgorzata; Golczak, Anna; Sikorski, Marek; Barciszewska, Mirosława; Barciszewski, Jan

    2015-01-01

    Methylation at position 5 of cytosine (Cyt) at the CpG sequences leading to formation of 5-methyl-cytosine (m(5)Cyt) is an important element of epigenetic regulation of gene expression. Modification of the normal methylation pattern, unique to each organism, leads to the development of pathological processes and diseases, including cancer. Therefore, quantification of the DNA methylation and analysis of changes in the methylation pattern is very important from a practical point of view and can be used for diagnostic purposes, as well as monitoring of the treatment progress. In this paper we present a new method for quantification of 5-methyl-2'deoxycytidine (m(5)C) in the DNA. The technique is based on conversion of m(5)C into fluorescent 3,N(4)-etheno-5-methyl-2'deoxycytidine (εm(5)C) and its identification by reversed-phase high-performance liquid chromatography (RP-HPLC). The assay was used to evaluate m(5)C concentration in DNA of calf thymus and peripheral blood of cows bred under different conditions. This approach can be applied for measuring of 5-methylcytosine in cellular DNA from different cells and tissues.

  18. DNMT1-interacting RNAs block gene specific DNA methylation

    Science.gov (United States)

    Di Ruscio, Annalisa; Ebralidze, Alexander K.; Benoukraf, Touati; Amabile, Giovanni; Goff, Loyal A.; Terragni, Joylon; Figueroa, Maria Eugenia; De Figureido Pontes, Lorena Lobo; Alberich-Jorda, Meritxell; Zhang, Pu; Wu, Mengchu; D’Alò, Francesco; Melnick, Ari; Leone, Giuseppe; Ebralidze, Konstantin K.; Pradhan, Sriharsa; Rinn, John L.; Tenen, Daniel G.

    2013-01-01

    Summary DNA methylation was described almost a century ago. However, the rules governing its establishment and maintenance remain elusive. Here, we present data demonstrating that active transcription regulates levels of genomic methylation. We identified a novel RNA arising from the CEBPA gene locus critical in regulating the local DNA methylation profile. This RNA binds to DNMT1 and prevents CEBPA gene locus methylation. Deep sequencing of transcripts associated with DNMT1 combined with genome-scale methylation and expression profiling extended the generality of this finding to numerous gene loci. Collectively, these results delineate the nature of DNMT1-RNA interactions and suggest strategies for gene selective demethylation of therapeutic targets in disease. PMID:24107992

  19. DNA methylation and gene expression of HIF3A

    DEFF Research Database (Denmark)

    Main, Ailsa Maria; Gillberg, Linn; Jacobsen, Anna Louisa

    2016-01-01

    BACKGROUND: Associations between BMI and DNA methylation of hypoxia-inducible factor 3-alpha (HIF3A) in both blood cells and subcutaneous adipose tissue (SAT) have been reported. In this study, we investigated associations between BMI and HIF3A DNA methylation in the blood and SAT from the same...... individuals, and whether HIF3A gene expression in SAT and skeletal muscle biopsies showed associations with BMI and insulin resistance. Furthermore, we aimed to investigate gender specificity and heritability of these traits. METHODS: We studied 137 first-degree relatives of type 2 diabetes (T2D) patients...... glucose tolerance tests. RESULTS: BMI was associated with HIF3A methylation at one CpG site in the blood, and there was a positive association between the blood and SAT methylation levels at a different CpG site within the individuals. The SAT methylation level did not correlate with HIF3A gene expression...

  20. Quantitative analysis of DNA methylation in chronic lymphocytic leukemia patients.

    Science.gov (United States)

    Lyko, Frank; Stach, Dirk; Brenner, Axel; Stilgenbauer, Stephan; Döhner, Hartmut; Wirtz, Michaela; Wiessler, Manfred; Schmitz, Oliver J

    2004-06-01

    Changes in the genomic DNA methylation level have been found to be closely associated with tumorigenesis. In order to analyze the relation of aberrant DNA methylation to clinical and biological risk factors, we have determined the cytosine methylation level of 81 patients diagnosed with chronic lymphocytic leukemia (CLL). The analysis was based on DNA hydrolysis followed by derivatization of the 2'-desoxyribonucleoside-3'-monophosphates with BODIPY FL EDA. Derivatives were separated by micellar electrokinetic chromatography, and laser-induced fluorescence was used for detection. We analyzed potential correlations between DNA methylation levels and numerous patient parameters, including clinical observations and biological data. As a result, we observed a significant correlation with the immunoglobulin variable heavy chain gene (VH) mutation status. This factor has been repeatedly proposed as a reliable prognostic marker for CLL, which suggests that the methylation level might be a valuable factor in determining the prognostic outcome of CLL. We are now in the process of refining our method to broaden its application potential. In this context, we show here that the oxidation of the fluorescence marker in the samples and the evaporation of methanol in the electrolytes can be prevented by a film of paraffin oil. In summary, our results thus establish capillary electrophoresis as a valuable tool for analyzing the DNA methylation status of clinical samples.

  1. DNA methylation levels associated with race and childhood asthma severity.

    Science.gov (United States)

    Chan, Marcia A; Ciaccio, Christina E; Gigliotti, Nicole M; Rezaiekhaligh, Mo; Siedlik, Jacob A; Kennedy, Kevin; Barnes, Charles S

    2017-10-01

    Asthma is a common chronic childhood disease worldwide. Socioeconomic status, genetic predisposition and environmental factors contribute to its incidence and severity. A disproportionate number of children with asthma are economically disadvantaged and live in substandard housing with potential indoor environmental exposures such as cockroaches, dust mites, rodents and molds. These exposures may manifest through epigenetic mechanisms that can lead to changes in relevant gene expression. We examined the association of global DNA methylation levels with socioeconomic status, asthma severity and race/ethnicity. We measured global DNA methylation in peripheral blood of children with asthma enrolled in the Kansas City Safe and Healthy Homes Program. Inclusion criteria included residing in the same home for a minimum of 4 days per week and total family income of less than 80% of the Kansas City median family income. DNA methylation levels were quantified by an immunoassay that assessed the percentage of 5-methylcytosine. Our results indicate that overall, African American children had higher levels of global DNA methylation than children of other races/ethnicities (p = 0.029). This difference was more pronounced when socioeconomic status and asthma severity were coupled with race/ethnicity (p = 0.042) where low-income, African American children with persistent asthma had significantly elevated methylation levels relative to other races/ethnicities in the same context (p = 0.006, Hedges g = 1.14). Our study demonstrates a significant interaction effect among global DNA methylation levels, asthma severity, race/ethnicity, and socioeconomic status.

  2. Analysis of DNA methylation in various swine tissues.

    Directory of Open Access Journals (Sweden)

    Chun Yang

    Full Text Available DNA methylation is known to play an important role in regulating gene expression during biological development and tissue differentiation in eukaryotes. In this study, we used the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP method to assess the extent and pattern of cytosine methylation in muscle, heart, liver, spleen, lung, kidney and stomach from the swine strain Laiwu, and we also examined specific methylation patterns in the seven tissues. In total, 96,371 fragments, each representing a recognition site cleaved by either or both EcoRI + HpaII and EcoRI + MspI, the HpaII and MspI are isoschizomeric enzymes, were amplified using 16 pairs of selective primers. A total of 50,094 sites were found to be methylated at cytosines in seven tissues. The incidence of DNA methylation was approximately 53.99% in muscle, 51.24% in the heart, 50.18% in the liver, 53.31% in the spleen, 51.97% in the lung, 51.15% in the kidney and 53.39% in the stomach, as revealed by the incidence of differential digestion. Additionally, differences in DNA methylation levels imply that such variations may be related to specific gene expression during tissue differentiation, growth and development. Three types of bands were generated in the F-MSAP profile, the total numbers of these three types of bands in the seven tissues were 46,277, 24,801 and 25,293, respectively.In addition, different methylation patterns were observed in seven tissues from pig, and almost all of the methylation patterns detected by F-MSAP could be confirmed by Southern analysis using the isolated amplified fragments as probes. The results clearly demonstrated that the F-MSAP technique can be adapted for use in large-scale DNA methylation detection in the pig genome.

  3. Exercise-associated DNA methylation change in skeletal muscle and the importance of imprinted genes: a bioinformatics meta-analysis.

    Science.gov (United States)

    Brown, William M

    2015-12-01

    Epigenetics is the study of processes--beyond DNA sequence alteration--producing heritable characteristics. For example, DNA methylation modifies gene expression without altering the nucleotide sequence. A well-studied DNA methylation-based phenomenon is genomic imprinting (ie, genotype-independent parent-of-origin effects). We aimed to elucidate: (1) the effect of exercise on DNA methylation and (2) the role of imprinted genes in skeletal muscle gene networks (ie, gene group functional profiling analyses). Gene ontology (ie, gene product elucidation)/meta-analysis. 26 skeletal muscle and 86 imprinted genes were subjected to g:Profiler ontology analysis. Meta-analysis assessed exercise-associated DNA methylation change. g:Profiler found four muscle gene networks with imprinted loci. Meta-analysis identified 16 articles (387 genes/1580 individuals) associated with exercise. Age, method, sample size, sex and tissue variation could elevate effect size bias. Only skeletal muscle gene networks including imprinted genes were reported. Exercise-associated effect sizes were calculated by gene. Age, method, sample size, sex and tissue variation were moderators. Six imprinted loci (RB1, MEG3, UBE3A, PLAGL1, SGCE, INS) were important for muscle gene networks, while meta-analysis uncovered five exercise-associated imprinted loci (KCNQ1, MEG3, GRB10, L3MBTL1, PLAGL1). DNA methylation decreased with exercise (60% of loci). Exercise-associated DNA methylation change was stronger among older people (ie, age accounted for 30% of the variation). Among older people, genes exhibiting DNA methylation decreases were part of a microRNA-regulated gene network functioning to suppress cancer. Imprinted genes were identified in skeletal muscle gene networks and exercise-associated DNA methylation change. Exercise-associated DNA methylation modification could rewind the 'epigenetic clock' as we age. CRD42014009800. Published by the BMJ Publishing Group Limited. For permission to use (where

  4. Effect of nickel chloride on Arabidopsis genomic DNA and methylation of 18S rDNA

    Directory of Open Access Journals (Sweden)

    Zhongai Li

    2015-01-01

    Conclusions: NiCl2 application caused variation of DNA methylation of the Arabidopsis genomic and offspring's. NiCl2 also resulted in nucleolar injury and deformity of root tip cells. The methylation rate of 18S rDNA also changed by adding NiCl2.

  5. Targeted deep DNA methylation analysis of circulating cell-free DNA in plasma using massively parallel semiconductor sequencing.

    Science.gov (United States)

    Vaca-Paniagua, Felipe; Oliver, Javier; Nogueira da Costa, Andre; Merle, Philippe; McKay, James; Herceg, Zdenko; Holmila, Reetta

    2015-01-01

    To set up a targeted methylation analysis using semiconductor sequencing and evaluate the potential for studying methylation in circulating cell-free DNA (cfDNA). Methylation of VIM, FBLN1, LTBP2, HINT2, h19 and IGF2 was analyzed in plasma cfDNA and white blood cell DNA obtained from eight hepatocellular carcinoma patients and eight controls using Ion Torrent™ PGM sequencer. h19 and IGF2 showed consistent methylation levels and methylation was detected for VIM and FBLN1, whereas LTBP2 and HINT2 did not show methylation for target regions. VIM gene promoter methylation was higher in HCC cfDNA than in cfDNA of controls or white blood cell DNA. Semiconductor sequencing is a suitable method for analyzing methylation profiles in cfDNA. Furthermore, differences in cfDNA methylation can be detected between controls and hepatocellular carcinoma cases, even though due to the small sample set these results need further validation.

  6. Comprehensive DNA Methylation and Mutation Analyses Reveal a Methylation Signature in Colorectal Sessile Serrated Adenomas.

    Science.gov (United States)

    Patai, Árpád V; Barták, Barbara Kinga; Péterfia, Bálint; Micsik, Tamás; Horváth, Réka; Sumánszki, Csaba; Péter, Zoltán; Patai, Árpád; Valcz, Gábor; Kalmár, Alexandra; Tóth, Kinga; Krenács, Tibor; Tulassay, Zsolt; Molnár, Béla

    2017-07-01

    Colorectal sessile serrated adenomas (SSA) are hypothesized to be precursor lesions of an alternative, serrated pathway of colorectal cancer, abundant in genes with aberrant promoter DNA hypermethylation. In our present pilot study, we explored DNA methylation profiles and examined selected gene mutations in SSA. Biopsy samples from patients undergoing screening colonoscopy were obtained during endoscopic examination. After DNA isolation and quality analysis, SSAs (n = 4) and healthy controls (n = 5) were chosen for further analysis. DNA methylation status of 96 candidate genes was screened by q(RT)PCR using Methyl-Profiler PCR array system. Amplicons for 12 gene mutations were sequenced by GS Junior Instrument using ligated and barcoded adaptors. Analysis of DNA methylation revealed 9 hypermethylated genes in both normal and SSA samples. 12 genes (CALCA, DKK2, GALR2, OPCML, PCDH10, SFRP1, SFRP2, SLIT3, SST, TAC1, VIM, WIF1) were hypermethylated in all SSAs and 2 additional genes (BNC1 and PDLIM4) were hypermethylated in 3 out of 4 SSAs, but in none of the normal samples. 2 SSAs exhibited BRAF mutation and synchronous MLH1 hypermethylation and were microsatellite instable by immunohistochemical analysis. Our combined mutation and DNA methylation analysis revealed that there is a common DNA methylation signature present in pre-neoplastic SSAs. This study advocates for the use of DNA methylation as a potential biomarker for the detection of SSA; however, further investigation is needed to better characterize the molecular background of these newly recognized colorectal lesions.

  7. Effects of cytosine methylation on DNA charge transport

    International Nuclear Information System (INIS)

    Hihath, Joshua; Guo Shaoyin; Tao Nongjian; Zhang Peiming

    2012-01-01

    The methylation of cytosine bases in DNA commonly takes place in the human genome and its abnormality can be used as a biomarker in the diagnosis of genetic diseases. In this paper we explore the effects of cytosine methylation on the conductance of DNA. Although the methyl group is a small chemical modification, and has a van der Waals radius of only 2 Å, its presence significantly changes the duplex stability, and as such may also affect the conductance properties of DNA. To determine if charge transport through the DNA stack is sensitive to this important biological modification we perform multiple conductance measurements on a methylated DNA molecule with an alternating G:C sequence and its non-methylated counterpart. From these studies we find a measurable difference in the conductance between the two types of molecules, and demonstrate that this difference is statistically significant. The conductance values of these molecules are also compared with a similar sequence that has been previously studied to help elucidate the charge transport mechanisms involved in direct DNA conductance measurements. (paper)

  8. DNA Methylation, Epigenetics, and Evolution in Vertebrates: Facts and Challenges

    Directory of Open Access Journals (Sweden)

    Annalisa Varriale

    2014-01-01

    Full Text Available DNA methylation is a key epigenetic modification in the vertebrate genomes known to be involved in biological processes such as regulation of gene expression, DNA structure and control of transposable elements. Despite increasing knowledge about DNA methylation, we still lack a complete understanding of its specific functions and correlation with environment and gene expression in diverse organisms. To understand how global DNA methylation levels changed under environmental influence during vertebrate evolution, we analyzed its distribution pattern along the whole genome in mammals, reptiles and fishes showing that it is correlated with temperature, independently on phylogenetic inheritance. Other studies in mammals and plants have evidenced that environmental stimuli can promote epigenetic changes that, in turn, might generate localized changes in DNA sequence resulting in phenotypic effects. All these observations suggest that environment can affect the epigenome of vertebrates by generating hugely different methylation patterns that could, possibly, reflect in phenotypic differences. We are at the first steps towards the understanding of mechanisms that underlie the role of environment in molding the entire genome over evolutionary times. The next challenge will be to map similarities and differences of DNA methylation in vertebrates and to associate them with environmental adaptation and evolution.

  9. DNA Methylation Analysis of Free-Circulating DNA in Body Fluids.

    Science.gov (United States)

    Jung, Maria; Kristiansen, Glen; Dietrich, Dimo

    2018-01-01

    Circulating cell-free DNA in body fluids is an analyte of great interest in basic and clinical research. The analyses of DNA methylation and hydroxymethylation patterns in body fluids might allow one to determine the certain state of a disease, in particular of cancer. DNA methylation biomarkers in liquid biopsies, i.e. blood plasma samples, may help optimizing personalized therapy for individual patients. DNA methylation analyses of specific loci usually require a bisulfite conversion of the DNA, which requires a sufficiently high amount of DNA at the appropriate concentration. However, free-circulating DNA is generally low concentrated. Therefore, high volumes of body fluids need to be analyzed. This high volume needs to be reduced in order to facilitate the bisulfite conversion. In addition, disease-related free-circulating DNA is even less abundant than normal DNA in the total amount of free-circulating DNA. Accordingly, analytical and pre-analytical methods are needed, which permit an accurate and sensitive quantification of single methylated DNA copies in the presence of unmethylated DNA in abundance.This protocol describes two methods for DNA enrichment from body fluids: DNA extraction by means of magnetic beads and polymer-mediated enrichment of DNA. Subsequent bisulfite conversion is achieved by means of a high-speed conversion protocol. Adaptions of the workflow required for the analysis of hydroxymethylation via oxidation 5-hydroxymethylcytosines to 5-formylcytosines prior to the bisulfite conversion are introduced. A quantitative real-time PCR based on the methylation-specific and HeavyMethyl PCR methodologies is introduced. This qPCR assay allows for an accurate and sensitive quantification of single copies of the DNA methylation biomarkers SHOX2 and SEPT9 in blood plasma. Specific issues regarding the analysis of body fluids and respective trouble shooting approaches are discussed.

  10. Comprehensive DNA Methylation Analysis Reveals a Common Ten-Gene Methylation Signature in Colorectal Adenomas and Carcinomas.

    Directory of Open Access Journals (Sweden)

    Árpád V Patai

    Full Text Available Microarray analysis of promoter hypermethylation provides insight into the role and extent of DNA methylation in the development of colorectal cancer (CRC and may be co-monitored with the appearance of driver mutations. Colonic biopsy samples were obtained endoscopically from 10 normal, 23 adenoma (17 low-grade (LGD and 6 high-grade dysplasia (HGD, and 8 ulcerative colitis (UC patients (4 active and 4 inactive. CRC samples were obtained from 24 patients (17 primary, 7 metastatic (MCRC, 7 of them with synchronous LGD. Field effects were analyzed in tissues 1 cm (n = 5 and 10 cm (n = 5 from the margin of CRC. Tissue materials were studied for DNA methylation status using a 96 gene panel and for KRAS and BRAF mutations. Expression levels were assayed using whole genomic mRNA arrays. SFRP1 was further examined by immunohistochemistry. HT29 cells were treated with 5-aza-2' deoxycytidine to analyze the reversal possibility of DNA methylation. More than 85% of tumor samples showed hypermethylation in 10 genes (SFRP1, SST, BNC1, MAL, SLIT2, SFRP2, SLIT3, ALDH1A3, TMEFF2, WIF1, whereas the frequency of examined mutations were below 25%. These genes distinguished precancerous and cancerous lesions from inflamed and healthy tissue. The mRNA alterations that might be caused by systematic methylation could be partly reversed by demethylation treatment. Systematic changes in methylation patterns were observed early in CRC carcinogenesis, occuring in precursor lesions and CRC. Thus we conclude that DNA hypermethylation is an early and systematic event in colorectal carcinogenesis, and it could be potentially reversed by systematic demethylation therapy, but it would need more in vitro and in vivo experiments to support this theory.

  11. Genome-wide Differences in DNA Methylation Changes in Two Contrasting Rice Genotypes in Response to Drought Conditions

    Directory of Open Access Journals (Sweden)

    Wensheng Wang

    2016-11-01

    Full Text Available Differences in drought stress tolerance within diverse rice genotypes have been attributed to genetic diversity and epigenetic alterations. DNA methylation is an important epigenetic modification that influences diverse biological processes, but its effects on rice drought stress tolerance are poorly understood. In this study, methylated DNA immunoprecipitation sequencing and an Affymetrix GeneChip rice genome array were used to profile the DNA methylation patterns and transcriptomes of the drought-tolerant introgression line DK151 and its drought-sensitive recurrent parent IR64 under drought and control conditions. The introgression of donor genomic DNA induced genome-wide DNA methylation changes in DK151 plants. A total of 1190 differentially methylated regions (DMRs were detected between the two genotypes under normal growth conditions, and the DMR-associated genes in DK151 plants were mainly related to stress response, programmed cell death, and nutrient reservoir activity, which are implicated to constitutive drought stress tolerance. A comparison of the DNA methylation changes in the two genotypes under drought conditions indicated that DK151 plants have a more stable methylome, with only 92 drought-induced DMRs, than IR64 plants with 506 DMRs. Gene ontology analyses of the DMR-associated genes in drought-stressed plants revealed that changes to the DNA methylation status of genotype-specific genes are associated with the epigenetic regulation of drought stress responses. Transcriptome analysis further helped to identify a set of 12 and 23 DMR-associated genes that were differentially expressed in DK151 and IR64, respectively, under drought stress compared with respective controls. Correlation analysis indicated that DNA methylation has various effects on gene expression, implying that it affects gene expression directly or indirectly through diverse regulatory pathways. Our results indicate that drought-induced alterations to DNA

  12. DNA methylation at enhancers identifies distinct breast cancer lineages.

    Science.gov (United States)

    Fleischer, Thomas; Tekpli, Xavier; Mathelier, Anthony; Wang, Shixiong; Nebdal, Daniel; Dhakal, Hari P; Sahlberg, Kristine Kleivi; Schlichting, Ellen; Børresen-Dale, Anne-Lise; Borgen, Elin; Naume, Bjørn; Eskeland, Ragnhild; Frigessi, Arnoldo; Tost, Jörg; Hurtado, Antoni; Kristensen, Vessela N

    2017-11-09

    Breast cancers exhibit genome-wide aberrant DNA methylation patterns. To investigate how these affect the transcriptome and which changes are linked to transformation or progression, we apply genome-wide expression-methylation quantitative trait loci (emQTL) analysis between DNA methylation and gene expression. On a whole genome scale, in cis and in trans, DNA methylation and gene expression have remarkably and reproducibly conserved patterns of association in three breast cancer cohorts (n = 104, n = 253 and n = 277). The expression-methylation quantitative trait loci associations form two main clusters; one relates to tumor infiltrating immune cell signatures and the other to estrogen receptor signaling. In the estrogen related cluster, using ChromHMM segmentation and transcription factor chromatin immunoprecipitation sequencing data, we identify transcriptional networks regulated in a cell lineage-specific manner by DNA methylation at enhancers. These networks are strongly dominated by ERα, FOXA1 or GATA3 and their targets were functionally validated using knockdown by small interfering RNA or GRO-seq analysis after transcriptional stimulation with estrogen.

  13. Pulmonary endothelial cell DNA methylation signature in pulmonary arterial hypertension.

    Science.gov (United States)

    Hautefort, Aurélie; Chesné, Julie; Preussner, Jens; Pullamsetti, Soni S; Tost, Jorg; Looso, Mario; Antigny, Fabrice; Girerd, Barbara; Riou, Marianne; Eddahibi, Saadia; Deleuze, Jean-François; Seeger, Werner; Fadel, Elie; Simonneau, Gerald; Montani, David; Humbert, Marc; Perros, Frédéric

    2017-08-08

    Pulmonary arterial hypertension (PAH) is a severe and incurable pulmonary vascular disease. One of the primary origins of PAH is pulmonary endothelial dysfunction leading to vasoconstriction, aberrant angiogenesis and smooth muscle cell proliferation, endothelial-to-mesenchymal transition, thrombosis and inflammation. Our objective was to study the epigenetic variations in pulmonary endothelial cells (PEC) through a specific pattern of DNA methylation. DNA was extracted from cultured PEC from idiopathic PAH ( n = 11), heritable PAH ( n = 10) and controls ( n = 18). DNA methylation was assessed using the Illumina HumanMethylation450 Assay. After normalization, samples and probes were clustered according to their methylation profile. Differential clusters were functionally analyzed using bioinformatics tools. Unsupervised hierarchical clustering allowed the identification of two clusters of probes that discriminates controls and PAH patients. Among 147 differential methylated promoters, 46 promoters coding for proteins or miRNAs were related to lipid metabolism. Top 10 up and down-regulated genes were involved in lipid transport including ABCA1, ABCB4, ADIPOQ, miR-26A, BCL2L11. NextBio meta-analysis suggested a contribution of ABCA1 in PAH. We confirmed ABCA1 mRNA and protein downregulation specifically in PAH PEC by qPCR and immunohistochemistry and made the proof-of-concept in an experimental model of the disease that its targeting may offer novel therapeutic options. In conclusion, DNA methylation analysis identifies a set of genes mainly involved in lipid transport pathway which could be relevant to PAH pathophysiology.

  14. Epigenetic DNA Methylation Mediating Octopus vulgaris Early Development: Effect of Essential Fatty Acids Enriched Diet

    Directory of Open Access Journals (Sweden)

    Pablo García-Fernández

    2017-05-01

    Full Text Available The common octopus, Octopus vulgaris, is a good candidate for aquaculture but a sustainable production is still unviable due to an almost total mortality during the paralarvae stage. DNA methylation regulates gene expression in the eukaryotic genome, and has been shown to exhibit plasticity throughout O. vulgaris life cycle, changing profiles from paralarvae to adult stages. This pattern of methylation could be sensitive to small alterations in nutritional and environmental conditions during the species early development, thus impacting on its health, growth and survival. In this sense, a full understanding of the epigenetic mechanisms operating during O. vulgaris development would contribute to optimizing the culture conditions for this species. Paralarvae of O. vulgaris were cultured over 28 days post-hatching (dph using two different Artemia sp. based diets: control and a long chain polyunsaturated fatty acids (LC-PUFA enriched diet. The effect of the diets on the paralarvae DNA global methylation was analyzed by Methyl-Sensitive Amplification Polymorphism (MSAP and global 5-methylcytosine enzyme-linked immunosorbent assay (ELISA approaches. The analysis of different methylation states over the time revealed a global demethylation phenomena occurring along O. vulgaris early development being directly driven by the age of the paralarvae. A gradual decline in methylated loci (hemimethylated, internal cytosine methylated, and hypermethylated parallel to a progressive gain in non-methylated (NMT loci toward the later sampling points was verified regardless of the diet provided and demonstrate a pre-established and well-defined demethylation program during its early development, involving a 20% of the MSAP loci. In addition, a differential behavior between diets was also observed at 20 dph, with a LC-PUFA supplementation effect over the methylation profiles. The present results show significant differences on the paralarvae methylation profiles

  15. Atypical DNA methylation of genes encoding cysteine-rich peptides in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    You Wanhui

    2012-04-01

    Full Text Available Abstract Background In plants, transposons and non-protein-coding repeats are epigenetically silenced by CG and non-CG methylation. This pattern of methylation is mediated in part by small RNAs and two specialized RNA polymerases, termed Pol IV and Pol V, in a process called RNA-directed DNA methylation. By contrast, many protein-coding genes transcribed by Pol II contain in their gene bodies exclusively CG methylation that is independent of small RNAs and Pol IV/Pol V activities. It is unclear how the different methylation machineries distinguish between transposons and genes. Here we report on a group of atypical genes that display in their coding region a transposon-like methylation pattern, which is associated with gene silencing in sporophytic tissues. Results We performed a methylation-sensitive amplification polymorphism analysis to search for targets of RNA-directed DNA methylation in Arabidopsis thaliana and identified several members of a gene family encoding cysteine-rich peptides (CRPs. In leaves, the CRP genes are silent and their coding regions contain dense, transposon-like methylation in CG, CHG and CHH contexts, which depends partly on the Pol IV/Pol V pathway and small RNAs. Methylation in the coding region is reduced, however, in the synergid cells of the female gametophyte, where the CRP genes are specifically expressed. Further demonstrating that expressed CRP genes lack gene body methylation, a CRP4-GFP fusion gene under the control of the constitutive 35 S promoter remains unmethylated in leaves and is transcribed to produce a translatable mRNA. By contrast, a CRP4-GFP fusion gene under the control of a CRP4 promoter fragment acquires CG and non-CG methylation in the CRP coding region in leaves similar to the silent endogenous CRP4 gene. Conclusions Unlike CG methylation in gene bodies, which does not dramatically affect Pol II transcription, combined CG and non-CG methylation in CRP coding regions is likely to

  16. Whole-genome methylation caller designed for methyl- DNA ...

    African Journals Online (AJOL)

    etchie

    2013-02-20

    Feb 20, 2013 ... Much of the human genome is CpG depleted with the exception of CpG islands which are defined as 200-bp stretches of DNA with a C+G content of 50% and an observed CpG/expected CpG exceeding 0.6(Gardiner-. Garden and Frommer, 1987). In the promotor region of genes CpG islands are abundant ...

  17. DNA methylation of ESR-1 and N-33 in colorectal mucosa of patients with ulcerative colitis (UC).

    Science.gov (United States)

    Arasaradnam, Ramesh P; Khoo, Kevin; Bradburn, Mike; Mathers, John C; Kelly, Seamus B

    2010-07-01

    Epigenetic marking such as DNA methylation influence gene transcription and chromosomal stability and may also be affected by environmental exposures. Few studies exist on alteration in DNA methylation profiles (genomic and gene specific methylation) in patients with Ulcerative Colitis (UC) and no studies exist that assess its relationship with lifestyle exposures. The methylation level of both ESR-1 and N-33 genes were significantly higher in UC subjects compared with controls (7.9% vs. 5.9%; p = 0.015 and 66% vs. 9.3%; p UC and age and sex matched controls. No associations between indices of DNA methylation and anthropometric measures or smoking patterns were detected. To assess genomic methylation and promoter methylation of the ESR-1 (oestrogen receptor-1) and N-33 (tumor suppressor candidate-3) genes in the macroscopically normal mucosa of UC patients as well as to investigate effects of anthropometric and lifestyle exposures on DNA methylation. Sixty eight subjects were recruited (24 UC and 44 age and sex matched controls). Colorectal mucosal biopsies were obtained and DNA was extracted. Genomic DNA methylation was quantified using the tritium-labelled cytosine extension assay (3[H] dCTP) while gene specific methylation was quantified using the COBRA method. For the first time, we have shown increased methylation in the promoter regions of the putative tumor suppressor gene N-33 in macroscopically normal mucosa of patients with UC. In addition, we have confirmed that methylation of ESR-1 promoter is higher in UC patients compared with age and sex matched controls. These findings suggest that inactivation through methylation of the putative tumor suppressor genes N-33 and ESR-1 may not be associated with colorectal carcinogenesis in UC.

  18. Dynamic changes in DNA methylation of stress-associated genes (OXTR, BDNF ) after acute psychosocial stress

    Science.gov (United States)

    Unternaehrer, E; Luers, P; Mill, J; Dempster, E; Meyer, A H; Staehli, S; Lieb, R; Hellhammer, D H; Meinlschmidt, G

    2012-01-01

    Environmentally induced epigenetic alterations are related to mental health. We investigated quantitative DNA methylation status before and after an acute psychosocial stressor in two stress-related genes: oxytocin receptor (OXTR) and brain-derived neurotrophic factor (BDNF ). The cross sectional study took place at the Division of Theoretical and Clinical Psychobiology, University of Trier, Germany and was conducted from February to August 2009. We included 83 participants aged 61–67 years. Thereof, 76 participants completed the full study procedure consisting of blood sampling before (pre-stress), 10 min after (post-stress) and 90 min after (follow-up) the Trier social stress test. We assessed quantitative DNA methylation of whole-blood cells using Sequenom EpiTYPER. Methylation status differed between sampling times in one target sequence of OXTR (P<0.001): methylation increased from pre- to post-stress (P=0.009) and decreased from post-stress to follow-up (P<0.001). This decrease was also found in a second target sequence of OXTR (P=0.034), where it lost statistical significance when blood cell count was statistically controlled. We did not detect any time-associated differences in methylation status of the examined BDNF region. The results suggest a dynamic regulation of DNA methylation in OXTR—which may in part reflect changes in blood cell composition—but not BDNF after acute psychosocial stress. This may enhance the understanding of how psychosocial events alter DNA methylation and could provide new insights into the etiology of mental disorders. PMID:22892716

  19. Techniques of DNA methylation analysis with nutritional applications.

    Science.gov (United States)

    Mansego, Maria L; Milagro, Fermín I; Campión, Javier; Martínez, J Alfredo

    2013-01-01

    Epigenetic mechanisms are likely to play an important role in the regulation of metabolism and body weight through gene-nutrient interactions. This review focuses on methods for analyzing one of the most important epigenetic mechanisms, DNA methylation, from single nucleotide to global measurement depending on the study goal and scope. In addition, this study highlights the major principles and methods for DNA methylation analysis with emphasis on nutritional applications. Recent developments concerning epigenetic technologies are showing promising results of DNA methylation levels at a single-base resolution and provide the ability to differentiate between 5-methylcytosine and other nucleotide modifications such as 5-hydroxymethylcytosine. A large number of methods can be used for the analysis of DNA methylation such as pyrosequencing™, primer extension or real-time PCR methods, and genome-wide DNA methylation profile from microarray or sequencing-based methods. Researchers should conduct a preliminary analysis focused on the type of validation and information provided by each technique in order to select the best method fitting for their nutritional research interests. Copyright © 2013 S. Karger AG, Basel.

  20. Genome-wide DNA methylation changes with age in disease-free human skeletal muscle

    Science.gov (United States)

    Zykovich, Artem; Hubbard, Alan; Flynn, James M; Tarnopolsky, Mark; Fraga, Mario F; Kerksick, Chad; Ogborn, Dan; MacNeil, Lauren; Mooney, Sean D; Melov, Simon

    2014-01-01

    A decline in skeletal muscle mass and function with aging is well recognized, but remains poorly characterized at the molecular level. Here, we report for the first time a genome-wide study of DNA methylation dynamics in skeletal muscle of healthy male individuals during normal human aging. We predominantly observed hypermethylation throughout the genome within the aged group as compared to the young subjects. Differentially methylated CpG (dmCpG) nucleotides tend to arise intragenically and are underrepresented in promoters and are overrepresented in the middle and 3′ end of genes. The intragenic methylation changes are overrepresented in genes that guide the formation of the junction of the motor neuron and myofibers. We report a low level of correlation of gene expression from previous studies of aged muscle with our current analysis of DNA methylation status. For those genes that had both changes in methylation and gene expression with age, we observed a reverse correlation, with the exception of intragenic hypermethylated genes that were correlated with an increased gene expression. We suggest that a minimal number of dmCpG sites or select sites are required to be altered in order to correlate with gene expression changes. Finally, we identified 500 dmCpG sites that perform well in discriminating young from old samples. Our findings highlight epigenetic links between aging postmitotic skeletal muscle and DNA methylation. PMID:24304487

  1. DNA methylation pattern in overweight women under an energy-restricted diet supplemented with fish oil.

    Science.gov (United States)

    do Amaral, Cátia Lira; Milagro, Fermín I; Curi, Rui; Martínez, J Alfredo

    2014-01-01

    Dietary factors modulate gene expression and are able to alter epigenetic signatures in peripheral blood mononuclear cells (PBMC). However, there are limited studies about the effects of omega-3 polyunsaturated fatty acids (n-3 PUFA) on the epigenetic mechanisms that regulate gene expression. This research investigates the effects of n-3-rich fish oil supplementation on DNA methylation profile of several genes whose expression has been reported to be downregulated by n-3 PUFA in PBMC: CD36, FFAR3, CD14, PDK4, and FADS1. Young overweight women were supplemented with fish oil or control in a randomized 8-week intervention trial following a balanced diet with 30% energy restriction. Fatty acid receptor CD36 decreased DNA methylation at CpG +477 due to energy restriction. Hypocaloric diet-induced weight loss also reduced the methylation percentages of CpG sites located in CD14, PDK4, and FADS1. The methylation patterns of these genes were only slightly affected by the fish oil supplementation, being the most relevant to the attenuation of the weight loss-induced decrease in CD36 methylation after adjusting by baseline body weight. These results suggest that the n-3 PUFA-induced changes in the expression of these genes in PBMC are not mediated by DNA methylation, although other epigenetic mechanisms cannot be discarded.

  2. Effects of environmental noise exposure on DNA methylation in the brain and metabolic health.

    Science.gov (United States)

    Guo, Liqiong; Li, Peng-Hui; Li, Hua; Colicino, Elena; Colicino, Silvia; Wen, Yi; Zhang, Ruiping; Feng, Xiaotian; Barrow, Timothy M; Cayir, Akin; Baccarelli, Andrea A; Byun, Hyang-Min

    2017-02-01

    Environmental noise exposure is associated with adverse effects on human health including hearing loss, heart disease, and changes in stress-related hormone levels. Alteration in DNA methylation in response to environmental exposures is a well-known phenomenon and it is implicated in many human diseases. Understanding how environmental noise exposures affect DNA methylation patterns may help to elucidate the link between noise and adverse effects on health. In this pilot study we examined the effects of environmental noise exposure on DNA methylation of genes related to brain function and investigated whether these changes are related with metabolic health. We exposed four groups of male Wistar rats to moderate intensity noise (70-75dB with 20-4000Hz) at night for three days as short-term exposure, and for three weeks as long-term exposure. Noise exposure was limited to 45dB during the daytime. Control groups were exposed to only 45dB, day and night. We measured DNA methylation in the Bdnf, Comt, Crhr1, Mc2r, and Snca genes in tissue from four brain regions of the rats (hippocampus, frontal lobe, medulla oblongata, and inferior colliculus). Further, we measured blood pressure and body weight after long-term noise exposure. We found that environmental noise exposure is associated with gene-specific DNA methylation changes in specific regions of the brain. Changes in DNA methylation are significantly associated with changes in body weight (between Bdnf DNA methylation and Δ body weight: r=0.59, p=0.018; and between LINE-1 ORF DNA methylation and Δ body weight: =-0.80, p=0.0004). We also observed that noise exposure decreased blood pressure (p=0.038 for SBP, p=0.017 for DBP and p 0. 017 for MAP) and decreased body weight (β=-26g, p=0.008). In conclusion, environmental noise exposures can induce changes in DNA methylation in the brain, which may be associated with adverse effects upon metabolic health through modulation of response to stress-related hormones

  3. The effects of long-term daily folic acid and vitamin B12 supplementation on genome-wide DNA methylation in elderly subjects

    NARCIS (Netherlands)

    Gils-Kok, van Dieuwertje; Dhonukshe-Rutten, Rosalie; Lute, Carolien; Heil, S.G.; Uitterlinden, Andre G.; Velde, van der Nathalie; Meurs, van Joyce B.; Schoor, van Natasja M.; Hooiveld, Guido; Groot, de Lisette; Kampman, Ellen; Steegenga, Wilma

    2015-01-01

    Folate, and its synthetic form folic acid, function as donor of one-carbon units and have been, together with other B-vitamins, implicated in programming of epigenetic processes such as DNA methylation during early development. To what extent regulation of DNA methylation can be altered via

  4. The effects of long-term daily folic acid and vitamin B-12 supplementation on genome-wide DNA methylation in elderly subjects

    NARCIS (Netherlands)

    Kok, D.E.G.; Dhonukshe-Rutten, R.A.M.; Lute, C.; Heil, S.G.; Uitterlinden, A. G.; van der Velde, N.; van Meurs, J.B.J.; van Schoor, N.M.; Hooiveld, G.J.E.J.; de Groot, L.C.P.G.; Kampman, E.; Steegenga, W.T.

    2015-01-01

    Background: Folate and its synthetic form folic acid function as donor of one-carbon units and have been, together with other B-vitamins, implicated in programming of epigenetic processes such as DNA methylation during early development. To what extent regulation of DNA methylation can be altered

  5. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation.

    Science.gov (United States)

    Lewis, Annabelle; Mitsuya, Kohzoh; Umlauf, David; Smith, Paul; Dean, Wendy; Walter, Joern; Higgins, Michael; Feil, Robert; Reik, Wolf

    2004-12-01

    Imprinted genes are expressed from only one of the parental chromosomes and are marked epigenetically by DNA methylation and histone modifications. The imprinting center 2 (IC2) on mouse distal chromosome 7 is flanked by several paternally repressed genes, with the more distant ones imprinted exclusively in the placenta. We found that most of these genes lack parent-specific DNA methylation, and genetic ablation of methylation does not lead to loss of their imprinting in the trophoblast (placenta). The silent paternal alleles of the genes are marked in the trophoblast by repressive histone modifications (dimethylation at Lys9 of histone H3 and trimethylation at Lys27 of histone H3), which are disrupted when IC2 is deleted, leading to reactivation of the paternal alleles. Thus, repressive histone methylation is recruited by IC2 (potentially through a noncoding antisense RNA) to the paternal chromosome in a region of at least 700 kb and maintains imprinting in this cluster in the placenta, independently of DNA methylation. We propose that an evolutionarily older imprinting mechanism limited to extraembryonic tissues was based on histone modifications, and that this mechanism was subsequently made more stable for use in embryonic lineages by the recruitment of DNA methylation.

  6. DNA Methylation Events as Markers for Diagnosis and Management of Acute Myeloid Leukemia and Myelodysplastic Syndrome

    Directory of Open Access Journals (Sweden)

    Geórgia Muccillo Dexheimer

    2017-01-01

    Full Text Available During the onset and progression of hematological malignancies, many changes occur in cellular epigenome, such as hypo- or hypermethylation of CpG islands in promoter regions. DNA methylation is an epigenetic modification that regulates gene expression and is a key event for tumorigenesis. The continuous search for biomarkers that signal early disease, indicate prognosis, and act as therapeutic targets has led to studies investigating the role of DNA in cancer onset and progression. This review focuses on DNA methylation changes as potential biomarkers for diagnosis, prognosis, response to treatment, and early toxicity in acute myeloid leukemia and myelodysplastic syndrome. Here, we report that distinct changes in DNA methylation may alter gene function and drive malignant cellular transformation during several stages of leukemogenesis. Most of these modifications occur at an early stage of disease and may predict myeloid/lymphoid transformation or response to therapy, which justifies its use as a biomarker for disease onset and progression. Methylation patterns, or its dynamic change during treatment, may also be used as markers for patient stratification, disease prognosis, and response to treatment. Further investigations of methylation modifications as therapeutic biomarkers, which may correlate with therapeutic response and/or predict treatment toxicity, are still warranted.

  7. Genome-wide DNA methylation assay reveals novel candidate biomarker genes in cervical cancer.

    Science.gov (United States)

    Farkas, Sanja A; Milutin-Gašperov, Nina; Grce, Magdalena; Nilsson, Torbjörn K

    2013-11-01

    The oncogenic human papilloma viruses (HPVs) are associated with precancerous cervical lesions and development of cervical cancer. The DNA methylation signatures of the host genome in normal, precancerous and cervical cancer tissue may indicate tissue-specific perturbation in carcinogenesis. The aim of this study was to identify new candidate genes that are differentially methylated in squamous cell carcinoma compared with DNA samples from cervical intraepithelial neoplasia grade 3 (CIN3) and normal cervical scrapes. The Illumina Infinium HumanMethylation450 BeadChip method identifies genome-wide DNA methylation changes in CpG islands, CpG shores and shelves. Our findings showed an extensive differential methylation signature in cervical cancer compared with the CIN3 or normal cervical tissues. The identified candidate biomarker genes for cervical cancer represent several types of mechanisms in the cellular machinery that are epigenetically deregulated by hypermethylation, such as membrane receptors, intracellular signaling and gene transcription. The results also confirm extensive hypomethylation of genes in the immune system in cancer tissues. These insights into the functional role of DNA methylome alterations in cervical cancer could be clinically applicable in diagnostics and prognostics, and may guide the development of new epigenetic therapies.

  8. Genome-Wide DNA Methylation in Mixed Ancestry Individuals with Diabetes and Prediabetes from South Africa

    Science.gov (United States)

    Pheiffer, Carmen; Humphries, Stephen E.; Gamieldien, Junaid; Erasmus, Rajiv T.

    2016-01-01

    Aims. To conduct a genome-wide DNA methylation in individuals with type 2 diabetes, individuals with prediabetes, and control mixed ancestry individuals from South Africa. Methods. We used peripheral blood to perform genome-wide DNA methylation analysis in 3 individuals with screen detected diabetes, 3 individuals with prediabetes, and 3 individuals with normoglycaemia from the Bellville South Community, Cape Town, South Africa, who were age-, gender-, body mass index-, and duration of residency-matched. Methylated DNA immunoprecipitation (MeDIP) was performed by Arraystar Inc. (Rockville, MD, USA). Results. Hypermethylated DMRs were 1160 (81.97%) and 124 (43.20%), respectively, in individuals with diabetes and prediabetes when both were compared to subjects with normoglycaemia. Our data shows that genes related to the immune system, signal transduction, glucose transport, and pancreas development have altered DNA methylation in subjects with prediabetes and diabetes. Pathway analysis based on the functional analysis mapping of genes to KEGG pathways suggested that the linoleic acid metabolism and arachidonic acid metabolism pathways are hypomethylated in prediabetes and diabetes. Conclusions. Our study suggests that epigenetic changes are likely to be an early process that occurs before the onset of overt diabetes. Detailed analysis of DMRs that shows gradual methylation differences from control versus prediabetes to prediabetes versus diabetes in a larger sample size is required to confirm these findings. PMID:27555869

  9. Obesity-related DNA methylation at imprinted genes in human sperm: Results from the TIEGER study.

    Science.gov (United States)

    Soubry, Adelheid; Guo, Lisa; Huang, Zhiqing; Hoyo, Cathrine; Romanus, Stephanie; Price, Thomas; Murphy, Susan K

    2016-01-01

    Epigenetic reprogramming in mammalian gametes resets methylation marks that regulate monoallelic expression of imprinted genes. In males, this involves erasure of the maternal methylation marks and establishment of paternal-specific methylation to appropriately guide normal development. The degree to which exogenous factors influence the fidelity of methylation reprogramming is unknown. We previously found an association between paternal obesity and altered DNA methylation in umbilical cord blood, suggesting that the father's endocrine, nutritional, or lifestyle status could potentiate intergenerational heritable epigenetic abnormalities. In these analyses, we examine the relationship between male overweight/obesity and DNA methylation status of imprinted gene regulatory regions in the gametes. Linear regression models were used to compare sperm DNA methylation percentages, quantified by bisulfite pyrosequencing, at 12 differentially methylated regions (DMRs) from 23 overweight/obese and 44 normal weight men. Our study population included 69 volunteers from The Influence of the Environment on Gametic Epigenetic Reprogramming (TIEGER) study, based in NC, USA. After adjusting for age and fertility patient status, semen from overweight or obese men had significantly lower methylation percentages at the MEG3 (β = -1.99; SE = 0.84; p = 0.02), NDN (β = -1.10; SE = 0.47; p = 0.02), SNRPN (β = -0.65; SE = 0.27; p = 0.02), and SGCE/PEG10 (β = -2.5; SE = 1.01; p = 0.01) DMRs. Our data further suggest a slight increase in DNA methylation at the MEG3-IG DMR (β = +1.22; SE = 0.59; p = 0.04) and H19 DMR (β = +1.37; SE = 0.62; p = 0.03) in sperm of overweight/obese men. Our data support that male overweight/obesity status is traceable in the sperm epigenome. Further research is needed to understand the effect of such changes and the point of origin of DNA methylation differences between lean and

  10. DNA Methylation as Surrogate Marker For Gastric Cancer

    OpenAIRE

    Oh, Jung-Hwan; Jung, Sung-Hoon; Hong, Seung-Jin; Rhyu, Mun-Gan

    2015-01-01

    Stomach cancer remains, stubbornly, highly prevalent in East Asia. Still, stomach cancer has few biomarkers by which it can be predicted. Helicobacter pylori infection, a known carcinogen of stomach cancer, usually goes undetected prior to cancer diagnosis, due to the poor mucosal environments that its related gastric atrophy causes. We propose, herein, an endoscopic-biopsy-based cancer-predicting DNA methylation marker. We semi-quantitatively examined the methylation-variable sites near the ...

  11. Effects of temperature and relative humidity on DNA methylation.

    Science.gov (United States)

    Bind, Marie-Abele; Zanobetti, Antonella; Gasparrini, Antonio; Peters, Annette; Coull, Brent; Baccarelli, Andrea; Tarantini, Letizia; Koutrakis, Petros; Vokonas, Pantel; Schwartz, Joel

    2014-07-01

    Previous studies have found relationships between DNA methylation and various environmental contaminant exposures. Associations with weather have not been examined. Because temperature and humidity are related to mortality even on non-extreme days, we hypothesized that temperature and relative humidity may affect methylation. We repeatedly measured methylation on long interspersed nuclear elements (LINE-1), Alu, and 9 candidate genes in blood samples from 777 elderly men participating in the Normative Aging Study (1999-2009). We assessed whether ambient temperature and relative humidity are related to methylation on LINE-1 and Alu, as well as on genes controlling coagulation, inflammation, cortisol, DNA repair, and metabolic pathway. We examined intermediate-term associations of temperature, relative humidity, and their interaction with methylation, using distributed lag models. Temperature or relative humidity levels were associated with methylation on tissue factor (F3), intercellular adhesion molecule 1 (ICAM-1), toll-like receptor 2 (TRL-2), carnitine O-acetyltransferase (CRAT), interferon gamma (IFN-γ), inducible nitric oxide synthase (iNOS), and glucocorticoid receptor, LINE-1, and Alu. For instance, a 5°C increase in 3-week average temperature in ICAM-1 methylation was associated with a 9% increase (95% confidence interval: 3% to 15%), whereas a 10% increase in 3-week average relative humidity was associated with a 5% decrease (-8% to -1%). The relative humidity association with ICAM-1 methylation was stronger on hot days than mild days. DNA methylation in blood cells may reflect biological effects of temperature and relative humidity. Temperature and relative humidity may also interact to produce stronger effects.

  12. Tea and coffee consumption in relation to DNA methylation in four European cohorts.

    Science.gov (United States)

    Ek, Weronica E; Tobi, Elmar W; Ahsan, Muhammad; Lampa, Erik; Ponzi, Erica; Kyrtopoulos, Soterios A; Georgiadis, Panagiotis; Lumey, L H; Heijmans, Bastiaan T; Botsivali, Maria; Bergdahl, Ingvar A; Karlsson, Torgny; Rask-Andersen, Mathias; Palli, Domenico; Ingelsson, Erik; Hedman, Åsa K; Nilsson, Lena M; Vineis, Paolo; Lind, Lars; Flanagan, James M; Johansson, Åsa

    2017-08-15

    Lifestyle factors, such as food choices and exposure to chemicals, can alter DNA methylation and lead to changes in gene activity. Two such exposures with pharmacologically active components are coffee and tea consumption. Both coffee and tea have been suggested to play an important role in modulating disease-risk in humans by suppressing tumour progression, decreasing inflammation and influencing estrogen metabolism. These mechanisms may be mediated by changes in DNA methylation. To investigate if DNA methylation in blood is associated with coffee and tea consumption, we performed a genome-wide DNA methylation study for coffee and tea consumption in four European cohorts (N = 3,096). DNA methylation was measured from whole blood at 421,695 CpG sites distributed throughout the genome and analysed in men and women both separately and together in each cohort. Meta-analyses of the results and additional regional-level analyses were performed. After adjusting for multiple testing, the meta-analysis revealed that two individual CpG-sites, mapping to DNAJC16 and TTC17, were differentially methylated in relation to tea consumption in women. No individual sites were associated with men or with the sex-combined analysis for tea or coffee. The regional analysis revealed that 28 regions were differentially methylated in relation to tea consumption in women. These regions contained genes known to interact with estradiol metabolism and cancer. No significant regions were found in the sex-combined and male-only analysis for either tea or coffee consumption. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. miRNAting control of DNA methylation

    Indian Academy of Sciences (India)

    data. Supplementary table 3. Person correlation coefficients between the miRNAs and methylation specific genes calculated using RPKM and Microarray data. Supplementary table 4. Identification of transcription factors on known target sequences, downloaded from AGRIS database with expression correlation between the ...

  14. Brain feminization requires active repression of masculinization via DNA methylation

    Science.gov (United States)

    Nugent, Bridget M.; Wright, Christopher L.; Shetty, Amol C.; Hodes, Georgia E.; Lenz, Kathryn M.; Mahurkar, Anup; Russo, Scott J.; Devine, Scott E.; McCarthy, Margaret M.

    2015-01-01

    The developing mammalian brain is destined for a female phenotype unless exposed to gonadal hormones during a perinatal sensitive period. It has been assumed that the undifferentiated brain is masculinized by direct induction of transcription by ligand-activated nuclear steroid receptors. We found that a primary effect of gonadal steroids in the highly sexually-dimorphic preoptic area (POA) is to reduce activity of DNA methyltransferase (Dnmt) enzymes, thereby decreasing DNA methylation and releasing masculinizing genes from epigenetic repression. Pharmacological inhibition of Dnmts mimicked gonadal steroids, resulting in masculinized neuronal markers and male sexual behavior in females. Conditional knockout of the de novo Dnmt isoform, Dnmt3a, also masculinized sexual behavior in female mice. RNA sequencing revealed gene and isoform variants modulated by methylation that may underlie the divergent reproductive behaviors of males versus females. Our data show that brain feminization is maintained by the active suppression of masculinization via DNA methylation. PMID:25821913

  15. Global DNA methylation changes in Cucurbitaceae inter-species grafting

    Directory of Open Access Journals (Sweden)

    Evangelia Avramidou

    2015-04-01

    Full Text Available Grafting has been used to improve yield, fruit quality and disease resistance in a range of tree and vegetable species. The molecular mechanisms underpinning grafting responses have only recently started to be delineated. One of those mechanisms involves long distance transfer of genetic material from rootstock to scion alluding to an epigenetic component to the grafting process. In the research presented herein we extended published work on heritable changes in the DNA methylation pattern of Solanaceae scion genomes, in Cucurbitaceae inter-species grafting. Specifically, we examined global DNA methylation changes in scions of cucumber, melon and watermelon heterografted onto pumpkin rootstocks using MSAP analysis. We observed a significant increase of global DNA methylation in cucumber and melon scions pointing to an epigenetic effect in Cucurbitaceae heterografting. Exploitation of differential epigenetic marking in different rootstock-scion combinations could lead to development of epi-molecular markers for generation and selection of superior quality grafted vegetables.

  16. DNA promoter methylation in breast tumors: no association with genetic polymorphisms in MTHFR and MTR.

    Science.gov (United States)

    Tao, Meng Hua; Shields, Peter G; Nie, Jing; Marian, Catalin; Ambrosone, Christine B; McCann, Susan E; Platek, Mary; Krishnan, Shiva S; Xie, Bin; Edge, Stephen B; Winston, Janet; Vito, Dominica; Trevisan, Maurizio; Freudenheim, Jo L

    2009-03-01

    Aberrant promoter methylation is recognized as an important feature of breast carcinogenesis. We hypothesized that genetic variation of genes for methylenetetrahydrofolate reductase (MTHFR) and methionine synthase (MTR), two critical enzymes in the one-carbon metabolism, may alter DNA methylation levels and thus influence DNA methylation in breast cancer. We evaluated case-control association of MTHFR C677T, A1298C, and MTR A2756G polymorphisms for cases strata-defined by promoter methylation status for each of three genes, E-cadherin, p16, and RAR-beta2 in breast cancer; in addition, we evaluated case-case comparisons of the likelihood of promoter methylation in relation to genotypes using a population-based case-control study conducted in Western New York State. Methylation was evaluated with real-time methylation-specific PCRs for 803 paraffin-embedded breast tumor tissues from women with primary, incident breast cancer. We applied unordered polytomous regression and unconditional logistic regression to derive adjusted odds ratios and 95% confidence intervals. We did not find any association of MTHFR and MTR polymorphisms with breast cancer risk stratified by methylation status nor between polymorphisms and likelihood of promoter methylation of any of the genes. There was no evidence of difference within strata defined by menopausal status, estrogen receptor status, folate intake, and lifetime alcohol consumption. Overall, we found no evidence that these common polymorphisms of the MTHFR and MTR genes are associated with promoter methylation of E-cadherin, p16, and RAR-beta2 genes in breast cancer.

  17. Investigation of DNA damage response and apoptotic gene methylation pattern in sporadic breast tumors using high throughput quantitative DNA methylation analysis technology

    Directory of Open Access Journals (Sweden)

    Prakash Neeraj

    2010-11-01

    Full Text Available Abstract Background- Sporadic breast cancer like many other cancers is proposed to be a manifestation of abnormal genetic and epigenetic changes. For the past decade our laboratory has identified genes involved in DNA damage response (DDR, apoptosis and immunesurvelliance pathways to influence sporadic breast cancer risk in north Indian population. Further to enhance our knowledge at the epigenetic level, we performed DNA methylation study involving 17 gene promoter regions belonging to DNA damage response (DDR and death receptor apoptotic pathway in 162 paired normal and cancerous breast tissues from 81 sporadic breast cancer patients, using a high throughput quantitative DNA methylation analysis technology. Results- The study identified five genes with statistically significant difference between normal and tumor tissues. Hypermethylation of DR5 (P = 0.001, DCR1 (P = 0.00001, DCR2 (P = 0.0000000005 and BRCA2 (P = 0.007 and hypomethylation of DR4 (P = 0.011 in sporadic breast tumor tissues suggested a weak/aberrant activation of the DDR/apoptotic pathway in breast tumorigenesis. Negative correlation was observed between methylation status and transcript expression levels for TRAIL, DR4, CASP8, ATM, CHEK2, BRCA1 and BRCA2 CpG sites. Categorization of the gene methylation with respect to the clinicopathological parameters showed an increase in aberrant methylation pattern in advanced tumors. These uncharacteristic methylation patterns corresponded with decreased death receptor apoptosis (P = 0.047 and DNA damage repair potential (P = 0.004 in advanced tumors. The observation of BRCA2 -26 G/A 5'UTR polymorphism concomitant with the presence of methylation in the promoter region was novel and emerged as a strong candidate for susceptibility to sporadic breast tumors. Conclusion- Our study indicates that methylation of DDR-apoptotic gene promoters in sporadic breast cancer is not a random phenomenon. Progressive epigenetic alterations in advancing

  18. Quantitative DNA methylation analyses reveal stage dependent DNA methylation and association to clinico-pathological factors in breast tumors

    International Nuclear Information System (INIS)

    Klajic, Jovana; Tost, Jörg; Kristensen, Vessela N; Fleischer, Thomas; Dejeux, Emelyne; Edvardsen, Hege; Warnberg, Fredrik; Bukholm, Ida; Lønning, Per Eystein; Solvang, Hiroko; Børresen-Dale, Anne-Lise

    2013-01-01

    Aberrant DNA methylation of regulatory genes has frequently been found in human breast cancers and correlated to clinical outcome. In the present study we investigate stage specific changes in the DNA methylation patterns in order to identify valuable markers to understand how these changes affect breast cancer progression. Quantitative DNA methylation analyses of 12 candidate genes ABCB1, BRCCA1, CDKN2A, ESR1, GSTP1, IGF2, MGMT, HMLH1, PPP2R2B, PTEN, RASSF1A and FOXC1 was performed by pyrosequencing a series of 238 breast cancer tissue samples from DCIS to invasive tumors stage I to IV. Significant differences in methylation levels between the DCIS and invasive stage II tumors were observed for six genes RASSF1A, CDKN2A, MGMT, ABCB1, GSTP1 and FOXC1. RASSF1A, ABCB1 and GSTP1 showed significantly higher methylation levels in late stage compared to the early stage breast carcinoma. Z-score analysis revealed significantly lower methylation levels in DCIS and stage I tumors compared with stage II, III and IV tumors. Methylation levels of PTEN, PPP2R2B, FOXC1, ABCB1 and BRCA1 were lower in tumors harboring TP53 mutations then in tumors with wild type TP53. Z-score analysis showed that TP53 mutated tumors had significantly lower overall methylation levels compared to tumors with wild type TP53. Methylation levels of RASSF1A, PPP2R2B, GSTP1 and FOXC1 were higher in ER positive vs. ER negative tumors and methylation levels of PTEN and CDKN2A were higher in HER2 positive vs. HER2 negative tumors. Z-score analysis also showed that HER2 positive tumors had significantly higher z-scores of methylation compared to the HER2 negative tumors. Univariate survival analysis identifies methylation status of PPP2R2B as significant predictor of overall survival and breast cancer specific survival. In the present study we report that the level of aberrant DNA methylation is higher in late stage compared with early stage of invasive breast cancers and DCIS for genes mentioned above

  19. Differential DNA Methylation Analysis without a Reference Genome

    Directory of Open Access Journals (Sweden)

    Johanna Klughammer

    2015-12-01

    Full Text Available Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS, which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish. Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org. The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome.

  20. Quality control and statistical modeling for environmental epigenetics: a study on in utero lead exposure and DNA methylation at birth.

    Science.gov (United States)

    Goodrich, Jaclyn M; Sánchez, Brisa N; Dolinoy, Dana C; Zhang, Zhenzhen; Hernández-Ávila, Mauricio; Hu, Howard; Peterson, Karen E; Téllez-Rojo, Martha M

    2015-01-01

    DNA methylation data assayed using pyrosequencing techniques are increasingly being used in human cohort studies to investigate associations between epigenetic modifications at candidate genes and exposures to environmental toxicants and to examine environmentally-induced epigenetic alterations as a mechanism underlying observed toxicant-health outcome associations. For instance, in utero lead (Pb) exposure is a neurodevelopmental toxicant of global concern that has also been linked to altered growth in human epidemiological cohorts; a potential mechanism of this association is through alteration of DNA methylation (e.g., at growth-related genes). However, because the associations between toxicants and DNA methylation might be weak, using appropriate quality control and statistical methods is important to increase reliability and power of such studies. Using a simulation study, we compared potential approaches to estimate toxicant-DNA methylation associations that varied by how methylation data were analyzed (repeated measures vs. averaging all CpG sites) and by method to adjust for batch effects (batch controls vs. random effects). We demonstrate that correcting for batch effects using plate controls yields unbiased associations, and that explicitly modeling the CpG site-specific variances and correlations among CpG sites increases statistical power. Using the recommended approaches, we examined the association between DNA methylation (in LINE-1 and growth related genes IGF2, H19 and HSD11B2) and 3 biomarkers of Pb exposure (Pb concentrations in umbilical cord blood, maternal tibia, and maternal patella), among mother-infant pairs of the Early Life Exposures in Mexico to Environmental Toxicants (ELEMENT) cohort (n = 247). Those with 10 μg/g higher patella Pb had, on average, 0.61% higher IGF2 methylation (P = 0.05). Sex-specific trends between Pb and DNA methylation (P < 0.1) were observed among girls including a 0.23% increase in HSD11B2 methylation with 10

  1. A Novel Approach to Assay DNA Methylation in Prostate Cancer

    Science.gov (United States)

    2016-10-01

    late mitosis . Mol. Cell Biol. 20, 8602–8612 (2000). 26. Wu, L. et al. CCN3/NOV gene expression in human prostate cancer is directly suppressed by the...AWARD NUMBER: W81XWH-13-1-0319 TITLE: A Novel Approach to Assay DNA Methylation in Prostate Cancer PRINCIPAL INVESTIGATOR: Jindan Yu...Novel Approach to Assay DNA Methylation in Prostate Cancer 5b. GRANT NUMBER W81XWH-13-1-0319 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  2. DNA methylation and imprinting in plants: machinery and mechanisms.

    Science.gov (United States)

    Satyaki, P R V; Gehring, Mary

    2017-04-01

    Imprinting is an epigenetic phenomenon in which genes are expressed selectively from either the maternal or paternal alleles. In plants, imprinted gene expression is found in a tissue called the endosperm. Imprinting is often set by a unique epigenomic configuration in which the maternal chromosomes are less DNA methylated than their paternal counterparts. In this review, we synthesize studies that paint a detailed molecular portrait of the distinctive endosperm methylome. We will also discuss the molecular machinery that shapes and modifies this methylome, and the role of DNA methylation in imprinting.

  3. Correlation of SHOX2 Gene Amplification and DNA Methylation in Lung Cancer Tumors

    International Nuclear Information System (INIS)

    Schneider, Katja U; Liebenberg, Volker; Kneip, Christoph; Seegebarth, Anke; Erdogan, Fikret; Rappold, Gudrun; Schmidt, Bernd; Dietrich, Dimo; Fleischhacker, Michael; Leschber, Gunda; Merk, Johannes; Schäper, Frank; Stapert, Henk R; Vossenaar, Erik R; Weickmann, Sabine

    2011-01-01

    DNA methylation in the SHOX2 locus was previously used to reliably detect lung cancer in a group of critical controls, including 'cytologically negative' samples with no visible tumor cell content, at a high specificity based on the analysis of bronchial lavage samples. This study aimed to investigate, if the methylation correlates with SHOX2 gene expression and/or copy number alterations. An amplification of the SHOX2 gene locus together with the observed tumor-specific hypermethylation might explain the good performance of this marker in bronchial lavage samples. SHOX2 expression, gene copy number and DNA methylation were determined in lung tumor tissues and matched morphologically normal adjacent tissues (NAT) from 55 lung cancer patients. Quantitative HeavyMethyl (HM) real-time PCR was used to detect SHOX2 DNA methylation levels. SHOX2 expression was assayed with quantitative real-time PCR, and copy numbers alterations were measured with conventional real-time PCR and array CGH. A hypermethylation of the SHOX2 locus in tumor tissue as compared to the matched NAT from the same patient was detected in 96% of tumors from a group of 55 lung cancer patients. This correlated highly significantly with the frequent occurrence of copy number amplification (p < 0.0001), while the expression of the SHOX2 gene showed no difference. Frequent gene amplification correlated with hypermethylation of the SHOX2 gene locus. This concerted effect qualifies SHOX2 DNA methylation as a biomarker for lung cancer diagnosis, especially when sensitive detection is needed, i.e. in bronchial lavage or blood samples

  4. Concordant DNA Methylation in Synchronous Colorectal Carcinomas

    Science.gov (United States)

    Konishi, Kazuo; Shen, Lanlan; Jelinek, Jaroslav; Watanabe, Yoshiyuki; Ahmed, Saira; Kaneko, Kazuhiro; Kogo, Mari; Takano, Toshihumi; Imawari, Michio; Hamilton, Stanley R.; Issa, Jean-Pierre J.

    2012-01-01

    Epigenetic changes have been proposed as mediators of the field defect in colorectal carcinogenesis, which has implications for risk assessment and cancer prevention. As a test of this hypothesis, we evaluated the methylation status of eight genes (MINT1, 2, 31, MLH1, p16, p14, MGMT, and ESR1), as well as BRAF and KRAS mutations, in 57 multiple colorectal neoplasias (M-CRN) and compared these to 69 solitary colorectal cancers (S-CRC). There were no significant differences in methylation between M-CRNs and S-CRCs except for p14 and MGMT that was significantly higher in M-CRNs than S-CRCs (16.1% versus 9.3%; 26.5% versus 17.3%, respectively; P < 0.05). We found significant (P < 0.05) correlations for MINT1 (r = 0.8), p16 (r = 0.8), MLH1 (r = 0.9), and MGMT (r = 0.6) methylation between tumors pairs of the same site (proximal/proximal and distal/distal). KRAS showed no concordance in mutations. BRAF mutation showed concordance in proximal site pairs but was discordant in different site pairs. Histologically, eight of 10 paired cancers with similar locations were concordant for a cribriform glandular configuration. We conclude that synchronous colorectal tumors of the same site are highly concordant for methylation of multiple genes, BRAF mutations, and a cribriform glandular configuration, all consistent with a patient-specific predisposition to particular subtypes of colorectal cancers. Screening for and secondary prevention of colon cancer should take this fact into account. PMID:19737982

  5. VEZF1 elements mediate protection from DNA methylation.

    Directory of Open Access Journals (Sweden)

    Jacqueline Dickson

    2010-01-01

    Full Text Available There is growing consensus that genome organization and long-range gene regulation involves partitioning of the genome into domains of distinct epigenetic chromatin states. Chromatin insulator or barrier elements are key components of these processes as they can establish boundaries between chromatin states. The ability of elements such as the paradigm beta-globin HS4 insulator to block the range of enhancers or the spread of repressive histone modifications is well established. Here we have addressed the hypothesis that a barrier element in vertebrates should be capable of defending a gene from silencing by DNA methylation. Using an established stable reporter gene system, we find that HS4 acts specifically to protect a gene promoter from de novo DNA methylation. Notably, protection from methylation can occur in the absence of histone acetylation or transcription. There is a division of labor at HS4; the sequences that mediate protection from methylation are separable from those that mediate CTCF-dependent enhancer blocking and USF-dependent histone modification recruitment. The zinc finger protein VEZF1 was purified as the factor that specifically interacts with the methylation protection elements. VEZF1 is a candidate CpG island protection factor as the G-rich sequences bound by VEZF1 are frequently found at CpG island promoters. Indeed, we show that VEZF1 elements are sufficient to mediate demethylation and protection of the APRT CpG island promoter from DNA methylation. We propose that many barrier elements in vertebrates will prevent DNA methylation in addition to blocking the propagation of repressive histone modifications, as either process is sufficient to direct the establishment of an epigenetically stable silent chromatin state.

  6. Androgen receptor function links human sexual dimorphism to DNA methylation.

    Directory of Open Access Journals (Sweden)

    Ole Ammerpohl

    Full Text Available Sex differences are well known to be determinants of development, health and disease. Epigenetic mechanisms are also known to differ between men and women through X-inactivation in females. We hypothesized that epigenetic sex differences may also result from sex hormone functions, in particular from long-lasting androgen programming. We aimed at investigating whether inactivation of the androgen receptor, the key regulator of normal male sex development, is associated with differences of the patterns of DNA methylation marks in genital tissues. To this end, we performed large scale array-based analysis of gene methylation profiles on genomic DNA from labioscrotal skin fibroblasts of 8 males and 26 individuals with androgen insensitivity syndrome (AIS due to inactivating androgen receptor gene mutations. By this approach we identified differential methylation of 167 CpG loci representing 162 unique human genes. These were significantly enriched for androgen target genes and low CpG content promoter genes. Additional 75 genes showed a significant increase of heterogeneity of methylation in AIS compared to a high homogeneity in normal male controls. Our data show that normal and aberrant androgen receptor function is associated with distinct patterns of DNA-methylation marks in genital tissues. These findings support the concept that transcription factor binding to the DNA has an impact on the shape of the DNA methylome. These data which derived from a rare human model suggest that androgen programming of methylation marks contributes to sexual dimorphism in the human which might have considerable impact on the manifestation of sex-associated phenotypes and diseases.

  7. A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss.

    Science.gov (United States)

    Milagro, Fermin I; Campión, Javier; Cordero, Paúl; Goyenechea, Estíbaliz; Gómez-Uriz, Ana M; Abete, Itziar; Zulet, Maria A; Martínez, J Alfredo

    2011-04-01

    Epigenetics could help to explain individual differences in weight loss after an energy-restriction intervention. Here, we identify novel potential epigenetic biomarkers of weight loss, comparing DNA methylation patterns of high and low responders to a hypocaloric diet. Twenty-five overweight or obese men participated in an 8-wk caloric restriction intervention. DNA was isolated from peripheral blood mononuclear cells and treated with bisulfite. The basal and endpoint epigenetic differences between high and low responders were analyzed by methylation microarray, which was also useful in comparing epigenetic changes due to the nutrition intervention. Subsequently, MALDI-TOF mass spectrometry was used to validate several relevant CpGs and the surrounding regions. DNA methylation levels in several CpGs located in the ATP10A and CD44 genes showed statistical baseline differences depending on the weight-loss outcome. At the treatment endpoint, DNA methylation levels of several CpGs on the WT1 promoter were statistically more methylated in the high than in the low responders. Finally, different CpG sites from WT1 and ATP10A were significantly modified as a result of the intervention. In summary, hypocaloric-diet-induced weight loss in humans could alter DNA methylation status of specific genes. Moreover, baseline DNA methylation patterns may be used as epigenetic markers that could help to predict weight loss.

  8. A Novel Approach to Assay DNA Methylation in Prostate Cancer

    Science.gov (United States)

    2015-10-01

    facilitates FOXA1 recruitment to target enhancers via DNA demethylation. 3 INTRODUCTION Forkhead box A1 (FOXA1; also known as hepatocyte nuclear ...al. (2012). Sequence features and chromatin structure around the genomic regions bound by 119 human transcription factors. Genome research 22, 1798...AWARD NUMBER: W81XWH-13-1-0319 TITLE: A Novel Approach to Assay DNA Methylation in Prostate Cancer PRINCIPAL INVESTIGATOR: Jindan YU

  9. Gamma irradiation does not induce detectable changes in DNA methylation directly following exposure of human cells.

    Science.gov (United States)

    Lahtz, Christoph; Bates, Steven E; Jiang, Yong; Li, Arthur X; Wu, Xiwei; Hahn, Maria A; Pfeifer, Gerd P

    2012-01-01

    Environmental chemicals and radiation have often been implicated in producing alterations of the epigenome thus potentially contributing to cancer and other diseases. Ionizing radiation, released during accidents at nuclear power plants or after atomic bomb explosions, is a potentially serious health threat for the exposed human population. This type of high-energy radiation causes DNA damage including single- and double-strand breaks and induces chromosomal rearrangements and mutations, but it is not known if ionizing radiation directly induces changes in the epigenome of irradiated cells. We treated normal human fibroblasts and normal human bronchial epithelial cells with different doses of γ-radiation emitted from a cesium 137 ((137)Cs) radiation source. After a seven-day recovery period, we analyzed global DNA methylation patterns in the irradiated and control cells using the methylated-CpG island recovery assay (MIRA) in combination with high-resolution microarrays. Bioinformatics analysis revealed only a small number of potential methylation changes with low fold-difference ratios in the irradiated cells. These minor methylation differences seen on the microarrays could not be verified by COBRA (combined bisulfite restriction analysis) or bisulfite sequencing of selected target loci. Our study shows that acute γ-radiation treatment of two types of human cells had no appreciable direct effect on DNA cytosine methylation patterns in exposed cells.

  10. Gamma irradiation does not induce detectable changes in DNA methylation directly following exposure of human cells.

    Directory of Open Access Journals (Sweden)

    Christoph Lahtz

    Full Text Available Environmental chemicals and radiation have often been implicated in producing alterations of the epigenome thus potentially contributing to cancer and other diseases. Ionizing radiation, released during accidents at nuclear power plants or after atomic bomb explosions, is a potentially serious health threat for the exposed human population. This type of high-energy radiation causes DNA damage including single- and double-strand breaks and induces chromosomal rearrangements and mutations, but it is not known if ionizing radiation directly induces changes in the epigenome of irradiated cells. We treated normal human fibroblasts and normal human bronchial epithelial cells with different doses of γ-radiation emitted from a cesium 137 ((137Cs radiation source. After a seven-day recovery period, we analyzed global DNA methylation patterns in the irradiated and control cells using the methylated-CpG island recovery assay (MIRA in combination with high-resolution microarrays. Bioinformatics analysis revealed only a small number of potential methylation changes with low fold-difference ratios in the irradiated cells. These minor methylation differences seen on the microarrays could not be verified by COBRA (combined bisulfite restriction analysis or bisulfite sequencing of selected target loci. Our study shows that acute γ-radiation treatment of two types of human cells had no appreciable direct effect on DNA cytosine methylation patterns in exposed cells.

  11. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue.

    Directory of Open Access Journals (Sweden)

    Tina Rönn

    2013-06-01

    Full Text Available Epigenetic mechanisms are implicated in gene regulation and the development of different diseases. The epigenome differs between cell types and has until now only been characterized for a few human tissues. Environmental factors potentially alter the epigenome. Here we describe the genome-wide pattern of DNA methylation in human adipose tissue from 23 healthy men, with a previous low level of physical activity, before and after a six months exercise intervention. We also investigate the differences in adipose tissue DNA methylation between 31 individuals with or without a family history of type 2 diabetes. DNA methylation was analyzed using Infinium HumanMethylation450 BeadChip, an array containing 485,577 probes covering 99% RefSeq genes. Global DNA methylation changed and 17,975 individual CpG sites in 7,663 unique genes showed altered levels of DNA methylation after the exercise intervention (q<0.05. Differential mRNA expression was present in 1/3 of gene regions with altered DNA methylation, including RALBP1, HDAC4 and NCOR2 (q<0.05. Using a luciferase assay, we could show that increased DNA methylation in vitro of the RALBP1 promoter suppressed the transcriptional activity (p = 0.03. Moreover, 18 obesity and 21 type 2 diabetes candidate genes had CpG sites with differences in adipose tissue DNA methylation in response to exercise (q<0.05, including TCF7L2 (6 CpG sites and KCNQ1 (10 CpG sites. A simultaneous change in mRNA expression was seen for 6 of those genes. To understand if genes that exhibit differential DNA methylation and mRNA expression in human adipose tissue in vivo affect adipocyte metabolism, we silenced Hdac4 and Ncor2 respectively in 3T3-L1 adipocytes, which resulted in increased lipogenesis both in the basal and insulin stimulated state. In conclusion, exercise induces genome-wide changes in DNA methylation in human adipose tissue, potentially affecting adipocyte metabolism.

  12. [Correlation between histone H3-K9 methylation, DNA methylation and expression of gene MGMT in Hep-2 cell line].

    Science.gov (United States)

    Yang, Jing; He, Liria; Ji, Wenyue; Jin, Mingzhu; Zhao, Xudong

    2012-11-01

    To explore the correlation between histone H3-K9 methylation, DNA methylation and expression of carcinoma suppressor gene MGMT in laryngeal carcinoma Hep-2 cell line. 5-Aza-dC was used to deal with Hep-2 cell cultured in vitro. ChIP, MSP and Realtime-PCR were used to detect H3-K9 methylation, DNA methylation, of MGMT gene promoter region and MGMT gene expression before and after treatment with drugs. (1) In Hep-2 cell line, gene MGMT was characterized by DNA methylation and histone H3-K9 hypermethylation. (2) 5-Aza-dC was able to reduce H3-K9 methylation of MGMT gene histone in Hep-2 cell line, 5-Aza-dC was able to reverse DNA methylation of MGMT gene histone in Hep-2 cell line, 5-Aza-dC was able to upregulate the down-regulated gene expression of tumor suppressor genes MGMT. Promoter methylation of cancer suppressor gene MGMT may induce the gene inactivity. DNA methylation may increase H3-K9 methylation. 5-Aza-dC can reduce H3-K9 methylation of tumor suppressor gene MGMT histone by reversing DNA methylation of tumor suppressor gene MGMT, and then the expression of tumor suppressor genes is increased and tumor development is inhibited.

  13. DNA methylation profiling across the spectrum of HPV-associated anal squamous neoplasia.

    Science.gov (United States)

    Hernandez, Jonathan M; Siegel, Erin M; Riggs, Bridget; Eschrich, Steven; Elahi, Abul; Qu, Xiaotao; Ajidahun, Abidemi; Berglund, Anders; Coppola, Domenico; Grady, William M; Giuliano, Anna R; Shibata, David

    2012-01-01

    Changes in host tumor genome DNA methylation patterns are among the molecular alterations associated with HPV-related carcinogenesis. However, there is little known about the epigenetic changes associated specifically with the development of anal squamous cell cancer (SCC). We sought to characterize broad methylation profiles across the spectrum of anal squamous neoplasia. Twenty-nine formalin-fixed paraffin embedded samples from 24 patients were evaluated and included adjacent histologically normal anal mucosa (NM; n = 3), SCC-in situ (SCC-IS; n = 11) and invasive SCC (n = 15). Thirteen women and 11 men with a median age of 44 years (range 26-81) were included in the study. Using the SFP(10) LiPA HPV-typing system, HPV was detected in at least one tissue from all patients with 93% (27/29) being positive for high-risk HPV types and 14 (93%) of 15 invasive SCC tissues testing positive for HPV 16. Bisulfite-modified DNA was interrogated for methylation at 1,505 CpG loci representing 807 genes using the Illumina GoldenGate Methylation Array. When comparing the progression from normal anal mucosa and SCC-IS to invasive SCC, 22 CpG loci representing 20 genes demonstrated significant differential methylation (p<0.01). The majority of differentially methylated gene targets occurred at or close to specific chromosomal locations such as previously described HPV methylation "hotspots" and viral integration sites. We have identified a panel of differentially methlylated CpG loci across the spectrum of HPV-associated squamous neoplasia of the anus. To our knowledge, this is the first reported application of large-scale high throughput methylation analysis for the study of anal neoplasia. Our findings support further investigations into the role of host-genome methylation in HPV-associated anal carcinogenesis with implications towards enhanced diagnosis and screening strategies.

  14. DNA methylation profiling across the spectrum of HPV-associated anal squamous neoplasia.

    Directory of Open Access Journals (Sweden)

    Jonathan M Hernandez

    Full Text Available Changes in host tumor genome DNA methylation patterns are among the molecular alterations associated with HPV-related carcinogenesis. However, there is little known about the epigenetic changes associated specifically with the development of anal squamous cell cancer (SCC. We sought to characterize broad methylation profiles across the spectrum of anal squamous neoplasia.Twenty-nine formalin-fixed paraffin embedded samples from 24 patients were evaluated and included adjacent histologically normal anal mucosa (NM; n = 3, SCC-in situ (SCC-IS; n = 11 and invasive SCC (n = 15. Thirteen women and 11 men with a median age of 44 years (range 26-81 were included in the study. Using the SFP(10 LiPA HPV-typing system, HPV was detected in at least one tissue from all patients with 93% (27/29 being positive for high-risk HPV types and 14 (93% of 15 invasive SCC tissues testing positive for HPV 16. Bisulfite-modified DNA was interrogated for methylation at 1,505 CpG loci representing 807 genes using the Illumina GoldenGate Methylation Array. When comparing the progression from normal anal mucosa and SCC-IS to invasive SCC, 22 CpG loci representing 20 genes demonstrated significant differential methylation (p<0.01. The majority of differentially methylated gene targets occurred at or close to specific chromosomal locations such as previously described HPV methylation "hotspots" and viral integration sites.We have identified a panel of differentially methlylated CpG loci across the spectrum of HPV-associated squamous neoplasia of the anus. To our knowledge, this is the first reported application of large-scale high throughput methylation analysis for the study of anal neoplasia. Our findings support further investigations into the role of host-genome methylation in HPV-associated anal carcinogenesis with implications towards enhanced diagnosis and screening strategies.

  15. Evaluation of Global Genomic DNA Methylation in Human Whole Blood by Capillary Electrophoresis UV Detection

    Directory of Open Access Journals (Sweden)

    Angelo Zinellu

    2017-01-01

    Full Text Available Alterations in global DNA methylation are implicated in various pathophysiological processes. The development of simple and quick, yet robust, methods to assess DNA methylation is required to facilitate its measurement and interpretation in clinical practice. We describe a highly sensitive and reproducible capillary electrophoresis method with UV detection for the separation and detection of cytosine and methylcytosine, after formic acid hydrolysis of DNA extracted from human whole blood. Hydrolysed samples were dried and resuspended with water and directly injected into the capillary without sample derivatization procedures. The use of a run buffer containing 50 mmol/L BIS-TRIS propane (BTP phosphate buffer at pH 3.25 and 60 mmol/L sodium acetate buffer at pH 3.60 (4 : 1, v/v allowed full analyte identification within 11 min. Precision tests indicated an elevated reproducibility with an interassay CV of 1.98% when starting from 2 μg of the extracted DNA. The method was successfully tested by measuring the DNA methylation degree both in healthy volunteers and in reference calf thymus DNA.

  16. Does DNA methylation pattern mark generative development in winter rape?

    Czech Academy of Sciences Publication Activity Database

    Filek, M.; Janiak, A.; Szarejko, I.; Grabczynska, J.; Macháčková, Ivana; Krekule, Jan

    2006-01-01

    Roč. 61, 5-6 (2006), s. 387-396 ISSN 0939-5075 R&D Projects: GA AV ČR IAA600040612 Institutional research plan: CEZ:AV0Z50380511 Keywords : DNA methylation * rape * vernalization Subject RIV: EF - Botanics Impact factor: 0.720, year: 2006

  17. Parental epigenetic difference in DNA methylation-level may play ...

    African Journals Online (AJOL)

    Parental epigenetic difference in DNA methylation-level may play contrasting roles for different agronomic traits related to yield heterosis in maize. ... or hybrid vigor has been exploited to nearly the fullest extent, the molecular and genetic basis underlying this remarkable biological phenomenon remains largely an enigma.

  18. DNMT1-interacting RNAs block gene-specific DNA methylation

    Czech Academy of Sciences Publication Activity Database

    Di Ruscio, A.; Ebralidze, A.; Benoukraf, T.; Amabile, G.; Goff, L.A.; Terragni, J.; Figueroa, M.E.; Pontes, L.L.D.; Alberich-Jorda, Meritxell; Zhang, P.; Wu, M.C.; D´Alo, F.; Melnick, A.; Leone, G.; Ebralidze, K.K.; Pradhan, S.; Rinn, J.L.; Tenen, D.G.

    2013-01-01

    Roč. 503, č. 7476 (2013), s. 371-376 ISSN 0028-0836 R&D Projects: GA MŠk LK21307 Institutional support: RVO:68378050 Keywords : DNA methylation * non-coding RNA * DNMT1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 42.351, year: 2013

  19. Establishment and functions of DNA methylation in the germline

    DEFF Research Database (Denmark)

    Stewart-Morgan, Kathleen; Veselovska, Lenka; Kelsey, Gavin

    2016-01-01

    Epigenetic modifications established during gametogenesis regulate transcription and other nuclear processes in gametes, but also have influences in the zygote, embryo and postnatal life. This is best understood for DNA methylation which, established at discrete regions of the oocyte and sperm...

  20. DNA methylation pattern in pig in vivo produced embryos

    Czech Academy of Sciences Publication Activity Database

    Fulka, Josef; Fulková, H.; Slavík, Tomáš; Okada, K.; Fulka Jr., J.

    2006-01-01

    Roč. 126, č. 2 (2006), s. 213-217 ISSN 0948-6143 R&D Projects: GA ČR GESTE/05/E004 Institutional research plan: CEZ:AV0Z50450515 Keywords : methylation * DNA * embryos Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.220, year: 2006

  1. RESEARCH ARTICLE Changes of Host DNA Methylation in ...

    Indian Academy of Sciences (India)

    Navya

    2016-11-17

    Nov 17, 2016 ... The level of DNA methylation was slightly higher in the genomic regions around the transcription start termination sites in a Salmonella-infectedgroup .... At day 12, the chickenswere divided randomly into two groups.One group was used as the control and the other was challenged with Salmonella.

  2. Nucleosomes containing methylated DNA stabilize DNA methyltransferases 3A/3B and ensure faithful epigenetic inheritance.

    Directory of Open Access Journals (Sweden)

    Shikhar Sharma

    2011-02-01

    Full Text Available How epigenetic information is propagated during somatic cell divisions is still unclear but is absolutely critical for preserving gene expression patterns and cellular identity. Here we show an unanticipated mechanism for inheritance of DNA methylation patterns where the epigenetic mark not only recruits the catalyzing enzyme but also regulates the protein level, i.e. the enzymatic product (5-methylcytosine determines the level of the methylase, thus forming a novel homeostatic inheritance system. Nucleosomes containing methylated DNA stabilize de novo DNA methyltransferases, DNMT3A/3B, allowing little free DNMT3A/3B enzymes to exist in the nucleus. Stabilization of DNMT3A/3B on nucleosomes in methylated regions further promotes propagation of DNA methylation. However, reduction of cellular DNA methylation levels creating more potential CpG substrates counter-intuitively results in a dramatic decrease of DNMT3A/3B proteins due to diminished nucleosome binding and subsequent degradation of the unstable free proteins. These data show an unexpected self-regulatory inheritance mechanism that not only ensures somatic propagation of methylated states by DNMT1 and DNMT3A/3B enzymes but also prevents aberrant de novo methylation by causing degradation of free DNMT3A/3B enzymes.

  3. Differential DNA methylation profile of key genes in malignant prostate epithelial cells transformed by inorganic arsenic or cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Pelch, Katherine E.; Tokar, Erik J. [National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Merrick, B. Alex [Molecular Toxicology and Informatics Group, Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Morrisville, NC 27560 (United States); Waalkes, Michael P., E-mail: waalkes@niehs.nih.gov [National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States)

    2015-08-01

    Previous work shows altered methylation patterns in inorganic arsenic (iAs)- or cadmium (Cd)-transformed epithelial cells. Here, the methylation status near the transcriptional start site was assessed in the normal human prostate epithelial cell line (RWPE-1) that was malignantly transformed by 10 μM Cd for 11 weeks (CTPE) or 5 μM iAs for 29 weeks (CAsE-PE), at which time cells showed multiple markers of acquired cancer phenotype. Next generation sequencing of the transcriptome of CAsE-PE cells identified multiple dysregulated genes. Of the most highly dysregulated genes, five genes that can be relevant to the carcinogenic process (S100P, HYAL1, NTM, NES, ALDH1A1) were chosen for an in-depth analysis of the DNA methylation profile. DNA was isolated, bisulfite converted, and combined bisulfite restriction analysis was used to identify differentially methylated CpG sites, which was confirmed with bisulfite sequencing. Four of the five genes showed differential methylation in transformants relative to control cells that was inversely related to altered gene expression. Increased expression of HYAL1 (> 25-fold) and S100P (> 40-fold) in transformants was correlated with hypomethylation near the transcriptional start site. Decreased expression of NES (> 15-fold) and NTM (> 1000-fold) in transformants was correlated with hypermethylation near the transcriptional start site. ALDH1A1 expression was differentially expressed in transformed cells but was not differentially methylated relative to control. In conclusion, altered gene expression observed in Cd and iAs transformed cells may result from altered DNA methylation status. - Highlights: • Cd and iAs are known human carcinogens, yet neither appears directly mutagenic. • Prior data suggest epigenetic modification plays a role in Cd or iAs induced cancer. • Altered methylation of four misregulated genes was found in Cd or iAs transformants. • The resulting altered gene expression may be relevant to cellular

  4. The second hit of DNA methylation.

    Science.gov (United States)

    Di Ruscio, Annalisa; Welner, Robert S; Tenen, Daniel G; Amabile, Giovanni

    2016-05-01

    Gene expression programs are tightly regulated by heritable "epigenetic" information, which is stored as chemical modifications of histones and DNA. With the recent development of sequencing-based epigenome mapping technologies and cancer cellular reprogramming, the tools are now in hand to analyze the epigenetic contribution to human cancer.

  5. RNA-directed DNA methylation: Mechanisms and functions

    KAUST Repository

    Mahfouz, Magdy M.

    2010-07-01

    Epigenetic RNA based gene silencing mechanisms play a major role in genome stability and control of gene expression. Transcriptional gene silencing via RNA-directed DNA methylation (RdDM) guides the epigenetic regulation of the genome in response to disease states, growth, developmental and stress signals. RdDM machinery is composed of proteins that produce and modify 24-nt- long siRNAs, recruit the RdDM complex to genomic targets, methylate DNA and remodel chromatin. The final DNA methylation pattern is determined by either DNA methyltransferase alone or by the combined action of DNA methyltransferases and demethylases. The dynamic interaction between RdDM and demethylases may render the plant epigenome plastic to growth, developmental, and environmental cues. The epigenome plasticity may allow the plant genome to assume many epigenomes and to have the right epigenome at the right time in response to intracellular or extracellular stimuli. This review discusses recent advances in RdDM research and considers future perspectives.

  6. Aberrantly methylated DNA as a biomarker in breast cancer

    DEFF Research Database (Denmark)

    Kristiansen, Søren; Jørgensen, Lars Mønster; Guldberg, Per

    2013-01-01

    Aberrant DNA hypermethylation at gene promoters is a frequent event in human breast cancer. Recent genome-wide studies have identified hundreds of genes that exhibit differential methylation between breast cancer cells and normal breast tissue. Due to the tumor-specific nature of DNA hypermethyla...... as a versatile biomarker tool for screening, diagnosis, prognosis and monitoring of breast cancer. Standardization of methods and biomarker panels will be required to fully exploit this clinical potential.......Aberrant DNA hypermethylation at gene promoters is a frequent event in human breast cancer. Recent genome-wide studies have identified hundreds of genes that exhibit differential methylation between breast cancer cells and normal breast tissue. Due to the tumor-specific nature of DNA...... hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients...

  7. DNA methylation based biomarkers: Practical considerations and applications

    DEFF Research Database (Denmark)

    Nielsen, Helene Myrtue; How Kit, Alexandre; Tost, Jorg

    2012-01-01

    of biochemical molecules such as proteins, DNA, RNA or lipids, whereby protein biomarkers have been the most extensively studied and used, notably in blood-based protein quantification tests or immunohistochemistry. The rise of interest in epigenetic mechanisms has allowed the identification of a new type...... of biomarker, DNA methylation, which is of great potential for many applications. This stable and heritable covalent modification mostly affects cytosines in the context of a CpG dinucleotide in humans. It can be detected and quantified by a number of technologies including genome-wide screening methods...... as well as locus- or gene-specific high-resolution analysis in different types of samples such as frozen tissues and FFPE samples, but also in body fluids such as urine, plasma, and serum obtained through non-invasive procedures. In some cases, DNA methylation based biomarkers have proven to be more...

  8. Usability of human Infinium MethylationEPIC BeadChip for mouse DNA methylation studies.

    Science.gov (United States)

    Needhamsen, Maria; Ewing, Ewoud; Lund, Harald; Gomez-Cabrero, David; Harris, Robert Adam; Kular, Lara; Jagodic, Maja

    2017-11-15

    The advent of array-based genome-wide DNA methylation methods has enabled quantitative measurement of single CpG methylation status at relatively low cost and sample input. Whereas the use of Infinium Human Methylation BeadChips has shown great utility in clinical studies, no equivalent tool is available for rodent animal samples. We examined the feasibility of using the new Infinium MethylationEPIC BeadChip for studying DNA methylation in mouse. In silico, we identified 19,420 EPIC probes (referred as mEPIC probes), which align with a unique best alignment score to the bisulfite converted reference mouse genome mm10. Further annotation revealed that 85% of mEPIC probes overlapped with mm10.refSeq genes at different genomic features including promoters (TSS1500 and TSS200), 1st exons, 5'UTRs, 3'UTRs, CpG islands, shores, shelves, open seas and FANTOM5 enhancers. Hybridization of mouse samples to Infinium Human MethylationEPIC BeadChips showed successful measurement of mEPIC probes and reproducibility between inter-array biological replicates. Finally, we demonstrated the utility of mEPIC probes for data exploration such as hierarchical clustering. Given the absence of cost and labor convenient genome-wide technologies in the murine system, our findings show that the Infinium MethylationEPIC BeadChip platform is suitable for investigation of the mouse methylome. Furthermore, we provide the "mEPICmanifest" with genomic features, available to users of Infinium Human MethylationEPIC arrays for mouse samples.

  9. TUMOR-RELATED METHYLATED CELL-FREE DNA AND CIRCULATING TUMOR CELLS IN MELANOMA

    Directory of Open Access Journals (Sweden)

    Francesca eSalvianti

    2016-01-01

    Full Text Available Solid tumor release into the circulation cell-free DNA (cfDNA and circulating tumor cells (CTCs which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma.The aim of the present study was to assess the diagnostic performance of a tumor-related methylated cfDNA marker in melanoma patients and to compare this parameter with the presence of CTCs.RASSF1A promoter methylation was quantified in cfDNA by qPCR in a consecutive series of 84 melanoma patients and 68 healthy controls. In a subset of 68 cases, the presence of CTCs was assessed by a filtration method (Isolation by Size of Epithelial Tumor Cells, ISET as well as by an indirect method based on the detection of tyrosinase mRNA by RT-qPCR. The distribution of RASSF1A methylated cfDNA was investigated in cases and controls and the predictive capability of this parameter was assessed by means of the area under the ROC curve (AUC.The percentage of cases with methylated RASSF1A promoter in cfDNA was significantly higher in each class of melanoma patients (in situ, invasive and metastatic than in healthy subjects (Pearson chi-squared test, p<0.001. The concentration of RASSF1A methylated cfDNA in the subjects with a detectable quantity of methylated alleles was significantly higher in melanoma patients than in controls. The biomarker showed a good predictive capability (in terms of AUC in discriminating between melanoma patients and healthy controls. This epigenetic marker associated to cfDNA did not show a significant correlation with the presence of CTCs, but, when the two parameters are jointly considered, we obtain a higher sensitivity of the detection of positive cases in invasive

  10. DNA methylation patterns of candidate genes regulated by thymine DNA glycosylase in patients with TP53 germline mutations

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, F.P. [CIPE, Laboratrio de Oncogentica Molecular, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Kuasne, H. [CIPE, Laboratrio NeoGene, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Departamento de Urologia, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP (Brazil); Marchi, F.A. [CIPE, Laboratrio NeoGene, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Programa Inter-Institucional em Bioinformtica, Instituto de Matemtica e Estatstica, Universidade So Paulo, So Paulo, SP (Brazil); Miranda, P.M. [CIPE, Laboratrio NeoGene, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Rogatto, S.R. [CIPE, Laboratrio NeoGene, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Departamento de Urologia, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP (Brazil); Achatz, M.I. [CIPE, Laboratrio de Oncogentica Molecular, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Departamento de Oncogentica, A.C. Camargo Cancer Center, So Paulo, SP (Brazil)

    2015-04-28

    Li-Fraumeni syndrome (LFS) is a rare, autosomal dominant, hereditary cancer predisposition disorder. In Brazil, the p.R337H TP53 founder mutation causes the variant form of LFS, Li-Fraumeni-like syndrome. The occurrence of cancer and age of disease onset are known to vary, even in patients carrying the same mutation, and several mechanisms such as genetic and epigenetic alterations may be involved in this variability. However, the extent of involvement of such events has not been clarified. It is well established that p53 regulates several pathways, including the thymine DNA glycosylase (TDG) pathway, which regulates the DNA methylation of several genes. This study aimed to identify the DNA methylation pattern of genes potentially related to the TDG pathway (CDKN2A, FOXA1, HOXD8, OCT4, SOX2, and SOX17) in 30 patients with germline TP53mutations, 10 patients with wild-type TP53, and 10 healthy individuals. We also evaluated TDG expression in patients with adrenocortical tumors (ADR) with and without the p.R337H TP53 mutation. Gene methylation patterns of peripheral blood DNA samples assessed by pyrosequencing revealed no significant differences between the three groups. However, increased TDG expression was observed by quantitative reverse transcription PCR in p.R337H carriers with ADR. Considering the rarity of this phenotype and the relevance of these findings, further studies using a larger sample set are necessary to confirm our results.

  11. Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart

    Energy Technology Data Exchange (ETDEWEB)

    Koturbash, Igor, E-mail: ikoturbash@uams.edu [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Miousse, Isabelle R. [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Sridharan, Vijayalakshmi [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Nzabarushimana, Etienne; Skinner, Charles M. [Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Melnyk, Stepan B.; Pavliv, Oleksandra [Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Hauer-Jensen, Martin [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States); Surgical Service, Central Arkansas Veterans Healthcare System, Little Rock, AR 72205 (United States); Nelson, Gregory A. [Departments of Basic Sciences and Radiation Medicine, Loma Linda University, Loma Linda, CA 92354 (United States); Boerma, Marjan [Division of Radiation Health, Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2016-05-15

    Highlights: • Radiation-induced dynamic changes in cardiac DNA methylation were detected. • Early LINE-1 hypomethylation was followed by hypermethylation at a later time-point. • Radiation affected one-carbon metabolism in the heart tissue. • Irradiation resulted in accumulation of satellite DNA mRNA transcripts. - Abstract: DNA methylation is a key epigenetic mechanism, needed for proper control over the expression of genetic information and silencing of repetitive elements. Exposure to ionizing radiation, aside from its strong genotoxic potential, may also affect the methylation of DNA, within the repetitive elements, in particular. In this study, we exposed C57BL/6J male mice to low absorbed mean doses of two types of space radiation—proton (0.1 Gy, 150 MeV, dose rate 0.53 ± 0.08 Gy/min), and heavy iron ions ({sup 56}Fe) (0.5 Gy, 600 MeV/n, dose rate 0.38 ± 0.06 Gy/min). Radiation-induced changes in cardiac DNA methylation associated with repetitive elements were detected. Specifically, modest hypomethylation of retrotransposon LINE-1 was observed at day 7 after irradiation with either protons or {sup 56}Fe. This was followed by LINE-1, and other retrotransposons, ERV2 and SINE B1, as well as major satellite DNA hypermethylation at day 90 after irradiation with {sup 56}Fe. These changes in DNA methylation were accompanied by alterations in the expression of DNA methylation machinery and affected the one-carbon metabolism pathway. Furthermore, loss of transposable elements expression was detected in the cardiac tissue at the 90-day time-point, paralleled by substantial accumulation of mRNA transcripts, associated with major satellites. Given that the one-carbon metabolism pathway can be modulated by dietary modifications, these findings suggest a potential strategy for the mitigation and, possibly, prevention of the negative effects exerted by ionizing radiation on the cardiovascular system. Additionally, we show that the methylation status and

  12. Meta-analysis of DNA methylation biomarkers in hepatocellular carcinoma.

    Science.gov (United States)

    Zhang, Cheng; Li, Jinyun; Huang, Tao; Duan, Shiwei; Dai, Dongjun; Jiang, Danjie; Sui, Xinbing; Li, Da; Chen, Yidan; Ding, Fei; Huang, Changxin; Chen, Gongying; Wang, Kaifeng

    2016-12-06

    DNA methylation is an epigenetic mechanism in the pathogenesis of hepatocellular carcinoma (HCC). Here, we conducted a systematic meta-analysis to evaluate the contribution of DNA methylation to the risk of HCC. A total of 2109 publications were initially retrieved from PubMed, Web of Science, Cochrane Library, Embase, CNKI and Wanfang literature database. After a four-step filtration, we harvested 144 case-control articles in the meta-analysis. Our results revealed that 24 genes (carcinoma tissues vs adjacent tissues), 17 genes (carcinoma tissues vs normal tissues) and six genes (carcinoma serums vs normal serums) were significantly hypermethylated in HCC. Subgroup meta-analysis by geographical populations showed that six genes (carcinoma tissues vs adjacent tissues) and four genes (carcinoma tissues vs normal tissues) were significantly hypermethylated in HCC. Our meta-analysis identified the correlations between a number of aberrant methylated genes (p16, RASSF1A, GSTP1, p14, CDH1, APC, RUNX3, SOCS1, p15, MGMT, SFRP1, WIF1, PRDM2, DAPK1, RARβ, hMLH1, p73, DLC1, p53, SPINT2, OPCML and WT1) and HCC. Aberrant DNA methylation might become useful biomarkers for the prediction and diagnosis of HCC.

  13. The effects of reciprocal cross on inheritance of DNA methylation in ...

    African Journals Online (AJOL)

    DNA methylation plays an important role for regulation of gene expression. To study the inheritance of DNA methylation, we selected two F1 plant population by reciprocal cross with two cotton lines Zongcaixuan No.1 and HY428, and analyzed the variations of DNA methylation levels and patterns in F1 generations by ...

  14. Development of a mutant strain of Escherichia coli for molecular cloning of highly methylated DNA

    International Nuclear Information System (INIS)

    Bishr, M.A.

    1991-01-01

    A mutant strain of Escherichia coli designated as GR219 that allows efficient molecular cloning of highly methylated bean DNA has been developed by UV light mutation of the parent LE392 str r strain. This mutant strain, like the parent, is streptomycin resistant and is biologically contained, because it requires thymidine for growth. Both the wild type and the mutant strain have lambda phage receptors so both can be utilized for construction of genomic libraries using the phase as a vector. The efficiency of transformation of the parent and the mutant strain with a recombinant plasmid containing bean DNA was compared to the efficiency of transformation of the PLK-F' strain, which has a deletion of mcrA and mcrB genes and, therefore, allows transformation with methylated bean DNA. It has been found that the GR219 strain has the highest efficiency of transformation, while the PLK-F' strain shows less, and the parent LE392 str r strain the least efficiency of transformation. These results indicate that strains of E. coli with mcrA and mcrB genes can recognize and degrade highly methylated DNA. However, other undefined factors affected by the altered gene(s) in the GR219 strain are also involved in the recognition and degradation of any cloned foreign DNA

  15. Glucocorticoids accelerate maturation of the heme pathway in fetal liver through effects on transcription and DNA methylation.

    Science.gov (United States)

    Khulan, Batbayar; Liu, Lincoln; Rose, Catherine M; Boyle, Ashley K; Manning, Jonathan R; Drake, Amanda J

    2016-01-01

    Glucocorticoids are widely used in threatened preterm labor to promote maturation in many organ systems in preterm babies and have significant beneficial effects on morbidity and mortality. We performed transcriptional profiling in fetal liver in a rat model of prenatal glucocorticoid exposure and identified marked gene expression changes in heme biosynthesis, utilization, and degradation pathways in late gestation. These changes in gene expression associated with alterations in DNA methylation and with a reduction in hepatic heme concentration. There were no persistent differences in gene expression, DNA methylation, or heme concentrations at 4 weeks of age, suggesting that these are transient effects. Our findings are consistent with glucocorticoid-induced accelerated maturation of the haematopoietic system and support the hypothesis that glucocorticoids can drive changes in gene expression in association with alterations in DNA methylation.

  16. DNA methylation homeostasis in human and mouse development.

    Science.gov (United States)

    Iurlaro, Mario; von Meyenn, Ferdinand; Reik, Wolf

    2017-04-01

    The molecular pathways that regulate gain and loss of DNA methylation during mammalian development need to be tightly balanced to maintain a physiological equilibrium. Here we explore the relative contributions of the different pathways and enzymatic activities involved in methylation homeostasis in the context of genome-wide and locus-specific epigenetic reprogramming in mammals. An adaptable epigenetic machinery allows global epigenetic reprogramming to concur with local maintenance of critical epigenetic memory in the genome, and appears to regulate the tempo of global reprogramming in different cell lineages and species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Experimental mitochondria-targeted DNA methylation identifies GpC methylation, not CpG methylation, as potential regulator of mitochondrial gene expression

    NARCIS (Netherlands)

    van der Wijst, Monique G. P.; van Tilburg, Amanda Y.; Ruiters, Marcel H. J.; Rots, Marianne G.

    2017-01-01

    Like the nucleus, mitochondria contain their own DNA and recent reports provide accumulating evidence that also the mitochondrial DNA (mtDNA) is subjective to DNA methylation. This evidence includes the demonstration of mitochondria-localised DNA methyltransferases and demethylases, and the

  18. Infant sex-specific placental cadmium and DNA methylation associations

    International Nuclear Information System (INIS)

    Mohanty, April F.; Farin, Fred M.; Bammler, Theo K.; MacDonald, James W.; Afsharinejad, Zahra; Burbacher, Thomas M.; Siscovick, David S.

    2015-01-01

    Background: Recent evidence suggests that maternal cadmium (Cd) burden and fetal growth associations may vary by fetal sex. However, mechanisms contributing to these differences are unknown. Objectives: Among 24 maternal-infant pairs, we investigated infant sex-specific associations between placental Cd and placental genome-wide DNA methylation. Methods: We used ANOVA models to examine sex-stratified associations of placental Cd (dichotomized into high/low Cd using sex-specific Cd median cutoffs) with DNA methylation at each cytosine-phosphate-guanine site or region. Statistical significance was defined using a false discovery rate cutoff (<0.10). Results: Medians of placental Cd among females and males were 5 and 2 ng/g, respectively. Among females, three sites (near ADP-ribosylation factor-like 9 (ARL9), siah E3 ubiquitin protein ligase family member 3 (SIAH3), and heparin sulfate (glucosamine) 3-O-sulfotransferase 4 (HS3ST4) and one region on chromosome 7 (including carnitine O-octanoyltransferase (CROT) and TP5S target 1 (TP53TG1)) were hypomethylated in high Cd placentas. Among males, high placental Cd was associated with methylation of three sites, two (hypomethylated) near MDS1 and EVI1 complex locus (MECOM) and one (hypermethylated) near spalt-like transcription factor 1 (SALL1), and two regions (both hypomethylated, one on chromosome 3 including MECOM and another on chromosome 8 including rho guanine nucleotide exchange factor (GEF) 10 (ARHGEF10). Differentially methylated sites were at or close to transcription start sites of genes involved in cell damage response (SIAH3, HS3ST4, TP53TG1) in females and cell differentiation, angiogenesis and organ development (MECOM, SALL1) in males. Conclusions: Our preliminary study supports infant sex-specific placental Cd-DNA methylation associations, possibly accounting for previously reported differences in Cd-fetal growth associations across fetal sex. Larger studies are needed to replicate and extend these

  19. Infant sex-specific placental cadmium and DNA methylation associations

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, April F., E-mail: april.mohanty@va.gov [Cardiovascular Health Research Unit, University of Washington, 1730 Minor Ave, Seattle, WA 98101 (United States); Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA (United States); Farin, Fred M., E-mail: freddy@u.washington.edu [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way N.E., Suite #100, Seattle, WA 98105 (United States); Bammler, Theo K., E-mail: tbammler@u.washington.edu [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way N.E., Suite #100, Seattle, WA 98105 (United States); MacDonald, James W., E-mail: jmacdon@uw.edu [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way N.E., Suite #100, Seattle, WA 98105 (United States); Afsharinejad, Zahra, E-mail: zafshari@u.washington.edu [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way N.E., Suite #100, Seattle, WA 98105 (United States); Burbacher, Thomas M., E-mail: tmb@uw.edu [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Box: 357234, 1705 N.E. Pacific Street, Seattle, WA 98195 (United States); Siscovick, David S., E-mail: dsiscovick@nyam.org [Cardiovascular Health Research Unit, University of Washington, 1730 Minor Ave, Seattle, WA 98101 (United States); Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA (United States); Department of Medicine, University of Washington, Seattle, WA (United States); and others

    2015-04-15

    Background: Recent evidence suggests that maternal cadmium (Cd) burden and fetal growth associations may vary by fetal sex. However, mechanisms contributing to these differences are unknown. Objectives: Among 24 maternal-infant pairs, we investigated infant sex-specific associations between placental Cd and placental genome-wide DNA methylation. Methods: We used ANOVA models to examine sex-stratified associations of placental Cd (dichotomized into high/low Cd using sex-specific Cd median cutoffs) with DNA methylation at each cytosine-phosphate-guanine site or region. Statistical significance was defined using a false discovery rate cutoff (<0.10). Results: Medians of placental Cd among females and males were 5 and 2 ng/g, respectively. Among females, three sites (near ADP-ribosylation factor-like 9 (ARL9), siah E3 ubiquitin protein ligase family member 3 (SIAH3), and heparin sulfate (glucosamine) 3-O-sulfotransferase 4 (HS3ST4) and one region on chromosome 7 (including carnitine O-octanoyltransferase (CROT) and TP5S target 1 (TP53TG1)) were hypomethylated in high Cd placentas. Among males, high placental Cd was associated with methylation of three sites, two (hypomethylated) near MDS1 and EVI1 complex locus (MECOM) and one (hypermethylated) near spalt-like transcription factor 1 (SALL1), and two regions (both hypomethylated, one on chromosome 3 including MECOM and another on chromosome 8 including rho guanine nucleotide exchange factor (GEF) 10 (ARHGEF10). Differentially methylated sites were at or close to transcription start sites of genes involved in cell damage response (SIAH3, HS3ST4, TP53TG1) in females and cell differentiation, angiogenesis and organ development (MECOM, SALL1) in males. Conclusions: Our preliminary study supports infant sex-specific placental Cd-DNA methylation associations, possibly accounting for previously reported differences in Cd-fetal growth associations across fetal sex. Larger studies are needed to replicate and extend these

  20. Effects of High Levels of DNA Adenine Methylation on Methyl-Directed Mismatch Repair in ESCHERICHIA COLI

    Science.gov (United States)

    Pukkila, Patricia J.; Peterson, Janet; Herman, Gail; Modrich, Paul; Meselson, Matthew

    1983-01-01

    Two methods were used in an attempt to increase the efficiency and strand selectivity of methyl-directed mismatch repair of bacteriophage λ heteroduplexes in E. coli. Previous studies of such repair used λ DNA that was only partially methylated as the source of methylated chains. Also, transfection was carried out in methylating strains. Either of these factors might have been responsible for the incompleteness of the strand selectivity observed previously. In the first approach to increasing strand selectivity, heteroduplexes were transfected into a host deficient in methylation, but no changes in repair frequencies were observed. In the second approach, heteroduplexes were prepared using DNA that had been highly methylated in vitro with purified DNA adenine methylase as the source of methylated chains. In heteroduplexes having a repairable cI/+ mismatch, strand selectivity was indeed enhanced. In heteroduplexes with one chain highly methylated and the complementary chain unmethylated, the frequency of repair on the unmethylated chain increased to nearly 100%. Heteroduplexes with both chains highly methylated were not repaired at a detectable frequency. Thus, chains highly methylated by DNA adenine methylase were refractory to mismatch repair by this system, regardless of the methylation of the complementary chain. These results support the hypothesis that methyl-directed mismatch repair acts to correct errors of replication, thus lowering the mutation rate. PMID:6225697

  1. Heterogeneous DNA Methylation Patterns in the GSTP1 Promoter Lead to Discordant Results between Assay Technologies and Impede Its Implementation as Epigenetic Biomarkers in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Grethe I. Grenaker Alnaes

    2015-09-01

    Full Text Available Altered DNA methylation patterns are found in many diseases, particularly in cancer, where the analysis of DNA methylation holds the promise to provide diagnostic, prognostic and predictive information of great clinical value. Methylation of the promoter-associated CpG island of GSTP1 occurs in many hormone-sensitive cancers, has been shown to be a biomarker for the early detection of cancerous lesions and has been associated with important clinical parameters, such as survival and response to treatment. In the current manuscript, we assessed the performance of several widely-used sodium bisulfite conversion-dependent methods (methylation-specific PCR, MethyLight, pyrosequencing and MALDI mass-spectrometry for the analysis of DNA methylation patterns in the GSTP1 promoter. We observed large discordances between the results obtained by the different technologies. Cloning and sequencing of the investigated region resolved single-molecule DNA methylation patterns and identified heterogeneous DNA methylation patterns as the underlying cause of the differences. Heterogeneous DNA methylation patterns in the GSTP1 promoter constitute a major obstacle to the implementation of DNA methylation-based analysis of GSTP1 and might explain some of the contradictory findings in the analysis of the significance of GSTP1 promoter methylation in breast cancer.

  2. Genome-Wide Expression of MicroRNAs Is Regulated by DNA Methylation in Hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Jing Shen

    2015-01-01

    Full Text Available Background. Previous studies, including ours, have examined the regulation of microRNAs (miRNAs by DNA methylation, but whether this regulation occurs at a genome-wide level in hepatocellular carcinoma (HCC is unclear. Subjects/Methods. Using a two-phase study design, we conducted genome-wide screening for DNA methylation and miRNA expression to explore the potential role of methylation alterations in miRNAs regulation. Results. We found that expressions of 25 miRNAs were statistically significantly different between tumor and nontumor tissues and perfectly differentiated HCC tumor from nontumor. Six miRNAs were overexpressed, and 19 were repressed in tumors. Among 133 miRNAs with inverse correlations between methylation and expression, 8 miRNAs (6% showed statistically significant differences in expression between tumor and nontumor tissues. Six miRNAs were validated in 56 additional paired HCC tissues, and significant inverse correlations were observed for miR-125b and miR-199a, which is consistent with the inactive chromatin pattern found in HepG2 cells. Conclusion. These data suggest that the expressions of miR-125b and miR-199a are dramatically regulated by DNA hypermethylation that plays a key role in hepatocarcinogenesis.

  3. DNA Methylation Analysis of HTR2A Regulatory Region in Leukocytes of Autistic Subjects.

    Science.gov (United States)

    Hranilovic, Dubravka; Blazevic, Sofia; Stefulj, Jasminka; Zill, Peter

    2016-02-01

    Disturbed brain and peripheral serotonin homeostasis is often found in subjects with autism spectrum disorder (ASD). The role of the serotonin receptor 2A (HTR2A) in the regulation of central and peripheral serotonin homeostasis, as well as its altered expression in autistic subjects, have implicated the HTR2A gene as a major candidate for the serotonin disturbance seen in autism. Several studies, yielding so far inconclusive results, have attempted to associate autism with a functional SNP -1438 G/A (rs6311) in the HTR2A promoter region, while possible contribution of epigenetic mechanisms, such as DNA methylation, to HTR2A dysregulation in autism has not yet been investigated. In this study, we compared the mean DNA methylation within the regulatory region of the HTR2A gene between autistic and control subjects. DNA methylation was analysed in peripheral blood leukocytes using bisulfite conversion and sequencing of the HTR2A region containing rs6311 polymorphism. Autistic subjects of rs6311 AG genotype displayed higher mean methylation levels within the analysed region than the corresponding controls (P epigenetic mechanisms might contribute to HTR2A dysregulation observed in individuals with ASD. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  4. Epigenetic modifications in multiple myeloma: recent advances on the role of DNA and histone methylation.

    Science.gov (United States)

    Amodio, Nicola; D'Aquila, Patrizia; Passarino, Giuseppe; Tassone, Pierfrancesco; Bellizzi, Dina

    2017-01-01

    Multiple Myeloma (MM) is a clonal late B-cell disorder accounting for about 13% of hematological cancers and 1% of all neoplastic diseases. Recent studies on the molecular pathogenesis and biology of MM have highlighted a complex epigenomic landscape contributing to MM onset, prognosis and high individual variability. Areas covered: We describe here the current knowledge on epigenetic events characterizing MM initiation and progression, focusing on the role of DNA and histone methylation and on the most promising epi-therapeutic approaches targeting the methylation pathway. Expert opinion: Data published so far indicate that alterations of the epigenetic framework, which include aberrant global or gene/non-coding RNA specific methylation profiles, feature prominently in the pathobiology of MM. Indeed, the aberrant expression of components of the epigenetic machinery as well as the reversibility of the epigenetic marks make this pathway druggable, providing the basis for the design of epigenetic therapies against this still fatal malignancy.

  5. Tumour class prediction and discovery by microarray-based DNA methylation analysis

    Science.gov (United States)

    Adorján, Péter; Distler, Jürgen; Lipscher, Evelyne; Model, Fabian; Müller, Jürgen; Pelet, Cécile; Braun, Aron; Florl, Andrea R.; Gütig, David; Grabs, Gabi; Howe, André; Kursar, Mischo; Lesche, Ralf; Leu, Erik; Lewin, André; Maier, Sabine; Müller, Volker; Otto, Thomas; Scholz, Christian; Schulz, Wolfgang A.; Seifert, Hans-Helge; Schwope, Ina; Ziebarth, Heike; Berlin, Kurt; Piepenbrock, Christian; Olek, Alexander

    2002-01-01

    Aberrant DNA methylation of CpG sites is among the earliest and most frequent alterations in cancer. Several studies suggest that aberrant methylation occurs in a tumour type-specific manner. However, large-scale analysis of candidate genes has so far been hampered by the lack of high throughput assays for methylation detection. We have developed the first microarray-based technique which allows genome-wide assessment of selected CpG dinucleotides as well as quantification of methylation at each site. Several hundred CpG sites were screened in 76 samples from four different human tumour types and corresponding healthy controls. Discriminative CpG dinucleotides were identified for different tissue type distinctions and used to predict the tumour class of as yet unknown samples with high accuracy using machine learning techniques. Some CpG dinucleotides correlate with progression to malignancy, whereas others are methylated in a tissue-specific manner independent of malignancy. Our results demonstrate that genome-wide analysis of methylation patterns combined with supervised and unsupervised machine learning techniques constitute a powerful novel tool to classify human cancers. PMID:11861926

  6. A comprehensive microarray-based DNA methylation study of 367 hematological neoplasms.

    Directory of Open Access Journals (Sweden)

    Jose I Martin-Subero

    2009-09-01

    Full Text Available Alterations in the DNA methylation pattern are a hallmark of leukemias and lymphomas. However, most epigenetic studies in hematologic neoplasms (HNs have focused either on the analysis of few candidate genes or many genes and few HN entities, and comprehensive studies are required.Here, we report for the first time a microarray-based DNA methylation study of 767 genes in 367 HNs diagnosed with 16 of the most representative B-cell (n = 203, T-cell (n = 30, and myeloid (n = 134 neoplasias, as well as 37 samples from different cell types of the hematopoietic system. Using appropriate controls of B-, T-, or myeloid cellular origin, we identified a total of 220 genes hypermethylated in at least one HN entity. In general, promoter hypermethylation was more frequent in lymphoid malignancies than in myeloid malignancies, being germinal center mature B-cell lymphomas as well as B and T precursor lymphoid neoplasias those entities with highest frequency of gene-associated DNA hypermethylation. We also observed a significant correlation between the number of hypermethylated and hypomethylated genes in several mature B-cell neoplasias, but not in precursor B- and T-cell leukemias. Most of the genes becoming hypermethylated contained promoters with high CpG content, and a significant fraction of them are targets of the polycomb repressor complex. Interestingly, T-cell prolymphocytic leukemias show low levels of DNA hypermethylation and a comparatively large number of hypomethylated genes, many of them showing an increased gene expression.We have characterized the DNA methylation profile of a wide range of different HNs entities. As well as identifying genes showing aberrant DNA methylation in certain HN subtypes, we also detected six genes--DBC1, DIO3, FZD9, HS3ST2, MOS, and MYOD1--that were significantly hypermethylated in B-cell, T-cell, and myeloid malignancies. These might therefore play an important role in the development of different HNs.

  7. Targeted DNA methylation analysis by next-generation sequencing.

    Science.gov (United States)

    Masser, Dustin R; Stanford, David R; Freeman, Willard M

    2015-02-24

    The role of epigenetic processes in the control of gene expression has been known for a number of years. DNA methylation at cytosine residues is of particular interest for epigenetic studies as it has been demonstrated to be both a long lasting and a dynamic regulator of gene expression. Efforts to examine epigenetic changes in health and disease have been hindered by the lack of high-throughput, quantitatively accurate methods. With the advent and popularization of next-generation sequencing (NGS) technologies, these tools are now being applied to epigenomics in addition to existing genomic and transcriptomic methodologies. For epigenetic investigations of cytosine methylation where regions of interest, such as specific gene promoters or CpG islands, have been identified and there is a need to examine significant numbers of samples with high quantitative accuracy, we have developed a method called Bisulfite Amplicon Sequencing (BSAS). This method combines bisulfite conversion with targeted amplification of regions of interest, transposome-mediated library construction and benchtop NGS. BSAS offers a rapid and efficient method for analysis of up to 10 kb of targeted regions in up to 96 samples at a time that can be performed by most research groups with basic molecular biology skills. The results provide absolute quantitation of cytosine methylation with base specificity. BSAS can be applied to any genomic region from any DNA source. This method is useful for hypothesis testing studies of target regions of interest as well as confirmation of regions identified in genome-wide methylation analyses such as whole genome bisulfite sequencing, reduced representation bisulfite sequencing, and methylated DNA immunoprecipitation sequencing.

  8. Dissecting the role of aberrant DNA methylation in human leukemia

    Science.gov (United States)

    Amabile, Giovanni; Di Ruscio, Annalisa; Müller, Fabian; Welner, Robert S; Yang, Henry; Ebralidze, Alexander K; Zhang, Hong; Levantini, Elena; Qi, Lihua; Martinelli, Giovanni; Brummelkamp, Thijn; Le Beau, Michelle M; Figueroa, Maria E; Bock, Christoph; Tenen, Daniel G

    2015-01-01

    Chronic Myeloid Leukemia (CML) is a myeloproliferative disorder characterized by the genetic translocation t(9;22)(q34;q11.2) encoding for the BCR-ABL fusion oncogene. However, many molecular mechanisms of the disease progression still remain poorly understood. A growing body of evidence suggests that epigenetic abnormalities are involved in tyrosine kinase resistance in CML, leading to leukemic clone escape and disease propagation. Here we show that, by applying cellular reprogramming to primary CML cells, aberrant DNA methylation contributes to the disease evolution. Importantly, using a BCR-ABL inducible murine model, we demonstrate that a single oncogenic lesion triggers DNA methylation changes which in turn act as a precipitating event in leukemia progression. PMID:25997600

  9. Dissecting the role of aberrant DNA methylation in human leukaemia.

    Science.gov (United States)

    Amabile, Giovanni; Di Ruscio, Annalisa; Müller, Fabian; Welner, Robert S; Yang, Henry; Ebralidze, Alexander K; Zhang, Hong; Levantini, Elena; Qi, Lihua; Martinelli, Giovanni; Brummelkamp, Thijn; Le Beau, Michelle M; Figueroa, Maria E; Bock, Christoph; Tenen, Daniel G

    2015-05-22

    Chronic myeloid leukaemia (CML) is a myeloproliferative disorder characterized by the genetic translocation t(9;22)(q34;q11.2) encoding for the BCR-ABL fusion oncogene. However, many molecular mechanisms of the disease progression still remain poorly understood. A growing body of evidence suggests that the epigenetic abnormalities are involved in tyrosine kinase resistance in CML, leading to leukaemic clone escape and disease propagation. Here we show that, by applying cellular reprogramming to primary CML cells, aberrant DNA methylation contributes to the disease evolution. Importantly, using a BCR-ABL inducible murine model, we demonstrate that a single oncogenic lesion triggers DNA methylation changes, which in turn act as a precipitating event in leukaemia progression.

  10. Cluster analysis for DNA methylation profiles having a detection threshold

    Directory of Open Access Journals (Sweden)

    Siegmund Kimberly D

    2006-07-01

    Full Text Available Abstract Background DNA methylation, a molecular feature used to investigate tumor heterogeneity, can be measured on many genomic regions using the MethyLight technology. Due to the combination of the underlying biology of DNA methylation and the MethyLight technology, the measurements, while being generated on a continuous scale, have a large number of 0 values. This suggests that conventional clustering methodology may not perform well on this data. Results We compare performance of existing methodology (such as k-means with two novel methods that explicitly allow for the preponderance of values at 0. We also consider how the ability to successfully cluster such data depends upon the number of informative genes for which methylation is measured and the correlation structure of the methylation values for those genes. We show that when data is collected for a sufficient number of genes, our models do improve clustering performance compared to methods, such as k-means, that do not explicitly respect the supposed biological realities of the situation. Conclusion The performance of analysis methods depends upon how well the assumptions of those methods reflect the properties of the data being analyzed. Differing technologies will lead to data with differing properties, and should therefore be analyzed differently. Consequently, it is prudent to give thought to what the properties of the data are likely to be, and which analysis method might therefore be likely to best capture those properties.

  11. Maternal eating disorders affect offspring cord blood DNA methylation: a prospective study.

    Science.gov (United States)

    Kazmi, Nabila; Gaunt, Tom R; Relton, Caroline; Micali, Nadia

    2017-01-01

    Eating disorders (ED) are chronic psychiatric disorders, common amongst women of reproductive age. ED in pregnancy are associated with poor nutrition and abnormal intrauterine growth. Increasing evidence also shows offspring of women with ED have adverse developmental and birth outcomes. We sought to carry out the first study investigating DNA methylation in offspring of women with ED. We compared cord blood DNA methylation in offspring of women with active ED ( n  = 21), past ED ( n  = 43) and age- and social class-matched controls ( n  = 126) as part of the Avon Longitudinal Study of Parents and Children. Offspring of women with both active and past ED had lower whole-genome methylation compared to controls (active ED 49.1% (95% confidence intervals 50.5-47.7%), past ED 49.2% (95% CI 50.7-47.7.0%), controls 52.4% (95% CI 53.0%-51.0%)). Amongst offspring of ED women, those born to women with restrictive-type and purging-type ED had lower methylation levels compared to those of controls. Offspring of women with an active restrictive ED in pregnancy had lower whole-genome methylation compared to offspring of women with past restrictive ED. We observed decreased methylation at the DHCR24 locus in offspring of women with active pregnancy ED (effect size (ES) = - 0.124, p  = 6.94 × 10 -8 ) and increased methylation at the LGALS2 locus in offspring of women with past ED (ES = 0.07, p  = 3.74 × 10 -7 ) compared to controls. Maternal active and past ED are associated with differences in offspring whole-genome methylation. Our results show altered DNA methylation in loci relevant to metabolism; these might be biomarkers of disrupted metabolic pathways in offspring of ED mothers. Further work is needed to examine potential mechanisms and functional outcomes of the observed methylation patterns.

  12. Global DNA methylation changes in Cucurbitaceae inter-species grafting

    OpenAIRE

    Avramidou,Evangelia; Kapazoglou,Aliki; Aravanopoulos,Filippos A.; Xanthopoulou,Aliki; Ganopoulos,Ioannis; Tsaballa,Aphrodite; Madesis,Panagiotis; Doulis,Andreas G.; Tsaftaris,Athanasios

    2015-01-01

    Grafting has been used to improve yield, fruit quality and disease resistance in a range of tree and vegetable species. The molecular mechanisms underpinning grafting responses have only recently started to be delineated. One of those mechanisms involves long distance transfer of genetic material from rootstock to scion alluding to an epigenetic component to the grafting process. In the research presented herein we extended published work on heritable changes in the DNA methylation p...

  13. Genome-Wide Prediction of DNA Methylation Using DNA Composition and Sequence Complexity in Human.

    Science.gov (United States)

    Wu, Chengchao; Yao, Shixin; Li, Xinghao; Chen, Chujia; Hu, Xuehai

    2017-02-16

    DNA methylation plays a significant role in transcriptional regulation by repressing activity. Change of the DNA methylation level is an important factor affecting the expression of target genes and downstream phenotypes. Because current experimental technologies can only assay a small proportion of CpG sites in the human genome, it is urgent to develop reliable computational models for predicting genome-wide DNA methylation. Here, we proposed a novel algorithm that accurately extracted sequence complexity features (seven features) and developed a support-vector-machine-based prediction model with integration of the reported DNA composition features (trinucleotide frequency and GC content, 65 features) by utilizing the methylation profiles of embryonic stem cells in human. The prediction results from 22 human chromosomes with size-varied windows showed that the 600-bp window achieved the best average accuracy of 94.7%. Moreover, comparisons with two existing methods further showed the superiority of our model, and cross-species predictions on mouse data also demonstrated that our model has certain generalization ability. Finally, a statistical test of the experimental data and the predicted data on functional regions annotated by ChromHMM found that six out of 10 regions were consistent, which implies reliable prediction of unassayed CpG sites. Accordingly, we believe that our novel model will be useful and reliable in predicting DNA methylation.

  14. Role of DNA methylation in the nucleus accumbens in incubation of cocaine craving.

    Science.gov (United States)

    Massart, Renaud; Barnea, Royi; Dikshtein, Yahav; Suderman, Matthew; Meir, Oren; Hallett, Michael; Kennedy, Pamela; Nestler, Eric J; Szyf, Moshe; Yadid, Gal

    2015-05-27

    One of the major challenges of cocaine addiction is the high rate of relapse to drug use after periods of withdrawal. During the first few weeks of withdrawal, cue-induced cocaine craving intensifies, or "incubates," and persists over extended periods of time. Although several brain regions and molecular mechanisms were found to be involved in this process, the underlying epigenetic mechanisms are still unknown. Herein, we used a rat model of incubation of cocaine craving, in which rats were trained to self-administer cocaine (0.75 mg/kg, 6 h/d, 10 d), and cue-induced cocaine-seeking was examined in an extinction test after 1 or 30 d of withdrawal. We show that the withdrawal periods, as well as cue-induced cocaine seeking, are associated with broad, time-dependent enhancement of DNA methylation alterations in the nucleus accumbens (NAc). These gene methylation alterations were partly negatively correlated with gene expression changes. Furthermore, intra-NAc injections of a DNA methyltransferase inhibitor (RG108, 100 μm) abolished cue-induced cocaine seeking on day 30, an effect that persisted 1 month, whereas the methyl donor S-adenosylmethionine (500 μm) had an opposite effect on cocaine seeking. We then targeted two proteins whose genes were demethylated by RG108-estrogen receptor 1 (ESR1) and cyclin-dependent kinase 5 (CDK5). Treatment with an intra-NAc injection of the ESR1 agonist propyl pyrazole triol (10 nm) or the CDK5 inhibitor roscovitine (28 μm) on day 30 of withdrawal significantly decreased cue-induced cocaine seeking. These results demonstrate a role for NAc DNA methylation, and downstream targets of DNA demethylation, in incubation of cocaine craving. Copyright © 2015 the authors 0270-6474/15/358042-17$15.00/0.

  15. Effects of bisphosphonate treatment on DNA methylation in osteonecrosis of the jaw.

    Science.gov (United States)

    Polidoro, Silvia; Broccoletti, Roberto; Campanella, Gianluca; Di Gaetano, Cornelia; Menegatti, Elisa; Scoletta, Matteo; Lerda, Ennio; Matullo, Giuseppe; Vineis, Paolo; Berardi, Daniela; Scully, Crispian; Arduino, Paolo G

    2013-10-09

    Bisphosphonates are used in the treatment of hypocalcaemia, mainly in cancer and osteoporosis. Some patients experience adverse events, such as BP-related osteonecrosis of the jaw (BRONJ). DNA methylation plays a key role in gene regulation in many tissues, but its involvement in bone homeostasis is not well characterized, and no information is available regarding altered methylation in BRONJ. Using the Illumina Infinium HumanMethylation27 BeadChip assay, we performed an epigenome-wide association study in peripheral blood samples from 68 patients treated with nitrogenous BP, including 35 with BRONJ. Analysis of the estimated cumulative BP exposure distribution indicated that the exposure of the case group to BP was slightly higher than that of the control group; more severely affected cases (i.e., with BRONJ in both mandible and maxilla) were significantly more exposed to BP than were those with BRONJ only in the mandible or maxilla (one-sided Wilcoxon rank sum test, p=0.002). Logistic regression analysis confirmed the positive association between cumulative bisphosphonates exposure and risk of BRONJ (OR 1.015 per mg of cumulative exposure, 95% CI 1.004-1.032, p=0.036). Although no statistically significant differences were observed between case and control groups, methylation levels of probes mapping on three genes, ERCC8, LEPREL1 and SDC2, were strongly associated with cumulative BP exposure levels (p<1.31E-007). Enrichment analysis, combining differentially methylated genes with genes involved in the mevalonate pathway, showed that BP treatment can affect the methylation pattern of genes involved in extracellular matrix organization and inflammatory responses, leading to more frequent adverse effects such as BRONJ. Differences in DNA methylation induced by BP treatment could be involved in the pathogenesis of the bone lesion. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Potential of DNA methylation in rectal cancer as diagnostic and prognostic biomarkers

    OpenAIRE

    Exner, Ruth; Pulverer, Walter; Diem, Martina; Spaller, Lisa; Woltering, Laura; Schreiber, Martin; Wolf, Brigitte; Sonntagbauer, Markus; Schr?der, Fabian; Stift, Judith; Wrba, Fritz; Bergmann, Michael; Weinh?usel, Andreas; Egger, Gerda

    2015-01-01

    Background: Aberrant DNA methylation is more prominent in proximal compared with distal colorectal cancers. Although a number of methylation markers were identified for colon cancer, yet few are available for rectal cancer. Methods: DNA methylation differences were assessed by a targeted DNA microarray for 360 marker candidates between 22 fresh frozen rectal tumour samples and 8 controls and validated by microfluidic high-throughput and methylation-sensitive qPCR in fresh frozen and formalin-...

  17. A genome-wide DNA methylation study in colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    Dodsworth Charlotte

    2011-06-01

    Full Text Available Abstract Background We performed a genome-wide scan of 27,578 CpG loci covering 14,475 genes to identify differentially methylated loci (DML in colorectal carcinoma (CRC. Methods We used Illumina's Infinium methylation assay in paired DNA samples extracted from 24 fresh frozen CRC tissues and their corresponding normal colon tissues from 24 consecutive diagnosed patients at a tertiary medical center. Results We found a total of 627 DML in CRC covering 513 genes, of which 535 are novel DML covering 465 genes. We also validated the Illumina Infinium methylation data for top-ranking genes by non-bisulfite conversion q-PCR-based methyl profiler assay in a subset of the same samples. We also carried out integration of genome-wide copy number and expression microarray along with methylation profiling to see the functional effect of methylation. Gene Set Enrichment Analysis (GSEA showed that among the major "gene sets" that are hypermethylated in CRC are the sets: "inhibition of adenylate cyclase activity by G-protein signaling", "Rac guanyl-nucleotide exchange factor activity", "regulation of retinoic acid receptor signaling pathway" and "estrogen receptor activity". Two-level nested cross validation showed that DML-based predictive models may offer reasonable sensitivity (around 89%, specificity (around 95%, positive predictive value (around 95% and negative predictive value (around 89%, suggesting that these markers may have potential clinical application. Conclusion Our genome-wide methylation study in CRC clearly supports most of the previous findings; additionally we found a large number of novel DML in CRC tissue. If confirmed in future studies, these findings may lead to identification of genomic markers for potential clinical application.

  18. Atorvastatin Downregulates In Vitro Methyl Methanesulfonate and Cyclophosphamide Alkylation-Mediated Cellular and DNA Injuries

    Directory of Open Access Journals (Sweden)

    Carlos F. Araujo-Lima

    2018-01-01

    Full Text Available Statins are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA reductase inhibitors, and this class of drugs has been studied as protective agents against DNA damages. Alkylating agents (AAs are able to induce alkylation in macromolecules, causing DNA damage, as DNA methylation. Our objective was to evaluate atorvastatin (AVA antimutagenic, cytoprotective, and antigenotoxic potentials against DNA lesions caused by AA. AVA chemopreventive ability was evaluated using antimutagenicity assays (Salmonella/microsome assay, cytotoxicity, cell cycle, and genotoxicity assays in HepG2 cells. The cells were cotreated with AVA and the AA methyl methanesulfonate (MMS or cyclophosphamide (CPA. Our datum showed that AVA reduces the alkylation-mediated DNA damage in different in vitro experimental models. Cytoprotection of AVA at low doses (0.1–1.0 μM was observed after 24 h of cotreatment with MMS or CPA at their LC50, causing an increase in HepG2 survival rates. After all, AVA at 10 μM and 25 μM had decreased effect in micronucleus formation in HepG2 cells and restored cell cycle alterations induced by MMS and CPA. This study supports the hypothesis that statins can be chemopreventive agents, acting as antimutagenic, antigenotoxic, and cytoprotective components, specifically against alkylating agents of DNA.

  19. Aging, chronic alcohol consumption, and low folate intake are determinants of genomic DNA methylation in the liver and colon of mice

    Science.gov (United States)

    Advanced age and chronic alcohol consumption are important risk factors in the development of colon and liver cancer. Both factors are known to be associated with altered DNA methylation. Inadequate folate intake can also derange biological methylation pathways. We investigated the effects of aging,...

  20. Identification of 3,N(4)-etheno-5-methyl-2'-deoxycytidine in human DNA: a new modified nucleoside which may perturb genome methylation.

    Science.gov (United States)

    Nair, Jagadeesan; Godschalk, Roger W; Nair, Urmila; Owen, Robert W; Hull, William E; Bartsch, Helmut

    2012-01-13

    Methylation of cytidine at dCpdG sequences regulates gene expression and is altered in many chronic inflammatory diseases. Inflammation generates lipid peroxidation (LPO) products which can react with deoxycytidine, deoxyadenosine, and deoxyguanosine in DNA to form pro-mutagenic exocyclic etheno-nucleoside residues. Since 5-methyl-2'-deoxycytidine (5mdC) residues exhibit increased nucleophilicity at N3, they should be even better targets for LPO products. We synthesized and characterized 3,N(4)-etheno-5-methyl-2'-deoxycytidine-3'-phosphate and showed that LPO products can indeed form the corresponding etheno-5mdC (ε5mdC) lesion in DNA in vitro. Our newly developed (32)P-postlabeling method was subsequently used to detect ε5mdC lesions in DNA from human white blood cells, lung, and liver at concentrations 4-10 times higher than that observed for etheno adducts on nonmethylated cytidine. Our new detection method can now be used to explore the hypothesis that this DNA lesion perturbs the DNA methylation status.

  1. Epigenetic dysregulation in neuroblastoma: A tale of miRNAs and DNA methylation.

    Science.gov (United States)

    Parodi, Federica; Carosio, Roberta; Ragusa, Marco; Di Pietro, Cinzia; Maugeri, Marco; Barbagallo, Davide; Sallustio, Fabio; Allemanni, Giorgio; Pistillo, Maria Pia; Casciano, Ida; Forlani, Alessandra; Schena, Francesco P; Purrello, Michele; Romani, Massimo; Banelli, Barbara

    2016-12-01

    In neuroblastoma, the epigenetic landscape is more profoundly altered in aggressive compared to lower grade tumors and the concomitant hypermethylation of many genes, defined as "methylator phenotype", has been associated with poor outcome. DNA methylation can interfere with gene expression acting at distance through the methylation or demethylation of the regulatory regions of miRNAs. The multiplicity of miRNA targets may result in the simultaneous alteration of many biological pathways like cell proliferation, apoptosis, migration and differentiation. We have analyzed the methylation status of a set of miRNAs in a panel of neuroblastoma cell lines and identified a subset of hypermethylated and down-regulated miRNAs (miRNA 34b-3p, miRNA 34b-5p, miRNA34c-5p, and miRNA 124-2-3p) involved in the regulation of cell cycle, apoptosis and in the control of MYCN expression. These miRNAs share, in part, some of the targets whose expression is inversely correlated to the methylation and expression of the corresponding miRNA. To simulate the effect of the demethylation of miRNAs, we transfected the corresponding miRNA-mimics in the same cell lines and observed the down-regulation of a set of their target genes as well as the partial block of the cell cycle and the activation of the apoptotic pathway. The epigenetic alterations of miRNAs described in the present study were found also in a subset of patients at high risk of progression. Our data disclosed a complex network of interactions between epigenetically altered miRNAs and target genes, that could interfere at multiple levels in the control of cell homeostasis. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis.

    Science.gov (United States)

    Kuss-Duerkop, Sharon K; Westrich, Joseph A; Pyeon, Dohun

    2018-02-13

    Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus-host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.

  3. DNA Tumor Virus Regulation of Host DNA Methylation and Its Implications for Immune Evasion and Oncogenesis

    Directory of Open Access Journals (Sweden)

    Sharon K. Kuss-Duerkop

    2018-02-01

    Full Text Available Viruses have evolved various mechanisms to evade host immunity and ensure efficient viral replication and persistence. Several DNA tumor viruses modulate host DNA methyltransferases for epigenetic dysregulation of immune-related gene expression in host cells. The host immune responses suppressed by virus-induced aberrant DNA methylation are also frequently involved in antitumor immune responses. Here, we describe viral mechanisms and virus–host interactions by which DNA tumor viruses regulate host DNA methylation to evade antiviral immunity, which may contribute to the generation of an immunosuppressive microenvironment during cancer development. Recent trials of immunotherapies have shown promising results to treat multiple cancers; however, a significant number of non-responders necessitate identifying additional targets for cancer immunotherapies. Thus, understanding immune evasion mechanisms of cancer-causing viruses may provide great insights for reversing immune suppression to prevent and treat associated cancers.

  4. Mitochondrial DNA haplotypes induce differential patterns of DNA methylation that result in differential chromosomal gene expression patterns.

    Science.gov (United States)

    Lee, William T; Sun, Xin; Tsai, Te-Sha; Johnson, Jacqueline L; Gould, Jodee A; Garama, Daniel J; Gough, Daniel J; McKenzie, Matthew; Trounce, Ian A; St John, Justin C

    2017-01-01

    Mitochondrial DNA copy number is strictly regulated during development as naive cells differentiate into mature cells to ensure that specific cell types have sufficient copies of mitochondrial DNA to perform their specialised functions. Mitochondrial DNA haplotypes are defined as specific regions of mitochondrial DNA that cluster with other mitochondrial sequences to show the phylogenetic origins of maternal lineages. Mitochondrial DNA haplotypes are associated with a range of phenotypes and disease. To understand how mitochondrial DNA haplotypes induce these characteristics, we used four embryonic stem cell lines that have the same set of chromosomes but possess different mitochondrial DNA haplotypes. We show that mitochondrial DNA haplotypes influence changes in chromosomal gene expression and affinity for nuclear-encoded mitochondrial DNA replication factors to modulate mitochondrial DNA copy number, two events that act synchronously during differentiation. Global DNA methylation analysis showed that each haplotype induces distinct DNA methylation patterns, which, when modulated by DNA demethylation agents, resulted in skewed gene expression patterns that highlight the effectiveness of the new DNA methylation patterns established by each haplotype. The haplotypes differentially regulate α -ketoglutarate, a metabolite from the TCA cycle that modulates the TET family of proteins, which catalyse the transition from 5-methylcytosine, indicative of DNA methylation, to 5-hydroxymethylcytosine, indicative of DNA demethylation. Our outcomes show that mitochondrial DNA haplotypes differentially modulate chromosomal gene expression patterns of naive and differentiating cells by establishing mitochondrial DNA haplotype-specific DNA methylation patterns.

  5. SETDB1 is involved in postembryonic DNA methylation and gene silencing in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dawei Gou

    2010-05-01

    Full Text Available DNA methylation is fundamental for the stability and activity of genomes. Drosophila melanogaster and vertebrates establish a global DNA methylation pattern of their genome during early embryogenesis. Large-scale analyses of DNA methylation patterns have uncovered revealed that DNA methylation patterns are dynamic rather than static and change in a gene-specific fashion during development and in diseased cells. However, the factors and mechanisms involved in dynamic, postembryonic DNA methylation remain unclear. Methylation of lysine 9 in histone H3 (H3-K9 by members of the Su(var3-9 family of histone methyltransferases (HMTs triggers embryonic DNA methylation in Arthropods and Chordates. Here, we demonstrate that Drosophila SETDB1 (dSETDB1 can mediate DNA methylation and silencing of genes and retrotransposons. We found that dSETDB1 tri-methylates H3-K9 and binds methylated CpA motifs. Tri-methylation of H3-K9 by dSETDB1 mediates recruitment of DNA methyltransferase 2 (Dnmt2 and Su(var205, the Drosophila ortholog of mammalian "Heterochromatin Protein 1", to target genes for dSETDB1. By enlisting Dnmt2 and Su(var205, dSETDB1 triggers DNA methylation and silencing of genes and retrotransposons in Drosophila cells. DSETDB1 is involved in postembryonic DNA methylation and silencing of Rt1b{} retrotransposons and the tumor suppressor gene retinoblastoma family protein 1 (Rb in imaginal discs. Collectively, our findings implicate dSETDB1 in postembryonic DNA methylation, provide a model for silencing of the tumor suppressor Rb, and uncover a role for cell type-specific DNA methylation in Drosophila development.

  6. Nanopore-based assay for detection of methylation in double-stranded DNA fragments.

    Science.gov (United States)

    Shim, Jiwook; Kim, Younghoon; Humphreys, Gwendolyn I; Nardulli, Ann M; Kosari, Farhad; Vasmatzis, George; Taylor, William R; Ahlquist, David A; Myong, Sua; Bashir, Rashid

    2015-01-27

    DNA methylation is an epigenetic modification of DNA in which methyl groups are added at the 5-carbon position of cytosine. Aberrant DNA methylation, which has been associated with carcinogenesis, can be assessed in various biological fluids and potentially can be used as markers for detection of cancer. Analytically sensitive and specific assays for methylation targeting low-abundance and fragmented DNA are needed for optimal clinical diagnosis and prognosis. We present a nanopore-based direct methylation detection assay that circumvents bisulfite conversion and polymerase chain reaction amplification. Building on our prior work, we used methyl-binding proteins (MBPs), which selectively label the methylated DNA. The nanopore-based assay selectively detects methylated DNA/MBP complexes through a 19 nm nanopore with significantly deeper and prolonged nanopore ionic current blocking, while unmethylated DNA molecules were not detectable due to their smaller diameter. Discrimination of hypermethylated and unmethylated DNA on 90, 60, and 30 bp DNA fragments was demonstrated using sub-10 nm nanopores. Hypermethylated DNA fragments fully bound with MBPs are differentiated from unmethylated DNA at 2.1- to 6.5-fold current blockades and 4.5- to 23.3-fold transport durations. Furthermore, these nanopore assays can detect the CpG dyad in DNA fragments and could someday profile the position of methylated CpG sites on DNA fragments.

  7. Distinctive Klf4 mutants determine preference for DNA methylation status

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hideharu; Wang, Dongxue; Steves, Alyse N.; Jin, Peng; Blumenthal, Robert M.; Zhang, Xing; Cheng, Xiaodong

    2016-09-04

    Reprogramming of mammalian genome methylation is critically important but poorly understood. Klf4, a transcription factor directing reprogramming, contains a DNA binding domain with three consecutive C2H2 zinc fingers. Klf4 recognizes CpG or TpG within a specific sequence. Mouse Klf4 DNA binding domain has roughly equal affinity for methylated CpG or TpG, and slightly lower affinity for unmodified CpG. The structural basis for this key preference is unclear, though the side chain of Glu446 is known to contact the methyl group of 5-methylcytosine (5mC) or thymine (5-methyluracil). We examined the role of Glu446 by mutagenesis. Substituting Glu446 with aspartate (E446D) resulted in preference for unmodified cytosine, due to decreased affinity for 5mC. In contrast, substituting Glu446 with proline (E446P) increased affinity for 5mC by two orders of magnitude. Structural analysis revealed hydrophobic interaction between the proline's aliphatic cyclic structure and the 5-methyl group of the pyrimidine (5mC or T). As in wild-type Klf4 (E446), the proline at position 446 does not interact directly with either the 5mC N4 nitrogen or the thymine O4 oxygen. In contrast, the unmethylated cytosine's exocyclic N4 amino group (NH2) and its ring carbon C5 atom hydrogen bond directly with the aspartate carboxylate of the E446D variant. Both of these interactions would provide a preference for cytosine over thymine, and the latter one could explain the E446D preference for unmethylated cytosine. Finally, we evaluated the ability of these Klf4 mutants to regulate transcription of methylated and unmethylated promoters in a luciferase reporter assay.

  8. Characterization of Dnmt1 Binding and DNA Methylation on Nucleosomes and Nucleosomal Arrays.

    Directory of Open Access Journals (Sweden)

    Anna Schrader

    Full Text Available The packaging of DNA into nucleosomes and the organisation into higher order structures of chromatin limits the access of sequence specific DNA binding factors to DNA. In cells, DNA methylation is preferentially occuring in the linker region of nucleosomes, suggesting a structural impact of chromatin on DNA methylation. These observations raise the question whether DNA methyltransferases are capable to recognize the nucleosomal substrates and to modify the packaged DNA. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the maintenance DNA methyltransferase Dnmt1. Our binding studies show that Dnmt1 has a DNA length sensing activity, binding cooperatively to DNA, and requiring a minimal DNA length of 20 bp. Dnmt1 needs linker DNA to bind to nucleosomes and most efficiently recognizes nucleosomes with symmetric DNA linkers. Footprinting experiments reveal that Dnmt1 binds to both DNA linkers exiting the nucleosome core. The binding pattern correlates with the efficient methylation of DNA linkers. However, the enzyme lacks the ability to methylate nucleosomal CpG sites on mononucleosomes and nucleosomal arrays, unless chromatin remodeling enzymes create a dynamic chromatin state. In addition, our results show that Dnmt1 functionally interacts with specific chromatin remodeling enzymes to enable complete methylation of hemi-methylated DNA in chromatin.

  9. Global and gene-specific DNA methylation pattern discriminates cholecystitis from gallbladder cancer patients in Chile

    Science.gov (United States)

    Kagohara, Luciane Tsukamoto; Schussel, Juliana L; Subbannayya, Tejaswini; Sahasrabuddhe, Nandini; Lebron, Cynthia; Brait, Mariana; Maldonado, Leonel; Valle, Blanca L; Pirini, Francesca; Jahuira, Martha; Lopez, Jaime; Letelier, Pablo; Brebi-Mieville, Priscilla; Ili, Carmen; Pandey, Akhilesh; Chatterjee, Aditi; Sidransky, David; Guerrero-Preston, Rafael

    2015-01-01

    Aim The aim of the study was to evaluate the use of global and gene-specific DNA methylation changes as potential biomarkers for gallbladder cancer (GBC) in a cohort from Chile. Material & methods DNA methylation was analyzed through an ELISA-based technique and quantitative methylation-specific PCR. Results Global DNA Methylation Index (p = 0.02) and promoter methylation of SSBP2 (p = 0.01) and ESR1 (p = 0.05) were significantly different in GBC when compared with cholecystitis. Receiver curve operator analysis revealed promoter methylation of APC, CDKN2A, ESR1, PGP9.5 and SSBP2, together with the Global DNA Methylation Index, had 71% sensitivity, 95% specificity, a 0.97 area under the curve and a positive predictive value of 90%. Conclusion Global and gene-specific DNA methylation may be useful biomarkers for GBC clinical assessment. PMID:25066711

  10. DNA methylation, insulin resistance, and blood pressure in offspring determined by maternal periconceptional B vitamin and methionine status

    Science.gov (United States)

    Sinclair, Kevin D.; Allegrucci, Cinzia; Singh, Ravinder; Gardner, David S.; Sebastian, Sonia; Bispham, Jayson; Thurston, Alexandra; Huntley, John F.; Rees, William D.; Maloney, Christopher A.; Lea, Richard G.; Craigon, Jim; McEvoy, Tom G.; Young, Lorraine E.

    2007-01-01

    A complex combination of adult health-related disorders can originate from developmental events that occur in utero. The periconceptional period may also be programmable. We report on the effects of restricting the supply of specific B vitamins (i.e., B12 and folate) and methionine, within normal physiological ranges, from the periconceptional diet of mature female sheep. We hypothesized this would lead to epigenetic modifications to DNA methylation in the preovulatory oocyte and/or preimplantation embryo, with long-term health implications for offspring. DNA methylation is a key epigenetic contributor to maintenance of gene silencing that relies on a dietary supply of methyl groups. We observed no effects on pregnancy establishment or birth weight, but this modest early dietary intervention led to adult offspring that were both heavier and fatter, elicited altered immune responses to antigenic challenge, were insulin-resistant, and had elevated blood pressure–effects that were most obvious in males. The altered methylation status of 4% of 1,400 CpG islands examined by restriction landmark genome scanning in the fetal liver revealed compelling evidence of a widespread epigenetic mechanism associated with this nutritionally programmed effect. Intriguingly, more than half of the affected loci were specific to males. The data provide the first evidence that clinically relevant reductions in specific dietary inputs to the methionine/folate cycles during the periconceptional period can lead to widespread epigenetic alterations to DNA methylation in offspring, and modify adult health-related phenotypes. PMID:18042717

  11. Genome-wide DNA methylation scan in major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Sarven Sabunciyan

    Full Text Available While genome-wide association studies are ongoing to identify sequence variation influencing susceptibility to major depressive disorder (MDD, epigenetic marks, such as DNA methylation, which can be influenced by environment, might also play a role. Here we present the first genome-wide DNA methylation (DNAm scan in MDD. We compared 39 postmortem frontal cortex MDD samples to 26 controls. DNA was hybridized to our Comprehensive High-throughput Arrays for Relative Methylation (CHARM platform, covering 3.5 million CpGs. CHARM identified 224 candidate regions with DNAm differences >10%. These regions are highly enriched for neuronal growth and development genes. Ten of 17 regions for which validation was attempted showed true DNAm differences; the greatest were in PRIMA1, with 12-15% increased DNAm in MDD (p = 0.0002-0.0003, and a concomitant decrease in gene expression. These results must be considered pilot data, however, as we could only test replication in a small number of additional brain samples (n = 16, which showed no significant difference in PRIMA1. Because PRIMA1 anchors acetylcholinesterase in neuronal membranes, decreased expression could result in decreased enzyme function and increased cholinergic transmission, consistent with a role in MDD. We observed decreased immunoreactivity for acetylcholinesterase in MDD brain with increased PRIMA1 DNAm, non-significant at p = 0.08.While we cannot draw firm conclusions about PRIMA1 DNAm in MDD, the involvement of neuronal development genes across the set showing differential methylation suggests a role for epigenetics in the illness. Further studies using limbic system brain regions might shed additional light on this role.

  12. Genes with stable DNA methylation levels show higher evolutionary conservation than genes with fluctuant DNA methylation levels.

    Science.gov (United States)

    Zhang, Ruijie; Lv, Wenhua; Luan, Meiwei; Zheng, Jiajia; Shi, Miao; Zhu, Hongjie; Li, Jin; Lv, Hongchao; Zhang, Mingming; Shang, Zhenwei; Duan, Lian; Jiang, Yongshuai

    2015-11-24

    Different human genes often exhibit different degrees of stability in their DNA methylation levels between tissues, samples or cell types. This may be related to the evolution of human genome. Thus, we compared the evolutionary conservation between two types of genes: genes with stable DNA methylation levels (SM genes) and genes with fluctuant DNA methylation levels (FM genes). For long-term evolutionary characteristics between species, we compared the percentage of the orthologous genes, evolutionary rate dn/ds and protein sequence identity. We found that the SM genes had greater percentages of the orthologous genes, lower dn/ds, and higher protein sequence identities in all the 21 species. These results indicated that the SM genes were more evolutionarily conserved than the FM genes. For short-term evolutionary characteristics among human populations, we compared the single nucleotide polymorphism (SNP) density, and the linkage disequilibrium (LD) degree in HapMap populations and 1000 genomes project populations. We observed that the SM genes had lower SNP densities, and higher degrees of LD in all the 11 HapMap populations and 13 1000 genomes project populations. These results mean that the SM genes had more stable chromosome genetic structures, and were more conserved than the FM genes.

  13. Bisulfite sequencing reveals that Aspergillus flavus holds a hollow in DNA methylation.

    Directory of Open Access Journals (Sweden)

    Si-Yang Liu

    Full Text Available Aspergillus flavus first gained scientific attention for its production of aflatoxin. The underlying regulation of aflatoxin biosynthesis has been serving as a theoretical model for biosynthesis of other microbial secondary metabolites. Nevertheless, for several decades, the DNA methylation status, one of the important epigenomic modifications involved in gene regulation, in A. flavus remains to be controversial. Here, we applied bisulfite sequencing in conjunction with a biological replicate strategy to investigate the DNA methylation profiling of A. flavus genome. Both the bisulfite sequencing data and the methylome comparisons with other fungi confirm that the DNA methylation level of this fungus is negligible. Further investigation into the DNA methyltransferase of Aspergillus uncovers its close relationship with RID-like enzymes as well as its divergence with the methyltransferase of species with validated DNA methylation. The lack of repeat contents of the A. flavus' genome and the high RIP-index of the small amount of remanent repeat potentially support our speculation that DNA methylation may be absent in A. flavus or that it may possess de novo DNA methylation which occurs very transiently during the obscure sexual stage of this fungal species. This work contributes to our understanding on the DNA methylation status of A. flavus, as well as reinforces our views on the DNA methylation in fungal species. In addition, our strategy of applying bisulfite sequencing to DNA methylation detection in species with low DNA methylation may serve as a reference for later scientific investigations in other hypomethylated species.

  14. DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection

    International Nuclear Information System (INIS)

    Negraes, Priscilla D; Favaro, Francine P; Camargo, João Lauro V; Oliveira, Maria Luiza CS; Goldberg, José; Rainho, Cláudia A; Salvadori, Daisy MF

    2008-01-01

    Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence. A set of 4 genes, including CDH1 (E-cadherin), SFN (stratifin), RARB (retinoic acid receptor, beta) and RASSF1A (Ras association (RalGDS/AF-6) domain family 1), had their methylation patterns evaluated by MSP (Methylation-Specific Polymerase Chain Reaction) analysis in 49 fresh urinary bladder carcinoma tissues (including 14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas) and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis (control group). A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite modification, methylation patterns were determined and correlated with standard clinic-histopathological parameters. CDH1 and SFN genes were methylated at high frequencies in bladder cancer as well as in paired normal adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were found between RARB and RASSF1A methylation and the clinical and histopathological parameters in bladder cancer, a sensitivity of 95% and a specificity of 71% were observed for RARB methylation (Fisher's Exact test (p < 0.0001; OR = 48.89) and, 58% and 17% (p < 0.05; OR = 0.29) for RASSF1A gene, respectively, in relation to the control group. Indistinct DNA hypermethylation of CDH1 and SFN genes between tumoral and normal urinary bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer. However, RARB and RASSF1A gene methylation appears to be an initial event in urinary bladder carcinogenesis and should be considered as defining a

  15. Kaempferol Modulates DNA Methylation and Downregulates DNMT3B in Bladder Cancer

    OpenAIRE

    Wei Qiu; Jun Lin; Yichen Zhu; Jian Zhang; Liping Zeng; Ming Su; Ye Tian

    2017-01-01

    Background: Genomic DNA methylation plays an important role in both the occurrence and development of bladder cancer. Kaempferol (Kae), a natural flavonoid that is present in many fruits and vegetables, exhibits potent anti-cancer effects in bladder cancer. Similar to other flavonoids, Kae possesses a flavan nucleus in its structure. This structure was reported to inhibit DNA methylation by suppressing DNA methyltransferases (DNMTs). However, whether Kae can inhibit DNA methylation remains un...

  16. Global DNA cytosine methylation as an evolving trait: phylogenetic signal and correlated evolution with genome size in Angiosperms

    Directory of Open Access Journals (Sweden)

    Conchita eAlonso

    2015-01-01

    Full Text Available DNA cytosine methylation is a widespread epigenetic mechanism in eukaryotes, and plant genomes commonly are densely methylated. Genomic methylation can be associated with functional consequences such as mutational events, genomic instability or altered gene expression, but little is known on interspecific variation in global cytosine methylation in plants. In this paper, we compare global cytosine methylation estimates obtained by HPLC and use a phylogenetically-informed analytical approach to test for significance of evolutionary signatures of this trait across 54 angiosperm species in 25 families. We evaluate whether interspecific variation in global cytosine methylation is statistically related to phylogenetic distance and also whether it is evolutionarily correlated with genome size (C-value. Global cytosine methylation varied widely between species, ranging between 5.3% (Arabidopsis and 39.2% (Narcissus. Differences between species were related to their evolutionary trajectories, as denoted by the strong phylogenetic signal underlying interspecific variation. Global cytosine methylation and genome size were evolutionarily correlated, as revealed by the significant relationship between the corresponding phylogenetically independent contrasts. On average, a ten-fold increase in genome size entailed an increase of about 10% in global cytosine methylation. Results show that global cytosine methylation is an evolving trait in angiosperms whose evolutionary trajectory is significantly linked to changes in genome size, and suggest that the evolutionary implications of epigenetic mechanisms are likely to vary between plant lineages.

  17. Effect of different light quality on DNA methylation variation for brown ...

    African Journals Online (AJOL)

    DNA methylation plays an important role in regulating gene expression during plant development. We studied the effects of different light quality on DNA methylation patterns of brown cotton (Gossypium hirstum) by using the methylation sensitive amplified polymorphism (MSAP). We selected 66 pairs of MSAP selective ...

  18. Regulation of Gene Expression by DNA Methylation and RNA Editing in Animals

    DEFF Research Database (Denmark)

    Li, Qiye

    . In this thesis, I first introduce my study of DNA methylation in a model mollusk, the Pacific oyster (Crassostrea gigas), and provide insight into the evolution of invertebrate CpG methylation. Then, I present and discuss the regulatory role of DNA methylation in reproductive division of labor in naked mole rat...

  19. Indices of methylation in sperm DNA from fertile men differ between distinct geographical regions

    NARCIS (Netherlands)

    Consales, C.; Leter, G.; Bonde, J. P E; Toft, G.; Eleuteri, P.; Moccia, T.; Budillon, A.; Jönsson, B. A G; Giwercman, A.; Pedersen, H. S.; Ludwicki, J. K.; Zviezdai, V.; Heederik, D.; Spanò, M.

    2014-01-01

    STUDY QUESTION Which are the main determinants, if any, of sperm DNA methylation levels? SUMMARY ANSWER Geographical region resulted associated with the sperm methylation status assessed on genome-wide repetitive sequences. WHAT IS KNOWN ALREADY DNA methylation level, assessed on repetitive

  20. Effects of TET2 mutations on DNA methylation in chronic myelomonocytic leukemia

    Science.gov (United States)

    TET2 enzymatically converts 5-methyl-cytosine to 5-hydroxymethyl-cytosine, possibly leading to loss of DNA methylation. TET2 mutations are common in myeloid leukemia and were proposed to contribute to leukemogenesis through DNA methylation. To expand on this concept, we studied chronic myelomonocyti...

  1. DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas

    Directory of Open Access Journals (Sweden)

    Gavery Mackenzie R

    2010-08-01

    Full Text Available Abstract Background DNA methylation is an epigenetic mechanism with important regulatory functions in animals. While the mechanism itself is evolutionarily ancient, the distribution and function of DNA methylation is diverse both within and among phylogenetic groups. Although DNA methylation has been well studied in mammals, there are limited data on invertebrates, particularly molluscs. Here we characterize the distribution and investigate potential functions of DNA methylation in the Pacific oyster (Crassostrea gigas. Results Methylation sensitive PCR and bisulfite sequencing PCR approaches were used to identify CpG methylation in C. gigas genes and demonstrated that this species possesses intragenic methylation. In silico analysis of CpGo/e ratios in publicly available sequence data suggests that DNA methylation is a common feature of the C. gigas genome, and that specific functional categories of genes have significantly different levels of methylation. Conclusions The Pacific oyster genome displays intragenic DNA methylation and contains genes necessary for DNA methylation in animals. Results of this investigation suggest that DNA methylation has regulatory functions in Crassostrea gigas, particularly in gene families that have inducible expression, including those involved in stress and environmental responses.

  2. DNA methylation by methylbromfenvinfos 14C in in vivo and in vitro experiments

    International Nuclear Information System (INIS)

    Palut, D.; Cybulski, J.

    1979-01-01

    The process of DNA methylation in vitro by methylbromfenvinfos ( 14 C-methyl), an organophosphorous insecticide of Polish production, and methylation of nuclear DNA in vivo after intraperitoneal injection of the insecticide and also after administration of mutagenic alkylating agents: methanomethyl sulphonate 14 C, and N,N-dimethylnitrosoamine 14 C, were studied. (author)

  3. The Role of DNA Methylation in the Development and Progression of Lung Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Keith M. Kerr

    2007-01-01

    Full Text Available Lung cancer, caused by smoking in ∼87% of cases, is the leading cause of cancer death in the United States and Western Europe. Adenocarcinoma is now the most common type of lung cancer in men and women in the United States, and the histological subtype most frequently seen in never-smokers and former smokers. The increasing frequency of adenocarcinoma, which occurs more peripherally in the lung, is thought to be at least partially related to modifications in cigarette manufacturing that have led to a change in the depth of smoke inhalation. The rising incidence of lung adenocarcinoma and its lethal nature underline the importance of understanding the development and progression of this disease. Alterations in DNA methylation are recognized as key epigenetic changes in cancer, contributing to chromosomal instability through global hypomethylation, and aberrant gene expression through alterations in the methylation levels at promoter CpG islands. The identification of sequential changes in DNA methylation during progression and metastasis of lung adenocarcinoma, and the elucidation of their interplay with genetic changes, will broaden our molecular understanding of this disease, providing insights that may be applicable to the development of targeted drugs, as well as powerful markers for early detection and patient classification.

  4. Evaluation of Methylation Biomarkers for Detection of Circulating Tumor DNA and Application to Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Susan M. Mitchell

    2016-12-01

    Full Text Available Solid tumors shed DNA into circulation, and there is growing evidence that the detection of circulating tumor DNA (ctDNA has broad clinical utility, including monitoring of disease, prognosis, response to chemotherapy and tracking tumor heterogeneity. The appearance of ctDNA in the circulating cell-free DNA (ccfDNA isolated from plasma or serum is commonly detected by identifying tumor-specific features such as insertions, deletions, mutations and/or aberrant methylation. Methylation is a normal cell regulatory event, and since the majority of ccfDNA is derived from white blood cells (WBC, it is important that tumour-specific DNA methylation markers show rare to no methylation events in WBC DNA. We have used a novel approach for assessment of low levels of DNA methylation in WBC DNA. DNA methylation in 29 previously identified regions (residing in 17 genes was analyzed in WBC DNA and eight differentially-methylated regions (DMRs were taken through to testing in clinical samples using methylation specific PCR assays. DMRs residing in four genes, BCAT1, GRASP, IKZF1 and IRF4, exhibited low positivity, 3.5% to 7%, in the plasma of colonoscopy-confirmed healthy subjects, with the sensitivity for detection of ctDNA in colonoscopy-confirmed patients with colorectal cancer being 65%, 54.5%, 67.6% and 59% respectively.

  5. A fluorescence method for detection of DNA and DNA methylation based on graphene oxide and restriction endonuclease HpaII.

    Science.gov (United States)

    Wei, Wei; Gao, Chunyan; Xiong, Yanxiang; Zhang, Yuanjian; Liu, Songqin; Pu, Yuepu

    2015-01-01

    DNA methylation plays an important role in many biological events and is associated with various diseases. Most traditional methods for detection of DNA methylation are based on the complex and expensive bisulfite method. In this paper, we report a novel fluorescence method to detect DNA and DNA methylation based on graphene oxide (GO) and restriction endonuclease HpaII. The skillfully designed probe DNA labeled with 5-carboxyfluorescein (FAM) and optimized GO concentration keep the probe/target DNA still adsorbed on the GO. After the cleavage action of HpaII the labeled FAM is released from the GO surface and its fluorescence recovers, which could be used to detect DNA in the linear range of 50 pM-50 nM with a detection limit of 43 pM. DNA methylation induced by transmethylase (Mtase) or other chemical reagents prevents HpaII from recognizing and cleaving the specific site; as a result, fluorescence cannot recover. The fluorescence recovery efficiency is closely related to the DNA methylation level, which can be used to detect DNA methylation by comparing it with the fluorescence in the presence of intact target DNA. The method for detection of DNA and DNA methylation is simple, reliable and accurate. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Radioprotective properties of DNA methylation-disrupting agents

    International Nuclear Information System (INIS)

    Kalinich, J.F.; Catravas, G.N.; Snyder, S.L.

    1991-01-01

    5-Azacytidine and sodium butyrate, two DNA methylation-disrupting agents, were tested for radioprotective properties on V79A03 cells. Both compounds can activate genes not previously expressed (e.g. metallothionein). 5-Azecytidine treatment (3 μM, 24h) caused a 50% decrease in the 5-methylcytosine content of V79A03 DNA whereas sodium butyrate treatment (1 mM, 24h) resulted in a 700% increase in 5-methylcytosine content. Additionally, 5-azacytidine treatment resulted in the increased survival of V79A03 cells, with treatment 24 h prior to exposure to gamma radiation providing a dose reduction factor of 1.8. Sodium butyrate treatment did not result in a significant increase in survival. These results indicate that the hypomethylation of genomic DNA prior to exposure to gamma radiation correlates with an increase in survival of V79A03 cells, possibly due to the activation of the enzymes involved in repair. (author)

  7. DNA methylation of loci within ABCG1 and PHOSPHO1 in blood DNA is associated with future type 2 diabetes risk

    DEFF Research Database (Denmark)

    Dayeh, Tasnim; Tuomi, Tiinamaija; Almgren, Peter

    2016-01-01

    Identification of subjects with a high risk of developing type 2 diabetes (T2D) is fundamental for prevention of the disease. Consequently, it is essential to search for new biomarkers that can improve the prediction of T2D. The aim of this study was to examine whether 5 DNA methylation loci...... in blood DNA (ABCG1, PHOSPHO1, SOCS3, SREBF1, and TXNIP), recently reported to be associated with T2D, might predict future T2D in subjects from the Botnia prospective study. We also tested if these CpG sites exhibit altered DNA methylation in human pancreatic islets, liver, adipose tissue, and skeletal...... muscle from diabetic vs. non-diabetic subjects. DNA methylation at the ABCG1 locus cg06500161 in blood DNA was associated with an increased risk for future T2D (OR = 1.09, 95% CI = 1.02-1.16, P-value = 0.007, Q-value = 0.018), while DNA methylation at the PHOSPHO1 locus cg02650017 in blood DNA...

  8. Analysis of DNA Methylation in Young People: Limited Evidence for an Association Between Victimization Stress and Epigenetic Variation in Blood.

    Science.gov (United States)

    Marzi, Sarah J; Sugden, Karen; Arseneault, Louise; Belsky, Daniel W; Burrage, Joe; Corcoran, David L; Danese, Andrea; Fisher, Helen L; Hannon, Eilis; Moffitt, Terrie E; Odgers, Candice L; Pariante, Carmine; Poulton, Richie; Williams, Benjamin S; Wong, Chloe C Y; Mill, Jonathan; Caspi, Avshalom

    2018-01-12

    DNA methylation has been proposed as an epigenetic mechanism by which early-life experiences become "embedded" in the genome and alter transcriptional processes to compromise health. The authors sought to investigate whether early-life victimization stress is associated with genome-wide DNA methylation. The authors tested the hypothesis that victimization is associated with DNA methylation in the Environmental Risk (E-Risk) Longitudinal Study, a nationally representative 1994-1995 birth cohort of 2,232 twins born in England and Wales and assessed at ages 5, 7, 10, 12, and 18 years. Multiple forms of victimization were ascertained in childhood and adolescence (including physical, sexual, and emotional abuse; neglect; exposure to intimate-partner violence; bullying; cyber-victimization; and crime). Epigenome-wide analyses of polyvictimization across childhood and adolescence revealed few significant associations with DNA methylation in peripheral blood at age 18, but these analyses were confounded by tobacco smoking and/or did not survive co-twin control tests. Secondary analyses of specific forms of victimization revealed sparse associations with DNA methylation that did not replicate across different operationalizations of the same putative victimization experience. Hypothesis-driven analyses of six candidate genes in the stress response (NR3C1, FKBP5, BDNF, AVP, CRHR1, SLC6A4) did not reveal predicted associations with DNA methylation in probes annotated to these genes. Findings from this epidemiological analysis of the epigenetic effects of early-life stress do not support the hypothesis of robust changes in DNA methylation in victimized young people. We need to come to terms with the possibility that epigenetic epidemiology is not yet well matched to experimental, nonhuman models in uncovering the biological embedding of stress.

  9. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, Koji [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Munetsuna, Eiji [Department of Biochemistry, Fujita Health University School of Medicine, Toyoake (Japan); Yamada, Hiroya, E-mail: hyamada@fujita-hu.ac.jp [Department of Hygiene, Fujita Health University School of Medicine, Toyoake (Japan); Ando, Yoshitaka [Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, Toyoake (Japan); Yamazaki, Mirai; Taromaru, Nao; Nagura, Ayuri; Ishikawa, Hiroaki [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Suzuki, Koji [Department of Public Health, Fujita Health University School of Health Sciences, Toyoake (Japan); Teradaira, Ryoji [Department of Clinical Biochemistry, Fujita Health University School of Health Sciences, Toyoake (Japan); Hashimoto, Shuji [Department of Hygiene, Fujita Health University School of Medicine, Toyoake (Japan)

    2015-12-04

    DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR. Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status. - Highlights: • No general consensus has been reached regarding the molecular mechanisms of the pathogenesis of fructose-induced diseases. • Significant increase in hepatic total methylation level was observed after fructose-supplemented feeding. • Fructose feeding significantly decreased mRNA levels for PPARα and CPT1A. • qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. • Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status in rat liver.

  10. High fructose consumption induces DNA methylation at PPARα and CPT1A promoter regions in the rat liver

    International Nuclear Information System (INIS)

    Ohashi, Koji; Munetsuna, Eiji; Yamada, Hiroya; Ando, Yoshitaka; Yamazaki, Mirai; Taromaru, Nao; Nagura, Ayuri; Ishikawa, Hiroaki; Suzuki, Koji; Teradaira, Ryoji; Hashimoto, Shuji

    2015-01-01

    DNA methylation status is affected by environmental factors, including nutrition. Fructose consumption is considered a risk factor for the conditions that make up metabolic syndrome such as dyslipidemia. However, the pathogenetic mechanism by which fructose consumption leads to metabolic syndrome is unclear. Based on observations that epigenetic modifications are closely related to induction of metabolic syndrome, we hypothesized that fructose-induced metabolic syndrome is caused by epigenetic alterations. Male SD rats were designated to receive water or 20% fructose solution for 14 weeks. mRNA levels for peroxisome proliferator-activated receptor alpha (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) was analyzed using Real-time PCR. Restriction digestion and real-time PCR (qAMP) was used for the analysis of DNA methylation status. Hepatic lipid accumulation was also observed by fructose intake. Fructose feeding also significantly decreased mRNA levels for PPARα and CPT1A. qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status, and pathogenesis of metabolic syndrome induced by fructose relates to DNA methylation status. - Highlights: • No general consensus has been reached regarding the molecular mechanisms of the pathogenesis of fructose-induced diseases. • Significant increase in hepatic total methylation level was observed after fructose-supplemented feeding. • Fructose feeding significantly decreased mRNA levels for PPARα and CPT1A. • qAMP analysis demonstrated the hypermethylation of promoter regions of PPARα and CTP1A genes. • Fructose-mediated attenuated gene expression may be mediated by alterations of DNA methylation status in rat liver.

  11. Integrated epigenome profiling of repressive histone modifications, DNA methylation and gene expression in normal and malignant urothelial cells.

    Directory of Open Access Journals (Sweden)

    Ewa Dudziec

    Full Text Available Epigenetic regulation of gene expression is commonly altered in human cancer. We have observed alterations of DNA methylation and microRNA expression that reflect the biology of bladder cancer. This common disease arises by distinct pathways with low and high-grade differentiation. We hypothesized that epigenetic gene regulation reflects an interaction between histone and DNA modifications, and differences between normal and malignant urothelial cells represent carcinogenic events within bladder cancer. To test this we profiled two repressive histone modifications (H3K9m3 and H3K27m3 using ChIP-Seq, cytosine methylation using MeDIP and mRNA expression in normal and malignant urothelial cell lines. In genes with low expression we identified H3K27m3 and DNA methylation each in 20-30% of genes and both marks in 5% of genes. H3K9m3 was detected in 5-10% of genes but was not associated with overall expression. DNA methylation was more closely related to gene expression in malignant than normal cells. H3K27m3 was the epigenetic mark most specifically correlated to gene silencing. Our data suggest that urothelial carcinogenesis is accompanied by a loss of control of both DNA methylation and H3k27 methylation. From our observations we identified a panel of genes with cancer specific-epigenetic mediated aberrant expression including those with reported carcinogenic functions and members potentially mediating a positive epigenetic feedback loop. Pathway enrichment analysis revealed genes marked by H3K9m3 were involved with cell homeostasis, those marked by H3K27m3 mediated pro-carcinogenic processes and those marked with cytosine methylation were mixed in function. In 150 normal and malignant urothelial samples, our gene panel correctly estimated expression in 65% of its members. Hierarchical clustering revealed that this gene panel stratified samples according to the presence and phenotype of bladder cancer.

  12. A Novel Computational Method for Detecting DNA Methylation Sites with DNA Sequence Information and Physicochemical Properties

    Directory of Open Access Journals (Sweden)

    Gaofeng Pan

    2018-02-01

    Full Text Available DNA methylation is an important biochemical process, and it has a close connection with many types of cancer. Research about DNA methylation can help us to understand the regulation mechanism and epigenetic reprogramming. Therefore, it becomes very important to recognize the methylation sites in the DNA sequence. In the past several decades, many computational methods—especially machine learning methods—have been developed since the high-throughout sequencing technology became widely used in research and industry. In order to accurately identify whether or not a nucleotide residue is methylated under the specific DNA sequence context, we propose a novel method that overcomes the shortcomings of previous methods for predicting methylation sites. We use k-gram, multivariate mutual information, discrete wavelet transform, and pseudo amino acid composition to extract features, and train a sparse Bayesian learning model to do DNA methylation prediction. Five criteria—area under the receiver operating characteristic curve (AUC, Matthew’s correlation coefficient (MCC, accuracy (ACC, sensitivity (SN, and specificity—are used to evaluate the prediction results of our method. On the benchmark dataset, we could reach 0.8632 on AUC, 0.8017 on ACC, 0.5558 on MCC, and 0.7268 on SN. Additionally, the best results on two scBS-seq profiled mouse embryonic stem cells datasets were 0.8896 and 0.9511 by AUC, respectively. When compared with other outstanding methods, our method surpassed them on the accuracy of prediction. The improvement of AUC by our method compared to other methods was at least 0.0399 . For the convenience of other researchers, our code has been uploaded to a file hosting service, and can be downloaded from: https://figshare.com/s/0697b692d802861282d3.

  13. A Novel Computational Method for Detecting DNA Methylation Sites with DNA Sequence Information and Physicochemical Properties.

    Science.gov (United States)

    Pan, Gaofeng; Jiang, Limin; Tang, Jijun; Guo, Fei

    2018-02-08

    DNA methylation is an important biochemical process, and it has a close connection with many types of cancer. Research about DNA methylation can help us to understand the regulation mechanism and epigenetic reprogramming. Therefore, it becomes very important to recognize the methylation sites in the DNA sequence. In the past several decades, many computational methods-especially machine learning methods-have been developed since the high-throughout sequencing technology became widely used in research and industry. In order to accurately identify whether or not a nucleotide residue is methylated under the specific DNA sequence context, we propose a novel method that overcomes the shortcomings of previous methods for predicting methylation sites. We use k -gram, multivariate mutual information, discrete wavelet transform, and pseudo amino acid composition to extract features, and train a sparse Bayesian learning model to do DNA methylation prediction. Five criteria-area under the receiver operating characteristic curve (AUC), Matthew's correlation coefficient (MCC), accuracy (ACC), sensitivity (SN), and specificity-are used to evaluate the prediction results of our method. On the benchmark dataset, we could reach 0.8632 on AUC, 0.8017 on ACC, 0.5558 on MCC, and 0.7268 on SN. Additionally, the best results on two scBS-seq profiled mouse embryonic stem cells datasets were 0.8896 and 0.9511 by AUC, respectively. When compared with other outstanding methods, our method surpassed them on the accuracy of prediction. The improvement of AUC by our method compared to other methods was at least 0.0399 . For the convenience of other researchers, our code has been uploaded to a file hosting service, and can be downloaded from: https://figshare.com/s/0697b692d802861282d3.

  14. Folic acid, polymorphism of methyl-group metabolism genes, and DNA methylation in relation to GI carcinogenesis.

    Science.gov (United States)

    Fang, Jing Yuan; Xiao, Shu Dong

    2003-01-01

    DNA methylation is the main epigenetic modification after replication in humans. DNA (cytosine-5)-methyltransferase (DNMT) catalyzes the transfer of a methyl group from S-adenosyl-L-methionine (SAM) to C5 of cytosine within CpG dinucleotide sequences in the genomic DNA of higher eukaryotes. There is considerable evidence that aberrant DNA methylation plays an integral role in carcinogenesis. Folic acid or folate is crucial for normal DNA synthesis and can regulate DNA methylation, and through this, it affects cellular SAM levels. Folate deficiency results in DNA hypomethylation. Epidemiological studies have indicated that folic acid protects against gastrointestinal (GI) cancers. Methylene-tetrahydrofolate reductase (MTHFR) and methionine synthase (MS) are the enzymes involved in folate metabolism and are thought to influence DNA methylation. MTHFR is highly polymorphic, and the variant genotypes result in decreased MTHFR enzyme activity and lower plasma folate level. Two common MTHFR polymorphisms, 677CT (or 677TT) and A1298C, and an MS polymorphism, A-->G at 2756, have been identified. Most studies support an inverse association between folate status and the rate of colorectal adenomas and carcinomas. During human GI carcinogenesis, MTHFR is highly polymorphic, and the variant genotypes result in decreased MTHFR enzyme activity and lower plasma folate level, as well as aberrant methylation.

  15. Genetic polymorphisms of the enzymes involved in DNA methylation and synthesis in elite athletes.

    Science.gov (United States)

    Terruzzi, Ileana; Senesi, Pamela; Montesano, Anna; La Torre, Antonio; Alberti, Giampietro; Benedini, Stefano; Caumo, Andrea; Fermo, Isabella; Luzi, Livio

    2011-08-24

    Physical exercise induces adaptive changes leading to a muscle phenotype with enhanced performance. We first investigated whether genetic polymorphisms altering enzymes involved in DNA methylation, probably responsible of DNA methylation deficiency, are present in athletes' DNA. We determined the polymorphic variants C667T/A1298C of 5,10-methylenetetrahydrofolate reductase (MTHFR), A2756G of methionine synthase (MTR), A66G of methionine synthase reductase (MTRR), G742A of betaine:homocysteine methyltransferase (BHMT), and 68-bp ins of cystathionine β-synthase (CBS) genes in 77 athletes and 54 control subjects. The frequency of MTHFR (AC), MTR (AG), and MTRR (AG) heterozygous genotypes was found statistically different in the athletes compared with the control group (P=0.0001, P=0.018, and P=0.0001), suggesting a reduced DNA methylating capacity. We therefore assessed whether DNA hypomethylation might increase the expression of myogenic proteins expressed during early (Myf-5 and MyoD), intermediate (Myf-6), and late-phase (MHC) of myogenesis in a cellular model of hypomethylated or unhypomethylated C2C12 myoblasts. Myogenic proteins are largely induced in hypomethylated cells [fold change (FC)=Myf-5: 1.21, 1.35; MyoD: 0.9, 1.47; Myf-6: 1.39, 1.66; MHC: 1.35, 3.10 in GMA, DMA, respectively] compared with the control groups (FC=Myf-5: 1.0, 1.38; MyoD: 1.0, 1.14; Myf-6: 1.0, 1.44; MHC: 1.0, 2.20 in GM, DM, respectively). Diameters and length of hypomethylated myotubes were greater then their respective controls. Our findings suggest that DNA hypomethylation due to lesser efficiency of polymorphic MTHFR, MS, and MSR enzymes induces the activation of factors determining proliferation and differentiation of myoblasts promoting muscle growth and increase of muscle mass.

  16. Osteoponin Promoter Controlled by DNA Methylation: Aberrant Methylation in Cloned Porcine Genome

    Directory of Open Access Journals (Sweden)

    Chih-Jie Shen

    2014-01-01

    Full Text Available Cloned animals usually exhibited many defects in physical characteristics or aberrant epigenetic reprogramming, especially in some important organ development. Osteoponin (OPN is an extracellular-matrix protein involved in heart and bone development and diseases. In this study, we investigated the correlation between OPN mRNA and its promoter methylation changes by the 5-aza-dc treatment in fibroblast cell and promoter assay. Aberrant methylation of porcine OPN was frequently found in different tissues of somatic nuclear transferred cloning pigs, and bisulfite sequence data suggested that the OPN promoter region −2615 to −2239 nucleotides (nt may be a crucial regulation DNA element. In pig ear fibroblast cell culture study, the demethylation of OPN promoter was found in dose-dependent response of 5-aza-dc treatment and followed the OPN mRNA reexpression. In cloned pig study, discrepant expression pattern was identified in several cloned pig tissues, especially in brain, heart, and ear. Promoter assay data revealed that four methylated CpG sites presenting in the −2615 to −2239 nt region cause significant downregulation of OPN promoter activity. These data suggested that methylation in the OPN promoter plays a crucial role in the regulation of OPN expression that we found in cloned pigs genome.

  17. Epigenetic features in the oyster Crassostrea gigas suggestive of functionally relevant promoter DNA methylation in invertebrates.

    Directory of Open Access Journals (Sweden)

    Guillaume eRiviere

    2014-04-01

    Full Text Available DNA methylation is evolutionarily conserved. Vertebrates exhibit high, widespread DNA methylation whereas invertebrate genomes are less methylated, predominantly within gene bodies. DNA methylation in invertebrates is associated with transcription level, alternative splicing and genome evolution, but functional outcomes of DNA methylation remain poorly described in lophotrochozoans. Recent genome-wide approaches improve understanding in distant taxa such as molluscs, where the phylogenetic position and life traits of Crassostrea gigas make this bivalve an ideal model to study the physiological and evolutionary implications of DNA methylation. We review the literature about DNA methylation in invertebrates and focus on DNA methylation features in the oyster. Indeed, though our MeDIP-seq results confirm predominant intragenic methylation, the profiles depend on the oyster’s developmental and reproductive stage. We discuss the perspective that oyster DNA methylation could be biased toward the 5’-end of some genes, depending on physiological status, suggesting important functional outcomes of putative promoter methylation from cell differentiation during early development to sustained adaptation of the species to the environment.

  18. Epigenetic features in the oyster Crassostrea gigas suggestive of functionally relevant promoter DNA methylation in invertebrates

    Science.gov (United States)

    Rivière, Guillaume

    2014-01-01

    DNA methylation is evolutionarily conserved. Vertebrates exhibit high, widespread DNA methylation whereas invertebrate genomes are less methylated, predominantly within gene bodies. DNA methylation in invertebrates is associated with transcription level, alternative splicing, and genome evolution, but functional outcomes of DNA methylation remain poorly described in lophotrochozoans. Recent genome-wide approaches improve understanding in distant taxa such as molluscs, where the phylogenetic position, and life traits of Crassostrea gigas make this bivalve an ideal model to study the physiological and evolutionary implications of DNA methylation. We review the literature about DNA methylation in invertebrates and focus on DNA methylation features in the oyster. Indeed, though our MeDIP-seq results confirm predominant intragenic methylation, the profiles depend on the oyster's developmental and reproductive stage. We discuss the perspective that oyster DNA methylation could be biased toward the 5′-end of some genes, depending on physiological status, suggesting important functional outcomes of putative promoter methylation from cell differentiation during early development to sustained adaptation of the species to the environment. PMID:24778620

  19. Multi-tissue DNA methylation age predictor in mouse.

    Science.gov (United States)

    Stubbs, Thomas M; Bonder, Marc Jan; Stark, Anne-Katrien; Krueger, Felix; von Meyenn, Ferdinand; Stegle, Oliver; Reik, Wolf

    2017-04-11

    DNA methylation changes at a discrete set of sites in the human genome are predictive of chronological and biological age. However, it is not known whether these changes are causative or a consequence of an underlying ageing process. It has also not been shown whether this epigenetic clock is unique to humans or conserved in the more experimentally tractable mouse. We have generated a comprehensive set of genome-scale base-resolution methylation maps from multiple mouse tissues spanning a wide range of ages. Many CpG sites show significant tissue-independent correlations with age which allowed us to develop a multi-tissue predictor of age in the mouse. Our model, which estimates age based on DNA methylation at 329 unique CpG sites, has a median absolute error of 3.33 weeks and has similar properties to the recently described human epigenetic clock. Using publicly available datasets, we find that the mouse clock is accurate enough to measure effects on biological age, including in the context of interventions. While females and males show no significant differences in predicted DNA methylation age, ovariectomy results in significant age acceleration in females. Furthermore, we identify significant differences in age-acceleration dependent on the lipid content of the diet. Here we identify and characterise an epigenetic predictor of age in mice, the mouse epigenetic clock. This clock will be instrumental for understanding the biology of ageing and will allow modulation of its ticking rate and resetting the clock in vivo to study the impact on biological age.

  20. [Research Progress on the Detection Method of DNA Methylation and Its Application in Forensic Science].

    Science.gov (United States)

    Nie, Y C; Yu, L J; Guan, H; Zhao, Y; Rong, H B; Jiang, B W; Zhang, T

    2017-06-01

    As an important part of epigenetic marker, DNA methylation involves in the gene regulation and attracts a wide spread attention in biological auxology, geratology and oncology fields. In forensic science, because of the relative stable, heritable, abundant, and age-related characteristics, DNA methylation is considered to be a useful complement to the classic genetic markers for age-prediction, tissue-identification, and monozygotic twins' discrimination. Various methods for DNA methylation detection have been validated based on methylation sensitive restriction endonuclease, bisulfite modification and methylation-CpG binding protein. In recent years, it is reported that the third generation sequencing method can be used to detect DNA methylation. This paper aims to make a review on the detection method of DNA methylation and its applications in forensic science. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  1. Evaluation of DNA methylation at imprinted DMRs in the spermatozoa of oligozoospermic men in association with MTHFR C677T genotype.

    Science.gov (United States)

    Louie, K; Minor, A; Ng, R; Poon, K; Chow, V; Ma, S

    2016-09-01

    Altered DNA methylation has been previously identified in the spermatozoa of infertile men; however, the origins of these errors are poorly understood. DNA methylation is an epigenetic modification which is thought to play a fundamental role in male germline development. DNA methylation reactions rely on the cellular availability of methyl donors, which are primarily products of folate metabolism, where a key enzyme is methylenetetrahydrofolate reductase (MTHFR). The MTHFR C677T single nucleotide polymorphism (SNP) reduces enzyme activity and may potentially alter DNA methylation processes during germline development. The objective of this study was to determine whether altered DNA methylation in spermatozoa is associated with the MTHFR C677T SNP. DNA methylation was evaluated at the H19, IG-GTL2, and MEST imprinted differentially methylated regions in the spermatozoa of 53 men - 44 oligozoospermic men and nine fertile men with normal sperm parameters via bisulfite sequencing of sperm clones. The 44 infertile men were stratified by severity of oligozoospermia - three normal (>15 million spermatozoa/mL), eight moderate (5-15 million spermatozoa/mL), 23 severe (1-5 million spermatozoa/mL), and 10 very severe (spermatozoa/mL). MTHFR C677T SNP genotyping was conducted in a subset of 44 peripheral blood samples via restriction fragment length polymorphism. A total of three men - severe oligozoospermic and CT genotype - were found to be altered, which is defined as having ≥50% of their clones altered, where an altered clone was in turn defined as ≥50% of CpGs with incorrect DNA methylation patterns. The incidence of three altered men within the CT subgroup, however, was not significantly higher than the incidence in the CC subgroup. Taken together, altered DNA methylation in spermatozoa was not significantly associated with the MTHFR C677T SNP; however, there was a trend for higher incidence of alterations among severe oligozoospermic infertile men with CT

  2. Whole-genome DNA methylation status associated with clinical PTSD measures of OIF/OEF veterans

    Science.gov (United States)

    Hammamieh, R; Chakraborty, N; Gautam, A; Muhie, S; Yang, R; Donohue, D; Kumar, R; Daigle, B J; Zhang, Y; Amara, D A; Miller, S-A; Srinivasan, S; Flory, J; Yehuda, R; Petzold, L; Wolkowitz, O M; Mellon, S H; Hood, L; Doyle, F J; Marmar, C; Jett, M

    2017-01-01

    Emerging knowledge suggests that post-traumatic stress disorder (PTSD) pathophysiology is linked to the patients’ epigenetic changes, but comprehensive studies examining genome-wide methylation have not been performed. In this study, we examined genome-wide DNA methylation in peripheral whole blood in combat veterans with and without PTSD to ascertain differentially methylated probes. Discovery was initially made in a training sample comprising 48 male Operation Enduring Freedom (OEF)/Operation Iraqi Freedom (OIF) veterans with PTSD and 51 age/ethnicity/gender-matched combat-exposed PTSD-negative controls. Agilent whole-genome array detected ~5600 differentially methylated CpG islands (CpGI) annotated to ~2800 differently methylated genes (DMGs). The majority (84.5%) of these CpGIs were hypermethylated in the PTSD cases. Functional analysis was performed using the DMGs encoding the promoter-bound CpGIs to identify networks related to PTSD. The identified networks were further validated by an independent test set comprising 31 PTSD+/29 PTSD− veterans. Targeted bisulfite sequencing was also used to confirm the methylation status of 20 DMGs shown to be highly perturbed in the training set. To improve the statistical power and mitigate the assay bias and batch effects, a union set combining both training and test set was assayed using a different platform from Illumina. The pathways curated from this analysis confirmed 65% of the pool of pathways mined from training and test sets. The results highlight the importance of assay methodology and use of independent samples for discovery and validation of differentially methylated genes mined from whole blood. Nonetheless, the current study demonstrates that several important epigenetically altered networks may distinguish combat-exposed veterans with and without PTSD. PMID:28696412

  3. Links between DNA methylation and nucleosome occupancy in the human genome.

    Science.gov (United States)

    Collings, Clayton K; Anderson, John N

    2017-01-01

    DNA methylation is an epigenetic modification that is enriched in heterochromatin but depleted at active promoters and enhancers. However, the debate on whether or not DNA methylation is a reliable indicator of high nucleosome occupancy has not been settled. For example, the methylation levels of DNA flanking CTCF sites are higher in linker DNA than in nucleosomal DNA, while other studies have shown that the nucleosome core is the preferred site of methylation. In this study, we make progress toward understanding these conflicting phenomena by implementing a bioinformatics approach that combines MNase-seq and NOMe-seq data and by comprehensively profiling DNA methylation and nucleosome occupancy throughout the human genome. The results demonstrated that increasing methylated CpG density is correlated with nucleosome occupancy in the total genome and within nearly all subgenomic regions. Features with elevated methylated CpG density such as exons, SINE-Alu sequences, H3K36-trimethylated peaks, and methylated CpG islands are among the highest nucleosome occupied elements in the genome, while some of the lowest occupancies are displayed by unmethylated CpG islands and unmethylated transcription factor binding sites. Additionally, outside of CpG islands, the density of CpGs within nucleosomes was shown to be important for the nucleosomal location of DNA methylation with low CpG frequencies favoring linker methylation and high CpG frequencies favoring core particle methylation. Prominent exceptions to the correlations between methylated CpG density and nucleosome occupancy include CpG islands marked by H3K27me3 and CpG-poor heterochromatin marked by H3K9me3, and these modifications, along with DNA methylation, distinguish the major silencing mechanisms of the human epigenome. Thus, the relationship between DNA methylation and nucleosome occupancy is influenced by the density of methylated CpG dinucleotides and by other epigenomic components in chromatin.

  4. Antidepressant administration modulates stress-induced DNA methylation and DNA methyltransferase expression in rat prefrontal cortex and hippocampus

    DEFF Research Database (Denmark)

    Sales, Amanda J; Joca, Sâmia R L

    2018-01-01

    Stress and antidepressant treatment can modulate DNA methylation in promoter region of genes related to neuroplasticity and mood regulation, thus implicating this epigenetic mechanism in depression neurobiology and treatment. Accordingly, systemic administration of DNA methyltransferase (DNMT...

  5. DNA methylation-based classification of central nervous system tumours

    DEFF Research Database (Denmark)

    Capper, David; Jones, David T.W.; Sill, Martin

    2018-01-01

    Accurate pathological diagnosis is crucial for optimal management of patients with cancer. For the approximately 100 known tumour types of the central nervous system, standardization of the diagnostic process has been shown to be particularly challenging - with substantial inter......-observer variability in the histopathological diagnosis of many tumour types. Here we present a comprehensive approach for the DNA methylation-based classification of central nervous system tumours across all entities and age groups, and demonstrate its application in a routine diagnostic setting. We show...

  6. Linkage of DNA Methylation Quantitative Trait Loci to Human Cancer Risk

    Directory of Open Access Journals (Sweden)

    Holger Heyn

    2014-04-01

    Full Text Available Epigenetic regulation and, in particular, DNA methylation have been linked to the underlying genetic sequence. DNA methylation quantitative trait loci (meQTL have been identified through significant associations between the genetic and epigenetic codes in physiological and pathological contexts. We propose that interrogating the interplay between polymorphic alleles and DNA methylation is a powerful method for improving our interpretation of risk alleles identified in genome-wide association studies that otherwise lack mechanistic explanation. We integrated patient cancer risk genotype data and genome-scale DNA methylation profiles of 3,649 primary human tumors, representing 13 solid cancer types. We provide a comprehensive meQTL catalog containing DNA methylation associations for 21% of interrogated cancer risk polymorphisms. Differentially methylated loci harbor previously reported and as-yet-unidentified cancer genes. We suggest that such regulation at the DNA level can provide a considerable amount of new information about the biology of cancer-risk alleles.

  7. Genome-wide analysis of DNA methylation in hypothalamus and ovary of Capra hircus.

    Science.gov (United States)

    Frattini, Stefano; Capra, Emanuele; Lazzari, Barbara; McKay, Stephanie D; Coizet, Beatrice; Talenti, Andrea; Groppetti, Debora; Riccaboni, Pietro; Pecile, Alessandro; Chessa, Stefania; Castiglioni, Bianca; Williams, John L; Pagnacco, Giulio; Stella, Alessandra; Crepaldi, Paola

    2017-06-23

    DNA methylation is a frequently studied epigenetic modification due to its role in regulating gene expression and hence in biological processes and in determining phenotypic plasticity in organisms. Rudimentary DNA methylation patterns for some livestock species are publically available: among these, goat methylome deserves to be further explored. Genome-wide DNA methylation maps of the hypothalamus and ovary from Saanen goats were generated using Methyl-CpG binding domain protein sequencing (MBD-seq). Analysis of DNA methylation patterns indicate that the majority of methylation peaks found within genes are located gene body regions, for both organs. Analysis of the distribution of methylated sites per chromosome showed that chromosome X had the lowest number of methylation peaks. The X chromosome has one of the highest percentages of methylated CpG islands in both organs, and approximately 50% of the CpG islands in the goat epigenome are methylated in hypothalamus and ovary. Organ-specific Differentially Methylated Genes (DMGs) were correlated with the expression levels. The comparison between transcriptome and methylome in hypothalamus and ovary showed that a higher level of methylation is not accompanied by a higher gene suppression. The genome-wide DNA methylation map for two goat organs produced here is a valuable starting point for studying the involvement of epigenetic modifications in regulating goat reproduction performance.

  8. Genome-wide DNA methylation study in human placenta identifies novel loci associated with maternal smoking during pregnancy.

    Science.gov (United States)

    Morales, Eva; Vilahur, Nadia; Salas, Lucas A; Motta, Valeria; Fernandez, Mariana F; Murcia, Mario; Llop, Sabrina; Tardon, Adonina; Fernandez-Tardon, Guillermo; Santa-Marina, Loreto; Gallastegui, Mara; Bollati, Valentina; Estivill, Xavier; Olea, Nicolas; Sunyer, Jordi; Bustamante, Mariona

    2016-10-01

    We conducted an epigenome-wide association study (EWAS) of DNA methylation in placenta in relation to maternal tobacco smoking during pregnancy and examined whether smoking-induced changes lead to low birthweight. DNA methylation in placenta was measured using the Illumina HumanMethylation450 BeadChip in 179 participants from the INfancia y Medio Ambiente (INMA) birth cohort. Methylation levels across 431 311 CpGs were tested for differential methylation between smokers and non-smokers in pregnancy. We took forward three top-ranking loci for further validation and replication by bisulfite pyrosequencing using data of 248 additional participants of the INMA cohort. We examined the association of methylation at smoking-associated loci with birthweight by applying a mediation analysis and a two-sample Mendelian randomization approach. Fifty CpGs were differentially methylated in placenta between smokers and non-smokers during pregnancy [false discovery rate (FDR) < 0.05]. We validated and replicated differential methylation at three top-ranking loci: cg27402634 located between LINC00086 and LEKR1, a gene previously related to birthweight in genome-wide association studies; cg20340720 (WBP1L); and cg25585967 and cg12294026 (TRIO). Dose-response relationships with maternal urine cotinine concentration during pregnancy were confirmed. Differential methylation at cg27402634 explained up to 36% of the lower birthweight in the offspring of smokers (Sobel P-value < 0.05). A two-sample Mendelian randomization analysis provided evidence that decreases in methylation levels at cg27402634 lead to decreases in birthweight. We identified novel loci differentially methylated in placenta in relation to maternal smoking during pregnancy. Adverse effects of maternal smoking on birthweight of the offspring may be mediated by alterations in the placental methylome. © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International

  9. DNA methylation in the pathophysiology of hyperphenylalaninemia in the PAH(enu2) mouse model of phenylketonuria.

    Science.gov (United States)

    Dobrowolski, S F; Lyons-Weiler, J; Spridik, K; Vockley, J; Skvorak, K; Biery, A

    2016-09-01

    Phenylalanine hydroxylase deficient phenylketonuria (PKU) is the paradigm for a treatable inborn error of metabolism where maintaining plasma phenylalanine (Phe) in the therapeutic range relates to improved clinical outcomes. While Phe is the presumed intoxicating analyte causal in neurologic damage, the mechanism(s) of Phe toxicity has remained elusive. Altered DNA methylation is a recognized response associated with exposure to numerous small molecule toxic agents. Paralleling this effect, we hypothesized that chronic Phe over-exposure in the brain would lead to aberrant DNA methylation with secondary influence upon gene regulation that would ultimately contribute to PKU neuropathology. The PAH(enu2) mouse models human PKU with intrinsic hyperphenylalaninemia, abnormal response to Phe challenge, and neurologic deficit. To examine this hypothesis, we assessed DNA methylation patterns in brain tissues using methylated DNA immunoprecipitation and paired end sequencing in adult PAH(enu2) animals maintained under either continuous dietary Phe restriction or chronic hyperphenylalaninemia. Heterozygous PAH(enu2/WT) litter mates served as controls for normal Phe exposure. Extensive repatterning of DNA methylation was observed in brain tissue of hyperphenylalaninemic animals while Phe restricted animals displayed an attenuated pattern of aberrant DNA methylation. Affected gene coding regions displayed aberrant hypermethylation and hypomethylation. Gene body methylation of noncoding RNA genes was observed and among these microRNA genes were prominent. Of particular note, observed only in hyperphenylalaninemic animals, was hypomethylation of miRNA genes within the imprinted Dlk1-Dio3 locus on chromosome 12. Aberrant methylation of microRNA genes influenced their expression which has secondary effects upon the expression of targeted protein coding genes. Differential hypermethylation of gene promoters was exclusive to hyperphenylalaninemic PAH(enu2) animals. Genes with

  10. Global changes in DNA methylation in seeds and seedlings of Pyrus communis after seed desiccation and storage.

    Science.gov (United States)

    Michalak, Marcin; Barciszewska, Mirosława Z; Barciszewski, Jan; Plitta, Beata P; Chmielarz, Paweł

    2013-01-01

    The effects of storage and deep desiccation on structural changes of DNA in orthodox seeds are poorly characterized. In this study we analyzed the 5-methylcytosine (m(5)C) global content of DNA isolated from seeds of common pear (Pyrus communis L.) that had been subjected to extreme desiccation, and the seedlings derived from these seeds. Germination and seedling emergence tests were applied to determine seed viability after their desiccation. In parallel, analysis of the global content of m(5)C in dried seeds and DNA of seedlings obtained from such seeds was performed with a 2D TLC method. Desiccation of fresh seeds to 5.3% moisture content (mc) resulted in a slight reduction of DNA methylation, whereas severe desiccation down to 2-3% mc increased DNA methylation. Strong desiccation of seeds resulted in the subsequent generation of seedlings of shorter height. A 1-year period of seed storage induced a significant increase in the level of DNA methylation in seeds. It is possible that alterations in the m(5)C content of DNA in strongly desiccated pear seeds reflect a reaction of desiccation-tolerant (orthodox) seeds to severe desiccation. Epigenetic changes were observed not only in severely desiccated seeds but also in 3-month old seedlings obtained from these seeds. With regard to seed storage practices, epigenetic assessment could be used by gene banks for early detection of structural changes in the DNA of stored seeds.

  11. Smoking induces DNA methylation changes in Multiple Sclerosis patients with exposure-response relationship

    OpenAIRE

    Marabita, Francesco; Almgren, Malin; Sjöholm, Louise K.; Kular, Lara; Liu, Yun; James, Tojo; Kiss, Nimrod B.; Feinberg, Andrew P.; Olsson, Tomas; Kockum, Ingrid; Alfredsson, Lars; Ekström, Tomas J.; Jagodic, Maja

    2017-01-01

    Cigarette smoking is an established environmental risk factor for Multiple Sclerosis (MS), a chronic inflammatory and neurodegenerative disease, although a mechanistic basis remains largely unknown. We aimed at investigating how smoking affects blood DNA methylation in MS patients, by assaying genome-wide DNA methylation and comparing smokers, former smokers and never smokers in two Swedish cohorts, differing for known MS risk factors. Smoking affects DNA methylation genome-wide significantly...

  12. Exploring DNA methylation changes in promoter, intragenic, and intergenic regions as early and late events in breast cancer formation

    International Nuclear Information System (INIS)

    Rauscher, Garth H.; Kresovich, Jacob K.; Poulin, Matthew; Yan, Liying; Macias, Virgilia; Mahmoud, Abeer M.; Al-Alem, Umaima; Kajdacsy-Balla, Andre; Wiley, Elizabeth L.; Tonetti, Debra; Ehrlich, Melanie

    2015-01-01

    Breast cancer formation is associated with frequent changes in DNA methylation but the extent of very early alterations in DNA methylation and the biological significance of cancer-associated epigenetic changes need further elucidation. Pyrosequencing was done on bisulfite-treated DNA from formalin-fixed, paraffin-embedded sections containing invasive tumor and paired samples of histologically normal tissue adjacent to the cancers as well as control reduction mammoplasty samples from unaffected women. The DNA regions studied were promoters (BRCA1, CD44, ESR1, GSTM2, GSTP1, MAGEA1, MSI1, NFE2L3, RASSF1A, RUNX3, SIX3 and TFF1), far-upstream regions (EN1, PAX3, PITX2, and SGK1), introns (APC, EGFR, LHX2, RFX1 and SOX9) and the LINE-1 and satellite 2 DNA repeats. These choices were based upon previous literature or publicly available DNA methylome profiles. The percent methylation was averaged across neighboring CpG sites. Most of the assayed gene regions displayed hypermethylation in cancer vs. adjacent tissue but the TFF1 and MAGEA1 regions were significantly hypomethylated (p ≤0.001). Importantly, six of the 16 regions examined in a large collection of patients (105 – 129) and in 15-18 reduction mammoplasty samples were already aberrantly methylated in adjacent, histologically normal tissue vs. non-cancerous mammoplasty samples (p ≤0.01). In addition, examination of transcriptome and DNA methylation databases indicated that methylation at three non-promoter regions (far-upstream EN1 and PITX2 and intronic LHX2) was associated with higher gene expression, unlike the inverse associations between cancer DNA hypermethylation and cancer-altered gene expression usually reported. These three non-promoter regions also exhibited normal tissue-specific hypermethylation positively associated with differentiation-related gene expression (in muscle progenitor cells vs. many other types of normal cells). The importance of considering the exact DNA region analyzed and the

  13. DNA methylation of candidate genes in peripheral blood from patients with type 2 diabetes or the metabolic syndrome.

    Science.gov (United States)

    van Otterdijk, Sanne D; Binder, Alexandra M; Szarc Vel Szic, Katarzyna; Schwald, Julia; Michels, Karin B

    2017-01-01

    The prevalence of type 2 diabetes (T2D) and the metabolic syndrome (MetS) is increasing and several studies suggested an involvement of DNA methylation in the development of these metabolic diseases. This study was designed to investigate if differential DNA methylation in blood can function as a biomarker for T2D and/or MetS. Pyrosequencing analyses were performed for the candidate genes KCNJ11, PPARγ, PDK4, KCNQ1, SCD1, PDX1, FTO and PEG3 in peripheral blood leukocytes (PBLs) from 25 patients diagnosed with only T2D, 9 patients diagnosed with T2D and MetS and 11 control subjects without any metabolic disorders. No significant differences in gene-specific methylation between patients and controls were observed, although a trend towards significance was observed for PEG3. Differential methylation was observed between the groups in 4 out of the 42 single CpG loci located in the promoters regions of the genes FTO, KCNJ11, PPARγ and PDK4. A trend towards a positive correlation was observed for PEG3 methylation with HDL cholesterol levels. Altered levels of DNA methylation in PBLs of specific loci might serve as a biomarker for T2D or MetS, although further investigation is required.

  14. DNA methylation of candidate genes in peripheral blood from patients with type 2 diabetes or the metabolic syndrome.

    Directory of Open Access Journals (Sweden)

    Sanne D van Otterdijk

    Full Text Available The prevalence of type 2 diabetes (T2D and the metabolic syndrome (MetS is increasing and several studies suggested an involvement of DNA methylation in the development of these metabolic diseases. This study was designed to investigate if differential DNA methylation in blood can function as a biomarker for T2D and/or MetS.Pyrosequencing analyses were performed for the candidate genes KCNJ11, PPARγ, PDK4, KCNQ1, SCD1, PDX1, FTO and PEG3 in peripheral blood leukocytes (PBLs from 25 patients diagnosed with only T2D, 9 patients diagnosed with T2D and MetS and 11 control subjects without any metabolic disorders.No significant differences in gene-specific methylation between patients and controls were observed, although a trend towards significance was observed for PEG3. Differential methylation was observed between the groups in 4 out of the 42 single CpG loci located in the promoters regions of the genes FTO, KCNJ11, PPARγ and PDK4. A trend towards a positive correlation was observed for PEG3 methylation with HDL cholesterol levels.Altered levels of DNA methylation in PBLs of specific loci might serve as a biomarker for T2D or MetS, although further investigation is required.

  15. Mechanism of inhibition of N-methyl-N-nitrosourea-induced mutagenicity and DNA binding by ellagic acid.

    Science.gov (United States)

    Dixit, R; Gold, B

    1987-01-01

    Ellagic acid (EA) is a dilactone derivative of shikimic acid, which is found in a variety of soft fruits and vegetables. EA inhibits mutagenesis and carcinogenesis induced by benzo[a]pyrene and its bay-region dihydrodiol epoxide derivative by preventing their covalent binding to DNA. EA at concentrations of 100, 250, 500 and 1000 nmol/plate inhibited the mutagenicity of N-methyl-N-nitrosourea (MNU) (400 nmol/plate) in Salmonella typhimurium TA100 by 3, 13, 45 and 60%, respectively. A study of inhibition of 3H-MNU-mediated DNA methylation by EA showed that it inhibited only the formation of O6-methylguanine, while attack at the N7 and N3 positions of guanine and adenine, respectively, was not altered. This inhibition was observed only in double-stranded DNA. Ultraviolet and equilibrium dialysis studies show that EA has a definite affinity for DNA, but that an intercalating process is not involved.

  16. The Role of DNA Methylation Changes in Radiation-Induced Transgenerational Genomic Instability and Bystander Effects in cranial irradiated Mice

    Science.gov (United States)

    Zhang, Meng; Sun, Yeqing; Gao, Yinglong; Zhang, Baodong

    Heavy-ion radiation could lead to genome instability in the germline, and therefore to transgenerational genome and epigenome instability in offspring of exposed males. The exact mechanisms of radiation-induced genome instability in directly exposed and in bystander organ remain obscure, yet accumulating evidence points to the role of DNA methylation changes in genome instability development. The potential of localized body-part exposures to affect the germline and thus induce genome and epigenome changes in the progeny has not been studied. To investigate whether or not the paternal cranial irradiation can exert deleterious changes in the protected germline and the offsprings, we studied the alteration of DNA methylation in the shielded testes tissue. Here we report that the localized paternal cranial irradiation results in a significant altered DNA methylation in sperm cells and leads to a profound epigenetic dysregulation in the unexposed progeny conceived 3 months after paternal exposure. The possible molecular mechanisms and biological consequences of the observed changes are discussed. Keywords: Heavy-ion radiation; Transgenerational effect; Genomic Instability Bystander Effects; DNA methylation.

  17. Whole-Genome Bisulfite Sequencing for the Analysis of Genome-Wide DNA Methylation and Hydroxymethylation Patterns at Single-Nucleotide Resolution.

    Science.gov (United States)

    Kernaleguen, Magali; Daviaud, Christian; Shen, Yimin; Bonnet, Eric; Renault, Victor; Deleuze, Jean-François; Mauger, Florence; Tost, Jörg

    2018-01-01

    The analysis of genome-wide epigenomic alterations including DNA methylation and hydroxymethylation has become a subject of intensive research for many biological and disease-associated investigations. Whole-genome bisulfite sequencing (WGBS) using next-generation sequencing technologies is currently considered as the gold standard for a comprehensive and quantitative analysis of DNA methylation throughout the genome. However, bisulfite conversion does not allow distinguishing between cytosine methylation and hydroxymethylation requiring an additional chemical or enzymatic step to identify hydroxymethylated cytosines. Here we provide two detailed protocols based on commercial kits for the preparation of sequencing libraries for the comprehensive whole-genome analysis of DNA methylation and/or hydroxymethylation. If only DNA methylation is of interest, sequencing libraries can be constructed from limited amounts of input DNA by ligation of methylated adaptors to the fragmented DNA prior to bisulfite conversion. For samples with significant levels of hydroxymethylation such as stem cells or brain tissue, we describe the protocol of oxidative bisulfite sequencing (OxBs-seq), which in its current version uses a post-bisulfite adaptor tagging (PBAT) approach. Two methylomes need to be generated: a classic methylome following bisulfite conversion and analyzing both methylated and hydroxymethylated cytosines and a methylome analyzing only methylated cytosines, respectively. We also provide a step-by-step description of the data analysis using publicly available bioinformatic tools. The described protocols have been successfully applied to different human samples and yield robust and reproducible results.

  18. Antagonism between DNA and H3K27 methylation at the imprinted Rasgrf1 locus

    DEFF Research Database (Denmark)

    Lindroth, Anders M; Park, Yoon Jung; McLean, Chelsea M

    2008-01-01

    At the imprinted Rasgrf1 locus in mouse, a cis-acting sequence controls DNA methylation at a differentially methylated domain (DMD). While characterizing epigenetic marks over the DMD, we observed that DNA and H3K27 trimethylation are mutually exclusive, with DNA and H3K27 methylation limited...... to the paternal and maternal sequences, respectively. The mutual exclusion arises because one mark prevents placement of the other. We demonstrated this in five ways: using 5-azacytidine treatments and mutations at the endogenous locus that disrupt DNA methylation; using a transgenic model in which the maternal...

  19. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting.

    Directory of Open Access Journals (Sweden)

    Shunsuke Suzuki

    2007-04-01

    Full Text Available Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10 is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii, but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus, suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5' region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation.

  20. Genome-Wide Discriminatory Information Patterns of Cytosine DNA Methylation

    Directory of Open Access Journals (Sweden)

    Robersy Sanchez

    2016-06-01

    Full Text Available Cytosine DNA methylation (CDM is a highly abundant, heritable but reversible chemical modification to the genome. Herein, a machine learning approach was applied to analyze the accumulation of epigenetic marks in methylomes of 152 ecotypes and 85 silencing mutants of Arabidopsis thaliana. In an information-thermodynamics framework, two measurements were used: (1 the amount of information gained/lost with the CDM changes I R and (2 the uncertainty of not observing a SNP L C R . We hypothesize that epigenetic marks are chromosomal footprints accounting for different ontogenetic and phylogenetic histories of individual populations. A machine learning approach is proposed to verify this hypothesis. Results support the hypothesis by the existence of discriminatory information (DI patterns of CDM able to discriminate between individuals and between individual subpopulations. The statistical analyses revealed a strong association between the topologies of the structured population of Arabidopsis ecotypes based on I R and on LCR, respectively. A statistical-physical relationship between I R and L C R was also found. Results to date imply that the genome-wide distribution of CDM changes is not only part of the biological signal created by the methylation regulatory machinery, but ensures the stability of the DNA molecule, preserving the integrity of the genetic message under continuous stress from thermal fluctuations in the cell environment.

  1. Global DNA Methylation in the Chestnut Blight Fungus Cryphonectria parasitica and Genome-Wide Changes in DNA Methylation Accompanied with Sectorization

    Directory of Open Access Journals (Sweden)

    Kum-Kang So

    2018-02-01

    Full Text Available Mutation in CpBck1, an ortholog of the cell wall integrity mitogen-activated protein kinase kinase kinase (MAPKKK of Saccharomyces cerevisiae, in the chestnut blight fungus Cryphonectria parasitica resulted in a sporadic sectorization as culture proceeded. The progeny from the sectored area maintained the characteristics of the sector, showing a massive morphogenetic change, including robust mycelial growth without differentiation. Epigenetic changes were investigated as the genetic mechanism underlying this sectorization. Quantification of DNA methylation and whole-genome bisulfite sequencing revealed genome-wide DNA methylation of the wild-type at each nucleotide level and changes in DNA methylation of the sectored progeny. Compared to the wild-type, the sectored progeny exhibited marked genome-wide DNA hypomethylation but increased methylation sites. Expression analysis of two DNA methyltransferases, including two representative types of DNA methyltransferase (DNMTase, demonstrated that both were significantly down-regulated in the sectored progeny. However, functional analysis using mutant phenotypes of corresponding DNMTases demonstrated that a mutant of CpDmt1, an ortholog of RID of Neurospora crassa, resulted in the sectored phenotype but the CpDmt2 mutant did not, suggesting that the genetic basis of fungal sectorization is more complex. The present study revealed that a mutation in a signaling pathway component resulted in sectorization accompanied with changes in genome-wide DNA methylation, which suggests that this signal transduction pathway is important for epigenetic control of sectorization via regulation of genes involved in DNA methylation.

  2. Reference Materials for Calibration of Analytical Biases in Quantification of DNA Methylation.

    Science.gov (United States)

    Yu, Hannah; Hahn, Yoonsoo; Yang, Inchul

    2015-01-01

    Most contemporary methods for the quantification of DNA methylation employ bisulfite conversion and PCR amplification. However, many reports have indicated that bisulfite-mediated PCR methodologies can result in inaccurate measurements of DNA methylation owing to amplification biases. To calibrate analytical biases in quantification of gene methylation, especially those that arise during PCR, we utilized reference materials that represent exact bisulfite-converted sequences with 0% and 100% methylation status of specific genes. After determining relative quantities using qPCR, pairs of plasmids were gravimetrically mixed to generate working standards with predefined DNA methylation levels at 10% intervals in terms of mole fractions. The working standards were used as controls to optimize the experimental conditions and also as calibration standards in melting-based and sequencing-based analyses of DNA methylation. Use of the reference materials enabled precise characterization and proper calibration of various biases during PCR and subsequent methylation measurement processes, resulting in accurate measurements.

  3. Cocaine represses protein phosphatase-1Cβ through DNA methylation and Methyl-CpG Binding Protein-2 recruitment in adult rat brain.

    Science.gov (United States)

    Pol Bodetto, Sarah; Carouge, Delphine; Fonteneau, Mathieu; Dietrich, Jean-Bernard; Zwiller, Jean; Anglard, Patrick

    2013-10-01

    Repeated cocaine exposure induces epigenetic factors such as DNA methyl-binding proteins, indicating that resulting changes in gene expression are mediated by alterations in brain DNA methylation. While the activity of protein phosphatase type-1 (PP1) is involved in cocaine effects and in brain plasticity, the expression of the PP1Cβ catalytic subunit gene was identified here as modulated by cocaine. Its expression was induced together with that of PP1Cγ in the brain of Methyl-CpG Binding Protein-2 (Mecp2) mutant mice, whereas PP1Cα expression was not affected, illustrating a different regulation of PP1C isoforms. Repeated cocaine administration was found to increase DNA methylation at the PP1Cβ gene together with its binding to Mecp2 in rat caudate putamen, establishing a link between two genes involved in cocaine-related effects and in learning and memory processes. Cocaine also increased DNMT3 expression, resulting in PP1Cβ repression that did not occur in the presence of DNMT inhibitor. Cocaine-induced PP1Cβ repression was observed in several brain structures, as evaluated by RT-qPCR, immunohistochemistry and Western blot, but did not occur after a single cocaine injection. Our data demonstrate that PP1Cβ is a direct MeCP2-target gene in vivo. They suggest that its repression may participate to behavioral adaptations triggered by the drug. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. DNA methylation of the IGF2/H19 imprinting control region and adiposity distribution in young adults

    Directory of Open Access Journals (Sweden)

    Huang Rae-Chi

    2012-11-01

    Full Text Available Abstract Background The insulin-like growth factor 2 (IGF2 and H19 imprinted genes control growth and body composition. Adverse in-utero environments have been associated with obesity-related diseases and linked with altered DNA methylation at the IGF2/H19 locus. Postnatally, methylation at the IGF2/H19 imprinting control region (ICR has been linked with cerebellum weight. We aimed to investigate whether decreased IGF2/H19 ICR methylation is associated with decreased birth and childhood anthropometry and increased contemporaneous adiposity. DNA methylation in peripheral blood (n = 315 at 17 years old was measured at 12 cytosine-phosphate-guanine sites (CpGs, analysed as Sequenom MassARRAY EpiTYPER units within the IGF2/H19 ICR. Birth size, childhood head circumference (HC at six time-points and anthropometry at age 17 years were measured. DNA methylation was investigated for its association with anthropometry using linear regression. Results The principal component of IGF2/H19 ICR DNA methylation (representing mean methylation across all CpG units positively correlated with skin fold thickness (at four CpG units (P-values between 0.04 to 0.001 and subcutaneous adiposity (P = 0.023 at age 17, but not with weight, height, BMI, waist circumference or visceral adiposity. IGF2/H19 methylation did not associate with birth weight, length or HC, but CpG unit 13 to 14 methylation was negatively associated with HC between 1 and 10 years. β-coefficients of four out of five remaining CpG units also estimated lower methylation with increasing childhood HC. Conclusions As greater IGF2/H19 methylation was associated with greater subcutaneous fat measures, but not overall, visceral or central adiposity, we hypothesize that obesogenic pressures in youth result in excess fat being preferentially stored in peripheral fat depots via the IGF2/H19 domain. Secondly, as IGF2/H19 methylation was not associated with birth size but negatively with early childhood HC, we

  5. Shotgun Bisulfite Sequencing of the Betula platyphylla Genome Reveals the Tree’s DNA Methylation Patterning

    Directory of Open Access Journals (Sweden)

    Chang Su

    2014-12-01

    Full Text Available DNA methylation plays a critical role in the regulation of gene expression. Most studies of DNA methylation have been performed in herbaceous plants, and little is known about the methylation patterns in tree genomes. In the present study, we generated a map of methylated cytosines at single base pair resolution for Betula platyphylla (white birch by bisulfite sequencing combined with transcriptomics to analyze DNA methylation and its effects on gene expression. We obtained a detailed view of the function of DNA methylation sequence composition and distribution in the genome of B. platyphylla. There are 34,460 genes in the whole genome of birch, and 31,297 genes are methylated. Conservatively, we estimated that 14.29% of genomic cytosines are methylcytosines in birch. Among the methylation sites, the CHH context accounts for 48.86%, and is the largest proportion. Combined transcriptome and methylation analysis showed that the genes with moderate methylation levels had higher expression levels than genes with high and low methylation. In addition, methylated genes are highly enriched for the GO subcategories of binding activities, catalytic activities, cellular processes, response to stimulus and cell death, suggesting that methylation mediates these pathways in birch trees.

  6. Epigenetic Heterogeneity of B-Cell Lymphoma: DNA Methylation, Gene Expression and Chromatin States

    Directory of Open Access Journals (Sweden)

    Lydia Hopp

    2015-09-01

    Full Text Available Mature B-cell lymphoma is a clinically and biologically highly diverse disease. Its diagnosis and prognosis is a challenge due to its molecular heterogeneity and diverse regimes of biological dysfunctions, which are partly driven by epigenetic mechanisms. We here present an integrative analysis of DNA methylation and gene expression data of several lymphoma subtypes. Our study confirms previous results about the role of stemness genes during development and maturation of B-cells and their dysfunction in lymphoma locking in more proliferative or immune-reactive states referring to B-cell functionalities in the dark and light zone of the germinal center and also in plasma cells. These dysfunctions are governed by widespread epigenetic effects altering the promoter methylation of the involved genes, their activity status as moderated by histone modifications and also by chromatin remodeling. We identified four groups of genes showing characteristic expression and methylation signatures among Burkitt’s lymphoma, diffuse large B cell lymphoma, follicular lymphoma and multiple myeloma. These signatures are associated with epigenetic effects such as remodeling from transcriptionally inactive into active chromatin states, differential promoter methylation and the enrichment of targets of transcription factors such as EZH2 and SUZ12.

  7. DNA Methylation Landscape Reflects the Spatial Organization of Chromatin in Different Cells.

    Science.gov (United States)

    Zhang, Ling; Xie, Wen Jun; Liu, Sirui; Meng, Luming; Gu, Chan; Gao, Yi Qin

    2017-10-03

    The relationship between DNA methylation and chromatin structure is still largely unknown. By analyzing a large set of published sequencing data, we observed a long-range power law correlation of DNA methylation with cell class-specific scaling exponents in the range of tens of kilobases. We showed that such cell class-specific scaling exponents are caused by different patchiness of DNA methylation in different cells. By modeling the chromatin structure using high-resolution chromosome conformation capture data and mapping the methylation level onto the modeled structure, we demonstrated that the patchiness of DNA methylation is related to chromatin structure. The scaling exponents of the power law correlation are thus a display of the spatial organization of chromatin. Besides the long-range correlation, we also showed that the local correlation of DNA methylation is associated with nucleosome positioning. The local correlation of partially methylated domains is different from that of nonpartially methylated domains, suggesting that their chromatin structures differ at the scale of several hundred base pairs (covering a few nucleosomes). Our study provides a novel, to our knowledge, view of the spatial organization of chromatin structure from a perspective of DNA methylation, in which both long-range and local correlations of DNA methylation along the genome reflect the spatial organization of chromatin. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array.

    Science.gov (United States)

    Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina; Guldberg, Per; Dufva, Martin; Wang, Shan X; Hansen, Mikkel F

    2017-09-26

    Epigenetic modifications, in particular DNA methylation, are gaining increasing interest as complementary information to DNA mutations for cancer diagnostics and prognostics. We introduce a method to simultaneously profile DNA mutation and methylation events for an array of sites with single site specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection of DNA hybridization, which is insensitive to temperature variation. The melting curve approach further enhances the assay specificity and tolerance to variations in probe length. We demonstrate the utility of this method by simultaneously profiling five mutation and four methylation sites in human melanoma cell lines. The method correctly identified all mutation and methylation events and further provided quantitative assessment of methylation density validated by bisulphite pyrosequencing.

  9. Dynamic changes in global and gene-specific DNA methylation during hibernation in adult thirteen-lined ground squirrels, Ictidomys tridecemlineatus.

    Science.gov (United States)

    Alvarado, Sebastian; Mak, Timothy; Liu, Sara; Storey, Kenneth B; Szyf, Moshe

    2015-06-01

    Hibernating mammals conserve energy in the winter by undergoing prolonged bouts of torpor, interspersed with brief arousals back to euthermia. These bouts are accompanied by a suite of reversible physiological and biochemical changes; however, much remains to be discovered about the molecular mechanisms involved. Given the seasonal nature of hibernation, it stands to reason that underlying plastic epigenetic mechanisms should exist. One such form of epigenomic regulation involves the reversible modification of cytosine bases in DNA by methylation. DNA methylation is well known to be a mechanism that confers upon DNA its cellular identity during differentiation in response to innate developmental cues. However, it has recently been hypothesized that DNA methylation also acts as a mechanism for adapting genome function to changing external environmental and experiential signals over different time scales, including during adulthood. Here, we tested the hypothesis that DNA methylation is altered during hibernation in adult wild animals. This study evaluated global changes in DNA methylation in response to hibernation in the liver and skeletal muscle of thirteen-lined ground squirrels along with changes in expression of DNA methyltransferases (DNMT1/3B) and methyl binding domain proteins (MBDs). A reduction in global DNA methylation occurred in muscle during torpor phases whereas significant changes in DNMTs and MBDs were seen in both tissues. We also report dynamic changes in DNA methylation in the promoter of the myocyte enhancer factor 2C (mef2c) gene, a candidate regulator of metabolism in skeletal muscle. Taken together, these data show that genomic DNA methylation is dynamic across torpor-arousal bouts during winter hibernation, consistent with a role for this regulatory mechanism in contributing to the hibernation phenotype. © 2015. Published by The Company of Biologists Ltd.

  10. Effect of DNA sequence, ionic strength, and cationic DNA affinity binders on the methylation of DNA by N-methyl-N-nitrosourea

    International Nuclear Information System (INIS)

    Wurdeman, R.L.; Gold, B.

    1988-01-01

    DNA alkylation by N-alkyl-N-nitrosoureas is generally accepted to be responsible for their mutagenic, carcinogenic, and antineoplastic activities. The exact nature of the ultimate alkylating intermediate is still controversial, with a variety of species having been nominated. The sequence specificity for DNA alkylation by simple N-alkyl-N-nitrosoureas has not been reported, although such information is basic in understanding the specific point mutations induced by these compounds in oncogene targets. These two points are addressed by using N-methyl-N-nitrosourea methylation of a 576 base-pair 32 P-end-labeled DNA restriction fragment and high-resolution polyacrylamide sequencing gels. This method provides information on the formation of N 7 -methylguanine, by the generation of single-strand breaks upon exposure to piperidine

  11. Blood diagnostic biomarkers for major depressive disorder using multiplex DNA methylation profiles: discovery and validation.

    Science.gov (United States)

    Numata, Shusuke; Ishii, Kazuo; Tajima, Atsushi; Iga, Jun-ichi; Kinoshita, Makoto; Watanabe, Shinya; Umehara, Hidehiro; Fuchikami, Manabu; Okada, Satoshi; Boku, Shuken; Hishimoto, Akitoyo; Shimodera, Shinji; Imoto, Issei; Morinobu, Shigeru; Ohmori, Tetsuro

    2015-01-01

    Aberrant DNA methylation in the blood of patients with major depressive disorder (MDD) has been reported in several previous studies. However, no comprehensive studies using medication-free subjects with MDD have been conducted. Furthermore, the majority of these previous studies has been limited to the analysis of the CpG sites in CpG islands (CGIs) in the gene promoter regions. The main aim of the present study is to identify DNA methylation markers that distinguish patients with MDD from non-psychiatric controls. Genome-wide DNA methylation profiling of peripheral leukocytes was conducted in two set of samples, a discovery set (20 medication-free patients with MDD and 19 controls) and a replication set (12 medication-free patients with MDD and 12 controls), using Infinium HumanMethylation450 BeadChips. Significant diagnostic differences in DNA methylation were observed at 363 CpG sites in the discovery set. All of these loci demonstrated lower DNA methylation in patients with MDD than in the controls, and most of them (85.7%) were located in the CGIs in the gene promoter regions. We were able to distinguish patients with MDD from the control subjects with high accuracy in the discriminant analysis using the top DNA methylation markers. We also validated these selected DNA methylation markers in the replication set. Our results indicate that multiplex DNA methylation markers may be useful for distinguishing patients with MDD from non-psychiatric controls.

  12. Methylation alterations are not a major cause of PTTG1 missregulation

    International Nuclear Information System (INIS)

    Hidalgo, Manuel; Royo, Jose Luis; Galan, Jose Jorge; Sáez, Carmen; Ferrero, Eduardo; Castilla, Carolina; Ramirez-Lorca, Reposo; Pelaez, Pablo; Ruiz, Agustin; Japón, Miguel A

    2008-01-01

    On its physiological cellular context, PTTG1 controls sister chromatid segregation during mitosis. Within its crosstalk to the cellular arrest machinery, relies a checkpoint of integrity for which gained the over name of securin. PTTG1 was found to promote malignant transformation in 3T3 fibroblasts, and further found to be overexpressed in different tumor types. More recently, PTTG1 has been also related to different processes such as DNA repair and found to trans-activate different cellular pathways involving c-myc, bax or p53, among others. PTTG1 over-expression has been correlated to a worse prognosis in thyroid, lung, colorectal cancer patients, and it can not be excluded that this effect may also occur in other tumor types. Despite the clinical relevance and the increasing molecular characterization of PTTG1, the reason for its up-regulation remains unclear. We analysed PTTG1 differential expression in PC-3, DU-145 and LNCaP tumor cell lines, cultured in the presence of the methyl-transferase inhibitor 5-Aza-2'-deoxycytidine. We also tested whether the CpG island mapping PTTG1 proximal promoter evidenced a differential methylation pattern in differentiated thyroid cancer biopsies concordant to their PTTG1 immunohistochemistry status. Finally, we performed whole-genome LOH studies using Affymetix 50 K microarray technology and FRET analysis to search for allelic imbalances comprising the PTTG1 locus. Our data suggest that neither methylation alterations nor LOH are involved in PTTG1 over-expression. These data, together with those previously reported, point towards a post-transcriptional level of missregulation associated to PTTG1 over-expression

  13. Identification and caste-dependent expression patterns of DNA methylation associated genes in Bombus terrestris.

    Science.gov (United States)

    Li, Beibei; Hou, Li; Zhu, Dan; Xu, Xilian; An, Shiheng; Wang, Xianhui

    2018-02-05

    DNA methylation has been proposed to play critical roles in caste fate and behavioral plasticity in bumblebees, however, there is little information on its regulatory mechanisms. Here, we identified six important genes mediating the modification of DNA methylation and determined their expression patterns in the bumblebee Bombus terrestris. There is a complete functional DNA methylation system, including four DNA methyltransferases (DNMT1a, DNMT1b, DNMT2, and DNMT3), a DNA demethylase (Ten-eleven translocation), and a methyl-CpG-binding domain protein in B. terrestris. Most of these genes were highly expressed in fat bodies and gonads but lowly expressed in antennae and brains of bumblebee adults. Besides, these genes exhibited caste-specific expression patterns in bumblebees, with higher transcription levels in queens than workers and drones. Whereas their expression levels showed no remarkable difference in queenright and queenless workers. These results suggested potential roles of DNA methylation-related genes in caste differentiation in bumblebees.

  14. Critical threshold levels of DNA methyltransferase 1 are required to maintain DNA methylation across the genome in human cancer cells.

    Science.gov (United States)

    Cai, Yi; Tsai, Hsing-Chen; Yen, Ray-Whay Chiu; Zhang, Yang W; Kong, Xiangqian; Wang, Wei; Xia, Limin; Baylin, Stephen B

    2017-04-01

    Reversing DNA methylation abnormalities and associated gene silencing, through inhibiting DNA methyltransferases (DNMTs) is an important potential cancer therapy paradigm. Maximizing this potential requires defining precisely how these enzymes maintain genome-wide, cancer-specific DNA methylation. To date, there is incomplete understanding of precisely how the three DNMTs, 1, 3A, and 3B, interact for maintaining DNA methylation abnormalities in cancer. By combining genetic and shRNA depletion strategies, we define not only a dominant role for DNA methyltransferase 1 (DNMT1) but also distinct roles of 3A and 3B in genome-wide DNA methylation maintenance. Lowering DNMT1 below a threshold level is required for maximal loss of DNA methylation at all genomic regions, including gene body and enhancer regions, and for maximally reversing abnormal promoter DNA hypermethylation and associated gene silencing to reexpress key genes. It is difficult to reach this threshold with patient-tolerable doses of current DNMT inhibitors (DNMTIs). We show that new approaches, like decreasing the DNMT targeting protein, UHRF1, can augment the DNA demethylation capacities of existing DNA methylation inhibitors for fully realizing their therapeutic potential. © 2017 Cai et al.; Published by Cold Spring Harbor Laboratory Press.

  15. Murine diet/tissue and human brain tumorigenesis alter Mthfr/MTHFR 5'-end methylation.

    Science.gov (United States)

    Lévesque, Nancy; Leclerc, Daniel; Gayden, Tenzin; Lazaris, Anthoula; De Jay, Nicolas; Petrillo, Stephanie; Metrakos, Peter; Jabado, Nada; Rozen, Rima

    2016-04-01

    Polymorphisms and decreased activity of methylenetetrahydrofolate reductase (MTHFR) are linked to disease, including cancer. However, epigenetic regulation has not been thoroughly studied. Our goal was to generate DNA methylation profiles of murine/human MTHFR gene regions and examine methylation in brain and liver tumors. Pyrosequencing in four murine tissues revealed minimal DNA methylation in the CpG island. Higher methylation was seen in liver or intestine in the CpG island shore 5' to the upstream translational start site or in another region 3' to the downstream start site. In the latter region, there was negative correlation between expression and methylation. Three orthologous regions were investigated in human MTHFR, as well as a fourth region between the two translation start sites. We found significantly increased methylation in three regions (not the CpG island) in pediatric astrocytomas compared with control brain, with decreased expression in tumors. Methylation in hepatic carcinomas was also increased in the three regions compared with normal liver, but the difference was significant for only one CpG. This work, the first overview of the Mthfr/MTHFR epigenetic landscape, suggests regulation through methylation in some regions, demonstrates increased methylation/decreased expression in pediatric astrocytomas, and should serve as a resource for future epigenetic studies.

  16. Chilling- and Freezing-Induced Alterations in Cytosine Methylation and Its Association with the Cold Tolerance of an Alpine Subnival Plant, Chorispora bungeana.

    Directory of Open Access Journals (Sweden)

    Yuan Song

    Full Text Available Chilling (0-18°C and freezing (<0°C are two distinct types of cold stresses. Epigenetic regulation can play an important role in plant adaptation to abiotic stresses. However, it is not yet clear whether and how epigenetic modification (i.e., DNA methylation mediates the adaptation to cold stresses in nature (e.g., in alpine regions. Especially, whether the adaptation to chilling and freezing is involved in differential epigenetic regulations in plants is largely unknown. Chorispora bungeana is an alpine subnival plant that is distributed in the freeze-thaw tundra in Asia, where chilling and freezing frequently fluctuate daily (24 h. To disentangle how C. bungeana copes with these intricate cold stresses through epigenetic modifications, plants of C. bungeana were treated at 4°C (chilling and -4°C (freezing over five periods of time (0-24 h. Methylation-sensitive amplified fragment-length polymorphism markers were used to investigate the variation in DNA methylation of C. bungeana in response to chilling and freezing. It was found that the alterations in DNA methylation of C. bungeana largely occurred over the period of chilling and freezing. Moreover, chilling and freezing appeared to gradually induce distinct DNA methylation variations, as the treatment went on (e.g., after 12 h. Forty-three cold-induced polymorphic fragments were randomly selected and further analyzed, and three of the cloned fragments were homologous to genes encoding alcohol dehydrogenase, UDP-glucosyltransferase and polygalacturonase-inhibiting protein. These candidate genes verified the existence of different expressive patterns between chilling and freezing. Our results showed that C. bungeana responded to cold stresses rapidly through the alterations of DNA methylation, and that chilling and freezing induced different DNA methylation changes. Therefore, we conclude that epigenetic modifications can potentially serve as a rapid and flexible mechanism for C. bungeana

  17. Analysis of Chromatin Regulators Reveals Specific Features of Rice DNA Methylation Pathways1

    Science.gov (United States)

    Tan, Feng; Zhou, Chao; Zhou, Qiangwei; Yang, Wenjing; Li, Guoliang

    2016-01-01

    Plant DNA methylation that occurs at CG, CHG, and CHH sites (H = A, C, or T) is a hallmark of the repression of repetitive sequences and transposable elements (TEs). The rice (Oryza sativa) genome contains about 40% repetitive sequence and TEs and displays specific patterns of genome-wide DNA methylation. The mechanism responsible for the specific methylation patterns is unclear. Here, we analyzed the function of OsDDM1 (Deficient in DNA Methylation 1) and OsDRM2 (Deficient in DNA Methylation 1) in genome-wide DNA methylation, TE repression, small RNA accumulation, and gene expression. We show that OsDDM1 is essential for high levels of methylation at CHG and, to a lesser extent, CG sites in heterochromatic regions and also is required for CHH methylation that mainly locates in the genic regions of the genome. In addition to a large member of TEs, loss of OsDDM1 leads to hypomethylation and up-regulation of many protein-coding genes, producing very severe growth phenotypes at the initial generation. Importantly, we show that OsDRM2 mutation results in a nearly complete loss of CHH methylation and derepression of mainly small TE-associated genes and that OsDDM1 is involved in facilitating OsDRM2-mediated CHH methylation. Thus, the function of OsDDM1 and OsDRM2 defines distinct DNA methylation pathways in the bulk of DNA methylation of the genome, which is possibly related to the dispersed heterochromatin across chromosomes in rice and suggests that DNA methylation mechanisms may vary among different plant species. PMID:27208249

  18. Testing Two Evolutionary Theories of Human Aging with DNA Methylation Data.

    Science.gov (United States)

    Robins, Chloe; McRae, Allan F; Powell, Joseph E; Wiener, Howard W; Aslibekyan, Stella; Kennedy, Elizabeth M; Absher, Devin M; Arnett, Donna K; Montgomery, Grant W; Visscher, Peter M; Cutler, David J; Conneely, Karen N

    2017-12-01

    The evolutionary theories of mutation accumulation (MA) and disposable soma (DS) provide possible explanations for the existence of human aging. To better understand the relative importance of these theories, we devised a test to identify MA- and DS-consistent sites across the genome using familial DNA methylation data. Two key characteristics of DNA methylation allowed us to do so. First, DNA methylation exhibits distinct and widespread changes with age, with numerous age-differentially-methylated sites observed across the genome. Second, many sites show heritable DNA methylation patterns within families. We extended heritability predictions of MA and DS to DNA methylation, predicting that MA-consistent age-differentially-methylated sites will show increasing heritability with age, while DS-consistent sites will show the opposite. Variance components models were used to test for changing heritability of methylation with age at 48,601 age-differentially-methylated sites across the genome in 610 individuals from 176 families. Of these, 102 sites showed significant MA-consistent increases in heritability with age, while 2266 showed significant DS-consistent decreases in heritability. These results suggest that both MA and DS play a role in explaining aging and aging-related changes, and that while the majority of DNA methylation changes observed in aging are consistent with epigenetic drift, targeted changes exist and may mediate effects of aging-related genes. Copyright © 2017 by the Genetics Society of America.

  19. Stem Cell Models to Investigate the Role of DNA Methylation Machinery in Development of Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    K. Naga Mohan

    2016-01-01

    Full Text Available Epigenetic mechanisms underlie differentiation of pluripotent stem cells into different lineages that contain identical genomes but express different sets of cell type-specific genes. Because of high discordance rates in monozygotic twins, epigenetic mechanisms are also implicated in development of neuropsychiatric disorders such as schizophrenia and autism. In support of this notion, increased levels of DNA methyltransferases (DNMTs, DNMT polymorphisms, and dysregulation of DNA methylation network were reported among schizophrenia patients. These results point to the importance of development of DNA methylation machinery-based models for studying the mechanism of abnormal neurogenesis due to certain DNMT alleles or dysregulated DNMTs. Achieving this goal is strongly confronted by embryonic lethality associated with altered levels of epigenetic machinery such as DNMT1 and expensive approaches in developing in vivo models. In light of literature evidence that embryonic stem cells (ESCs are tolerant of DNMT mutations and advancement in the technology of gene targeting, it is now possible to introduce desired mutations in DNMT loci to generate suitable ESC lines that can help understand the underlying mechanisms by which abnormal levels of DNMTs or their specific mutations/alleles result in abnormal neurogenesis. In the future, these models can facilitate development of suitable drugs for treatment of neuropsychiatric disorders.

  20. The Global DNA Methylation Surrogate LINE-1 Methylation Is Correlated with MGMT Promoter Methylation and Is a Better Prognostic Factor for Glioma

    Science.gov (United States)

    Ohka, Fumiharu; Natsume, Atsushi; Motomura, Kazuya; Kishida, Yugo; Kondo, Yutaka; Abe, Tatsuya; Nakasu, Yoko; Namba, Hiroki; Wakai, Kenji; Fukui, Takashi; Momota, Hiroyuki; Iwami, Kenichiro; Kinjo, Sayano; Ito, Maki; Fujii, Masazumi; Wakabayashi, Toshihiko

    2011-01-01

    Gliomas are the most frequently occurring primary brain tumor in the central nervous system of adults. Glioblastoma multiformes (GBMs, WHO grade 4) have a dismal prognosis despite the use of the alkylating agent, temozolomide (TMZ), and even low grade gliomas (LGGs, WHO grade 2) eventually transform to malignant secondary GBMs. Although GBM patients benefit from promoter hypermethylation of the O 6-methylguanine-DNA methyltransferase (MGMT) that is the main determinant of resistance to TMZ, recent studies suggested that MGMT promoter methylation is of prognostic as well as predictive significance for the efficacy of TMZ. Glioma-CpG island methylator phenotype (G-CIMP) in the global genome was shown to be a significant predictor of improved survival in patients with GBM. Collectively, we hypothesized that MGMT promoter methylation might reflect global DNA methylation. Additionally in LGGs, the significance of MGMT promoter methylation is still undetermined. In the current study, we aimed to determine the correlation between clinical, genetic, and epigenetic profiles including LINE-1 and different cancer-related genes and the clinical outcome in newly diagnosed 57 LGG and 54 GBM patients. Here, we demonstrated that (1) IDH1/2 mutation is closely correlated with MGMT promoter methylation and 1p/19q codeletion in LGGs, (2) LINE-1 methylation levels in primary and secondary GBMs are lower than those in LGGs and normal brain tissues, (3) LINE-1 methylation is proportional to MGMT promoter methylation in gliomas, and (4) higher LINE-1 methylation is a favorable prognostic factor in primary GBMs, even compared to MGMT promoter methylation. As a global DNA methylation marker, LINE-1 may be a promising marker in gliomas. PMID:21829728

  1. The global DNA methylation surrogate LINE-1 methylation is correlated with MGMT promoter methylation and is a better prognostic factor for glioma.

    Directory of Open Access Journals (Sweden)

    Fumiharu Ohka

    Full Text Available Gliomas are the most frequently occurring primary brain tumor in the central nervous system of adults. Glioblastoma multiformes (GBMs, WHO grade 4 have a dismal prognosis despite the use of the alkylating agent, temozolomide (TMZ, and even low grade gliomas (LGGs, WHO grade 2 eventually transform to malignant secondary GBMs. Although GBM patients benefit from promoter hypermethylation of the O(6-methylguanine-DNA methyltransferase (MGMT that is the main determinant of resistance to TMZ, recent studies suggested that MGMT promoter methylation is of prognostic as well as predictive significance for the efficacy of TMZ. Glioma-CpG island methylator phenotype (G-CIMP in the global genome was shown to be a significant predictor of improved survival in patients with GBM. Collectively, we hypothesized that MGMT promoter methylation might reflect global DNA methylation. Additionally in LGGs, the significance of MGMT promoter methylation is still undetermined. In the current study, we aimed to determine the correlation between clinical, genetic, and epigenetic profiles including LINE-1 and different cancer-related genes and the clinical outcome in newly diagnosed 57 LGG and 54 GBM patients. Here, we demonstrated that (1 IDH1/2 mutation is closely correlated with MGMT promoter methylation and 1p/19q codeletion in LGGs, (2 LINE-1 methylation levels in primary and secondary GBMs are lower than those in LGGs and normal brain tissues, (3 LINE-1 methylation is proportional to MGMT promoter methylation in gliomas, and (4 higher LINE-1 methylation is a favorable prognostic factor in primary GBMs, even compared to MGMT promoter methylation. As a global DNA methylation marker, LINE-1 may be a promising marker in gliomas.

  2. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Nordlund, Jessica; Bäcklin, Christofer L; Wahlberg, Per

    2013-01-01

    background, drug resistance and relapse in ALL is poorly understood. RESULTS: We surveyed the DNA methylation levels of 435,941 CpG sites in samples from 764 children at diagnosis of ALL and from 27 children at relapse. This survey uncovered four characteristic methylation signatures. First, compared...... cells at relapse, compared with matched samples at diagnosis. Analysis of relapse-free survival identified CpG sites with subtype-specific differential methylation that divided the patients into different risk groups, depending on their methylation status. CONCLUSIONS: Our results suggest an important...... biological role for DNA methylation in the differences between ALL subtypes and in their clinical outcome after treatment....

  3. DNA methylation in an intron of the IBM1 histone demethylase gene stabilizes chromatin modification patterns.

    Science.gov (United States)

    Rigal, Mélanie; Kevei, Zoltán; Pélissier, Thierry; Mathieu, Olivier

    2012-06-29

    The stability of epigenetic patterns is critical for genome integrity and gene expression. This highly coordinated process involves interrelated positive and negative regulators that impact distinct epigenetic marks, including DNA methylation and dimethylation at histone H3 lysine 9 (H3K9me2). In Arabidopsis, mutations in the DNA methyltransferase MET1, which maintains CG methylation, result in aberrant patterns of other epigenetic marks, including ectopic non-CG methylation and the relocation of H3K9me2 from heterochromatin into gene-rich chromosome regions. Here, we show that the expression of the H3K9 demethylase IBM1 (increase in BONSAI methylation 1) requires DNA methylation. Surprisingly, the regulatory methylated region is contained in an unusually large intron that is conserved in IBM1 orthologues. The re-establishment of IBM1 expression in met1 mutants restored the wild-type H3K9me2 nuclear patterns, non-CG DNA methylation and transcriptional patterns at selected loci, which included DNA demethylase genes. These results provide a mechanistic explanation for long-standing puzzling observations in met1 mutants and reveal yet another layer of control in the interplay between DNA methylation and histone modification, which stabilizes DNA methylation patterns at genes.

  4. Altered promoter methylation of PDK4, IL1 B, IL6, and TNF after Roux-en Y gastric bypass

    DEFF Research Database (Denmark)

    Kirchner, Henriette; Nylen, Carolina; Laber, Samantha

    2014-01-01

    Background Early benefits of Roux-en Y gastric bypass (RYGB) are partly mediated by the caloric restriction that patients undergo before and acutely after the procedure. Altered DNA methylation occurs in metabolic diseases including obesity, as well as in skeletal, muscle eight months after RYGB......-α (TNF) is altered in blood after a very low calorie diet (VLCD) or RYGB. Methods Obese nondiabetic patients (n = 18, body mass index [BMI] 42.3± 4.9 kg/m2) underwent a 14-day VLCD followed by RYGB. Nonobese patients (n = 6, BMI 25.7± 2.1 kg/m2) undergoing elective cholecystectomy served as controls. DNA...

  5. Genome-Wide DNA Methylation Patterns of Bovine Blastocysts Developed In Vivo from Embryos Completed Different Stages of Development In Vitro.

    Directory of Open Access Journals (Sweden)

    Dessie Salilew-Wondim

    Full Text Available Early embryonic loss and altered gene expression in in vitro produced blastocysts are believed to be partly caused by aberrant DNA methylation. However, specific embryonic stage which is sensitive to in vitro culture conditions to alter the DNA methylation profile of the resulting blastocysts remained unclear. Therefore, the aim of this study was to investigate the stage specific effect of in vitro culture environment on the DNA methylation response of the resulting blastocysts. For this, embryos cultured in vitro until zygote (ZY, 4-cell (4C or 16-cell (16C were transferred to recipients and the blastocysts were recovery at day 7 of the estrous cycle. Another embryo group was cultured in vitro until blastocyst stage (IVP. Genome-wide DNA methylation profiles of ZY, 4C, 16C and IVP blastocyst groups were then determined with reference to blastocysts developed completely under in vivo condition (VO using EmbryoGENE DNA Methylation Array. To assess the contribution of methylation changes on gene expression patterns, the DNA methylation data was superimposed to the transcriptome profile data. The degree of DNA methylation dysregulation in the promoter and/or gene body regions of the resulting blastocysts was correlated with successive stages of development the embryos advanced under in vitro culture before transfer to the in vivo condition. Genomic enrichment analysis revealed that in 4C and 16C blastocyst groups, hypermethylated loci were outpacing the hypomethylated ones in intronic, exonic, promoter and proximal promoter regions, whereas the reverse was observed in ZY blastocyst group. However, in the IVP group, as much hypermethylated as hypomethylated probes were detected in gene body and promoter regions. In addition, gene ontology analysis indicated that differentially methylated regions were found to affected several biological functions including ATP binding in the ZY group, programmed cell death in the 4C, glycolysis in 16C and genetic

  6. Characterization of Timed Changes in Hepatic Copper Concentrations, Methionine Metabolism, Gene Expression, and Global DNA Methylation in the Jackson Toxic Milk Mouse Model of Wilson Disease

    Directory of Open Access Journals (Sweden)

    Anh Le

    2014-05-01

    Full Text Available Background: Wilson disease (WD is characterized by hepatic copper accumulation with progressive liver damage to cirrhosis. This study aimed to characterize the toxic milk mouse from The Jackson Laboratory (Bar Harbor, ME, USA (tx-j mouse model of WD according to changes over time in hepatic copper concentrations, methionine metabolism, global DNA methylation, and gene expression from gestational day 17 (fetal to adulthood (28 weeks. Methods: Included liver histology and relevant biochemical analyses including hepatic copper quantification, S-adenosylmethionine (SAM and S-adenosylhomocysteine (SAH liver levels, qPCR for transcript levels of genes relevant to methionine metabolism and liver damage, and DNA dot blot for global DNA methylation. Results: Hepatic copper was lower in tx-j fetuses but higher in weanling (three weeks and adult tx-j mice compared to controls. S-adenosylhomocysteinase transcript levels were significantly lower at all time points, except at three weeks, correlating negatively with copper levels and with consequent changes in the SAM:SAH methylation ratio and global DNA methylation. Conclusion: Compared to controls, methionine metabolism including S-adenosylhomocysteinase gene expression is persistently different in the tx-j mice with consequent alterations in global DNA methylation in more advanced stages of liver disease. The inhibitory effect of copper accumulation on S-adenosylhomocysteinase expression is associated with progressively abnormal methionine metabolism and decreased methylation capacity and DNA global methylation.

  7. Dynamics and Reversibility of the DNA Methylation Landscape of Grapevine Plants (Vitis vinifera Stressed by In Vitro Cultivation and Thermotherapy.

    Directory of Open Access Journals (Sweden)

    Miroslav Baránek

    Full Text Available There is relatively little information concerning long-term alterations in DNA methylation following exposure of plants to environmental stress. As little is known about the ratio of non-heritable changes in DNA methylation and mitotically-inherited methylation changes, dynamics and reversibility of the DNA methylation states were investigated in grapevine plants (Vitis vinifera stressed by in vitro cultivation. It was observed that significant part of induced epigenetic changes could be repeatedly established by exposure to particular planting and stress conditions. However, once stress conditions were discontinued, many methylation changes gradually reverted and plants returned to epigenetic states similar to those of maternal plants. In fact, in the period of one to three years after in vitro cultivation it was difficult to distinguish the epigenetic states of somaclones and maternal plants. Forty percent of the observed epigenetic changes disappeared within a year subsequent to termination of stress conditions ending and these probably reflect changes caused by transient and reversible stress-responsive acclimation mechanisms. However, sixty percent of DNA methylation diversity remained after 1 year and probably represents mitotically-inherited epimutations. Sequencing of regions remaining variable between maternal and regenerant plants revealed that 29.3% of sequences corresponded to non-coding regions of grapevine genome. Eight sequences (19.5% corresponded to previously identified genes and the remaining ones (51.2% were annotated as "hypothetical proteins" based on their similarity to genes described in other species, including genes likely to undergo methylation changes following exposure to stress (V. vinifera gypsy-type retrotransposon Gret1, auxin-responsive transcription factor 6-like, SAM-dependent carboxyl methyltransferase.

  8. DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia

    KAUST Repository

    Li, Yong

    2017-11-03

    The symbiotic relationship between cnidarians and dinoflagellates is the cornerstone of coral reef ecosystems. Although research is focusing on the molecular mechanisms underlying this symbiosis, the role of epigenetic mechanisms, which have been implicated in transcriptional regulation and acclimation to environmental change, is unknown. To assess the role of DNA methylation in the cnidarian-dinoflagellate symbiosis, we analyzed genome-wide CpG methylation, histone associations, and transcriptomic states of symbiotic and aposymbiotic anemones in the model system Aiptasia. We find methylated genes are marked by histone H3K36me3 and show significant reduction of spurious transcription and transcriptional noise, revealing a role of DNA methylation in the maintenance of transcriptional homeostasis. Changes in DNA methylation and expression show enrichment for symbiosis-related processes such as immunity, apoptosis, phagocytosis recognition and phagosome formation, and unveil intricate interactions between the underlying pathways. Our results demonstrate that DNA methylation provides an epigenetic mechanism of transcriptional homeostasis during symbiosis.

  9. GWAS of DNA Methylation Variation Within Imprinting Control Regions Suggests Parent-of-Origin Association

    NARCIS (Netherlands)

    Renteria, M.E.; Coolen, M.W.; Statham, A.L.; Choi, R.S.; Qu, W.; Campbell, M.J.; Smith, S.; Henders, A.K.; Montgomery, G.W.; Clark, S. J.; Martin, N.G.; Medland, S.E.

    2013-01-01

    Imprinting control regions (ICRs) play a fundamental role in establishing and maintaining the non-random monoallelic expression of certain genes, via common regulatory elements such as non-coding RNAs and differentially methylated regions (DMRs) of DNA. We recently surveyed DNA methylation levels

  10. Association of season of birth with DNA methylation and allergic disease

    NARCIS (Netherlands)

    Lockett, G. A.; Soto-Ramirez, N.; Ray, M. A.; Everson, T. M.; Xu, C-J.; Patil, V. K.; Terry, W.; Kaushal, A.; Rezwan, F. I.; Ewart, S. L.; Gehring, U.; Postma, D. S.; Koppelman, G. H.; Arshad, S. H.; Zhang, H.; Karmaus, W.; Holloway, J. W.

    BackgroundSeason of birth influences allergy risk; however, the biological mechanisms underlying this observation are unclear. The environment affects DNA methylation, with potentially long-lasting effects on gene expression and disease. This study examined whether DNA methylation could underlie the

  11. Genome-wide DNA methylation analysis of the porcine hypothalamus-pituitary-ovary axis

    DEFF Research Database (Denmark)

    Yuan, Xiao Long; Zhang, Zhe; Li, Bin

    2017-01-01

    Previous studies have suggested that DNA methylation in both CpG and CpH (where H = C, T or A) contexts plays a critical role in biological functions of different tissues. However, the genome-wide DNA methylation patterns of porcine hypothalamus-pituitary-ovary (HPO) tissues remain virtually unex...

  12. Rapid microfluidic solid-phase extraction system for hyper-methylated DNA enrichment and epigenetic analysis

    NARCIS (Netherlands)

    De, Arpita; Sparreboom, Wouter; van den Berg, Albert; Carlen, Edwin

    Genetic sequence and hyper-methylation profile information from the promoter regions of tumor suppressor genes are important for cancer disease investigation. Since hyper-methylated DNA (hm-DNA) is typically present in ultra-low concentrations in biological samples, such as stool, urine, and saliva,

  13. The interplay between environmental factors and DNA methylation in psychotic disorders : Environmental orchestration of the epigenome

    NARCIS (Netherlands)

    Houtepen, LC

    2016-01-01

    Introduction: Environmental exposures during early- life increase the risk of developing a psychotic disorder, but it remains unclear how early life events can have such persistent later life consequences. DNA methylation is the addition of a methyl group to a DNA base and is part of a group of

  14. Discovery of DNA methylation markers in cervical cancer using relaxation ranking

    NARCIS (Netherlands)

    Ongenaert, Mate; Wisman, G. Bea A.; Volders, Haukeline H.; Koning, Alice J.; van der Zee, Ate G. J.; van Criekinge, Wim; Schuuring, Ed

    2008-01-01

    Background: To discover cancer specific DNA methylation markers, large-scale screening methods are widely used. The pharmacological unmasking expression microarray approach is an elegant method to enrich for genes that are silenced and re-expressed during functional reversal of DNA methylation upon

  15. Genome-wide DNA methylation patterns and transcription analysis in sheep muscle.

    Directory of Open Access Journals (Sweden)

    Christine Couldrey

    Full Text Available DNA methylation plays a central role in regulating many aspects of growth and development in mammals through regulating gene expression. The development of next generation sequencing technologies have paved the way for genome-wide, high resolution analysis of DNA methylation landscapes using methodology known as reduced representation bisulfite sequencing (RRBS. While RRBS has proven to be effective in understanding DNA methylation landscapes in humans, mice, and rats, to date, few studies have utilised this powerful method for investigating DNA methylation in agricultural animals. Here we describe the utilisation of RRBS to investigate DNA methylation in sheep Longissimus dorsi muscles. RRBS analysis of ∼1% of the genome from Longissimus dorsi muscles provided data of suitably high precision and accuracy for DNA methylation analysis, at all levels of resolution from genome-wide to individual nucleotides. Combining RRBS data with mRNAseq data allowed the sheep Longissimus dorsi muscle methylome to be compared with methylomes from other species. While some species differences were identified, many similarities were observed between DNA methylation patterns in sheep and other more commonly studied species. The RRBS data presented here highlights the complexity of epigenetic regulation of genes. However, the similarities observed across species are promising, in that knowledge gained from epigenetic studies in human and mice may be applied, with caution, to agricultural species. The ability to accurately measure DNA methylation in agricultural animals will contribute an additional layer of information to the genetic analyses currently being used to maximise production gains in these species.

  16. DNA Methylation and Gene Expression Profiling of Ewing Sarcoma Primary Tumors Reveal Genes That Are Potential Targets of Epigenetic Inactivation

    Directory of Open Access Journals (Sweden)

    Nikul Patel

    2012-01-01

    Full Text Available The role of aberrant DNA methylation in Ewing sarcoma is not completely understood. The methylation status of 503 genes in 52 formalin-fixed paraffin-embedded EWS tumors and 3 EWS cell lines was compared to human mesenchymal stem cell primary cultures (hMSCs using bead chip methylation analysis. Relative expression of methylated genes was assessed in 5-Aza-2-deoxycytidine-(5-AZA-treated EWS cell lines and in a cohort of primary EWS samples and hMSCs by gene expression and quantitative RT-PCR. 129 genes demonstrated statistically significant hypermethylation in EWS tumors compared to hMSCs. Thirty-six genes were profoundly methylated in EWS and unmethylated in hMSCs. 5-AZA treatment of EWS cell lines resulted in upregulation of expression of hundreds of genes including 162 that were increased by at least 2-fold. The expression of 19 of 36 candidate hypermethylated genes was increased following 5-AZA. Analysis of gene expression from an independent cohort of tumors confirmed decreased expression of six of nineteen hypermethylated genes (AXL, COL1A1, CYP1B1, LYN, SERPINE1, and VCAN. Comparing gene expression and DNA methylation analyses proved to be an effective way to identify genes epigenetically regulated in EWS. Further investigation is ongoing to elucidate the role of these epigenetic alterations in EWS pathogenesis.

  17. Age-related Changes in DNA Methylation Status of hTERT Gene Promoter of Oral Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Stephane Flaviane de Oliveira Bezerra

    2015-02-01

    Full Text Available The purpose of this study was to investigate the effect of aging on the DNA methylation status of two genes involved in tumorigenesis (telomerase gene hTERT and DNA repair gene- MLH1 and one in metabolism (methylenetetrahydrofolate reductase gene- MTHFR in oral epithelial cells. DNA methylation analysis was performed by Methylation Sensitive Restriction Enzymes (MSRE of healthy oral epithelial cells of child (6-10 years, n=21, young (20-25 years, n=19 and elderly (over 60 years, n=25. The results for the hTERT gene showed significant variation in the methylation frequency at CpG dinucleotides among the groups (p=0.0001, with the methylated condition more frequently in children and young people. In relation to MLH1 and MTHFR, no differences were observed among the groups and the unmethylated condition were present in most individuals (p>0.05. Thus, it was concluded that aging of oral epithelial cells was associated with hypomethylation of the hTERT gene promoter and this could be a promising marker for screening a set of age-related alterations.

  18. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    International Nuclear Information System (INIS)

    Tsujiuchi, Toshifumi; Shimizu, Kyoko; Onishi, Mariko; Sugata, Eriko; Fujii, Hiromasa; Mori, Toshio; Honoki, Kanya; Fukushima, Nobuyuki

    2006-01-01

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells

  19. Biological age of the endometrium using DNA methylation

    DEFF Research Database (Denmark)

    Olesen, Mia S; Starnawska, Anna; Bybjerg-Grauholm, Jonas

    2017-01-01

    the biological age of human cells, tissues or organs based on DNA methylation levels. The clock however, was previously shown to be highly inaccurate for the human endometrium, most likely because of the hormonal responsive nature of this tissue. The aim of this study was to determine if epigenetically......Age has a detrimental effect on reproduction and as an increasing number of women postpone motherhood, it is imperative to assess biological age in terms of fertility prognosis and optimizing fertility treatment individually. Horvath's epigenetic clock is a mathematical algorithm that calculates......-based biological age of the human endometrium correlates with chronological age, when strictly timed to the menstrual cycle. Endometrial biopsies from nine women were obtained in two consecutive cycles, both strictly timed to the LH surge (LH+7) and additionally, peripheral whole blood samples were analysed. Using...

  20. Dynamic heterogeneity and DNA methylation in embryonic stem cells.

    KAUST Repository

    Singer, Zakary S

    2014-07-01

    Cell populations can be strikingly heterogeneous, composed of multiple cellular states, each exhibiting stochastic noise in its gene expression. A major challenge is to disentangle these two types of variability and to understand the dynamic processes and mechanisms that control them. Embryonic stem cells (ESCs) provide an ideal model system to address this issue because they exhibit heterogeneous and dynamic expression of functionally important regulatory factors. We analyzed gene expression in individual ESCs using single-molecule RNA-FISH and quantitative time-lapse movies. These data discriminated stochastic switching between two coherent (correlated) gene expression states and burst-like transcriptional noise. We further showed that the "2i" signaling pathway inhibitors modulate both types of variation. Finally, we found that DNA methylation plays a key role in maintaining these metastable states. Together, these results show how ESC gene expression states and dynamics arise from a combination of intrinsic noise, coherent cellular states, and epigenetic regulation.

  1. Genome-Scale Assessment of Age-Related DNA Methylation Changes in Mouse Spermatozoa.

    Science.gov (United States)

    Kobayashi, Norio; Okae, Hiroaki; Hiura, Hitoshi; Chiba, Hatsune; Shirakata, Yoshiki; Hara, Kenshiro; Tanemura, Kentaro; Arima, Takahiro

    2016-01-01

    DNA methylation plays important roles in the production and functioning of spermatozoa. Recent studies have suggested that DNA methylation patterns in spermatozoa can change with age, but the regions susceptible to age-related methylation changes remain to be fully elucidated. In this study, we conducted genome-scale DNA methylation profiling of spermatozoa obtained from C57BL/6N mice at 8 weeks (8w), 18 weeks (18w) and 17 months of age (17m). There was no substantial difference in the global DNA methylation patterns between 18w and 17m samples except for a slight increase of methylation levels in long interspersed nuclear elements in the 17m samples. We found that maternally methylated imprinting control regions (mICRs) and spermatogenesis-related gene promoters had 5-10% higher methylation levels in 8w samples than in 18w or 17m samples. Analysis of individual sequence reads suggested that these regions were fully methylated (80-100%) in a subset of 8w spermatozoa. These regions are also known to be highly methylated in a subset of postnatal spermatogonia, which might be the source of the increased DNA methylation in 8w spermatozoa. Another possible source was contamination by somatic cells. Although we carefully purified the spermatozoa, it was difficult to completely exclude the possibility of somatic cell contamination. Further studies are needed to clarify the source of the small increase in DNA methylation in the 8w samples. Overall, our findings suggest that DNA methylation patterns in mouse spermatozoa are relatively stable throughout reproductive life.

  2. The Role of DNA Methylation and Histone Modifications in Neurodegenerative Diseases: A Systematic Review.

    Directory of Open Access Journals (Sweden)

    Ke-Xin Wen

    Full Text Available Epigenetic modifications of the genome, such as DNA methylation and histone modifications, have been reported to play a role in neurodegenerative diseases (ND such as Alzheimer's disease (AD and Parkinson's disease (PD.To systematically review studies investigating epigenetic marks in AD or PD.Eleven bibliographic databases (Embase.com, Medline (Ovid, Web-of-Science, Scopus, PubMed, Cinahl (EBSCOhost, Cochrane Central, ProQuest, Lilacs, Scielo and Google Scholar were searched until July 11th 2016 to identify relevant articles. We included all randomized controlled trials, cohort, case-control and cross-sectional studies in humans that examined associations between epigenetic marks and ND. Two independent reviewers, with a third reviewer available for disagreements, performed the abstract and full text selection. Data was extracted using a pre-designed data collection form.Of 6,927 searched references, 73 unique case-control studies met our inclusion criteria. Overall, 11,453 individuals were included in this systematic review (2,640 AD and 2,368 PD outcomes. There was no consistent association between global DNA methylation pattern and any ND. Studies reported epigenetic regulation of 31 genes (including cell communication, apoptosis, and neurogenesis genes in blood and brain tissue in relation to AD and PD. Methylation at the BDNF, SORBS3 and APP genes in AD were the most consistently reported associations. Methylation of α-synuclein gene (SNCA was also found to be associated with PD. Seven studies reported histone protein alterations in AD and PD.Many studies have investigated epigenetics and ND. Further research should include larger cohort or longitudinal studies, in order to identify clinically significant epigenetic changes. Identifying relevant epigenetic changes could lead to interventional strategies in ND.

  3. Mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation links the tricarboxylic acid (TCA) cycle with methionine metabolism and nuclear DNA methylation.

    Science.gov (United States)

    Lozoya, Oswaldo A; Martinez-Reyes, Inmaculada; Wang, Tianyuan; Grenet, Dagoberto; Bushel, Pierre; Li, Jianying; Chandel, Navdeep; Woychik, Richard P; Santos, Janine H

    2018-04-18

    Mitochondrial function affects many aspects of cellular physiology, and, most recently, its role in epigenetics has been reported. Mechanistically, how mitochondrial function alters DNA methylation patterns in the nucleus remains ill defined. Using a cell culture model of induced mitochondrial DNA (mtDNA) depletion, in this study we show that progressive mitochondrial dysfunction leads to an early transcriptional and metabolic program centered on the metabolism of various amino acids, including those involved in the methionine cycle. We find that this program also increases DNA methylation, which occurs primarily in the genes that are differentially expressed. Maintenance of mitochondrial nicotinamide adenine dinucleotide reduced (NADH) oxidation in the context of mtDNA loss rescues methionine salvage and polyamine synthesis and prevents changes in DNA methylation and gene expression but does not affect serine/folate metabolism or transsulfuration. This work provides a novel mechanistic link between mitochondrial function and epigenetic regulation of gene expression that involves polyamine and methionine metabolism responding to changes in the tricarboxylic acid (TCA) cycle. Given the implications of these findings, future studies across different physiological contexts and in vivo are warranted.

  4. EXTRACELLULAR DNA AND THE LEVEL OF ITS METHYLATION IN DIFFERENT RHEUMATIC DISEASES

    Directory of Open Access Journals (Sweden)

    N O Shubayeva

    2012-01-01

    Conclusion. RDs are characterized by the higher concentration of apoptotic and necrotic DNA, impaired exDNA methylation, varying complexification of exDNA with monometinic proteins, which is associated with the hyperproduction of autoantibodies (including anti-exDNA antibodies and inflammatory markers.

  5. Maternal diet during pregnancy induces gene expression and DNA methylation changes in fetal tissues in sheep

    Directory of Open Access Journals (Sweden)

    Xianyong eLan

    2013-04-01

    Full Text Available Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from d 67 ± 3 of gestation until necropsy (d 130 ± 1, they were fed one of three diets of alfalfa haylage (HY; fiber, corn (CN; starch, or dried corn distiller’s grains (DG; fiber plus protein plus fat. A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methylatransferase (DNMTs genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues.

  6. DNA methylation of amino acid transporter genes in the human placenta.

    Science.gov (United States)

    Simner, C; Novakovic, B; Lillycrop, K A; Bell, C G; Harvey, N C; Cooper, C; Saffery, R; Lewis, R M; Cleal, J K

    2017-12-01

    Placental transfer of amino acids via amino acid transporters is essential for fetal growth. Little is known about the epigenetic regulation of amino acid transporters in placenta. This study investigates the DNA methylation status of amino acid transporters and their expression across gestation in human placenta. BeWo cells were treated with 5-aza-2'-deoxycytidine to inhibit methylation and assess the effects on amino acid transporter gene expression. The DNA methylation levels of amino acid transporter genes in human placenta were determined across gestation using DNA methylation array data. Placental amino acid transporter gene expression across gestation was also analysed using data from publically available Gene Expression Omnibus data sets. The expression levels of these transporters at term were established using RNA sequencing data. Inhibition of DNA methylation in BeWo cells demonstrated that expression of specific amino acid transporters can be inversely associated with DNA methylation. Amino acid transporters expressed in term placenta generally showed low levels of promoter DNA methylation. Transporters with little or no expression in term placenta tended to be more highly methylated at gene promoter regions. The transporter genes SLC1A2, SLC1A3, SLC1A4, SLC7A5, SLC7A11 and SLC7A10 had significant changes in enhancer DNA methylation across gestation, as well as gene expression changes across gestation. This study implicates DNA methylation in the regulation of amino acid transporter gene expression. However, in human placenta, DNA methylation of these genes remains low across gestation and does not always play an obvious role in regulating gene expression, despite clear evidence for differential expression as gestation proceeds. Copyright © 2017. Published by Elsevier Ltd.

  7. A two-gene blood test for methylated DNA sensitive for colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Susanne K Pedersen

    Full Text Available Specific genes are methylated with high frequency in colorectal neoplasia, and may leak into blood. Detection of multiple methylated DNA biomarkers in blood may improve assay sensitivity for colorectal cancer (CRC relative to a single marker. We undertook a case-control study evaluating the presence of two methylation DNA markers, BCAT1 and IKZF1, in circulation to determine if they were complementary for detection of CRC.Methylation-specific PCR assays were developed to measure the level of methylated BCAT1 and IKZF1 in DNA extracted from plasma obtained from colonoscopy-confirmed 144 healthy controls and 74 CRC cases.DNA yields ranged from 2 to 730 ng/mL plasma (mean 18.6ng/mL; 95% CI 11-26 ng/mL and did not correlate with gender, age or CRC status. Methylated BCAT1 and IKZF1 DNA were detected in respectively 48 (65% and 50 (68% of the 74 cancers. In contrast, only 5 (4% and 7 (5% controls were positive for BCAT1 and IKZF1 DNA methylation, respectively. A two-gene classifier model ("either or" rule improved segregation of CRC from controls, with 57 of 74 cancers (77% compared to only 11 of 144 (7.6% controls being positive for BCAT1 and/or IKZF1 DNA methylation. Increasing levels of methylated DNA were observed as CRC stage progressed.Detection of methylated BCAT1 and/or IKZF1 DNA in plasma may have clinical application as a novel blood test for CRC. Combining the results from the two methylation-specific PCR assays improved CRC detection with minimal change in specificity. Further validation of this two-gene blood test with a view to application in screening is now indicated.

  8. CG gene body DNA methylation changes and evolution of duplicated genes in cassava.

    Science.gov (United States)

    Wang, Haifeng; Beyene, Getu; Zhai, Jixian; Feng, Suhua; Fahlgren, Noah; Taylor, Nigel J; Bart, Rebecca; Carrington, James C; Jacobsen, Steven E; Ausin, Israel

    2015-11-03

    DNA methylation is important for the regulation of gene expression and the silencing of transposons in plants. Here we present genome-wide methylation patterns at single-base pair resolution for cassava (Manihot esculenta, cultivar TME 7), a crop with a substantial impact in the agriculture of subtropical and tropical regions. On average, DNA methylation levels were higher in all three DNA sequence contexts (CG, CHG, and CHH, where H equals A, T, or C) than those of the most well-studied model plant Arabidopsis thaliana. As in other plants, DNA methylation was found both on transposons and in the transcribed regions (bodies) of many genes. Consistent with these patterns, at least one cassava gene copy of all of the known components of Arabidopsis DNA methylation pathways was identified. Methylation of LTR transposons (GYPSY and COPIA) was found to be unusually high compared with other types of transposons, suggesting that the control of the activity of these two types of transposons may be especially important. Analysis of duplicated gene pairs resulting from whole-genome duplication showed that gene body DNA methylation and gene expression levels have coevolved over short evolutionary time scales, reinforcing the positive relationship between gene body methylation and high levels of gene expression. Duplicated genes with the most divergent gene body methylation and expression patterns were found to have distinct biological functions and may have been under natural or human selection for cassava traits.

  9. Single-nucleotide polymorphisms and DNA methylation markers associated with central obesity and regulation of body weight.

    Science.gov (United States)

    Goni, Leticia; Milagro, Fermín I; Cuervo, Marta; Martínez, J Alfredo

    2014-11-01

    Visceral fat is strongly associated with the development of specific obesity-related metabolic alterations. Genetic and epigenetic mechanisms seem to be involved in the development of obesity and visceral adiposity. The aims of this review are to identify the single-nucleotide polymorphisms related to central obesity and to summarize the main findings on DNA methylation and obesity. A search of the MEDLINE database was conducted to identify genome-wide association studies, meta-analyses of genome-wide association studies, and gene-diet interaction studies related to central obesity, and, in addition, studies that analyzed DNA methylation in relation to body weight regulation. A total of 8 genome-wide association studies and 9 meta-analyses of genome-wide association studies reported numerous single-nucleotide polymorphisms to be associated with central obesity. Ten studies analyzed gene-diet interactions and central obesity, while 2 epigenome-wide association studies analyzed DNA methylation patterns and obesity. Nine studies investigated the relationship between DNA methylation and weight loss, excess body weight, or adiposity outcomes. Given the development of new sequencing and omics technologies, significantly more knowledge on genomics and epigenomics of obesity and body fat distribution will emerge in the near future. © 2014 International Life Sciences Institute.

  10. Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood

    DEFF Research Database (Denmark)

    Rönn, Tina; Volkov, Petr; Gillberg, Linn

    2015-01-01

    Increased age, BMI and HbA1c levels are risk factors for several non-communicable diseases. However, the impact of these factors on the genome-wide DNA methylation pattern in human adipose tissue remains unknown. We analyzed the DNA methylation of ∼480 000 sites in human adipose tissue from 96...... males and 94 females and related methylation to age, BMI and HbA1c. We also compared epigenetic signatures in adipose tissue and blood. Age was significantly associated with both altered DNA methylation and expression of 1050 genes (e.g. FHL2, NOX4 and PLG). Interestingly, many reported epigenetic...... biomarkers of aging in blood, including ELOVL2, FHL2, KLF14 and GLRA1, also showed significant correlations between adipose tissue DNA methylation and age in our study. The most significant association between age and adipose tissue DNA methylation was found upstream of ELOVL2. We identified 2825 genes (e...

  11. Pros and cons of methylation-based enrichment methods for ancient DNA

    DEFF Research Database (Denmark)

    Seguin-Orlando, Andaine; Gamba, Cristina; Der Sarkissian, Clio

    2015-01-01

    enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved......The recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules...

  12. Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) directly informs methylation status of histone-modified DNA

    NARCIS (Netherlands)

    Statham, A.L.; Robinson, M.D.; Song, J.Z.; Coolen, M.W.; Stirzaker, C.; Clark, S. J.

    2012-01-01

    The complex relationship between DNA methylation, chromatin modification, and underlying DNA sequence is often difficult to unravel with existing technologies. Here, we describe a novel technique based on high-throughput sequencing of bisulfite-treated chromatin immunoprecipitated DNA (BisChIP-seq),

  13. MTHFR methylation moderates the impact of smoking on DNA methylation at AHRR for African American young adults.

    Science.gov (United States)

    Beach, Steven R H; Lei, Man Kit; Ong, Mei Ling; Brody, Gene H; Dogan, Meeshanthini V; Philibert, Robert A

    2017-09-01

    Smoking has been shown to have a large, reliable, and rapid effect on demethylation of AHRR, particularly at cg05575921, suggesting that methylation may be used as an index of cigarette consumption. Because the availability of methyl donors may also influence the degree of demethylation in response to smoking, factors that affect the activity of methylene tetrahydrofolate reductase (MTHFR), a key regulator of methyl group availability, may be of interest. In the current investigation, we examined the extent to which individual differences in methylation of MTHFR moderated the association between smoking and demethylation at cg05575921 as well as at other loci on AHRR associated with a main effect of smoking. Using a disco