WorldWideScience

Sample records for alters dna methylation

  1. Altered DNA methylation in PAH deficient phenylketonuria.

    Science.gov (United States)

    Dobrowolski, Steven F; Lyons-Weiler, James; Spridik, Kayla; Biery, Amy; Breck, Jane; Vockley, Jerry; Yatsenko, Svetlana; Sultana, Tamanna

    2015-01-01

    While phenylalanine (PHE) is the toxic insult in phenylketonuria (PKU), mechanisms underlying PHE toxicity remain ill-defined. Altered DNA methylation in response to toxic exposures is well-recognized. DNA methylation patterns were assessed in blood and brain from PKU patients to determine if PHE toxicity impacts methylation. Methylome assessment, utilizing methylated DNA immunoprecipitation and paired-end sequencing, was performed in DNA obtained from brain tissue of classical PKU patients, leukocytes from poorly controlled PKU patients, leukocytes from well controlled PKU patients, and appropriate control tissues. In PKU brain tissue, expression analysis determined the impact of methylation on gene function. Differential methylation was observed in brain tissue of PKU patients and expression studies identified downstream impact on gene expression. Altered patterns of methylation were observed in leukocytes of well controlled and poorly controlled patients with more extensive methylation in patients with high PHE exposure. Differential methylation of noncoding RNA genes was extensive in patients with high PHE exposure but minimal in well controlled patients. Methylome repatterning leading to altered gene expression was present in brain tissue of PKU patients, suggesting a role in neuropathology. Aberrant methylation is observed in leukocytes of PKU patients and is influenced by PHE exposure. DNA methylation may provide a biomarker relating to historic PHE exposure. PMID:25990862

  2. DNA methylation alterations in grade II- and anaplastic pleomorphic xanthoastrocytoma

    International Nuclear Information System (INIS)

    Pleomorphic xanthoastrocytoma (PXA) is a rare WHO grade II tumor accounting for less than 1% of all astrocytomas. Malignant transformation into PXA with anaplastic features, is unusual and correlates with poorer outcome of the patients. Using a DNA methylation custom array, we have quantified the DNA methylation level on the promoter sequence of 807 cancer-related genes of WHO grade II (n = 11) and III PXA (n = 2) and compared to normal brain tissue (n = 10) and glioblastoma (n = 87) samples. DNA methylation levels were further confirmed on independent samples by pyrosequencing of the promoter sequences. Increasing DNA promoter hypermethylation events were observed in anaplastic PXA as compared with grade II samples. We further validated differential hypermethylation of CD81, HCK, HOXA5, ASCL2 and TES on anaplastic PXA and grade II tumors. Moreover, these epigenetic alterations overlap those described in glioblastoma patients, suggesting common mechanisms of tumorigenesis. Even taking into consideration the small size of our patient populations, our data strongly suggest that epigenome-wide profiling of PXA is a valuable tool to identify methylated genes, which may play a role in the malignant progression of PXA. These methylation alterations may provide useful biomarkers for decision-making in those patients with low-grade PXA displaying a high risk of malignant transformation

  3. Interleukin-6 Promotes Tumorigenesis by Altering DNA Methylation in Oral Cancer Cells

    OpenAIRE

    Gasche, Jacqueline A; Hoffmann, Jürgen; Boland, C. Richard; Goel, Ajay

    2011-01-01

    Worldwide oral squamous cell carcinoma (OSCC) accounts for more than 100,000 deaths each year. Chronic inflammation constitutes one of the key risk factors for OSCC. Accumulating evidence suggests that aberrant DNA methylation may contribute to OSCC tumorigenesis. This study investigated whether chronic inflammation alters DNA methylation and expression of cancer-associated genes in OSCC.

  4. Inter-species grafting caused extensive and heritable alterations of DNA methylation in Solanaceae plants.

    Directory of Open Access Journals (Sweden)

    Rui Wu

    Full Text Available BACKGROUND: Grafting has been extensively used to enhance the performance of horticultural crops. Since Charles Darwin coined the term "graft hybrid" meaning that asexual combination of different plant species may generate products that are genetically distinct, highly discrepant opinions exist supporting or against the concept. Recent studies have documented that grafting enables exchanges of both RNA and DNA molecules between the grafting partners, thus providing a molecular basis for grafting-induced genetic variation. DNA methylation is known as prone to alterations as a result of perturbation of internal and external conditions. Given characteristics of grafting, it is interesting to test whether the process may cause an alteration of this epigenetic marker in the grafted organismal products. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed relative global DNA methylation levels and locus-specific methylation patterns by the MSAP marker and locus-specific bisulfite-sequencing in the seed plants (wild-type controls, self- and hetero-grafted scions/rootstocks, selfed progenies of scions and their seed-plant controls, involving three Solanaceae species. We quantified expression of putative genes involved in establishing and/or maintaining DNA methylation by q-(RT-PCR. We found that (1 hetero-grafting caused extensive alteration of DNA methylation patterns in a locus-specific manner, especially in scions, although relative methylation levels remain largely unaltered; (2 the altered methylation patterns in the hetero-grafting-derived scions could be inherited to sexual progenies with some sites showing further alterations or revisions; (3 hetero-grafting caused dynamic changes in steady-state transcript abundance of genes encoding for a set of enzymes functionally relevant to DNA methylation. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that inter-species grafting in plants could produce extensive and heritable alterations in DNA methylation. We

  5. DNA Methylation

    OpenAIRE

    İzmirli, Müzeyyen; Tufan, Turan; Alptekin, Davut

    2012-01-01

    Methylation is a chemical reaction in biological systems for normal genome regulation and development. It is a well known type of epigenetic mechanism. Methylation which regulates gene expression via epigenetic events like gene activation, repression, and chromatin remodelling, consists of two methylation systems. One of these systems is DNA methylation whereas the other is protein (histone) methylation. These systems are associated with some fundamental abnormalities and diseases. This revi...

  6. DNA Methylation

    OpenAIRE

    Muzeyyen Izmirli; Turan Tufan; Davut Alptekin

    2012-01-01

    Methylation is a chemical reaction in biological systems for normal genome regulation and development. It is a well known type of epigenetic mechanism. Methylation which regulates gene expression via epigenetic events like gene activation, repression, and chromatin remodelling, consists of two methylation systems. One of these systems is DNA methylation whereas the other is protein (histone) methylation. These systems are associated with some fundamental abnormalities and diseases. This revie...

  7. Global DNA methylation is altered by neoadjuvant chemoradiotherapy in rectal cancer and may predict response to treatment - A pilot study.

    LENUS (Irish Health Repository)

    Tsang, J S

    2014-07-28

    In rectal cancer, not all tumours display a response to neoadjuvant treatment. An accurate predictor of response does not exist to guide patient-specific treatment. DNA methylation is a distinctive molecular pathway in colorectal carcinogenesis. Whether DNA methylation is altered by neoadjuvant treatment and a potential response predictor is unknown. We aimed to determine whether DNA methylation is altered by neoadjuvant chemoradiotherapy (CRT) and to determine its role in predicting response to treatment.

  8. DNA Methylation

    OpenAIRE

    Alokail, Majed S.; Alenad, Amal M

    2015-01-01

    The DNA of E. coli contains 19,120 6-methyladenines and 12,045 5-methylcytosines in addition to the four regular bases and these are formed by the postreplicative action of three DNA methyltransferases. The majority of the methylated bases are formed by the Dam and Dcm methyltransferases encoded by the dam (DNA adenine methyltransferase) and dcm (DNA cytosine methyltransferase) genes. Although not essential, Dam methylation is important for strand discrimination during repair of replication e...

  9. Inhibiting DNA methylation alters olfactory extinction but not acquisition learning in Apis cerana and Apis mellifera.

    Science.gov (United States)

    Gong, Zhiwen; Wang, Chao; Nieh, James C; Tan, Ken

    2016-07-01

    DNA methylation plays a key role in invertebrate acquisition and extinction memory. Honey bees have excellent olfactory learning, but the role of DNA methylation in memory formation has, to date, only been studied in Apis mellifera. We inhibited DNA methylation by inhibiting DNA methyltransferase (DNMT) with zebularine (zeb) and studied the resulting effects upon olfactory acquisition and extinction memory in two honey bee species, Apis cerana and A. mellifera. We used the proboscis extension reflex (PER) assay to measure memory. We provide the first demonstration that DNA methylation is also important in the olfactory extinction learning of A. cerana. DNMT did not reduce acquisition learning in either species. However, zeb bidirectionally and differentially altered extinction learning in both species. In particular, zeb provided 1h before acquisition learning improved extinction memory retention in A. mellifera, but reduced extinction memory retention in A. cerana. The reasons for these differences are unclear, but provide a basis for future studies to explore species-specific differences in the effects of methylation on memory formation. PMID:27262427

  10. DNA methylation

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Helin, Kristian

    2012-01-01

    DNA methylation is involved in key cellular processes, including X-chromosome inactivation, imprinting and transcriptional silencing of specific genes and repetitive elements. DNA methylation patterns are frequently perturbed in human diseases such as imprinting disorders and cancer. The recent...... discovery that the three members of the TET protein family can convert 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) has provided a potential mechanism leading to DNA demethylation. Moreover, the demonstration that TET2 is frequently mutated in haematopoietic tumours suggests that the TET...... proteins are important regulators of cellular identity. Here, we review the current knowledge regarding the function of the TET proteins, and discuss various mechanisms by which they contribute to transcriptional control. We propose that the TET proteins have an important role in regulating DNA methylation...

  11. Common DNA methylation alterations of Alzheimer's disease and aging in peripheral whole blood

    Science.gov (United States)

    Li, Hongdong; Guo, Zheng; Guo, You; Li, Mengyao; Yan, Haidan; Cheng, Jun; Wang, Chenguang; Hong, Guini

    2016-01-01

    Alzheimer's disease (AD) is a common aging-related neurodegenerative illness. Recently, many studies have tried to identify AD- or aging-related DNA methylation (DNAm) biomarkers from peripheral whole blood (PWB). However, the origin of PWB biomarkers is still controversial. In this study, by analyzing 2565 DNAm profiles for PWB and brain tissue, we showed that aging-related DNAm CpGs (Age-CpGs) and AD-related DNAm CpGs (AD-CpGs) observable in PWB both mainly reflected DNAm alterations intrinsic in leukocyte subtypes rather than methylation differences introduced by the increased ratio of myeloid to lymphoid cells during aging or AD progression. The PWB Age-CpGs and AD-CpGs significantly overlapped 107 sites (P-value = 2.61×10−12) and 97 had significantly concordant methylation alterations in AD and aging (P-value nervous system development, neuron differentiation and neurogenesis. More than 60.8% of these 97 concordant sites were found to be significantly correlated with age in normal peripheral CD4+ T cells and CD14+ monocytes as well as in four brain regions, and 44 sites were also significantly differentially methylated in different regions of AD brain tissue. Taken together, the PWB DNAm alterations related to both aging and AD could be exploited for identification of AD biomarkers. PMID:26943045

  12. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.)

    International Nuclear Information System (INIS)

    Spaceflight represents a complex environmental condition in which several interacting factors such as cosmic radiation, microgravity and space magnetic fields are involved, which may provoke stress responses and jeopardize genome integrity. Given the inherent property of epigenetic modifications to respond to intrinsic as well as external perturbations, it is conceivable that epigenetic markers like DNA methylation may undergo alterations in response to spaceflight. We report here that extensive alteration in both DNA methylation and gene expression occurred in rice plants subjected to a spaceflight, as revealed by a set of characterized sequences including 6 transposable elements (TEs) and 11 cellular genes. We found that several features characterize the alterations: (1) All detected alterations are hypermethylation events; (2) whereas alteration in both CG and CNG methylation occurred in the TEs, only alteration in CNG methylation occurred in the cellular genes; (3) alteration in expression includes both up- and down-regulations, which did not show a general correlation with alteration in methylation; (4) altered methylation patterns in both TEs and cellular genes are heritable to progenies at variable frequencies; however, stochastic reversion to wild-type patterns and further de novo changes in progenies are also apparent; and (5) the altered expression states in both TEs and cellular genes are also heritable to selfed progenies but with markedly lower transmission frequencies than altered DNA methylation states. Furthermore, we found that a set of genes encoding for the various putative DNA methyltransferases, 5-methylcytosine DNA glycosylases, the SWI/SNF chromatin remodeller (DDM1) and siRNA-related proteins are extremely sensitive to perturbation by spaceflight, which might be an underlying cause for the altered methylation patterns in the space-flown plants. We discuss implications of spaceflight-induced epigenetic variations with regard to health safety

  13. DNA Methylation Alterations at 5'-CCGG Sites in the Interspecific and Intraspecific Hybridizations Derived from Brassica rapa and B. napus.

    Directory of Open Access Journals (Sweden)

    Wanshan Xiong

    Full Text Available DNA methylation is an important regulatory mechanism for gene expression that involved in the biological processes of development and differentiation in plants. To investigate the association of DNA methylation with heterosis in Brassica, a set of intraspecific hybrids in Brassica rapa and B. napus and interspecific hybrids between B. rapa and B. napus, together with parental lines, were used to monitor alterations in cytosine methylation at 5'-CCGG sites in seedlings and buds by methylation-sensitive amplification polymorphism analysis. The methylation status of approximately a quarter of the methylation sites changed between seedlings and buds. These alterations were related closely to the genomic structure and heterozygous status among accessions. The methylation status in the majority of DNA methylation sites detected in hybrids was the same as that in at least one of the parental lines in both seedlings and buds. However, the association between patterns of cytosine methylation and heterosis varied among different traits and between tissues in hybrids of Brassica, although a few methylation loci were associated with heterosis. Our data suggest that changes in DNA methylation at 5'-CCGG sites are not associated simply with heterosis in the interspecific and intraspecific hybridizations derived from B. rapa and B. napus.

  14. Sperm DNA methylation analysis in swine reveals conserved and species-specific methylation patterns and highlights an altered methylation at the GNAS locus in infertile boars.

    Science.gov (United States)

    Congras, Annabelle; Yerle-Bouissou, Martine; Pinton, Alain; Vignoles, Florence; Liaubet, Laurence; Ferchaud, Stéphane; Acloque, Hervé

    2014-12-01

    Male infertility is an increasing health issue in today's society for both human and livestock populations. In livestock, male infertility slows the improvement of animal selection programs and agricultural productivity. There is increasing evidence that epigenetic marks play an important role in the production of good-quality sperm. We therefore screened for specific or common epigenetic signatures of livestock infertility. To do so, we compared DNA methylation level in sperm DNA from fertile and infertile boars. We evaluated first the global level of sperm DNA methylation and found no difference between the two groups of boars. We then selected 42 loci of interest, most of them known to be imprinted in human or mice, and assessed the imprinting status of five of them not previously described in swine tissues: WT1, CNTN3, IMPACT, QPCT, and GRB10. DNA methylation level was then quantified in fertile and infertile boars at these 42 loci. Results from fertile boars indicated that the methylation level of the selected loci is highly conserved between pig, human, and mice, with a few exceptions, including the POU5F1 (OCT4) promoter and RTL1. Comparison between fertile and infertile boars revealed that one imprinted region, the GNAS locus, shows an increase in sperm DNA methylation in three out of eight infertile boars with low semen quality. This increase in DNA methylation is associated with an altered expression of the genes belonging to the GNAS locus, suggesting a new role for GNAS in the proper formation of functional gametes. PMID:25320151

  15. Trisomy 21 Alters DNA Methylation in Parent-of-Origin-Dependent and -Independent Manners

    Science.gov (United States)

    Alves da Silva, Antônio Francisco; Machado, Filipe Brum; Pavarino, Érika Cristina; Biselli-Périco, Joice Matos; Zampieri, Bruna Lancia; da Silva Francisco Junior, Ronaldo; Mozer Rodrigues, Pedro Thyago; Terra Machado, Douglas; Santos-Rebouças, Cíntia Barros; Gomes Fernandes, Maria; Chuva de Sousa Lopes, Susana Marina; Lopes Rios, Álvaro Fabricio

    2016-01-01

    The supernumerary chromosome 21 in Down syndrome differentially affects the methylation statuses at CpG dinucleotide sites and creates genome-wide transcriptional dysregulation of parental alleles, ultimately causing diverse pathologies. At present, it is unknown whether those effects are dependent or independent of the parental origin of the nondisjoined chromosome 21. Linkage analysis is a standard method for the determination of the parental origin of this aneuploidy, although it is inadequate in cases with deficiency of samples from the progenitors. Here, we assessed the reliability of the epigenetic 5mCpG imprints resulting in the maternally (oocyte)-derived allele methylation at a differentially methylated region (DMR) of the candidate imprinted WRB gene for asserting the parental origin of chromosome 21. We developed a methylation-sensitive restriction enzyme-specific PCR assay, based on the WRB DMR, across single nucleotide polymorphisms (SNPs) to examine the methylation statuses in the parental alleles. In genomic DNA from blood cells of either disomic or trisomic subjects, the maternal alleles were consistently methylated, while the paternal alleles were unmethylated. However, the supernumerary chromosome 21 did alter the methylation patterns at the RUNX1 (chromosome 21) and TMEM131 (chromosome 2) CpG sites in a parent-of-origin-independent manner. To evaluate the 5mCpG imprints, we conducted a computational comparative epigenomic analysis of transcriptome RNA sequencing (RNA-Seq) and histone modification expression patterns. We found allele fractions consistent with the transcriptional biallelic expression of WRB and ten neighboring genes, despite the similarities in the confluence of both a 17-histone modification activation backbone module and a 5-histone modification repressive module between the WRB DMR and the DMRs of six imprinted genes. We concluded that the maternally inherited 5mCpG imprints at the WRB DMR are uncoupled from the parental allele

  16. Similar blood-borne DNA methylation alterations in cancer and inflammatory diseases determined by subpopulation shifts in peripheral leukocytes

    OpenAIRE

    Li, H; Zheng, T.; Chen, B; Hong, G; Zhang, W.; Shi, T; Li, S.; Ao, L; Wang, C.; Guo, Z.

    2014-01-01

    Background: Although many DNA methylation (DNAm) alterations observed in peripheral whole blood/leukocytes and serum have been considered as potential diagnostic markers for cancer, their origin and their specificity for cancer (e.g., vs inflammatory diseases) remain unclear. Methods: From publicly available datasets, we identified changes in the methylation of blood-borne DNA for multiple cancers and inflammatory diseases. We compared the identified changes with DNAm difference between myelo...

  17. DNA methylation changes separate allergic patients from healthy controls and may reflect altered CD4+ T-cell population structure.

    Directory of Open Access Journals (Sweden)

    Colm E Nestor

    2014-01-01

    Full Text Available Altered DNA methylation patterns in CD4(+ T-cells indicate the importance of epigenetic mechanisms in inflammatory diseases. However, the identification of these alterations is complicated by the heterogeneity of most inflammatory diseases. Seasonal allergic rhinitis (SAR is an optimal disease model for the study of DNA methylation because of its well-defined phenotype and etiology. We generated genome-wide DNA methylation (N(patients = 8, N(controls = 8 and gene expression (N(patients = 9, Ncontrols = 10 profiles of CD4(+ T-cells from SAR patients and healthy controls using Illumina's HumanMethylation450 and HT-12 microarrays, respectively. DNA methylation profiles clearly and robustly distinguished SAR patients from controls, during and outside the pollen season. In agreement with previously published studies, gene expression profiles of the same samples failed to separate patients and controls. Separation by methylation (N(patients = 12, N(controls = 12, but not by gene expression (N(patients = 21, N(controls = 21 was also observed in an in vitro model system in which purified PBMCs from patients and healthy controls were challenged with allergen. We observed changes in the proportions of memory T-cell populations between patients (N(patients = 35 and controls (N(controls = 12, which could explain the observed difference in DNA methylation. Our data highlight the potential of epigenomics in the stratification of immune disease and represents the first successful molecular classification of SAR using CD4(+ T cells.

  18. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans

    OpenAIRE

    Houtepen, Lotte C; Vinkers, Christiaan H.; Carrillo-Roa, Tania; Hiemstra, Marieke; van Lier, Pol A; Meeus, Wim; Branje, Susan; Heim, Christine M; Nemeroff, Charles B.; Mill, Jonathan; Schalkwyk, Leonard C.; Creyghton, Menno P.; René S. Kahn; Joëls, Marian; Binder, Elisabeth B.

    2016-01-01

    DNA methylation likely plays a role in the regulation of human stress reactivity. Here we show that in a genome-wide analysis of blood DNA methylation in 85 healthy individuals, a locus in the Kit ligand gene (KITLG; cg27512205) showed the strongest association with cortisol stress reactivity (P=5.8 × 10(-6)). Replication was obtained in two independent samples using either blood (N=45, P=0.001) or buccal cells (N=255, P=0.004). KITLG methylation strongly mediates the relationship between chi...

  19. DNA methylation alterations of AXIN2 in serrated adenomas and colon carcinomas with microsatellite instability

    OpenAIRE

    MUTO, YUTA; Maeda, Takafumi; Suzuki, Koichi; Kato, Takaharu; Watanabe, Fumiaki; KAMIYAMA, HIDENORI; Saito, Masaaki; Koizumi, Kei; Miyaki, Yuichiro; Konishi, Fumio; Alonso, Sergio; Perucho, Manuel; Rikiyama, Toshiki

    2014-01-01

    Background Recent work led to recognize sessile serrated adenomas (SSA) as precursor to many of the sporadic colorectal cancers with microsatellite instability (MSI). However, comprehensive analyses of DNA methylation in SSA and MSI cancer have not been conducted. Methods With an array-based methylation sensitive amplified fragment length polymorphism (MS-AFLP) method we analyzed 8 tubular (TA) and 19 serrated (SSA) adenomas, and 14 carcinomas with (MSI) and 12 without (MSS) microsatellite in...

  20. DNA Methylation Alterations at 5′-CCGG Sites in the Interspecific and Intraspecific Hybridizations Derived from Brassica rapa and B. napus

    OpenAIRE

    Wanshan Xiong; Xiaorong Li; Donghui Fu; Jiaqin Mei; Qinfei Li; Guanyuan Lu; Lunwen Qian; Yin Fu; Joseph Onwusemu Disi; Jiana Li; Wei Qian

    2013-01-01

    DNA methylation is an important regulatory mechanism for gene expression that involved in the biological processes of development and differentiation in plants. To investigate the association of DNA methylation with heterosis in Brassica, a set of intraspecific hybrids in Brassica rapa and B. napus and interspecific hybrids between B. rapa and B. napus, together with parental lines, were used to monitor alterations in cytosine methylation at 5'-CCGG sites in seedlings and buds by methylation-...

  1. Exploring Genome-wide DNA Methylation Profiles Altered in Kashin-Beck Disease Using Infinium Human Methylation 450 Bead Chips.

    Science.gov (United States)

    Shi, Xiao Wei; Shi, Bo Hui; Lyu, Ai Li; Zhang, Feng; Zhou, Tian Tian; Guo, Xiong

    2016-07-01

    To understand how differentially methylated genes (DMGs) might affect the pathogenesis of Kashin-Beck disease (KBD). Genome-wide methylation profiling of whole blood from 12 matched KBD and controls pairs was performed using a high-resolution Infinium 450 K methylation array. In total, 97 CpG sites were differentially methylated in KBD compared to the normal controls; of these sites, 36 sites were significantly hypermethylated (covering 22 genes) and 61 sites were significantly hypomethylated (covering 34 genes). Of these genes, 14 significant pathways were identified, the most significant P value pathway was type I diabetes mellitus pathway and pathways associated with autoimmune diseases and inflammatory diseases were included in this study. Subsequently, 4 CpG sites in HLA-DRB1 were validated using bisulfite sequencing polymerase chain reaction (BSP) in articular cartilage, and the results showed significant differences in the methylation status between KBD and controls, consistent with the results of the high-resolution array. These results suggested that differences in genome-wide DNA methylation exist between KBD and the controls, and the biological pathways support the autoimmune disease and inflammatory disease hypothesis of KBD. PMID:27554126

  2. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    Directory of Open Access Journals (Sweden)

    Daniela L Buscariollo

    Full Text Available Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg or vehicle (0.09% NaCl i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  3. DNA methylation patterns of Brachypodium distachyon chromosomes and their alteration by 5-azacytidine treatment

    OpenAIRE

    Borowska, Natalia; Idziak, Dominika; Hasterok, Robert

    2011-01-01

    Sequential immunolocalisation of 5-methylcytosine (5-MeC) and fluorescence in situ hybridisation with chromosome-specific BAC clones were performed on Brachypodium distachyon mitotic metaphase chromosomes to determine specific DNA methylation patterns of each chromosome in the complement. In the majority of cells examined, chromosomes Bd4 and Bd5, which bear the loci of 5S and 35S ribosomal DNA, respectively, had characteristic 5-MeC patterns. In contrast, the distribution of 5-MeC along the ...

  4. Hypoxia-Induced Changes in DNA Methylation Alter RASAL1 and TGFβ1 Expression in Human Trabecular Meshwork Cells

    Science.gov (United States)

    Irnaten, Mustapha; Clark, Abbot F.; O’Brien, Colm J.; Wallace, Deborah M.

    2016-01-01

    Purpose Fibrosis and a hypoxic environment are associated with the trabecular meshwork (TM) region in the blinding disease glaucoma. Hypoxia has been shown to alter DNA methylation, an epigenetic mechanism involved in regulating gene expression such as the pro-fibrotic transforming growth factor (TGF) β1 and the anti-fibrotic Ras protein activator like 1 (RASAL1). The purpose of this study was to compare DNA methylation levels, and the expression of TGFβ1 and RASAL1 in primary human normal (NTM) with glaucomatous (GTM) cells and in NTM cells under hypoxic conditions. Methods Global DNA methylation was assessed by ELISA in cultured age-matched NTM and GTM cells. qPCR was conducted for TGFβ1, collagen 1α1 (COL1A1), and RASAL1 expression. Western immunoblotting was used to determine protein expression. For hypoxia experiments, NTM cells were cultured in a 1%O2, 5%CO2 and 37°C environment. NTM and GTM cells were treated with TGFβ1 (10ng/ml) and the methylation inhibitor 5-azacytidine (5-aza) (0.5μM) respectively to determine their effects on DNA Methyltransferase 1 (DNMT1) and RASAL1 expression. Results We found increased DNA methylation, increased TGFβ1 expression and decreased RASAL1 expression in GTM cells compared to NTM cells. Similar results were obtained in NTM cells under hypoxic conditions. TGFβ1 treatment increased DNMT1 and COL1A1, and decreased RASAL1 expression in NTM cells. 5-aza treatment decreased DNMT1, TGFβ1 and COL1A1 expression, and increased RASAL1 expression in GTM cells. Conclusions TGFβ1 and RASAL1 expression, global DNA methylation, and expression of associated methylation enzymes were altered between NTM and GTM cells. We found that hypoxia in NTM cells induced similar results to the GTM cells. Furthermore, DNA methylation, TGFβ1 and RASAL1 appear to have an interacting relationship that may play a role in driving pro-fibrotic disease progression in the glaucomatous TM. PMID:27124111

  5. Genome-wide DNA methylation levels and altered cortisol stress reactivity following childhood trauma in humans.

    Science.gov (United States)

    Houtepen, Lotte C; Vinkers, Christiaan H; Carrillo-Roa, Tania; Hiemstra, Marieke; van Lier, Pol A; Meeus, Wim; Branje, Susan; Heim, Christine M; Nemeroff, Charles B; Mill, Jonathan; Schalkwyk, Leonard C; Creyghton, Menno P; Kahn, René S; Joëls, Marian; Binder, Elisabeth B; Boks, Marco P M

    2016-01-01

    DNA methylation likely plays a role in the regulation of human stress reactivity. Here we show that in a genome-wide analysis of blood DNA methylation in 85 healthy individuals, a locus in the Kit ligand gene (KITLG; cg27512205) showed the strongest association with cortisol stress reactivity (P=5.8 × 10(-6)). Replication was obtained in two independent samples using either blood (N=45, P=0.001) or buccal cells (N=255, P=0.004). KITLG methylation strongly mediates the relationship between childhood trauma and cortisol stress reactivity in the discovery sample (32% mediation). Its genomic location, a CpG island shore within an H3K27ac enhancer mark, and the correlation between methylation in the blood and prefrontal cortex provide further evidence that KITLG methylation is functionally relevant for the programming of stress reactivity in the human brain. Our results extend preclinical evidence for epigenetic regulation of stress reactivity to humans and provide leads to enhance our understanding of the neurobiological pathways underlying stress vulnerability. PMID:26997371

  6. DNA methylation is altered in B and NK lymphocytes in obese and type 2 diabetic human

    DEFF Research Database (Denmark)

    Simar, David; Versteyhe, Soetkin; Donkin, Ida;

    2014-01-01

    Objective Obesity is associated with low-grade inflammation and the infiltration of immune cells in insulin-sensitive tissues, leading to metabolic impairment. Epigenetic mechanisms control immune cell lineage determination, function and migration and are implicated in obesity and type 2 diabetes...... (T2D). The aim of this study was to determine the global DNA methylation profile of immune cells in obese and T2D individuals in a cell type-specific manner. Material and methods Fourteen obese subjects and 11 age-matched lean subjects, as well as 12 T2D obese subjects and 7 age-matched lean subjects...... were recruited. Global DNA methylation levels were measured in a cell type-specific manner by flow cytometry. We validated the assay against mass spectrometry measures of the total 5-methylcytosine content in cultured cells treated with the hypomethylation agent decitabine (r = 0.97, p < 0...

  7. Promoter DNA methylation regulates progranulin expression and is altered in FTLD

    OpenAIRE

    Banzhaf-Strathmann, Julia; Claus, Rainer; Mücke, Oliver; Rentzsch, Kristin; van der Zee, Julie; Engelborghs, Sebastiaan; De Deyn, Peter P.; Cruts, Marc; Van Broeckhoven, Christine; Plass, Christoph; Edbauer, Dieter

    2013-01-01

    Background Frontotemporal lobar degeneration (FTLD) is a heterogeneous group of neurodegenerative diseases associated with personality changes and progressive dementia. Loss-of-function mutations in the growth factor progranulin (GRN) cause autosomal dominant FTLD, but so far the pathomechanism of sporadic FTLD is unclear. Results We analyzed whether DNA methylation in the GRN core promoter restricts GRN expression and, thus, might promote FTLD in the absence of GRN mutations. GRN expression ...

  8. DNA methylation in metabolic disorders

    DEFF Research Database (Denmark)

    Barres, Romain; Zierath, Juleen R

    2011-01-01

    have provided evidence that environmental factors at all ages could modify DNA methylation in somatic tissues, which suggests that DNA methylation is a more dynamic process than previously appreciated. Because of the importance of lifestyle factors in metabolic disorders, DNA methylation provides...... a mechanism by which environmental factors, including diet and exercise, can modify genetic predisposition to disease. This article considers the current evidence that defines a role for DNA methylation in metabolic disorders.......DNA methylation is a major epigenetic modification that controls gene expression in physiologic and pathologic states. Metabolic diseases such as diabetes and obesity are associated with profound alterations in gene expression that are caused by genetic and environmental factors. Recent reports...

  9. Altered placental DNA methylation patterns associated with maternal smoking: current perspectives

    Directory of Open Access Journals (Sweden)

    Maccani JZ

    2015-05-01

    Full Text Available Jennifer ZJ Maccani, Matthew A Maccani Penn State Tobacco Center of Regulatory Science, College of Medicine, Department of Public Health Sciences, Hershey, PA, USA Abstract: The developmental origins of health and disease hypothesis states that adverse early life exposures can have lasting, detrimental effects on lifelong health. Exposure to maternal cigarette smoking during pregnancy is associated with morbidity and mortality in offspring, including increased risks for miscarriage, stillbirth, low birth weight, preterm birth, asthma, obesity, altered neurobehavior, and other conditions. Maternal cigarette smoking during pregnancy interferes with placental growth and functioning, and it has been proposed that this may occur through the disruption of normal and necessary placental epigenetic patterns. Epigenome-wide association studies have identified a number of differentially methylated placental genes that are associated with maternal smoking during pregnancy, including RUNX3, PURA, GTF2H2, GCA, GPR135, and HKR1. The placental methylation status of RUNX3 and NR3C1 has also been linked to adverse infant outcomes, including preterm birth and low birth weight, respectively. Candidate gene analyses have also found maternal smoking-associated placental methylation differences in the NR3C1, CYP1A1, HTR2A, and HSD11B2 genes, as well as in the repetitive elements LINE-1 and AluYb8. The differential methylation patterns of several genes have been confirmed to also exhibit altered gene expression patterns, including CYP1A1, CYP19A1, NR3C1, and HTR2A. Placental methylation patterns associated with maternal smoking during pregnancy may be largely gene-specific and tissue-specific and, to a lesser degree, involve global changes. It is important for future research to investigate the mechanistic roles that these differentially methylated genes may play in mediating the association between maternal smoking during pregnancy and disease in later life, as well

  10. Alteration of Gene Expression, DNA Methylation, and Histone Methylation in Free Radical Scavenging Networks in Adult Mouse Hippocampus following Fetal Alcohol Exposure

    Science.gov (United States)

    Chater-Diehl, Eric J.; Castellani, Christina A.; Alberry, Bonnie L.; Singh, Shiva M.

    2016-01-01

    The molecular basis of Fetal Alcohol Spectrum Disorders (FASD) is poorly understood; however, epigenetic and gene expression changes have been implicated. We have developed a mouse model of FASD characterized by learning and memory impairment and persistent gene expression changes. Epigenetic marks may maintain expression changes over a mouse’s lifetime, an area few have explored. Here, mice were injected with saline or ethanol on postnatal days four and seven. At 70 days of age gene expression microarray, methylated DNA immunoprecipitation microarray, H3K4me3 and H3K27me3 chromatin immunoprecipitation microarray were performed. Following extensive pathway analysis of the affected genes, we identified the top affected gene expression pathway as “Free radical scavenging”. We confirmed six of these changes by droplet digital PCR including the caspase Casp3 and Wnt transcription factor Tcf7l2. The top pathway for all methylation-affected genes was “Peroxisome biogenesis”; we confirmed differential DNA methylation in the Acca1 thiolase promoter. Altered methylation and gene expression in oxidative stress pathways in the adult hippocampus suggests a novel interface between epigenetic and oxidative stress mechanisms in FASD. PMID:27136348

  11. Gestational Diabetes Alters Offspring DNA Methylation Profiles in Human and Rat: Identification of Key Pathways Involved in Endocrine System Disorders, Insulin Signaling, Diabetes Signaling, and ILK Signaling.

    Science.gov (United States)

    Petropoulos, Sophie; Guillemin, Claire; Ergaz, Zivanit; Dimov, Sergiy; Suderman, Matthew; Weinstein-Fudim, Liza; Ornoy, Asher; Szyf, Moshe

    2015-06-01

    Gestational diabetes is associated with risk for metabolic disease later in life. Using a cross-species approach in rat and humans, we examined the hypothesis that gestational diabetes during pregnancy triggers changes in the methylome of the offspring that might be mediating these risks. We show in a gestation diabetes rat model, the Cohen diabetic rat, that gestational diabetes triggers wide alterations in DNA methylation in the placenta in both candidate diabetes genes and genome-wide promoters, thus providing evidence for a causal relationship between diabetes during pregnancy and DNA methylation alterations. There is a significant overlap between differentially methylated genes in the placenta and the liver of the rat offspring. Several genes differentially methylated in rat placenta exposed to maternal diabetes are also differentially methylated in the human placenta of offspring exposed to gestational diabetes in utero. DNA methylation changes inversely correlate with changes in expression. The changes in DNA methylation affect known functional gene pathways involved in endocrine function, metabolism, and insulin responses. These data provide support to the hypothesis that early-life exposures and their effects on metabolic disease are mediated by DNA methylation changes. This has important diagnostic and therapeutic implications. PMID:25514087

  12. Altered DNA methylation patterns of the H19 differentially methylated region and the DAZL gene promoter are associated with defective human sperm.

    Directory of Open Access Journals (Sweden)

    Bo Li

    Full Text Available DNA methylation disturbance is associated with defective human sperm. However, oligozoospermia (OZ and asthenozoospermia (AZ usually present together, and the relationship between the single-phenotype defects in human sperm and DNA methylation is poorly understood. In this study, 20 infertile OZ patients and 20 infertile AZ patients were compared with 20 fertile normozoospermic men. Bisulfate-specific PCR was used to analyze DNA methylation of the H19-DMR and the DAZL promoter in these subjects. A similar DNA methylation pattern of the H19-DMR was detected in AZ and NZ(control, with only complete methylation and mild hypomethylation(0.05. However, the methylation pattern of severe hypomethylation (>50% unmethylated CpGs and complete unmethylation was only detected in 5 OZ patients, and the occurrence of these two methylation patterns was 8.54±10.86% and 9±6.06%, respectively. Loss of DNA methylation of the H19-DMR in the OZ patients was found to mainly occur in CTCF-binding site 6, with occurrence of 18.15±14.71%, which was much higher than that in patients with NZ (0.84±2.05% and AZ (0.58±1.77% (P20% methylated clones in the DAZL promoter only in infertile patients, there was no significant difference between the AZ and OZ patients in the proportion of moderately-to-severely hypermethylated clones (p>0.05. In all cases, global sperm genome methylation analyses, using LINE1 transposon as the indicator, showed that dysregulation of DNA methylation is specifically associated with the H19-DMR and DAZL promoter. Therefore, abnormal DNA methylation status of H19-DMR, especially at the CTCF-binding site 6, is closely associated with OZ. Abnormal DNA methylation of the DAZL promoter might represent an epigenetic marker of male infertility.

  13. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Mepham, Kathryn, E-mail: katherine.mepham@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Sebag, Igal A., E-mail: igal.sebag@mcgill.ca [Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  14. Putting muscle in DNA methylation

    Institute of Scientific and Technical Information of China (English)

    James P Reddington; Richard R Meehan

    2011-01-01

    Over 25 years ago seminal experiments from the labs of Peter Jones and Harold Weintraub demonstrated that alteration in the DNA modification state underlie the myogenic conversion of fibroblast cell lines [1,2].This paved the way for the identification of myogenic helix-loop-helix (HLH) proteins in muscle differentiation,but the mechanism by which DNA methylation regulates muscle differentiation has remained elusive [3].

  15. Reversal of DNA methylation with 5-azacytidine alters chromosome replication patterns in human lymphocyte and fibroblast cultures.

    OpenAIRE

    Shafer, D A; Priest, J H

    1984-01-01

    Prior studies demonstrated that developmental or induced methylation of DNA can inactivate associated gene loci. Such DNA methylation can be reversed and specific genes reactivated by treatment with 5-azacytidine (5- azaC ). The present cytogenetic studies using replication banding methods show that 5- azaC treatment also results in an increase or decrease in replication staining at one or more band locations in human lymphocyte and fibroblast chromosomes. New replication band locations are n...

  16. DNA methylation alterations in response to prenatal exposure of maternal cigarette smoking: A persistent epigenetic impact on health from maternal lifestyle?

    Science.gov (United States)

    Nielsen, Christina H; Larsen, Agnete; Nielsen, Anders L

    2016-02-01

    Despite increased awareness, maternal cigarette smoking during pregnancy continues to be a common habit causing risk for numerous documented negative health consequences in the exposed children. It has been proposed that epigenetic mechanisms constitute the link between prenatal exposure to maternal cigarette smoking (PEMCS) and the diverse pathologies arising in later life. We here review the current literature, focusing on DNA methylation. Alterations in the global DNA methylation patterns were observed after exposure to maternal smoking during pregnancy in placenta, cord blood and buccal epithelium tissue. Further, a number of specific genes exemplified by CYP1A1, AhRR, FOXP3, TSLP, IGF2, AXL, PTPRO, C11orf52, FRMD4A and BDNF are shown to have altered DNA methylation patterns in at least one of these tissue types due to PEMCS. Investigations showing persistence and indications of trans-generational inheritance of DNA methylation alterations induced by smoking exposure are also described. Further, smoking-induced epigenetic manifestations can be both tissue-dependent and gender-specific which show the importance of addressing the relevant sex, tissue and cell types in the future studies linking specific epigenetic alterations to disease development. Moreover, the effect of paternal cigarette smoking and second-hand smoke exposure is documented and accordingly not to be neglected in future investigations and data evaluations. We also outline possible directions for the future research to address how DNA methylation alterations induced by maternal lifestyle, exemplified by smoking, have direct consequences for fetal development and later in life health and behavior of the child. PMID:25480659

  17. Apoptosis and DNA Methylation

    Directory of Open Access Journals (Sweden)

    Richard R. Meehan

    2011-04-01

    Full Text Available Epigenetic mechanisms assist in maintaining gene expression patterns and cellular properties in developing and adult tissues. The molecular pathology of disease states frequently includes perturbation of DNA and histone methylation patterns, which can activate apoptotic pathways associated with maintenance of genome integrity. This perspective focuses on the pathways linking DNA methyltransferases and methyl-CpG binding proteins to apoptosis, and includes new bioinformatic analyses to characterize the evolutionary origin of two G/T mismatch-specific thymine DNA glycosylases, MBD4 and TDG.

  18. [DNA methylation in obesity].

    Science.gov (United States)

    Pokrywka, Małgorzata; Kieć-Wilk, Beata; Polus, Anna; Wybrańska, Iwona

    2014-01-01

    The number of overweight and obese people is increasing at an alarming rate, especially in the developed and developing countries. Obesity is a major risk factor for diabetes, cardiovascular disease, and cancer, and in consequence for premature death. The development of obesity results from the interplay of both genetic and environmental factors, which include sedentary life style and abnormal eating habits. In the past few years a number of events accompanying obesity, affecting expression of genes which are not directly connected with the DNA base sequence (e.g. epigenetic changes), have been described. Epigenetic processes include DNA methylation, histone modifications such as acetylation, methylation, phosphorylation, ubiquitination, and sumoylation, as well as non-coding micro-RNA (miRNA) synthesis. In this review, the known changes in the profile of DNA methylation as a factor affecting obesity and its complications are described. PMID:25531701

  19. DNA methylation in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Iris Tischoff; Andrea Tannapfel

    2008-01-01

    As for many other tumors, development of hepatocellular carcinoma (HCC) must be understood as a multistep process with accumulation of genetic and epigenetic alterations in regulatory genes, leading to activation of oncogenes and inactivation or loss of tumor suppressor genes (TSG). In the last decades, in addition to genetic alterations, epigenetic inactivation of (tumor suppressor) genes by promoter hypermethylation has been recognized as an important and alternative mechanism in tumorigenesis. In HCC, aberrant methylation of promoter sequences occurs not only in advanced tumors, it has been also observed in premalignant conditions just as chronic viral hepatitis B or C and cirrhotic liver. This review discusses the epigenetic alterations in hepatocellular carcinoma focusing DNA methylation.

  20. Methylated DNA in Borrelia species.

    OpenAIRE

    Hughes, C A; Johnson, R C

    1990-01-01

    The DNA of Borrelia species was examined for the presence of methylated GATC sequences. The relapsing-fever Borrelia sp., B. coriaceae, and only 3 of 22 strains of B. burgdorferi contained adenine methylation systems. B. anserina lacked an adenine methylation system. Fundamental differences in DNA methylation exist among members of the genus Borrelia.

  1. Event extraction for DNA methylation

    OpenAIRE

    Ohta Tomoko; Pyysalo Sampo; Miwa Makoto; Tsujii Jun’ichi

    2011-01-01

    Abstract Background We consider the task of automatically extracting DNA methylation events from the biomedical domain literature. DNA methylation is a key mechanism of epigenetic control of gene expression and implicated in many cancers, but there has been little study of automatic information extraction for DNA methylation. Results We present an annotation scheme for DNA methylation following the representation of the BioNLP shared task on event extraction, select a set of 200 abstracts inc...

  2. DNA Methylation and Cancer Diagnosis

    Directory of Open Access Journals (Sweden)

    Jérôme Torrisani

    2013-07-01

    Full Text Available DNA methylation is a major epigenetic modification that is strongly involved in the physiological control of genome expression. DNA methylation patterns are largely modified in cancer cells and can therefore be used to distinguish cancer cells from normal tissues. This review describes the main technologies available for the detection and the discovery of aberrantly methylated DNA patterns. It also presents the different sources of biological samples suitable for DNA methylation studies. We discuss the interest and perspectives on the use of DNA methylation measurements for cancer diagnosis through examples of methylated genes commonly documented in the literature. The discussion leads to our consideration for why DNA methylation is not commonly used in clinical practice through an examination of the main requirements that constitute a reliable biomarker. Finally, we describe the main DNA methylation inhibitors currently used in clinical trials and those that exhibit promising results.

  3. DNA Methylation Modulates Nociceptive Sensitization after Incision

    Science.gov (United States)

    Sun, Yuan; Sahbaie, Peyman; Liang, DeYong; Li, Wenwu; Shi, Xiaoyou; Kingery, Paige; Clark, J. David

    2015-01-01

    DNA methylation is a key epigenetic mechanism controlling DNA accessibility and gene expression. Blockade of DNA methylation can significantly affect pain behaviors implicated in neuropathic and inflammatory pain. However, the role of DNA methylation with regard to postoperative pain has not yet been explored. In this study we sought to investigate the role of DNA methylation in modulating incisional pain and identify possible targets under DNA methylation and contributing to incisional pain. DNA methyltranferase (DNMT) inhibitor 5-Aza-2′-deoxycytidine significantly reduced incision-induced mechanical allodynia and thermal sensitivity. Aza-2′-deoxycytidine also reduced hindpaw swelling after incision, suggesting an anti-inflammatory effect. Global DNA methylation and DNMT3b expression were increased in skin after incision, but none of DNMT1, DNMT3a or DNMT3b was altered in spinal cord or DRG. The expression of proopiomelanocortin Pomc encoding β-endorphin and Oprm1 encoding the mu-opioid receptor were upregulated peripherally after incision; moreover, Oprm1 expression was further increased under DNMT inhibitor treatment. Finally, local peripheral injection of the opioid receptor antagonist naloxone significantly exacerbated incision-induced mechanical hypersensitivity. These results suggest that DNA methylation is functionally relevant to incisional nociceptive sensitization, and that mu-opioid receptor signaling might be one methylation regulated pathway controlling sensitization after incision. PMID:26535894

  4. Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: alterations in DNA methylation

    Directory of Open Access Journals (Sweden)

    Patil NA

    2016-09-01

    epigenetic alteration in response to metal oxide NPs and that this effect was dose-dependent. Keywords: nanotoxicity, epigenetics, global DNA methylation, 5-mC, DNA methyltransferase, Dnmt

  5. DNA methylation and microRNAs in cancer

    OpenAIRE

    Li, Xiang-Quan; Guo, Yuan-Yuan(Department of Physics, Shanxi University, Taiyuan, Shanxi 030006, China); Wei,, J.B.

    2012-01-01

    DNA methylation is a type of epigenetic modification in the human genome, which means that gene expression is regulated without altering the DNA sequence. Methylation and the relationship between methylation and cancer have been the focus of molecular biology researches. Methylation represses gene expression and can influence embryogenesis and tumorigenesis. In different tissues and at different stages of life, the level of methylation of DNA varies, implying a fundamental but distinct role f...

  6. Presymptomatic Alterations in Amino Acid Metabolism and DNA Methylation in the Cerebellum of a Murine Model of Niemann-Pick Type C Disease.

    Science.gov (United States)

    Kennedy, Barry E; Hundert, Amos S; Goguen, Donna; Weaver, Ian C G; Karten, Barbara

    2016-06-01

    The fatal neurodegenerative disorder Niemann-Pick type C (NPC) is caused in most cases by mutations in NPC1, which encodes the late endosomal NPC1 protein. Loss of NPC1 disrupts cholesterol trafficking from late endosomes to the endoplasmic reticulum and plasma membrane, causing cholesterol accumulation in late endosomes/lysosomes. Neurons are particularly vulnerable to this cholesterol trafficking defect, but the pathogenic mechanisms through which NPC1 deficiency causes neuronal dysfunction remain largely unknown. Herein, we have investigated amino acid metabolism in cerebella of NPC1-deficient mice at different stages of NPC disease. Imbalances in amino acid metabolism were evident from increased branched chain amino acid and asparagine levels and altered expression of key enzymes of glutamine/glutamate metabolism in presymptomatic and early symptomatic NPC1-deficient cerebellum. Increased levels of several amino acid intermediates of one-carbon metabolism indicated disturbances in folate and methylation pathways. Alterations in DNA methylation were apparent in decreased expression of DNA methyltransferase 3a and methyl-5'-cytosine-phosphodiester-guanine-domain binding proteins, reduced 5-methylcytosine immunoreactivity in the molecular and Purkinje cell layers, demethylation of genome-wide repetitive LINE-1 elements, and hypermethylation in specific promoter regions of single-copy genes in NPC1-deficient cerebellum at early stages of the disease. Alterations in amino acid metabolism and epigenetic changes in the cerebellum at presymptomatic stages of NPC disease represent previously unrecognized mechanisms of NPC pathogenesis. PMID:27083515

  7. Genome-wide DNA methylation identifies trophoblast invasion-related genes: Claudin-4 and Fucosyltransferase IV control mobility via altering matrix metalloproteinase activity.

    Science.gov (United States)

    Hu, Yuxiang; Blair, John D; Yuen, Ryan K C; Robinson, Wendy P; von Dadelszen, Peter

    2015-05-01

    Previously we showed that extravillous cytotrophoblast (EVT) outgrowth and migration on a collagen gel explant model were affected by exposure to decidual natural killer cells (dNK). This study investigates the molecular causes behind this phenomenon. Genome wide DNA methylation of exposed and unexposed EVT was assessed using the Illumina Infinium HumanMethylation450 BeadChip array (450 K array). We identified 444 differentially methylated CpG loci in dNK-treated EVT compared with medium control (P EVT. Among these genes, CLDN4 (encoding claudin-4) and FUT4 (encoding fucosyltransferase IV) were chosen for follow-up studies because of their biological relevance from research on tumor cells. The results showed that the mRNA and protein expressions of both CLDN4 and FUT4 in dNK-treated EVT were significantly reduced compared with control (P EVT mobility at least partially in association with an alteration of DNA methylation profile. Hypermethylation of CLDN4 and FUT4 reduces protein expression. CLDN4 and FUT4 are representative genes that participate in modulating trophoblast mobility. PMID:25697377

  8. Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue From Subjects With Type 2 Diabetes

    DEFF Research Database (Denmark)

    Nilsson, Emma; Jansson, Per Anders; Perfilyev, Alexander; Volkov, Petr; Pedersen, Maria; Svensson, Maria K; Poulsen, Pernille; Ribel-Madsen, Rasmus; Pedersen, Nancy L; Almgren, Peter; Fadista, João; Rönn, Tina; Klarlund Pedersen, Bente; Scheele, Camilla; Vaag, Allan; Ling, Charlotte

    2014-01-01

    to the genome-wide DNA methylation variability in twins. Differences in methylation between monozygotic twin pairs discordant for T2D were subsequently modest. However, 15,627 sites, representing 7,046 genes including PPARG, KCNQ1, TCF7L2, and IRS1, showed differential DNA methylation in adipose...

  9. Targeting DNA Methylation for Epigenetic Therapy

    Science.gov (United States)

    Yang, Xiaojing; Lay, Fides; Han, Han; Jones, Peter A.

    2010-01-01

    DNA methylation patterns are established during embryonic development and faithfully copied through somatic cell divisions. Based on our understanding of DNA methylation and other interrelated epigenetic modifications, a comprehensive view of the epigenetic landscape and cancer epigenome is evolving. The cancer methylome is highly disrupted, making DNA methylation an excellent target for anti-cancer therapies. During the last few decades, an increasing number of drugs targeting DNA methylation have been developed in an effort to increase efficacy, stability and to decrease toxicity. The earliest and the most successful epigenetic drug to date, 5-Azacytidine, is currently recommended as the first-line treatment for high risk myelodysplastic syndromes (MDS) patients. Encouraging results from clinical trials have prompted further efforts to elucidate epigenetic alterations in cancer and subsequently develop new epigenetic therapies. This review delineates the latest cancer epigenetic models, recent discovery of hypomethylation agents and their application in the clinic. PMID:20846732

  10. Methods of DNA methylation detection

    Science.gov (United States)

    Maki, Wusi Chen (Inventor); Filanoski, Brian John (Inventor); Mishra, Nirankar (Inventor); Rastogi, Shiva (Inventor)

    2010-01-01

    The present invention provides for methods of DNA methylation detection. The present invention provides for methods of generating and detecting specific electronic signals that report the methylation status of targeted DNA molecules in biological samples.Two methods are described, direct and indirect detection of methylated DNA molecules in a nano transistor based device. In the direct detection, methylated target DNA molecules are captured on the sensing surface resulting in changes in the electrical properties of a nano transistor. These changes generate detectable electronic signals. In the indirect detection, antibody-DNA conjugates are used to identify methylated DNA molecules. RNA signal molecules are generated through an in vitro transcription process. These RNA molecules are captured on the sensing surface change the electrical properties of nano transistor thereby generating detectable electronic signals.

  11. Dietary and lifestyle factors of DNA methylation.

    Science.gov (United States)

    Lim, Unhee; Song, Min-Ae

    2012-01-01

    Lifestyle factors, such as diet, smoking, physical activity, and body weight management, are known to constitute the majority of cancer causes. Epigenetics has been widely proposed as a main mechanism that mediates the reversible effects of dietary and lifestyle factors on carcinogenesis. This chapter reviews human studies on potential dietary and lifestyle determinants of DNA methylation. Apart from a few prospective investigations and interventions of limited size and duration, evidence mostly comes from cross-sectional observational studies and supports some associations. Studies to date suggest that certain dietary components may alter genomic and gene-specific DNA methylation levels in systemic and target tissues, affecting genomic stability and transcription of tumor suppressors and oncogenes. Most data and supportive evidence exist for folate, a key nutritional factor in one-carbon metabolism that supplies the methyl units for DNA methylation. Other candidate bioactive food components include alcohol and other key nutritional factors of one-carbon metabolism, polyphenols and flavonoids in green tea, phytoestrogen, and lycopene. Some data also support a link of DNA methylation with physical activity and energy balance. Effects of dietary and lifestyle exposures on DNA methylation may be additionally modified by common genetic variants, environmental carcinogens, and infectious agents, an aspect that remains largely unexplored. In addition, growing literature supports that the environmental conditions during critical developmental stages may influence later risk of metabolic disorders in part through persistent programming of DNA methylation. Further research of these modifiable determinants of DNA methylation will improve our understanding of cancer etiology and may present certain DNA methylation markers as attractive surrogate endpoints for prevention research. Considering the plasticity of epigenetic marks and correlated nature of lifestyle factors, more

  12. Low Doses of the Carcinogen Furan Alter Cell Cycle and Apoptosis Gene Expression in Rat Liver Independent of DNA Methylation

    OpenAIRE

    Tao CHEN; Mally, Angela; Ozden, Sibel; Chipman, J. Kevin

    2010-01-01

    Background Evidence of potent rodent carcinogenicity via an unclear mechanism suggests that furan in various foods [leading to an intake of up to 3.5 μg/kg body weight (bw)/day] may present a potential risk to human health. Objectives We tested the hypothesis that altered expression of genes related to cell cycle control, apoptosis, and DNA damage may contribute to the carcinogenicity of furan in rodents. In addition, we investigated the reversibility of such changes and the potential role of...

  13. Inhibition of DNA methylation alters chromatin organization, nuclear positioning and activity of 45S rDNA loci in cycling cells of Q. robur.

    Science.gov (United States)

    Bočkor, Vedrana Vičić; Barišić, Darko; Horvat, Tomislav; Maglica, Željka; Vojta, Aleksandar; Zoldoš, Vlatka

    2014-01-01

    Around 2200 copies of genes encoding ribosomal RNA (rRNA) in pedunculate oak, Quercus robur, are organized into two rDNA loci, the major (NOR-1) and the minor (NOR-2) locus. We present the first cytogenetic evidence indicating that the NOR-1 represents the active nucleolar organizer responsible for rRNA synthesis, while the NOR-2 probably stays transcriptionally silent and does not participate in the formation of the nucleolus in Q. robur, which is a situation resembling the well-known phenomenon of nucleolar dominance. rDNA chromatin topology analyses in cycling root tip cells by light and electron microscopy revealed the minor locus to be highly condensed and located away from the nucleolus, while the major locus was consistently associated with the nucleolus and often exhibited different levels of condensation. In addition, silver precipitation was confined exclusively to the NOR-1 locus. Also, NOR-2 was highly methylated at cytosines and rDNA chromatin was marked with histone modifications characteristic for repressive state. After treatment of the root cells with the methylation inhibitor 5-aza-2'-deoxycytidine, we observed an increase in the total level of rRNA transcripts and a decrease in DNA methylation level at the NOR-2 locus. Also, NOR-2 sites relocalized with respect to the nuclear periphery/nucleolus, however, the relocation did not affect the contribution of this locus to nucleolar formation, nor did it affect rDNA chromatin decondensation, strongly suggesting that NOR-2 has lost the function of rRNA synthesis and nucleolar organization. PMID:25093501

  14. 5-Azacytidine enhances the radiosensitivity of CNE2 and SUNE1 cells in vitro and in vivo possibly by altering DNA methylation.

    Science.gov (United States)

    Jiang, Wei; Li, Ying-Qin; Liu, Na; Sun, Ying; He, Qing-Mei; Jiang, Ning; Xu, Ya-Fei; Chen, Lei; Ma, Jun

    2014-01-01

    The radioresistance of tumor cells remains a major cause of treatment failure in nasopharyngeal carcinoma (NPC). Recently, several reports have highlighted the importance of epigenetic changes in radiation-induced responses. Here, we investigated whether the demethylating agent 5-azacytidine (5-azaC) enhances the radiosensitivity of NPC cells. The NPC cell lines CNE2 and SUNE1 were treated with 1 μmol/L 5-azaC for 24 h before irradiation (IR); clonogenic survival was then assessed. Tumor growth was investigated in a mouse xenograft model in vivo. The apoptosis, cell cycle progression and DNA damage repair were examined using flow cytometry, immunofluorescent staining and western blotting. Promoter methylation and the expression of four genes epigenetically silenced during the development of NPC were evaluated by pyrosequencing and real-time PCR. We found that pretreatment with 5-azaC significantly decreased clonogenic survival after IR compared to IR alone; the sensitivity-enhancement ratio of 5-azaC was 1.4 and 1.2 for CNE2 and SUNE1 cells, respectively. The combined administration of 5-azaC and IR significantly inhibited tumor growth in the mouse xenograft model, and enhanced radiation-induced apoptosis in vitro compared to 5-azaC alone or IR alone. 5-AzaC also decreased promoter methylation and upregulated the expression of genes which are epigenetically silenced both in vitro and in vivo in NPC. Thus, 5-azaC enhance the radiosensitivity of both the CNE2 and SUNE1 cell lines, possibly by altering DNA methylation levels and increasing the ability of irradiated cells to undergo apoptosis. The use of 5-azaC combined with IR maybe represent an attractive strategy for the treatment of NPC. PMID:24691157

  15. 5-Azacytidine Enhances the Radiosensitivity of CNE2 and SUNE1 Cells In Vitro and In Vivo Possibly by Altering DNA Methylation

    Science.gov (United States)

    Sun, Ying; He, Qing-Mei; Jiang, Ning; Xu, Ya-Fei; Chen, Lei; Ma, Jun

    2014-01-01

    The radioresistance of tumor cells remains a major cause of treatment failure in nasopharyngeal carcinoma (NPC). Recently, several reports have highlighted the importance of epigenetic changes in radiation-induced responses. Here, we investigated whether the demethylating agent 5-azacytidine (5-azaC) enhances the radiosensitivity of NPC cells. The NPC cell lines CNE2 and SUNE1 were treated with 1 μmol/L 5-azaC for 24 h before irradiation (IR); clonogenic survival was then assessed. Tumor growth was investigated in a mouse xenograft model in vivo. The apoptosis, cell cycle progression and DNA damage repair were examined using flow cytometry, immunofluorescent staining and western blotting. Promoter methylation and the expression of four genes epigenetically silenced during the development of NPC were evaluated by pyrosequencing and real-time PCR. We found that pretreatment with 5-azaC significantly decreased clonogenic survival after IR compared to IR alone; the sensitivity-enhancement ratio of 5-azaC was 1.4 and 1.2 for CNE2 and SUNE1 cells, respectively. The combined administration of 5-azaC and IR significantly inhibited tumor growth in the mouse xenograft model, and enhanced radiation-induced apoptosis in vitro compared to 5-azaC alone or IR alone. 5-AzaC also decreased promoter methylation and upregulated the expression of genes which are epigenetically silenced both in vitro and in vivo in NPC. Thus, 5-azaC enhance the radiosensitivity of both the CNE2 and SUNE1 cell lines, possibly by altering DNA methylation levels and increasing the ability of irradiated cells to undergo apoptosis. The use of 5-azaC combined with IR maybe represent an attractive strategy for the treatment of NPC. PMID:24691157

  16. 5-Azacytidine enhances the radiosensitivity of CNE2 and SUNE1 cells in vitro and in vivo possibly by altering DNA methylation.

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    Full Text Available The radioresistance of tumor cells remains a major cause of treatment failure in nasopharyngeal carcinoma (NPC. Recently, several reports have highlighted the importance of epigenetic changes in radiation-induced responses. Here, we investigated whether the demethylating agent 5-azacytidine (5-azaC enhances the radiosensitivity of NPC cells. The NPC cell lines CNE2 and SUNE1 were treated with 1 μmol/L 5-azaC for 24 h before irradiation (IR; clonogenic survival was then assessed. Tumor growth was investigated in a mouse xenograft model in vivo. The apoptosis, cell cycle progression and DNA damage repair were examined using flow cytometry, immunofluorescent staining and western blotting. Promoter methylation and the expression of four genes epigenetically silenced during the development of NPC were evaluated by pyrosequencing and real-time PCR. We found that pretreatment with 5-azaC significantly decreased clonogenic survival after IR compared to IR alone; the sensitivity-enhancement ratio of 5-azaC was 1.4 and 1.2 for CNE2 and SUNE1 cells, respectively. The combined administration of 5-azaC and IR significantly inhibited tumor growth in the mouse xenograft model, and enhanced radiation-induced apoptosis in vitro compared to 5-azaC alone or IR alone. 5-AzaC also decreased promoter methylation and upregulated the expression of genes which are epigenetically silenced both in vitro and in vivo in NPC. Thus, 5-azaC enhance the radiosensitivity of both the CNE2 and SUNE1 cell lines, possibly by altering DNA methylation levels and increasing the ability of irradiated cells to undergo apoptosis. The use of 5-azaC combined with IR maybe represent an attractive strategy for the treatment of NPC.

  17. Aberrant DNA methylation in cervical carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Hui-Juan Yang

    2013-01-01

    Persistent infection with high-risk types of human papillomavirus(HPV) is known to cause cervical cancer; however,additional genetic and epigenetic alterations are required for progression from precancerous disease to invasive cancer.DNA methylation is an early and frequent molecular alteration in cervical carcinogenesis.In this review,we summarize DNA methylation within the HPV genome and human genome and identify its clinical implications.Methylation of the HPV long control region (LCR) and L1 gene is common during cervical carcinogenesis and increases with the severity of the cervical neoplasm.The L1 gene of HPV16 and HPV18 is consistently hypermethylated in invasive cervical cancers and can potentially be used as a clinical marker of cancer progression.Moreover,promoters of tumor suppressor genes (TSGs) involved in many cellular pathways are methylated in cervical precursors and invasive cancers.Some are associated with squamous cell carcinomas,and others are associated with adenocarcinomas.Identification of methylated TSGs in Pap smear could be an adjuvant test in cervical cancer screening for triage of women with high-risk HPV,atypical squamous cells of undetermined significance,or low grade squamous intraepithelial lesion (LSIL).However,consistent panels must be validated for this approach to be translated to the clinic.Furthermore,reversion of methylated TSGs using demethylating drugs may be an alternative anticancer treatment,but demethylating drugs without toxic carcinogenic and mutagenic properties must be identified and validated.

  18. Prognostic DNA Methylation Markers for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Siri H. Strand

    2014-09-01

    Full Text Available Prostate cancer (PC is the most commonly diagnosed neoplasm and the third most common cause of cancer-related death amongst men in the Western world. PC is a clinically highly heterogeneous disease, and distinction between aggressive and indolent disease is a major challenge for the management of PC. Currently, no biomarkers or prognostic tools are able to accurately predict tumor progression at the time of diagnosis. Thus, improved biomarkers for PC prognosis are urgently needed. This review focuses on the prognostic potential of DNA methylation biomarkers for PC. Epigenetic changes are hallmarks of PC and associated with malignant initiation as well as tumor progression. Moreover, DNA methylation is the most frequently studied epigenetic alteration in PC, and the prognostic potential of DNA methylation markers for PC has been demonstrated in multiple studies. The most promising methylation marker candidates identified so far include PITX2, C1orf114 (CCDC181 and the GABRE~miR-452~miR-224 locus, in addition to the three-gene signature AOX1/C1orf114/HAPLN3. Several other biomarker candidates have also been investigated, but with less stringent clinical validation and/or conflicting evidence regarding their possible prognostic value available at this time. Here, we review the current evidence for the prognostic potential of DNA methylation markers in PC.

  19. Prognostic DNA methylation markers for prostate cancer.

    Science.gov (United States)

    Strand, Siri H; Orntoft, Torben F; Sorensen, Karina D

    2014-01-01

    Prostate cancer (PC) is the most commonly diagnosed neoplasm and the third most common cause of cancer-related death amongst men in the Western world. PC is a clinically highly heterogeneous disease, and distinction between aggressive and indolent disease is a major challenge for the management of PC. Currently, no biomarkers or prognostic tools are able to accurately predict tumor progression at the time of diagnosis. Thus, improved biomarkers for PC prognosis are urgently needed. This review focuses on the prognostic potential of DNA methylation biomarkers for PC. Epigenetic changes are hallmarks of PC and associated with malignant initiation as well as tumor progression. Moreover, DNA methylation is the most frequently studied epigenetic alteration in PC, and the prognostic potential of DNA methylation markers for PC has been demonstrated in multiple studies. The most promising methylation marker candidates identified so far include PITX2, C1orf114 (CCDC181) and the GABRE~miR-452~miR-224 locus, in addition to the three-gene signature AOX1/C1orf114/HAPLN3. Several other biomarker candidates have also been investigated, but with less stringent clinical validation and/or conflicting evidence regarding their possible prognostic value available at this time. Here, we review the current evidence for the prognostic potential of DNA methylation markers in PC. PMID:25238417

  20. Effects of altered maternal folic acid, vitamin B12 and docosahexaenoic acid on placental global DNA methylation patterns in Wistar rats.

    Directory of Open Access Journals (Sweden)

    Asmita Kulkarni

    Full Text Available Potential adverse effects of excess maternal folic acid supplementation on a vegetarian population deficient in vitamin B(12 are poorly understood. We have previously shown in a rat model that maternal folic acid supplementation at marginal protein levels reduces brain omega-3 fatty acid levels in the adult offspring. We have also reported that reduced docosahexaenoic acid (DHA levels may result in diversion of methyl groups towards DNA in the one carbon metabolic pathway ultimately resulting in DNA methylation. This study was designed to examine the effect of normal and excess folic acid in the absence and presence of vitamin B(12 deficiency on global methylation patterns in the placenta. Further, the effect of maternal omega 3 fatty acid supplementation on the above vitamin B(12 deficient diets was also examined. Our results suggest maternal folic acid supplementation in the absence of vitamin B(12 lowers plasma and placental DHA levels (p<0.05 and reduces global DNA methylation levels (p<0.05. When this group was supplemented with omega 3 fatty acids there was an increase in placental DHA levels and subsequently DNA methylation levels revert back to the levels of the control group. Our results suggest for the first time that DHA plays an important role in one carbon metabolism thereby influencing global DNA methylation in the placenta.

  1. DNA Methylation in Thyroid Tumorigenesis

    International Nuclear Information System (INIS)

    Thyroid cancer is the most common endocrine cancer with 1,690 deaths each year. There are four main types of which the papillary and follicular types together account for >90% followed by medullary cancers with 3% to 5% and anaplastic carcinomas making up <3%. Epigenetic events of DNA hypermethylation are emerging as promising molecular targets for cancer detection. Our immediate and long term goal is to identify DNA methylation markers for early detection of thyroid cancer. This pilot study comprised of 21 patients to include 11 papillary thyroid cancers (PTC), 2 follicular thyroid cancers (FTC), 5 normal thyroid cases, and 3 hyperthyroid cases. Aberrant promoter methylation was examined in 24 tumor suppressor genes using the methylation specific multiplex ligation-dependent probe amplification (MS-MLPA) assay and in the NIS gene using methylation-specific PCR (MSP). The frequently methylated genes were CASP8 (17/21), RASSF1 (16/21) and NIS (9/21). In the normal samples, CASP8, RASSF1 and NIS were methylated in 5/5, 4/5 and 1/5 respectively. In the hyperthyroid samples, CASP8, RASSF1 and NIS were methylated in 3/3, 2/3 and 1/3 respectively. In the thyroid cancers, CASP8, RASSF1, and NIS were methylated in 9/13, 10/13, and 7/13 respectively. CASP8, RASSF1 and NIS were also methylated in concurrently present normal thyroid tissue in 3/11, 4/11 and 3/11 matched thyroid cancer cases (matched for presence of both normal thyroid tissue and thyroid cancer), respectively. Our data suggests that aberrant methylation of CASP8, RASSF1, and NIS maybe an early change in thyroid tumorigenesis regardless of cell type

  2. MicroRNA alterations and associated aberrant DNA methylation patterns across multiple sample types in oral squamous cell carcinoma

    DEFF Research Database (Denmark)

    Wiklund, Erik Digman; Gao, Shan; Hulf, Toby;

    2011-01-01

    MicroRNA (miRNA) expression is broadly altered in cancer, but few studies have investigated miRNA deregulation in oral squamous cell carcinoma (OSCC). Epigenetic mechanisms are involved in the regulation of >30 miRNA genes in a range of tissues, and we aimed to investigate this further in OSCC....

  3. Information Thermodynamics of Cytosine DNA Methylation.

    Science.gov (United States)

    Sanchez, Robersy; Mackenzie, Sally A

    2016-01-01

    Cytosine DNA methylation (CDM) is a stable epigenetic modification to the genome and a widespread regulatory process in living organisms that involves multicomponent molecular machines. Genome-wide cytosine methylation patterning participates in the epigenetic reprogramming of a cell, suggesting that the biological information contained within methylation positions may be amenable to decoding. Adaptation to a new cellular or organismal environment also implies the potential for genome-wide redistribution of CDM changes that will ensure the stability of DNA molecules. This raises the question of whether or not we would be able to sort out the regulatory methylation signals from the CDM background ("noise") induced by thermal fluctuations. Here, we propose a novel statistical and information thermodynamic description of the CDM changes to address the last question. The physical basis of our statistical mechanical model was evaluated in two respects: 1) the adherence to Landauer's principle, according to which molecular machines must dissipate a minimum energy ε = kBT ln2 at each logic operation, where kB is the Boltzmann constant, and T is the absolute temperature and 2) whether or not the binary stretch of methylation marks on the DNA molecule comprise a language of sorts, properly constrained by thermodynamic principles. The study was performed for genome-wide methylation data from 152 ecotypes and 40 trans-generational variations of Arabidopsis thaliana and 93 human tissues. The DNA persistence length, a basic mechanical property altered by CDM, was estimated with values from 39 to 66.9 nm. Classical methylome analysis can be retrieved by applying information thermodynamic modelling, which is able to discriminate signal from noise. Our finding suggests that the CDM signal comprises a language scheme properly constrained by molecular thermodynamic principles, which is part of an epigenomic communication system that obeys the same thermodynamic rules as do current

  4. Maternal Cocaine Administration in Mice Alters DNA Methylation and Gene Expression in Hippocampal Neurons of Neonatal and Prepubertal Offspring

    OpenAIRE

    Novikova, Svetlana I.; He, Fang; Bai, Jie; Cutrufello, Nicholas J.; Lidow, Michael S.; Undieh, Ashiwel S.

    2008-01-01

    Previous studies documented significant behavioral changes in the offspring of cocaine-exposed mothers. We now explore the hypothesis that maternal cocaine exposure could alter the fetal epigenetic machinery sufficiently to cause lasting neurochemical and functional changes in the offspring. Pregnant CD1 mice were administered either saline or 20 mg/kg cocaine twice daily on gestational days 8–19. Male pups from each of ten litters of the cocaine and control groups were analyzed at 3 (P3) or ...

  5. DNA methylation characteristics of primary melanomas with distinct biological behaviour.

    Directory of Open Access Journals (Sweden)

    Szilvia Ecsedi

    Full Text Available In melanoma, the presence of promoter related hypermethylation has previously been reported, however, no methylation-based distinction has been drawn among the diverse melanoma subtypes. Here, we investigated DNA methylation changes associated with melanoma progression and links between methylation patterns and other types of somatic alterations, including the most frequent mutations and DNA copy number changes. Our results revealed that the methylome, presenting in early stage samples and associated with the BRAF(V600E mutation, gradually decreased in the medium and late stages of the disease. An inverse relationship among the other predefined groups and promoter methylation was also revealed except for histologic subtype, whereas the more aggressive, nodular subtype melanomas exhibited hypermethylation as well. The Breslow thickness, which is a continuous variable, allowed for the most precise insight into how promoter methylation decreases from stage to stage. Integrating our methylation results with a high-throughput copy number alteration dataset, local correlations were detected in the MYB and EYA4 genes. With regard to the effects of DNA hypermethylation on melanoma patients' survival, correcting for clinical cofounders, only the KIT gene was associated with a lower overall survival rate. In this study, we demonstrate the strong influence of promoter localized DNA methylation changes on melanoma initiation and show how hypermethylation decreases in melanomas associated with less favourable clinical outcomes. Furthermore, we establish the methylation pattern as part of an integrated apparatus of somatic DNA alterations.

  6. miRNAting control of DNA methylation

    Indian Academy of Sciences (India)

    Ashwani Jha; Ravi Shankar

    2014-06-01

    DNA methylation is a type of epigenetic modification where a methyl group is added to the cytosine or adenine residue of a given DNA sequence. It has been observed that DNA methylation is achieved by some collaborative agglomeration of certain proteins and non-coding RNAs. The assembly of IDN2 and its homologous proteins with siRNAs recruits the enzyme DRM2, which adds a methyl group at certain cytosine residues within the DNA sequence. In this study, it was found that de novo DNA methylation might be regulated by miRNAs through systematic targeting of the genes involved in DNA methylation. A comprehensive genome-wide and system-level study of miRNA targeting, transcription factors, DNA-methylation-causing genes and their target genes has provided a clear picture of an interconnected relationship of all these factors which regulate DNA methylation in Arabidopsis. The study has identified a DNA methylation system that is controlled by four different genes: IDN2, IDNl1, IDNl2 and DRM2. These four genes along with various critical transcription factors appear to be controlled by five different miRNAs. Altogether, DNA methylation appears to be a finely tuned process of opposite control systems of DNA-methylation-causing genes and certain miRNAs pitted against each other.

  7. DNA methylation and microRNAs in cancer

    Institute of Scientific and Technical Information of China (English)

    Xiang-Quan Li; Yuan-Yuan Guo; Wei De

    2012-01-01

    DNA methylation is a type of epigenetic modification in the human genome,which means that gene expression is regulated without altering the DNA sequence.Methylation and the relationship between methylation and cancer have been the focus of molecular biology researches.Methylation represses gene expression and can influence embryogenesis and tumorigenesis.In different tissues and at different stages of life,the level of methylation of DNA varies,implying a fundamental but distinct role for methylation.When genes are repressed by abnormal methylation,the resulting effects can include instability of that gene and inactivation of a tumor suppressor gene.MicroRNAs have some aspects in common with this regulation of gene expression.Here we reviewed the influence of gene methylation on cancer and analyzed the methods used to profile methylation.We also assessed the correlation between methylation and other epigenetic modifications and microRNAs.About 55 845 research papers have been published about methylation,and one-fifth of these are about the appearance of methylation in cancer.We conclude that methylation does play a role in some cancer types.

  8. Electronic transport in methylated fragments of DNA

    Science.gov (United States)

    de Almeida, M. L.; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L.; Albuquerque, E. L.; Freire, V. N.; Caetano, E. W. S.; de Moura, F. A. B. F.; Lyra, M. L.

    2015-11-01

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  9. Electronic transport in methylated fragments of DNA

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, M. L. de; Oliveira, J. I. N.; Lima Neto, J. X.; Gomes, C. E. M.; Fulco, U. L., E-mail: umbertofulco@gmail.com; Albuquerque, E. L. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Freire, V. N. [Departamento de Física, Universidade Federal do Ceará, 60455-760 Fortaleza, CE (Brazil); Caetano, E. W. S. [Instituto Federal de Educação, Ciência e Tecnologia do Ceará, 60040-531 Fortaleza, CE (Brazil); Moura, F. A. B. F. de; Lyra, M. L. [Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil)

    2015-11-16

    We investigate the electronic transport properties of methylated deoxyribonucleic-acid (DNA) strands, a biological system in which methyl groups are added to DNA (a major epigenetic modification in gene expression), sandwiched between two metallic platinum electrodes. Our theoretical simulations apply an effective Hamiltonian based on a tight-binding model to obtain current-voltage curves related to the non-methylated/methylated DNA strands. The results suggest potential applications in the development of novel biosensors for molecular diagnostics.

  10. Clinical potential of DNA methylation in organ transplantation.

    Science.gov (United States)

    Peters, Fleur S; Manintveld, Olivier C; Betjes, Michiel G H; Baan, Carla C; Boer, Karin

    2016-07-01

    Identification of patients at risk for post-transplant complications is a major challenge, but it will improve clinical care and patient health after organ transplantation. The poor predictive value of the current biomarkers highlights the need to explore novel and innovative methods, such as epigenetics, for the discovery of new biomarkers. Cell differentiation and function of immune cells is dependent on epigenetic mechanisms, which regulate gene expression without altering the original DNA sequence. These epigenetic mechanisms are dynamic, potentially heritable, change with age, and can be regulated and influenced by environmental conditions. One of the most well-known epigenetic mechanisms is DNA methylation, which comprises the methylation of a cytosine (C) next to a guanine (G; CpG dinucleotides). Aberrant DNA methylation is increasingly associated with disease, including immune-mediated diseases, and these alterations precede the clinical phenotype. The impact of DNA methylation profiles on transplant acceptance and rejection as well as on other post-transplant complications is unknown. In this study we examine the current evidence of the functional role of recipient and donor DNA methylation on outcome after organ transplantation. Changes in DNA methylation may predict the risk of developing post-transplant complications, such as infections, malignancies and allograft rejection. We speculate that identification of these changes in DNA methylation contributes to earlier diagnosis and prevention of post-transplant complications, leading to improved patient care. PMID:27085975

  11. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Directory of Open Access Journals (Sweden)

    Erin M Siegel

    Full Text Available Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2. A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003. Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated.

  12. Quantitative DNA methylation analysis of candidate genes in cervical cancer.

    Science.gov (United States)

    Siegel, Erin M; Riggs, Bridget M; Delmas, Amber L; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and 22 women with normal cytology specimens. Bisulfite-modified genomic DNA was amplified and quantitative pyrosequencing completed for 10 genes (APC, CCNA, CDH1, CDH13, WIF1, TIMP3, DAPK1, RARB, FHIT, and SLIT2). A Methylation Index was calculated as the mean percent methylation across all CpG sites analyzed per gene (~4-9 CpG site) per sequence. A binary cut-point was defined at >15% methylation. Sensitivity, specificity and area under ROC curve (AUC) of methylation in individual genes or a panel was examined. The median methylation index was significantly higher in cases compared to controls in 8 genes, whereas there was no difference in median methylation for 2 genes. Compared to HPV and age, the combination of DNA methylation level of DAPK1, SLIT2, WIF1 and RARB with HPV and age significantly improved the AUC from 0.79 to 0.99 (95% CI: 0.97-1.00, p-value = 0.003). Pyrosequencing analysis confirmed that several genes are common targets for aberrant methylation in cervical cancer and DNA methylation level of four genes appears to increase specificity to identify cancer compared to HPV detection alone. Alterations in DNA methylation of specific genes in cervical cancers, such as DAPK1, RARB, WIF1, and SLIT2, may also occur early in cervical carcinogenesis and should be evaluated. PMID:25826459

  13. Chronic mild stress and antidepressant treatment alter 5-HT1A receptor expression by modifying DNA methylation of a conserved Sp4 site.

    Science.gov (United States)

    Le François, Brice; Soo, Jeremy; Millar, Anne M; Daigle, Mireille; Le Guisquet, Anne-Marie; Leman, Samuel; Minier, Frédéric; Belzung, Catherine; Albert, Paul R

    2015-10-01

    The serotonin 1A receptor (5-HT1A), a critical regulator of the brain serotonergic tone, is implicated in major depressive disorder (MDD) where it is often found to be dys-regulated. However, the extent to which stress and antidepressant treatment impact 5-HT1A expression in adults remains unclear. To address this issue, we subjected adult male BALB/c mice to unpredictable chronic mild stress (UCMS) to induce a depression-like phenotype that was reversed by chronic treatment with the antidepressant imipramine. In prefrontal cortex (PFC) and midbrain tissue, UCMS increased 5-HT1A RNA and protein levels, changes that are expected to decrease the brain serotonergic activity. The stress-induced increase in 5-HT1A expression was paralleled by a specific increase in DNA methylation of the conserved -681 CpG promoter site, located within a Sp1-like element. We show that the -681 CpG site is recognized and repressed by Sp4, the predominant neuronal Sp1-like factor and that Sp4-induced repression is attenuated by DNA methylation, despite a stress-induced increase in PFC Sp4 levels. These results indicate that adult life stress induces DNA methylation of a conserved promoter site, antagonizing Sp4 repression to increase 5-HT1A expression. Chronic imipramine treatment fully reversed the UCMS-induced increase in methylation of the -681 CpG site in the PFC but not midbrain of stressed animals and also increased 5-HT1A expression in the PFC of control animals. Incomplete reversal by imipramine of stress-induced changes in 5-HT1A methylation and expression indicates a persistence of stress vulnerability, and that sustained reversal of behavioral impairments may require additional pathways. PMID:26188176

  14. Influence of DNA methylation on transgene expression

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    DNA methylation plays an important role in gene expression in eukaryote. But DNA methylation of transgene usually leads to target gene silencing in plant genetic engineering. In this research, reporter gene b-glu- curonidase (GUS) gene (uidA) was introduced into tobaccos via Agrobacterium-mediated transformation method, and the foreign uidA gene became inactive in some transgenic tobaccos. No mRNA of uidA was detected in these plants by Northern blotting analysis, and DNA methylation of promoter region was found. The results indicated that gene silencing might be caused by DNA methylation of promoter.

  15. DNA Methylation Landscapes of Human Fetal Development.

    Science.gov (United States)

    Slieker, Roderick C; Roost, Matthias S; van Iperen, Liesbeth; Suchiman, H Eka D; Tobi, Elmar W; Carlotti, Françoise; de Koning, Eelco J P; Slagboom, P Eline; Heijmans, Bastiaan T; Chuva de Sousa Lopes, Susana M

    2015-10-01

    Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA methylation landscape using the 450k array of four human tissues (amnion, muscle, adrenal and pancreas) during the first and second trimester of gestation (9,18 and 22 weeks). We show that a tissue-specific signature, constituted by tissue-specific hypomethylated CpG sites, was already present at 9 weeks of gestation (W9). Furthermore, we report large-scale remodelling of DNA methylation from W9 to W22. Gain of DNA methylation preferentially occurred near genes involved in general developmental processes, whereas loss of DNA methylation mapped to genes with tissue-specific functions. Dynamic DNA methylation was associated with enhancers, but not promoters. Comparison of our data with external fetal adrenal, brain and liver revealed striking similarities in the trajectory of DNA methylation during fetal development. The analysis of gene expression data indicated that dynamic DNA methylation was associated with the progressive repression of developmental programs and the activation of genes involved in tissue-specific processes. The DNA methylation landscape of human fetal development provides insight into regulatory elements that guide tissue specification and lead to organ functionality. PMID:26492326

  16. An Integrated Workflow for DNA Methylation Analysis

    Institute of Scientific and Technical Information of China (English)

    Pingchuan Li; Feray Demirci; Gayathri Mahalingam; Caghan Demirci; Mayumi Nakano; Blake C.Meyers

    2013-01-01

    The analysis of cytosine methylation provides a new way to assess and describe epigenetic regulation at a whole-genome level in many eukaryotes.DNA methylation has a demonstrated role in the genome stability and protection,regulation of gene expression and many other aspects of genome function and maintenance.BS-seq is a relatively unbiased method for profiling the DNA methylation,with a resolution capable of measuring methylation at individual cytosines.Here we describe,as an example,a workflow to handle DNA methylation analysis,from BS-seq library preparation to the data visualization.We describe some applications for the analysis and interpretation of these data.Our laboratory provides public access to plant DNA methylation data via visualization tools available at our "Next-Gen Sequence" websites (http://mpss.udel.edu),along with small RNA,RNA-seq and other data types.

  17. Dysregulated immune system networks in war veterans with PTSD is an outcome of altered miRNA expression and DNA methylation.

    Science.gov (United States)

    Bam, Marpe; Yang, Xiaoming; Zumbrun, Elizabeth E; Zhong, Yin; Zhou, Juhua; Ginsberg, Jay P; Leyden, Quinne; Zhang, Jiajia; Nagarkatti, Prakash S; Nagarkatti, Mitzi

    2016-01-01

    Post-traumatic stress disorder patients experience chronic systemic inflammation. However, the molecular pathways involved and mechanisms regulating the expression of genes involved in inflammatory pathways in PTSD are reported inadequately. Through RNA sequencing and miRNA microarray, we identified 326 genes and 190 miRNAs that were significantly different in their expression levels in the PBMCs of PTSD patients. Expression pairing of the differentially expressed genes and miRNAs indicated an inverse relationship in their expression. Functional analysis of the differentially expressed genes indicated their involvement in the canonical pathways specific to immune system biology. DNA methylation analysis of differentially expressed genes also showed a gradual trend towards differences between control and PTSD patients, again indicating a possible role of this epigenetic mechanism in PTSD inflammation. Overall, combining data from the three techniques provided a holistic view of several pathways in which the differentially expressed genes were impacted through epigenetic mechanisms, in PTSD. Thus, analysis combining data from RNA-Seq, miRNA array and DNA methylation, can provide key evidence about dysregulated pathways and the controlling mechanism in PTSD. Most importantly, the present study provides further evidence that inflammation in PTSD could be epigenetically regulated. PMID:27510991

  18. Radiation effects on DNA methylation in mice

    International Nuclear Information System (INIS)

    Effects of ionizing radiation on DNA methylation in liver, brain and spleen were examined by high performance liquid chromatography (HPLC). The total methylated cytosine level in the genome was reduced within 8 hours after 3.8 Gy of irradiation in liver of adult mice. But no appreciable effect was observed in brain and spleen. When mice were irradiated at newborn, liver DNA revealed no change in methylated cytosine level. Even though slight effects of radiation were detected in he methylation of the c-myc and c-fos genes, they were only temporary and no long-term effects were observed. These data suggest that the effect of radiation on DNA methylation in vivo is not prevailing a DNA damage, but rather influenced much through biological parameters. (author)

  19. DNA Methylation Biomarkers: Cancer and Beyond

    Directory of Open Access Journals (Sweden)

    Thomas Mikeska

    2014-09-01

    Full Text Available Biomarkers are naturally-occurring characteristics by which a particular pathological process or disease can be identified or monitored. They can reflect past environmental exposures, predict disease onset or course, or determine a patient’s response to therapy. Epigenetic changes are such characteristics, with most epigenetic biomarkers discovered to date based on the epigenetic mark of DNA methylation. Many tissue types are suitable for the discovery of DNA methylation biomarkers including cell-based samples such as blood and tumor material and cell-free DNA samples such as plasma. DNA methylation biomarkers with diagnostic, prognostic and predictive power are already in clinical trials or in a clinical setting for cancer. Outside cancer, strong evidence that complex disease originates in early life is opening up exciting new avenues for the detection of DNA methylation biomarkers for adverse early life environment and for estimation of future disease risk. However, there are a number of limitations to overcome before such biomarkers reach the clinic. Nevertheless, DNA methylation biomarkers have great potential to contribute to personalized medicine throughout life. We review the current state of play for DNA methylation biomarkers, discuss the barriers that must be crossed on the way to implementation in a clinical setting, and predict their future use for human disease.

  20. The role of DNA methylation in cancer development.

    Directory of Open Access Journals (Sweden)

    Michał W Luczak

    2006-09-01

    Full Text Available Epigenetic modifications include DNA methylation and covalent modification of histones. These alterations are reversible but very stable and exert a significant impact on the regulation of gene expression. Changes in methylation of promoter or first exon may mimic the effect of mutations of various tumor suppressor genes (TSGs or protooncogenes. Carcinogenesis can also result from aberrations in genomic DNA methylation that include hypermethylation and hypomethylation of promoter or first exon of cancer-related genes. Hypermethylation of promoter of various TSGs causes their transcriptional silencing. However, hypomethylation of regulatory DNA sequences activates transcription of protooncogenes, retrotransposons, as well as genes encoding proteins involved in genomic instability and malignant cell metastasis. The methylation of genomic DNA in malignant cells is catalyzed by DNA methyltransferases DNMT1 and DNMT3B, revealing significantly elevated expression in different types of cancers. The reversibility of hypermethylation can be used as target of therapeutic treatment in cancer. DNMT 1 and DNMT3B inhibitors including 5-Aza-2'-deoxycytidine and antisense oligonucleotides have been applied in clinical trials of such treatment. Identification of aberrations of DNA methylation in cancer cells is a new field of investigation in carcinogenesis. We believe that epigenetic cancer diagnostic and therapy will be achieved in the next decades.

  1. Assessing DNA methylation in the developing human intestinal epithelium: potential link to inflammatory bowel disease.

    Science.gov (United States)

    Kraiczy, J; Nayak, K; Ross, A; Raine, T; Mak, T N; Gasparetto, M; Cario, E; Rakyan, V; Heuschkel, R; Zilbauer, M

    2016-05-01

    DNA methylation is one of the major epigenetic mechanisms implicated in regulating cellular development and cell-type-specific gene expression. Here we performed simultaneous genome-wide DNA methylation and gene expression analysis on purified intestinal epithelial cells derived from human fetal gut, healthy pediatric biopsies, and children newly diagnosed with inflammatory bowel disease (IBD). Results were validated using pyrosequencing, real-time PCR, and immunostaining. The functional impact of DNA methylation changes on gene expression was assessed by employing in-vitro assays in intestinal cell lines. DNA methylation analyses allowed identification of 214 genes for which expression is regulated via DNA methylation, i.e. regulatory differentially methylated regions (rDMRs). Pathway and functional analysis of rDMRs suggested a critical role for DNA methylation in regulating gene expression and functional development of the human intestinal epithelium. Moreover, analysis performed on intestinal epithelium of children newly diagnosed with IBD revealed alterations in DNA methylation within genomic loci, which were found to overlap significantly with those undergoing methylation changes during intestinal development. Our study provides novel insights into the physiological role of DNA methylation in regulating functional maturation of the human intestinal epithelium. Moreover, we provide data linking developmentally acquired alterations in the DNA methylation profile to changes seen in pediatric IBD. PMID:26376367

  2. Factor interaction analysis for chromosome 8 and DNA methylation alterations highlights innate immune response suppression and cytoskeletal changes in prostate cancer

    Directory of Open Access Journals (Sweden)

    Lengauer Thomas

    2007-02-01

    Full Text Available Abstract Background Alterations of chromosome 8 and hypomethylation of LINE-1 retrotransposons are common alterations in advanced prostate carcinoma. In a former study including many metastatic cases, they strongly correlated with each other. To elucidate a possible interaction between the two alterations, we investigated their relationship in less advanced prostate cancers. Results In 50 primary tumor tissues, no correlation was observed between chromosome 8 alterations determined by comparative genomic hybridization and LINE-1 hypomethylation measured by Southern blot hybridization. The discrepancy towards the former study, which had been dominated by advanced stage cases, suggests that both alterations converge and interact during prostate cancer progression. Therefore, interaction analysis was performed on microarray-based expression profiles of cancers harboring both alterations, only one, or none. Application of a novel bioinformatic method identified Gene Ontology (GO groups related to innate immunity, cytoskeletal organization and cell adhesion as common targets of both alterations. Many genes targeted by their interaction were involved in type I and II interferon signaling and several were functionally related to hereditary prostate cancer genes. In addition, the interaction appeared to influence a switch in the expression pattern of EPB41L genes encoding 4.1 cytoskeleton proteins. Real-time RT-PCR revealed GADD45A, MX1, EPB41L3/DAL1, and FBLN1 as generally downregulated in prostate cancer, whereas HOXB13 and EPB41L4B were upregulated. TLR3 was downregulated in a subset of the cases and associated with recurrence. Downregulation of EPB41L3, but not of GADD45A, was associated with promoter hypermethylation, which was detected in 79% of carcinoma samples. Conclusion Alterations of chromosome 8 and DNA hypomethylation in prostate cancer probably do not cause each other, but converge during progression. The present analysis implicates their

  3. Aberrant DNA methylation in cloned ovine embryos

    Institute of Scientific and Technical Information of China (English)

    LIU Lei; HOU Jian; LEI TingHua; BAI JiaHua; GUAN Hong; AN XiaoRong

    2008-01-01

    By using the approach of immunofluorescence staining with an antibody against 5-methylcytosine (5MeC), the present study detected the DNA methylation patterns of cloned ovine embryos. The em-bryos derived from in vitro fertilization were also examined for reference purpose. The results showed that: (1) during the pre-implantation development, cloned embryos displayed a similar demethylation profile to the fertilized embryos; that is, the methylation level decreased to the lowest at 8-cell stage, and then increased again at morulae stage. However, methylation level was obviously higher in cloned embryos than in stage-matched fertilized embryos, especially at 8-cell stage and afterwards; (2) at blastocyst stage, the methylation pattern in cloned embryos was different from that in fertilized em-bryos. In cloned blastocyst, inner cell mass (ICM) exhibited a comparable level to trophectoderm cells (TE), while in in-vitro fertilized blastocyst the methylation level of ICM was lower than that of TE, which is not consistent with that reported by other authors. These results indicate that DNA methylation is abnormally reprogrammed in cloned embryos, implying that aberrant DNA methylation reprogramming may be one of the factors causing cloned embryos developmental failure.

  4. The DNA methylation profile of activated human natural killer cells.

    Science.gov (United States)

    Wiencke, John K; Butler, Rondi; Hsuang, George; Eliot, Melissa; Kim, Stephanie; Sepulveda, Manuel A; Siegel, Derick; Houseman, E Andres; Kelsey, Karl T

    2016-05-01

    Natural killer (NK) cells are now recognized to exhibit characteristics akin to cells of the adaptive immune system. The generation of adaptive memory is linked to epigenetic reprogramming including alterations in DNA methylation. The study herein found reproducible genome wide DNA methylation changes associated with human NK cell activation. Activation led predominately to CpG hypomethylation (81% of significant loci). Bioinformatics analysis confirmed that non-coding and gene-associated differentially methylated sites (DMS) are enriched for immune related functions (i.e., immune cell activation). Known DNA methylation-regulated immune loci were also identified in activated NK cells (e.g., TNFA, LTA, IL13, CSF2). Twenty-one loci were designated high priority and further investigated as potential markers of NK activation. BHLHE40 was identified as a viable candidate for which a droplet digital PCR assay for demethylation was developed. The assay revealed high demethylation in activated NK cells and low demethylation in naïve NK, T- and B-cells. We conclude the NK cell methylome is plastic with potential for remodeling. The differentially methylated region signature of activated NKs revealed similarities with T cell activation, but also provided unique biomarker candidates of NK activation, which could be useful in epigenome-wide association studies to interrogate the role of NK subtypes in global methylation changes associated with exposures and/or disease states. PMID:26967308

  5. DNA methylation changes in cells regrowing after fractioned ionizing radiation

    International Nuclear Information System (INIS)

    Background and purpose: Repeated exposure to ionizing radiation (IR) can result in adaptive reactions. While DNA methylation changes in adaption to repeated stress exposure are established for a variety of drugs, their role in fractioned ionizing radiation is largely unknown. Material and methods: MCF7 breast cancer cells were treated 5 times a week with IR in fractions of 2 Gy, resulting in total doses of 10 and 20 Gy. Cells were harvested 48 and 72 h after the last irradiation, as well as after a recovery period of at least 14 d. To identify genes differentially methylated in irradiated versus non-irradiated cells, we used methyl-CpG immunoprecipitation (MCIp) followed by global methylation profiling on CpG island microarrays. Results: MCIp profiling revealed methylation changes in several CpG islands 48 h after FIR with 10 and 20 Gy. Cells receiving a total dose of 10 Gy started regrowing after 14 d and exhibited similar radioresistance as mock-treated cells. Differential methylation of the CpG units associated with FOXC1 (p < 0.001) and TRAPPC9 (p < 0.001) could be confirmed by time-of-flight mass spectrometry (Sequenom). Conclusions: In summary, these data indicate that regrowth of MCF7 cells after 10 Gy FIR is associated with locus-specific alterations in DNA methylation.

  6. Diagnostic markers of urothelial cancer based on DNA methylation analysis

    International Nuclear Information System (INIS)

    Early detection and risk assessment are crucial for treating urothelial cancer (UC), which is characterized by a high recurrence rate, and necessitates frequent and invasive monitoring. We aimed to establish diagnostic markers for UC based on DNA methylation. In this multi-center study, three independent sample sets were prepared. First, DNA methylation levels at CpG loci were measured in the training sets (tumor samples from 91 UC patients, corresponding normal-appearing tissue from these patients, and 12 normal tissues from age-matched bladder cancer-free patients) using the Illumina Golden Gate methylation assay to identify differentially methylated loci. Next, these methylated loci were validated by quantitative DNA methylation by pyrosequencing, using another cohort of tissue samples (Tissue validation set). Lastly, methylation of these markers was analyzed in the independent urine samples (Urine validation set). ROC analysis was performed to evaluate the diagnostic accuracy of these 12 selected markers. Of the 1303 CpG sites, 158 were hyper ethylated and 356 were hypo ethylated in tumor tissues compared to normal tissues. In the panel analysis, 12 loci showed remarkable alterations between tumor and normal samples, with 94.3% sensitivity and 97.8% specificity. Similarly, corresponding normal tissue could be distinguished from normal tissues with 76.0% sensitivity and 100% specificity. Furthermore, the diagnostic accuracy for UC of these markers determined in urine samples was high, with 100% sensitivity and 100% specificity. Based on these preliminary findings, diagnostic markers based on differential DNA methylation at specific loci can be useful for non-invasive and reliable detection of UC and epigenetic field defect

  7. DNA methylation: conducting the orchestra from exposure to phenotype?

    Science.gov (United States)

    Leenen, Fleur A D; Muller, Claude P; Turner, Jonathan D

    2016-01-01

    DNA methylation, through 5-methyl- and 5-hydroxymethylcytosine (5mC and 5hmC), is considered to be one of the principal interfaces between the genome and our environment, and it helps explain phenotypic variations in human populations. Initial reports of large differences in methylation level in genomic regulatory regions, coupled with clear gene expression data in both imprinted genes and malignant diseases, provided easily dissected molecular mechanisms for switching genes on or off. However, a more subtle process is becoming evident, where small (disease phenotypes. This has resulted in two clear methylation paradigms. The latter "subtle change" paradigm is rapidly becoming the epigenetic hallmark of complex disease phenotypes, although we are currently hampered by a lack of data addressing the true biological significance and meaning of these small differences. Our initial expectation of rapidly identifying mechanisms linking environmental exposure to a disease phenotype led to numerous observational/association studies being performed. Although this expectation remains unmet, there is now a growing body of literature on specific genes, suggesting wide ranging transcriptional and translational consequences of such subtle methylation changes. Data from the glucocorticoid receptor (NR3C1) has shown that a complex interplay between DNA methylation, extensive 5'UTR splicing, and microvariability gives rise to the overall level and relative distribution of total and N-terminal protein isoforms generated. Additionally, the presence of multiple AUG translation initiation codons throughout the complete, processed mRNA enables translation variability, hereby enhancing the translational isoforms and the resulting protein isoform diversity, providing a clear link between small changes in DNA methylation and significant changes in protein isoforms and cellular locations. Methylation changes in the NR3C1 CpG island alters the NR3C1 transcription and eventually protein

  8. Optimized method for methylated DNA immuno-precipitation

    OpenAIRE

    Carlos Guerrero-Bosagna; Per Jensen

    2015-01-01

    Methylated DNA immunoprecipitation (MeDIP) is one of the most widely used methods to evaluate DNA methylation on a whole genome scale, and involves the capture of the methylated fraction of the DNA by an antibody specific to methyl-cytosine. MeDIP was initially coupled with microarray hybridization to detect local DNA methylation enrichments along the genome. More recently, MeDIP has been coupled with next generation sequencing, which highlights its current and future applicability. In previo...

  9. DNA methylation modifications associated with chronic fatigue syndrome.

    Directory of Open Access Journals (Sweden)

    Wilfred C de Vega

    Full Text Available Chronic Fatigue Syndrome (CFS, also known as myalgic encephalomyelitis, is a complex multifactorial disease that is characterized by the persistent presence of fatigue and other particular symptoms for a minimum of 6 months. Symptoms fail to dissipate after sufficient rest and have major effects on the daily functioning of CFS sufferers. CFS is a multi-system disease with a heterogeneous patient population showing a wide variety of functional disabilities and its biological basis remains poorly understood. Stable alterations in gene function in the immune system have been reported in several studies of CFS. Epigenetic modifications have been implicated in long-term effects on gene function, however, to our knowledge, genome-wide epigenetic modifications associated with CFS have not been explored. We examined the DNA methylome in peripheral blood mononuclear cells isolated from CFS patients and healthy controls using the Illumina HumanMethylation450 BeadChip array, controlling for invariant probes and probes overlapping polymorphic sequences. Gene ontology (GO and network analysis of differentially methylated genes was performed to determine potential biological pathways showing changes in DNA methylation in CFS. We found an increased abundance of differentially methylated genes related to the immune response, cellular metabolism, and kinase activity. Genes associated with immune cell regulation, the largest coordinated enrichment of differentially methylated pathways, showed hypomethylation within promoters and other gene regulatory elements in CFS. These data are consistent with evidence of multisystem dysregulation in CFS and implicate the involvement of DNA modifications in CFS pathology.

  10. Regulation and function of DNA methylation in plants and animals

    KAUST Repository

    He, Xinjian

    2011-02-15

    DNA methylation is an important epigenetic mark involved in diverse biological processes. In plants, DNA methylation can be established through the RNA-directed DNA methylation pathway, an RNA interference pathway for transcriptional gene silencing (TGS), which requires 24-nt small interfering RNAs. In mammals, de novo DNA methylation occurs primarily at two developmental stages: during early embryogenesis and during gametogenesis. While it is not clear whether establishment of DNA methylation patterns in mammals involves RNA interference in general, de novo DNA methylation and suppression of transposons in germ cells require 24-32-nt piwi-interacting small RNAs. DNA methylation status is dynamically regulated by DNA methylation and demethylation reactions. In plants, active DNA demethylation relies on the repressor of silencing 1 family of bifunctional DNA glycosylases, which remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, initiating a base excision repair (BER) pathway. In animals, multiple mechanisms of active DNA demethylation have been proposed, including a deaminase- and DNA glycosylase-initiated BER pathway. New information concerning the effects of various histone modifications on the establishment and maintenance of DNA methylation has broadened our understanding of the regulation of DNA methylation. The function of DNA methylation in plants and animals is also discussed in this review. © 2011 IBCB, SIBS, CAS All rights reserved.

  11. DNA methylation markers for breast cancer prognosis

    OpenAIRE

    Dedeurwaerder, Sarah; Fuks, François

    2012-01-01

    Currently, most of the prognostic and predictive gene expression signatures emerging for breast cancer concern the tumor component. In Dedeurwaerder et al. we show that DNA methylation profiling of breast tumors is a particularly sensitive means of capturing features of the immune component of breast tumors. Most importantly, correlation is observed between T-cell marker genes and breast cancer clinical outcome.

  12. Global DNA methylation of ischemic stroke subtypes.

    Directory of Open Access Journals (Sweden)

    Carolina Soriano-Tárraga

    Full Text Available Ischemic stroke (IS, a heterogeneous multifactorial disorder, is among the leading causes of mortality and long-term disability in the western world. Epidemiological data provides evidence for a genetic component to the disease, but its epigenetic involvement is still largely unknown. Epigenetic mechanisms, such as DNA methylation, change over time and may be associated with aging processes and with modulation of the risk of various pathologies, such as cardiovascular disease and stroke. We analyzed 2 independent cohorts of IS patients. Global DNA methylation was measured by luminometric methylation assay (LUMA of DNA blood samples. Univariate and multivariate regression analyses were used to assess the methylation differences between the 3 most common IS subtypes, large-artery atherosclerosis (LAA, small-artery disease (SAD, and cardio-aortic embolism (CE. A total of 485 IS patients from 2 independent hospital cohorts (n = 281 and n = 204 were included, distributed across 3 IS subtypes: LAA (78/281, 59/204, SAD (97/281, 53/204, and CE (106/281, 89/204. In univariate analyses, no statistical differences in LUMA levels were observed between the 3 etiologies in either cohort. Multivariate analysis, adjusted by age, sex, hyperlipidemia, and smoking habit, confirmed the lack of differences in methylation levels between the analyzed IS subtypes in both cohorts. Despite differences in pathogenesis, our results showed no global methylation differences between LAA, SAD, and CE subtypes of IS. Further work is required to establish whether the epigenetic mechanism of methylation might play a role in this complex disease.

  13. Aberrant DNA methylation in non-small cell lung cancer-associated fibroblasts

    Science.gov (United States)

    Vizoso, Miguel; Puig, Marta; Carmona, F.Javier; Maqueda, María; Velásquez, Adriana; Gómez, Antonio; Labernadie, Anna; Lugo, Roberto; Gabasa, Marta; Rigat-Brugarolas, Luis G.; Trepat, Xavier; Ramírez, Josep; Moran, Sebastian; Vidal, Enrique; Reguart, Noemí; Perera, Alexandre; Esteller, Manel; Alcaraz, Jordi

    2015-01-01

    Epigenetic changes through altered DNA methylation have been implicated in critical aspects of tumor progression, and have been extensively studied in a variety of cancer types. In contrast, our current knowledge of the aberrant genomic DNA methylation in tumor-associated fibroblasts (TAFs) or other stromal cells that act as critical coconspirators of tumor progression is very scarce. To address this gap of knowledge, we conducted genome-wide DNA methylation profiling on lung TAFs and paired control fibroblasts (CFs) from non-small cell lung cancer patients using the HumanMethylation450 microarray. We found widespread DNA hypomethylation concomitant with focal gain of DNA methylation in TAFs compared to CFs. The aberrant DNA methylation landscape of TAFs had a global impact on gene expression and a selective impact on the TGF-β pathway. The latter included promoter hypermethylation-associated SMAD3 silencing, which was associated with hyperresponsiveness to exogenous TGF-β1 in terms of contractility and extracellular matrix deposition. In turn, activation of CFs with exogenous TGF-β1 partially mimicked the epigenetic alterations observed in TAFs, suggesting that TGF-β1 may be necessary but not sufficient to elicit such alterations. Moreover, integrated pathway-enrichment analyses of the DNA methylation alterations revealed that a fraction of TAFs may be bone marrow-derived fibrocytes. Finally, survival analyses using DNA methylation and gene expression datasets identified aberrant DNA methylation on the EDARADD promoter sequence as a prognostic factor in non-small cell lung cancer patients. Our findings shed light on the unique origin and molecular alterations underlying the aberrant phenotype of lung TAFs, and identify a stromal biomarker with potential clinical relevance. PMID:26449251

  14. DNA methylation patterns in cord blood DNA and body size in childhood.

    Directory of Open Access Journals (Sweden)

    Caroline L Relton

    Full Text Available Epigenetic markings acquired in early life may have phenotypic consequences later in development through their role in transcriptional regulation with relevance to the developmental origins of diseases including obesity. The goal of this study was to investigate whether DNA methylation levels at birth are associated with body size later in childhood.A study design involving two birth cohorts was used to conduct transcription profiling followed by DNA methylation analysis in peripheral blood. Gene expression analysis was undertaken in 24 individuals whose biological samples and clinical data were collected at a mean ± standard deviation (SD age of 12.35 (0.95 years, the upper and lower tertiles of body mass index (BMI were compared with a mean (SD BMI difference of 9.86 (2.37 kg/m(2. This generated a panel of differentially expressed genes for DNA methylation analysis which was then undertaken in cord blood DNA in 178 individuals with body composition data prospectively collected at a mean (SD age of 9.83 (0.23 years. Twenty-nine differentially expressed genes (>1.2-fold and p<10(-4 were analysed to determine DNA methylation levels at 1-3 sites per gene. Five genes were unmethylated and DNA methylation in the remaining 24 genes was analysed using linear regression with bootstrapping. Methylation in 9 of the 24 (37.5% genes studied was associated with at least one index of body composition (BMI, fat mass, lean mass, height at age 9 years, although only one of these associations remained after correction for multiple testing (ALPL with height, p(Corrected = 0.017.DNA methylation patterns in cord blood show some association with altered gene expression, body size and composition in childhood. The observed relationship is correlative and despite suggestion of a mechanistic epigenetic link between in utero life and later phenotype, further investigation is required to establish causality.

  15. DNA methylation dynamics in muscle development and disease

    OpenAIRE

    Monica Suelves

    2015-01-01

    DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts revealing a more dynamic regulation than originally thought, since active DNA methylation and demethylation occur during...

  16. DNA methylation dynamics in muscle development and disease

    OpenAIRE

    Carrió, Elvira; Suelves, Mònica

    2015-01-01

    DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts revealing a more dynamic regulation than originally thought, since active DNA methylation and demethylation occur during ...

  17. Comparisons of Non-Gaussian Statistical Models in DNA Methylation Analysis

    Directory of Open Access Journals (Sweden)

    Zhanyu Ma

    2014-06-01

    Full Text Available As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance.

  18. Identification of novel high-frequency DNA methylation changes in breast cancer.

    Directory of Open Access Journals (Sweden)

    Jared M Ordway

    Full Text Available Recent data have revealed that epigenetic alterations, including DNA methylation and chromatin structure changes, are among the earliest molecular abnormalities to occur during tumorigenesis. The inherent thermodynamic stability of cytosine methylation and the apparent high specificity of the alterations for disease may accelerate the development of powerful molecular diagnostics for cancer. We report a genome-wide analysis of DNA methylation alterations in breast cancer. The approach efficiently identified a large collection of novel differentially DNA methylated loci (approximately 200, a subset of which was independently validated across a panel of over 230 clinical samples. The differential cytosine methylation events were independent of patient age, tumor stage, estrogen receptor status or family history of breast cancer. The power of the global approach for discovery is underscored by the identification of a single differentially methylated locus, associated with the GHSR gene, capable of distinguishing infiltrating ductal breast carcinoma from normal and benign breast tissues with a sensitivity and specificity of 90% and 96%, respectively. Notably, the frequency of these molecular abnormalities in breast tumors substantially exceeds the frequency of any other single genetic or epigenetic change reported to date. The discovery of over 50 novel DNA methylation-based biomarkers of breast cancer may provide new routes for development of DNA methylation-based diagnostics and prognostics, as well as reveal epigenetically regulated mechanism involved in breast tumorigenesis.

  19. Analysis of DNA Cytosine Methylation on Cotton under Salt Stress

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yun-le; YE Wu-wei; WANG Jun-juan; FAN Bao-xiang

    2008-01-01

    @@ DNA methylation,especially methylation of cytosine in eukaryotic organisms,has been implicated in gene regulation,genomic imprinting,the timing of DNA replication,and determination of chromatin structure.It was reported that 6.5% of the whole cytosine residues in the nuclear DNA in higher plants were methylated.The methylation of cytosine in plant nuclear DNA occurs usually in both CpG and CpNG sequences,and the methylation state can be maintained through the cycles of DNA replication and is likely to play an integral role in regulating gene expression.

  20. DNA methylation: a new twist in the tail

    Institute of Scientific and Technical Information of China (English)

    Gavin Kelsey

    2011-01-01

    DNA methylation is the epigenetic mark with the longest history and that we probably understand best, yet we still have no adequate account for why specific DNA sequences are selected to become methylated.Gene-specific DNA methylation is fundamental to processes such as developmental silencing of genes, classical epigenetic phenomena such as genomic imprinting, and occurs pathologically in the silencing of tumor suppressor genes in cancer.Fully understanding the mechanisms of methylation is thus of huge importance.In mammals,the acquisition of DNA methylation is determined by one of two de novo DNA methyltransferase enzymes, Dnmt3a and Dnmt3b.

  1. DNA Methylation as a Biomarker for Preeclampsia

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Cindy M.; Ralph, Jody L.; Wright, Michelle L.; Linggi, Bryan E.; Ohm, Joyce E.

    2014-10-01

    Background: Preeclampsia contributes significantly to pregnancy-associated morbidity and mortality as well as future risk of cardiovascular disease in mother and offspring, and preeclampsia in offspring. The lack of reliable methods for early detection limits the opportunities for prevention, diagnosis, and timely treatment. Purpose: The purpose of this study was to explore distinct DNA methylation patterns associated with preeclampsia in both maternal cells and fetal-derived tissue that represent potential biomarkers to predict future preeclampsia and inheritance in children. Method: A convenience sample of nulliparous women (N = 55) in the first trimester of pregnancy was recruited for this prospective study. Genome-wide DNA methylation was quantified in first-trimester maternal peripheral white blood cells and placental chorionic tissue from normotensive women and those with preeclampsia (n = 6/group). Results: Late-onset preeclampsia developed in 12.7% of women. Significant differences in DNA methylation were identified in 207 individual linked cytosine and guanine (CpG) sites in maternal white blood cells collected in the first trimester (132 sites with gain and 75 sites with loss of methylation), which were common to approximately 75% of the differentially methylated CpG sites identified in chorionic tissue of fetal origin. Conclusion: This study is the first to identify maternal epigenetic targets and common targets in fetal-derived tissue that represent putative biomarkers for early detection and heritable risk of preeclampsia. Findings may pave the way for diagnosis of preeclampsia prior to its clinical presentation and acute damaging effects, and the potential for prevention of the detrimental long-term sequelae.

  2. DNA Methylation Analysis: Choosing the Right Method

    Directory of Open Access Journals (Sweden)

    Sergey Kurdyukov

    2016-01-01

    Full Text Available In the burgeoning field of epigenetics, there are several methods available to determine the methylation status of DNA samples. However, choosing the method that is best suited to answering a particular biological question still proves to be a difficult task. This review aims to provide biologists, particularly those new to the field of epigenetics, with a simple algorithm to help guide them in the selection of the most appropriate assay to meet their research needs. First of all, we have separated all methods into two categories: those that are used for: (1 the discovery of unknown epigenetic changes; and (2 the assessment of DNA methylation within particular regulatory regions/genes of interest. The techniques are then scrutinized and ranked according to their robustness, high throughput capabilities and cost. This review includes the majority of methods available to date, but with a particular focus on commercially available kits or other simple and straightforward solutions that have proven to be useful.

  3. DNA Methylation: Insights into Human Evolution.

    OpenAIRE

    Irene Hernando-Herraez; Raquel Garcia-Perez; Sharp, Andrew J; Tomas Marques-Bonet

    2015-01-01

    A fundamental initiative for evolutionary biologists is to understand the molecular basis underlying phenotypic diversity. A long-standing hypothesis states that species-specific traits may be explained by differences in gene regulation rather than differences at the protein level. Over the past few years, evolutionary studies have shifted from mere sequence comparisons to integrative analyses in which gene regulation is key to understanding species evolution. DNA methylation is an important ...

  4. Allele-Specific DNA Methylation Detection by Pyrosequencing®

    DEFF Research Database (Denmark)

    Sommer Kristensen, Lasse; Johansen, Jens Vilstrup; Grønbæk, Kirsten

    2015-01-01

    DNA methylation is an epigenetic modification that plays important roles in healthy as well as diseased cells, by influencing the transcription of genes. In spite the fact that human somatic cells are diploid, most of the currently available methods for the study of DNA methylation do not provide......-effective protocol for allele-specific DNA methylation detection based on Pyrosequencing(®) of methylation-specific PCR (MSP) products including a single nucleotide polymorphism (SNP) within the amplicon....

  5. Integrative DNA methylation and gene expression analyses identify DNA packaging and epigenetic regulatory genes associated with low motility sperm.

    Directory of Open Access Journals (Sweden)

    Sara E Pacheco

    Full Text Available BACKGROUND: In previous studies using candidate gene approaches, low sperm count (oligospermia has been associated with altered sperm mRNA content and DNA methylation in both imprinted and non-imprinted genes. We performed a genome-wide analysis of sperm DNA methylation and mRNA content to test for associations with sperm function. METHODS AND RESULTS: Sperm DNA and mRNA were isolated from 21 men with a range of semen parameters presenting to a tertiary male reproductive health clinic. DNA methylation was measured with the Illumina Infinium array at 27,578 CpG loci. Unsupervised clustering of methylation data differentiated the 21 sperm samples by their motility values. Recursively partitioned mixture modeling (RPMM of methylation data resulted in four distinct methylation profiles that were significantly associated with sperm motility (P = 0.01. Linear models of microarray analysis (LIMMA was performed based on motility and identified 9,189 CpG loci with significantly altered methylation (Q<0.05 in the low motility samples. In addition, the majority of these disrupted CpG loci (80% were hypomethylated. Of the aberrantly methylated CpGs, 194 were associated with imprinted genes and were almost equally distributed into hypermethylated (predominantly paternally expressed and hypomethylated (predominantly maternally expressed groups. Sperm mRNA was measured with the Human Gene 1.0 ST Affymetrix GeneChip Array. LIMMA analysis identified 20 candidate transcripts as differentially present in low motility sperm, including HDAC1 (NCBI 3065, SIRT3 (NCBI 23410, and DNMT3A (NCBI 1788. There was a trend among altered expression of these epigenetic regulatory genes and RPMM DNA methylation class. CONCLUSIONS: Using integrative genome-wide approaches we identified CpG methylation profiles and mRNA alterations associated with low sperm motility.

  6. Oxytocin receptor DNA methylation in postpartum depression.

    Science.gov (United States)

    Kimmel, Mary; Clive, Makena; Gispen, Fiona; Guintivano, Jerry; Brown, Tori; Cox, Olivia; Beckmann, Matthias W; Kornhuber, Johannes; Fasching, Peter A; Osborne, Lauren M; Binder, Elisabeth; Payne, Jennifer L; Kaminsky, Zachary

    2016-07-01

    The oxytocin receptor (OXTR) is a key regulator of stress and anxiety and may be regulated by both psychosocial risk factors and gonadal hormones, making it an attractive candidate for study in postpartum depression (PPD). The objective of this study was to investigate both serum hormone and PPD specific DNA methylation variation in the OXTR. Illumina HM450 microarray data generated in a prospective PPD cohort identified significant associations (P=0.014) with PPD in an intronic region in the OXTR located 4bp proximal to an estrogen receptor (ER) binding region. Pyrosequencing confirmed moderate evidence for an interaction of CpGs in the region with childhood abuse status to mediate PPD. These CpGs located on chr3 at positions 8810078 and 8810069 exhibited significant associations with postpartum depression scores from an independent cohort of 240 women with no prior psychiatric history. Hormone analysis suggested a PPD specific negative correlation of DNA methylation in the region with serum estradiol levels. Estradiol levels and OXTR DNA methylation exhibited a significant interaction to associate with the ratio of allopregnanolone to progesterone. Cumulatively, the data corroborate our previous hypotheses of a PPD specific increased sensitivity of epigenetic reprogramming at estrogen target genes and suggests that OXTR epigenetic variation may be an important mediator of mood relevant neuroactive steroid production. PMID:27108164

  7. Global DNA methylation loss associated with mercury contamination and aging in the American alligator (Alligator mississippiensis).

    Science.gov (United States)

    Nilsen, Frances M; Parrott, Benjamin B; Bowden, John A; Kassim, Brittany L; Somerville, Stephen E; Bryan, Teresa A; Bryan, Colleen E; Lange, Ted R; Delaney, J Patrick; Brunell, Arnold M; Long, Stephen E; Guillette, Louis J

    2016-03-01

    Mercury is a widespread environmental contaminant with exposures eliciting a well-documented catalog of adverse effects. Yet, knowledge regarding the underlying mechanisms by which mercury exposures are translated into biological effects remains incomplete. DNA methylation is an epigenetic modification that is sensitive to environmental cues, and alterations in DNA methylation at the global level are associated with a variety of diseases. Using a liquid chromatography tandem mass spectrometry-based (LC-MS/MS) approach, global DNA methylation levels were measured in red blood cells of 144 wild American alligators (Alligator mississippiensis) from 6 sites with variable levels of mercury contamination across Florida's north-south axis. Variation in mercury concentrations measured in whole blood was highly associated with location, allowing the comparison of global DNA methylation levels across different "treatments" of mercury. Global DNA methylation in alligators across all locations was weakly associated with increased mercury exposure. However, a much more robust relationship was observed in those animals sampled from locations more highly contaminated with mercury. Also, similar to other vertebrates, global DNA methylation appears to decline with age in alligators. The relationship between age-associated loss of global DNA methylation and varying mercury exposures was examined to reveal a potential interaction. These findings demonstrate that global DNA methylation levels are associated with mercury exposure, and give insights into interactions between contaminants, aging, and epigenetics. PMID:26748003

  8. Global DNA methylation loss associated with mercury contamination and aging in the American alligator (Alligator mississippiensis)

    Science.gov (United States)

    Nilsen, Frances M.; Parrott, Benjamin B.; Bowden, John A.; Kassim, Brittany L.; Somerville, Stephen E.; Bryan, Teresa A.; Bryan, Colleen E.; Lange, Ted R.; Delaney, J. Patrick; Brunell, Arnold M.; Long, Stephen E.; Guillette, Louis J.

    2016-01-01

    Mercury is a widespread environmental contaminant with exposures eliciting a well-documented catalog of adverse effects. Yet, knowledge regarding the underlying mechanisms by which mercury exposures are translated into biological effects remains incomplete. DNA methylation is an epigenetic modification that is sensitive to environmental cues, and alterations in DNA methylation at the global level are associated with a variety of diseases. Using a liquid chromatography tandem mass spectrometry-based (LC-MS/MS) approach, global DNA methylation levels were measured in red blood cells of 144 wild American alligators (Alligator mississippiensis) from 6 sites with variable levels of mercury contamination across Florida’s north-south axis. Variation in mercury concentrations measured in whole blood was highly associated with location, allowing the comparison of global DNA methylation levels across different “treatments” of mercury. Global DNA methylation in alligators across all locations was weakly associated with increased mercury exposure. However, a much more robust relationship was observed in those animals sampled from locations more highly contaminated with mercury. Also, similar to other vertebrates, global DNA methylation appears to decline with age in alligators. The relationship between age-associated loss of global DNA methylation and varying mercury exposures was examined to reveal a potential interaction. These findings demonstrate that global DNA methylation levels are associated with mercury exposure, and give insights into interactions between contaminants, aging, and epigenetics. PMID:26748003

  9. Aberrant DNA Methylation: Implications in Racial Health Disparity

    Science.gov (United States)

    Wang, Xuefeng; Ji, Ping; Zhang, Yuanhao; LaComb, Joseph F.; Tian, Xinyu; Li, Ellen; Williams, Jennie L.

    2016-01-01

    Background Incidence and mortality rates of colorectal carcinoma (CRC) are higher in African Americans (AAs) than in Caucasian Americans (CAs). Deficient micronutrient intake due to dietary restrictions in racial/ethnic populations can alter genetic and molecular profiles leading to dysregulated methylation patterns and the inheritance of somatic to germline mutations. Materials and Methods Total DNA and RNA samples of paired tumor and adjacent normal colon tissues were prepared from AA and CA CRC specimens. Reduced Representation Bisulfite Sequencing (RRBS) and RNA sequencing were employed to evaluate total genome methylation of 5’-regulatory regions and dysregulation of gene expression, respectively. Robust analysis was conducted using a trimming-and-retrieving scheme for RRBS library mapping in conjunction with the BStool toolkit. Results DNA from the tumor of AA CRC patients, compared to adjacent normal tissues, contained 1,588 hypermethylated and 100 hypomethylated differentially methylated regions (DMRs). Whereas, 109 hypermethylated and 4 hypomethylated DMRs were observed in DNA from the tumor of CA CRC patients; representing a 14.6-fold and 25-fold change, respectively. Specifically; CHL1, 4 anti-inflammatory genes (i.e., NELL1, GDF1, ARHGEF4, and ITGA4), and 7 miRNAs (of which miR-9-3p and miR-124-3p have been implicated in CRC) were hypermethylated in DNA samples from AA patients with CRC. From the same sample set, RNAseq analysis revealed 108 downregulated genes (including 14 ribosomal proteins) and 34 upregulated genes (including POLR2B and CYP1B1 [targets of miR-124-3p]) in AA patients with CRC versus CA patients. Conclusion DNA methylation profile and/or products of its downstream targets could serve as biomarker(s) addressing racial health disparity. PMID:27111221

  10. Aberrant DNA Methylation: Implications in Racial Health Disparity.

    Directory of Open Access Journals (Sweden)

    Xuefeng Wang

    Full Text Available Incidence and mortality rates of colorectal carcinoma (CRC are higher in African Americans (AAs than in Caucasian Americans (CAs. Deficient micronutrient intake due to dietary restrictions in racial/ethnic populations can alter genetic and molecular profiles leading to dysregulated methylation patterns and the inheritance of somatic to germline mutations.Total DNA and RNA samples of paired tumor and adjacent normal colon tissues were prepared from AA and CA CRC specimens. Reduced Representation Bisulfite Sequencing (RRBS and RNA sequencing were employed to evaluate total genome methylation of 5'-regulatory regions and dysregulation of gene expression, respectively. Robust analysis was conducted using a trimming-and-retrieving scheme for RRBS library mapping in conjunction with the BStool toolkit.DNA from the tumor of AA CRC patients, compared to adjacent normal tissues, contained 1,588 hypermethylated and 100 hypomethylated differentially methylated regions (DMRs. Whereas, 109 hypermethylated and 4 hypomethylated DMRs were observed in DNA from the tumor of CA CRC patients; representing a 14.6-fold and 25-fold change, respectively. Specifically; CHL1, 4 anti-inflammatory genes (i.e., NELL1, GDF1, ARHGEF4, and ITGA4, and 7 miRNAs (of which miR-9-3p and miR-124-3p have been implicated in CRC were hypermethylated in DNA samples from AA patients with CRC. From the same sample set, RNAseq analysis revealed 108 downregulated genes (including 14 ribosomal proteins and 34 upregulated genes (including POLR2B and CYP1B1 [targets of miR-124-3p] in AA patients with CRC versus CA patients.DNA methylation profile and/or products of its downstream targets could serve as biomarker(s addressing racial health disparity.

  11. Aberrant DNA methylation of blood in schizophrenia by adjusting for estimated cellular proportions.

    Science.gov (United States)

    Kinoshita, Makoto; Numata, Shusuke; Tajima, Atsushi; Ohi, Kazutaka; Hashimoto, Ryota; Shimodera, Shinji; Imoto, Issei; Takeda, Masatoshi; Ohmori, Tetsuro

    2014-12-01

    DNA methylation, which is the transference of a methyl group to the 5'-carbon position of the cytosine in a CpG dinucleotide, is one of the major mechanisms of epigenetic modifications. A number of studies have demonstrated altered DNA methylation of peripheral blood cells in schizophrenia (SCZ) in previous studies. However, most of these studies have been limited to the analysis of the CpG sites in CpG islands in gene promoter regions, and cell-type proportions of peripheral leukocytes, which may be one of the potential confounding factors for DNA methylation, have not been adjusted in these studies. In this study, we performed a genome-wide DNA methylation profiling of the peripheral leukocytes from patients with SCZ and from non-psychiatric controls (N = 105; 63 SCZ and 42 control subjects) using a quantitative high-resolution DNA methylation microarray which covered across the whole gene region (485,764 CpG dinucleotides). In the DNA methylation data analysis, we first estimated the cell-type proportions of each sample with a published algorithm. Next, we performed a surrogate variable analysis to identify potential confounding factors in our microarray data. Finally, we conducted a multiple linear regression analysis in consideration of these factors, including estimated cell-type proportions, and identified aberrant DNA methylation in SCZ at 2,552 CpG loci at a 5% false discovery rate correction. Our results suggest that altered DNA methylation may be involved in the pathophysiology of SCZ, and cell heterogeneity adjustments may be necessary for DNA methylation analysis. PMID:25052007

  12. Regulated DNA Methylation and the Circadian Clock: Implications in Cancer

    Directory of Open Access Journals (Sweden)

    Tammy M. Joska

    2014-09-01

    Full Text Available Since the cloning and discovery of DNA methyltransferases (DNMT, there has been a growing interest in DNA methylation, its role as an epigenetic modification, how it is established and removed, along with the implications in development and disease. In recent years, it has become evident that dynamic DNA methylation accompanies the circadian clock and is found at clock genes in Neurospora, mice and cancer cells. The relationship among the circadian clock, cancer and DNA methylation at clock genes suggests a correlative indication that improper DNA methylation may influence clock gene expression, contributing to the etiology of cancer. The molecular mechanism underlying DNA methylation at clock loci is best studied in the filamentous fungi, Neurospora crassa, and recent data indicate a mechanism analogous to the RNA-dependent DNA methylation (RdDM or RNAi-mediated facultative heterochromatin. Although it is still unclear, DNA methylation at clock genes may function as a terminal modification that serves to prevent the regulated removal of histone modifications. In this capacity, aberrant DNA methylation may serve as a readout of misregulated clock genes and not as the causative agent. This review explores the implications of DNA methylation at clock loci and describes what is currently known regarding the molecular mechanism underlying DNA methylation at circadian clock genes.

  13. Methylation of cell-free circulating DNA in the diagnosis of cancer

    Science.gov (United States)

    Warton, Kristina; Samimi, Goli

    2015-01-01

    A range of molecular alterations found in tumor cells, such as DNA mutations and DNA methylation, is reflected in cell-free circulating DNA (circDNA) released from the tumor into the blood, thereby making circDNA an ideal candidate for the basis of a blood-based cancer diagnosis test. In many cancer types, mutations driving tumor development and progression are present in a wide range of oncogenes and tumor suppressor genes. However, even when a gene is consistently mutated in a particular cancer, the mutations can be spread over very large regions of its sequence, making evaluation difficult. This diversity of sequence changes in tumor DNA presents a challenge for the development of blood tests based on DNA mutations for cancer diagnosis. Unlike mutations, DNA methylation that can be consistently measured, as it tends to occur in specific regions of the DNA called CpG islands. Since DNA methylation is reflected within circDNA, detection of tumor-specific DNA methylation in patient plasma is a feasible approach for the development of a blood-based test. Aberrant circDNA methylation has been described in most cancer types and is actively being investigated for clinical applications. A commercial blood test for colorectal cancer based on the methylation of the SEPT9 promoter region in circDNA is under review for approval by the Federal Drug Administration (FDA) for clinical use. In this paper, we review the state of research in circDNA methylation as an application for blood-based diagnostic tests in colorectal, breast, lung, pancreatic and ovarian cancers, and we consider some of the future directions and challenges in this field. There are a number of potential circDNA biomarkers currently under investigation, and experience with SEPT9 shows that the time to clinical translation can be relatively rapid, supporting the promise of circDNA as a biomarker. PMID:25988180

  14. Understanding the connection between epigenetic DNA methylation and nucleosome positioning from computer simulations.

    Directory of Open Access Journals (Sweden)

    Guillem Portella

    Full Text Available Cytosine methylation is one of the most important epigenetic marks that regulate the process of gene expression. Here, we have examined the effect of epigenetic DNA methylation on nucleosomal stability using molecular dynamics simulations and elastic deformation models. We found that methylation of CpG steps destabilizes nucleosomes, especially when these are placed in sites where the DNA minor groove faces the histone core. The larger stiffness of methylated CpG steps is a crucial factor behind the decrease in nucleosome stability. Methylation changes the positioning and phasing of the nucleosomal DNA, altering the accessibility of DNA to regulatory proteins, and accordingly gene functionality. Our theoretical calculations highlight a simple physical-based explanation on the foundations of epigenetic signaling.

  15. Characteristic DNA methylation profiles in peripheral blood monocytes are associated with inflammatory phenotypes of asthma

    OpenAIRE

    Gunawardhana, Lakshitha P; Gibson, Peter G; Simpson, Jodie L.; Benton, Miles C.; Rodney A. Lea; Baines, Katherine J

    2014-01-01

    Epigenetic changes including DNA methylation caused by environmental exposures may contribute to the heterogeneous inflammatory response in asthma. Here we investigate alterations in DNA methylation of purified blood monocytes that are associated with inflammatory phenotypes of asthma. Peripheral blood was collected from adults with eosinophilic asthma (EA; n = 21), paucigranulocytic asthma (PGA; n = 22), neutrophilic asthma (NA; n = 9), and healthy controls (n = 10). Blood monocytes were iso...

  16. Infant growth restriction is associated with distinct patterns of DNA methylation in human placentas

    OpenAIRE

    Banister, Carolyn E.; Koestler, Devin C; Maccani, Matthew A; Padbury, James F.; Houseman, E. Andres; Marsit, Carmen J.

    2011-01-01

    The placenta acts not only as a conduit of nutrient and waste exchange between mother and developing fetus, but also functions as a regulator of the intrauterine environment. Recent work has identified changes in the expression of candidate genes, often through epigenetic alteration, which alter the placenta's function and impact fetal growth. In this study, we used the Illumina Infinium HumanMethylation27 BeadChip array to examine genome-wide DNA methylation patterns in 206 term human placen...

  17. Global DNA methylation in gonads of adult zebrafish Danio rerio under bisphenol A exposure.

    Science.gov (United States)

    Liu, Yan; Zhang, Yingying; Tao, Shiyu; Guan, Yongjing; Zhang, Ting; Wang, Zaizhao

    2016-08-01

    Altered DNA methylation is pervasively associated with changes in gene expression and signal transduction after exposure to a wide range of endocrine disrupting chemicals. As a weak estrogenic chemical, bisphenol A (BPA) has been extensively studied for reproductive toxicity. In order to explore the effects of BPA on epigenetic modification in gonads of zebrafish Danio rerio, we measured the global DNA methylation together with the gene expression of DNA methyltransferase (dnmts), glycine N-methyltransferase (gnmt), and ten-eleven translocation (tets) in gonads of D. rerio under BPA exposure by ELISA and quantitative real-time PCR method, respectively. The global level of DNA methylation was significantly decreased in ovaries after exposed to BPA for 7 days, and testes following 35-day exposure. Moreover, the global level of DNA methylation was also significantly reduced in testes after exposed to 15μg/L BPA for 7 days. Besides the alteration of the global level of DNA methylation, varying degrees of transcriptional changes of dnmts, gnmt and tets were detected in gonads of D. rerio under BPA exposure. The present study suggested that BPA might cause the global DNA demethylation in gonads of zebrafish by regulating the transcriptional changes of the DNA methylation/demethylation-associated genes (dnmts, gnmt, and tets). PMID:27101439

  18. Erasure of CpG methylation in Arabidopsis alters patterns of histone H3 methylation in heterochromatin

    DEFF Research Database (Denmark)

    Tariq, M.; Saze, H.; Probst, A.; Lichota, Jacek; Habu, Y.; Paszkowski, JK.

    2003-01-01

    In mammals and plants, formation of heterochromatin is associated with hypermethylation of DNA at CpG sites and histone H3 methylation at lysine 9. Previous studies have revealed that maintenance of DNA methylation in Neurospora and Arabidopsis requires histone H3 methylation. A feedback loop from...... DNA methylation to histone methylation, however, is less understood. Its recent examination in Arabidopsis with a partial loss of function in DNA methyltransferase 1 (responsible for maintenance of CpG methylation) yielded conflicting results. Here we report that complete removal of CpG methylation in...

  19. DNA Methylation, Behavior and Early Life Adversity

    Institute of Scientific and Technical Information of China (English)

    Moshe Szyf

    2013-01-01

    The impact of early physical and social environments on life-long phenotypes is well known.Moreover,we have documented evidence for gene-enviromnent interactions where identical gene variants are associated with different phenotypes that are dependent on early life adversity.What are the mechanisms that embed these early life experiences in the genome? DNA methylation is an enzymaticallycatalyzed modification of DNA that serves as a mechanism by which similar sequences acquire cell type identity during cellular differentiation and embryogenesis in the same individual.The hypothesis that will be discussed here proposes that the same mechanism confers environmental-exposure specific identity upon DNA providing a mechanism for embedding environmental experiences in the genome,thus affecting long-term phenotypes.Particularly important is the environment early in life including both the prenatal and postnatal social environments.

  20. Alterations of ultraviolet irradiated DNA

    International Nuclear Information System (INIS)

    Thymine dimers production has been studied in several DNA-3H irradiated at various wave lenght of U.V. Light. The influence of dimers on the hydrodynamic and optic properties, thermal structural stability and transformant capacity of DNA have been studied too. At last the recognition and excision of dimers by the DNA-UV-Endonuclease and DNA-Polimerase-I was also studied. (author)

  1. Small RNA-mediated DNA (cytosine-5) methyltransferase 1 inhibition leads to aberrant DNA methylation.

    Science.gov (United States)

    Zhang, Guoqiang; Estève, Pierre-Olivier; Chin, Hang Gyeong; Terragni, Jolyon; Dai, Nan; Corrêa, Ivan R; Pradhan, Sriharsa

    2015-07-13

    Mammalian cells contain copious amounts of RNA including both coding and noncoding RNA (ncRNA). Generally the ncRNAs function to regulate gene expression at the transcriptional and post-transcriptional level. Among ncRNA, the long ncRNA and small ncRNA can affect histone modification, DNA methylation targeting and gene silencing. Here we show that endogenous DNA methyltransferase 1 (DNMT1) co-purifies with inhibitory ncRNAs. MicroRNAs (miRNAs) bind directly to DNMT1 with high affinity. The binding of miRNAs, such as miR-155-5p, leads to inhibition of DNMT1 enzyme activity. Exogenous miR-155-5p in cells induces aberrant DNA methylation of the genome, resulting in hypomethylation of low to moderately methylated regions. And small shift of hypermethylation of previously hypomethylated region was also observed. Furthermore, hypomethylation led to activation of genes. Based on these observations, overexpression of miR-155-5p resulted in aberrant DNA methylation by inhibiting DNMT1 activity, resulting in altered gene expression. PMID:25990724

  2. Dietary selenomethionine intake increases exon-specific DNA methylation of p53 gene in rat liver and colon mucosa

    Science.gov (United States)

    The regulation of site-specific DNA methylation of tumor suppressor genes has been considered as a leading mechanism by which certain nutrients exert their anticancer property. Our previous studies suggest that dietary selenium (Se) may alter DNA methylation, and the purpose of this study was to inv...

  3. Older age and dietary folate are determinants of genomic and p16-specific DNA methylation in mouse colon

    Science.gov (United States)

    Elder age and inadequate folate intake are strongly implicated as important risk factors for colon cancer, and each is associated with altered DNA methylation. This study was designed to determine the effect of aging and dietary folate on select features of DNA methylation in the colon that are rele...

  4. Dietary selenium intake increases exon-specific DNA methylation of p53 gene in rat liver and colon mucosa

    Science.gov (United States)

    The regulation of site-specific DNA methylation of tumor suppressor genes has been considered as a leading mechanism by which certain nutrients exert their anticancer property. Our previous studies suggest that dietary selenium (Se) may alter DNA methylation, and the purpose of this study was to inv...

  5. Genome wide analysis of DNA methylation and gene expression changes in the mouse lung following subchronic arsenate exposure

    Science.gov (United States)

    Alterations in DNA methylation have been proposed as a mechanism for the complex toxicological effects of arsenic. In this study, whole genome DNA methylation and gene expression changes were evaluated in lungs from female mice exposed for 90 days to 50 ppm arsenate (As) in drink...

  6. Quantitative DNA Methylation Analysis of Candidate Genes in Cervical Cancer

    OpenAIRE

    Erin M Siegel; Riggs, Bridget M; Delmas, Amber L.; Koch, Abby; Hakam, Ardeshir; Brown, Kevin D.

    2015-01-01

    Aberrant DNA methylation has been observed in cervical cancer; however, most studies have used non-quantitative approaches to measure DNA methylation. The objective of this study was to quantify methylation within a select panel of genes previously identified as targets for epigenetic silencing in cervical cancer and to identify genes with elevated methylation that can distinguish cancer from normal cervical tissues. We identified 49 women with invasive squamous cell cancer of the cervix and ...

  7. Analysis of DNA Cytosine Methylation on Cotton under Salt Stress

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    DNA methylation,especially methylation of cytosine in eukaryotic organisms,has been implicated in gene regulation,genomic imprinting,the timing of DNA replication,and determination of chromatin structure.It was reported that 6.5% of the whole cytosine residues in the nuclear DNA in higher

  8. Characteristics of DNA methylation changes induced by traffic-related air pollution.

    Science.gov (United States)

    Ding, Rui; Jin, Yongtang; Liu, Xinneng; Zhu, Ziyi; Zhang, Yuan; Wang, Ting; Xu, Yinchun

    2016-01-15

    Traffic-related air pollution (TRAP) is a potential risk factor for numerous respiratory disorders, including lung cancer, while alteration of DNA methylation may be one of the underlying mechanisms. However, the effects of TRAP mixtures on DNA methylation have not been investigated. We have studied the effects of brief or prolonged TRAP exposures on DNA methylation in the rat. The exposures were performed in spring and autumn, with identical study procedures. In each season, healthy Wistar rats were exposed to TRAP at for 4h, 7d, 14d, or 28d. Global DNA methylation (LINE-1 and Alu) and specific gene methylation (p16(CDKN2A), APC, and iNOS) in the DNA from blood and lung tissues were quantified by pyrosequencing. Multiple linear regression was applied to assess the influence of air pollutants on DNA methylation levels. The levels of PM2.5, PM10, and NO2 in the high and moderate groups were significantly higher than in the control group. The DNA methylation levels were not significantly different between spring and autumn. When spring and autumn data were analyzed together, PM2.5, PM10, and NO2 exposures were associated with changes in%5mC (95% CI) in LINE-1, iNOS, p16(CDKN2A), and APC ranging from -0.088 (-0.150, -0.026) to 0.102 (0.049, 0.154) per 1μg/m(3) increase in the pollutant concentration. Prolonged exposure to a high level of TRAP was negatively associated with LINE-1 and iNOS methylation, and positively associated with APC methylations in the DNA from lung tissues but not blood. These findings show that TRAP exposure is associated with decreased methylation of LINE-1 and iNOS, and increased methylation of p16(CDKN2A) and APC. PMID:26778509

  9. Methylated DNA Immunoprecipitation Analysis of Mammalian Endogenous Retroviruses.

    Science.gov (United States)

    Rebollo, Rita; Mager, Dixie L

    2016-01-01

    Endogenous retroviruses are repetitive sequences found abundantly in mammalian genomes which are capable of modulating host gene expression. Nevertheless, most endogenous retrovirus copies are under tight epigenetic control via histone-repressive modifications and DNA methylation. Here we describe a common method used in our laboratory to detect, quantify, and compare mammalian endogenous retrovirus DNA methylation. More specifically we describe methylated DNA immunoprecipitation (MeDIP) followed by quantitative PCR. PMID:26895065

  10. A DNA methylation fingerprint of 1628 human samples

    OpenAIRE

    Fernandez, A. F.; Assenov, Y.; Martin-Subero, J.I. (José Ignacio); Balint, B.; Siebert, R.; Taniguchi, H; Yamamoto, H.; M. Hidalgo; Tan, A.-C.; Galm, O; Ferrer, I.; Sanchez-Cespedes, M.; Villanueva, A; Carmona, J; Sanchez-Mut, J. V.

    2012-01-01

    Most of the studies characterizing DNA methylation patterns have been restricted to particular genomic loci in a limited number of human samples and pathological conditions. Herein, we present a compromise between an extremely comprehensive study of a human sample population with an intermediate level of resolution of CpGs at the genomic level. We obtained a DNA methylation fingerprint of 1628 human samples in which we interrogated 1505 CpG sites. The DNA methylation patterns reve...

  11. Differential DNA Methylation Analysis without a Reference Genome

    OpenAIRE

    Johanna Klughammer; Paul Datlinger; Dieter Printz; Nathan C. Sheffield; Matthias Farlik; Johanna Hadler; Gerhard Fritsch; Christoph Bock

    2015-01-01

    Summary Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS), which...

  12. Recognition of methylated DNA through methyl-CpG binding domain proteins

    DEFF Research Database (Denmark)

    Zou, Xueqing; Ma, Wen; Solov'yov, Ilia;

    2012-01-01

    DNA methylation is a key regulatory control route in epigenetics, involving gene silencing and chromosome inactivation. It has been recognized that methyl-CpG binding domain (MBD) proteins play an important role in interpreting the genetic information encoded by methylated DNA (mDNA). Although the...... function of MBD proteins has attracted considerable attention and is well characterized, the mechanism underlying mDNA recognition by MBD proteins is still poorly understood. In this article, we demonstrate that the methyl-CpG dinucleotides are recognized at the MBD-mDNA interface by two MBD arginines...... through an interplay of hydrogen bonding and cation-p interaction. Through molecular dynamics and quantum-chemistry calculations we investigate the methyl-cytosine recognition process and demonstrate that methylation enhances MBD-mDNA binding by increasing the hydrophobic interfacial area and by...

  13. Forensic DNA methylation profiling from evidence material for investigative leads.

    Science.gov (United States)

    Lee, Hwan Young; Lee, Soong Deok; Shin, Kyoung-Jin

    2016-07-01

    DNA methylation is emerging as an attractive marker providing investigative leads to solve crimes in forensic genetics. The identification of body fluids that utilizes tissue-specific DNA methylation can contribute to solving crimes by predicting activity related to the evidence material. The age estimation based on DNA methylation is expected to reduce the number of potential suspects, when the DNA profile from the evidence does not match with any known person, including those stored in the forensic database. Moreover, the variation in DNA implicates environmental exposure, such as cigarette smoking and alcohol consumption, thereby suggesting the possibility to be used as a marker for predicting the lifestyle of potential suspect. In this review, we describe recent advances in our understanding of DNA methylation variations and the utility of DNA methylation as a forensic marker for advanced investigative leads from evidence materials. [BMB Reports 2016; 49(7): 359-369]. PMID:27099236

  14. Identification of DNA Methylation-Independent Epigenetic Events Underlying Clear Cell Renal Cell Carcinoma.

    Science.gov (United States)

    Becket, Elinne; Chopra, Sameer; Duymich, Christopher E; Lin, Justin J; You, Jueng Soo; Pandiyan, Kurinji; Nichols, Peter W; Siegmund, Kimberly D; Charlet, Jessica; Weisenberger, Daniel J; Jones, Peter A; Liang, Gangning

    2016-04-01

    Alterations in chromatin accessibility independent of DNA methylation can affect cancer-related gene expression, but are often overlooked in conventional epigenomic profiling approaches. In this study, we describe a cost-effective and computationally simple assay called AcceSssIble to simultaneously interrogate DNA methylation and chromatin accessibility alterations in primary human clear cell renal cell carcinomas (ccRCC). Our study revealed significant perturbations to the ccRCC epigenome and identified gene expression changes that were specifically attributed to the chromatin accessibility status whether or not DNA methylation was involved. Compared with commonly mutated genes in ccRCC, such as the von Hippel-Lindau (VHL) tumor suppressor, the genes identified by AcceSssIble comprised distinct pathways and more frequently underwent epigenetic changes, suggesting that genetic and epigenetic alterations could be independent events in ccRCC. Specifically, we found unique DNA methylation-independent promoter accessibility alterations in pathways mimicking VHL deficiency. Overall, this study provides a novel approach for identifying new epigenetic-based therapeutic targets, previously undetectable by DNA methylation studies alone, that may complement current genetic-based treatment strategies. Cancer Res; 76(7); 1954-64. ©2016 AACR. PMID:26759245

  15. Genome-wide analysis of DNA methylation in hepatoblastoma tissues

    Science.gov (United States)

    Cui, Ximao; Liu, Baihui; Zheng, Shan; Dong, Kuiran; Dong, Rui

    2016-01-01

    DNA methylation has a crucial role in cancer biology. In the present study, a genome-wide analysis of DNA methylation in hepatoblastoma (HB) tissues was performed to verify differential methylation levels between HB and normal tissues. As alpha-fetoprotein (AFP) has a critical role in HB, AFP methylation levels were also detected using pyrosequencing. Normal and HB liver tissue samples (frozen tissue) were obtained from patients with HB. Genome-wide analysis of DNA methylation in these tissues was performed using an Infinium HumanMethylation450 BeadChip, and the results were confirmed with reverse transcription-quantitative polymerase chain reaction. The Infinium HumanMethylation450 BeadChip demonstrated distinctively less methylation in HB tissues than in non-tumor tissues. In addition, methylation enrichment was observed in positions near the transcription start site of AFP, which exhibited lower methylation levels in HB tissues than in non-tumor liver tissues. Lastly, a significant negative correlation was observed between AFP messenger RNA expression and DNA methylation percentage, using linear Pearson's R correlation coefficients. The present results demonstrate differential methylation levels between HB and normal tissues, and imply that aberrant methylation of AFP in HB could reflect HB development. Expansion of these findings could provide useful insight into HB biology.

  16. Ageing, chronic alcohol consumption and folate are determinants of genomic DNA methylation, p16 promoter methylation and the expression of p16 in the mouse colon

    Science.gov (United States)

    Elder age and chronic alcohol consumption are important risk factors for the development of colon cancer. Each factor can alter genomic and gene-specific DNA methylation. This study examined the effects of aging and chronic alcohol consumption on genomic and p16-specific methylation, and p16 express...

  17. DNA methylation in diploid inbred lines of potatoes and its possible role in the regulation of heterosis

    OpenAIRE

    Nakamura, Sunao; Hosaka, Kazuyoshi

    2009-01-01

    Self-incompatible diploid potatoes were altered to self-compatible ones by a function of S-locus inhibitor gene and continued selfing generated highly homozygous inbreds. In this study, this process was investigated for the status of DNA methylation by a simple method using genomic DNA digested by methylation-sensitive restriction enzymes prior to RAPD analysis. We detected 31 methylation-sensitive RAPD bands, of which 11 were newly appeared in the selfed progenies, and 6 of them stably inher...

  18. DNA methylation profiles at precancerous stages associated with recurrence of lung adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Takashi Sato

    Full Text Available The aim of this study was to clarify the significance of DNA methylation alterations at precancerous stages of lung adenocarcinoma. Using single-CpG resolution Infinium array, genome-wide DNA methylation analysis was performed in 36 samples of normal lung tissue obtained from patients without any primary lung tumor, 145 samples of non-cancerous lung tissue (N obtained from patients with lung adenocarcinomas, and 145 samples of tumorous tissue (T. Stepwise progression of DNA methylation alterations from normal lung tissue to non-cancerous lung tissue obtained from patients with lung adenocarcinomas, and then tumorous tissue samples, was observed at 3,270 CpG sites, suggesting that non-cancerous lung tissue obtained from patients with lung adenocarcinomas was at precancerous stages with DNA methylation alterations. At CpG sites of 2,083 genes, DNA methylation status in samples of non-cancerous lung tissue obtained from patients with lung adenocarcinomas was significantly correlated with recurrence after establishment of lung adenocarcinomas. Among such recurrence-related genes, 28 genes are normally unmethylated (average β-values based on Infinium assay in normal lung tissue samples was less than 0.2 and their DNA hypermethylation at precancerous stages was strengthened during progression to lung adenocarcinomas (Δβ(T-N>0.1. Among these 28 genes, we focused on 6 for which implications in transcription regulation, apoptosis or cell adhesion had been reported. DNA hypermethylation of the ADCY5, EVX1, GFRA1, PDE9A, and TBX20 genes resulted in reduced mRNA expression in tumorous tissue samples. 5-Aza-2'-deoxycytidine treatment of lung cancer cell lines restored the mRNA expression levels of these 5 genes. Reduced mRNA expression in tumorous tissue samples was significantly correlated with tumor aggressiveness. These data suggest that DNA methylation alterations at precancerous stages determine tumor aggressiveness and outcome through silencing of

  19. DNA Methylation Profiles at Precancerous Stages Associated with Recurrence of Lung Adenocarcinoma

    Science.gov (United States)

    Sato, Takashi; Arai, Eri; Kohno, Takashi; Tsuta, Koji; Watanabe, Shun-ichi; Soejima, Kenzo; Betsuyaku, Tomoko; Kanai, Yae

    2013-01-01

    The aim of this study was to clarify the significance of DNA methylation alterations at precancerous stages of lung adenocarcinoma. Using single-CpG resolution Infinium array, genome-wide DNA methylation analysis was performed in 36 samples of normal lung tissue obtained from patients without any primary lung tumor, 145 samples of non-cancerous lung tissue (N) obtained from patients with lung adenocarcinomas, and 145 samples of tumorous tissue (T). Stepwise progression of DNA methylation alterations from normal lung tissue to non-cancerous lung tissue obtained from patients with lung adenocarcinomas, and then tumorous tissue samples, was observed at 3,270 CpG sites, suggesting that non-cancerous lung tissue obtained from patients with lung adenocarcinomas was at precancerous stages with DNA methylation alterations. At CpG sites of 2,083 genes, DNA methylation status in samples of non-cancerous lung tissue obtained from patients with lung adenocarcinomas was significantly correlated with recurrence after establishment of lung adenocarcinomas. Among such recurrence-related genes, 28 genes are normally unmethylated (average β-values based on Infinium assay in normal lung tissue samples was less than 0.2) and their DNA hypermethylation at precancerous stages was strengthened during progression to lung adenocarcinomas (ΔβT–N>0.1). Among these 28 genes, we focused on 6 for which implications in transcription regulation, apoptosis or cell adhesion had been reported. DNA hypermethylation of the ADCY5, EVX1, GFRA1, PDE9A, and TBX20 genes resulted in reduced mRNA expression in tumorous tissue samples. 5-Aza-2′-deoxycytidine treatment of lung cancer cell lines restored the mRNA expression levels of these 5 genes. Reduced mRNA expression in tumorous tissue samples was significantly correlated with tumor aggressiveness. These data suggest that DNA methylation alterations at precancerous stages determine tumor aggressiveness and outcome through silencing of specific genes

  20. Methylation of cell-free circulating DNA in the diagnosis of cancer

    Directory of Open Access Journals (Sweden)

    Goli eSamimi

    2015-04-01

    Full Text Available A range of molecular alterations found in tumor cells, such as DNA mutations and methylation changes, is also reflected in cell-free circulating DNA (circDNA released from the tumor into the blood, thereby making circDNA an ideal candidate for the basis of a blood-based cancer diagnosis test. In many cancer types, mutations driving tumor development and progression are present in a wide range of oncogenes and tumor suppressor genes. However, even when a gene is consistently mutated in a particular cancer, the mutations can be spread over very large regions of its sequence, making evaluation difficult. This diversity of sequence changes in tumor DNA presents a challenge for the development of blood tests based on DNA mutations for cancer diagnosis. DNA methylation is a common molecular alteration found in many cancer types. Unlike DNA mutations, DNA methylation that can be consistently measured, as it tends to occur in specific regions of the DNA called CpG islands. DNA methylation is reflected within circDNA and therefore detection of tumor-specific DNA methylation in patient plasma is a feasible approach for the development of a blood-based test. Aberrant circDNA methylation has been described in most cancer types and is actively being investigated for clinical applications. A commercial blood test for colorectal cancer based on the methylation of the SEPT9 promoter region in circDNA is under review for approval by the Federal Drug Administration (FDA for clinical use. In this paper, we review the state of research in circDNA methylation as an application for blood-based diagnostic tests in colorectal, breast, lung, pancreatic and ovarian cancers, and we consider some of the future directions and challenges in this field. There are a number of potential circDNA biomarkers currently under investigation, and experience with SEPT9 shows that the time to clinical translation can be relatively rapid, supporting the promise of circDNA as a biomarker.

  1. The impact of endurance exercise on global and AMPK gene-specific DNA methylation.

    Science.gov (United States)

    King-Himmelreich, Tanya S; Schramm, Stefanie; Wolters, Miriam C; Schmetzer, Julia; Möser, Christine V; Knothe, Claudia; Resch, Eduard; Peil, Johannes; Geisslinger, Gerd; Niederberger, Ellen

    2016-05-27

    Alterations in gene expression as a consequence of physical exercise are frequently described. The mechanism of these regulations might depend on epigenetic changes in global or gene-specific DNA methylation levels. The AMP-activated protein kinase (AMPK) plays a key role in maintenance of energy homeostasis and is activated by increases in the AMP/ATP ratio as occurring in skeletal muscles after sporting activity. To analyze whether exercise has an impact on the methylation status of the AMPK promoter, we determined the AMPK methylation status in human blood samples from patients before and after sporting activity in the context of rehabilitation as well as in skeletal muscles of trained and untrained mice. Further, we examined long interspersed nuclear element 1 (LINE-1) as indicator of global DNA methylation changes. Our results revealed that light sporting activity in mice and humans does not alter global DNA methylation but has an effect on methylation of specific CpG sites in the AMPKα2 gene. These regulations were associated with a reduced AMPKα2 mRNA and protein expression in muscle tissue, pointing at a contribution of the methylation status to AMPK expression. Taken together, these results suggest that exercise influences AMPKα2 gene methylation in human blood and eminently in the skeletal muscle of mice and therefore might repress AMPKα2 gene expression. PMID:27103439

  2. Selective carboxyl methylation of structurally altered calmodulins in Xenopus oocytes

    International Nuclear Information System (INIS)

    The eucaryotic protein carboxyl methyltransferase specifically modifies atypical D-aspartyl and L-isoaspartyl residues which are generated spontaneously as proteins age. The selectivity of the enzyme for altered proteins in intact cells was explored by co-injecting Xenopus laevis oocytes with S-adenosyl-L-[methyl-3H]methionine and structurally altered calmodulins generated during a 14-day preincubation in vitro. Control experiments indicated that the oocyte protein carboxyl methyltransferase was not saturated with endogenous substrates, since protein carboxyl methylation rates could be stimulated up to 8-fold by increasing concentrations of injected calmodulin. The oocyte protein carboxyl methyltransferase showed strong selectivities for bovine brain and bacterially synthesized calmodulins which had been preincubated in the presence of 1 mM EDTA relative to calmodulins which had been preincubated with 1 mM CaCl2. Radioactive methyl groups were incorporated into base-stable linkages with recombinant calmodulin as well as into carboxyl methyl esters following its microinjection into oocytes. This base-stable radioactivity most likely represents the trimethylation of lysine 115, a highly conserved post-translational modification which is present in bovine and Xenopus but not in bacterially synthesized calmodulin. Endogenous oocyte calmodulin incorporates radioactivity into both carboxyl methyl esters and into base-stable linkages following microinjection of oocytes with S-adenosyl-[methyl-3H]methionine alone. The rate of oocyte calmodulin carboxyl methylation in injected oocytes is calculated to be similar to that of lysine 115 trimethylation, suggesting that the rate of calmodulin carboxyl methylation is similar to that of calmodulin synthesis. At steady state, oocyte calmodulin contains approximately 0.0002 esters/mol of protein, which turn over rapidly

  3. Alternation of histone and DNA methylation in human atherosclerotic carotid plaques.

    Science.gov (United States)

    Greißel, A; Culmes, M; Napieralski, R; Wagner, E; Gebhard, H; Schmitt, M; Zimmermann, A; Eckstein, H-H; Zernecke, A; Pelisek, J

    2015-08-01

    Little is known about epigenetics and its possible role in atherosclerosis. We here analysed histone and DNA methylation and the expression of corresponding methyltransferases in early and advanced human atherosclerotic carotid lesions in comparison to healthy carotid arteries. Western Blotting was performed on carotid plaques from our biobank with early (n=60) or advanced (n=60) stages of atherosclerosis and healthy carotid arteries (n=12) to analyse di-methylation patterns of histone H3 at positions K4, K9 and K27. In atherosclerotic lesions, di-methylation of H3K4 was unaltered and that of H3K9 and H3K27 significantly decreased compared to control arteries. Immunohistochemistry revealed an increased appearance of di-methylated H3K4 in smooth muscle cells (SMCs), a decreased expression of di-methylated H3K9 in SMCs and inflammatory cells, and reduced di-methylated H3K27 in inflammatory cells in advanced versus early atherosclerosis. Expression of corresponding histone methyltransferases MLL2 and G9a was increased in advanced versus early atherosclerosis. Genomic DNA hypomethylation, as determined by PCR for methylated LINE1 and SAT-alpha, was observed in early and advanced plaques compared to control arteries and in cell-free serum of patients with high-grade carotid stenosis compared to healthy volunteers. In contrast, no differences in DNA methylation were observed in blood cells. Expression of DNA-methyltransferase DNMT1 was reduced in atherosclerotic plaques versus controls, DNMT3A was undetectable, and DNMT3B not altered. DNA-demethylase TET1 was increased in atherosclerosisc plaques. The extent of histone and DNA methylation and expression of some corresponding methyltransferases are significantly altered in atherosclerosis, suggesting a possible contribution of epigenetics in disease development. PMID:25993995

  4. DNA methylation dynamics in muscle development and disease

    Directory of Open Access Journals (Sweden)

    Monica Suelves

    2015-03-01

    Full Text Available DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts revealing a more dynamic regulation than originally thought, since active DNA methylation and demethylation occur during cellular differentiation and tissue specification. Satellite cells are the primary stem cells in adult skeletal muscle and are responsible for postnatal muscle growth, hypertrophy, and muscle regeneration. This review outlines the published data regarding DNA methylation changes along the skeletal muscle program, in both physiological and pathological conditions, to better understand the epigenetic mechanisms that control myogenesis

  5. DNA methylation dynamics in muscle development and disease.

    Science.gov (United States)

    Carrió, Elvira; Suelves, Mònica

    2015-01-01

    DNA methylation is an essential epigenetic modification for mammalian development and is crucial for the establishment and maintenance of cellular identity. Traditionally, DNA methylation has been considered as a permanent repressive epigenetic mark. However, the application of genome-wide approaches has allowed the analysis of DNA methylation in different genomic contexts revealing a more dynamic regulation than originally thought, since active DNA methylation and demethylation occur during cellular differentiation and tissue specification. Satellite cells are the primary stem cells in adult skeletal muscle and are responsible for postnatal muscle growth, hypertrophy, and muscle regeneration. This review outlines the published data regarding DNA methylation changes along the skeletal muscle program, in both physiological and pathological conditions, to better understand the epigenetic mechanisms that control myogenesis. PMID:25798107

  6. Somatic mutations in glioblastoma are associated with methylguanine-DNA methyltransferase methylation

    OpenAIRE

    McDonald, Kerrie L.; Tabone, Tania; Nowak, Anna K; Erber, Wendy N.

    2015-01-01

    The high level of methylguanine-DNA methyltransferase (MGMT) in glioblastoma is responsible for resistance to alkylating agents, such as temozolomide (TMZ). In glioblastomas with a methylated MGMT promoter, MGMT deficiency is presumed, resulting in an enhanced effect of TMZ. The aim of the present study was to investigate whether genomic alterations work synergistically with MGMT methylation status and contribute to the response to treatment and overall prognosis in glioblastoma. The current ...

  7. DNA methylation profiles in placenta and its association with gestational diabetes mellitus.

    Science.gov (United States)

    Rong, C; Cui, X; Chen, J; Qian, Y; Jia, R; Hu, Y

    2015-05-01

    Emerging evidences indicate that placenta plays a critical role in gestational diabetes mellitus (GDM). DNA methylation could be associated with altered placental development and functions. This study is to uncover the genome-wide DNA methylation patterns in this disorder. DNA methylation was measured at >385,000 CpG sites using methylated DNA immunoprecipitation (MeDIP) and a huamn CpG island plus promoter microarray. We totally identified 6,641 differentially methylated regions (DMRs) targeting 3,320 genes, of which 2,729 DMRs targeting 1,399 genes, showed significant hypermethylation in GDM relative to the controls, whereas 3,912 DMRs targeting 1,970 genes showed significant hypomethylation. Functional analysis divided these genes into different functional networks, which mainly involved in the pathways of cell growth and death regulation, immune and inflammatory response and nervous system development. In addition, the methylation profiles and expressions of 4 loci (RBP4, GLUT3, Resistin and PPARα) were validated by BSP for their higher log2 ratio and potential functions with energy metabolism. This study demonstrates aberrant patterns of DNA methylation in GDM which may be involved in the pathophysiology of GDM and reflect the fetal development. Future work will assess the potential prognostic and therapeutic value for these findings in GDM. PMID:25962407

  8. Assessing the efficiency and significance of Methylated DNA Immunoprecipitation (MeDIP) assays in using in vitro methylated genomic DNA

    OpenAIRE

    Jia Jinsong; Pekowska Aleksandra; Jaeger Sebastien; Benoukraf Touati; Ferrier Pierre; Spicuglia Salvatore

    2010-01-01

    Abstract Background DNA methylation contributes to the regulation of gene expression during development and cellular differentiation. The recently developed Methylated DNA ImmunoPrecipitation (MeDIP) assay allows a comprehensive analysis of this epigenetic mark at the genomic level in normal and disease-derived cells. However, estimating the efficiency of the MeDIP technique is difficult without previous knowledge of the methylation status of a given cell population. Attempts to circumvent th...

  9. Methylation of cell-free circulating DNA in the diagnosis of cancer

    OpenAIRE

    Warton, Kristina; Samimi, Goli

    2015-01-01

    A range of molecular alterations found in tumor cells, such as DNA mutations and DNA methylation, is reflected in cell-free circulating DNA (circDNA) released from the tumor into the blood, thereby making circDNA an ideal candidate for the basis of a blood-based cancer diagnosis test. In many cancer types, mutations driving tumor development and progression are present in a wide range of oncogenes and tumor suppressor genes. However, even when a gene is consistently mutated in a particular ca...

  10. Dynamics of DNA methylation in recent human and great ape evolution.

    Directory of Open Access Journals (Sweden)

    Irene Hernando-Herraez

    Full Text Available DNA methylation is an epigenetic modification involved in regulatory processes such as cell differentiation during development, X-chromosome inactivation, genomic imprinting and susceptibility to complex disease. However, the dynamics of DNA methylation changes between humans and their closest relatives are still poorly understood. We performed a comparative analysis of CpG methylation patterns between 9 humans and 23 primate samples including all species of great apes (chimpanzee, bonobo, gorilla and orangutan using Illumina Methylation450 bead arrays. Our analysis identified ∼800 genes with significantly altered methylation patterns among the great apes, including ∼170 genes with a methylation pattern unique to human. Some of these are known to be involved in developmental and neurological features, suggesting that epigenetic changes have been frequent during recent human and primate evolution. We identified a significant positive relationship between the rate of coding variation and alterations of methylation at the promoter level, indicative of co-occurrence between evolution of protein sequence and gene regulation. In contrast, and supporting the idea that many phenotypic differences between humans and great apes are not due to amino acid differences, our analysis also identified 184 genes that are perfectly conserved at protein level between human and chimpanzee, yet show significant epigenetic differences between these two species. We conclude that epigenetic alterations are an important force during primate evolution and have been under-explored in evolutionary comparative genomics.

  11. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Eun; Cho, Eun Ju; Kim, Ji Hong; Chung, Byung Yeoup; Kim, Jin Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  12. Epigenetic changes of Arabidopsis genome associated with altered DNA methyltransferase and demethylase expressions after gamma irradiation

    International Nuclear Information System (INIS)

    DNA methylation at carbon 5 of cytosines is a hall mark of epigenetic inactivation and heterochromatin in both plants and mammals. In Arabidopsis, DNA methylation has two roles that protect the genome from selfish DNA elements and regulate gene expression. Plant genome has three types of DNA methyltransferase, METHYLTRANSFERASE 1 (MET1), DOMAINREARRANGED METHYLASE (DRM) and CHROMOMETHYLASE 3 (CMT3) that are capable of methylating CG, CHG (where H is A, T, or C) and CHH sites, respectively. MET1 is a maintenance DNA methyltransferase that controls CG methylation. Two members of the DRM family, DRM1 and DRM2, are responsible for de novo methylation of CG, CHG, and CHH sites but show a preference for CHH sites. Finally, CMT3 principally carries out CHG methylation and is involved in both de novo methylation and maintenance. Alternatively, active DNA demethylation may occur through the glycosylase activity by removing the methylcytosines from DNA. It may have essential roles in preventing transcriptional silencing of transgenes and endogenous genes and in activating the expression of imprinted genes. DNA demetylation in Arabidopsis is mediated by the DEMETER (DME) family of bifunctional DNA glycosylase. Three targets of DME are MEA (MEDEA), FWA (FLOWERING WAGENINGEN), and FIS2 (FERTILIZATION INDEPENDENT SEED 2). The DME family contains DEMETER-LIKE 2 (DML2), DML3, and REPRESSOR OF SILENING 1 (ROS1). DNA demetylation by ROS1, DML2, and DML3 protect the hypermethylation of specific genome loci. ROS1 is necessary to suppress the promoter methylation and the silencing of endogenous genes. In contrast, the function of DML2 and DML3 has not been reported. Several recent studies have suggested that epigenetic alterations such as change in DNA methylation and histone modification should be caused in plant genomes upon exposure to ionizing radiation. However, there is a lack of data exploring the underlying mechanisms. Therefore, the present study aims to characterize and

  13. DNA methylation analysis using CpG microarrays is impaired in benzopyrene exposed cells

    International Nuclear Information System (INIS)

    Epigenetic alterations have emerged as a key mechanism involved in tumorigenesis. These disruptions are partly due to environmental factors that change normal DNA methylation patterns necessary for transcriptional regulation and chromatin compaction. Microarray technologies are allowing environmentally susceptible epigenetic patterns to be mapped and the precise targets of environmentally induced alterations to be identified. Previously, we observed BaP-induced epigenetic events and cell cycle disruptions in breast cancer cell lines that included time- and concentration-dependent loss of proliferation as well as sequence-specific hypo- and hypermethylation events. In this present report, we further characterized epigenetic changes in BaP-exposed MCF-7 cells. We analyzed DNA methylation on a CpG island microarray platform with over 5400 unique genomic regions. Depleted and enriched microarray targets, representative of putative DNA methylation changes, were identified across the genome; however, subsequent sodium bisulfite analyses revealed no changes in DNA methylation at a number of these loci. Instead, we found that the identification of DNA methylation changes using this restriction enzyme-based microarray approach corresponded with the regions of DNA bound by the BaP derived DNA adducts. This DNA adduct formation occurs at both methylated and unmethylated CpG dinucleotides and affects PCR amplification during sample preparation. Our data suggest that caution should be exercised when interpreting data from comparative microarray experiments that rely on enzymatic reactions. These results are relevant to genome screening approaches involving environmental exposures in which DNA adduct formation at specific nucleotide sites may bias target acquisition and compromise the correct identification of epigenetically responsive genes

  14. DNA methylation of SPARC and chronic low back pain

    Directory of Open Access Journals (Sweden)

    Dashwood Thomas

    2011-08-01

    Full Text Available Abstract Background The extracellular matrix protein SPARC (Secreted Protein, Acidic, Rich in Cysteine has been linked to degeneration of the intervertebral discs and chronic low back pain (LBP. In humans, SPARC protein expression is decreased as a function of age and disc degeneration. In mice, inactivation of the SPARC gene results in the development of accelerated age-dependent disc degeneration concurrent with age-dependent behavioral signs of chronic LBP. DNA methylation is the covalent modification of DNA by addition of methyl moieties to cytosines in DNA. DNA methylation plays an important role in programming of gene expression, including in the dynamic regulation of changes in gene expression in response to aging and environmental signals. We tested the hypothesis that DNA methylation down-regulates SPARC expression in chronic LBP in pre-clinical models and in patients with chronic LBP. Results Our data shows that aging mice develop anatomical and behavioral signs of disc degeneration and back pain, decreased SPARC expression and increased methylation of the SPARC promoter. In parallel, we show that human subjects with back pain exhibit signs of disc degeneration and increased methylation of the SPARC promoter. Methylation of either the human or mouse SPARC promoter silences its activity in transient transfection assays. Conclusions This study provides the first evidence that DNA methylation of a single gene plays a role in chronic pain in humans and animal models. This has important implications for understanding the mechanisms involved in chronic pain and for pain therapy.

  15. Increased DNA methylation of neuropsychiatric genes occurs in borderline personality disorder.

    Science.gov (United States)

    Dammann, Gerhard; Teschler, Stefanie; Haag, Tanja; Altmüller, Franziska; Tuczek, Frederik; Dammann, Reinhard H

    2011-12-01

    Borderline personality disorder (BPD) is a complex psychiatric disease of increasing importance. Epigenetic alterations are hallmarks for altered gene expression and could be involved in the etiology of BPD. In our study we analyzed DNA methylation patterns of 14 neuropsychiatric genes (COMT, DAT1, GABRA1, GNB3, GRIN2B, HTR1B, HTR2A, 5-HTT, MAOA, MAOB, NOS1, NR3C1, TPH1 and TH). DNA methylation was analyzed by bisulfite restriction analysis and pyrosequencing in whole blood samples of patients diagnosed with DSM-IV BPD and in controls. Aberrant methylation was not detectable using bisulfite restriction analysis, but a significantly increased methylation of HTR2A, NR3C1, MAOA, MAOB and soluble COMT (S-COMT) was revealed for BPD patients using pyrosequencing. For HTR2A the average methylation of four CpG sites was 0.8% higher in BPD patients compared to controls (p = 0.002). The average methylation of NR3C1 was 1.8% increased in BPD patients compared to controls (p = 0.0003) and was higher at 2 out of 8 CpGs (p ≤ 0.04). In females, an increased average methylation (1.5%) of MAOA was observed in BPD patients compared to controls (p = 0.046). A similar trend (1.4% higher methylation) was observed for MAOB in female BPD patients and increased methylation was significant for 1 out of 6 CpG sites. For S-COMT, a higher methylation of 2 out of 4 CpG sites was revealed in BPD patients (p ≤ 0.02). In summary, methylation signatures of several promoter regions were established and a significant increased average methylation (1.7%) occurred in blood samples of BPD patients (p < 0.0001). Our data suggest that aberrant epigenetic regulation of neuropsychiatric genes may contribute to the pathogenesis of BPD. PMID:22139575

  16. Copy Number Alterations and Methylation in Ewing's Sarcoma

    Directory of Open Access Journals (Sweden)

    Mona S. Jahromi

    2011-01-01

    Full Text Available Ewing's sarcoma is the second most common bone malignancy affecting children and young adults. The prognosis is especially poor in metastatic or relapsed disease. The cell of origin remains elusive, but the EWS-FLI1 fusion oncoprotein is present in the majority of cases. The understanding of the molecular basis of Ewing's sarcoma continues to progress slowly. EWS-FLI1 affects gene expression, but other factors must also be at work such as mutations, gene copy number alterations, and promoter methylation. This paper explores in depth two molecular aspects of Ewing's sarcoma: copy number alterations (CNAs and methylation. While CNAs consistently have been reported in Ewing's sarcoma, their clinical significance has been variable, most likely due to small sample size and tumor heterogeneity. Methylation is thought to be important in oncogenesis and balanced karyotype cancers such as Ewing's, yet it has received only minimal attention in prior studies. Future CNA and methylation studies will help to understand the molecular basis of this disease.

  17. Genome-wide age-related changes in DNA methylation and gene expression in human PBMCs

    NARCIS (Netherlands)

    Steegenga, W.T.; Boekschoten, M.V.; Lute, C.; Hooiveld, G.J.E.J.; Groot, de P.J.; Morris, T.J.; Teschendorff, A.E.; Butcher, L.M.; Beck, S.; Müller, M.R.

    2014-01-01

    Aging is a progressive process that results in the accumulation of intra- and extracellular alterations that in turn contribute to a reduction in health. Age-related changes in DNA methylation have been reported before and may be responsible for aging-induced changes in gene expression, although a c

  18. The DNA methylation events in normal and cloned rabbit embryos

    Institute of Scientific and Technical Information of China (English)

    TaoChen; Yan-LingZhang; YanJiang; Shu-ZhenLiu; HeideSchatten; Da-YuanChen; Qing-YuanSun

    2005-01-01

    To study the DNA methylation events in normal and cloned rabbit embryos, we investigated the methylation status of a satellite seqnence and the promoter region of a single-copy gene using bisulfite-sequencing technology. During normal rabbit embryo development, both sequences maintained hypermethylation status until the 8- to 16-cell stage when progressive demethylation took place. In cloned embryos, the single-copy gene promoter sequence was rapidly demethylated and preco-ciously de novo methylated, while the satellite sequence mainrained the donor-type methylation status in all examined stages. Our results indicate that unique sequences as well as satellitesequences may have aberrant methylation patterns in cloned embryos.

  19. The Role of Cytosine Methylation on Charge Transport through a DNA Strand

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Jianqing [Univ. of Washington, Seattle, WA (United States); Govind, Niranjan [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anantram, M. P. [Univ. of Washington, Seattle, WA (United States)

    2015-09-04

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modifi-cation remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Buttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. Specifically, we compare the results generated with the widely used B3LYP exchange-correlation (XC) functional and CAM-B3LYP based tuned range-separated hybrid density functional. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that with both functionals, the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and interstrand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital (HOMO) level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with both functionals. We also study the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit. Our results suggest that the effect of the two different functionals is to alter the on-site energies of the DNA bases at the HOMO level, while the transport properties don't depend much on the two

  20. DNA methylation profiles in preeclampsia and healthy control placentas.

    Science.gov (United States)

    Yeung, Kristen R; Chiu, Christine L; Pidsley, Ruth; Makris, Angela; Hennessy, Annemarie; Lind, Joanne M

    2016-05-15

    Preeclampsia is a hypertensive disorder of pregnancy that affects 3-5% of all pregnancies. There is evidence to suggest that epigenetic mechanisms, such as DNA methylation, play a role in placental development and function. This study compared DNA methylation profiles of placentas from preeclampsia-affected pregnancies with placentas from healthy pregnancies to identify gene-specific changes in DNA methylation that may contribute to the development of preeclampsia. The methylation status of eight placental biopsies taken from preeclampsia-affected and 16 healthy pregnancies was analyzed using the Illumina Infinium Methylation 450 BeadChip array. Bisulfite pyrosequencing was used to confirm regions found to be differentially methylated between preeclampsia and healthy placentas. A total of 303 differentially methylated regions, 214 hypermethylated and 89 hypomethylated, between preeclampsia cases and controls were identified, after adjusting for gestational age (adjusted P Functional annotation found cell adhesion, wingless type MMTV Integration Site family member 2 (Wnt) signaling pathway, and regulation of transcription were significantly enriched in these gene regions. Hypermethylation of WNT2, sperm equatorial segment protein (SPESP1), NADPH oxidase 5 (NOX5), and activated leukocyte cell adhesion molecule (ALCAM) in preeclampsia placentas was confirmed with pyrosequencing. This study found differences in methylation in gene regions involved in cell signaling (WNT2), fertilization and implantation (SPESP1), reactive oxygen species signaling (NOX5), and cell adhesion (ALCAM). These results build on recently published studies that have reported significant differences in DNA methylation in preeclampsia placentas. PMID:26968548

  1. Global DNA methylation responses to low dose radiation exposure

    International Nuclear Information System (INIS)

    At high radiation doses, breaks in the DNA are considered the critical lesions in initiation of radiation- induced cancer. However, at the very low radiation doses relevant for the general public, the induction of such breaks will be rare, and other changes to the DNA such as DNA methylation may play a role in radiation responses. DNA methylation is the addition of a methyl group to cytosine in the DNA, usually where a cytosine is adjacent to a guanine (CpG). Methylation affects the way in which genes are read, and is inherited from cell to cell on replication. It is known that high dose radiation can cause changes in methylation in the genome but less is known about the effect of low dose radiation on methylation. We developed a sensitive assay to measure the levels of DNA methylation across the mouse genome by analysing a stretch of DNA sequence within Long Interspersed Nuclear Elements-1(LINE1) that comprise a very large proportion of the mouse and human genomes. Using bisulphite modification followed by quantitative real-time polymerase chain reaction (PCP) and high- resolution melt analysis, a very large pool of DNA sequences from throughout the genome can be studied indicating gain or loss of methylation. We validated the assay in vitro using the chemical demethylating agent 5'-aza-2' -deoxycytidine with changes at as few as 3% of CpG's being reproducibly detected. We have demonstrated a difference in the baseline levels of in vivo DNA methylation between male and female mice and between different tissues. Our initial results suggest no significant short-term or long-term changes in global DNA methylation after low dose whole-body X-radiation of 10 -Gy or 10 mGy, with a significant transient increase in DNA methylation observed 1 day after a high dose of 1 Gy. If the low radiation doses tested are inducing changes in global DNA methylation, these would appear to be smaller than the natural variation observed between the sexes and following the general stress

  2. Tissue-specific patterns of allelically-skewed DNA methylation

    Science.gov (United States)

    Marzi, Sarah J.; Meaburn, Emma L.; Dempster, Emma L.; Lunnon, Katie; Paya-Cano, Jose L.; Smith, Rebecca G.; Volta, Manuela; Troakes, Claire; Schalkwyk, Leonard C.; Mill, Jonathan

    2016-01-01

    ABSTRACT While DNA methylation is usually thought to be symmetrical across both alleles, there are some notable exceptions. Genomic imprinting and X chromosome inactivation are two well-studied sources of allele-specific methylation (ASM), but recent research has indicated a more complex pattern in which genotypic variation can be associated with allelically-skewed DNA methylation in cis. Given the known heterogeneity of DNA methylation across tissues and cell types we explored inter- and intra-individual variation in ASM across several regions of the human brain and whole blood from multiple individuals. Consistent with previous studies, we find widespread ASM with > 4% of the ∼220,000 loci interrogated showing evidence of allelically-skewed DNA methylation. We identify ASM flanking known imprinted regions, and show that ASM sites are enriched in DNase I hypersensitivity sites and often located in an extended genomic context of intermediate DNA methylation. We also detect examples of genotype-driven ASM, some of which are tissue-specific. These findings contribute to our understanding of the nature of differential DNA methylation across tissues and have important implications for genetic studies of complex disease. As a resource to the community, ASM patterns across each of the tissues studied are available in a searchable online database: http://epigenetics.essex.ac.uk/ASMBrainBlood. PMID:26786711

  3. Hemi-methylated DNA regulates DNA methylation inheritance through allosteric activation of H3 ubiquitylation by UHRF1

    Science.gov (United States)

    Harrison, Joseph S; Cornett, Evan M; Goldfarb, Dennis; DaRosa, Paul A; Li, Zimeng M; Yan, Feng; Dickson, Bradley M; Guo, Angela H; Cantu, Daniel V; Kaustov, Lilia; Brown, Peter J; Arrowsmith, Cheryl H; Erie, Dorothy A; Major, Michael B; Klevit, Rachel E; Krajewski, Krzysztof; Kuhlman, Brian; Strahl, Brian D; Rothbart, Scott B

    2016-01-01

    The epigenetic inheritance of DNA methylation requires UHRF1, a histone- and DNA-binding RING E3 ubiquitin ligase that recruits DNMT1 to sites of newly replicated DNA through ubiquitylation of histone H3. UHRF1 binds DNA with selectivity towards hemi-methylated CpGs (HeDNA); however, the contribution of HeDNA sensing to UHRF1 function remains elusive. Here, we reveal that the interaction of UHRF1 with HeDNA is required for DNA methylation but is dispensable for chromatin interaction, which is governed by reciprocal positive cooperativity between the UHRF1 histone- and DNA-binding domains. HeDNA recognition activates UHRF1 ubiquitylation towards multiple lysines on the H3 tail adjacent to the UHRF1 histone-binding site. Collectively, our studies are the first demonstrations of a DNA-protein interaction and an epigenetic modification directly regulating E3 ubiquitin ligase activity. They also define an orchestrated epigenetic control mechanism involving modifications both to histones and DNA that facilitate UHRF1 chromatin targeting, H3 ubiquitylation, and DNA methylation inheritance. DOI: http://dx.doi.org/10.7554/eLife.17101.001 PMID:27595565

  4. Methylation of DNA of maize and wheat grains during fumigation with methyl bromide

    International Nuclear Information System (INIS)

    The possibility that methylation of DNA occurs during fumigation of foodstuffs with methyl bromide was investigated in two grains, maize and wheat, using 14C-labeled fumigant. 7-Methylguanine and 1-methyladenine were identified as major products along with lesser amounts of 3-methylcytosine and 3-methyladenine. 3-Methylguanine was probably also formed in minor amounts. Although less than 1% of the bound radioactivity was associated with the DNA isolated, the results indicated that 0.5-1% of the guanine residues in the DNA of these grains was methylated during treatment with 48 mg/L methylbromide for 72 h

  5. DNA methylation at hepatitis B viral integrants is associated with methylation at flanking human genomic sequences

    Science.gov (United States)

    Watanabe, Yoshiyuki; Yamamoto, Hiroyuki; Oikawa, Ritsuko; Toyota, Minoru; Yamamoto, Masakazu; Kokudo, Norihiro; Tanaka, Shinji; Arii, Shigeki; Yotsuyanagi, Hiroshi; Koike, Kazuhiko; Itoh, Fumio

    2015-01-01

    Integration of DNA viruses into the human genome plays an important role in various types of tumors, including hepatitis B virus (HBV)–related hepatocellular carcinoma. However, the molecular details and clinical impact of HBV integration on either human or HBV epigenomes are unknown. Here, we show that methylation of the integrated HBV DNA is related to the methylation status of the flanking human genome. We developed a next-generation sequencing-based method for structural methylation analysis of integrated viral genomes (denoted G-NaVI). This method is a novel approach that enables enrichment of viral fragments for sequencing using unique baits based on the sequence of the HBV genome. We detected integrated HBV sequences in the genome of the PLC/PRF/5 cell line and found variable levels of methylation within the integrated HBV genomes. Allele-specific methylation analysis revealed that the HBV genome often became significantly methylated when integrated into highly methylated host sites. After integration into unmethylated human genome regions such as promoters, however, the HBV DNA remains unmethylated and may eventually play an important role in tumorigenesis. The observed dynamic changes in DNA methylation of the host and viral genomes may functionally affect the biological behavior of HBV. These findings may impact public health given that millions of people worldwide are carriers of HBV. We also believe our assay will be a powerful tool to increase our understanding of the various types of DNA virus-associated tumorigenesis. PMID:25653310

  6. DNA methylation analysis reveals distinct methylation signatures in pediatric germ cell tumors

    International Nuclear Information System (INIS)

    Aberrant DNA methylation is a prominent feature of many cancers, and may be especially relevant in germ cell tumors (GCTs) due to the extensive epigenetic reprogramming that occurs in the germ line during normal development. We used the Illumina GoldenGate Cancer Methylation Panel to compare DNA methylation in the three main histologic subtypes of pediatric GCTs (germinoma, teratoma and yolk sac tumor (YST); N = 51) and used recursively partitioned mixture models (RPMM) to test associations between methylation pattern and tumor and demographic characteristics. We identified genes and pathways that were differentially methylated using generalized linear models and Ingenuity Pathway Analysis. We also measured global DNA methylation at LINE1 elements and evaluated methylation at selected imprinted loci using pyrosequencing. Methylation patterns differed by tumor histology, with 18/19 YSTs forming a distinct methylation class. Four pathways showed significant enrichment for YSTs, including a human embryonic stem cell pluripotency pathway. We identified 190 CpG loci with significant methylation differences in mature and immature teratomas (q < 0.05), including a number of CpGs in stem cell and pluripotency-related pathways. Both YST and germinoma showed significantly lower methylation at LINE1 elements compared with normal adjacent tissue while there was no difference between teratoma (mature and immature) and normal tissue. DNA methylation at imprinted loci differed significantly by tumor histology and location. Understanding methylation patterns may identify the developmental stage at which the GCT arose and the at-risk period when environmental exposures could be most harmful. Further, identification of relevant genetic pathways could lead to the development of new targets for therapy

  7. Quantitation of DNA methylation by melt curve analysis

    Directory of Open Access Journals (Sweden)

    Jones Michael E

    2009-04-01

    Full Text Available Abstract Background Methylation of DNA is a common mechanism for silencing genes, and aberrant methylation is increasingly being implicated in many diseases such as cancer. There is a need for robust, inexpensive methods to quantitate methylation across a region containing a number of CpGs. We describe and validate a rapid, in-tube method to quantitate DNA methylation using the melt data obtained following amplification of bisulfite modified DNA in a real-time thermocycler. Methods We first describe a mathematical method to normalise the raw fluorescence data generated by heating the amplified bisulfite modified DNA. From this normalised data the temperatures at which melting begins and finishes can be calculated, which reflect the less and more methylated template molecules present respectively. Also the T50, the temperature at which half the amplicons are melted, which represents the summative methylation of all the CpGs in the template mixture, can be calculated. These parameters describe the methylation characteristics of the region amplified in the original sample. Results For validation we used synthesized oligonucleotides and DNA from fresh cells and formalin fixed paraffin embedded tissue, each with known methylation. Using our quantitation we could distinguish between unmethylated, partially methylated and fully methylated oligonucleotides mixed in varying ratios. There was a linear relationship between T50 and the dilution of methylated into unmethylated DNA. We could quantitate the change in methylation over time in cell lines treated with the demethylating drug 5-aza-2'-deoxycytidine, and the differences in methylation associated with complete, clonal or no loss of MGMT expression in formalin fixed paraffin embedded tissues. Conclusion We have validated a rapid, simple in-tube method to quantify methylation which is robust and reproducible, utilizes easily designed primers and does not need proprietary algorithms or software. The

  8. Horizontal transfer of DNA methylation patterns into bacterial chromosomes.

    Science.gov (United States)

    Shin, Jung-Eun; Lin, Chris; Lim, Han N

    2016-05-19

    Horizontal gene transfer (HGT) is the non-inherited acquisition of novel DNA sequences. HGT is common and important in bacteria because it enables the rapid generation of new phenotypes such as antibiotic resistance. Here we show that in vivo and in vitro DNA methylation patterns can be horizontally transferred into bacterial chromosomes to program cell phenotypes. The experiments were performed using a synthetic system in Escherichia coli where different DNA methylation patterns within the cis-regulatory sequence of the agn43 gene turn on or off a fluorescent reporter (CFP). With this system we demonstrated that DNA methylation patterns not only accompany the horizontal transfer of genes into the bacterial cytoplasm but can be transferred into chromosomes by: (i) bacteriophage P1 transduction; and (ii) transformation of extracellular synthetic DNA. We also modified the experimental system by replacing CFP with the SgrS small RNA, which regulates glucose and methyl α-D-glucoside uptake, and showed that horizontally acquired DNA methylation patterns can increase or decrease cell fitness. That is, horizontally acquired DNA methylation patterns can result in the selection for and against cells that have HGT. Findings from these proof-of-concept experiments have applications in synthetic biology and potentially broad implications for bacterial adaptation and evolution. PMID:27084942

  9. Intratumor DNA methylation heterogeneity reflects clonal evolution in aggressive prostate cancer

    DEFF Research Database (Denmark)

    Brocks, David; Assenov, Yassen; Minner, Sarah; Bogatyrova, Olga; Simon, Ronald; Koop, Christina; Oakes, Christopher; Zucknick, Manuela; Lipka, Daniel Bernhard; Weischenfeldt, Joachim; Feuerbach, Lars; Cowper-Sal Lari, Richard; Lupien, Mathieu; Brors, Benedikt; Korbel, Jan; Schlomm, Thorsten; Tanay, Amos; Sauter, Guido; Gerhäuser, Clarissa; Plass, Christoph

    2014-01-01

    Despite much evidence on epigenetic abnormalities in cancer, it is currently unclear to what extent epigenetic alterations can be associated with tumors' clonal genetic origins. Here, we show that the prostate intratumor heterogeneity in DNA methylation and copy-number patterns can be explained by....... Furthermore, we show cases of genetic or epigenetic convergent evolution and highlight the diversity in the evolutionary origins and aberration spectrum between tumor and metastatic subclones. Importantly, DNA methylation can complement genetic data by serving as a proxy for activity at regulatory domains, as...

  10. Patterns of DNA methylation in development, division of labor and hybridization in an ant with genetic caste determination.

    Directory of Open Access Journals (Sweden)

    Chris R Smith

    hybridization appear to have altered genomic methylation levels suggesting a possible link between changes in overall DNA methylation and the origin and regulation of genetic caste determination in P. barbatus.

  11. Research Advances in Pituitary Adenoma and DNA Methylation.

    Science.gov (United States)

    Wei, Zhen-Qing; Li, Yang; Li, Wei-Hua; Lou, Jia-Cheng; Zhang, Bo

    2016-08-01

    DNA methylation is closely related to the genesis and development of pituitary adenoma. Studies have shown that high methylation in the promoter region of potassium voltage-gated chanel,shaker related subfamily,beta member 2,O-6-methylguanine-DNA methyltransferase,echinoderm microtubule associated protein like 2 ,ras homolog family member D ,homeobox B1 ,NNAT, and P16 inhibits the expression of these genes and regulates of the proliferation of pituitary adenoma. DNA methylation is also closely related to invasive pituitary adenoma. Therefore,further study on molecular mechanism of DNA methylation of pituitary adenoma will offer a new strategy for the diagnosis and treatment of pituitary adenoma. PMID:27594164

  12. DNA methylation studies using twins: what are they telling us?

    OpenAIRE

    Bell, Jordana T.; Spector, Tim D

    2012-01-01

    Recent studies have identified both heritable DNA methylation effects and differential methylation in disease-discordant identical twins. Larger sample sizes, replication, genetic-epigenetic analyses and longitudinal assays are now needed to establish the role of epigenetic variants in disease.

  13. LRpath analysis reveals common pathways dysregulated via DNA methylation across cancer types

    Directory of Open Access Journals (Sweden)

    Kim Jung H

    2012-10-01

    Full Text Available Abstract Background The relative contribution of epigenetic mechanisms to carcinogenesis is not well understood, including the extent to which epigenetic dysregulation and somatic mutations target similar genes and pathways. We hypothesize that during carcinogenesis, certain pathways or biological gene sets are commonly dysregulated via DNA methylation across cancer types. The ability of our logistic regression-based gene set enrichment method to implicate important biological pathways in high-throughput data is well established. Results We developed a web-based gene set enrichment application called LRpath with clustering functionality that allows for identification and comparison of pathway signatures across multiple studies. Here, we employed LRpath analysis to unravel the commonly altered pathways and other gene sets across ten cancer studies employing DNA methylation data profiled with the Illumina HumanMethylation27 BeadChip. We observed a surprising level of concordance in differential methylation across multiple cancer types. For example, among commonly hypomethylated groups, we identified immune-related functions, peptidase activity, and epidermis/keratinocyte development and differentiation. Commonly hypermethylated groups included homeobox and other DNA-binding genes, nervous system and embryonic development, and voltage-gated potassium channels. For many gene sets, we observed significant overlap in the specific subset of differentially methylated genes. Interestingly, fewer DNA repair genes were differentially methylated than expected by chance. Conclusions Clustering analysis performed with LRpath revealed tightly clustered concepts enriched for differential methylation. Several well-known cancer-related pathways were significantly affected, while others were depleted in differential methylation. We conclude that DNA methylation changes in cancer tend to target a subset of the known cancer pathways affected by genetic aberrations.

  14. Associations between Serum Perfluoroalkyl Acids and LINE-1 DNA Methylation

    OpenAIRE

    Watkins, Deborah J; Wellenius, Gregory A; Butler, Rondi A.; Bartell, Scott M; Fletcher, Tony; Kelsey, Karl T.

    2013-01-01

    Perfluoroalkyl acids (PFAAs) are persistent, synthetic compounds that are used in a number of consumer products. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been associated with cardiovascular risk factors, and changes in gene expression and DNA methylation in animals and cellular systems. However, whether PFAA exposure is associated with LINE-1 DNA methylation, a potential marker of cardiovascular risk, in humans remains unknown. We sought to evaluate the cross-se...

  15. Resetting the histone code at CDKN2A in HNSCC by inhibition of DNA methylation.

    Science.gov (United States)

    Coombes, Madelene M; Briggs, Katrina L; Bone, James R; Clayman, Gary L; El-Naggar, Adel K; Dent, Sharon Y R

    2003-12-01

    Head and neck squamous cell carcinoma (HNSCC) is the fifth most frequent cancer in the US. Several genetic and epigenetic alterations are associated with HNSCC tumorigenesis, including inactivation of CDKN2A, which encodes the p16 tumor suppressor, in cell lines and primary tumors by DNA methylation. Reactivation of tumor suppressor genes by DNA-demethylating agents and histone deacetylase (HDAC) inhibitors shows therapeutic promise for other cancers. Therefore, we investigated the ability of these agents to reactivate p16 in Tu159 HNSCC cells. Treatment of cells with 5-aza-2'deoxycytidine (5-aza-dC) increases CDKN2A expression and slightly increases histone H3 acetylation at this gene. No reactivation of CDKN2A is observed upon treatment with the HDAC inhibitor trichostatin A (TSA), but synergistic reactivation of CDKN2A is observed upon sequential treatment of Tu159 cells with both 5-aza-dC and TSA. Silencing of CDKN2A in Tu159 cells is correlated with increased methylation of histone H3 at lysine 9 and decreased methylation at lysine 4 relative to the upstream p15 gene promoter. Interestingly, global levels of H3-K9 methylation are decreased upon treatment with 5-aza-dC. Together these data indicate that DNA methylation is a dominant epigenetic mark for silencing of CDKN2A in Tu159 tumor cells. Moreover, changes in DNA methylation can reset the histone code by impacting multiple H3 modifications. PMID:14654786

  16. Intratumor DNA methylation heterogeneity reflects clonal evolution in aggressive prostate cancer.

    Science.gov (United States)

    Brocks, David; Assenov, Yassen; Minner, Sarah; Bogatyrova, Olga; Simon, Ronald; Koop, Christina; Oakes, Christopher; Zucknick, Manuela; Lipka, Daniel Bernhard; Weischenfeldt, Joachim; Feuerbach, Lars; Cowper-Sal Lari, Richard; Lupien, Mathieu; Brors, Benedikt; Korbel, Jan; Schlomm, Thorsten; Tanay, Amos; Sauter, Guido; Gerhäuser, Clarissa; Plass, Christoph

    2014-08-01

    Despite much evidence on epigenetic abnormalities in cancer, it is currently unclear to what extent epigenetic alterations can be associated with tumors' clonal genetic origins. Here, we show that the prostate intratumor heterogeneity in DNA methylation and copy-number patterns can be explained by a unified evolutionary process. By assaying multiple topographically distinct tumor sites, premalignant lesions, and lymph node metastases within five cases of prostate cancer, we demonstrate that both DNA methylation and copy-number heterogeneity consistently reflect the life history of the tumors. Furthermore, we show cases of genetic or epigenetic convergent evolution and highlight the diversity in the evolutionary origins and aberration spectrum between tumor and metastatic subclones. Importantly, DNA methylation can complement genetic data by serving as a proxy for activity at regulatory domains, as we show through identification of high epigenetic heterogeneity at androgen-receptor-bound enhancers. Epigenome variation thereby expands on the current genome-centric view on tumor heterogeneity. PMID:25066126

  17. Maternal methyl supplements increase offspring DNA methylation at Axin Fused

    Science.gov (United States)

    Transient environmental exposures during mammalian development can permanently alter gene expression and metabolism by influencing the establishment of epigenetic gene regulatory mechanisms. The genomic characteristics that confer such epigenetic plasticity upon specific loci, however, have not been...

  18. DNA methylation: a mechanism linking environmental chemical exposures to risk of autism spectrum disorders?

    Science.gov (United States)

    Keil, Kimberly P.; Lein, Pamela J.

    2016-01-01

    There is now compelling evidence that gene by environment interactions are important in the etiology of autism spectrum disorders (ASDs). However, the mechanisms by which environmental factors interact with genetic susceptibilities to confer individual risk for ASD remain a significant knowledge gap in the field. The epigenome, and in particular DNA methylation, is a critical gene expression regulatory mechanism in normal and pathogenic brain development. DNA methylation can be influenced by environmental factors such as diet, hormones, stress, drugs, or exposure to environmental chemicals, suggesting that environmental factors may contribute to adverse neurodevelopmental outcomes of relevance to ASD via effects on DNA methylation in the developing brain. In this review, we describe epidemiological and experimental evidence implicating altered DNA methylation as a potential mechanism by which environmental chemicals confer risk for ASD, using polychlorinated biphenyls (PCBs), lead, and bisphenol A (BPA) as examples. Understanding how environmental chemical exposures influence DNA methylation and how these epigenetic changes modulate the risk and/or severity of ASD will not only provide mechanistic insight regarding gene-environment interactions of relevance to ASD but may also suggest potential intervention strategies for these and potentially other neurodevelopmental disorders.

  19. Optical mapping discerns genome wide DNA methylation profiles

    Directory of Open Access Journals (Sweden)

    Bergendahl Veit

    2008-07-01

    Full Text Available Abstract Background Methylation of CpG dinucleotides is a fundamental mechanism of epigenetic regulation in eukaryotic genomes. Development of methods for rapid genome wide methylation profiling will greatly facilitate both hypothesis and discovery driven research in the field of epigenetics. In this regard, a single molecule approach to methylation profiling offers several unique advantages that include elimination of chemical DNA modification steps and PCR amplification. Results A single molecule approach is presented for the discernment of methylation profiles, based on optical mapping. We report results from a series of pilot studies demonstrating the capabilities of optical mapping as a platform for methylation profiling of whole genomes. Optical mapping was used to discern the methylation profile from both an engineered and wild type Escherichia coli. Furthermore, the methylation status of selected loci within the genome of human embryonic stem cells was profiled using optical mapping. Conclusion The optical mapping platform effectively detects DNA methylation patterns. Due to single molecule detection, optical mapping offers significant advantages over other technologies. This advantage stems from obviation of DNA modification steps, such as bisulfite treatment, and the ability of the platform to assay repeat dense regions within mammalian genomes inaccessible to techniques using array-hybridization technologies.

  20. DNA methylation detection based on difference of base content

    Science.gov (United States)

    Sato, Shinobu; Ohtsuka, Keiichi; Honda, Satoshi; Sato, Yusuke; Takenaka, Shigeori

    2016-04-01

    Methylation frequently occurs in cytosines of CpG sites to regulate gene expression. The identification of aberrant methylation of certain genes is important for cancer marker analysis. The aim of this study was to determine the methylation frequency in DNA samples of unknown length and/or concentration. Unmethylated cytosine is known to be converted to thymine following bisulfite treatment and subsequent PCR. For this reason, the AT content in DNA increases with an increasing number of methylation sites. In this study, the fluorescein-carrying bis-acridinyl peptide (FKA) molecule was used for the detection of methylation frequency. FKA contains fluorescein and two acridine moieties, which together allow for the determination of the AT content of double-stranded DNA fragments. Methylated and unmethylated human genomes were subjected to bisulfide treatment and subsequent PCR using primers specific for the CFTR, CDH4, DBC1, and NPY genes. The AT content in the resulting PCR products was estimated by FKA, and AT content estimations were found to be in good agreement with those determined by DNA sequencing. This newly developed method may be useful for determining methylation frequencies of many PCR products by measuring the fluorescence in samples excited at two different wavelengths.

  1. Mobile small RNAs regulate genome-wide DNA methylation.

    Science.gov (United States)

    Lewsey, Mathew G; Hardcastle, Thomas J; Melnyk, Charles W; Molnar, Attila; Valli, Adrián; Urich, Mark A; Nery, Joseph R; Baulcombe, David C; Ecker, Joseph R

    2016-02-01

    RNA silencing at the transcriptional and posttranscriptional levels regulates endogenous gene expression, controls invading transposable elements (TEs), and protects the cell against viruses. Key components of the mechanism are small RNAs (sRNAs) of 21-24 nt that guide the silencing machinery to their nucleic acid targets in a nucleotide sequence-specific manner. Transcriptional gene silencing is associated with 24-nt sRNAs and RNA-directed DNA methylation (RdDM) at cytosine residues in three DNA sequence contexts (CG, CHG, and CHH). We previously demonstrated that 24-nt sRNAs are mobile from shoot to root in Arabidopsis thaliana and confirmed that they mediate DNA methylation at three sites in recipient cells. In this study, we extend this finding by demonstrating that RdDM of thousands of loci in root tissues is dependent upon mobile sRNAs from the shoot and that mobile sRNA-dependent DNA methylation occurs predominantly in non-CG contexts. Mobile sRNA-dependent non-CG methylation is largely dependent on the DOMAINS REARRANGED METHYLTRANSFERASES 1/2 (DRM1/DRM2) RdDM pathway but is independent of the CHROMOMETHYLASE (CMT)2/3 DNA methyltransferases. Specific superfamilies of TEs, including those typically found in gene-rich euchromatic regions, lose DNA methylation in a mutant lacking 22- to 24-nt sRNAs (dicer-like 2, 3, 4 triple mutant). Transcriptome analyses identified a small number of genes whose expression in roots is associated with mobile sRNAs and connected to DNA methylation directly or indirectly. Finally, we demonstrate that sRNAs from shoots of one accession move across a graft union and target DNA methylation de novo at normally unmethylated sites in the genomes of root cells from a different accession. PMID:26787884

  2. Multilocus loss of DNA methylation in individuals with mutations in the histone H3 Lysine 4 Demethylase KDM5C

    Directory of Open Access Journals (Sweden)

    Grafodatskaya Daria

    2013-01-01

    Full Text Available Abstract Background A number of neurodevelopmental syndromes are caused by mutations in genes encoding proteins that normally function in epigenetic regulation. Identification of epigenetic alterations occurring in these disorders could shed light on molecular pathways relevant to neurodevelopment. Results Using a genome-wide approach, we identified genes with significant loss of DNA methylation in blood of males with intellectual disability and mutations in the X-linked KDM5C gene, encoding a histone H3 lysine 4 demethylase, in comparison to age/sex matched controls. Loss of DNA methylation in such individuals is consistent with known interactions between DNA methylation and H3 lysine 4 methylation. Further, loss of DNA methylation at the promoters of the three top candidate genes FBXL5, SCMH1, CACYBP was not observed in more than 900 population controls. We also found that DNA methylation at these three genes in blood correlated with dosage of KDM5C and its Y-linked homologue KDM5D. In addition, parallel sex-specific DNA methylation profiles in brain samples from control males and females were observed at FBXL5 and CACYBP. Conclusions We have, for the first time, identified epigenetic alterations in patient samples carrying a mutation in a gene involved in the regulation of histone modifications. These data support the concept that DNA methylation and H3 lysine 4 methylation are functionally interdependent. The data provide new insights into the molecular pathogenesis of intellectual disability. Further, our data suggest that some DNA methylation marks identified in blood can serve as biomarkers of epigenetic status in the brain.

  3. The dynamics of DNA methylation and hydroxymethylation during amelogenesis.

    Science.gov (United States)

    Yoshioka, Hirotaka; Minamizaki, Tomoko; Yoshiko, Yuji

    2015-11-01

    Amelogenesis is a multistep process that relies on specific temporal and spatial signaling networks between the dental epithelium and mesenchymal tissues. Epigenetic modifications of key developmental genes in this process may be closely linked to a network of molecular events. However, the role of epigenetic regulation in amelogenesis remains unclear. Here, we have uncovered the spatial distributions of 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) to determine epigenetic events in the mandibular incisors of mice. Immunohistochemistry and dot blotting showed that 5-hmC in ameloblasts increased from the secretory stage to the later maturation stage. We also demonstrated the distribution of 5-mC-positive ameloblasts with punctate nuclear labeling from sometime after the initiation of the secretory stage to the later maturation stage; however, dot blotting failed to detect this change. No obvious alteration of 5-mC/5-hmC staining in odontoblasts and dental pulp cells was observed. Concomitant with quantitative expression data, immunohistochemistry showed that maintenance DNA methyltransferase DNMT1 was highly expressed in immature dental epithelial cells and subsequently decreased at later stages of development. Meanwhile, de novo DNA methyltransferase Dnmt3a and Dnmt3b and DNA demethylase Tet family genes were universally expressed, except Tet1 that was highly expressed in immature dental epithelial cells. Thus, DNMT1 may sustain the undifferentiated status of dental epithelial cells through the maintenance of DNA methylation, while the hydroxylation of 5-mC may occur through the whole differentiation process by TET activity. Taken together, these data indicate that the dynamic changes of 5-mC and 5-hmC may be critical for the regulation of amelogenesis. PMID:26209269

  4. Analysis of DNA methylation in various swine tissues.

    Directory of Open Access Journals (Sweden)

    Chun Yang

    Full Text Available DNA methylation is known to play an important role in regulating gene expression during biological development and tissue differentiation in eukaryotes. In this study, we used the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP method to assess the extent and pattern of cytosine methylation in muscle, heart, liver, spleen, lung, kidney and stomach from the swine strain Laiwu, and we also examined specific methylation patterns in the seven tissues. In total, 96,371 fragments, each representing a recognition site cleaved by either or both EcoRI + HpaII and EcoRI + MspI, the HpaII and MspI are isoschizomeric enzymes, were amplified using 16 pairs of selective primers. A total of 50,094 sites were found to be methylated at cytosines in seven tissues. The incidence of DNA methylation was approximately 53.99% in muscle, 51.24% in the heart, 50.18% in the liver, 53.31% in the spleen, 51.97% in the lung, 51.15% in the kidney and 53.39% in the stomach, as revealed by the incidence of differential digestion. Additionally, differences in DNA methylation levels imply that such variations may be related to specific gene expression during tissue differentiation, growth and development. Three types of bands were generated in the F-MSAP profile, the total numbers of these three types of bands in the seven tissues were 46,277, 24,801 and 25,293, respectively.In addition, different methylation patterns were observed in seven tissues from pig, and almost all of the methylation patterns detected by F-MSAP could be confirmed by Southern analysis using the isolated amplified fragments as probes. The results clearly demonstrated that the F-MSAP technique can be adapted for use in large-scale DNA methylation detection in the pig genome.

  5. Regions of variable DNA methylation in human placenta associated with newborn neurobehavior.

    Science.gov (United States)

    Paquette, Alison G; Houseman, E Andres; Green, Benjamin B; Lesseur, Corina; Armstrong, David A; Lester, Barry; Marsit, Carmen J

    2016-08-01

    The placenta regulates the in utero environment and functionally impacts fetal development. Candidate gene studies identified variation in placental DNA methylation is associated with newborn neurologic and behavioral outcomes including movement quality, lethargic behavior, attention, and arousal. We sought to identify novel regions of variable DNA methylation associated with newborn attention, lethargy, quality of movement, and arousal by performing an epigenome-wide association study in 335 infants from a US birth cohort. Methylation status was quantified using the Illumina HumanMethylation450 BeadChip array and associations to newborn outcomes assessed by the NICU Network Neurobehavioral Scales (NNNS) were identified while incorporating established bioinformatics algorithms to control for confounding by cell type composition. Methylation of CpGs within FHIT (cg15970800) and ANKRD11 (cg16710656) demonstrated genome-wide significance (P < 1.8 × 10(-7)) in specific associations with infant attention. CpGs whose differential methylation was associated with all 4 neurobehavioral outcomes were common to 50 genes involved in biological processes relating to cellular adhesion and nervous system development. Comprehensive methylation profiling identified relationships between methylation of FHIT and ANKRD11, which have been previously linked to neurodevelopment and behavioral outcomes in genetic association studies. Subtle changes in DNA methylation of these genes within the placenta may impact normal variation of a newborn's ability to alter and track visual and auditory stimuli. Gene ontology analysis suggested that those genes with variable methylation related to these outcomes are over-represented in biological pathways involved in brain development and placental physiology, supportive of our hypothesis for a key role of the placenta in neurobehavioral outcomes. PMID:27366929

  6. Affinity-based enrichment strategies to assay methyl-CpG binding activity and DNA methylation in early Xenopus embryos

    Directory of Open Access Journals (Sweden)

    Bogdanović Ozren

    2011-08-01

    Full Text Available Abstract Background DNA methylation is a widespread epigenetic modification in vertebrate genomes. Genomic sites of DNA methylation can be bound by methyl-CpG-binding domain proteins (MBDs and specific zinc finger proteins, which can recruit co-repressor complexes to silence transcription on targeted loci. The binding to methylated DNA may be regulated by post-translational MBD modifications. Findings A methylated DNA affinity precipitation method was implemented to assay binding of proteins to methylated DNA. Endogenous MeCP2 and MBD3 were precipitated from Xenopus oocyte extracts and conditions for methylation-specific binding were optimized. For a reverse experiment, DNA methylation in early Xenopus embryos was assessed by MBD affinity capture. Conclusions A methylated DNA affinity resin can be applied to probe for MBD activity in extracts. This assay has a broad application potential as it can be coupled to downstream procedures such as western blotting, fluorimetric HDAC assays and quantitative mass spectrometry. Methylated DNA affinity capture by methyl-CpG binding proteins produces fractions highly enriched for methylated DNA, suitable for coupling to next generation sequencing technologies. The two enrichment strategies allow probing of methyl-CpG protein interactions in early vertebrate oocytes and embryos.

  7. Analysis of DNA methylation variation in wheat genetic background after alien chromatin introduction based on methylation-sensitive amplification polymorphism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    During the process of alien germplasm introduced into wheat genome by chromosome engineering,extensive genetic variations of genome structure and gene expression in recipient could be induced.In this study,we performed GISH(genome in situ hybridization)and AFLP(amplified fragment length polymorphism) on wheat-rye chromosome transIocation lines and their parents to detect the identity in genomic structure of different translocation lines.The results showed that the genome primary structure variations were not obviously detected in different translocation lines except the same 1RS chromosome translocation.Methylation sensitive amplification polymorphism(MSAP)analyses on genomic DNA showed that the ratios of fully-methylated sites were significantly increased in translocation lines(CN12,20.15%;CN17,20.91%;CN18,22.42%),but the ratios of hemimethylated sites were significantly lowered(CN12,21.41%;CN17,23.43%;CN18,22.42%),whereas 16.37%were fully-methylated and 25.44%were hemimethylated in case of their wheat parent.Twenty-nine classes of methylation patterns were identified in a comparative assay of cytosine methylation patterns between wheat-rye translocation lines and their wheat parent,including 13 hypermethylation patterns(33.74%),9 demethylation patterns(22.76%)and 7 uncertain patterns(4.07%).In further sequence analysis,the alterations of methylation pattern affected both repetitive DNA sequences,such as retrotransposons and tandem repetitive sequences,and low-copy DNA.

  8. Evaluation of DNA methylation at imprinted DMRs in the spermatozoa of oligozoospermic men in association with MTHFR C677T genotype.

    Science.gov (United States)

    Louie, K; Minor, A; Ng, R; Poon, K; Chow, V; Ma, S

    2016-09-01

    Altered DNA methylation has been previously identified in the spermatozoa of infertile men; however, the origins of these errors are poorly understood. DNA methylation is an epigenetic modification which is thought to play a fundamental role in male germline development. DNA methylation reactions rely on the cellular availability of methyl donors, which are primarily products of folate metabolism, where a key enzyme is methylenetetrahydrofolate reductase (MTHFR). The MTHFR C677T single nucleotide polymorphism (SNP) reduces enzyme activity and may potentially alter DNA methylation processes during germline development. The objective of this study was to determine whether altered DNA methylation in spermatozoa is associated with the MTHFR C677T SNP. DNA methylation was evaluated at the H19, IG-GTL2, and MEST imprinted differentially methylated regions in the spermatozoa of 53 men - 44 oligozoospermic men and nine fertile men with normal sperm parameters via bisulfite sequencing of sperm clones. The 44 infertile men were stratified by severity of oligozoospermia - three normal (>15 million spermatozoa/mL), eight moderate (5-15 million spermatozoa/mL), 23 severe (1-5 million spermatozoa/mL), and 10 very severe (clones altered, where an altered clone was in turn defined as ≥50% of CpGs with incorrect DNA methylation patterns. The incidence of three altered men within the CT subgroup, however, was not significantly higher than the incidence in the CC subgroup. Taken together, altered DNA methylation in spermatozoa was not significantly associated with the MTHFR C677T SNP; however, there was a trend for higher incidence of alterations among severe oligozoospermic infertile men with CT genotypes. PMID:27369467

  9. Effects of cytosine methylation on DNA charge transport

    Science.gov (United States)

    Hihath, Joshua; Guo, Shaoyin; Zhang, Peiming; Tao, Nongjian

    2012-04-01

    The methylation of cytosine bases in DNA commonly takes place in the human genome and its abnormality can be used as a biomarker in the diagnosis of genetic diseases. In this paper we explore the effects of cytosine methylation on the conductance of DNA. Although the methyl group is a small chemical modification, and has a van der Waals radius of only 2 Å, its presence significantly changes the duplex stability, and as such may also affect the conductance properties of DNA. To determine if charge transport through the DNA stack is sensitive to this important biological modification we perform multiple conductance measurements on a methylated DNA molecule with an alternating G:C sequence and its non-methylated counterpart. From these studies we find a measurable difference in the conductance between the two types of molecules, and demonstrate that this difference is statistically significant. The conductance values of these molecules are also compared with a similar sequence that has been previously studied to help elucidate the charge transport mechanisms involved in direct DNA conductance measurements.

  10. The effects of long-term daily folic acid and vitamin B12 supplementation on genome-wide DNA methylation in elderly subjects

    NARCIS (Netherlands)

    Kok, D.E.G.; Dhonukshe-Rutten, R.A.M.; Lute, C.; Heil, S.G.; Uitterlinden, A.G.; Velde, van der N.; Meurs, van J.B.J.; Schoor, van N.M.; Hooiveld, G.J.E.J.; Groot, de C.P.G.M.; Kampman, E.; Steegenga, W.T.

    2015-01-01

    Folate and its synthetic form folic acid function as donor of one-carbon units and have been, together with other B-vitamins, implicated in programming of epigenetic processes such as DNA methylation during early development. To what extent regulation of DNA methylation can be altered via B-vitamins

  11. Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review).

    Science.gov (United States)

    Jiménez-Wences, Hilda; Peralta-Zaragoza, Oscar; Fernández-Tilapa, Gloria

    2014-06-01

    Cancer is a complex disease caused by genetic and epigenetic abnormalities that affect gene expression. The progression from precursor lesions to invasive cervical cancer is influenced by persistent human papilloma virus (HPV) infection, which induces changes in the host genome and epigenome. Epigenetic alterations, such as aberrant miRNA expression and changes in DNA methylation status, favor the expression of oncogenes and the silencing of tumor-suppressor genes. Given that some miRNA genes can be regulated through epigenetic mechanisms, it has been proposed that alterations in the methylation status of miRNA promoters could be the driving mechanism behind their aberrant expression in cervical cancer. For these reasons, we assessed the relationship among HPV infection, cellular DNA methylation and miRNA expression. We conclude that alterations in the methylation status of protein-coding genes and various miRNA genes are influenced by HPV infection, the viral genotype, the physical state of the viral DNA, and viral oncogenic risk. Furthermore, HPV induces deregulation of miRNA expression, particularly at loci near fragile sites. This deregulation occurs through the E6 and E7 proteins, which target miRNA transcription factors such as p53. PMID:24737381

  12. Genome-wide DNA methylation maps in follicular lymphoma cells determined by methylation-enriched bisulfite sequencing.

    Directory of Open Access Journals (Sweden)

    Jeong-Hyeon Choi

    Full Text Available BACKGROUND: Follicular lymphoma (FL is a form of non-Hodgkin's lymphoma (NHL that arises from germinal center (GC B-cells. Despite the significant advances in immunotherapy, FL is still not curable. Beyond transcriptional profiling and genomics datasets, there currently is no epigenome-scale dataset or integrative biology approach that can adequately model this disease and therefore identify novel mechanisms and targets for successful prevention and treatment of FL. METHODOLOGY/PRINCIPAL FINDINGS: We performed methylation-enriched genome-wide bisulfite sequencing of FL cells and normal CD19(+ B-cells using 454 sequencing technology. The methylated DNA fragments were enriched with methyl-binding proteins, treated with bisulfite, and sequenced using the Roche-454 GS FLX sequencer. The total number of bases covered in the human genome was 18.2 and 49.3 million including 726,003 and 1.3 million CpGs in FL and CD19(+ B-cells, respectively. 11,971 and 7,882 methylated regions of interest (MRIs were identified respectively. The genome-wide distribution of these MRIs displayed significant differences between FL and normal B-cells. A reverse trend in the distribution of MRIs between the promoter and the gene body was observed in FL and CD19(+ B-cells. The MRIs identified in FL cells also correlated well with transcriptomic data and ChIP-on-Chip analyses of genome-wide histone modifications such as tri-methyl-H3K27, and tri-methyl-H3K4, indicating a concerted epigenetic alteration in FL cells. CONCLUSIONS/SIGNIFICANCE: This study is the first to provide a large scale and comprehensive analysis of the DNA methylation sequence composition and distribution in the FL epigenome. These integrated approaches have led to the discovery of novel and frequent targets of aberrant epigenetic alterations. The genome-wide bisulfite sequencing approach developed here can be a useful tool for profiling DNA methylation in clinical samples.

  13. Genetic and environmental impacts on DNA methylation levels in twins.

    Science.gov (United States)

    Yet, Idil; Tsai, Pei-Chien; Castillo-Fernandez, Juan E; Carnero-Montoro, Elena; Bell, Jordana T

    2016-01-01

    Epigenetics describes the study of cellular modifications that can modify the expression of genes without changing the DNA sequence. DNA methylation is one of the most stable and prevalent epigenetic mechanisms. Twin studies have been a valuable model for unraveling the genetic and epigenetic epidemiology of complex traits, and now offer a potential to dissect the factors that impact DNA methylation variability and its biomedical significance. The twin design specifically allows for the study of genetic, environmental and lifestyle factors, and their potential interactions, on epigenetic profiles. Furthermore, genetically identical twins offer a unique opportunity to assess nongenetic impacts on epigenetic profiles. Here, we summarize recent findings from twin studies of DNA methylation profiles across tissues, to define current knowledge regarding the genetic and nongenetic factors that influence epigenetic variation. PMID:26678685

  14. Accounting for population stratification in DNA methylation studies.

    Science.gov (United States)

    Barfield, Richard T; Almli, Lynn M; Kilaru, Varun; Smith, Alicia K; Mercer, Kristina B; Duncan, Richard; Klengel, Torsten; Mehta, Divya; Binder, Elisabeth B; Epstein, Michael P; Ressler, Kerry J; Conneely, Karen N

    2014-04-01

    DNA methylation is an important epigenetic mechanism that has been linked to complex diseases and is of great interest to researchers as a potential link between genome, environment, and disease. As the scale of DNA methylation association studies approaches that of genome-wide association studies, issues such as population stratification will need to be addressed. It is well-documented that failure to adjust for population stratification can lead to false positives in genetic association studies, but population stratification is often unaccounted for in DNA methylation studies. Here, we propose several approaches to correct for population stratification using principal components (PCs) from different subsets of genome-wide methylation data. We first illustrate the potential for confounding due to population stratification by demonstrating widespread associations between DNA methylation and race in 388 individuals (365 African American and 23 Caucasian). We subsequently evaluate the performance of our PC-based approaches and other methods in adjusting for confounding due to population stratification. Our simulations show that (1) all of the methods considered are effective at removing inflation due to population stratification, and (2) maximum power can be obtained with single-nucleotide polymorphism (SNP)-based PCs, followed by methylation-based PCs, which outperform both surrogate variable analysis and genomic control. Among our different approaches to computing methylation-based PCs, we find that PCs based on CpG sites chosen for their potential to proxy nearby SNPs can provide a powerful and computationally efficient approach to adjust for population stratification in DNA methylation studies when genome-wide SNP data are unavailable. PMID:24478250

  15. Allele-specific DNA methylation reinforces PEAR1 enhancer activity.

    Science.gov (United States)

    Izzi, Benedetta; Pistoni, Mariaelena; Cludts, Katrien; Akkor, Pinar; Lambrechts, Diether; Verfaillie, Catherine; Verhamme, Peter; Freson, Kathleen; Hoylaerts, Marc F

    2016-08-18

    Genetic variation in the PEAR1 locus is linked to platelet reactivity and cardiovascular disease. The major G allele of rs12041331, an intronic cytosine guanine dinucleotide-single-nucleotide polymorphism (CpG-SNP), is associated with higher PEAR1 expression in platelets and endothelial cells than the minor A allele. The molecular mechanism underlying this difference remains elusive. We have characterized the histone modification profiles of the intronic region surrounding rs12041331 and identified H3K4Me1 enhancer-specific enrichment for the region that covers the CpG-SNP. Interestingly, methylation studies revealed that the CpG site is fully methylated in leukocytes of GG carriers. Nuclear protein extracts from megakaryocytes, endothelial cells, vs control HEK-293 cells show a 3-fold higher affinity for the methylated G allele compared with nonmethylated G or A alleles in a gel electrophoretic mobility shift assay. To understand the positive relationship between methylation and gene expression, we studied DNA methylation at 4 different loci of PEAR1 during in vitro megakaryopoiesis. During differentiation, the CpG-SNP remained fully methylated, while we observed rapid methylation increases at the CpG-island overlapping the first 5'-untranslated region exon, paralleling the increased PEAR1 expression. In the same region, A-allele carriers of rs12041331 showed significantly lower DNA methylation at CGI1 compared with GG homozygote. This CpG-island contains binding sites for the methylation-sensitive transcription factor CTCF, whose binding is known to play a role in enhancer activation and/or repression. In conclusion, we report the molecular characterization of the first platelet function-related CpG-SNP, a genetic predisposition that reinforces PEAR1 enhancer activity through allele-specific DNA methylation. PMID:27313330

  16. Genome-Wide DNA Methylation in Mixed Ancestry Individuals with Diabetes and Prediabetes from South Africa

    Science.gov (United States)

    Pheiffer, Carmen; Humphries, Stephen E.; Gamieldien, Junaid; Erasmus, Rajiv T.

    2016-01-01

    Aims. To conduct a genome-wide DNA methylation in individuals with type 2 diabetes, individuals with prediabetes, and control mixed ancestry individuals from South Africa. Methods. We used peripheral blood to perform genome-wide DNA methylation analysis in 3 individuals with screen detected diabetes, 3 individuals with prediabetes, and 3 individuals with normoglycaemia from the Bellville South Community, Cape Town, South Africa, who were age-, gender-, body mass index-, and duration of residency-matched. Methylated DNA immunoprecipitation (MeDIP) was performed by Arraystar Inc. (Rockville, MD, USA). Results. Hypermethylated DMRs were 1160 (81.97%) and 124 (43.20%), respectively, in individuals with diabetes and prediabetes when both were compared to subjects with normoglycaemia. Our data shows that genes related to the immune system, signal transduction, glucose transport, and pancreas development have altered DNA methylation in subjects with prediabetes and diabetes. Pathway analysis based on the functional analysis mapping of genes to KEGG pathways suggested that the linoleic acid metabolism and arachidonic acid metabolism pathways are hypomethylated in prediabetes and diabetes. Conclusions. Our study suggests that epigenetic changes are likely to be an early process that occurs before the onset of overt diabetes. Detailed analysis of DMRs that shows gradual methylation differences from control versus prediabetes to prediabetes versus diabetes in a larger sample size is required to confirm these findings.

  17. Arsenicals produce stable progressive changes in DNA methylation patterns that are linked to malignant transformation of immortalized urothelial cells

    International Nuclear Information System (INIS)

    Aberrant DNA methylation participates in carcinogenesis and is a molecular hallmark of a tumor cell. Tumor cells generally exhibit a redistribution of DNA methylation resulting in global hypomethylation with regional hypermethylation; however, the speed in which these changes emerge has not been fully elucidated and may depend on the temporal location of the cell in the path from normal, finite lifespan to malignant transformation. We used a model of arsenical-induced malignant transformation of immortalized human urothelial cells and DNA methylation microarrays to examine the extent and temporal nature of changes in DNA methylation that occur during the transition from immortal to malignantly transformed. Our data presented herein suggest that during arsenical-induced malignant transformation, aberrant DNA methylation occurs non-randomly, progresses gradually at hundreds of gene promoters, and alters expression of the associated gene, and these changes are coincident with the acquisition of malignant properties, such as anchorage independent growth and tumor formation in immunocompromised mice. The DNA methylation changes appear stable, since malignantly transformed cells removed from the transforming arsenical exhibited no reversion in DNA methylation levels, associated gene expression, or malignant phenotype. These data suggest that arsenicals act as epimutagens and directly link their ability to induce malignant transformation to their actions on the epigenome.

  18. Global DNA methylation responses to low dose radiation exposure

    International Nuclear Information System (INIS)

    Full text: High radiation doses cause breaks in the DNA which are considered the critical lesions in initiation of radiation-induced cancer. However, at very low radiation doses relevant for the general public, the induction of such breaks will be rare, and other changes to the DNA such as DNA methylation which affects gene expression may playa role in radiation responses. We are studying global DNA methylation after low dose radiation exposure to determine if low dose radiation has short- and/or long-term effects on chromatin structure. We developed a sensitive high resolution melt assay to measure the levels of DNA methylation across the mouse genome by analysing a stretch of DNA sequence within Long Interspersed Nuclear Elements-I (LINE I) that comprise a very large proportion of the mouse and human genomes. Our initial results suggest no significant short-term or longterm) changes in global NA methylation after low dose whole-body X-radiation of 10 J1Gyor 10 mGy, with a significant transient increase in NA methylation observed I day after a high dose of I Gy. If the low radiation doses tested are inducing changes in bal DNA methylation, these would appear to be smaller than the variation observed between the sexes and following the general stress of the sham-irradiation procedure itself. This research was funded by the Low Dose Radiation Research Program, Biological and Environmental Research, US DOE, Grant DE-FG02-05ER64104 and MN is the recipient of the FMCF/BHP Dose Radiation Research Scholarship.

  19. Analysis of Mitochondrial DNA Copy Number and Its Regulation Through DNA Methylation of POLGA.

    Science.gov (United States)

    Sun, Xin; Lee, William; Vaghjiani, Vijesh; St John, Justin C

    2016-01-01

    Replication of mitochondrial DNA (mtDNA) is important for ensuring that cells have sufficient mtDNA copy number to meet their specific requirements for the generation of cellular energy through oxidative phosphorylation. A number of transcription and replication factors are required for this process, with a key factor being the nuclear-encoded mtDNA-specific DNA polymerase γ. DNA polymerase γ has a catalytic subunit (POLGA), whose gene has been shown to be DNA methylated at exon 2. This methylation is considered to be one of the key mechanisms that regulate mtDNA copy number. These findings have made it of great importance to establish optimal methods for investigating the effects of DNA methylation on mtDNA replication. Here, we provide methods to determine the extent of DNA methylation at exon 2 of POLGA as well as other gene targets of interest. We also show how mtDNA copy number is assessed and, from these two outputs, define the efficiency of mtDNA replication by calculating the mtDNA-replicative efficiency index. PMID:26530679

  20. DNA methylation perspectives in the pathogenesis of autoimmune diseases.

    Science.gov (United States)

    Sun, Bao; Hu, Lei; Luo, Zhi-Ying; Chen, Xiao-Ping; Zhou, Hong-Hao; Zhang, Wei

    2016-03-01

    DNA methylation is now widely recognized as being critical to maintain the function of immune cells. Recent studies suggest that aberrant DNA methylation levels not only can result in immune cells autoreactivity in vitro, but also are related to autoimmunity in vivo. Environmental factors and genetic polymorphisms cause abnormal methylation, which affects the expression of certain immune-related genes, being becoming hot spot of explaining the mechanism of autoimmune diseases. This paper reviews the importance of abnormal methylation during the development of common autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and type 1 diabetes, aiming at a better understanding of the pathogenesis of autoimmune diseases and providing new ideas for the treatment of these diseases. PMID:26821302

  1. On the presence and role of human gene-body DNA methylation

    OpenAIRE

    Jjingo, Daudi; Conley, Andrew B.; Yi, Soojin V; Lunyak, Victoria V.; Jordan, I. King

    2012-01-01

    DNA methylation of promoter sequences is a repressive epigenetic mark that down-regulates gene expression. However, DNA methylation is more prevalent within gene-bodies than seen for promoters, and gene-body methylation has been observed to be positively correlated with gene expression levels. This paradox remains unexplained, and accordingly the role of DNA methylation in gene-bodies is poorly understood. We addressed the presence and role of human gene-body DNA methylation using a meta-anal...

  2. Investigation of DNA damage response and apoptotic gene methylation pattern in sporadic breast tumors using high throughput quantitative DNA methylation analysis technology

    Directory of Open Access Journals (Sweden)

    Prakash Neeraj

    2010-11-01

    Full Text Available Abstract Background- Sporadic breast cancer like many other cancers is proposed to be a manifestation of abnormal genetic and epigenetic changes. For the past decade our laboratory has identified genes involved in DNA damage response (DDR, apoptosis and immunesurvelliance pathways to influence sporadic breast cancer risk in north Indian population. Further to enhance our knowledge at the epigenetic level, we performed DNA methylation study involving 17 gene promoter regions belonging to DNA damage response (DDR and death receptor apoptotic pathway in 162 paired normal and cancerous breast tissues from 81 sporadic breast cancer patients, using a high throughput quantitative DNA methylation analysis technology. Results- The study identified five genes with statistically significant difference between normal and tumor tissues. Hypermethylation of DR5 (P = 0.001, DCR1 (P = 0.00001, DCR2 (P = 0.0000000005 and BRCA2 (P = 0.007 and hypomethylation of DR4 (P = 0.011 in sporadic breast tumor tissues suggested a weak/aberrant activation of the DDR/apoptotic pathway in breast tumorigenesis. Negative correlation was observed between methylation status and transcript expression levels for TRAIL, DR4, CASP8, ATM, CHEK2, BRCA1 and BRCA2 CpG sites. Categorization of the gene methylation with respect to the clinicopathological parameters showed an increase in aberrant methylation pattern in advanced tumors. These uncharacteristic methylation patterns corresponded with decreased death receptor apoptosis (P = 0.047 and DNA damage repair potential (P = 0.004 in advanced tumors. The observation of BRCA2 -26 G/A 5'UTR polymorphism concomitant with the presence of methylation in the promoter region was novel and emerged as a strong candidate for susceptibility to sporadic breast tumors. Conclusion- Our study indicates that methylation of DDR-apoptotic gene promoters in sporadic breast cancer is not a random phenomenon. Progressive epigenetic alterations in advancing

  3. Mitochondrial regulation of cancer associated nuclear DNA methylation

    International Nuclear Information System (INIS)

    The onset and progression of cancer is associated with the methylation-dependent silencing of specific genes, however, the mechanism and its regulation have not been established. We previously demonstrated that reduction of mitochondrial DNA content induces cancer progression. Here we found that mitochondrial DNA-deficient LNρ0-8 activates the hypermethylation of the nuclear DNA promoters including the promoter CpG islands of the endothelin B receptor, O6-methylguanine-DNA methyltransferase, and E-cadherin. These are unmethylated and the corresponding gene products are expressed in the parental LNCaP containing mitochondrial DNA. The absence of mitochondrial DNA induced DNA methyltransferase 1 expression which was responsible for the methylation patterns observed. Inhibition of DNA methyltransferase eliminated hypermethylation and expressed gene products in LNρ0-8. These studies demonstrate loss or reduction of mitochondrial DNA resulted in the induction of DNA methyltransferase 1, hypermethylation of the promoters of endothelin B receptor, O6-methylguanine-DNA methyltransferase, and E-cadherin, and reduction of the corresponding gene products

  4. Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart.

    Science.gov (United States)

    Koturbash, Igor; Miousse, Isabelle R; Sridharan, Vijayalakshmi; Nzabarushimana, Etienne; Skinner, Charles M; Melnyk, Stepan B; Pavliv, Oleksandra; Hauer-Jensen, Martin; Nelson, Gregory A; Boerma, Marjan

    2016-05-01

    DNA methylation is a key epigenetic mechanism, needed for proper control over the expression of genetic information and silencing of repetitive elements. Exposure to ionizing radiation, aside from its strong genotoxic potential, may also affect the methylation of DNA, within the repetitive elements, in particular. In this study, we exposed C57BL/6J male mice to low absorbed mean doses of two types of space radiation-proton (0.1Gy, 150MeV, dose rate 0.53±0.08Gy/min), and heavy iron ions ((56)Fe) (0.5Gy, 600MeV/n, dose rate 0.38±0.06Gy/min). Radiation-induced changes in cardiac DNA methylation associated with repetitive elements were detected. Specifically, modest hypomethylation of retrotransposon LINE-1 was observed at day 7 after irradiation with either protons or (56)Fe. This was followed by LINE-1, and other retrotransposons, ERV2 and SINE B1, as well as major satellite DNA hypermethylation at day 90 after irradiation with (56)Fe. These changes in DNA methylation were accompanied by alterations in the expression of DNA methylation machinery and affected the one-carbon metabolism pathway. Furthermore, loss of transposable elements expression was detected in the cardiac tissue at the 90-day time-point, paralleled by substantial accumulation of mRNA transcripts, associated with major satellites. Given that the one-carbon metabolism pathway can be modulated by dietary modifications, these findings suggest a potential strategy for the mitigation and, possibly, prevention of the negative effects exerted by ionizing radiation on the cardiovascular system. Additionally, we show that the methylation status and expression of repetitive elements may serve as early biomarkers of exposure to space radiation. PMID:26963372

  5. Cytosine methylation of sperm DNA in horse semen after cryopreservation.

    Science.gov (United States)

    Aurich, Christine; Schreiner, Bettina; Ille, Natascha; Alvarenga, Marco; Scarlet, Dragos

    2016-09-15

    Semen processing may contribute to epigenetic changes in spermatozoa. We have therefore addressed changes in sperm DNA cytosine methylation induced by cryopreservation of stallion semen. The relative amount of 5-methylcytosine relative to the genomic cytosine content of sperm DNA was analyzed by ELISA. In experiment 1, raw semen (n = 6 stallions, one ejaculate each) was shock-frozen. Postthaw semen motility and membrane integrity were completely absent, whereas DNA methylation was similar in raw (0.4 ± 0.2%) and shock-frozen (0.3 ± 0.1%) semen (not significant). In experiment 2, three ejaculates per stallion (n = 6) were included. Semen quality and DNA methylation was assessed before addition of the freezing extender and after freezing-thawing with either Ghent (G) or BotuCrio (BC) extender. Semen motility, morphology, and membrane integrity were significantly reduced by cryopreservation but not influenced by the extender (e.g., total motility: G 69.5 ± 2.0, BC 68.4 ± 2.2%; P < 0.001 vs. centrifugation). Cryopreservation significantly (P < 0.01) increased the level of DNA methylation (before freezing 0.6 ± 0.1%, postthaw G 6.4 ± 3.7, BC 4.4 ± 1.5%; P < 0.01), but no differences between the freezing extenders were seen. The level of DNA methylation was not correlated to semen motility, morphology, or membrane integrity. The results demonstrate that semen processing for cryopreservation increases the DNA methylation level in stallion semen. We conclude that assessment of sperm DNA methylation allows for evaluation of an additional parameter characterizing semen quality. The lower fertility rates of mares after insemination with frozen-thawed semen may at least in part be explained by cytosine methylation of sperm-DNA induced by the cryopreservation procedure. PMID:27242182

  6. Global DNA methylation changes in Cucurbitaceae inter-species grafting

    Directory of Open Access Journals (Sweden)

    Evangelia Avramidou

    2015-04-01

    Full Text Available Grafting has been used to improve yield, fruit quality and disease resistance in a range of tree and vegetable species. The molecular mechanisms underpinning grafting responses have only recently started to be delineated. One of those mechanisms involves long distance transfer of genetic material from rootstock to scion alluding to an epigenetic component to the grafting process. In the research presented herein we extended published work on heritable changes in the DNA methylation pattern of Solanaceae scion genomes, in Cucurbitaceae inter-species grafting. Specifically, we examined global DNA methylation changes in scions of cucumber, melon and watermelon heterografted onto pumpkin rootstocks using MSAP analysis. We observed a significant increase of global DNA methylation in cucumber and melon scions pointing to an epigenetic effect in Cucurbitaceae heterografting. Exploitation of differential epigenetic marking in different rootstock-scion combinations could lead to development of epi-molecular markers for generation and selection of superior quality grafted vegetables.

  7. Correlation of SHOX2 Gene Amplification and DNA Methylation in Lung Cancer Tumors

    International Nuclear Information System (INIS)

    DNA methylation in the SHOX2 locus was previously used to reliably detect lung cancer in a group of critical controls, including 'cytologically negative' samples with no visible tumor cell content, at a high specificity based on the analysis of bronchial lavage samples. This study aimed to investigate, if the methylation correlates with SHOX2 gene expression and/or copy number alterations. An amplification of the SHOX2 gene locus together with the observed tumor-specific hypermethylation might explain the good performance of this marker in bronchial lavage samples. SHOX2 expression, gene copy number and DNA methylation were determined in lung tumor tissues and matched morphologically normal adjacent tissues (NAT) from 55 lung cancer patients. Quantitative HeavyMethyl (HM) real-time PCR was used to detect SHOX2 DNA methylation levels. SHOX2 expression was assayed with quantitative real-time PCR, and copy numbers alterations were measured with conventional real-time PCR and array CGH. A hypermethylation of the SHOX2 locus in tumor tissue as compared to the matched NAT from the same patient was detected in 96% of tumors from a group of 55 lung cancer patients. This correlated highly significantly with the frequent occurrence of copy number amplification (p < 0.0001), while the expression of the SHOX2 gene showed no difference. Frequent gene amplification correlated with hypermethylation of the SHOX2 gene locus. This concerted effect qualifies SHOX2 DNA methylation as a biomarker for lung cancer diagnosis, especially when sensitive detection is needed, i.e. in bronchial lavage or blood samples

  8. Correlation of SHOX2 Gene Amplification and DNA Methylation in Lung Cancer Tumors

    Directory of Open Access Journals (Sweden)

    Liebenberg Volker

    2011-03-01

    Full Text Available Abstract Background DNA methylation in the SHOX2 locus was previously used to reliably detect lung cancer in a group of critical controls, including 'cytologically negative' samples with no visible tumor cell content, at a high specificity based on the analysis of bronchial lavage samples. This study aimed to investigate, if the methylation correlates with SHOX2 gene expression and/or copy number alterations. An amplification of the SHOX2 gene locus together with the observed tumor-specific hypermethylation might explain the good performance of this marker in bronchial lavage samples. Methods SHOX2 expression, gene copy number and DNA methylation were determined in lung tumor tissues and matched morphologically normal adjacent tissues (NAT from 55 lung cancer patients. Quantitative HeavyMethyl (HM real-time PCR was used to detect SHOX2 DNA methylation levels. SHOX2 expression was assayed with quantitative real-time PCR, and copy numbers alterations were measured with conventional real-time PCR and array CGH. Results A hypermethylation of the SHOX2 locus in tumor tissue as compared to the matched NAT from the same patient was detected in 96% of tumors from a group of 55 lung cancer patients. This correlated highly significantly with the frequent occurrence of copy number amplification (p SHOX2 gene showed no difference. Conclusions Frequent gene amplification correlated with hypermethylation of the SHOX2 gene locus. This concerted effect qualifies SHOX2 DNA methylation as a biomarker for lung cancer diagnosis, especially when sensitive detection is needed, i.e. in bronchial lavage or blood samples.

  9. Quantitative DNA methylation analyses reveal stage dependent DNA methylation and association to clinico-pathological factors in breast tumors

    International Nuclear Information System (INIS)

    Aberrant DNA methylation of regulatory genes has frequently been found in human breast cancers and correlated to clinical outcome. In the present study we investigate stage specific changes in the DNA methylation patterns in order to identify valuable markers to understand how these changes affect breast cancer progression. Quantitative DNA methylation analyses of 12 candidate genes ABCB1, BRCCA1, CDKN2A, ESR1, GSTP1, IGF2, MGMT, HMLH1, PPP2R2B, PTEN, RASSF1A and FOXC1 was performed by pyrosequencing a series of 238 breast cancer tissue samples from DCIS to invasive tumors stage I to IV. Significant differences in methylation levels between the DCIS and invasive stage II tumors were observed for six genes RASSF1A, CDKN2A, MGMT, ABCB1, GSTP1 and FOXC1. RASSF1A, ABCB1 and GSTP1 showed significantly higher methylation levels in late stage compared to the early stage breast carcinoma. Z-score analysis revealed significantly lower methylation levels in DCIS and stage I tumors compared with stage II, III and IV tumors. Methylation levels of PTEN, PPP2R2B, FOXC1, ABCB1 and BRCA1 were lower in tumors harboring TP53 mutations then in tumors with wild type TP53. Z-score analysis showed that TP53 mutated tumors had significantly lower overall methylation levels compared to tumors with wild type TP53. Methylation levels of RASSF1A, PPP2R2B, GSTP1 and FOXC1 were higher in ER positive vs. ER negative tumors and methylation levels of PTEN and CDKN2A were higher in HER2 positive vs. HER2 negative tumors. Z-score analysis also showed that HER2 positive tumors had significantly higher z-scores of methylation compared to the HER2 negative tumors. Univariate survival analysis identifies methylation status of PPP2R2B as significant predictor of overall survival and breast cancer specific survival. In the present study we report that the level of aberrant DNA methylation is higher in late stage compared with early stage of invasive breast cancers and DCIS for genes mentioned above

  10. Differential DNA Methylation Analysis without a Reference Genome

    Directory of Open Access Journals (Sweden)

    Johanna Klughammer

    2015-12-01

    Full Text Available Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS, which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish. Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org. The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome.

  11. Utilizing Gold Nanoparticle Probes to Visually Detect DNA Methylation.

    Science.gov (United States)

    Chen, Kui; Zhang, Mingyi; Chang, Ya-Nan; Xia, Lin; Gu, Weihong; Qin, Yanxia; Li, Juan; Cui, Suxia; Xing, Gengmei

    2016-12-01

    The surface plasmon resonance (SPR) effect endows gold nanoparticles (GNPs) with the ability to visualize biomolecules. In the present study, we designed and constructed a GNP probe to allow the semi-quantitative analysis of methylated tumor suppressor genes in cultured cells. To construct the probe, the GNP surfaces were coated with single-stranded DNA (ssDNA) by forming Au-S bonds. The ssDNA contains a thiolated 5'-end, a regulatory domain of 12 adenine nucleotides, and a functional domain with absolute pairing with methylated p16 sequence (Met-p16). The probe, paired with Met-p16, clearly changed the color of aggregating GNPs probe in 5 mol/L NaCl solution. Utilizing the probe, p16 gene methylation in HCT116 cells was semi-quantified. Further, the methylation of E-cadherin, p15, and p16 gene in Caco2, HepG2, and HCT116 cell lines were detected by the corresponding probes, constructed with three domains. This simple and cost-effective method was useful for the diagnosis of DNA methylation-related diseases. PMID:27325520

  12. Utilizing Gold Nanoparticle Probes to Visually Detect DNA Methylation

    Science.gov (United States)

    Chen, Kui; Zhang, Mingyi; Chang, Ya-Nan; Xia, Lin; Gu, Weihong; Qin, Yanxia; Li, Juan; Cui, Suxia; Xing, Gengmei

    2016-06-01

    The surface plasmon resonance (SPR) effect endows gold nanoparticles (GNPs) with the ability to visualize biomolecules. In the present study, we designed and constructed a GNP probe to allow the semi-quantitative analysis of methylated tumor suppressor genes in cultured cells. To construct the probe, the GNP surfaces were coated with single-stranded DNA (ssDNA) by forming Au-S bonds. The ssDNA contains a thiolated 5'-end, a regulatory domain of 12 adenine nucleotides, and a functional domain with absolute pairing with methylated p16 sequence (Met- p16). The probe, paired with Met- p16, clearly changed the color of aggregating GNPs probe in 5 mol/L NaCl solution. Utilizing the probe, p16 gene methylation in HCT116 cells was semi-quantified. Further, the methylation of E-cadherin, p15, and p16 gene in Caco2, HepG2, and HCT116 cell lines were detected by the corresponding probes, constructed with three domains. This simple and cost-effective method was useful for the diagnosis of DNA methylation-related diseases.

  13. Cancer epigenetics: a perspective on the role of DNA methylation in acquired endocrine resistance

    Institute of Scientific and Technical Information of China (English)

    Michael P. Trimarchi; Mary Mouangsavanh; Tim Hui-Ming Huang

    2011-01-01

    Epigenetic mechanisms,including DNA methylation,are responsible for determining and maintaining cell fate,stably differentiating the various tissues in our bodies.Increasing evidence shows that DNA methylation plays a significant role in cancer,from the silencing of tumor suppressors to the activation of oncogenes and the promotion of metastasis.Recent studies also suggest a role for DNA methylation in drug resistance.This perspective article discusses how DNA methylation may contribute to the development of acquired endocrine resistance,with a focus on breast cancer.In addition,we discuss DNA methylome profiling and how recent developments in this field are shedding new light on the role of epigenetics in endocrine resistance.Hormone ablation is the therapy of choice for hormone-sensitive breast tumors,yet as many as 40% of patients inevitably relapse,and these hormone refractory tumors often have a poor prognosis.Epigenetic studies could provide DNA methylation biomarkers to predict and diagnose acquired resistance in response to treatment.Elucidation of epigenetic mechanisms may also lead to the development of new treatments that specifically target epigenetic abnormalities or vulnerabilities in cancer cells.Expectations must be tempered by the fact that epigenetic mechanisms of endocrine resistance remain poorly understood,and further study is required to better understand how altering epigenetic pathways with therapeutics can promote or inhibit endocrine resistance in different contexts.Going forward,DNA methylome profiling will become increasingly central to epigenetic research,heralding a network-based approach to epigenetics that promises to advance our understanding of the etiology of cancer in ways not previously possible.

  14. Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review)

    OpenAIRE

    JIMÉNEZ-WENCES, HILDA; Peralta-Zaragoza, Oscar; Fernández-Tilapa, Gloria

    2014-01-01

    Cancer is a complex disease caused by genetic and epigenetic abnormalities that affect gene expression. The progression from precursor lesions to invasive cervical cancer is influenced by persistent human papilloma virus (HPV) infection, which induces changes in the host genome and epigenome. Epigenetic alterations, such as aberrant miRNA expression and changes in DNA methylation status, favor the expression of oncogenes and the silencing of tumor-suppressor genes. Given that some miRNA genes...

  15. Platelet mitochondrial DNA methylation: a potential new marker of cardiovascular disease

    OpenAIRE

    Baccarelli, Andrea A.; Byun, Hyang-Min

    2015-01-01

    Background: Platelets are critical in the etiology of cardiovascular disease (CVD), and the mitochondria in these cells serve as an energy source for platelet function. Epigenetic factors, especially DNA methylation, have been employed as markers of CVD. Unlike nuclear DNA methylation, mitochondrial DNA (mtDNA) methylation has not been widely studied, in part, due to debate about its existence and role. In this study, we examined platelet mtDNA methylation in relation to CVD. Results: We meas...

  16. Gamma irradiation does not induce detectable changes in DNA methylation directly following exposure of human cells.

    Directory of Open Access Journals (Sweden)

    Christoph Lahtz

    Full Text Available Environmental chemicals and radiation have often been implicated in producing alterations of the epigenome thus potentially contributing to cancer and other diseases. Ionizing radiation, released during accidents at nuclear power plants or after atomic bomb explosions, is a potentially serious health threat for the exposed human population. This type of high-energy radiation causes DNA damage including single- and double-strand breaks and induces chromosomal rearrangements and mutations, but it is not known if ionizing radiation directly induces changes in the epigenome of irradiated cells. We treated normal human fibroblasts and normal human bronchial epithelial cells with different doses of γ-radiation emitted from a cesium 137 ((137Cs radiation source. After a seven-day recovery period, we analyzed global DNA methylation patterns in the irradiated and control cells using the methylated-CpG island recovery assay (MIRA in combination with high-resolution microarrays. Bioinformatics analysis revealed only a small number of potential methylation changes with low fold-difference ratios in the irradiated cells. These minor methylation differences seen on the microarrays could not be verified by COBRA (combined bisulfite restriction analysis or bisulfite sequencing of selected target loci. Our study shows that acute γ-radiation treatment of two types of human cells had no appreciable direct effect on DNA cytosine methylation patterns in exposed cells.

  17. Differential DNA methylation profile of key genes in malignant prostate epithelial cells transformed by inorganic arsenic or cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Pelch, Katherine E.; Tokar, Erik J. [National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States); Merrick, B. Alex [Molecular Toxicology and Informatics Group, Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Morrisville, NC 27560 (United States); Waalkes, Michael P., E-mail: waalkes@niehs.nih.gov [National Toxicology Program Laboratory, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709 (United States)

    2015-08-01

    Previous work shows altered methylation patterns in inorganic arsenic (iAs)- or cadmium (Cd)-transformed epithelial cells. Here, the methylation status near the transcriptional start site was assessed in the normal human prostate epithelial cell line (RWPE-1) that was malignantly transformed by 10 μM Cd for 11 weeks (CTPE) or 5 μM iAs for 29 weeks (CAsE-PE), at which time cells showed multiple markers of acquired cancer phenotype. Next generation sequencing of the transcriptome of CAsE-PE cells identified multiple dysregulated genes. Of the most highly dysregulated genes, five genes that can be relevant to the carcinogenic process (S100P, HYAL1, NTM, NES, ALDH1A1) were chosen for an in-depth analysis of the DNA methylation profile. DNA was isolated, bisulfite converted, and combined bisulfite restriction analysis was used to identify differentially methylated CpG sites, which was confirmed with bisulfite sequencing. Four of the five genes showed differential methylation in transformants relative to control cells that was inversely related to altered gene expression. Increased expression of HYAL1 (> 25-fold) and S100P (> 40-fold) in transformants was correlated with hypomethylation near the transcriptional start site. Decreased expression of NES (> 15-fold) and NTM (> 1000-fold) in transformants was correlated with hypermethylation near the transcriptional start site. ALDH1A1 expression was differentially expressed in transformed cells but was not differentially methylated relative to control. In conclusion, altered gene expression observed in Cd and iAs transformed cells may result from altered DNA methylation status. - Highlights: • Cd and iAs are known human carcinogens, yet neither appears directly mutagenic. • Prior data suggest epigenetic modification plays a role in Cd or iAs induced cancer. • Altered methylation of four misregulated genes was found in Cd or iAs transformants. • The resulting altered gene expression may be relevant to cellular

  18. Differential DNA methylation profile of key genes in malignant prostate epithelial cells transformed by inorganic arsenic or cadmium

    International Nuclear Information System (INIS)

    Previous work shows altered methylation patterns in inorganic arsenic (iAs)- or cadmium (Cd)-transformed epithelial cells. Here, the methylation status near the transcriptional start site was assessed in the normal human prostate epithelial cell line (RWPE-1) that was malignantly transformed by 10 μM Cd for 11 weeks (CTPE) or 5 μM iAs for 29 weeks (CAsE-PE), at which time cells showed multiple markers of acquired cancer phenotype. Next generation sequencing of the transcriptome of CAsE-PE cells identified multiple dysregulated genes. Of the most highly dysregulated genes, five genes that can be relevant to the carcinogenic process (S100P, HYAL1, NTM, NES, ALDH1A1) were chosen for an in-depth analysis of the DNA methylation profile. DNA was isolated, bisulfite converted, and combined bisulfite restriction analysis was used to identify differentially methylated CpG sites, which was confirmed with bisulfite sequencing. Four of the five genes showed differential methylation in transformants relative to control cells that was inversely related to altered gene expression. Increased expression of HYAL1 (> 25-fold) and S100P (> 40-fold) in transformants was correlated with hypomethylation near the transcriptional start site. Decreased expression of NES (> 15-fold) and NTM (> 1000-fold) in transformants was correlated with hypermethylation near the transcriptional start site. ALDH1A1 expression was differentially expressed in transformed cells but was not differentially methylated relative to control. In conclusion, altered gene expression observed in Cd and iAs transformed cells may result from altered DNA methylation status. - Highlights: • Cd and iAs are known human carcinogens, yet neither appears directly mutagenic. • Prior data suggest epigenetic modification plays a role in Cd or iAs induced cancer. • Altered methylation of four misregulated genes was found in Cd or iAs transformants. • The resulting altered gene expression may be relevant to cellular

  19. Androgen receptor function links human sexual dimorphism to DNA methylation.

    Directory of Open Access Journals (Sweden)

    Ole Ammerpohl

    Full Text Available Sex differences are well known to be determinants of development, health and disease. Epigenetic mechanisms are also known to differ between men and women through X-inactivation in females. We hypothesized that epigenetic sex differences may also result from sex hormone functions, in particular from long-lasting androgen programming. We aimed at investigating whether inactivation of the androgen receptor, the key regulator of normal male sex development, is associated with differences of the patterns of DNA methylation marks in genital tissues. To this end, we performed large scale array-based analysis of gene methylation profiles on genomic DNA from labioscrotal skin fibroblasts of 8 males and 26 individuals with androgen insensitivity syndrome (AIS due to inactivating androgen receptor gene mutations. By this approach we identified differential methylation of 167 CpG loci representing 162 unique human genes. These were significantly enriched for androgen target genes and low CpG content promoter genes. Additional 75 genes showed a significant increase of heterogeneity of methylation in AIS compared to a high homogeneity in normal male controls. Our data show that normal and aberrant androgen receptor function is associated with distinct patterns of DNA-methylation marks in genital tissues. These findings support the concept that transcription factor binding to the DNA has an impact on the shape of the DNA methylome. These data which derived from a rare human model suggest that androgen programming of methylation marks contributes to sexual dimorphism in the human which might have considerable impact on the manifestation of sex-associated phenotypes and diseases.

  20. Epigenetic clustering of lung adenocarcinomas based on DNA methylation profiles in adjacent lung tissue: Its correlation with smoking history and chronic obstructive pulmonary disease

    OpenAIRE

    Sato, Takashi; Arai, Eri; Kohno, Takashi; Takahashi, Yoriko; Miyata, Sayaka; Tsuta, Koji; Watanabe, Shun-ichi; Soejima, Kenzo; Betsuyaku, Tomoko; Kanai, Yae

    2013-01-01

    The aim of this study was to clarify the significance of DNA methylation alterations during lung carcinogenesis. Infinium assay was performed using 139 paired samples of non-cancerous lung tissue (N) and tumorous tissue (T) from a learning cohort of patients with lung adenocarcinomas (LADCs). Fifty paired N and T samples from a validation cohort were also analyzed. DNA methylation alterations on 1,928 probes occurred in N samples relative to normal lung tissue from patients without primary lu...

  1. Role of Notch signalling pathway in cancer and its association with DNA methylation

    Indian Academy of Sciences (India)

    Madhuri G. S. Aithal; Narayanappa Rajeswari

    2013-12-01

    The Notch signalling pathway is an evolutionarily conserved cell signalling pathway involved in the development of organisms as diverse as humans and fruit flies. It plays a pivotal role in cell fate determination. Dysregulated Notch signalling is oncogenic, inhibits apoptosis and promotes cell survival. Abnormal Notch signalling is seen in many cancers like T-cell acute lymphoblastic leukaemia, acute myeloid leukaemia and cancers of the breast, cervix, colon, pancreas, skin and brain. Inhibition of Notch signalling leads to growth arrest and differentiation in those cells in which Notch pathway is activated and this represents a new target for cancer therapy. Cancer develops from genome defects, including both genetic and epigenetic alterations. Epigenetics deals with heritable changes in gene function that occur without a change in the DNA sequence. Among various epigenetic alterations such as acetylation, phosphorylation, ubiquitylation and sumoylation, promoter region methylation is considered as an important component in cancer development. Epigenetic alterations can be used as biomarkers in screening, detection, diagnosis, staging and risk stratification of various cancers. DNA methylation can be therapeutically reversed and demethylating drugs have proven to be promising in cancer treatment. This review focusses on the methylation status of genes in Notch signalling pathway from various cancers and how this epigenetic alteration can be used as a biomarker for cancer diagnosis and subsequent treatment.

  2. Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum

    Science.gov (United States)

    Ponts, Nadia; Fu, Lijuan; Harris, Elena Y.; Zhang, Jing; Chung, Duk-Won D.; Cervantes, Michael C.; Prudhomme, Jacques; Atanasova-Penichon, Vessela; Zehraoui, Enric; Bunnik, Evelien; Rodrigues, Elisandra M.; Lonardi, Stefano; Hicks, Glenn R.; Wang, Yinsheng; Le Roch, Karine G.

    2014-01-01

    SUMMARY Cytosine DNA methylation is an epigenetic mark in most eukaryotic cells that regulates numerous processes, including gene expression and stress responses. We performed a genome-wide analysis of DNA methylation in the human malaria parasite Plasmodium falciparum. We mapped the positions of methylated cytosines and identified a single functional DNA methyltransferase, PfDNMT, that may mediate these genomic modifications. These analyses revealed that the malaria genome is asymmetrically methylated, in which only one DNA strand is methylated, and shares common features with undifferentiated plant and mammalian cells. Notably, core promoters are hypomethylated and transcript levels correlate with intra-exonic methylation. Additionally, there are sharp methylation transitions at nucleosome and exon-intron boundaries. These data suggest that DNA methylation could regulate virulence gene expression and transcription elongation. Furthermore, the broad range of action of DNA methylation and uniqueness of PfDNMT suggest that the methylation pathway is a potential target for anti-malarial strategies. PMID:24331467

  3. DNA methylation analysis in constitutional disorders: Clinical implications of the epigenome.

    Science.gov (United States)

    Schenkel, Laila C; Rodenhiser, David I; Ainsworth, Peter J; Paré, Guillaume; Sadikovic, Bekim

    2016-06-01

    Genomic, chromosomal, and gene-specific changes in the DNA sequence underpin both phenotypic variations in populations as well as disease associations, and the application of genomic technologies for the identification of constitutional (inherited) or somatic (acquired) alterations in DNA sequence forms a cornerstone of clinical and molecular genetics. In addition to the disruption of primary DNA sequence, the modulation of DNA function by epigenetic phenomena, in particular by DNA methylation, has long been known to play a role in the regulation of gene expression and consequent pathogenesis. However, these epigenetic factors have been identified only in a handful of pediatric conditions, including imprinting disorders. Technological advances in the past decade that have revolutionized clinical genomics are now rapidly being applied to the emerging discipline of clinical epigenomics. Here, we present an overview of epigenetic mechanisms with a focus on DNA modifications, including the molecular mechanisms of DNA methylation and subtypes of DNA modifications, and we describe the classic and emerging genomic technologies that are being applied to this study. This review focuses primarily on constitutional epigenomic conditions associated with a spectrum of developmental and intellectual disabilities. Epigenomic disorders are discussed in the context of global genomic disorders, imprinting disorders, and single gene disorders. We include a section focused on integration of genetic and epigenetic mechanisms together with their effect on clinical phenotypes. Finally, we summarize emerging epigenomic technologies and their impact on diagnostic aspects of constitutional genetic and epigenetic disorders. PMID:26758403

  4. DNMT1-interacting RNAs block gene-specific DNA methylation

    Czech Academy of Sciences Publication Activity Database

    Di Ruscio, A.; Ebralidze, A.; Benoukraf, T.; Amabile, G.; Goff, L.A.; Terragni, J.; Figueroa, M.E.; Pontes, L.L.D.; Alberich-Jorda, Meritxell; Zhang, P.; Wu, M.C.; D´Alo, F.; Melnick, A.; Leone, G.; Ebralidze, K.K.; Pradhan, S.; Rinn, J.L.; Tenen, D.G.

    2013-01-01

    Roč. 503, č. 7476 (2013), s. 371-376. ISSN 0028-0836 R&D Projects: GA MŠk LK21307 Institutional support: RVO:68378050 Keywords : DNA methylation * non-coding RNA * DNMT1 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 42.351, year: 2013

  5. Does DNA methylation pattern mark generative development in winter rape?

    Czech Academy of Sciences Publication Activity Database

    Filek, M.; Janiak, A.; Szarejko, I.; Grabczynska, J.; Macháčková, Ivana; Krekule, Jan

    2006-01-01

    Roč. 61, 5-6 (2006), s. 387-396. ISSN 0939-5075 R&D Projects: GA AV ČR IAA600040612 Institutional research plan: CEZ:AV0Z50380511 Keywords : DNA methylation * rape * vernalization Subject RIV: EF - Botanics Impact factor: 0.720, year: 2006

  6. The interplay between DNA methylation, folate and neurocognitive development.

    Science.gov (United States)

    Irwin, Rachelle E; Pentieva, Kristina; Cassidy, Tony; Lees-Murdock, Diane J; McLaughlin, Marian; Prasad, Girijesh; McNulty, Helene; Walsh, Colum P

    2016-06-01

    DNA methylation provides an attractive possible means for propagating the effects of environmental inputs during fetal life and impacting subsequent adult mental health, which is leading to increasing collaboration between molecular biologists, nutritionists and psychiatrists. An area of interest is the potential role of folate, not just in neural tube closure in early pregnancy, but in later major neurodevelopmental events, with consequences for later sociocognitive maturation. Here, we set the scene for recent discoveries by reviewing the major events of neural development during fetal life, with an emphasis on tissues and structures where dynamic methylation changes are known to occur. Following this, we give an indication of some of the major classes of genes targeted by methylation and important for neurological and behavioral development. Finally, we highlight some cognitive disorders where methylation changes are implicated as playing an important role. PMID:27319574

  7. Epigenomics of Total Acute Sleep Deprivation in Relation to Genome-Wide DNA Methylation Profiles and RNA Expression

    Science.gov (United States)

    Boström, Adrian E.; Mwinyi, Jessica; Schiöth, Helgi B.

    2016-01-01

    Abstract Despite an established link between sleep deprivation and epigenetic processes in humans, it remains unclear to what extent sleep deprivation modulates DNA methylation. We performed a within-subject randomized blinded study with 16 healthy subjects to examine the effect of one night of total sleep deprivation (TSD) on the genome-wide methylation profile in blood compared with that in normal sleep. Genome-wide differences in methylation between both conditions were assessed by applying a paired regression model that corrected for monocyte subpopulations. In addition, the correlations between the methylation of genes detected to be modulated by TSD and gene expression were examined in a separate, publicly available cohort of 10 healthy male donors (E-GEOD-49065). Sleep deprivation significantly affected the DNA methylation profile both independently and in dependency of shifts in monocyte composition. Our study detected differential methylation of 269 probes. Notably, one CpG site was located 69 bp upstream of ING5, which has been shown to be differentially expressed after sleep deprivation. Gene set enrichment analysis detected the Notch and Wnt signaling pathways to be enriched among the differentially methylated genes. These results provide evidence that total acute sleep deprivation alters the methylation profile in healthy human subjects. This is, to our knowledge, the first study that systematically investigated the impact of total acute sleep deprivation on genome-wide DNA methylation profiles in blood and related the epigenomic findings to the expression data. PMID:27310475

  8. Aberrant DNA Methylation of rDNA and PRIMA1 in Borderline Personality Disorder.

    Science.gov (United States)

    Teschler, Stefanie; Gotthardt, Julia; Dammann, Gerhard; Dammann, Reinhard H

    2016-01-01

    Borderline personality disorder (BPD) is a serious psychic disease with a high risk for suicide. DNA methylation is a hallmark for aberrant epigenetic regulation and could be involved in the etiology of BPD. Previously, it has been reported that increased DNA methylation of neuropsychiatric genes is found in the blood of patients with BPD compared to healthy controls. Here, we analyzed DNA methylation patterns of the ribosomal RNA gene (rDNA promoter region and 5'-external transcribed spacer/5'ETS) and the promoter of the proline rich membrane anchor 1 gene (PRIMA1) in peripheral blood samples of 24 female patients (mean age (33 ± 11) years) diagnosed with DSM-IV BPD and in 11 female controls (mean age (32 ± 7) years). A significant aberrant methylation of rDNA and PRIMA1 was revealed for BPD patients using pyrosequencing. For the promoter of PRIMA1, the average methylation of six CpG sites was 1.6-fold higher in BPD patients compared to controls. In contrast, the methylation levels of the rDNA promoter region and the 5'ETS were significantly lower (0.9-fold) in patients with BPD compared to controls. Thus, for nine CpGs located in the rDNA promoter region and for four CpGs at the 5'ETS decreased methylation was found in peripheral blood of patients compared to controls. Our results suggest that aberrant methylation of rDNA and PRIMA1 is associated with the pathogenesis of BPD. PMID:26742039

  9. Aberrant DNA Methylation of rDNA and PRIMA1 in Borderline Personality Disorder

    Directory of Open Access Journals (Sweden)

    Stefanie Teschler

    2016-01-01

    Full Text Available Borderline personality disorder (BPD is a serious psychic disease with a high risk for suicide. DNA methylation is a hallmark for aberrant epigenetic regulation and could be involved in the etiology of BPD. Previously, it has been reported that increased DNA methylation of neuropsychiatric genes is found in the blood of patients with BPD compared to healthy controls. Here, we analyzed DNA methylation patterns of the ribosomal RNA gene (rDNA promoter region and 5′-external transcribed spacer/5′ETS and the promoter of the proline rich membrane anchor 1 gene (PRIMA1 in peripheral blood samples of 24 female patients (mean age (33 ± 11 years diagnosed with DSM-IV BPD and in 11 female controls (mean age (32 ± 7 years. A significant aberrant methylation of rDNA and PRIMA1 was revealed for BPD patients using pyrosequencing. For the promoter of PRIMA1, the average methylation of six CpG sites was 1.6-fold higher in BPD patients compared to controls. In contrast, the methylation levels of the rDNA promoter region and the 5′ETS were significantly lower (0.9-fold in patients with BPD compared to controls. Thus, for nine CpGs located in the rDNA promoter region and for four CpGs at the 5′ETS decreased methylation was found in peripheral blood of patients compared to controls. Our results suggest that aberrant methylation of rDNA and PRIMA1 is associated with the pathogenesis of BPD.

  10. Triplex-mediated analysis of cytosine methylation at CpA sites in DNA

    OpenAIRE

    Johannsen, Marie W.; Gerrard, Simon R.; Melvin, Tracy; Brown, Tom

    2014-01-01

    Modified triplex-forming oligonucleotides distinguish 5-methyl cytosine from unmethylated cytosine in DNA duplexes by differences in triplex melting temperatures. The discrimination is sequence-specific; dramatic differences in stabilisation are seen for CpA methylation, whereas CpG methylation is not detected. This direct detection of DNA methylation constitutes a new approach for epigenetic analysis.

  11. TUMOR-RELATED METHYLATED CELL-FREE DNA AND CIRCULATING TUMOR CELLS IN MELANOMA

    Directory of Open Access Journals (Sweden)

    Francesca eSalvianti

    2016-01-01

    Full Text Available Solid tumor release into the circulation cell-free DNA (cfDNA and circulating tumor cells (CTCs which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma.The aim of the present study was to assess the diagnostic performance of a tumor-related methylated cfDNA marker in melanoma patients and to compare this parameter with the presence of CTCs.RASSF1A promoter methylation was quantified in cfDNA by qPCR in a consecutive series of 84 melanoma patients and 68 healthy controls. In a subset of 68 cases, the presence of CTCs was assessed by a filtration method (Isolation by Size of Epithelial Tumor Cells, ISET as well as by an indirect method based on the detection of tyrosinase mRNA by RT-qPCR. The distribution of RASSF1A methylated cfDNA was investigated in cases and controls and the predictive capability of this parameter was assessed by means of the area under the ROC curve (AUC.The percentage of cases with methylated RASSF1A promoter in cfDNA was significantly higher in each class of melanoma patients (in situ, invasive and metastatic than in healthy subjects (Pearson chi-squared test, p<0.001. The concentration of RASSF1A methylated cfDNA in the subjects with a detectable quantity of methylated alleles was significantly higher in melanoma patients than in controls. The biomarker showed a good predictive capability (in terms of AUC in discriminating between melanoma patients and healthy controls. This epigenetic marker associated to cfDNA did not show a significant correlation with the presence of CTCs, but, when the two parameters are jointly considered, we obtain a higher sensitivity of the detection of positive cases in invasive

  12. Tumor-Related Methylated Cell-Free DNA and Circulating Tumor Cells in Melanoma

    Science.gov (United States)

    Salvianti, Francesca; Orlando, Claudio; Massi, Daniela; De Giorgi, Vincenzo; Grazzini, Marta; Pazzagli, Mario; Pinzani, Pamela

    2016-01-01

    Solid tumor release into the circulation cell-free DNA (cfDNA) and circulating tumor cells (CTCs) which represent promising biomarkers for cancer diagnosis. Circulating tumor DNA may be studied in plasma from cancer patients by detecting tumor specific alterations, such as genetic or epigenetic modifications. Ras association domain family 1 isoform A (RASSF1A) is a tumor suppressor gene silenced by promoter hypermethylation in a variety of human cancers including melanoma. The aim of the present study was to assess the diagnostic performance of a tumor-related methylated cfDNA marker in melanoma patients and to compare this parameter with the presence of CTCs. RASSF1A promoter methylation was quantified in cfDNA by qPCR in a consecutive series of 84 melanoma patients and 68 healthy controls. In a subset of 68 cases, the presence of CTCs was assessed by a filtration method (Isolation by Size of Epithelial Tumor Cells, ISET) as well as by an indirect method based on the detection of tyrosinase mRNA by RT-qPCR. The distribution of RASSF1A methylated cfDNA was investigated in cases and controls and the predictive capability of this parameter was assessed by means of the area under the ROC curve (AUC). The percentage of cases with methylated RASSF1A promoter in cfDNA was significantly higher in each class of melanoma patients (in situ, invasive and metastatic) than in healthy subjects (Pearson chi-squared test, p < 0.001). The concentration of RASSF1A methylated cfDNA in the subjects with a detectable quantity of methylated alleles was significantly higher in melanoma patients than in controls. The biomarker showed a good predictive capability (in terms of AUC) in discriminating between melanoma patients and healthy controls. This epigenetic marker associated to cfDNA did not show a significant correlation with the presence of CTCs, but, when the two parameters are jointly considered, we obtain a higher sensitivity of the detection of positive cases in invasive and

  13. Genome-wide age-related changes in DNA methylation and gene expression in human PBMCs.

    Science.gov (United States)

    Steegenga, Wilma T; Boekschoten, Mark V; Lute, Carolien; Hooiveld, Guido J; de Groot, Philip J; Morris, Tiffany J; Teschendorff, Andrew E; Butcher, Lee M; Beck, Stephan; Müller, Michael

    2014-06-01

    Aging is a progressive process that results in the accumulation of intra- and extracellular alterations that in turn contribute to a reduction in health. Age-related changes in DNA methylation have been reported before and may be responsible for aging-induced changes in gene expression, although a causal relationship has yet to be shown. Using genome-wide assays, we analyzed age-induced changes in DNA methylation and their effect on gene expression with and without transient induction with the synthetic transcription modulating agent WY14,643. To demonstrate feasibility of the approach, we isolated peripheral blood mononucleated cells (PBMCs) from five young and five old healthy male volunteers and cultured them with or without WY14,643. Infinium 450K BeadChip and Affymetrix Human Gene 1.1 ST expression array analysis revealed significant differential methylation of at least 5 % (ΔYO > 5 %) at 10,625 CpG sites between young and old subjects, but only a subset of the associated genes were also differentially expressed. Age-related differential methylation of previously reported epigenetic biomarkers of aging including ELOVL2, FHL2, PENK, and KLF14 was confirmed in our study, but these genes did not display an age-related change in gene expression in PBMCs. Bioinformatic analysis revealed that differentially methylated genes that lack an age-related expression change predominantly represent genes involved in carcinogenesis and developmental processes, and expression of most of these genes were silenced in PBMCs. No changes in DNA methylation were found in genes displaying transiently induced changes in gene expression. In conclusion, aging-induced differential methylation often targets developmental genes and occurs mostly without change in gene expression. PMID:24789080

  14. DNA methylation patterns of candidate genes regulated by thymine DNA glycosylase in patients with TP53 germline mutations

    International Nuclear Information System (INIS)

    Li-Fraumeni syndrome (LFS) is a rare, autosomal dominant, hereditary cancer predisposition disorder. In Brazil, the p.R337H TP53 founder mutation causes the variant form of LFS, Li-Fraumeni-like syndrome. The occurrence of cancer and age of disease onset are known to vary, even in patients carrying the same mutation, and several mechanisms such as genetic and epigenetic alterations may be involved in this variability. However, the extent of involvement of such events has not been clarified. It is well established that p53 regulates several pathways, including the thymine DNA glycosylase (TDG) pathway, which regulates the DNA methylation of several genes. This study aimed to identify the DNA methylation pattern of genes potentially related to the TDG pathway (CDKN2A, FOXA1, HOXD8, OCT4, SOX2, and SOX17) in 30 patients with germline TP53mutations, 10 patients with wild-type TP53, and 10 healthy individuals. We also evaluated TDG expression in patients with adrenocortical tumors (ADR) with and without the p.R337H TP53 mutation. Gene methylation patterns of peripheral blood DNA samples assessed by pyrosequencing revealed no significant differences between the three groups. However, increased TDG expression was observed by quantitative reverse transcription PCR in p.R337H carriers with ADR. Considering the rarity of this phenotype and the relevance of these findings, further studies using a larger sample set are necessary to confirm our results

  15. DNA methylation patterns of candidate genes regulated by thymine DNA glycosylase in patients with TP53 germline mutations

    Energy Technology Data Exchange (ETDEWEB)

    Fortes, F.P. [CIPE, Laboratrio de Oncogentica Molecular, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Kuasne, H. [CIPE, Laboratrio NeoGene, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Departamento de Urologia, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP (Brazil); Marchi, F.A. [CIPE, Laboratrio NeoGene, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Programa Inter-Institucional em Bioinformtica, Instituto de Matemtica e Estatstica, Universidade So Paulo, So Paulo, SP (Brazil); Miranda, P.M. [CIPE, Laboratrio NeoGene, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Rogatto, S.R. [CIPE, Laboratrio NeoGene, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Departamento de Urologia, Faculdade de Medicina, Universidade Estadual Paulista, Botucatu, SP (Brazil); Achatz, M.I. [CIPE, Laboratrio de Oncogentica Molecular, A.C. Camargo Cancer Center, São Paulo, SP (Brazil); Departamento de Oncogentica, A.C. Camargo Cancer Center, So Paulo, SP (Brazil)

    2015-04-28

    Li-Fraumeni syndrome (LFS) is a rare, autosomal dominant, hereditary cancer predisposition disorder. In Brazil, the p.R337H TP53 founder mutation causes the variant form of LFS, Li-Fraumeni-like syndrome. The occurrence of cancer and age of disease onset are known to vary, even in patients carrying the same mutation, and several mechanisms such as genetic and epigenetic alterations may be involved in this variability. However, the extent of involvement of such events has not been clarified. It is well established that p53 regulates several pathways, including the thymine DNA glycosylase (TDG) pathway, which regulates the DNA methylation of several genes. This study aimed to identify the DNA methylation pattern of genes potentially related to the TDG pathway (CDKN2A, FOXA1, HOXD8, OCT4, SOX2, and SOX17) in 30 patients with germline TP53mutations, 10 patients with wild-type TP53, and 10 healthy individuals. We also evaluated TDG expression in patients with adrenocortical tumors (ADR) with and without the p.R337H TP53 mutation. Gene methylation patterns of peripheral blood DNA samples assessed by pyrosequencing revealed no significant differences between the three groups. However, increased TDG expression was observed by quantitative reverse transcription PCR in p.R337H carriers with ADR. Considering the rarity of this phenotype and the relevance of these findings, further studies using a larger sample set are necessary to confirm our results.

  16. DNA methylation patterns of candidate genes regulated by thymine DNA glycosylase in patients with TP53 germline mutations.

    Science.gov (United States)

    Fortes, F P; Kuasne, H; Marchi, F A; Miranda, P M; Rogatto, S R; Achatz, M I

    2015-07-01

    Li-Fraumeni syndrome (LFS) is a rare, autosomal dominant, hereditary cancer predisposition disorder. In Brazil, the p.R337H TP53 founder mutation causes the variant form of LFS, Li-Fraumeni-like syndrome. The occurrence of cancer and age of disease onset are known to vary, even in patients carrying the same mutation, and several mechanisms such as genetic and epigenetic alterations may be involved in this variability. However, the extent of involvement of such events has not been clarified. It is well established that p53 regulates several pathways, including the thymine DNA glycosylase (TDG) pathway, which regulates the DNA methylation of several genes. This study aimed to identify the DNA methylation pattern of genes potentially related to the TDG pathway (CDKN2A, FOXA1, HOXD8, OCT4, SOX2, and SOX17) in 30 patients with germline TP53 mutations, 10 patients with wild-type TP53, and 10 healthy individuals. We also evaluated TDG expression in patients with adrenocortical tumors (ADR) with and without the p.R337H TP53 mutation. Gene methylation patterns of peripheral blood DNA samples assessed by pyrosequencing revealed no significant differences between the three groups. However, increased TDG expression was observed by quantitative reverse transcription PCR in p.R337H carriers with ADR. Considering the rarity of this phenotype and the relevance of these findings, further studies using a larger sample set are necessary to confirm our results. PMID:25945745

  17. DNA methylation patterns of candidate genes regulated by thymine DNA glycosylase in patients with TP53 germline mutations

    Directory of Open Access Journals (Sweden)

    F.P. Fortes

    2015-07-01

    Full Text Available Li-Fraumeni syndrome (LFS is a rare, autosomal dominant, hereditary cancer predisposition disorder. In Brazil, the p.R337H TP53 founder mutation causes the variant form of LFS, Li-Fraumeni-like syndrome. The occurrence of cancer and age of disease onset are known to vary, even in patients carrying the same mutation, and several mechanisms such as genetic and epigenetic alterations may be involved in this variability. However, the extent of involvement of such events has not been clarified. It is well established that p53 regulates several pathways, including the thymine DNA glycosylase (TDG pathway, which regulates the DNA methylation of several genes. This study aimed to identify the DNA methylation pattern of genes potentially related to the TDG pathway (CDKN2A, FOXA1, HOXD8, OCT4, SOX2, and SOX17 in 30 patients with germline TP53 mutations, 10 patients with wild-type TP53, and 10 healthy individuals. We also evaluated TDG expression in patients with adrenocortical tumors (ADR with and without the p.R337H TP53 mutation. Gene methylation patterns of peripheral blood DNA samples assessed by pyrosequencing revealed no significant differences between the three groups. However, increased TDG expression was observed by quantitative reverse transcription PCR in p.R337H carriers with ADR. Considering the rarity of this phenotype and the relevance of these findings, further studies using a larger sample set are necessary to confirm our results.

  18. Utilizing Gold Nanoparticle Probes to Visually Detect DNA Methylation

    OpenAIRE

    Chen, Kui; Zhang, Mingyi; Chang, Ya-Nan; Xia, Lin; Gu, Weihong; Qin, Yanxia; Li, Juan; Cui, Suxia; Xing, Gengmei

    2016-01-01

    The surface plasmon resonance (SPR) effect endows gold nanoparticles (GNPs) with the ability to visualize biomolecules. In the present study, we designed and constructed a GNP probe to allow the semi-quantitative analysis of methylated tumor suppressor genes in cultured cells. To construct the probe, the GNP surfaces were coated with single-stranded DNA (ssDNA) by forming Au–S bonds. The ssDNA contains a thiolated 5′-end, a regulatory domain of 12 adenine nucleotides, and a functional domain ...

  19. Biomarkers measured in buccal and blood leukocyte DNA as proxies for colon tissue global methylation

    OpenAIRE

    Ashbury, Janet E.; Taylor, Sherryl A; Tse, M Yat; Stephen C Pang; Louw, Jacob A; Vanner, Stephen J.; King, Will D

    2014-01-01

    There is increasing interest in clarifying the role of global DNA methylation levels in colorectal cancer (CRC) etiology. Most commonly, in epidemiologic studies, methylation is measured in DNA derived from blood leukocytes as a proxy measure of methylation changes in colon tissue. However, little is known about the correlations between global methylation levels in DNA derived from colon tissue and more accessible tissues such as blood or buccal cells. This cross-sectional study utilized DNA ...

  20. The splicing factor SR45 affects the RNA-directed DNA methylation pathway in Arabidopsis

    OpenAIRE

    Ausin, Israel; Greenberg, Maxim V. C.; Li, Carey Fei; Jacobsen, Steven E.

    2012-01-01

    Cytosine DNA methylation is an epigenetic mark frequently associated with silencing of genes and transposons. In Arabidopsis, the establishment of cytosine DNA methylation is performed by DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2). DRM2 is guided to target sequences by small interfering RNAs (siRNAs) in a pathway termed RNA-directed DNA methylation (RdDM). We performed a screen for mutants that affect the establishment of DNA methylation by investigating genes that contain predicted RNA-in...

  1. Development of a mutant strain of Escherichia coli for molecular cloning of highly methylated DNA

    International Nuclear Information System (INIS)

    A mutant strain of Escherichia coli designated as GR219 that allows efficient molecular cloning of highly methylated bean DNA has been developed by UV light mutation of the parent LE392 strr strain. This mutant strain, like the parent, is streptomycin resistant and is biologically contained, because it requires thymidine for growth. Both the wild type and the mutant strain have lambda phage receptors so both can be utilized for construction of genomic libraries using the phase as a vector. The efficiency of transformation of the parent and the mutant strain with a recombinant plasmid containing bean DNA was compared to the efficiency of transformation of the PLK-F' strain, which has a deletion of mcrA and mcrB genes and, therefore, allows transformation with methylated bean DNA. It has been found that the GR219 strain has the highest efficiency of transformation, while the PLK-F' strain shows less, and the parent LE392 strr strain the least efficiency of transformation. These results indicate that strains of E. coli with mcrA and mcrB genes can recognize and degrade highly methylated DNA. However, other undefined factors affected by the altered gene(s) in the GR219 strain are also involved in the recognition and degradation of any cloned foreign DNA

  2. RNA-directed DNA methylation: Mechanisms and functions

    KAUST Repository

    Mahfouz, Magdy M.

    2010-07-01

    Epigenetic RNA based gene silencing mechanisms play a major role in genome stability and control of gene expression. Transcriptional gene silencing via RNA-directed DNA methylation (RdDM) guides the epigenetic regulation of the genome in response to disease states, growth, developmental and stress signals. RdDM machinery is composed of proteins that produce and modify 24-nt- long siRNAs, recruit the RdDM complex to genomic targets, methylate DNA and remodel chromatin. The final DNA methylation pattern is determined by either DNA methyltransferase alone or by the combined action of DNA methyltransferases and demethylases. The dynamic interaction between RdDM and demethylases may render the plant epigenome plastic to growth, developmental, and environmental cues. The epigenome plasticity may allow the plant genome to assume many epigenomes and to have the right epigenome at the right time in response to intracellular or extracellular stimuli. This review discusses recent advances in RdDM research and considers future perspectives.

  3. DNA methylation based biomarkers: Practical considerations and applications

    DEFF Research Database (Denmark)

    Nielsen, Helene Myrtue; How Kit, Alexandre; Tost, Jorg

    2012-01-01

    biochemical molecules such as proteins, DNA, RNA or lipids, whereby protein biomarkers have been the most extensively studied and used, notably in blood-based protein quantification tests or immunohistochemistry. The rise of interest in epigenetic mechanisms has allowed the identification of a new type of...... specific and sensitive than commonly used protein biomarkers, which could clearly justify their use in clinics. However, very few of them are at the moment used in clinics and even less commercial tests are currently available. The objective of this review is to discuss the advantages of DNA methylation as...... biomarker, DNA methylation, which is of great potential for many applications. This stable and heritable covalent modification mostly affects cytosines in the context of a CpG dinucleotide in humans. It can be detected and quantified by a number of technologies including genome-wide screening methods as...

  4. Aberrantly methylated DNA as a biomarker in breast cancer

    DEFF Research Database (Denmark)

    Kristiansen, Søren; Jørgensen, Lars Mønster; Guldberg, Per;

    2013-01-01

    hypermethylation events, their use as tumor biomarkers is usually not hampered by analytical signals from normal cells, which is a general problem for existing protein tumor markers used for clinical assessment of breast cancer. There is accumulating evidence that DNA-methylation changes in breast cancer patients......Aberrant DNA hypermethylation at gene promoters is a frequent event in human breast cancer. Recent genome-wide studies have identified hundreds of genes that exhibit differential methylation between breast cancer cells and normal breast tissue. Due to the tumor-specific nature of DNA...... occur early during tumorigenesis. This may open up for effective screening, and analysis of blood or nipple aspirate may later help in diagnosing breast cancer. As a more detailed molecular characterization of different types of breast cancer becomes available, the ability to divide patients into...

  5. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules

    Science.gov (United States)

    Kelly, Theresa K.; Liu, Yaping; Lay, Fides D.; Liang, Gangning; Berman, Benjamin P.; Jones, Peter A.

    2012-01-01

    DNA methylation and nucleosome positioning work together to generate chromatin structures that regulate gene expression. Nucleosomes are typically mapped using nuclease digestion requiring significant amounts of material and varying enzyme concentrations. We have developed a method (NOMe-seq) that uses a GpC methyltransferase (M.CviPI) and next generation sequencing to generate a high resolution footprint of nucleosome positioning genome-wide using less than 1 million cells while retaining endogenous DNA methylation information from the same DNA strand. Using a novel bioinformatics pipeline, we show a striking anti-correlation between nucleosome occupancy and DNA methylation at CTCF regions that is not present at promoters. We further show that the extent of nucleosome depletion at promoters is directly correlated to expression level and can accommodate multiple nucleosomes and provide genome-wide evidence that expressed non-CpG island promoters are nucleosome-depleted. Importantly, NOMe-seq obtains DNA methylation and nucleosome positioning information from the same DNA molecule, giving the first genome-wide DNA methylation and nucleosome positioning correlation at the single molecule, and thus, single cell level, that can be used to monitor disease progression and response to therapy. PMID:22960375

  6. Histone H1 Limits DNA Methylation in Neurospora crassa.

    Science.gov (United States)

    Seymour, Michael; Ji, Lexiang; Santos, Alex M; Kamei, Masayuki; Sasaki, Takahiko; Basenko, Evelina Y; Schmitz, Robert J; Zhang, Xiaoyu; Lewis, Zachary A

    2016-01-01

    Histone H1 variants, known as linker histones, are essential chromatin components in higher eukaryotes, yet compared to the core histones relatively little is known about their in vivo functions. The filamentous fungus Neurospora crassa encodes a single H1 protein that is not essential for viability. To investigate the role of N. crassa H1, we constructed a functional FLAG-tagged H1 fusion protein and performed genomic and molecular analyses. Cell fractionation experiments showed that H1-3XFLAG is a chromatin binding protein. Chromatin-immunoprecipitation combined with sequencing (ChIP-seq) revealed that H1-3XFLAG is globally enriched throughout the genome with a subtle preference for promoters of expressed genes. In mammals, the stoichiometry of H1 impacts nucleosome repeat length. To determine if H1 impacts nucleosome occupancy or nucleosome positioning in N. crassa, we performed micrococcal nuclease digestion in the wild-type and the [Formula: see text]hH1 strain followed by sequencing (MNase-seq). Deletion of hH1 did not significantly impact nucleosome positioning or nucleosome occupancy. Analysis of DNA methylation by whole-genome bisulfite sequencing (MethylC-seq) revealed a modest but global increase in DNA methylation in the [Formula: see text]hH1 mutant. Together, these data suggest that H1 acts as a nonspecific chromatin binding protein that can limit accessibility of the DNA methylation machinery in N. crassa. PMID:27172195

  7. DNA methylation in cardiac fibrosis: New advances and perspectives

    International Nuclear Information System (INIS)

    Cardiac fibrosis is characterized by net accumulation of extracellular matrix (ECM) proteins in the cardiac interstitium, and contributes to both systolic and diastolic dysfunction in many cardiac pathophysiologic conditions. More specifically, cardiac fibroblasts are activated by a variety of pathological stimuli, thereby undergoing proliferation, differentiation to myofibroblasts, and production of various cytokines and ECM proteins. Thus, understanding the biological processes of cardiac fibroblasts will provide novel insights into the underlying mechanisms of cardiac fibrosis. DNA methylation is an important epigenetic mechanism, which often occurs in response to environmental stimuli and is crucial in regulating gene expression. The aberrant methylation of CpG island promoters of selected genes is the prominent epigenetic mechanism by which gene transcription can be effectively silenced. Aberrant hypermethylation of a few selected genes such as RASSF1A plays an important role in facilitating fibrotic fibroblast activation and in driving fibrosis. In this review we will discuss the mechanisms of DNA methylation and their implications for cardiac fibroblasts activation and fibrosis. Control of DNA methylation may serve as a new strategy for anti-fibrotic therapy

  8. Infant sex-specific placental cadmium and DNA methylation associations

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, April F., E-mail: april.mohanty@va.gov [Cardiovascular Health Research Unit, University of Washington, 1730 Minor Ave, Seattle, WA 98101 (United States); Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA (United States); Farin, Fred M., E-mail: freddy@u.washington.edu [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way N.E., Suite #100, Seattle, WA 98105 (United States); Bammler, Theo K., E-mail: tbammler@u.washington.edu [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way N.E., Suite #100, Seattle, WA 98105 (United States); MacDonald, James W., E-mail: jmacdon@uw.edu [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way N.E., Suite #100, Seattle, WA 98105 (United States); Afsharinejad, Zahra, E-mail: zafshari@u.washington.edu [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, 4225 Roosevelt Way N.E., Suite #100, Seattle, WA 98105 (United States); Burbacher, Thomas M., E-mail: tmb@uw.edu [Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Box: 357234, 1705 N.E. Pacific Street, Seattle, WA 98195 (United States); Siscovick, David S., E-mail: dsiscovick@nyam.org [Cardiovascular Health Research Unit, University of Washington, 1730 Minor Ave, Seattle, WA 98101 (United States); Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA (United States); Department of Medicine, University of Washington, Seattle, WA (United States); and others

    2015-04-15

    Background: Recent evidence suggests that maternal cadmium (Cd) burden and fetal growth associations may vary by fetal sex. However, mechanisms contributing to these differences are unknown. Objectives: Among 24 maternal-infant pairs, we investigated infant sex-specific associations between placental Cd and placental genome-wide DNA methylation. Methods: We used ANOVA models to examine sex-stratified associations of placental Cd (dichotomized into high/low Cd using sex-specific Cd median cutoffs) with DNA methylation at each cytosine-phosphate-guanine site or region. Statistical significance was defined using a false discovery rate cutoff (<0.10). Results: Medians of placental Cd among females and males were 5 and 2 ng/g, respectively. Among females, three sites (near ADP-ribosylation factor-like 9 (ARL9), siah E3 ubiquitin protein ligase family member 3 (SIAH3), and heparin sulfate (glucosamine) 3-O-sulfotransferase 4 (HS3ST4) and one region on chromosome 7 (including carnitine O-octanoyltransferase (CROT) and TP5S target 1 (TP53TG1)) were hypomethylated in high Cd placentas. Among males, high placental Cd was associated with methylation of three sites, two (hypomethylated) near MDS1 and EVI1 complex locus (MECOM) and one (hypermethylated) near spalt-like transcription factor 1 (SALL1), and two regions (both hypomethylated, one on chromosome 3 including MECOM and another on chromosome 8 including rho guanine nucleotide exchange factor (GEF) 10 (ARHGEF10). Differentially methylated sites were at or close to transcription start sites of genes involved in cell damage response (SIAH3, HS3ST4, TP53TG1) in females and cell differentiation, angiogenesis and organ development (MECOM, SALL1) in males. Conclusions: Our preliminary study supports infant sex-specific placental Cd-DNA methylation associations, possibly accounting for previously reported differences in Cd-fetal growth associations across fetal sex. Larger studies are needed to replicate and extend these

  9. Infant sex-specific placental cadmium and DNA methylation associations

    International Nuclear Information System (INIS)

    Background: Recent evidence suggests that maternal cadmium (Cd) burden and fetal growth associations may vary by fetal sex. However, mechanisms contributing to these differences are unknown. Objectives: Among 24 maternal-infant pairs, we investigated infant sex-specific associations between placental Cd and placental genome-wide DNA methylation. Methods: We used ANOVA models to examine sex-stratified associations of placental Cd (dichotomized into high/low Cd using sex-specific Cd median cutoffs) with DNA methylation at each cytosine-phosphate-guanine site or region. Statistical significance was defined using a false discovery rate cutoff (<0.10). Results: Medians of placental Cd among females and males were 5 and 2 ng/g, respectively. Among females, three sites (near ADP-ribosylation factor-like 9 (ARL9), siah E3 ubiquitin protein ligase family member 3 (SIAH3), and heparin sulfate (glucosamine) 3-O-sulfotransferase 4 (HS3ST4) and one region on chromosome 7 (including carnitine O-octanoyltransferase (CROT) and TP5S target 1 (TP53TG1)) were hypomethylated in high Cd placentas. Among males, high placental Cd was associated with methylation of three sites, two (hypomethylated) near MDS1 and EVI1 complex locus (MECOM) and one (hypermethylated) near spalt-like transcription factor 1 (SALL1), and two regions (both hypomethylated, one on chromosome 3 including MECOM and another on chromosome 8 including rho guanine nucleotide exchange factor (GEF) 10 (ARHGEF10). Differentially methylated sites were at or close to transcription start sites of genes involved in cell damage response (SIAH3, HS3ST4, TP53TG1) in females and cell differentiation, angiogenesis and organ development (MECOM, SALL1) in males. Conclusions: Our preliminary study supports infant sex-specific placental Cd-DNA methylation associations, possibly accounting for previously reported differences in Cd-fetal growth associations across fetal sex. Larger studies are needed to replicate and extend these

  10. Gene Body Methylation can alter Gene Expression and is a Therapeutic Target in Cancer

    Science.gov (United States)

    Yang, Xiaojing; Han, Han; De Carvalho, Daniel D.; Lay, Fides D.; Jones, Peter A.; Liang, Gangning

    2014-01-01

    SUMMARY DNA methylation in promoters is well known to silence genes and is the presumed therapeutic target of methylation inhibitors. Gene body methylation is positively correlated with expression yet its function is unknown. We show that 5-aza-2'-deoxycytidine treatment not only reactivates genes but decreases the over-expression of genes, many of which are involved in metabolic processes regulated by c-MYC. Down-regulation is caused by DNA demethylation of the gene bodies and restoration of high levels of expression requires remethylation by DNMT3B. Gene body methylation may therefore be an unexpected therapeutic target for DNA methylation inhibitors, resulting in the normalization of gene over-expression induced during carcinogenesis. Our results provide direct evidence for a causal relationship between gene body methylation and transcription. PMID:25263941

  11. Control of plant cell differentiation by histone modification and DNA methylation.

    Science.gov (United States)

    Ikeuchi, Momoko; Iwase, Akira; Sugimoto, Keiko

    2015-12-01

    How cells differentiate and acquire diverse arrays of determined states in multicellular organisms is a fundamental and yet unanswered question in biology. Molecular genetic studies over the last few decades have identified many transcriptional regulators that activate or repress gene expression to promote cell differentiation in plant development. What has recently emerged as an additional important regulatory layer is the control at the epigenetic level by which locus-specific DNA methylation and histone modification alter the chromatin state and limit the expression of key developmental regulators to specific windows of time and space. Accumulating evidence suggests that histone acetylation is commonly linked with active transcription and this mechanism is adopted to control sequential progression of cell differentiation. Histone H3 trimethylation at lysine 27 and DNA methylation are both associated with gene repression, and these mechanisms are often utilised to promote and/or maintain the differentiated status of plant cells. PMID:26454697

  12. Cytological study of DNA methylation and histone methylation patterns in human cell lines

    Czech Academy of Sciences Publication Activity Database

    Skalníková, M.; Bártová, Eva; Kozubek, Stanislav; Kozubek, Michal

    Brno: Masarykova univerzita v Brně, 2004 - (Kozubek, S.; Kozubek, M.), s. 72-75 ISBN 80-210-3560-9. [Biophysics of the Genome. Brno (CZ), 12.10.2004-13.10.2004] R&D Projects: GA ČR GP202/03/D033; GA ČR GA202/04/0907; GA MZd NC6987; GA MZd 1A8241; GA AV ČR IAA5004306 Institutional research plan: CEZ:AV0Z5004920 Keywords : DNA methylation patterns * human cell lines * histone methylation patterns Subject RIV: BO - Biophysics

  13. Role of DNA methylation in the nucleus accumbens in incubation of cocaine craving.

    Science.gov (United States)

    Massart, Renaud; Barnea, Royi; Dikshtein, Yahav; Suderman, Matthew; Meir, Oren; Hallett, Michael; Kennedy, Pamela; Nestler, Eric J; Szyf, Moshe; Yadid, Gal

    2015-05-27

    One of the major challenges of cocaine addiction is the high rate of relapse to drug use after periods of withdrawal. During the first few weeks of withdrawal, cue-induced cocaine craving intensifies, or "incubates," and persists over extended periods of time. Although several brain regions and molecular mechanisms were found to be involved in this process, the underlying epigenetic mechanisms are still unknown. Herein, we used a rat model of incubation of cocaine craving, in which rats were trained to self-administer cocaine (0.75 mg/kg, 6 h/d, 10 d), and cue-induced cocaine-seeking was examined in an extinction test after 1 or 30 d of withdrawal. We show that the withdrawal periods, as well as cue-induced cocaine seeking, are associated with broad, time-dependent enhancement of DNA methylation alterations in the nucleus accumbens (NAc). These gene methylation alterations were partly negatively correlated with gene expression changes. Furthermore, intra-NAc injections of a DNA methyltransferase inhibitor (RG108, 100 μm) abolished cue-induced cocaine seeking on day 30, an effect that persisted 1 month, whereas the methyl donor S-adenosylmethionine (500 μm) had an opposite effect on cocaine seeking. We then targeted two proteins whose genes were demethylated by RG108-estrogen receptor 1 (ESR1) and cyclin-dependent kinase 5 (CDK5). Treatment with an intra-NAc injection of the ESR1 agonist propyl pyrazole triol (10 nm) or the CDK5 inhibitor roscovitine (28 μm) on day 30 of withdrawal significantly decreased cue-induced cocaine seeking. These results demonstrate a role for NAc DNA methylation, and downstream targets of DNA demethylation, in incubation of cocaine craving. PMID:26019323

  14. Epigenetic therapy of cancer stem and progenitor cells bytargeting DNA methylation machineries

    Institute of Scientific and Technical Information of China (English)

    Patompon Wongtrakoongate

    2015-01-01

    Recent advances in stem cell biology have shed light onhow normal stem and progenitor cells can evolve to acquiremalignant characteristics during tumorigenesis. The cancercounterparts of normal stem and progenitor cells might beoccurred through alterations of stem cell fates includingan increase in self-renewal capability and a decreasein differentiation and/or apoptosis. This oncogenicevolution of cancer stem and progenitor cells, which oftenassociates with aggressive phenotypes of the tumorigeniccells, is controlled in part by dysregulated epigeneticmechanisms including aberrant DNA methylation leadingto abnormal epigenetic memory. Epigenetic therapy bytargeting DNA methyltransferases (DNMT) 1, DNMT3Aand DNMT3B via 5-Azacytidine (Aza) and 5-Aza-2'-deoxycytidine (Aza-dC) has proved to be successfultoward treatment of hematologic neoplasms especially forpatients with myelodysplastic syndrome. In this review,I summarize the current knowledge of mechanismsunderlying the inhibition of DNA methylation by Aza andAza-dC, and of their apoptotic- and differentiation-inducingeffects on cancer stem and progenitor cells in leukemia,medulloblastoma, glioblastoma, neuroblastoma, prostatecancer, pancreatic cancer and testicular germ cell tumors.Since cancer stem and progenitor cells are implicatedin cancer aggressiveness such as tumor formation,progression, metastasis and recurrence, I proposethat effective therapeutic strategies might be achievedthrough eradication of cancer stem and progenitor cellsby targeting the DNA methylation machineries to interferetheir "malignant memory".

  15. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer’s disease model cell line

    International Nuclear Information System (INIS)

    Highlights: ► Genome-wide DNA methylation pattern in Alzheimer’s disease model cell line. ► Integrated analysis of CpG methylation and mRNA expression profiles. ► Identify three Swedish mutant target genes; CTIF, NXT2 and DDR2 gene. ► The effect of Swedish mutation on alteration of DNA methylation and gene expression. -- Abstract: The Swedish mutation of amyloid precursor protein (APP-sw) has been reported to dramatically increase beta amyloid production through aberrant cleavage at the beta secretase site, causing early-onset Alzheimer’s disease (AD). DNA methylation has been reported to be associated with AD pathogenesis, but the underlying molecular mechanism of APP-sw-mediated epigenetic alterations in AD pathogenesis remains largely unknown. We analyzed genome-wide interplay between promoter CpG DNA methylation and gene expression in an APP-sw-expressing AD model cell line. To identify genes whose expression was regulated by DNA methylation status, we performed integrated analysis of CpG methylation and mRNA expression profiles, and identified three target genes of the APP-sw mutant; hypomethylated CTIF (CBP80/CBP20-dependent translation initiation factor) and NXT2 (nuclear exporting factor 2), and hypermethylated DDR2 (discoidin domain receptor 2). Treatment with the demethylating agent 5-aza-2′-deoxycytidine restored mRNA expression of these three genes, implying methylation-dependent transcriptional regulation. The profound alteration in the methylation status was detected at the −435, −295, and −271 CpG sites of CTIF, and at the −505 to −341 region in the promoter of DDR2. In the promoter region of NXT2, only one CpG site located at −432 was differentially unmethylated in APP-sw cells. Thus, we demonstrated the effect of the APP-sw mutation on alteration of DNA methylation and subsequent gene expression. This epigenetic regulatory mechanism may contribute to the pathogenesis of AD.

  16. Aberrant DNA methylation in 5'regions of DNA methyltransferase genes in aborted bovine clones

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    High rate of abortion and developmental abnormalities is thought to be closely associated with inefficient epigenetic reprogramming of the transplanted nuclei during bovine cloning.It is known that one of the important mechanisms for epigenetic reprogramming is DNA methylation.DNA methylation is established and maintained by DNA methyltransferases(DNMTs),therefore,it is postulated that the inefficient epigenetic reprogramming of transplanted nuclei may be due to abnormal expression of DNMTs.Since DNA methylation can strongly inhibit gene expression,aberrant DNA methylation of DNMT genes may disturb gene expression.But presently,it is not clear whether the methylation abnormality of DNMT genes is related to developmental failure of somatic cell nuclear transfer embryos.In our study,we analyzed methylation patterns of the 5' regions of four DNMT genes including Dnmt3a,Dnmt3b,Dnmtl and Dnmt2 in four aborted bovine clones.Using bisulfite sequencing method,we found that 3 out of 4 aborted bovine clones(AF1,AF2 and AF3)showed either hypermethylation or hypomethylation in the 5' regions of Dnmt3a and Dnmt3b.indicating that Dnmt3a and Dnmt3b genes are not properly reprogrammed.However,the individual AF4 exhibited similar methylation level and pattern to age-matched in vitro fertilized (IVF)fetuses.Besides,we found that tle 5'regions of Dnmtl and Dnmt2 were nearly completely unmethylated in all normal adults.IVF fetuses,sperm and aborted clones.Together,our results suggest that the aberrant methylation of Dnmt3a and Dnmt3b 5' regions is probably associated with the high abortion of bovine clones.

  17. Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines

    OpenAIRE

    Chavez-Blanco, Alma; Perez-Plasencia, Carlos; Perez-Cardenas, Enrique; Carrasco-Legleu, Claudia; Rangel-Lopez, Edgar; Segura-Pacheco, Blanca; Taja-Chayeb, Lucia; Trejo-Becerril, Catalina; Gonzalez-Fierro, Aurora; Candelaria, Myrna; Cabrera, Gustavo; Duenas-Gonzalez, Alfonso

    2006-01-01

    Background Among the epigenetic alterations occurring in cancer, DNA hypermethylation and histone hypoacetylation are the focus of intense research because their pharmacological inhibition has shown to produce antineoplastic activity in a variety of experimental models. The objective of this study was to evaluate the combined antineoplastic effect of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in a panel of cancer cell lines. Results Hydralazi...

  18. Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines

    OpenAIRE

    Candelaria Myrna; Gonzalez-Fierro Aurora; Trejo-Becerril Catalina; Taja-Chayeb Lucia; Segura-Pacheco Blanca; Rangel-Lopez Edgar; Carrasco-Legleu Claudia; Perez-Cardenas Enrique; Perez-Plasencia Carlos; Chavez-Blanco Alma; Cabrera Gustavo; Duenas-Gonzalez Alfonso

    2006-01-01

    Abstract Background Among the epigenetic alterations occurring in cancer, DNA hypermethylation and histone hypoacetylation are the focus of intense research because their pharmacological inhibition has shown to produce antineoplastic activity in a variety of experimental models. The objective of this study was to evaluate the combined antineoplastic effect of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in a panel of cancer cell lines. Results ...

  19. Genome-wide DNA methylation in neonates exposed to maternal depression, anxiety, or SSRI medication during pregnancy

    OpenAIRE

    Non, Amy L.; Binder, Alexandra M.; Kubzansky, Laura D.; Michels, Karin B.

    2014-01-01

    Despite the high prevalence of depression, anxiety, and use of antidepressant medications during pregnancy, there is much uncertainty around the impact of high levels of distress or antidepressant medications on the developing fetus. These intrauterine exposures may lead to epigenetic alterations to the DNA during this vulnerable time of fetal development, which may have important lifetime health consequences. In this study we investigated patterns of genome-wide DNA methylation using the Ill...

  20. Affinity-based enrichment strategies to assay methyl-CpG binding activity and DNA methylation in early Xenopus embryos

    OpenAIRE

    Bogdanović Ozren; Veenstra Gert Jan C

    2011-01-01

    Abstract Background DNA methylation is a widespread epigenetic modification in vertebrate genomes. Genomic sites of DNA methylation can be bound by methyl-CpG-binding domain proteins (MBDs) and specific zinc finger proteins, which can recruit co-repressor complexes to silence transcription on targeted loci. The binding to methylated DNA may be regulated by post-translational MBD modifications. Findings A methylated DNA affinity precipitation method was implemented to assay binding of proteins...

  1. DNA Polymorphism Among American Watermelon Cultivars Based on DNA Methylation

    Science.gov (United States)

    American watermelon heirlooms are diverse in their growth habits, fruit qualities and responses to biotic and abiotic stress. Wide ranging DNA marker tools resolved a narrow molecular diversity among these collections. The current research explored additional insights such as extent of diversity a...

  2. DNA methylation arrays as surrogate measures of cell mixture distribution

    Directory of Open Access Journals (Sweden)

    Houseman Eugene

    2012-05-01

    Full Text Available Abstract Background There has been a long-standing need in biomedical research for a method that quantifies the normally mixed composition of leukocytes beyond what is possible by simple histological or flow cytometric assessments. The latter is restricted by the labile nature of protein epitopes, requirements for cell processing, and timely cell analysis. In a diverse array of diseases and following numerous immune-toxic exposures, leukocyte composition will critically inform the underlying immuno-biology to most chronic medical conditions. Emerging research demonstrates that DNA methylation is responsible for cellular differentiation, and when measured in whole peripheral blood, serves to distinguish cancer cases from controls. Results Here we present a method, similar to regression calibration, for inferring changes in the distribution of white blood cells between different subpopulations (e.g. cases and controls using DNA methylation signatures, in combination with a previously obtained external validation set consisting of signatures from purified leukocyte samples. We validate the fundamental idea in a cell mixture reconstruction experiment, then demonstrate our method on DNA methylation data sets from several studies, including data from a Head and Neck Squamous Cell Carcinoma (HNSCC study and an ovarian cancer study. Our method produces results consistent with prior biological findings, thereby validating the approach. Conclusions Our method, in combination with an appropriate external validation set, promises new opportunities for large-scale immunological studies of both disease states and noxious exposures.

  3. DNA co-methylation modules in postmortem prefrontal cortex tissues of European Australians with alcohol use disorders

    OpenAIRE

    Fan Wang; Hongqin Xu; Hongyu Zhao; Joel Gelernter; Huiping Zhang

    2016-01-01

    DNA methylome alterations in the prefrontal cortex (PFC) may contribute to risk for alcohol use disorders (AUDs). We examined postmortem PFC DNA methylomes of 16 male and seven female pairs of AUD and control subjects using Illumina’s HumanMethylation450 BeadChip assays. In male AUD subjects, 1,812 CpGs (1,099 genes) were differentially methylated (9.5 × 10−9 ≤ P nominal ≤ 7.2 × 10−4, q  0.05). Twenty-one AUD-associated co-methylation modules were identified in males by co-methylation analysi...

  4. Differential promoter methylation of kinesin family member 1a in plasma is associated with breast cancer and DNA repair capacity.

    Science.gov (United States)

    Guerrero-Preston, Rafael; Hadar, Tal; Ostrow, Kimberly Laskie; Soudry, Ethan; Echenique, Miguel; Ili-Gangas, Carmen; Pérez, Gabriela; Perez, Jimena; Brebi-Mieville, Priscilla; Deschamps, José; Morales, Luisa; Bayona, Manuel; Sidransky, David; Matta, Jaime

    2014-08-01

    Methylation alterations of CpG islands, CpG island shores and first exons are key events in the formation and progression of human cancer, and an increasing number of differentially methylated regions and genes have been identified in breast cancer. Recent studies of the breast cancer methylome using deep sequencing and microarray platforms are providing a novel insight on the different roles aberrant methylation plays in molecular subtypes of breast cancer. Accumulating evidence from a subset of studies suggests that promoter methylation of tumor-suppressor genes associated with breast cancer can be quantified in circulating DNA. However, there is a paucity of studies that examine the combined presence of genetic and epigenetic alterations associated with breast cancer using blood-based assays. Dysregulation of DNA repair capacity (DRC) is a genetic risk factor for breast cancer that has been measured in lymphocytes. We isolated plasma DNA from 340 participants in a breast cancer case control project to study promoter methylation levels of five genes previously shown to be associated with breast cancer in frozen tissue and in cell line DNA: MAL, KIF1A, FKBP4, VGF and OGDHL. Methylation of at least one gene was found in 49% of the cases compared to 20% of the controls. Three of the four genes had receiver characteristic operator curve values of ≥ 0.50: MAL (0.64), KIF1A (0.51) and OGDHL (0.53). KIF1A promoter methylation was associated with breast cancer and inversely associated with DRC. This is the first evidence of a significant association between genetic and epigenetic alterations in breast cancer using blood-based tests. The potential diagnostic utility of these biomarkers and their relevance for breast cancer risk prediction should be examined in larger cohorts. PMID:24927296

  5. The Role of DNA Methylation in the Development and Progression of Lung Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Keith M. Kerr

    2007-01-01

    Full Text Available Lung cancer, caused by smoking in ∼87% of cases, is the leading cause of cancer death in the United States and Western Europe. Adenocarcinoma is now the most common type of lung cancer in men and women in the United States, and the histological subtype most frequently seen in never-smokers and former smokers. The increasing frequency of adenocarcinoma, which occurs more peripherally in the lung, is thought to be at least partially related to modifications in cigarette manufacturing that have led to a change in the depth of smoke inhalation. The rising incidence of lung adenocarcinoma and its lethal nature underline the importance of understanding the development and progression of this disease. Alterations in DNA methylation are recognized as key epigenetic changes in cancer, contributing to chromosomal instability through global hypomethylation, and aberrant gene expression through alterations in the methylation levels at promoter CpG islands. The identification of sequential changes in DNA methylation during progression and metastasis of lung adenocarcinoma, and the elucidation of their interplay with genetic changes, will broaden our molecular understanding of this disease, providing insights that may be applicable to the development of targeted drugs, as well as powerful markers for early detection and patient classification.

  6. DNA methylation patterns in bladder cancer and washing cell sediments: a perspective for tumor recurrence detection

    International Nuclear Information System (INIS)

    Epigenetic alterations are a hallmark of human cancer. In this study, we aimed to investigate whether aberrant DNA methylation of cancer-associated genes is related to urinary bladder cancer recurrence. A set of 4 genes, including CDH1 (E-cadherin), SFN (stratifin), RARB (retinoic acid receptor, beta) and RASSF1A (Ras association (RalGDS/AF-6) domain family 1), had their methylation patterns evaluated by MSP (Methylation-Specific Polymerase Chain Reaction) analysis in 49 fresh urinary bladder carcinoma tissues (including 14 cases paired with adjacent normal bladder epithelium, 3 squamous cell carcinomas and 2 adenocarcinomas) and 24 cell sediment samples from bladder washings of patients classified as cancer-free by cytological analysis (control group). A third set of samples included 39 archived tumor fragments and 23 matched washouts from 20 urinary bladder cancer patients in post-surgical monitoring. After genomic DNA isolation and sodium bisulfite modification, methylation patterns were determined and correlated with standard clinic-histopathological parameters. CDH1 and SFN genes were methylated at high frequencies in bladder cancer as well as in paired normal adjacent tissue and exfoliated cells from cancer-free patients. Although no statistically significant differences were found between RARB and RASSF1A methylation and the clinical and histopathological parameters in bladder cancer, a sensitivity of 95% and a specificity of 71% were observed for RARB methylation (Fisher's Exact test (p < 0.0001; OR = 48.89) and, 58% and 17% (p < 0.05; OR = 0.29) for RASSF1A gene, respectively, in relation to the control group. Indistinct DNA hypermethylation of CDH1 and SFN genes between tumoral and normal urinary bladder samples suggests that these epigenetic features are not suitable biomarkers for urinary bladder cancer. However, RARB and RASSF1A gene methylation appears to be an initial event in urinary bladder carcinogenesis and should be considered as defining a

  7. SETDB1 is involved in postembryonic DNA methylation and gene silencing in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dawei Gou

    Full Text Available DNA methylation is fundamental for the stability and activity of genomes. Drosophila melanogaster and vertebrates establish a global DNA methylation pattern of their genome during early embryogenesis. Large-scale analyses of DNA methylation patterns have uncovered revealed that DNA methylation patterns are dynamic rather than static and change in a gene-specific fashion during development and in diseased cells. However, the factors and mechanisms involved in dynamic, postembryonic DNA methylation remain unclear. Methylation of lysine 9 in histone H3 (H3-K9 by members of the Su(var3-9 family of histone methyltransferases (HMTs triggers embryonic DNA methylation in Arthropods and Chordates. Here, we demonstrate that Drosophila SETDB1 (dSETDB1 can mediate DNA methylation and silencing of genes and retrotransposons. We found that dSETDB1 tri-methylates H3-K9 and binds methylated CpA motifs. Tri-methylation of H3-K9 by dSETDB1 mediates recruitment of DNA methyltransferase 2 (Dnmt2 and Su(var205, the Drosophila ortholog of mammalian "Heterochromatin Protein 1", to target genes for dSETDB1. By enlisting Dnmt2 and Su(var205, dSETDB1 triggers DNA methylation and silencing of genes and retrotransposons in Drosophila cells. DSETDB1 is involved in postembryonic DNA methylation and silencing of Rt1b{} retrotransposons and the tumor suppressor gene retinoblastoma family protein 1 (Rb in imaginal discs. Collectively, our findings implicate dSETDB1 in postembryonic DNA methylation, provide a model for silencing of the tumor suppressor Rb, and uncover a role for cell type-specific DNA methylation in Drosophila development.

  8. DNA methylation and folate metabolism in gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Shun Shi Zhu; Shu Dong Xiao; Zhi Ping Chen; Yao Shi; Jing Yuan Fang; Rong Rong Li; Joel B Masor

    2000-01-01

    AIM To investigate DNA methylation status in gastric cancer and its relationship with folate metabolism.METHODS Serum before operation, the gastric mucosa from the lesion, and the surrounding area inpatients with gastric cancer and the remote normal-appearing mucosa of the resected stomach were collectedrespectively. The serum folate, mucosal tissue folate, S-adenosylmethionine ( SAM ), S-adenosylhomocysteine (SAH), and the DNA methylation levels were determined.RESULTS The tissue folate was significantly lower than that in ulcers, especially in the surrounding andnormal mucosa (0.38±0.13, 0.50±0.17 vs 0.53±0.50, 0.79±0.82ng/mg protein, P < 0.01), and itdecreased gradually in the lesion areas. The DNA methylation status showed similar decreasing trend incancers compared with the methylation increasing trend in ulcers. The SAM level ascended in the lesion areaswith a higher. concentration in cancer mueosa (63.5±43.0 vs 25.9±11.9nmol/g tissue, P < 0.01 ). Theaccumulation of SAH in the surrounding and normal mucosa of cancers was observed (17.3±24.6, 15.5±8.6vs 14.6±4.2, 10.0±1.9nmol/g tissue, P < 0.05 - 0.01). There were significantly negative correlationsbetween tissue folate and the SAM and SAH levels in the three areas.CONCLUSION Patients with gastric cancer have the regional folate deficiency in the stomach mucosa,although the serum folate level remains normal. This disturbs the local SAM and SAH metabolism withaccumulation of SAH and DNA hypomethylation which has been known as an important molecularmechanism for carcinogenesis. Folic acid can modulate DNA methylation status by its effect in one-carbongroup metabolism and thus affect the process of the carcinogenesis. Therefore, this may be an access for theprevention of gastric cancer.

  9. Characterization of Dnmt1 Binding and DNA Methylation on Nucleosomes and Nucleosomal Arrays.

    Directory of Open Access Journals (Sweden)

    Anna Schrader

    Full Text Available The packaging of DNA into nucleosomes and the organisation into higher order structures of chromatin limits the access of sequence specific DNA binding factors to DNA. In cells, DNA methylation is preferentially occuring in the linker region of nucleosomes, suggesting a structural impact of chromatin on DNA methylation. These observations raise the question whether DNA methyltransferases are capable to recognize the nucleosomal substrates and to modify the packaged DNA. Here, we performed a detailed analysis of nucleosome binding and nucleosomal DNA methylation by the maintenance DNA methyltransferase Dnmt1. Our binding studies show that Dnmt1 has a DNA length sensing activity, binding cooperatively to DNA, and requiring a minimal DNA length of 20 bp. Dnmt1 needs linker DNA to bind to nucleosomes and most efficiently recognizes nucleosomes with symmetric DNA linkers. Footprinting experiments reveal that Dnmt1 binds to both DNA linkers exiting the nucleosome core. The binding pattern correlates with the efficient methylation of DNA linkers. However, the enzyme lacks the ability to methylate nucleosomal CpG sites on mononucleosomes and nucleosomal arrays, unless chromatin remodeling enzymes create a dynamic chromatin state. In addition, our results show that Dnmt1 functionally interacts with specific chromatin remodeling enzymes to enable complete methylation of hemi-methylated DNA in chromatin.

  10. Bisulfite sequencing reveals that Aspergillus flavus holds a hollow in DNA methylation.

    Directory of Open Access Journals (Sweden)

    Si-Yang Liu

    Full Text Available Aspergillus flavus first gained scientific attention for its production of aflatoxin. The underlying regulation of aflatoxin biosynthesis has been serving as a theoretical model for biosynthesis of other microbial secondary metabolites. Nevertheless, for several decades, the DNA methylation status, one of the important epigenomic modifications involved in gene regulation, in A. flavus remains to be controversial. Here, we applied bisulfite sequencing in conjunction with a biological replicate strategy to investigate the DNA methylation profiling of A. flavus genome. Both the bisulfite sequencing data and the methylome comparisons with other fungi confirm that the DNA methylation level of this fungus is negligible. Further investigation into the DNA methyltransferase of Aspergillus uncovers its close relationship with RID-like enzymes as well as its divergence with the methyltransferase of species with validated DNA methylation. The lack of repeat contents of the A. flavus' genome and the high RIP-index of the small amount of remanent repeat potentially support our speculation that DNA methylation may be absent in A. flavus or that it may possess de novo DNA methylation which occurs very transiently during the obscure sexual stage of this fungal species. This work contributes to our understanding on the DNA methylation status of A. flavus, as well as reinforces our views on the DNA methylation in fungal species. In addition, our strategy of applying bisulfite sequencing to DNA methylation detection in species with low DNA methylation may serve as a reference for later scientific investigations in other hypomethylated species.

  11. DNA methylation in diploid inbred lines of potatoes and its possible role in the regulation of heterosis.

    Science.gov (United States)

    Nakamura, Sunao; Hosaka, Kazuyoshi

    2010-01-01

    Self-incompatible diploid potatoes were altered to self-compatible ones by a function of S-locus inhibitor gene and continued selfing generated highly homozygous inbreds. In this study, this process was investigated for the status of DNA methylation by a simple method using genomic DNA digested by methylation-sensitive restriction enzymes prior to RAPD analysis. We detected 31 methylation-sensitive RAPD bands, of which 11 were newly appeared in the selfed progenies, and 6 of them stably inherited to subsequent generations. Aberrant segregations and paternal- or atavism-like transmission were also found. Segregating methylation-sensitive bands in initial populations became fixed in the advanced selfed progenies by 75.0-93.8%, of which 41.7% were fixed to all present and 58.3% to all absent. Because DNA methylation is generally recognized to suppress gene expression as regulatory factors, homozygosity/heterozygosity of methylated DNA may be involved in inbreeding depression/heterosis. PMID:19455300

  12. Changes in DNA methylation patterns and repetitive sequences in blood lymphocytes of aged horses

    OpenAIRE

    Wnuk, Maciej; Lewinska, Anna; Gurgul, Artur; Zabek, Tomasz; Potocki, Leszek; Oklejewicz, Bernadetta; Bugno-Poniewierska, Monika; Wegrzyn, Magdalena; Slota, Ewa

    2013-01-01

    It is known that aged organisms have modified epigenomes. Epigenetic modifications, such as changes in global and locus-specific DNA methylation, and histone modifications are suspected to play an important role in cancer development and aging. In the present study, with the well-established horse aging model, we showed the global loss of DNA methylation in blood lymphocytes during juvenile-to-aged period. Additionally, we tested a pattern of DNA methylation of ribosomal DNA and selected gene...

  13. Genome-wide DNA methylation scan in major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Sarven Sabunciyan

    Full Text Available While genome-wide association studies are ongoing to identify sequence variation influencing susceptibility to major depressive disorder (MDD, epigenetic marks, such as DNA methylation, which can be influenced by environment, might also play a role. Here we present the first genome-wide DNA methylation (DNAm scan in MDD. We compared 39 postmortem frontal cortex MDD samples to 26 controls. DNA was hybridized to our Comprehensive High-throughput Arrays for Relative Methylation (CHARM platform, covering 3.5 million CpGs. CHARM identified 224 candidate regions with DNAm differences >10%. These regions are highly enriched for neuronal growth and development genes. Ten of 17 regions for which validation was attempted showed true DNAm differences; the greatest were in PRIMA1, with 12-15% increased DNAm in MDD (p = 0.0002-0.0003, and a concomitant decrease in gene expression. These results must be considered pilot data, however, as we could only test replication in a small number of additional brain samples (n = 16, which showed no significant difference in PRIMA1. Because PRIMA1 anchors acetylcholinesterase in neuronal membranes, decreased expression could result in decreased enzyme function and increased cholinergic transmission, consistent with a role in MDD. We observed decreased immunoreactivity for acetylcholinesterase in MDD brain with increased PRIMA1 DNAm, non-significant at p = 0.08.While we cannot draw firm conclusions about PRIMA1 DNAm in MDD, the involvement of neuronal development genes across the set showing differential methylation suggests a role for epigenetics in the illness. Further studies using limbic system brain regions might shed additional light on this role.

  14. Placental lipoprotein lipase DNA methylation levels are associated with gestational diabetes mellitus and maternal and cord blood lipid profiles.

    Science.gov (United States)

    Houde, A A; St-Pierre, J; Hivert, M F; Baillargeon, J P; Perron, P; Gaudet, D; Brisson, D; Bouchard, L

    2014-04-01

    Placental lipoprotein lipase (LPL) is crucial for placental lipid transfer. Impaired LPL gene expression and activity were reported in pregnancies complicated by gestational diabetes mellitus (GDM) and intra-uterine growth restriction. We hypothesized that placental LPL DNA methylation is altered by maternal metabolic status and could contribute to fetal programming. The objective of this study was thus to assess whether placental LPL DNA methylation is associated with GDM and both maternal and newborn lipid profiles. Placenta biopsies were sampled at delivery from 126 women including 27 women with GDM diagnosed following a post 75 g-oral glucose tolerance test (OGTT) between weeks 24 and 28 of gestation. Placental LPL DNA methylation and expression levels were determined using bisulfite pyrosequencing and quantitative real-time PCR, respectively. DNA methylation levels within LPL proximal promoter region (CpG1) and intron 1 CpG island (CpGs 2 and 3) were lower in placenta of women with GDM. DNA methylation levels at LPL-CpG1 and CpG3 were also negatively correlated with maternal glucose (2-h post OGTT; r=-0.22; P=0.02) and HDL-cholesterol levels (third trimester of pregnancy; r=-0.20; p=0.03), respectively. Moreover, we report correlation between LPL-CpG2 DNA methylation and cord blood lipid profile. DNA methylation levels within intron 1 CpG island explained up to 26% (r⩽-0.51; Pmethylation dysregulation. Our results suggest that site-specific LPL epipolymorphisms in the placenta are possibly functional and could potentially be involved in determining the future metabolic health of the newborn. PMID:24847699

  15. DNA methylation profiling identifies two splenic marginal zone lymphoma subgroups with different clinical and genetic features.

    Science.gov (United States)

    Arribas, Alberto J; Rinaldi, Andrea; Mensah, Afua A; Kwee, Ivo; Cascione, Luciano; Robles, Eloy F; Martinez-Climent, Jose A; Oscier, David; Arcaini, Luca; Baldini, Luca; Marasca, Roberto; Thieblemont, Catherine; Briere, Josette; Forconi, Francesco; Zamò, Alberto; Bonifacio, Massimiliano; Mollejo, Manuela; Facchetti, Fabio; Dirnhofer, Stephan; Ponzoni, Maurilio; Bhagat, Govind; Piris, Miguel A; Gaidano, Gianluca; Zucca, Emanuele; Rossi, Davide; Bertoni, Francesco

    2015-03-19

    Splenic marginal zone lymphoma is a rare lymphoma. Loss of 7q31 and somatic mutations affecting the NOTCH2 and KLF2 genes are the commonest genomic aberrations. Epigenetic changes can be pharmacologically reverted; therefore, identification of groups of patients with specific epigenomic alterations might have therapeutic relevance. Here we integrated genome-wide DNA-promoter methylation profiling with gene expression profiling, and clinical and biological variables. An unsupervised clustering analysis of a test series of 98 samples identified 2 clusters with different degrees of promoter methylation. The cluster comprising samples with higher-promoter methylation (High-M) had a poorer overall survival compared with the lower (Low-M) cluster. The prognostic relevance of the High-M phenotype was confirmed in an independent validation set of 36 patients. In the whole series, the High-M phenotype was associated with IGHV1-02 usage, mutations of NOTCH2 gene, 7q31-32 loss, and histologic transformation. In the High-M set, a number of tumor-suppressor genes were methylated and repressed. PRC2 subunit genes and several prosurvival lymphoma genes were unmethylated and overexpressed. A model based on the methylation of 3 genes (CACNB2, HTRA1, KLF4) identified a poorer-outcome patient subset. Exposure of splenic marginal zone lymphoma cell lines to a demethylating agent caused partial reversion of the High-M phenotype and inhibition of proliferation. PMID:25612624

  16. Intratumor DNA Methylation Heterogeneity Reflects Clonal Evolution in Aggressive Prostate Cancer

    Directory of Open Access Journals (Sweden)

    David Brocks

    2014-08-01

    Full Text Available Despite much evidence on epigenetic abnormalities in cancer, it is currently unclear to what extent epigenetic alterations can be associated with tumors’ clonal genetic origins. Here, we show that the prostate intratumor heterogeneity in DNA methylation and copy-number patterns can be explained by a unified evolutionary process. By assaying multiple topographically distinct tumor sites, premalignant lesions, and lymph node metastases within five cases of prostate cancer, we demonstrate that both DNA methylation and copy-number heterogeneity consistently reflect the life history of the tumors. Furthermore, we show cases of genetic or epigenetic convergent evolution and highlight the diversity in the evolutionary origins and aberration spectrum between tumor and metastatic subclones. Importantly, DNA methylation can complement genetic data by serving as a proxy for activity at regulatory domains, as we show through identification of high epigenetic heterogeneity at androgen-receptor-bound enhancers. Epigenome variation thereby expands on the current genome-centric view on tumor heterogeneity.

  17. Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men

    DEFF Research Database (Denmark)

    Jacobsen, S C; Brøns, Charlotte; Bork-Jensen, Jette; Ribel-Madsen, Rasmus; Yang, B; Lara, E; Hall, E; Calvanese, V; Nilsson, E; Jørgensen, S W; Mandrup, S; Ling, C; Fernandez, A F; Fraga, M F; Poulsen, P; Vaag, A

    2012-01-01

    Energy-dense diets that are high in fat are associated with a risk of metabolic diseases. The underlying molecular mechanisms could involve epigenetics, as recent data show altered DNA methylation of putative type 2 diabetes candidate genes in response to high-fat diets. We examined the effect of a...... short-term high-fat overfeeding (HFO) diet on genome-wide DNA methylation patterns in human skeletal muscle....

  18. Differential effects of nutritional folic acid deficiency and moderate hyperhomocysteinemia on aortic plaque formation and genome-wide DNA methylation in vascular tissue from ApoE-/- mice

    OpenAIRE

    McNeil, Chris J; Beattie, John H.; Gordon, M-J; Pirie, Lynn P.; Duthie, Susan J.

    2011-01-01

    Low folate intake is associated with vascular disease. Causality has been attributed to hyperhomocysteinemia. However, human intervention trials have failed to show the benefit of homocysteine-lowering therapies. Alternatively, low folate may promote vascular disease by deregulating DNA methylation. We investigated whether folate could alter DNA methylation and atherosclerosis in ApoE null mice. Mice were fed one of six diets (n = 20 per group) for 16 weeks. Basal diets were either control (C...

  19. DNA methylation changes detected by methylation-sensitive amplified polymorphism in two contrasting rice genotypes under salt stress

    Institute of Scientific and Technical Information of China (English)

    Wensheng Wang; Xiuqin Zhao; Yajiao Pan; Linghua Zhu; Binying Fu; Zhikang Li

    2011-01-01

    DNA methylation,one of the most important epigenetic phenomena,plays a vital role in tuning gene expression during plant development as well as in response to environmental stimuli.In the present study,a rnethylation-sensitive amplified polymorphism (MSAP) analysis was performed to profile DNA methylation changes in two contrasting rice genotypes under salt stress.Consistent with visibly different phenotypes in response to salt stress,epigenetic markers classified as stable inter-cultivar DNA methylation differences were determined between salttolerant FL478 and salt-sensitive IR29.In addition,most tissue-specific DNA methylation loci were conserved,while many of the growth stage-dependent DNA methylation loci were dynamic between the two genotypes.Strikingly,salt stress induced a decrease in DNA methylation specifically in roots at the seedling stage that was more profound in IR29 than in the FL478.This result may indicate that demethylation of genes is an active epigenetic response to salt stress in roots at the seedling stage,and helps to further elucidate the implications of DNA methylation in crop growth and development.

  20. Radioprotective properties of DNA methylation-disrupting agents

    International Nuclear Information System (INIS)

    5-Azacytidine and sodium butyrate, two DNA methylation-disrupting agents, were tested for radioprotective properties on V79A03 cells. Both compounds can activate genes not previously expressed (e.g. metallothionein). 5-Azecytidine treatment (3 μM, 24h) caused a 50% decrease in the 5-methylcytosine content of V79A03 DNA whereas sodium butyrate treatment (1 mM, 24h) resulted in a 700% increase in 5-methylcytosine content. Additionally, 5-azacytidine treatment resulted in the increased survival of V79A03 cells, with treatment 24 h prior to exposure to gamma radiation providing a dose reduction factor of 1.8. Sodium butyrate treatment did not result in a significant increase in survival. These results indicate that the hypomethylation of genomic DNA prior to exposure to gamma radiation correlates with an increase in survival of V79A03 cells, possibly due to the activation of the enzymes involved in repair. (author)

  1. Effect of DNA methylation on protein-DNA interaction of HL-60 cells

    Institute of Scientific and Technical Information of China (English)

    何忠效; 白坚石; 张昱

    1999-01-01

    HL-60 cells have been induced with differentiation index 16 % by S-adenosyl-L-rnethionine (SAM) as inducer in the presence of optimum conceptration of 10 μmol/L. The methylation level of genorne DNA determined by HPLC is increased during cell differentiation. When restriction endonuclease Hae Ⅲ, Sma I, Sal I, XhoI and Hind Ⅲ which are sensitive to 5-methylcytosine were used to cleave the genorne DNA, a resistance effect was found. The interaction between DNA and DNA binding proteins is changed by using gel retarding test.

  2. Genome-wide DNA methylation analysis in hepatocellular carcinoma.

    Science.gov (United States)

    Yamada, Nobuhisa; Yasui, Kohichiroh; Dohi, Osamu; Gen, Yasuyuki; Tomie, Akira; Kitaichi, Tomoko; Iwai, Naoto; Mitsuyoshi, Hironori; Sumida, Yoshio; Moriguchi, Michihisa; Yamaguchi, Kanji; Nishikawa, Taichiro; Umemura, Atsushi; Naito, Yuji; Tanaka, Shinji; Arii, Shigeki; Itoh, Yoshito

    2016-04-01

    Epigenetic changes as well as genetic changes are mechanisms of tumorigenesis. We aimed to identify novel genes that are silenced by DNA hypermethylation in hepatocellular carcinoma (HCC). We screened for genes with promoter DNA hypermethylation using a genome-wide methylation microarray analysis in primary HCC (the discovery set). The microarray analysis revealed that there were 2,670 CpG sites that significantly differed in regards to the methylation level between the tumor and non-tumor liver tissues; 875 were significantly hypermethylated and 1,795 were significantly hypomethylated in the HCC tumors compared to the non‑tumor tissues. Further analyses using methylation-specific PCR, combined with expression analysis, in the validation set of primary HCC showed that, in addition to three known tumor-suppressor genes (APC, CDKN2A, and GSTP1), eight genes (AKR1B1, GRASP, MAP9, NXPE3, RSPH9, SPINT2, STEAP4, and ZNF154) were significantly hypermethylated and downregulated in the HCC tumors compared to the non-tumor liver tissues. Our results suggest that epigenetic silencing of these genes may be associated with HCC. PMID:26883180

  3. Neurofilament-labeled pyramidal neurons and astrocytes are deficient in DNA methylation marks in Alzheimer's disease.

    Science.gov (United States)

    Phipps, Andrew J; Vickers, James C; Taberlay, Phillippa C; Woodhouse, Adele

    2016-09-01

    There is increasing evidence that epigenetic alterations may play a role in Alzheimer's disease (AD); yet, there is little information regarding epigenetic modifications in specific cell types. We assessed DNA methylation (5-methylcytosine [5mC]) and hydroxymethylation (5-hydroxymethylcytosine [5hmC]) marks specifically in neuronal and glial cell types in the inferior temporal gyrus of human AD cases and age-matched controls. Interestingly, neurofilament (NF)-labeled pyramidal neurons that are vulnerable to AD pathology are deficient in extranuclear 5mC in AD cases compared with controls. We also found that fewer astrocytes exhibited nuclear 5mC and 5hmC marks in AD cases compared with controls. However, there were no alterations in 5mC and 5hmC in disease-resistant calretinin interneurons or microglia in AD, and there was no alteration in the density of 5mC- or 5hmC-labeled nuclei in near-plaque versus plaque-free regions in late-AD cases. 5mC and 5hmC were present in a high proportion of neurofibrillary tangles, suggesting no loss of DNA methylation marks in tangle bearing neurons. We provide evidence that epigenetic dysregulation may be occurring in astrocytes and NF-positive pyramidal neurons in AD. PMID:27459923

  4. Epigenetic features in the oyster Crassostrea gigas suggestive of functionally relevant promoter DNA methylation in invertebrates.

    Directory of Open Access Journals (Sweden)

    GuillaumeRiviere

    2014-04-01

    Full Text Available DNA methylation is evolutionarily conserved. Vertebrates exhibit high, widespread DNA methylation whereas invertebrate genomes are less methylated, predominantly within gene bodies. DNA methylation in invertebrates is associated with transcription level, alternative splicing and genome evolution, but functional outcomes of DNA methylation remain poorly described in lophotrochozoans. Recent genome-wide approaches improve understanding in distant taxa such as molluscs, where the phylogenetic position and life traits of Crassostrea gigas make this bivalve an ideal model to study the physiological and evolutionary implications of DNA methylation. We review the literature about DNA methylation in invertebrates and focus on DNA methylation features in the oyster. Indeed, though our MeDIP-seq results confirm predominant intragenic methylation, the profiles depend on the oyster’s developmental and reproductive stage. We discuss the perspective that oyster DNA methylation could be biased toward the 5’-end of some genes, depending on physiological status, suggesting important functional outcomes of putative promoter methylation from cell differentiation during early development to sustained adaptation of the species to the environment.

  5. Osteoponin Promoter Controlled by DNA Methylation: Aberrant Methylation in Cloned Porcine Genome

    Directory of Open Access Journals (Sweden)

    Chih-Jie Shen

    2014-01-01

    Full Text Available Cloned animals usually exhibited many defects in physical characteristics or aberrant epigenetic reprogramming, especially in some important organ development. Osteoponin (OPN is an extracellular-matrix protein involved in heart and bone development and diseases. In this study, we investigated the correlation between OPN mRNA and its promoter methylation changes by the 5-aza-dc treatment in fibroblast cell and promoter assay. Aberrant methylation of porcine OPN was frequently found in different tissues of somatic nuclear transferred cloning pigs, and bisulfite sequence data suggested that the OPN promoter region −2615 to −2239 nucleotides (nt may be a crucial regulation DNA element. In pig ear fibroblast cell culture study, the demethylation of OPN promoter was found in dose-dependent response of 5-aza-dc treatment and followed the OPN mRNA reexpression. In cloned pig study, discrepant expression pattern was identified in several cloned pig tissues, especially in brain, heart, and ear. Promoter assay data revealed that four methylated CpG sites presenting in the −2615 to −2239 nt region cause significant downregulation of OPN promoter activity. These data suggested that methylation in the OPN promoter plays a crucial role in the regulation of OPN expression that we found in cloned pigs genome.

  6. DNA polymerase III requirement for repair of DNA damage caused by methyl methanesulfonate and hydrogen peroxide

    International Nuclear Information System (INIS)

    The pcbA1 mutation allows DNA replication dependent on DNA polymerase I at the restrictive temperature in polC(Ts) strains. Cells which carry pcbA1, a functional DNA polymerase I, and a temperature-sensitive DNA polymerase III gene were used to study the role of DNA polymerase III in DNA repair. At the restrictive temperature for DNA polymerase III, these strains were more sensitive to the alkylating agent methyl methanesulfonate (MMS) and hydrogen peroxide than normal cells. The same strains showed no increase in sensitivity to bleomycin, UV light, or psoralen at the restrictive temperature. The sensitivity of these strains to MMS and hydrogen peroxide was not due to the pcbAl allele, and normal sensitivity was restored by the introduction of a chromosomal or cloned DNA polymerase III gene, verifying that the sensitivity was due to loss of DNA polymerase III alpha-subunit activity. A functional DNA polymerase III is required for the reformation of high-molecular-weight DNA after treatment of cells with MMS or hydrogen peroxide, as demonstrated by alkaline sucrose sedimentation results. Thus, it appears that a functional DNA polymerase III is required for the optimal repair of DNA damage by MMS or hydrogen peroxide

  7. Methylation alterations are not a major cause of PTTG1 missregulation

    International Nuclear Information System (INIS)

    On its physiological cellular context, PTTG1 controls sister chromatid segregation during mitosis. Within its crosstalk to the cellular arrest machinery, relies a checkpoint of integrity for which gained the over name of securin. PTTG1 was found to promote malignant transformation in 3T3 fibroblasts, and further found to be overexpressed in different tumor types. More recently, PTTG1 has been also related to different processes such as DNA repair and found to trans-activate different cellular pathways involving c-myc, bax or p53, among others. PTTG1 over-expression has been correlated to a worse prognosis in thyroid, lung, colorectal cancer patients, and it can not be excluded that this effect may also occur in other tumor types. Despite the clinical relevance and the increasing molecular characterization of PTTG1, the reason for its up-regulation remains unclear. We analysed PTTG1 differential expression in PC-3, DU-145 and LNCaP tumor cell lines, cultured in the presence of the methyl-transferase inhibitor 5-Aza-2'-deoxycytidine. We also tested whether the CpG island mapping PTTG1 proximal promoter evidenced a differential methylation pattern in differentiated thyroid cancer biopsies concordant to their PTTG1 immunohistochemistry status. Finally, we performed whole-genome LOH studies using Affymetix 50 K microarray technology and FRET analysis to search for allelic imbalances comprising the PTTG1 locus. Our data suggest that neither methylation alterations nor LOH are involved in PTTG1 over-expression. These data, together with those previously reported, point towards a post-transcriptional level of missregulation associated to PTTG1 over-expression

  8. Influence of non-B DNA structures and DNA methylations to p53 sequence specific binding

    Czech Academy of Sciences Publication Activity Database

    Brázda, Václav; Brázdová Jagelská, Eva; Arrowsmith, Ch.

    Hilton Papagayo Resort, 2009. s. 62. [The fifth meeting on Chromatin Structure & Function. 16.11.2009-19.11.2009, Hilton Papagayo Resort] R&D Projects: GA ČR(CZ) GP301/07/P160 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : p53 * DNA structure * methylation of DNA Subject RIV: BO - Biophysics

  9. DNA co-methylation modules in postmortem prefrontal cortex tissues of European Australians with alcohol use disorders.

    Science.gov (United States)

    Wang, Fan; Xu, Hongqin; Zhao, Hongyu; Gelernter, Joel; Zhang, Huiping

    2016-01-01

    DNA methylome alterations in the prefrontal cortex (PFC) may contribute to risk for alcohol use disorders (AUDs). We examined postmortem PFC DNA methylomes of 16 male and seven female pairs of AUD and control subjects using Illumina's HumanMethylation450 BeadChip assays. In male AUD subjects, 1,812 CpGs (1,099 genes) were differentially methylated (9.5 × 10(-9) ≤ Pnominal ≤ 7.2 × 10(-4), q  0.05). Twenty-one AUD-associated co-methylation modules were identified in males by co-methylation analysis. The 1,812 CpGs were over-presented by two AUD-associated co-methylation modules (Mturquoise: 1,048 CpGs/683 genes; Mblue: 429 CpGs/304 genes) (Phyper ≤ 0.001). Biological processes enriched for genes in these two modules included neural development and transcriptional regulation. Genes mapped by CpGs in these two modules were enriched in genome-wide association study-identified genes with variants associated with four substance dependence phenotypes or five psychiatric disorders. Additionally, 106 of the 1,812 CpGs were mapped to 93 genes (e.g., AUD-associated genes GRIK3, GRIN2C, and GABRA1) with differential expression in postmortem PFC of male AUD subjects. Our study demonstrates that DNA methylation alterations in the PFC are associated with (and might result in) increased risk of AUDs, and there was a complex DNA methylation-gene expression relationship. PMID:26763658

  10. Smoking During Pregnancy Seems to Alter Fetal DNA, Study Finds

    Science.gov (United States)

    ... nlm.nih.gov/medlineplus/news/fullstory_158077.html Smoking During Pregnancy Seems to Alter Fetal DNA, Study ... that were affected by a mother-to-be's smoking. The findings may help improve understanding about the ...

  11. Global DNA Methylation patterns on marsupial and devil facial tumour chromosomes

    OpenAIRE

    Ingles, Emory D.; Deakin, Janine E.

    2015-01-01

    Background Despite DNA methylation being one of the most widely studied epigenetic modifications in eukaryotes, only a few studies have examined the global methylation status of marsupial chromosomes. The emergence of devil facial tumour disease (DFTD), a clonally transmissible cancer spreading through the Tasmanian devil population, makes it a particularly pertinent time to determine the methylation status of marsupial and devil facial tumour chromosomes. DNA methylation perturbations are kn...

  12. Human age estimation from blood using mRNA, DNA methylation, DNA rearrangement, and telomere length.

    Science.gov (United States)

    Zubakov, Dmitry; Liu, Fan; Kokmeijer, Iris; Choi, Ying; van Meurs, Joyce B J; van IJcken, Wilfred F J; Uitterlinden, André G; Hofman, Albert; Broer, Linda; van Duijn, Cornelia M; Lewin, Jörn; Kayser, Manfred

    2016-09-01

    Establishing the age of unknown persons, or persons with unknown age, can provide important leads in police investigations, disaster victim identification, fraud cases, and in other legal affairs. Previous methods mostly relied on morphological features available from teeth or skeletal parts. The development of molecular methods for age estimation allowing to use human specimens that possess no morphological age information, such as bloodstains, is extremely valuable as this type of samples is commonly found at crime scenes. Recently, we introduced a DNA-based approach for human age estimation from blood based on the quantification of T-cell specific DNA rearrangements (sjTRECs), which achieves accurate assignment of blood DNA samples to one of four 20-year-interval age categories. Aiming at improving the accuracy of molecular age estimation from blood, we investigated different types of biomarkers. We started out by systematic genome-wide surveys for new age-informative mRNA and DNA methylation markers in blood from the same young and old individuals using microarray technologies. The obtained candidate markers were validated in independent samples covering a wide age range using alternative technologies together with previously proposed DNA methylation, sjTREC, and telomere length markers. Cross-validated multiple regression analysis was applied for estimating and validating the age predictive power of various sets of biomarkers within and across different marker types. We found that DNA methylation markers outperformed mRNA, sjTREC, and telomere length in age predictive power. The best performing model included 8 DNA methylation markers derived from 3 CpG islands reaching a high level of accuracy (cross-validated R(2)=0.88, SE±6.97 years, mean absolute deviation 5.07 years). However, our data also suggest that mRNA markers can provide independent age information: a model using a combined set of 5 DNA methylation markers and one mRNA marker could provide

  13. Divergence of Gene Body DNA Methylation and Evolution of Plant Duplicate Genes

    OpenAIRE

    Wang, Jun; Marowsky, Nicholas C.; Fan, Chuanzhu

    2014-01-01

    It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica) genomes and reprocessed their single-base resolution methylome data....

  14. Pancreatic Cancer Patient Survival Correlates with DNA Methylation of Pancreas Development Genes

    OpenAIRE

    Thompson, Michael J.; Rubbi, Liudmilla; Dawson, David W.; Donahue, Timothy R; Pellegrini, Matteo

    2015-01-01

    DNA methylation is an epigenetic mark associated with regulation of transcription and genome structure. These markers have been investigated in a variety of cancer settings for their utility in differentiating normal tissue from tumor tissue. Here, we examine the direct correlation between DNA methylation and patient survival. We find that changes in the DNA methylation of key pancreatic developmental genes are strongly associated with patient survival.

  15. Analysis of the DNA methylome and transcriptome in granulopoiesis reveal timed changes and dynamic enhancer methylation

    DEFF Research Database (Denmark)

    Rönnerblad, Michelle; Andersson, Robin; Olofsson, Tor;

    2014-01-01

    In development, epigenetic mechanisms such as DNA methylation have been suggested to provide a cellular memory to maintain multipotency but also stabilize cell fate decisions and direct lineage restriction. In this study, we set out to characterize changes in DNA methylation and gene expression...... active during differentiation. Overall, this study depicts in detail the epigenetic and transcriptional changes that occur during granulopoiesis and supports the role of DNA methylation as a regulatory mechanism in blood cell differentiation....

  16. Early aberrant DNA methylation events in a mouse model of acute myeloid leukemia

    OpenAIRE

    Sonnet, Miriam; Claus, Rainer; Becker, Natalia; Zucknick, Manuela; Petersen, Jana; Lipka, Daniel B.; Oakes, Christopher C.; Andrulis, Mindaugas; Lier, Amelie; Milsom, Michael D.; Witte, Tania; Gu, Lei; Kim-Wanner, Soo-Zin; Schirmacher, Peter; Wulfert, Michael

    2014-01-01

    Background Aberrant DNA methylation is frequently found in human malignancies including acute myeloid leukemia (AML). While most studies focus on later disease stages, the onset of aberrant DNA methylation events and their dynamics during leukemic progression are largely unknown. Methods We screened genome-wide for aberrant CpG island methylation in three disease stages of a murine AML model that is driven by hypomorphic expression of the hematopoietic transcription factor PU.1. DNA methylati...

  17. DNA methylation and leukemia susceptibility in China: Evidence from an updated meta-analysis

    Science.gov (United States)

    Jiang, Danjie; Li, Yirun; Hong, Qingxiao; Shen, Yusheng; Xu, Chunjing; Xu, Yan; Zhu, Huangkai; Dai, Dongjun; Ouyang, Guifang; Duan, Shiwei

    2016-01-01

    Mounting evidence supports a role for DNA methylation in the pathogenesis of leukemia; however, there no overview of these results in the Chinese population. The present study performed a comprehensive meta-analysis to establish candidate genes with an altered methylation status in Chinese leukemia patients. Eligible studies were identified through searching the National Center of Biotechnology Information PubMed and Wanfang databases. Studies were pooled and overall odds ratios with corresponding confidence intervals were calculated. A total of 4,325 leukemia patients and 2,010 controls from 94 studies on 53 genes were included in this meta-analysis, and 47 genes were found to be aberrantly methylated in leukemia patients. A further subgroup meta-analysis by leukemia subtype demonstrated that hypermethylation of 5 genes, namely cyclin-dependent kinase (CDKN)2A, DNA-binding protein inhibitor-4, CDKN2B, glioma pathogenesis-related protein 1 and p73, contributed to the risk of various subtypes of leukemia. In addition, a strong association between CDKN2A and leukemia was identified in Chinese (Pleukemia in Chinese patients.

  18. Establishing an analytic pipeline for genome-wide DNA methylation.

    Science.gov (United States)

    Wright, Michelle L; Dozmorov, Mikhail G; Wolen, Aaron R; Jackson-Cook, Colleen; Starkweather, Angela R; Lyon, Debra E; York, Timothy P

    2016-01-01

    The need for research investigating DNA methylation (DNAm) in clinical studies has increased, leading to the evolution of new analytic methods to improve accuracy and reproducibility of the interpretation of results from these studies. The purpose of this article is to provide clinical researchers with a summary of the major data processing steps routinely applied in clinical studies investigating genome-wide DNAm using the Illumina HumanMethylation 450K BeadChip. In most studies, the primary goal of employing DNAm analysis is to identify differential methylation at CpG sites among phenotypic groups. Experimental design considerations are crucial at the onset to minimize bias from factors related to sample processing and avoid confounding experimental variables with non-biological batch effects. Although there are currently no de facto standard methods for analyzing these data, we review the major steps in processing DNAm data recommended by several research studies. We describe several variations available for clinical researchers to process, analyze, and interpret DNAm data. These insights are applicable to most types of genome-wide DNAm array platforms and will be applicable for the next generation of DNAm array technologies (e.g., the 850K array). Selection of the DNAm analytic pipeline followed by investigators should be guided by the research question and supported by recently published methods. PMID:27127542

  19. Antagonism between DNA and H3K27 methylation at the imprinted Rasgrf1 locus

    DEFF Research Database (Denmark)

    Lindroth, Anders M; Park, Yoon Jung; McLean, Chelsea M;

    2008-01-01

    At the imprinted Rasgrf1 locus in mouse, a cis-acting sequence controls DNA methylation at a differentially methylated domain (DMD). While characterizing epigenetic marks over the DMD, we observed that DNA and H3K27 trimethylation are mutually exclusive, with DNA and H3K27 methylation limited to...... the paternal and maternal sequences, respectively. The mutual exclusion arises because one mark prevents placement of the other. We demonstrated this in five ways: using 5-azacytidine treatments and mutations at the endogenous locus that disrupt DNA methylation; using a transgenic model in which the...

  20. EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos.

    Science.gov (United States)

    Auclair, Ghislain; Borgel, Julie; Sanz, Lionel A; Vallet, Judith; Guibert, Sylvain; Dumas, Michael; Cavelier, Patricia; Girardot, Michael; Forné, Thierry; Feil, Robert; Weber, Michael

    2016-02-01

    The extent to which histone modifying enzymes contribute to DNA methylation in mammals remains unclear. Previous studies suggested a link between the lysine methyltransferase EHMT2 (also known as G9A and KMT1C) and DNA methylation in the mouse. Here, we used a model of knockout mice to explore the role of EHMT2 in DNA methylation during mouse embryogenesis. The Ehmt2 gene is expressed in epiblast cells but is dispensable for global DNA methylation in embryogenesis. In contrast, EHMT2 regulates DNA methylation at specific sequences that include CpG-rich promoters of germline-specific genes. These loci are bound by EHMT2 in embryonic cells, are marked by H3K9 dimethylation, and have strongly reduced DNA methylation in Ehmt2(-/-) embryos. EHMT2 also plays a role in the maintenance of germline-derived DNA methylation at one imprinted locus, the Slc38a4 gene. Finally, we show that DNA methylation is instrumental for EHMT2-mediated gene silencing in embryogenesis. Our findings identify EHMT2 as a critical factor that facilitates repressive DNA methylation at specific genomic loci during mammalian development. PMID:26576615

  1. DNA methylation of the IGF2/H19 imprinting control region and adiposity distribution in young adults

    Directory of Open Access Journals (Sweden)

    Huang Rae-Chi

    2012-11-01

    Full Text Available Abstract Background The insulin-like growth factor 2 (IGF2 and H19 imprinted genes control growth and body composition. Adverse in-utero environments have been associated with obesity-related diseases and linked with altered DNA methylation at the IGF2/H19 locus. Postnatally, methylation at the IGF2/H19 imprinting control region (ICR has been linked with cerebellum weight. We aimed to investigate whether decreased IGF2/H19 ICR methylation is associated with decreased birth and childhood anthropometry and increased contemporaneous adiposity. DNA methylation in peripheral blood (n = 315 at 17 years old was measured at 12 cytosine-phosphate-guanine sites (CpGs, analysed as Sequenom MassARRAY EpiTYPER units within the IGF2/H19 ICR. Birth size, childhood head circumference (HC at six time-points and anthropometry at age 17 years were measured. DNA methylation was investigated for its association with anthropometry using linear regression. Results The principal component of IGF2/H19 ICR DNA methylation (representing mean methylation across all CpG units positively correlated with skin fold thickness (at four CpG units (P-values between 0.04 to 0.001 and subcutaneous adiposity (P = 0.023 at age 17, but not with weight, height, BMI, waist circumference or visceral adiposity. IGF2/H19 methylation did not associate with birth weight, length or HC, but CpG unit 13 to 14 methylation was negatively associated with HC between 1 and 10 years. β-coefficients of four out of five remaining CpG units also estimated lower methylation with increasing childhood HC. Conclusions As greater IGF2/H19 methylation was associated with greater subcutaneous fat measures, but not overall, visceral or central adiposity, we hypothesize that obesogenic pressures in youth result in excess fat being preferentially stored in peripheral fat depots via the IGF2/H19 domain. Secondly, as IGF2/H19 methylation was not associated with birth size but negatively with early childhood HC, we

  2. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting.

    Science.gov (United States)

    Suzuki, Shunsuke; Ono, Ryuichi; Narita, Takanori; Pask, Andrew J; Shaw, Geoffrey; Wang, Changshan; Kohda, Takashi; Alsop, Amber E; Marshall Graves, Jennifer A; Kohara, Yuji; Ishino, Fumitoshi; Renfree, Marilyn B; Kaneko-Ishino, Tomoko

    2007-04-13

    Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10) is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii), but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus), suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR) associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5' region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation. PMID:17432937

  3. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting.

    Directory of Open Access Journals (Sweden)

    Shunsuke Suzuki

    2007-04-01

    Full Text Available Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10 is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii, but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus, suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5' region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation.

  4. Genome-Wide Discriminatory Information Patterns of Cytosine DNA Methylation

    Science.gov (United States)

    Sanchez, Robersy; Mackenzie, Sally A.

    2016-01-01

    Cytosine DNA methylation (CDM) is a highly abundant, heritable but reversible chemical modification to the genome. Herein, a machine learning approach was applied to analyze the accumulation of epigenetic marks in methylomes of 152 ecotypes and 85 silencing mutants of Arabidopsis thaliana. In an information-thermodynamics framework, two measurements were used: (1) the amount of information gained/lost with the CDM changes IR and (2) the uncertainty of not observing a SNP LCR. We hypothesize that epigenetic marks are chromosomal footprints accounting for different ontogenetic and phylogenetic histories of individual populations. A machine learning approach is proposed to verify this hypothesis. Results support the hypothesis by the existence of discriminatory information (DI) patterns of CDM able to discriminate between individuals and between individual subpopulations. The statistical analyses revealed a strong association between the topologies of the structured population of Arabidopsis ecotypes based on IR and on LCR, respectively. A statistical-physical relationship between IR and LCR was also found. Results to date imply that the genome-wide distribution of CDM changes is not only part of the biological signal created by the methylation regulatory machinery, but ensures the stability of the DNA molecule, preserving the integrity of the genetic message under continuous stress from thermal fluctuations in the cell environment. PMID:27322251

  5. DNA Methylation and the HOXC6 Paradox in Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Vinarskaja, Anna; Yamanaka, Masanori; Ingenwerth, Marc; Schulz, Wolfgang A., E-mail: wolfgang.schulz@uni-duesseldorf.de [Department of Urology, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf (Germany)

    2011-09-27

    Overexpression of the classical homeobox transcription factor HOXC6 is frequent in prostate cancers and correlates with adverse clinical parameters. Since surprisingly many HOXC6 target genes are downregulated in prostate cancer, it has been posited that oncogenic effects of HOXC6 in prostate cancer may be unmasked by concurrent epigenetic downregulation of target genes exerting tumor suppressive effects. To test this hypothesis, we have studied the expression of three HOXC6 target genes, CNTN1 (encoding a cell adhesion protein), DKK3 and WIF1 (encoding WNT growth factor antagonists) as well as DNA methylation of DKK3 and WIF1. HOXC6 upregulation and association with poor prognosis were confirmed in our tissue series. The three target genes were each significantly downregulated in cancer tissues and expression of each one correlated inversely with that of HOXC6. Cases with lower WIF1 expression showed significantly earlier recurrence (p = 0.021), whereas no statistical significance was reached for CNTN1 and DKK3. Hypermethylation of DKK3 or WIF1 gene promoters was observed in a subset of cancers with downregulated expression, but was often weak. Our data support the hypothesis that HOXC6 target genes exerting tumor-suppressive effects are epigenetically downregulated in prostate cancer, but DNA methylation appears to follow or bolster rather than to cause their transcriptional inactivation.

  6. Genome-Wide Discriminatory Information Patterns of Cytosine DNA Methylation.

    Science.gov (United States)

    Sanchez, Robersy; Mackenzie, Sally A

    2016-01-01

    Cytosine DNA methylation (CDM) is a highly abundant, heritable but reversible chemical modification to the genome. Herein, a machine learning approach was applied to analyze the accumulation of epigenetic marks in methylomes of 152 ecotypes and 85 silencing mutants of Arabidopsis thaliana. In an information-thermodynamics framework, two measurements were used: (1) the amount of information gained/lost with the CDM changes I R and (2) the uncertainty of not observing a SNP L C R . We hypothesize that epigenetic marks are chromosomal footprints accounting for different ontogenetic and phylogenetic histories of individual populations. A machine learning approach is proposed to verify this hypothesis. Results support the hypothesis by the existence of discriminatory information (DI) patterns of CDM able to discriminate between individuals and between individual subpopulations. The statistical analyses revealed a strong association between the topologies of the structured population of Arabidopsis ecotypes based on I R and on LCR, respectively. A statistical-physical relationship between I R and L C R was also found. Results to date imply that the genome-wide distribution of CDM changes is not only part of the biological signal created by the methylation regulatory machinery, but ensures the stability of the DNA molecule, preserving the integrity of the genetic message under continuous stress from thermal fluctuations in the cell environment. PMID:27322251

  7. Triple helix DNA alters nucleosomal histone-DNA interactions and acts as a nucleosome barrier.

    OpenAIRE

    Westin, L; Blomquist, P.; Milligan, J F; Wrange, O

    1995-01-01

    Oligonucleotides which form triple helical complexes on double-stranded DNA have been previously reported to selectively inhibit transcription both in vitro and in vivo by physically blocking RNA polymerase or transcription factor access to the DNA template. Here we show that a 16mer oligonucleotide, which forms triple helix DNA by binding to a 16 bp homopurine segment, alters the formation of histone-DNA contacts during in vitro nucleosome reconstitution. This effect was DNA sequence-specifi...

  8. NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation

    Science.gov (United States)

    Maternal-effect mutations in NLRP7 cause rare biparentally inherited hydatidiform moles (BiHMs), abnormal pregnancies containing hypertrophic vesicular trophoblast but no embryo. BiHM trophoblasts display abnormal DNA methylation patterns affecting maternally methylated germline differentially methy...

  9. Temporal stability of epigenetic markers: sequence characteristics and predictors of short-term DNA methylation variations.

    Directory of Open Access Journals (Sweden)

    Hyang-Min Byun

    Full Text Available BACKGROUND: DNA methylation is an epigenetic mechanism that has been increasingly investigated in observational human studies, particularly on blood leukocyte DNA. Characterizing the degree and determinants of DNA methylation stability can provide critical information for the design and conduction of human epigenetic studies. METHODS: We measured DNA methylation in 12 gene-promoter regions (APC, p16, p53, RASSF1A, CDH13, eNOS, ET-1, IFNγ, IL-6, TNFα, iNOS, and hTERT and 2 of non-long terminal repeat elements, i.e., L1 and Alu in blood samples obtained from 63 healthy individuals at baseline (Day 1 and after three days (Day 4. DNA methylation was measured by bisulfite-PCR-Pyrosequencing. We calculated intraclass correlation coefficients (ICCs to measure the within-individual stability of DNA methylation between Day 1 and 4, subtracted of pyrosequencing error and adjusted for multiple covariates. RESULTS: Methylation markers showed different temporal behaviors ranging from high (IL-6, ICC = 0.89 to low stability (APC, ICC = 0.08 between Day 1 and 4. Multiple sequence and marker characteristics were associated with the degree of variation. Density of CpG dinucleotides nearby the sequence analyzed (measured as CpG(o/e or G+C content within ±200 bp was positively associated with DNA methylation stability. The 3' proximity to repeat elements and range of DNA methylation on Day 1 were also positively associated with methylation stability. An inverted U-shaped correlation was observed between mean DNA methylation on Day 1 and stability. CONCLUSIONS: The degree of short-term DNA methylation stability is marker-dependent and associated with sequence characteristics and methylation levels.

  10. Effects of cytosine methylation on DNA morphology: An atomic force microscopy study.

    Science.gov (United States)

    Cassina, V; Manghi, M; Salerno, D; Tempestini, A; Iadarola, V; Nardo, L; Brioschi, S; Mantegazza, F

    2016-01-01

    Methylation is one of the most important epigenetic mechanisms in eukaryotes. As a consequence of cytosine methylation, the binding of proteins that are implicated in transcription to gene promoters is severely hindered, which results in gene regulation and, eventually, gene silencing. To date, the mechanisms by which methylation biases the binding affinities of proteins to DNA are not fully understood; however, it has been proposed that changes in double-strand conformations, such as stretching, bending, and over-twisting, as well as local variations in DNA stiffness/flexibility may play a role. The present work investigates, at the single molecule level, the morphological consequences of DNA methylation in vitro. By tracking the atomic force microscopy images of single DNA molecules, we characterize DNA conformations pertaining to two different degrees of methylation. In particular, we observe that methylation induces no relevant variations in DNA contour lengths, but produces measurable incremental changes in persistence lengths. Furthermore, we observe that for the methylated chains, the statistical distribution of angles along the DNA coordinate length is characterized by a double exponential decay, in agreement with what is predicted for polyelectrolytes. The results reported herein support the claim that the biological consequences of the methylation process, specifically difficulties in protein-DNA binding, are at least partially due to DNA conformation modifications. PMID:26475643

  11. DNA methylation and histone modifications regulate de novo shoot regeneration in Arabidopsis by modulating WUSCHEL expression and auxin signaling.

    Directory of Open Access Journals (Sweden)

    Wei Li

    2011-08-01

    Full Text Available Plants have a profound capacity to regenerate organs from differentiated somatic tissues, based on which propagating plants in vitro was made possible. Beside its use in biotechnology, in vitro shoot regeneration is also an important system to study de novo organogenesis. Phytohormones and transcription factor WUSCHEL (WUS play critical roles in this process but whether and how epigenetic modifications are involved is unknown. Here, we report that epigenetic marks of DNA methylation and histone modifications regulate de novo shoot regeneration of Arabidopsis through modulating WUS expression and auxin signaling. First, functional loss of key epigenetic genes-including METHYLTRANSFERASE1 (MET1 encoding for DNA methyltransferase, KRYPTONITE (KYP for the histone 3 lysine 9 (H3K9 methyltransferase, JMJ14 for the histone 3 lysine 4 (H3K4 demethylase, and HAC1 for the histone acetyltransferase-resulted in altered WUS expression and developmental rates of regenerated shoots in vitro. Second, we showed that regulatory regions of WUS were developmentally regulated by both DNA methylation and histone modifications through bisulfite sequencing and chromatin immunoprecipitation. Third, DNA methylation in the regulatory regions of WUS was lost in the met1 mutant, thus leading to increased WUS expression and its localization. Fourth, we did a genome-wide transcriptional analysis and found out that some of differentially expressed genes between wild type and met1 were involved in signal transduction of the phytohormone auxin. We verified that the increased expression of AUXIN RESPONSE FACTOR3 (ARF3 in met1 indeed was due to DNA demethylation, suggesting DNA methylation regulates de novo shoot regeneration by modulating auxin signaling. We propose that DNA methylation and histone modifications regulate de novo shoot regeneration by modulating WUS expression and auxin signaling. The study demonstrates that, although molecular components involved in organogenesis

  12. Identification of leukemia-associated genes by MLL-EEN fusion protein through dysregulation of histone modification and DNA methylation

    OpenAIRE

    Lui, Wing-chi; 呂穎芝

    2012-01-01

    Mixed lineage leukemia (MLL) gene undergoes chromosomal translocation with over 60 different fusion partner genes in human leukemias. The resultant MLL-fusion oncoproteins are profoundly implicated in leukemias with poor prognosis. Epigenetic dysregulations have been frequently reported in MLL-rearranged leukemogenesis. Our study aims to investigate the correlations between epigenetic alterations, including both histone modification and DNA methylation, and gene dysregulation in MLL-rearrange...

  13. Characterization of Timed Changes in Hepatic Copper Concentrations, Methionine Metabolism, Gene Expression, and Global DNA Methylation in the Jackson Toxic Milk Mouse Model of Wilson Disease

    Directory of Open Access Journals (Sweden)

    Anh Le

    2014-05-01

    Full Text Available Background: Wilson disease (WD is characterized by hepatic copper accumulation with progressive liver damage to cirrhosis. This study aimed to characterize the toxic milk mouse from The Jackson Laboratory (Bar Harbor, ME, USA (tx-j mouse model of WD according to changes over time in hepatic copper concentrations, methionine metabolism, global DNA methylation, and gene expression from gestational day 17 (fetal to adulthood (28 weeks. Methods: Included liver histology and relevant biochemical analyses including hepatic copper quantification, S-adenosylmethionine (SAM and S-adenosylhomocysteine (SAH liver levels, qPCR for transcript levels of genes relevant to methionine metabolism and liver damage, and DNA dot blot for global DNA methylation. Results: Hepatic copper was lower in tx-j fetuses but higher in weanling (three weeks and adult tx-j mice compared to controls. S-adenosylhomocysteinase transcript levels were significantly lower at all time points, except at three weeks, correlating negatively with copper levels and with consequent changes in the SAM:SAH methylation ratio and global DNA methylation. Conclusion: Compared to controls, methionine metabolism including S-adenosylhomocysteinase gene expression is persistently different in the tx-j mice with consequent alterations in global DNA methylation in more advanced stages of liver disease. The inhibitory effect of copper accumulation on S-adenosylhomocysteinase expression is associated with progressively abnormal methionine metabolism and decreased methylation capacity and DNA global methylation.

  14. Cytosine methylation alteration in natural populations of Leymus chinensis induced by multiple abiotic stresses.

    Directory of Open Access Journals (Sweden)

    Yingjie Yu

    Full Text Available BACKGROUND: Human activity has a profound effect on the global environment and caused frequent occurrence of climatic fluctuations. To survive, plants need to adapt to the changing environmental conditions through altering their morphological and physiological traits. One known mechanism for phenotypic innovation to be achieved is environment-induced rapid yet inheritable epigenetic changes. Therefore, the use of molecular techniques to address the epigenetic mechanisms underpinning stress adaptation in plants is an important and challenging topic in biological research. In this study, we investigated the impact of warming, nitrogen (N addition, and warming+nitrogen (N addition stresses on the cytosine methylation status of Leymus chinensis Tzvel. at the population level by using the amplified fragment length polymorphism (AFLP, methylation-sensitive amplified polymorphism (MSAP and retrotransposon based sequence-specific amplification polymorphism (SSAP techniques. METHODOLOGY/PRINCIPAL FINDINGS: Our results showed that, although the percentages of cytosine methylation changes in SSAP are significantly higher than those in MSAP, all the treatment groups showed similar alteration patterns of hypermethylation and hypomethylation. It meant that the abiotic stresses have induced the alterations in cytosine methylation patterns, and the levels of cytosine methylation changes around the transposable element are higher than the other genomic regions. In addition, the identification and analysis of differentially methylated loci (DML indicated that the abiotic stresses have also caused targeted methylation changes at specific loci and these DML might have contributed to the capability of plants in adaptation to the abiotic stresses. CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that abiotic stresses related to global warming and nitrogen deposition readily evoke alterations of cytosine methylation, and which may provide a molecular basis for rapid

  15. Dynamics and Reversibility of the DNA Methylation Landscape of Grapevine Plants (Vitis vinifera Stressed by In Vitro Cultivation and Thermotherapy.

    Directory of Open Access Journals (Sweden)

    Miroslav Baránek

    Full Text Available There is relatively little information concerning long-term alterations in DNA methylation following exposure of plants to environmental stress. As little is known about the ratio of non-heritable changes in DNA methylation and mitotically-inherited methylation changes, dynamics and reversibility of the DNA methylation states were investigated in grapevine plants (Vitis vinifera stressed by in vitro cultivation. It was observed that significant part of induced epigenetic changes could be repeatedly established by exposure to particular planting and stress conditions. However, once stress conditions were discontinued, many methylation changes gradually reverted and plants returned to epigenetic states similar to those of maternal plants. In fact, in the period of one to three years after in vitro cultivation it was difficult to distinguish the epigenetic states of somaclones and maternal plants. Forty percent of the observed epigenetic changes disappeared within a year subsequent to termination of stress conditions ending and these probably reflect changes caused by transient and reversible stress-responsive acclimation mechanisms. However, sixty percent of DNA methylation diversity remained after 1 year and probably represents mitotically-inherited epimutations. Sequencing of regions remaining variable between maternal and regenerant plants revealed that 29.3% of sequences corresponded to non-coding regions of grapevine genome. Eight sequences (19.5% corresponded to previously identified genes and the remaining ones (51.2% were annotated as "hypothetical proteins" based on their similarity to genes described in other species, including genes likely to undergo methylation changes following exposure to stress (V. vinifera gypsy-type retrotransposon Gret1, auxin-responsive transcription factor 6-like, SAM-dependent carboxyl methyltransferase.

  16. The global DNA methylation surrogate LINE-1 methylation is correlated with MGMT promoter methylation and is a better prognostic factor for glioma.

    Directory of Open Access Journals (Sweden)

    Fumiharu Ohka

    Full Text Available Gliomas are the most frequently occurring primary brain tumor in the central nervous system of adults. Glioblastoma multiformes (GBMs, WHO grade 4 have a dismal prognosis despite the use of the alkylating agent, temozolomide (TMZ, and even low grade gliomas (LGGs, WHO grade 2 eventually transform to malignant secondary GBMs. Although GBM patients benefit from promoter hypermethylation of the O(6-methylguanine-DNA methyltransferase (MGMT that is the main determinant of resistance to TMZ, recent studies suggested that MGMT promoter methylation is of prognostic as well as predictive significance for the efficacy of TMZ. Glioma-CpG island methylator phenotype (G-CIMP in the global genome was shown to be a significant predictor of improved survival in patients with GBM. Collectively, we hypothesized that MGMT promoter methylation might reflect global DNA methylation. Additionally in LGGs, the significance of MGMT promoter methylation is still undetermined. In the current study, we aimed to determine the correlation between clinical, genetic, and epigenetic profiles including LINE-1 and different cancer-related genes and the clinical outcome in newly diagnosed 57 LGG and 54 GBM patients. Here, we demonstrated that (1 IDH1/2 mutation is closely correlated with MGMT promoter methylation and 1p/19q codeletion in LGGs, (2 LINE-1 methylation levels in primary and secondary GBMs are lower than those in LGGs and normal brain tissues, (3 LINE-1 methylation is proportional to MGMT promoter methylation in gliomas, and (4 higher LINE-1 methylation is a favorable prognostic factor in primary GBMs, even compared to MGMT promoter methylation. As a global DNA methylation marker, LINE-1 may be a promising marker in gliomas.

  17. Characterization and directed evolution of a methyl-binding domain protein for high-sensitivity DNA methylation analysis.

    Science.gov (United States)

    Heimer, Brandon W; Tam, Brooke E; Sikes, Hadley D

    2015-12-01

    Methyl-binding domain (MBD) family proteins specifically bind double-stranded, methylated DNA which makes them useful for DNA methylation analysis. We displayed three of the core members MBD1, MBD2 and MBD4 on the surface of Saccharomyces cerevisiae cells. Using the yeast display platform, we determined the equilibrium dissociation constant of human MBD2 (hMBD2) to be 5.9 ± 1.3 nM for binding to singly methylated DNA. The measured affinity for DNA with two methylated sites varied with the distance between the sites. We further used the yeast display platform to evolve the hMBD2 protein for improved binding affinity. Affecting five amino acid substitutions doubled the affinity of the wild-type protein to 3.1 ± 1.0 nM. The most prevalent of these mutations, K161R, occurs away from the DNA-binding site and bridges the N- and C-termini of the protein by forming a new hydrogen bond. The F208Y and L170R mutations added new non-covalent interactions with the bound DNA strand. We finally concatenated the high-affinity MBD variant and expressed it in Escherichia coli as a green fluorescent protein fusion. Concatenating the protein from 1× to 3× improved binding 6-fold for an interfacial binding application. PMID:26384511

  18. Involvement of aberrant DNA methylation on reduced expression of lysophosphatidic acid receptor-1 gene in rat tumor cell lines

    International Nuclear Information System (INIS)

    Lysophosphatidic acid (LPA) is a bioactive phospholipid that stimulates cell proliferation, migration, and protects cells from apoptosis. It interacts with specific G protein-coupled transmembrane receptors. Recently, it has been reported that alterations of LPA receptor expression might be important in the malignant transformation of tumor cells. Therefore, to assess an involvement of DNA methylation in reduced expression of the LPA receptor-1 (lpa1) gene, we investigated the expression of the lpa1 gene and its DNA methylation patterns in rat tumor cell lines. Both rat brain-derived neuroblastoma B103 and liver-derived hepatoma RH7777 cells used in this study indicated no expression of lpa1. For the analysis of methylation status, bisulfite sequencing was performed with B103 and RH7777 cells, comparing with other lpa1 expressed cells and normal tissues of brain and liver. The lpa1 expressed cells and tissues were all unmethylated in this region of lpa1. In contrast, both B103 and RH7777 cells were highly methylated, correlating with reduced expression of the lpa1. Treatment with 5-aza 2'-deoxycytidine induced expression of lpa1 gene in B103 and RH7777 cells after 24 h. In RH7777 cells treated with 5-aza 2'-deoxycytidine, stress fiber formation was also observed in response to LPA in RH7777 cells, but not in untreated RH7777 cells. These results suggest that aberrant DNA methylation of the lpa1 gene may be involved in its reduced expression in rat tumor cells

  19. DNA methylation analysis in the intestinal epithelium-effect of cell separation on gene expression and methylation profile.

    Directory of Open Access Journals (Sweden)

    Andreas C Jenke

    Full Text Available BACKGROUND: Epigenetic signatures are highly cell type specific. Separation of distinct cell populations is therefore desirable for all epigenetic studies. However, to date little information is available on whether separation protocols might influence epigenetic and/or gene expression signatures and hence might be less beneficial. We investigated the influence of two frequently used protocols to isolate intestinal epithelium cells (IECs from 6 healthy individuals. MATERIALS AND METHODS: Epithelial cells were isolated from small bowel (i.e. terminal ileum biopsies using EDTA/DTT and enzymatic release followed by magnetic bead sorting via EPCAM labeled microbeads. Effects on gene/mRNA expression were analyzed using a real time PCR based expression array. DNA methylation was assessed by pyrosequencing of bisulfite converted DNA and methylated DNA immunoprecipitation (MeDIP. RESULTS: While cell purity was >95% using both cell separation approaches, gene expression analysis revealed significantly higher mRNA levels of several inflammatory genes in EDTA/DTT when compared to enzymatically released cells. In contrast, DNA methylation of selected genes was less variable and only revealed subtle differences. Comparison of DNA methylation of the epithelial cell marker EPCAM in unseparated whole biopsy samples with separated epithelium (i.e. EPCAM positive and negative fraction demonstrated significant differences in DNA methylation between all three tissue fractions indicating cell type specific methylation patterns can be masked in unseparated tissue samples. CONCLUSIONS: Taken together, our data highlight the importance of considering the potential effect of cell separation on gene expression as well as DNA methylation signatures. The decision to separate tissue samples will therefore depend on study design and specific separation protocols.

  20. Maternal diet during pregnancy induces gene expression and DNA methylation changes in fetal tissues in sheep

    Directory of Open Access Journals (Sweden)

    Xianyong eLan

    2013-04-01

    Full Text Available Studies in rats and mice have established that maternal nutrition induces epigenetic modifications, sometimes permanently, that alter gene expression in the fetus, which in turn leads to phenotypic changes. However, limited data is available on the influence of maternal diet on epigenetic modifications and gene expression in sheep. Therefore, the objectives of this study were to investigate the impact of different maternal dietary energy sources on the expression of imprinted genes in fetuses in sheep. Ewes were naturally bred to a single sire and from d 67 ± 3 of gestation until necropsy (d 130 ± 1, they were fed one of three diets of alfalfa haylage (HY; fiber, corn (CN; starch, or dried corn distiller’s grains (DG; fiber plus protein plus fat. A total of 26 fetuses were removed from the dams and longissimus dorsi, semitendinosus, perirenal adipose depot, and subcutaneous adipose depot tissues were collected for expression and DNA methylation analyses. Expression analysis of nine imprinted genes and three DNA methylatransferase (DNMTs genes showed significant effects of the different maternal diets on the expression of these genes. The methylation levels of CpG islands of both IGF2R and H19 were higher in HY and DG than CN fetuses in both males and females. This result is consistent with the low amino acid content of the CN diet, a source of methyl group donors, compared to HY and DG diets. Thus, results of this study provide evidence of association between maternal nutrition during pregnancy and transcriptomic and epigenomic alterations of imprinted genes and DNMTs in the fetal tissues.

  1. Hypoxia-induced DNA hypermethylation in human pulmonary fibroblasts is associated with Thy-1 promoter methylation and the development of a pro-fibrotic phenotype

    Directory of Open Access Journals (Sweden)

    Robinson Claire M

    2012-08-01

    Full Text Available Abstract Background Pulmonary fibrosis is a debilitating and lethal disease with no effective treatment options. Understanding the pathological processes at play will direct the application of novel therapeutic avenues. Hypoxia has been implicated in the pathogenesis of pulmonary fibrosis yet the precise mechanism by which it contributes to disease progression remains to be fully elucidated. It has been shown that chronic hypoxia can alter DNA methylation patterns in tumour-derived cell lines. This epigenetic alteration can induce changes in cellular phenotype with promoter methylation being associated with gene silencing. Of particular relevance to idiopathic pulmonary fibrosis (IPF is the observation that Thy-1 promoter methylation is associated with a myofibroblast phenotype where loss of Thy-1 occurs alongside increased alpha smooth muscle actin (α-SMA expression. The initial aim of this study was to determine whether hypoxia regulates DNA methylation in normal human lung fibroblasts (CCD19Lu. As it has been reported that hypoxia suppresses Thy-1 expression during lung development we also studied the effect of hypoxia on Thy-1 promoter methylation and gene expression. Methods CCD19Lu were grown for up to 8 days in hypoxia and assessed for global changes in DNA methylation using flow cytometry. Real-time PCR was used to quantify expression of Thy-1, α-SMA, collagen I and III. Genomic DNA was bisulphite treated and methylation specific PCR (MSPCR was used to examine the methylation status of the Thy-1 promoter. Results Significant global hypermethylation was detected in hypoxic fibroblasts relative to normoxic controls and was accompanied by increased expression of myofibroblast markers. Thy-1 mRNA expression was suppressed in hypoxic cells, which was restored with the demethylating agent 5-aza-2′-deoxycytidine. MSPCR revealed that Thy-1 became methylated following fibroblast exposure to 1% O2. Conclusion These data suggest that global and

  2. Deregulated Expression of SRC, LYN and CKB Kinases by DNA Methylation and Its Potential Role in Gastric Cancer Invasiveness and Metastasis

    Science.gov (United States)

    Rey, Juan Antonio; Pinto, Giovanny Rebouças; Lamarão, Leticia Martins; Montenegro, Raquel Carvalho; Alves, Ana Paula Negreiros Nunes; Assumpção, Paulo Pimentel; Borges, Barbara do Nascimento; Smith, Marília Cardoso; Burbano, Rommel Rodriguez

    2015-01-01

    Kinases are downstream modulators and effectors of several cellular signaling cascades and play key roles in the development of neoplastic disease. In this study, we aimed to evaluate SRC, LYN and CKB protein and mRNA expression, as well as their promoter methylation, in gastric cancer. We found elevated expression of SRC and LYN kinase mRNA and protein but decreased levels of CKB kinase, alterations that may have a role in the invasiveness and metastasis of gastric tumors. Expression of the three studied kinases was also associated with MYC oncogene expression, a possible biomarker for gastric cancer. To understand the mechanisms that regulate the expression of these genes, we evaluated the DNA promoter methylation of the three kinases. We found that reduced SRC and LYN methylation and increased CKB methylation was associated with gastric cancer. The reduced SRC and LYN methylation was associated with increased levels of mRNA and protein expression, suggesting that DNA methylation is involved in regulating the expression of these kinases. Conversely, reduced CKB methylation was observed in samples with reduced mRNA and protein expression, suggesting CKB expression was found to be only partly regulated by DNA methylation. Additionally, we found that alterations in the DNA methylation pattern of the three studied kinases were also associated with the gastric cancer onset, advanced gastric cancer, deeper tumor invasion and the presence of metastasis. Therefore, SRC, LYN and CKB expression or DNA methylation could be useful markers for predicting tumor progression and targeting in anti-cancer strategies. PMID:26460485

  3. Adult global DNA methylation in relation to pre-natal nutrition

    OpenAIRE

    Lumey, LH; Terry, Mary Beth; Delgado-Cruzata, Lissette; Liao, Yuyan; Wang, Qiao; Susser, Ezra; McKeague, Ian; Santella, Regina M.

    2011-01-01

    Background Exposure to a pre-natal famine environment has been associated with a persistent decrease in DNA methylation of the IGF2 gene, although study findings on other loci have been highly variable. There have been no studies to date of the relation between pre-natal famine and overall global DNA methylation in adulthood.

  4. Base-resolution DNA methylation landscape of zebrafish brain and liver

    Directory of Open Access Journals (Sweden)

    Aniruddha Chatterjee

    2014-12-01

    To our knowledge, these datasets are the only RRBS datasets and base-resolution DNA methylation data available at this time for zebrafish brain and liver. These datasets could serve as a resource for future studies to document the functional role of DNA methylation in zebrafish. In addition, these datasets could be used as controls while performing analysis on treated samples.

  5. Genome-wide DNA methylation patterns and transcription analysis in sheep muscle.

    Directory of Open Access Journals (Sweden)

    Christine Couldrey

    Full Text Available DNA methylation plays a central role in regulating many aspects of growth and development in mammals through regulating gene expression. The development of next generation sequencing technologies have paved the way for genome-wide, high resolution analysis of DNA methylation landscapes using methodology known as reduced representation bisulfite sequencing (RRBS. While RRBS has proven to be effective in understanding DNA methylation landscapes in humans, mice, and rats, to date, few studies have utilised this powerful method for investigating DNA methylation in agricultural animals. Here we describe the utilisation of RRBS to investigate DNA methylation in sheep Longissimus dorsi muscles. RRBS analysis of ∼1% of the genome from Longissimus dorsi muscles provided data of suitably high precision and accuracy for DNA methylation analysis, at all levels of resolution from genome-wide to individual nucleotides. Combining RRBS data with mRNAseq data allowed the sheep Longissimus dorsi muscle methylome to be compared with methylomes from other species. While some species differences were identified, many similarities were observed between DNA methylation patterns in sheep and other more commonly studied species. The RRBS data presented here highlights the complexity of epigenetic regulation of genes. However, the similarities observed across species are promising, in that knowledge gained from epigenetic studies in human and mice may be applied, with caution, to agricultural species. The ability to accurately measure DNA methylation in agricultural animals will contribute an additional layer of information to the genetic analyses currently being used to maximise production gains in these species.

  6. Small RNA-mediated DNA (cytosine-5) methyltransferase 1 inhibition leads to aberrant DNA methylation

    OpenAIRE

    Zhang, Guoqiang; Estève, Pierre-Olivier; Chin, Hang Gyeong; Terragni, Jolyon; Dai, Nan; Corrêa, Ivan R.; Pradhan, Sriharsa

    2015-01-01

    Mammalian cells contain copious amounts of RNA including both coding and noncoding RNA (ncRNA). Generally the ncRNAs function to regulate gene expression at the transcriptional and post-transcriptional level. Among ncRNA, the long ncRNA and small ncRNA can affect histone modification, DNA methylation targeting and gene silencing. Here we show that endogenous DNA methyltransferase 1 (DNMT1) co-purifies with inhibitory ncRNAs. MicroRNAs (miRNAs) bind directly to DNMT1 with high affinity. The bi...

  7. Dynamic heterogeneity and DNA methylation in embryonic stem cells.

    KAUST Repository

    Singer, Zakary S

    2014-07-01

    Cell populations can be strikingly heterogeneous, composed of multiple cellular states, each exhibiting stochastic noise in its gene expression. A major challenge is to disentangle these two types of variability and to understand the dynamic processes and mechanisms that control them. Embryonic stem cells (ESCs) provide an ideal model system to address this issue because they exhibit heterogeneous and dynamic expression of functionally important regulatory factors. We analyzed gene expression in individual ESCs using single-molecule RNA-FISH and quantitative time-lapse movies. These data discriminated stochastic switching between two coherent (correlated) gene expression states and burst-like transcriptional noise. We further showed that the "2i" signaling pathway inhibitors modulate both types of variation. Finally, we found that DNA methylation plays a key role in maintaining these metastable states. Together, these results show how ESC gene expression states and dynamics arise from a combination of intrinsic noise, coherent cellular states, and epigenetic regulation.

  8. Characterization of DNA Methylation in Circulating Tumor Cells

    Directory of Open Access Journals (Sweden)

    Constantin F. Pixberg

    2015-10-01

    Full Text Available Epigenetics contributes to molecular mechanisms leading to tumor cell transformation and systemic progression of cancer. However, the dynamics of epigenetic remodeling during metastasis remains unexplored. In this context, circulating tumor cells (CTCs might enable a direct insight into epigenetic mechanisms relevant for metastasis by providing direct access to systemic cancer. CTCs can be used as prognostic markers in cancer patients and are regarded as potential metastatic precursor cells. However, despite substantial technical progress, the detection and molecular characterization of CTCs remain challenging, in particular the analysis of DNA methylation. As recent studies have started to address the epigenetic state of CTCs, we discuss here the potential of such investigations to elucidate mechanisms of metastasis and to develop tumor biomarkers.

  9. DNA methylation mediates the effect of maternal smoking during pregnancy on birthweight of the offspring

    OpenAIRE

    Küpers, Leanne K.; Xu, Xiaojing; Jankipersadsing, Soesma A; Vaez, Ahmad; la Bastide-van Gemert, Sacha; Scholtens, Salome; Nolte, Ilja M.; Richmond, Rebecca C.; Relton, Caroline L; Felix, Janine F.; Duijts, Liesbeth; van Meurs, Joyce B; Tiemeier, Henning; Jaddoe, Vincent W; Wang, Xiaoling

    2015-01-01

    Background: We examined whether the effect of maternal smoking during pregnancy on birthweight of the offspring was mediated by smoking-induced changes to DNA methylation in cord blood. Methods: First, we used cord blood of 129 Dutch children exposed to maternal smoking vs 126 unexposed to maternal and paternal smoking (53% male) participating in the GECKO Drenthe birth cohort. DNA methylation was measured using the Illumina HumanMethylation450 Beadchip. We performed an epigenome-wide associa...

  10. Dynamics of DNA methylation in recent human and great ape evolution

    OpenAIRE

    Irene Hernando-Herraez; Javier Prado-Martinez; Paras Garg; Marcos Fernandez-Callejo; Holger Heyn; Christina Hvilsom; Arcadi Navarro; Manel Esteller; Sharp, Andrew J.; Tomas Marques-Bonet

    2013-01-01

    DNA methylation is an epigenetic modification involved in regulatory processes such as cell differentiation during development, X-chromosome inactivation, genomic imprinting and susceptibility to complex disease. However, the dynamics of DNA methylation changes between humans and their closest relatives are still poorly understood. We performed a comparative analysis of CpG methylation patterns between 9 humans and 23 primate samples including all species of great apes (chimpanzee, bonobo, go...

  11. Circulating cell-free methylated DNA and lactate dehydrogenase release in colorectal cancer

    International Nuclear Information System (INIS)

    Hypermethylation of DNA is an epigenetic alteration commonly found in colorectal cancer (CRC) and can also be detected in blood samples of cancer patients. Methylation of the genes helicase-like transcription factor (HLTF) and hyperplastic polyposis 1 (HPP1) have been proposed as prognostic, and neurogenin 1 (NEUROG1) as diagnostic biomarker. However the underlying mechanisms leading to the release of these genes are unclear. This study aimed at examining the possible correlation of the presence of methylated genes NEUROG1, HLTF and HPP1 in serum with tissue breakdown as a possible mechanism using serum lactate dehydrogenase (LDH) as a surrogate marker. Additionally the prognostic impact of these markers was examined. Pretherapeutic serum samples from 259 patients from all cancer stages were analyzed. Presence of hypermethylation of the genes HLTF, HPP1, and NEUROG1 was examined using methylation-specific quantitative PCR (MethyLight). LDH was determined using an UV kinetic test. Hypermethylation of HLTF and HPP1 was detected significantly more often in patients with elevated LDH levels (32% vs. 12% [p = 0.0005], and 68% vs. 11% [p < 0.0001], respectively). Also, higher LDH values correlated with a higher percentage of a fully methylated reference in a linear fashion (Spearman correlation coefficient 0.18 for HLTF [p = 0.004]; 0.49 [p < .0001] for HPP1). No correlation between methylation of NEUROG1 and LDH was found in this study. Concerning the clinical characteristics, high levels of LDH as well as methylation of HLTF and HPP1 were significantly associated with larger and more advanced stages of CRC. Accordingly, these three markers were correlated with significantly shorter survival in the overall population. Moreover, all three identified patients with a worse prognosis in the subgroup of stage IV patients. We were able to provide evidence that methylation of HLTF and especially HPP1 detected in serum is strongly correlated with cell death in CRC using LDH as

  12. EXTRACELLULAR DNA AND THE LEVEL OF ITS METHYLATION IN DIFFERENT RHEUMATIC DISEASES

    Directory of Open Access Journals (Sweden)

    N O Shubayeva

    2012-01-01

    Conclusion. RDs are characterized by the higher concentration of apoptotic and necrotic DNA, impaired exDNA methylation, varying complexification of exDNA with monometinic proteins, which is associated with the hyperproduction of autoantibodies (including anti-exDNA antibodies and inflammatory markers.

  13. DNA methylation Profiles in Primary Cutaneous Melanomas are Associated with Clinically Significant Pathologic Features

    OpenAIRE

    Thomas, Nancy E.; Slater, Nathaniel A.; Edmiston, Sharon N.; Zhou, Xin; Kuan, Pei-Fen; Groben, Pamela A; Carson, Craig C.; Hao, Honglin; Parrish, Eloise; Moschos, Stergios J; Berwick, Marianne; Ollila, David W.; Conway, Kathleen

    2014-01-01

    DNA methylation studies have elucidated a methylation signature distinguishing primary melanomas from benign nevi and provided new insights about genes that may be important in melanoma development. However, it is unclear whether methylation differences among primary melanomas are related to tumor pathologic features with known clinical significance. We utilized the Illumina Golden Gate Cancer Panel array to investigate the methylation profiles of 47 primary cutaneous melanomas...

  14. Pros and cons of methylation-based enrichment methods for ancient DNA

    DEFF Research Database (Denmark)

    Seguin-Orlando, Andaine; Gamba, Cristina; Der Sarkissian, Clio; Ermini, Luca; Louvel, Guillaume; Boulygina, Eugenia; Sokolov, Alexey; Nedoluzhko, Artem; Lorenzen, Eline; Lopez, Patricio; McDonald, H. Gregory; Scott, Eric; Tikhonov, Alexei; Stafford jr., Thomas; Alfarhan, Ahmed H.; Alquraishi, Saleh A.; Al-Rasheid, Khaled A. S.; Shapiro, Beth; Willerslev, Eske; Prokhortchouk, Egor; Orlando, Ludovic Antoine Alexandre

    2015-01-01

    The recent discovery that DNA methylation survives in fossil material provides an opportunity for novel molecular approaches in palaeogenomics. Here, we apply to ancient DNA extracts the probe-independent Methylated Binding Domains (MBD)-based enrichment method, which targets DNA molecules...... containing methylated CpGs. Using remains of a Palaeo-Eskimo Saqqaq individual, woolly mammoths, polar bears and two equine species, we confirm that DNA methylation survives in a variety of tissues, environmental contexts and over a large temporal range (4,000 to over 45,000 years before present). MBD...... enrichment, however, appears principally biased towards the recovery of CpG-rich and long DNA templates and is limited by the fast post-mortem cytosine deamination rates of methylated epialleles. This method, thus, appears only appropriate for the analysis of ancient methylomes from very well preserved...

  15. Germline DNA methylation in reef corals: patterns and potential roles in response to environmental change.

    Science.gov (United States)

    Dimond, James L; Roberts, Steven B

    2016-04-01

    DNA methylation is an epigenetic mark that plays an inadequately understood role in gene regulation, particularly in nonmodel species. Because it can be influenced by the environment, DNA methylation may contribute to the ability of organisms to acclimatize and adapt to environmental change. We evaluated the distribution of gene body methylation in reef-building corals, a group of organisms facing significant environmental threats. Gene body methylation in six species of corals was inferred from in silico transcriptome analysis of CpG O/E, an estimate of germline DNA methylation that is highly correlated with patterns of methylation enrichment. Consistent with what has been documented in most other invertebrates, all corals exhibited bimodal distributions of germline methylation suggestive of distinct fractions of genes with high and low levels of methylation. The hypermethylated fractions were enriched with genes with housekeeping functions, while genes with inducible functions were highly represented in the hypomethylated fractions. High transcript abundance was associated with intermediate levels of methylation. In three of the coral species, we found that genes differentially expressed in response to thermal stress and ocean acidification exhibited significantly lower levels of methylation. These results support a link between gene body hypomethylation and transcriptional plasticity that may point to a role of DNA methylation in the response of corals to environmental change. PMID:26454152

  16. Genome-wide analysis of DNA methylation in five tissues of Zhikong scallop, Chlamys farreri.

    Directory of Open Access Journals (Sweden)

    Yan Sun

    Full Text Available DNA methylation plays a vital role in tissue development and differentiation in eukaryotes. Epigenetic studies have been seldom conducted in the extremely diverse and evolutionarily highly successful bilaterian lineage Mollusca. In the present study, we conducted the genome-wide profiling of DNA methylation for five tissues of a bivalve mollusc, Chlamys farreri using the methylation-sensitive amplification polymorphism (MSAP technique. The methylation levels were quite similar among tissues, ranging from 20.9% to 21.7%. CG methylation was the dominant type (14.9%-16.5% in the C. farreri genome, but CHG methylation also accounted for a substantial fraction of total methylation (5.1%-6.3%. Relatively high methylation diversity was observed within tissues. Methylation differentiation between tissues was evaluated and 460 tissue-specific epiloci were identified. Kidney differs from the other tissues in DNA methylation profiles. Our study presents the first look at the tissue-specific DNA methylation patterns in a bivalve mollusc and represents an initial step towards understanding of epigenetic regulatory mechanism underlying tissue development and differentiation in bivalves.

  17. The detective, prognostic, and predictive value of DNA methylation in human esophageal squamous cell carcinoma.

    Science.gov (United States)

    Ma, Kai; Cao, Baoping; Guo, Mingzhou

    2016-01-01

    Esophageal cancer is one of the most common malignancies in the world. Squamous cell carcinoma accounts for approximately 90 % of esophageal cancer cases. Genetic and epigenetic changes have been found to accumulate during the development of various cancers, including esophageal squamous carcinoma (ESCC). Tobacco smoking and alcohol consumption are two major risk factors for ESCC, and both tobacco and alcohol were found to induce methylation changes in ESCC. Growing evidence demonstrates that aberrant epigenetic changes play important roles in the multiple-step processes of carcinogenesis and tumor progression. DNA methylation may occur in the key components of cancer-related signaling pathways. Aberrant DNA methylation affects genes involved in cell cycle, DNA damage repair, Wnt, TGF-β, and NF-κB signaling pathways, including P16, MGMT, SFRP2, DACH1, and ZNF382. Certain genes methylated in precursor lesions of the esophagus demonstrate that DNA methylation may serve as esophageal cancer early detection marker, such as methylation of HIN1, TFPI-2, DACH1, and SOX17. CHFR methylation is a late stage event in ESCC and is a sensitive marker for taxanes in human ESCC. FHIT methylation is associated with poor prognosis in ESCC. Aberrant DNA methylation changes may serve as diagnostic, prognostic, and chemo-sensitive markers. Characterization of the DNA methylome in ESCC will help to better understand its mechanisms and develop improved therapies. PMID:27110300

  18. Carcinogen-induced DNA repair in nucleotide-permeable Escherichia coli cells. Induction of DNA repair by the carcinogens methyl and ethyl nitrosourea and methyl methanesulfonate.

    Science.gov (United States)

    Thielmann, H W; Vosberg, H P; Reygers, U

    1975-08-15

    Ether-permeabilized (nucleotide-permeable) cells of Escherichia coli show excision repair of their DNA after having been exposed to the carcinogens N-methyl-N-nitrosourea (MeNOUr), N-ethyl-N-nitrosourea (EtNOUr) and methyl methanesulfonate (MeSO2OMe) which are known to bind covalently to DNA. Defect mutations in genes uvrA, uvrB, uvrC, recA, recB, recC and rep did not inhibit this excision repair. Enzymic activities involved in this repair were identified by measuring size reduction of DNA, DNA degradation to acid-soluble nucleotides and repair polymerization. 1. In permeabilized cells methyl and ethyl nitrosourea induced endonucleolytic cleavage of endogenous DNA, as determined by size reduction of denatured DNA in neutral and alkaline sucrose gradients. An enzymic activity from E. coli K-12 cell extracts was purified (greater than 2000-fold) and was found to cleave preferentially methyl-nitrosourea-treated DNA and to convert the methylated supercoiled DNA duplex (RFI) of phage phiX 174 into the nicked circular form. 2. Degradation of alkylated cellular DNA to acid solubility was diminished in a mutant lacking the 5' leads to 3' exonucleolytic activity of DNA polymerase I but was not affected in a mutant which lacked the DNA polymerizing but retained the 5' leads 3' exonucleolytic activity of DNA polymerase I. 3. An easily measurable effect is carcinogen-induced repair polymerization, making it suitable for detection of covalent binding of carcinogens and potentially carcinogenic compounds. PMID:170107

  19. DNA Methylation as Clinically Useful Biomarkers—Light at the End of the Tunnel

    Directory of Open Access Journals (Sweden)

    Victor V. Levenson

    2012-01-01

    Full Text Available A recent expansion of our knowledge about epigenetic changes strongly suggests that epigenetic rather than genetic features better reflect disease development, and consequently, can become more conclusive biomarkers for the detection and diagnosis of different diseases. In this paper we will concentrate on the current advances in DNA methylation studies that demonstrate a direct link between abnormal DNA methylation and a disease. This link can be used to develop diagnostic biomarkers that will precisely identify a particular disease. It also appears that disease-specific DNA methylation patterns undergo unique changes in response to treatment with a particular drug, thus raising the possibility of DNA methylation-based biomarkers for the monitoring of treatment efficacy, for prediction of response to treatment, and for the prognosis of outcome. While biomarkers for oncology are the most obvious applications, other fields of medicine are likely to benefit as well. This potential is demonstrated by DNA methylation-based biomarkers for neurological and psychiatric diseases. A special requirement for a biomarker is the possibility of longitudinal testing. In this regard cell-free circulating DNA from blood is especially interesting because it carries methylation markers specific for a particular disease. Although only a few DNA methylation-based biomarkers have attained clinical relevance, the ongoing efforts to decipher disease-specific methylation patterns are likely to produce additional biomarkers for detection, diagnosis, and monitoring of different diseases in the near future.

  20. Recent progress towards understanding the role of DNA methylation in human placental development.

    Science.gov (United States)

    Bianco-Miotto, Tina; Mayne, Benjamin T; Buckberry, Sam; Breen, James; Rodriguez Lopez, Carlos M; Roberts, Claire T

    2016-07-01

    Epigenetic modifications, and particularly DNA methylation, have been studied in many tissues, both healthy and diseased, and across numerous developmental stages. The placenta is the only organ that has a transient life of 9 months and undergoes rapid growth and dynamic structural and functional changes across gestation. Additionally, the placenta is unique because although developing within the mother, its genome is identical to that of the foetus. Given these distinctive characteristics, it is not surprising that the epigenetic landscape affecting placental gene expression may be different to that in other healthy tissues. However, the role of epigenetic modifications, and particularly DNA methylation, in placental development remains largely unknown. Of particular interest is the fact that the placenta is the most hypomethylated human tissue and is characterized by the presence of large partially methylated domains (PMDs) containing silenced genes. Moreover, how and why the placenta is hypomethylated and what role DNA methylation plays in regulating placental gene expression across gestation are poorly understood. We review genome-wide DNA methylation studies in the human placenta and highlight that the different cell types that make up the placenta have very different DNA methylation profiles. Summarizing studies on DNA methylation in the placenta and its relationship with pregnancy complications are difficult due to the limited number of studies available for comparison. To understand the key steps in placental development and hence what may be perturbed in pregnancy complications requires large-scale genome-wide DNA methylation studies coupled with transcriptome analyses. PMID:27026712

  1. Extensive sequence-influenced DNA methylation polymorphism in the human genome

    Directory of Open Access Journals (Sweden)

    Hellman Asaf

    2010-05-01

    Full Text Available Abstract Background Epigenetic polymorphisms are a potential source of human diversity, but their frequency and relationship to genetic polymorphisms are unclear. DNA methylation, an epigenetic mark that is a covalent modification of the DNA itself, plays an important role in the regulation of gene expression. Most studies of DNA methylation in mammalian cells have focused on CpG methylation present in CpG islands (areas of concentrated CpGs often found near promoters, but there are also interesting patterns of CpG methylation found outside of CpG islands. Results We compared DNA methylation patterns on both alleles between many pairs (and larger groups of related and unrelated individuals. Direct observation and simulation experiments revealed that around 10% of common single nucleotide polymorphisms (SNPs reside in regions with differences in the propensity for local DNA methylation between the two alleles. We further showed that for the most common form of SNP, a polymorphism at a CpG dinucleotide, the presence of the CpG at the SNP positively affected local DNA methylation in cis. Conclusions Taken together with the known effect of DNA methylation on mutation rate, our results suggest an interesting interdependence between genetics and epigenetics underlying diversity in the human genome.

  2. Determining methylation status of methylguanine DNA methyl transferase (MGMT) from formalin-fixed, paraffin embedded tumor tissue

    OpenAIRE

    ABREU, FRANCINE B.; Torrey L. Gallagher; Liu, Emmeline Z.; Tsongalis, Gregory J.

    2014-01-01

    O-6-methylguanine-DNA methyltransferase (MGMT) has been associated with resistance to alkylating agent cancer therapy in Glioblastoma (GBM), the most common and aggressive primary brain tumor in adults. Lower expression or silencing of the MGMT protein by promoter methylation has been reported to improve survival in patients with GBM [1]. This protocol describes bisulfite conversion, methylation sensitive PCR amplification and data analysis/interpretation. This protocol differs from publis...

  3. Towards an understanding of CG methylation in DNA transcription

    International Nuclear Information System (INIS)

    A simple model of DNA is considered in which the nucleotides cytosine (C) and guanine (G) are not assumed to be identical, and in which macroscopic thermodynamic quantities may be calculated exactly. The H bonds between the C and G nucleotides are assumed to be Morse potentials. We discuss the statistical mechanics of the DNA molecule in the configuration (5'...GGG...3'; 3'...CCC...5'), which may be copied by RNA polymerase into a messenger RNA (mRNA) strand (5'...CCC...3'). This model suggests that replacements of C by 5-methylcytosine (5mC) may be a secondary effect in the inhibition of genetic expression, not interfering directly with the formation of an open state. An experimental test is suggested. The implications of this result are discussed for a related system, in which the enzyme methylase is known to methylate almost exclusively those Cs that are followed by Gs as a regulatory strategy employed by some eukaryotes. (author). 14 refs, 2 figs

  4. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    Energy Technology Data Exchange (ETDEWEB)

    Blossom, Sarah J., E-mail: blossomsarah@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children' s Hospital Research Institute, 13 Children' s Way, Little Rock, AR 72202 (United States); Cooney, Craig A. [Department of Research and Development, Central Arkansas Veterans Healthcare System, John L. McClellan Memorial Veterans Hospital, 4300 West 7th St., Little Rock, AR 72205-5484 (United States); Melnyk, Stepan B.; Rau, Jenny L.; Swearingen, Christopher J. [Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children' s Hospital Research Institute, 13 Children' s Way, Little Rock, AR 72202 (United States); Wessinger, William D. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, College of Medicine, 4301 West Markham St., Little Rock, AR 72205 (United States)

    2013-06-15

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor

  5. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    International Nuclear Information System (INIS)

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor

  6. Heat stress enhances LTM formation in Lymnaea: role of HSPs and DNA methylation.

    Science.gov (United States)

    Sunada, Hiroshi; Riaz, Hamza; de Freitas, Emily; Lukowiak, Kai; Swinton, Cayley; Swinton, Erin; Protheroe, Amy; Shymansky, Tamila; Komatsuzaki, Yoshimasa; Lukowiak, Ken

    2016-05-01

    Environmentally relevant stressors alter the memory-forming process in Lymnaea following operant conditioning of aerial respiration. One such stressor is heat. Previously, we found that following a 1 h heat shock, long-term memory (LTM) formation was enhanced. We also had shown that the heat stressor activates at least two heat shock proteins (HSPs): HSP40 and HSP70. Here, we tested two hypotheses: (1) the production of HSPs is necessary for enhanced LTM formation; and (2) blocking DNA methylation prevents the heat stressor-induced enhancement of LTM formation. We show here that the enhancing effect of the heat stressor on LTM formation occurs even if snails experienced the stressor 3 days previously. We further show that a flavonoid, quercetin, which inhibits HSP activation, blocks the enhancing effect of the heat stressor on LTM formation. Finally, we show that injection of a DNA methylation blocker, 5-AZA, before snails experience the heat stressor prevents enhancement of memory formation. PMID:27208033

  7. Both base excision repair and O6 -methylguanine-DNA methyltransferase protect against methylation-induced colon carcinogenesis

    OpenAIRE

    Wirtz, Stefan; Nagel, Georg; Eshkind, Leonid; Neurath, Markus F; Samson, Leona D.; Kaina, Bernd

    2010-01-01

    Methylating agents are widely distributed environmental carcinogens. Moreover, they are being used in cancer chemotherapy. The primary target of methylating agents is DNA, and therefore, DNA repair is the first-line barrier in defense against their toxic and carcinogenic effects. Methylating agents induce in the DNA O[superscript 6]-methylguanine (O[superscript 6]MeG) and methylations of the ring nitrogens of purines. The lesions are repaired by O[superscript 6]-methylguanine-DNA methyltransf...

  8. Bisphenol A Exposure May Induce Hepatic Lipid Accumulation via Reprogramming the DNA Methylation Patterns of Genes Involved in Lipid Metabolism

    Science.gov (United States)

    Ke, Zhang-Hong; Pan, Jie-Xue; Jin, Lu-Yang; Xu, Hai-Yan; Yu, Tian-Tian; Ullah, Kamran; Rahman, Tanzil Ur; Ren, Jun; Cheng, Yi; Dong, Xin-Yan; Sheng, Jian-Zhong; Huang, He-Feng

    2016-08-01

    Accumulating evidence suggests a role of bisphenol A (BPA) in metabolic disorders. However, the underlying mechanism is still unclear. Using a mouse BPA exposure model, we investigated the effects of long-term BPA exposure on lipid metabolism and the underlying mechanisms. The male mice exposed to BPA (0.5 μg BPA /kg/day, a human relevant dose) for 10 months exhibited significant hepatic accumulation of triglycerides and cholesterol. The liver cells from the BPA-exposed mice showed significantly increased expression levels of the genes related to lipid synthesis. These liver cells showed decreased DNA methylation levels of Srebf1 and Srebf2, and increased expression levels of Srebf1 and Srebf2 that may upregulate the genes related to lipid synthesis. The expression levels of DNA methyltransferases were decreased in BPA-exposed mouse liver. Hepa1-6 cell line treated with BPA showed decreased expression levels of DNA methyltransferases and increased expression levels of genes involved in lipid synthesis. DNA methyltransferase knockdown in Hepa1-6 led to hypo-methylation and increased expression levels of genes involved in lipid synthesis. Our results suggest that long-term BPA exposure could induce hepatic lipid accumulation, which may be due to the epigenetic reprogramming of the genes involved in lipid metabolism, such as the alterations of DNA methylation patterns.

  9. Determination of DNA and RNA Methylation in Circulating Tumor Cells by Mass Spectrometry.

    Science.gov (United States)

    Huang, Wei; Qi, Chu-Bo; Lv, Song-Wei; Xie, Min; Feng, Yu-Qi; Huang, Wei-Hua; Yuan, Bi-Feng

    2016-01-19

    DNA methylation (5-methylcytosine, 5-mC) is the best characterized epigenetic mark that has regulatory roles in diverse biological processes. Recent investigation of RNA modifications also raises the possible functions of RNA adenine and cytosine methylations on gene regulation in the form of "RNA epigenetics." Previous studies demonstrated global DNA hypomethylation in tumor tissues compared to healthy controls. However, DNA and RNA methylation in circulating tumor cells (CTCs) that are derived from tumors are still a mystery due to the lack of proper analytical methods. In this respect, here we established an effective CTCs capture system conjugated with a combined strategy of sample preparation for the captured CTCs lysis, nucleic acids digestion, and nucleosides extraction in one tube. The resulting nucleosides were then further analyzed by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). With the developed method, we are able to detect DNA and RNA methylation (5-methyl-2'-deoxycytidine, 5-methylcytidine, and N(6)-methyladenosine) in a single cell. We then further successfully determined DNA and RNA methylation in CTCs from lung cancer patients. Our results demonstrated, for the first time, a significant decrease of DNA methylation (5-methyl-2'-deoxycytidine) and increase of RNA adenine and cytosine methylations (N(6)-methyladenosine and 5-methylcytidine) in CTCs compared with whole blood cells. The discovery of DNA hypomethylation and RNA hypermethylation in CTCs in the current study together with previous reports of global DNA hypomethylation in tumor tissues suggest that nucleic acid modifications play important roles in the formation and development of cancer cells. This work constitutes the first step for the investigation of DNA and RNA methylation in CTCs, which may facilitate uncovering the metastasis mechanism of cancers in the future. PMID:26707930

  10. Determining methylation status of methylguanine DNA methyl transferase (MGMT) from formalin-fixed, paraffin embedded tumor tissue

    Science.gov (United States)

    de Abreu, Francine B.; Gallagher, Torrey L.; Liu, Emmeline Z.; Tsongalis, Gregory J.

    2014-01-01

    O-6-methylguanine-DNA methyltransferase (MGMT) has been associated with resistance to alkylating agent cancer therapy in Glioblastoma (GBM), the most common and aggressive primary brain tumor in adults. Lower expression or silencing of the MGMT protein by promoter methylation has been reported to improve survival in patients with GBM [1]. This protocol describes bisulfite conversion, methylation sensitive PCR amplification and data analysis/interpretation. This protocol differs from published protocols in that it:•Describes a detailed method to measure MGMT using DNA extracted from solid tumor tissue. We have optimized the DNA extraction by using FFPE tissue blocks that contain greater than 50% tumor tissue, when non-tumor tissue was also present. Performance of this assay is compromised when lower quantities of tumor cells are used as the methylation status of tumor cells is diluted out by methylation status of normal cells.•The measurement of MGMT could be further (enhanced) optimized using a percentage of methylation ration cutoff of 2 as methylated.•The machine specifications detailed here are specific to measuring MGMT from PPFE tumor tissue. PMID:26150933

  11. Alteration of membrane phospholipid methylation by adenosine analogs does not affect T lymphocyte activation

    International Nuclear Information System (INIS)

    Membrane phospholipid methylation has been described during activation of various immune cells. Moreover recent data indicated modulation of immune cells functions by adenosine. As S-adenosyl-methionine and S-adenosyl-homocysteine are adenosine analogs and modulators of transmethylation reactions, the effects of SAH and SAM were investigated on membrane phospholipid methylation and lymphocyte activation. SAM was shown to induce the membrane phospholipid methylation as assessed by the 3Hmethyl-incorporation in membrane extract. This effect was inhibited by SAH. In contrast SAM and SAH did not affect the phytohemagglutinin-induced proliferative response of peripheral blood mononuclear cells. SAH neither modified the early internalization of membrane CD3 antigens nor did it prevent the late expression of HLA-DR antigens on lymphocytes activated by phytohemagglutinin. These results indicate that in vitro alteration of phospholipid methylation does not affect subsequent steps of human T lymphocyte activation and proliferation

  12. Hormone stimulation of androgen receptor mediates dynamic changes in DNA methylation patterns at regulatory elements

    OpenAIRE

    Dhiman, Vineet K; Attwood, Kristopher; Campbell, Moray J.; Smiraglia, Dominic J

    2015-01-01

    DNA methylation is an epigenetic modification that contributes to stable gene silencing by interfering with the ability of transcriptional regulators to bind to DNA. Recent findings have revealed that hormone stimulation of certain nuclear receptors induces rapid, dynamic changes in DNA methylation patterns alongside transcriptional responses at a subset of target loci, over time. However, the ability of androgen receptor (AR) to dynamically regulate gene transcription is relatively under-stu...

  13. DNA Methylation Impacts Gene Expression and Ensures Hypoxic Survival of Mycobacterium tuberculosis

    OpenAIRE

    Shell, Scarlet S.; Prestwich, Erin G.; Seung-Hun Baek; Shah, Rupal R.; Sassetti, Christopher M.; Dedon, Peter C.; Fortune, Sarah M.

    2012-01-01

    DNA methylation regulates gene expression in many organisms. In eukaryotes, DNA methylation is associated with gene repression, while it exerts both activating and repressive effects in the Proteobacteria through largely locus-specific mechanisms. Here, we identify a critical DNA methyltransferase in M. tuberculosis, which we term MamA. MamA creates N[superscript 6]-methyladenine in a six base pair recognition sequence present in approximately 2,000 copies on each strand of the genome. Loss o...

  14. DNA Methylation Impacts Gene Expression and Ensures Hypoxic Survival of Mycobacterium tuberculosis

    OpenAIRE

    Shell, Scarlet S.; Prestwich, Erin G.; Baek, Seung-Hun; Shah, Rupal R.; Sassetti, Christopher M.; Dedon, Peter C.; Fortune, Sarah M.

    2013-01-01

    DNA methylation regulates gene expression in many organisms. In eukaryotes, DNA methylation is associated with gene repression, while it exerts both activating and repressive effects in the Proteobacteria through largely locus-specific mechanisms. Here, we identify a critical DNA methyltransferase in M. tuberculosis, which we term MamA. MamA creates N6-methyladenine in a six base pair recognition sequence present in approximately 2,000 copies on each strand of the genome. Loss of MamA reduces...

  15. DNA Methylation in Peripheral Blood: A Potential Biomarker for Cancer Molecular Epidemiology

    OpenAIRE

    Li, Lian; Choi, Ji-Yeob; Lee, Kyoung-Mu; Sung, Hyuna; Park, Sue K; Oze, Isao; Pan, Kai-Feng; You, Wei-cheng; Chen, Ying-Xuan; Fang, Jing-Yuan; Matsuo, Keitaro; Kim, Woo Ho; Yuasa, Yasuhito; Kang, Daehee

    2012-01-01

    Aberrant DNA methylation is associated with cancer development and progression. There are several types of specimens from which DNA methylation pattern can be measured and evaluated as an indicator of disease status (from normal biological process to pathologic condition) and even of pharmacologic response to therapy. Blood-based specimens such as cell-free circulating nucleic acid and DNA extracted from leukocytes in peripheral blood may be a potential source of noninvasive cancer biomarkers...

  16. Exploring the roles of DNA methylation in the metal-reducing bacterium Shewanella oneidensis MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Bendall, Matthew L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Luong, Khai [Pacific Biosciences, Menlo Park, CA (United States); Wetmore, Kelly M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Blow, Matthew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Korlach, Jonas [Pacific Biosciences, Menlo Park, CA (United States); Deutschbauer, Adam [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Malmstrom, Rex [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-08-30

    We performed whole genome analyses of DNA methylation in Shewanella 17 oneidensis MR-1 to examine its possible role in regulating gene expression and 18 other cellular processes. Single-Molecule Real Time (SMRT) sequencing 19 revealed extensive methylation of adenine (N6mA) throughout the 20 genome. These methylated bases were located in five sequence motifs, 21 including three novel targets for Type I restriction/modification enzymes. The 22 sequence motifs targeted by putative methyltranferases were determined via 23 SMRT sequencing of gene knockout mutants. In addition, we found S. 24 oneidensis MR-1 cultures grown under various culture conditions displayed 25 different DNA methylation patterns. However, the small number of differentially 26 methylated sites could not be directly linked to the much larger number of 27 differentially expressed genes in these conditions, suggesting DNA methylation is 28 not a major regulator of gene expression in S. oneidensis MR-1. The enrichment 29 of methylated GATC motifs in the origin of replication indicate DNA methylation 30 may regulate genome replication in a manner similar to that seen in Escherichia 31 coli. Furthermore, comparative analyses suggest that many 32 Gammaproteobacteria, including all members of the Shewanellaceae family, may 33 also utilize DNA methylation to regulate genome replication.

  17. Adjustment of Cell-Type Composition Minimizes Systematic Bias in Blood DNA Methylation Profiles Derived by DNA Collection Protocols.

    Directory of Open Access Journals (Sweden)

    Yuh Shiwa

    Full Text Available Differences in DNA collection protocols may be a potential confounder in epigenome-wide association studies (EWAS using a large number of blood specimens from multiple biobanks and/or cohorts. Here we show that pre-analytical procedures involved in DNA collection can induce systematic bias in the DNA methylation profiles of blood cells that can be adjusted by cell-type composition variables. In Experiment 1, whole blood from 16 volunteers was collected to examine the effect of a 24 h storage period at 4°C on DNA methylation profiles as measured using the Infinium HumanMethylation450 BeadChip array. Our statistical analysis showed that the P-value distribution of more than 450,000 CpG sites was similar to the theoretical distribution (in quantile-quantile plot, λ = 1.03 when comparing two control replicates, which was remarkably deviated from the theoretical distribution (λ = 1.50 when comparing control and storage conditions. We then considered cell-type composition as a possible cause of the observed bias in DNA methylation profiles and found that the bias associated with the cold storage condition was largely decreased (λ adjusted = 1.14 by taking into account a cell-type composition variable. As such, we compared four respective sample collection protocols used in large-scale Japanese biobanks or cohorts as well as two control replicates. Systematic biases in DNA methylation profiles were observed between control and three of four protocols without adjustment of cell-type composition (λ = 1.12-1.45 and no remarkable biases were seen after adjusting for cell-type composition in all four protocols (λ adjusted = 1.00-1.17. These results revealed important implications for comparing DNA methylation profiles between blood specimens from different sources and may lead to discovery of disease-associated DNA methylation markers and the development of DNA methylation profile-based predictive risk models.

  18. Altered Methylation of IGF2 Locus 20 Years after Preterm Birth at Very Low Birth Weight.

    Directory of Open Access Journals (Sweden)

    Karoliina Wehkalampi

    Full Text Available People born preterm at very low birth weight (VLBW, ≤1500g have higher rates of risk factors for adult-onset diseases, including cardiovascular diseases and type 2 diabetes. These risks may be mediated through epigenetic modification of genes that are critical to normal growth and development.We measured the methylation level of an imprinted insulin-like-growth-factor 2 (IGF2 locus (IGF2/H19 in young adults born preterm at VLBW and in their peers born at term. We studied 158 VLBW and 161 control subjects aged 18 to 27 years from the Helsinki Study of Very Low Birth Weight Adults. Methylation fraction at two IGF2 differentially methylated regions (DMRs - IGF2 antisense transcript (IGF2AS, also known as IGF2 DMR0 and last exon of IGF2 (IGF2_05, also known as IGF2 DMR2 - were measured with Sequenom Epityper. We used linear regression and adjustment for covariates to compare methylation fractions at these DMRs between VLBW and control subjects.At one IGF2AS CpG site, methylation was significantly lower in VLBW than in control subjects, mean difference -0.017 (95% CI; -0.028, -0.005, P = 0.004. Methylation at IGF2_05 was not different between the groups.Methylation of IGF2AS is altered 20 years after preterm birth at VLBW. Altered methylation may be a mechanism of later increased disease risk but more data are needed to indicate causality.

  19. Trichloroethylene-induced gene expression and DNA methylation changes in B6C3F1 mouse liver.

    Directory of Open Access Journals (Sweden)

    Yan Jiang

    Full Text Available Trichloroethylene (TCE, widely used as an organic solvent in the industry, is a common contaminant in air, soil, and water. Chronic TCE exposure induced hepatocellular carcinoma in mice, and occupational exposure in humans was suggested to be associated with liver cancer. To understand the role of non-genotoxic mechanism(s for TCE action, we examined the gene expression and DNA methylation changes in the liver of B6C3F1 mice orally administered with TCE (0, 100, 500 and 1000 mg/kg b.w. per day for 5 days. After 5 days TCE treatment at a dose level of 1000 mg/kg b.w., a total of 431 differentially expressed genes were identified in mouse liver by microarray, of which 291 were up-regulated and 140 down-regulated. The expression changed genes were involved in key signal pathways including PPAR, proliferation, apoptosis and homologous recombination. Notably, the expression level of a number of vital genes involved in the regulation of DNA methylation, such as Utrf1, Tet2, DNMT1, DNMT3a and DNMT3b, were dysregulated. Although global DNA methylation change was not detected in the liver of mice exposed to TCE, the promoter regions of Cdkn1a and Ihh were found to be hypo- and hypermethylated respectively, which correlated negatively with their mRNA expression changes. Furthermore, the gene expression and DNA methylation changes induced by TCE were dose dependent. The overall data indicate that TCE exposure leads to aberrant DNA methylation changes, which might alter the expression of genes involved in the TCE-induced liver tumorgenesis.

  20. Array-based DNA methylation profiling of primary lymphomas of the central nervous system

    International Nuclear Information System (INIS)

    Although primary lymphomas of the central nervous system (PCNSL) and extracerebral diffuse large B-cell lymphoma (DLBCL) cannot be distinguished histologically, it is still a matter of debate whether PCNSL differ from systemic DLBCL with respect to their molecular features and pathogenesis. Analysis of the DNA methylation pattern might provide further data distinguishing these entities at a molecular level. Using an array-based technology we have assessed the DNA methylation status of 1,505 individual CpG loci in five PCNSL and compared the results to DNA methylation profiles of 49 DLBCL and ten hematopoietic controls. We identified 194 genes differentially methylated between PCNSL and normal controls. Interestingly, Polycomb target genes and genes with promoters showing a high CpG content were significantly enriched in the group of genes hypermethylated in PCNSL. However, PCNSL and systemic DLBCL did not differ in their methylation pattern. Based on the data presented here, PCNSL and DLBCL do not differ in their DNA methylation pattern. Thus, DNA methylation analysis does not support a separation of PCNSL and DLBCL into individual entities. However, PCNSL and DLBCL differ in their DNA methylation pattern from non- malignant controls

  1. Effects of Unpredictable Variable Prenatal Stress (UVPS) on Bdnf DNA Methylation and Telomere Length in the Adult Rat Brain

    Science.gov (United States)

    Blaze, Jennifer; Asok, A.; Moyer, E. L.; Roth, T. L.; Ronca, A. E.

    2015-01-01

    In utero exposure to stress can shape neurobiological and behavioral outcomes in offspring, producing vulnerability to psychopathology later in life. Animal models of prenatal stress likewise have demonstrated long-­-term alterations in brain function and behavioral deficits in offspring. For example, using a rodent model of unpredictable variable prenatal stress (UVPS), in which dams are exposed to unpredictable, variable stress across pregnancy, we have found increased body weight and anxiety-­-like behavior in adult male, but not female, offspring. DNA methylation (addition of methyl groups to cytosines which normally represses gene transcription) and changes in telomere length (TTAGGG repeats on the ends of chromosomes) are two molecular modifications that result from stress and could be responsible for the long-­-term effects of UVPS. Here, we measured methylation of brain-­-derived neurotrophic factor (bdnf), a gene important in development and plasticity, and telomere length in the brains of adult offspring from the UVPS model. Results indicate that prenatally stressed adult males have greater methylation in the medial prefrontal cortex (mPFC) compared to non-­-stressed controls, while females have greater methylation in the ventral hippocampus compared to controls. Further, prenatally stressed males had shorter telomeres than controls in the mPFC. These findings demonstrate the ability of UVPS to produce epigenetic alterations and changes in telomere length across behaviorally-­-relevant brain regions, which may have linkages to the phenotypic outcomes.

  2. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation.

    Science.gov (United States)

    McDonald, James I; Celik, Hamza; Rois, Lisa E; Fishberger, Gregory; Fowler, Tolison; Rees, Ryan; Kramer, Ashley; Martens, Andrew; Edwards, John R; Challen, Grant A

    2016-01-01

    Advances in sequencing technology allow researchers to map genome-wide changes in DNA methylation in development and disease. However, there is a lack of experimental tools to site-specifically manipulate DNA methylation to discern the functional consequences. We developed a CRISPR/Cas9 DNA methyltransferase 3A (DNMT3A) fusion to induce DNA methylation at specific loci in the genome. We induced DNA methylation at up to 50% of alleles for targeted CpG dinucleotides. DNA methylation levels peaked within 50 bp of the short guide RNA (sgRNA) binding site and between pairs of sgRNAs. We used our approach to target methylation across the entire CpG island at the CDKN2A promoter, three CpG dinucleotides at the ARF promoter, and the CpG island within the Cdkn1a promoter to decrease expression of the target gene. These tools permit mechanistic studies of DNA methylation and its role in guiding molecular processes that determine cellular fate. PMID:27170255

  3. Parvovirus b19 DNA CpG dinucleotide methylation and epigenetic regulation of viral expression.

    Directory of Open Access Journals (Sweden)

    Francesca Bonvicini

    Full Text Available CpG DNA methylation is one of the main epigenetic modifications playing a role in the control of gene expression. For DNA viruses whose genome has the ability to integrate in the host genome or to maintain as a latent episome, a correlation has been found between the extent of DNA methylation and viral quiescence. No information is available for Parvovirus B19, a human pathogenic virus, which is capable of both lytic and persistent infections. Within Parvovirus B19 genome, the inverted terminal regions display all the characteristic signatures of a genomic CpG island; therefore we hypothesised a role of CpG dinucleotide methylation in the regulation of viral genome expression.The analysis of CpG dinucleotide methylation of Parvovirus B19 DNA was carried out by an aptly designed quantitative real-time PCR assay on bisulfite-modified DNA. The effects of CpG methylation on the regulation of viral genome expression were first investigated by transfection of either unmethylated or in vitro methylated viral DNA in a model cell line, showing that methylation of viral DNA was correlated to lower expression levels of the viral genome. Then, in the course of in vitro infections in different cellular environments, it was observed that absence of viral expression and genome replication were both correlated to increasing levels of CpG methylation of viral DNA. Finally, the presence of CpG methylation was documented in viral DNA present in bioptic samples, indicating the occurrence and a possible role of this epigenetic modification in the course of natural infections.The presence of an epigenetic level of regulation of viral genome expression, possibly correlated to the silencing of the viral genome and contributing to the maintenance of the virus in tissues, can be relevant to the balance and outcome of the different types of infection associated to Parvovirus B19.

  4. Identification of body fluid-specific DNA methylation markers for use in forensic science.

    Science.gov (United States)

    Park, Jong-Lyul; Kwon, Oh-Hyung; Kim, Jong Hwan; Yoo, Hyang-Sook; Lee, Han-Chul; Woo, Kwang-Man; Kim, Seon-Young; Lee, Seung-Hwan; Kim, Yong Sung

    2014-11-01

    DNA methylation, which occurs at the 5'-position of the cytosine in CpG dinucleotides, has great potential for forensic identification of body fluids, because tissue-specific patterns of DNA methylation have been demonstrated, and DNA is less prone to degradation than proteins or RNA. Previous studies have reported several body fluid-specific DNA methylation markers, but DNA methylation differences are sometimes low in saliva and vaginal secretions. Moreover, specific DNA methylation markers in four types of body fluids (blood, saliva, semen, and vaginal secretions) have not been investigated with genome-wide profiling. Here, we investigated novel DNA methylation markers for identification of body fluids for use in forensic science using the Illumina HumanMethylation 450K bead array, which contains over 450,000 CpG sites. Using methylome data from 16 samples of blood, saliva, semen, and vaginal secretions, we first selected 2986 hypermethylated or hypomethylated regions that were specific for each type of body fluid. We then selected eight CpG sites as novel, forensically relevant DNA methylation markers: cg06379435 and cg08792630 for blood, cg26107890 and cg20691722 for saliva, cg23521140 and cg17610929 for semen, and cg01774894 and cg14991487 for vaginal secretions. These eight selected markers were evaluated in 80 body fluid samples using pyrosequencing, and all showed high sensitivity and specificity for identification of the target body fluid. We suggest that these eight DNA methylation markers may be good candidates for developing an effective molecular assay for identification of body fluids in forensic science. PMID:25128690

  5. A combined HM-PCR/SNuPE method for high sensitive detection of rare DNA methylation

    Directory of Open Access Journals (Sweden)

    Tierling Sascha

    2010-06-01

    Full Text Available Abstract Background DNA methylation changes are widely used as early molecular markers in cancer detection. Sensitive detection and classification of rare methylation changes in DNA extracted from circulating body fluids or complex tissue samples is crucial for the understanding of tumor etiology, clinical diagnosis and treatment. In this paper, we describe a combined method to monitor the presence of methylated tumor DNA in an excess of unmethylated background DNA of non-tumorous cells. The method combines heavy methyl-PCR, which favors preferential amplification of methylated marker sequence from bisulfite-treated DNA with a methylation-specific single nucleotide primer extension monitored by ion-pair, reversed-phase, high-performance liquid chromatography separation. Results This combined method allows detection of 14 pg (that is, four to five genomic copies of methylated chromosomal DNA in a 2000-fold excess (that is, 50 ng of unmethylated chromosomal background, with an analytical sensitivity of > 90%. We outline a detailed protocol for the combined assay on two examples of known cancer markers (SEPT9 and TMEFF2 and discuss general aspects of assay design and data interpretation. Finally, we provide an application example for rapid testing on tumor methylation in plasma DNA derived from a small cohort of patients with colorectal cancer. Conclusion The method allows unambiguous detection of rare DNA methylation, for example in body fluid or DNA isolates from cells or tissues, with very high sensitivity and accuracy. The application combines standard technologies and can easily be adapted to any target region of interest. It does not require costly reagents and can be used for routine screening of many samples.

  6. PPARGC1A DNA methylation in subcutaneous adipose tissue in low birth weight subjects

    DEFF Research Database (Denmark)

    Gillberg, Linn; Jacobsen, Stine; Rönn, Tina;

    2014-01-01

    insulin-stimulated SAT from LBW and matched normal birth weight (NBW) subjects during control and high-fat overfeeding. MATERIALS/METHODS: Nineteen young healthy men with LBW and 26 NBW controls were studied after both a 5-day high-fat overfeeding and a control diet in a randomized crossover setting. DNA......OBJECTIVE: Increased DNA methylation of the metabolic regulator peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A) has been reported in skeletal muscle from type 2 diabetes (T2D) subjects and from low birth weight (LBW) subjects with an increased risk of T2D. High......-fat overfeeding increases PPARGC1A DNA methylation in muscle in a birth weight dependent manner. However, PPARGC1A DNA methylation in subcutaneous adipose tissue (SAT) in LBW subjects has not previously been investigated. Our objective was to determine PPARGC1A DNA methylation and mRNA expression in basal and...

  7. Expression, purification and characterization of methyl DNA binding protein from Bombyx mori

    OpenAIRE

    Uno, Tomohide; Nomura, Yuka; Nakamura, Masahiko; Nakao, Atsushi; Tajima, Shoji; Kanamaru, Kengo; Yamagata, Hiroshi; Iwanaga, Yousuke

    2005-01-01

    A cDNA clone encoding methyl DNA binding domain-containing protein (bMBD2/3) was obtained by homology searches using a Bombyx mori fat body cDNA library. The cDNA encoded a polypeptide with 249 amino acids sharing 54% similarity with the methyl DNA binding protein from Drosophila melanogaster. To characterize the biochemical properties of bMBD2/3, the clone was expressed in Escherichia coli as His-tagged protein. The recombinant protein was purified to homogeneity using Ni-NTA superflow resin...

  8. Hydrophobicity of methylated DNA as a possible mechanism for gene silencing

    International Nuclear Information System (INIS)

    AFM images show that chromatin reconstituted on methylated DNA (meDNA) is compacted when imaged under water. Chromatin reconstituted on unmethylated DNA is less compacted and less sensitive to hydration. These differences must reflect changes in the physical properties of DNA on methylation, but prior studies have not revealed large differences between methylated and unmethylated DNA. Quasi-elastic light scattering studies of solutions of methylated and unmethylated DNA support this view. In contrast, AFM images of molecules at a water/solid interface yield a persistence length that nearly doubles (to 92.5 ± 4 nm) when 9% of the total DNA is methylated. This increase in persistence length is accompanied by a decrease in contour length, suggesting that a significant fraction of the meDNA changes into the stiffer A form as the more hydrophobic meDNA is dehydrated at the interface. This suggests a simple mechanism for gene silencing as the stiffer meDNA is more difficult to remove from nucleosomes. (paper)

  9. 线粒体DNA与DNA甲基化的关系%The relationship between mitochondrial DNA and DNA methylation

    Institute of Scientific and Technical Information of China (English)

    王萍; 房静远

    2009-01-01

    线粒体DNA(mitochondrial DNA,mtDNA)遗传信息量虽小,却控制着线粒体一些最基本的性质,对细胞及其功能有着重要影响.mtDNA的损伤与衰老、肿瘤等疾病的发生有关.DNA甲基化是调节基因表达的重要方式之一.mtDNA基因的表达受核DNA (nuclear DNA,nDNA)的调控,mtDNA和nDNA协同作用参与机体代谢调节和发病.本文就近年来mtDNA与DNA甲基化的关系作一综述.%Mitochondrial DNA(mtDNA) determines the primary nature of mitochondrial and plays an important role in cell function.The damage of mtDNA is associated with aging, tumor and other diseases. DNA methylation is a major way to regulate gene expression. mtDNA expression is regulated by nuclear DNA. mtDNA and nDNA participating in metabolic regulation and pathogenesy synergisticly. The relationship between mitochondrial DNA and DNA methylation were reviewed here.

  10. Lysine methyltransferase G9a is not required for DNMT3A/3B anchoring to methylated nucleosomes and maintenance of DNA methylation in somatic cells

    Directory of Open Access Journals (Sweden)

    Sharma Shikhar

    2012-01-01

    Full Text Available Abstract Background DNA methylation, histone modifications and nucleosome occupancy act in concert for regulation of gene expression patterns in mammalian cells. Recently, G9a, a H3K9 methyltransferase, has been shown to play a role in establishment of DNA methylation at embryonic gene targets in ES cells through recruitment of de novo DNMT3A/3B enzymes. However, whether G9a plays a similar role in maintenance of DNA methylation in somatic cells is still unclear. Results Here we show that G9a is not essential for maintenance of DNA methylation in somatic cells. Knockdown of G9a has no measurable effect on DNA methylation levels at G9a-target loci. DNMT3A/3B remain stably anchored to nucleosomes containing methylated DNA even in the absence of G9a, ensuring faithful propagation of methylated states in cooperation with DNMT1 through somatic divisions. Moreover, G9a also associates with nucleosomes in a DNMT3A/3B and DNA methylation-independent manner. However, G9a knockdown synergizes with pharmacologic inhibition of DNMTs resulting in increased hypomethylation and inhibition of cell proliferation. Conclusions Taken together, these data suggest that G9a is not involved in maintenance of DNA methylation in somatic cells but might play a role in re-initiation of de novo methylation after treatment with hypomethylating drugs, thus serving as a potential target for combinatorial treatments strategies involving DNMTs inhibitors.

  11. Peripheral SLC6A4 DNA methylation is associated with in vivo measures of human brain serotonin synthesis and childhood physical aggression.

    Directory of Open Access Journals (Sweden)

    Dongsha Wang

    Full Text Available The main challenge in addressing the role of DNA methylation in human behaviour is the fact that the brain is inaccessible to epigenetic analysis in living humans. Using positron emission tomography (PET measures of brain serotonin (5-HT synthesis, we found in a longitudinal sample that adult males with high childhood-limited aggression (C-LHPA had lower in vivo 5-HT synthesis in the orbitofrontal cortex (OBFC. Here we hypothesized that 5-HT alterations associated with childhood aggression were linked to differential DNA methylation of critical genes in the 5-HT pathway and these changes were also detectable in peripheral white blood cells. Using pyrosequencing, we determined the state of DNA methylation of SLC6A4 promoter in T cells and monocytes isolated from blood of cohort members (N = 25 who underwent a PET scan, and we examined whether methylation status in the blood is associated with in vivo brain 5-HT synthesis. Higher levels of methylation were observed in both T cells and monocytes at specific CpG sites in the C-LHPA group. DNA methylation of SLC6A4 in monocytes appears to be associated more reliably with group membership than T cells. In both cell types the methylation state of these CpGs was associated with lower in vivo measures of brain 5-HT synthesis in the left and right lateral OBFC (N = 20 where lower 5-HT synthesis in C-LHPA group was observed. Furthermore, in vitro methylation of the SLC6A4 promoter in a luciferase reporter construct suppresses its transcriptional activity supporting a functional role of DNA methylation in SLC6A4 promoter regulation. These findings indicate that state of SLC6A4 promoter methylation is altered in peripheral white blood cells of individuals with physical aggression during childhood. This supports the relevance of peripheral DNA methylation for brain function and suggests that peripheral SLC6A4 DNA methylation could be a marker of central 5-HT function.

  12. Bisulfite sequencing reveals that Aspergillus flavus holds a hollow in DNA methylation

    DEFF Research Database (Denmark)

    Liu, Si-Yang; Lin, Jian-Qing; Wu, Hong-Long;

    2012-01-01

    Aspergillus flavus first gained scientific attention for its production of aflatoxin. The underlying regulation of aflatoxin biosynthesis has been serving as a theoretical model for biosynthesis of other microbial secondary metabolites. Nevertheless, for several decades, the DNA methylation status......, one of the important epigenomic modifications involved in gene regulation, in A. flavus remains to be controversial. Here, we applied bisulfite sequencing in conjunction with a biological replicate strategy to investigate the DNA methylation profiling of A. flavus genome. Both the bisulfite sequencing...... detection in species with low DNA methylation may serve as a reference for later scientific investigations in other hypomethylated species....

  13. DNA methylation results depend on DNA integrity – role of post mortem interval

    Directory of Open Access Journals (Sweden)

    Mathias eRhein

    2015-05-01

    Full Text Available Major questions of neurological and psychiatric mechanisms involve the brain functions on a molecular level and cannot be easily addressed due to limitations in access to tissue samples. Post mortem studies are able to partly bridge the gap between brain tissue research retrieved from animal trials and the information derived from peripheral analysis (e.g. measurements in blood cells in patients. Here, we wanted to know how fast DNA degradation is progressing under controlled conditions in order to define thresholds for tissue quality to be used in respective trials. Our focus was on the applicability of partly degraded samples for bisulfite sequencing and the determination of simple means to define cut-off values.After opening the brain cavity, we kept two consecutive pig skulls at ambient temperature (19-21°C and removed cortex tissue up to a post mortem interval (PMI of 120h. We calculated the percentage of degradation on DNA gel electrophoresis of brain DNA to estimate quality and relate this estimation spectrum to the quality of human post-mortem control samples. Functional DNA quality was investigated by bisulfite sequencing of two functionally relevant genes for either the serotonin receptor 5 (SLC6A4 or aldehyde dehydrogenase 2 (ALDH2.Testing our approach in a heterogeneous collective of human blood and brain samples, we demonstrate integrity of measurement quality below the threshold of 72h PMI.While sequencing technically worked for all timepoints irrespective of conceivable DNA degradation, there is a good correlation between variance of methylation to degradation levels documented in the gel (R2=0.4311, p=0.0392 for advancing post mortem intervals (PMI. This otherwise elusive phenomenon is an important prerequisite for the interpretation and evaluation of samples prior to in-depth processing via an affordable and easy assay to estimate identical sample quality and thereby comparable methylation measurements.

  14. Genetic analysis of DNA methylation and gene expression levels in whole blood of healthy human subjects

    Directory of Open Access Journals (Sweden)

    van Eijk Kristel R

    2012-11-01

    Full Text Available Abstract Background The predominant model for regulation of gene expression through DNA methylation is an inverse association in which increased methylation results in decreased gene expression levels. However, recent studies suggest that the relationship between genetic variation, DNA methylation and expression is more complex. Results Systems genetic approaches for examining relationships between gene expression and methylation array data were used to find both negative and positive associations between these levels. A weighted correlation network analysis revealed that i both transcriptome and methylome are organized in modules, ii co-expression modules are generally not preserved in the methylation data and vice-versa, and iii highly significant correlations exist between co-expression and co-methylation modules, suggesting the existence of factors that affect expression and methylation of different modules (i.e., trans effects at the level of modules. We observed that methylation probes associated with expression in cis were more likely to be located outside CpG islands, whereas specificity for CpG island shores was present when methylation, associated with expression, was under local genetic control. A structural equation model based analysis found strong support in particular for a traditional causal model in which gene expression is regulated by genetic variation via DNA methylation instead of gene expression affecting DNA methylation levels. Conclusions Our results provide new insights into the complex mechanisms between genetic markers, epigenetic mechanisms and gene expression. We find strong support for the classical model of genetic variants regulating methylation, which in turn regulates gene expression. Moreover we show that, although the methylation and expression modules differ, they are highly correlated.

  15. Determination of quantitative and site-specific DNA methylation of perforin by pyrosequencing

    Directory of Open Access Journals (Sweden)

    Rajeevan Mangalathu S

    2009-06-01

    Full Text Available Abstract Background Differential expression of perforin (PRF1, a gene with a pivotal role in immune surveillance, can be attributed to differential methylation of CpG sites in its promoter region. A reproducible method for quantitative and CpG site-specific determination of perforin methylation is required for molecular epidemiologic studies of chronic diseases with immune dysfunction. Findings We developed a pyrosequencing based method to quantify site-specific methylation levels in 32 out of 34 CpG sites in the PRF1 promoter, and also compared methylation pattern in DNAs extracted from whole blood drawn into PAXgene blood DNA tubes (whole blood DNA or DNA extracted from peripheral blood mononuclear cells (PBMC DNA from the same normal subjects. Sodium bisulfite treatment of DNA and touchdown PCR were highly reproducible (coefficient of variation 1.63 to 2.18% to preserve methylation information. Application of optimized pyrosequencing protocol to whole blood DNA revealed that methylation level varied along the promoter in normal subjects with extremely high methylation (mean 86%; range 82–92% in the distal enhancer region (CpG sites 1–10, a variable methylation (range 49%–83% in the methylation sensitive region (CpG sites 11–17, and a progressively declining methylation level (range 12%–80% in the proximal promoter region (CpG sites 18–32 of PRF1. This pattern of methylation remained the same between whole blood and PBMC DNAs, but the absolute values of methylation in 30 out of 32 CpG sites differed significantly, with higher values for all CpG sites in the whole blood DNA. Conclusion This reproducible, site-specific and quantitative method for methylation determination of PRF1 based on pyrosequencing without cloning is well suited for large-scale molecular epidemiologic studies of diseases with immune dysfunction. PBMC DNA may be better suited than whole blood DNA for examining methylation levels in genes associated with immune

  16. Both the folate cycle and betaine-homocysteine methyltransferase contribute methyl groups for DNA methylation in mouse blastocysts.

    Science.gov (United States)

    Zhang, Baohua; Denomme, Michelle M; White, Carlee R; Leung, Kit-Yi; Lee, Martin B; Greene, Nicholas D E; Mann, Mellissa R W; Trasler, Jacquetta M; Baltz, Jay M

    2015-03-01

    The embryonic pattern of global DNA methylation is first established in the inner cell mass (ICM) of the mouse blastocyst. The methyl donor S-adenosylmethionine (SAM) is produced in most cells through the folate cycle, but only a few cell types generate SAM from betaine (N,N,N-trimethylglycine) via betaine-homocysteine methyltransferase (BHMT), which is expressed in the mouse ICM. Here, mean ICM cell numbers decreased from 18-19 in controls to 11-13 when the folate cycle was inhibited by the antifolate methotrexate and to 12-14 when BHMT expression was knocked down by antisense morpholinos. Inhibiting both pathways, however, much more severely affected ICM development (7-8 cells). Total SAM levels in mouse blastocysts decreased significantly only when both pathways were inhibited (from 3.1 to 1.6 pmol/100 blastocysts). DNA methylation, detected as 5-methylcytosine (5-MeC) immunofluorescence in isolated ICMs, was minimally affected by inhibition of either pathway alone but decreased by at least 45-55% when both BHMT and the folate cycle were inhibited simultaneously. Effects on cell numbers and 5-MeC levels in the ICM were completely rescued by methionine (immediate SAM precursor) or SAM. Both the folate cycle and betaine/BHMT appear to contribute to a methyl pool required for normal ICM development and establishing initial embryonic DNA methylation. PMID:25466894

  17. Peripheral nerve injury is associated with chronic, reversible changes in global DNA methylation in the mouse prefrontal cortex.

    Directory of Open Access Journals (Sweden)

    Maral Tajerian

    Full Text Available Changes in brain structure and cortical function are associated with many chronic pain conditions including low back pain and fibromyalgia. The magnitude of these changes correlates with the duration and/or the intensity of chronic pain. Most studies report changes in common areas involved in pain modulation, including the prefrontal cortex (PFC, and pain-related pathological changes in the PFC can be reversed with effective treatment. While the mechanisms underlying these changes are unknown, they must be dynamically regulated. Epigenetic modulation of gene expression in response to experience and environment is reversible and dynamic. Epigenetic modulation by DNA methylation is associated with abnormal behavior and pathological gene expression in the central nervous system. DNA methylation might also be involved in mediating the pathologies associated with chronic pain in the brain. We therefore tested a whether alterations in DNA methylation are found in the brain long after chronic neuropathic pain is induced in the periphery using the spared nerve injury modal and b whether these injury-associated changes are reversible by interventions that reverse the pathologies associated with chronic pain. Six months following peripheral nerve injury, abnormal sensory thresholds and increased anxiety were accompanied by decreased global methylation in the PFC and the amygdala but not in the visual cortex or the thalamus. Environmental enrichment attenuated nerve injury-induced hypersensitivity and reversed the changes in global PFC methylation. Furthermore, global PFC methylation correlated with mechanical and thermal sensitivity in neuropathic mice. In summary, induction of chronic pain by peripheral nerve injury is associated with epigenetic changes in the brain. These changes are detected long after the original injury, at a long distance from the site of injury and are reversible with environmental manipulation. Changes in brain structure and

  18. Improved reproducibility in genome-wide DNA methylation analysis for PAXgene® fixed samples compared to restored FFPE DNA

    DEFF Research Database (Denmark)

    Andersen, Gitte Brinch; Hager, Henrik; Hansen, Lise Lotte;

    2014-01-01

    PAXgene Tissue System, developed for simultaneous preservation of morphology, proteins, and nucleic acids. In the current study, we compared the performance of DNA from either PAXgene or formalin-fixed tissues to snap-frozen material for genome-wide DNA methylation analysis using the Illumina 450K Bead......Chip. Quantitative DNA methylation analysis demonstrated that the methylation profile in PAXgene-fixed tissues showed, in comparison with restored FFPE samples, a higher concordance with the profile detected in frozen samples. We demonstrate, for the first time, that DNA from PAXgene conserved tissue performs better......, precluding the use of the valuable archives of specimens with long-term follow-up data. Therefore, restoration protocols for DNA from formalin-fixed and paraffin-embedded (FFPE) samples have been developed, although they are cost-intensive and time-consuming. An alternative to FFPE and snap-freezing is the...

  19. Different measures of “genome-wide” DNA methylation exhibit unique properties in placental and somatic tissues

    OpenAIRE

    Price, E Magda; Cotton, Allison M.; Peñaherrera, Maria S.; McFadden, Deborah E; Kobor, Michael S.; Robinson, Wendy

    2012-01-01

    DNA methylation of CpGs located in two types of repetitive elements—LINE1 (L1) and Alu—is used to assess “global” changes in DNA methylation in studies of human disease and environmental exposure. L1 and Alu contribute close to 30% of all base pairs in the human genome and transposition of repetitive elements is repressed through DNA methylation. Few studies have investigated whether repetitive element DNA methylation is associated with DNA methylation at other genomic regions, or the biologi...

  20. Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1).

    Science.gov (United States)

    Takeshita, Kohei; Suetake, Isao; Yamashita, Eiki; Suga, Michihiro; Narita, Hirotaka; Nakagawa, Atsushi; Tajima, Shoji

    2011-05-31

    Methylation of cytosine in DNA plays a crucial role in development through inheritable gene silencing. The DNA methyltransferase Dnmt1 is responsible for the propagation of methylation patterns to the next generation via its preferential methylation of hemimethylated CpG sites in the genome; however, how Dnmt1 maintains methylation patterns is not fully understood. Here we report the crystal structure of the large fragment (291-1620) of mouse Dnmt1 and its complexes with cofactor S-adenosyl-L-methionine and its product S-adenosyl-L-homocystein. Notably, in the absence of DNA, the N-terminal domain responsible for targeting Dnmt1 to replication foci is inserted into the DNA-binding pocket, indicating that this domain must be removed for methylation to occur. Upon binding of S-adenosyl-L-methionine, the catalytic cysteine residue undergoes a conformation transition to a catalytically competent position. For the recognition of hemimethylated DNA, Dnmt1 is expected to utilize a target recognition domain that overhangs the putative DNA-binding pocket. Taking into considerations the recent report of a shorter fragment structure of Dnmt1 that the CXXC motif positions itself in the catalytic pocket and prevents aberrant de novo methylation, we propose that maintenance methylation is a multistep process accompanied by structural changes. PMID:21518897

  1. Regulation of DNA Methylation Patterns by CK2-Mediated Phosphorylation of Dnmt3a

    Directory of Open Access Journals (Sweden)

    Rachel Deplus

    2014-08-01

    Full Text Available DNA methylation is a central epigenetic modification that is established by de novo DNA methyltransferases. The mechanisms underlying the generation of genomic methylation patterns are still poorly understood. Using mass spectrometry and a phosphospecific Dnmt3a antibody, we demonstrate that CK2 phosphorylates endogenous Dnmt3a at two key residues located near its PWWP domain, thereby downregulating the ability of Dnmt3a to methylate DNA. Genome-wide DNA methylation analysis shows that CK2 primarily modulates CpG methylation of several repeats, most notably of Alu SINEs. This modulation can be directly attributed to CK2-mediated phosphorylation of Dnmt3a. We also find that CK2-mediated phosphorylation is required for localization of Dnmt3a to heterochromatin. By revealing phosphorylation as a mode of regulation of de novo DNA methyltransferase function and by uncovering a mechanism for the regulation of methylation at repetitive elements, our results shed light on the origin of DNA methylation patterns.

  2. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers.

    Science.gov (United States)

    Seisenberger, Stefanie; Peat, Julian R; Hore, Timothy A; Santos, Fátima; Dean, Wendy; Reik, Wolf

    2013-01-01

    In mammalian development, epigenetic modifications, including DNA methylation patterns, play a crucial role in defining cell fate but also represent epigenetic barriers that restrict developmental potential. At two points in the life cycle, DNA methylation marks are reprogrammed on a global scale, concomitant with restoration of developmental potency. DNA methylation patterns are subsequently re-established with the commitment towards a distinct cell fate. This reprogramming of DNA methylation takes place firstly on fertilization in the zygote, and secondly in primordial germ cells (PGCs), which are the direct progenitors of sperm or oocyte. In each reprogramming window, a unique set of mechanisms regulates DNA methylation erasure and re-establishment. Recent advances have uncovered roles for the TET3 hydroxylase and passive demethylation, together with base excision repair (BER) and the elongator complex, in methylation erasure from the zygote. Deamination by AID, BER and passive demethylation have been implicated in reprogramming in PGCs, but the process in its entirety is still poorly understood. In this review, we discuss the dynamics of DNA methylation reprogramming in PGCs and the zygote, the mechanisms involved and the biological significance of these events. Advances in our understanding of such natural epigenetic reprogramming are beginning to aid enhancement of experimental reprogramming in which the role of potential mechanisms can be investigated in vitro. Conversely, insights into in vitro reprogramming techniques may aid our understanding of epigenetic reprogramming in the germline and supply important clues in reprogramming for therapies in regenerative medicine. PMID:23166394

  3. Zebrafish as a model to study the role of DNA methylation in environmental toxicology.

    Science.gov (United States)

    Kamstra, Jorke H; Aleström, Peter; Kooter, Jan M; Legler, Juliette

    2015-11-01

    Environmental epigenetics is a rapidly growing field which studies the effects of environmental factors such as nutrition, stress, and exposure to compounds on epigenetic gene regulation. Recent studies have shown that exposure to toxicants in vertebrates is associated with changes in DNA methylation, a major epigenetic mechanism affecting gene transcription. Zebra fish, a well-known model in toxicology and developmental biology, are emerging as a model species in environmental epigenetics despite their evolutionary distance to rodents and humans. In this review, recent insights in DNA methylation during zebra fish development are discussed and compared to mammalian models in order to evaluate zebra fish as a model to study the role of DNA methylation in environmental toxicology. Differences exist in DNA methylation reprogramming during early development, whereas in later developmental stages, tissue distribution of both 5-methylcytosine and 5-hydroxymethylcytosine seems more conserved between species, as well as basic DNA (de)methylation mechanisms. All DNA methyl transferases identified so far in mammals are present in zebra fish, as well as a number of major demethylation pathways. However, zebra fish appear to lack some methylation pathways present in mammals, such as parental imprinting. Several studies report effects on DNA methylation in zebra fish following exposure to environmental contaminants, such as arsenic, benzo[a]pyrene, and tris(1,3-dichloro-2-propyl)phosphate. Though more research is needed to examine heritable effects of contaminant exposure on DNA methylation, recent data suggests the usefulness of the zebra fish as a model in environmental epigenetics. PMID:25172464

  4. Heterogeneity in white blood cells has potential to confound DNA methylation measurements.

    Directory of Open Access Journals (Sweden)

    Bjorn T Adalsteinsson

    Full Text Available Epigenetic studies are commonly conducted on DNA from tissue samples. However, tissues are ensembles of cells that may each have their own epigenetic profile, and therefore inter-individual cellular heterogeneity may compromise these studies. Here, we explore the potential for such confounding on DNA methylation measurement outcomes when using DNA from whole blood. DNA methylation was measured using pyrosequencing-based methodology in whole blood (n = 50-179 and in two white blood cell fractions (n = 20, isolated using density gradient centrifugation, in four CGIs (CpG Islands located in genes HHEX (10 CpG sites assayed, KCNJ11 (8 CpGs, KCNQ1 (4 CpGs and PM20D1 (7 CpGs. Cellular heterogeneity (variation in proportional white blood cell counts of neutrophils, lymphocytes, monocytes, eosinophils and basophils, counted by an automated cell counter explained up to 40% (p<0.0001 of the inter-individual variation in whole blood DNA methylation levels in the HHEX CGI, but not a significant proportion of the variation in the other three CGIs tested. DNA methylation levels in the two cell fractions, polymorphonuclear and mononuclear cells, differed significantly in the HHEX CGI; specifically the average absolute difference ranged between 3.4-15.7 percentage points per CpG site. In the other three CGIs tested, methylation levels in the two fractions did not differ significantly, and/or the difference was more moderate. In the examined CGIs, methylation levels were highly correlated between cell fractions. In summary, our analysis detects region-specific differential DNA methylation between white blood cell subtypes, which can confound the outcome of whole blood DNA methylation measurements. Finally, by demonstrating the high correlation between methylation levels in cell fractions, our results suggest a possibility to use a proportional number of a single white blood cell type to correct for this confounding effect in analyses.

  5. DNA methylation in PRDM8 is indicative for dyskeratosis congenita.

    Science.gov (United States)

    Weidner, Carola I; Lin, Qiong; Birkhofer, Carina; Gerstenmaier, Uwe; Kaifie, Andrea; Kirschner, Martin; Bruns, Heiko; Balabanov, Stefan; Trummer, Arne; Stockklausner, Clemens; Höchsmann, Britta; Schrezenmeier, Hubert; Wlodarski, Marcin; Panse, Jens; Brümmendorf, Tim H; Beier, Fabian; Wagner, Wolfgang

    2016-03-01

    Dyskeratosis congenita (DKC) is associated with impaired telomere maintenance and with clinical features of premature aging. In this study, we analysed global DNA methylation (DNAm) profiles of DKC patients. Age-associated DNAm changes were not generally accelerated in DKC, but there were significant differences to DNAm patterns of healthy controls, particularly in CpG sites related to an internal promoter region of PR domain containing 8 (PRDM8). Notably, the same genomic region was also hypermethylated in aplastic anemia (AA) - another bone marrow failure syndrome. Site-specific analysis of DNAm level in PRDM8 with pyrosequencing and MassARRAY validated aberrant hypermethylation in 11 DKC patients and 27 AA patients. Telomere length, measured by flow-FISH, did not directly correlate with DNAm in PRDM8. Therefore the two methods may be complementary to also identify patients with still normal telomere length. In conclusion, blood of DKC patients reveals aberrant DNAm patterns, albeit age-associated DNAm patterns are not generally accelerated. Aberrant hypermethylation is particularly observed in PRDM8 and this may support identification and classification of bone marrow failure syndromes. PMID:26909595

  6. DNA Methylation and Chromatin Remodeling: The Blueprint of Cancer Epigenetics

    Directory of Open Access Journals (Sweden)

    Dipanjan Bhattacharjee

    2016-01-01

    Full Text Available Epigenetics deals with the interactions between genes and the immediate cellular environment. These interactions go a long way in shaping up each and every person’s individuality. Further, reversibility of epigenetic interactions may offer a dynamic control over the expression of various critical genes. Thus, tweaking the epigenetic machinery may help cause or cure diseases, especially cancer. Therefore, cancer epigenetics, especially at a molecular level, needs to be scrutinised closely, as it could potentially serve as the future pharmaceutical goldmine against neoplastic diseases. However, in view of its rapidly enlarging scope of application, it has become difficult to keep abreast of scientific information coming out of various epigenetic studies directed against cancer. Using this review, we have attempted to shed light on two of the most important mechanisms implicated in cancer, that is, DNA (deoxyribonucleic acid methylation and histone modifications, and their place in cancer pathogenesis. Further, we have attempted to take stock of the new epigenetic drugs that have emerged onto the market as well as those in the pipeline that offer hope in mankind’s fight against cancer.

  7. BEclear: Batch Effect Detection and Adjustment in DNA Methylation Data.

    Science.gov (United States)

    Akulenko, Ruslan; Merl, Markus; Helms, Volkhard

    2016-01-01

    Batch effects describe non-natural variations of, for example, large-scale genomic data sets. If not corrected by suitable numerical algorithms, batch effects may seriously affect the analysis of these datasets. The novel array platform independent software tool BEclear enables researchers to identify those portions of the data that deviate statistically significant from the remaining data and to replace these portions by typical values reconstructed from neighboring data entries based on latent factor models. In contrast to other comparable methods that often use some sort of global normalization of the data, BEclear avoids changing the apparently unaffected parts of the data. We tested the performance of this approach on DNA methylation data for various tumor data sets taken from The Cancer Genome Atlas and compared the results to those obtained with the existing algorithms ComBat, Surrogate Variable Analysis, RUVm and Functional normalization. BEclear constantly performed at par with or better than these methods. BEclear is available as an R package at the Bioconductor project http://bioconductor.org/packages/release/bioc/html/BEclear.html. PMID:27559732

  8. DNA Methylation and Chromatin Remodeling: The Blueprint of Cancer Epigenetics.

    Science.gov (United States)

    Bhattacharjee, Dipanjan; Shenoy, Smita; Bairy, Kurady Laxminarayana

    2016-01-01

    Epigenetics deals with the interactions between genes and the immediate cellular environment. These interactions go a long way in shaping up each and every person's individuality. Further, reversibility of epigenetic interactions may offer a dynamic control over the expression of various critical genes. Thus, tweaking the epigenetic machinery may help cause or cure diseases, especially cancer. Therefore, cancer epigenetics, especially at a molecular level, needs to be scrutinised closely, as it could potentially serve as the future pharmaceutical goldmine against neoplastic diseases. However, in view of its rapidly enlarging scope of application, it has become difficult to keep abreast of scientific information coming out of various epigenetic studies directed against cancer. Using this review, we have attempted to shed light on two of the most important mechanisms implicated in cancer, that is, DNA (deoxyribonucleic acid) methylation and histone modifications, and their place in cancer pathogenesis. Further, we have attempted to take stock of the new epigenetic drugs that have emerged onto the market as well as those in the pipeline that offer hope in mankind's fight against cancer. PMID:27119045

  9. BEclear: Batch Effect Detection and Adjustment in DNA Methylation Data

    Science.gov (United States)

    Akulenko, Ruslan; Merl, Markus; Helms, Volkhard

    2016-01-01

    Batch effects describe non-natural variations of, for example, large-scale genomic data sets. If not corrected by suitable numerical algorithms, batch effects may seriously affect the analysis of these datasets. The novel array platform independent software tool BEclear enables researchers to identify those portions of the data that deviate statistically significant from the remaining data and to replace these portions by typical values reconstructed from neighboring data entries based on latent factor models. In contrast to other comparable methods that often use some sort of global normalization of the data, BEclear avoids changing the apparently unaffected parts of the data. We tested the performance of this approach on DNA methylation data for various tumor data sets taken from The Cancer Genome Atlas and compared the results to those obtained with the existing algorithms ComBat, Surrogate Variable Analysis, RUVm and Functional normalization. BEclear constantly performed at par with or better than these methods. BEclear is available as an R package at the Bioconductor project http://bioconductor.org/packages/release/bioc/html/BEclear.html. PMID:27559732

  10. Highly sensitive detection of DNA methylation levels by using a quantum dot-based FRET method

    Science.gov (United States)

    Ma, Yunfei; Zhang, Honglian; Liu, Fangming; Wu, Zhenhua; Lu, Shaohua; Jin, Qinghui; Zhao, Jianlong; Zhong, Xinhua; Mao, Hongju

    2015-10-01

    DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR amplification for the incorporation of Alexa Fluor-647 (A647) fluorophores. DNA methylation levels can be detected qualitatively through gel analysis and quantitatively by the signal amplification from QDs to A647 during FRET. Furthermore, the methylation levels of three tumor suppressor genes, PCDHGB6, HOXA9 and RASSF1A, in 20 lung adenocarcinoma and 20 corresponding adjacent nontumorous tissue (NT) samples were measured to verify the feasibility of the QD-based FRET method and a high sensitivity for cancer detection (up to 90%) was achieved. Our QD-based FRET method is a convenient, continuous and high-throughput method, and is expected to be an alternative for detecting DNA methylation as a biomarker for certain human cancers.DNA methylation is the most frequently studied epigenetic modification that is strongly involved in genomic stability and cellular plasticity. Aberrant changes in DNA methylation status are ubiquitous in human cancer and the detection of these changes can be informative for cancer diagnosis. Herein, we reported a facile quantum dot-based (QD-based) fluorescence resonance energy transfer (FRET) technique for the detection of DNA methylation. The method relies on methylation-sensitive restriction enzymes for the differential digestion of genomic DNA based on its methylation status. Digested DNA is then subjected to PCR

  11. Forced abstinence from cocaine self-administration is associated with DNA methylation changes in myelin genes in the corpus callosum: a preliminary study

    OpenAIRE

    DavidAndrewNielsen; SaraC.Hamon; LorenaMaili; BrianM.Witkin

    2012-01-01

    Background: Human cocaine abuse is associated with alterations in white matter integrity revealed upon brain imaging, an observation that is recapitulated in an animal model of continuous cocaine exposure. The mechanism through which cocaine may affect white matter is unknown and the present study tested the hypothesis that cocaine self-administration results in changes in DNA methylation that could result in altered expression of several myelin genes that could contribute to the effects of c...

  12. Forced Abstinence from Cocaine Self-Administration is Associated with DNA Methylation Changes in Myelin Genes in the Corpus Callosum: a Preliminary Study

    OpenAIRE

    Nielsen, David A.; Huang, Wen; Hamon, Sara C.; Maili, Lorena; Witkin, Brian M.; Fox, Robert G.; Cunningham, Kathryn A.; Moeller, F. Gerard

    2012-01-01

    Background: Human cocaine abuse is associated with alterations in white matter integrity revealed upon brain imaging, an observation that is recapitulated in an animal model of continuous cocaine exposure. The mechanism through which cocaine may affect white matter is unknown and the present study tested the hypothesis that cocaine self-administration results in changes in DNA methylation that could result in altered expression of several myelin genes that could contribute to the effects of c...

  13. Reasons of carcinogenesis indicate a big-bang inside: a hypothesis for the aberration of DNA methylation.

    Science.gov (United States)

    Roy, A; Roy Chattopadhyay, N

    2013-07-01

    Cancer involves various sets of altered gene functions which embrace all the three basic mechanisms of regulation of gene expression. However, no common mechanism is inferred till date for this versatile disease and thus no full proof remedy can be offered. Here we show that the basic mechanisms are interlinked and indicate towards one of those mechanisms as being the superior one; the methylation of cytosines in specific DNA sequences, for the initiation and maintenance of carcinogenesis. The analyses of the previous reports and the nucleotide sequences of the DNA methyltransferases strongly support the assumption that the mutation(s) in the DNA-binding site(s) of DNA-methyltransferases acts as a master regulator; though it continues the cycle from mutation to repair to methylation. We anticipate that our hypothesis will start a line of study for the proposal of a treatment regime for cancers by introducing wild type methyltransferases in the diseased cells and/or germ cells, and/or by targeting ligands to the altered binding domain(s) where a mutation in the concerned enzyme(s) is seen. PMID:23623297

  14. High Quality Assessment of DNA Methylation in Archival Tissues from Colorectal Cancer Patients Using Quantitative High-Resolution Melting Analysis

    OpenAIRE

    Balic, Marija; Pichler, Martin; Strutz, Jasmin; Heitzer, Ellen; Ausch, Christoph; Samonigg, Hellmut; Cote, Richard J.; Dandachi, Nadia

    2009-01-01

    High-resolution melting (HRM) analysis is a novel tool for analysis of promoter methylation. The aim of the present study was to establish and validate HRM analysis for detection of promoter methylation on archival formalin-fixed paraffin-embedded tissues from colorectal cancer patients. We first evaluated HRM assays for O6-methylguanine-DNA methyltransferase (MGMT) and adenomatous polyposis coli (APC) promoter methylation on a methylated DNA dilution matrix and DNA extracted from eight fresh...

  15. G9a/GLP Complex Maintains Imprinted DNA Methylation in Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Tuo Zhang

    2016-04-01

    Full Text Available DNA methylation at imprinting control regions (ICRs is established in gametes in a sex-specific manner and has to be stably maintained during development and in somatic cells to ensure the correct monoallelic expression of imprinted genes. In addition to DNA methylation, the ICRs are marked by allele-specific histone modifications. Whether these marks are essential for maintenance of genomic imprinting is largely unclear. Here, we show that the histone H3 lysine 9 methylases G9a and GLP are required for stable maintenance of imprinted DNA methylation in embryonic stem cells; however, their catalytic activity and the G9a/GLP-dependent H3K9me2 mark are completely dispensable for imprinting maintenance despite the genome-wide loss of non-imprinted DNA methylation in H3K9me2-depleted cells. We provide additional evidence that the G9a/GLP complex protects imprinted DNA methylation by recruitment of de novo DNA methyltransferases, which antagonize TET dioxygenass-dependent erosion of DNA methylation at ICRs.

  16. G9a/GLP Complex Maintains Imprinted DNA Methylation in Embryonic Stem Cells.

    Science.gov (United States)

    Zhang, Tuo; Termanis, Ausma; Özkan, Burak; Bao, Xun X; Culley, Jayne; de Lima Alves, Flavia; Rappsilber, Juri; Ramsahoye, Bernard; Stancheva, Irina

    2016-04-01

    DNA methylation at imprinting control regions (ICRs) is established in gametes in a sex-specific manner and has to be stably maintained during development and in somatic cells to ensure the correct monoallelic expression of imprinted genes. In addition to DNA methylation, the ICRs are marked by allele-specific histone modifications. Whether these marks are essential for maintenance of genomic imprinting is largely unclear. Here, we show that the histone H3 lysine 9 methylases G9a and GLP are required for stable maintenance of imprinted DNA methylation in embryonic stem cells; however, their catalytic activity and the G9a/GLP-dependent H3K9me2 mark are completely dispensable for imprinting maintenance despite the genome-wide loss of non-imprinted DNA methylation in H3K9me2-depleted cells. We provide additional evidence that the G9a/GLP complex protects imprinted DNA methylation by recruitment of de novo DNA methyltransferases, which antagonize TET dioxygenass-dependent erosion of DNA methylation at ICRs. PMID:27052169

  17. The damage and repair of DNA in teleosts after administration of N-methyl-N-nitrosourea

    International Nuclear Information System (INIS)

    14C-MNU, dissolved in a DMSO-citratebuffer solution, was given intraperitoneally to Black Mollies (B.M.) and Poecilia formosa (P.f.). Gills, liver, tailfinmuscles, intestine, gonads and brain were removed from each fish and DNA was isolated by phenol extraction. The DNA was hydrolysed and then the purines were separated using HPLC. Methylation of purines was determined by a liquid scintillation counter. Maximum methylation was formed in the N-7 position of guanine in the DNA from intestine of B.M. The highest content of O6-methyl guanine was found in the DNA of tailfinmuscles of B.M. whereas DNA from brain of B.M. showed the maximum methylation in N-3 position of adenine. The methylation of the purines from B.M. showed the similar pattern as in P.f. but was quantitatively double the amount as that found in P.f. The methylation of O6-position of guanine and N-3 position of adenine occured earlier in P.f. than in B.M. Maximum methylation of purines from each of the organs investigated was found to occur after 1/2 to 8 hours. The amount of methylation as low as 10% of the maximum was observed in a period from 1/2 to 16 hours after the application of 14C-MNU. Excision repair seems to be responsible for removal of N-3 methyl adenine and N-7 methyl guanine whereas O6-methyl guanine seems to be repaired by methyltransferases. Removal of methylgroups from O6-position of guanine and the excision repair known to exist in mammals and bacteria probably play a role in these two species of teleosts as well. (Author)

  18. The role of cytosine methylation on charge transport through a DNA strand

    International Nuclear Information System (INIS)

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Büttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter-strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchange-correlation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit

  19. The role of cytosine methylation on charge transport through a DNA strand

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Jianqing, E-mail: jqqi@uw.edu; Anantram, M. P., E-mail: anantmp@uw.edu [Department of Electrical Engineering, University of Washington, Seattle, Washington 98195-2500 (United States); Govind, Niranjan, E-mail: niri.govind@pnnl.gov [William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2015-09-07

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Büttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter-strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchange-correlation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit.

  20. The role of cytosine methylation on charge transport through a DNA strand

    Science.gov (United States)

    Qi, Jianqing; Govind, Niranjan; Anantram, M. P.

    2015-09-01

    Cytosine methylation has been found to play a crucial role in various biological processes, including a number of human diseases. The detection of this small modification remains challenging. In this work, we computationally explore the possibility of detecting methylated DNA strands through direct electrical conductance measurements. Using density functional theory and the Landauer-Büttiker method, we study the electronic properties and charge transport through an eight base-pair methylated DNA strand and its native counterpart. We first analyze the effect of cytosine methylation on the tight-binding parameters of two DNA strands and then model the transmission of the electrons and conductance through the strands both with and without decoherence. We find that the main difference of the tight-binding parameters between the native DNA and the methylated DNA lies in the on-site energies of (methylated) cytosine bases. The intra- and inter-strand hopping integrals between two nearest neighboring guanine base and (methylated) cytosine base also change with the addition of the methyl groups. Our calculations show that in the phase-coherent limit, the transmission of the methylated strand is close to the native strand when the energy is nearby the highest occupied molecular orbital level and larger than the native strand by 5 times in the bandgap. The trend in transmission also holds in the presence of the decoherence with the same rate. The lower conductance for the methylated strand in the experiment is suggested to be caused by the more stable structure due to the introduction of the methyl groups. We also study the role of the exchange-correlation functional and the effect of contact coupling by choosing coupling strengths ranging from weak to strong coupling limit.

  1. Divergence of gene body DNA methylation and evolution of plant duplicate genes.

    Directory of Open Access Journals (Sweden)

    Jun Wang

    Full Text Available It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes.

  2. Genome-wide DNA methylation and gene expression patterns provide insight into polycystic ovary syndrome development

    OpenAIRE

    Wang, Xiu-Xia; Wei, Jing-Zan; Jiao, Jiao; Jiang, Shu-Yi; Yu, Da-hai; Li, Da

    2014-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women. However, the epigenetic mechanism involved in PCOS progression remains largely unknown. Here, combining the DNA methylation profiling together with transcriptome analysis, we showed that (i) there were 7929 differentially methylated CpG sites (β > 0.1, P 1.5, P < 0.005) in PCOS compared to normal ovaries; (ii) 54 genes were identified with methylated...

  3. The effects of long-term daily folic acid and vitamin B12 supplementation on genome-wide DNA methylation in elderly subjects

    OpenAIRE

    Kok, D. E. G.; R. A. M. Dhonukshe-Rutten; Lute, C.; Heil, S.G.; Uitterlinden, A G; Velde, van der, G.; Meurs, van, L.; Schoor, van, N.M.; Hooiveld, G.J.E.J.; Groot, de, W.T.; Kampman, E.; Steegenga, W.T.

    2015-01-01

    Background Folate and its synthetic form folic acid function as donor of one-carbon units and have been, together with other B-vitamins, implicated in programming of epigenetic processes such as DNA methylation during early development. To what extent regulation of DNA methylation can be altered via B-vitamins later in life, and how this relates to health and disease, is not exactly known. The aim of this study was to identify effects of long-term supplementation with folic acid and vitamin B...

  4. Changes in global DNA methylation intensity and DNMT1 transcription during the aging process of scallop Chlamys farreri

    Science.gov (United States)

    Lian, Shanshan; He, Yan; Li, Xue; Zhao, Bosong; Hou, Rui; Hu, Xiaoli; Zhang, Lingling; Bao, Zhenmin

    2015-08-01

    DNA methylation is an important epigenetic regulatory mechanism that influences genomic stability, gene activation, X-chromosome inactivation and other factors. A change in DNA methylation is usually associated with aging and cellular senescence. DNA methyltransferase 1 (DNMT1) is the most abundant DNA methyltransferase, and it plays an important role in maintaining the established methylation pattern during DNA replication in vertebrates. Although the effect of aging on DNA methylation has been well studied in vertebrates, little research has been conducted in invertebrates, especially in marine bivalves. In this study, we examined global DNA methylation levels in four groups of adult Zhikong scallop Chlamys farreri at different ages. The results showed that both the age and tissue type had a strong effect on the DNA methylation. In addition, a significant decrease in DNA methylation with aging (1-4 years) can be detected in mantle, kidney and hepatopancreas. We further measured the change in DNMT1 transcript abundance using quantitative reverse transcription PCR (qRT-PCR), which revealed that DNMT1 transcription significantly decreased with aging in mantle and hepatopancreas and strongly correlated with DNA methylation ( R = 0.72). Our data provided greater insight into the aging-related decline of DNA methylation, which could aid in gaining a better understanding of the relationship between DNA methylation and the aging process in bivalve mollusks.

  5. Transcriptional activity of acetylcholinesterase gene is regulated by DNA methylation during C2C12 myogenesis.

    Science.gov (United States)

    Lau, Kei M; Gong, Amy G W; Xu, Miranda L; Lam, Candy T W; Zhang, Laura M L; Bi, Cathy W C; Cui, D; Cheng, Anthony W M; Dong, Tina T X; Tsim, Karl W K; Lin, Huangquan

    2016-07-01

    The expression of acetylcholinesterase (AChE), an enzyme hydrolyzes neurotransmitter acetylcholine at vertebrate neuromuscular junction, is regulated during myogenesis, indicating the significance of muscle intrinsic factors in controlling the enzyme expression. DNA methylation is essential for temporal control of myogenic gene expression during myogenesis; however, its role in AChE regulation is not known. The promoter of vertebrate ACHE gene carries highly conserved CG-rich regions, implying its likeliness to be methylated for epigenetic regulation. A DNA methyltransferase inhibitor, 5-azacytidine (5-Aza), was applied onto C2C12 cells throughout the myotube formation. When DNA methylation was inhibited, the promoter activity, transcript expression and enzymatic activity of AChE were markedly increased after day 3 of differentiation, which indicated the putative role of DNA methylation. By bisulfite pyrosequencing, the overall methylation rate was found to peak at day 3 during C2C12 cell differentiation; a SP1 site located at -1826bp upstream of mouse ACHE gene was revealed to be heavily methylated. The involvement of transcriptional factor SP1 in epigenetic regulation of AChE was illustrated here: (i) the SP1-driven transcriptional activity was increased in 5-Aza-treated C2C12 culture; (ii) the binding of SP1 onto the SP1 site of ACHE gene was fully blocked by the DNA methylation; and (iii) the sequence flanking SP1 sites of ACHE gene was precipitated by chromatin immuno-precipitation assay. The findings suggested the role of DNA methylation on AChE transcriptional regulation and provided insight in elucidating the DNA methylation-mediated regulatory mechanism on AChE expression during muscle differentiation. PMID:27021952

  6. Changes in liver cell DNA methylation status in diabetic mice affect its FT-IR characteristics.

    Directory of Open Access Journals (Sweden)

    Benedicto de Campos Vidal

    Full Text Available Lower levels of cytosine methylation have been found in the liver cell DNA from non-obese diabetic (NOD mice under hyperglycemic conditions. Because the Fourier transform-infrared (FT-IR profiles of dry DNA samples are differently affected by DNA base composition, single-stranded form and histone binding, it is expected that the methylation status in the DNA could also affect its FT-IR profile.The DNA FT-IR signatures obtained from the liver cell nuclei of hyperglycemic and normoglycemic NOD mice of the same age were compared. Dried DNA samples were examined in an IR microspectroscope equipped with an all-reflecting objective (ARO and adequate software.Changes in DNA cytosine methylation levels induced by hyperglycemia in mouse liver cells produced changes in the respective DNA FT-IR profiles, revealing modifications to the vibrational intensities and frequencies of several chemical markers, including νas -CH3 stretching vibrations in the 5-methylcytosine methyl group. A smaller band area reflecting lower energy absorbed in the DNA was found in the hyperglycemic mice and assumed to be related to the lower levels of -CH3 groups. Other spectral differences were found at 1700-1500 cm(-1 and in the fingerprint region, and a slight change in the DNA conformation at the lower DNA methylation levels was suggested for the hyperglycemic mice. The changes that affect cytosine methylation levels certainly affect the DNA-protein interactions and, consequently, gene expression in liver cells from the hyperglycemic NOD mice.

  7. Assessing the DNA methylation status of single cells with the comet assay.

    Science.gov (United States)

    Wentzel, Johannes F; Gouws, Chrisna; Huysamen, Cristal; Dyk, Etresia van; Koekemoer, Gerhard; Pretorius, Pieter J

    2010-05-15

    The comet assay (single cell gel electrophoresis) is a cost-effective, sensitive, and simple technique that is traditionally used for analyzing and quantifying DNA damage in individual cells. The aim of this study was to determine whether the comet assay could be modified to detect changes in the levels of DNA methylation in single cells. We used the difference in methylation sensitivity of the isoschizomeric restriction endonucleases HpaII and MspI to demonstrate the feasibility of the comet assay to measure the global DNA methylation level of individual cells. The results were verified with the well-established cytosine extension assay. We were able to show variations in DNA methylation after treatment of cultured cells with 5-azacytidine and succinylacetone, an accumulating metabolite in human tyrosinemia type I. PMID:20156416

  8. PLASMID DNA DAMAGE CAUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITIN

    Science.gov (United States)

    PLASMID DNA DAMAGE CAOUSED BY METHYLATED ARSENICALS, ASCORBIC ACID AND HUMAN LIVER FERRITINABSTRACT Both dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) release iron from human liver ferritin (HLF) with or without the presence of ascorbic acid. ...

  9. Proximity ligation in situ assay for monitoring the global DNA methylation in cells

    Directory of Open Access Journals (Sweden)

    Vallette François M

    2011-04-01

    Full Text Available Abstract Background DNA methylation has a central role in the epigenetic control of mammalian gene expression, and is required for X inactivation, genomics imprinting and silencing of retrotransposons and repetitive sequences. Thus, several technologies have been developed to measure the degree of DNA methylation. Results We here present the development of the detection of protein-protein interactions via the adaptation of the proximity ligation in situ technology to evaluate the DNA methylation status in cells since the quantification of Dnmt1/PCNA interaction in cells reflects the degree of DNA methylation. Conclusion This method being directly realizable on cells, it appears that it could suggest a wide range of applications in basic research and drug development. More particularly, this method is specially adapted for the investigations realized from a weak quantity of biologic materiel such as stem cells or primary cultured tumor cells for examples.

  10. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Nordlund, Jessica; Bäcklin, Christofer L; Wahlberg, Per;

    2013-01-01

    background, drug resistance and relapse in ALL is poorly understood. RESULTS: We surveyed the DNA methylation levels of 435,941 CpG sites in samples from 764 children at diagnosis of ALL and from 27 children at relapse. This survey uncovered four characteristic methylation signatures. First, compared with...

  11. Genome-Wide Analysis of DNA Methylation and Cigarette Smoking in a Chinese Population

    Science.gov (United States)

    Zhu, Xiaoyan; Li, Jun; Deng, Siyun; Yu, Kuai; Liu, Xuezhen; Deng, Qifei; Sun, Huizhen; Zhang, Xiaomin; He, Meian; Guo, Huan; Chen, Weihong; Yuan, Jing; Zhang, Bing; Kuang, Dan; He, Xiaosheng; Bai, Yansen; Han, Xu; Liu, Bing; Li, Xiaoliang; Yang, Liangle; Jiang, Haijing; Zhang, Yizhi; Hu, Jie; Cheng, Longxian; Luo, Xiaoting; Mei, Wenhua; Zhou, Zhiming; Sun, Shunchang; Zhang, Liyun; Liu, Chuanyao; Guo, Yanjun; Zhang, Zhihong; Hu, Frank B.; Liang, Liming; Wu, Tangchun

    2016-01-01

    Background: Smoking is a risk factor for many human diseases. DNA methylation has been related to smoking, but genome-wide methylation data for smoking in Chinese populations is limited. Objectives: We aimed to investigate epigenome-wide methylation in relation to smoking in a Chinese population. Methods: We measured the methylation levels at > 485,000 CpG sites (CpGs) in DNA from leukocytes using a methylation array and conducted a genome-wide meta-analysis of DNA methylation and smoking in a total of 596 Chinese participants. We further evaluated the associations of smoking-related CpGs with internal polycyclic aromatic hydrocarbon (PAH) biomarkers and their correlations with the expression of corresponding genes. Results: We identified 318 CpGs whose methylation levels were associated with smoking at a genome-wide significance level (false discovery rate Zhang X, He M, Guo H, Chen W, Yuan J, Zhang B, Kuang D, He X, Bai Y, Han X, Liu B, Li X, Yang L, Jiang H, Zhang Y, Hu J, Cheng L, Luo X, Mei W, Zhou Z, Sun S, Zhang L, Liu C, Guo Y, Zhang Z, Hu FB, Liang L, Wu T. 2016. Genome-wide analysis of DNA methylation and cigarette smoking in Chinese. Environ Health Perspect 124:966–973; http://dx.doi.org/10.1289/ehp.1509834 PMID:26756918

  12. Comparison of sequencing-based methods to profile DNA methylation and identification of monoallelic epigenetic modifications

    Science.gov (United States)

    Analysis of DNA methylation patterns relies increasingly on sequencing-based profiling methods. The four most frequently used sequencing-based technologies are the bisulfite-based methods MethylC-seq and reduced representation bisulfite sequencing (RRBS), and the enrichment-based techniques methylat...

  13. DNA methylation affected by male sterile cytoplasm in rice (Oryza sativa L.)

    Science.gov (United States)

    Male sterile cytoplasm plays an important role in hybrid rice and cytoplasmic effects are sufficiently documented. However, no reports are available on DNA methylation affected by male sterile cytoplasm in hybrid rice. We used a methylation sensitive amplified polymorphism (MSAP) technique to charac...

  14. Comparative (Computational Analysis of the DNA Methylation Status of Trinucleotide Repeat Expansion Diseases

    Directory of Open Access Journals (Sweden)

    Mohammadmersad Ghorbani

    2013-01-01

    Full Text Available Previous studies have examined DNA methylation in different trinucleotide repeat diseases. We have combined this data and used a pattern searching algorithm to identify motifs in the DNA surrounding aberrantly methylated CpGs found in the DNA of patients with one of the three trinucleotide repeat (TNR expansion diseases: fragile X syndrome (FRAXA, myotonic dystrophy type I (DM1, or Friedreich’s ataxia (FRDA. We examined sequences surrounding both the variably methylated (VM CpGs, which are hypermethylated in patients compared with unaffected controls, and the nonvariably methylated CpGs which remain either always methylated (AM or never methylated (NM in both patients and controls. Using the J48 algorithm of WEKA analysis, we identified that two patterns are all that is necessary to classify our three regions CCGG* which is found in VM and not in AM regions and AATT* which distinguished between NM and VM + AM using proportional frequency. Furthermore, comparing our software with MEME software, we have demonstrated that our software identifies more patterns than MEME in these short DNA sequences. Thus, we present evidence that the DNA sequence surrounding CpG can influence its susceptibility to be de novo methylated in a disease state associated with a trinucleotide repeat.

  15. Base-pair resolution DNA methylation sequencing reveals profoundly divergent epigenetic landscapes in acute myeloid leukemia.

    Directory of Open Access Journals (Sweden)

    Altuna Akalin

    Full Text Available We have developed an enhanced form of reduced representation bisulfite sequencing with extended genomic coverage, which resulted in greater capture of DNA methylation information of regions lying outside of traditional CpG islands. Applying this method to primary human bone marrow specimens from patients with Acute Myelogeneous Leukemia (AML, we demonstrated that genetically distinct AML subtypes display diametrically opposed DNA methylation patterns. As compared to normal controls, we observed widespread hypermethylation in IDH mutant AMLs, preferentially targeting promoter regions and CpG islands neighboring the transcription start sites of genes. In contrast, AMLs harboring translocations affecting the MLL gene displayed extensive loss of methylation of an almost mutually exclusive set of CpGs, which instead affected introns and distal intergenic CpG islands and shores. When analyzed in conjunction with gene expression profiles, it became apparent that these specific patterns of DNA methylation result in differing roles in gene expression regulation. However, despite this subtype-specific DNA methylation patterning, a much smaller set of CpG sites are consistently affected in both AML subtypes. Most CpG sites in this common core of aberrantly methylated CpGs were hypermethylated in both AML subtypes. Therefore, aberrant DNA methylation patterns in AML do not occur in a stereotypical manner but rather are highly specific and associated with specific driving genetic lesions.

  16. Conserved Methylation Patterns of Human Papillomavirus Type 16 DNA in Asymptomatic Infection and Cervical Neoplasia

    OpenAIRE

    Kalantari, Mina; Calleja-Macias, Itzel E.; Tewari, Devansu; Hagmar, Bjørn; Lie, Kathrine; Barrera-Saldana, Hugo A.; Wiley, Dorothy J.; Bernard, Hans-Ulrich

    2004-01-01

    DNA methylation contributes to the chromatin conformation that represses transcription of human papillomavirus type16 (HPV-16), which is prevalent in the etiology of cervical carcinoma. In an effort to clarify the role of this phenomenon in the regulation and carcinogenicity of HPV-16, 115 clinical samples were studied to establish the methylation patterns of the 19 CpG dinucleotides within the long control region and part of the L1 gene by bisulfite modification, PCR amplification, DNA cloni...

  17. Assessing DNA methylation in the developing human intestinal epithelium: potential link to inflammatory bowel disease

    OpenAIRE

    Kraiczy, J; Nayak, K.(National Institute of Science Education and Research, Bhubaneswar, India); Ross, A.; Raine, T; Mak, T N; Gasparetto, M.; Cario, E; Rakyan, V; Heuschkel, R; Zilbauer, M.

    2015-01-01

    DNA methylation is one of the major epigenetic mechanisms implicated in regulating cellular development and cell-type-specific gene expression. Here we performed simultaneous genome-wide DNA methylation and gene expression analysis on purified intestinal epithelial cells derived from human fetal gut, healthy pediatric biopsies, and children newly diagnosed with inflammatory bowel disease (IBD). Results were validated using pyrosequencing, real-time PCR, and immunostaining. The functional impa...

  18. SNP-guided identification of monoallelic DNA-methylation events from enrichment-based sequencing data

    OpenAIRE

    Steyaert, Sandra; Van Criekinge, Wim; De Paepe, Ayla; Denil, Simon; Mensaert, Klaas; Vandepitte, Katrien; Vanden Berghe, Wim; Trooskens, Geert; de Meyer, Tim

    2014-01-01

    Monoallelic gene expression is typically initiated early in the development of an organism. Dysregulation of monoallelic gene expression has already been linked to several non-Mendelian inherited genetic disorders. In humans, DNA-methylation is deemed to be an important regulator of monoallelic gene expression, but only few examples are known. One important reason is that current, cost-affordable truly genome-wide methods to assess DNA-methylation are based on sequencing post-enrichment. Here...

  19. Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Chung Jae

    2009-06-01

    Full Text Available Abstract Background Cisplatin and carboplatin are the primary first-line therapies for the treatment of ovarian cancer. However, resistance to these platinum-based drugs occurs in the large majority of initially responsive tumors, resulting in fully chemoresistant, fatal disease. Although the precise mechanism(s underlying the development of platinum resistance in late-stage ovarian cancer patients currently remains unknown, CpG-island (CGI methylation, a phenomenon strongly associated with aberrant gene silencing and ovarian tumorigenesis, may contribute to this devastating condition. Methods To model the onset of drug resistance, and investigate DNA methylation and gene expression alterations associated with platinum resistance, we treated clonally derived, drug-sensitive A2780 epithelial ovarian cancer cells with increasing concentrations of cisplatin. After several cycles of drug selection, the isogenic drug-sensitive and -resistant pairs were subjected to global CGI methylation and mRNA expression microarray analyses. To identify chemoresistance-associated, biological pathways likely impacted by DNA methylation, promoter CGI methylation and mRNA expression profiles were integrated and subjected to pathway enrichment analysis. Results Promoter CGI methylation revealed a positive association (Spearman correlation of 0.99 between the total number of hypermethylated CGIs and GI50 values (i.e., increased drug resistance following successive cisplatin treatment cycles. In accord with that result, chemoresistance was reversible by DNA methylation inhibitors. Pathway enrichment analysis revealed hypermethylation-mediated repression of cell adhesion and tight junction pathways and hypomethylation-mediated activation of the cell growth-promoting pathways PI3K/Akt, TGF-beta, and cell cycle progression, which may contribute to the onset of chemoresistance in ovarian cancer cells. Conclusion Selective epigenetic disruption of distinct biological

  20. The dynamic DNA methylation cycle from egg to sperm in the honey bee Apis mellifera.

    Science.gov (United States)

    Drewell, Robert A; Bush, Eliot C; Remnant, Emily J; Wong, Garrett T; Beeler, Suzannah M; Stringham, Jessica L; Lim, Julianne; Oldroyd, Benjamin P

    2014-07-01

    In honey bees (Apis mellifera), the epigenetic mark of DNA methylation is central to the developmental regulation of caste differentiation, but may also be involved in additional biological functions. In this study, we examine the whole genome methylation profiles of three stages of the haploid honey bee genome: unfertilised eggs, the adult drones that develop from these eggs and the sperm produced by these drones. These methylomes reveal distinct patterns of methylation. Eggs and sperm show 381 genes with significantly different CpG methylation patterns, with the vast majority being more methylated in eggs. Adult drones show greatly reduced levels of methylation across the genome when compared with both gamete samples. This suggests a dynamic cycle of methylation loss and gain through the development of the drone and during spermatogenesis. Although fluxes in methylation during embryogenesis may account for some of the differentially methylated sites, the distinct methylation patterns at some genes suggest parent-specific epigenetic marking in the gametes. Extensive germ line methylation of some genes possibly explains the lower-than-expected frequency of CpG sites in these genes. We discuss the potential developmental and evolutionary implications of methylation in eggs and sperm in this eusocial insect species. PMID:24924193

  1. DNA alterations photosensitized by tetracycline and some of its derivatives

    International Nuclear Information System (INIS)

    Bacteriophage M13 mp10 DNA were irradiated with near-UV light in the presence of tetracycline derivatives and primed with synthetic oligonucleotide to be used for DNA synthesis using Escherichia coli DNA polymerase. Chain terminations were observed by denaturing polyacrylamide gel electrophoresis and mapped precisely. All the synthesis stops occurred before or at the level of guanine residues, showing that the photoreaction mediated by tetracycline derivatives led to a preferential alteration of guanine residues. These lesions were demonstrated to be induced in DNA through a pathway involving singlet oxygen. Tetracycline derivatives also photoinduced the breakage of the DNA sugar-phosphate backbone monitored by the conversion of supercoiled phi X174 DNA to a relaxed form. This lesion was shown to be initiated by hydroxyl radicals. The production of this free radical has been confirmed by electron paramagnetic resonance (EPR) spin trapping experiments using 5,5-dimethyl-1-pyrroline-N-oxide as spin trap. In addition to the EPR signal due to OH radicals trapping another unassigned signal has been detected

  2. The Role of Sulforaphane in Epigenetic Mechanisms, Including Interdependence between Histone Modification and DNA Methylation

    Directory of Open Access Journals (Sweden)

    Agnieszka Kaufman-Szymczyk

    2015-12-01

    Full Text Available Carcinogenesis as well as cancer progression result from genetic and epigenetic changes of the genome that leads to dysregulation of transcriptional activity of genes. Epigenetic mechanisms in cancer cells comprise (i post-translation histone modification (i.e., deacetylation and methylation; (ii DNA global hypomethylation; (iii promoter hypermethylation of tumour suppressor genes and genes important for cell cycle regulation, cell differentiation and apoptosis; and (iv posttranscriptional regulation of gene expression by noncoding microRNA. These epigenetic aberrations can be readily reversible and responsive to both synthetic agents and natural components of diet. A source of one of such diet components are cruciferous vegetables, which contain high levels of a number of glucosinolates and deliver, after enzymatic hydrolysis, sulforaphane and other bioactive isothiocyanates, that are involved in effective up-regulation of transcriptional activity of certain genes and also in restoration of active chromatin structure. Thus a consumption of cruciferous vegetables, treated as a source of isothiocyanates, seems to be potentially useful as an effective cancer preventive factor or as a source of nutrients improving efficacy of standard chemotherapies. In this review an attempt is made to elucidate the role of sulforaphane in regulation of gene promoter activity through a direct down-regulation of histone deacetylase activity and alteration of gene promoter methylation in indirect ways, but the sulforaphane influence on non-coding micro-RNA will not be a subject of this review.

  3. The Role of Sulforaphane in Epigenetic Mechanisms, Including Interdependence between Histone Modification and DNA Methylation.

    Science.gov (United States)

    Kaufman-Szymczyk, Agnieszka; Majewski, Grzegorz; Lubecka-Pietruszewska, Katarzyna; Fabianowska-Majewska, Krystyna

    2015-01-01

    Carcinogenesis as well as cancer progression result from genetic and epigenetic changes of the genome that leads to dysregulation of transcriptional activity of genes. Epigenetic mechanisms in cancer cells comprise (i) post-translation histone modification (i.e., deacetylation and methylation); (ii) DNA global hypomethylation; (iii) promoter hypermethylation of tumour suppressor genes and genes important for cell cycle regulation, cell differentiation and apoptosis; and (iv) posttranscriptional regulation of gene expression by noncoding microRNA. These epigenetic aberrations can be readily reversible and responsive to both synthetic agents and natural components of diet. A source of one of such diet components are cruciferous vegetables, which contain high levels of a number of glucosinolates and deliver, after enzymatic hydrolysis, sulforaphane and other bioactive isothiocyanates, that are involved in effective up-regulation of transcriptional activity of certain genes and also in restoration of active chromatin structure. Thus a consumption of cruciferous vegetables, treated as a source of isothiocyanates, seems to be potentially useful as an effective cancer preventive factor or as a source of nutrients improving efficacy of standard chemotherapies. In this review an attempt is made to elucidate the role of sulforaphane in regulation of gene promoter activity through a direct down-regulation of histone deacetylase activity and alteration of gene promoter methylation in indirect ways, but the sulforaphane influence on non-coding micro-RNA will not be a subject of this review. PMID:26703571

  4. The nucleolar size is associated to the methylation status of ribosomal DNA in breast carcinomas

    International Nuclear Information System (INIS)

    There is a body of evidence that shows a link between tumorigenesis and ribosome biogenesis. The precursor of mature 18S, 28S and 5.8S ribosomal RNAs is transcribed from the ribosomal DNA gene (rDNA), which exists as 300–400 copies in the human diploid genome. Approximately one half of these copies are epigenetically silenced, but the exact role of epigenetic regulation on ribosome biogenesis is not completely understood. In this study we analyzed the methylation profiles of the rDNA promoter and of the 5’ regions of 18S and 28S in breast cancer. We analyzed rDNA methylation in 68 breast cancer tissues of which the normal counterpart was partially available (45/68 samples) using the MassARRAY EpiTYPER assay, a sensitive and quantitative method with single base resolution. We found that rDNA locus tended to be hypermethylated in tumor compared to matched normal breast tissues and that the DNA methylation level of several CpG units within the rDNA locus was associated to nuclear grade and to nucleolar size of tumor tissues. In addition we identified a subgroup of samples in which large nucleoli were associated with very limited or absent rDNA hypermethylation in tumor respect to matched normal tissue. In conclusion, we suggest that rDNA is an important target of epigenetic regulation in breast tumors and that rDNA methylation level is associated to nucleolar size

  5. Transgenerational adaptation of Arabidopsis to stress requires DNA methylation and the function of Dicer-like proteins.

    Directory of Open Access Journals (Sweden)

    Alex Boyko

    Full Text Available Epigenetic states and certain environmental responses in mammals and seed plants can persist in the next sexual generation. These transgenerational effects have potential adaptative significance as well as medical and agronomic ramifications. Recent evidence suggests that some abiotic and biotic stress responses of plants are transgenerational. For example, viral infection of tobacco plants and exposure of Arabidopsis thaliana plants to UVC and flagellin can induce transgenerational increases in homologous recombination frequency (HRF. Here we show that exposure of Arabidopsis plants to stresses, including salt, UVC, cold, heat and flood, resulted in a higher HRF, increased global genome methylation, and higher tolerance to stress in the untreated progeny. This transgenerational effect did not, however, persist in successive generations. Treatment of the progeny of stressed plants with 5-azacytidine was shown to decrease global genomic methylation and enhance stress tolerance. Dicer-like (DCL 2 and DCL3 encode Dicer activities important for small RNA-dependent gene silencing. Stress-induced HRF and DNA methylation were impaired in dcl2 and dcl3 deficiency mutants, while in dcl2 mutants, only stress-induced stress tolerance was impaired. Our results are consistent with the hypothesis that stress-induced transgenerational responses in Arabidopsis depend on altered DNA methylation and smRNA silencing pathways.

  6. Assessment of DNA methylation changes in tissue culture of Brassica napus.

    Science.gov (United States)

    Gao, Y; Ran, L; Kong, Y; Jiang, J; Sokolov, V; Wang, Y

    2014-11-01

    Plant tissue culture, as a fundamental technique for genetic engineering, has great potential of epigenetic variation, of which DNA methylation is well known of importance to genome activity. We assessed DNA methylation level of explants during tissue culture of Brassica napus (cv. Yangyou 9), using high-performance liquid chromatography (HPLC) assisted quantification. By detecting methylation levels in hypocotyls cultured in mediums with different concentrations of hormones, we found dissected tissue:cultured with 0.1 mg/L 2,4-D and 1.0 mg/L 6-BA, presented the lowest methylation level and highest induction rate of callus (91.0%). Different time point of cultured explants also showed obvious methylation variations, explants cultured after 6 and 21 days exhibited methylation ratios of 4.33 and 8.07%, respectively. Whereas, the methylation ratio raised to 38.7% after 30 days cultivation, indicating that methylation level of hypocotyls ranged during tissue culture. Moreover, we observed that the methylation level in callus is the highest during regeneration of rape-seed, following the regenerated plantlets and hypocotyls. This paper indicated the function of hormones and differentiation of callus is relevant to the methylation levels during tissue culture. PMID:25739287

  7. Remote Ischemic Conditioning Alters Methylation and Expression of Cell Cycle Genes in Aneurysmal Subarachnoid Hemorrhage

    OpenAIRE

    Nikkola, E; Laiwalla, A; Ko, A; Alvarez, M; Connolly, M; Ooi, YC; Hsu, W; Bui, A.; Pajukanta, P; Gonzalez, NR

    2015-01-01

    © 2015 American Heart Association, Inc. Background and Purpose - Remote ischemic conditioning (RIC) is a phenomenon in which short periods of nonfatal ischemia in 1 tissue confers protection to distant tissues. Here we performed a longitudinal human pilot study in patients with aneurysmal subarachnoid hemorrhage undergoing RIC by limb ischemia to compare changes in DNA methylation and transcriptome profiles before and after RIC. Methods - Thirteen patients underwent 4 RIC sessions over 2 to 1...

  8. Human Papillomavirus-16 and 18 in Penile Carcinomas: DNA Methylation, Chromosomal Recombination, and Genomic Variation

    OpenAIRE

    Kalantari, Mina; Villa, Luisa L.; Calleja-Macias, Itzel E.; Bernard, Hans-Ulrich

    2008-01-01

    Penile carcinomas are frequently associated with high-risk human papillomavirus (HPV) types. Since little is known about the molecular biology of this association, we investigated three properties of HPV genomes in penile carcinomas from Brazilian patients: (i) HPV DNA methylation, (ii) junctions between HPV and cellular DNA, and (iii) genomic variation. In cervical carcinogenesis, recombination between HPV and chromosomal DNA is frequent and likely necessary for progression, and DNA hypermet...

  9. INVOLVED IN DE NOVO 2-containing complex involved in RNA-directed DNA methylation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ausin, Israel; Greenberg, Maxim V.C.; Simanshu, Dhirendra K.; Hale, Christopher J.; Vashisht, Ajay A.; Simon, Stacey A.; Lee, Tzuu-fen; Feng, Suhua; Española, Sophia D.; Meyers, Blake C.; Wohlschlegel, James A.; Patel, Dinshaw J.; Jacobsen, Steven E. (UCLA); (MSKCC); (Delaware)

    2012-10-23

    At least three pathways control maintenance of DNA cytosine methylation in Arabidopsis thaliana. However, the RNA-directed DNA methylation (RdDM) pathway is solely responsible for establishment of this silencing mark. We previously described INVOLVED IN DE NOVO 2 (IDN2) as being an RNA-binding RdDM component that is required for DNA methylation establishment. In this study, we describe the discovery of two partially redundant proteins that are paralogous to IDN2 and that form a stable complex with IDN2 in vivo. Null mutations in both genes, termed IDN2-LIKE 1 and IDN2-LIKE 2 (IDNL1 and IDNL2), result in a phenotype that mirrors, but does not further enhance, the idn2 mutant phenotype. Genetic analysis suggests that this complex acts in a step in the downstream portion of the RdDM pathway. We also have performed structural analysis showing that the IDN2 XS domain adopts an RNA recognition motif (RRM) fold. Finally, genome-wide DNA methylation and expression analysis confirms the placement of the IDN proteins in an RdDM pathway that affects DNA methylation and transcriptional control at many sites in the genome. Results from this study identify and describe two unique components of the RdDM machinery, adding to our understanding of DNA methylation control in the Arabidopsis genome.

  10. Different Levels of DNA Methylation Detected in Human Sperms after Morphological Selection Using High Magnification Microscopy

    Directory of Open Access Journals (Sweden)

    Nino Guy Cassuto

    2016-01-01

    Full Text Available Objective. To analyze DNA methylation levels between two groups of spermatozoa taken from the same sample, following morphological selection by high magnification (HM at 6100x microscopy. A prospective study was conducted and studied 876 spermatozoa from 10 randomly selected men. Sperm morphology was characterized at HM according to criteria previously established. High-scoring Score 6 and low-scoring Score 0 sperm were selected. Sperm DNA methylation level was assessed using an immunoassay method targeting 5-methylcytosine residues by fluorescence microscopy with imaging analysis system to detect DNA methylation in single spermatozoon. Results. In total, 448 S6 spermatozoa and 428 S0 spermatozoa were analyzed. A strong relationship was found between sperm DNA methylation levels and sperm morphology observed at HM. Sperm DNA methylation level in the S6 group was significantly lower compared with that in the S0 group (p<10-6, OR = 2.4; and p<0.001, as determined using the Wilcoxon test. Conclusion. Differences in DNA methylation levels are associated with sperm morphology variations as observed at HM, which allows spermatozoa with abnormal levels to be discarded and ultimately decrease birth defects, malformations, and epigenetic diseases that may be transmitted from sperm to offspring in ICSI.

  11. Characterization of DNA methylation and its association with other biological systems in lymphoblastoid cell lines

    Science.gov (United States)

    Zhang, Zhe; Liu, Jinglan; Kaur, Maninder; Krantz, Ian D.

    2016-01-01

    Lymphoblastoid cell line (LCL) is a common tool to study genetic disorders. However, it has not been fully characterized to what degree LCLs preserve the in vivo status of non-genetic biological systems, such as DNA methylation and gene transcription. We previously reported that DNA methylation in LCLs is highly variable in a data set of ~27,000 CpG dinucleotide sites around transcription start site (TSS) and 63 human subjects including healthy controls and probands of genetic disorders. Disease-causing mutations are linked to differential methylation at some CpG sites, but account for a small proportion of the total variance. In this study, we repeated the experiments to ensure that the high variance is not due to technical error and scrutinized the characteristics of DNA methylation and its association with other biological systems. Using sequence information and ChIP-seq data, we conclude that local CpG density and histone modifications not only correlate to baseline methylation level, but also affect the direction of methylation change in LCLs. Integrative analysis of gene transcription and DNA methylation data of the same subjects shows that medium or high methylation around TSS blocks the transcription while low methylation is a necessary, but not sufficient condition of downstream gene transcription. We utilized epigenetic information around TSS to predict active gene transcription via logistic regression models. The multivariate model using DNA methylation, eight histone modifications, and two regulatory protein complexes (CTCF and cohesin) as predictors has better performance (accuracy = 95.1%) than any univariate models of single predictors. Linear regression analysis further shows that the transcriptional levels predicted by epigenetic markers have significant correlation to microarray measurements (p = 2.2e-10). This study provides new insights into the epigenetic systems of LCLs and suggests that more specifically designed experiments are needed to

  12. Genome-wide mapping of imprinted differentially methylated regions by DNA methylation profiling of human placentas from triploidies

    Directory of Open Access Journals (Sweden)

    Yuen Ryan KC

    2011-07-01

    Full Text Available Abstract Background Genomic imprinting is an important epigenetic process involved in regulating placental and foetal growth. Imprinted genes are typically associated with differentially methylated regions (DMRs whereby one of the two alleles is DNA methylated depending on the parent of origin. Identifying imprinted DMRs in humans is complicated by species- and tissue-specific differences in imprinting status and the presence of multiple regulatory regions associated with a particular gene, only some of which may be imprinted. In this study, we have taken advantage of the unbalanced parental genomic constitutions in triploidies to further characterize human DMRs associated with known imprinted genes and identify novel imprinted DMRs. Results By comparing the promoter methylation status of over 14,000 genes in human placentas from ten diandries (extra paternal haploid set and ten digynies (extra maternal haploid set and using 6 complete hydatidiform moles (paternal origin and ten chromosomally normal placentas for comparison, we identified 62 genes with apparently imprinted DMRs (false discovery rate FAM50B, as well as novel imprinted DMRs associated with known imprinted genes (for example, CDKN1C and RASGRF1 can be identified by using this approach. Furthermore, we have demonstrated how comparison of DNA methylation for known imprinted genes (for example, GNAS and CDKN1C between placentas of different gestations and other somatic tissues (brain, kidney, muscle and blood provides a detailed analysis of specific CpG sites associated with tissue-specific imprinting and gestational age-specific methylation. Conclusions DNA methylation profiling of triploidies in different tissues and developmental ages can be a powerful and effective way to map and characterize imprinted regions in the genome.

  13. Differential DNA methylation patterns of homeobox genes in proximal and distal colon epithelial cells.

    Science.gov (United States)

    Barnicle, Alan; Seoighe, Cathal; Golden, Aaron; Greally, John M; Egan, Laurence J

    2016-04-01

    Region and cell-type specific differences in the molecular make up of colon epithelial cells have been reported. Those differences may underlie the region-specific characteristics of common colon epithelial diseases such as colorectal cancer and inflammatory bowel disease. DNA methylation is a cell-type specific epigenetic mark, essential for transcriptional regulation, silencing of repetitive DNA and genomic imprinting. Little is known about any region-specific variations in methylation patterns in human colon epithelial cells. Using purified epithelial cells and whole biopsies (n= 19) from human subjects, we generated epigenome-wide DNA methylation data (using the HELP-tagging assay), comparing the methylation signatures of the proximal and distal colon. We identified a total of 125 differentially methylated sites (DMS) mapping to transcription start sites of protein-coding genes, most notably several members of the homeobox (HOX) family of genes. Patterns of differential methylation were validated with MassArray EpiTYPER. We also examined DNA methylation in whole biopsies, applying a computational technique to deconvolve variation in methylation within cell types and variation in cell-type composition across biopsies. Including inferred epithelial proportions as a covariate in differential methylation analysis applied to the whole biopsies resulted in greater overlap with the results obtained from purified epithelial cells compared with when the covariate was not included. Results obtained from both approaches highlight region-specific methylation patterns ofHOXgenes in colonic epithelium. Regional variation in methylation patterns has implications for the study of diseases that exhibit regional expression patterns in the human colon, such as inflammatory bowel disease and colorectal cancer. PMID:26812987

  14. 5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation, but prevents subsequent embryo development in rapeseed and barley

    OpenAIRE

    Solís, María-Teresa; El-Tantawy, Ahmed-Abdalla; Cano, Vanesa; Risueño, María C.; Testillano, Pilar S.

    2015-01-01

    Microspores are reprogrammed by stress in vitro toward embryogenesis. This process is an important tool in breeding to obtain double-haploid plants. DNA methylation is a major epigenetic modification that changes in differentiation and proliferation. We have shown changes in global DNA methylation during microspore reprogramming. 5-Azacytidine (AzaC) cannot be methylated and leads to DNA hypomethylation. AzaC is a useful demethylating agent to study DNA dynamics, with a potential application ...

  15. Genome-wide DNA methylation profiling in cultured eutopic and ectopic endometrial stromal cells.

    Directory of Open Access Journals (Sweden)

    Yoshiaki Yamagata

    Full Text Available The objective of this study was to characterize the genome-wide DNA methylation profiles of isolated endometrial stromal cells obtained from eutopic endometria with (euESCa and without endometriosis (euESCb and ovarian endometrial cysts (choESC. Three samples were analyzed in each group. The infinium methylation array identified more hypermethylated and hypomethylated CpGs in choESC than in euESCa, and only a few genes were methylated differently in euESCa and euESCb. A functional analysis revealed that signal transduction, developmental processes, immunity, etc. were different in choESC and euESCa. A clustering analysis and a principal component analysis performed based on the methylation levels segregated choESC from euESC, while euESCa and euESCb were identical. A transcriptome analysis was then conducted and the results were compared with those of the DNA methylation analysis. Interestingly, the hierarchical clustering and principal component analyses showed that choESC were segregated from euESCa and euESCb in the DNA methylation analysis, while no segregation was recognized in the transcriptome analysis. The mRNA expression levels of the epigenetic modification enzymes, including DNA methyltransferases, obtained from the specimens were not significantly different between the groups. Some of the differentially methylated and/or expressed genes (NR5A1, STAR, STRA6 and HSD17B2, which are related with steroidogenesis, were validated by independent methods in a larger number of samples. Our findings indicate that different DNA methylation profiles exist in ectopic ESC, highlighting the benefits of genome wide DNA methylation analyses over transcriptome analyses in clarifying the development and characterization of endometriosis.

  16. DNA methylation profiles of ovarian epithelial carcinoma tumors and cell lines.

    Directory of Open Access Journals (Sweden)

    Sahar Houshdaran

    Full Text Available BACKGROUND: Epithelial ovarian carcinoma is a significant cause of cancer mortality in women worldwide and in the United States. Epithelial ovarian cancer comprises several histological subtypes, each with distinct clinical and molecular characteristics. The natural history of this heterogeneous disease, including the cell types of origin, is poorly understood. This study applied recently developed methods for high-throughput DNA methylation profiling to characterize ovarian cancer cell lines and tumors, including representatives of three major histologies. METHODOLOGY/PRINCIPAL FINDINGS: We obtained DNA methylation profiles of 1,505 CpG sites (808 genes in 27 primary epithelial ovarian tumors and 15 ovarian cancer cell lines. We found that the DNA methylation profiles of ovarian cancer cell lines were markedly different from those of primary ovarian tumors. Aggregate DNA methylation levels of the assayed CpG sites tended to be higher in ovarian cancer cell lines relative to ovarian tumors. Within the primary tumors, those of the same histological type were more alike in their methylation profiles than those of different subtypes. Supervised analyses identified 90 CpG sites (68 genes that exhibited 'subtype-specific' DNA methylation patterns (FDR<1% among the tumors. In ovarian cancer cell lines, we estimated that for at least 27% of analyzed autosomal CpG sites, increases in methylation were accompanied by decreases in transcription of the associated gene. SIGNIFICANCE: The significant difference in DNA methylation profiles between ovarian cancer cell lines and tumors underscores the need to be cautious in using cell lines as tumor models for molecular studies of ovarian cancer and other cancers. Similarly, the distinct methylation profiles of the different histological types of ovarian tumors reinforces the need to treat the different histologies of ovarian cancer as different diseases, both clinically and in biomarker studies. These data

  17. Altered Methylation Profile of Lymphocytes Is Concordant with Perturbation of Lipids Metabolism and Inflammatory Response in Obesity

    Directory of Open Access Journals (Sweden)

    Mette J. Jacobsen

    2016-01-01

    Full Text Available Obesity is associated with immunological perturbations that contribute to insulin resistance. Epigenetic mechanisms can control immune functions and have been linked to metabolic complications, although their contribution to insulin resistance still remains unclear. In this study, we investigated the link between metabolic dysfunction and immune alterations with the epigenetic signature in leukocytes in a porcine model of obesity. Global DNA methylation of circulating leukocytes, adipose tissue leukocyte trafficking, and macrophage polarisation were established by flow cytometry. Adipose tissue inflammation and metabolic function were further characterised by quantification of metabolites and expression levels of genes associated with obesity and inflammation. Here we show that obese pigs showed bigger visceral fat pads, higher levels of circulating LDL cholesterol, and impaired glucose tolerance. These changes coincided with impaired metabolism, sustained macrophages infiltration, and increased inflammation in the adipose tissue. Those immune alterations were linked to global DNA hypermethylation in both B-cells and T-cells. Our results provide novel insight into the possible contribution of immune cell epigenetics into the immunological disturbances observed in obesity. The dramatic changes in the transcriptomic and epigenetic signature of circulating lymphocytes reinforce the concept that epigenetic processes participate in the increased immune cell activation and impaired metabolic functions in obesity.

  18. Modulation of DNA methylation machineries in japanese rice fish (Oryzias latipes) embryogenesis by ethanol and 5-azacytidine

    Science.gov (United States)

    As a sequel of our investigations on the impact of epigenome in inducing fetal alcohol spectrum disorder (FASD) phenotypes in Japanese rice fish, we investigated on several DNA methylation machinery genes including DNA methyl transferase 3ba (dnmt3ba) and methyl binding proteins (MBPs), namely, mbdl...

  19. Neighborhood and Family Environment of Expectant Mothers May Influence Prenatal Programming of Adult Cancer Risk: Discussion and an Illustrative DNA Methylation Example.

    Science.gov (United States)

    King, Katherine E; Kane, Jennifer B; Scarbrough, Peter; Hoyo, Cathrine; Murphy, Susan K

    2016-01-01

    Childhood stressors including physical abuse predict adult cancer risk. Prior research portrays this finding as an indirect mechanism that operates through coping behaviors, including adult smoking, or through increased toxic exposures during childhood. Little is known about potential direct causal mechanisms between early-life stressors and adult cancer. Because prenatal conditions can affect gene expression by altering DNA methylation, with implications for adult health, we hypothesize that maternal stress may program methylation of cancer-linked genes during gametogenesis. To illustrate this hypothesis, we related maternal social resources to methylation at the imprinted MEG3 differentially methylated regulatory region, which has been linked to multiple cancer types. Mothers (n = 489) from a diverse birth cohort (Durham, North Carolina) provided newborns' cord blood and completed a questionnaire. Newborns of currently married mothers showed lower (-0.321 SD, p < .05) methylation compared to newborns of never-married mothers, who did not differ from newborns whose mothers were cohabiting and others (adjusted for demographics). MEG3 DNA methylation levels were also lower when maternal grandmothers co-resided before pregnancy (-0.314 SD, p < .05). A 1-SD increase in prenatal neighborhood disadvantage also predicted higher methylation (-0.137 SD, p < .05). In conclusion, we found that maternal social resources may result in differential methylation of MEG3, which demonstrates a potential partial mechanism priming socially disadvantaged newborns for later risk of some cancers. PMID:27050035

  20. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity

    DEFF Research Database (Denmark)

    Williams, Kristine; Christensen, Jesper; Pedersen, Marianne Terndrup;

    2011-01-01

    Enzymes catalysing the methylation of the 5-position of cytosine (mC) have essential roles in regulating gene expression and maintaining cellular identity. Recently, TET1 was found to hydroxylate the methyl group of mC, converting it to 5-hydroxymethyl cytosine (hmC). Here we show that TET1 binds...

  1. Direct interaction between DNMT1and G9a coordinates DNA and histone methylation during replication

    OpenAIRE

    Estève, Pierre-Olivier; Chin, Hang Gyeong; Smallwood, Andrea; Feehery, George R; Gangisetty, Omkaram; Karpf, Adam R.; Carey, Michael F.; Pradhan, Sriharsa

    2006-01-01

    Chromatin methylation is necessary for stable repression of gene expression during mammalian development. During cell division, DNMT1 maintains the DNA methylation pattern of the newly synthesized daughter strand, while G9a methylates H3K9. Here, DNMT1 is shown to directly bind G9a both in vivo and in vitro and to colocalize in the nucleus during DNA replication. The complex of DNMT1 and G9a colocalizes with dimethylated H3K9 (H3K9me2) at replication foci. Similarly, another H3K9 histone meth...

  2. Genome and Metagenome Sequencing: Using the Human Methyl-Binding Domain to Partition Genomic DNA Derived from Plant Tissues

    Directory of Open Access Journals (Sweden)

    Erbay Yigit

    2014-11-01

    Full Text Available Premise of the study: Variation in the distribution of methylated CpG (methyl-CpG in genomic DNA (gDNA across the tree of life is biologically interesting and useful in genomic studies. We illustrate the use of human methyl-CpG-binding domain (MBD2 to fractionate angiosperm DNA into eukaryotic nuclear (methyl-CpG-rich vs. organellar and prokaryotic (methyl-CpG-poor elements for genomic and metagenomic sequencing projects. Methods: MBD2 has been used to enrich prokaryotic DNA in animal systems. Using gDNA from five model angiosperm species, we apply a similar approach to identify whether MBD2 can fractionate plant gDNA into methyl-CpG-depleted vs. enriched methyl-CpG elements. For each sample, three gDNA libraries were sequenced: (1 untreated gDNA, (2 a methyl-CpG-depleted fraction, and (3 a methyl-CpG-enriched fraction. Results: Relative to untreated gDNA, the methyl-depleted libraries showed a 3.2–11.2-fold and 3.4–11.3-fold increase in chloroplast DNA (cpDNA and mitochondrial DNA (mtDNA, respectively. Methyl-enriched fractions showed a 1.8–31.3-fold and 1.3–29.0-fold decrease in cpDNA and mtDNA, respectively. Discussion: The application of MBD2 enabled fractionation of plant gDNA. The effectiveness was particularly striking for monocot gDNA (Poaceae. When sufficiently effective on a sample, this approach can increase the cost efficiency of sequencing plant genomes as well as prokaryotes living in or on plant tissues.

  3. Environmental Impact on DNA Methylation in the Germline: State of the Art and Gaps of Knowledge

    Directory of Open Access Journals (Sweden)

    Francesca Pacchierotti

    2015-01-01

    Full Text Available The epigenome consists of chemical changes in DNA and chromatin that without modifying the DNA sequence modulate gene expression and cellular phenotype. The epigenome is highly plastic and reacts to changing external conditions with modifications that can be inherited to daughter cells and across generations. Whereas this innate plasticity allows for adaptation to a changing environment, it also implies the potential of epigenetic derailment leading to so-called epimutations. DNA methylation is the most studied epigenetic mark. DNA methylation changes have been associated with cancer, infertility, cardiovascular, respiratory, metabolic, immunologic, and neurodegenerative pathologies. Experiments in rodents demonstrate that exposure to a variety of chemical stressors, occurring during the prenatal or the adult life, may induce DNA methylation changes in germ cells, which may be transmitted across generations with phenotypic consequences. An increasing number of human biomonitoring studies show environmentally related DNA methylation changes mainly in blood leukocytes, whereas very few data have been so far collected on possible epigenetic changes induced in the germline, even by the analysis of easily accessible sperm. In this paper, we review the state of the art on factors impinging on DNA methylation in the germline, highlight gaps of knowledge, and propose priorities for future studies.

  4. Divergent DNA Methylation Patterns Associated with Abiotic Stress in Hevea brasiliensis

    Institute of Scientific and Technical Information of China (English)

    Thomas K. Uthup; Mlnlmol Ravindran; K. Bini; Saha Thakurdas

    2011-01-01

    Cytosine methylation is a fundamental epigenetic mechanism for gene-expression regulation and development in plants.Here,we report for the first time the identification of DNA methylation patterns and their putative relationship with abiotic stress in the tree crop Hevea brasiliensis (source of 99% of natural rubber in the world).Regulatory sequences of four major genes involved in the mevalonate pathway (rubber biosynthesis pathway) and one general defense-related gene of three high-yielding popular rubber clones grown at two different agroclimatic conditions were analyzed for the presence of methylation.We found several significant variations in the methylation pattern at core DNA binding motifs within all the five genes.Several consistent clone-specific and location-specific methylation patterns were identified.The differences in methylation pattern observed at certain pivotal cis-regulatory sites indicate the direct impact of stress on the genome and support the hypothesis of site-specific stress-induced DNA methylation.It is assumed that some of the methylation patterns observed may be involved in the stress-responsive mechanism in plants by which they adapt to extreme conditions.The study also provide clues towards the existence of highly divergent phenotypic characters among Hevea clones despite their very similar genetic make-up.Altogether,the observations from this study prove beyond doubt that there exist epigenetic variations in Hevea and environmental factors play a significant role in the induction of site-specific epigenetic mutations in its genome.

  5. Methylation analysis of multiple genes in blood DNA of Alzheimer's disease and healthy individuals.

    Science.gov (United States)

    Tannorella, Pierpaola; Stoccoro, Andrea; Tognoni, Gloria; Petrozzi, Lucia; Salluzzo, Maria Grazia; Ragalmuto, Alda; Siciliano, Gabriele; Haslberger, Alexander; Bosco, Paolo; Bonuccelli, Ubaldo; Migliore, Lucia; Coppedè, Fabio

    2015-07-23

    We collected blood DNA from 120 late-onset Alzheimer's disease (AD) patients and 115 healthy matched controls and analysed the methylation levels of genes involved in amyloid-beta peptide production (PSEN1 and BACE1), in DNA methylation (DNMT1, DNMT3A and DNMT3B), and in one-carbon metabolism (MTHFR), searching for correlation with age and gender, with biomarkers of one-carbon metabolism (plasma homocysteine, and serum folate and vitamin B12 levels), and with disease status (being healthy or having AD). We also evaluated the contribution of the APOE ϵ4 allele, the major late-onset AD genetic risk factor, to the studied gene methylation levels. All the genes showed low mean methylation levels (<5%) in both AD and control DNA, no difference between groups, and no correlation with the studied biomarkers, except for MTHFR that showed methylation levels ranging from 5% to 75%, and correlation with circulating biomarkers of one-carbon metabolism. However, mean MTHFR methylation levels were similar between groups (31.1% in AD and 30.7% in controls, P=0.58). Overall, present data suggest that none of the studied regions is differently methylated in blood DNA between AD and control subjects. PMID:26079324

  6. HP1 Is Involved in Regulating the Global Impact of DNA Methylation on Alternative Splicing

    Directory of Open Access Journals (Sweden)

    Ahuvi Yearim

    2015-02-01

    Full Text Available The global impact of DNA methylation on alternative splicing is largely unknown. Using a genome-wide approach in wild-type and methylation-deficient embryonic stem cells, we found that DNA methylation can either enhance or silence exon recognition and affects the splicing of more than 20% of alternative exons. These exons are characterized by distinct genetic and epigenetic signatures. Alternative splicing regulation of a subset of these exons can be explained by heterochromatin protein 1 (HP1, which silences or enhances exon recognition in a position-dependent manner. We constructed an experimental system using site-specific targeting of a methylated/unmethylated gene and demonstrate a direct causal relationship between DNA methylation and alternative splicing. HP1 regulates this gene’s alternative splicing in a methylation-dependent manner by recruiting splicing factors to its methylated form. Our results demonstrate DNA methylation’s significant global influence on mRNA splicing and identify a specific mechanism of splicing regulation mediated by HP1.

  7. Genomic DNA methylation patterns in bovine preim-plantation embryos derived from in vitro fertilization

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    By using the approach of immunofluorescence staining with an antibody against 5-methylcytosine (5MeC), the present study detected the DNA methylation patterns of bovine zygotes and preimplanta-tion embryos derived from oocyte in vitro maturation (IVM), in vitro fertilization (IVF) and embryo in vitro culture (IVC). The results showed that: a) paternal-specific demethylation occurred in 61.5% of the examined zygotes, while 34.6% of them showed no demethylation; b) decreased methylation level was observed after the 8-cell stage and persisted through the morula stage, however methylation levels were different between blastomeres within the same embryos; c) at the blastocyst stage, the methyla-tion level was very low in inner cell mass, but high in trophectoderm cells. The present study suggests, at least partly, that IVM/IVF/IVC may have effects on DNA methylation reprogramming of bovine zygotes and early embryos.

  8. Whole-genome DNA methylation and hydroxymethylation profiling for HBV-related hepatocellular carcinoma.

    Science.gov (United States)

    Ye, Chao; Tao, Ran; Cao, Qingyi; Zhu, Danhua; Wang, Yini; Wang, Jie; Lu, Juan; Chen, Ermei; Li, Lanjuan

    2016-08-01

    Hepatocellular carcinoma (HCC) is a common solid tumor worldwide with a poor prognosis. Accumulating evidence has implicated important regulatory roles of epigenetic modifications in the occurrence and progression of HCC. In the present study, we analyzed 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) levels in the tumor tissues and paired adjacent peritumor tissues (APTs) from four individual HCC patients using a (hydroxy)methylated DNA immunoprecipitation approach combined with deep sequencing [(h)MeDIP-Seq]. Bioinformatics analysis revealed that the 5-mC levels in the promoter regions of 2796 genes and the 5-hmC levels in 507 genes differed significantly between HCC tissues and APTs. These differential genes were grouped into various clusters and pathways and found to be particularly enriched in the 'metabolic pathways' that include 'Glycolysis/gluconeogenesis', 'Oxidative phosphorylation' and 'Citrate cycle (TCA cycle)', implicating a potential role of metabolic alterations in HCC. Furthermore, 144 genes had both 5-mC and 5-hmC changes in HCC patients, and 10 of them (PCNA, MDM2, STAG1, E2F4, FGF4, FGF19, RHOBTB2, UBE2QL1, DCN and HSP90AA1) were enriched and interconnected in five pathways including the 'Cell cycle', 'Pathway in cancer', 'Ubiquitin mediated proteolysis', 'Melanoma' and 'Prostate cancer' pathways. The genome-wide mapping of 5-mC and 5-hmC in HCC tissues and APTs indicated that both 5-mC and 5-hmC epigenetic modifications play important roles in the regulation of HCC, and there may be some interconnections between them. Taken together, in the present study we conducted the first genome-wide mapping of DNA methylation combined with hydroxymethylation in HBV-related HCC and provided a series of potential novel epigenetic biomarkers for HCC. PMID:27221337

  9. Bisphenol A causes reproductive toxicity, decreases dnmt1 transcription, and reduces global DNA methylation in breeding zebrafish (Danio rerio).

    Science.gov (United States)

    Laing, L V; Viana, J; Dempster, E L; Trznadel, M; Trunkfield, L A; Uren Webster, T M; van Aerle, R; Paull, G C; Wilson, R J; Mill, J; Santos, E M

    2016-07-01

    Bisphenol A (BPA) is a commercially important high production chemical widely used in epoxy resins and polycarbonate plastics, and is ubiquitous in the environment. Previous studies demonstrated that BPA activates estrogenic signaling pathways associated with adverse effects on reproduction in vertebrates and that exposure can induce epigenetic changes. We aimed to investigate the reproductive effects of BPA in a fish model and to document its mechanisms of toxicity. We exposed breeding groups of zebrafish (Danio rerio) to 0.01, 0.1, and 1 mg/L BPA for 15 d. We observed a significant increase in egg production, together with a reduced rate of fertilization in fish exposed to 1 mg/L BPA, associated with significant alterations in the transcription of genes involved in reproductive function and epigenetic processes in both liver and gonad tissue at concentrations representing hotspots of environmental contamination (0.1 mg/L) and above. Of note, we observed reduced expression of DNA methyltransferase 1 (dnmt1) at environmentally relevant concentrations of BPA, along with a significant reduction in global DNA methylation, in testes and ovaries following exposure to 1 mg/L BPA. Our findings demonstrate that BPA disrupts reproductive processes in zebrafish, likely via estrogenic mechanisms, and that environmentally relevant concentrations of BPA are associated with altered transcription of key enzymes involved in DNA methylation maintenance. These findings provide evidence of the mechanisms of action of BPA in a model vertebrate and advocate for its reduction in the environment. PMID:27120497

  10. Intergenerational Effect of Early Life Exposure to Permethrin: Changes in Global DNA Methylation and in Nurr1 Gene Expression

    Directory of Open Access Journals (Sweden)

    Laura Bordoni

    2015-11-01

    Full Text Available Environmental exposure to pesticides during the early stages of development represents an important risk factor for the onset of neurodegenerative diseases in adult age. Neonatal exposure to Permethrin (PERM, a member of the family of synthetic pyrethroids, can induce a Parkinson-like disease and cause some alterations in striatum of rats, involving both genetic and epigenetic pathways. Through gene expression analysis and global DNA methylation assessment in both PERM-treated parents and their untreated offspring, we investigated on the prospective intergenerational effect of this pesticide. Thirty-three percent of progeny presents the same Nurr1 alteration as rats exposed to permethrin in early life. A decrease in global genome-wide DNA methylation was measured in mothers exposed in early life to permethrin as well as in their offspring, whereas untreated rats have a hypermethylated genomic DNA. Further studies are however needed to elucidate the molecular mechanisms, but, despite this, an intergenerational PERM-induced damage on progenies has been identified for the first time.

  11. Direct evidence for sequence-dependent attraction between double-stranded DNA controlled by methylation

    Science.gov (United States)

    Yoo, Jejoong; Kim, Hajin; Aksimentiev, Aleksei; Ha, Taekjip

    2016-03-01

    Although proteins mediate highly ordered DNA organization in vivo, theoretical studies suggest that homologous DNA duplexes can preferentially associate with one another even in the absence of proteins. Here we combine molecular dynamics simulations with single-molecule fluorescence resonance energy transfer experiments to examine the interactions between duplex DNA in the presence of spermine, a biological polycation. We find that AT-rich DNA duplexes associate more strongly than GC-rich duplexes, regardless of the sequence homology. Methyl groups of thymine acts as a steric block, relocating spermine from major grooves to interhelical regions, thereby increasing DNA-DNA attraction. Indeed, methylation of cytosines makes attraction between GC-rich DNA as strong as that between AT-rich DNA. Recent genome-wide chromosome organization studies showed that remote contact frequencies are higher for AT-rich and methylated DNA, suggesting that direct DNA-DNA interactions that we report here may play a role in the chromosome organization and gene regulation.

  12. An integrative analysis of DNA methylation and RNA-Seq data for human heart, kidney and liver

    Directory of Open Access Journals (Sweden)

    Xie Linglin

    2011-12-01

    Full Text Available Abstract Background Many groups, including our own, have proposed the use of DNA methylation profiles as biomarkers for various disease states. While much research has been done identifying DNA methylation signatures in cancer vs. normal etc., we still lack sufficient knowledge of the role that differential methylation plays during normal cellular differentiation and tissue specification. We also need thorough, genome level studies to determine the meaning of methylation of individual CpG dinucleotides in terms of gene expression. Results In this study, we have used (insert statistical method here to compile unique DNA methylation signatures from normal human heart, lung, and kidney using the Illumina Infinium 27 K methylation arraysand compared those to gene expression by RNA sequencing. We have identified unique signatures of global DNA methylation for human heart, kidney and liver, and showed that DNA methylation data can be used to correctly classify various tissues. It indicates that DNA methylation reflects tissue specificity and may play an important role in tissue differentiation. The integrative analysis of methylation and RNA-Seq data showed that gene methylation and its transcriptional levels were comprehensively correlated. The location of methylation markers in terms of distance to transcription start site and CpG island showed no effects on the regulation of gene expression by DNA methylation in normal tissues. Conclusions This study showed that an integrative analysis of methylation array and RNA-Seq data can be utilized to discover the global regulation of gene expression by DNA methylation and suggests that DNA methylation plays an important role in normal tissue differentiation via modulation of gene expression.

  13. The landscape of DNA methylation amid a perfect storm of autism aetiologies.

    Science.gov (United States)

    Ciernia, Annie Vogel; LaSalle, Janine

    2016-07-01

    Increasing evidence points to a complex interplay between genes and the environment in autism spectrum disorder (ASD), including rare de novo mutations in chromatin genes such as methyl-CpG binding protein 2 (MECP2) in Rett syndrome. Epigenetic mechanisms such as DNA methylation act at this interface, reflecting the plasticity in metabolic and neurodevelopmentally regulated gene pathways. Genome-wide studies of gene sequences, gene pathways and DNA methylation are providing valuable mechanistic insights into ASD. The dynamic developmental landscape of DNA methylation is vulnerable to numerous genetic and environmental insults: therefore, understanding pathways that are central to this 'perfect storm' will be crucial to improving the diagnosis and treatment of ASD. PMID:27150399

  14. Examining the Causes and Consequences of Context-Specific Differential DNA Methylation in Maize.

    Science.gov (United States)

    Li, Qing; Song, Jawon; West, Patrick T; Zynda, Greg; Eichten, Steven R; Vaughn, Matthew W; Springer, Nathan M

    2015-08-01

    DNA methylation is a stable modification of chromatin that can contribute to epigenetic variation through the regulation of genes or transposons. Profiling of DNA methylation in five maize (Zea mays) inbred lines found that while DNA methylation levels for more than 99% of the analyzed genomic regions are similar, there are still 5,000 to 20,000 context-specific differentially methylated regions (DMRs) between any two genotypes. The analysis of identical-by-state genomic regions that have limited genetic variation provided evidence that DMRs can occur without local sequence variation, but they are less common than in regions with genetic variation. Characterization of the sequence specificity of DMRs, location of DMRs relative to genes and transposons, and patterns of DNA methylation in regions flanking DMRs reveals a distinct subset of DMRs. Transcriptome profiling of the same tissue revealed that only approximately 20% of genes with qualitative (on-off) differences in gene expression are associated with DMRs, and there is little evidence for association of DMRs with genes that show quantitative differences in gene expression. We also identify a set of genes that may represent cryptic information that is silenced by DNA methylation in the reference B73 genome. Many of these genes exhibit natural variation in other genotypes, suggesting the potential for selection to act upon existing epigenetic natural variation. This study provides insights into the origin and influences of DMRs in a crop species with a complex genome organization. PMID:25869653

  15. Detection of Epigenetic Modifications During Microspore Embryogenesis: Analysis of DNA Methylation Patterns Dynamics.

    Science.gov (United States)

    Testillano, Pilar S; Risueño, María Carmen

    2016-01-01

    Methylation of 5-deoxy-cytidines of DNA constitutes a prominent epigenetic modification of the chromatin fiber which is locked in a transcriptionally inactive conformation. Changes in global DNA methylation are involved in many plant developmental processes during proliferation and differentiation events. The analysis of the changes of global DNA methylation distribution patterns during microspore embryogenesis induction and progression will inform on the regulatory mechanisms of the process, helping in the design of protocols to improve its efficiency in different species. To investigate the DNA methylation dynamics during microspore embryogenesis in the different cell types present in the cultures, the analysis of spatial and temporal pattern of nuclear distribution of 5-methyl-deoxy-cytidine (5mdC) constitutes a potent approach. The immunolocalization of 5mdC on sections and subsequent confocal laser microscopy analysis have been developed for in situ cellular analysis of a variety of plant samples, including embryogenic microspore and anther cultures. Quantification of 5mdC immunofluorescence intensity by image analysis software also permits to estimate differences in global DNA methylation levels among different cell types during development. PMID:26619883

  16. The role of DNA methylation in directing the functional organization of the cancer epigenome

    Science.gov (United States)

    Lay, Fides D.; Liu, Yaping; Kelly, Theresa K.; Witt, Heather; Farnham, Peggy J.

    2015-01-01

    The holistic role of DNA methylation in the organization of the cancer epigenome is not well understood. Here we perform a comprehensive, high-resolution analysis of chromatin structure to compare the landscapes of HCT116 colon cancer cells and a DNA methylation-deficient derivative. The NOMe-seq accessibility assay unexpectedly revealed symmetrical and transcription-independent nucleosomal phasing across active, poised, and inactive genomic elements. DNA methylation abolished this phasing primarily at enhancers and CpG island (CGI) promoters, with little effect on insulators and non-CGI promoters. Abolishment of DNA methylation led to the context-specific reestablishment of the poised and active states of normal colon cells, which were marked in methylation-deficient cells by distinct H3K27 modifications and the presence of either well-phased nucleosomes or nucleosome-depleted regions, respectively. At higher-order genomic scales, we found that long, H3K9me3-marked domains had lower accessibility, consistent with a more compact chromatin structure. Taken together, our results demonstrate the nuanced and context-dependent role of DNA methylation in the functional, multiscale organization of cancer epigenomes. PMID:25747664

  17. DNA methylation of the oxytocin receptor gene predicts neural response to ambiguous social stimuli

    Directory of Open Access Journals (Sweden)

    Jessica J Connelly

    2012-10-01

    Full Text Available Oxytocin and its receptor (OXTR play an important role in a variety of social perceptual and affiliative processes. Individual variability in social information processing likely has a strong heritable component, and as such, many investigations have established an association between common genetic variants of OXTR and variability in the social phenotype. However, to date, these investigations have primarily focused only on changes in the sequence of DNA without considering the role of epigenetic factors. DNA methylation is an epigenetic mechanism by which cells control transcription through modification of chromatin structure. DNA methylation of OXTR decreases expression of the gene and high levels of methylation have been associated with autism spectrum disorders. This link between epigenetic variability and social phenotype allows for the possibility that social processes are under epigenetic control. We hypothesized that the level of DNA methylation of OXTR would predict individual variability in social perception. Using the brain’s sensitivity to displays of animacy as a neural endophenotype of social perception, we found significant associations between the degree of OXTR methylation and brain activity evoked by the perception of animacy. Our results suggest that consideration of DNA methylation may substantially improve our ability to explain individual differences in imaging genetic association studies.

  18. Corruption of the intra-gene DNA methylation architecture is a hallmark of cancer.

    Science.gov (United States)

    Bartlett, Thomas E; Zaikin, Alexey; Olhede, Sofia C; West, James; Teschendorff, Andrew E; Widschwendter, Martin

    2013-01-01

    Epigenetic processes--including DNA methylation--are increasingly seen as having a fundamental role in chronic diseases like cancer. It is well known that methylation levels at particular genes or loci differ between normal and diseased tissue. Here we investigate whether the intra-gene methylation architecture is corrupted in cancer and whether the variability of levels of methylation of individual CpGs within a defined gene is able to discriminate cancerous from normal tissue, and is associated with heterogeneous tumour phenotype, as defined by gene expression. We analysed 270985 CpGs annotated to 18272 genes, in 3284 cancerous and 681 normal samples, corresponding to 14 different cancer types. In doing so, we found novel differences in intra-gene methylation pattern across phenotypes, particularly in those genes which are crucial for stem cell biology; our measures of intra-gene methylation architecture are a better determinant of phenotype than measures based on mean methylation level alone (K-S test [Formula: see text] in all 14 diseases tested). These per-gene methylation measures also represent a considerable reduction in complexity, compared to conventional per-CpG beta-values. Our findings strongly support the view that intra-gene methylation architecture has great clinical potential for the development of DNA-based cancer biomarkers. PMID:23874574

  19. Association of postmenopausal endogenous sex hormones with global methylation level of leukocyte DNA among Japanese women

    Directory of Open Access Journals (Sweden)

    Iwasaki Motoki

    2012-07-01

    Full Text Available Abstract Background Although global hypomethylation of leukocyte DNA has been associated with an increased risk of several sites of cancer, including breast cancer, determinants of global methylation level among healthy individuals remain largely unexplored. Here, we examined whether postmenopausal endogenous sex hormones were associated with the global methylation level of leukocyte DNA. Methods A cross-sectional study was conducted using the control group of a breast cancer case–control study in Nagano, Japan. Subjects were postmenopausal women aged 55 years or over who provided blood samples. We measured global methylation level of peripheral blood leukocyte DNA by luminometric methylation assay; estradiol, estrone, androstenedione, dehydroepiandrosterone sulfate, testosterone and free testosterone by radioimmunoassay; bioavailable estradiol by the ammonium sulfate precipitation method; and sex-hormone binding globulin by immunoradiometric assay. A linear trend of association between methylation and hormone levels was evaluated by regression coefficients in a multivariable liner regression model. A total of 185 women were included in the analyses. Results Mean global methylation level (standard deviation was 70.3% (3.1 and range was from 60.3% to 79.2%. Global methylation level decreased 0.27% per quartile category for estradiol and 0.39% per quartile category for estrone while it increased 0.41% per quartile category for bioavailable estradiol. However, we found no statistically significant association of any sex hormone level measured in the present study with global methylation level of leukocyte DNA. Conclusions Our findings suggest that endogenous sex hormones are not major determinants of the global methylation level of leukocyte DNA.

  20. DNA methylation levels analysis in four tissues of sea cucumber Apostichopus japonicus based on fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) during aestivation.

    Science.gov (United States)

    Zhao, Ye; Chen, Muyan; Storey, Kenneth B; Sun, Lina; Yang, Hongsheng

    2015-03-01

    DNA methylation plays an important role in regulating transcriptional change in response to environmental stimuli. In the present study, DNA methylation levels of tissues of the sea cucumber Apostichopus japonicus were analyzed by the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) technique over three stages of the aestivation cycle. Overall, a total of 26,963 fragments were amplified including 9112 methylated fragments among four sea cucumber tissues using 18 pairs of selective primers. Results indicated an average DNA methylation level of 33.79% for A. japonicus. The incidence of DNA methylation was different across tissue types in the non-aestivation stage: intestine (30.16%), respiratory tree (27.61%), muscle (27.94%) and body wall (56.25%). Our results show that hypermethylation accompanied deep-aestivation in A. japonicus, which suggests that DNA methylation may have an important role in regulating global transcriptional suppression during aestivation. Further analysis indicated that the main DNA modification sites were focused on intestine and respiratory tree tissues and that full-methylation but not hemi-methylation levels exhibited significant increases in the deep-aestivation stage. PMID:25461675

  1. Methylation plotter: a web tool for dynamic visualization of DNA methylation data.

    Science.gov (United States)

    Mallona, Izaskun; Díez-Villanueva, Anna; Peinado, Miguel A

    2014-01-01

    Methylation plotter is a Web tool that allows the visualization of methylation data in a user-friendly manner and with publication-ready quality. The user is asked to introduce a file containing the methylation status of a genomic region. This file can contain up to 100 samples and 100 CpGs. Optionally, the user can assign a group for each sample (i.e. whether a sample is a tumoral or normal tissue). After the data upload, the tool produces different graphical representations of the results following the most commonly used styles to display this type of data. They include an interactive plot that summarizes the status of every CpG site and for every sample in lollipop or grid styles. Methylation values ranging from 0 (unmethylated) to 1 (fully methylated) are represented using a gray color gradient. A practical feature of the tool allows the user to choose from different types of arrangement of the samples in the display: for instance, sorting by overall methylation level, by group, by unsupervised clustering or just following the order in which data were entered. In addition to the detailed plot, Methylation plotter produces a methylation profile plot that summarizes the status of the scrutinized region, a boxplot that sums up the differences between groups (if any) and a dendrogram that classifies the data by unsupervised clustering. Coupled with this analysis, descriptive statistics and testing for differences at both CpG and group levels are provided. The implementation is based in R/shiny, providing a highly dynamic user interface that generates quality graphics without the need of writing R code. Methylation plotter is freely available at http://gattaca.imppc.org:3838/methylation_plotter/. PMID:25260021

  2. Novel insights into DNA methylation features in spermatozoa: stability and peculiarities.

    Directory of Open Access Journals (Sweden)

    Csilla Krausz

    Full Text Available Data about the entire sperm DNA methylome are limited to two sperm donors whereas studies dealing with a greater number of subjects focused only on a few genes or were based on low resolution arrays. This implies that information about what we can consider as a normal sperm DNA methylome and whether it is stable among different normozoospermic individuals is still missing. The definition of the DNA methylation profile of normozoospermic men, the entity of inter-individual variability and the epigenetic characterization of quality-fractioned sperm subpopulations in the same subject (intra-individual variability are relevant for a better understanding of pathological conditions. We addressed these questions by using the high resolution Infinium 450K methylation array and compared normal sperm DNA methylomes against somatic and cancer cells. Our study, based on the largest number of subjects (n = 8 ever considered for such a large number of CpGs (n = 487,517, provided clear evidence for i a highly conserved DNA methylation profile among normozoospermic subjects; ii a stable sperm DNA methylation pattern in different quality-fractioned sperm populations of the same individual. The latter finding is particularly relevant if we consider that different quality fractioned sperm subpopulations show differences in their structural features, metabolic and genomic profiles. We demonstrate, for the first time, that DNA methylation in normozoospermic men remains highly uniform regardless the quality of sperm subpopulations. In addition, our analysis provided both confirmatory and novel data concerning the sperm DNA methylome, including its peculiar features in respect to somatic and cancer cells. Our description about a highly polarized sperm DNA methylation profile, the clearly distinct genomic and functional organization of hypo- versus hypermethylated loci as well as the association of histone-enriched hypomethylated loci with embryonic development

  3. Epigenetic Vestiges of Early Developmental Adversity: Childhood Stress Exposure and DNA Methylation in Adolescence

    Science.gov (United States)

    Essex, Marilyn J.; Boyce, W. Thomas; Hertzman, Clyde; Lam, Lucia L.; Armstrong, Jeffrey M.; Neumann, Sarah M. A.; Kobor, Michael S.

    2013-01-01

    Fifteen-year-old adolescents (N = 109) in a longitudinal study of child development were recruited to examine differences in DNA methylation in relation to parent reports of adversity during the adolescents' infancy and preschool periods. Microarray technology applied to 28,000 cytosine-guanine dinucleotide sites within DNA derived from buccal…

  4. DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Nordlund, Jessica; Bäcklin, Christofer L; Zachariadis, Vasilios;

    2015-01-01

    BACKGROUND: We present a method that utilizes DNA methylation profiling for prediction of the cytogenetic subtypes of acute lymphoblastic leukemia (ALL) cells from pediatric ALL patients. The primary aim of our study was to improve risk stratification of ALL patients into treatment groups using DNA...

  5. Longitudinal Analysis of DNA Methylation in CD34+ Hematopoietic Progenitors in Myelodysplastic Syndrome

    DEFF Research Database (Denmark)

    Wong, Yan Fung; Micklem, Chris N; Taguchi, Masataka;

    2014-01-01

    Myelodysplastic syndrome (MDS) is a disorder of hematopoietic stem cells (HSCs) that is often treated with DNA methyltransferase 1 (DNMT1) inhibitors (5-azacytidine [AZA], 5-aza-2'-deoxycytidine), suggesting a role for DNA methylation in disease progression. How DNMT inhibition retards disease...

  6. Vitamin and antioxidant rich diet increases MLH1 promoter DNA methylation in DMT2 subjects

    Directory of Open Access Journals (Sweden)

    Switzeny Olivier J