WorldWideScience

Sample records for alters differentially metabolic

  1. Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations.

    OpenAIRE

    De Pauw, Aurélia; Tejerina, Silvia; Raes, Martine; Keijer, Jaap; Arnould, Thierry

    2009-01-01

    In mammals, adipose tissue, composed of BAT and WAT, collaborates in energy partitioning and performs metabolic regulatory functions. It is the most flexible tissue in the body, because it is remodeled in size and shape by modifications in adipocyte cell size and/or number, depending on developmental status and energy fluxes. Although numerous reviews have focused on the differentiation program of both brown and white adipocytes as well as on the pathophysiological role of white adipose tissu...

  2. Alteration of proteoglycan metabolism during the differentiation of 3T3- L1 fibroblasts into adipocytes

    OpenAIRE

    1991-01-01

    3T3-L1 fibroblasts were induced to differentiate to 3T3-L1 adipocytes by dexamethasone, isobutyl-methylxanthine, and insulin. To study how differentiation affects extracellular matrix production, the accumulation of proteoglycans was studied by labeling the 3T3-L1 cells with [35S]sulphate for 24 h. The labeled proteoglycans were isolated from the medium and cell layer extracts by anion-exchange chromatography. They were then taken to gel filtration chromatography on Superose 6 before or after...

  3. Spinal Fluid Lactate Dehydrogenase Level Differentiates between Structural and Metabolic Etiologies of Altered Mental Status in Children

    Directory of Open Access Journals (Sweden)

    Nahid KHOSROSHAHI

    2015-01-01

    Full Text Available How to Cite This Article: Khosroshahi N, Alizadeh P, Khosravi M, Salamati P, Kamrani K. Spinal Fluid Lactate Dehydrogenase Level Differentiates between Structural and Metabolic Etiologies of Altered Mental Status in Children. Iran J Child Neurol. 2015 Winter;9(1:31-36.AbstractObjectiveAltered mental status is a common cause of intensive care unit admission inchildren. Differentiating structural causes of altered mental status from metabolic etiologies is of utmost importance in diagnostic approach and management of the patients. Among many biomarkers proposed to help stratifying patients with altered mental status, spinal fluid lactate dehydrogenase appears to be the most promising biomarker to predict cellular necrosis.Materials & MethodsIn this cross sectional study we measured spinal fluid level of lactatedehydrogenase in children 2 months to 12 years of age admitted to a single center intensive care unit over one year. Spinal fluid level of lactate dehydrogenase in 40 pediatric cases of febrile seizure was also determined as the control group.ResultsThe study group included 35 boys (58.3% and 25 girls (41.7%. Their meanage was 2.7+/-3 years and their mean spinal fluid lactate dehydrogenase levelwas 613.8+/-190.4 units/liter. The control group included 24 boys (55.8% and19 girls (44.2%. Their mean age was 1.3+/-1.2 years and their mean spinalfluid lactate dehydrogenase level was 18.9+/-7.5 units/liter. The mean spinalfluid lactate dehydrogenase level in children with abnormal head CT scan was246.3+/-351.5 units/liter compared to 164.5+/-705.7 in those with normal CTscan of the head (p=0.001.ConclusionSpinal fluid lactate dehydrogenase level is useful in differentiating structural andmetabolic causes of altered mental status in children. ReferencesFesk SK. Coma and confusional states: emergency diagnosis and management. Neurol Clin 1998; 16: 237- 56.Cucchiara BL, Kanser SE, Wolk DA, et al. Early impairment in consciousness Predicts

  4. Azithromycin treatment alters gene expression in inflammatory, lipid metabolism, and cell cycle pathways in well-differentiated human airway epithelia.

    Directory of Open Access Journals (Sweden)

    Carla Maria P Ribeiro

    Full Text Available Prolonged macrolide antibiotic therapy at low doses improves clinical outcome in patients affected with diffuse panbronchiolitis and cystic fibrosis. Consensus is building that the therapeutic effects are due to anti-inflammatory, rather than anti-microbial activities, but the mode of action is likely complex. To gain insights into how the macrolide azithromycin (AZT modulates inflammatory responses in airways, well-differentiated primary cultures of human airway epithelia were exposed to AZT alone, an inflammatory stimulus consisting of soluble factors from cystic fibrosis airways, or AZT followed by the inflammatory stimulus. RNA microarrays were conducted to identify global and specific gene expression changes. Analysis of gene expression changes revealed that the AZT treatment alone altered the gene profile of the cells, primarily by significantly increasing the expression of lipid/cholesterol genes and decreasing the expression of cell cycle/mitosis genes. The increase in cholesterol biosynthetic genes was confirmed by increased filipin staining, an index of free cholesterol, after AZT treatment. AZT also affected genes with inflammatory annotations, but the effect was variable (both up- and down-regulation and gene specific. AZT pretreatment prevented the up-regulation of some genes, such as MUC5AC and MMP9, triggered by the inflammatory stimulus, but the up-regulation of other inflammatory genes, e.g., cytokines and chemokines, such as interleukin-8, was not affected. On the other hand, HLA genes were increased by AZT. Notably, secreted IL-8 protein levels did not reflect mRNA levels, and were, in fact, higher after AZT pretreatment in cultures exposed to the inflammatory stimulus, suggesting that AZT can affect inflammatory pathways other than by altering gene expression. These findings suggest that the specific effects of AZT on inflamed and non-inflamed airway epithelia are likely relevant to its clinical activity, and their apparent

  5. Water deficit alters differentially metabolic pathways affecting important flavor and quality traits in grape berries of Cabernet Sauvignon and Chardonnay

    Directory of Open Access Journals (Sweden)

    Deluc Laurent G

    2009-05-01

    Full Text Available Abstract Background Water deficit has significant effects on grape berry composition resulting in improved wine quality by the enhancement of color, flavors, or aromas. While some pathways or enzymes affected by water deficit have been identified, little is known about the global effects of water deficit on grape berry metabolism. Results The effects of long-term, seasonal water deficit on berries of Cabernet Sauvignon, a red-wine grape, and Chardonnay, a white-wine grape were analyzed by integrated transcript and metabolite profiling. Over the course of berry development, the steady-state transcript abundance of approximately 6,000 Unigenes differed significantly between the cultivars and the irrigation treatments. Water deficit most affected the phenylpropanoid, ABA, isoprenoid, carotenoid, amino acid and fatty acid metabolic pathways. Targeted metabolites were profiled to confirm putative changes in specific metabolic pathways. Water deficit activated the expression of numerous transcripts associated with glutamate and proline biosynthesis and some committed steps of the phenylpropanoid pathway that increased anthocyanin concentrations in Cabernet Sauvignon. In Chardonnay, water deficit activated parts of the phenylpropanoid, energy, carotenoid and isoprenoid metabolic pathways that contribute to increased concentrations of antheraxanthin, flavonols and aroma volatiles. Water deficit affected the ABA metabolic pathway in both cultivars. Berry ABA concentrations were highly correlated with 9-cis-epoxycarotenoid dioxygenase (NCED1 transcript abundance, whereas the mRNA expression of other NCED genes and ABA catabolic and glycosylation processes were largely unaffected. Water deficit nearly doubled ABA concentrations within berries of Cabernet Sauvignon, whereas it decreased ABA in Chardonnay at véraison and shortly thereafter. Conclusion The metabolic responses of grapes to water deficit varied with the cultivar and fruit pigmentation

  6. Differential Cysteine Labeling and Global Label-Free Proteomics Reveals an Altered Metabolic State in Skeletal Muscle Aging

    OpenAIRE

    McDonagh, Brian; Giorgos K. Sakellariou; Neil T. Smith; Brownridge, Philip; Jackson, Malcolm J.

    2014-01-01

    The molecular mechanisms underlying skeletal muscle aging and associated sarcopenia have been linked to an altered oxidative status of redox-sensitive proteins. Reactive oxygen and reactive nitrogen species (ROS/RNS) generated by contracting skeletal muscle are necessary for optimal protein function, signaling, and adaptation. To investigate the redox proteome of aging gastrocnemius muscles from adult and old male mice, we developed a label-free quantitative proteomic approach that includes a...

  7. Metabolic reprogramming during neuronal differentiation.

    Science.gov (United States)

    Agostini, M; Romeo, F; Inoue, S; Niklison-Chirou, M V; Elia, A J; Dinsdale, D; Morone, N; Knight, R A; Mak, T W; Melino, G

    2016-09-01

    Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate-glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K-Akt-mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation. PMID:27058317

  8. Long-chain n-3 fatty acids enhance neonatal insulin-regulated protein metabolism in piglets by differentially altering muscle lipid composition.

    Science.gov (United States)

    Bergeron, Karen; Julien, Pierre; Davis, Teresa A; Myre, Alexandre; Thivierge, M Carole

    2007-11-01

    This study investigated the role of long-chain n-3 polyunsaturated fatty acids (LCn-3PUFAs) of muscle phospholipids in the regulation of neonatal metabolism. Twenty-eight piglets were weaned at 2 days of age and raised on one of two milk formulas that consisted of either a control formula supplying 0% or a formula containing 3.5% LCn-3PUFAs until 10 or 28 days of age. There was a developmental decline in the insulin sensitivity of amino acid disposal in control pigs during the first month of life, with a slope of -2.24 micromol.kg(-1).h(-1) (P = 0.01) per unit of insulin increment, as assessed using hyperinsulinemic-euglycemic-euaminoacidemic clamps. LCn-3PUFA feeding blunted this developmental decline, resulting in differing insulin sensitivities (P < 0.001). When protein metabolism was assessed under parenteral feeding-induced hyperinsulinemia, LCn-3PUFAs reduced by 16% whole body oxidative losses of amino acids (from 238 to 231 micromol.kg(-1).h(-1); P = 0.06), allowing 41% more amino acids to accrete into body proteins (from 90 to 127 micromol.kg(-1).h(-1); P = 0.06). The fractional synthetic rate of muscle mixed proteins remained unaltered by the LCn-3PUFA feeding. However, LCn-3PUFAs retarded a developmental increase in the essential-to-nonessential amino acid ratio of the muscle intracellular free pool (P = 0.05). Overall, alterations in metabolism were concomitant with a preferential incorporation of LCn-3PUFAs into muscle total membrane phospholipids (P < 0.001), in contrast to intramuscular triglycerides. These results underscore the potential role of LCn-3PUFAs as regulators of different aspects of protein metabolism in the neonate. PMID:17673528

  9. Alterations of lipid metabolism in Wilson disease

    OpenAIRE

    Stremmel Wolfgang; Eckert Nicola; Pfeiffenberger Jan; Gotthardt Daniel; Gohdes Annina; Seessle Jessica; Reuner Ulrike; Weiss Karl

    2011-01-01

    Abstract Introduction Wilson disease (WD) is an inherited disorder of human copper metabolism, characterised by accumulation of copper predominantly in the liver and brain, leading to severe hepatic and neurological disease. Interesting findings in animal models of WD (Atp7b-/- and LEC rats) showed altered lipid metabolism with a decrease in the amount of triglycerides and cholesterol in the serum. However, serum lipid profile has not been investigated in large human WD patient cohorts to dat...

  10. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  11. Polychlorinated biphenyls (PCB 101, PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Ferrante, Maria C. [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Amero, Paola; Santoro, Anna [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Monnolo, Anna [Department of Veterinary Medicine and Animal Productions, Federico II University of Naples, Via Delpino 1, 80137 Naples (Italy); Simeoli, Raffaele; Di Guida, Francesca [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Mattace Raso, Giuseppina, E-mail: mattace@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy); Meli, Rosaria, E-mail: meli@unina.it [Department of Pharmacy, Federico II University of Naples, Via Montesano 49, 80131 Naples (Italy)

    2014-09-15

    Non-dioxin-like polychlorinated biphenyls (NDL-PCBs) are highly lipophilic environmental contaminants that accumulate in lipid-rich tissues, such as adipose tissue. Here, we reported the effects induced by PCBs 101, 153 and 180, three of the six NDL-PCBs defined as indicators, on mature 3T3-L1 adipocytes. We observed an increase in lipid content, in leptin gene expression and a reduction of leptin receptor expression and signaling, when cells were exposed to PCBs, alone or in combination. These modifications were consistent with the occurrence of “leptin-resistance” in adipose tissue, a typical metabolic alteration related to obesity. Therefore, we investigated how PCBs affect the expression of pivotal proteins involved in the signaling of leptin receptor. We evaluated the PCB effect on the intracellular pathway JAK/STAT, determining the phosphorylation of STAT3, a downstream activator of the transcription of leptin gene targets, and the expression of SOCS3 and PTP1B, two important regulators of leptin resistance. In particular, PCBs 153 and 180 or all PCB combinations induced a significant reduction in pSTAT3/STAT3 ratio and an increase in PTP1B and SOCS3, evidencing an additive effect. The impairment of leptin signaling was associated with the reduction of AMPK/ACC pathway activation, leading to the increase in lipid content. These pollutants were also able to increase the transcription of inflammatory cytokines (IL-6 and TNFα). It is worthy to note that the PCB concentrations used are comparable to levels detectable in human adipose tissue. Our data strongly support the hypothesis that NDL-PCBs may interfere with the lipid metabolism contributing to the development of obesity and related diseases. - Highlights: • NDL-PCBs alter lipid content and metabolism in 3T3-L1 adipocytes. • Impairment of leptin signaling was induced by NDL-PCBs. • NDL-PCBs reduce AMPK and ACC activation. • NDL-PCBs induce the synthesis of pro-inflammatory cytokine by

  12. Alterations of lipid metabolism in Wilson disease

    Directory of Open Access Journals (Sweden)

    Stremmel Wolfgang

    2011-05-01

    Full Text Available Abstract Introduction Wilson disease (WD is an inherited disorder of human copper metabolism, characterised by accumulation of copper predominantly in the liver and brain, leading to severe hepatic and neurological disease. Interesting findings in animal models of WD (Atp7b-/- and LEC rats showed altered lipid metabolism with a decrease in the amount of triglycerides and cholesterol in the serum. However, serum lipid profile has not been investigated in large human WD patient cohorts to date. Patients and Methods This cohort study involved 251 patients examined at the Heidelberg and Dresden (Germany University Hospitals. Patients were analysed on routine follow-up examinations for serum lipid profile, including triglycerides, cholesterol, high density lipoprotein (HDL and low density lipoprotein (LDL. Data on these parameters at time of diagnosis were retrieved by chart review where available. For statistical testing, patients were subgrouped by sex, manifestation (hepatic, neurological, mixed and asymptomatic and treatment (D-penicillamine, trientine, zinc or combination. Results A significant difference in total serum cholesterol was found in patients with hepatic symptoms, which diminished under therapy. No alterations were observed for HDL, LDL and triglycerides. Conclusion Contradictory to previous reports using WD animal models (Atp7b-/- and LEC rats, the most obvious alteration in our cohort was a lower serum cholesterol level in hepatic-affected patients, which might be related to liver injury. Our data suggested unimpaired cholesterol metabolism in Wilson disease under therapy, independent of the applied medical treatment.

  13. CHOLINE METABOLISM ALTERATION: A FOCUS ON OVARIAN CANCER

    Directory of Open Access Journals (Sweden)

    Marina eBagnoli

    2016-06-01

    Full Text Available Compared to normal differentiated cells, cancer cells require a metabolic reprogramming to support their high proliferation rates and survival. Aberrant choline metabolism is a fairly new metabolic hallmark reflecting the complex reciprocal interactions between oncogenic signaling and cellular metabolism. Alterations of the involved metabolic network may be sustained by changes in activity of several choline transporters as well as of enzymes like choline kinase-alpha (ChoK-α and phosphatidylcholine-specific phospholipases C and D. Of note, the net outcome of these enzymatic alterations is an increase of phosphocholine and total choline-containing compounds, a cholinic phenotype that can be monitored in cancer by magnetic resonance spectroscopy. This review will highlight the molecular basis for targeting this pathway in epithelial ovarian carcinoma (EOC, a highly heterogeneous and lethal malignancy characterized by late diagnosis, frequent relapse and development of chemoresistance. Modulation of ChoK-α expression impairs only EOC but not normal ovarian cells, thus supporting the hypothesis that cholinic phenotype is a peculiar feature of transformed cells, and indicating ChoK-α targeting as a novel approach to improve efficacy of standard EOC chemotherapeutic treatments.

  14. Hemostasis alterations in metabolic syndrome (review).

    Science.gov (United States)

    Palomo, Iván; Alarcón, Marcelo; Moore-Carrasco, Rodrigo; Argilés, Josep M

    2006-11-01

    Metabolic syndrome (MS) is characterized by the presence of at least three of the following alterations: enlargement of the waist diameter, higher levels of arterial pressure, low density lipoprotein cholesterol and glycemia, and reduction of high density lipoprotein cholesterol. The prevalence of MS reaches 23% in young adults, a percentage that increases with age. People with MS have a greater risk of suffering from cardiovascular disease (CVD). The physiopathologic alterations now found to exist in MS are diverse; among them is endothelial dysfunction, which triggers atherogenic lesions and hypercoagulability characterized by alterations of the coagulation factors and the regulatory proteins of fibrinolysis such as the plasminogen activator inhibitor (PAI-1). The increase in oxidative stress and/or the reactive oxygen species in patients with MS is partially related to the oxidation state of the lipoproteins, especially of the low density lipoproteins. This fact favors atherogenesis. Moreover, the oxidative stress produces alterations in the production of adipokines, cytokines secreted by the adipose tissues. The abnormality in the transport of lipoprotein diminishes the catabolism of the very low density lipoprotein (VLDL) and increases the catabolism of the high density lipoprotein (HDL), which creates insulin resistance. This process is associated with a lower concentration of adiponectin that in turn regulates the catabolism of VLDL and HDL; consequently increasing the flow of fatty acids from the adipose tissue to the liver and muscles. The proinflammatory cytokines, among them tumor necrosis factor alpha (TNF-alpha), are of great importance in MS regulating different processes and molecules such as PAI-1. PAI-1 is controlled by the group of transcription factors peroxisome proliferator-activated receptor (PPAR), especially by PPAR gamma and alpha ligands. In summary, MS includes multiple alterations related to insulin resistance at several levels: hepatic

  15. Altered DNA Methylation and Differential Expression of Genes Influencing Metabolism and Inflammation in Adipose Tissue From Subjects With Type 2 Diabetes

    DEFF Research Database (Denmark)

    Nilsson, Emma; Jansson, Per Anders; Perfilyev, Alexander; Volkov, Petr; Pedersen, Maria; Svensson, Maria K; Poulsen, Pernille; Ribel-Madsen, Rasmus; Pedersen, Nancy L; Almgren, Peter; Fadista, João; Rönn, Tina; Klarlund Pedersen, Bente; Scheele, Camilla; Vaag, Allan; Ling, Charlotte

    2014-01-01

    to the genome-wide DNA methylation variability in twins. Differences in methylation between monozygotic twin pairs discordant for T2D were subsequently modest. However, 15,627 sites, representing 7,046 genes including PPARG, KCNQ1, TCF7L2, and IRS1, showed differential DNA methylation in adipose...

  16. Differential Diagnosis of Metabolic Alkalosis

    Directory of Open Access Journals (Sweden)

    M Hafizi

    1995-07-01

    Full Text Available A 9-month old female infant with growth retardation, constipation and restlessness id presented. Laboratory findings revealed hypochloremic metabolic alkalosis with hypokalemia and hyponatremia. Clinical and laboratory findings led us to think of batter syndrome and cystic fibrosis. Serum and urine levels of chloride were low. This led to the estimation of sweat electrolytes, which showed high chloride levels. Taking also into account other laboratory and clinical parameters cystic fibrosis was the final diagnosis.

  17. Metabolic alterations in cancer cells and therapeutic implications

    Institute of Scientific and Technical Information of China (English)

    Naima Hammoudi; Kausar Begam Riaz Ahmed; Celia Garcia-Prieto; Peng Huang

    2011-01-01

    Cancer metabolism has emerged as an important area of research in recent years. Elucidation of the metabolic differences between cancer and normal cells and the underlying mechanisms will not only advance our understanding of fundamental cancer cell biology but also provide an important basis for the development of new therapeutic strategies and novel compounds to selectively eliminate cancer cells by targeting their unique metabolism. This article reviews several important metabolic alterations in cancer cells, with an emphasis on increased aerobic glycolysis (the Warburg effect) and glutamine addiction, and discusses the mechanisms that may contribute to such metabolic changes. In addition, metabolic alterations in cancer stem cells, mitochondrial metabolism and its influence on drug sensitivity, and potential therapeutic strategies and agents that target cancer metabolism are also discussed.

  18. Omeprazole induces altered bile acid metabolism

    OpenAIRE

    Shindo, K; Machida, M.; Fukumura, M; Koide, K.; Yamazaki, R.

    1998-01-01

    Background—It has been reported that the acidity of gastric contents could be an important factor in regulating jejunal flora. 
Aims—To investigate the effects of omeprazole induced changes in gastric pH on jejunal flora and bile acid metabolism. 
Methods—Twenty one patients with gastric ulcer and 19 healthy volunteers were studied. Deconjugation of bile acids was detected using a bile acid breath test. Jejunal fluid was aspirated using a double lumen tube with a rubber cover o...

  19. Metabolic alterations during ascosporogenesis of Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Sporulation of S. cerevisiae has been shown to alter the profiles of enzymes involved in gluconeogenesis and glycolysis. The enhancement in the levels of total cellular carbohydrates could be correlated with the enhancement in fructose 1,6-diphosphatase and trehalose-phosphate synthetase. The latter activity could account for the 15-fold increase in trehalose levels in sporulating cells. Glucose-6-phosphatase, pyruvate kinase and phosphofructokinase showed continuous decline during ascosporogenesis. The relative incorporation of radioactivity from possible precursors of gluconeogenesis indicated that acetate-2-14C alone could contribute to carbohydrate synthesis. (author)

  20. Epileptic Focus and Alteration of Metabolism

    Czech Academy of Sciences Publication Activity Database

    Otáhal, Jakub; Folbergrová, Jaroslava; Kovacs, R.; Kunz, W.S.; Maggio, N.

    2014-01-01

    Roč. 114, č. 2014 (2014), s. 209-243. ISSN 0074-7742 R&D Projects: GA ČR(CZ) GAP303/10/0999; GA ČR(CZ) GA309/05/2015; GA ČR(CZ) GA309/08/0292; GA ČR(CZ) GAP302/10/0971; GA MŠk(CZ) LL1204; GA MZd(CZ) NT14489; GA ČR(CZ) GA14-02634S Institutional research plan: CEZ:AV0Z50110509 Institutional support: RVO:67985823 Keywords : epilepsy * epileptogenesis * cerebral blood flow * blood brain barrier * reactive oxygen species * energy metabolism * mitochondria * oxidative posttranslational modifications * mtDNA mutations * pharmacoresistance Subject RIV: FH - Neurology Impact factor: 1.921, year: 2014

  1. Prenatal hyperandrogenism induces alterations that affect liver lipid metabolism.

    Science.gov (United States)

    Abruzzese, Giselle Adriana; Heber, Maria Florencia; Ferreira, Silvana Rocio; Velez, Leandro Martin; Reynoso, Roxana; Pignataro, Omar Pedro; Motta, Alicia Beatriz

    2016-07-01

    Prenatal hyperandrogenism is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). PCOS patients have high risk of developing fatty liver and steatosis. This study aimed to evaluate the role of prenatal hyperandrogenism in liver lipid metabolism and fatty liver development. Pregnant rats were hyperandrogenized with testosterone. At pubertal age, the prenatally hyperandrogenized (PH) female offspring displayed both ovulatory (PHov) and anovulatory (PHanov) phenotypes that mimic human PCOS features. We evaluated hepatic transferases, liver lipid content, the balance between lipogenesis and fatty acid oxidation pathway, oxidant/antioxidant balance and proinflammatory status. We also evaluated the general metabolic status through growth rate curve, basal glucose and insulin levels, glucose tolerance test, HOMA-IR index and serum lipid profile. Although neither PH group showed signs of liver lipid content, the lipogenesis and fatty oxidation pathways were altered. The PH groups also showed impaired oxidant/antioxidant balance, a decrease in the proinflammatory pathway (measured by prostaglandin E2 and cyclooxygenase-2 levels), decreased glucose tolerance, imbalance of circulating lipids and increased risk of metabolic syndrome. We conclude that prenatal hyperandrogenism generates both PHov and PHanov phenotypes with signs of liver alterations, imbalance in lipid metabolism and increased risk of developing metabolic syndrome. The anovulatory phenotype showed more alterations in liver lipogenesis and a more impaired balance of insulin and glucose metabolism, being more susceptible to the development of steatosis. PMID:27179108

  2. Deciphering the role of interleukin-22 in metabolic alterations

    OpenAIRE

    Sabat, Robert; Wolk, Kerstin

    2015-01-01

    Inflammatory processes and metabolic alterations are supposed to substantially interact. Recently, cumulating reports describe a profound role of interleukin(IL)-22 in this relationship. IL-22 is a particular kind of immune mediator that is produced by certain lymphocyte populations and regulates the function of several tissue cells but not immune cells. So far, IL-22 was known to plays a fundamental role in the elimination of bacterial infections at border surfaces of the body and to protect...

  3. Cerebral Metabolic Alterations in Rats With Diabetic Ketoacidosis

    OpenAIRE

    Glaser, Nicole; Yuen, Natalie; Anderson, Steven E; Tancredi, Daniel J.; O'Donnell, Martha E.

    2009-01-01

    OBJECTIVE Cerebral edema is a life-threatening complication of diabetic ketoacidosis (DKA) in children. Recent data suggest that cerebral hypoperfusion and activation of cerebral ion transporters may be involved, but data describing cerebral metabolic alterations during DKA are lacking. RESEARCH DESIGN AND METHODS We evaluated 50 juvenile rats with DKA and 21 normal control rats using proton and phosphorus magnetic resonance spectroscopy (MRS). MRS measured cerebral intracellular pH and ratio...

  4. Modelling chronotaxicity of cellular energy metabolism to facilitate the identification of altered metabolic states

    Science.gov (United States)

    Lancaster, Gemma; Suprunenko, Yevhen F.; Jenkins, Kirsten; Stefanovska, Aneta

    2016-01-01

    Altered cellular energy metabolism is a hallmark of many diseases, one notable example being cancer. Here, we focus on the identification of the transition from healthy to abnormal metabolic states. To do this, we study the dynamics of energy production in a cell. Due to the thermodynamic openness of a living cell, the inability to instantaneously match fluctuating supply and demand in energy metabolism results in nonautonomous time-varying oscillatory dynamics. However, such oscillatory dynamics is often neglected and treated as stochastic. Based on experimental evidence of metabolic oscillations, we show that changes in metabolic state can be described robustly by alterations in the chronotaxicity of the corresponding metabolic oscillations, i.e. the ability of an oscillator to resist external perturbations. We also present a method for the identification of chronotaxicity, applicable to general oscillatory signals and, importantly, apply this to real experimental data. Evidence of chronotaxicity was found in glycolytic oscillations in real yeast cells, verifying that chronotaxicity could be used to study transitions between metabolic states. PMID:27483987

  5. Metabolic state alters economic decision making under risk in humans.

    Directory of Open Access Journals (Sweden)

    Mkael Symmonds

    Full Text Available BACKGROUND: Animals' attitudes to risk are profoundly influenced by metabolic state (hunger and baseline energy stores. Specifically, animals often express a preference for risky (more variable food sources when below a metabolic reference point (hungry, and safe (less variable food sources when sated. Circulating hormones report the status of energy reserves and acute nutrient intake to widespread targets in the central nervous system that regulate feeding behaviour, including brain regions strongly implicated in risk and reward based decision-making in humans. Despite this, physiological influences per se have not been considered previously to influence economic decisions in humans. We hypothesised that baseline metabolic reserves and alterations in metabolic state would systematically modulate decision-making and financial risk-taking in humans. METHODOLOGY/PRINCIPAL FINDINGS: We used a controlled feeding manipulation and assayed decision-making preferences across different metabolic states following a meal. To elicit risk-preference, we presented a sequence of 200 paired lotteries, subjects' task being to select their preferred option from each pair. We also measured prandial suppression of circulating acyl-ghrelin (a centrally-acting orexigenic hormone signalling acute nutrient intake, and circulating leptin levels (providing an assay of energy reserves. We show both immediate and delayed effects on risky decision-making following a meal, and that these changes correlate with an individual's baseline leptin and changes in acyl-ghrelin levels respectively. CONCLUSIONS/SIGNIFICANCE: We show that human risk preferences are exquisitely sensitive to current metabolic state, in a direction consistent with ecological models of feeding behaviour but not predicted by normative economic theory. These substantive effects of state changes on economic decisions perhaps reflect shared evolutionarily conserved neurobiological mechanisms. We suggest that

  6. Energy Metabolism Plays a Critical Role in Stem Cell Maintenance and Differentiation

    Directory of Open Access Journals (Sweden)

    Chenxia Hu

    2016-02-01

    Full Text Available Various stem cells gradually turned to be critical players in tissue engineering and regenerative medicine therapies. Current evidence has demonstrated that in addition to growth factors and the extracellular matrix, multiple metabolic pathways definitively provide important signals for stem cell self-renewal and differentiation. In this review, we mainly focus on a detailed overview of stem cell metabolism in vitro. In stem cell metabolic biology, the dynamic balance of each type of stem cell can vary according to the properties of each cell type, and they share some common points. Clearly defining the metabolic flux alterations in stem cells may help to shed light on stemness features and differentiation pathways that control the fate of stem cells.

  7. Energy Metabolism Plays a Critical Role in Stem Cell Maintenance and Differentiation.

    Science.gov (United States)

    Hu, Chenxia; Fan, Linxiao; Cen, Panpan; Chen, Ermei; Jiang, Zhengyi; Li, Lanjuan

    2016-01-01

    Various stem cells gradually turned to be critical players in tissue engineering and regenerative medicine therapies. Current evidence has demonstrated that in addition to growth factors and the extracellular matrix, multiple metabolic pathways definitively provide important signals for stem cell self-renewal and differentiation. In this review, we mainly focus on a detailed overview of stem cell metabolism in vitro. In stem cell metabolic biology, the dynamic balance of each type of stem cell can vary according to the properties of each cell type, and they share some common points. Clearly defining the metabolic flux alterations in stem cells may help to shed light on stemness features and differentiation pathways that control the fate of stem cells. PMID:26901195

  8. Traumatic brain injury alters methionine metabolism: implications for pathophysiology

    Directory of Open Access Journals (Sweden)

    Pramod K Dash

    2016-04-01

    Full Text Available Methionine is an essential proteinogenic amino acid that is obtained from the diet. In addition to its requirement for protein biosynthesis, methionine is metabolized to generate metabolites that play key roles in a number of cellular functions. Metabolism of methionine via the transmethylation pathway generates S-adenosylmethionine (SAM that serves as the principal methyl (-CH3 donor for DNA and histone methyltransferases to regulate epigenetic changes in gene expression. SAM is also required for methylation of other cellular proteins that serve various functions and phosphatidylcholine synthesis that participate in cellular signaling.. Under conditions of oxidative stress, homocysteine (which is derived from SAM enters the transsulfuration pathway to generate glutathione, an important cytoprotective molecule against oxidative damage. As both experimental and clinical studies have shown that traumatic brain injury (TBI alters DNA and histone methylation and causes oxidative stress, we examined if TBI alters the plasma levels of methionine and its metabolites in human patients. Blood samples were collected from healthy volunteers (n = 20 and patients with mild TBI (GCS > 12; n = 20 or severe TBI (GCS < 8; n = 20 within the first 24 hours of injury. The levels of methionine and its metabolites in the plasma samples were analyzed by either liquid chromatography-mass spectrometry or gas chromatography-mass spectrometry (LC-MS or GC-MS. Severe TBI decreased the levels of methionine, SAM, betaine and 2-methylglycine as compared to healthy volunteers, indicating a decrease in metabolism through the transmethylation cycle. In addition, precursors for the generation of glutathione, cysteine and glycine were also found to be decreased as were intermediate metabolites of the gamma-glutamyl cycle (gamma-glutamyl amino acids and 5-oxoproline. Mild TBI also decreased the levels of methionine, α-ketobutyrate, 2 hydroxybutyrate and glycine, albeit to lesser

  9. Alteration In Bones Metabolism In Active Rheumatoid Arthritis

    International Nuclear Information System (INIS)

    The strength and integrity of the human skeleton depends on a delicate equilibrium between bone resorption and bone formation. Osteocalcin (OC) is synthesized by osteoblasts and is considered to be a marker of bone formation and helps in corporating calcium into bone tissue. Rheumatoid arthritis (RA) is an autoimmune inflammatory joint disease characterized by bone complication including bone pain, erosion and osteoporosis. The aim of the present study is to evaluate some factors responsible in bone metabolism termed OC, vitamin D (vit. D), oncostatin M (OSM), ionized calcium and alkaline phosphatase. Fifty pre-menopausal female patients with active RA and twenty healthy controls of the same age were included in the present study. Radioimmunoassay (RIA) was used to estimate serum OC and active vitamin D. The quantitative determination of ionized calcium and alkaline phosphatase were carried out colorimetrically. OSM was measured by ELISA and serum levels of OC and active vitamin D were significantly decreased in RA patients as compared to those of the control group. On the other hand, the levels of serum OSM, ionized calcium and alkaline phosphatase were significantly increased in the RA patients as compared to their healthy control subjects. The results of this study indicated that early investigation and therapy of disturbances of bone metabolism in active RA are necessary for better prognosis and exhibited the importance of OC as a diagnostic tool of alterations of bone metabolism in RA patients.

  10. PPARgamma in adipocyte differentiation and metabolism

    DEFF Research Database (Denmark)

    Siersbaek, Rasmus; Nielsen, Ronni; Mandrup, Susanne

    2010-01-01

    Adipocyte differentiation is controlled by a tightly regulated transcriptional cascade in which PPARgamma and members of the C/EBP family are key players. Here we review the roles of PPARgamma and C/EBPs in adipocyte differentiation with emphasis on the recently published genome-wide binding prof...

  11. REPEATED ACUTE STRESS INDUCED ALTERATIONS IN CARBOHYDRATE METABOLISM IN RAT

    Directory of Open Access Journals (Sweden)

    Nirupama R.

    2010-09-01

    Full Text Available Acute stress induced alterations in the activity levels of rate limiting enzymes and concentration of intermediates of different pathways of carbohydrate metabolism have been studied. Adult male Wistar rats were restrained (RS for 1 h and after an interval of 4 h they were subjected to forced swimming (FS exercise and appropriate controls were maintained. Five rats were killed before the commencement of the experiment (initial controls, 5 control and equal number of stressed rats were killed 2 h after RS and remaining 5 rats in each group were killed 4 h after FS. There was a significant increase in the adrenal 3β- hydroxy steroid dehydrogenase activity following RS, which showed further increase after FS compared to controls and thereby indicated stress response of rats. There was a significant increase in the blood glucose levels following RS which showed further increase and reached hyperglycemic condition after FS. The hyperglycemic condition due to stress was accompanied by significant increases in the activities of glutamate- pyruvate transaminase, glutamate- oxaloacetate transaminase, glucose -6- phosphatase and lactate dehydrogenase and significant decrease in the glucose -6- phosphate dehydrogenase and pyruvate dehydrogenase activities, whereas pyruvate kinase activity did not show any alteration compared to controls. Further, the glycogen and total protein contents of the liver were decreased whereas those of pyruvate and lactate showed significant increase compared to controls after RS as well as FS.The results put together indicate that acute stress induced hyperglycemia results due to increased gluconeogenesis and glycogenolysis without alteration in glycolysis. The study first time reveals that after first acute stress exposure, the subsequent stressful experience augments metabolic stress response leading to hyperglycemia. The results have relevance to human health as human beings are exposed to several stressors in a day and

  12. Metabolic alterations in children with environmental enteric dysfunction.

    Science.gov (United States)

    Semba, Richard D; Shardell, Michelle; Trehan, Indi; Moaddel, Ruin; Maleta, Kenneth M; Ordiz, M Isabel; Kraemer, Klaus; Khadeer, Mohammed; Ferrucci, Luigi; Manary, Mark J

    2016-01-01

    Environmental enteric dysfunction, an asymptomatic condition characterized by inflammation of the small bowel mucosa, villous atrophy, malabsorption, and increased intestinal permeability, is a major contributor to childhood stunting in low-income countries. Here we report the relationship of increased intestinal permeability with serum metabolites in 315 children without acute malnutrition, aged 12-59 months, in rural Malawi. Increased gut permeability was associated with significant differences in circulating metabolites that included lower serum phosphatidylcholines, sphingomyelins, tryptophan, ornithine, and citrulline, and elevated serum glutamate, taurine, and serotonin. Our findings suggest that environmental enteric dysfunction is characterized by alterations in important metabolites involved in growth and differentiation and gut function and integrity. PMID:27294788

  13. Arachidonate metabolism increases as rat alveolar type II cells differentiate in vitro

    International Nuclear Information System (INIS)

    Rat type II alveolar epithelial cells are known to undergo morphological and functional changes when maintained in culture for several days. Having previously demonstrated that these cells can deacylate free arachidonic acid (AA) and metabolize it to products of the cyclooxygenase pathway, the present study was undertaken to determine whether in vitro differentiation was accompanied by alterations in the availability and metabolism of AA. We assessed the constitutive and ionophore A23187-induced deacylation and metabolism of endogenous AA, as well as the metabolism of exogenously supplied AA, in primary cultures of rat type II cells at days 2, 4, and 7 after isolation. Levels of free endogenous AA were increased at day 4, whereas eicosanoid synthesis, predominantly prostaglandin E2 and prostacyclin, increased markedly only at day 7. A similar time course of augmentation of prostanoid release was seen in response to exogenous AA. Type II cells cultured on fibronectin, intended to hasten cell flattening and spreading, demonstrated accelerated increases in available free AA in response to A23187; cells cultured on basement membrane derived from Engelbreth-Holm-Swarm mouse sarcoma, known to maintain the type II phenotype, exhibited diminished levels of available free AA. From these findings, we conclude that alterations in arachidonate metabolism are linked to alterations in cellular phenotype. The potentiation of eicosanoid synthesis accompanying in vitro differentiation suggests a possible role for the alveolar epithelium in the modulation of inflammation and fibrosis in the distal lung

  14. Alterations in Lipid and Inositol Metabolisms in Two Dopaminergic Disorders.

    Directory of Open Access Journals (Sweden)

    Eva C Schulte

    Full Text Available Serum metabolite profiling can be used to identify pathways involved in the pathogenesis of and potential biomarkers for a given disease. Both restless legs syndrome (RLS and Parkinson`s disease (PD represent movement disorders for which currently no blood-based biomarkers are available and whose pathogenesis has not been uncovered conclusively. We performed unbiased serum metabolite profiling in search of signature metabolic changes for both diseases.456 metabolites were quantified in serum samples of 1272 general population controls belonging to the KORA cohort, 82 PD cases and 95 RLS cases by liquid-phase chromatography and gas chromatography separation coupled with tandem mass spectrometry. Genetically determined metabotypes were calculated using genome-wide genotyping data for the 1272 general population controls.After stringent quality control, we identified decreased levels of long-chain (polyunsaturated fatty acids of individuals with PD compared to both RLS (PD vs. RLS: p = 0.0001 to 5.80x10-9 and general population controls (PD vs. KORA: p = 6.09x10-5 to 3.45x10-32. In RLS, inositol metabolites were increased specifically (RLS vs. KORA: p = 1.35x10-6 to 3.96x10-7. The impact of dopaminergic drugs was reflected in changes in the phenylalanine/tyrosine/dopamine metabolism observed in both individuals with RLS and PD.A first discovery approach using serum metabolite profiling in two dopamine-related movement disorders compared to a large general population sample identified significant alterations in the polyunsaturated fatty acid metabolism in PD and implicated the inositol metabolism in RLS. These results provide a starting point for further studies investigating new perspectives on factors involved in the pathogenesis of the two diseases as well as possible points of therapeutic intervention.

  15. Does caffeine alter muscle carbohydrate and fat metabolism during exercise?

    DEFF Research Database (Denmark)

    Graham, Terry E; Battram, Danielle S; Dela, Flemming;

    2008-01-01

    Caffeine, an adenosine receptor antagonist, has been studied for decades as a putative ergogenic aid. In the past 2 decades, the information has overwhelmingly demonstrated that it indeed is a powerful ergogenic aid, and frequently theories have been proposed that this is due to alterations in fat...... and carbohydrate metabolism. While caffeine certainly mobilizes fatty acids from adipose tissue, rarely have measures of the respiratory exchange ratio indicated an increase in fat oxidation. However, this is a difficult measure to perform accurately during exercise, and small changes could be.......05) glycogen and increased (p < 0.05) citrate, acetyl-CoA, and glucose-6-phosphate. The only effects of caffeine were to increase (p < 0.05) citrate in resting muscle and cAMP in exercise. There is very little evidence to support the hypothesis that caffeine has ergogenic effects as a result of enhanced fat...

  16. The value of electroencephalography in differential diagnosis of altered mental status in emergency departments

    International Nuclear Information System (INIS)

    Objective: To evaluate the value of electroencephalography in patients with altered mental status in emergency departments. Methods: Demographical characteristics, types and aetiologies of seizures, and clinical outcomes of the patients were recorded. Patients were divided into 4 groups according to the complaints of admission: findings and symptoms of seizure; stroke and symptoms of stroke-related seizures; syncope; and metabolic abnormalities and other causes of altered mental status. The electroencephalography findings were classified into 3 groups: epileptiform discharges; paroxysmal electroencephalography abnormalities; and background slowing. Electroencephalography abnormalities in each subgroup were evaluated. SPSS 21 was used for statistical analysis. Results: Of the total 190 patients in the study, 117(61.6%) had pathological electroencephalography findings. The main reason for electroencephalography in the emergency department was the presence of seizure findings and symptoms in 98(51.6%) patients. The ratio of electroencephalography abnormality was higher in patients who were admitted with complaints of metabolic abnormality-related consciousness disturbances (p<0.001). A total of 124(65.3%) patients had neuroimagings. Electroencephalography abnormalities were found to be significantly higher in patients with neuroimagings compared to those without neuroimagings (p<0.003). Conclusion: Despite advanced neuroimaging techniques, electroencephalography is still an important tool in the differential diagnosis of altered mental status such as epileptic seizures, metabolic abnormalities, pseudo-seizures and syncope. (author)

  17. Metabolic alterations in bladder cancer: applications for cancer imaging.

    Science.gov (United States)

    Whyard, Terry; Waltzer, Wayne C; Waltzer, Douglas; Romanov, Victor

    2016-02-01

    Treatment planning, outcome and prognosis are strongly related to the adequate tumor staging for bladder cancer (BC). Unfortunately, a large discrepancy exists between the preoperative clinical and final pathologic staging. Therefore, an advanced imaging-based technique is crucial for adequate staging. Although Magnetic Resonance Imaging (MRI) is currently the best in vivo imaging technique for BC staging because of its excellent soft-tissue contrast and absence of ionizing radiation it lacks cancer-specificity. Tumor-specific positron emission tomography (PET), which is based on the Warburg effect (preferential uptake of glucose by cancer cells), exploits the radioactively-labeled glucose analogs, i.e., FDG. Although FDG-PET is highly cancer specific, it lacks resolution and contrast quality comparable with MRI. Chemical Exchange Saturation Transfer (CEST) MRI enables the detection of low concentrations of metabolites containing protons. BC is an attractive target for glucose CEST MRI because, in addition to the typical systemic administration, glucose might also be directly applied into the bladder to reduce toxicity-related complications. As a first stage of the development of a contrast-specific BC imaging technique we have studied glucose uptake by bladder epithelial cells and have observed that glucose is, indeed, consumed by BC cells with higher intensity than by non-transformed urothelial cells. This effect might be partly explained by increased expression of glucose transporters GLUT1 and GLUT3 in transformed cells as compared to normal urothelium. We also detected higher lactate production by BC cells which is another cancer-specific manifestation of the Warburg effect. In addition, we have observed other metabolic alterations in BC cells as compared to non-transformed cells: in particular, increased pyruvate synthesis. When glucose was substituted by glutamine in culture media, preferential uptake of glutamine by BC cells was observed. The preferential

  18. Regional metabolic alterations in the hypothalamus of restricted rats

    International Nuclear Information System (INIS)

    Alterations of intermediary and neurotransmitter metabolism in the hypothalamus of rats on restricted intakes have been documented. The rates of fatty acid oxidation (FAO) and glutamic acid decarboxylase (GAD) were measured in hypothalamic sites of restricted or ad libitum fed rats. Female Sprague-Dawley rats (230 g) receiving a semi-purified diet received either ad lib (AL), 3/7 of ad lib as a single meal at 1700 h (R), 3/7 of ad lib by intubation as three equally spaced meals (TF) or ad lib for 3 d followed by 4 d of starvation (S). Rats were sacrificed at 0800 h and the brains quickly removed. FAO: Two 1.0 mm slices were dissected from the hypothalamus and areas corresponding to the VMN, PVN, and DMN removed with a 20 gauge punch. An 18 gauge punch was used to remove MFB/LHA. Bilateral punches were incubated at 37 C for 2 h in Krebs-bicarb. media containing (1-14C) palmitate (0.1 μCi)/μmole). GAD: The VMN and MFB-LHA were dissected as above. GAD activity was measured in homogenates using L-(14C) glutamate (1 +Ci/μmole) as described by Tappaz et al. (1976). Restriction significantly reduced FAO rates in the MFB/LHA. FAO rate in the VMN was not altered when restriction occurred as a single meal per day (R) but was reduced with restriction as three small meals per day (TF) or a 4 d starvation (S). No differences were noted in PVN or DMN FAO rates. GAD activity did not differ with restriction except in response to starvation in the VMN

  19. TCDD alters medial epithelial cell differentiation during palatogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, B.D.; Birnbaum, L.S. (National Institute of Environmental Health Sciences, Research Triangle Park, NC (USA))

    1989-06-15

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widely distributed, persistent environmental contaminant that is teratogenic in mice, where it induces hydronephrosis and cleft palate. The incidence of clefting has been shown to be dose dependent after exposure on either gestation Day (GD) 10 or 12, although the embryo is more susceptible on GD 12. TCDD-exposed palatal shelves meet but do not fuse, and programmed cell death of the medial epithelial cells is inhibited. The mechanism of action through which TCDD alters the program of medial cell development has not been examined in earlier studies, and it is not known whether the mechanism is the same regardless of the dose or developmental stage of exposure. In this study, C57BL/6N mice, a strain sensitive to TCDD, were dosed orally on GD 10 or 12 with 0, 6, 12, 24, or 30 micrograms/kg body wt, in 10 ml corn oil/kg. Embryonic palatal shelves were examined on GD 14, 15, or 16. The degree of palatal closure, epithelial surface morphology, and cellular ultrastructure, the incorporation of (3H)TdR, the expression of EGF receptors, and the binding of 125I-EGF were assessed. After exposure on GD 10 or 12, TCDD altered the differentiation pathway of the medial epithelial cells. The palatal shelves were of normal size and overall morphology, but fusion of the medial epithelia of the opposing shelves did not occur. TCDD prevented programmed cell death of the medial peridermal cells. The expression of EGF receptors by medial cells continued through Day 16 and the receptors were able to bind ligand. The medial cells differentiated into a stratified, squamous, keratinizing epithelium. The shift in phenotype to an oral-like epithelium occurred after exposure on either GD 10 or 12. At the lower dose (6 micrograms/kg), fewer cleft palates were produced, but those shelves which did respond had a fully expressed shift in differentiation.

  20. TCDD alters medial epithelial cell differentiation during palatogenesis

    International Nuclear Information System (INIS)

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a widely distributed, persistent environmental contaminant that is teratogenic in mice, where it induces hydronephrosis and cleft palate. The incidence of clefting has been shown to be dose dependent after exposure on either gestation Day (GD) 10 or 12, although the embryo is more susceptible on GD 12. TCDD-exposed palatal shelves meet but do not fuse, and programmed cell death of the medial epithelial cells is inhibited. The mechanism of action through which TCDD alters the program of medial cell development has not been examined in earlier studies, and it is not known whether the mechanism is the same regardless of the dose or developmental stage of exposure. In this study, C57BL/6N mice, a strain sensitive to TCDD, were dosed orally on GD 10 or 12 with 0, 6, 12, 24, or 30 micrograms/kg body wt, in 10 ml corn oil/kg. Embryonic palatal shelves were examined on GD 14, 15, or 16. The degree of palatal closure, epithelial surface morphology, and cellular ultrastructure, the incorporation of [3H]TdR, the expression of EGF receptors, and the binding of 125I-EGF were assessed. After exposure on GD 10 or 12, TCDD altered the differentiation pathway of the medial epithelial cells. The palatal shelves were of normal size and overall morphology, but fusion of the medial epithelia of the opposing shelves did not occur. TCDD prevented programmed cell death of the medial peridermal cells. The expression of EGF receptors by medial cells continued through Day 16 and the receptors were able to bind ligand. The medial cells differentiated into a stratified, squamous, keratinizing epithelium. The shift in phenotype to an oral-like epithelium occurred after exposure on either GD 10 or 12. At the lower dose (6 micrograms/kg), fewer cleft palates were produced, but those shelves which did respond had a fully expressed shift in differentiation

  1. Differential metabolic consequences of fumarate hydratase and respiratory chain defects

    OpenAIRE

    Raimundo, Nuno; Ahtinen, Jouni; Fumić, Ksenija; Barić, Ivo; Remes, Anne M.; Renkonen, Risto; Lapatto, Risto; Suomalainen, Anu

    2008-01-01

    Differential metabolic consequences of fumarate hydratase and respiratory chain defects correspondance: Corresponding author. Research Program of Molecular Neurology, Biomedicum-Helsinki, room c523a, Haartmaninkatu 8, Helsinki University; 00290 Helsinki, Finland. Tel.: +358 9 47171 965; fax: +358 9 47171 964. (Suomalainen, Anu) (Suomalainen, Anu) Program of Molecular Neurology--> , Biomedicum-Helsinki--> ...

  2. Altered Sphingolipid Metabolism in Patients with Metastatic Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Todd E. Fox

    2013-07-01

    Full Text Available Although numerous genetic mutations and amplifications have been identified in pancreatic cancer, much of the molecular pathogenesis of the disease remains undefined. While proteomic and transcriptomic analyses have been utilized to probe and characterize pancreatic tumors, lipidomic analyses have not been applied to identify perturbations in pancreatic cancer patient samples. Thus, we utilized a mass spectrometry-based lipidomic approach, focused towards the sphingolipid class of lipids, to quantify changes in human pancreatic cancer tumor and plasma specimens. Subgroup analysis revealed that patients with positive lymph node metastasis have a markedly higher level of ceramide species (C16:0 and C24:1 in their tumor specimens compared to pancreatic cancer patients without nodal disease or to patients with pancreatitis. Also of interest, ceramide metabolites, including phosphorylated (sphingosine- and sphinganine-1-phosphate and glycosylated (cerebroside species were elevated in the plasma, but not the pancreas, of pancreatic cancer patients with nodal disease. Analysis of plasma level of cytokine and growth factors revealed that IL-6, IL-8, CCL11 (eotaxin, EGF and IP10 (interferon inducible protein 10, CXCL10 were elevated in patients with positive lymph nodes metastasis, but that only IP10 and EGF directly correlated with several sphingolipid changes. Taken together, these data indicate that sphingolipid metabolism is altered in human pancreatic cancer and associated with advanced disease. Assessing plasma and/or tissue sphingolipids could potentially risk stratify patients in the clinical setting.

  3. Differential diagnosis of altered mind/body perception.

    Science.gov (United States)

    Gabbard, G O; Twemlow, S W; Jones, F C

    1982-11-01

    Considerable confusion exists in the psychiatric literature concerned with states of consciousness in which there is an altered perception of the mind/body relationship; related but different terms are often used interchangeably, with a lack of definitional rigor. The purpose of this paper is to bring clarity to this group of related phenomena by differentiating out-of-body experience (OBE) from depersonalization, autoscopic phenomena and schizophrenic body distortions (such as boundary loss), which are the principal entities with which the syndrome may be confused. The problem of variable definition of the syndromes is compounded by the fact that some studies deal with psychiatric or medical patients, others focus on nonpatients, and still others deal with both groups. The fact that some groups of persons with experiences of altered mind/body perception do not define themselves as patients, do not seek treatment, and may not need treatment underscores the need for clarification. Following an explication of the different syndromes and their characteristics, we will briefly consider treatment implications. PMID:7146229

  4. Alteration of mammalian cell metabolism by dynamic nutrient feeding

    OpenAIRE

    Zhou, Weichang; Rehm, Jutta; Europa, Anna; Hu, Wei-Shou

    1997-01-01

    The metabolism of hybridoma cells was controlled to reduce metabolic formation in fed-batch cultures by dynamically feeding a salt-free nutrient concentrate. For this purpose, on-line oxygen uptake rate (OUR) measurement was used to estimate the metabolic demand of hybridoma cells and to determine the feeding rate of a concentrated solution of salt-free DMEM/F12 medium supplemented with other medium components. The ratios among glucose, glutamine and other medium components in the feeding nut...

  5. Assessment of (patho)physiologic alterations in equine muscle metabolism

    NARCIS (Netherlands)

    Westermann, C.M.

    2008-01-01

    This thesis focussed on the diagnostic use of metabolic products and enzymes found in plasma, urine and muscle of the horse, the identification of which can reveal physiological or pathological changes in muscle metabolism. In this thesis analyses of carbohydrate-, lipid- and protein metabolites hav

  6. Meal time shift disturbs circadian rhythmicity along with metabolic and behavioral alterations in mice.

    Directory of Open Access Journals (Sweden)

    Ji-Ae Yoon

    Full Text Available In modern society, growing numbers of people are engaged in various forms of shift works or trans-meridian travels. Such circadian misalignment is known to disturb endogenous diurnal rhythms, which may lead to harmful physiological consequences including metabolic syndrome, obesity, cancer, cardiovascular disorders, and gastric disorders as well as other physical and mental disorders. However, the precise mechanism(s underlying these changes are yet unclear. The present work, therefore examined the effects of 6 h advance or delay of usual meal time on diurnal rhythmicities in home cage activity (HCA, body temperature (BT, blood metabolic markers, glucose homeostasis, and expression of genes that are involved in cholesterol homeostasis by feeding young adult male mice in a time-restrictive manner. Delay of meal time caused locomotive hyperactivity in a significant portion (42% of subjects, while 6 h advance caused a torpor-like symptom during the late scotophase. Accordingly, daily rhythms of blood glucose and triglyceride were differentially affected by time-restrictive feeding regimen with concurrent metabolic alterations. Along with these physiological changes, time-restrictive feeding also influenced the circadian expression patterns of low density lipoprotein receptor (LDLR as well as most LDLR regulatory factors. Strikingly, chronic advance of meal time induced insulin resistance, while chronic delay significantly elevated blood glucose levels. Taken together, our findings indicate that persistent shifts in usual meal time impact the diurnal rhythms of carbohydrate and lipid metabolisms in addition to HCA and BT, thereby posing critical implications for the health and diseases of shift workers.

  7. Burn injury differentially alters whole-blood and organ glutathione synthesis rates: An experimental model

    Directory of Open Access Journals (Sweden)

    Zhe-Wei Fei

    2013-09-01

    Full Text Available Previous studies from our laboratories revealed a reduced rate of whole-blood (WB glutathione (GSH synthesis in severely burned patients. To determine whether WB GSH metabolism is an indicator of the status of GSH metabolism in one or more of the major organs, we used a burn rabbit model to determine GSH concentrations and rates of synthesis in WB, liver, lungs, kidney, and skeletal muscle. L-[1- 13 C]-cysteine was infused intravenously for 6 h in rabbits at 3 days post-burn and in sham burn controls. WB and organ 13 C-enrichment of cysteine and GSH was determined by gas chromatography/mass spectrometry. Plasma cysteine metabolic flux was increased significantly (P < 0.01 following burn injury. WB, liver, and lung GSH concentrations (P = 0.054, P < 0.05, and P < 0.05, respectively and fractional rates of GSH synthesis (P < 0.05, P< 0.01, and P< 0.05, respectively were reduced at 3 days post-burn. Kidney was unaffected. There also appears to be an increased rate of GSH transport out of the liver after burn injury. Hence, there is a differential impact of burn injury on tissue and organ GSH status, with WB qualitatively reflecting the changes in lung and liver. It will be important to determine whether these changes are due to alterations in the intrinsic capacity for GSH synthesis and/or availability of amino acid precursors of GSH.

  8. Trichogramma parasitoids alter the metabolic physiology of Manduca eggs.

    Science.gov (United States)

    Potter, Kristen A; Woods, H Arthur

    2012-09-01

    Egg parasitoids face unique developmental constraints. First, they have exceptionally limited resources to support themselves and their siblings through three life stages. Second, they develop within the physiological system of another species, which they modify to their own ends. We examined how these constraints affect the metabolic physiology of egg parasitism, and whether parasitoids retool their host eggshell to account for their different metabolic demands. Higher-conductance eggshells allow more oxygen to reach the developing parasitoids, but also allow more water to leave the egg. We used Manduca sexta (Lepidoptera: Sphingidae) eggs and Trichogramma (Hymenoptera: Trichogrammatidae) parasitoids from southeastern AZ, USA. Compared with unparasitized Manduca eggs, eggs parasitized by Trichogramma had lower peak metabolic rates and approximately 50 per cent lower metabolic efficiency. However, developing Trichogramma were far more efficient than typical transfer efficiencies between tropic levels (approx. 10%). Even within a few hours of parasitization, eggs containing more Trichogramma had lower per-parasitoid metabolic rates, suggesting that parasitoid larvae have mechanisms for rapidly adjusting their metabolic rates based on number of siblings. Parasitoids also appear to control the conductance of their host eggshell: their different metabolic demands were mirrored by shifts in rates of water loss. PMID:22719035

  9. Metabolic alterations following visceral fat removal and expansion

    OpenAIRE

    Foster, Michelle T.; Pagliassotti, Michael J.

    2012-01-01

    Increased visceral adiposity is a risk factor for metabolic disorders such as dyslipidemia, hypertension, insulin resistance and type 2 diabetes, whereas peripheral (subcutaneous) obesity is not. Though the specific mechanisms which contribute to these adipose depot differences are unknown, visceral fat accumulation is proposed to result in metabolic dysregulation because of increased effluent, e.g., fatty acids and/or adipokines/cytokines, to the liver via the hepatic portal vein. Pathologic...

  10. Trichogramma parasitoids alter the metabolic physiology of Manduca eggs

    OpenAIRE

    Potter, Kristen A.; Woods, H. Arthur

    2012-01-01

    Egg parasitoids face unique developmental constraints. First, they have exceptionally limited resources to support themselves and their siblings through three life stages. Second, they develop within the physiological system of another species, which they modify to their own ends. We examined how these constraints affect the metabolic physiology of egg parasitism, and whether parasitoids retool their host eggshell to account for their different metabolic demands. Higher-conductance eggshells ...

  11. Mechanisms of Indomethacin-Induced Alterations in the Choline Phospholipid Metabolism of Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Kristine Glunde

    2006-09-01

    Full Text Available Human mammary epithelial cells (HMECs exhibit an increase in phosphocholine (PC and total cholinecontaining compounds, as well as a switch from high glycerophosphocholine (GPC/low PC to low GPC/high PC, with progression to malignant phenotype. The treatment of human breast cancer cells with a nonsteroidal anti-inflammatory agent, indomethacin, reverted the high PC/low GPC pattern to a low PC/high GPC pattern indicative of a less malignant phenotype, supported by decreased invasion. Here, we have characterized mechanisms underlying indomethacininduced alterations in choline membrane metabolism in malignant breast cancer cells and nonmalignant HMECs labeled with [1,2-13C]choline using 1H and 13C magnetic resonance spectroscopy. Microarray gene expression analysis was performed to understand the molecular mechanisms underlying these changes. In breast cancer cells, indomethacin treatment activated phospholipases that, combined with an increased choline phospholipid biosynthesis, led to increased GPC and decreased PC levels. However, in nonmalignant HMECs, activation of the anabolic pathway alone was detected following indomethacin treatment. Following indomethacin treatment in breast cancer cells, several candidate genes, such as interleukin 8, NGFB, CSF2, RHOB, EDN1, and JUNB, were differentially expressed, which may have contributed to changes in choline metabolism through secondary effects or signaling cascades leading to changes in enzyme activity.

  12. Silibinin regulates lipid metabolism and differentiation in functional human adipocytes

    Directory of Open Access Journals (Sweden)

    Ignazio eBarbagallo

    2016-01-01

    Full Text Available Silibinin, a natural plant flavonoid, is the main active constituent found in milk thistle (Silybum marianum. It is known to have hepatoprotective, anti-neoplastic effect and suppresses lipid accumulation in adipocytes. Objective of this study was to investigate the effect of silibinin on adipogenic differentiation and thermogenic capacity of human adipose tissue derived mesenchymal stem cells. Silibinin (10 μM treatment, either at the beginning or at the end of adipogenic differentiation, resulted in an increase of SIRT-1, PPARα, Pgc-1α and UCPs gene expression. Moreover, silibinin administration resulted in a decrease of PPARγ, FABP4, FAS and MEST/PEG1 gene expression during the differentiation, confirming that this compound is able to reduce fatty acid accumulation and adipocyte size. Our data showed that silibinin regulated adipocyte lipid metabolism, inducing thermogenesis and promoting a brown remodelling in adipocyte. Taken together, our findings suggest that silibinin increases UCPs expression by stimulation of SIRT1, PPARα and Pgc-1α, improved metabolic parameters, decreased lipid mass leading to the formation of functional adipocytes.

  13. Radiation Exposure Alters Expression of Metabolic Enzyme Genes in Mice

    Science.gov (United States)

    Wotring, V. E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2011-01-01

    Most administered pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand the effects of spaceflight on the enzymes of the liver and exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. Additionally, it has been previous noted that pre-exposure to small radiation doses seems to confer protection against later and larger radiation doses. This protective power of pre-exposure has been called a priming effect or radioadaptation. This study is an effort to examine the drug metabolizing effects of radioadaptation mechanisms that may be triggered by early exposure to low radiation doses.

  14. Differential metabolism of Mycoplasma species as revealed by their genomes

    Directory of Open Access Journals (Sweden)

    Fabricio B.M. Arraes

    2007-01-01

    Full Text Available The annotation and comparative analyses of the genomes of Mycoplasma synoviae and Mycoplasma hyopneumonie, as well as of other Mollicutes (a group of bacteria devoid of a rigid cell wall, has set the grounds for a global understanding of their metabolism and infection mechanisms. According to the annotation data, M. synoviae and M. hyopneumoniae are able to perform glycolytic metabolism, but do not possess the enzymatic machinery for citrate and glyoxylate cycles, gluconeogenesis and the pentose phosphate pathway. Both can synthesize ATP by lactic fermentation, but only M. synoviae can convert acetaldehyde to acetate. Also, our genome analysis revealed that M. synoviae and M. hyopneumoniae are not expected to synthesize polysaccharides, but they can take up a variety of carbohydrates via the phosphoenolpyruvate-dependent phosphotransferase system (PEP-PTS. Our data showed that these two organisms are unable to synthesize purine and pyrimidine de novo, since they only possess the sequences which encode salvage pathway enzymes. Comparative analyses of M. synoviae and M. hyopneumoniae with other Mollicutes have revealed differential genes in the former two genomes coding for enzymes that participate in carbohydrate, amino acid and nucleotide metabolism and host-pathogen interaction. The identification of these metabolic pathways will provide a better understanding of the biology and pathogenicity of these organisms.

  15. Antidepressants Alter Cerebrovascular Permeability and Metabolic Rate in Primates

    Science.gov (United States)

    Preskorn, Sheldon H.; Raichle, Marcus E.; Hartman, Boyd K.

    1982-07-01

    External detection of the annihilation radiation produced by water labeled with oxygen-15 was used to measure cerebrovascular permeability and cerebral blood flow in six rhesus monkeys. Use of oxygen-15 also permitted assessment of cerebral metabolic rate in two of the monkeys. Amitriptyline produced a dose-dependent, reversible increase in permeability at plasma drug concentrations which are therapeutic for depressed patients. At the same concentrations the drug also produced a 20 to 30 percent reduction in cerebral metabolic rate. At higher doses normal autoregulation of cerebral blood flow was suspended, but responsivity to arterial carbon dioxide was normal.

  16. Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects

    KAUST Repository

    Papsdorf, Katharina

    2015-09-03

    Background Protein aggregation and its pathological effects are the major cause of several neurodegenerative diseases. In Huntington’s disease an elongated stretch of polyglutamines within the protein Huntingtin leads to increased aggregation propensity. This induces cellular defects, culminating in neuronal loss, but the connection between aggregation and toxicity remains to be established. Results To uncover cellular pathways relevant for intoxication we used genome-wide analyses in a yeast model system and identify fourteen genes that, if deleted, result in higher polyglutamine toxicity. Several of these genes, like UGO1, ATP15 and NFU1 encode mitochondrial proteins, implying that a challenged mitochondrial system may become dysfunctional during polyglutamine intoxication. We further employed microarrays to decipher the transcriptional response upon polyglutamine intoxication, which exposes an upregulation of genes involved in sulfur and iron metabolism and mitochondrial Fe-S cluster formation. Indeed, we find that in vivo iron concentrations are misbalanced and observe a reduction in the activity of the prominent Fe-S cluster containing protein aconitase. Like in other yeast strains with impaired mitochondria, non-fermentative growth is impossible after intoxication with the polyglutamine protein. NMR-based metabolic analyses reveal that mitochondrial metabolism is reduced, leading to accumulation of metabolic intermediates in polyglutamine-intoxicated cells. Conclusion These data show that damages to the mitochondrial system occur in polyglutamine intoxicated yeast cells and suggest an intricate connection between polyglutamine-induced toxicity, mitochondrial functionality and iron homeostasis in this model system.

  17. Recombinant bacterial hemoglobin alters metabolism of Aspergillus niger

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Diano, Audrey; Nielsen, Jens

    2009-01-01

    The filamentous fungus Aspergillus niger is used extensively for the production of enzymes and organic acids. A major problem in industrial fermentations with this fungus is to ensure sufficient supply of oxygen required for respiratory metabolism of the fungus. In case of oxygen limitation, the ...... to attenuate unwanted side effects resulting from oxygen limitation during industrial fermentations with A. niger.......The filamentous fungus Aspergillus niger is used extensively for the production of enzymes and organic acids. A major problem in industrial fermentations with this fungus is to ensure sufficient supply of oxygen required for respiratory metabolism of the fungus. In case of oxygen limitation, the...... behind the strong gpdA promoter from Aspergillus nidulans. Analysis of secreted metabolites, oxygen uptake, CO2 evolution and biomass formation points towards a relief of stress in the mutant expressing VHB when it is exposed to oxygen limitation. Our findings therefore point to an interesting strategy...

  18. Altered calcium metabolism in aging CA1 hippocampal pyramidal neurons

    OpenAIRE

    Oh, M. Matthew; Oliveira, Fernando A.; Waters, Jack; Disterhoft, John F.

    2013-01-01

    Altered neuronal calcium homeostasis is widely hypothesized to underlie cognitive deficits in normal aging subjects, but the mechanisms that underlie this change are unknown, possibly due to a paucity of direct measurements from aging neurons. Using CCD and two-photon calcium imaging techniques on CA1 pyramidal neurons from young and aged rats, we show that calcium influx across the plasma membrane increases with aging, and that this change is countered by increased intracellular calcium buff...

  19. Metabolic Alterations Associated to Brain Dysfunction in Diabetes

    OpenAIRE

    João M N Duarte

    2015-01-01

    From epidemiological studies it is known that diabetes patients display increased risk of developing dementia. Moreover, cognitive impairment and Alzheimer’s disease (AD) are also accompanied by impaired glucose homeostasis and insulin signalling. Although there is plenty of evidence for a connection between insulin-resistant diabetes and AD, definitive linking mechanisms remain elusive. Cerebrovascular complications of diabetes, alterations in glucose homeostasis and insulin signalling, as w...

  20. Metabolic alterations in different developmental stages of Pilocarpus microphyllus.

    Science.gov (United States)

    Abreu, Ilka N; Choi, Young H; Sawaya, Alexandra C H F; Eberlin, Marcos N; Mazzafera, Paulo; Verpoorte, Robert

    2011-02-01

    Pilocarpine is an imidazole alkaloid that has been used for more than a century in glaucoma treatment. It is present in several species of the Pilocarpus genus (jaborandi), with its highest concentrations in P. microphyllus. In addition to pilocarpine, pilosine--an imidazole alkaloid without pharmacological use--is produced in high concentrations in mature plants. A metabolomic study was carried out on juvenile and mature plants to obtain information about pilocarpine metabolism at different developmental stages. Methanol-water and alkaloid extracts were analyzed by ¹H NMR and ESI-MS. Metabolic profiles from both techniques showed clear differences between various developmental stages. Intense signals in the aromatic region of the ¹H NMR spectrum and ions from pilosine and related alkaloids by ESI/MS were found only in extracts from mature plant. Two new imidazole alkaloids were identified by MS(n). Our results suggest that pilosine is produced exclusively in mature developmental stage, and juvenile plant material seems to be appropriate for further studies on pilocarpine biosynthesis. PMID:20845264

  1. Antagonist of prostaglandin E2 receptor 4 induces metabolic alterations in liver of mice.

    Science.gov (United States)

    Li, Ning; Zhang, Limin; An, Yanpeng; Zhang, Lulu; Song, Yipeng; Wang, Yulan; Tang, Huiru

    2015-03-01

    Prostaglandin E2 receptor 4 (EP4) is one of the receptors for prostaglandin E2 and plays important roles in various biological functions. EP4 antagonists have been used as anti-inflammatory drugs. To investigate the effects of an EP4 antagonist (L-161982) on the endogenous metabolism in a holistic manner, we employed a mouse model, and obtained metabolic and transcriptomic profiles of multiple biological matrixes, including serum, liver, and urine of mice with and without EP4 antagonist (L-161982) exposure. We found that this EP4 antagonist caused significant changes in fatty acid metabolism, choline metabolism, and nucleotide metabolism. EP4 antagonist exposure also induced oxidative stress to mice. Our research is the first of its kind to report information on the alteration of metabolism associated with an EP4 antagonist. This information could further our understanding of current and new biological functions of EP4. PMID:25669961

  2. Altered metabolism of growth hormone receptor mutant mice: a combined NMR metabonomics and microarray study.

    Directory of Open Access Journals (Sweden)

    Horst Joachim Schirra

    Full Text Available BACKGROUND: Growth hormone is an important regulator of post-natal growth and metabolism. We have investigated the metabolic consequences of altered growth hormone signalling in mutant mice that have truncations at position 569 and 391 of the intracellular domain of the growth hormone receptor, and thus exhibit either low (around 30% maximum or no growth hormone-dependent STAT5 signalling respectively. These mutations result in altered liver metabolism, obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: The analysis of metabolic changes was performed using microarray analysis of liver tissue and NMR metabonomics of urine and liver tissue. Data were analyzed using multivariate statistics and Gene Ontology tools. The metabolic profiles characteristic for each of the two mutant groups and wild-type mice were identified with NMR metabonomics. We found decreased urinary levels of taurine, citrate and 2-oxoglutarate, and increased levels of trimethylamine, creatine and creatinine when compared to wild-type mice. These results indicate significant changes in lipid and choline metabolism, and were coupled with increased fat deposition, leading to obesity. The microarray analysis identified changes in expression of metabolic enzymes correlating with alterations in metabolite concentration both in urine and liver. Similarity of mutant 569 to the wild-type was seen in young mice, but the pattern of metabolites shifted to that of the 391 mutant as the 569 mice became obese after six months age. CONCLUSIONS/SIGNIFICANCE: The metabonomic observations were consistent with the parallel analysis of gene expression and pathway mapping using microarray data, identifying metabolites and gene transcripts involved in hepatic metabolism, especially for taurine, choline and creatinine metabolism. The systems biology approach applied in this study provides a coherent picture of metabolic changes resulting from impaired STAT5 signalling by the growth hormone

  3. Plant interactions alter the predictions of metabolic scaling theory

    DEFF Research Database (Denmark)

    Lin, Yue; Berger, Uta; Grimm, Volker;

    2013-01-01

    Metabolic scaling theory (MST) is an attempt to link physiological processes of individual organisms with macroecology. It predicts a power law relationship with an exponent of 24/3 between mean individual biomass and density during densitydependent mortality (self-thinning). Empirical tests have...... produced variable results, and the validity of MST is intensely debated. MST focuses on organisms’ internal physiological mechanisms but we hypothesize that ecological interactions can be more important in determining plant mass-density relationships induced by density. We employ an individual-based model...... of plant stand development that includes three elements: a model of individual plant growth based on MST, different modes of local competition (size-symmetric vs. -asymmetric), and different resource levels. Our model is consistent with the observed variation in the slopes of self-thinning trajectories...

  4. Does acute caffeine ingestion alter brain metabolism in young adults?

    Science.gov (United States)

    Xu, Feng; Liu, Peiying; Pekar, James J; Lu, Hanzhang

    2015-04-15

    Caffeine, as the most commonly used stimulant drug, improves vigilance and, in some cases, cognition. However, the exact effect of caffeine on brain activity has not been fully elucidated. Because caffeine has a pronounced vascular effect which is independent of any neural effects, many hemodynamics-based methods such as fMRI cannot be readily applied without a proper calibration. The scope of the present work is two-fold. In Study 1, we used a recently developed MRI technique to examine the time-dependent changes in whole-brain cerebral metabolic rate of oxygen (CMRO2) following the ingestion of 200mg caffeine. It was found that, despite a pronounced decrease in CBF (pextraction fraction (OEF) was significantly elevated (p=0.002) to fully compensate for the reduced blood supply. Using the whole-brain finding as a reference, we aim to investigate whether there are any regional differences in the brain's response to caffeine. Therefore, in Study 2, we examined regional heterogeneities in CBF changes following the same amount of caffeine ingestion. We found that posterior brain regions such as posterior cingulate cortex and superior temporal regions manifested a slower CBF reduction, whereas anterior brain regions including dorsolateral prefrontal cortex and medial frontal cortex showed a faster rate of decline. These findings have a few possible explanations. One is that caffeine may result in a region-dependent increase or decrease in brain activity, resulting in an unaltered average brain metabolic rate. The other is that caffeine's effect on vasculature may be region-specific. Plausibility of these explanations is discussed in the context of spatial distribution of the adenosine receptors. PMID:25644657

  5. Tumor Necrosis Factor, but Not Neutrophils, Alters the Metabolic Profile in Acute Experimental Arthritis

    Science.gov (United States)

    Oliveira, Marina C.; Tavares, Luciana P.; Vago, Juliana P.; Batista, Nathália V.; Queiroz-Junior, Celso M.; Vieira, Angelica T.; Menezes, Gustavo B.; Sousa, Lirlândia P.; van de Loo, Fons A. J.; Teixeira, Mauro M.; Amaral, Flávio A.; Ferreira, Adaliene V. M.

    2016-01-01

    Metabolic alterations are associated with arthritis apart from obesity. However, it is still unclear which is the underlying process behind these metabolic changes. Here, we investigate the role of tumor necrosis factor (TNF) in this process in an acute model of antigen-induced arthritis (AIA). Immunized male BALB/c mice received an intra-articular injection of PBS (control) or methylated bovine serum albumin (mBSA) into their knees, and were also pre-treated with different drugs: Etanercept, an anti-TNF drug, DF2156A, a CXCR1/2 receptor antagonist, or a monoclonal antibody RB6-8C5 to deplete neutrophils. Local challenge with mBSA evoked an acute neutrophil influx into the knee joint, and enhanced the joint nociception, along with a transient systemic metabolic alteration (higher levels of glucose and lipids, and altered adipocytokines). Pre-treatment with the conventional biological Etanercept, an inhibitor of TNF action, ameliorated the nociception and the acute joint inflammation dominated by neutrophils, and markedly improved many of the altered systemic metabolites (glucose and lipids), adipocytokines and PTX3. However, the lessening of metabolic changes was not due to diminished accumulation of neutrophils in the joint by Etanercept. Reduction of neutrophil recruitment by pre-treating AIA mice with DF2156A, or even the depletion of these cells by using RB6-8C5 reduced all of the inflammatory parameters and hypernociception developed after AIA challenge, but could not prevent the metabolic changes. Therefore, the induction of joint inflammation provoked acute metabolic alterations which were involved with TNF. We suggest that the role of TNF in arthritis-associated metabolic changes is not due to local neutrophils, which are the major cells present in this model, but rather due to cytokines. PMID:26742100

  6. Dried plum's unique capacity to reverse bone loss and alter bone metabolism in postmenopausal osteoporosis model.

    Directory of Open Access Journals (Sweden)

    Elizabeth Rendina

    Full Text Available Interest in dried plum has increased over the past decade due to its promise in restoring bone and preventing bone loss in animal models of osteoporosis. This study compared the effects of dried plum on bone to other dried fruits and further explored the potential mechanisms of action through which dried plum may exert its osteoprotective effects. Adult osteopenic ovariectomized (OVX C57BL/6 mice were fed either a control diet or a diet supplemented with 25% (w/w dried plum, apple, apricot, grape or mango for 8 weeks. Whole body and spine bone mineral density improved in mice consuming the dried plum, apricot and grape diets compared to the OVX control mice, but dried plum was the only fruit to have an anabolic effect on trabecular bone in the vertebra and prevent bone loss in the tibia. Restoration of biomechanical properties occurred in conjunction with the changes in trabecular bone in the spine. Compared to other dried fruits in this study, dried plum was unique in its ability to down-regulate osteoclast differentiation coincident with up-regulating osteoblast and glutathione (GPx activity. These alterations in bone metabolism and antioxidant status compared to other dried fruits provide insight into dried plum's unique effects on bone.

  7. Alterations in cancer cell metabolism: the Warburg effect and metabolic adaptation.

    Science.gov (United States)

    Asgari, Yazdan; Zabihinpour, Zahra; Salehzadeh-Yazdi, Ali; Schreiber, Falk; Masoudi-Nejad, Ali

    2015-05-01

    The Warburg effect means higher glucose uptake of cancer cells compared to normal tissues, whereas a smaller fraction of this glucose is employed for oxidative phosphorylation. With the advent of high throughput technologies and computational systems biology, cancer cell metabolism has been reinvestigated over the last decades toward identifying various events underlying "how" and "why" a cancer cell employs aerobic glycolysis. Significant progress has been shaped to revise the Warburg effect. In this study, we have integrated the gene expression of 13 different cancer cells with the genome-scale metabolic network of human (Recon1) based on the E-Flux method, and analyzed them based on constraint-based modeling. Results show that regardless of significant up- and down-regulated metabolic genes, the distribution of metabolic changes is similar in different cancer types. These findings support the theory that the Warburg effect is a consequence of metabolic adaptation in cancer cells. PMID:25773945

  8. Identifying Differentially Abundant Metabolic Pathways in Metagenomic Datasets

    Science.gov (United States)

    Liu, Bo; Pop, Mihai

    Enabled by rapid advances in sequencing technology, metagenomic studies aim to characterize entire communities of microbes bypassing the need for culturing individual bacterial members. One major goal of such studies is to identify specific functional adaptations of microbial communities to their habitats. Here we describe a powerful analytical method (MetaPath) that can identify differentially abundant pathways in metagenomic data-sets, relying on a combination of metagenomic sequence data and prior metabolic pathway knowledge. We show that MetaPath outperforms other common approaches when evaluated on simulated datasets. We also demonstrate the power of our methods in analyzing two, publicly available, metagenomic datasets: a comparison of the gut microbiome of obese and lean twins; and a comparison of the gut microbiome of infant and adult subjects. We demonstrate that the subpathways identified by our method provide valuable insights into the biological activities of the microbiome.

  9. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia

    OpenAIRE

    SONG, KUI; Li, Min; Xu, Xiaojun; Xuan, Li; HUANG, GUINIAN; Liu, Qifa

    2016-01-01

    Altered glucose metabolism has been described as a cause of chemoresistance in multiple tumor types. The present study aimed to identify the expression profile of glucose metabolism in drug-resistant acute myeloid leukemia (AML) cells and provide potential strategies for the treatment of drug-resistant AML. Bone marrow and serum samples were obtained from patients with AML that were newly diagnosed or had relapsed. The messenger RNA expression of hypoxia inducible factor (HIF)-1α, glucose tra...

  10. Alterations of metabolic activity in human osteoarthritic osteoblasts by lipid peroxidation end product 4-hydroxynonenal

    OpenAIRE

    Shi, Qin; Vaillancourt, France; Côté, Véronique; Fahmi, Hassan; Lavigne, Patrick; Afif, Hassan; Di Battista, John A.; Fernandes, Julio C; Benderdour, Mohamed

    2006-01-01

    4-Hydroxynonenal (HNE), a lipid peroxidation end product, is produced abundantly in osteoarthritic (OA) articular tissues, but its role in bone metabolism is ill-defined. In this study, we tested the hypothesis that alterations in OA osteoblast metabolism are attributed, in part, to increased levels of HNE. Our data showed that HNE/protein adduct levels were higher in OA osteoblasts compared to normal and when OA osteoblasts were treated with H2O2. Investigating osteoblast markers, we found t...

  11. JCL roundtable: Lessons from genetic variants altering lipoprotein metabolism.

    Science.gov (United States)

    Brown, William Virgil; Ference, Brian A; Kathiresan, Sekar

    2016-01-01

    Because the Human Genome Project reached its first major milestone in completing the full sequence of human DNA, many new discoveries have been made relating genetic variants to disease. The new methodology that allows much more rapid and focused analyses of selected genes and the ability to screen the entire exome of any individual has provided tools to examine literally thousands of individuals for a given study. Genetic analysis has become a large-scale epidemiologic tool for examining variants in gene structure and correlating them with phenotypic markers of human disorders. These genome-wide association studies have been quite revealing about the mechanism of disorders of many types. These tools have been applied to the appearance of clinical atherosclerosis and to the chronic metabolic risk factors for this disease process. We are joined by 2 individuals who have made very significant contributions to this area of research: Dr Brian Ference of Wayne State University School of Medicine and Dr Sekar Kathiresan from Massachusetts General Hospital and Harvard Medical School. In our discussion, we are going to focus on genetic variants, which lead to changes in lipoprotein concentrations and those that have an association with earlier onset of clinical vascular disease. This roundtable was recorded during the November 2016 American Heart Association Scientific Sessions in Orlando, Florida. PMID:27206929

  12. Human longevity is characterised by high thyroid stimulating hormone secretion without altered energy metabolism

    DEFF Research Database (Denmark)

    Jansen, S W; Akintola, A A; Roelfsema, F;

    2015-01-01

    hormone (TH) in an inverse relationship. Greater longevity has been associated with higher TSH and lower TH levels, but mechanisms underlying TSH/TH differences and longevity remain unknown. The HPT axis plays a pivotal role in growth, development and energy metabolism. We report that offspring of...... nonagenarians with at least one nonagenarian sibling have increased TSH secretion but similar bioactivity of TSH and similar TH levels compared to controls. Healthy offspring and spousal controls had similar resting metabolic rate and core body temperature. We propose that pleiotropic effects of the HPT axis...... may favour longevity without altering energy metabolism....

  13. A role for heme in Alzheimer's disease: Heme binds amyloid β and has altered metabolism

    OpenAIRE

    Atamna, Hani; Frey, William H.

    2004-01-01

    Heme is a common factor linking several metabolic perturbations in Alzheimer's disease (AD), including iron metabolism, mitochondrial complex IV, heme oxygenase, and bilirubin. Therefore, we determined whether heme metabolism was altered in temporal lobes obtained at autopsy from AD patients and age-matched nondemented subjects. AD brain demonstrated 2.5-fold more heme-b (P < 0.01) and 26% less heme-a (P = 0.16) compared with controls, resulting in a highly significant 2.9-fold decrease in he...

  14. Carnosine metabolism in diabetes is altered by reactive metabolites.

    Science.gov (United States)

    Peters, Verena; Lanthaler, Barbara; Amberger, Albert; Fleming, Thomas; Forsberg, Elisabete; Hecker, Markus; Wagner, Andreas H; Yue, Wyatt W; Hoffmann, Georg F; Nawroth, Peter; Zschocke, Johannes; Schmitt, Claus P

    2015-11-01

    Carnosinase 1 (CN1) contributes to diabetic nephropathy by cleaving histidine-dipeptides which scavenge reactive oxygen and carbonyl species and increase nitric oxide (NO) production. In diabetic mice renal CN1 activity is increased, the regulatory mechanisms are unknown. We therefore analysed the in vitro and in vivo regulation of CN1 activity using recombinant and human CN1, and the db/db mouse model of diabetes. Glucose, leptin and insulin did not modify recombinant and human CN1 activity in vitro, glucose did not alter renal CN1 activity of WT or db/db mice ex vivo. Reactive metabolite methylglyoxal and Fenton reagent carbonylated recombinant CN1 and doubled CN1 efficiency. NO S-nitrosylated CN1 and decreased CN1 efficiency for carnosine by 70 % (p carnosine and anserine. Renal carbonyl stress was strongly increased and NO production halved, CN1 highly carbonylated and less S-nitrosylated compared to WT mice. GSH and NO2/3 concentrations were reduced and inversely related with carnosine degradation rate (r = -0.82/-0.85). Thus, reactive metabolites of diabetes upregulate CN1 activity by post-translational modifications, and thus decrease the availability of reactive metabolite-scavenging histidine dipeptides in the kidney in a positive feedback loop. Interference with this vicious circle may represent a new therapeutic target for mitigation of DN. PMID:26081982

  15. Alterations in lipid metabolism and antioxidant status in lichen planus

    Directory of Open Access Journals (Sweden)

    Falguni H Panchal

    2015-01-01

    Full Text Available Background: Lichen planus (LP, a T-cell-mediated inflammatory disorder, wherein inflammation produces lipid metabolism disturbances, is linked to increase in cardiovascular (CV risk with dyslipidemia. Increased reactive oxygen species and lipid peroxides have also been implicated in its pathogenesis. Aim and Objective: The aim of the study was to evaluate the status on lipid disturbances, oxidative stress, and inflammation in LP patients. Materials and Methods: The study was initiated after obtaining Institutional Ethics Committee permission and written informed consent from participants. The study included 125 patients (74 LP patients and 51 age and sex-matched controls visiting the outpatient clinic in the dermatology department of our hospital. Variables analyzed included lipid profile, C-reactive protein (CRP, malondialdehyde (MDA, and catalase (CAT activity. Results: Analysis of lipid parameters revealed significantly higher levels of total cholesterol (TC, triglycerides, and low-density lipoprotein cholesterol (LDL-C along with decreased levels of high-density lipoprotein cholesterol (HDL-C in LP patients as compared to their respective controls. LP patients also presented with a significantly higher atherogenic index that is, (TC/HDL-C and LDL-C/HDL-C ratios than the controls. A significant increase in CRP levels was observed among the LP patients. There was a statistically significant increase in the serum levels of the lipid peroxidation product, MDA and a statistically significant decrease in CAT activity in LP patients as compared to their respective controls. A statistically significant positive correlation (r = 0.96 was observed between serum MDA levels and duration of LP whereas a significantly negative correlation (r = −0.76 was seen between CAT activity and LP duration. Conclusion: Chronic inflammation in patients with LP may explain the association with dyslipidemia and CV risk. Our findings also suggest that an increase in

  16. Dietary patterns in men and women are simultaneously determinants of altered glucose metabolism and bone metabolism.

    Science.gov (United States)

    Langsetmo, Lisa; Barr, Susan I; Dasgupta, Kaberi; Berger, Claudie; Kovacs, Christopher S; Josse, Robert G; Adachi, Jonathan D; Hanley, David A; Prior, Jerilynn C; Brown, Jacques P; Morin, Suzanne N; Davison, Kenneth S; Goltzman, David; Kreiger, Nancy

    2016-04-01

    We hypothesized that diet would have direct effects on glucose metabolism with direct and indirect effects on bone metabolism in a cohort of Canadian adults. We assessed dietary patterns (Prudent [fruit, vegetables, whole grains, fish, and legumes] and Western [soft drinks, potato chips, French fries, meats, and desserts]) from a semiquantitative food frequency questionnaire. We used fasting blood samples to measure glucose, insulin, homeostatic model assessment insulin resistance (HOMA-IR), 25-hydroxyvitamin D (25OHD), parathyroid hormone, bone-specific alkaline phosphatase (a bone formation marker), and serum C-terminal telopeptide (CTX; a bone resorption marker). We used multivariate regression models adjusted for confounders and including/excluding body mass index. In a secondary analysis, we examined relationships through structural equations models. The Prudent diet was associated with favorable effects on glucose metabolism (lower insulin and HOMA-IR) and bone metabolism (lower CTX in women; higher 25OHD and lower parathyroid hormone in men). The Western diet was associated with deleterious effects on glucose metabolism (higher glucose, insulin, and HOMA-IR) and bone metabolism (higher bone-specific alkaline phosphatase and lower 25OHD in women; higher CTX in men). Body mass index adjustment moved point estimates toward the null, indicating partial mediation. The structural equation model confirmed the hypothesized linkage with strong effects of Prudent and Western diet on metabolic risk, and both direct and indirect effects of a Prudent diet on bone turnover. In summary, a Prudent diet was associated with lower metabolic risk with both primary and mediated effects on bone turnover, suggesting that it is a potential target for reducing fracture risk. PMID:27001278

  17. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats

    International Nuclear Information System (INIS)

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine

  18. Prenatal caffeine ingestion induces transgenerational neuroendocrine metabolic programming alteration in second generation rats

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hanwen [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Deng, Zixin; Liu, Lian; Shen, Lang; Kou, Hao; He, Zheng [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Ping, Jie; Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Ma, Lu [Department of Epidemiology and Health Statistics, Public Health School of Wuhan University, Wuhan 430071 (China); Chen, Liaobin, E-mail: lbchen@whu.edu.cn [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2014-02-01

    Our previous studies have demonstrated that prenatal caffeine ingestion induces an increased susceptibility to metabolic syndrome with alterations of glucose and lipid metabolic phenotypes in adult first generation (F1) of intrauterine growth retardation (IUGR) rats, and the underlying mechanism is originated from a hypothalamic–pituitary–adrenal (HPA) axis-associated neuroendocrine metabolic programming alteration in utero. This study aims to investigate the transgenerational effects of this programming alteration in adult second generation (F2). Pregnant Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. Four groups in F2 were set according to the cross-mating between control and caffeine-induced IUGR rats. F2 were subjected to a fortnight ice water swimming stimulus on postnatal month 4, and blood samples were collected before and after stress. Results showed that the majority of the activities of HPA axis and phenotypes of glucose and lipid metabolism were altered in F2. Particularly, comparing with the control group, caffeine groups had an enhanced corticosterone levels after chronic stress. Compared with before stress, the serum glucose levels were increased in some groups whereas the triglyceride levels were decreased. Furthermore, total cholesterol gain rates were enhanced but the high-density lipoprotein-cholesterol gain rates were decreased in most caffeine groups after stress. These transgenerational effects were characterized partially with gender and parental differences. Taken together, these results indicate that the reproductive and developmental toxicities and the neuroendocrine metabolic programming mechanism by prenatal caffeine ingestion have transgenerational effects in rats, which may help to explain the susceptibility to metabolic syndrome and associated diseases in F2. - Highlights: • Caffeine-induced neuroendocrine metabolic programming of HPA has hereditary effect. • Caffeine

  19. Improved metabolic health alters host metabolism in parallel with changes in systemic xeno-metabolites of gut origin.

    Directory of Open Access Journals (Sweden)

    Caitlin Campbell

    Full Text Available Novel plasma metabolite patterns reflective of improved metabolic health (insulin sensitivity, fitness, reduced body weight were identified before and after a 14-17 wk weight loss and exercise intervention in sedentary, obese insulin-resistant women. To control for potential confounding effects of diet- or microbiome-derived molecules on the systemic metabolome, sampling was during a tightly-controlled feeding test week paradigm. Pairwise and multivariate analysis revealed intervention- and insulin-sensitivity associated: (1 Changes in plasma xeno-metabolites ("non-self" metabolites of dietary or gut microbial origin following an oral glucose tolerance test (e.g. higher post-OGTT propane-1,2,3-tricarboxylate [tricarballylic acid] or in the overnight-fasted state (e.g., lower γ-tocopherol; (2 Increased indices of saturated very long chain fatty acid elongation capacity; (3 Increased post-OGTT α-ketoglutaric acid (α-KG, fasting α-KG inversely correlated with Matsuda index, and altered patterns of malate, pyruvate and glutamine hypothesized to stem from improved mitochondrial efficiency and more robust oxidation of glucose. The results support a working model in which improved metabolic health modifies host metabolism in parallel with altering systemic exposure to xeno-metabolites. This highlights that interpretations regarding the origins of peripheral blood or urinary "signatures" of insulin resistance and metabolic health must consider the potentially important contribution of gut-derived metabolites toward the host's metabolome.

  20. Improved metabolic health alters host metabolism in parallel with changes in systemic xeno-metabolites of gut origin.

    Science.gov (United States)

    Campbell, Caitlin; Grapov, Dmitry; Fiehn, Oliver; Chandler, Carol J; Burnett, Dustin J; Souza, Elaine C; Casazza, Gretchen A; Gustafson, Mary B; Keim, Nancy L; Newman, John W; Hunter, Gary R; Fernandez, Jose R; Garvey, W Timothy; Harper, Mary-Ellen; Hoppel, Charles L; Meissen, John K; Take, Kohei; Adams, Sean H

    2014-01-01

    Novel plasma metabolite patterns reflective of improved metabolic health (insulin sensitivity, fitness, reduced body weight) were identified before and after a 14-17 wk weight loss and exercise intervention in sedentary, obese insulin-resistant women. To control for potential confounding effects of diet- or microbiome-derived molecules on the systemic metabolome, sampling was during a tightly-controlled feeding test week paradigm. Pairwise and multivariate analysis revealed intervention- and insulin-sensitivity associated: (1) Changes in plasma xeno-metabolites ("non-self" metabolites of dietary or gut microbial origin) following an oral glucose tolerance test (e.g. higher post-OGTT propane-1,2,3-tricarboxylate [tricarballylic acid]) or in the overnight-fasted state (e.g., lower γ-tocopherol); (2) Increased indices of saturated very long chain fatty acid elongation capacity; (3) Increased post-OGTT α-ketoglutaric acid (α-KG), fasting α-KG inversely correlated with Matsuda index, and altered patterns of malate, pyruvate and glutamine hypothesized to stem from improved mitochondrial efficiency and more robust oxidation of glucose. The results support a working model in which improved metabolic health modifies host metabolism in parallel with altering systemic exposure to xeno-metabolites. This highlights that interpretations regarding the origins of peripheral blood or urinary "signatures" of insulin resistance and metabolic health must consider the potentially important contribution of gut-derived metabolites toward the host's metabolome. PMID:24416208

  1. Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, Alyse K.; Brewer, Heather M.; Norbeck, Angela D.; Pasa-Tolic, Ljiljana; Hallam, Steven J.

    2014-08-05

    Oxygen minimum zones (OMZs) are intrinsic water column features arising from respiratory oxygen demand during organic matter degradation in stratified marine waters. Currently OMZs are expanding due to global climate change. This expansion alters marine ecosystem function and the productivity of fisheries due to habitat compression and changes in biogeochemical cycling leading to fixed nitrogen loss and greenhouse gas production. Here we use metaproteomics to chart spatial and temporal patterns of gene expression along defined redox gradients in a seasonally anoxic fjord, Saanich Inlet to better understand microbial community responses to OMZ expansion. The expression of metabolic pathway components for nitrification, anaerobic ammonium oxidation (anammox), denitrification and inorganic carbon fixation predominantly co-varied with abundance and distribution patterns of Thaumarchaeota, Nitrospira, Planctomycetes and SUP05/ARCTIC96BD-19 Gammaproteobacteria. Within these groups, pathways mediating inorganic carbon fixation and nitrogen and sulfur transformations were differentially expressed across the redoxcline. Nitrification and inorganic carbon fixation pathways affiliated with Thaumarchaeota dominated dysoxic waters and denitrification, sulfur-oxidation and inorganic carbon fixation pathways affiliated with SUP05 dominated suboxic and anoxic waters. Nitrite-oxidation and anammox pathways affiliated with Nitrospina and Planctomycetes respectively, also exhibited redox partitioning between dysoxic and suboxic waters. The differential expression of these pathways under changing water column redox conditions has quantitative implications for coupled biogeochemical cycling linking different modes of inorganic carbon fixation with distributed nitrogen and sulfur-based energy metabolism extensible to coastal and open ocean OMZs.

  2. Metabolic and Signaling Alterations in Dystrophin-Deficient Hearts Precede Overt Cardiomyopathy

    Science.gov (United States)

    The cytoskeletal protein dystrophin has been implicated in hereditary and acquired forms of cardiomyopathy. However, much remains to be learned about the role of dystrophin in the heart. We hypothesized that the dystrophin-deficient heart displays early alterations in energy metabolism that precede ...

  3. No indications for altered essential fatty acid metabolism in two murine models for cystic fibrosis

    NARCIS (Netherlands)

    Werner, A; Bongers, MEJ; Bijvelds, MJ; de Jonge, HR; Verkade, HJ

    2004-01-01

    A deficiency of essential fatty acids (EFA) is frequently described in cystic fibrosis (CF), but whether this is a primary consequence of altered EFA metabolism or a secondary phenomenon is unclear. It was suggested that defective long-chain polyunsaturated fatty acid (LCPUFA) synthesis contributes

  4. Chromium supplementation alters both glucose and lipid metabolism in feedlot cattle during the receiving period

    Science.gov (United States)

    Crossbred steers (n = 20; 235 +/- 4 kg) were fed 53 days during a receiving period to determine if supplementing chromium (Cr; KemTRACE®brandChromium Propionate 0.04%, Kemin Industries) would alter the glucose or lipid metabolism of newly received cattle. Chromium premixes were supplemented to add 0...

  5. Chromium supplementation alters the glucose and lipid metabolism of feedlot cattle during the receiving period

    Science.gov (United States)

    Crossbreed steers (n = 20; 235 ± 4 kg) were fed 53 d during a receiving period to determine if supplementing chromium (Cr; KemTRACE®brand Chromium Propionate 0.04%, Kemin Industries) would alter the glucose or lipid metabolism of newly received cattle. Chromium premixes were supplemented to add 0 (C...

  6. Metabolic alterations and neurodevelopmental outcome of infants with transposition of the great arteries.

    Science.gov (United States)

    Park, I Sook; Yoon, S Young; Min, J Yeon; Kim, Y Hwue; Ko, J Kok; Kim, K Soo; Seo, D Man; Lee, J Hee

    2006-01-01

    Abnormal neurodevelopment has been reported for infants who were born with transposition of the great arteries (TGA) and underwent arterial switch operation (ASO). This study evaluates the cerebral metabolism of TGA infants at birth and before ASO and neurodevelopment 1 year after ASO. Proton magnetic resonance spectroscopy (1H-MRS) was performed on 16 full-term TGA brains before ASO within 3-6 days after birth. The brain metabolite ratios of [NAA/Cr], [Cho/Cr], and [mI/Cr] evaluated measured. Ten infants were evaluated at 1 year using the Bayley Scales of Infants Development II (BSED II). Cerebral metabolism of infants with TGA was altered in parietal white matter (PWM) and occipital gray matter (OGM) at birth before ASO. One year after ASO, [Cho/Cr] in PWM remained altered, but all metabolic ratios in OGM were normal. The results of BSID II at 1 year showed delayed mental and psychomotor development. This delayed neurodevelopmental outcome may reflect consequences of the altered cerebral metabolism in PWM measured by 1H-MRS. It is speculated that the abnormal hemodynamics due to TGA in utero may be responsible for the impaired cerebral metabolism and the subsequent neurodevelopmental deficit. PMID:16897317

  7. Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes.

    Science.gov (United States)

    Jones, Natalie T; Gilbert, Benjamin

    2016-03-01

    In seasonal climates, dormancy is a common strategy that structures biodiversity and is necessary for the persistence of many species. Climate change will likely alter dormancy dynamics in zooplankton, the basis of aquatic food webs, by altering two important hatching cues: mean temperatures during the ice-free season, and mean day length when lakes become ice free. Theory suggests that these changes could alter diversity, hatchling abundances and phenology within lakes, and that these responses may diverge across latitudes due to differences in optimal hatching cues and strategies. To examine the role of temperature and day length on hatching dynamics, we collected sediment from 25 lakes across a 1800 km latitudinal gradient and exposed sediment samples to a factorial combination of two photoperiods (12 and 16 h) and two temperatures (8 and 12 °C) representative of historical southern (short photoperiod, warm) and northern (long photoperiod, cool) lake conditions. We tested whether sensitivity to these hatching cues varies by latitudinal origin and differs among taxa. Higher temperatures advanced phenology for all taxa, and these advances were greatest for cladocerans followed by copepods and rotifers. Although phenology differed among taxa, the effect of temperature did not vary with latitude. The latitudinal origin of the egg bank influenced egg abundance and hatchling abundance and diversity, with these latter effects varying with taxa, temperature and photoperiod. Copepod hatchling abundances peaked at mid-latitudes in the high temperature and long photoperiod treatments, whereas hatchling abundances of other zooplankton were greatest at low latitudes and high temperature. The overall diversity of crustacean zooplankton (copepods and cladocerans) also reflected distinct responses of each taxa to our treatments, with the greatest diversity occurring at mid-latitudes (~56 °N) in the shorter photoperiod treatment. Our results demonstrate that hatching cues

  8. Locomotion in Lymphocytes is Altered by Differential PKC Isoform Expression

    Science.gov (United States)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    1999-01-01

    Lymphocyte locomotion is critical for proper elicitation of the immune response. Locomotion of immune cells via the interstitium is essential for optimal immune function during wound healing, inflammation and infection. There are conditions which alter lymphocyte locomotion and one of them is spaceflight. Lymphocyte locomotion is severely inhibited in true spaceflight (true microgravity) and in rotating wall vessel culture (modeled microgravity). When lymphocytes are activated prior to culture in modeled microgravity, locomotion is not inhibited and the levels are comparable to those of static cultured lymphocytes. When a phorbol ester (PMA) is used in modeled microgravity, lymphocyte locomotion is restored by 87%. This occurs regardless if PMA is added after culture in the rotating wall vessel or during culture. Inhibition of DNA synthesis also does not alter restoration of lymphocyte locomotion by PMA. PMA is a direct activator of (protein kinase C) PKC . When a calcium ionophore, ionomycin is used it does not possess any restorative properties towards locomotion either alone or collectively with PMA. Since PMA brings about restoration without help from calcium ionophores (ionomycin), it is infer-red that calcium independent PKC isoforms are involved. Changes were perceived in the protein levels of PKC 6 where levels of the protein were downregulated at 24,72 and 96 hours in untreated rotated cultures (modeled microgravity) compared to untreated static (1g) cultures. At 48 hours there is an increase in the levels of PKC & in the same experimental set up. Studies on transcriptional and translational patterns of calcium independent isoforms of PKC such as 8 and E are presented in this study.

  9. Energy metabolism in developing chicken lymphocytes is altered during the embryonic to posthatch transition.

    Science.gov (United States)

    Rudrappa, Shashidhara G; Humphrey, Brooke D

    2007-02-01

    Adequate energy status in lymphocytes is vital for their development. The ability of developing chicken lymphocytes to acquire and metabolize energy substrates was determined during embryonic days (e) and neonatal days (d) of life when primary-energy substrate metabolism is altered at the whole-animal level. In 3 experiments, bursacytes and thymocytes were isolated on e17, e20, d1, d3, d7, or d14 to analyze markers associated with glucose, glutamine, and lipid metabolism. Bursacyte glucose transporter-3 (Glut-3) mRNA abundance increased from d1 to d14 and hexokinase-1 (HK-1) mRNA abundance was maximum on e20 (Pglutamine metabolism. Understanding the factors that regulate lymphocyte development in neonatal chicks may help promote their adaptive immune responses to pathogens in early life. PMID:17237322

  10. Queens become workers: pesticides alter caste differentiation in bees

    Science.gov (United States)

    dos Santos, Charles F.; Acosta, André L.; Dorneles, Andressa L.; dos Santos, Patrick D. S.; Blochtein, Betina

    2016-01-01

    Bees are important for the world biodiversity and economy because they provide key pollination services in forests and crops. However, pesticide use in crops has adversely affected (decreased) queen production because of increased mortality among larvae. Here, we demonstrated that in vitro-reared queens of a neotropical social bee species (Plebeia droryana) also showed high larval mortality after exposure to an organophosphate pesticide (chlorpyrifos) via larval food. Moreover, most of the surviving larvae that were destined to develop into queens became workers more likely because they ate less food than expected without pesticide skewing thus caste differentiation in this bee species. This adverse effect has not been previously reported for any other social insects, such as honeybees or bumblebees. Queens are essential for breeding and colony growth. Therefore, if our data are applicable to other pantropical social bee species across the globe, it is likely that these bees are at a serious risk of failure to form new colonies. PMID:27530246

  11. Queens become workers: pesticides alter caste differentiation in bees.

    Science.gov (United States)

    Dos Santos, Charles F; Acosta, André L; Dorneles, Andressa L; Dos Santos, Patrick D S; Blochtein, Betina

    2016-01-01

    Bees are important for the world biodiversity and economy because they provide key pollination services in forests and crops. However, pesticide use in crops has adversely affected (decreased) queen production because of increased mortality among larvae. Here, we demonstrated that in vitro-reared queens of a neotropical social bee species (Plebeia droryana) also showed high larval mortality after exposure to an organophosphate pesticide (chlorpyrifos) via larval food. Moreover, most of the surviving larvae that were destined to develop into queens became workers more likely because they ate less food than expected without pesticide skewing thus caste differentiation in this bee species. This adverse effect has not been previously reported for any other social insects, such as honeybees or bumblebees. Queens are essential for breeding and colony growth. Therefore, if our data are applicable to other pantropical social bee species across the globe, it is likely that these bees are at a serious risk of failure to form new colonies. PMID:27530246

  12. Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus

    International Nuclear Information System (INIS)

    The vast literature on the mode of action of polychlorinated biphenyls (PCBs) indicates that PCBs are a unique model for understanding the mechanisms of toxicity of environmental mixtures of persistent chemicals. PCBs have been shown to adversely affect psychomotor function and learning and memory in humans. Although the molecular mechanisms for PCB effects are unclear, several studies indicate that the disruption of Ca2+-mediated signal transduction plays significant roles in PCB-induced developmental neurotoxicity. Culminating events in signal transduction pathways include the regulation of gene and protein expression, which affects the growth and function of the nervous system. Our previous studies showed changes in gene expression related to signal transduction and neuronal growth. In this study, protein expression following developmental exposure to PCB is examined. Pregnant rats (Long Evans) were dosed with 0.0 or 6.0 mg/kg/day of Aroclor-1254 from gestation day 6 through postnatal day (PND) 21, and the cerebellum and hippocampus from PND14 animals were analyzed to determine Aroclor 1254-induced differential protein expression. Two proteins were found to be differentially expressed in the cerebellum following PCB exposure while 18 proteins were differentially expressed in the hippocampus. These proteins are related to energy metabolism in mitochondria (ATP synthase, sub unit β (ATP5B), creatine kinase, and malate dehydrogenase), calcium signaling (voltage-dependent anion-selective channel protein 1 (VDAC1) and ryanodine receptor type II (RyR2)), and growth of the nervous system (dihydropyrimidinase-related protein 4 (DPYSL4), valosin-containing protein (VCP)). Results suggest that Aroclor 1254-like persistent chemicals may alter energy metabolism and intracellular signaling, which might result in developmental neurotoxicity. -- Highlights: ► We performed brain proteomic analysis of rats exposed to the neurotoxicant, Aroclor 1254. ► Cerebellum and

  13. Fructose Alters Intermediary Metabolism of Glucose in Human Adipocytes and Diverts Glucose to Serine Oxidation in the One–Carbon Cycle Energy Producing Pathway

    OpenAIRE

    Vijayalakshmi Varma; Boros, László G.; Nolen, Greg T.; Ching-Wei Chang; Martin Wabitsch; Beger, Richard D.; Jim Kaput

    2015-01-01

    Increased consumption of sugar and fructose as sweeteners has resulted in the utilization of fructose as an alternative metabolic fuel that may compete with glucose and alter its metabolism. To explore this, human Simpson-Golabi-Behmel Syndrome (SGBS) preadipocytes were differentiated to adipocytes in the presence of 0, 1, 2.5, 5 or 10 mM of fructose added to a medium containing 5 mM of glucose representing the normal blood glucose concentration. Targeted tracer [1,2-13C2]-d-glucose fate asso...

  14. Formaldehyde Metabolism and Formaldehyde-induced Alterations in Glucose and Glutathione Metabolism of Cultured Brain Cells

    OpenAIRE

    Tulpule, Ketki

    2013-01-01

    Formaldehyde is an environmental pollutant that is also generated in the body during normal metabolic processes. Interestingly, several pathological conditions are associated with an increase in formaldehyde-generating enzymes in the body. The level of formaldehyde in the brain is elevated with increasing age and in neurodegenerative conditions which may contribute to lowered cognitive functions. Although the neurotoxic potential of formaldehyde is well established, the molecular mechanisms i...

  15. Copper metabolism and copper-mediated alterations in the metabolism of cultured astrocytes

    OpenAIRE

    Scheiber, Ivo Florin

    2012-01-01

    Copper is an essential element that is required for a variety of important cellular functions. Since not only copper deficiency, but also excess of copper can seriously affect cellular functions, cellular copper metabolism is tightly regulated. Disturbances of copper homeostasis are the underlying defect of the inherited diseases Menkes and Wilson s disease and have also been linked to several neurodegenerative diseases including Alzheimer s disease and Parkinson s disease. Known astrocytes f...

  16. Tadalafil reduces visceral adipose tissue accumulation by promoting preadipocytes differentiation towards a metabolically healthy phenotype: Studies in rabbits.

    Science.gov (United States)

    Maneschi, Elena; Cellai, Ilaria; Aversa, Antonio; Mello, Tommaso; Filippi, Sandra; Comeglio, Paolo; Bani, Daniele; Guasti, Daniele; Sarchielli, Erica; Salvatore, Giulia; Morelli, Annamaria; Mazzanti, Benedetta; Corcetto, Francesca; Corno, Chiara; Francomano, Davide; Galli, Andrea; Vannelli, Gabriella Barbara; Lenzi, Andrea; Mannucci, Edoardo; Maggi, Mario; Vignozzi, Linda

    2016-03-15

    Development of metabolically healthy adipocytes within dysfunctional adipose tissue may represent an attractive way to counteract metabolic syndrome (MetS). In an experimental animal model of high fat diet (HFD)-induced MetS, in vivo, long- and short-term tadalafil treatments were able to reduce visceral adipose tissue (VAT) accumulation and hypertriglyceridemia, and to induce the expression in VAT of the brown fat-specific marker, uncoupling protein 1 (UCP1). VAT preadipocytes (PAD), isolated from the tadalafil-treated HFD rabbits, showed: i) a multilocular morphology; ii) an increased expression of brown fat-specific genes (such as UCP1 and CIDEA); iii) improved mitochondrial structure and dynamic and reduced superoxide production; iv) improved insulin sensitivity. Similar effects were obtained after in vitro tadalafil treatment in HFD rPAD. In conclusion, tadalafil counteracted HFD-associated VAT alterations, by restoring insulin-sensitivity and prompting preadipocytes differentiation towards a metabolically healthy phenotype. PMID:26805634

  17. Metabolic alterations following visceral fat removal and expansion: Beyond anatomic location.

    Science.gov (United States)

    Foster, Michelle T; Pagliassotti, Michael J

    2012-10-01

    Increased visceral adiposity is a risk factor for metabolic disorders such as dyslipidemia, hypertension, insulin resistance and type 2 diabetes, whereas peripheral (subcutaneous) obesity is not. Though the specific mechanisms which contribute to these adipose depot differences are unknown, visceral fat accumulation is proposed to result in metabolic dysregulation because of increased effluent, e.g., fatty acids and/or adipokines/cytokines, to the liver via the hepatic portal vein. Pathological significance of visceral fat accumulation is also attributed to adipose depot/adipocyte-specific characteristics, specifically differences in structural, physiologic and metabolic characteristics compared with subcutaneous fat. Fat manipulations, such as removal or transplantation, have been utilized to identify location dependent or independent factors that play a role in metabolic dysregulation. Obesity-induced alterations in adipose tissue function/intrinsic characteristics, but not mass, appear to be responsible for obesity-induced metabolic dysregulation, thus "quality" is more important than "quantity." This review summarizes the implications of obesity-induced metabolic dysfunction as it relates to anatomic site and inherent adipocyte characteristics. PMID:23700533

  18. Enzymatic passaging of human embryonic stem cells alters central carbon metabolism and glycan abundance

    Science.gov (United States)

    Badur, Mehmet G.; Zhang, Hui; Metallo, Christian M.

    2016-01-01

    To realize the potential of human embryonic stem cells (hESCs) in regenerative medicine and drug discovery applications, large numbers of cells that accurately recapitulate cell and tissue function must be robustly produced. Previous studies have suggested that genetic instability and epigenetic changes occur as a consequence of enzymatic passaging. However, the potential impacts of such passaging methods on the metabolism of hESCs have not been described. Using stable isotope tracing and mass spectrometry-based metabolomics, we have explored how different passaging reagents impact hESC metabolism. Enzymatic passaging caused significant decreases in glucose utilization throughout central carbon metabolism along with attenuated de novo lipogenesis. In addition, we developed and validated a method for rapidly quantifying glycan abundance and isotopic labeling in hydrolyzed biomass. Enzymatic passaging reagents significantly altered levels of glycans immediately after digestion but surprisingly glucose contribution to glycans was not affected. These results demonstrate that there is an immediate effect on hESC metabolism after enzymatic passaging in both central carbon metabolism and biosynthesis. HESCs subjected to enzymatic passaging are routinely placed in a state requiring re-synthesis of biomass components, subtly influencing their metabolic needs in a manner that may impact cell performance in regenerative medicine applications. PMID:26289220

  19. The Alteration of Lipid Metabolism in Burkitt Lymphoma Identifies a Novel Marker: Adipophilin

    OpenAIRE

    Ambrosio, Maria R.; Piccaluga, Pier P.; Maurilio Ponzoni; Rocca, Bruno J; Valeria Malagnino; Monica Onorati; Giulia De Falco; Valeria Calbi; Martin Ogwang; Naresh, Kikkeri N.; Pileri, Stefano A.; Claudio Doglioni; Lorenzo Leoncini; Stefano Lazzi

    2012-01-01

    BACKGROUND: Recent evidence suggests that lipid pathway is altered in many human tumours. In Burkitt lymphoma this is reflected by the presence of lipid droplets which are visible in the cytoplasm of neoplastic cells in cytological preparations. These vacuoles are not identifiable in biopsy section as lipids are "lost" during tissue processing. METHODS AND RESULTS: In this study we investigated the expression of genes involved in lipid metabolism, at both RNA and protein level in Burkitt lymp...

  20. Metabolic Alterations Induced by Sucrose Intake and Alzheimer’s Disease Promote Similar Brain Mitochondrial Abnormalities

    OpenAIRE

    Carvalho, Cristina; Cardoso, Susana; Correia, Sónia C; Santos, Renato X.; Santos, Maria S.; Baldeiras, Inês; oliveira, catarina r.; Moreira, Paula I.

    2012-01-01

    Evidence shows that diabetes increases the risk of developing Alzheimer’s disease (AD). Many efforts have been done to elucidate the mechanisms linking diabetes and AD. To demonstrate that mitochondria may represent a functional link between both pathologies, we compared the effects of AD and sucrose-induced metabolic alterations on mouse brain mitochondrial bioenergetics and oxidative status. For this purpose, brain mitochondria were isolated from wild-type (WT), triple transgenic AD (3xTg-A...

  1. Metabolic Plasticity in Stem Cell Homeostasis and Differentiation

    OpenAIRE

    Folmes, Clifford D. L.; Dzeja, Petras P.; Nelson, Timothy J.; Terzic, Andre

    2012-01-01

    Plasticity in energy metabolism allows stem cells to match the divergent demands of self-renewal and lineage specification. Beyond a role in energetic support, new evidence implicates nutrient-responsive metabolites as mediators of crosstalk between metabolic flux, cellular signaling, and epigenetic regulation of cell fate. Stem cell metabolism also offers a potential target for controlling tissue homeostasis and regeneration in aging and disease. In this Perspective, we cover recent progress...

  2. Model steatogenic compounds (amiodarone, valproic acid, and tetracycline alter lipid metabolism by different mechanisms in mouse liver slices.

    Directory of Open Access Journals (Sweden)

    Ewa Szalowska

    Full Text Available Although drug induced steatosis represents a mild type of hepatotoxicity it can progress into more severe non-alcoholic steatohepatitis. Current models used for safety assessment in drug development and chemical risk assessment do not accurately predict steatosis in humans. Therefore, new models need to be developed to screen compounds for steatogenic properties. We have studied the usefulness of mouse precision-cut liver slices (PCLS as an alternative to animal testing to gain more insight into the mechanisms involved in the steatogenesis. To this end, PCLS were incubated 24 h with the model steatogenic compounds: amiodarone (AMI, valproic acid (VA, and tetracycline (TET. Transcriptome analysis using DNA microarrays was used to identify genes and processes affected by these compounds. AMI and VA upregulated lipid metabolism, whereas processes associated with extracellular matrix remodelling and inflammation were downregulated. TET downregulated mitochondrial functions, lipid metabolism, and fibrosis. Furthermore, on the basis of the transcriptomics data it was hypothesized that all three compounds affect peroxisome proliferator activated-receptor (PPAR signaling. Application of PPAR reporter assays classified AMI and VA as PPARγ and triple PPARα/(β/δ/γ agonist, respectively, whereas TET had no effect on any of the PPARs. Some of the differentially expressed genes were considered as potential candidate biomarkers to identify PPAR agonists (i.e. AMI and VA or compounds impairing mitochondrial functions (i.e. TET. Finally, comparison of our findings with publicly available transcriptomics data showed that a number of processes altered in the mouse PCLS was also affected in mouse livers and human primary hepatocytes exposed to known PPAR agonists. Thus mouse PCLS are a valuable model to identify early mechanisms of action of compounds altering lipid metabolism.

  3. Improved Growth and Stress Tolerance in the Arabidopsis oxt1 Mutant Triggered by Altered Adenine Metabolism

    Institute of Scientific and Technical Information of China (English)

    Suchada Sukrong; Kil-Young Yun; Patrizia Stadler; Charan Kumar; Tony Facciuolo; Barbara A.Moffatt; Deane L.Falcone

    2012-01-01

    Plants perceive and respond to environmental stresses with complex mechanisms that are often associated with the activation of antioxidant defenses.A genetic screen aimed at isolating oxidative stress-tolerant lines of Arabidopsis thaliana has identified oxt1,a line that exhibits improved tolerance to oxidative stress and elevated temperature but displays no apparent deleterious growth effects under non-stress conditions.Oxt1 harbors a mutation that arises from the altered expression of a gene encoding adenine phosphoribosyltransferase (APT1),an enzyme that converts adenine to adenosine monophosphate (AMP),indicating a link between purine metabolism,whole-plant growth responses,and stress acclimation.The oxt1 mutation results in decreased APT1 expression that leads to reduced enzymatic activity.Correspondingly,oxt1 plants possess elevated levels of adenine.Decreased APT enzyme activity directly correlates with stress resistance in transgenic lines that ectopically express APT1.The metabolic alteration in oxt1 plants also alters the expression of several antioxidant defense genes and the response of these genes to oxidative challenge.Finally,it is shown that manipulation of adenine levels can induce stress tolerance to wild-type plants.Collectively,these results show that alterations in cellular adenine levels can trigger stress tolerance and improve growth,leading to increases in plant biomass.The results also suggest that adenine might play a part in the signals that modulate responses to abiotic stress and plant growth.

  4. Energy Metabolism Plays a Critical Role in Stem Cell Maintenance and Differentiation

    OpenAIRE

    Chenxia Hu; Linxiao Fan; Panpan Cen; Ermei Chen; Zhengyi Jiang; Lanjuan Li

    2016-01-01

    Various stem cells gradually turned to be critical players in tissue engineering and regenerative medicine therapies. Current evidence has demonstrated that in addition to growth factors and the extracellular matrix, multiple metabolic pathways definitively provide important signals for stem cell self-renewal and differentiation. In this review, we mainly focus on a detailed overview of stem cell metabolism in vitro. In stem cell metabolic biology, the dynamic balance of each type of stem cel...

  5. Differential metabolic responses of Beauveria bassiana cultured in pupae extracts, root exudates and its interactions with insect and plant.

    Science.gov (United States)

    Luo, Feifei; Wang, Qian; Yin, Chunlin; Ge, Yinglu; Hu, Fenglin; Huang, Bo; Zhou, Hong; Bao, Guanhu; Wang, Bin; Lu, Ruili; Li, Zengzhi

    2015-09-01

    Beauveria bassiana is a kind of world-wide entomopathogenic fungus and can also colonize plant rhizosphere. Previous researches showed differential expression of genes when entomopathogenic fungi are cultured in insect or plant materials. However, so far there is no report on metabolic alterations of B. bassiana in the environments of insect or plant. The purpose of this paper is to address this problem. Herein, we first provide the metabolomic analysis of B. bassiana cultured in insect pupae extracts (derived from Euproctis pseudoconspersa and Bombyx mori, EPP and BMP), plant root exudates (derived from asparagus and carrot, ARE and CRE), distilled water and minimal media (MM), respectively. Principal components analysis (PCA) shows that mycelia cultured in pupae extracts and root exudates are evidently separated and individually separated from MM, which indicates that fungus accommodates to insect and plant environments by different metabolic regulation mechanisms. Subsequently, orthogonal projection on latent structure-discriminant analysis (OPLS-DA) identifies differential metabolites in fungus under three environments relative to MM. Hierarchical clustering analysis (HCA) is performed to cluster compounds based on biochemical relationships, showing that sphingolipids are increased in BMP but are decreased in EPP. This observation further implies that sphingolipid metabolism may be involved in the adaptation of fungus to different hosts. In the meantime, sphingolipids are significantly decreased in root exudates but they are not decreased in distilled water, suggesting that some components of the root exudates can suppress sphingolipid to down-regulate sphingolipid metabolism. Pathway analysis finds that fatty acid metabolism is maintained at high level but non-ribosomal peptides (NRP) synthesis is unaffected in mycelia cultured in pupae extracts. In contrast, fatty acid metabolism is not changed but NRP synthesis is high in mycelia cultured in root exudates

  6. Metabolic Inflammation-Differential Modulation by Dietary Constituents

    OpenAIRE

    Lyons, Claire L.; Elaine B. Kennedy; Roche, Helen M.

    2016-01-01

    Obesity arises from a sustained positive energy balance which triggers a pro-inflammatory response, a key contributor to metabolic diseases such as T2D. Recent studies, focused on the emerging area of metabolic-inflammation, highlight that specific metabolites can modulate the functional nature and inflammatory phenotype of immune cells. In obesity, expanding adipose tissue attracts immune cells, creating an inflammatory environment within this fatty acid storage organ. Resident immune cells ...

  7. Metabolic Inflammation-Differential Modulation by Dietary Constituents

    Directory of Open Access Journals (Sweden)

    Claire L. Lyons

    2016-04-01

    Full Text Available Obesity arises from a sustained positive energy balance which triggers a pro-inflammatory response, a key contributor to metabolic diseases such as T2D. Recent studies, focused on the emerging area of metabolic-inflammation, highlight that specific metabolites can modulate the functional nature and inflammatory phenotype of immune cells. In obesity, expanding adipose tissue attracts immune cells, creating an inflammatory environment within this fatty acid storage organ. Resident immune cells undergo both a pro-inflammatory and metabolic switch in their function. Inflammatory mediators, such as TNF-α and IL-1β, are induced by saturated fatty acids and disrupt insulin signaling. Conversely, monounsaturated and polyunsaturated fatty acids do not interrupt metabolism and inflammation to the same extent. AMPK links inflammation, metabolism and T2D, with roles to play in all and is influenced negatively by obesity. Lipid spillover results in hepatic lipotoxicity and steatosis. Also in skeletal muscle, excessive FFA can impede insulin’s action and promote inflammation. Ectopic fat can also affect pancreatic β-cell function, thereby contributing to insulin resistance. Therapeutics, lifestyle changes, supplements and dietary manipulation are all possible avenues to combat metabolic inflammation and the subsequent insulin resistant state which will be explored in the current review.

  8. Metabolic Inflammation-Differential Modulation by Dietary Constituents.

    Science.gov (United States)

    Lyons, Claire L; Kennedy, Elaine B; Roche, Helen M

    2016-01-01

    Obesity arises from a sustained positive energy balance which triggers a pro-inflammatory response, a key contributor to metabolic diseases such as T2D. Recent studies, focused on the emerging area of metabolic-inflammation, highlight that specific metabolites can modulate the functional nature and inflammatory phenotype of immune cells. In obesity, expanding adipose tissue attracts immune cells, creating an inflammatory environment within this fatty acid storage organ. Resident immune cells undergo both a pro-inflammatory and metabolic switch in their function. Inflammatory mediators, such as TNF-α and IL-1β, are induced by saturated fatty acids and disrupt insulin signaling. Conversely, monounsaturated and polyunsaturated fatty acids do not interrupt metabolism and inflammation to the same extent. AMPK links inflammation, metabolism and T2D, with roles to play in all and is influenced negatively by obesity. Lipid spillover results in hepatic lipotoxicity and steatosis. Also in skeletal muscle, excessive FFA can impede insulin's action and promote inflammation. Ectopic fat can also affect pancreatic β-cell function, thereby contributing to insulin resistance. Therapeutics, lifestyle changes, supplements and dietary manipulation are all possible avenues to combat metabolic inflammation and the subsequent insulin resistant state which will be explored in the current review. PMID:27128935

  9. Metabolic and feeding behavior alterations provoked by prenatal exposure to aspartame.

    Science.gov (United States)

    von Poser Toigo, E; Huffell, A P; Mota, C S; Bertolini, D; Pettenuzzo, L F; Dalmaz, C

    2015-04-01

    The use of artificial sweeteners has increased together with the epidemic growth of obesity. In addition to their widespread use in sodas, artificial sweeteners are added to nearly 6000 other products sold in the US, including baby foods, frozen dinners and even yogurts. It has been suggested that the use of nonnutritive sweeteners can lead to body weight gain and an altered metabolic profile. However, very few studies have evaluated the effects of maternal consumption of artificial non-caloric sweeteners on body weight, feeding behavior or the metabolism of offspring in adult life. In this study, we found that animals exposed to aspartame during the prenatal period presented a higher consumption of sweet foods during adulthood and a greater susceptibility to alterations in metabolic parameters, such as increased glucose, LDL and triglycerides. These effects were observed in both males and females, although they were more pronounced in males. Despite the preliminary nature of this study, and the need for further confirmation of these effects, our data suggest that the consumption of sweeteners during gestation may have deleterious long-term effects and should be used with caution. PMID:25543075

  10. Multi-metabolic altered patterns and cardiovascular risk factors associated to hypertension in the community.

    Directory of Open Access Journals (Sweden)

    Alexis Ocampo Segura.

    2004-04-01

    Full Text Available Fundaments: Among other factors, hypertension , hypercholesterolemia and hyperinsulonemia form the so called metabolic syndrome Many studies relate hypertension to other risk factors and to metabolic-endocrine disorders. Objective: To know the relationship between Hypertension and hypercholesterolemia and other cardiovascular risk factors in a community of Cienfuegos city, Cuba. Method: Study of non paired cases and controls . the cases gathered 60 hypertensive patients aged 18 or more years without discrimination of sex, skin color, and other socio demographic features of the population and the control group gathered 60 non- hypertensive individuals from the same population. Results: Family history of hypertension OR:64( 29:14,19 and alcohol consumption OR: 19,8 ( 4,6:84,8 were the most frequent risk factors in the population. The presence of Diabetes mellitus OR 7,8( 2,7:22,4 and dyslipidemia OR 2,7 ( 1,3: 5,6 were the endocrine-metablic factors that associated the most to hypertension Important was the relationship between altered tolerance to glucose and risk factors OR: 14,49 ( 3,64: 57,67 and the relationship altered tolerance to glucose and familial antecedents of hypertension in hypertensive patients which showed a significant association.Conclusion: In the community under study family history of hypertension, alcohol consumption, diabetes mellitus, dyslipidemia and altered glucose are strongly associated to hypertension and constitute risk factors that should be taken into consideration in order to diminish the mortality rate due to vascular disorders.

  11. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yansong [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Xu, Dan [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China); Feng, Jianghua, E-mail: jianghua.feng@xmu.edu.cn [Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071 (China); Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, 361005 (China); Kou, Hao; Liang, Gai [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Yu, Hong; He, Xiaohua; Zhang, Baifang; Chen, Liaobin [Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan University, Wuhan, 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan, 430071 (China)

    2012-07-15

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by {sup 1}H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine

  12. Fetal rat metabonome alteration by prenatal caffeine ingestion probably due to the increased circulatory glucocorticoid level and altered peripheral glucose and lipid metabolic pathways

    International Nuclear Information System (INIS)

    The aims of this study were to clarify the metabonome alteration in fetal rats after prenatal caffeine ingestion and to explore the underlying mechanism pertaining to the increased fetal circulatory glucocorticoid (GC). Pregnant Wistar rats were daily intragastrically administered with different doses of caffeine (0, 20, 60 and 180 mg/kg) from gestational days (GD) 11 to 20. Metabonome of fetal plasma and amniotic fluid on GD20 were analyzed by 1H nuclear magnetic resonance-based metabonomics. Gene and protein expressions involved in the GC metabolism, glucose and lipid metabolic pathways in fetal liver and gastrocnemius were measured by real-time RT-PCR and immunohistochemistry. Fetal plasma metabonome were significantly altered by caffeine, which presents as the elevated α- and β‐glucose, reduced multiple lipid contents, varied apolipoprotein contents and increased levels of a number of amino acids. The metabonome of amniotic fluids showed a similar change as that in fetal plasma. Furthermore, the expressions of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD-2) were decreased, while the level of blood GC and the expressions of 11β-HSD-1 and glucocorticoid receptor (GR) were increased in fetal liver and gastrocnemius. Meanwhile, the expressions of insulin-like growth factor 1 (IGF-1), IGF-1 receptor and insulin receptor were decreased, while the expressions of adiponectin receptor 2, leptin receptors and AMP-activated protein kinase α2 were increased after caffeine treatment. Prenatal caffeine ingestion characteristically change the fetal metabonome, which is probably attributed to the alterations of glucose and lipid metabolic pathways induced by increased circulatory GC, activated GC metabolism and enhanced GR expression in peripheral metabolic tissues. -- Highlights: ► Prenatal caffeine ingestion altered the metabonome of IUGR fetal rats. ► Caffeine altered the glucose and lipid metabolic pathways of IUGR fetal rats. ► Prenatal caffeine ingestion

  13. Altered Metabolic Homeostasis in Amyotrophic Lateral Sclerosis: Mechanisms of Energy Imbalance and Contribution to Disease Progression.

    Science.gov (United States)

    Ioannides, Zara A; Ngo, Shyuan T; Henderson, Robert D; McCombe, Pamela A; Steyn, Frederik J

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the death of motor neurones, which leads to paralysis and death in an average of 3 years following diagnosis. The cause of ALS is unknown, but there is substantial evidence that metabolic factors, including nutritional state and body weight, affect disease progression and survival. This review provides an overview of the characteristics of metabolic dysregulation in ALS focusing on mechanisms that lead to disrupted energy supply (at a whole-body and cellular level) and altered energy expenditure. We discuss how a decrease in energy supply occurs in parallel with an increase in energy demand and leads to a state of chronic energy deficit which has a negative impact on disease outcome in ALS. We conclude by presenting potential and tested strategies to compensate for, or correct this energy imbalance, and speculate on promising areas for further research. PMID:27400276

  14. Dexamethasone treatment alters insulin, leptin, and adiponectin levels in male mice as observed in DIO but does not lead to alterations of metabolic phenotypes in the offspring

    OpenAIRE

    Bönisch, Clemens; Irmler, Martin; Brachthäuser, Laura; Neff, Frauke; Bamberger, Mareike T.; Marschall, Susan; Hrabě de Angelis, Martin; Beckers, Johannes

    2015-01-01

    Epigenetic inheritance (EI) of metabolic phenotypes via the paternal lineage has been shown in rodent models of diet-induced obesity (DIO). However, the factors involved in soma-to-germline information transfer remain elusive. Here, we address the role of alterations in insulin, leptin, and adiponectin levels for EI of metabolic phenotypes by treating C57BL/6NTac male mice (F0) with the synthetic glucocorticoid dexamethasone and generating offspring (F1) either by in vitro fertilization or by...

  15. Chronic liquid nutrition intake induces obesity and considerable but reversible metabolic alterations in Wistar rats.

    Science.gov (United States)

    Mikuska, Livia; Vrabcova, Michaela; Tillinger, Andrej; Balaz, Miroslav; Ukropec, Jozef; Mravec, Boris

    2016-06-01

    We have previously described the development of substantial, but reversible obesity in Wistar rats fed with palatable liquid nutrition (Fresubin). In this study, we investigated changes in serum hormone levels, glycemia, fat mass, adipocyte size, and gene expression of adipokines and inflammatory markers in adipose tissue of Wistar rats fed by Fresubin (i) for 5 months, (ii) up to 90 days of age, or (iii) after 90 days of age to characterize metabolic alterations and their reversibility in rats fed with Fresubin. An intra-peritoneal glucose tolerance test was also performed to determine levels of serum leptin, adiponectin, insulin, and C-peptide in 2- and 4-month-old animals. In addition, mesenteric and epididymal adipose tissue weight, adipocyte diameter, and gene expression of pro- and anti-inflammatory adipokines and other markers were determined at the end of the study. Chronic Fresubin intake significantly increased adipocyte diameter, reduced glucose tolerance, and increased serum leptin, adiponectin, insulin, and C-peptide levels. Moreover, gene expression of leptin, adiponectin, CD68, and nuclear factor kappa B was significantly increased in mesenteric adipose tissue of Fresubin fed rats. Monocyte chemotactic protein 1 messenger RNA (mRNA) levels increased in mesenteric adipose tissue only in the group fed Fresubin during the entire experiment. In epididymal adipose tissue, fatty acid binding protein 4 mRNA levels were significantly increased in rats fed by Fresubin during adulthood. In conclusion, chronic Fresubin intake induced complex metabolic alterations in Wistar rats characteristic of metabolic syndrome. However, transition of rats from Fresubin to standard diet reversed these alterations. PMID:26939586

  16. HIV-1 Alters Intestinal Expression of Drug Transporters and Metabolic Enzymes: Implications for Antiretroviral Drug Disposition.

    Science.gov (United States)

    Kis, Olena; Sankaran-Walters, Sumathi; Hoque, M Tozammel; Walmsley, Sharon L; Dandekar, Satya; Bendayan, Reina

    2016-05-01

    This study investigated the effects of HIV-1 infection and antiretroviral therapy (ART) on the expression of intestinal drug efflux transporters, i.e., P-glycoprotein (Pgp), multidrug resistance-associated proteins (MRPs), and breast cancer resistance protein (BCRP), and metabolic enzymes, such as cytochrome P450s (CYPs), in the human upper intestinal tract. Intestinal biopsy specimens were obtained from HIV-negative healthy volunteers, ART-naive HIV-positive (HIV(+)) subjects, and HIV(+) subjects receiving ART (10 in each group). Intestinal tissue expression of drug transporters and metabolic enzymes was examined by microarray, real-time quantitative reverse transcription-PCR (qPCR), and immunohistochemistry analyses. Microarray analysis demonstrated significantly lower expression of CYP3A4 and ABCC2/MRP2 in the HIV(+) ART-naive group than in uninfected subjects. qPCR analysis confirmed significantly lower expression of ABCC2/MRP2 in ART-naive subjects than in the control group, while CYP3A4 and ABCG2/BCRP showed a trend toward decreased expression. Protein expression of MRP2 and BCRP was also significantly lower in the HIV(+) naive group than in the control group and was partially restored to baseline levels in HIV(+) subjects receiving ART. In contrast, gene and protein expression of ABCB1/Pgp was significantly increased in HIV(+) subjects on ART relative to HIV(+) ART-naive subjects. These data demonstrate that the expression of drug-metabolizing enzymes and efflux transporters is significantly altered in therapy-naive HIV(+) subjects and in those receiving ART. Since CYP3A4, Pgp, MRPs, and BCRP metabolize or transport many antiretroviral drugs, their altered expression with HIV infection may negatively impact drug pharmacokinetics in HIV(+) subjects. This has clinical implications when using data from healthy volunteers to guide ART. PMID:26902756

  17. Chronic Intake of Japanese Sake Mediates Radiation-Induced Metabolic Alterations in Mouse Liver.

    Directory of Open Access Journals (Sweden)

    Tetsuo Nakajima

    Full Text Available Sake is a traditional Japanese alcoholic beverage that is gaining popularity worldwide. Although sake is reported to have beneficial health effects, it is not known whether chronic sake consumption modulates health risks due to radiation exposure or other factors. Here, the effects of chronic administration of sake on radiation-induced metabolic alterations in the livers of mice were evaluated. Sake (junmai-shu was administered daily to female mice (C3H/He for one month, and the mice were exposed to fractionated doses of X-rays (0.75 Gy/day for the last four days of the sake administration period. For comparative analysis, a group of mice were administered 15% (v/v ethanol in water instead of sake. Metabolites in the liver were analyzed by capillary electrophoresis-time-of-flight mass spectrometry one day following the last exposure to radiation. The metabolite profiles of mice chronically administered sake in combination with radiation showed marked changes in purine, pyrimidine, and glutathione (GSH metabolism, which were only partially altered by radiation or sake administration alone. Notably, the changes in GSH metabolism were not observed in mice treated with radiation following chronic administration of 15% ethanol in water. Changes in several metabolites, including methionine and valine, were induced by radiation alone, but were not detected in the livers of mice who received chronic administration of sake. In addition, the chronic administration of sake increased the level of serum triglycerides, although radiation exposure suppressed this increase. Taken together, the present findings suggest that chronic sake consumption promotes GSH metabolism and anti-oxidative activities in the liver, and thereby may contribute to minimizing the adverse effects associated with radiation.

  18. Insulin resistance is associated with altered amino acid metabolism and adipose tissue dysfunction in normoglycemic women

    OpenAIRE

    Petri Wiklund; Xiaobo Zhang; Satu Pekkala; Reija Autio; Lingjia Kong; Yifan Yang; Sirkka Keinänen-Kiukaanniemi; Markku Alen; Sulin Cheng

    2016-01-01

    Insulin resistance is associated adiposity, but the mechanisms are not fully understood. In this study, we aimed to identify early metabolic alterations associated with insulin resistance in normoglycemic women with varying degree of adiposity. One-hundred and ten young and middle-aged women were divided into low and high IR groups based on their median HOMA-IR (0.9 ± 0.4 vs. 2.8 ± 1.2). Body composition was assessed using DXA, skeletal muscle and liver fat by proton magnetic resonance spectr...

  19. ASSOCIATION ANALYSES OF ADRENERGIC RECEPTOR POLYMORPHISMS WITH OBESITY AND METABOLIC ALTERATIONS

    OpenAIRE

    Lima, John J.; Feng, Hua; Duckworth, Laurie; Wang, Jianwei; Sylvester, James E.; Kissoon, Niranjan; Garg, Hardesh

    2007-01-01

    Genes involved in the regulation of catecholamine function may be important in obesity because of the role catecholamines play in energy expenditure and lipolysis. To determine if common single nucleotide polymorphisms (SNPs) in β1 (ADRB1), β2 (ADRB2), β3 (ADRB3) and α2a adrenergic receptor (ADRA2A) genes associate with obesity and metabolic alterations, we recruited 74 healthy African American and 161 Caucasian males and females (age: 18–49y) to participate in this case-control genetic assoc...

  20. Type 2 diabetes alters metabolic and transcriptional signatures of glucose and amino acid metabolism during exercise and recovery

    DEFF Research Database (Denmark)

    Hansen, Jakob S; Zhao, Xinjie; Irmler, Martin;

    2015-01-01

    180 min recovery phase in type 2 diabetic patients and healthy controls matched for age, percentage body fat and maximal oxygen consumption (VO2). RESULTS: Pathway analysis of differentially regulated genes upon exercise revealed upregulation of regulators of GLUT4 (SLC2A4RG, FLOT1, EXOC7, RAB13......AIMS/HYPOTHESIS: The therapeutic benefit of physical activity to prevent and treat type 2 diabetes is commonly accepted. However, the impact of the disease on the acute metabolic response is less clear. To this end, we investigated the effect of type 2 diabetes on exercise-induced plasma metabolite......, RABGAP1 and CBLB), glycolysis (HK2, PFKFB1, PFKFB3, PFKM, FBP2 and LDHA) and insulin signal mediators in diabetic participants compared with controls. Notably, diabetic participants had normalised rates of lactate and insulin levels, and of glucose appearance and disappearance, after exercise. They also...

  1. Aquatic metabolism response to the hydrologic alteration in the Yellow River estuary, China

    Science.gov (United States)

    Shen, Xiaomei; Sun, Tao; Liu, Fangfang; Xu, Jing; Pang, Aiping

    2015-06-01

    Successful artificial hydrologic regulation and environmental flow assessments for the ecosystem protection require an accurate understanding of the linkages between flow events and biotic responses. To explore an ecosystem's functional responses to hydrologic alterations, we analysed spatial and temporal variations in aquatic metabolism and the main factors influenced by artificial hydrologic alterations based on the data collected from 2009 to 2012 in the Yellow River estuary, China. Gross primary production (GPP) ranged from 0.002 to 8.488 mg O2 L-1 d-1. Ecosystem respiration (ER) ranged from 0.382 to 8.968 mg O2 L-1 d-1. Net ecosystem production (NEP) ranged from -5.792 to 7.293 mg O2 L-1 d-1 and the mean of NEP was -0.506 mg O2 L-1 d-1, which means that the trophic status of entire estuary was near to balance. The results showed that seasonal variations in the aquatic metabolism are influenced by the hydrologic alteration in the estuary. High water temperature and solar radiation in summer are associated with low turbidity and consequently high rates of GPP and ER, making the estuary net autotrophic in summer, and that also occurred after water-sediment regulation in August. Turbidity and water temperature were identified as two particularly important factors that influenced the variation in the metabolic balance. As a result, metabolism rate did not decrease but increased after the regulation. ER increased significantly in summer and autumn and reached a maximum after the water-sediment regulation in September. GPP and NEP reached a maximum value after the water-sediment regulation in August, and then decreased in autumn. Estuarine ecosystem shifted from net heterotrophy in spring to net autotrophy in summer, and then to net heterotrophy in autumn. Our study indicated that estuarine metabolism may recover to a high level faster in summer than that in other seasons after the short-term water-sediment regulation due to higher water temperature and nutrients.

  2. Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus

    Energy Technology Data Exchange (ETDEWEB)

    Kodavanti, Prasada Rao S., E-mail: kodavanti.prasada@epa.gov [Neurotoxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (United States); Osorio, Cristina [Systems Proteomics Center, University of North Carolina at Chapel Hill, North Carolina (United States); Program on Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, North Carolina (United States); Royland, Joyce E.; Ramabhadran, Ram [Genetic and Cellular Toxicology Branch, NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina (United States); Alzate, Oscar [Department of Cellular and Developmental Biology, University of North Carolina at Chapel Hill, North Carolina (United States); Systems Proteomics Center, University of North Carolina at Chapel Hill, North Carolina (United States); Program on Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, North Carolina (United States)

    2011-11-15

    The vast literature on the mode of action of polychlorinated biphenyls (PCBs) indicates that PCBs are a unique model for understanding the mechanisms of toxicity of environmental mixtures of persistent chemicals. PCBs have been shown to adversely affect psychomotor function and learning and memory in humans. Although the molecular mechanisms for PCB effects are unclear, several studies indicate that the disruption of Ca{sup 2+}-mediated signal transduction plays significant roles in PCB-induced developmental neurotoxicity. Culminating events in signal transduction pathways include the regulation of gene and protein expression, which affects the growth and function of the nervous system. Our previous studies showed changes in gene expression related to signal transduction and neuronal growth. In this study, protein expression following developmental exposure to PCB is examined. Pregnant rats (Long Evans) were dosed with 0.0 or 6.0 mg/kg/day of Aroclor-1254 from gestation day 6 through postnatal day (PND) 21, and the cerebellum and hippocampus from PND14 animals were analyzed to determine Aroclor 1254-induced differential protein expression. Two proteins were found to be differentially expressed in the cerebellum following PCB exposure while 18 proteins were differentially expressed in the hippocampus. These proteins are related to energy metabolism in mitochondria (ATP synthase, sub unit {beta} (ATP5B), creatine kinase, and malate dehydrogenase), calcium signaling (voltage-dependent anion-selective channel protein 1 (VDAC1) and ryanodine receptor type II (RyR2)), and growth of the nervous system (dihydropyrimidinase-related protein 4 (DPYSL4), valosin-containing protein (VCP)). Results suggest that Aroclor 1254-like persistent chemicals may alter energy metabolism and intracellular signaling, which might result in developmental neurotoxicity. -- Highlights: Black-Right-Pointing-Pointer We performed brain proteomic analysis of rats exposed to the neurotoxicant

  3. Reversible structural alterations of undifferentiated and differentiated human neuroblastoma cells induced by phorbol ester.

    OpenAIRE

    Tint, I S; Bonder, E. M.; Feder, H. H.; Reboulleau, C P; Vasiliev, J M; Gelfand, I M

    1992-01-01

    Morphological alterations in the structure of undifferentiated and morphologically differentiated human neuroblastoma cells induced by phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C, were examined by video microscopy and immunomorphology. In undifferentiated cells, PMA induced the formation of motile actin-rich lamellas and of stable cylindrical processes rich in microtubules. Formation of stable processes resulted either from the collapse of lamellas or the movement ...

  4. PPARγ isoforms differentially regulate metabolic networks to mediate mouse prostatic epithelial differentiation

    OpenAIRE

    Strand, D.W.; Jiang, M; Murphy, T A; Yi, Y.; Konvinse, K C; Franco, O E; Wang, Y.; Young, J D; Hayward, S.W.

    2012-01-01

    Recent observations indicate prostatic diseases are comorbidities of systemic metabolic dysfunction. These discoveries revealed fundamental questions regarding the nature of prostate metabolism. We previously showed that prostate-specific ablation of PPARγ in mice resulted in tumorigenesis and active autophagy. Here, we demonstrate control of overlapping and distinct aspects of prostate epithelial metabolism by ectopic expression of individual PPARγ isoforms in PPARγ knockout prostate epithel...

  5. Fluoxetine Treatment Rescues Energy Metabolism Pathway Alterations in a Posttraumatic Stress Disorder Mouse Model.

    Science.gov (United States)

    Kao, Chi-Ya; He, Zhisong; Henes, Kathrin; Asara, John M; Webhofer, Christian; Filiou, Michaela D; Khaitovich, Philipp; Wotjak, Carsten T; Turck, Christoph W

    2016-05-01

    Posttraumatic stress disorder (PTSD) is a prevalent psychiatric disorder. Several studies have attempted to characterize molecular alterations associated with PTSD, but most findings were limited to the investigation of specific cellular markers in the periphery or defined brain regions. In the current study, we aimed to unravel affected molecular pathways/mechanisms in the fear circuitry associated with PTSD. We interrogated a foot shock-induced PTSD mouse model by integrating proteomics and metabolomics profiling data. Alterations at the proteome level were analyzed using in vivo (15)N metabolic labeling combined with mass spectrometry in the prelimbic cortex (PrL), anterior cingulate cortex (ACC), basolateral amygdala, central nucleus of the amygdala and CA1 of the hippocampus between shocked and nonshocked (control) mice, with and without fluoxetine treatment. In silico pathway analyses revealed an upregulation of the citric acid cycle pathway in PrL, and downregulation in ACC and nucleus accumbens (NAc). Chronic fluoxetine treatment prevented decreased citric acid cycle activity in NAc and ACC and ameliorated conditioned fear response in shocked mice. Our results shed light on the role of energy metabolism in PTSD pathogenesis and suggest potential therapy through mitochondrial targeting. PMID:27606320

  6. Altered dopamine and serotonin metabolism in motorically asymptomatic R6/2 mice.

    Directory of Open Access Journals (Sweden)

    Fanny Mochel

    Full Text Available The pattern of cerebral dopamine (DA abnormalities in Huntington disease (HD is complex, as reflected by the variable clinical benefit of both DA antagonists and agonists in treating HD symptoms. In addition, little is known about serotonin metabolism despite the early occurrence of anxiety and depression in HD. Post-mortem enzymatic changes are likely to interfere with the in vivo profile of biogenic amines. Hence, in order to reliably characterize the regional and chronological profile of brain neurotransmitters in a HD mouse model, we used a microwave fixation system that preserves in vivo concentrations of dopaminergic and serotoninergic amines. DA was decreased in the striatum of R6/2 mice at 8 and 12 weeks of age while DA metabolites, 3-methoxytyramine and homovanillic acid, were already significantly reduced in 4-week-old motorically asymptomatic R6/2 mice. In the striatum, hippocampus and frontal cortex of 4, 8 and 12-week-old R6/2 mice, serotonin and its metabolite 5-hydroxyindoleacetic acid were significantly decreased in association with a decreased turnover of serotonin. In addition, automated high-resolution behavioural analyses displayed stress-like behaviours such as jumping and grooming and altered spatial learning in R6/2 mice at age 4 and 6 weeks respectively. Therefore, we describe the earliest alterations of DA and serotonin metabolism in a HD murine model. Our findings likely underpin the neuropsychological symptoms at time of disease onset in HD.

  7. Liver disease alters high-density lipoprotein composition, metabolism and function.

    Science.gov (United States)

    Trieb, Markus; Horvath, Angela; Birner-Gruenberger, Ruth; Spindelboeck, Walter; Stadlbauer, Vanessa; Taschler, Ulrike; Curcic, Sanja; Stauber, Rudolf E; Holzer, Michael; Pasterk, Lisa; Heinemann, Akos; Marsche, Gunther

    2016-07-01

    High-density lipoproteins (HDL) are important endogenous inhibitors of inflammatory responses. Functional impairment of HDL might contribute to the excess mortality experienced by patients with liver disease, but the effect of cirrhosis on HDL metabolism and function remain elusive. To get an integrated measure of HDL quantity and quality, we assessed several metrics of HDL function using apolipoprotein (apo) B-depleted sera from patients with compensated cirrhosis, patients with acutely decompensated cirrhosis and healthy controls. We observed that sera of cirrhotic patients showed reduced levels of HDL-cholesterol and profoundly suppressed activities of several enzymes involved in HDL maturation and metabolism. Native gel electrophoresis analyses revealed that cirrhotic serum HDL shifts towards the larger HDL2 subclass. Proteomic assessment of isolated HDL identified several proteins, including apoA-I, apoC-III, apoE, paraoxonase 1 and acute phase serum amyloid A to be significantly altered in cirrhotic patients. With regard to function, these alterations in levels, composition and structure of HDL were strongly associated with metrics of function of apoB-depleted sera, including cholesterol efflux capability, paraoxonase activity, the ability to inhibit monocyte production of cytokines and endothelial regenerative activities. Of particular interest, cholesterol efflux capacity appeared to be strongly associated with liver disease mortality. Our findings may be clinically relevant and improve our ability to monitor cirrhotic patients at high risk. PMID:27106140

  8. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands.

    Science.gov (United States)

    Lamas, Bruno; Richard, Mathias L; Leducq, Valentin; Pham, Hang-Phuong; Michel, Marie-Laure; Da Costa, Gregory; Bridonneau, Chantal; Jegou, Sarah; Hoffmann, Thomas W; Natividad, Jane M; Brot, Loic; Taleb, Soraya; Couturier-Maillard, Aurélie; Nion-Larmurier, Isabelle; Merabtene, Fatiha; Seksik, Philippe; Bourrier, Anne; Cosnes, Jacques; Ryffel, Bernhard; Beaugerie, Laurent; Launay, Jean-Marie; Langella, Philippe; Xavier, Ramnik J; Sokol, Harry

    2016-06-01

    Complex interactions between the host and the gut microbiota govern intestinal homeostasis but remain poorly understood. Here we reveal a relationship between gut microbiota and caspase recruitment domain family member 9 (CARD9), a susceptibility gene for inflammatory bowel disease (IBD) that functions in the immune response against microorganisms. CARD9 promotes recovery from colitis by promoting interleukin (IL)-22 production, and Card9(-/-) mice are more susceptible to colitis. The microbiota is altered in Card9(-/-) mice, and transfer of the microbiota from Card9(-/-) to wild-type, germ-free recipients increases their susceptibility to colitis. The microbiota from Card9(-/-) mice fails to metabolize tryptophan into metabolites that act as aryl hydrocarbon receptor (AHR) ligands. Intestinal inflammation is attenuated after inoculation of mice with three Lactobacillus strains capable of metabolizing tryptophan or by treatment with an AHR agonist. Reduced production of AHR ligands is also observed in the microbiota from individuals with IBD, particularly in those with CARD9 risk alleles associated with IBD. Our findings reveal that host genes affect the composition and function of the gut microbiota, altering the production of microbial metabolites and intestinal inflammation. PMID:27158904

  9. Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells.

    Science.gov (United States)

    Amaral, Ana I; Hadera, Mussie G; Tavares, Joana M; Kotter, Mark R N; Sonnewald, Ursula

    2016-01-01

    Although oligodendrocytes constitute a significant proportion of cells in the central nervous system (CNS), little is known about their intermediary metabolism. We have, therefore, characterized metabolic functions of primary oligodendrocyte precursor cell cultures at late stages of differentiation using isotope-labelled metabolites. We report that differentiated oligodendrocyte lineage cells avidly metabolize glucose in the cytosol and pyruvate derived from glucose in the mitochondria. The labelling patterns of metabolites obtained after incubation with [1,2-(13)C]glucose demonstrated that the pentose phosphate pathway (PPP) is highly active in oligodendrocytes (approximately 10% of glucose is metabolized via the PPP as indicated by labelling patterns in phosphoenolpyruvate). Mass spectrometry and magnetic resonance spectroscopy analyses of metabolites after incubation of cells with [1-(13)C]lactate or [1,2-(13)C]glucose, respectively, demonstrated that anaplerotic pyruvate carboxylation, which was thought to be exclusive to astrocytes, is also active in oligodendrocytes. Using [1,2-(13)C]acetate, we show that oligodendrocytes convert acetate into acetyl CoA which is metabolized in the tricarboxylic acid cycle. Analysis of labelling patterns of alanine after incubation of cells with [1,2-(13)C]acetate and [1,2-(13)C]glucose showed catabolic oxidation of malate or oxaloacetate. In conclusion, we report that oligodendrocyte lineage cells at late differentiation stages are metabolically highly active cells that are likely to contribute considerably to the metabolic activity of the CNS. PMID:26352325

  10. Carbohydrate utilization and metabolism is highly differentiated in Agaricus bisporus

    OpenAIRE

    Patyshakuliyeva, A.; Jurak, E.; Kohler, A; Baker, A.; Battaglia, E; Bruijn, de, M.E.; Burton, K.S.; Challen, M.P.; Cuotinho, P.M.; Eastwood, D.C.; Gruben, B.S.; Makela, M.R.; Martin, F.; Nadal, M; Brink, van den, A Arno

    2013-01-01

    Background - Agaricus bisporus is commercially grown on compost, in which the available carbon sources consist mainly of plant-derived polysaccharides that are built out of various different constituent monosaccharides. The major constituent monosaccharides of these polysaccharides are glucose, xylose, and arabinose, while smaller amounts of galactose, glucuronic acid, rhamnose and mannose are also present. Results - In this study, genes encoding putative enzymes from carbon metabolism were i...

  11. Differential Role for Trehalose Metabolism in Salt-Stressed Maize

    OpenAIRE

    Henry, Clemence; Bledsoe, Samuel W.; Cara A Griffiths; Kollman, Alec; Paul, Matthew J.; Sakr, Soulaiman; Lagrimini, L. Mark

    2015-01-01

    Little is known about how salt impacts primary metabolic pathways of C-4 plants, particularly related to kernel development and seed set. Osmotic stress was applied to maize (Zea mays) B73 by irrigation with increasing concentrations of NaCl from the initiation of floral organs until 3 d after pollination. At silking, photosynthesis was reduced to only 2% of control plants. Salt treatment was found to reduce spikelet growth, silk growth, and kernel set. Osmotic stress resulted in higher conce...

  12. Involvement of heparan sulfate 6-O-sulfation in the regulation of energy metabolism and the alteration of thyroid hormone levels in male mice.

    Science.gov (United States)

    Nagai, Naoko; Habuchi, Hiroko; Sugaya, Noriko; Nakamura, Masao; Imamura, Toru; Watanabe, Hideto; Kimata, Koji

    2013-08-01

    Here, we report that male heparan sulfate 6-O-sulfotransferase-2 (Hs6st2) knockout mice showed increased body weight in an age-dependent manner even when fed with a normal diet and showed a phenotype of impaired glucose metabolism and insulin resistance. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis showed that the expression of mitochondrial uncoupling proteins Ucp1 and Ucp3 was reduced in the interscapular brown adipose tissue (BAT) of male Hs6st2 knockout mice, suggesting reduced energy metabolism. The serum level of thyroid-stimulating hormone was significantly higher and that of thyroxine was lower in the knockout mice. When cultures of brown adipocytes from wild-type and Hs6st2 knockout mice isolated and differentiated in vitro were treated with FGF19 (fibroblast growth factor 19) or FGF21 in the presence or the absence of heparitinase I, phosphorylation of p42/p44 mitogen-activated protein (MAP) kinase was reduced. Heparan sulfate (HS) 6-O-sulfation was reduced not only in BAT but also in the thyroid tissue of the knockout mice. Thus, 6-O-sulfation in HS seems to play an important role in mediating energy metabolism by controlling thyroid hormone levels and signals from the FGF19 subfamily proteins, and the alteration of the HS composition may result in metabolic syndrome phenotypes such as altered glucose and insulin tolerance. PMID:23690091

  13. [Hepatic steatosis, visceral fat and metabolic alterations in apparently healthy overweight/obese individuals].

    Science.gov (United States)

    Ryder, Elena; Mijac, Volga; Fernández, Erika; Palazzi, Nora; Morales, María Carolina; Connell, Lissette; Parra, Agner; Romero, Marlon; Fernández, Nelson

    2014-03-01

    Clinical observation indicates that many obese individuals do not display important metabolic alterations. Consequently, the objective of this study was to establish whether simple obesity, non concurrent with other important risk factors, was associated with metabolic alterations; or if the phenomenon known as "obesity paradox" was present. A clinical history, measurements of anthropometric and metabolic parameters and estimation of hepatic steatosis and visceral fat, were determined in 30, apparently healthy, individuals from Maracaibo, Venezuela, between 20 and 59 years of age and a body mass index (BMI) above 25 kg/m2, and compared to a lean control group of 11 individuals with BMI less than 25 kg/m2. The study demonstrated that only one third of overweight/obese individuals (OW/OB), with high body mass index (BMI) and waist circumference (WC), presented elevated values of insulin, HOMA-IR and triglycerides. Nevertheless, the presence of hepatic steatosis was elevated in the OW/OB group (91%) vs. 9% in the control group. The visceral fat in the lean control group was associated with both, WC and glycemia; however, it was not related to the BMI or insulin, HOMA-IR and HDLc. The visceral fat in the OW/OB group, although elevated in relation to the lean group, revealed a loss of these associations. In the OW/OB it was the BMI that was associated with insulin and HOMA-IR. The results emphasize the importance of investigating for the presence of hepatic steatosis, rather than visceral fat, in individuals with OW/OB, to identify subjects with high cardiometabolic risk. PMID:24758097

  14. Glucose metabolism during fasting is altered in experimental porphobilinogen deaminase deficiency.

    Science.gov (United States)

    Collantes, María; Serrano-Mendioroz, Irantzu; Benito, Marina; Molinet-Dronda, Francisco; Delgado, Mercedes; Vinaixa, María; Sampedro, Ana; Enríquez de Salamanca, Rafael; Prieto, Elena; Pozo, Miguel A; Peñuelas, Iván; Corrales, Fernando J; Barajas, Miguel; Fontanellas, Antonio

    2016-04-01

    Porphobilinogen deaminase (PBGD) haploinsufficiency (acute intermittent porphyria, AIP) is characterized by neurovisceral attacks when hepatic heme synthesis is activated by endogenous or environmental factors including fasting. While the molecular mechanisms underlying the nutritional regulation of hepatic heme synthesis have been described, glucose homeostasis during fasting is poorly understood in porphyria. Our study aimed to analyse glucose homeostasis and hepatic carbohydrate metabolism during fasting in PBGD-deficient mice. To determine the contribution of hepatic PBGD deficiency to carbohydrate metabolism, AIP mice injected with a PBGD-liver gene delivery vector were included. After a 14 h fasting period, serum and liver metabolomics analyses showed that wild-type mice stimulated hepatic glycogen degradation to maintain glucose homeostasis while AIP livers activated gluconeogenesis and ketogenesis due to their inability to use stored glycogen. The serum of fasted AIP mice showed increased concentrations of insulin and reduced glucagon levels. Specific over-expression of the PBGD protein in the liver tended to normalize circulating insulin and glucagon levels, stimulated hepatic glycogen catabolism and blocked ketone body production. Reduced glucose uptake was observed in the primary somatosensorial brain cortex of fasted AIP mice, which could be reversed by PBGD-liver gene delivery. In conclusion, AIP mice showed a different response to fasting as measured by altered carbohydrate metabolism in the liver and modified glucose consumption in the brain cortex. Glucose homeostasis in fasted AIP mice was efficiently normalized after restoration of PBGD gene expression in the liver. PMID:26908609

  15. Altered somatotroph feedback regulation improves metabolic efficiency and limits adipose deposition in male mice.

    Science.gov (United States)

    Romero, Christopher J; Wolfe, Andrew; Law, Yi Ying; Costelloe, ChenChen Z; Miller, Ryan; Wondisford, Fredric; Radovick, Sally

    2016-04-01

    Several transgenic mouse models with disruption in the growth hormone (GH) axis support the role of GH in augmenting metabolic homeostasis. Specifically, interest has focused on GH's lipolytic properties and ability to affect adipose deposition. Furthermore, both GH and insulin growth factor 1 (IGF-1) may also play a direct or indirect role in adipose development. The somatotroph insulin-like growth factor-1 receptor knockout (SIGFRKO) mouse with only a modest increase in serum GH and IGF-1 demonstrates less adipose tissue than controls. In order to characterize the metabolic phenotype of SIGFRKO mice, histologic analysis of fat depots confirmed a smaller average diameter of adipocytes in the SIGFRKO mice compared to controls. These changes were accompanied by an increase in lipolytic gene expression in fat depots. Indirect calorimetry performed on 6-8week old male mice and again at 25weeks of age demonstrated that SIGFRKO mice, at both ages, had a higher VO2 and increased energy expenditure when compared with controls. The calculated respiratory exchange ratio (RER) was lower in the younger SIGFRKO mice compared to controls. No differences in food consumption or in either ambulatory or total activity were seen between SIGFRKO and control mice in either age group. These studies highlight the role of GH in adipose deposition and its influence on the expression of lipolytic genes resulting in an altered metabolic state, thus providing a mechanism for the decrease in weight gain seen in the SIGFRKO mouse model. PMID:26975547

  16. Multiphoton fluorescence lifetime imaging of metabolic status in mesenchymal stem cell during adipogenic differentiation

    Science.gov (United States)

    Meleshina, A. V.; Dudenkova, V. V.; Shirmanova, M. V.; Bystrova, A. S.; Zagaynova, E. V.

    2016-03-01

    Non-invasive imaging of cell metabolism is a valuable approach to assess the efficacy of stem cell therapy and understand the tissue development. In this study we analyzed metabolic trajectory of the mesenchymal stem cells (MCSs) during differentiation into adipocytes by measuring fluorescence lifetimes of free and bound forms of the reduced nicotinamide adenine dinucleotide (NAD(P)H) and flavine adenine dinucleotide (FAD). Undifferentiated MSCs and MSCs on the 5, 12, 19, 26 days of differentiation were imaged on a Zeiss 710 microscope with fluorescence lifetime imaging (FLIM) system B&H (Germany). Fluorescence of NAD(P)H and FAD was excited at 750 nm and 900 nm, respectively, by a femtosecond Ti:sapphire laser and detected in a range 455-500 nm and 500-550 nm, correspondingly. We observed the changes in the NAD(P)H and FAD fluorescence lifetimes and their relative contributions in the differentiated adipocytes compare to undifferentiated MSCs. Increase of fluorescence lifetimes of the free and bound forms of NAD(P)H and the contribution of protein-bound NAD(P)H was registered, that can be associated with a metabolic switch from glycolysis to oxidative phosphorylation and/or synthesis of lipids in adipogenically differentiated MSCs. We also found that the contribution of protein-bound FAD decreased during differentiation. After carrying out appropriate biochemical measurements, the observed changes in cellular metabolism can potentially serve to monitor stem cell differentiation by FLIM.

  17. 5α-Reductase inhibitors alter steroid metabolism and may contribute to insulin resistance, diabetes, metabolic syndrome and vascular disease: a medical hypothesis.

    Science.gov (United States)

    Traish, Abdulmaged M; Guay, Andre T; Zitzmann, Michael

    2014-12-01

    5α-reductases, a unique family of enzymes with a wide host of substrates and tissue distributions, play a key role in the metabolism of androgens, progestins, mineralocorticoids and glucocorticoids. These enzymes are the rate-limiting step in the synthesis of a host of neurosteroids, which are critical for central nervous system function. Androgens and glucocorticoids modulate mitochondrial function, carbohydrate, protein and lipid metabolism and energy balance. Thus, the inhibition of these regulatory enzymes results in an imbalance in steroid metabolism and clearance rates, which leads to altered physiological processes. In this report, we advance the hypothesis that inhibition of 5α-reductases by finasteride and dutasteride alters not only steroid metabolism but also interferes with the downstream actions and signaling of these hormones. We suggest that finasteride and dutasteride inhibit 5α-reductase activities and reduce the clearance of glucocorticoids and mineralocorticoids, potentiating insulin resistance, diabetes and vascular disease. PMID:25460297

  18. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  19. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults.

    Science.gov (United States)

    Cheung, Ivy N; Zee, Phyllis C; Shalman, Dov; Malkani, Roneil G; Kang, Joseph; Reid, Kathryn J

    2016-01-01

    Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux). Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group) or 10.5 hours after wake (n = 10; evening group). All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR) and area under the curve (AUC) for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism. PMID:27191727

  20. Nighttime feeding likely alters morning metabolism but not exercise performance in female athletes.

    Science.gov (United States)

    Ormsbee, Michael J; Gorman, Katherine A; Miller, Elizabeth A; Baur, Daniel A; Eckel, Lisa A; Contreras, Robert J; Panton, Lynn B; Spicer, Maria T

    2016-07-01

    The timing of morning endurance competition may limit proper pre-race fueling and resulting performance. A nighttime, pre-sleep nutritional strategy could be an alternative method to target the metabolic and hydrating needs of the early morning athlete without compromising sleep or gastrointestinal comfort during exercise. Therefore, the purpose of this investigation was to examine the acute effects of pre-sleep chocolate milk (CM) ingestion on next-morning running performance, metabolism, and hydration status. Twelve competitive female runners and triathletes (age, 30 ± 7 years; peak oxygen consumption, 53 ± 4 mL·kg(-1)·min(-1)) randomly ingested either pre-sleep CM or non-nutritive placebo (PL) ∼30 min before sleep and 7-9 h before a morning exercise trial. Resting metabolic rate (RMR) was assessed prior to exercise. The exercise trial included a warm-up, three 5-min incremental workloads at 55%, 65%, and 75% peak oxygen consumption, and a 10-km treadmill time trial (TT). Physiological responses were assessed prior, during (incremental and TT), and postexercise. Paired t tests and magnitude-based inferences were used to determine treatment differences. TT performances were not different ("most likely trivial" improvement with CM) between conditions (PL: 52.8 ± 8.4 min vs CM: 52.8 ± 8.0 min). RMR was "likely" increased (4.8%) and total carbohydrate oxidation (g·min(-1)) during exercise was "possibly" or likely increased (18.8%, 10.1%, 9.1% for stage 1-3, respectively) with CM versus PL. There were no consistent changes to hydration indices. In conclusion, pre-sleep CM may alter next-morning resting and exercise metabolism to favor carbohydrate oxidation, but effects did not translate to 10-km running performance improvements. PMID:27329516

  1. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts

    Directory of Open Access Journals (Sweden)

    Mariateresa Maldini

    2015-06-01

    Full Text Available The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle. We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant’s developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the

  2. Altered lipid metabolism in the aging kidney identified by three layered omic analysis.

    Science.gov (United States)

    Braun, Fabian; Rinschen, Markus M; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Hoeijmakers, Jan H J; Schumacher, Björn; Dollé, Martijn E T; Müller, Roman-Ulrich; Benzing, Thomas; Schermer, Bernhard; Kurschat, Christine E

    2016-03-01

    Aging-associated diseases and their comorbidities affect the life of a constantly growing proportion of the population in developed countries. At the center of these comorbidities are changes of kidney structure and function as age-related chronic kidney disease predisposes to the development of cardiovascular diseases such as stroke, myocardial infarction or heart failure. To detect molecular mechanisms involved in kidney aging, we analyzed gene expression profiles of kidneys from adult and aged wild-type mice by transcriptomic, proteomic and targeted lipidomic methodologies. Interestingly, transcriptome and proteome analyses revealed differential expression of genes primarily involved in lipid metabolism and immune response. Additional lipidomic analyses uncovered significant age-related differences in the total amount of phosphatidylethanolamines, phosphatidylcholines and sphingomyelins as well as in subspecies of phosphatidylserines and ceramides with age. By integration of these datasets we identified Aldh1a1, a key enzyme in vitamin A metabolism specifically expressed in the medullary ascending limb, as one of the most prominent upregulated proteins in old kidneys. Moreover, ceramidase Asah1 was highly expressed in aged kidneys, consistent with a decrease in ceramide C16. In summary, our data suggest that changes in lipid metabolism are involved in the process of kidney aging and in the development of chronic kidney disease. PMID:26886165

  3. Antipsychotics-induced metabolic alterations: focus on adipose tissue and molecular mechanisms.

    Science.gov (United States)

    Gonçalves, Pedro; Araújo, João Ricardo; Martel, Fátima

    2015-01-01

    The use of antipsychotic drugs for the treatment of mood disorders and psychosis has increased dramatically over the last decade. Despite its consumption being associated with beneficial neuropsychiatric effects in patients, atypical antipsychotics (which are the most frequently prescribed antipsychotics) use is accompanied by some secondary adverse metabolic effects such as weight gain, dyslipidemia and glucose intolerance. The molecular mechanisms underlying these adverse effects are not fully understood but have been suggested to involve a dysregulation of adipose tissue homeostasis. As such, the aim of this paper is to review and discuss the role of adipose tissue in the development of secondary adverse metabolic effects induced by atypical antipsychotics. Data analyzed in this article suggest that atypical antipsychotics may increase adipose tissue (particularly visceral adipose tissue) lipogenesis, differentiation/hyperplasia, pro-inflammatory mediator secretion and insulin resistance and decrease adipose tissue lipolysis. Consequently, patients receiving antipsychotic medication could be at risk of developing obesity, type 2 diabetes and cardiovascular disease. A better knowledge of the impact of these drugs on adipose tissue homeostasis may unveil strategies to develop novel antipsychotic drugs with less adverse metabolic effects and to develop adjuvant therapies (e.g. behavioral and nutritional therapies) to neuropsychiatric patients receiving antipsychotic medication. PMID:25523882

  4. Selective estrogen receptor modulators differentially alter the immune response of gilthead seabream juveniles.

    Science.gov (United States)

    Rodenas, M C; Cabas, I; García-Alcázar, A; Meseguer, J; Mulero, V; García-Ayala, A

    2016-05-01

    17α-ethynylestradiol (EE2), a synthetic estrogen used in oral contraceptives and hormone replacement therapy, tamoxifen (Tmx), a selective estrogen-receptor modulator used in hormone replacement therapy, and G1, a G protein-coupled estrogen receptor (GPER) selective agonist, differentially increased the hepatic vitellogenin (vtg) gene expression and altered the immune response in adult gilthead seabream (Sparus aurata L.) males. However, no information exists on the effects of these compounds on the immune response of juveniles. This study aims, for the first time, to investigate the effects of the dietary intake of EE2, Tmx or G1 on the immune response of gilthead seabream juveniles and the capacity of the immune system of the specimens to recover its functionality after ceasing exposures (recovery period). The specimens were immunized with hemocyanin in the presence of aluminium adjuvant 1 (group A) or 120 (group B) days after the treatments ceased (dpt). The results indicate that EE2 and Tmx, but not G1, differentially promoted a transient alteration in hepatic vtg gene expression. Although all three compounds did not affect the production of reactive oxygen intermediates, they inhibited the induction of interleukin-1β (il1b) gene expression after priming. Interestingly, although Tmx increased the percentage of IgM-positive cells in both head kidney and spleen during the recovery period, the antibody response of vaccinated fish varied depending on the compound used and when the immunization was administered. Taken together, our results suggest that these compounds differentially alter the capacity of fish to respond to infection during ontogeny and, more interestingly, that the adaptive immune response remained altered to an extent that depends on the compound. PMID:27012396

  5. Silibinin Regulates Lipid Metabolism and Differentiation in Functional Human Adipocytes

    OpenAIRE

    Barbagallo, Ignazio; Vanella, Luca; Cambria, Maria T.; Tibullo, Daniele; Godos, Justyna; Guarnaccia, Laura; Zappalà, Agata; Galvano, Fabio; Li Volti, Giovanni

    2016-01-01

    Silibinin, a natural plant flavonolignan is the main active constituent found in milk thistle (Silybum marianum). It is known to have hepatoprotective, anti-neoplastic effect, and suppresses lipid accumulation in adipocytes. Objective of this study was to investigate the effect of silibinin on adipogenic differentiation and thermogenic capacity of human adipose tissue derived mesenchymal stem cells. Silibinin (10 μM) treatment, either at the beginning or at the end of adipogenic differentiati...

  6. Probing metabolic states of differentiating stem cells using two-photon FLIM

    Science.gov (United States)

    Meleshina, Aleksandra V.; Dudenkova, Varvara V.; Shirmanova, Marina V.; Shcheslavskiy, Vladislav I.; Becker, Wolfgang; Bystrova, Alena S.; Cherkasova, Elena I.; Zagaynova, Elena V.

    2016-01-01

    The ability of stem cells to differentiate into specialized cell types presents a number of opportunities for regenerative medicine, stem cell therapy and developmental biology. Because traditional assessments of stem cells are destructive, time consuming, and logistically intensive, the use of a non-invasive, label-free approach to study of cell differentiation provides a powerful tool for rapid, high-content characterization of cell and tissue cultures. Here, we elucidate the metabolic changes in MSCs during adipogenic differentiation, based on the fluorescence of the metabolic co-factors NADH, NADPH, and FAD using the methods of two-photon fluorescence microscopy combined with FLIM. To estimate the contribution of energy metabolism and lipogenesis in the observed changes of the metabolic profile, a separate analysis of NADH and NADPH is required. In our study we demonstrated, for the first time, an increased contribution of protein-bound NADPH in adipocytes that is associated with lipogenesis. The optical redox ratio FAD/NAD(P)H decreased during adipogenic differentiation, and that this was likely to be explained by the intensive biosynthesis of lipids and the enhanced NADPH production associated with this. Based on the data on the fluorescence lifetime contribution of protein-bound NAD(P)H, we registered a metabolic switch from glycolysis to oxidative phosphorylation in adipocytes. PMID:26911347

  7. Influence of Amino Acid Metabolism on Embryonic Stem Cell Function and Differentiation.

    Science.gov (United States)

    Kilberg, Michael S; Terada, Naohiro; Shan, Jixiu

    2016-07-01

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have promise in regenerative medicine because of their ability to differentiate into all 3 primary germ layers. This review describes recent advances in the understanding of the link between the metabolism of ESCs/iPSCs and their maintenance/differentiation in the cell culture setting, with particular emphasis on amino acid (AA) metabolism. ESCs are endowed with unique metabolic features with regard to energy consumption, metabolite flux through particular pathways, and macromolecular synthesis. Therefore, nutrient availability has a strong influence on stem cell growth, self-renewal, and lineage specification, both in vivo and in vitro. Evidence from several laboratories has documented that self-renewal and differentiation of mouse ESCs are critically dependent on proline metabolism, with downstream metabolites possibly serving as signal molecules. Likewise, catabolism of either threonine (mouse) or methionine (human) is required for growth and differentiation of ESCs because these AAs serve as precursors for donor molecules used in histone methylation and acetylation. Epigenetic mechanisms are recognized as critical steps in differentiation, and AA metabolism in ESCs appears to modulate these epigenetic processes. Recent reports also document that, in vitro, the nutrient composition of the culture medium in which ESCs are differentiated into embryoid bodies can influence lineage specification, leading to enrichment of a specific cell type. Although research designed to direct tissue specification of differentiating embryoid bodies in culture is still in its infancy, early results indicate that manipulation of the nutrient milieu can promote or suppress the formation of specific cell lineages. PMID:27422515

  8. GLUT4 defects in adipose tissue are early signs of metabolic alterations in Alms1GT/GT, a mouse model for obesity and insulin resistance.

    Science.gov (United States)

    Favaretto, Francesca; Milan, Gabriella; Collin, Gayle B; Marshall, Jan D; Stasi, Fabio; Maffei, Pietro; Vettor, Roberto; Naggert, Jürgen K

    2014-01-01

    Dysregulation of signaling pathways in adipose tissue leading to insulin resistance can contribute to the development of obesity-related metabolic disorders. Alström Syndrome, a recessive ciliopathy, caused by mutations in ALMS1, is characterized by progressive metabolic alterations such as childhood obesity, hyperinsulinemia, and type 2 diabetes. Here we investigated the role of Alms1 disruption in AT expansion and insulin responsiveness in a murine model for Alström Syndrome. A gene trap insertion in Alms1 on the insulin sensitive C57BL6/Ei genetic background leads to early hyperinsulinemia and a progressive increase in body weight. At 6 weeks of age, before the onset of the metabolic disease, the mutant mice had enlarged fat depots with hypertrophic adipocytes, but without signs of inflammation. Expression of lipogenic enzymes was increased. Pre-adipocytes isolated from mutant animals demonstrated normal adipogenic differentiation but gave rise to mature adipocytes with reduced insulin-stimulated glucose uptake. Assessment of whole body glucose homeostasis revealed glucose intolerance. Insulin stimulation resulted in proper AKT phosphorylation in adipose tissue. However, the total amount of glucose transporter 4 (SLC4A2) and its translocation to the plasma membrane were reduced in mutant adipose depots compared to wildtype littermates. Alterations in insulin stimulated trafficking of glucose transporter 4 are an early sign of metabolic dysfunction in Alström mutant mice, providing a possible explanation for the reduced glucose uptake and the compensatory hyperinsulinemia. The metabolic signaling deficits either reside downstream or are independent of AKT activation and suggest a role for ALMS1 in GLUT4 trafficking. Alström mutant mice represent an interesting model for the development of metabolic disease in which adipose tissue with a reduced glucose uptake can expand by de novo lipogenesis to an obese state. PMID:25299671

  9. Metabolic fingerprints of altered brain growth, osmoregulation and neurotransmission in a Rett syndrome model.

    Directory of Open Access Journals (Sweden)

    Angèle Viola

    Full Text Available BACKGROUND: Rett syndrome (RS is the leading cause of profound mental retardation of genetic origin in girls. Since RS is mostly caused by mutations in the MECP2 gene, transgenic animal models such as the Mecp2-deleted ("Mecp2-null" mouse have been employed to study neurological symptoms and brain function. However, an interdisciplinary approach drawing from chemistry, biology and neuroscience is needed to elucidate the mechanistic links between the genotype and phenotype of this genetic disorder. METHODOLOGY/PRINCIPAL FINDINGS: We performed, for the first time, a metabolomic study of brain extracts from Mecp2-null mice by using high-resolution magnetic resonance spectroscopy. A large number of individual water-soluble metabolites and phospholipids were quantified without prior selection for specific metabolic pathways. Results were interpreted in terms of Mecp2 gene deletion, brain cell function and brain morphology. This approach provided a "metabolic window" to brain characteristics in Mecp2-null mice (n = 4, revealing (i the first metabolic evidence of astrocyte involvement in RS (decreased levels of the astrocyte marker, myo-inositol, vs. wild-type mice; p = 0.034; (ii reduced choline phospholipid turnover in Mecp2-null vs. wild-type mice, implying a diminished potential of cells to grow, paralleled by globally reduced brain size and perturbed osmoregulation; (iii alterations of the platelet activating factor (PAF cycle in Mecp2-null mouse brains, where PAF is a bioactive lipid acting on neuronal growth, glutamate exocytosis and other processes; and (iv changes in glutamine/glutamate ratios (p = 0.034 in Mecp2-null mouse brains potentially indicating altered neurotransmitter recycling. CONCLUSIONS/SIGNIFICANCE: This study establishes, for the first time, detailed metabolic fingerprints of perturbed brain growth, osmoregulation and neurotransmission in a mouse model of Rett syndrome. Combined with morphological and neurological findings

  10. Litters of photosynthetically divergent grasses exhibit differential metabolic responses to warming and elevated CO2

    Science.gov (United States)

    Climatic stress induced by warming can alter plant metabolism, leading to changes in litter chemistry that can affect soil carbon cycling. Elevated CO2 could partly mitigate warming induced moisture stress, and the degree of this mitigation may vary with plant functional types. We hypothesized that,...

  11. Differential proteomic analysis reveals novel links between primary metabolism and antibiotic production in Amycolatopsis balhimycina

    DEFF Research Database (Denmark)

    Gallo, G.; Renzone, G.; Alduina, R.;

    2010-01-01

    constitutively expressed protein isoforms, which were associated with 203 ORFs in the A. balhimycina genome. These data, providing insights on the major metabolic pathways/molecular processes operating in this organism, were used to compile 2-DE reference maps covering 3-10, 4-7 and 4.5-5.5 pH gradients...... available over the World Wide Web as interactive web pages (http://www.unipa.it/ampuglia/Abal-proteome-maps). Functional clustering analysis revealed that differentially expressed proteins belong to functional groups involved in central carbon metabolism, amino acid metabolism and protein biosynthesis......, energetic and redox balance, sugar/amino sugar metabolism, balhimycin biosynthesis and transcriptional regulation or with hypothetical and/or unknown function. Interestingly, proteins involved in the biosynthesis of balhimycin precursors, such as amino acids, amino sugars and central carbon metabolism...

  12. Differential Glutamate Metabolism in Proliferating and Quiescent Mammary Epithelial Cells.

    Science.gov (United States)

    Coloff, Jonathan L; Murphy, J Patrick; Braun, Craig R; Harris, Isaac S; Shelton, Laura M; Kami, Kenjiro; Gygi, Steven P; Selfors, Laura M; Brugge, Joan S

    2016-05-10

    Mammary epithelial cells transition between periods of proliferation and quiescence during development, menstrual cycles, and pregnancy, and as a result of oncogenic transformation. Utilizing an organotypic 3D tissue culture model coupled with quantitative metabolomics and proteomics, we identified significant differences in glutamate utilization between proliferating and quiescent cells. Relative to quiescent cells, proliferating cells catabolized more glutamate via transaminases to couple non-essential amino acid (NEAA) synthesis to α-ketoglutarate generation and tricarboxylic acid (TCA) cycle anaplerosis. As cells transitioned to quiescence, glutamine consumption and transaminase expression were reduced, while glutamate dehydrogenase (GLUD) was induced, leading to decreased NEAA synthesis. Highly proliferative human tumors display high transaminase and low GLUD expression, suggesting that proliferating cancer cells couple glutamine consumption to NEAA synthesis to promote biosynthesis. These findings describe a competitive and partially redundant relationship between transaminases and GLUD, and they reveal how coupling of glutamate-derived carbon and nitrogen metabolism can be regulated to support cell proliferation. PMID:27133130

  13. Simulated microgravity alters multipotential differentiation of rat mesenchymal stem cells in association with reduced telomerase activity

    Science.gov (United States)

    Sun, Lianwen; Gan, Bo; Fan, Yubo; Xie, Tian; Hu, Qinghua; Zhuang, Fengyuan

    Microgravity is one of the most important characteristics in space flight. Exposure to microgravity results in extensive physiological changes in humans. Bone loss is one of the changes with serious consequences; however, the mechanism retains unclear. As the origin of osteoprogenitors, mesenchymal stem cells (MSCs) may play an important role in it. After cultured under simulated microgravity (in a rotary cell culture system, RCCS), MSCs were stained using oil red O to identify adipocytes. The mRNA level of bone morphogenetic protein (BMP)-2 and peroxisome proliferators-activated receptor (PPAR) γ2 was determined by RT-PCR. Otherwise, MSCs were induced to osteogenic differentiation after microgravity culture, and then the activity of alkaline phosphatase (ALP) was determined by PNPP and the content of osteocalcin (OC) by ELISA. Furthermore, the telomerase activity in MSCs was measured by TRAP. The results showed that simulated microgravity inhibited osteoblastic differentiation and induced adipogenic differentiation accompanied by the change of gene expression of BMP-2 and PPARγ2 in MSCs. Meanwhile, the telomerase activity decreased significantly in MSCs under simulated microgravity. The reduced bone formation in space flight may partly be due to the altered potential differentiation of MSCs associated with telomerase activity which plays a key role in regulating the lifespan of cell proliferation and differentiation. Therefore, telomerase activation/replacement may act as a potential countermeasure for microgravity-induced bone loss.

  14. A modified protocol to maximize differentiation of human preadipocytes and improve metabolic phenotypes

    OpenAIRE

    Lee, Mi-Jeong; Wu, Yuanyuan; Fried, Susan K.

    2012-01-01

    Adipose stromal cells proliferate and differentiate into adipocytes, providing a valuable model system for studies of adipocyte biology. We compared differentiation protocols for human preadipocytes and report on their metabolic phenotypes. By simply prolonging the adipogenic induction period from the first 3 days to 7 days, the proportion of cells (passage 5–6) acquiring adipocyte morphology increased from 30–70% to over 80% in human subcutaneous preadipocytes. These morphological changes we...

  15. Fetal PCB syndrome: clinical features, intrauterine growth retardation and possible alteration in calcium metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, F.; Hayashi, M.

    1985-02-01

    Pregnant mothers with Yusho in Fukuoka, Nagasaki and Kochi Prefectures delivered babies with a peculiar clinical manifestation which will be called fetal PCB syndrome (FPS). The birth rate incidences were 3.6% (Fukuoka Prefecture), 4% (Nagasaki Prefecture), 2.9% (Kochi Prefecture) and 3.9% (total). The manifestations consisted of dark brown pigmentation of the skin and the mucous membrane, gingival hyperplasia, exophthalmic edematous eye, dentition at birth, abnormal calcification of the skull as demonstrated by X-ray, rocker bottom heel and high incidence of light for date (low birth weight) babies. The authors suggest that there may be a possible alteration in calcium metabolism in these babies, related to the fragile egg shells observed in PCB-contaminated birds and to the female hormone-enhancing effect of PCB. The high incidence of low birth weight among these newborns and two other similar studies indicated that PCBs suppress fetal growth.

  16. Altered carbohydrate, lipid, and xenobiotic metabolism by liver from rats flown on Cosmos 1887

    Science.gov (United States)

    Merrill, A. H. Jr; Hoel, M.; Wang, E.; Mullins, R. E.; Hargrove, J. L.; Jones, D. P.; Popova, I. A.; Merrill AH, J. r. (Principal Investigator)

    1990-01-01

    To determine the possible biochemical effects of prolonged weightlessness on liver function, samples of liver from rats that had flown aboard Cosmos 1887 were analyzed for protein, glycogen, and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. Among the parameters measured, the major differences were elevations in the glycogen content and hydroxymethylglutaryl-CoA (HMG-CoA) reductase activities for the rats flown on Cosmos 1887 and decreases in the amount of microsomal cytochrome P-450 and the activities of aniline hydroxylase and ethylmorphine N-demethylase, cytochrome P-450-dependent enzymes. These results support the earlier finding of differences in these parameters and suggest that altered hepatic function could be important during spaceflight and/or the postflight recovery period.

  17. Oxidation deoxidize metabolism in the rice altered lateral root mutant RM109

    International Nuclear Information System (INIS)

    The author reports the characteristics of a 2,4-D resistance mutant, altered lateral root, RM109, which is deficient in SDH (succinate dehydrogenase) activity. The SDH activity of RM109 was 60%-70% of that the wild type. Oochikara, roots is treated with reducer NADPH, NADH and FAD, the SDH activity of RM109 were lower than Oochikara. Genetic analysis in the F1 and F2 indicated that SDH activity in the mutant was transmitted by a single dominant nuclear gene. The observations of resistance to plant hormone, TIBA and H2O2 showed that the resistance to 2,4-D, NAA, TIBA and H2O2 with RM109 were 12,8,6 and 0.24 times of those with Oochikara, respectively. These results indicated that the mutant was deficient in oxidation deoxidize metabolism

  18. Injury timing alters metabolic, inflammatory and functional outcomes following repeated mild traumatic brain injury.

    Science.gov (United States)

    Weil, Zachary M; Gaier, Kristopher R; Karelina, Kate

    2014-10-01

    Repeated head injuries are a major public health concern both for athletes, and members of the police and armed forces. There is ample experimental and clinical evidence that there is a period of enhanced vulnerability to subsequent injury following head trauma. Injuries that occur close together in time produce greater cognitive, histological, and behavioral impairments than do injuries separated by a longer period. Traumatic brain injuries alter cerebral glucose metabolism and the resolution of altered glucose metabolism may signal the end of the period of greater vulnerability. Here, we injured mice either once or twice separated by three or 20days. Repeated injuries that were separated by three days were associated with greater axonal degeneration, enhanced inflammatory responses, and poorer performance in a spatial learning and memory task. A single injury induced a transient but marked increase in local cerebral glucose utilization in the injured hippocampus and sensorimotor cortex, whereas a second injury, three days after the first, failed to induce an increase in glucose utilization at the same time point. In contrast, when the second injury occurred substantially later (20days after the first injury), an increase in glucose utilization occurred that paralleled the increase observed following a single injury. The increased glucose utilization observed after a single injury appears to be an adaptive component of recovery, while mice with 2 injuries separated by three days were not able to mount this response, thus this second injury may have produced a significant energetic crisis such that energetic demands outstripped the ability of the damaged cells to utilize energy. These data strongly reinforce the idea that too rapid return to activity after a traumatic brain injury can induce permanent damage and disability, and that monitoring cerebral energy utilization may be a tool to determine when it is safe to return to the activity that caused the initial

  19. Analysis of metabolic alterations in Arabidopsis following changes in the carbon dioxide and oxygen partial pressures

    Institute of Scientific and Technical Information of China (English)

    Alexandra Florian; Stefan Timm; Zoran Nikoloski; Takayuki Tohge; Hermann Bauwe; Wagner LArajo; Alisdair RFernie

    2014-01-01

    As sessile organisms, plants are subject to a multitude of environmental variations including several which directly affect their interaction with the atmosphere. Given the indiscriminant nature of Rubisco, the relative rates of photosynthesis and photorespiration are known to be responsive to changes in gas composition. However, compre-hensive profiling methods have not yet been applied in order to characterize the wider consequences of these changes on primary metabolism in general. Moreover, although transcrip-tional profiling has revealed that a subset of photorespiratory enzymes are co-expressed, whether transcriptional responses play a role in short-term responses to atmospheric composi-tional changes remains unknown. To address these questions, plants Arabidopsis thaliana (Arabidopsis) ecotype Columbia (Col-O) grown under normal air conditions were transferred to different CO2 and O2 concentrations and characterized at the physiological, molecular, and metabolic levels fol owing this transition. The results reveal alterations in the components, which are directly involved in, or supporting, photorespiration, including transcripts and metabolite levels. The results further highlight that the majority of the regulation of these pathways is not mediated at the level of transcription and that the photorespiratory pathway is essential also in conditions in which flux through the pathway is minimized, yet suggest that flux through this pathway is not mediated at the level of transcription.

  20. Interferon-driven alterations of the host's amino acid metabolism in the pathogenesis of typhoid fever.

    Science.gov (United States)

    Blohmke, Christoph J; Darton, Thomas C; Jones, Claire; Suarez, Nicolas M; Waddington, Claire S; Angus, Brian; Zhou, Liqing; Hill, Jennifer; Clare, Simon; Kane, Leanne; Mukhopadhyay, Subhankar; Schreiber, Fernanda; Duque-Correa, Maria A; Wright, James C; Roumeliotis, Theodoros I; Yu, Lu; Choudhary, Jyoti S; Mejias, Asuncion; Ramilo, Octavio; Shanyinde, Milensu; Sztein, Marcelo B; Kingsley, Robert A; Lockhart, Stephen; Levine, Myron M; Lynn, David J; Dougan, Gordon; Pollard, Andrew J

    2016-05-30

    Enteric fever, caused by Salmonella enterica serovar Typhi, is an important public health problem in resource-limited settings and, despite decades of research, human responses to the infection are poorly understood. In 41 healthy adults experimentally infected with wild-type S. Typhi, we detected significant cytokine responses within 12 h of bacterial ingestion. These early responses did not correlate with subsequent clinical disease outcomes and likely indicate initial host-pathogen interactions in the gut mucosa. In participants developing enteric fever after oral infection, marked transcriptional and cytokine responses during acute disease reflected dominant type I/II interferon signatures, which were significantly associated with bacteremia. Using a murine and macrophage infection model, we validated the pivotal role of this response in the expression of proteins of the host tryptophan metabolism during Salmonella infection. Corresponding alterations in tryptophan catabolites with immunomodulatory properties in serum of participants with typhoid fever confirmed the activity of this pathway, and implicate a central role of host tryptophan metabolism in the pathogenesis of typhoid fever. PMID:27217537

  1. Cocaine abstinence following chronic treatment alters cerebral metabolism in dopaminergic reward regions. Bromocriptine enhances recovery

    International Nuclear Information System (INIS)

    2-[14C]deoxyglucose autoradiography was used to determine local cerebral glucose utilization (lCGU) in rats following chronic cocaine treatment and subsequent abstinence. lCGU was examined in 43 discrete brain regions in animals which had received daily injections of cocaine for 14 days (10 mg/kg) followed by 3 days of saline or bromocriptine (10 mg/kg) treatment. Cocaine abstinence following chronic treatment significantly reduced lCGU in several regions including mesocorticolimbic structures such as ventral tegmental area, medial prefrontal cortex, and nucleus accumbens (NAc). Within the NAc, however, only the rostral pole showed significant reduction. In contrast, when bromocriptine treatment accompanied abstinence, lCGU was no longer reduced in mesocorticolimbic and most other regions, implying that metabolic recovery was enhanced by bromocriptine treatment during early abstinence following chronic cocaine treatment. These data suggest that cerebral metabolism is decreased during cocaine abstinence following chronic treatment in critical brain regions, and that this alteration can be prevented by treatment with direct-acting dopamine agonists such as bromocriptine

  2. Expression of human dopamine receptor in potato (Solanum tuberosum results in altered tuber carbon metabolism

    Directory of Open Access Journals (Sweden)

    Świędrych Anna

    2005-02-01

    Full Text Available Abstract Background Even though the catecholamines (dopamine, norepinephrine and epinephrine have been detected in plants their role is poorly documented. Correlations between norepinephrine, soluble sugars and starch concentration have been recently reported for potato plants over-expressing tyrosine decarboxylase, the enzyme mediating the first step of catecholamine synthesis. More recently norepinephrine level was shown to significantly increase after osmotic stress, abscisic acid treatment and wounding. Therefore, it is possible that catecholamines might play a role in plant stress responses by modulating primary carbon metabolism, possibly by a mechanism similar to that in animal cells. Since to date no catecholamine receptor has been identified in plants we transformed potato plants with a cDNA encoding human dopamine receptor (HD1. Results Tuber analysis of transgenic plants revealed changes in the activities of key enzymes mediating sucrose to starch conversion (ADP-glucose phosphorylase and sucrose synthase and sucrose synthesis (sucrose phosphate synthase leading to altered content of both soluble sugars and starch. Surprisingly the catecholamine level measured in transgenic plants was significantly increased; the reason for this is as yet unknown. However the presence of the receptor affected a broader range of enzyme activities than those affected by the massive accumulation of norepinephrine reported for plants over-expressing tyrosine decarboxylase. Therefore, it is suggested that the presence of the exogenous receptor activates catecholamine cAMP signalling in plants. Conclusions Our data support the possible involvement of catecholamines in regulating plant carbon metabolism via cAMP signalling pathway.

  3. Radionuclide assessment of stunned myocardium by alterations in perfusion, metabolism and function

    International Nuclear Information System (INIS)

    A method for the diagnosis of stunned myocardium has not yet been established, although it has been retrospectively demonstrated in patients after intracoronary thrombolysis, unstable angina, and coronary revascularization. In this study, radionuclide cardiac imaging was carried out to evaluate the existence of stunned myocardium. Gated blood pool scanning was performed in patients undergoing intracoronary thrombolysis both at the time of reperfusion (Rp) and 10 days later. In the Rp4 h and control groups. In patients with acute myocardial ischemia, the correlation between thallium perfusion and regional wall motion was assessed semiquantitatively. In unstable angina, 5.8% of the ventricular wall segments showed dissociation between perfusion and wall motion (well-perfused asynergy). These segments had abnormal wall motion although perfusion was maintained, and were thought to be areas of stunned myocardium. Fourteen dogs were studied using thallium and 123I-β-methyl-iodophenyl pentadecanoic acid (BMIPP) fatty acid imaging to evaluate the relationship of perfusion to metabolism. In the reperfusion model, mismatching of the pattern of thallium and BMIPP uptake was observed. Reperfused myocardium probably has an increased triglyceride content, which is related to the degree of myocardial viability. In conclusion, stunned myocardium may be correctly diagnosed acutely on the basis of alterations in its perfusion, metabolism, and function by using radionuclide cardiac imaging. (author)

  4. Liver cell adenoma showing sequential alteration of radiological findings suggestive of well-differentiated hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Takayuki Kogure; Yoshiyuki Ueno; Satoshi Sekiguchi; Kazuyuki Ishida; Takehiko Igarashi; Yuta Wakui; Takao Iwasaki; Tooru Shimosegawa

    2009-01-01

    A liver tumor 35 mm in diameter was found incidentally in a 40-year-old woman who had no history of liver diseases or the use of oral contraceptives. Radiological diagnostics showed the typical findings of liver cell adenoma (LCA). Dynamic computed tomography revealed that the tumor showed a homogenous enhancement in the arterial phase and almost the same enhancement as the surrounding liver parenchyma in the delayed phase. The tumor was found to contain fat on magnetic resonance imaging. A benign fat containing liver tumor was suggested. However, radiological findings altered, which caused us to suspect that a welldifferentiated hepatocellular carcinoma (HCC) containing fat was becoming dedifferentiated. Partial hepatectomy was performed and the pathological findings showed the typical findings of LCA. This case was an extremely rare LCA, which had no background of risk for LCA and developed the sequential alteration of the radiological findings to suspect well-differentiated HCC.

  5. Differential Role for Trehalose Metabolism in Salt-Stressed Maize.

    Science.gov (United States)

    Henry, Clémence; Bledsoe, Samuel W; Griffiths, Cara A; Kollman, Alec; Paul, Matthew J; Sakr, Soulaiman; Lagrimini, L Mark

    2015-10-01

    Little is known about how salt impacts primary metabolic pathways of C4 plants, particularly related to kernel development and seed set. Osmotic stress was applied to maize (Zea mays) B73 by irrigation with increasing concentrations of NaCl from the initiation of floral organs until 3 d after pollination. At silking, photosynthesis was reduced to only 2% of control plants. Salt treatment was found to reduce spikelet growth, silk growth, and kernel set. Osmotic stress resulted in higher concentrations of sucrose (Suc) and hexose sugars in leaf, cob, and kernels at silking, pollination, and 3 d after pollination. Citric acid cycle intermediates were lower in salt-treated tissues, indicating that these sugars were unavailable for use in respiration. The sugar-signaling metabolite trehalose-6-phosphate was elevated in leaf, cob, and kernels at silking as a consequence of salt treatment but decreased thereafter even as Suc levels continued to rise. Interestingly, the transcripts of trehalose pathway genes were most affected by salt treatment in leaf tissue. On the other hand, transcripts of the SUCROSE NONFERMENTING-RELATED KINASE1 (SnRK1) marker genes were most affected in reproductive tissue. Overall, both source and sink strength are reduced by salt, and the data indicate that trehalose-6-phosphate and SnRK1 may have different roles in source and sink tissues. Kernel abortion resulting from osmotic stress is not from a lack of carbohydrate reserves but from the inability to utilize these energy reserves. PMID:26269545

  6. Energy metabolism in human pluripotent stem cells and their differentiated counterparts.

    Directory of Open Access Journals (Sweden)

    Sandra Varum

    Full Text Available Human pluripotent stem cells have the ability to generate all cell types present in the adult organism, therefore harboring great potential for the in vitro study of differentiation and for the development of cell-based therapies. Nonetheless their use may prove challenging as incomplete differentiation of these cells might lead to tumoregenicity. Interestingly, many cancer types have been reported to display metabolic modifications with features that might be similar to stem cells. Understanding the metabolic properties of human pluripotent stem cells when compared to their differentiated counterparts can thus be of crucial importance. Furthermore recent data has stressed distinct features of different human pluripotent cells lines, namely when comparing embryo-derived human embryonic stem cells (hESCs and induced pluripotent stem cells (IPSCs reprogrammed from somatic cells.We compared the energy metabolism of hESCs, IPSCs, and their somatic counterparts. Focusing on mitochondria, we tracked organelle localization and morphology. Furthermore we performed gene expression analysis of several pathways related to the glucose metabolism, including glycolysis, the pentose phosphate pathway and the tricarboxylic acid (TCA cycle. In addition we determined oxygen consumption rates (OCR using a metabolic extracellular flux analyzer, as well as total intracellular ATP levels by high performance liquid chromatography (HPLC. Finally we explored the expression of key proteins involved in the regulation of glucose metabolism.Our results demonstrate that, although the metabolic signature of IPSCs is not identical to that of hESCs, nonetheless they cluster with hESCs rather than with their somatic counterparts. ATP levels, lactate production and OCR revealed that human pluripotent cells rely mostly on glycolysis to meet their energy demands. Furthermore, our work points to some of the strategies which human pluripotent stem cells may use to maintain high

  7. Dietary isoflavones alter regulatory behaviors, metabolic hormones and neuroendocrine function in Long-Evans male rats

    Directory of Open Access Journals (Sweden)

    Bu Lihong

    2004-12-01

    protein (UCP-1 mRNA levels in brown adipose tissue (BAT were seen in Phyto-600 fed males. However, decreased core body temperature was recorded in these same animals compared to Phyto-free fed animals. Conclusions This study demonstrates that consumption of a soy-based (isoflavone-rich diet, significantly alters several parameters involved in maintaining body homeostatic balance, energy expenditure, feeding behavior, hormonal, metabolic and neuroendocrine function in male rats.

  8. Positional and expressive alteration of prohibitin during the induced differentiation of human hepatocarcinoma SMMC-7721 cells

    Institute of Scientific and Technical Information of China (English)

    Dong-Hui Xu; Jian Tang; Qi-Fu Li; Song-Lin Shi; Xiang-Feng Chen; Ying Liang

    2008-01-01

    AIM: To explore the existence and distribution of prohibitin (PHB) in nuclear matrix and its co-localization with products of some related genes during the differentiation of human hepatocarcinoma SMMC-7721cells.METHODS: The nuclear matrix of the SHHC-7721 cells cultured with or without 5 x 10-3 mmol/L hexamethylene bisacetamide (HMBA) was selectively extracted.Western blot was used to analyze the expression of PHB in nuclear matrix; imrnunofluorescence microscope observation was used to analyze the distribution of PHB in cell. LCSM was used to observe the co-localization of PHB with products of oncogenes and tumor suppressor genes.RESULTS: Western blot analysis showed that PHB existed in the composition of nuclear matrix proteins and was down-regulated by HMBA treatment.Immunofluorescence observation revealed that PHB existed in the nuclear matrix, and its distribution regions and expression levels were altered after HMBA treatment. Laser scanning confocal microscopy revealed the co-localization between PHB and the products of oncogenes or tumor repression genes including c-fos, c-myc, p53 and Rb and its alteration of distributive area in the cells treated by HMBA.CONCLUSION: These data confirm that PHB is a nuclear matrix protein, which is located in the nuclear matrix, and the distribution and expression of PHB and its relation with associated genes may play significant roles during the differentiation of SMHC-7721 cells.

  9. Altered goblet cell differentiation and surface mucus properties in Hirschsprung disease.

    Directory of Open Access Journals (Sweden)

    Jay R Thiagarajah

    Full Text Available Hirschsprung disease-associated enterocolitis (HAEC leads to significant mortality and morbidity, but its pathogenesis remains unknown. Changes in the colonic epithelium related to goblet cells and the luminal mucus layer have been postulated to play a key role. Here we show that the colonic epithelium of both aganglionic and ganglionic segments are altered in patients and in mice with Hirschsprung disease (HSCR. Structurally, goblet cells were altered with increased goblet cell number and reduced intracellular mucins in the distal colon of biopsies from patients with HSCR. Endothelin receptor B (Ednrb mutant mice showed increased goblet cell number and size and increased cell proliferation compared to wild-type mice in aganglionic segments, and reduced goblet cell size and number in ganglionic segments. Functionally, compared to littermates, Ednrb-/- mice showed increased transepithelial resistance, reduced stool water content and similar chloride secretion in the distal colon. Transcript levels of goblet cell differentiation factors SPDEF and Math1 were increased in the distal colon of Ednrb-/- mice. Both distal colon from Ednrb mice and biopsies from HSCR patients showed reduced Muc4 expression as compared to controls, but similar expression of Muc2. Particle tracking studies showed that mucus from Ednrb-/- mice provided a more significant barrier to diffusion of 200 nm nanoparticles as compared to wild-type mice. These results suggest that aganglionosis is associated with increased goblet cell proliferation and differentiation and subsequent altered surface mucus properties, prior to the development of inflammation in the distal colon epithelium. Restoration of normal goblet cell function and mucus layer properties in the colonic epithelium may represent a therapeutic strategy for prevention of HAEC.

  10. Red wine polyphenols prevent metabolic and cardiovascular alterations associated with obesity in Zucker fatty rats (Fa/Fa).

    OpenAIRE

    Abdelali Agouni; Anne-Hélène Lagrue-Lak-Hal; Hadj Ahmed Mostefai; Angela Tesse; Paul Mulder; Philippe Rouet; Franck Desmoulin; Christophe Heymes; Maria Carmen Martínez; Ramaroson Andriantsitohaina

    2009-01-01

    Background Obesity is associated with increased risks for development of cardiovascular diseases. Epidemiological studies report an inverse association between dietary flavonoid consumption and mortality from cardiovascular diseases. We studied the potential beneficial effects of dietary supplementation of red wine polyphenol extract, Provinols™, on obesity-associated alterations with respect to metabolic disturbances and cardiovascular functions in Zucker fatty (ZF) rats. Methodology/Princip...

  11. Mitochondrial gene polymorphisms alter hepatic cellular energy metabolism and aggravate diet-induced non-alcoholic steatohepatitis

    Directory of Open Access Journals (Sweden)

    Torsten Schröder

    2016-04-01

    Conclusions: We observed distinct metabolic alterations in mice with a mitochondrial polymorphism associated hepatic mitochondrial dysfunction. However, a second hit, such as dietary stress, was required to cause hepatic steatosis and inflammation. This study suggests a causative role of hepatic mitochondrial dysfunction in the development of experimental NASH.

  12. Alteration of cellular lipids and lipid metabolism markers in RTL-W1 cells exposed to model endocrine disrupters.

    Science.gov (United States)

    Dimastrogiovanni, Giorgio; Córdoba, Marlon; Navarro, Isabel; Jáuregui, Olga; Porte, Cinta

    2015-08-01

    This work investigates the suitability of the rainbow trout liver cell line (RTL-W1) as an in-vitro model to study the ability of model endocrine disrupters, namely TBT, TPT, 4-NP, BPA and DEHP, to act as metabolic disrupters by altering cellular lipids and markers of lipid metabolism. Among the tested compounds, BPA and DEHP significantly increased the intracellular accumulation of triacylglycerols (TAGs), while all the compounds -apart from TPT-, altered membrane lipids - phosphatidylcholines (PCs) and plasmalogen PCs - indicating a strong interaction of the toxicants with cell membranes and cell signaling. RTL-W1 expressed a number of genes involved in lipid metabolism that were modulated by exposure to BPA, TBT and TPT (up-regulation of FATP1 and FAS) and 4-NP and DEHP (down-regulation of FAS and LPL). Multiple and complex modes of action of these chemicals were observed in RTL-W1 cells, both in terms of expression of genes related to lipid metabolism and alteration of cellular lipids. Although further characterization is needed, this might be a useful model for the detection of chemicals leading to steatosis or other diseases associated with lipid metabolism in fish. PMID:26143618

  13. Leishmania donovani infection induces anemia in hamsters by differentially altering erythropoiesis in bone marrow and spleen.

    Directory of Open Access Journals (Sweden)

    William P Lafuse

    Full Text Available Leishmania donovani is a parasite that causes visceral leishmaniasis by infecting and replicating in macrophages of the bone marrow, spleen, and liver. Severe anemia and leucopenia is associated with the disease. Although immune defense mechanisms against the parasite have been studied, we have a limited understanding of how L. donovani alters hematopoiesis. In this study, we used Syrian golden hamsters to investigate effects of L. donovani infection on erythropoiesis. Infection resulted in severe anemia and leucopenia by 8 weeks post-infection. Anemia was associated with increased levels of serum erythropoietin, which indicates the hamsters respond to the anemia by producing erythropoietin. We found that infection also increased numbers of BFU-E and CFU-E progenitor populations in the spleen and bone marrow and differentially altered erythroid gene expression in these organs. In the bone marrow, the mRNA expression of erythroid differentiation genes (α-globin, β-globin, ALAS2 were inhibited by 50%, but mRNA levels of erythroid receptor (c-kit, EpoR and transcription factors (GATA1, GATA2, FOG1 were not affected by the infection. This suggests that infection has a negative effect on differentiation of erythroblasts. In the spleen, erythroid gene expression was enhanced by infection, indicating that the anemia activates a stress erythropoiesis response in the spleen. Analysis of cytokine mRNA levels in spleen and bone marrow found that IFN-γ mRNA is highly increased by L. donovani infection. Expression of the IFN-γ inducible cytokine, TNF-related apoptosis-inducing ligand (TRAIL, was also up-regulated. Since TRAIL induces erythroblasts apoptosis, apoptosis of bone marrow erythroblasts from infected hamsters was examined by flow cytometry. Percentage of erythroblasts that were apoptotic was significantly increased by L. donovani infection. Together, our results suggest that L. donovani infection inhibits erythropoiesis in the bone marrow by

  14. Cholinesterase inhibition and alterations of hepatic metabolism by oral acute and repeated chlorpyrifos administration to mice.

    Science.gov (United States)

    Cometa, Maria Francesca; Buratti, Franca Maria; Fortuna, Stefano; Lorenzini, Paola; Volpe, Maria Teresa; Parisi, Laura; Testai, Emanuela; Meneguz, Annarita

    2007-05-01

    Chlorpyrifos (CPF) is a broad spectrum organophosphorus insecticide bioactivated in vivo to chlorpyrifos-oxon (CPFO), a very potent anticholinesterase. A great majority of available animal studies on CPF and CPFO toxicity are performed in rats. The use of mice in developmental neurobehavioural studies and the availability of transgenic mice warrant a better characterization of CPF-induced toxicity in this species. CD1 mice were exposed to a broad range of acute (12.5-100.0mg/kg) and subacute (1.56-25mg/kg/day from 5 to 30 days) CPF oral doses. Functional and biochemical parameters such as brain and serum cholinesterase (ChE) and liver xenobiotic metabolizing system, including the biotransformation of CPF itself, have been studied and the no observed effect levels (NOELs) identified. Mice seem to be more susceptible than rats at least to acute CPF treatment (oral LD(50) 4.5-fold lower). The species-related differences were not so evident after repeated exposures. In mice a good correlation was observed between brain ChE inhibition and classical cholinergic signs of toxicity. After CPF-repeated treatment, mice seemed to develop some tolerance to CPF-induced effects, which could not be attributed to an alteration of P450-mediated CPF hepatic metabolism. CPF-induced effects on hepatic microsomal carboxylesterase (CE) activity and reduced glutathione (GSH) levels observed at an early stage of treatment and then recovered after 30 days, suggest that the detoxifying mechanisms are actively involved in the protection of CPF-induced effects and possibly in the induction of tolerance in long term exposure. The mouse could be considered a suitable experimental model for future studies on the toxic action of organophosphorus pesticides focused on mechanisms, long term and age-related effects. PMID:17382447

  15. DEPRESSIVE BEHAVIOR AND METABOLIC ALTERATIONS IN MICE ARE MUSICAL STYLE-DEPENDENT

    Directory of Open Access Journals (Sweden)

    V. S. Lima

    2015-10-01

    Full Text Available Nowadays, the world population has been affected by two serious psychological disorders, anxiety and depression, but there are few discoveries for new therapies to combat them. Studies have shown that music therapy has its beneficial behavioral effects. Therefore, the aim of the present study it was to investigate the possible effects of two music styles in some lipids and carbohydrate metabolism parameters resulting from behavioral changes related to anxiety and depression. So, mice were used with 30 days of age, divided into 6 groups: G1: saline, G2: Diazepam (DZP, G3: Fluoxetine (FLX, G4: control (no treatment, G5: Rock, and G6: Mozart Sonata. The animals from groups G1, G2 and G3 received treatments by oral route (gavage for 15 days. The music therapy sessions (2x/day 4 hours/day occurred in the same period of time at a 65dB frequency for G5 and G6 groups. After being evaluated in spontaneous locomotion, elevated plus maze and forced swimming tests, the animals were euthanized. The lactate, total cholesterol and plasma glucose levels were measured from the blood. No change was observed in spontaneous locomotion test and elevated plus maze. In the forced swimming test animals exposed to Rock showed an increase in immobility time. Furthermore, it was observed an increase in glucose and a reduction in cholesterol levels in the groups exposed to Rock and Mozart, while a decrease of lactate was observed only in group Rock. It was concluded that the auditory stimulus caused by music in mice was able to encourage depressive behavior and alter some lipids and carbohydrate metabolism parameters dependently of the musical style.

  16. Increases in myocardial workload induced by rapid atrial pacing trigger alterations in global metabolism.

    Directory of Open Access Journals (Sweden)

    Aslan T Turer

    Full Text Available To determine whether increases in cardiac work lead to alterations in the plasma metabolome and whether such changes arise from the heart or peripheral organs.There is growing evidence that the heart influences systemic metabolism through endocrine effects and affecting pathways involved in energy homeostasis.Nineteen patients referred for cardiac catheterization were enrolled. Peripheral and selective coronary sinus (CS blood sampling was performed at serial timepoints following the initiation of pacing, and metabolite profiling was performed by liquid chromatography-mass spectrometry (LC-MS.Pacing-stress resulted in a 225% increase in the median rate·pressure product from baseline. Increased myocardial work induced significant changes in the peripheral concentration of 43 of 125 metabolites assayed, including large changes in purine [adenosine (+99%, p = 0.006, ADP (+42%, p = 0.01, AMP (+79%, p = 0.004, GDP (+69%, p = 0.003, GMP (+58%, p = 0.01, IMP (+50%, p = 0.03, xanthine (+61%, p = 0.0006], and several bile acid metabolites. The CS changes in metabolites qualitatively mirrored those in the peripheral blood in both timing and magnitude, suggesting the heart was not the major source of the metabolite release.Isolated increases in myocardial work can induce changes in the plasma metabolome, but these changes do not appear to be directly cardiac in origin. A number of these dynamic metabolites have known signaling functions. Our study provides additional evidence to a growing body of literature on metabolic 'cross-talk' between the heart and other organs.

  17. Ocean warming alters cellular metabolism and induces mortality in fish early life stages: A proteomic approach.

    Science.gov (United States)

    Madeira, D; Araújo, J E; Vitorino, R; Capelo, J L; Vinagre, C; Diniz, M S

    2016-07-01

    Climate change has pervasive effects on marine ecosystems, altering biodiversity patterns, abundance and distribution of species, biological interactions, phenology, and organisms' physiology, performance and fitness. Fish early life stages have narrow thermal windows and are thus more vulnerable to further changes in water temperature. The aim of this study was to address the sensitivity and underlying molecular changes of larvae of a key fisheries species, the sea bream Sparus aurata, towards ocean warming. Larvae were exposed to three temperatures: 18°C (control), 24°C (warm) and 30°C (heat wave) for seven days. At the end of the assay, i) survival curves were plotted for each temperature treatment and ii) entire larvae were collected for proteomic analysis via 2D gel electrophoresis, image analysis and mass spectrometry. Survival decreased with increasing temperature, with no larvae surviving at 30°C. Therefore, proteomic analysis was only carried out for 18°C and 24°C. Larvae up-regulated protein folding and degradation, cytoskeletal re-organization, transcriptional regulation and the growth hormone while mostly down-regulating cargo transporting and porphyrin metabolism upon exposure to heat stress. No changes were detected in proteins related to energetic metabolism suggesting that larval fish may not have the energetic plasticity needed to sustain cellular protection in the long-term. These results indicate that despite proteome modulation, S. aurata larvae do not seem able to fully acclimate to higher temperatures as shown by the low survival rates. Consequently, elevated temperatures seem to have bottleneck effects during fish early life stages, and future ocean warming can potentially compromise recruitment's success of key fisheries species. PMID:27062348

  18. Resistance to chemotherapy is associated with altered glucose metabolism in acute myeloid leukemia

    Science.gov (United States)

    SONG, KUI; LI, MIN; XU, XIAOJUN; XUAN, LI; HUANG, GUINIAN; LIU, QIFA

    2016-01-01

    Altered glucose metabolism has been described as a cause of chemoresistance in multiple tumor types. The present study aimed to identify the expression profile of glucose metabolism in drug-resistant acute myeloid leukemia (AML) cells and provide potential strategies for the treatment of drug-resistant AML. Bone marrow and serum samples were obtained from patients with AML that were newly diagnosed or had relapsed. The messenger RNA expression of hypoxia inducible factor (HIF)-1α, glucose transporter (GLUT)1, and hexokinase-II was measured by quantitative polymerase chain reaction. The levels of LDH and β subunit of human F1-F0 adenosine triphosphate synthase (β-F1-ATPase) were detected by enzyme-linked immunosorbent and western blot assays. The HL-60 and HL-60/ADR cell lines were used to evaluate glycolytic activity and effect of glycolysis inhibition on cellular proliferation and apoptosis. Drug-resistant HL-60/ADR cells exhibited a significantly increased level of glycolysis compared with the drug-sensitive HL-60 cell line. The expression of HIF-1α, hexokinase-II, GLUT1 and LDH were increased in AML patients with no remission (NR), compared to healthy control individuals and patients with complete remission (CR) and partial remission. The expression of β-F1-ATPase in patients with NR was decreased compared with the expression in the CR group. Treatment of HL-60/ADR cells with 2-deoxy-D-glucose or 3-bromopyruvate increased in vitro sensitivity to Adriamycin (ADR), while treatment of HL-60 cells did not affect drug cytotoxicity. Subsequent to treatment for 24 h, apoptosis in these two cell lines showed no significant difference. However, glycolytic inhibitors in combination with ADR increased cellular necrosis. These findings indicate that increased glycolysis and low efficiency of oxidative phosphorylation may contribute to drug resistance. Targeting glycolysis is a viable strategy for modulating chemoresistance in AML.

  19. Melanoma-derived factors alter the maturation and activation of differentiated tissue-resident dendritic cells.

    Science.gov (United States)

    Hargadon, Kristian M; Bishop, Johnathan D; Brandt, John P; Hand, Zachary C; Ararso, Yonathan T; Forrest, Osric A

    2016-01-01

    Dendritic cells (DCs) are key regulators of host immunity that are capable of inducing either immune tolerance or activation. In addition to their well-characterized role in shaping immune responses to foreign pathogens, DCs are also known to be critical for the induction and maintenance of anti-tumor immune responses. Therefore, it is important to understand how tumors influence the function of DCs and the quality of immune responses they elicit. Although the majority of studies in this field to date have utilized either immortalized DC lines or DC populations that have been generated under artificial conditions from hematopoietic precursors in vitro, we wished to investigate how tumors impact the function of already differentiated, tissue-resident DCs. Therefore, we used both an ex vivo and in vivo model system to assess the influence of melanoma-derived factors on DC maturation and activation. In ex vivo studies with freshly isolated splenic DCs, we demonstrate that the extent to which DC maturation and activation are altered by these factors correlates with melanoma tumorigenicity, and we identify partial roles for tumor-derived transforming growth factor (TGF)β1 and vascular endothelial growth factor (VEGF)-A in the altered functionality of DCs. In vivo studies using a lung metastasis model of melanoma also demonstrate tumorigenicity-dependent alterations to the function of lung-resident DCs, and skewed production of proinflammatory cytokines and chemokines by these tumor-altered cells is associated with recruitment of an immune infiltrate that may ultimately favor tumor immune escape and outgrowth. PMID:26010746

  20. Differential proteomic analysis highlights metabolic strategies associated with balhimycin production in Amycolatopsis balhimycina chemostat cultivations

    Directory of Open Access Journals (Sweden)

    Scaloni Andrea

    2010-11-01

    Full Text Available Abstract Background Proteomics was recently used to reveal enzymes whose expression is associated with the production of the glycopeptide antibiotic balhimycin in Amycolatopsis balhimycina batch cultivations. Combining chemostat fermentation technology, where cells proliferate with constant parameters in a highly reproducible steady-state, and differential proteomics, the relationships between physiological status and metabolic pathways during antibiotic producing and non-producing conditions could be highlighted. Results Two minimal defined media, one with low Pi (0.6 mM; LP and proficient glucose (12 g/l concentrations and the other one with high Pi (1.8 mM and limiting (6 g/l; LG glucose concentrations, were developed to promote and repress antibiotic production, respectively, in A. balhimycina chemostat cultivations. Applying the same dilution rate (0.03 h-1, both LG and LP chemostat cultivations showed a stable steady-state where biomass production yield coefficients, calculated on glucose consumption, were 0.38 ± 0.02 and 0.33 ± 0.02 g/g (biomass dry weight/glucose, respectively. Notably, balhimycin was detected only in LP, where quantitative RT-PCR revealed upregulation of selected bal genes, devoted to balhimycin biosynthesis, and of phoP, phoR, pstS and phoD, known to be associated to Pi limitation stress response. 2D-Differential Gel Electrophoresis (DIGE and protein identification, performed by mass spectrometry and computer-assisted 2 D reference-map http://www.unipa.it/ampuglia/Abal-proteome-maps matching, demonstrated a differential expression for proteins involved in many metabolic pathways or cellular processes, including central carbon and phosphate metabolism. Interestingly, proteins playing a key role in generation of primary metabolism intermediates and cofactors required for balhimycin biosynthesis were upregulated in LP. Finally, a bioinformatic approach showed PHO box-like regulatory elements in the upstream regions of

  1. Intrinsic and Tumor Microenvironment-Induced Metabolism Adaptations of T Cells and Impact on Their Differentiation and Function

    Science.gov (United States)

    Kouidhi, Soumaya; Noman, Muhammad Zaeem; Kieda, Claudine; Elgaaied, Amel Benammar; Chouaib, Salem

    2016-01-01

    It is well recognized that the immune system and metabolism are highly integrated. In this context, multilevel interactions between metabolic system and T lymphocyte signaling and fate exist. This review will discuss different potential cell metabolism pathways involved in shaping T lymphocyte function and differentiation. We will also provide a general framework for understanding how tumor microenvironmental metabolism, associated with hypoxic stress, interferes with T-cell priming and expansion. How T-cell metabolism drives T-cell-mediated immunity and how the manipulation of metabolic programing for therapeutic purposes will be also discussed. PMID:27066006

  2. Proteomic analysis reveals that iron availability alters the metabolic status of the pathogenic fungus Paracoccidioides brasiliensis.

    Directory of Open Access Journals (Sweden)

    Ana F A Parente

    Full Text Available Paracoccidioides brasiliensis is a thermodimorphic fungus and the causative agent of paracoccidioidomycosis (PCM. The ability of P. brasiliensis to uptake nutrients is fundamental for growth, but a reduction in the availability of iron and other nutrients is a host defense mechanism many pathogenic fungi must overcome. Thus, fungal mechanisms that scavenge iron from host may contribute to P. brasiliensis virulence. In order to better understand how P. brasiliensis adapts to iron starvation in the host we compared the two-dimensional (2D gel protein profile of yeast cells during iron starvation to that of iron rich condition. Protein spots were selected for comparative analysis based on the protein staining intensity as determined by image analysis. A total of 1752 protein spots were selected for comparison, and a total of 274 out of the 1752 protein spots were determined to have changed significantly in abundance due to iron depletion. Ninety six of the 274 proteins were grouped into the following functional categories; energy, metabolism, cell rescue, virulence, cell cycle, protein synthesis, protein fate, transcription, cellular communication, and cell fate. A correlation between protein and transcript levels was also discovered using quantitative RT-PCR analysis from RNA obtained from P. brasiliensis under iron restricting conditions and from yeast cells isolated from infected mouse spleens. In addition, western blot analysis and enzyme activity assays validated the differential regulation of proteins identified by 2-D gel analysis. We observed an increase in glycolytic pathway protein regulation while tricarboxylic acid cycle, glyoxylate and methylcitrate cycles, and electron transport chain proteins decreased in abundance under iron limiting conditions. These data suggest a remodeling of P. brasiliensis metabolism by prioritizing iron independent pathways.

  3. Altered lipid metabolism in residual white adipose tissues of Bscl2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Weiqin Chen

    Full Text Available Mutations in BSCL2 underlie human congenital generalized lipodystrophy type 2 disease. We previously reported that Bscl2 (-/- mice develop lipodystrophy of white adipose tissue (WAT due to unbridled lipolysis. The residual epididymal WAT (EWAT displays a browning phenotype with much smaller lipid droplets (LD and higher expression of brown adipose tissue marker proteins. Here we used targeted lipidomics and gene expression profiling to analyze lipid profiles as well as genes involved in lipid metabolism in WAT of wild-type and Bscl2(-/- mice. Analysis of total saponified fatty acids revealed that the residual EWAT of Bscl2(-/- mice contained a much higher proportion of oleic 18:1n9 acid concomitant with a lower proportion of palmitic 16:0 acid, as well as increased n3- polyunsaturated fatty acids (PUFA remodeling. The acyl chains in major species of triacylglyceride (TG and diacylglyceride (DG in the residual EWAT of Bscl2(-/- mice were also enriched with dietary fatty acids. These changes could be reflected by upregulation of several fatty acid elongases and desaturases. Meanwhile, Bscl2(-/- adipocytes from EWAT had increased gene expression in lipid uptake and TG synthesis but not de novo lipogenesis. Both mitochondria and peroxisomal β-oxidation genes were also markedly increased in Bscl2(-/- adipocytes, highlighting that these machineries were accelerated to shunt the lipolysis liberated fatty acids through uncoupling to dissipate energy. The residual subcutaneous white adipose tissue (ScWAT was not browning but displays similar changes in lipid metabolism. Overall, our data emphasize that, other than being essential for adipocyte differentiation, Bscl2 is also important in fatty acid remodeling and energy homeostasis.

  4. Dihydroartemisinin inhibits the human erythroid cell differentiation by altering the cell cycle

    International Nuclear Information System (INIS)

    Artemisinin derivatives such as dihydroartemisinin (DHA) induce significant depletion of early embryonic erythroblasts in animal models. We have reported previously that DHA specifically targets pro-erythroblasts and basophilic erythroblasts, when human CD34+ stem cells are differentiated toward the erythroid lineage, indicating that a window of susceptibility to artemisinins may exist also in human developmental erythropoiesis during pregnancy. To better investigate the toxicity of artemisinin derivatives, the structure–activity relationship was evaluated against the K562 leukaemia cell line, used as a model for differentiating early human erythroblasts. All artemisinins derivatives, except deoxyartemisinin, inhibited both spontaneous and induced erythroid differentiation, confirming that the peroxide bridge is responsible for the erythro-toxicity. On the contrary, cell growth was markedly reduced by DHA, artemisone and artesunate but not by artemisinin, 10-deoxoartemisinin or deoxy-artemisinin. The substituent at position C-10 is responsible only for the anti-proliferative effect, since 10-deoxoartemisinin did not reduce cell growth but arrested the differentiation of K562 cells. In particular, the results showed that DHA resulted the most potent and rapidly acting compound of the drug family, causing (i) the decreased expression of GpA surface receptors and the down regulation the γ-globin gene; (ii) the alteration of S phase of cell cycle and (iii) the induction of programmed cell death of early erythroblasts in a dose dependent manner within 24 h. In conclusion, these findings confirm that the active metabolite DHA is responsible for the erythro-toxicity of most of artemisinins used in therapy. Thus, as long as no further clinical data are available, current WHO recommendations of avoiding malaria treatment with artemisinins during the first trimester of pregnancy remain valid.

  5. Alterations in glucose and protein metabolism in animals subjected to simulated microgravity

    Science.gov (United States)

    Mondon, C. E.; Rodnick, K. J.; Dolkas, C. B.; Azhar, S.; Reaven, G. M.

    1992-09-01

    Reduction of physical activity due to disease or environmental restraints, such as total bed rest or exposure to spaceflight, leads to atrophy of skeletal muscle and is frequently accompanied by alterations in food intake and the concentration of metabolic regulatory hormones such as insulin. Hindlimb suspension of laboratory rats, as a model for microgravity, also shows marked atrophy of gravity dependent muscles along with a reduced gain in body weight. Suspended rats exhibit enhanced sensitivity to insulin-induced glucose uptake when compared with normal control rats and resistance to insulin action when compared with control rats matched similarly for reduced body weight gain. These changes are accompanied by decreased insulin binding and tyrosine kinase activity in soleus but not plantaris muscle, unchanged glucose uptake by perfused hindlimb and decreased sensitivity but not responsiveness to insulin-induced suppression of net proteolysis in hindlimb skeletal muscle. These findings suggest that loss of insulin sensitivity during muscle atrophy is associated with decreased insulin binding and tyrosine kinase activity in atrophied soleus muscle along with decreased sensitivity to the effects of insulin on suppressing net protein breakdown but not on enhancing glucose uptake by perfused hindlimb.

  6. Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide.

    Science.gov (United States)

    Larguinho, Miguel; Cordeiro, Ana; Diniz, Mário S; Costa, Pedro M; Baptista, Pedro V

    2014-11-01

    Although the neurotoxic and genotoxic potential of acrylamide has been established in freshwater fish, the full breadth of the toxicological consequences induced by this xenobiotic has not yet been disclosed, particularly in aquatic invertebrates. To assess the effects of acrylamide on a bivalve model, the Mediterranean mussel (Mytilus galloprovincialis), two different setups were accomplished: 1) acute exposure to several concentrations of waterborne acrylamide to determine lethality thresholds of the substance and 2) chronic exposure to more reduced acrylamide concentrations to survey phases I and II metabolic endpoints and to perform a whole-body screening for histopathological alterations. Acute toxicity was low (LC50≈400mg/L). However, mussels were responsive to prolonged exposure to chronic concentrations of waterborne acrylamide (1-10mg/L), yielding a significant increase in lipid peroxidation plus EROD and GST activities. Still, total anti-oxidant capacity was not exceeded. In addition, no neurotoxic effects could be determined through acetylcholine esterase (AChE) activity. The findings suggest aryl-hydrocarbon receptor (Ahr)-dependent responses in mussels exposed to acrylamide, although reduced comparatively to vertebrates. No significant histological damage was found in digestive gland or gills but female gonads endured severe necrosis and oocyte atresia. Altogether, the results indicate that acrylamide may induce gonadotoxicity in mussels, although the subject should benefit from further research. Altogether, the findings suggest that the risk of acrylamide to aquatic animals, especially molluscs, may be underestimated. PMID:25262075

  7. Alterations in glucose and protein metabolism in animals subjected to simulated microgravity

    Science.gov (United States)

    Mondon, C. E.; Rodnick, K. J.; Azhar, S.; Reaven, G. M.; Dolkas, C. B.

    1992-01-01

    Reduction of physical activity due to disease or environmental restraints, such as total bed rest or exposure to spaceflight, leads to atrophy of skeletal muscle and is frequently accompanied by alterations in food intake and the concentration of metabolic regulatory hormones such as insulin. Hindlimb suspension of laboratory rats, as a model for microgravity, also shows marked atrophy of gravity-dependent muscles along with a reduced gain in body weight. Suspended rats exhibit enhanced sensitivity to insulin-induced glucose uptake when compared with normal control rats and resistance to insulin action when compared with control rats matched similarly for reduced body weight gain. These changes are accompanied by decreased insulin binding and tyrosine kinase activity in soleus but not plantaris muscle, unchanged glucose uptake by perfused hindlimb and decreased sensitivity but not responsiveness to insulin-induced suppression of net proteolysis in hindlimb skeletal muscle. These findings suggest that loss of insulin sensitivity during muscle atrophy is associated with decreased insulin binding and tyrosine kinase activity in atrophied soleus muscle along with decreased sensitivity to the effects of insulin on suppressing net protein breakdown but not on enhancing glucose uptake by perfused hindlimb.

  8. 3'-Azido-3'-deoxythymidine (AZT) induces apoptosis and alters metabolic enzyme activity in human placenta

    International Nuclear Information System (INIS)

    The anti-HIV drug 3'-azido-3'-deoxythymidine (AZT) is the drug of choice for preventing maternal-fetal HIV transmission during pregnancy. Our aim was to assess the cytotoxic effects of AZT on human placenta in vitro. The mechanisms of AZT-induced effects were investigated using JEG-3 choriocarcinoma cells and primary explant cultures from term and first-trimester human placentas. Cytotoxicity measures included trypan blue exclusion, MTT, and reactive oxygen species (ROS) assays. Apoptosis was measured with an antibody specific to cleaved caspase-3 and by rescue of cells by the general caspase inhibitor Boc-D-FMK. The effect of AZT on the activities of glutathione-S-transferase, β-glucuronidase, UDP-glucuronosyl transferase, cytochrome P450 (CYP) 1A, and CYP reductase (CYPR) in the placenta was assessed using biochemical assays and immunoblotting. AZT increased ROS levels, decreased cellular proliferation rates, was toxic to mitochondria, and initiated cell death by a caspase-dependent mechanism in the human placenta in vitro. In the absence of serum, the effects of AZT were amplified in all the models used. AZT also increased the amounts of activity of GST, β-glucuronidase, and CYP1A, whereas UGT and CYPR were decreased. We conclude that AZT causes apoptosis in the placenta and alters metabolizing enzymes in human placental cells. These findings have implications for the safe administration of AZT in pregnancy with respect to the maintenance of integrity of the maternal-fetal barrier

  9. The secondary alcohol and aglycone metabolites of doxorubicin alter metabolism of human erythrocytes

    Directory of Open Access Journals (Sweden)

    Misiti F.

    2003-01-01

    Full Text Available Anthracyclines, a class of antitumor drugs widely used for the treatment of solid and hematological malignancies, cause a cumulative dose-dependent cardiac toxicity whose biochemical basis is unclear. Recent studies of the role of the metabolites of anthracyclines, i.e., the alcohol metabolite doxorubicinol and aglycone metabolites, have suggested new hypotheses about the mechanisms of anthracycline cardiotoxicity. In the present study, human red blood cells were used as a cell model. Exposure (1 h at 37ºC of intact human red blood cells to doxorubicinol (40 µM and to aglycone derivatives of doxorubicin (40 µM induced, compared with untreated red cells: i a ~2-fold stimulation of the pentose phosphate pathway (PPP and ii a marked inhibition of the red cell antioxidant enzymes, glutathione peroxidase (~20% and superoxide dismutase (~60%. In contrast to doxorubicin-derived metabolites, doxorubicin itself induced a slighter PPP stimulation (~35% and this metabolic event was not associated with any alteration in glutathione reductase, glutathione peroxidase, catalase or superoxide dismutase activity. Furthermore, the interaction of hemoglobin with doxorubicin and its metabolites induced a significant increase (~22% in oxygen affinity compared with hemoglobin incubated without drugs. On the basis of the results obtained in the present study, a new hypothesis, involving doxorubicinol and aglycone metabolites, has been proposed to clarify the mechanisms responsible for the doxorubicin-induced red blood cell toxicity.

  10. Microstructural, densitometric and metabolic variations in bones from rats with normal or altered skeletal states.

    Directory of Open Access Journals (Sweden)

    Andrew N Luu

    Full Text Available BACKGROUND: High resolution μCT, and combined μPET/CT have emerged as non-invasive techniques to enhance or even replace dual energy X-ray absorptiometry (DXA as the current preferred approach for fragility fracture risk assessment. The aim of this study was to assess the ability of µPET/CT imaging to differentiate changes in rat bone tissue density and microstructure induced by metabolic bone diseases more accurately than current available methods. METHODS: Thirty three rats were divided into three groups of control, ovariectomy and vitamin-D deficiency. At the conclusion of the study, animals were subjected to glucose ((18FDG and sodium fluoride (Na(18F PET/CT scanning. Then, specimens were subjected to µCT imaging and tensile mechanical testing. RESULTS: Compared to control, those allocated to ovariectomy and vitamin D deficiency groups showed 4% and 22% (significant increase in (18FDG uptake values, respectively. DXA-based bone mineral density was higher in the vitamin D deficiency group when compared to the other groups (cortical bone, yet μCT-based apparent and mineral density results were not different between groups. DXA-based bone mineral density was lower in the ovariectomy group when compared to the other groups (cancellous bone; yet μCT-based mineral density results were not different between groups, and the μCT-based apparent density results were lower in the ovariectomy group compared to the other groups. CONCLUSION: PET and micro-CT provide an accurate three-dimensional measurement of the changes in bone tissue mineral density, as well as microstructure for cortical and cancellous bone and metabolic activity. As osteomalacia is characterized by impaired bone mineralization, the use of densitometric analyses may lead to misinterpretation of the condition as osteoporosis. In contrast, µCT alone and in combination with the PET component certainly provides an accurate three-dimensional measurement of the changes in both bone

  11. Metabolism of arachidonic acid in phorbol ester, interferon and dimethyl sulfoxide differentiation induced U937 cells

    International Nuclear Information System (INIS)

    U937, a human macrophage cell line can metabolize arachidonic acid to a prostaglandin E2-like substance, and an unidentified lipoxygenase product. This metabolism occurs at very low levels however since these cells have low lipase and fatty acid oxygenase activities. The investigated the appearance of these enzyme activities during differentiation induced by phorbol-12-myristate-13-acetate (PMA), human gamma interferon (INF), and dimethyl sulfoxide (DMSO) on days 1,3 and 5 of stimulation using 3H-arachidonic acid (3H-AA). Culture supernatants were analyzed for free 3H-AA and 3H metabolites by radio-thin layer chromatography (3H-MET). The increasing percentage of 3H-AA release suggests the appearance of phospholipase activity during differentiation

  12. Alterations in energy metabolism, neuroprotection and visual signal transduction in the retina of Parkinsonian, MPTP-treated monkeys.

    Directory of Open Access Journals (Sweden)

    Laura Campello

    Full Text Available Parkinson disease is mainly characterized by the degeneration of dopaminergic neurons in the central nervous system, including the retina. Different interrelated molecular mechanisms underlying Parkinson disease-associated neuronal death have been put forward in the brain, including oxidative stress and mitochondrial dysfunction. Systemic injection of the proneurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP to monkeys elicits the appearance of a parkinsonian syndrome, including morphological and functional impairments in the retina. However, the intracellular events leading to derangement of dopaminergic and other retinal neurons in MPTP-treated animal models have not been so far investigated. Here we have used a comparative proteomics approach to identify proteins differentially expressed in the retina of MPTP-treated monkeys. Proteins were solubilized from the neural retinas of control and MPTP-treated animals, labelled separately with two different cyanine fluorophores and run pairwise on 2D DIGE gels. Out of >700 protein spots resolved and quantified, 36 were found to exhibit statistically significant differences in their expression levels, of at least ± 1.4-fold, in the parkinsonian monkey retina compared with controls. Most of these spots were excised from preparative 2D gels, trypsinized and subjected to MALDI-TOF MS and LC-MS/MS analyses. Data obtained were used for protein sequence database interrogation, and 15 different proteins were successfully identified, of which 13 were underexpressed and 2 overexpressed. These proteins were involved in key cellular functional pathways such as glycolysis and mitochondrial electron transport, neuronal protection against stress and survival, and phototransduction processes. These functional categories underscore that alterations in energy metabolism, neuroprotective mechanisms and signal transduction are involved in MPTP-induced neuronal degeneration in the retina, in similarity to

  13. Metabolic alteration of urinary steroids in pre- and post-menopausal women, and men with papillary thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Chung Bong

    2011-08-01

    Full Text Available Abstract Background To evaluate the metabolic changes in urinary steroids in pre- and post-menopausal women and men with papillary thyroid carcinoma (PTC. Methods Quantitative steroid profiling combined with gas chromatography-mass spectrometry was used to measure the urinary concentrations of 84 steroids in both pre- (n = 21, age: 36.95 ± 7.19 yr and post-menopausal female (n = 19, age: 52.79 ± 7.66 yr, and male (n = 16, age: 41.88 ± 8.48 yr patients with PTC. After comparing the quantitative data of the patients with their corresponding controls (pre-menopause women: n = 24, age: 33.21 ± 10.48 yr, post-menopause women: n = 16, age: 49.67 ± 8.94 yr, male: n = 20, age: 42.75 ± 4.22 yr, the levels of steroids in the patients were normalized to the mean concentration of the controls to exclude gender and menopausal variations. Results Many urinary steroids were up-regulated in all PTC patients compared to the controls. Among them, the levels of three active androgens, androstenedione, androstenediol and 16α-hydroxy DHEA, were significantly higher in the pre-menopausal women and men with PTC. The corticoid levels were increased slightly in the PTC men, while progestins were not altered in the post-menopausal PTC women. Estrogens were up-regulated in all PTC patients but 2-hydroxyestrone and 2-hydroxy-17β-estradiol were remarkably changed in both pre-menopausal women and men with PTC. For both menopausal and gender differences, the 2-hydroxylation, 4-hydroxylation, 2-methoxylation, and 4-methoxylation of estrogens and 16α-hydroxylation of DHEA were differentiated between pre- and post-menopausal PTC women (P P -7. Conclusions These results are expected be helpful for better understanding the pathogenic differences in PTC according to gender and menopausal conditions.

  14. Prenatal Rosiglitazone Administration to Neonatal Rat Pups Does Not Alter the Adult Metabolic Phenotype

    Directory of Open Access Journals (Sweden)

    Hernan Sierra

    2012-01-01

    Full Text Available Prenatally administered rosiglitazone (RGZ is effective in enhancing lung maturity; however, its long-term safety remains unknown. This study aimed to determine the effects of prenatally administered RGZ on the metabolic phenotype of adult rats. Methods. Pregnant Sprague-Dawley rat dams were administered either placebo or RGZ at embryonic days 18 and 19. Between 12 and 20 weeks of age, the rats underwent glucose and insulin tolerance tests and de novo fatty acid synthesis assays. The lungs, liver, skeletal muscle, and fat tissue were processed by Western hybridization for peroxisome proliferator-activated receptor (PPARγ, adipose differentiation-related protein (ADRP, and surfactant proteins B (SPB and C (SPC. Plasma was assayed for triglycerides, cholesterol, insulin, glucagon, and troponin-I levels. Lungs were also morphometrically analyzed. Results. Insulin and glucose challenges, de novo fatty acid synthesis, and all serum assays revealed no differences among all groups. Western hybridization for PPARγ, ADRP, SPB, and SPC in lung, liver, muscle, and fat tissue showed equal levels. Histologic analyses showed a similar number of alveoli and septal thickness in all experimental groups. Conclusions. When administered prenatally, RGZ does not affect long-term fetal programming and may be safe for enhancing fetal lung maturation.

  15. Alterations of choline phospholipid metabolism in endometrial cancer are caused by choline kinase alpha overexpression and a hyperactivated deacylation pathway.

    Science.gov (United States)

    Trousil, Sebastian; Lee, Patrizia; Pinato, David J; Ellis, James K; Dina, Roberto; Aboagye, Eric O; Keun, Hector C; Sharma, Rohini

    2014-12-01

    Metabolic rearrangements subsequent to malignant transformation are not well characterized in endometrial cancer. Identification of altered metabolites could facilitate imaging-guided diagnosis, treatment surveillance, and help to identify new therapeutic options. Here, we used high-resolution magic angle spinning magnetic resonance mass spectroscopy on endometrial cancer surgical specimens and normal endometrial tissue to investigate the key modulators that might explain metabolic changes, incorporating additional investigations using qRT-PCR, Western blotting, tissue microarrays (TMA), and uptake assays of [(3)H]-labeled choline. Lipid metabolism was severely dysregulated in endometrial cancer with various amino acids, inositols, nucleobases, and glutathione also altered. Among the most important lipid-related alterations were increased phosphocholine levels (increased 70% in endometrial cancer). Mechanistic investigations revealed that changes were not due to altered choline transporter expression, but rather due to increased expression of choline kinase α (CHKA) and an activated deacylation pathway, as indicated by upregulated expression of the catabolic enzymes LYPLA1, LYPLA2, and GPCPD1. We confirmed the significance of CHKA overexpression on a TMA, including a large series of endometrial hyperplasia, atypical hyperplasia, and adenocarcinoma tissues, supporting a role for CHKA in malignant transformation. Finally, we documented several-fold increases in the uptake of [(3)H]choline in endometrial cancer cell lines compared with normal endometrial stromal cells. Our results validate deregulated choline biochemistry as an important source of noninvasive imaging biomarkers for endometrial cancer. PMID:25267063

  16. Metabolic alteration of urinary steroids in pre- and post-menopausal women, and men with papillary thyroid carcinoma

    International Nuclear Information System (INIS)

    To evaluate the metabolic changes in urinary steroids in pre- and post-menopausal women and men with papillary thyroid carcinoma (PTC). Quantitative steroid profiling combined with gas chromatography-mass spectrometry was used to measure the urinary concentrations of 84 steroids in both pre- (n = 21, age: 36.95 ± 7.19 yr) and post-menopausal female (n = 19, age: 52.79 ± 7.66 yr), and male (n = 16, age: 41.88 ± 8.48 yr) patients with PTC. After comparing the quantitative data of the patients with their corresponding controls (pre-menopause women: n = 24, age: 33.21 ± 10.48 yr, post-menopause women: n = 16, age: 49.67 ± 8.94 yr, male: n = 20, age: 42.75 ± 4.22 yr), the levels of steroids in the patients were normalized to the mean concentration of the controls to exclude gender and menopausal variations. Many urinary steroids were up-regulated in all PTC patients compared to the controls. Among them, the levels of three active androgens, androstenedione, androstenediol and 16α-hydroxy DHEA, were significantly higher in the pre-menopausal women and men with PTC. The corticoid levels were increased slightly in the PTC men, while progestins were not altered in the post-menopausal PTC women. Estrogens were up-regulated in all PTC patients but 2-hydroxyestrone and 2-hydroxy-17β-estradiol were remarkably changed in both pre-menopausal women and men with PTC. For both menopausal and gender differences, the 2-hydroxylation, 4-hydroxylation, 2-methoxylation, and 4-methoxylation of estrogens and 16α-hydroxylation of DHEA were differentiated between pre- and post-menopausal PTC women (P < 0.001). In particular, the metabolic ratio of 2-hydroxyestrone to 2-hydroxy-17β-estradiol, which could reveal the enzyme activity of 17β-hydroxysteroid dehydrogenase, showed gender differences in PTC patients (P < 1 × 10-7). These results are expected be helpful for better understanding the pathogenic differences in PTC according to gender and menopausal conditions

  17. Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease

    Energy Technology Data Exchange (ETDEWEB)

    Kamdar, Karishma; Khakpour, Samira; Chen, Jingyu; Leone, Vanessa; Brulc, Jennifer; Mangatu, Thomas; Antonopoulos, Dionysios A.; Chang, Eugene B; Kahn, Stacy A.; Kirschner, Barbara S; Young, Glenn; DePaolo, R. William

    2016-01-13

    Chronic inflammatory disorders are thought to arise due to an interplay between predisposing host genetics and environmental factors. For example, the onset of inflammatory bowel disease is associated with enteric proteobacterial infection, yet the mechanistic basis for this association is unclear. We have shown previously that genetic defiency in TLR1 promotes acute enteric infection by the proteobacteria Yersinia enterocolitica. Examining that model further, we uncovered an altered cellular immune response that promotes the recruitment of neutrophils which in turn increases metabolism of the respiratory electron acceptor tetrathionate by Yersinia. These events drive permanent alterations in anti-commensal immunity, microbiota composition, and chronic inflammation, which persist long after Yersinia clearence. Deletion of the bacterial genes involved in tetrathionate respiration or treatment using targeted probiotics could prevent microbiota alterations and inflammation. Thus, acute infection can drive long term immune and microbiota alterations leading to chronic inflammatory disease in genetically predisposed individuals.

  18. Differential CO2 effect on primary carbon metabolism of flag leaves in durum wheat (Triticum durum Desf.).

    Science.gov (United States)

    Aranjuelo, Iker; Erice, Gorka; Sanz-Sáez, Alvaro; Abadie, Cyril; Gilard, Françoise; Gil-Quintana, Erena; Avice, Jean-Christophe; Staudinger, Christiana; Wienkoop, Stefanie; Araus, Jose L; Bourguignon, Jacques; Irigoyen, Juan J; Tcherkez, Guillaume

    2015-12-01

    C sink/source balance and N assimilation have been identified as target processes conditioning crop responsiveness to elevated CO2 . However, little is known about phenology-driven modifications of C and N primary metabolism at elevated CO2 in cereals such as wheat. Here, we examined the differential effect of elevated CO2 at two development stages (onset of flowering, onset of grain filling) in durum wheat (Triticum durum, var. Sula) using physiological measurements (photosynthesis, isotopes), metabolomics, proteomics and (15) N labelling. Our results show that growth at elevated CO2 was accompanied by photosynthetic acclimation through a lower internal (mesophyll) conductance but no significant effect on Rubisco content, maximal carboxylation or electron transfer. Growth at elevated CO2 altered photosynthate export and tended to accelerate leaf N remobilization, which was visible for several proteins and amino acids, as well as lysine degradation metabolism. However, grain biomass produced at elevated CO2 was larger and less N rich, suggesting that nitrogen use efficiency rather than photosynthesis is an important target for improvement, even in good CO2 -responsive cultivars. PMID:26081746

  19. Altered Methylation Profile of Lymphocytes Is Concordant with Perturbation of Lipids Metabolism and Inflammatory Response in Obesity

    Directory of Open Access Journals (Sweden)

    Mette J. Jacobsen

    2016-01-01

    Full Text Available Obesity is associated with immunological perturbations that contribute to insulin resistance. Epigenetic mechanisms can control immune functions and have been linked to metabolic complications, although their contribution to insulin resistance still remains unclear. In this study, we investigated the link between metabolic dysfunction and immune alterations with the epigenetic signature in leukocytes in a porcine model of obesity. Global DNA methylation of circulating leukocytes, adipose tissue leukocyte trafficking, and macrophage polarisation were established by flow cytometry. Adipose tissue inflammation and metabolic function were further characterised by quantification of metabolites and expression levels of genes associated with obesity and inflammation. Here we show that obese pigs showed bigger visceral fat pads, higher levels of circulating LDL cholesterol, and impaired glucose tolerance. These changes coincided with impaired metabolism, sustained macrophages infiltration, and increased inflammation in the adipose tissue. Those immune alterations were linked to global DNA hypermethylation in both B-cells and T-cells. Our results provide novel insight into the possible contribution of immune cell epigenetics into the immunological disturbances observed in obesity. The dramatic changes in the transcriptomic and epigenetic signature of circulating lymphocytes reinforce the concept that epigenetic processes participate in the increased immune cell activation and impaired metabolic functions in obesity.

  20. Proximity to Delivery Alters Insulin Sensitivity and Glucose Metabolism in Pregnant Mice.

    Science.gov (United States)

    Musial, Barbara; Fernandez-Twinn, Denise S; Vaughan, Owen R; Ozanne, Susan E; Voshol, Peter; Sferruzzi-Perri, Amanda N; Fowden, Abigail L

    2016-04-01

    In late pregnancy, maternal insulin resistance occurs to support fetal growth, but little is known about insulin-glucose dynamics close to delivery. This study measured insulin sensitivity in mice in late pregnancy at day 16 (D16) and near term at D19. Nonpregnant (NP) and pregnant mice were assessed for metabolite and hormone concentrations, body composition by DEXA, tissue insulin signaling protein abundance by Western blotting, glucose tolerance and utilization, and insulin sensitivity using acute insulin administration and hyperinsulinemic-euglycemic clamps with [(3)H]glucose infusion. Whole-body insulin resistance occurred in D16 pregnant dams in association with basal hyperinsulinemia, insulin-resistant endogenous glucose production, and downregulation of several proteins in hepatic and skeletal muscle insulin signaling pathways relative to NP and D19 values. Insulin resistance was less pronounced at D19, with restoration of NP insulin concentrations, improved hepatic insulin sensitivity, and increased abundance of hepatic insulin signaling proteins. At D16, insulin resistance at whole-body, tissue, and molecular levels will favor fetal glucose acquisition, while improved D19 hepatic insulin sensitivity will conserve glucose for maternal use in anticipation of lactation. Tissue sensitivity to insulin, therefore, alters differentially with proximity to delivery in pregnant mice, with implications for human and other species. PMID:26740602

  1. Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: A role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ajay; Kant, Shiva; Singh, Sukh Mahendra, E-mail: sukhmahendrasingh@yahoo.com

    2013-11-15

    Targeting of tumor metabolism is emerging as a novel therapeutic strategy against cancer. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been shown to exert a potent tumoricidal action against a variety of tumor cells. The main mode of its antineoplastic action implicates a shift of glycolysis to oxidative metabolism of glucose, leading to generation of cytotoxic reactive oxygen intermediates. However, the effect of DCA on tumor microenvironment, which in turn regulates tumor cell survival; remains speculative to a large extent. It is also unclear if DCA can exert any modulatory effect on the process of hematopoiesis, which is in a compromised state in tumor-bearing hosts undergoing chemotherapy. In view of these lacunas, the present study was undertaken to investigate the so far unexplored aspects with respect to the molecular mechanisms of DCA-dependent tumor growth retardation and chemosensitization. BALB/c mice were transplanted with Dalton's lymphoma (DL) cells, a T cell lymphoma of spontaneous origin, followed by administration of DCA with or without cisplatin. DCA-dependent tumor regression and chemosensitization to cisplatin was found to be associated with altered repertoire of key cell survival regulatory molecules, modulated glucose metabolism, accompanying reconstituted tumor microenvironment with respect to pH homeostasis, cytokine balance and alternatively activated TAM. Moreover, DCA administration also led to an alteration in the MDR phenotype of tumor cells and myelopoietic differentiation of macrophages. The findings of this study shed a new light with respect to some of the novel mechanisms underlying the antitumor action of DCA and thus may have immense clinical applications. - Highlights: • DCA modulates tumor progression and chemoresistance. • DCA alters molecules regulating cell survival, glucose metabolism and MDR. • DCA reconstitutes biophysical and cellular composition of tumor microenvironment.

  2. Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: A role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation

    International Nuclear Information System (INIS)

    Targeting of tumor metabolism is emerging as a novel therapeutic strategy against cancer. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been shown to exert a potent tumoricidal action against a variety of tumor cells. The main mode of its antineoplastic action implicates a shift of glycolysis to oxidative metabolism of glucose, leading to generation of cytotoxic reactive oxygen intermediates. However, the effect of DCA on tumor microenvironment, which in turn regulates tumor cell survival; remains speculative to a large extent. It is also unclear if DCA can exert any modulatory effect on the process of hematopoiesis, which is in a compromised state in tumor-bearing hosts undergoing chemotherapy. In view of these lacunas, the present study was undertaken to investigate the so far unexplored aspects with respect to the molecular mechanisms of DCA-dependent tumor growth retardation and chemosensitization. BALB/c mice were transplanted with Dalton's lymphoma (DL) cells, a T cell lymphoma of spontaneous origin, followed by administration of DCA with or without cisplatin. DCA-dependent tumor regression and chemosensitization to cisplatin was found to be associated with altered repertoire of key cell survival regulatory molecules, modulated glucose metabolism, accompanying reconstituted tumor microenvironment with respect to pH homeostasis, cytokine balance and alternatively activated TAM. Moreover, DCA administration also led to an alteration in the MDR phenotype of tumor cells and myelopoietic differentiation of macrophages. The findings of this study shed a new light with respect to some of the novel mechanisms underlying the antitumor action of DCA and thus may have immense clinical applications. - Highlights: • DCA modulates tumor progression and chemoresistance. • DCA alters molecules regulating cell survival, glucose metabolism and MDR. • DCA reconstitutes biophysical and cellular composition of tumor microenvironment.

  3. Thalamic metabolic alterations with cognitive dysfunction in idiopathic trigeminal neuralgia: a multivoxel spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan; Bao, Faxiu; Ma, Shaohui; Guo, Chenguang; Jin, Chenwang; Zhang, Ming [First Affiliated Hospital of Xi' an Jiaotong University, Department of Medical Imaging, Xi' an, Shaanxi (China); Li, Dan [First Affiliated Hospital of Xi' an Jiaotong University, Department of Respiratory and Critical Care Medicine, Xi' an, Shaanxi (China)

    2014-08-15

    Although abnormalities in metabolite compositions in the thalamus are well described in patients with idiopathic trigeminal neuralgia (ITN), differences in distinct thalamic subregions have not been measured with proton magnetic resonance spectroscopy ({sup 1}H-MRS), and whether there are correlations between thalamic metabolites and cognitive function still remain unknown. Multivoxel MRS was recorded to investigate the metabolic alterations in the thalamic subregions of patients with ITN. The regions of interest were localized in the anterior thalamus (A-Th), intralaminar portion of the thalamus (IL-Th), posterior lateral thalamus (PL-Th), posterior medial thalamus (PM-Th), and medial and lateral pulvinar of the thalamus (PuM-Th and PuL-Th). The N-acetylaspartate to creatine (NAA/Cr) and choline to creatine (Cho/Cr) ratios were measured in the ITN and control groups. Scores of the visual analogue scale (VAS) and the Montreal Cognitive Assessment (MoCA) were analyzed to correlate with the neuroradiological findings. The NAA/Cr ratio in the affected side of PM-Th and PL-Th in ITN patients was statistically lower than that in the corresponding regions of the thalamus in controls. The NAA/Cr ratio in the affected PM-Th was negatively associated with VAS and disease duration. Furthermore, decreases of NAA/Cr and Cho/Cr were detected in the affected side of IL-Th, and lower Cho/Cr was positively correlated with MoCA values in the ITN group. Our result of low level of NAA/Cr in the affected PM-Th probably serves as a marker of the pain-rating index, and decreased Cho/Cr in IL-Th may be an indicator of cognitive disorder in patients with ITN. (orig.)

  4. Thalamic metabolic alterations with cognitive dysfunction in idiopathic trigeminal neuralgia: a multivoxel spectroscopy study

    International Nuclear Information System (INIS)

    Although abnormalities in metabolite compositions in the thalamus are well described in patients with idiopathic trigeminal neuralgia (ITN), differences in distinct thalamic subregions have not been measured with proton magnetic resonance spectroscopy (1H-MRS), and whether there are correlations between thalamic metabolites and cognitive function still remain unknown. Multivoxel MRS was recorded to investigate the metabolic alterations in the thalamic subregions of patients with ITN. The regions of interest were localized in the anterior thalamus (A-Th), intralaminar portion of the thalamus (IL-Th), posterior lateral thalamus (PL-Th), posterior medial thalamus (PM-Th), and medial and lateral pulvinar of the thalamus (PuM-Th and PuL-Th). The N-acetylaspartate to creatine (NAA/Cr) and choline to creatine (Cho/Cr) ratios were measured in the ITN and control groups. Scores of the visual analogue scale (VAS) and the Montreal Cognitive Assessment (MoCA) were analyzed to correlate with the neuroradiological findings. The NAA/Cr ratio in the affected side of PM-Th and PL-Th in ITN patients was statistically lower than that in the corresponding regions of the thalamus in controls. The NAA/Cr ratio in the affected PM-Th was negatively associated with VAS and disease duration. Furthermore, decreases of NAA/Cr and Cho/Cr were detected in the affected side of IL-Th, and lower Cho/Cr was positively correlated with MoCA values in the ITN group. Our result of low level of NAA/Cr in the affected PM-Th probably serves as a marker of the pain-rating index, and decreased Cho/Cr in IL-Th may be an indicator of cognitive disorder in patients with ITN. (orig.)

  5. Altered glucose metabolism in juvenile myoclonic epilepsy: a PET study with statistical parametric mapping

    International Nuclear Information System (INIS)

    Juvenile myoclonic epilepsy (JME) is a hereditary, age-dependent epilepsy syndrome, characterized by myoclonic jerks on awakening and generalized tonic-clonic seizures. Although there have been considerable studies on the mechanism to elucidate pathogenesis of JME, the accurate pathogenesis of JME remains obscure. The aim of this study was to investigate alterations of cerebral glucose metabolism in patients with JME. We studied 16 JME patients (Mean age: 22 yrs, M/F: 9/7) with brain FDG-PET and simultaneous EEG recording. On the basis of the number of generalized spike-and-wave (GSW) discharges on the 30 min EEG recording after the injection of FDG (370MBq), we classified patients into two groups (patients in group A had 10 or more GSW and group B. 9 or less). We applied the automated and objective technique of statistical parametric mapping (SPM) to the analysis of FDG-PET to determine the significant hyper- and hypometabolic regions compared with those of 19 age matched normal control subjects. We found significant hypermetabolic regions in bilateral thalamus and central portion of upper brainstem in 16 patients with JME at a statistical threshold of uncorrected P < 0.05. These changes were also shown in group A (n=8), but not in group B (n=8). Additionally, we found significant hypometabolism in bilateral, widespread cortical regions in 16 patients with JME at a threshold of uncorrected P < 0.01. Similar hypometabolic patterns were also observed in both group A and group B, being more prominent in group A. This study provides evidence for the key role of the thalamus and brainstem reticular activating system in generating spontaneous GSW discharge, which is considered as a fundamental pathogenesis underlying JME. This study also suggests that patients with JME might suffer from subtle abnormalities of cognitive and executive cortical functions

  6. A Hypertension-Associated tRNAAla Mutation Alters tRNA Metabolism and Mitochondrial Function

    Science.gov (United States)

    Jiang, Pingping; Wang, Meng; Xue, Ling; Xiao, Yun; Yu, Jialing; Wang, Hui; Yao, Juan; Liu, Hao; Peng, Yanyan; Liu, Hanqing; Li, Haiying; Chen, Ye

    2016-01-01

    In this report, we investigated the pathophysiology of a novel hypertension-associated mitochondrial tRNAAla 5655A → G (m.5655A → G) mutation. The destabilization of a highly conserved base pairing (A1-U72) at the aminoacyl acceptor stem by an m.5655A → G mutation altered the tRNAAla function. An in vitro processing analysis showed that the m.5655A → G mutation reduced the efficiency of tRNAAla precursor 5′ end cleavage catalyzed by RNase P. By using cybrids constructed by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mitochondrial DNA (mtDNA)-less (ρo) cells, we showed a 41% reduction in the steady-state level of tRNAAla in mutant cybrids. The mutation caused an improperly aminoacylated tRNAAla, as suggested by aberrantly aminoacylated tRNAAla and slower electrophoretic mobility of mutated tRNA. A failure in tRNAAla metabolism contributed to variable reductions in six mtDNA-encoded polypeptides in mutant cells, ranging from 21% to 37.5%, with an average of a 29.1% reduction, compared to levels of the controls. The impaired translation caused reduced activities of mitochondrial respiration chains. Furthermore, marked decreases in the levels of mitochondrial ATP and membrane potential were observed in mutant cells. These caused increases in the production of reactive oxygen species in the mutant cybrids. The data provide evidence for the association of the tRNAAla 5655A → G mutation with hypertension. PMID:27161322

  7. Metabolic system alterations in pancreatic cancer patient serum: potential for early detection

    International Nuclear Information System (INIS)

    The prognosis of pancreatic cancer (PC) is one of the poorest among all cancers, due largely to the lack of methods for screening and early detection. New biomarkers for identifying high-risk or early-stage subjects could significantly impact PC mortality. The goal of this study was to find metabolic biomarkers associated with PC by using a comprehensive metabolomics technology to compare serum profiles of PC patients to healthy control subjects. A non-targeted metabolomics approach based on high-resolution, flow-injection Fourier transform ion cyclotron resonance mass spectrometry (FI-FTICR-MS) was used to generate comprehensive metabolomic profiles containing 2478 accurate mass measurements from the serum of Japanese PC patients (n=40) and disease-free subjects (n=50). Targeted flow-injection tandem mass spectrometry (FI-MS/MS) assays for specific metabolic systems were developed and used to validate the FI-FTICR-MS results. A FI-MS/MS assay for the most discriminating metabolite discovered by FI-FTICR-MS (PC-594) was further validated in two USA Caucasian populations; one comprised 14 PCs, six intraductal papillary mucinous neoplasims (IPMN) and 40 controls, and a second comprised 1000 reference subjects aged 30 to 80, which was used to create a distribution of PC-594 levels among the general population. FI-FTICR-MS metabolomic analysis showed significant reductions in the serum levels of metabolites belonging to five systems in PC patients compared to controls (all p<0.000025). The metabolic systems included 36-carbon ultra long-chain fatty acids, multiple choline-related systems including phosphatidylcholines, lysophosphatidylcholines and sphingomyelins, as well as vinyl ether-containing plasmalogen ethanolamines. ROC-AUCs based on FI-MS/MS of selected markers from each system ranged between 0.93 ±0.03 and 0.97 ±0.02. No significant correlations between any of the systems and disease-stage, gender, or treatment were observed. Biomarker PC-594 (an ultra long

  8. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    International Nuclear Information System (INIS)

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged withdrawal of the peroxisome proliferator activated receptor γ (PPARγ) agonist rosiglitazone. Differentiated hMSC-Tert developed the characteristic monolocular phenotype of mature adipocytes. The expression of adipocyte specific markers was highly increased during differentiation. Most importantly, the presence of the PPARγ agonist rosiglitazone was not required for the stable expression of lipoprotein lipase, adipocyte fatty acid binding protein and perilipin on mRNA and protein levels. Adiponectin expression was post-transcriptionally down-regulated in the absence of rosiglitazone. Insulin sensitivity as measured by insulin-induced phosphorylation of Akt and S6 ribosomal protein was also independent of rosiglitazone. In addition to commonly used adipogenic markers, we investigated further PPARγ-stimulated proteins with a role in lipid metabolism. We observed an increase of lipoprotein receptor (VLDLR, LRP1) and apolipoprotein E expression during differentiation. Despite this increased expression, the receptor-mediated endocytosis of lipoproteins was decreased in differentiated adipocytes, suggesting that these proteins may have an additional function in adipose tissue beyond lipoprotein uptake

  9. A High-Fat Diet Causes Impairment in Hippocampal Memory and Sex-Dependent Alterations in Peripheral Metabolism

    Directory of Open Access Journals (Sweden)

    Erica L. Underwood

    2016-01-01

    Full Text Available While high-fat diets are associated with rising incidence of obesity/type-2 diabetes and can induce metabolic and cognitive deficits, sex-dependent comparisons are rarely systematically made. Effects of exclusive consumption of a high-fat diet (HFD on systemic metabolism and on behavioral measures of hippocampal-dependent memory were compared in young male and female LE rats. Littermates were fed from weaning either a HFD or a control diet (CD for 12 wk prior to testing. Sex-different effects of the HFD were observed in classic metabolic signs associated with type-2 diabetes. Males fed the HFD became obese, and had elevated fasted blood glucose levels, elevated corticosterone, and impaired glucose-tolerance, while females on the HFD exhibited only elevated corticosterone. Regardless of peripheral metabolism alteration, rats of both sexes fed the HFD were equally impaired in a spatial object recognition memory task associated with impaired hippocampal function. While the metabolic changes reported here have been characterized previously in males, the set of diet-induced effects observed here in females are novel. Impaired memory can have significant cognitive consequences, over the short-term and over the lifespan. A significant need exists for comparative research into sex-dependent differences underlying obesity and metabolic syndromes relating systemic, cognitive, and neural plasticity mechanisms.

  10. A High-Fat Diet Causes Impairment in Hippocampal Memory and Sex-Dependent Alterations in Peripheral Metabolism.

    Science.gov (United States)

    Underwood, Erica L; Thompson, Lucien T

    2016-01-01

    While high-fat diets are associated with rising incidence of obesity/type-2 diabetes and can induce metabolic and cognitive deficits, sex-dependent comparisons are rarely systematically made. Effects of exclusive consumption of a high-fat diet (HFD) on systemic metabolism and on behavioral measures of hippocampal-dependent memory were compared in young male and female LE rats. Littermates were fed from weaning either a HFD or a control diet (CD) for 12 wk prior to testing. Sex-different effects of the HFD were observed in classic metabolic signs associated with type-2 diabetes. Males fed the HFD became obese, and had elevated fasted blood glucose levels, elevated corticosterone, and impaired glucose-tolerance, while females on the HFD exhibited only elevated corticosterone. Regardless of peripheral metabolism alteration, rats of both sexes fed the HFD were equally impaired in a spatial object recognition memory task associated with impaired hippocampal function. While the metabolic changes reported here have been characterized previously in males, the set of diet-induced effects observed here in females are novel. Impaired memory can have significant cognitive consequences, over the short-term and over the lifespan. A significant need exists for comparative research into sex-dependent differences underlying obesity and metabolic syndromes relating systemic, cognitive, and neural plasticity mechanisms. PMID:26819773

  11. T4 thyrotoxicosis: an independent disease or the effect of an alteration in the peripheral metabolism of T4

    International Nuclear Information System (INIS)

    Six cases of T4 thyrotoxicosis were observed in 250 patients with hyperthyroidism. In the 6 episodes, the thyrotoxicosis was associated with severe systemic illness or with the admnistration of propanolol, which blocked the peripheral convertion of T4 to T3. These data indicate that T4 thyrotoxicosis reflects an alteration in the peripheral metabolism of T4 produced by systemic illness or drugs. (M.A.C.)

  12. Occurrence of retained placenta is preceded by an inflammatory state and alterations of energy metabolism in transition dairy cows

    OpenAIRE

    Dervishi, Elda; Zhang, Guanshi; Hailemariam, Dagnachew; Dunn, Suzana M; Ametaj, Burim N.

    2016-01-01

    Background Failure to expel fetal membranes within 24 h of calving is a pathological condition defined as retained placenta (RP). The objective of this investigation was to evaluate whether there are alterations in several selected serum variables related to innate immunity and carbohydrate and lipid metabolism that precede occurrence of RP in transition Holstein dairy cows. Methods One hundred multiparous Holstein dairy cows were involved in the study. Blood samples were collected from the c...

  13. Characterization of oncogene-induced metabolic alterations in hepatic cells by using ultrahigh performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Tang, Zhi; Cao, Tingting; Lin, Shuhai; Fu, Li; Li, Shangfu; Guan, Xin-Yuan; Cai, Zongwei

    2016-05-15

    Elucidation of altered metabolic pathways by using metabolomics may open new avenues for basic research on disease mechanisms and facilitate the development of novel therapeutic strategies. Here, we report the development of ultrahigh performance liquid chromatography-tandem mass spectrometry-based metabolomics platform with capability of measuring both cationic and anionic intermediates in cellular metabolism. The platform was established based on the hydrophobic ion-pairing interaction chromatography coupled with tandem mass spectrometry in multiple reaction monitoring (MRM) mode. The MRM transitions were created and optimized via energy-resolved collision-induced dissociation experiments, serving as an essential reference point for the quantification and identification. For chromatographic separation, application of hydrophobic ion-pairing interaction led to dramatic enhancement on retention of water-soluble metabolites and provision of good peak shapes. Two volatile ion-pairing reagents, namely heptafluorobutyric acid and tributylamine, were used with dedicated C18 columns as complementary separation systems coupled with the MRM analysis, allowing measurement of the metabolites of interest at nanomolar levels. The developed platform was successfully applied to investigate the altered metabolism in hepatic cells with over-expression of an oncogene, thus can provide important information on the rewired metabolism. PMID:26992502

  14. Implications of Hydrogen Sulfide in Glucose Regulation: How H2S Can Alter Glucose Homeostasis through Metabolic Hormones

    Science.gov (United States)

    Pichette, Jennifer

    2016-01-01

    Diabetes and its comorbidities continue to be a major health problem worldwide. Understanding the precise mechanisms that control glucose homeostasis and their dysregulation during diabetes are a major research focus. Hydrogen sulfide (H2S) has emerged as an important regulator of glucose homeostasis. This is achieved through its production and action in several metabolic and hormone producing organs including the pancreas, liver, and adipose. Of importance, H2S production and signaling in these tissues are altered during both type 1 and type 2 diabetes mellitus. This review first examines how H2S is produced both endogenously and by gastrointestinal microbes, with a particular focus on the altered production that occurs during obesity and diabetes. Next, the action of H2S on the metabolic organs with key roles in glucose homeostasis, with a particular focus on insulin, is described. Recent work has also suggested that the effects of H2S on glucose homeostasis goes beyond its role in insulin secretion. Several studies have demonstrated important roles for H2S in hepatic glucose output and adipose glucose uptake. The mechanism of H2S action on these metabolic organs is described. In the final part of this review, future directions examining the roles of H2S in other metabolic and glucoregulatory hormone secreting tissues are proposed. PMID:27478532

  15. Regional homogeneity alterations differentiate between tremor dominant and postural instability gait difficulty subtypes of Parkinson's disease.

    Science.gov (United States)

    Jiang, Siming; Wang, Min; Zhang, Li; Yuan, Yongsheng; Tong, Qing; Ding, Jian; Wang, Jianwei; Xu, Qinrong; Zhang, Kezhong

    2016-03-01

    Parkinson's disease (PD) can be classified into the tremor dominant (TD) subtype and the postural instability gait difficulty (PIGD) subtype, which present with different clinical courses and prognoses. However, the symptom-specific intrinsic neural mechanisms underlying the subtypes of PD still remain elusive. In the current study, we utilized resting-state fMRI (rs-fMRI) combined with the regional homogeneity (ReHo) method to investigate the modulations of neural activity in 13 patients with predominantly PIGD (p-PIGD) and 15 patients with predominantly TD (p-TD) in the resting state. Compared with healthy controls, the p-PIGD and the p-TD groups both displayed ReHo changes in the default mode network (DMN). By contrast, the p-TD group exhibited more ReHo alterations in the cerebellum involved in the cerebello-thalamo-cortical (CTC) loops, whilst the p-PIGD group in extensive cortical and sub-cortical areas, including the frontal, parietal, occipital, temporal, limbic lobes, basal ganglia and thalamus, which are involved in the striatal-thalamo-cortical (STC) loops. Direct comparison between the two groups showed significant ReHo alterations in the primary visual cortex. Our findings underscore the differential involvement of the STC and CTC circuits underlying the two subtypes of PD. Moreover, relatively widespread neural activity abnormality, especially in the motor-related regions as well as the visual network, is apparently a characteristic feature of PIGD symptoms. This study could shed light on the underlying pathophysiology and clinical heterogeneity of PD presentation. PMID:26666253

  16. Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants.

    Science.gov (United States)

    Urbanczyk-Wochniak, Ewa; Fernie, Alisdair R

    2005-01-01

    The role of inorganic nitrogen assimilation in the production of amino acids is one of the most important biochemical processes in plants. For this reason, a detailed broad-range characterization of the metabolic response of tomato (Solanum lycopersicum) leaves to the alteration of nitrate level was performed. Tomato plants were grown hydroponically in liquid culture under three different nitrate regimes: saturated (8 mM NO3-), replete (4 mM NO3-) and deficient (0.4 mM NO3-). All treatments were performed under varied light intensity, with leaf samples being collected after 7, 14, and 21 d. In addition, the short-term response (after 1, 24, 48, and 94 h) to varying nutrient status was evaluated at the higher light intensity. GC-MS analysis of the levels of amino acids, tricarboxylic acid cycle intermediates, sugars, sugar alcohols, and representative compounds of secondary metabolism revealed substantial changes under the various growth regimes applied. The data presented here suggest that nitrate nutrition has wide-ranging effects on plant leaf metabolism with nitrate deficiency resulting in decreases in many amino and organic acids and increases in the level of several carbohydrates and phosphoesters, as well as a handful of secondary metabolites. These results are compared with previously reported transcript profiles of altered nitrogen regimes and discussed within the context of current models of carbon nitrogen interaction. PMID:15596475

  17. Experimental Periodontitis Results in Prediabetes and Metabolic Alterations in Brain, Liver and Heart: Global Untargeted Metabolomic Analyses

    Science.gov (United States)

    Ilievski, Vladimir; Kinchen, Jason M; Prabhu, Ramya; Rim, Fadi; Leoni, Lara; Unterman, Terry G.; Watanabe, Keiko

    2016-01-01

    Results from epidemiological studies suggest that there is an association between periodontitis and prediabetes, however, causality is not known. The results from our previous studies suggest that induction of periodontitis leads to hyperinsulinemia glucose intolerance and insulin resistance, all hallmarks of prediabetes. However, global effects of periodontitis on critical organs in terms of metabolic alterations are unknown. We determined the metabolic effects of periodontitis on brain, liver, heart and plasma resulting from Porphyromonas gingivalis induced periodontitis in mice. Periodontitis was induced by oral application of the periodontal pathogen, Porphyromonas gingivalis for 22 weeks. Global untargeted biochemical profiles in samples from these organs/plasma were determined by liquid and gas chromatography/mass spectrometry and compared between controls and animals with periodontitis. Oral application of Porphyromonas gingivalis induced chronic periodontitis and hallmarks of prediabetes. The results of sample analyses indicated a number of changes in metabolic readouts, including changes in metabolites related to glucose and arginine metabolism, inflammation and redox homeostasis. Changes in biochemicals suggested subtle systemic effects related to periodontal disease, with increases in markers of inflammation and oxidative stress most prominent in the liver. Signs of changes in redox homeostasis were also seen in the brain and heart. Elevated bile acids in liver were suggestive of increased biosynthesis, which may reflect changes in liver function. Interestingly, signs of decreasing glucose availability were seen in the brain. In all three organs and plasma, there was a significant increase in the microbiome-derived bioactive metabolite 4-ethylphenylsulfate sulfate in animals with periodontitis. The results of metabolic profiling suggest that periodontitis/bacterial products alter metabolomic signatures of brain, heart, liver, and plasma in the

  18. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles

    DEFF Research Database (Denmark)

    Mattsson, Karin; Ekvall, Mikael T; Hansson, Lars-Anders; Linse, Sara; Malmendal, Anders; Cedervall, Tommy

    2015-01-01

    administered 24 and 27 nm polystyrene nanoparticles to fish through an aquatic food chain, from algae through Daphnia, and studied the effects on behavior and metabolism. We found severe effects on feeding and shoaling behavior as well as metabolism of the fish; hence, we conclude that polystyrene...... nanoparticles have severe effects on both behavior and metabolism in fish and that commonly used nanosized particles may have considerable effects on natural systems and ecosystem services derived from them....

  19. Differential metamorphosis alters the endocrine response in anuran larvae exposed to T3 and atrazine

    International Nuclear Information System (INIS)

    Pesticide chemical contamination is one of the suspected contributors of the amphibian population decline. The herbicide atrazine is one of the major surface water contaminants in the U.S. A previous study has shown that atrazine at concentrations as low as 100 parts per billion (ppb) increased the time to metamorphosis in Xenopus laevis tadpoles. However, questions remain as to the applicability of a study of a non-native species to a native organism. The possible effects of atrazine on developing Bufo americanus were explored. Atrazine at potentially (albeit high) environmental concentrations was found not to delay the metamorphosis of developing B. americanus tadpoles as observed in X. laevis. Several studies have indicated that atrazine affects thyroid hormones. Since thyroid hormones are critical in amphibian metamorphosis, B. americanus and X. laevis tadpoles were exposed to exogenous 3,5,3'-triiodothyronine (T3). X. laevis were found to be more responsive to the effects of exogenous T3 compared to B. americanus, indicating that X. laevis may be more sensitive to endocrine active chemicals than B. americanus. In X. laevis, nuclear heterogeneity has been associated with metamorphosis. Flow cytometric analysis of the nuclei of normal metamorphing B. americanus indicates a decrease in the amount of thyroid mediated chromatin alterations relative to the nuclei of metamorphing X. laevis. Indications are that the differential response to endocrine disruption is due to the differential role of chromatin associated gene expression during metamorphosis of B. americanus versus X. laevis. A second native species, Hyla versicolor, was observed to have the X. laevis nuclear pattern with respect to metamorphosis. As such, sensitivity to endocrine disruption is hypothesized not to be limited to laboratory non-native species

  20. Functional Metabolomics Uncovers Metabolic Alterations Associated to Severe Oxidative Stress in MCF7 Breast Cancer Cells Exposed to Ascididemin

    Directory of Open Access Journals (Sweden)

    Daniel Morvan

    2013-10-01

    Full Text Available Marine natural products are a source of promising agents for cancer treatment. However, there is a need to improve the evaluation of their mechanism of action in tumors. Metabolomics of the response to anti-tumor agents is a tool to reveal candidate biomarkers and metabolic targets. We used two-dimensional high-resolution magic angle spinning proton-NMR spectroscopy-based metabolomics to investigate the response of MCF7 breast cancer cells to ascididemin, a marine alkaloid and lead molecule for anti-cancer treatment. Ascididemin induced severe oxidative stress and apoptosis within 48 h of exposure. Thirty-three metabolites were quantified. Metabolic response involved downregulation of glycolysis and the tricarboxylic acid cycle, and phospholipid metabolism alterations. Candidate metabolic biomarkers of the response of breast cancer cells to ascididemin were proposed including citrate, gluconate, polyunsaturated fatty acids, glycerophospho-choline and -ethanolamine. In addition, candidate metabolic targets were identified. Overall, the response to Asc could be related to severe oxidative stress and anti-inflammatory effects.

  1. Genetic Deletion of Rheb1 in the Brain Reduces Food Intake and Causes Hypoglycemia with Altered Peripheral Metabolism

    Directory of Open Access Journals (Sweden)

    Wanchun Yang

    2014-01-01

    Full Text Available Excessive food/energy intake is linked to obesity and metabolic disorders, such as diabetes. The hypothalamus in the brain plays a critical role in the control of food intake and peripheral metabolism. The signaling pathways in hypothalamic neurons that regulate food intake and peripheral metabolism need to be better understood for developing pharmacological interventions to manage eating behavior and obesity. Mammalian target of rapamycin (mTOR, a serine/threonine kinase, is a master regulator of cellular metabolism in different cell types. Pharmacological manipulations of mTOR complex 1 (mTORC1 activity in hypothalamic neurons alter food intake and body weight. Our previous study identified Rheb1 (Ras homolog enriched in brain 1 as an essential activator of mTORC1 activity in the brain. Here we examine whether central Rheb1 regulates food intake and peripheral metabolism through mTORC1 signaling. We find that genetic deletion of Rheb1 in the brain causes a reduction in mTORC1 activity and impairs normal food intake. As a result, Rheb1 knockout mice exhibit hypoglycemia and increased lipid mobilization in adipose tissue and ketogenesis in the liver. Our work highlights the importance of central Rheb1 signaling in euglycemia and energy homeostasis in animals.

  2. Fructose Alters Intermediary Metabolism of Glucose in Human Adipocytes and Diverts Glucose to Serine Oxidation in the One–Carbon Cycle Energy Producing Pathway

    Directory of Open Access Journals (Sweden)

    Vijayalakshmi Varma

    2015-06-01

    Full Text Available Increased consumption of sugar and fructose as sweeteners has resulted in the utilization of fructose as an alternative metabolic fuel that may compete with glucose and alter its metabolism. To explore this, human Simpson-Golabi-Behmel Syndrome (SGBS preadipocytes were differentiated to adipocytes in the presence of 0, 1, 2.5, 5 or 10 mM of fructose added to a medium containing 5 mM of glucose representing the normal blood glucose concentration. Targeted tracer [1,2-13C2]-d-glucose fate association approach was employed to examine the influence of fructose on the intermediary metabolism of glucose. Increasing concentrations of fructose robustly increased the oxidation of [1,2-13C2]-d-glucose to 13CO2 (p < 0.000001. However, glucose-derived 13CO2 negatively correlated with 13C labeled glutamate, 13C palmitate, and M+1 labeled lactate. These are strong markers of limited tricarboxylic acid (TCA cycle, fatty acid synthesis, pentose cycle fluxes, substrate turnover and NAD+/NADP+ or ATP production from glucose via complete oxidation, indicating diminished mitochondrial energy metabolism. Contrarily, a positive correlation was observed between glucose-derived 13CO2 formed and 13C oleate and doses of fructose which indicate the elongation and desaturation of palmitate to oleate for storage. Collectively, these results suggest that fructose preferentially drives glucose through serine oxidation glycine cleavage (SOGC pathway one-carbon cycle for NAD+/NADP+ production that is utilized in fructose-induced lipogenesis and storage in adipocytes.

  3. Reduced Mitochondrial Function in Human Huntington Disease Lymphoblasts is Not Due to Alterations in Cardiolipin Metabolism or Mitochondrial Supercomplex Assembly.

    Science.gov (United States)

    Mejia, Edgard M; Chau, Sarah; Sparagna, Genevieve C; Sipione, Simonetta; Hatch, Grant M

    2016-05-01

    Huntington's Disease (HD) is an autosomal dominant disease that occurs as a result of expansion of the trinucleotide repeat CAG (glutamine) on the HTT gene. HD patients exhibit various forms of mitochondrial dysfunction within neurons and peripheral tissues. Cardiolipin (Ptd2Gro) is a polyglycerophospholipid found exclusively in mitochondria and is important for maintaining mitochondrial function. We examined if altered Ptd2Gro metabolism was involved in the mitochondrial dysfunction associated with HD. Mitochondrial basal respiration, spare respiratory capacity, ATP coupling efficiency and rate of glycolysis were markedly diminished in Epstein-Barr virus transformed HD lymphoblasts compared to controls (CTRL). Mitochondrial supercomplex formation and Complex I activity within these supercomplexes did not vary between HD patients with different length of CAG repeats and appeared unaltered compared to CTRL. In contrast, in vitro Complex I enzyme activity in mitochondrial enriched samples was reduced in HD lymphoblasts compared to CTRL. The total cellular pool size of Ptd2Gro and its synthesis/remodeling from [(3)H]acetate/[(14)C]oleate were unaltered in HD lymphoblasts compared to CTRL. In addition, the molecular species of Ptd2Gro were essentially unaltered in HD lymphoblasts compared to CTRL. We conclude that compared to CTRL lymphoblasts, HD lymphoblasts display impaired mitochondrial basal respiration, spare respiratory capacity, ATP coupling efficiency and rate of glycolysis with any pathological CAG repeat length, but this is not due to alterations in Ptd2Gro metabolism. We suggest that HD patient lymphoblasts may be a useful model to study defective energy metabolism that does not involve alterations in Ptd2Gro metabolism. PMID:26846325

  4. Mouse embryonic stem cells irradiated with γ-rays differentiate into cardiomyocytes but with altered contractile properties.

    Science.gov (United States)

    Rebuzzini, Paola; Fassina, Lorenzo; Mulas, Francesca; Bellazzi, Riccardo; Redi, Carlo Alberto; Di Liberto, Riccardo; Magenes, Giovanni; Adjaye, James; Zuccotti, Maurizio; Garagna, Silvia

    2013-08-30

    Embryonic stem cells (ESCs) for their derivation from the inner cell mass of a blastocyst represent a valuable in vitro model to investigate the effects of ionizing radiation on early embryonic cellular response. Following irradiation, both human and mouse ESCs (mESCs) maintain their pluripotent status and the capacity to differentiate into embryoid bodies and to form teratomas. Although informative of the maintenance of a pluripotent status, these studies never investigated the capability of irradiated ESCs to form specific differentiated phenotypes. Here, for the first time, 5Gy-irradiated mESCs were differentiated into cardiomyocytes, thus allowing the analysis of the long-term effects of ionizing radiations on the differentiation potential of a pluripotent stem cell population. On treated mESCs, 96h after irradiation, a genome-wide expression analysis was first performed in order to determine whether the treatment influenced gene expression of the surviving mESCs. Microarrays analysis showed that only 186 genes were differentially expressed in treated mESCs compared to control cells; a quarter of these genes were involved in cellular differentiation, with three main gene networks emerging, including cardiogenesis. Based on these results, we differentiated irradiated mESCs into cardiomyocytes. On day 5, 8 and 12 of differentiation, treated cells showed a significant alteration (qRT-PCR) of the expression of marker genes (Gata-4, Nkx-2.5, Tnnc1 and Alpk3) when compared to control cells. At day 15 of differentiation, although the organization of sarcomeric α-actinin and troponin T proteins appeared similar in cardiomyocytes differentiated from either mock or treated cells, the video evaluation of the kinematics and dynamics of the beating cardiac syncytium evidenced altered contractile properties of cardiomyocytes derived from irradiated mESCs. This alteration correlated with significant reduction of Connexin 43 foci. Our results indicate that mESCs populations

  5. Differential proteomic analysis highlights metabolic strategies associated with balhimycin production in Amycolatopsis balhimycina chemostat cultivations

    DEFF Research Database (Denmark)

    Gallo, Giuseppe; Alduina, Rosa; Renzone, Giovanni;

    2010-01-01

    highly reproducible steady-state, and differential proteomics, the relationships between physiological status and metabolic pathways during antibiotic producing and non-producing conditions could be highlighted. Results Two minimal defined media, one with low Pi (0.6 mM; LP) and proficient glucose (12 g...... stable steady-state where biomass production yield coefficients, calculated on glucose consumption, were 0.38 ± 0.02 and 0.33 ± 0.02 g/g (biomass dry weight/glucose), respectively. Notably, balhimycin was detected only in LP, where quantitative RT-PCR revealed upregulation of selected bal genes, devoted...... to balhimycin biosynthesis, and of phoP, phoR, pstS and phoD, known to be associated to Pi limitation stress response. 2D-Differential Gel Electrophoresis (DIGE) and protein identification, performed by mass spectrometry and computer-assisted 2 D reference-map http...

  6. Systems Biology of cancer: Moving toward the Integrative Study of the metabolic alterations in cancer cells.

    Directory of Open Access Journals (Sweden)

    Claudia Erika Hernández Patiño

    2013-01-01

    Full Text Available One of the main objectives in systems biology is to understand the biological mechanisms that give rise to the phenotype of a microorganism by using high-throughput technologies and genome-scale mathematical modeling. The computational modeling of genome-scale metabolic reconstructions is one systemic and quantitative strategy for characterizing the metabolic phenotype associated with human diseases and potentially for designing drugs with optimal clinical effects. The purpose of this short review is to describe how computational modeling, including the specific case of constraint-based modeling, can be used to explore, characterize and predict the metabolic capacities that distinguish the metabolic phenotype of cancer cell lines. As we show herein, this computational framework is far from a pure theoretical description, and to ensure proper biological interpretation, it is necessary to integrate high-throughput data and generate predictions for later experimental assessment. Hence, genome-scale modeling serves as a platform for the following: 1 the integration of data from high-throughput technologies, 2 the assessment of how metabolic activity is related to phenotype in cancer cell lines and 3 the design of new experiments to evaluate the outcomes of the in silico analysis. By combining the functions described above, we show that computational modeling is a useful methodology to construct an integrative, systemic and quantitative scheme for understanding the metabolic profiles of cancer cell lines, a first step to determine the metabolic mechanism by which cancer cells maintain and support their malignant phenotype in human tissues.

  7. Clonal characterization of rat muscle satellite cells: proliferation, metabolism and differentiation define an intrinsic heterogeneity.

    Directory of Open Access Journals (Sweden)

    Carlo A Rossi

    Full Text Available Satellite cells (SCs represent a distinct lineage of myogenic progenitors responsible for the postnatal growth, repair and maintenance of skeletal muscle. Distinguished on the basis of their unique position in mature skeletal muscle, SCs were considered unipotent stem cells with the ability of generating a unique specialized phenotype. Subsequently, it was demonstrated in mice that opposite differentiation towards osteogenic and adipogenic pathways was also possible. Even though the pool of SCs is accepted as the major, and possibly the only, source of myonuclei in postnatal muscle, it is likely that SCs are not all multipotent stem cells and evidences for diversities within the myogenic compartment have been described both in vitro and in vivo. Here, by isolating single fibers from rat flexor digitorum brevis (FDB muscle we were able to identify and clonally characterize two main subpopulations of SCs: the low proliferative clones (LPC present in major proportion (approximately 75% and the high proliferative clones (HPC, present instead in minor amount (approximately 25%. LPC spontaneously generate myotubes whilst HPC differentiate into adipocytes even though they may skip the adipogenic program if co-cultured with LPC. LPC and HPC differ also for mitochondrial membrane potential (DeltaPsi(m, ATP balance and Reactive Oxygen Species (ROS generation underlying diversities in metabolism that precede differentiation. Notably, SCs heterogeneity is retained in vivo. SCs may therefore be comprised of two distinct, though not irreversibly committed, populations of cells distinguishable for prominent differences in basal biological features such as proliferation, metabolism and differentiation. By these means, novel insights on SCs heterogeneity are provided and evidences for biological readouts potentially relevant for diagnostic purposes described.

  8. [Brain metabolism alterations in patients with anorexia nervosa observed in 1H-MRS

    OpenAIRE

    Grzelak, P.; Gajewicz, W.; Wyszogrodzka-Kucharska, A.; Rotkiewicz, A.; Stefanczyk, L.; Goraj, B.M.; Rabe-Jablonska, J.

    2005-01-01

    The causes of metabolic brain changes in patients with anorexia nervosa are still not fully explained. The purpose of this study was to use the 1H-MRS method in investigating metabolic changes in the brain of patients with anorexia nervosa. We studied 10 patients for visible alternations in brain metabolism and compared the results to healthy controls. 1H-MRS was acquired by the method of single voxels in white and grey matter. Proton MRS was performed after image guided localization using st...

  9. Efficacy of lower doses of vanadium in restoring altered glucose metabolism and antioxidant status in diabetic rat lenses

    Indian Academy of Sciences (India)

    Anju Preet; Bihari L Gupta; Gupta Pramod K Yadava; Najma Z Baquer

    2005-03-01

    Vanadium compounds are potent in controlling elevated blood glucose levels in experimentally induced diabetes. However the toxicity associated with vanadium limits its role as therapeutic agent for diabetic treatment. A vanadium compound sodium orthovanadate (SOV) was given to alloxan-induced diabetic Wistar rats in lower doses in combination with Trigonella foenum graecum, a well-known hypoglycemic agent used in traditional Indian medicines. The effect of this combination was studied on lens morphology and glucose metabolism in diabetic rats. Lens, an insulin-independent tissue, was found severely affected in diabetes showing visual signs of cataract. Alterations in the activities of glucose metabolizing enzymes (hexokinase, aldose reductase, sorbitol dehydrogenase, glucose-6-phosphate dehydrogenase) and antioxidant enzymes (glutathione peroxidase, glutathione reductase) besides the levels of related metabolites, [sorbitol, fructose, glucose, thiobarbituric acid reactive species (TBARS) and reduced glutathione (GSH)] were observed in the lenses from diabetic rats and diabetic rats treated with insulin (2 IU/day), SOV (0.6 mg/ml), T. f. graecum seed powder (TSP, 5%) and TSP (5%) in combination with lowered dose of vanadium SOV (0.2 mg/ml), for a period of 3 weeks. The activity of the enzymes, hexokinase, aldose reductase and sorbitol dehydrogenase was significantly increased whereas the activity of glucose-6-phosphate dehydrogenase, glutathione peroxidase and glutathione reductase decreased significantly in lenses from 3 week diabetic rats. Significant increase in accumulation of metabolites, sorbitol, fructose, glucose was found in diabetic lenses. TBARS measure of peroxidation increased whereas the levels of antioxidant GSH decreased significantly in diabetic condition. Insulin restored the levels of altered enzyme activities and metabolites almost to control levels. Sodium orthovanadate (0.6 mg/ml) and Trigonella administered separately to diabetic animals could

  10. ALTERATIONS IN A11 TRANS RETINOIC ACID METABOLISM IN LIVER MICROSOMES FROM MICE TREATED WITH HEPATOTUMORIGENIC AND NON-HEPATOTUMORIGENIC CONAZOLES

    Science.gov (United States)

    Conazoles are fungicides used in crop protection and as pharmaceuticals. Triadimefon and propiconazole are hepatotumorigenic in mice, while myclobutanil is not. Previous toxicogenomic studies suggest that alteration of the retinoic acid metabolism pathway may be a key event in co...

  11. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    Energy Technology Data Exchange (ETDEWEB)

    Blossom, Sarah J., E-mail: blossomsarah@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children' s Hospital Research Institute, 13 Children' s Way, Little Rock, AR 72202 (United States); Cooney, Craig A. [Department of Research and Development, Central Arkansas Veterans Healthcare System, John L. McClellan Memorial Veterans Hospital, 4300 West 7th St., Little Rock, AR 72205-5484 (United States); Melnyk, Stepan B.; Rau, Jenny L.; Swearingen, Christopher J. [Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children' s Hospital Research Institute, 13 Children' s Way, Little Rock, AR 72202 (United States); Wessinger, William D. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, College of Medicine, 4301 West Markham St., Little Rock, AR 72205 (United States)

    2013-06-15

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor

  12. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    International Nuclear Information System (INIS)

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor

  13. Red wine polyphenols prevent metabolic and cardiovascular alterations associated with obesity in Zucker fatty rats (Fa/Fa.

    Directory of Open Access Journals (Sweden)

    Abdelali Agouni

    Full Text Available BACKGROUND: Obesity is associated with increased risks for development of cardiovascular diseases. Epidemiological studies report an inverse association between dietary flavonoid consumption and mortality from cardiovascular diseases. We studied the potential beneficial effects of dietary supplementation of red wine polyphenol extract, Provinols, on obesity-associated alterations with respect to metabolic disturbances and cardiovascular functions in Zucker fatty (ZF rats. METHODOLOGY/PRINCIPAL FINDINGS: ZF rats or their lean littermates received normal diet or supplemented with Provinols for 8 weeks. Provinols improved glucose metabolism by reducing plasma glucose and fructosamine in ZF rats. Moreover, it reduced circulating triglycerides and total cholesterol as well as LDL-cholesterol in ZF rats. Echocardiography measurements demonstrated that Provinols improved cardiac performance as evidenced by an increase in left ventricular fractional shortening and cardiac output associated with decreased peripheral arterial resistances in ZF rats. Regarding vascular function, Provinols corrected endothelial dysfunction in aortas from ZF rats by improving endothelium-dependent relaxation in response to acetylcholine (Ach. Provinols enhanced NO bioavailability resulting from increased nitric oxide (NO production through enhanced endothelial NO-synthase (eNOS activity and reduced superoxide anion release via decreased expression of NADPH oxidase membrane sub-unit, Nox-1. In small mesenteric arteries, although Provinols did not affect the endothelium-dependent response to Ach; it enhanced the endothelial-derived hyperpolarizing factor component of the response. CONCLUSIONS/SIGNIFICANCE: Use of red wine polyphenols may be a potential mechanism for prevention of cardiovascular and metabolic alterations associated with obesity.

  14. High altitude may alter oxygen availability and renal metabolism in diabetics as measured by hyperpolarized [1-1C]pyruvate magnetic resonance imaging

    DEFF Research Database (Denmark)

    Laustsen, Christoffer; Lycke, Sara; Palm, Fredrik;

    2014-01-01

    metabolic changes associated with diabetes and oxygen availability. Streptozotocin diabetic and control rats were given reduced, normal, or increased inspired oxygen in order to alter tissue oxygenation. The effects on kidney oxygen metabolism were studied using hyperpolarized [1-13C]pyruvate MRI. Reduced...... inspired oxygen did not alter renal metabolism in the control group. Reduced oxygen availability in the diabetic kidney altered energy metabolism by increasing lactate and alanine formation by 23% and 34%, respectively, whereas the bicarbonate flux was unchanged. Thus, the increased prevalence and severity...... of nephropathy in patients with diabetes at high altitudes may originate from the increased sensitivity toward inspired oxygen. This increased lactate production shifts the metabolic routs toward hypoxic pathways....

  15. Renal pyramid echogenicity in ureteropelvic junction obstruction: correlation between altered echogenicity and differential renal function

    International Nuclear Information System (INIS)

    Improvement in resolution and use of high-frequency transducers in US has enabled visualization of previously unreported changes in medullary pyramid echogenicity in children with obstructive hydronephrosis. To determine whether these unreported changes in echogenicity and morphology of the renal pyramids in ureteropelvic junction (UPJ) obstruction correlate with differential renal function (DRF) of the kidney as determined by technetium-99m mercaptoacetyltriglycine (99mTc-MAG3) scan. Renal sonograms in 60 children with UPJ obstruction were retrospectively reviewed. Children were divided into three groups based on the echogenicity of the pyramids: (1) normal echogenicity of the pyramids, (2) increased echogenicity of the pyramids with maintained corticomedullary differentiation (CMD), and (3) loss of CMD. DRF, as determined by 99mTc-MAG3 scan, of the obstructed kidney of ≥45% was considered normal and of ≤44% was considered abnormal based on a published study correlating histological changes with DRF. Fisher's exact test was performed for assessing the association between DRF and altered echogenicity of the pyramids. In group 1, which consisted of 13 patients with normal pyramids on US, DRF was normal in 11 and abnormal in two. In group 2, which consisted of 33 patients with echogenic pyramids and preserved CMD, DRF was normal in 15 and abnormal in 18. In group 3, which consisted of 14 patients with complete loss of CMD, DRF was normal in 2 and abnormal in 12. There was a strong correlation between abnormal pyramids and DRF (P=0.0009). The risk ratio (RR) of DRF becoming abnormal for those kidneys with abnormal echogenicity of the pyramids with preserved CMD (group 2) compared to normal pyramid echogenicity (group 1) was 1.56 (95% CI 1.088-2.236). The RR of DRF becoming abnormal for those kidneys with loss of CMD (group 3) compared to normal pyramid echogenicity (group 1) was 5.571 (95% CI 1.530-20.294). We observed that in obstructed kidneys the echogenicity

  16. Gamma radiation induced alterations in the ultrastructure of pancreatic islet, metabolism and enzymes in wistar rat

    International Nuclear Information System (INIS)

    Effects of gamma irradiation (600 rads) on the ultrastructure of pancreatic islet, metabolism and some enzymes in wistar rat, are reported. Electron microscopic observations of endocrine pancreas revealed prominent changes in beta cells while alpha and delta cells were not much affected. Irradiation also inflicted hyperglycemia, increase in liver and muscle glycogen and decrease in insulin level. It has also increased the activity of enzymes but failed to produce significant changes in protein, lipid and mineral metabolism. (author)

  17. Dietary isoflavones alter regulatory behaviors, metabolic hormones and neuroendocrine function in Long-Evans male rats

    OpenAIRE

    Bu Lihong; Lund Trent D; Porter James P; Lephart Edwin D; Setchell Kenneth DR; Ramoz Gina; Crowley William R

    2004-01-01

    Abstract Background Phytoestrogens derived from soy foods (or isoflavones) have received prevalent usage due to their 'health benefits' of decreasing: a) age-related diseases, b) hormone-dependent cancers and c) postmenopausal symptoms. However, little is known about the influence of dietary phytoestrogens on regulatory behaviors, such as food and water intake, metabolic hormones and neuroendocrine parameters. This study examined important hormonal and metabolic health issues by testing the h...

  18. Sex-specific alterations in mRNA level of key lipid metabolism enzymes in skeletal muscle of overweight and obese subjects following endurance exercise

    OpenAIRE

    Smith, Ira J.; Huffman, Kim M.; Durheim, Michael T.; Duscha, Brian D.; Kraus, William E.

    2008-01-01

    Endurance exercise (EE) leads to beneficial alterations in skeletal muscle lipid metabolism in overweight and obese individuals; however, the mechanisms of these improvements are poorly understood. The primary goal of the current investigation was to test the hypothesis that long-term EE training (6 mo) leads to alterations in the mRNA abundance of key lipid metabolism enzymes in skeletal muscle of overweight and obese middle-aged women and men. A secondary aim of this study was to investigat...

  19. ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells.

    Science.gov (United States)

    Karvela, Maria; Baquero, Pablo; Kuntz, Elodie M; Mukhopadhyay, Arunima; Mitchell, Rebecca; Allan, Elaine K; Chan, Edmond; Kranc, Kamil R; Calabretta, Bruno; Salomoni, Paolo; Gottlieb, Eyal; Holyoake, Tessa L; Helgason, G Vignir

    2016-06-01

    A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in CML is therefore critical. We have previously shown that a nonspecific pharmacological inhibition of autophagy potentiates TKI-induced death in Philadelphia chromosome-positive cells. Here we provide further understanding of how specific and pharmacological autophagy inhibition affects nonmitochondrial and mitochondrial energy metabolism and reactive oxygen species (ROS)-mediated differentiation of CML cells and highlight ATG7 (a critical component of the LC3 conjugation system) as a potential specific therapeutic target. By combining extra- and intracellular steady state metabolite measurements by liquid chromatography-mass spectrometry with metabolic flux assays using labeled glucose and functional assays, we demonstrate that knockdown of ATG7 results in decreased glycolysis and increased flux of labeled carbons through the mitochondrial tricarboxylic acid cycle. This leads to increased oxidative phosphorylation and mitochondrial ROS accumulation. Furthermore, following ROS accumulation, CML cells, including primary CML CD34(+) progenitor cells, differentiate toward the erythroid lineage. Finally, ATG7 knockdown sensitizes CML progenitor cells to TKI-induced death, without affecting survival of normal cells, suggesting that specific inhibitors of ATG7 in combination with TKI would provide a novel therapeutic approach for CML patients exhibiting persistent disease. PMID:27168493

  20. Sexual differentiation of the brain: a model for drug-induced alterations of the reproductive system

    International Nuclear Information System (INIS)

    The process of the sexual differentiation of the brain represents a valuable model system for the study of the chemical modification of the mammalian brain. Although there are numerous functional and structural sex differences in the adult brain, these are imposed on an essentially feminine or bipotential brain by testicular hormones during a critical phase of perinatal development in the rat. It is suggested that a relatively marked structural sex difference in the rat brain, the sexually dimorphic nucleus of the preoptic area (SDN-POA), is a morphological signature of the permanent or organizational action of estradiol derived from the aromatization of testicular testosterone. The SDN-POA of the male rat is severalfold larger in volume and is composed of more neurons than that of the female. The observation that the mitotic formation of the neurons of the SDN-POA is specifically prolonged has enabled us to identify the time course and pathway of neuronal migration into the nucleus. Study of the development of the SDN-POA suggests that estradiol in the male increases the number of neurons which survive a phase of neuronal death by exerting a neurite growth promoting action and/or a direct neuronotrophic action. Finally, although it is clear that gonadal hormones have dramatic permanent effects on the brain during perinatal development, even after puberty and in adulthood gonadal steroids can alter neuronal structure and, perhaps as a corollary to this, have permanent effects on reproductive function. Although the brain may be most sensitive to gonadal hormones or exogenous chemical factors during perinatal development, such as sensitivity does not appear limited to this period

  1. Analysis of Alterations in Morphologic Characteristics of Mesenchymal Stem Cells by Mechanical Stimulation during Differentiation into Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Shokrgozar

    2010-01-01

    Full Text Available Objective: Mesenchymal stem cells (MSCs can be expanded and differentiated intomany mature cell types including smooth muscle cells (SMCs. In addition to growth factor,cyclic stretch contributes to differentiation of stem cells. Mechanical stimuli are criticalto morphological changes, development, regeneration, differentiation and pathology ofmesenchymal tissues. The aim of this study is to investigate effects of cyclic stretch withdiffering amplitudes on morphology and differentiation of mesenchymal stem cells.Materials and Methods: Mesenchymal stem cells are extracted from human bone marrow.Cells are cultured on silicone membrane and exposed to cyclic stretch by a custommade device. Cellular images are captured before and after tests. Effects of 5% and 15%uniaxial strain with 1Hz frequency and 1-8 hour durations on morphology of human mesenchymalstem cells are investigated. It is assumed that environmental factors such asmechanical loading regulate MSCs differentiation to SMCs. Fractal analysis is used toquantify alterations in cellular morphology. An image processing method with a designedcode is used for evaluation of fractal dimension parameter.Results: Results demonstrate statistically significant change in cell morphology due tomechanical stretch. By elevation of strain amplitude and number of load cycles, fractaldimensions of cell images decrease. Such decrease is equivalent to alignment of cells bymechanical stimulus. Cells are differentiated to SMCs purely by cyclic stretch. The initiationand rate of differentiation depend on mechanical conditions.Conclusion: To produce functional SMCs for engineered tissues, MSCs can be exposed to uniaxialcyclic stretch. The functionality of differentiated SMCs depends on loading conditions.

  2. Proteome dynamics during contractile and metabolic differentiation of bovine foetal muscle.

    Science.gov (United States)

    Chaze, T; Meunier, B; Chambon, C; Jurie, C; Picard, B

    2009-07-01

    Contractile and metabolic properties of bovine muscles play an important role in meat sensorial quality, particularly tenderness. Earlier studies based on Myosin heavy chain isoforms analyses and measurements of glycolytic and oxidative enzyme activities have demonstrated that the third trimester of foetal life in bovine is characterized by contractile and metabolic differentiation. In order to complete this data and to obtain a precise view of this phase and its regulation, we performed a proteomic analysis of Semitendinosus muscle from Charolais foetuses analysed at three stages of the third trimester of gestation (180, 210 and 260 days). The results complete the knowledge of important changes in the profiles of proteins from metabolic and contractile pathways. They provide new insights about proteins such as Aldehyde dehydrogenase family, Enolase, Dihydrolipoyl dehydrogenase, Troponin T or Myosin light chains isoforms. These data have agronomical applications not only for the management of beef sensorial quality but also in medical context, as bovine myogenesis appears very similar to human one. PMID:22444818

  3. Differential expression analysis of transcripts related to oil metabolism in maturing seeds of Jatropha curcas L.

    Science.gov (United States)

    Chandran, Divya; Sankararamasubramanian, H M; Kumar, M Ashok; Parida, Ajay

    2014-04-01

    Jatropha curcas has been widely studied at the molecular level due to its potential as an alternative source of fuel. Many of the reports till date on this plant have focussed mainly on genes contributing to the accumulation of oil in its seeds. A suppression subtractive hybridization strategy was employed to identify genes which are differentially expressed in the mid maturation stage of J. curcas seeds. Random expressed sequence tag sequencing of the cDNA subtraction library resulted in 385 contigs and 1,428 singletons, with 591 expressed sequence tags mapping for enzymes having catalytic roles in various metabolic pathways. Differences in transcript levels in early and mid-to-late maturation stages of seeds were also investigated using sequence information obtained from the cDNA subtraction library. Seven out of 12 transcripts having putative roles in central carbon metabolism were up regulated in early seed maturation stage while lipid metabolism related transcripts were detected at higher levels in the later stage of seed maturation. Interestingly, 4 of the transcripts revealed putative alternative splice variants that were specifically present or up regulated in the early or late maturation stage of the seeds. Transcript expression patterns from the current study using maturing seeds of J. curcas reveal a subtle balancing of oil accumulation and utilization, which may be influenced by their energy requirements. PMID:24757322

  4. Whole grain products, fish and bilberries alter glucose and lipid metabolism in a randomized, controlled trial: the Sysdimet study.

    Directory of Open Access Journals (Sweden)

    Maria Lankinen

    Full Text Available BACKGROUND: Due to the growing prevalence of type 2 diabetes, new dietary solutions are needed to help improve glucose and lipid metabolism in persons at high risk of developing the disease. Herein we investigated the effects of low-insulin-response grain products, fatty fish, and berries on glucose metabolism and plasma lipidomic profiles in persons with impaired glucose metabolism. METHODOLOGY/PRINCIPAL FINDINGS: Altogether 106 men and women with impaired glucose metabolism and with at least two other features of the metabolic syndrome were included in a 12-week parallel dietary intervention. The participants were randomized into three diet intervention groups: (1 whole grain and low postprandial insulin response grain products, fatty fish three times a week, and bilberries three portions per day (HealthyDiet group, (2 Whole grain enriched diet (WGED group, which includes principally the same grain products as group (1, but with no change in fish or berry consumption, and (3 refined wheat breads (Control. Oral glucose tolerance, plasma fatty acids and lipidomic profiles were measured before and after the intervention. Self-reported compliance with the diets was good and the body weight remained constant. Within the HealthyDiet group two hour glucose concentration and area-under-the-curve for glucose decreased and plasma proportion of (n-3 long-chain PUFAs increased (False Discovery Rate p-values <0.05. Increases in eicosapentaenoic acid and docosahexaenoic acid associated curvilinearly with the improved insulin secretion and glucose disposal. Among the 364 characterized lipids, 25 changed significantly in the HealthyDiet group, including multiple triglycerides incorporating the long chain (n-3 PUFA. CONCLUSIONS/SIGNIFICANCE: The results suggest that the diet rich in whole grain and low insulin response grain products, bilberries, and fatty fish improve glucose metabolism and alter the lipidomic profile. Therefore, such a diet may have a

  5. Metabonomic Analysis Reveals Efficient Ameliorating Effects of Acupoint Stimulations on the Menopause-caused Alterations in Mammalian Metabolism

    Science.gov (United States)

    Zhang, Limin; Wang, Yulan; Xu, Yunxiang; Lei, Hehua; Zhao, Ying; Li, Huihui; Lin, Xiaosheng; Chen, Guizhen; Tang, Huiru

    2014-01-01

    Acupoint stimulations are effective in ameliorating symptoms of menopause which is an unavoidable ageing consequence for women. To understand the mechanistic aspects of such treatments, we systematically analyzed the effects of acupoint laser-irradiation and catgut-embedding on the ovariectomy-induced rat metabolic changes using NMR and GC-FID/MS methods. Results showed that ovariectomization (OVX) caused comprehensive metabolic changes in lipid peroxidation, glycolysis, TCA cycle, choline and amino acid metabolisms. Both acupoint laser-irradiation and catgut-embedding ameliorated the OVX-caused metabonomic changes more effectively than hormone replacement therapy (HRT) with nilestriol. Such effects of acupoint stimulations were highlighted in alleviating lipid peroxidation, restoring glucose homeostasis and partial reversion of the OVX-altered amino acid metabolism. These findings provided new insights into the menopause effects on mammalian biochemistry and beneficial effects of acupoint stimulations in comparison with HRT, demonstrating metabonomics as a powerful approach for potential applications in disease prognosis and developments of effective therapies.

  6. Alterations in the glutathione metabolism could be implicated in the ischemia-induced small intestinal cell damage in horses

    Directory of Open Access Journals (Sweden)

    de la Muela Mercedes

    2009-03-01

    Full Text Available Abstract Background Colic could be accompanied by changes in the morphology and physiology of organs and tissues, such as the intestine. This process might be, at least in part, due to the accumulation of oxidative damage induced by reactive oxygen (ROS and reactive nitrogen species (RNS, secondary to intestinal ischemia. Glutathione (GSH, being the major intracellular thiol, provides protection against oxidative injury. The aim of this study was to investigate whether ischemia-induced intestinal injury could be related with alterations in GSH metabolism. Results Ischemia induced a significant increase in lipid hydroperoxides, nitric oxide and carbon monoxide, and a reduction in reduced glutathione, and adenosine triphosphate (ATP content, as well as in methionine-adenosyl-transferase and methyl-transferase activities. Conclusion Our results suggest that ischemia induces harmful effects on equine small intestine, probably due to an increase in oxidative damage and proinflammatory molecules. This effect could be mediated, at least in part, by impairment in glutathione metabolism.

  7. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    Directory of Open Access Journals (Sweden)

    Yine Qu

    2016-04-01

    Full Text Available The functions of interleukin-17A (IL-17A in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice or a high-fat diet (n = 6, obese mice for 30 weeks. Subcutaneous adipose tissue (SAT and visceral adipose tissue (VAT were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice.

  8. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice.

    Science.gov (United States)

    Qu, Yine; Zhang, Qiuyang; Ma, Siqi; Liu, Sen; Chen, Zhiquan; Mo, Zhongfu; You, Zongbing

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipocytes, followed with IL-17A treatment and analysis for inflammatory and metabolic gene expression. We found that IL-17A levels were higher in obese SAT than lean SAT; the basal expression of inflammatory and metabolic genes was different between SAT and VAT and between lean and obese adipose tissues. IL-17A differentially induced expression of inflammatory and metabolic genes, such as tumor necrosis factor α, Il-6, Il-1β, leptin, and glucose transporter 4, in adipose tissues of lean and obese mice. IL-17A also differentially induced expression of inflammatory and metabolic genes in pre-adipocytes and adipocytes, and IL-17A selectively activated signaling pathways in adipose tissues and adipocytes. These findings suggest that IL-17A differentially induces inflammatory and metabolic gene expression in the adipose tissues of lean and obese mice. PMID:27070576

  9. DHEA-Mediated Inhibition of the Pentose Phosphate Pathway Alters Oocyte Lipid Metabolism in Mice

    OpenAIRE

    Jimenez, Patricia T; Frolova, Antonina I.; Chi, Maggie M.; Grindler, Natalia M.; Willcockson, Alexandra R.; Reynolds, Kasey A.; Zhao, Quihong; Moley, Kelle H.

    2013-01-01

    Women with polycystic ovary syndrome (PCOS) and hyperandrogenism have altered hormone levels and suffer from ovarian dysfunction leading to subfertility. We have attempted to generate a model of hyperandrogenism by feeding mice chow supplemented with dehydroepiandrosterone (DHEA), an androgen precursor that is often elevated in women with PCOS. Treated mice had polycystic ovaries, low ovulation rates, disrupted estrous cycles, and altered hormone levels. Because DHEA is an inhibitor of glucos...

  10. Hepatic steatosis in n-3 fatty acid depleted mice: focus on metabolic alterations related to tissue fatty acid composition

    Directory of Open Access Journals (Sweden)

    Malaisse WJ

    2008-12-01

    Full Text Available Abstract Background There are only few data relating the metabolic consequences of feeding diets very low in n-3 fatty acids. This experiment carried out in mice aims at studying the impact of dietary n-3 polyunsaturated fatty acids (PUFA depletion on hepatic metabolism. Results n-3 PUFA depletion leads to a significant decrease in body weight despite a similar caloric intake or adipose tissue weight. n-3 PUFA depleted mice exhibit hypercholesterolemia (total, HDL, and LDL cholesterol as well as an increase in hepatic cholesteryl ester and triglycerides content. Fatty acid pattern is profoundly modified in hepatic phospholipids and triglycerides. The decrease in tissue n-3/n-6 PUFA ratio correlates with steatosis. Hepatic mRNA content of key factors involved in lipid metabolism suggest a decreased lipogenesis (SREBP-1c, FAS, PPARγ, and an increased β-oxidation (CPT1, PPARα and PGC1α without modification of fatty acid esterification (DGAT2, GPAT1, secretion (MTTP or intracellular transport (L-FABP. Histological analysis reveals alterations of liver morphology, which can not be explained by inflammatory or oxidative stress. However, several proteins involved in the unfolded protein response are decreased in depleted mice. Conclusion n-3 PUFA depletion leads to important metabolic alterations in murine liver. Steatosis occurs through a mechanism independent of the shift between β-oxidation and lipogenesis. Moreover, long term n-3 PUFA depletion decreases the expression of factors involved in the unfolded protein response, suggesting a lower protection against endoplasmic reticulum stress in hepatocytes upon n-3 PUFA deficiency.

  11. Implications of Altered Glutathione Metabolism in Aspirin-Induced Oxidative Stress and Mitochondrial Dysfunction in HepG2 Cells

    OpenAIRE

    Raza, Haider; John, Annie

    2012-01-01

    We have previously reported that acetylsalicylic acid (aspirin, ASA) induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH)-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO), prior to ASA tre...

  12. Altered free radical metabolism in acute mountain sickness: implications for dynamic cerebral autoregulation and blood-brain barrier function

    DEFF Research Database (Denmark)

    Bailey, D M; Evans, K A; James, P E;

    2008-01-01

    We tested the hypothesis that dynamic cerebral autoregulation (CA) and blood-brain barrier (BBB) function would be compromised in acute mountain sickness (AMS) subsequent to a hypoxia-mediated alteration in systemic free radical metabolism. Eighteen male lowlanders were examined in normoxia (21% O......(2)) and following 6 h passive exposure to hypoxia (12% O(2)). Blood flow velocity in the middle cerebral artery (MCAv) and mean arterial blood pressure (MAP) were measured for determination of CA following calculation of transfer function analysis and rate of regulation (RoR). Nine subjects...... MCAv, S100beta and neuron-specific enolase. In conclusion, these findings suggest that AMS is associated with altered redox homeostasis and disordered CA independent of barrier disruption....

  13. Ginseng Extracts Restore High-Glucose Induced Vascular Dysfunctions by Altering Triglyceride Metabolism and Downregulation of Atherosclerosis-Related Genes

    Directory of Open Access Journals (Sweden)

    Gabriel Hoi-huen Chan

    2013-01-01

    Full Text Available The king of herbs, Panax ginseng, has been used widely as a therapeutic agent vis-à-vis its active pharmacological and physiological effects. Based on Chinese pharmacopeia Ben Cao Gang Mu and various pieces of literature, Panax ginseng was believed to exert active vascular protective effects through its antiobesity and anti-inflammation properties. We investigated the vascular protective effects of ginseng by administrating ginseng extracts to rats after the induction of diabetes. We found that Panax ginseng can restore diabetes-induced impaired vasorelaxation and can reduce serum triglyceride but not cholesterol level in the diabetic rats. The ginseng extracts also suppressed the expression of atherosclerosis-related genes and altered the expression of lipid-related genes. The results provide evidence that Panax ginseng improves vascular dysfunction induced by diabetes and the protective effects may possibly be due to the downregulation of atherosclerosis-related genes and altered lipid metabolism, which help to restore normal endothelium functions.

  14. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles

    DEFF Research Database (Denmark)

    Mattsson, Karin; Ekvall, Mikael T; Hansson, Lars-Anders;

    2015-01-01

    The use of nanoparticles in consumer products, for example, cosmetics, sunscreens, and electrical devices, has increased tremendously over the past decade despite insufficient knowledge about their effects on human health and ecosystem function. Moreover, the amount of plastic waste products that...... administered 24 and 27 nm polystyrene nanoparticles to fish through an aquatic food chain, from algae through Daphnia, and studied the effects on behavior and metabolism. We found severe effects on feeding and shoaling behavior as well as metabolism of the fish; hence, we conclude that polystyrene...... nanoparticles have severe effects on both behavior and metabolism in fish and that commonly used nanosized particles may have considerable effects on natural systems and ecosystem services derived from them....

  15. Metabolic impacts of altering meal frequency and timing - Does when we eat matter?

    Science.gov (United States)

    Hutchison, Amy T; Heilbronn, Leonie K

    2016-05-01

    Obesity prevalence continues to rise throughout the developed world, as a result of positive energy balance and reduced physical activity. At present, there is still a perception within the general community, and amongst some nutritionists, that eating multiple small meals spaced throughout the day is beneficial for weight control and metabolic health. However, intervention trials do not generally support the epidemiological evidence, and data is emerging to suggest that increasing the fasting period between meals may beneficially impact body weight and metabolic health. To date, this evidence is of short term duration, and it is becoming increasingly apparent that meal timing must also be considered if we are to ensure optimal health benefits in response to this dietary pattern. The purpose of this review is to summate the existing human literature on modifying meal frequency and timing on body weight control, appetite regulation, energy expenditure, and metabolic health under conditions of energy balance, restriction and surplus. PMID:26226640

  16. Sorafenib metabolism is significantly altered in the liver tumor tissue of hepatocellular carcinoma patient.

    Directory of Open Access Journals (Sweden)

    Ling Ye

    Full Text Available BACKGROUND: Sorafenib, the drug used as first line treatment for hepatocellular carcinoma (HCC, is metabolized by cytochrome P450 (CYP 3A4-mediated oxidation and uridine diphosphate glucuronosyl transferase (UGT 1A9-mediated glucuronidation. Liver diseases are associated with reduced CYP and UGT activities, which can considerably affect drug metabolism, leading to drug toxicity. Thus, understanding the metabolism of therapeutic compounds in patients with liver diseases is necessary. However, the metabolism characteristic of sorafenib has not been systematically determined in HCC patients. METHODS: Sorafenib metabolism was tested in the pooled and individual tumor hepatic microsomes (THLMs and adjacent normal hepatic microsomes (NHLMs of HCC patients (n = 18. Commercial hepatic microsomes (CHLMs were used as a control. In addition, CYP3A4 and UGT1A9 protein expression in different tissues were measured by Western blotting. RESULTS: The mean rates of oxidation and glucuronidation of sorafenib were significantly decreased in the pooled THLMs compared with those in NHLMs and CHLMs. The maximal velocity (Vmax of sorafenib oxidation and glucuronidation were approximately 25-fold and 2-fold decreased in the pooled THLMs, respectively, with unchanged Km values. The oxidation of sorafenib in individual THLMs sample was significantly decreased (ranging from 7 to 67-fold than that in corresponding NHLMs sample. The reduction of glucuronidation in THLMs was observed in 15 out of 18 patients' samples. Additionally, the level of CYP3A4 and UGT1A9 expression were both notably decreased in the pooled THLMs. CONCLUSIONS: Sorafenib metabolism was remarkably decreased in THLMs. This result was associated with the down regulation of the protein expression of CYP3A4 and UGT1A9.

  17. Identification of altered metabolic pathways of γ-irradiated rice mutant via network-based transcriptome analysis.

    Science.gov (United States)

    Hwang, Sun-Goo; Kim, Dong Sub; Hwang, Jung Eun; Park, Hyeon Mi; Jang, Cheol Seong

    2015-12-01

    In order to develop rice mutants for crop improvement, we applied γ-irradiation mutagenesis and selected a rice seed color mutant (MT) in the M14 targeting-induced local lesions in genome lines. This mutant exhibited differences in germination rate, plant height, and root length in seedlings compared to the wild-type plants. We found 1645 different expressed probes of MT by microarray hybridization. To identify the modified metabolic pathways, we conducted integrated genomic analysis such as weighted correlation network analysis with a module detection method of differentially expressed genes (DEGs) in MT on the basis of large-scale microarray transcriptional profiling. These modules are largely divided into three subnetworks and mainly exhibit overrepresented gene ontology functions such as oxidation-related function, ion-binding, and kinase activity (phosphorylation), and the expressional coherences of module genes mainly exhibited in vegetative and maturation stages. Through a metabolic pathway analysis, we detected the significant DEGs involved in the major carbohydrate metabolism (starch degradation), protein degradation (aspartate protease), and signaling in sugars and nutrients. Furthermore, the accumulation of amino acids (asparagine and glutamic acid), sucrose, and starch in MT were affected by gamma rays. Our results provide an effective approach for identification of metabolic pathways associated with useful agronomic traits in mutation breeding. PMID:26361777

  18. Differential Gene Regulation under Altered Gravity Conditions in Follicular Thyroid Cancer Cells: Relationship between the Extracellular Matrix and the Cytoskeleton

    OpenAIRE

    Ulbrich, Claudia; Pietsch, Jessica; Grosse, Jirka; Wehland, Markus; Schulz, Herbert; Saar, Katrin; Hübner, Norbert; Hauslage, Jens; Hemmersbach, Ruth; Braun, Markus; van Loon, Jack; Vagt, Nicole; EGLI, Marcel; Richter, Peter; Einspanier, Ralf

    2013-01-01

    Extracellular matrix proteins, adhesion molecules, and cytoskeletal proteins form a dynamic network interacting with signalling molecules as an adaptive response to altered gravity. An important issue is the exact differentiation between real microgravity responses of the cells or cellular reactions to hypergravity and/or vibrations. To determine the effects of real microgravity on human cells, we used four DLR parabolic flight campaigns and focused on the effects of short-term microgravity (...

  19. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses.

    Directory of Open Access Journals (Sweden)

    David A Davis

    Full Text Available Emerging evidence suggests that excessive exposure to traffic-derived air pollution during pregnancy may increase the vulnerability to neurodevelopmental alterations that underlie a broad array of neuropsychiatric disorders. We present a mouse model for prenatal exposure to urban freeway nanoparticulate matter (nPM. In prior studies, we developed a model for adult rodent exposure to re-aerosolized urban nPM which caused inflammatory brain responses with altered neuronal glutamatergic functions. nPMs are collected continuously for one month from a local freeway and stored as an aqueous suspension, prior to re-aerosolization for exposure of mice under controlled dose and duration. This paradigm was used for a pilot study of prenatal nPM impact on neonatal neurons and adult behaviors. Adult C57BL/6J female mice were exposed to re-aerosolized nPM (350 µg/m(3 or control filtered ambient air for 10 weeks (3×5 hour exposures per week, encompassing gestation and oocyte maturation prior to mating. Prenatal nPM did not alter litter size, pup weight, or postnatal growth. Neonatal cerebral cortex neurons at 24 hours in vitro showed impaired differentiation, with 50% reduction of stage 3 neurons with long neurites and correspondingly more undifferentiated neurons at Stages 0 and 1. Neuron number after 24 hours of culture was not altered by prenatal nPM exposure. Addition of exogenous nPM (2 µg/ml to the cultures impaired pyramidal neuron Stage 3 differentiation by 60%. Adult males showed increased depression-like responses in the tail-suspension test, but not anxiety-related behaviors. These pilot data suggest that prenatal exposure to nPM can alter neuronal differentiation with gender-specific behavioral sequelae that may be relevant to human prenatal exposure to urban vehicular aerosols.

  20. Prenatal transportation alters the metabolic response of Brahman bull calves exposed to a lipopolysaccharide (LPS) challenge

    Science.gov (United States)

    This study was designed to determine if prenatal transportation influences the metabolic response to a postnatal lipopolysaccharide (LPS) challenge. Pregnant Brahman cows (n=96) matched by age and parity were separated into transported (TRANS; n=48; transported for 2 hours on gestational day 60, 80,...

  1. High altitude may alter oxygen availability and renal metabolism in diabetics as measured by hyperpolarized [1-(13)C]pyruvate magnetic resonance imaging.

    Science.gov (United States)

    Laustsen, Christoffer; Lycke, Sara; Palm, Fredrik; Østergaard, Jakob A; Bibby, Bo M; Nørregaard, Rikke; Flyvbjerg, Allan; Pedersen, Michael; Ardenkjaer-Larsen, Jan H

    2014-07-01

    The kidneys account for about 10% of the whole body oxygen consumption, whereas only 0.5% of the total body mass. It is known that intrarenal hypoxia is present in several diseases associated with development of kidney disease, including diabetes, and when renal blood flow is unaffected. The importance of deranged oxygen metabolism is further supported by deterioration of kidney function in patients with diabetes living at high altitude. Thus, we argue that reduced oxygen availability alters renal energy metabolism. Here, we introduce a novel magnetic resonance imaging (MRI) approach to monitor metabolic changes associated with diabetes and oxygen availability. Streptozotocin diabetic and control rats were given reduced, normal, or increased inspired oxygen in order to alter tissue oxygenation. The effects on kidney oxygen metabolism were studied using hyperpolarized [1-(13)C]pyruvate MRI. Reduced inspired oxygen did not alter renal metabolism in the control group. Reduced oxygen availability in the diabetic kidney altered energy metabolism by increasing lactate and alanine formation by 23% and 34%, respectively, whereas the bicarbonate flux was unchanged. Thus, the increased prevalence and severity of nephropathy in patients with diabetes at high altitudes may originate from the increased sensitivity toward inspired oxygen. This increased lactate production shifts the metabolic routs toward hypoxic pathways. PMID:24352155

  2. Impact of 3-Amino-1,2,4-Triazole (3-AT)-Derived Increase in Hydrogen Peroxide Levels on Inflammation and Metabolism in Human Differentiated Adipocytes

    Science.gov (United States)

    Ruiz-Ojeda, Francisco Javier; Gomez-Llorente, Carolina; Aguilera, Concepción María; Gil, Angel; Rupérez, Azahara Iris

    2016-01-01

    Obesity is characterized by an excessive accumulation of fat in adipose tissue, which is associated with oxidative stress and chronic inflammation. Excessive H2O2 levels are degraded by catalase (CAT), the activity of which is decreased in obesity. We investigated the effects of inhibition of catalase activity on metabolism and inflammation by incubating human differentiated adipocytes with 10 mM 3-amino-1,2,4-triazole (3-AT) for 24 h. As expected, the treatment decreased CAT activity and increased intracellular H2O2 levels significantly. Glutathione peroxidase (GPX) activity was also reduced, and the gene expression levels of the antioxidant enzymes GPX4 and peroxiredoxins (1, 3 and 5) were inhibited. Interestingly, this occurred along with lower mRNA levels of the transcription factors nuclear factor (erythroid 2-like 2) and forkhead box O, which are involved in redox homeostasis. However, superoxide dismutase activity and expression were increased. Moreover, 3-AT led to nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and increased tumor necrosis alpha and interleukin 6 protein and gene expression levels, while lowering peroxisome proliferator-activated receptor gamma (PPARγ) mRNA and protein levels. These alterations were accompanied by an altered glucose and lipid metabolism. Indeed, adipocytes treated with 3-AT showed reduced basal glucose uptake, reduced glucose transporter type 4 gene and protein expression, reduced lipolysis, reduced AMP-activated protein kinase activation and reduced gene expression of lipases. Our results indicate that increased H2O2 levels caused by 3-AT treatment impair the antioxidant defense system, lower PPARγ expression and initiate inflammation, thus affecting glucose and lipid metabolism in human differentiated adipocytes. PMID:27023799

  3. Impact of 3-Amino-1,2,4-Triazole (3-AT-Derived Increase in Hydrogen Peroxide Levels on Inflammation and Metabolism in Human Differentiated Adipocytes.

    Directory of Open Access Journals (Sweden)

    Francisco Javier Ruiz-Ojeda

    Full Text Available Obesity is characterized by an excessive accumulation of fat in adipose tissue, which is associated with oxidative stress and chronic inflammation. Excessive H2O2 levels are degraded by catalase (CAT, the activity of which is decreased in obesity. We investigated the effects of inhibition of catalase activity on metabolism and inflammation by incubating human differentiated adipocytes with 10 mM 3-amino-1,2,4-triazole (3-AT for 24 h. As expected, the treatment decreased CAT activity and increased intracellular H2O2 levels significantly. Glutathione peroxidase (GPX activity was also reduced, and the gene expression levels of the antioxidant enzymes GPX4 and peroxiredoxins (1, 3 and 5 were inhibited. Interestingly, this occurred along with lower mRNA levels of the transcription factors nuclear factor (erythroid 2-like 2 and forkhead box O, which are involved in redox homeostasis. However, superoxide dismutase activity and expression were increased. Moreover, 3-AT led to nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB activation and increased tumor necrosis alpha and interleukin 6 protein and gene expression levels, while lowering peroxisome proliferator-activated receptor gamma (PPARγ mRNA and protein levels. These alterations were accompanied by an altered glucose and lipid metabolism. Indeed, adipocytes treated with 3-AT showed reduced basal glucose uptake, reduced glucose transporter type 4 gene and protein expression, reduced lipolysis, reduced AMP-activated protein kinase activation and reduced gene expression of lipases. Our results indicate that increased H2O2 levels caused by 3-AT treatment impair the antioxidant defense system, lower PPARγ expression and initiate inflammation, thus affecting glucose and lipid metabolism in human differentiated adipocytes.

  4. Limited brain metabolism changes differentiate between the progression and clearance of rabies virus.

    Directory of Open Access Journals (Sweden)

    Keith Schutsky

    Full Text Available Central nervous system (CNS metabolic profiles were examined from rabies virus (RABV-infected mice that were either mock-treated or received post-exposure treatment (PET with a single dose of the live recombinant RABV vaccine TriGAS. CNS tissue harvested from mock-treated mice at middle and late stage infection revealed numerous changes in energy metabolites, neurotransmitters and stress hormones that correlated with replication levels of viral RNA. Although the large majority of these metabolic changes were completely absent in the brains of TriGAS-treated mice most likely due to the strong reduction in virus spread, TriGAS treatment resulted in the up-regulation of the expression of carnitine and several acylcarnitines, suggesting that these compounds are neuroprotective. The most striking change seen in mock-treated RABV-infected mice was a dramatic increase in brain and serum corticosterone levels, with the later becoming elevated before clinical signs or loss of body weight occurred. We speculate that the rise in corticosterone is part of a strategy of RABV to block the induction of immune responses that would otherwise interfere with its spread. In support of this concept, we show that pharmacological intervention to inhibit corticosterone biosynthesis, in the absence of vaccine treatment, significantly reduces the pathogenicity of RABV. Our results suggest that widespread metabolic changes, including hypothalamic-pituitary-adrenal axis activation, contribute to the pathogenesis of RABV and that preventing these alterations early in infection with PET or pharmacological blockade helps protect brain homeostasis, thereby reducing disease mortality.

  5. Effects of Antibiotic Use on the Microbiota of the Gut and Associated Alterations of Immunity and Metabolism

    Directory of Open Access Journals (Sweden)

    M. Pilar Francino

    2013-11-01

    Full Text Available The excessively widespread use of antibiotics has created many threats. A well-known problem is the increasing bacterial resistance to antibiotics, which has clearly become a worldwide challenge to the effective control of infections by many pathogens. But, beyond affecting the pathogenic agents for which it is intended, antibiotic treatment also affects the mutualistic communities of microbes that inhabit the human body. As they inhibit susceptible organisms and select for resistant ones, antibiotics can have strong immediate effects on the composition of these communities, such as the proliferation of resistant opportunists that can cause accute disease. Furthermore, antibiotic-induced microbiota alterations are also likely to have more insidious effects on long-term health. In the case of the gut microbiota, this community interacts with many crucial aspects of human biology, including the regulation of immune and metabolic homeostasis, in the gut and beyond. It follows that antibiotic treatments bear the risk of altering these basic equilibria. Here, we review the growing literature on the effects of antibiotic use on gut microbiota composition and function, and their consequences for immunity, metabolism, and health.

  6. Cholesterol metabolism is altered in Rett syndrome: a study on plasma and primary cultured fibroblasts derived from patients.

    Directory of Open Access Journals (Sweden)

    Marco Segatto

    Full Text Available Rett (RTT syndrome is a severe neurological disorder that affects almost exclusively females. Several detectable mutations in the X-linked methyl-CpG-binding protein 2 gene (MECP2 are responsible for the onset of the disease. MeCP2 is a key transcription regulator involved in gene silencing via methylation-dependent remodeling of chromatin. Recent data highlight that lipid metabolism is perturbed in brains and livers of MECP2-null male mice. In addition, altered plasma lipid profile in RTT patients has been observed. Thus, the aim of the work is to investigate the protein network involved in cholesterol homeostasis maintenance on freshly isolated fibroblasts and plasma from both RTT and healthy donors. To this end, protein expression of 3-hydroxy-3methyl glutaryl Coenzyme A reductase (HMGR, sterol regulatory element binding proteins (SREBPs, low density lipoprotein receptor (LDLr and scavenger receptor B-1 (SRB-1 was assessed in cultured skin fibroblasts from unaffected individuals and RTT patients. In addition, lipid profile and the abundance of proprotein convertase subtilisin/kexin type 9 (PCSK9 were analyzed on plasma samples. The obtained results demonstrate that the main proteins belonging to cholesterol regulatory network are altered in RTT female patients, providing the proof of principle that cholesterol metabolism may be taken into account as a new target for the treatment of specific features of RTT pathology.

  7. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quoilin, C., E-mail: cquoilin@ulg.ac.be [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium); Mouithys-Mickalad, A. [Center of Oxygen Research and Development, Department of Chemistry, University of Liege, 4000 Liege (Belgium); Duranteau, J. [Department of Anaesthesia and Surgical ICU, CHU Bicetre, University Paris XI Sud, 94275 Le Kremlin Bicetre (France); Gallez, B. [Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Universite catholique de Louvain, 1200 Brussels (Belgium); Hoebeke, M. [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  8. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    International Nuclear Information System (INIS)

    Highlights: ► A HK-2 cells model of inflammation-induced acute kidney injury. ► Two oximetry methods: high resolution respirometry and ESR spectroscopy. ► Oxygen consumption rates of renal cells decrease when treated with LPS. ► Cells do not recover normal respiration when the LPS treatment is removed. ► This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  9. Metabolic alteration of neuroactive steroids and protective effect of progesterone in Alzheimer’s disease-like rats

    Institute of Scientific and Technical Information of China (English)

    Sha Liu; Honghai Wu; Gai Xue; Xin Ma; Jie Wu; Yabin Qin; Yanning Hou

    2013-01-01

    A correlation between metabolic alterations of neuroactive steroids and Alzheimer’s disease remains unknown. In the present study, amyloid beta (Aβ) 25-35 (Aβ25-35) injected into the bilateral campus CA1 region significantly reduced learning and memory. At the biochemical level, hippocampal levels of pregnenolone were significantly reduced with Aβ25-35 treatment. Furthermore, progesterone was considerably decreased in the prefrontal cortex and hippocampus, and 17β-estradiol was signifi-cantly elevated. To our knowledge, this is the first report showing that Aβ25-35, a main etiological factor of Alzheimer’s disease, can alter the level and metabolism of neuroactive steroids in the prefrontal cortex and hippocampus, which are brain regions significantly involved in learning and memory. Aβ25-35 exposure also increased the expression of inflammatory mediators, tumor necrosis factor-αand interleukin-1β. However, subcutaneous injection of progesterone reversed the upregulation of tumor necrosis factor-αand interleukin-1βin a dose-dependent manner. Concomitant with improved cognitive abilities, progesterone blocked Aβ-mediated inflammation and increased the survival rate of hippocampal pyramidal cells. We thus hypothesize that Aβ-mediated cognitive deficits may occur via changes in neuroactive steroids. Moreover, our findings provide a possible therapeutic strategy for Alzheimer’s disease via neuroactive steroids, particularly progesterone.

  10. Cerebral metabolic and structural alterations in hereditary spastic paraplegia with thin corpus callosum assessed by MRS and DTI

    International Nuclear Information System (INIS)

    Hereditary spastic paraplegia with thin corpus callosum (HSP-TCC) is a complicated form of autosomal-recessive hereditary spastic paraplegia. Characteristic clinical features comprise progressive spastic gait, cognitive impairment, and ataxia. Diagnostic MRI findings include thinning of the corpus callosum and non-progressive white matter (WM) alterations. To study the extent of axonal involvement, we performed localized proton magnetic resonance spectroscopy (MRS) of the cerebral WM and cortical grey matter (GM) in a patient with HSP-TCC at 20 and 25 years of age. The second investigation included diffusion tensor imaging (DTI). While MRS of the GM was normal, affected WM was characterized by major metabolic alterations such as reduced concentrations of N-acetylaspartate and N-acetylaspartyl-glutamate, creatine and phosphocreatine, and choline-containing compounds as well as elevated levels of myo-inositol. These abnormalities showed progression over a period of 5 years. DTI revealed increased mean diffusivity as well as reduced fractional anisotropy in periventricular WM. The metabolic and structural findings are consistent with progressive neuroaxonal loss in the WM accompanied by astrocytic proliferation - histopathological changes known to occur in HSP-TCC. Our results are in agreement with the hypothesis that the primary pathological process in HSP-TCC affects the axon, possibly due to impaired axonal trafficking. (orig.)

  11. Alterations in the Vaginal Microbiome by Maternal Stress Are Associated With Metabolic Reprogramming of the Offspring Gut and Brain.

    Science.gov (United States)

    Jašarević, Eldin; Howerton, Christopher L; Howard, Christopher D; Bale, Tracy L

    2015-09-01

    The neonate is exposed to the maternal vaginal microbiota during parturition, providing the primary source for normal gut colonization, host immune maturation, and metabolism. These early interactions between the host and microbiota occur during a critical window of neurodevelopment, suggesting early life as an important period of cross talk between the developing gut and brain. Because perturbations in the prenatal environment such as maternal stress increase neurodevelopmental disease risk, disruptions to the vaginal ecosystem could be a contributing factor in significant and long-term consequences for the offspring. Therefore, to examine the hypothesis that changes in the vaginal microbiome are associated with effects on the offspring gut microbiota and on the developing brain, we used genomic, proteomic and metabolomic technologies to examine outcomes in our mouse model of early prenatal stress. Multivariate modeling identified broad proteomic changes to the maternal vaginal environment that influence offspring microbiota composition and metabolic processes essential for normal neurodevelopment. Maternal stress altered proteins related to vaginal immunity and abundance of Lactobacillus, the prominent taxa in the maternal vagina. Loss of maternal vaginal Lactobacillus resulted in decreased transmission of this bacterium to offspring. Further, altered microbiota composition in the neonate gut corresponded with changes in metabolite profiles involved in energy balance, and with region- and sex-specific disruptions of amino acid profiles in the developing brain. Taken together, these results identify the vaginal microbiota as a novel factor by which maternal stress may contribute to reprogramming of the developing brain that may predispose individuals to neurodevelopmental disorders. PMID:26079804

  12. Altered white matter metabolism in delayed neurologic sequelae after carbon monoxide poisoning: A proton magnetic resonance spectroscopic study.

    Science.gov (United States)

    Kuroda, Hiroshi; Fujihara, Kazuo; Mugikura, Shunji; Takahashi, Shoki; Kushimoto, Shigeki; Aoki, Masashi

    2016-01-15

    Proton magnetic resonance spectroscopy ((1)H-MRS) was recently used to examine altered metabolism in the white matter (WM) of patients experiencing carbon monoxide (CO) poisoning; however, only a small number of patients with delayed neurologic sequelae (DNS) were analyzed. We aimed to detect altered metabolism in the WM of patients with DNS using (1)H-MRS; to explore its clinical relevance in the management of patients experiencing CO poisoning. Patients experiencing acute CO poisoning underwent (1)H-MRS and cerebrospinal fluid (CSF) examination within 1week and at 1month after acute poisoning. Metabolites including choline-containing compounds (Cho), creatine (Cr), N-acetylaspartate (NAA), and lactate were measured from the periventricular WM. Myelin basic protein (MBP) concentrations were measured in CSF. Fifty-two patients experiencing acute CO poisoning (15 with DNS, 37 without DNS; median age, 49years; 65% males) underwent (1)H-MRS. Within 1week, NAA/Cr ratios, reflecting neuroaxonal viability, were lower in patients with DNS than in those without DNS (PDNS, Cho/Cr ratios were higher, and NAA/Cr and NAA/Cho ratios lower in patients with DNS (P=0.0001, DNS development; (1)H-MRS at 1month may be useful for discriminating patients with DNS and predicting long-term outcomes. PMID:26723994

  13. The relationship between differentiation of flower bud and metabolism of phosphate in apple

    International Nuclear Information System (INIS)

    Contents of phosphate both in exposed and in shade branches of the apples were examined. It was found that in the control the glycophosphate was lower but the nucleoprotein was higher than in the shade treatment during the period from the end of shoot growth to the morphological differentiation of flower buds. It has also been shown that in the control the incorporation of 32P was lower in glycophosphate but higher in glycophosphate ester, phospholipid and nucleopretein. The results suggest that the more shortage of nutrient supply, the lower of conversion of glycophosphate and the lower level of synthesis of glycophosphate ester, phospholipid and nucleoprotein in normal metabolic pathway, so that the flower buds under treatment can not be formed

  14. Altered myocardial substrate metabolism is associated with myocardial dysfunction in early diabetic cardiomyopathy in rats: studies using positron emission tomography

    Directory of Open Access Journals (Sweden)

    Lammertsma Adriaan A

    2009-07-01

    Full Text Available Abstract Background In vitro data suggest that changes in myocardial substrate metabolism may contribute to impaired myocardial function in diabetic cardiomyopathy (DCM. The purpose of the present study was to study in a rat model of early DCM, in vivo changes in myocardial substrate metabolism and their association with myocardial function. Methods Zucker diabetic fatty (ZDF and Zucker lean (ZL rats underwent echocardiography followed by [11C]palmitate positron emission tomography (PET under fasting, and [18F]-2-fluoro-2-deoxy-D-glucose PET under hyperinsulinaemic euglycaemic clamp conditions. Isolated cardiomyocytes were used to determine isometric force development. Results PET data showed a 66% decrease in insulin-mediated myocardial glucose utilisation and a 41% increase in fatty acid (FA oxidation in ZDF vs. ZL rats (both p glucose transporter-4 mRNA expression (p Conclusion Using PET and echocardiography, we found increases in myocardial FA oxidation with a concomitant decrease of insulin-mediated myocardial glucose utilisation in early DCM. In addition, the latter was associated with impaired myocardial function. These in vivo data expand previous in vitro findings showing that early alterations in myocardial substrate metabolism contribute to myocardial dysfunction.

  15. Carbohydrate metabolism in ripening banana and its alteration on gamma irradiation in relation to delay in ripening

    International Nuclear Information System (INIS)

    Ripening, of climacteric class of fruits like banana, is accompanied with an upsurge in respiration, indicating a change in metabolism from hexose monophosphate (HMP) shunt pathway to glycolytic pathway. The key enzyme in glycolytic pathway, namely, phosphofructokinase, is activated and this activation paralleled with the increase in respiration rate. The enhancement in the activity of enzymes of glycolytic and Kreb's cycle help the fruit to assimilate energy as ATP produced from the breakdown and oxidation of storage starch. The demand for energy supply is great for the different ripening processes. Gamma irradiation of the fruit at the preclimacteric stage delayed the onset of climacteric to about 7 to 8 days, thereby extending the ripening to 15-20 days. This delay was brought about by the alterations in the metabolism of carbohydrate. There is a predominance of HMP pathway in irradiated banana. This along with the activation of phosphatases like FDPase and F-6-Pase restricted the entrance of sugar phosphate esters to Kreb's cycle for oxidation. The functioning of Kreb's cycle is also affected by the inhibition of succinic dehydrogenase. But activation of glyoxylate shunt pathway helped to maintain the levels of Kreb's cycle intermediates, like citrate and malate, although energy production is reduced. Finally the activation of gluconeogenic pathway helps in channelling the metabolites back to sugars. All these metabolic changes cause a considerable depletion in the production of ATP. (auth.)

  16. Chronic hypoxia enhances adenosine release in rat PC12 cells by altering adenosine metabolism and membrane transport.

    Science.gov (United States)

    Kobayashi, S; Zimmermann, H; Millhorn, D E

    2000-02-01

    Acute exposure to hypoxia causes a release of adenosine (ADO) that is inversely related to the O2 levels in oxygen-sensitive pheochromocytoma (PC12) cells. In the current study, chronic exposure (48 h) of PC12 cells to moderate hypoxia (5% O2) significantly enhanced the release of ADO during severe, acute hypoxia (1% O2). Investigation into the intra- and extracellular mechanisms underpinning the secretion of ADO in PC12 cells chronically exposed to hypoxia revealed changes in gene expression and activities of several key enzymes associated with ADO production and metabolism, as well as the down-regulation of a nucleoside transporter. Decreases in the enzymatic activities of ADO kinase and ADO deaminase accompanied by an increase in those of cytoplasmic and ecto-5'-nucleotidases bring about an increased capacity to produce intra- and extracellular ADO. This increased potential to generate ADO and decreased capacity to metabolize ADO indicate that PC12 cells shift toward an ADO producer phenotype during hypoxia. The reduced function of the rat equilibrative nucleoside transporter rENT1 also plays a role in controlling extracellular ADO levels. The hypoxia-induced alterations in the ADO metabolic enzymes and the rENT1 transporter seem to increase the extracellular concentration of ADO. The biological significance of this regulation is unclear but is likely to be associated with modulating cellular activity during hypoxia. PMID:10646513

  17. Use of isotopically radiolabelled GM3 ganglioside to study metabolic alterations in Salla disease

    International Nuclear Information System (INIS)

    We report the preparation of radioactive GM3 ganglioside and its use in the study of sialic acid storage disorders. For the first time GM3 was isotopically radiolabelled in three positions of the molecule: at the sialic acid acetyl group, [3H-Neu5Ac]GM3, at the Cl of the fatty acid moiety, [14C-Stearoyl]GM3, and at C3 of sphingosine, [3H-Sph]GM3. The radioactive GM3 administered to cultured human fibroblasts from a patient suffering from Salla disease was taken up by the cells and metabolized. An analysis of the distribution of radioactivity within the ganglioside metabolic derivatives showed an accumulation of free sialic acid and ceramide in the pathological cells. (author). 25 refs., 2 figs., 1 tab

  18. Microgravity alters basal and insulin-mediated metabolic activity of normal and neoplastic cells.

    Science.gov (United States)

    Coinu, Rita; Galleri, Grazia; Pippia, Proto; Tilocca, Maria Giovanna; Meloni, Mariantonia; Covelli, Bianca; Chiaviello, Angela; Palumbo, Giuseppe

    2004-07-01

    In this paper we report the behaviour of normal vascular smooth muscle cells and transformed breast cancer cells under normal versus simulated microgravity conditions by comparing cell proliferation, Glucose transport, Methionine uptake and protein synthesis. Modeled microgravity profoundly affects cell growth (especially in normal cells) and Glucose or Methionine metabolism (although to different extent in the two cell lines). Since both cells own responsive insulin receptors, the comparison was extended to insulin-stimulated versus unstimulated conditions. We report that the detected metabolic changes were strongly enhanced when the cells were simultaneously stimulated with insulin and subjected to modeled microgravity stress. Such observations may have important returns for human health in space; they deserve further attention. PMID:16237830

  19. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts

    OpenAIRE

    Mariateresa Maldini; Fausta Natella; Simona Baima; Giorgio Morelli; Cristina Scaccini; James Langridge; Giuseppe Astarita

    2015-01-01

    The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response af...

  20. Alterations in the carnitine metabolism in epileptic children treated with valproic acid.

    OpenAIRE

    Chung, S; Choi, J; Hyun, T.; Rha, Y.; Bae, C.

    1997-01-01

    Serum concentrations of total carnitine, free carnitine and acylcarnitine were measured in forty-one epileptic patients treated with valproic acid (VPA). Among them, 14 patients were on VPA monotherapy and 27 were on VPA polytherapy. Forty-one age and sex matched healthy normal controls were also evaluated for carnitine metabolism. The mean total and free carnitine were significantly lower in both the VPA monotherapy and polytherapy groups compared with the controls. However, there were no si...

  1. Altered myocardial metabolic adaptation to increased fatty acid availability in cardiomyocyte-specific CLOCK mutant mice.

    Science.gov (United States)

    Peliciari-Garcia, Rodrigo A; Goel, Mehak; Aristorenas, Jonathan A; Shah, Krishna; He, Lan; Yang, Qinglin; Shalev, Anath; Bailey, Shannon M; Prabhu, Sumanth D; Chatham, John C; Gamble, Karen L; Young, Martin E

    2016-10-01

    A mismatch between fatty acid availability and utilization leads to cellular/organ dysfunction during cardiometabolic disease states (e.g., obesity, diabetes mellitus). This can precipitate cardiac dysfunction. The heart adapts to increased fatty acid availability at transcriptional, translational, post-translational and metabolic levels, thereby attenuating cardiomyopathy development. We have previously reported that the cardiomyocyte circadian clock regulates transcriptional responsiveness of the heart to acute increases in fatty acid availability (e.g., short-term fasting). The purpose of the present study was to investigate whether the cardiomyocyte circadian clock plays a role in adaptation of the heart to chronic elevations in fatty acid availability. Fatty acid availability was increased in cardiomyocyte-specific CLOCK mutant (CCM) and wild-type (WT) littermate mice for 9weeks in time-of-day-independent (streptozotocin (STZ) induced diabetes) and dependent (high fat diet meal feeding) manners. Indices of myocardial metabolic adaptation (e.g., substrate reliance perturbations) to STZ-induced diabetes and high fat meal feeding were found to be dependent on genotype. Various transcriptional and post-translational mechanisms were investigated, revealing that Cte1 mRNA induction in the heart during STZ-induced diabetes is attenuated in CCM hearts. At the functional level, time-of-day-dependent high fat meal feeding tended to influence cardiac function to a greater extent in WT versus CCM mice. Collectively, these data suggest that CLOCK (a circadian clock component) is important for metabolic adaption of the heart to prolonged elevations in fatty acid availability. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk. PMID:26721420

  2. Interaction of Metabolic Stress with Chronic Mild Stress in Altering Brain Cytokines and Sucrose Preference

    OpenAIRE

    Remus, Jennifer L.; Stewart, Luke T.; Camp, Robert M.; Novak, Colleen M.; Johnson, John D.

    2015-01-01

    There is growing evidence that metabolic stressors increase an organism’s risk of depression. Chronic mild stress is a popular animal model of depression and several serendipitous findings have suggested that food deprivation prior to sucrose testing in this model is necessary to observe anhedonic behaviors. Here, we directly tested this hypothesis by exposing animals to chronic mild stress and used an overnight two bottle sucrose test (food ad libitum) on day 5 and 10, then food and water de...

  3. The Adipocyte-Expressed Forkhead Transcription Factor Foxc2 Regulates Metabolism Through Altered Mitochondrial Function

    OpenAIRE

    Lidell, Martin E.; Seifert, Erin L.; Westergren, Rickard; Heglind, Mikael; Gowing, Adrienne; Sukonina, Valentina; Arani, Zahra; Itkonen, Paula; Wallin, Simonetta; Westberg, Fredrik; Fernandez-Rodriguez, Julia; Laakso, Markku; Nilsson, Tommy; Peng, Xiao-Rong; Harper, Mary-Ellen

    2011-01-01

    OBJECTIVE Previous findings demonstrate that enhanced expression of the forkhead transcription factor Foxc2 in adipose tissue leads to a lean and insulin-sensitive phenotype. These findings prompted us to further investigate the role of Foxc2 in the regulation of genes of fundamental importance for metabolism and mitochondrial function. RESEARCH DESIGN AND METHODS The effects of Foxc2 on expression of genes involved in mitochondriogenesis and mitochondrial function were assessed by quantitati...

  4. Tissue Taurine Depletion Alters Metabolic Response to Exercise and Reduces Running Capacity in Mice

    OpenAIRE

    Takashi Ito; Natsumi Yoshikawa; Schaffer, Stephen W; Junichi Azuma

    2014-01-01

    Taurine is a sulfur-containing amino acid found in very high concentration in skeletal muscle. Taurine deficient mice engineered by knocking out the taurine transporter gene exhibit skeletal muscle wasting, structural defects, and exercise intolerance. In the present study, we investigated the mechanism underlying the development of metabolic abnormalities and exercise intolerance in muscle of the TauTKO phenotype. Running speed and endurance time of TauTKO mice were lower than those of contr...

  5. Obesity Related Alterations in Plasma Cytokines and Metabolic Hormones in Chimpanzees

    OpenAIRE

    2014-01-01

    Obesity is characterized by chronic low-grade inflammation and serves as a major risk factor for hypertension, coronary artery disease, dyslipidemias, and type-2 diabetes. The purpose of this study was to examine changes in metabolic hormones, inflammatory cytokines, and immune function, in lean, overweight, and obese chimpanzees in a controlled environment. We observed increased plasma circulating levels of proinflammatory TH-1 cytokines, Interferon gamma, interleukin-6, interleukin-12p40, t...

  6. Cardiovascular Fitness is Associated with Altered Cortical Glucose Metabolism During Working Memory in ε4 Carriers

    OpenAIRE

    Deeny, Sean P.; Winchester, Jeanna; Nichol, Kathryn; Roth, Stephen M.; Wu, Joseph C.; Dick, Malcolm; Cotman, Carl W.

    2012-01-01

    Background The possibility that ε4 may modulate the effects of fitness in the brain remains controversial. The present exploratory FDG-PET study aimed to better understand the relationship among ε4, fitness and cerebral metabolism in 18 healthy aged females (9 Carriers, 9 Non-carriers) during working memory. Methods Participants underwent VO2 max, CVLT and FDG-PET, collected at rest and during completion of the Sternberg Working Memory T...

  7. Metabolic Alterations in Obstructive Jaundice: Effect of Duration of Jaundice and Bile-Duct Decompression

    OpenAIRE

    R.N. Younes; Vydelingum, N. A.; Derooij, P.; Scognamiglio, F.; Andrade, L.; Posner, M. C.; Brennan, M. F.

    1991-01-01

    We examined the effect of prolonged bile duct obstruction, and subsequent biliary decompression, on biochemical and metabolic parameters, using a reversible jaundice model in male Fischer 344 rats. The animals were studied after biliary obstruction for varying periods (4 days, one week, and two weeks) and following decompression. They were sacrificed one or two weeks following decompression. All the rats were compared to sham operated, pair-fed, controls. Obstructive jaundice rapidly increase...

  8. Potato suberin induces differentiation and secondary metabolism in the genus Streptomyces.

    Science.gov (United States)

    Lerat, Sylvain; Forest, Martin; Lauzier, Annie; Grondin, Gilles; Lacelle, Serge; Beaulieu, Carole

    2012-01-01

    Bacteria of the genus Streptomyces are soil microorganisms with a saprophytic life cycle. Previous studies have revealed that the phytopathogenic agent S. scabiei undergoes metabolic and morphological modifications in the presence of suberin, a complex plant polymer. This paper investigates morphological changes induced by the presence of potato suberin in five species of the genus Streptomyces, with emphasis on S. scabiei. Streptomyces scabiei, S. acidiscabies, S. avermitilis, S. coelicolor and S. melanosporofaciens were grown both in the presence and absence of suberin. In all species tested, the presence of the plant polymer induced the production of aerial hyphae and enhanced resistance to mechanical lysis. The presence of suberin in liquid minimal medium also induced the synthesis of typical secondary metabolites in S. scabiei and S. acidiscabies (thaxtomin A), S. coelicolor (actinorhodin) and S. melanosporofaciens (geldanamycin). In S. scabiei, the presence of suberin modified the fatty acid composition of the bacterial membrane, which translated into higher membrane fluidity. Moreover, suberin also induced thickening of the bacterial cell wall. The present data indicate that suberin hastens cellular differentiation and triggers the onset of secondary metabolism in the genus Streptomyces. PMID:22129602

  9. Inhibition of GSK-3 induces differentiation and impaired glucose metabolism in renal cancer.

    Science.gov (United States)

    Pal, Krishnendu; Cao, Ying; Gaisina, Irina N; Bhattacharya, Santanu; Dutta, Shamit K; Wang, Enfeng; Gunosewoyo, Hendra; Kozikowski, Alan P; Billadeau, Daniel D; Mukhopadhyay, Debabrata

    2014-02-01

    Glycogen synthase kinase-3 (GSK-3), a constitutively active serine/threonine kinase, is a key regulator of numerous cellular processes ranging from glycogen metabolism to cell-cycle regulation and proliferation. Consistent with its involvement in many pathways, it has also been implicated in the pathogenesis of various human diseases, including type II diabetes, Alzheimer disease, bipolar disorder, inflammation, and cancer. Consequently, it is recognized as an attractive target for the development of new drugs. In the present study, we investigated the effect of both pharmacologic and genetic inhibition of GSK-3 in two different renal cancer cell lines. We have shown potent antiproliferative activity of 9-ING-41, a maleimide-based GSK-3 inhibitor. The antiproliferative activity is most likely caused by G(0)-G(1) and G(2)-M phase arrest as evident from cell-cycle analysis. We have established that inhibition of GSK-3 imparted a differentiated phenotype in renal cancer cells. We have also shown that GSK-3 inhibition induced autophagy, likely as a result of imbalanced energy homeostasis caused by impaired glucose metabolism. In addition, we have demonstrated the antitumor activity of 9-ING-41 in two different subcutaneous xenograft renal cell carcinoma tumor models. To our knowledge, this is the first report describing autophagy induction due to GSK-3 inhibition in renal cancer cells. PMID:24327518

  10. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles.

    Science.gov (United States)

    Mattsson, Karin; Ekvall, Mikael T; Hansson, Lars-Anders; Linse, Sara; Malmendal, Anders; Cedervall, Tommy

    2015-01-01

    The use of nanoparticles in consumer products, for example, cosmetics, sunscreens, and electrical devices, has increased tremendously over the past decade despite insufficient knowledge about their effects on human health and ecosystem function. Moreover, the amount of plastic waste products that enter natural ecosystems, such as oceans and lakes, is increasing, and degradation of the disposed plastics produces smaller particles toward the nano scale. Therefore, it is of utmost importance to gain knowledge about how plastic nanoparticles enter and affect living organisms. Here we have administered 24 and 27 nm polystyrene nanoparticles to fish through an aquatic food chain, from algae through Daphnia, and studied the effects on behavior and metabolism. We found severe effects on feeding and shoaling behavior as well as metabolism of the fish; hence, we conclude that polystyrene nanoparticles have severe effects on both behavior and metabolism in fish and that commonly used nanosized particles may have considerable effects on natural systems and ecosystem services derived from them. PMID:25380515

  11. Tissue Taurine Depletion Alters Metabolic Response to Exercise and Reduces Running Capacity in Mice

    Directory of Open Access Journals (Sweden)

    Takashi Ito

    2014-01-01

    Full Text Available Taurine is a sulfur-containing amino acid found in very high concentration in skeletal muscle. Taurine deficient mice engineered by knocking out the taurine transporter gene exhibit skeletal muscle wasting, structural defects, and exercise intolerance. In the present study, we investigated the mechanism underlying the development of metabolic abnormalities and exercise intolerance in muscle of the TauTKO phenotype. Running speed and endurance time of TauTKO mice were lower than those of control mice. Blood lactate level was elevated by >3-fold during treadmill running in TauTKO mice but remained largely unaltered by exercise in WT mice. Blood glucose was cleared faster during treadmill running in TauTKO mice than WT mice. AMP-activated kinase (AMPK β-2 subunit was reduced in TauTKO muscle concomitant with a reduction in α1 and α2 subunits of AMPK. The level of PPARα and its targets, Gpx3, Cpt2, and Echs1, were also decreased in TauTKO muscle. Collectively, taurine depletion impairs metabolic adaptation to exercise in skeletal muscle, a phenomenon associated with a downregulation of AMPK and diminished NADH utilization by the mitochondrial respiratory chain. These findings suggest a crucial role of taurine in regulating energy metabolism in skeletal muscle of exercising TauTKO mice, changes that contribute to impaired exercise endurance.

  12. Obesity Related Alterations in Plasma Cytokines and Metabolic Hormones in Chimpanzees

    Directory of Open Access Journals (Sweden)

    Pramod Nehete

    2014-01-01

    Full Text Available Obesity is characterized by chronic low-grade inflammation and serves as a major risk factor for hypertension, coronary artery disease, dyslipidemias, and type-2 diabetes. The purpose of this study was to examine changes in metabolic hormones, inflammatory cytokines, and immune function, in lean, overweight, and obese chimpanzees in a controlled environment. We observed increased plasma circulating levels of proinflammatory TH-1 cytokines, Interferon gamma, interleukin-6, interleukin-12p40, tumor necrosis factor, soluble CD40 ligand, and Interleukin-1β and anti-inflammatory TH-2 cytokines, Interleukin-4, Interleukin-RA, Interleukin-10, and Interleukin-13 in overweight and obese chimpanzees. We also observed increased levels of metabolic hormones glucagon-like-peptide-1, glucagon, connecting peptide, insulin, pancreatic peptide YY3–36, and leptin in the plasma of overweight and obese chimpanzees. Chemokine, eotaxin, fractalkine, and monocyte chemoattractant protein-1 were higher in lean compared to obese chimpanzees, while chemokine ligand 8 increased in plasma of obese chimpanzees. We also observed an obesity-related effect on immune function as demonstrated by lower mitogen induced proliferation, and natural killer activity and higher production of IFN-γ by PBMC in Elispot assay, These findings suggest that lean, overweight, and obese chimpanzees share circulating inflammatory cytokines and metabolic hormone levels with humans and that chimpanzees can serve as a useful animal model for human studies.

  13. Butenolide inhibits marine fouling by altering the primary metabolism of three target organisms

    KAUST Repository

    Zhang, Yifan

    2012-06-15

    Butenolide is a very promising antifouling compound that inhibits ship hull fouling by a variety of marine organisms, but its antifouling mechanism was previously unknown. Here we report the first study of butenolides molecular targets in three representative fouling organisms. In the barnacle Balanus (=Amphibalanus) amphitrite, butenolide bound to acetyl-CoA acetyltransferase 1 (ACAT1), which is involved in ketone body metabolism. Both the substrate and the product of ACAT1 increased larval settlement under butenolide treatment, suggesting its functional involvement. In the bryozoan Bugula neritina, butenolide bound to very long chain acyl-CoA dehydrogenase (ACADVL), actin, and glutathione S-transferases (GSTs). ACADVL is the first enzyme in the very long chain fatty acid β-oxidation pathway. The inhibition of this primary pathway for energy production in larvae by butenolide was supported by the finding that alternative energy sources (acetoacetate and pyruvate) increased larval attachment under butenolide treatment. In marine bacterium Vibrio sp. UST020129-010, butenolide bound to succinyl-CoA synthetase β subunit (SCSβ) and inhibited bacterial growth. ACAT1, ACADVL, and SCSβ are all involved in primary metabolism for energy production. These findings suggest that butenolide inhibits fouling by influencing the primary metabolism of target organisms. © 2012 American Chemical Society.

  14. Alterations in grapevine leaf metabolism upon inoculation with Plasmopara viticola in different time-points.

    Science.gov (United States)

    Ali, Kashif; Maltese, Federica; Figueiredo, Andreia; Rex, Martina; Fortes, Ana Margarida; Zyprian, Eva; Pais, Maria Salomé; Verpoorte, Robert; Choi, Young Hae

    2012-08-01

    Grapevines are easily infected by plant pathogens. It was found that resistant grapevines induce a wide range of phenolics upon the pathogen-infection. In this study in order to gain insight into these processes in different time-points the metabolic changes during the interaction of two grapevine cultivars, 'Regent' (resistant) and 'Trincadeira' (susceptible), with the downy mildew pathogen (Plasmopara viticola) were investigated. Nuclear magnetic resonance (NMR) spectroscopy on leaf extracts was used at several time points after experimental inoculation. A wide range of metabolites were identified using various two-dimensional (2D)-NMR techniques. Multivariate data analysis characterized both the resistant and the susceptible cultivars and their response against the pathogen. Metabolites responsible for their discrimination were identified as a fertaric acid, caftaric acid, quercetin-3-O-glucoside, linolenic acid, and alanine in the resistant cultivar 'Regent', while the susceptible 'Trincadeira' showed higher levels of glutamate, succinate, ascorbate and glucose. This study portrays the analytical capability of NMR spectroscopy and multivariate data analyses methods for the metabolic profiling of plant samples. The results obtained will underline the role of phenylpropanoids and flavonoids in resistance against biotic stresses which in turn provides a firm platform for the metabolic engineering of grapevine cultivars with higher resistance towards pathogens. PMID:22682569

  15. D-Fagomine attenuates metabolic alterations induced by a high-energy-dense diet in rats.

    Science.gov (United States)

    Molinar-Toribio, Eunice; Pérez-Jiménez, Jara; Ramos-Romero, Sara; Gómez, Livia; Taltavull, Núria; Nogués, Maria Rosa; Adeva, Alberto; Jáuregui, Olga; Joglar, Jesús; Clapés, Pere; Torres, Josep Lluís

    2015-08-01

    d-Fagomine is a natural iminosugar that counteracts the short-term effects of a high-energy-dense diet on body weight, fasting blood glucose levels and the proportion of gut Enterobacteriales. This suggests that supplementation with d-fagomine for longer periods may delay the onset of other factors related to metabolic syndrome. Here we evaluate the effects of d-fagomine dietary supplementation on relevant metabolic hormones and lipid peroxidation. Adult Sprague-Dawley rats were fed a high-fat high-sucrose diet supplemented or not with d-fagomine (0.065% w/w) for 9 weeks. Weight gain, plasma triglycerides, glucose, insulin, glucagon, ghrelin, leptin, and urine F2-isoprostanes were evaluated. d-Fagomine attenuated the changes induced by the high-energy-dense diet in triglycerides and all the hormones tested. These results suggest that d-fagomine may help to avert the complications associated with unhealthy eating by counteracting the effects of high-energy-dense diets during the early stages of the development of metabolic disorders. PMID:26130374

  16. Control of Differentiation of Human Mesenchymal Stem Cells by Altering the Geometry of Nanofibers

    Directory of Open Access Journals (Sweden)

    Satoshi Fujita

    2012-01-01

    Full Text Available Effective differentiation of mesenchymal stem cells (MSCs is required for clinical applications. To control MSC differentiation, induction media containing different types of soluble factors have been used to date; however, it remains challenging to obtain a uniformly differentiated population of an appropriate quality for clinical application by this approach. We attempted to develop nanofiber scaffolds for effective MSC differentiation by mimicking anisotropy of the extracellular matrix structure, to assess whether differentiation of these cells can be controlled by using geometrically different scaffolds. We evaluated MSC differentiation on aligned and random nanofibers, fabricated by electrospinning. We found that induction of MSCs into adipocytes was markedly more inhibited on random nanofibers than on aligned nanofibers. In addition, adipoinduction on aligned nanofibers was also inhibited in the presence of mixed adipoinduction and osteoinduction medium, although osteoinduction was not affected by a change in scaffold geometry. Thus, we have achieved localized control over the direction of differentiation through changes in the alignment of the scaffold even in the presence of a mixed medium. These findings indicate that precise control of MSC differentiation can be attained by using scaffolds with different geometry, rather than by the conventional use of soluble factors in the medium.

  17. Altered Levels of Aroma and Volatiles by Metabolic Engineering of Shikimate Pathway Genes in Tomato Fruits

    Directory of Open Access Journals (Sweden)

    Vered Tzin

    2015-06-01

    Full Text Available The tomato (Solanum lycopersicum fruit is an excellent source of antioxidants, dietary fibers, minerals and vitamins and therefore has been referred to as a “functional food”. Ripe tomato fruits produce a large number of specialized metabolites including volatile organic compounds. These volatiles serve as key components of the tomato fruit flavor, participate in plant pathogen and herbivore defense, and are used to attract seed dispersers. A major class of specialized metabolites is derived from the shikimate pathway followed by aromatic amino acid biosynthesis of phenylalanine, tyrosine and tryptophan. We attempted to modify tomato fruit flavor by overexpressing key regulatory genes in the shikimate pathway. Bacterial genes encoding feedback-insensitive variants of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase (DAHPS; AroG209-9 and bi-functional Chorismate Mutase/Prephenate Dehydratase (CM/PDT; PheA12 were expressed under the control of a fruit-specific promoter. We crossed these transgenes to generate tomato plants expressing both the AroG209 and PheA12 genes. Overexpression of the AroG209-9 gene had a dramatic effect on the overall metabolic profile of the fruit, including enhanced levels of multiple volatile and non-volatile metabolites. In contrast, the PheA12 overexpression line exhibited minor metabolic effects compared to the wild type fruit. Co-expression of both the AroG209-9 and PheA12 genes in tomato resulted overall in a similar metabolic effect to that of expressing only the AroG209-9 gene. However, the aroma ranking attributes of the tomato fruits from PheA12//AroG209-9 were unique and different from those of the lines expressing a single gene, suggesting a contribution of the PheA12 gene to the overall metabolic profile. We suggest that expression of bacterial genes encoding feedback-insensitive enzymes of the shikimate pathway in tomato fruits provides a useful metabolic engineering tool for the modification of

  18. Msx2 alters the timing of retinal ganglion cells fate commitment and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shao-Yun, E-mail: jiangshaoyun@yahoo.com [School of Dentistry, Tianjin Medical University, 12 Qi Xiang Tai Street, Tianjin 300070 (China); Wang, Jian-Tao, E-mail: wangjiantao65@hotmail.com [Eye Center, Tianjin Medical University, 64 Tongan Road, Tianjin 300070 (China); Dohney Eye Institute, Keck School of Medicine, University of Southern California, 1355 San Pablo Street, DOH 314, Los Angeles, CA 90033 (United States)

    2010-05-14

    Timing of cell fate commitment determines distinct retinal cell types, which is believed to be controlled by a tightly coordinated regulatory program of proliferation, cell cycle exit and differentiation. Although homeobox protein Msx2 could induce apoptosis of optic vesicle, it is unclear whether Msx2 regulates differentiation and cell fate commitment of retinal progenitor cells (RPCs) to retinal ganglion cells (RGCs). In this study, we show that overexpression of Msx2 transiently suppressed the expression of Cyclin D1 and blocked cell proliferation. Meanwhile, overexpression of Msx2 delayed the expression of RGC-specific differentiation markers (Math5 and Brn3b), which showed that Msx2 could affect the timing of RGCs fate commitment and differentiation by delaying the timing of cell cycle exit of retinal progenitors. These results indicate Msx2 possesses dual regulatory functions in controlling cell cycle progression of retinal RPCs and timing of RGCs differentiation.

  19. Msx2 alters the timing of retinal ganglion cells fate commitment and differentiation

    International Nuclear Information System (INIS)

    Timing of cell fate commitment determines distinct retinal cell types, which is believed to be controlled by a tightly coordinated regulatory program of proliferation, cell cycle exit and differentiation. Although homeobox protein Msx2 could induce apoptosis of optic vesicle, it is unclear whether Msx2 regulates differentiation and cell fate commitment of retinal progenitor cells (RPCs) to retinal ganglion cells (RGCs). In this study, we show that overexpression of Msx2 transiently suppressed the expression of Cyclin D1 and blocked cell proliferation. Meanwhile, overexpression of Msx2 delayed the expression of RGC-specific differentiation markers (Math5 and Brn3b), which showed that Msx2 could affect the timing of RGCs fate commitment and differentiation by delaying the timing of cell cycle exit of retinal progenitors. These results indicate Msx2 possesses dual regulatory functions in controlling cell cycle progression of retinal RPCs and timing of RGCs differentiation.

  20. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, Jasmin; Loranger, Anne; Gilbert, Stéphane [Centre de recherche en cancérologie de l' Université Laval and Centre de recherche du CHUQ (L' Hôtel-Dieu de Québec), 9 McMahon, Québec, Qc, Canada G1R 2J6 (Canada); Faure, Robert [Département de Pédiatrie, Université Laval and Centre de recherche du CHUQ (Centre Mère-Enfant), Québec, Qc, Canada G1V 4G2 (Canada); Marceau, Normand, E-mail: normand.marceau@crhdq.ulaval.ca [Centre de recherche en cancérologie de l' Université Laval and Centre de recherche du CHUQ (L' Hôtel-Dieu de Québec), 9 McMahon, Québec, Qc, Canada G1R 2J6 (Canada)

    2013-02-15

    As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells. Here, we demonstrate distinctive increases in glucose uptake, glucose-6-phosphate formation, lactate release, and glycogen formation in K8/K18 IF-lacking hepatocytes and/or hepatoma cells versus their respective IF-containing counterparts. We also show that the K8/K18-dependent glucose uptake/G6P formation is linked to alterations in hexokinase I/II/IV content and localization at mitochondria, with little effect on GLUT1 status. In addition, we find that the insulin-stimulated glycogen formation in normal hepatocytes involves the main PI-3 kinase-dependent signaling pathway and that the K8/K18 IF loss makes them more efficient glycogen producers. In comparison, the higher insulin-dependent glycogen formation in K8/K18 IF-lacking hepatoma cells is associated with a signaling occurring through a mTOR-dependent pathway, along with an augmentation in cell proliferative activity. Together, the results uncover a key K8/K18 regulation of glucose metabolism in normal and cancerous hepatic cells through differential modulations of mitochondrial HK status and insulin-mediated signaling.

  1. Altered Cortical Microarchitecture and Bone Metabolism in Patients with Monoclonal Gammopathy of Undetermined Significance

    OpenAIRE

    Farr, J.N.; W. Zhang; Jacques, R.M.; Ng, A.; McCready, L. K.; Drake, M.T.

    2014-01-01

    Patients with monoclonal gammopathy of undetermined significance (MGUS) are at increased fracture risk, and we have previously shown that MGUS patients have altered trabecular bone microarchitecture compared with controls. However, there are no data on whether the porosity of cortical bone, which may play a greater role in bone strength and the occurrence of fractures, is increased in MGUS. Thus, we studied cortical porosity and bone strength (apparent modulus) using high-resolution periphera...

  2. Effects of altered catecholamine metabolism on pigmentation and physical properties of sclerotized regions in the silkworm melanism mutant.

    Directory of Open Access Journals (Sweden)

    Liang Qiao

    Full Text Available Catecholamine metabolism plays an important role in the determination of insect body color and cuticle sclerotization. To date, limited research has focused on these processes in silkworm. In the current study, we analyzed the interactions between catecholamines and melanin genes and their effects on the pigmentation patterns and physical properties of sclerotized regions in silkworm, using the melanic mutant melanism (mln silkworm strain as a model. Injection of β-alanine into mln mutant silkworm induced a change in catecholamine metabolism and turned its body color yellow. Further investigation of the catecholamine content and expression levels of the corresponding melanin genes from different developmental stages of Dazao-mln (mutant and Dazao (wild-type silkworm revealed that at the larval and adult stages, the expression patterns of melanin genes precipitated dopamine accumulation corresponding to functional loss of Bm-iAANAT, a repressive effect of excess NBAD on ebony, and upregulation of tan in the Dazao-mln strain. During the early pupal stage, dopamine did not accumulate in Dazao-mln, since upregulation of ebony and black genes led to conversion of high amounts of dopamine into NBAD, resulting in deep yellow cuticles. Scanning electron microscope analysis of a cross-section of adult dorsal plates from both wild-type and mutant silkworm disclosed the formation of different layers in Dazao-mln owing to lack of NADA, compared to even and dense layers in Dazao. Analysis of the mechanical properties of the anterior wings revealed higher storage modulus and lower loss tangent in Dazao-mln, which was closely associated with the altered catecholamine metabolism in the mutant strain. Based on these findings, we conclude that catecholamine metabolism is crucial for the color pattern and physical properties of cuticles in silkworm. Our results should provide a significant contribution to Lepidoptera cuticle tanning research.

  3. Female Flinders Sensitive Line rats show estrous cycle-independent depression-like behavior and altered tryptophan metabolism.

    Science.gov (United States)

    Eskelund, Amanda; Budac, David P; Sanchez, Connie; Elfving, Betina; Wegener, Gregers

    2016-08-01

    Clinical studies suggest a link between depression and dysfunctional tryptophan (TRP) metabolism. Even though depression is twice as prevalent in women as men, the impact of the estrous cycle on TRP metabolism is not well-understood. Here we investigated 13 kynurenine and serotonin metabolites in female Flinders Sensitive Line (FSL) rats, a genetic rat model of depression. FSL rats and controls (Flinders Resistant Line rats), 12-20weeks old, were subject to the forced swim test (FST), a commonly used measure of depression-like behavior. Open field was used to evaluate locomotor ability and agoraphobia. Subsequently, plasma and hemispheres were collected and analyzed for their content of TRP metabolites using liquid chromatography-tandem mass spectrometry. Vaginal saline lavages were obtained daily for ⩾2 cycles. To estimate the effects of sex and FST we included plasma from unhandled, naïve male FSL and FRL rats. Female FSL rats showed a depression-like phenotype with increased immobility in the FST, not confounded by anxiety. In the brain, 3-hydroxykynurenine was increased whereas anthranilate and 5-hydroxytryptophan were decreased. In plasma, anthranilate and quinolinate levels were lower in FSL rats compared to the control line, independent of sex and FST. The estrous cycle neither impacted behavior nor TRP metabolite levels in the FSL rat. In conclusion, the female FSL rat is an interesting preclinical model of depression with altered TRP metabolism, independent of the estrous cycle. The status of the pathway in brain was not reflected in the plasma, which may indicate that an inherent local, cerebral regulation of TRP metabolism occurs. PMID:27210075

  4. Acrylamide administration alters protein phosphorylation and phospholipid metabolism in rat sciatic nerve

    International Nuclear Information System (INIS)

    The effects of ACR on protein phosphorylation and phospholipid metabolism were assessed in rat sciatic nerve. After 5 days of ACR administration (50 mg/kg/day) an increase in the incorporation of 32P into phosphatidylinositol-4,5-bisphosphate, phosphatidylinositol-4-phosphate, and phosphatidylcholine was detected in proximal sciatic nerve segments. In contrast, no changes in phospholipid metabolism were observed in distal segments. After 9 days of ACR treatment when neurotoxicological symptoms were clearly apparent, a generalized increase in radiolabel uptake into phospholipids was noted exclusively in proximal nerve regions. ACR-induced increases in phospholipid metabolism were toxicologically specific since comparable administration of MBA (108 mg/kg/day X 5 or 9 days) produced only minor changes. ACR intoxication was also associated with a rise in sciatic nerve protein phosphorylation. After 9 days of ACR treatment, phosphorylation of beta-tubulin, P0, and several unidentified proteins (38 and 180 kDa) was increased in distal segments. In contrast, chronic administration of MBA caused increases in phosphorylation of beta-tubulin and the major myelin proteins of proximal nerve segments. In cell free homogenates prepared from sciatic nerves of treated and control rats, MBA caused an increase in phosphorylation of major myelin proteins similar to its effect in intact proximal nerve segments. The most striking effect observed in nerve homogenates of ACR-treated rats was a marked decrease in phosphorylation of an 80-kDa protein. Addition of ACR (1 mM) to homogenates of normal nerve had no effect on protein phosphorylation. Our results indicate that changes in the phosphorylation of phospholipids and proteins in sciatic nerve might be a component of the neurotoxic mechanism of ACR

  5. The fatty liver dystrophy (fld) mutation: Developmentally related alterations in hepatic triglyceride metabolism and protein expression

    Energy Technology Data Exchange (ETDEWEB)

    Reue, K.; Rehnmark, S.; Cohen, R.D.; Leete, T.H.; Doolittle, M.H. [West Los Angeles VA Medical Center, CA (United States). Lipid Research Lab.]|[Univ. of California, Los Angeles, CA (United States). Dept. of Medicine; Giometti, C.S.; Mishler, K. [Argonne National Lab., IL (United States); Slavin, B.G. [Univ. of Southern California, Los Angeles, CA (United States)

    1997-07-01

    Fatty liver dystrophy (fld) is an autosomal recessive mutation in mice characterized by hypertriglyceridemia and development of a fatty liver in the early neonatal period. Also associated with the fld phenotype is a tissue-specific deficiency in the expression of lipoprotein lipase and hepatic lipase, as well as elevations in hepatic apolipoprotein A-IV and apolipoprotein C-II mRNA levels. Although these lipid abnormalities resolve at the age of weaning, adult mutant mice exhibit a peripheral neuropathy associated with abnormal myelin formation. The fatty liver in fld/fld neonates is characterized by the accumulation of large triglyceride droplets within the parenchymal cells, and these droplets persist within isolated hepatocytes maintained in culture for several days. To identify the metabolic defect that leads to lipid accumulation, the authors investigated several aspects of cellular triglyceride metabolism. The mutant mice exhibited normal activity of acid triacylglycerol lipase, an enzyme thought to be responsible for hydrolysis of dietary triglycerides in the liver. Metabolic labeling studies performed with oleic acid revealed that free fatty acids accumulate in the liver of 3 day old fld/fld mice, but not in adults. This accumulation in liver was mirrored by elevated free fatty acid levels in plasma of fld/fld neonates, with levels highest in very young mice and returning to normal by the age of one month. Quantitation of fatty acid oxidation in cells isolated from fld/fld neonates revealed that oxidation rate is reduced 60% in hepatocytes and 40% in fibroblasts; hepatocytes from adult fld/fld mice exhibited an oxidation rate similar to those from wild-type mice.

  6. Increasing serotonin concentrations alter calcium and energy metabolism in dairy cows.

    Science.gov (United States)

    Laporta, Jimena; Moore, Spencer A E; Weaver, Samantha R; Cronick, Callyssa M; Olsen, Megan; Prichard, Austin P; Schnell, Brian P; Crenshaw, Thomas D; Peñagaricano, Francisco; Bruckmaier, Rupert M; Hernandez, Laura L

    2015-07-01

    A 4×4 Latin square design in which varied doses (0, 0.5, 1.0, and 1.5 mg/kg) of 5-hydroxy-l-tryptophan (5-HTP, a serotonin precursor) were intravenously infused into late-lactation, non-pregnant Holstein dairy cows was used to determine the effects of serotonin on calcium and energy metabolism. Infusion periods lasted 4 days, with a 5-day washout between periods. Cows were infused at a constant rate for 1 h each day. Blood was collected pre- and 5, 10, 30, 60, 90, and 120 min post-infusion, urine was collected pre- and post-infusion, and milk was collected daily. All of the 5-HTP doses increased systemic serotonin as compared to the 0 mg/kg dose, and the 1.0 and 1.5 mg/kg doses increased circulating glucose and non-esterified fatty acids (NEFA) and decreased beta-hydroxybutyrate (βHBA) concentrations. Treatment of cows with either 1.0 or 1.5 mg/kg 5-HTP doses decreased urine calcium elimination, and the 1.5 mg/kg dose increased milk calcium concentrations. No differences were detected in the heart rates, respiration rates, or body temperatures of the cows; however, manure scores and defecation frequency were affected. Indeed, cows that received 5-HTP defecated more, and the consistency of their manure was softer. Treatment of late-lactation dairy cows with 5-HTP improved energy metabolism, decreased loss of calcium into urine, and increased calcium secretion into milk. Further research should target the effects of increasing serotonin during the transition period to determine any benefits for post-parturient calcium and glucose metabolism. PMID:26099356

  7. Altered Mitochondrial Function, Mitochondrial DNA and Reduced Metabolic Flexibility in Patients With Diabetic Nephropathy

    Directory of Open Access Journals (Sweden)

    Anna Czajka

    2015-06-01

    Full Text Available The purpose of this study was to determine if mitochondrial dysfunction plays a role in diabetic nephropathy (DN, a kidney disease which affects >100 million people worldwide and is a leading cause of renal failure despite therapy. A cross-sectional study comparing DN with diabetes patients without kidney disease (DC and healthy controls (HCs; and renal mesangial cells (HMCs grown in normal and high glucose, was carried out. Patients with diabetes (DC had increased circulating mitochondrial DNA (MtDNA, and HMCs increased their MtDNA within 24 h of hyperglycaemia. The increased MtDNA content in DCs and HMCs was not functional as transcription was unaltered/down-regulated, and MtDNA damage was present. MtDNA was increased in DC compared to HC, conversely, patients with DN had lower MtDNA than DC. Hyperglycaemic HMCs had fragmented mitochondria and TLR9 pathway activation, and in diabetic patients, mitophagy was reduced. Despite MtDNA content and integrity changing within 4 days, hyperglycaemic HMCs had a normal bio-energetic profile until 8 days, after which mitochondrial metabolism was progressively impaired. Peripheral blood mononuclear cells (PBMCs from DN patients had reduced reserve capacity and maximal respiration, loss of metabolic flexibility and reduced Bioenergetic Health Index (BHI compared to DC. Our data show that MtDNA changes precede bioenergetic dysfunction and that patients with DN have impaired mitochondrial metabolism compared to DC, leading us to propose that systemic mitochondrial dysfunction initiated by glucose induced MtDNA damage may be involved in the development of DN. Longitudinal studies are needed to define a potential cause–effect relationship between changes in MtDNA and bioenergetics in DN.

  8. Cell walls of Saccharomyces cerevisiae differentially modulated innate immunity and glucose metabolism during late systemic inflammation.

    Directory of Open Access Journals (Sweden)

    Bushansingh Baurhoo

    Full Text Available BACKGROUND: Salmonella causes acute systemic inflammation by using its virulence factors to invade the intestinal epithelium. But, prolonged inflammation may provoke severe body catabolism and immunological diseases. Salmonella has become more life-threatening due to emergence of multiple-antibiotic resistant strains. Mannose-rich oligosaccharides (MOS from cells walls of Saccharomyces cerevisiae have shown to bind mannose-specific lectin of Gram-negative bacteria including Salmonella, and prevent their adherence to intestinal epithelial cells. However, whether MOS may potentially mitigate systemic inflammation is not investigated yet. Moreover, molecular events underlying innate immune responses and metabolic activities during late inflammation, in presence or absence of MOS, are unknown. METHODS AND PRINCIPAL FINDINGS: Using a Salmonella LPS-induced systemic inflammation chicken model and microarray analysis, we investigated the effects of MOS and virginiamycin (VIRG, a sub-therapeutic antibiotic on innate immunity and glucose metabolism during late inflammation. Here, we demonstrate that MOS and VIRG modulated innate immunity and metabolic genes differently. Innate immune responses were principally mediated by intestinal IL-3, but not TNF-α, IL-1 or IL-6, whereas glucose mobilization occurred through intestinal gluconeogenesis only. MOS inherently induced IL-3 expression in control hosts. Consequent to LPS challenge, IL-3 induction in VIRG hosts but not differentially expressed in MOS hosts revealed that MOS counteracted LPS's detrimental inflammatory effects. Metabolic pathways are built to elucidate the mechanisms by which VIRG host's higher energy requirements were met: including gene up-regulations for intestinal gluconeogenesis (PEPCK and liver glycolysis (ENO2, and intriguingly liver fatty acid synthesis through ATP citrate synthase (CS down-regulation and ATP citrate lyase (ACLY and malic enzyme (ME up-regulations. However, MOS host

  9. Subacute Microcystin-LR Exposure Alters the Metabolism of Thyroid Hormones in Juvenile Zebrafish (Danio Rerio)

    OpenAIRE

    Zidong Liu; Rong Tang; Dapeng Li; Qing Hu; Ying Wang

    2015-01-01

    Microcystin-LR (MC-LR) has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH) metabolism. In the present study, juvenile zebrafish (Danio rerio) were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L) for 28 days. Whole-body TH content and thyroid follicle histology were used as direct ...

  10. Metabolism

    Science.gov (United States)

    ... also influenced by body composition — people with more muscle and less fat generally have higher BMRs. previous continue Things That Can Go Wrong With Metabolism Most of the time your metabolism works effectively ...

  11. Fumonisin B₁ (FB₁) Induces Lamellar Separation and Alters Sphingolipid Metabolism of In Vitro Cultured Hoof Explants.

    Science.gov (United States)

    Reisinger, Nicole; Dohnal, Ilse; Nagl, Veronika; Schaumberger, Simone; Schatzmayr, Gerd; Mayer, Elisabeth

    2016-01-01

    One of the most important hoof diseases is laminitis. Yet, the pathology of laminitis is not fully understood. Different bacterial toxins, e.g. endotoxins or exotoxins, seem to play an important role. Additionally, ingestion of mycotoxins, toxic secondary metabolites of fungi, might contribute to the onset of laminitis. In this respect, fumonsins are of special interest since horses are regarded as species most susceptible to this group of mycotoxins. The aim of our study was to investigate the influence of fumonisin B₁ (FB₁) on primary isolated epidermal and dermal hoof cells, as well as on the lamellar tissue integrity and sphingolipid metabolism of hoof explants in vitro. There was no effect of FB₁ at any concentration on dermal or epidermal cells. However, FB₁ significantly reduced the separation force of explants after 24 h of incubation. The Sa/So ratio was significantly increased in supernatants of explants incubated with FB₁ (2.5-10 µg/mL) after 24 h. Observed effects on Sa/So ratio were linked to significantly increased sphinganine concentrations. Our study showed that FB₁ impairs the sphingolipid metabolism of explants and reduces lamellar integrity at non-cytotoxic concentrations. FB₁ might, therefore, affect hoof health. Further in vitro and in vivo studies are necessary to elucidate the effects of FB₁ on the equine hoof in more detail. PMID:27023602

  12. Metabolic disorders with typical alterations in MRI; Stoffwechselstoerungen mit typischen Veraenderungen im MRT

    Energy Technology Data Exchange (ETDEWEB)

    Warmuth-Metz, M. [Klinikum der Universitaet Wuerzburg, Abteilung fuer Neuroradiologie, Wuerzburg (Germany)

    2010-09-15

    The classification of metabolic disorders according to the etiology is not practical for neuroradiological purposes because the underlying defect does not uniformly transform into morphological characteristics. Therefore typical MR and clinical features of some easily identifiable metabolic disorders are presented. Canavan disease, Pelizaeus-Merzbacher disease, Alexander disease, X-chromosomal adrenoleukodystrophy and adrenomyeloneuropathy, mitochondrial disorders, such as MELAS (mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes) and Leigh syndrome as well as L-2-hydroxyglutaric aciduria are presented. (orig.) [German] Die Einteilung von Stoffwechselstoerungen nach ihrer Aetiologie ist fuer den diagnostischen Neuroradiologen nicht sinnvoll, da sich aus der zugrunde liegenden Stoerung keine Rueckschluesse auf die zu erwartende MR-Morphologie ziehen lassen. Deshalb sollen anhand typischer bildmorphologischer Veraenderungen in Zusammenschau mit den jeweiligen klinischen Charakteristika einige leicht einzuordnende Stoffwechselstoerungen dargestellt werden. Es handelt sich um den Morbus Canavan, Morbus Pelizaeus-Merzbacher, Morbus Alexander, die X-chromosomal vererbte Adrenoleukodystrophie und Adrenomyeloneuropathie, die mitochondrialen Stoerungen MELAS (mitochondriale Enzephalomyopathie, Laktazidose und Stroke-like-Episoden) und Leigh-Syndrom sowie die L-2-Hydroxyglutarazidurie. (orig.)

  13. Selenium and/or iodine deficiency alters hepatic xenobiotic metabolizing enzyme activities in rats.

    Science.gov (United States)

    Erkekoglu, Pinar; Giray, Belma Kocer; Caglayan, Aydan; Hincal, Filiz

    2012-01-01

    The objective of this study was to investigate the effects of iodine (I(2)) and/or selenium (Se) deficiency on thyroid hormones and hepatic xenobiotic metabolizing enzyme systems using a triple animal model. Three-week-old male Wistar rats were fed for seven weeks. Se deficiency was introduced by a diet containing perchlorate containing drinking water. The levels of plasma thyroid hormones [total T(4) (TT(4)), total T(3) (TT(3))], thyroid stimulating hormone (TSH); total microsomal cytochrome P450 (CYP450) and cytochrome b5 (CYP b5) levels; activities of microsomal NADPH-cytochrome P450 reductase (P450R), microsomal aniline hydroxylase (CYP2E1), microsomal 7-ethoxyresorufin O-deethylase (EROD), microsomal 7-pentoxyresorufin O-depentylase (PROD) and cytosolic glutathione S-transferase (GST) were determined. In I(2) deficiency total CYP450 levels, activities of CYP2E1, EROD and GST decreased, and CYP b5 content increased significantly. In Se-deficient rats, total CYP450 level and CYP2E1 activity increased, and EROD and GST activities and CYP b5 level decreased significantly. In combined I(2) and Se deficiency, except for CYP450 content and CYP2E1 activity, all enzyme activities and CYP b5 content decreased significantly compared to control group. Overall results of this study have suggested that metabolism of xenobiotics as well as endogenous compounds is affected by Se and I(2) status. PMID:22366236

  14. IKK NBD peptide inhibits LPS induced pulmonary inflammation and alters sphingolipid metabolism in a murine model.

    Science.gov (United States)

    von Bismarck, Philipp; Winoto-Morbach, Supandi; Herzberg, Mona; Uhlig, Ulrike; Schütze, Stefan; Lucius, Ralph; Krause, Martin F

    2012-06-01

    Airway epithelial NF-κB is a key regulator of host defence in bacterial infections and has recently evolved as a target for therapeutical approaches. Evidence is accumulating that ceramide, generated by acid sphingomyelinase (aSMase), and sphingosine-1-phosphate (S1-P) are important mediators in host defence as well as in pathologic processes of acute lung injury. Little is known about the regulatory mechanisms of pulmonary sphingolipid metabolism in bacterial infections of the lung. The objective of this study was to evaluate the influence of NF-κB on sphingolipid metabolism in Pseudomonas aeruginosa LPS-induced pulmonary inflammation. In a murine acute lung injury model with intranasal Pseudomonas aeruginosa LPS we investigated TNF-α, KC (murine IL-8), IL-6, MCP-1 and neutrophilic infiltration next to aSMase activity and ceramide and S1-P lung tissue concentrations. Airway epithelial NF-κB was inhibited by topically applied IKK NBD, a cell penetrating NEMO binding peptide. This treatment resulted in significantly reduced inflammation and suppression of aSMase activity along with decreased ceramide and S1-P tissue concentrations down to levels observed in healthy animals. In conclusion our results confirm that changes in sphingolipid metabolim due to Pseudomonas aeruginosa LPS inhalation are regulated by NF-κB translocation. This confirms the critical role of airway epithelial NF-κB pathway for the inflammatory response to bacterial pathogens and underlines the impact of sphingolipids in inflammatory host defence mechanisms. PMID:22469869

  15. Myocardial Reloading after Extracorporeal Membrane Oxygenation Alters Substrate Metabolism While Promoting Protein Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kajimoto, Masaki; Priddy, Colleen M.; Ledee, Dolena; Xu, Chun; Isern, Nancy G.; Olson, Aaron; Des Rosiers, Christine; Portman, Michael A.

    2013-08-19

    Extracorporeal membrane oxygenation (ECMO) unloads the heart providing a bridge to recovery in children after myocardial stunning. Mortality after ECMO remains high.Cardiac substrate and amino acid requirements upon weaning are unknown and may impact recovery. We assessed the hypothesis that ventricular reloading modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Fourteen immature piglets (7.8-15.6 kg) were separated into 2 groups based on ventricular loading status: 8 hour-ECMO (UNLOAD) and post-wean from ECMO (RELOAD). We infused [2-13C]-pyruvate as an oxidative substrate and [13C6]-L-leucine, as a tracer of amino acid oxidation and protein synthesis into the coronary artery. RELOAD showed marked elevations in myocardial oxygen consumption above baseline and UNLOAD. Pyruvate uptake was markedly increased though RELOAD decreased pyruvate contribution to oxidative CAC metabolism.RELOAD also increased absolute concentrations of all CAC intermediates, while maintaining or increasing 13C-molar percent enrichment. RELOAD also significantly increased cardiac fractional protein synthesis rates by >70% over UNLOAD. Conclusions: RELOAD produced high energy metabolic requirement and rebound protein synthesis. Relative pyruvate decarboxylation decreased with RELOAD while promoting anaplerotic pyruvate carboxylation and amino acid incorporation into protein rather than to the CAC for oxidation. These perturbations may serve as therapeutic targets to improve contractile function after ECMO.

  16. Metabolism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008255 Serum adiponectin level declines in the elderly with metabolic syndrome.WU Xiaoyan(吴晓琰),et al.Dept Geriatr,Huashan Hosp,Fudan UnivShanghai200040.Chin J Geriatr2008;27(3):164-167.Objective To investigate the correlation between ser-um adiponectin level and metabolic syndrome in the elderly·Methods Sixty-one subjects with metabolic syndrome and140age matched subjects without metabolic

  17. Altered gene expression and spongiotrophoblast differentiation in placenta from a mouse model of diabetes in pregnancy

    Czech Academy of Sciences Publication Activity Database

    Salbaum, J.M.; Kruger, C.; Zhang, X.; Delahaye, N.A.; Pavlínková, Gabriela; Burk, D.H.; Kappen, C.

    2011-01-01

    Roč. 54, č. 7 (2011), s. 1909-1920. ISSN 0012-186X Keywords : FACTOR-KAPPA-B * CONGENITAL-ANOMALIES * TROPHOBLAST LINEAGE * EMBRYOPATHY Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 6.814, year: 2011

  18. Differential response of high-elevation planktonic bacterial community structure and metabolism to experimental nutrient enrichment.

    Directory of Open Access Journals (Sweden)

    Craig E Nelson

    Full Text Available Nutrient enrichment of high-elevation freshwater ecosystems by atmospheric deposition is increasing worldwide, and bacteria are a key conduit for the metabolism of organic matter in these oligotrophic environments. We conducted two distinct in situ microcosm experiments in a high-elevation lake (Emerald Lake, Sierra Nevada, California, USA to evaluate responses in bacterioplankton growth, carbon utilization, and community structure to short-term enrichment by nitrate and phosphate. The first experiment, conducted just following ice-off, employed dark dilution culture to directly assess the impact of nutrients on bacterioplankton growth and consumption of terrigenous dissolved organic matter during snowmelt. The second experiment, conducted in transparent microcosms during autumn overturn, examined how bacterioplankton in unmanipulated microbial communities responded to nutrients concomitant with increasing phytoplankton-derived organic matter. In both experiments, phosphate enrichment (but not nitrate caused significant increases in bacterioplankton growth, changed particulate organic stoichiometry, and induced shifts in bacterial community composition, including consistent declines in the relative abundance of Actinobacteria. The dark dilution culture showed a significant increase in dissolved organic carbon removal in response to phosphate enrichment. In transparent microcosms nutrient enrichment had no effect on concentrations of chlorophyll, carbon, or the fluorescence characteristics of dissolved organic matter, suggesting that bacterioplankton responses were independent of phytoplankton responses. These results demonstrate that bacterioplankton communities in unproductive high-elevation habitats can rapidly alter their taxonomic composition and metabolism in response to short-term phosphate enrichment. Our results reinforce the key role that phosphorus plays in oligotrophic lake ecosystems, clarify the nature of bacterioplankton nutrient

  19. FDG-PET/CT assessment of differential chemotherapy effects upon skeletal muscle metabolism in patients with melanoma

    International Nuclear Information System (INIS)

    To quantify the differential effects of chemotherapy on the metabolic activity of skeletal muscle in vivo using molecular imaging with [18F]-fluorodeoxy-glucose (FDG)-positron emission tomography/computed tomography (PET/CT). In this retrospective study, 21 subjects with stage IV melanoma who underwent pre- and post-chemotherapy whole-body FDG-PET/CT imaging were included. The mean standardized uptake value (SUVmean) of 8 different skeletal muscles was measured per subject. Pre- and post-treatment measurements were then averaged across all subjects for each muscle and compared for statistically significant differences between the muscles and following different chemotherapy regimens including dacarbazine (DTIC) and temozolomide (TMZ). Analysis of FDG-PET/CT images reliably detected changes in skeletal muscle metabolic activity based on muscle location. The percent change in metabolic activity of each skeletal muscle in each subject following chemotherapy was observed to be related to the type of chemotherapy received. Subjects receiving DTIC generally had a decrease in metabolic activity of all muscle groups, whereas subjects receiving TMZ generally had an increase in muscle activity of all muscle groups. FDG-PET/CT can reveal baseline metabolic differences between different muscles of the body. Different chemotherapies are associated with differential changes in the metabolic activity of skeletal muscle, which can be detected and quantified with FDG-PET/CT. (author)

  20. On the function of groaning and hyperventilation during sexual intercourse: intensification of sexual experience by altering brain metabolism through hypocapnia.

    Science.gov (United States)

    Passie, Torsten; Hartmann, Uwe; Schneider, Udo; Emrich, Hinderk M

    2003-05-01

    Sexual arousal is accompanied by some typical physiological reaction patterns. Another typical feature of sexual intercourse is involuntary sound production implying in its more intense forms acceleration of breathing (hyperventilation). Up to now no study examined spCO2 during intense sexual intercourse, but there is evidence that some degree of hyperventilation with its physiological consequences may often be induced during sexual intercourse. This article discusses implications of hyperventilation during sexual intercourse for alterations of consciousness and subjective experience in the light of recent studies of brain metabolic changes during states of hyperventilation. Groaning and hyperventilation are interpreted in this context as a psychophysiological mechanism to deepen states of sexual trance. PMID:12710899

  1. Inflammatory and Metabolic Alterations of Kager's Fat Pad in Chronic Achilles Tendinopathy

    DEFF Research Database (Denmark)

    Pingel, Jessica; Petersen, M Christine H; Fredberg, Ulrich;

    2015-01-01

    BACKGROUND: Achilles tendinopathy is a painful inflammatory condition characterized by swelling, stiffness and reduced function of the Achilles tendon. Kager's fat pad is an adipose tissue located in the area anterior to the Achilles tendon. Observations reveal a close physical interplay between...... Kager's fat pad and its surrounding structures during movement of the ankle, suggesting that Kager's fat pad may stabilize and protect the mechanical function of the ankle joint. AIM: The aim of this study was to characterize whether Achilles tendinopathy was accompanied by changes in expression of...... inflammatory markers and metabolic enzymes in Kager's fat pad. METHODS: A biopsy was taken from Kager's fat pad from 31 patients with chronic Achilles tendinopathy and from 13 healthy individuals. Gene expression was measured by reverse transcription-quantitative PCR. Focus was on genes related to inflammation...

  2. Altered energy metabolism in an irradiated population of lizards at the Nevada Test Site

    International Nuclear Information System (INIS)

    Field metabolic rates (via doubly labeled water), body compartmentalization of energy stores, and energy assimilation efficiencies were measured to assess all avenues of energy utilization in Uta stansburiana living in a low-level γ-irradiated plot in Rock Valley, Nevada. Comparison of energy budgets for radiation-sterilized females with those of nonirradiated control lizards revealed several substantial differences. Sterile females were heavier, mainly because they had extraordinarily large energy (fat) storage depots. Sterile females had much lower rates of energy expenditure via respiration and lower rates of energy intake by feeding. These differences are interpreted as indirect responses to radiation-induced sterility. There is little evidence of direct radiation effects on physiological functions other than reproduction

  3. Alterations in Glucose Metabolism on Cognition: A Possible Link Between Diabetes and Dementia.

    Science.gov (United States)

    González-Reyes, Rodrigo E; Aliev, Gjumrakch; Ávila-Rodrigues, Marco; Barreto, George E

    2016-01-01

    The use of the carbohydrate glucose as an energetic source is essential for an adequate function of the human body. The complex regulation of this molecule involves the coordinated action of various organs such as pancreas, liver and brain. Any disruption of this physiological balance may result in a dangerous compromise of general metabolic activities increasing the possibility of developing T1DM, T2DM and possibly AD. Astrocytes convert glucose into lactate and transfer it to neurons. This lactate is essential for neuronal metabolism and for various processes including the formation of synapses, dendrites and the expression of genes involved in memory. The brain is highly susceptible to variations in glucose blood levels, and both hypoglycemia and hyperglycemia can be dangerous. Pathological hyperglycemia induces changes in plasmatic osmotic pressure, mitochondrial production of free radicals, oxidative stress and activation of neuronal apoptosis, among others. Both AD and diabetes are chronic diseases having age as an important risk factor. As the brain ages, it seems to become much more susceptible to cellular damage induced by excess of circulating glucose and this could explain the appearance of cognitive changes observed in some patients with diabetes. Excessive circulation of pro-inflammatory agents has been observed in insulin resistance and is likely that some of these mediators may cross the bloodbrain barrier and induce abnormal neuroinflammation. GSK-3 is overexpressed in diabetes and also has been reported to regulate tau phosphorylation and production of Aβ peptides in the brain. Currently, diabetes (hyperglycemia) is considered as a risk factor for the development of AD. A novel therapeutic approach, using intranasal insulin and anti-diabetic medications in patients suffering from AD is being explored and is discussed in this review. PMID:26648470

  4. Altered lipid metabolism in Hfe-knockout mice promotes severe NAFLD and early fibrosis.

    Science.gov (United States)

    Tan, Terrence C H; Crawford, Darrell H G; Jaskowski, Lesley A; Murphy, Therese M; Heritage, Mandy L; Subramaniam, V Nathan; Clouston, Andrew D; Anderson, Gregory J; Fletcher, Linda M

    2011-11-01

    The HFE protein plays a crucial role in the control of cellular iron homeostasis. Steatosis is commonly observed in HFE-related iron-overload disorders, and current evidence suggests a causal link between iron and steatosis. Here, we investigated the potential contribution of HFE mutations to hepatic lipid metabolism and its role in the pathogenesis of nonalcoholic fatty liver disease. Wild-type (WT) and Hfe knockout mice (Hfe(-/-)) were fed either standard chow, a monounsaturated low fat, or a high-fat, high-carbohydrate diet (HFD) and assessed for liver injury, body iron status, and markers of lipid metabolism. Despite hepatic iron concentrations and body weights similar to WT controls, Hfe(-/-) mice fed the HFD developed severe hypoxia-related steatohepatitis, Tnf-α activation, and mitochondrial respiratory complex and antioxidant dysfunction with early fibrogenesis. These features were associated with an upregulation in the expression of genes involved in intracellular lipid synthesis and trafficking, while transcripts for mitochondrial fatty acid β-oxidation and adiponectin signaling-related genes were significantly attenuated. In contrast, HFD-fed WT mice developed bland steatosis only, with no inflammation or fibrosis and no upregulation of lipogenesis-related genes. A HFD led to reduced hepatic iron in Hfe(-/-) mice compared with chow-fed mice, despite higher serum iron, decreased hepcidin expression, and increased duodenal ferroportin mRNA. In conclusion, our results demonstrate that Hfe(-/-) mice show defective hepatic-intestinal iron and lipid signaling, which predispose them toward diet-induced hepatic lipotoxicity, accompanied by an accelerated progression of injury to fibrosis. PMID:21817060

  5. Alterations in sulfur and nitrogen metabolism in rats with portacaval shunts

    International Nuclear Information System (INIS)

    The effect of portacaval shunt (PCS) on methionine and cysteine metabolism was investigated. PCS rats excreted more urinary [35S]sulfate and less [35S]taurine than controls after injection of [35S]methionine of [35S]cysteine. Total urinary taurine excretion was unchanged. Under basal conditions PCS rats excreted more taurine than controls. Relative rates of transsulfuration in PCS and control rats were studied, and no difference in flux of 35S from methionine to cysteine was found. Total hepatic activities of three transsulfuration pathway enzymes were also unchanged after PCS. In contrast, hepatic activities of three cysteine-oxidizing enzymes were depressed after PCS, suggesting that changes in hepatic metabolism after PCS are selective. PCS rats fed a high (60%) casein diet ate less and took longer to recover their preoperative body weight than controls. All PCS rats had higher plasma ammonia and urinary orotic acid levels than controls. Increasing dietary protein elevated plasma ammonia and urinary orotic acid to a greater extent in PCS rats. After injection of [35S]methionine or [35S]cysteine, urinary 35S and [35S]sulfate excretion increased and [35S]taurine an total taurine excretion decreased in all rats fed 60% casein, but the effect was greater in PCS rats. Changes in cysteine sulfinate decarboxylase activity in rats fed a high protein diet was examined. Activity decreased 95% in rats fed diets containing between 18 and 75% casein. The effect was observed after feeding a 60% casein diet for 2 days and was reversed when rats were refed an 18% casein diet

  6. A Flavonoid Compound Promotes Neuronal Differentiation of Embryonic Stem Cells via PPAR-β Modulating Mitochondrial Energy Metabolism

    Science.gov (United States)

    Mei, Yu-qin; Pan, Zong-fu; Chen, Wen-teng; Xu, Min-hua; Zhu, Dan-yan; Yu, Yong-ping; Lou, Yi-jia

    2016-01-01

    Relatively little is known regarding mitochondrial metabolism in neuronal differentiation of embryonic stem (ES) cells. By using a small molecule, present research has investigated the pattern of cellular energy metabolism in neural progenitor cells derived from mouse ES cells. Flavonoid compound 4a faithfully facilitated ES cells to differentiate into neurons morphologically and functionally. The expression and localization of peroxisome proliferator-activated receptors (PPARs) were examined in neural progenitor cells. PPAR-β expression showed robust upregulation compared to solvent control. Treatment with PPAR-β agonist L165041 alone or together with compound 4a significantly promoted neuronal differentiation, while antagonist GSK0660 blocked the neurogenesis-promoting effect of compound 4a. Consistently, knockdown of PPAR-β in ES cells abolished compound 4a-induced neuronal differentiation. Interestingly, we found that mitochondrial fusion protein Mfn2 was also abolished by sh-PPAR-β, resulting in abnormal mitochondrial Ca2+ ([Ca2+]M) transients as well as impaired mitochondrial bioenergetics. In conclusion, we demonstrated that by modulating mitochondrial energy metabolism through Mfn2 and mitochondrial Ca2+, PPAR-β took an important role in neuronal differentiation induced by flavonoid compound 4a. PMID:27315062

  7. Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, Alexander V., E-mail: a.zhdanov@ucc.ie [School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork (Ireland); Waters, Alicia H.C. [School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork (Ireland); Golubeva, Anna V. [Alimentary Pharmabiotic Centre, University College Cork, Bioscience Institute, Western Road, Cork (Ireland); Papkovsky, Dmitri B. [School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork (Ireland)

    2015-01-01

    Changes in availability and utilisation of O{sub 2} and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O{sub 2}. Upon 2–4 h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2 h anoxia, HIF-2α levels strongly correlated with cellular ATP, produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O{sub 2} and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24 h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O{sub 2} and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α. - Highlights: • Gln and Glc regulate HIF levels in hypoxic cells by maintaining low O{sub 2} and high ATP. • HIF-α levels under anoxia correlate with cellular ATP and critically depend on Glc. • Gln and Glc modulate activity of Akt, Erk and AMPK, regulating HIF production. • HIF signalling is differentially inhibited by prolonged Glc and Gln deprivation. • Unlike Glc, Gln plays no major role in HIF signalling in chronically hypoxic cells.

  8. Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling

    International Nuclear Information System (INIS)

    Changes in availability and utilisation of O2 and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O2. Upon 2–4 h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2 h anoxia, HIF-2α levels strongly correlated with cellular ATP, produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O2 and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24 h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O2 and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α. - Highlights: • Gln and Glc regulate HIF levels in hypoxic cells by maintaining low O2 and high ATP. • HIF-α levels under anoxia correlate with cellular ATP and critically depend on Glc. • Gln and Glc modulate activity of Akt, Erk and AMPK, regulating HIF production. • HIF signalling is differentially inhibited by prolonged Glc and Gln deprivation. • Unlike Glc, Gln plays no major role in HIF signalling in chronically hypoxic cells

  9. Metabolic Alterations of the Zebrafish Brain after Acute Alcohol Treatment by 1H Nuclear Magnetic Resonance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Dong-Cheol Woo

    2013-01-01

    Full Text Available The purpose of this study is to investigate the metabolic alterations associated with acute alcohol treatment in zebrafish by 1H nuclear magnetic resonance spectroscopy (NMRS. The brain metabolism of zebrafish was investigated after acute alcohol treatment (one-hour long exposure of adult fish to 0.00%, 0.25%, 0.50%, or 1.00% ethyl alcohol with whole brain extraction. The results of this study showed that glutamate (Glu was significantly decreased, scyllo-inositol (sIns showed a small apparent increase only in the highest acute treatment dose group, and myoinositol (mIns showed a significant decrease. [Glu]/[tCr] and [mIns]/[tCr] levels were significantly reduced regardless of the alcohol dose, and [sIns]/[tCr] was increased in the highest alcohol treatment dose group. The present NMR study revealed that specific metabolites, such as Glu and mIns, were substantially decreased in case of acute alcohol exposed zebrafish brain.

  10. GLUT4 Defects in Adipose Tissue Are Early Signs of Metabolic Alterations in Alms1GT/GT , a Mouse Model for Obesity and Insulin Resistance

    OpenAIRE

    Favaretto, Francesca; Milan, Gabriella; Collin, Gayle B; Marshall, Jan D; Stasi, Fabio; Maffei, Pietro; Vettor, Roberto; Naggert, Jürgen K.

    2014-01-01

    Dysregulation of signaling pathways in adipose tissue leading to insulin resistance can contribute to the development of obesity-related metabolic disorders. Alström Syndrome, a recessive ciliopathy, caused by mutations in ALMS1, is characterized by progressive metabolic alterations such as childhood obesity, hyperinsulinemia, and type 2 diabetes. Here we investigated the role of Alms1 disruption in AT expansion and insulin responsiveness in a murine model for Alström Syndrome. A gene trap in...

  11. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie, E-mail: JLiu@kumc.edu [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Zunyi Medical College, Zunyi 563003 (China); Lu, Yuan-Fu [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Zunyi Medical College, Zunyi 563003 (China); Zhang, Youcai; Wu, Kai Connie [University of Kansas Medical Center, Kansas City, KS 66160 (United States); Fan, Fang [Cytopathology, University of Kansas Medical Center, Kansas City, KS 66160 (United States); Klaassen, Curtis D. [University of Kansas Medical Center, Kansas City, KS 66160 (United States)

    2013-11-01

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport.

  12. Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice

    International Nuclear Information System (INIS)

    Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by liver histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport

  13. A Methionine Deficient Diet Enhances Adipose Tissue Lipid Metabolism and Alters Anti-Oxidant Pathways in Young Growing Pigs.

    Directory of Open Access Journals (Sweden)

    Rosa Castellano

    Full Text Available Methionine is a rate-limiting amino-acid for protein synthesis but non-proteinogenic roles on lipid metabolism and oxidative stress have been demonstrated. Contrary to rodents where a dietary methionine deficiency led to a lower adiposity, an increased lipid accretion rate has been reported in growing pigs fed a methionine deficient diet. This study aimed to clarify the effects of a dietary methionine deficiency on different aspects of tissue lipid metabolism and anti-oxidant pathways in young pigs. Post-weaned pigs (9.8 kg initial body weight were restrictively-fed diets providing either an adequate (CTRL or a deficient methionine supply (MD during 10 days (n=6 per group. At the end of the feeding trial, pigs fed the MD diet had higher lipid content in subcutaneous adipose tissue. Expression levels of genes involved in glucose uptake, lipogenesis but also lipolysis, and activities of NADPH enzyme suppliers were generally higher in subcutaneous and perirenal adipose tissues of MD pigs, suggesting an increased lipid turnover in those pigs. Activities of the anti-oxidant enzymes superoxide dismutase, catalase and glutathione reductase were increased in adipose tissues and muscle of MD pigs. Expression level and activity of the glutathione peroxidase were also higher in liver of MD pigs, but hepatic contents in the reduced and oxidized forms of glutathione and glutathione reductase activity were lower compared with control pigs. In plasma, superoxide dismutase activity was higher but total anti-oxidant power was lower in MD pigs. These results show that a dietary methionine deficiency resulted in increased levels of lipogenesis and lipolytic indicators in porcine adipose tissues. Decreased glutathione content in the liver and coordinated increase of enzymatic antioxidant activities in adipose tissues altered the cellular redox status of young pigs fed a methionine-deficient diet. These findings illustrate that a rapidly growing animal differently

  14. A high fat diet alters metabolic and bioenergetic function in the brain: A magnetic resonance spectroscopy study.

    Science.gov (United States)

    Raider, Kayla; Ma, Delin; Harris, Janna L; Fuentes, Isabella; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Yeh, Hung-Wen; Choi, In-Young; Brooks, William M; Stanford, John A

    2016-07-01

    Diet-induced obesity and associated metabolic effects can lead to neurological dysfunction and increase the risk of developing Alzheimer's disease (AD) and Parkinson's disease (PD). Despite these risks, the effects of a high-fat diet on the central nervous system are not well understood. To better understand the mechanisms underlying the effects of high fat consumption on brain regions affected by AD and PD, we used proton magnetic resonance spectroscopy ((1)H-MRS) to measure neurochemicals in the hippocampus and striatum of rats fed a high fat diet vs. normal low fat chow. We detected lower concentrations of total creatine (tCr) and a lower glutamate-to-glutamine ratio in the hippocampus of high fat rats. Additional effects observed in the hippocampus of high fat rats included higher N-acetylaspartylglutamic acid (NAAG), and lower myo-inositol (mIns) and serine (Ser) concentrations. Post-mortem tissue analyses revealed lower phosphorylated AMP-activated protein kinase (pAMPK) in the striatum but not in the hippocampus of high fat rats. Hippocampal pAMPK levels correlated significantly with tCr, aspartate (Asp), phosphoethanolamine (PE), and taurine (Tau), indicating beneficial effects of AMPK activation on brain metabolic and energetic function, membrane turnover, and edema. A negative correlation between pAMPK and glucose (Glc) indicates a detrimental effect of brain Glc on cellular energy response. Overall, these changes indicate alterations in neurotransmission and in metabolic and bioenergetic function in the hippocampus and in the striatum of rats fed a high fat diet. PMID:27125544

  15. Lack of Platelet-Activating Factor Receptor Attenuates Experimental Food Allergy but Not Its Metabolic Alterations regarding Adipokine Levels

    Science.gov (United States)

    Batista, Nathália Vieira; Fonseca, Roberta Cristelli; Perez, Denise; Pereira, Rafaela Vaz Sousa; de Lima Alves, Juliana; Pinho, Vanessa; Faria, Ana Maria Caetano; Cara, Denise Carmona

    2016-01-01

    Platelet-activating factor (PAF) is known to be an important mediator of anaphylaxis. However, there is a lack of information in the literature about the role of PAF in food allergy. The aim of this work was to elucidate the participation of PAF during food allergy development and the consequent adipose tissue inflammation along with its alterations. Our data demonstrated that, both before oral challenge and after 7 days receiving ovalbumin (OVA) diet, OVA-sensitized mice lacking the PAF receptor (PAFR) showed a decreased level of anti-OVA IgE associated with attenuated allergic markers in comparison to wild type (WT) mice. Moreover, there was less body weight and adipose tissue loss in PAFR-deficient mice. However, some features of inflamed adipose tissue presented by sensitized PAFR-deficient and WT mice after oral challenge were similar, such as a higher rate of rolling leukocytes in this tissue and lower circulating levels of adipokines (resistin and adiponectin) in comparison to nonsensitized mice. Therefore, PAF signaling through PAFR is important for the allergic response to OVA but not for the adipokine alterations caused by this inflammatory process. Our work clarifies some effects of PAF during food allergy along with its role on the metabolic consequences of this inflammatory process. PMID:27314042

  16. Selective alterations in cerebral metabolism within the mesocorticolimbic dopaminergic system produced by acute cocaine administration in rats

    Energy Technology Data Exchange (ETDEWEB)

    Porrino, L.J.; Domer, F.R.; Crane, A.M.; Sokoloff, L.

    1988-05-01

    The 2-(/sup 14/C)deoxyglucose method was used to examine the effects of acute intravenous administration of cocaine on local cerebral glucose utilization in rats. These effects were correlated with the effects of cocaine on locomotor activity assessed simultaneously in the same animals. At the lowest dose of cocaine, 0.5 mg/kg (1.47 mumol/kg), alterations in glucose utilization were restricted to the medial prefrontal cortex and nucleus accumbens. Metabolic activity at 1.0 mg/kg (2.9 mumol/kg) was altered in these structures, but in the substantia nigra reticulata and lateral habenula as well. The selectivity of cocaine's effects at low doses demonstrates the particular sensitivity of these structures to cocaine's actions in the brain. In contrast, 5.0 mg/kg (14.7 mumol/kg) produced widespread changes in glucose utilization, particularly in the extrapyramidal system. Only this dose significantly increased locomotor activity above levels in vehicle-treated controls. Rates of glucose utilization were positively correlated with locomotor activity in the globus pallidus, substantia nigra reticulata, and subthalamic nucleus, and negatively correlated in the lateral habenula.

  17. Temperature-dependent alterations in metabolic enzymes and proteins of three ecophysiologically different species of earthworms

    Directory of Open Access Journals (Sweden)

    G Tripathi

    2011-08-01

    Full Text Available The effects of varying temperatures (12 - 44° C on the specific activity of cytoplasmic malate dehydrogenase ((cMDH, mitochondrial malate dehydrogenase (mMDH and lactate dehydrogenase (LDH of some earthworms (Metaphire posthuma, Perionyx sansibaricus and Lampito mauritii were studied. The effects of different temperatures on supernatant and mitochondrial protein contents were also investigated. The specific activities of cMDH, mMDH and LDH of the earthworms decreased gradually as a function of increasing temperature from 12 to 44°C. Higher metabolic energy was needed to maintain the activity at low temperatures. Hence, the earthworms showed increased enzyme specific activity at low temperatures. However, the protein content increased upto 28°C. Afterwards, with the increase in the temperature from 28 to 42°C, the proteins in the earthworms showed a significant decrease. The temperature-associated changes in the protein content could be explained by the fact that protein synthesizing capacity was hampered above and below the optimum temperature range. The most pronounced effects of varying temperatures were on P. sansibaricus. It might be due to the epigeic nature of the earthworm species. Then minimum effect was on the endogeic earthworm M. posthuma. Virtually, the differences in the enzymes physiology were associated with the differences in the ecological categories of the earthworms. This clearly demonstrate a possible link between the physiology and ecology at aerobic (cMDH, mMDH and anaerobic (LDH levels in the tropical earthworms.

  18. Association of interleukin-6 polymorphisms with obesity and metabolic alterations in young Saudi population.

    Science.gov (United States)

    Alharbi, Khalid Khalaf; Syed, Rabbani; Khan, Imran Ali

    2014-03-01

    Rising levels of obesity are a global problem that is being exported from affluent to developing nations through the gradual "westernization of lifestyle". Population of Saudi Arabia is going through a nutrition transition where customary and traditional food is being replaced by fast food high in fat, sugar and salt. Interleukin-6 (IL-6) is a central player in the regulation of inflammation, haematopoiesis, immune response and host defense mechanisms. During the last decade, an accumulating amount of data suggested a pivotal role for IL-6 in metabolic processes, thus fortifying the picture of IL-6 as a multifaceted, pleiotropic cytokine. The Objective is to investigate the relationship between IL-6 (rs1554606) polymorphism and the risk of obesity in young Saudi population. Totally 204 Saudi young obese subjects were involved in this study. Genotyping of IL-6 was performed by the real-time polymerase chain reaction technology, using the Taq Man 5'-allele discrimination assay. IL-6 (rs1554606) AA versus AG (p 0.5). We have observed significant effects for Genotyping, LDL, CHOL, AST, ALP, BILIT, BMI at 5% (0.05) significance level in the study population. Our results shown that IL-6 polymorphism have significantly differ in both male and females subjects. We have observed that some evidence of interactions of the IL-6 polymorphism and have shown statistical significant association with elevated BMI, Lipid profile and total bilurubin in the study subjects. PMID:24395296

  19. Rapid temperature adaptation in trout: Alterations in membrane molecular species metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Williams, E.E.; Hazel, J.R. (Arizona State Univ., Tempe (United States))

    1991-03-11

    The ability of poikilotherms to change their membrane phospholipid composition in response to long term temperature change is well documented. Less understood are the changes which occur when rapid temperature fluctuations are encountered. The authors have followed the fate of 16:0/18:1 phosphatidylcholine (PC), radiocarbon labeled at the 18:1 acyl chain, in the plasma membranes of trout hepatocytes. After isolation by PC, 5%-10% of which was taken up into the plasma membranes. The cells were then divided into two groups and either held at acclimation temperature or transferred to 5C. After 1 hour at 20C or 5 hours at 5C the plasma membranes were isolated, the lipids extracted, and the PC fraction was resolved into its molecular species. The distribution of radiolabel between the warm and cold exposed cells was then determined. In both groups radioactivity was found in molecular species other than 16:0/18:1, however no radioactivity was found in lipids other than PC. Cold exposed cells contained less radioactivity in 18:2/18:2, 20:1/22:6, 16:0/18:2 and 18:0/18:1 PC than the warm cells, but contained more in 18:1/18:1 PC. These results indicate that the environmental temperature influences the rates of in situ desaturation, chain elongation, and intermolecular acyl chain regroupings. Subtle changes in molecular species metabolism might be important early steps in temperature acclimation.

  20. Subacute Microcystin-LR Exposure Alters the Metabolism of Thyroid Hormones in Juvenile Zebrafish (Danio Rerio

    Directory of Open Access Journals (Sweden)

    Zidong Liu

    2015-01-01

    Full Text Available Microcystin-LR (MC-LR has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH metabolism. In the present study, juvenile zebrafish (Danio rerio were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L for 28 days. Whole-body TH content and thyroid follicle histology were used as direct endpoints to assess thyroid disruption. The activities of iodothyronine deiodinases (IDs and the transcription of selected genes associated with TH synthesis were also investigated to study the underlying mechanisms of endocrine disruption. Exposure of zebrafish to MC-LR significantly increased whole-body thyroxine (T4 content but decreased whole-body triiodothyronine (T3 content. We also observed hypertrophy and hyperplasia of the thyroid follicle epithelial cells, as well as up-regulation of corticotropin-releasing hormone (CRH, thyroid-stimulating hormone (TSH, thyroid peroxidase (TPO, and transthyretin (TTR genes. The decreases in ID1 and ID2 activities coupled with an increase in ID3 activity were observed in MC-LR treatment groups. These results demonstrate that exposure to MC-LR at environmental concentrations results in the disturbance of TH homeostasis by disrupting the synthesis and conversion of THs.

  1. Necrosis-Driven Systemic Immune Response Alters SAM Metabolism through the FOXO-GNMT Axis

    Directory of Open Access Journals (Sweden)

    Fumiaki Obata

    2014-05-01

    Full Text Available Sterile inflammation triggered by endogenous factors is thought to contribute to the pathogenesis of acute and chronic inflammatory diseases. Here, we demonstrate that apoptosis-deficient mutants spontaneously develop a necrosis-driven systemic immune response in Drosophila and provide an in vivo model for studying the organismal response to sterile inflammation. Metabolomic analysis of hemolymph from apoptosis-deficient mutants revealed increased sarcosine and reduced S-adenosyl-methionine (SAM levels due to glycine N-methyltransferase (Gnmt upregulation. We showed that Gnmt was elevated in response to Toll activation induced by the local necrosis of wing epidermal cells. Necrosis-driven inflammatory conditions induced dFoxO hyperactivation, leading to an energy-wasting phenotype. Gnmt was cell-autonomously upregulated by dFoxO in the fat body as a possible rheostat for controlling energy loss, which functioned during fasting as well as inflammatory conditions. We propose that the dFoxO-Gnmt axis is essential for the maintenance of organismal SAM metabolism and energy homeostasis.

  2. Metabolic alterations in Parkinson's disease after thalamotomy, as revealed by 1H MR spectroscopy

    International Nuclear Information System (INIS)

    To determine, using proton magnetic resonance spectroscopy (1H MRS) whether thalamotomy in patients with Parkinson's disease gives rise to significant changes in regional brain metabolism. Fifteen patients each underwent stereotactic thalamotomy for the control of medically refractory parkinsonian tremor. Single-voxel 1H MRS was performed on a 1.5T unit using a STEAM sequence (TR/TM/TE, 2000/14/20 msec), and spectra were obtained from substantia nigra, thalamus and putamen areas, with volumes of interest of 7-8ml, before and after thalamotomy. NAA/Cho, NAA/Cr and Cho/Cr metabolite ratios were calculated from relative peak area measurements, and any changes were recorded and assessed. In the substantia nigra and thalamus, NAA/Cho ratios were generally low. In the substantia nigra of 80% of patients (12/15) who showed clinical improvement, decreased NAA/Cho ratios were observed in selected voxels after thalamic surgery (p1H MRS may help lead to a better understanding of the pathophysiologic processes occurring in those with Parkinson's disease

  3. Differential motor alterations in children with three types of attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Adrián Poblano

    2014-11-01

    Full Text Available Objective To determine frequency of motor alterations in children with attention deficit hyperactivity disorder (ADHD. Method We evaluated 19 children aged 7-12 years with ADHD classified in three sub-types: Combined (ADHD-C, with Inattention (ADHD-I, and with Hyperactivity (ADHD-H. Controls were age- and gender matched healthy children. We utilized Bruininks-Oseretsky Test of Motor Proficiency (BOTMP for measuring motor skills. Results We observed differences between children with ADHD and controls in BOTMP general score and in static coordination, dynamic general- and hand- coordination, and in synkinetic movements. We also found differences in dynamic hand coordination between controls and children with ADHD-C; in dynamic general coordination between controls and children with ADHD-H; and in frequency of synkinetic movements between controls and children with ADHD-H. Conclusion Children with ADHD with a major degree of hyperactivity showed greater frequency of motor alterations.

  4. Differential motor alterations in children with three types of attention deficit hyperactivity disorder

    OpenAIRE

    Adrián Poblano; Belinda Luna; César Reynoso

    2014-01-01

    Objective To determine frequency of motor alterations in children with attention deficit hyperactivity disorder (ADHD). Method We evaluated 19 children aged 7-12 years with ADHD classified in three sub-types: Combined (ADHD-C), with Inattention (ADHD-I), and with Hyperactivity (ADHD-H). Controls were age- and gender matched healthy children. We utilized Bruininks-Oseretsky Test of Motor Proficiency (BOTMP) for measuring motor skills. Results We observed differences between children with A...

  5. Transcriptomics and physiological analyses reveal co-ordinated alteration of metabolic pathways in Jatropha curcas drought tolerance.

    Science.gov (United States)

    Sapeta, Helena; Lourenço, Tiago; Lorenz, Stefan; Grumaz, Christian; Kirstahler, Philipp; Barros, Pedro M; Costa, Joaquim Miguel; Sohn, Kai; Oliveira, M Margarida

    2016-02-01

    Jatropha curcas, a multipurpose plant attracting a great deal of attention due to its high oil content and quality for biofuel, is recognized as a drought-tolerant species. However, this drought tolerance is still poorly characterized. This study aims to contribute to uncover the molecular background of this tolerance, using a combined approach of transcriptional profiling and morphophysiological characterization during a period of water-withholding (49 d) followed by rewatering (7 d). Morphophysiological measurements showed that J. curcas plants present different adaptation strategies to withstand moderate and severe drought. Therefore, RNA sequencing was performed for samples collected under moderate and severe stress followed by rewatering, for both roots and leaves. Jatropha curcas transcriptomic analysis revealed shoot- and root-specific adaptations across all investigated conditions, except under severe stress, when the dramatic transcriptomic reorganization at the root and shoot level surpassed organ specificity. These changes in gene expression were clearly shown by the down-regulation of genes involved in growth and water uptake, and up-regulation of genes related to osmotic adjustments and cellular homeostasis. However, organ-specific gene variations were also detected, such as strong up-regulation of abscisic acid synthesis in roots under moderate stress and of chlorophyll metabolism in leaves under severe stress. Functional validation further corroborated the differential expression of genes coding for enzymes involved in chlorophyll metabolism, which correlates with the metabolite content of this pathway. PMID:26602946

  6. Mode of Bioenergetic Metabolism during B Cell Differentiation in the Intestine Determines the Distinct Requirement for Vitamin B1

    Directory of Open Access Journals (Sweden)

    Jun Kunisawa

    2015-10-01

    Full Text Available Bioenergetic metabolism varies during cell differentiation, but details of B cell metabolism remain unclear. Here, we show the metabolic changes during B cell differentiation in the intestine, where B cells differentiate into IgA+ plasma cells (PCs. Naive B cells in the Peyer’s patches (PPs and IgA+ PCs in the intestinal lamina propria (iLP both used the tricarboxylic acid (TCA cycle, but only IgA+ PCs underwent glycolysis. These metabolic differences reflected their dependencies on vitamin B1, an essential cofactor for the TCA cycle. Indeed, the diminished activity of the TCA cycle after dietary vitamin B1 depletion decreased the number of naive B cells in PPs without affecting IgA+ PCs in the iLP. The maintenance of naive B cells by dietary vitamin B1 was required to induce—but not maintain—intestinal IgA responses against oral antigens. These findings reveal the diet-mediated maintenance of B cell immunometabolism in organized and diffuse intestinal tissues.

  7. Differential effects of glyphosate and aminomethylphosphonic acid (AMPA) on photosynthesis and chlorophyll metabolism in willow plants.

    Science.gov (United States)

    Gomes, Marcelo Pedrosa; Le Manac'h, Sarah Gingras; Maccario, Sophie; Labrecque, Michel; Lucotte, Marc; Juneau, Philippe

    2016-06-01

    We used a willow species (Salix miyabeana cultivar SX64) to examine the differential secondary-effects of glyphosate and aminomethylphosphonic acid (AMPA), the principal glyphosate by-product, on chlorophyll metabolism and photosynthesis. Willow plants were treated with different concentrations of glyphosate (equivalent to 0, 1.4, 2.1 and 2.8kgha(-1)) and AMPA (equivalent to 0, 0.28, 1.4 and 2.8kgha(-1)) and evaluations of pigment contents, chlorophyll fluorescence, and oxidative stress markers (hydrogen peroxide content and antioxidant enzyme activities) in leaves were performed after 12h of exposure. We observed that AMPA and glyphosate trigger different mechanisms leading to decreases in chlorophyll content and photosynthesis rates in willow plants. Both chemicals induced ROS accumulation in willow leaves although only glyphosate-induced oxidative damage through lipid peroxidation. By disturbing chlorophyll biosynthesis, AMPA induced decreases in chlorophyll contents, with consequent effects on photosynthesis. With glyphosate, ROS increases were higher than the ROS-sensitive threshold, provoking chlorophyll degradation (as seen by pheophytin accumulation) and invariable decreases in photosynthesis. Peroxide accumulation in both AMPA and glyphosate-treated plants was due to the inhibition of antioxidant enzyme activities. The different effects of glyphosate on chlorophyll contents and photosynthesis as described in the literature may be due to various glyphosate:AMPA ratios in those plants. PMID:27155486

  8. Detection of structural and metabolic changes in traumatically injured hippocampus by quantitative differential proteomics.

    Science.gov (United States)

    Wu, Ping; Zhao, Yingxin; Haidacher, Sigmund J; Wang, Enyin; Parsley, Margaret O; Gao, Junling; Sadygov, Rovshan G; Starkey, Jonathan M; Luxon, Bruce A; Spratt, Heidi; Dewitt, Douglas S; Prough, Donald S; Denner, Larry

    2013-05-01

    Traumatic brain injury (TBI) is a complex and common problem resulting in the loss of cognitive function. In order to build a comprehensive knowledge base of the proteins that underlie these cognitive deficits, we employed unbiased quantitative mass spectrometry, proteomics, and bioinformatics to identify and quantify dysregulated proteins in the CA3 subregion of the hippocampus in the fluid percussion model of TBI in rats. Using stable isotope 18O-water differential labeling and multidimensional tandem liquid chromatography (LC)-MS/MS with high stringency statistical analyses and filtering, we identified and quantified 1002 common proteins, with 124 increased and 76 decreased. The ingenuity pathway analysis (IPA) bioinformatics tool identified that TBI had profound effects on downregulating global energy metabolism, including glycolysis, the Krebs cycle, and oxidative phosphorylation, as well as cellular structure and function. Widespread upregulation of actin-related cytoskeletal dynamics was also found. IPA indicated a common integrative signaling node, calcineurin B1 (CANB1, CaNBα, or PPP3R1), which was downregulated by TBI. Western blotting confirmed that the calcineurin regulatory subunit, CANB1, and its catalytic binding partner PP2BA, were decreased without changes in other calcineurin subunits. CANB1 plays a critical role in downregulated networks of calcium signaling and homeostasis through calmodulin and calmodulin-dependent kinase II to highly interconnected structural networks dominated by tubulins. This large-scale knowledge base lays the foundation for the identification of novel therapeutic targets for cognitive rescue in TBI. PMID:22757692

  9. Growth differentiation factor-5 stimulates the growth and anabolic metabolism of articular chondrocytes

    Institute of Scientific and Technical Information of China (English)

    Xu Peng; Guo Xiong; Yao Jianfeng; Zhang Yingang; Klaus von der Mark

    2005-01-01

    Objective: To observe the effect of growth differentiation factor-5 (GDF-5) on the growth and anabolic metabolism of articular chondrocytes. Methods: The articular chondrocytes isolated from rats were treated with various concentrations of rmGDF-5, and the growth of chondrocytes measured by MTT assay, the cellular cartilage matrices formation detected sulfated glycosaminoglycan by Alcian blue staining and type Ⅱ collagen by RT-PCR,the collagen phenotypic expression of chondrocytes detected by immunofluorescence. Results: After 7 days culture,MTT assay showed that GDF-5 enhanced the growth of chondrocytes in a dose-dependent manner, RT-PCR showed that GDF-5 clearly induced the synthesis of type Ⅱ collagen because of the col2a1 mRNA band more and more strong in a dose-dependent. Chondrocytes were cultured with GDF-5 for 14 days, the intensity of Alcian blue staining was greatly enhanced, especially, at a high concentration of 1000ng/ml, and GDF-5 enhanced the accumulation of the Alcian blue-stainable material in a concentration-dependent manner and in a does-dependent manner. Chondrocytes were cultured with GDF-5 for 21 days, immunofluorescent staining of type Ⅱ collagen was clear, the type Ⅰ and X collagen were negative. Conclusion: GDF-5 enhanced the growth of mature articular chondrocytes, and stimulated the cellular cartilage matrices formation, but did not change the collagen phenotypic expression of chondrocytes in mono-layer culture.

  10. Growth Differentiation Factor-5 Stimulates the Growth and Anabolic Metabolism of Articular Chondrocytes

    Institute of Scientific and Technical Information of China (English)

    Xu Peng; Yao Jianfeng; Guo Xiong; Zhang Yingang; Klaus von der Mark

    2009-01-01

    Objective: To observe the effect of growth differentiation factor-5 (GDF-5) on the growth and anabolic metabolism of articular chondrocytes. Methods: The articular chondrocytes isolated from rats were treated with various concentrations of rmGDF-5, and the growth of chondrocytes measured by MTr assay, the cellular cartilage matrices formation detected sulfated glycosaminoglycan by Alcian blue staining and type 11 collagen by RT-PCR, the collagen phenotypic expression of chondrocytes detected by immunofluorescence. Results: After 7 days culture, MTF assay showed that GDF-5 enhanced the growth of ehondrocytes in a dose-dependent manner, RT-PCR showed that GDF-5 clearly induced the synthesis of type Ⅱ collagen because of the colal mRNA band more and more strong in a dose-dependent. Chondrocytes were cultured with GDF-5 for 14 days, the intensity of Alcian blue staining was gready enhanced, especially, at a high concentration of 1000ng/ml, and GDF-5 enhanced the accumulation of the Alcian blue-stainable material in a concentration-dependent manner and in a does-dependent manner. Chondrocytes were cultured with GDF-5 for 21 days, immunofluorescent staining of type Ⅱ collagen was clear, the type Ⅰ and Ⅹ collagen were negative. Conclusion: GDF-5 enhanced the growth of mature articular chon-drocytes, and stimulated the cellular cartilage matrices formation, but did not change the collagen phenotypic ex-pression of chondrocytes in mono-layer culture.

  11. Kojibiose ameliorates arachidic acid-induced metabolic alterations in hyperglycaemic rats.

    Science.gov (United States)

    Moisés Laparra, José; Díez-Municio, Marina; Javier Moreno, F; Herrero, Miguel

    2015-11-14

    Herein we hypothesise the positive effects of kojibiose (KJ), a prebiotic disaccharide, selected for reducing hepatic expression of inflammatory markers in vivo that could modulate the severity of saturated arachidic acid (ARa)-induced liver dysfunction in hyperglycaemic rats. Animals were fed daily (20 d) with ARa (0·3 mg) together or not with KJ (22 mg approximately 0·5 %, w/w diet). Glucose, total TAG and cholesterol contents and the phospholipid profile were determined in serum samples. Liver sections were collected for the expression (mRNA) of enzymes and innate biomarkers, and intrahepatic macrophage and T-cell populations were analysed by flow cytometry. ARa administration increased the proportion of liver to body weight that was associated with an increased (by 11 %) intrahepatic macrophage population. These effects were ameliorated when feeding with KJ, which also normalised the plasmatic levels of TAG and N-acyl-phosphatidylethenolamine in response to tissue damage. These results indicate that daily supplementation of KJ significantly improves the severity of ARa-induced hepatic alterations. PMID:26344377

  12. Anesthesia with halothane and nitrous oxide alters protein and amino acid metabolism in dogs

    International Nuclear Information System (INIS)

    General anesthesia in combination with surgery is known to result in negative nitrogen balance. To determine whether general anesthesia without concomitant surgery decreases whole body protein synthesis and/or increases whole body protein breakdown, two groups of dogs were studied: Group 1 (n = 6) in the conscious state and Group 2 (n = 8) during general anesthesia employing halothane (1.5 MAC) in 50% nitrous oxide and oxygen. Changes in protein metabolism were estimated by isotope dilution techniques employing simultaneous infusions of [4,53H]leucine and alpha-[1-14C]-ketoisocaproate (KIC). Total leucine carbon flux was unchanged or slightly increased in the anesthetized animals when compared to the conscious controls, indicating only a slight increase in the rate of proteolysis. However, leucine oxidation was increased (P less than 0.001) by more than 80% in the anesthetized animals when compared with their conscious controls, whereas whole body nonoxidative leucine disappearance, an indicator of whole body protein synthesis, was decreased. The ratio of leucine oxidation to the nonoxidative rate of leucine disappearance, which provides an index of the catabolism of at least one essential amino acid in the postabsorptive state, was more than twofold increased (P less than 0.001) in the anesthetized animals regardless of the tracer employed. These studies suggest that the administration of anesthesia alone, without concomitant surgery, is associated with a decreased rate of whole body protein synthesis and increased leucine oxidation, resulting in increased leucine and protein catabolism, which may be underlying or initiating some of the protein wasting known to occur in patients undergoing surgery

  13. Monocytes of patients with familial hypercholesterolemia show alterations in cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Soufi Muhidien

    2008-11-01

    Full Text Available Abstract Background Elevated plasma cholesterol promotes the formation of atherosclerotic lesions in which monocyte-derived lipid-laden macrophages are frequently found. To analyze, if circulating monocytes already show increased lipid content and differences in lipoprotein metabolism, we compared monocytes from patients with Familial Hypercholesterolemia (FH with those from healthy individuals. Methods Cholesterol and oxidized cholesterol metabolite serum levels of FH and of healthy, gender/age matched control subjects were measured by combined gas chromatography – mass spectroscopy. Monocytes from patients with FH and from healthy subjects were isolated by antibody-assisted density centrifugation. Gene expression profiles of isolated monocytes were measured using Affymetrix HG-U 133 Plus 2.0 microarrays. We compared monocyte gene expression profiles from FH patients with healthy controls using a Welch T-test with correction for multiple testing (p Results Using microarray analysis we found in FH patients a significant up-regulation of 1,617 genes and a down-regulation of 701 genes compared to monocytes from healthy individuals. These include genes of proteins that are involved in the uptake, biosynthesis, disposition, and cellular efflux of cholesterol. In addition, plasma from FH patients contains elevated amounts of sterols and oxysterols. An increased uptake of oxidized as well as of native LDL by FH monocytes combined with a down-regulation of NPC1 and ABCA1 explains the lipid accumulation observed in these cells. Conclusion Our data demonstrate that circulating FH monocytes show differences in cell physiology that may contribute to the early onset of atherosclerosis in this disease.

  14. Effects of tempol on altered metabolism and renal vascular responsiveness in fructose-fed rats.

    Science.gov (United States)

    Abdulla, Mohammed H; Sattar, Munavvar A; Johns, Edward J

    2016-02-01

    This study investigated the effect of tempol (a superoxide dismutase mimetic) on renal vasoconstrictor responses to angiotensin II (Ang II) and adrenergic agonists in fructose-fed Sprague-Dawley rats (a model of metabolic syndrome). Rats were fed 20% fructose in drinking water (F) for 8 weeks. One fructose-fed group received tempol (FT) at 1 mmol·L(-1) in drinking water for 8 weeks or as an infusion (1.5 mg·kg(-1)·min(-1)) intrarenally. At the end of the treatment regimen, the renal responses to noradrenaline, phenylephrine, methoxamine, and Ang II were determined. F rats exhibited hyperinsulinemia, hyperuricemia, hypertriglyceridemia, and hypertension. Tempol reduced blood glucose and insulin levels (all p vasoconstriction response to all agonists was lower in F rats than in control rats by about 35%-65% (all p < 0.05). Vasoconstrictor responses to noradrenaline, phenylephrine, and methoxamine but not Ang II were about 41%-75% higher in FT rats compared with F rats (all p < 0.05). Acute tempol infusion blunted responses to noradrenaline, methoxamine, and Ang II in control rats by 32%, 33%, and 62%, while it blunted responses to noradrenaline and Ang II in F rats by 26% and 32%, respectively (all p < 0.05), compared with their untreated counterparts. Superoxide radicals play a crucial role in controlling renal vascular responses to adrenergic agonists in insulin-resistant rats. Chronic but not acute tempol treatment enhances renal vascular responsiveness in fructose-fed rats. PMID:26789093

  15. Atherosclerosis induced by arsenic in drinking water in rats through altering lipid metabolism

    International Nuclear Information System (INIS)

    Arsenic in drinking water is a global environmental health problem, and the exposure may increase cardiovascular and cerebrovascular diseases mortalities, most likely through causing atherosclerosis. However, the mechanism of atherosclerosis formation after arsenic exposure is still unclear. To study the mechanism of atherosclerosis formation after arsenic exposure and explore the role of high cholesterol diet (HCD) in this process, we fed spontaneous hypertensive rats and Wistar Kyoto rats with basal diet or HCD and provided with them drinking water containing arsenic at different ages and orders for 20 consecutive weeks. We measured high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), total cholesterol, triglycerides, heat shock protein 70 (HSP 70), and high sensitive C-reactive protein (hs-CRP) at predetermined intervals and determined expressions of cholesteryl ester transfer protein-1 (CETP-1) and liver X receptor β (LXRβ) in the liver. Atherosclerosis was determined by examining the aorta with hematoxylin and eosin stain. After 20 weeks, we found arsenic, alone or combined with HCD, may promote atherosclerosis formation with transient increases in HSP 70 and hs-CRP. Early combination exposure decreased the HDL-C/LDL-C ratio without changing the levels of total cholesterol and triglyceride until 30 weeks old. Both CETP-1 and LXRβ activities were suppressed, most significantly in early combination exposure. In conclusion, arsenic exposure may induce atherosclerosis through modifying reverse cholesterol transport in cholesterol metabolism and suppressing LXRβ and CEPT-1 expressions. For decreasing atherosclerosis related mortality associated with arsenic, preventing exposure from environmental sources in early life is an important element. - Highlights: → Arsenic causes cardiovascular and cerebrovascular diseases through atherosclerosis. → Arsenic may promote atherosclerosis with transient increase in HSP 70 and hs

  16. Cardiorespiratory and metabolic alterations during exercise and passive recovery after three modes of exercise.

    Science.gov (United States)

    Mandroukas, Athanasios; Heller, Jan; Metaxas, Thomas I; Sendelides, Thomas; Riganas, Cheistos; Vamvakoudis, Efstratios; Christoulas, Kosmas; Stefanidis, Panagiotis; Karagiannis, Vasilis; Kyparos, Antonios; Mandroukas, Konstantinos

    2011-06-01

    The objective of this study was to investigate the potential variations in cardiorespiratory and metabolic parameters and running performance among 3 modes of exercise of the same duration, namely, intermittent running with active recovery (AR) or passive recovery (PR) and continuous running (CR) and whether these variations could affect passive recovery time (PRT). Fifteen male physical education students with a subspecialty in soccer were studied (mean age 22.3 ± 2.5 years, training experience 12.3 ± 2.5 years) in the middle of the playing season. The results showed that during exercise, the highest heart rate (HR) and VO2 values were observed in CR, whereas the lowest values in PR followed by AR. Blood lactate (BLa) concentration was higher in PR by 38% compared to that in AR (p < 0.05). The exercise duration was similar between PR and AR tests and longer than in CR. With regard to PRT, the highest HR (186 ± 9 b · min(-1)), VO2 (55.5 ± 5.2 ml · kg(-1) · min(-1)), and BLa (5.1 ± 1.7 mmol · L(-1)) values were found in CR. No differences in HR and VO2 between PR and AR were detected. However, despite the differences in BLa concentration between AR and PR during exercise, the PRT BLa values between these 2 exercise modes were not different. Among the 3 running protocols, only CR appeared to have fully challenged the cardiorespiratory system inducing maximal HR and VO2 responses during exercise and high BLa values in PRT, yet these responses were not associated with better exercise performance compared to intermittent running. Therefore, intermittent exercise, regardless of implementing passive or active interval, might be the preferable exercise mode particularly in activities extended over 30 minutes. PMID:21273910

  17. Hormonal, metabolic and nutritional alterations in smokers: emergency for smoking abstinence

    Directory of Open Access Journals (Sweden)

    Gláucia Renata Souza Rodrigues

    2013-12-01

    Full Text Available OBJECTIVE: To evaluate the biochemical and nutritional status of smokers in treatment for smoking cessation and its association with anthropometric parameters. METHODS: This is a cross-sectional study with convenience sample. Adult smokers were assessed at the start of treatment in the Interdisciplinary Center for Tobacco Research and Intervention of the University Hospital of the Federal University of Juiz de Fora (CIPIT/HU-UFJF. We evaluated the body mass index (BMI, conicity index (CI; waist circumference (WC, percentage of body fat (%BF, fasting glycemia, cortisol, insulin, total cholesterol (TC, LDL-c, HDL-c, triglycerides (TG and metabolic syndrome (MS. RESULTS: Most participants (52.2% had MS and high cardiovascular risk. The fasting glycemia was abnormal in 30.4%. There was a significant positive correlation between BMI and WC (r = 0.90; p = 0.0001, %BF (r = 0.79; p = 0.0001, CI (r = 0.65; p = 0.0001, glycemia (r = 0.42; p = 0.04 and TG (r = 0.47; p = 0.002. The CI presented positive correction with insulin (r = 0.60; p = 0.001, glycemia (r = 0.55; p = 0.007, TG (r = 0.54; p = 0.008 and %BF (r = 0.43; p = 0.004. Patients with longer duration of smoking had a higher risk of developing MS (OR = 9.6, p = 0.016. CONCLUSION: The smokers evaluated had increased risk for developing MS, especially those with longer duration of smoking, requiring urgent smoking cessation.

  18. Correlation of NADH fluorescence lifetime and oxidative phosphorylation metabolism in the osteogenic differentiation of human mesenchymal stem cell

    Science.gov (United States)

    Guo, Han-Wen; Yu, Jia-Sin; Hsu, Shu-Han; Wei, Yau-Huei; Lee, Oscar K.; Dong, Chen-Yuan; Wang, Hsing-Wen

    2015-01-01

    Reduced nicotinamide dinucleotide (NADH) fluorescence lifetime has been broadly used as a metabolic indicator for stem cell imaging. However, the direct relationship between NADH fluorescence lifetime and metabolic pathway and activity remains to be clarified. In this study, we measured the NADH fluorescence lifetime of human mesenchymal stem cells (hMSCs) as well as the metabolic indictors, such as adenosine triphosphate (ATP) level, oxygen consumption, and lactate release, up to 4 weeks under normal osteogenic differentiation and oxidative phosphorylation-attenuated/inhibited differentiation by oligomycin A (OA) treatment. NADH fluorescence lifetime was positively correlated with oxygen consumption and ATP level during energy transformation from glycolysis to oxidative phosphorylation. Under OA treatment, oxidative phosphorylation was attenuated/inhibited (i.e., oxygen consumption remained the same as controls or lower), cells showed attenuated differentiation under glycolysis, and NADH fluorescence lifetime change was not detected. Increased expression of the overall complex proteins was observed in addition to Complex I. We suggested special caution needs to be exercised while interpreting NADH fluorescence lifetime signal in terms of stem cell differentiation.

  19. Algal Toxin Azaspiracid-1 Induces Early Neuronal Differentiation and Alters Peripherin Isoform Stoichiometry

    Directory of Open Access Journals (Sweden)

    Linda V. Hjørnevik

    2015-12-01

    Full Text Available Azaspiracid-1 is an algal toxin that accumulates in edible mussels, and ingestion may result in human illness as manifested by vomiting and diarrhoea. When injected into mice, it causes neurotoxicological symptoms and death. Although it is well known that azaspiracid-1 is toxic to most cells and cell lines, little is known about its biological target(s. A rat PC12 cell line, commonly used as a model for the peripheral nervous system, was used to study the neurotoxicological effects of azaspiracid-1. Azaspiracid-1 induced differentiation-related morphological changes followed by a latter cell death. The differentiated phenotype showed peripherin-labelled neurite-like processes simultaneously as a specific isoform of peripherin was down-regulated. The precise mechanism behind this down-regulation remains uncertain. However, this study provides new insights into the neurological effects of azaspiracid-1 and into the biological significance of specific isoforms of peripherin.

  20. Alteration of different domains in AFLR affects aflatoxin pathway metabolism in Aspergillus parasiticus transformants.

    Science.gov (United States)

    Ehrlich, K C; Montalbano, B G; Bhatnagar, D; Cleveland, T E

    1998-04-01

    AFLR, a zinc binuclear cluster DNA-binding protein, is required for activation of genes comprising the aflatoxin biosynthetic pathway in Aspergillus spp. Transformation of Aspergillus parasiticus with plasmids containing the intact aflR gene gave clones that produced fivefold more aflatoxin pathway metabolites than did the untransformed strain. When a 13-bp region in the aflR promoter (position -102 to -115 with respect to the ATG) was deleted, including a portion of a palindromic site previously shown to bind recombinant AFLR, metabolite production was 40% that of transformants with intact aflR. This result provides further evidence that this site may be involved in the autoregulation of aflR. Overexpression of pathway genes could also result from increased quantities of AFLR titrating out a putative repressor protein. In AFLR, a 20-amino-acid acidic region near its carboxy-terminus resembles the region in yeast GAL4 required for GAL80 repressor binding. When 3 of the acidic amino acids in this region were deleted, levels of metabolites were even higher than those produced by transformants with intact aflR, as would be expected if repressor binding was suppressed in transformants containing this altered protein. Transformation with plasmids mutated at the AFLR zinc cluster (Cys to Trp at amino acid position 49) or at a putative nuclear localization signal region (RRARK deleted) gave clones with one-fifth the metabolite production of the untransformed fungus in spite of the transformants making the same or more aflR mRNA. Since these transformants retained a copy of intact aflR, the latter results can be explained best by assuming that AFLR activates genes involved in aflatoxin production as a dimeric protein and that heterodimers containing both mutant and intact AFLR strands are inactive. PMID:9680958

  1. Storage Temperature Alters the Expression of Differentiation-Related Genes in Cultured Oral Keratinocytes

    Science.gov (United States)

    Utheim, Tor Paaske; Islam, Rakibul; Fostad, Ida G.; Eidet, Jon R.; Sehic, Amer; Olstad, Ole K.; Dartt, Darlene A.; Messelt, Edward B.; Griffith, May; Pasovic, Lara

    2016-01-01

    Purpose Storage of cultured human oral keratinocytes (HOK) allows for transportation of cultured transplants to eye clinics worldwide. In a previous study, one-week storage of cultured HOK was found to be superior with regard to viability and morphology at 12°C compared to 4°C and 37°C. To understand more of how storage temperature affects cell phenotype, gene expression of HOK before and after storage at 4°C, 12°C, and 37°C was assessed. Materials and Methods Cultured HOK were stored in HEPES- and sodium bicarbonate-buffered Minimum Essential Medium at 4°C, 12°C, and 37°C for one week. Total RNA was isolated and the gene expression profile was determined using DNA microarrays and analyzed with Partek Genomics Suite software and Ingenuity Pathway Analysis. Differentially expressed genes (fold change > 1.5 and P < 0.05) were identified by one-way ANOVA. Key genes were validated using qPCR. Results Gene expression of cultures stored at 4°C and 12°C clustered close to the unstored control cultures. Cultures stored at 37°C displayed substantial change in gene expression compared to the other groups. In comparison with 12°C, 2,981 genes were differentially expressed at 37°C. In contrast, only 67 genes were differentially expressed between the unstored control and the cells stored at 12°C. The 12°C and 37°C culture groups differed most significantly with regard to the expression of differentiation markers. The Hedgehog signaling pathway was significantly downregulated at 37°C compared to 12°C. Conclusion HOK cultures stored at 37°C showed considerably larger changes in gene expression compared to unstored cells than cultured HOK stored at 4°C and 12°C. The changes observed at 37°C consisted of differentiation of the cells towards a squamous epithelium-specific phenotype. Storing cultured ocular surface transplants at 37°C is therefore not recommended. This is particularly interesting as 37°C is the standard incubation temperature used for cell

  2. Pregnancy does not alter the metabolic clearance of 1,25-dihydroxyvitamin D in rats

    International Nuclear Information System (INIS)

    Increased circulating levels of 1,25-dihydroxyvitamin D [1,25(OH)2D] during pregnancy could be due to an increase in production or decrease in the metabolic clearance rate of 1,25(OH)2D. To answer this question an isotope dilution method was used to determine the clearance rate of 1,25(OH)2D in pregnant and aged-matched nonpregnant female rats. A bolus of 0.146 muCi 1,25(OH)2[3H]D3 was given to 60 pregnant and 60 aged-matched nonpregnant rats and the disappearance of the isotope was followed in these animals over the next 48 h. In 12 pregnant rats vs. 14 nonpregnant controls not injected with tracer, plasma calcium (9.6 +/- 0.41 vs. 10.7 +/- 0.17 mg/ml) and 25(OH)D (17.1 +/- 1.15 vs. 25.4 +/- 1.58 ng/ml) levels were significantly lower (P less than 0.01 and P less than 0.001), whereas plasma 1,25(OH)2D levels (110 +/- 16.1 pg/ml vs. 77 +/- 6.0 pg/ml) were significantly higher (P less than 0.05). Clearance rates of 1,25(OH)2D of 25.8 +/- 1.31 microliters/min in pregnant rats and 20.2 20.2 +/- 1.38 microliters/min in nonpregnant aged-matched rats were not significantly different. Similarly, the apparent volume of distribution of 1,25(OH)2D in the pregnant rats (15 +/- 1.0 ml) was not significantly different from that in the nonpregnant control animals (18 +/- 2.1 ml). Production rates of.1,25(OH)2D were elevated in the pregnant rats (2.83 pg/min) compared with the nonpregnant controls (1.55 pg/min). In conclusion, the elevated maternal plasma 1,25(OH)2D level during pregnancy is a result of increased production and is not due to a decreased clearance

  3. Neuronal Cell Death Induced by Mechanical Percussion Trauma in Cultured Neurons is not Preceded by Alterations in Glucose, Lactate and Glutamine Metabolism

    DEFF Research Database (Denmark)

    Jayakumar, A R; Bak, L K; Rama Rao, K V;

    2016-01-01

    dysfunction and subsequent energy failure play a role in the pathogenesis of TBI. We therefore examined whether oxidative metabolism of (13)C-labeled glucose, lactate or glutamine is altered early following in vitro mechanical percussion-induced trauma (5 atm) to neurons (4-24 h), and whether such events...

  4. Acute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II Diabetes

    Science.gov (United States)

    Abstract for Society of Toxicology, March 22-25, 2015, San Diego, CAAcute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II DiabetesS.J. Snow1,3, D. Miller2, V. Bass2, M. Schladweiler3, A. Ledbetter3, J. Richards3, C...

  5. Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus

    DEFF Research Database (Denmark)

    Colebatch, Gillian; Desbrosses, Guilhem; Ott, Thomas; Krusell, Lene; Montanari, Ombretta; Kloska, Sebastian; Kopka, Joachim; Udvardi, Michael K

    2004-01-01

    Research on legume nodule metabolism has contributed greatly to our knowledge of primary carbon and nitrogen metabolism in plants in general, and in symbiotic nitrogen fixation in particular. However, most previous studies focused on one or a few genes/enzymes involved in selected metabolic...... transcriptional or post-transcriptional level. Several metabolic pathways appeared to be co-ordinately upregulated in nodules, including glycolysis, CO(2) fixation, amino acid biosynthesis, and purine, haem, and redox metabolism. Insight into the physiological conditions that prevail within nodules was obtained...

  6. Presymptomatic Alterations in Amino Acid Metabolism and DNA Methylation in the Cerebellum of a Murine Model of Niemann-Pick Type C Disease.

    Science.gov (United States)

    Kennedy, Barry E; Hundert, Amos S; Goguen, Donna; Weaver, Ian C G; Karten, Barbara

    2016-06-01

    The fatal neurodegenerative disorder Niemann-Pick type C (NPC) is caused in most cases by mutations in NPC1, which encodes the late endosomal NPC1 protein. Loss of NPC1 disrupts cholesterol trafficking from late endosomes to the endoplasmic reticulum and plasma membrane, causing cholesterol accumulation in late endosomes/lysosomes. Neurons are particularly vulnerable to this cholesterol trafficking defect, but the pathogenic mechanisms through which NPC1 deficiency causes neuronal dysfunction remain largely unknown. Herein, we have investigated amino acid metabolism in cerebella of NPC1-deficient mice at different stages of NPC disease. Imbalances in amino acid metabolism were evident from increased branched chain amino acid and asparagine levels and altered expression of key enzymes of glutamine/glutamate metabolism in presymptomatic and early symptomatic NPC1-deficient cerebellum. Increased levels of several amino acid intermediates of one-carbon metabolism indicated disturbances in folate and methylation pathways. Alterations in DNA methylation were apparent in decreased expression of DNA methyltransferase 3a and methyl-5'-cytosine-phosphodiester-guanine-domain binding proteins, reduced 5-methylcytosine immunoreactivity in the molecular and Purkinje cell layers, demethylation of genome-wide repetitive LINE-1 elements, and hypermethylation in specific promoter regions of single-copy genes in NPC1-deficient cerebellum at early stages of the disease. Alterations in amino acid metabolism and epigenetic changes in the cerebellum at presymptomatic stages of NPC disease represent previously unrecognized mechanisms of NPC pathogenesis. PMID:27083515

  7. Altered chromatin occupancy of master regulators underlies evolutionary divergence in the transcriptional landscape of erythroid differentiation.

    Science.gov (United States)

    Ulirsch, Jacob C; Lacy, Jessica N; An, Xiuli; Mohandas, Narla; Mikkelsen, Tarjei S; Sankaran, Vijay G

    2014-12-01

    Erythropoiesis is one of the best understood examples of cellular differentiation. Morphologically, erythroid differentiation proceeds in a nearly identical fashion between humans and mice, but recent evidence has shown that networks of gene expression governing this process are divergent between species. We undertook a systematic comparative analysis of six histone modifications and four transcriptional master regulators in primary proerythroblasts and erythroid cell lines to better understand the underlying basis of these transcriptional differences. Our analyses suggest that while chromatin structure across orthologous promoters is strongly conserved, subtle differences are associated with transcriptional divergence between species. Many transcription factor (TF) occupancy sites were poorly conserved across species (∼25% for GATA1, TAL1, and NFE2) but were more conserved between proerythroblasts and cell lines derived from the same species. We found that certain cis-regulatory modules co-occupied by GATA1, TAL1, and KLF1 are under strict evolutionary constraint and localize to genes necessary for erythroid cell identity. More generally, we show that conserved TF occupancy sites are indicative of active regulatory regions and strong gene expression that is sustained during maturation. Our results suggest that evolutionary turnover of TF binding sites associates with changes in the underlying chromatin structure, driving transcriptional divergence. We provide examples of how this framework can be applied to understand epigenomic variation in specific regulatory regions, such as the β-globin gene locus. Our findings have important implications for understanding epigenomic changes that mediate variation in cellular differentiation across species, while also providing a valuable resource for studies of hematopoiesis. PMID:25521328

  8. Methionine restriction restores a younger metabolic phenotype in adult mice with alterations in fibroblast growth factor 21.

    Science.gov (United States)

    Lees, Emma K; Król, Elżbieta; Grant, Louise; Shearer, Kirsty; Wyse, Cathy; Moncur, Eleanor; Bykowska, Aleksandra S; Mody, Nimesh; Gettys, Thomas W; Delibegovic, Mirela

    2014-10-01

    Methionine restriction (MR) decreases body weight and adiposity and improves glucose homeostasis in rodents. Similar to caloric restriction, MR extends lifespan, but is accompanied by increased food intake and energy expenditure. Most studies have examined MR in young animals; therefore, the aim of this study was to investigate the ability of MR to reverse age-induced obesity and insulin resistance in adult animals. Male C57BL/6J mice aged 2 and 12 months old were fed MR (0.172% methionine) or control diet (0.86% methionine) for 8 weeks or 48 h. Food intake and whole-body physiology were assessed and serum/tissues analyzed biochemically. Methionine restriction in 12-month-old mice completely reversed age-induced alterations in body weight, adiposity, physical activity, and glucose tolerance to the levels measured in healthy 2-month-old control-fed mice. This was despite a significant increase in food intake in 12-month-old MR-fed mice. Methionine restriction decreased hepatic lipogenic gene expression and caused a remodeling of lipid metabolism in white adipose tissue, alongside increased insulin-induced phosphorylation of the insulin receptor (IR) and Akt in peripheral tissues. Mice restricted of methionine exhibited increased circulating and hepatic gene expression levels of FGF21, phosphorylation of eIF2a, and expression of ATF4, with a concomitant decrease in IRE1α phosphorylation. Short-term 48-h MR treatment increased hepatic FGF21 expression/secretion and insulin signaling and improved whole-body glucose homeostasis without affecting body weight. Our findings suggest that MR feeding can reverse the negative effects of aging on body mass, adiposity, and insulin resistance through an FGF21 mechanism. These findings implicate MR dietary intervention as a viable therapy for age-induced metabolic syndrome in adult humans. PMID:24935677

  9. Involvement of gut microbial fermentation in the metabolic alterations occurring in n-3 polyunsaturated fatty acids-depleted mice

    Directory of Open Access Journals (Sweden)

    Carpentier Yvon A

    2011-06-01

    Full Text Available Abstract Backround Western diet is characterized by an insufficient n-3 polyunsaturated fatty acid (PUFA consumption which is known to promote the pathogenesis of several diseases. We have previously observed that mice fed with a diet poor in n-3 PUFA for two generations exhibit hepatic steatosis together with a decrease in body weight. The gut microbiota contributes to the regulation of host energy metabolism, due to symbiotic relationship with fermentable nutrients provided in the diet. In this study, we have tested the hypothesis that perturbations of the gut microbiota contribute to the metabolic alterations occurring in mice fed a diet poor in n-3 PUFA for two generations (n-3/- mice. Methods C57Bl/6J mice fed with a control or an n-3 PUFA depleted diet for two generations were supplemented with prebiotic (inulin-type Fructooligosaccharides, FOS, 0.20 g/day/mice during 24 days. Results n-3/-mice exhibited a marked drop in caecum weight, a decrease in lactobacilli and an increase in bifidobacteria in the caecal content as compared to control mice (n-3/+ mice. Dietary supplementation with FOS for 24 days was sufficient to increase caecal weight and bifidobacteria count in both n-3/+ and n-3/-mice. Moreover, FOS increased lactobacilli content in n-3/-mice, whereas it decreased their level in n-3/+ mice. Interestingly, FOS treatment promoted body weight gain in n-3/-mice by increasing energy efficiency. In addition, FOS treatment decreased fasting glycemia and lowered the higher expression of key factors involved in the fatty acid catabolism observed in the liver of n-3/-mice, without lessening steatosis. Conclusions the changes in the gut microbiota composition induced by FOS are different depending on the type of diet. We show that FOS may promote lactobacilli and counteract the catabolic status induced by n-3 PUFA depletion in mice, thereby contributing to restore efficient fat storage.

  10. Differential gene expression profile and altered cytokine secretion of thyroid cancer cells in space.

    Science.gov (United States)

    Ma, Xiao; Pietsch, Jessica; Wehland, Markus; Schulz, Herbert; Saar, Katrin; Hübner, Norbert; Bauer, Johann; Braun, Markus; Schwarzwälder, Achim; Segerer, Jürgen; Birlem, Maria; Horn, Astrid; Hemmersbach, Ruth; Waßer, Kai; Grosse, Jirka; Infanger, Manfred; Grimm, Daniela

    2014-02-01

    This study focuses on the effects of short-term [22 s, parabolic flight campaign (PFC)] and long-term (10 d, Shenzhou 8 space mission) real microgravity on changes in cytokine secretion and gene expression patterns in poorly differentiated thyroid cancer cells. FTC-133 cells were cultured in space and on a random positioning machine (RPM) for 10 d, to evaluate differences between real and simulated microgravity. Multianalyte profiling was used to evaluate 128 secreted cytokines. Microarray analysis revealed 63 significantly regulated transcripts after 22 s of microgravity during a PFC and 2881 after 10 d on the RPM or in space. Genes in several biological processes, including apoptosis (n=182), cytoskeleton (n=80), adhesion/extracellular matrix (n=98), proliferation (n=184), stress response (n=268), migration (n=63), angiogenesis (n=39), and signal transduction (n=429), were differentially expressed. Genes and proteins involved in the regulation of cancer cell proliferation and metastasis, such as IL6, IL8, IL15, OPN, VEGFA, VEGFD, FGF17, MMP2, MMP3, TIMP1, PRKAA, and PRKACA, were similarly regulated under RPM and spaceflight conditions. The resulting effect was mostly antiproliferative. Gene expression during the PFC was often regulated in the opposite direction. In summary, microgravity is an invaluable tool for exploring new targets in anticancer therapy and can be simulated in some aspects in ground-based facilities. PMID:24196587

  11. DIFFERENTIAL EXPRESSION OF RETINOIC ACID BIOSYNTHETIC AND METABOLISM GENES IN LIVERS FROM MICE TREATED WITH HEPATOTUMORIGENIC AND NON-HEPATOTUMORIGENIC CONAZOLES

    Science.gov (United States)

    Conazoles are fungicides used in crop protection and as pharmaceuticals. Triadimefon and propiconazole are hepatotumorigenic in mice, while myclobutanil is not. Previous toxicogenomic studies suggest that alteration of the retinoic acid metabolism pathway may play a key event in ...

  12. Perinatal exposure to diethylstilbestrol alters the functional differentiation of the adult rat uterus.

    Science.gov (United States)

    Bosquiazzo, Verónica L; Vigezzi, Lucía; Muñoz-de-Toro, Mónica; Luque, Enrique H

    2013-11-01

    The exposure to endocrine disrupters and female reproductive tract disorders has not been totally clarified. The present study assessed the long-term effect of perinatal (gestation+lactation) exposure to diethylstilbestrol (DES) on the rat uterus and the effect of estrogen replacement therapy. DES (5μg/kg bw/day) was administered in the drinking water from gestational day 9 until weaning and we studied the uterus of young adult (PND90) and adult (PND360) females. To investigate whether perinatal exposure to DES modified the uterine response to a long-lasting estrogen treatment, 12-month-old rats exposed to DES were ovariectomized and treated with 17β-estradiol for 3 months (PND460). In young adult rats (PND90), the DES treatment decreased both the proliferation of glandular epithelial cells and the percentage of glandular perimeter occupied by α-smooth muscle actin-positive cells. The other tissue compartments remained unchanged. Cell apoptosis was not altered in DES-exposed females. In control adult rats (PND360), there were some morphologically abnormal uterine glands. In adult rats exposed to DES, the incidence of glands with cellular anomalies increased. In response to estrogens (PND460), the incidence of cystic glands increased in the DES group. We observed glands with daughter glands and conglomerates of glands only on PND460 and in response to estrogen replacement therapy, independently of DES exposure. The p63 isoforms were expressed without changes on PND460. Estrogen receptors α and β showed no changes, while the progesterone receptor decreased in the subepithelial stroma of DES-exposed animals with estrogen treatment. The long-lasting effects of perinatal exposure to DES included the induction of abnormalities in uterine tissues of aged female rats and an altered response of the adult uterus to estradiol. PMID:23454116

  13. Differential toxicity of heterocyclic aromatic amines and their mixture in metabolically competent HepaRG cells

    International Nuclear Information System (INIS)

    Human exposure to heterocyclic aromatic amines (HAA) usually occurs through mixtures rather than individual compounds. However, the toxic effects and related mechanisms of co-exposure to HAA in humans remain unknown. We compared the effects of two of the most common HAA, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), individually or in combination, in the metabolically competent human hepatoma HepaRG cells. Various endpoints were measured including cytotoxicity, apoptosis, oxidative stress and DNA damage by the comet assay. Moreover, the effects of PhIP and/or MeIQx on mRNA expression and activities of enzymes involved in their activation and detoxification pathways were evaluated. After a 24 h treatment, PhIP and MeIQx, individually and in combination, exerted differential effects on apoptosis, oxidative stress, DNA damage and cytochrome P450 (CYP) activities. Only PhIP induced DNA damage. It was also a stronger inducer of CYP1A1 and CYP1B1 expression and activity than MeIQx. In contrast, only MeIQx exposure resulted in a significant induction of CYP1A2 activity. The combination of PhIP with MeIQx induced an oxidative stress and showed synergistic effects on apoptosis. However, PhIP-induced genotoxicity was abolished by a co-exposure with MeIQx. Such an inhibitory effect could be explained by a significant decrease in CYP1A2 activity which is responsible for PhIP genotoxicity. Our findings highlight the need to investigate interactions between HAA when assessing risks for human health and provide new insights in the mechanisms of interaction between PhIP and MeIQx.

  14. Metabolic suppression during mesodermal differentiation of embryonic stem cells identified by single-cell comprehensive gene expression analysis.

    Science.gov (United States)

    Zhou, Yuanshu; Fujisawa, Ikuma; Ino, Kosuke; Matsue, Tomokazu; Shiku, Hitoshi

    2015-09-01

    Flk-1 (VEGF receptor 2) is a well-defined mesodermal progenitor marker and the Flk-1-positive (Flk-1(+)) cells derived from embryonic stem cells (ESCs) have been known to generate hemangioblasts and cardiovascular progenitor cells, which are formed in the early and late stages of differentiation, respectively. In this study, we separated Flk-1(+) and Flk-1(-) cells from spontaneously differentiating embryoid bodies (EBs) of mouse ESCs. We found that cell aggregates derived from late stage Flk-1(+) cells had a relatively small size and a low oxygen consumption rate (OCR) compared with those derived from Flk-1(-) cells. Furthermore, using single-cell comprehensive gene expression analysis, we found that both Flk-1(+) and Flk-1(-) cells could be categorized into subgroups with either low or high glucose metabolic activity. We observed that metabolic suppression occurs in cells expressing an intermediate level of both Nanog and Pou5f1. Taken together, our data suggested that the temporary metabolic suppression is an intrinsic feature of mesodermal differentiation. PMID:26211925

  15. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood ...

  16. Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism.

    Science.gov (United States)

    George, Iniga S; Pascovici, Dana; Mirzaei, Mehdi; Haynes, Paul A

    2015-09-01

    Grapes (Vitis vinifera) are a valuable fruit crop and wine production is a major industry. Global warming and expanded range of cultivation will expose grapes to more temperature stresses in future. Our study investigated protein level responses to abiotic stresses, with particular reference to proteomic changes induced by the impact of four different temperature stress regimes, including both hot and cold temperatures, on cultured grape cells. Cabernet Sauvignon cell suspension cultures grown at 26°C were subjected to 14 h of exposure to 34 and 42°C for heat stress, and 18 and 10°C for cold stress. Cells from the five temperatures were harvested in biological triplicates and label-free quantitative shotgun proteomic analysis was performed. A total of 2042 non-redundant proteins were identified from the five temperature points. Fifty-five proteins were only detected in extreme heat stress conditions (42°C) and 53 proteins were only detected at extreme cold stress conditions (10°C). Gene Ontology (GO) annotations of differentially expressed proteins provided insights into the metabolic pathways that are involved in temperature stress in grape cells. Sugar metabolism displayed switching between alternative and classical pathways during temperature stresses. Additionally, nine proteins involved in the phenylpropanoid pathway were greatly increased in abundance at extreme cold stress, and were thus found to be cold-responsive proteins. All MS data have been deposited in the ProteomeXchange with identifier PXD000977 (http://proteomecentral.proteomexchange.org/dataset/PXD000977). PMID:25959233

  17. Galpha-subunits differentially alter the conformation and agonist affinity of kappa-opioid receptors.

    Science.gov (United States)

    Yan, Feng; Mosier, Philip D; Westkaemper, Richard B; Roth, Bryan L

    2008-02-12

    Although ligand-induced conformational changes in G protein-coupled receptors (GPCRs) are well-documented, there is little direct evidence for G protein-induced changes in GPCR conformation. To investigate this possibility, the effects of overexpressing Galpha-subunits (Galpha16 or Galphai2) with the kappa-opioid receptor (KOR) were examined. The changes in KOR conformation were subequently examined via the substituted cysteine accessibility method (SCAM) in transmembrane domains 6 (TM6) and 7 (TM7) and extracellular loop 2 (EL2). Significant conformational changes were observed on TM7, the extracellular portion of TM6, and EL2. Seven SCAM-sensitive residues (S3107.33, F3147.37, and I3167.39 to Y3207.43) on TM7 presented a cluster pattern when the KOR was exposed to baseline amounts of G protein, and additional residues became sensitive upon overexpression of various G proteins. In TM7, S3117.34 and N3267.49 were found to be sensitive in Galpha16-overexpressed cells and Y3137.36, N3227.45, S3237.46, and L3297.52 in Galphai2-overexpressed cells. In addition, the degree of sensitivity for various TM7 residues was augmented, especially in Galphai2-overexpressed cells. A similar phenomenon was also observed for residues in TM6 and EL2. In addition to an enhanced sensitivity of certain residues, our findings also indicated that a slight rotation was predicted to occur in the upper part of TM7 upon G protein overexpression. These relatively modest conformational changes engendered by G protein overexpression had both profound and differential effects on the abilities of agonists to bind to KOR. These data are significant because they demonstrate that Galpha-subunits differentially modulate the conformation and agonist affinity of a prototypical GPCR. PMID:18205395

  18. Developmental exposure to bisphenol A (BPA) alters sexual differentiation in painted turtles (Chrysemys picta)

    Science.gov (United States)

    Jandegian, Caitlin M.; Deem, Sharon L.; Bhandari, Ramji K.; Holliday, Casey M.; Nicks, Diane; Rosenfeld, Cheryl S.; Selcer, Kyle; Tillitt, Donald E.; vom Saal, Fredrick S.; Velez, Vanessa; Yang, Ying; Holliday, Dawn K.

    2015-01-01

    Environmental chemicals can disrupt endocrine signaling and adversely impact sexual differentiation in wildlife. Bisphenol A (BPA) is an estrogenic chemical commonly found in a variety of habitats. In this study, we used painted turtles (Chrysemys picta), which have temperature-dependent sex determination (TSD), as an animal model for ontogenetic endocrine disruption by BPA. We hypothesized that BPA would override TSD and disrupt sexual development. We incubated farm-raised turtle eggs at the male-producing temperature (26 °C), randomly assigned individuals to treatment groups: control, vehicle control, 17β-estradiol (E2, 20 ng/g-egg) or 0.01, 1.0, 100 μg BPA/g-egg and harvested tissues at hatch. Typical female gonads were present in 89% of the E2-treated “males”, but in none of the control males (n = 35). Gonads of BPA-exposed turtles had varying amounts of ovarian-like cortical (OLC) tissue and disorganized testicular tubules in the medulla. Although the percentage of males with OLCs increased with BPA dose (BPA-low = 30%, BPA-medium = 33%, BPA-high = 39%), this difference was not significant (p = 0.85). In all three BPA treatments, SOX9 patterns revealed disorganized medullary testicular tubules and β-catenin expression in a thickened cortex. Liver vitellogenin, a female-specific liver protein commonly used as an exposure biomarker, was not induced by any of the treatments. Notably, these results suggest that developmental exposure to BPA disrupts sexual differentiation in painted turtles. Further examination is necessary to determine the underlying mechanisms of sex reversal in reptiles and how these translate to EDC exposure in wild populations.

  19. Experimental type II diabetes and related models of impaired glucose metabolism differentially regulate glucose transporters at the proximal tubule brush border membrane.

    Science.gov (United States)

    Chichger, Havovi; Cleasby, Mark E; Srai, Surjit K; Unwin, Robert J; Debnam, Edward S; Marks, Joanne

    2016-06-01

    What is the central question of this study? Although SGLT2 inhibitors represent a promising treatment for patients suffering from diabetic nephropathy, the influence of metabolic disruption on the expression and function of glucose transporters is largely unknown. What is the main finding and its importance? In vivo models of metabolic disruption (Goto-Kakizaki type II diabetic rat and junk-food diet) demonstrate increased expression of SGLT1, SGLT2 and GLUT2 in the proximal tubule brush border. In the type II diabetic model, this is accompanied by increased SGLT- and GLUT-mediated glucose uptake. A fasted model of metabolic disruption (high-fat diet) demonstrated increased GLUT2 expression only. The differential alterations of glucose transporters in response to varying metabolic stress offer insight into the therapeutic value of inhibitors. SGLT2 inhibitors are now in clinical use to reduce hyperglycaemia in type II diabetes. However, renal glucose reabsorption across the brush border membrane (BBM) is not completely understood in diabetes. Increased consumption of a Western diet is strongly linked to type II diabetes. This study aimed to investigate the adaptations that occur in renal glucose transporters in response to experimental models of diet-induced insulin resistance. The study used Goto-Kakizaki type II diabetic rats and normal rats rendered insulin resistant using junk-food or high-fat diets. Levels of protein kinase C-βI (PKC-βI), GLUT2, SGLT1 and SGLT2 were determined by Western blotting of purified renal BBM. GLUT- and SGLT-mediated d-[(3) H]glucose uptake by BBM vesicles was measured in the presence and absence of the SGLT inhibitor phlorizin. GLUT- and SGLT-mediated glucose transport was elevated in type II diabetic rats, accompanied by increased expression of GLUT2, its upstream regulator PKC-βI and SGLT1 protein. Junk-food and high-fat diet feeding also caused higher membrane expression of GLUT2 and its upstream regulator PKC

  20. 1H NMR-based spectroscopy detects metabolic alterations in serum of patients with early-stage ulcerative colitis

    International Nuclear Information System (INIS)

    Highlights: •Twenty ulcerative colitis patients and nineteen healthy controls were enrolled. •Increased 3-hydroxybutyrate, glucose, phenylalanine, and decreased lipid were found. •We report early stage diagnosis of ulcerative colitis using NMR-based metabolomics. -- Abstract: Ulcerative colitis (UC) has seriously impaired the health of citizens. Accurate diagnosis of UC at an early stage is crucial to improve the efficiency of treatment and prognosis. In this study, proton nuclear magnetic resonance (1H NMR)-based metabolomic analysis was performed on serum samples collected from active UC patients (n = 20) and healthy controls (n = 19), respectively. The obtained spectral profiles were subjected to multivariate data analysis. Our results showed that consistent metabolic alterations were present between the two groups. Compared to healthy controls, UC patients displayed increased 3-hydroxybutyrate, β-glucose, α-glucose, and phenylalanine, but decreased lipid in serum. These findings highlight the possibilities of NMR-based metabolomics as a non-invasive diagnostic tool for UC

  1. Chronic cigarette smoke exposure adversely alters 14C-arachidonic acid metabolism in rat lungs, aortas and platelets

    International Nuclear Information System (INIS)

    Male rats were exposed to freshly generated cigarette smoke once daily, 5 times a week for 10 weeks. Inhalation of smoke was verified by elevated carboxyhemoglobin in blood sampled immediately after smoke exposure and by increased lung aryl hydrocarbon hydroxylase activity 24 hours after the last smoke exposure. Aortic rings isolated from smoke-exposed rats synthesized less prostacyclin (PGI2) from 14C-arachidonic acid than rings from sham rats. Platelets from smoke-exposed rats synthesized more thromboxane (TXA2) from 14C-arachidonic acid than platelets from room controls but not those from sham rats. Lung microsomes from smoke-exposed rats synthesized more TXA2 and had a lower PGI2/TXA2 ratio than lung microsomes from room controls and shams. It is concluded that chronic cigarette smoke exposure alters arachidonic acid metabolism in aortas, platelets and lungs in a manner resulting in decreased PGI2 and increased TXA2, thereby creating a condition favoring platelet aggregation and a variety of cardiovascular diseases

  2. Regional cerebral metabolic alterations in dementia of the Alzheimer type: positron emission tomography with [18F]fluorodeoxyglucose

    International Nuclear Information System (INIS)

    Alzheimer disease is the most common cause of dementia in adults. Despite recent advances in our understanding of its anatomy and chemistry, we remain largely ignorant of its pathogenesis, physiology, diagnosis, and treatment. Dynamic positron emission tomography using [18F]fluorodeoxyglucose (FDG) was performed on the Donner 280-crystal ring in 10 subjects with dementia of the Alzheimer type and six healthy age-matched controls. Ratios comparing mean counts per resolution element in frontal, temporoparietal, and entire cortex regions in brain sections 10 mm thick obtained 40-70 min following FDG injection showed relatively less FDG uptake in the temporoparietal cortex bilaterally in all the Alzheimer subjects (p less than 0.01). Left-right alterations were less prominent than the anteroposterior changes. This diminished uptake was due to lowered rates of FDG use and suggests that the metabolic effects of Alzheimer disease are most concentrated in the temporoparietal cortex. Positron emission tomography is a most powerful tool for the noninvasive in vivo assessment of cerebral pathophysiology in dementia

  3. {sup 1}H NMR-based spectroscopy detects metabolic alterations in serum of patients with early-stage ulcerative colitis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying; Lin, Lianjie [Second Department of Gastroenterology, Shengjing Hospital, China Medical University, Shenyang 110004 (China); Xu, Yanbin [Wanlei Life Sciences (Shenyang) Co., Ltd., Shenyang 110179 (China); Lin, Yan; Jin, Yu [Second Department of Gastroenterology, Shengjing Hospital, China Medical University, Shenyang 110004 (China); Zheng, Changqing, E-mail: changqing_zheng@126.com [Second Department of Gastroenterology, Shengjing Hospital, China Medical University, Shenyang 110004 (China)

    2013-04-19

    Highlights: •Twenty ulcerative colitis patients and nineteen healthy controls were enrolled. •Increased 3-hydroxybutyrate, glucose, phenylalanine, and decreased lipid were found. •We report early stage diagnosis of ulcerative colitis using NMR-based metabolomics. -- Abstract: Ulcerative colitis (UC) has seriously impaired the health of citizens. Accurate diagnosis of UC at an early stage is crucial to improve the efficiency of treatment and prognosis. In this study, proton nuclear magnetic resonance ({sup 1}H NMR)-based metabolomic analysis was performed on serum samples collected from active UC patients (n = 20) and healthy controls (n = 19), respectively. The obtained spectral profiles were subjected to multivariate data analysis. Our results showed that consistent metabolic alterations were present between the two groups. Compared to healthy controls, UC patients displayed increased 3-hydroxybutyrate, β-glucose, α-glucose, and phenylalanine, but decreased lipid in serum. These findings highlight the possibilities of NMR-based metabolomics as a non-invasive diagnostic tool for UC.

  4. The alteration of H4-K16ac and H3-K27met influences the differentiation of neural stem cells.

    Science.gov (United States)

    An, Mingrui; Shen, Hongyan; Cao, Jun; Pei, Xiucong; Chang, Yanxu; Ma, Shuaipeng; Bao, Jintao; Zhang, Xuefei; Bai, Xue; Ma, Yuanhui

    2016-09-15

    The neural stem cell therapy provides a promising future for patients with central nerve system damage, thus an insight into its differentiation mechanism is urgently needed. Herein, we aimed to identify various histone modifications and reveal their impact on the differentiation of neural stem cells (NSCs) toward neurons. Firstly, we labeled primary NSCs using the stable isotope labeling with amino acids in cell culture (SILAC) technique. Then we induced these NSCs to differentiate by all-trans retinoic acid (atRA) or SB216763. Next, we identified the alteration of histone modifications in early-differentiated NSCs by mass spectrometry and verified them by Western blot. Interestingly, these modification alterations and phenotype changes were found similar in NSCs induced by the two different drugs. More interestingly, during the differentiation process H3-K27met was significantly up-regulated while H4-K16ac was not altered at the global level but down-regulated in some low-abundance combinatorial codes. We inhibited the methyltransferase of H3-K27 and deacetylase of H4-K16 simultaneously and found the differentiation procedure was obviously delayed. The function of H4-K16ac and H3-K27met in NSCs differentiation would be useful to reveal the differentiation mechanism and valuable for further neural stem cell therapy. PMID:27396496

  5. Visualizing digestive organ morphology and function using differential fatty acid metabolism in live zebrafish

    OpenAIRE

    Carten, Juliana Debrito; Bradford, Mary Katherine; Farber, Steven Arthur

    2011-01-01

    Lipids are essential for cellular function as sources of fuel, critical signaling molecules and membrane components. Deficiencies in lipid processing and transport underlie many metabolic diseases. To better understand metabolic function as it relates to disease etiology, a whole animal approach is advantageous, one in which multiple organs and cell types can be assessed simultaneously in vivo. Towards this end, we have developed an assay to visualize fatty acid (FA) metabolism in larval zebr...

  6. Foods that are perceived as healthy or unhealthy differentially alter young women's state body image.

    Science.gov (United States)

    Hayes, Jacqueline F; D'Anci, Kristen E; Kanarek, Robin B

    2011-10-01

    Body image can be influenced by day-to-day events, including food intake. The present study investigated the effects of foods typically perceived as "healthy" or "unhealthy" on state body image and mood. College-aged women were told the experiment was designed to assess the effects of food on cognition. Using a between-subjects design, participants consumed isocaloric amounts of foods perceived to be healthy (banana) or unhealthy (donut) or ate nothing. Next, participants completed three cognitive tasks. Prior to eating and following the cognitive tests, participants completed the BISS, POMS, the Figure Rating Scale, and the Restraint Scale. Body satisfaction decreased following intake of a donut, but was not altered in the other conditions. Depression scores significantly decreased after intake of either a donut or banana, but did not decrease in the no-food condition. Tension scores decreased significantly after consumption of a banana and in the no-food condition, but did not decrease following consumption of a donut. These results indicate that intake of a food that is perceived as unhealthy negatively affects state body image. PMID:21669241

  7. Trypanosoma cruzi cells undergo an alteration in protein N-glycosylation upon differentiation

    International Nuclear Information System (INIS)

    Trypanosoma cruzi epimastigotes (insect gut stage) incubated with [U-14C]glucose synthesized Man9GlcNAc2-P-P-dolichol as practically the sole dolichol-P-P derivative. On the other hand, amastigotes (intracellular stage) of the same parasite synthesized four to five times more Man7GlcNAc2-P-P-dolichol than Man9GlcNAc2-P-P-dolichol. Evidence is presented indicating that, whereas in epimastigotes only Man9GlcNAc2 was transferred to proteins, in amastigotes both Man7GlcNAc2 and Man9GlcNAc2 were transferred in direct proportion to their respective amounts bound to dolichol-P-P. The change in the mechanism of protein N-glycosylation could be observed upon in vitro differentiation of amastigotes to epimastigotes. The dissimilar size of the main oligosaccharides transferred to proteins in epimastigotes and amastigotes was responsible for differences in two structural features of high mannose-type oligosaccharides present in mature glycoproteins of both forms of the parasite, namely the average size of the compounds and the structure of the main species of some isomer oligosaccharides

  8. Altered retinal cell differentiation in the AP-3 delta mutant (Mocha) mouse.

    Science.gov (United States)

    Baguma-Nibasheka, Mark; Kablar, Boris

    2009-11-01

    Adaptor-related protein complex 3 delta 1 (Ap3d1) encodes the delta 1 subunit of an adaptor protein regulating intracellular vesicle-mediated transport, and the Ap3d-deletion mutant (Mocha) mouse undergoes rapid photoreceptor degeneration leading to blindness soon after birth. Previous microarray analysis revealed Ap3d down-regulation in the retina of mouse embryos specifically lacking cholinergic amacrine cells as a result of the absence of skeletal musculature. To investigate the role of Ap3d in the determination of retinal cell fate, the present study examined retinal morphology in newborn Ap3d-/- mice. The Ap3d-/- retina showed a complete absence of cholinergic amacrine cells and a decrease in parvalbumin-expressing amacrine cells and syntaxin- and VC1.1-expressing amacrine precursor cells, but had a normal number of cell layers and number of cells in each layer with no detectable difference in cell proliferation or apoptosis. These findings indicate that, despite having no apparent effect on the basic spatial organization of the retina at this stage of development, Ap3d could be involved in the regulation of progenitor cell competence and the eventual ratio of resulting differentiated cells. Finding the mouse mutant which phenocopies the eye defect seen in fetuses with no striated muscle was accomplished by the Systematic Subtractive Microarray Analysis Approach (SSMAA), explained in the discussion section. PMID:19631730

  9. Low-dose photon irradiation alters cell differentiation via activation of hIK channels.

    Science.gov (United States)

    Roth, Bastian; Gibhardt, Christine S; Becker, Patrick; Gebhardt, Manuela; Knoop, Jan; Fournier, Claudia; Moroni, Anna; Thiel, Gerhard

    2015-08-01

    To understand the impact of ionizing irradiation from diagnostics and radiotherapy on cells, we examined K(+) channel activity before and immediately after exposing cells to X-rays. Already, low dose in the cGy range caused in adenocarcinoma A549 cells within minutes a hyperpolarization following activation of the human intermediate-conductance Ca(2+)-activated K(+) channel (hIK). The response was specific for cells, which functionally expressed hIK channels and in which hIK activity was low before irradiation. HEK293 cells, which do not respond to X-ray irradiation, accordingly develop a sensitivity to this stress after heterologous expression of hIK channels. The data suggest that hIK activation involves a Ca(2+)-mediated signaling cascade because channel activation is suppressed by a strong cytosolic Ca(2+) buffer. The finding that an elevation of H2O2 causes an increase in the concentration of cytosolic Ca(2+) suggests that radicals, which emerge early in response to irradiation, trigger this Ca(2+) signaling cascade. Inhibition of hIK channels by specific blockers clotrimazole and TRAM-34 slowed cell proliferation and migration in "wound" scratch assays; ionizing irradiation, in turn, stimulated the latter process presumably via its activation of the hIK channels. These data stress an indirect radiosensitivity of hIK channels with an impact on cell differentiation. PMID:25277267

  10. Curcumin inhibits cellular condensation and alters microfilament organization during chondrogenic differentiation of limb bud mesenchymal cells.

    Science.gov (United States)

    Kim, Dong Kyun; Kim, Song Ja; Kang, Shin Sung; Jin, Eun Jung

    2009-09-30

    Curcumin is a well known natural polyphenol product isolated from the rhizome of the plant Curcuma longa, anti-inflammatory agent for arthritis by inhibiting synthesis of inflammatory prostaglandins. However, the mechanisms by which curcumin regulates the functions of chondroprogenitor, such as proliferation, precartilage condensation, cytoskeletal organization or overall chondrogenic behavior, are largely unknown. In the present report, we investigated the effects and signaling mechanism of curcumin on the regulation of chondrogenesis. Treating chick limb bud mesenchymal cells with curcumin suppressed chondrogenesis by stimulating apoptotic cell death. It also inhibited reorganization of the actin cytoskeleton into a cortical pattern concomitant with rounding of chondrogenic competent cells and down-regulation of integrin beta1 and focal adhesion kinase (FAK) phosphorylation. Curcumin suppressed the phosphorylation of Akt leading to Akt inactivation. Activation of Akt by introducing a myristoylated, constitutively active form of Akt reversed the inhibitory actions of curcumin during chondrogenesis. In summary, for the first time, we describe biological properties of curcumin during chondrogenic differentiation of chick limb bud mesenchymal cells. Curcumin suppressed chondrogenesis by stimulating apoptotic cell death and down-regulating integrin-mediated reorganization of actin cytoskeleton via modulation of Akt signaling. PMID:19478554

  11. Altered melanocyte differentiation and retinal pigmented epithelium transdifferentiation induced by Mash1 expression in pigment cell precursors.

    Science.gov (United States)

    Lanning, Jessica L; Wallace, Jaclyn S; Zhang, Deming; Diwakar, Ganesh; Jiao, Zhongxian; Hornyak, Thomas J

    2005-10-01

    Transcription factor genes governing pigment cell development that are associated with spotting mutations in mice include members of several structural transcription factor classes but not members of the basic helix-loop-helix (bHLH) class, important for neurogenesis and myogenesis. To determine the effects of bHLH factor expression on pigment cell development, the neurogenic bHLH factor Mash1 was expressed early in pigment cell development in transgenic mice from the dopachrome tautomerase (Dct) promoter. Dct:Mash1 transgenic founders exhibit variable microphthalmia and patchy coat color hypopigmentation. Transgenic F1 mice exhibit microphthalmia with complete coat color dilution. Marker analysis demonstrates that Mash1 expression in the retinal pigmented epithelium (RPE) initiates neurogenesis in this cell layer, whereas expression in remaining neural crest-derived melanocytes alters their differentiation, in part by profoundly downregulating expression of the p (pink-eyed dilution) gene, while maintaining their cell fate. The effects of transcriptional perturbation of pigment cell precursors by Mash1 further highlight differences between pigment cells of distinct developmental origins, and suggest a mechanism for the alteration of melanogenesis to result in marked coat color dilution. PMID:16185282

  12. Differential gene regulation under altered gravity conditions in follicular thyroid cancer cells: relationship between the extracellular matrix and the cytoskeleton.

    Science.gov (United States)

    Ulbrich, Claudia; Pietsch, Jessica; Grosse, Jirka; Wehland, Markus; Schulz, Herbert; Saar, Katrin; Hübner, Norbert; Hauslage, Jens; Hemmersbach, Ruth; Braun, Markus; van Loon, Jack; Vagt, Nicole; Egli, Marcel; Richter, Peter; Einspanier, Ralf; Sharbati, Soroush; Baltz, Theo; Infanger, Manfred; Ma, Xiao; Grimm, Daniela

    2011-01-01

    Extracellular matrix proteins, adhesion molecules, and cytoskeletal proteins form a dynamic network interacting with signalling molecules as an adaptive response to altered gravity. An important issue is the exact differentiation between real microgravity responses of the cells or cellular reactions to hypergravity and/or vibrations. To determine the effects of real microgravity on human cells, we used four DLR parabolic flight campaigns and focused on the effects of short-term microgravity (22 s), hypergravity (1.8 g), and vibrations on ML-1 thyroid cancer cells. No signs of apoptosis or necrosis were detectable. Gene array analysis revealed 2,430 significantly changed transcripts. After 22 s microgravity, the F-actin and cytokeratin cytoskeleton was altered, and ACTB and KRT80 mRNAs were significantly upregulated after the first and thirty-first parabolas. The COL4A5 mRNA was downregulated under microgravity, whereas OPN and FN were significantly upregulated. Hypergravity and vibrations did not change ACTB, KRT-80 or COL4A5 mRNA. MTSS1 and LIMA1 mRNAs were downregulated/slightly upregulated under microgravity, upregulated in hypergravity and unchanged by vibrations. These data indicate that the graviresponse of ML-1 cells occurred very early, within the first few seconds. Downregulated MTSS1 and upregulated LIMA1 may be an adaptive mechanism of human cells for stabilizing the cytoskeleton under microgravity conditions. PMID:21865726

  13. Alterations in mitochondrial respiratory functions, redox metabolism and apoptosis by oxidant 4-hydroxynonenal and antioxidants curcumin and melatonin in PC12 cells

    International Nuclear Information System (INIS)

    Cellular oxidative stress and alterations in redox metabolisms have been implicated in the etiology and pathology of many diseases including cancer. Antioxidant treatments have been proven beneficial in controlling these diseases. We have recently shown that 4-hydroxynonenal (4-HNE), a by-product of lipid peroxidation, induces oxidative stress in PC12 cells by compromising the mitochondrial redox metabolism. In this study, we have further investigated the deleterious effects of 4-HNE on mitochondrial respiratory functions and apoptosis using the same cell line. In addition, we have also compared the effects of two antioxidants, curcumin and melatonin, used as chemopreventive agents, on mitochondrial redox metabolism and respiratory functions in these cells. 4-HNE treatment has been shown to cause a reduction in glutathione (GSH) pool, an increase in reactive oxygen species (ROS), protein carbonylation and apoptosis. A marked inhibition in the activities of the mitochondrial respiratory enzymes, cytochrome c oxidase and aconitase was observed after 4-HNE treatment. Increased nuclear translocation of NF-kB/p65 protein was also observed after 4-HNE treatment. Curcumin and melatonin treatments, on the other hand, maintained the mitochondrial redox and respiratory functions without a marked effect on ROS production and cell viability. These results suggest that 4-HNE-induced cytotoxicity may be associated, at least in part, with the altered mitochondrial redox and respiratory functions. The alterations in mitochondrial energy metabolism and redox functions may therefore be critical in determining the difference between cell death and survival

  14. Metabolic alterations and drug sensitivity of tyrosine kinase inhibitor resistant leukemia cells with a FLT3/ITD mutation.

    Science.gov (United States)

    Huang, Amin; Ju, Huai-Qiang; Liu, Kaiyan; Zhan, Guilian; Liu, Daolu; Wen, Shijun; Garcia-Manero, Guillermo; Huang, Peng; Hu, Yumin

    2016-07-28

    Internal tandem duplication (ITD) of the juxtamembrane region of FMS-like tyrosine kinase-3 (FLT3) receptor is a common type of mutation in adult acute myeloid leukemia (AML), and patient response to FLT3 inhibitors appears to be transient due to the emergence of drug resistance. We established two sorafenib-resistant cell lines carrying FLT3/ITD mutations, including the murine BaF3/ITD-R and human MV4-11-R cell lines. Gene expression profile analysis of the resistant and parental cells suggests that the highest ranked molecular and cellular functions of the differentially expressed genes are related to mitochondrial dysfunction. Both murine and human resistant cell lines display a longer doubling time, along with a significant inhibition of mitochondrial respiratory chain activity and substantial upregulation of glycolysis. The sorafenib-resistant cells exhibit increased expression of a majority of glycolytic enzymes, including hexokinase 2, which is also highly expressed in the mitochondrial fraction and is associated with resistance to apoptotic cell death. The sorafenib-resistant cells are collaterally sensitive to a number of glycolytic inhibitors including 2-deoxyglucose and 3-bromopyruvate propylester. Our study reveals a metabolic signature of sorafenib-resistant cells and suggests that glycolytic inhibition may override such resistance and warrant further clinical investigation. PMID:27132990

  15. Proteomic Profiling of the Dystrophin-Deficient MDX Heart Reveals Drastically Altered Levels of Key Metabolic and Contractile Proteins

    Directory of Open Access Journals (Sweden)

    Caroline Lewis

    2010-01-01

    Full Text Available Although Duchenne muscular dystrophy is primarily classified as a neuromuscular disease, cardiac complications play an important role in the course of this X-linked inherited disorder. The pathobiochemical steps causing a progressive decline in the dystrophic heart are not well understood. We therefore carried out a fluorescence difference in-gel electrophoretic analysis of 9-month-old dystrophin-deficient versus age-matched normal heart, using the established MDX mouse model of muscular dystrophy-related cardiomyopathy. Out of 2,509 detectable protein spots, 79 2D-spots showed a drastic differential expression pattern, with the concentration of 3 proteins being increased, including nucleoside diphosphate kinase and lamin-A/C, and of 26 protein species being decreased, including ATP synthase, fatty acid binding-protein, isocitrate dehydrogenase, NADH dehydrogenase, porin, peroxiredoxin, adenylate kinase, tropomyosin, actin, and myosin light chains. Hence, the lack of cardiac dystrophin appears to trigger a generally perturbed protein expression pattern in the MDX heart, affecting especially energy metabolism and contractile proteins.

  16. A hypothalamic–pituitary–adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion

    Energy Technology Data Exchange (ETDEWEB)

    Xu, D. [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Wu, Y.; Liu, F.; Liu, Y.S.; Shen, L.; Lei, Y.Y.; Liu, J. [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Ping, J. [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China); Qin, J. [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Zhang, C. [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Chen, L.B. [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Magdalou, J. [UMR 7561 CNRS-Nancy Université, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Wang, H., E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Research Center of Food and Drug Evaluation, Wuhan University, Wuhan 430071 (China)

    2012-11-01

    Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic–pituitary–adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; the level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. -- Highlights: ► Prenatal caffeine ingestion induced HPA axis dysfunction in IUGR offspring rats. ► Caffeine induced a neuroendocrine metabolic programmed alteration in offspring rats. ► Caffeine induced a functional injury

  17. A hypothalamic–pituitary–adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion

    International Nuclear Information System (INIS)

    Caffeine is a definite factor of intrauterine growth retardation (IUGR). Previously, we have confirmed that prenatal caffeine ingestion inhibits the development of hypothalamic–pituitary–adrenal (HPA) axis, and alters the glucose and lipid metabolism in IUGR fetal rats. In this study, we aimed to verify a programmed alteration of neuroendocrine metabolism in prenatal caffeine ingested-offspring rats. The results showed that prenatal caffeine (120 mg/kg.day) ingestion caused low body weight and high IUGR rate of pups; the concentrations of blood adrenocorticotropic hormone (ACTH) and corticosterone in caffeine group were significantly increased in the early postnatal period followed by falling in late stage; the level of blood glucose was unchanged, while blood total cholesterol (TCH) and triglyceride (TG) were markedly enhanced in adult. After chronic stress, the concentrations and the gain rates of blood ACTH and corticosterone were obviously increased, meanwhile, the blood glucose increased while the TCH and TG decreased in caffeine group. Further, the hippocampal mineralocorticoid receptor (MR) expression in caffeine group was initially decreased and subsequently increased after birth. After chronic stress, the 11β-hydroxysteroid dehydrogenase-1, glucocorticoid receptor (GR), MR as well as the MR/GR ratio were all significantly decreased. These results suggested that prenatal caffeine ingestion induced the dysfunction of HPA axis and associated neuroendocrine metabolic programmed alteration in IUGR offspring rats, which might be related with the functional injury of hippocampus. These observations provide a valuable experimental basis for explaining the susceptibility of IUGR offspring to metabolic syndrome and associated diseases. -- Highlights: ► Prenatal caffeine ingestion induced HPA axis dysfunction in IUGR offspring rats. ► Caffeine induced a neuroendocrine metabolic programmed alteration in offspring rats. ► Caffeine induced a functional injury

  18. Age at developmental cortical injury differentially Alters corpus callosum volume in the rat

    Directory of Open Access Journals (Sweden)

    Rosen Glenn D

    2007-11-01

    Full Text Available Abstract Background Freezing lesions to developing rat cortex induced between postnatal day (P one and three (P1 – 3 lead to malformations similar to human microgyria, and further correspond to reductions in brain weight and cortical volume. In contrast, comparable lesions on P5 do not produce microgyric malformations, nor the changes in brain weight seen with microgyria. However, injury occurring at all three ages does lead to rapid auditory processing deficits as measured in the juvenile period. Interestingly, these deficits persist into adulthood only in the P1 lesion case 1. Given prior evidence that early focal cortical lesions induce abnormalities in cortical morphology and connectivity 1234, we hypothesized that the differential behavioral effects of focal cortical lesions on P1, P3 or P5 may be associated with underlying neuroanatomical changes that are sensitive to timing of injury. Clinical studies indicate that humans with perinatal brain injury often show regional reductions in corpus callosum size and abnormal symmetry, which frequently correspond to learning impairments 567. Therefore, in the current study the brains of P1, 3 or 5 lesion rats, previously evaluated for brain weight, and cortical volume changes and auditory processing impairments (P21-90, were further analyzed for changes in corpus callosum volume. Results Results showed a significant main effect of Treatment on corpus callosum volume [F (1,57 = 10.2, P Conclusion Decrements in corpus callosum volume in the P1 and 3 lesion groups are consistent with the reductions in brain weight and cortical volume previously reported for microgyric rats 18. Current results suggest that disruption to the cortical plate during early postnatal development may lead to more widely dispersed neurovolumetric anomalies and subsequent behavioral impairments 1, compared with injury that occurs later in development. Further, these results suggest that in a human clinical setting decreased

  19. Retinoic Acid Induces Embryonic Stem Cell Differentiation by Altering Both Encoding RNA and microRNA Expression.

    Directory of Open Access Journals (Sweden)

    Jingcheng Zhang

    Full Text Available Retinoic acid (RA is a vitamin A metabolite that is essential for early embryonic development and promotes stem cell neural lineage specification; however, little is known regarding the impact of RA on mRNA transcription and microRNA levels on embryonic stem cell differentiation. Here, we present mRNA microarray and microRNA high-output sequencing to clarify how RA regulates gene expression. Using mRNA microarray analysis, we showed that RA repressed pluripotency-associated genes while activating ectoderm markers in mouse embryonic stem cells (mESCs. Moreover, RA modulated the DNA methylation of mESCs by altering the expression of epigenetic-associated genes such as Dnmt3b and Dnmt3l. Furthermore, H3K4me2, a pluripotent histone modification, was repressed by RA stimulation. From microRNA sequence data, we identified two downregulated microRNAs, namely, miR-200b and miR-200c, which regulated the pluripotency of stem cells. We found that miR-200b or miR-200c deficiency suppressed the expression of pluripotent genes, including Oct4 and Nanog, and activated the expression of the ectodermal marker gene Nestin. These results demonstrate that retinoid induces mESCs to differentiate by regulating miR-200b/200c. Our findings provide the landscapes of mRNA and microRNA gene networks and indicate the crucial role of miR-200b/200c in the RA-induced differentiation of mESCs.

  20. Retinoic Acid Induces Embryonic Stem Cell Differentiation by Altering Both Encoding RNA and microRNA Expression

    Science.gov (United States)

    Yu, Mengying; Wu, Haibo; Ai, Zhiying; Wu, Yongyan; Liu, Hongliang; Du, Juan; Guo, Zekun; Zhang, Yong

    2015-01-01

    Retinoic acid (RA) is a vitamin A metabolite that is essential for early embryonic development and promotes stem cell neural lineage specification; however, little is known regarding the impact of RA on mRNA transcription and microRNA levels on embryonic stem cell differentiation. Here, we present mRNA microarray and microRNA high-output sequencing to clarify how RA regulates gene expression. Using mRNA microarray analysis, we showed that RA repressed pluripotency-associated genes while activating ectoderm markers in mouse embryonic stem cells (mESCs). Moreover, RA modulated the DNA methylation of mESCs by altering the expression of epigenetic-associated genes such as Dnmt3b and Dnmt3l. Furthermore, H3K4me2, a pluripotent histone modification, was repressed by RA stimulation. From microRNA sequence data, we identified two downregulated microRNAs, namely, miR-200b and miR-200c, which regulated the pluripotency of stem cells. We found that miR-200b or miR-200c deficiency suppressed the expression of pluripotent genes, including Oct4 and Nanog, and activated the expression of the ectodermal marker gene Nestin. These results demonstrate that retinoid induces mESCs to differentiate by regulating miR-200b/200c. Our findings provide the landscapes of mRNA and microRNA gene networks and indicate the crucial role of miR-200b/200c in the RA-induced differentiation of mESCs. PMID:26162091

  1. The potential role of inhibitor of differentiation-3 in human adipose tissue remodeling and metabolic health

    DEFF Research Database (Denmark)

    Svendstrup, Mathilde; Vestergaard, Henrik

    2014-01-01

    Metabolic health in obesity is known to differ among individuals, and the distribution of visceral (VAT) and subcutaneous adipose tissue (SAT) plays an important role in this regard. Adipose tissue expansion is dependent on new blood vessel formation in order to prevent hypoxia and inflammation in...... the tissue. Regulation of angiogenesis in SAT and VAT in response to diet is therefore crucial for the metabolic outcome in obesity. Knowledge about the underlying genetic mechanisms determining metabolic health in obesity is very limited. We aimed to review the literature of the inhibitor of...

  2. Exposure to a northern contaminant mixture (NCM alters hepatic energy and lipid metabolism exacerbating hepatic steatosis in obese JCR rats.

    Directory of Open Access Journals (Sweden)

    Ryan J Mailloux

    Full Text Available Non-alcoholic fatty liver disease (NAFLD, defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to 10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with

  3. The seeds from Plantago ovata lower plasma lipids by altering hepatic and bile acid metabolism in guinea pigs.

    Science.gov (United States)

    Romero, Ana Lourdes; West, Kristy L; Zern, Tosca; Fernandez, Maria Luz

    2002-06-01

    Psyllium, the husks from Plantago ovata (PO), is recognized as a potent agent in lowering plasma cholesterol. In this study, we tested the potential hypolipidemic effects of the seeds from PO and the mechanisms associated with the lowering of plasma lipids. Male Hartley guinea pigs (n = 30; 10 per group) were fed either a control diet or diets containing 7.5 or 10 g/100 g PO for 4 wk. Diets were identical in composition except for the fiber source. The control diet contained 10 g/100 g cellulose and 2.5 g/100 g guar gum, whereas the PO diets were adjusted to a total of 12.5 g/100 g fiber with cellulose. Although a dose response was not observed, plasma triglycerides and LDL cholesterol were 34 and 23% lower in the PO groups compared with the control (P < 0.01). Lecithin cholesterol acyltransferase (LCAT) and cholesterol ester transfer protein (CETP) activities were significantly affected by the PO diets. The control group had 100 and 36% higher LCAT and CETP (P < 0.01) activities, respectively, compared with the PO groups. Hepatic total and free cholesterol concentrations were not affected by PO, but cholesteryl ester concentrations were 50% (P < 0.01) lower in the PO groups compared with the control. The activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme of cholesterol synthesis was up-regulated in the PO groups by 37%. Similarly, the activity of cholesterol 7alpha-hydroxylase, the regulatory enzyme of cholesterol catabolism to bile acids was 33% higher in the PO groups (P < 0.02). Fecal bile acids were 3 times higher in the PO groups than in the control group. These results suggest that PO exerts its hypolipidemic effect by affecting bile acid absorption and altering hepatic cholesterol metabolism. PMID:12042433

  4. Implications of altered glutathione metabolism in aspirin-induced oxidative stress and mitochondrial dysfunction in HepG2 cells.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available We have previously reported that acetylsalicylic acid (aspirin, ASA induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO, prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC, cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment.

  5. Traditional Chinese Medicine for Metabolic Syndrome via TCM Pattern Differentiation: Tongue Diagnosis for Predictor.

    Science.gov (United States)

    Lee, Tsung-Chieh; Lo, Lun-Chien; Wu, Fang-Chen

    2016-01-01

    Metabolic syndrome is a morbid condition, which is manifested by central obesity, abnormal glucose tolerance, lipodystrophy, and hypertension. Traditional Chinese medicine (TCM) clarifies that obesity is classified as phlegm-dampness. It is often accompanied with qi stagnation and blood stasis. One hundred and two overweight adults, who did not receive lipid-lowering drugs, were enrolled for analysis. The exclusion criteria were adults having malignancy disease, DM, and renal disease or who were pregnant or lactating. The study was divided into two groups: metabolic syndrome group (MetS) and nonmetabolic syndrome group (nMetS). The modern tongue analysis and heart rate variability devices for data analysis and Council on Nutrition Appetite Questionnaire (CNAQ) for appetite evaluation were used. Obesity patients with metabolic syndrome obviously have lower CNAQ score. The 6 items of CNAQ between two groups have significant difference in variation (P heart rate variability in metabolic syndrome patients. PMID:27313640

  6. Differential metabolism of 3FDT and docetaxel in RLMs, rats, and HLMs.

    Science.gov (United States)

    Tang, Mei-Lin; Zhou, Lu; Chang, Jun; Hu, Zhuo-Han; Qin, Yan; Sun, Xun

    2016-05-01

    3FDT, an analog of docetaxel with a blocked metabolism at its 3'-N-tert-butyloxyl group with three fluorine atoms, exhibits more potent cytotoxicity than docetaxel both with human cancer cell line SK-OV-3 in vitro and with human non-small cell lung cancer A549 xenografts in vivo. To further develop pharmacodynamically and pharmacokinetically favorable fluorinated docetaxel analogs as anticancer agents, we chose 3FDT as the model compound to identify the metabolites of 3FDT in RLMs, rats, and HLMs and the cytochrome P450 enzymes responsible for the metabolism of 3FDT. Our findings indicated that the major metabolic site switched from the C3' appendage for docetaxel to the taxane ring for 3FDT, and the main metabolizing P450 enzymes switched from CYP3A to CYP3A4 and CYP2E1. PMID:26922231

  7. Metabolic and Pharmacokinetic Differentiation of STX209 and Racemic Baclofen in Humans

    OpenAIRE

    Raymundo Sanchez-Ponce; Li-Quan Wang; Wei Lu; Jana von Hehn; Maryann Cherubini; Roger Rush

    2012-01-01

    STX209 is an exploratory drug comprising the single, active R-enantiomer of baclofen which is in later stage clinical trials for the treatment of fragile x syndrome (FXS) and autism spectrum disorders (ASD). New clinical data in this article on the metabolism and pharmacokinetics of the R- and S-enantiomers of baclofen presents scientific evidence for stereoselective metabolism of only S-baclofen to an abundant oxidative deamination metabolite that is sterically resolved as the S-enantiomeric...

  8. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    International Nuclear Information System (INIS)

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage

  9. Differential regulation of metabolism by nitric oxide and S-nitrosothiols in endothelial cells

    OpenAIRE

    Diers, Anne R.; Broniowska, Katarzyna A.; Darley-Usmar, Victor M.; Hogg, Neil

    2011-01-01

    S-nitrosation of thiols in key proteins in cell signaling pathways is thought to be an important contributor to nitric oxide (NO)-dependent control of vascular (patho)physiology. Multiple metabolic enzymes are targets of both NO and S-nitrosation, including those involved in glycolysis and oxidative phosphorylation. Thus it is important to understand how these metabolic pathways are integrated by NO-dependent mechanisms. Here, we compared the effects of NO and S-nitrosation on both glycolysis...

  10. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Richardson, Jason R. [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States); Heck, Diane E. [Environmental Science, School of Health Sciences and Practice, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.

  11. High fat and/or high salt intake during pregnancy alters maternal meta‐inflammation and offspring growth and metabolic profiles

    OpenAIRE

    Reynolds, Clare M.; Vickers, Mark H; Harrison, Claudia J; Stephanie A. Segovia; Gray, Clint

    2014-01-01

    Abstract A high intake of fat or salt during pregnancy perturbs placental function, alters fetal development, and predisposes offspring to metabolic disease in adult life. Despite its relevance to modern dietary habits, the developmental programming effects of excessive maternal fat and salt, fed in combination, have not been examined. We investigated the effects of moderately high maternal fat and/or salt intake on maternal metainflammation and its consequences on fetal and weanling growth a...

  12. Alterations in local cerebral metabolic rates for glucose (LCMRGlc) in childhood epilepsies as determined with FDG and PET

    International Nuclear Information System (INIS)

    The authors investigated LCMRGlc in Lennox-Gastant Syndrome (LGS) (n=15), infantile spasm (IS) (n=14) and Sturge-Weber Syndrome (SWS) (n=5). In children with LGS, 3 distinct metabolic patterns are seen interically: 1) unilateral focal hypometabolism in frontal or temporal lobes, 2) unilateral diffuse hypometabolism, and 3) bilateral diffuse hypometabolism. Therapeutic implications of this classification are: surgical resection in focal (i.e., as for partial epilepsy), corpus callosotomy in diffuse unilateral, and elimination of surgery for those with bilateral diffuse hypometabolism. Babies with idiopathic IS showed symmetrical hypometabolism of lenticular nuclei and midbrain/brain stem compared to cortex and is characterized by slightly better prognosis. In contrast, babies with symtomatic IS had additional CMRGlc disturbances such as bilateral assymetric and multi focal hypometabolism in infant with neurofibromatosis; right parieto-occipital hypometabolims in infant with tuberous sclerosis; intense hypermetabolism of hypothalamus (34.5 vs 3.18 μmoles/-min/100g in other regions) in another where x-ray CT showed only obstructive hydrocephalus. Findings support classical notion of subcortical involvement in this disorder. In SWS, PET showed marked hypometabolism in affected hemisphere in older children, while a 9 month old showed increased LCMRGlc unilaterally (40-50 vs 28-44 μ moles/min/100g contralateral) with cross cerebellar hypermetabolism (48-50 vs 27-31 μ moles/min/100g) with no behavioral or EEG evidence of seizure during study. PET studies of LCMRGlc appear sensitive and useful in classifying heterogeneous syndromes into subtypes regarding differential therapy and prognosis, and provide more comprehensive identification of sites of disturbance for investigating mechanisms of these disorders

  13. Different gene-expression profiles for the poorly differentiated carcinoma and the highly differentiated papillary adenocarcinoma in mammary glands support distinct metabolic pathways

    International Nuclear Information System (INIS)

    Deregulation of Stat5 in the mammary gland of transgenic mice causes tumorigenesis. Poorly differentiated carcinoma and highly differentiated papillary adenocarcinoma tumors evolve. To distinguish the genes and elucidate the cellular processes and metabolic pathways utilized to preserve these phenotypes, gene-expression profiles were analyzed. Mammary tumors were excised from transgenic mice carrying a constitutively active variant of Stat5, or a Stat5 variant lacking s transactivation domain. These tumors displayed either the carcinoma or the papillary adenocarcinoma phenotypes. cRNAs, prepared from each tumor were hybridized to an Affymetrix GeneChip® Mouse Genome 430A 2.0 array. Gene-ontology analysis, hierarchical clustering and biological-pathway analysis were performed to distinct the two types of tumors. Histopathology and immunofluorescence staining complemented the comparison between the tumor phenotypes. The nucleus-cytoskeleton-plasma membrane axis is a major target for differential gene expression between phenotypes. In the carcinoma, stronger expression of genes coding for specific integrins, cytoskeletal proteins and calcium-binding proteins highlight cell-adhesion and motility features of the tumor cells. This is supported by the higher expression of genes involved in O-glycan synthesis, TGF-β, activin, their receptors and Smad3, as well as the Notch ligands and members of the γ-secretase complex that enable Notch nuclear localization. The Wnt pathway was also a target for differential gene expression. Higher expression of genes encoding the degradation complex of the canonical pathway and limited TCF expression in the papillary adenocarcinoma result in membranal accumulation of β-catenin, in contrast to its nuclear translocation in the carcinoma. Genes involved in cell-cycle arrest at G1 and response to DNA damage were more highly expressed in the papillary adenocarcinomas, as opposed to favored G2/M regulation in the carcinoma tumors. At least

  14. Different gene-expression profiles for the poorly differentiated carcinoma and the highly differentiated papillary adenocarcinoma in mammary glands support distinct metabolic pathways

    Directory of Open Access Journals (Sweden)

    Barash Itamar

    2008-09-01

    Full Text Available Abstract Background Deregulation of Stat5 in the mammary gland of transgenic mice causes tumorigenesis. Poorly differentiated carcinoma and highly differentiated papillary adenocarcinoma tumors evolve. To distinguish the genes and elucidate the cellular processes and metabolic pathways utilized to preserve these phenotypes, gene-expression profiles were analyzed. Methods Mammary tumors were excised from transgenic mice carrying a constitutively active variant of Stat5, or a Stat5 variant lacking s transactivation domain. These tumors displayed either the carcinoma or the papillary adenocarcinoma phenotypes. cRNAs, prepared from each tumor were hybridized to an Affymetrix GeneChip® Mouse Genome 430A 2.0 array. Gene-ontology analysis, hierarchical clustering and biological-pathway analysis were performed to distinct the two types of tumors. Histopathology and immunofluorescence staining complemented the comparison between the tumor phenotypes. Results The nucleus-cytoskeleton-plasma membrane axis is a major target for differential gene expression between phenotypes. In the carcinoma, stronger expression of genes coding for specific integrins, cytoskeletal proteins and calcium-binding proteins highlight cell-adhesion and motility features of the tumor cells. This is supported by the higher expression of genes involved in O-glycan synthesis, TGF-β, activin, their receptors and Smad3, as well as the Notch ligands and members of the γ-secretase complex that enable Notch nuclear localization. The Wnt pathway was also a target for differential gene expression. Higher expression of genes encoding the degradation complex of the canonical pathway and limited TCF expression in the papillary adenocarcinoma result in membranal accumulation of β-catenin, in contrast to its nuclear translocation in the carcinoma. Genes involved in cell-cycle arrest at G1 and response to DNA damage were more highly expressed in the papillary adenocarcinomas, as opposed to

  15. Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Prawitt, Janne; Niemeier, Andreas; Kassem, Moustapha;

    2008-01-01

    There is a great demand for cell models to study human adipocyte function. Here we describe the adipogenic differentiation of a telomerase-immortalized human mesenchymal stem cell line (hMSC-Tert) that maintains numerous features of terminally differentiated adipocytes even after prolonged...

  16. Interleukin-17A Differentially Induces Inflammatory and Metabolic Gene Expression in the Adipose Tissues of Lean and Obese Mice

    OpenAIRE

    Yine Qu; Qiuyang Zhang; Siqi Ma; Sen Liu; Zhiquan Chen; Zhongfu Mo; Zongbing You

    2016-01-01

    The functions of interleukin-17A (IL-17A) in adipose tissues and adipocytes have not been well understood. In the present study, male mice were fed with a regular diet (n = 6, lean mice) or a high-fat diet (n = 6, obese mice) for 30 weeks. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) were analyzed for IL-17A levels. SAT and VAT were treated with IL-17A and analyzed for inflammatory and metabolic gene expression. Mouse 3T3-L1 pre-adipocytes were differentiated into adipo...

  17. Altered metabolic incorporation of fucose and leucine into PNS myelin of 25-week-old diabetic (C57BL/Ks [db/db]) mice: effects of untreated diabetes on nerve metabolism

    International Nuclear Information System (INIS)

    Sciatic nerves of 25-week-old genetically diabetic (C57BL/Ks [db/db]) mice and their litter-mate controls were removed, and their metabolic incorporation of [3H]fucose and [14C]leucine into myelin was studied in vitro. Untreated diabetic animals showed significant increases (p less than 0.05) in the fucose/leucine incorporation into myelin when compared to values found for their litter-mates. These results correlated well with previous experiments performed on alloxan or streptozotocin-diabetic rats and thus show the in vitro incubation procedure to be a good indicator of altered metabolic conditions in peripheral nerves due to diabetes mellitus. The resulting ratio increases seen in diabetic animals is at variance with the decrease in ratios found in animals undergoing typical Wallerian degeneration. These results suggest that different metabolic processes operate in untreated diabetics than in normals or in those undergoing other degenerative nerve processes

  18. Differentiating Between Cancer and Inflammation: A Metabolic-Based Method for Functional Computed Tomography Imaging.

    Science.gov (United States)

    Motiei, Menachem; Dreifuss, Tamar; Betzer, Oshra; Panet, Hana; Popovtzer, Aron; Santana, Jordan; Abourbeh, Galith; Mishani, Eyal; Popovtzer, Rachela

    2016-03-22

    One of the main limitations of the highly used cancer imaging technique, PET-CT, is its inability to distinguish between cancerous lesions and post treatment inflammatory conditions. The reason for this lack of specificity is that [(18)F]FDG-PET is based on increased glucose metabolic activity, which characterizes both cancerous tissues and inflammatory cells. To overcome this limitation, we developed a nanoparticle-based approach, utilizing glucose-functionalized gold nanoparticles (GF-GNPs) as a metabolically targeted CT contrast agent. Our approach demonstrates specific tumor targeting and has successfully distinguished between cancer and inflammatory processes in a combined tumor-inflammation mouse model, due to dissimilarities in angiogenesis occurring under different pathologic conditions. This study provides a set of capabilities in cancer detection, staging and follow-up, and can be applicable to a wide range of cancers that exhibit high metabolic activity. PMID:26886076

  19. Altered lung morphogenesis, epithelial cell differentiation and mechanics in mice deficient in the Wnt/β-catenin antagonist Chibby.

    Directory of Open Access Journals (Sweden)

    Damon Love

    Full Text Available The canonical Wnt/β-catenin pathway plays crucial roles in various aspects of lung morphogenesis and regeneration/repair. Here, we examined the lung phenotype and function in mice lacking the Wnt/β-catenin antagonist Chibby (Cby. In support of its inhibitory role in canonical Wnt signaling, expression of β-catenin target genes is elevated in the Cby(-/- lung. Notably, Cby protein is prominently associated with the centrosome/basal body microtubule structures in embryonic lung epithelial progenitor cells, and later enriches as discrete foci at the base of motile cilia in airway ciliated cells. At birth, Cby(-/- lungs are grossly normal but spontaneously develop alveolar airspace enlargement with reduced proliferation and abnormal differentiation of lung epithelial cells, resulting in altered pulmonary function. Consistent with the Cby expression pattern, airway ciliated cells exhibit a marked paucity of motile cilia with apparent failure of basal body docking. Moreover, we demonstrate that Cby is a direct downstream target for the master ciliogenesis transcription factor Foxj1. Collectively, our results demonstrate that Cby facilitates proper postnatal lung development and function.

  20. Metabolism of retinoic acid and retinol during differentiation of F9 embryonal carcinoma cells.

    OpenAIRE

    Williams, J B; Napoli, J L

    1985-01-01

    Retinol and retinoic acid dose-response curves were obtained for promotion of the differentiation of F9 murine embryonal carcinoma cells with an enzyme-linked immunoadsorbent assay for laminin, a product of differentiated F9 cells. Retinoic acid produced a half-maximum response at 1.3 nM and a maximum response at about 30 nM; retinol was 1/175th as potent. Maximum differentiation required 48 hr of continuous exposure to retinoic acid, whereas retinol required 72 hr of exposure. The half-time ...

  1. Effects of retinoids on differentiation, lipid metabolism, epidermal growth factor, and low-density lipoprotein binding in squamous carcinoma cells

    International Nuclear Information System (INIS)

    The relationship among keratinocyte differentiation capacity, lipid synthesis, low-density lipoprotein (LDL) metabolism, plasma membrane composition, and epidermal growth factor (EGF) binding has been studied in SCC-12F2 cells. The differentiation capacity of the cells, i.e., ionophore-induced cornified envelope formation, was inhibited by various retinoids and stimulated by hydrocortisone. Retinoids that caused a significant reduction of cornified envelope formation, i.e., retinoic acid and 13-cis-retinoic acid, caused only minor changes in lipid synthesis and plasma membrane composition. Arotinoid ethylsulfone, having a minor effect on cornified envelope formation, caused a drastic inhibition of cholesterol synthesis resulting in changes in the plasma membrane composition. Hydrocortisone stimulated cornified envelope formation but had only minor effects on lipid synthesis and plasma membrane composition. Of all retinoids tested, only arotinoid ethylsulfone caused a drastic increase in EGF binding, while hydrocortisone had no effect. These results clearly demonstrate that the plasma membrane composition is not related to keratinocyte differentiation capacity, but most likely does determine EGF binding. Furthermore, EGF binding does not determine keratinocyte differentiation capacity

  2. Differential metabolism and leakage of protein in an inherited cataract and a normal lens cultured with ouabain

    International Nuclear Information System (INIS)

    Ocular lenses in Nakano mice showed marked changes in synthesis, degradation and leakage of protein during cataractogenesis. The cataract-associated changes included the differential lowering of crystalline synthesis, the cleavage of crystallin polypeptides to lower molecular weight forms and the leakage of crystallins from cultured lenses. Ouabain treatment of normal lenses induced these alterations, suggesting that changes in the intracellular levels of Na+ and K+ affect the anabolism and catabolism of protein during cataract formation. 35S-methionine was used during the course of the experiments as a method of protein identification. (author)

  3. Bioenergetic Insufficiencies Due to Metabolic Alterations Regulated by the Inhibitory Receptor PD-1 Are an Early Driver of CD8(+) T Cell Exhaustion.

    Science.gov (United States)

    Bengsch, Bertram; Johnson, Andy L; Kurachi, Makoto; Odorizzi, Pamela M; Pauken, Kristen E; Attanasio, John; Stelekati, Erietta; McLane, Laura M; Paley, Michael A; Delgoffe, Greg M; Wherry, E John

    2016-08-16

    Dynamic reprogramming of metabolism is essential for T cell effector function and memory formation. However, the regulation of metabolism in exhausted CD8(+) T (Tex) cells is poorly understood. We found that during the first week of chronic lymphocytic choriomeningitis virus (LCMV) infection, before severe dysfunction develops, virus-specific CD8(+) T cells were already unable to match the bioenergetics of effector T cells generated during acute infection. Suppression of T cell bioenergetics involved restricted glucose uptake and use, despite persisting mechanistic target of rapamycin (mTOR) signaling and upregulation of many anabolic pathways. PD-1 regulated early glycolytic and mitochondrial alterations and repressed transcriptional coactivator PGC-1α. Improving bioenergetics by overexpression of PGC-1α enhanced function in developing Tex cells. Therapeutic reinvigoration by anti-PD-L1 reprogrammed metabolism in a subset of Tex cells. These data highlight a key metabolic control event early in exhaustion and suggest that manipulating glycolytic and mitochondrial metabolism might enhance checkpoint blockade outcomes. PMID:27496729

  4. Metabolic and Pharmacokinetic Differentiation of STX209 and Racemic Baclofen in Humans

    Directory of Open Access Journals (Sweden)

    Raymundo Sanchez-Ponce

    2012-09-01

    Full Text Available STX209 is an exploratory drug comprising the single, active R-enantiomer of baclofen which is in later stage clinical trials for the treatment of fragile x syndrome (FXS and autism spectrum disorders (ASD. New clinical data in this article on the metabolism and pharmacokinetics of the R- and S-enantiomers of baclofen presents scientific evidence for stereoselective metabolism of only S-baclofen to an abundant oxidative deamination metabolite that is sterically resolved as the S-enantiomeric configuration. This metabolite undergoes some further metabolism by glucuronide conjugation. Consequences of this metabolic difference are a lower Cmax and lower early plasma exposure of S-baclofen compared to R-baclofen and marginally lower urinary excretion of S-baclofen after racemic baclofen administration. These differences introduce compound-related exposure variances in humans in which subjects dosed with racemic baclofen are exposed to a prominent metabolite of baclofen whilst subjects dosed with STX209 are not. For potential clinical use, our findings suggest that STX209 has the advantage of being a biologically defined and active enantiomer.

  5. Traditional Chinese Medicine for Metabolic Syndrome via TCM Pattern Differentiation: Tongue Diagnosis for Predictor

    Science.gov (United States)

    Lee, Tsung-Chieh; Lo, Lun-Chien; Wu, Fang-Chen

    2016-01-01

    Metabolic syndrome is a morbid condition, which is manifested by central obesity, abnormal glucose tolerance, lipodystrophy, and hypertension. Traditional Chinese medicine (TCM) clarifies that obesity is classified as phlegm-dampness. It is often accompanied with qi stagnation and blood stasis. One hundred and two overweight adults, who did not receive lipid-lowering drugs, were enrolled for analysis. The exclusion criteria were adults having malignancy disease, DM, and renal disease or who were pregnant or lactating. The study was divided into two groups: metabolic syndrome group (MetS) and nonmetabolic syndrome group (nMetS). The modern tongue analysis and heart rate variability devices for data analysis and Council on Nutrition Appetite Questionnaire (CNAQ) for appetite evaluation were used. Obesity patients with metabolic syndrome obviously have lower CNAQ score. The 6 items of CNAQ between two groups have significant difference in variation (P < 0.001). The nMetS average was above 28 scores (96%) and the MetS was all in 17–28 scores. The tongue appearance showed that MetS group have white coating different from the nMetS group with white and yellow coating (P < 0.05). However the HRV is not different from nMetS group significantly. Our results try to explore the relationship between the TCM pattern, nutrition appetite, and heart rate variability in metabolic syndrome patients. PMID:27313640

  6. Pre-symptomatic activation of antioxidant responses and alterations in glucose and pyruvate metabolism in Niemann-Pick Type C1-deficient murine brain.

    Directory of Open Access Journals (Sweden)

    Barry E Kennedy

    Full Text Available Niemann-Pick Type C (NPC disease is an autosomal recessive neurodegenerative disorder caused in most cases by mutations in the NPC1 gene. NPC1-deficiency is characterized by late endosomal accumulation of cholesterol, impaired cholesterol homeostasis, and a broad range of other cellular abnormalities. Although neuronal abnormalities and glial activation are observed in nearly all areas of the brain, the most severe consequence of NPC1-deficiency is a near complete loss of Purkinje neurons in the cerebellum. The link between cholesterol trafficking and NPC pathogenesis is not yet clear; however, increased oxidative stress in symptomatic NPC disease, increases in mitochondrial cholesterol, and alterations in autophagy/mitophagy suggest that mitochondria play a role in NPC disease pathology. Alterations in mitochondrial function affect energy and neurotransmitter metabolism, and are particularly harmful to the central nervous system. To investigate early metabolic alterations that could affect NPC disease progression, we performed metabolomics analyses of different brain regions from age-matched wildtype and Npc1 (-/- mice at pre-symptomatic, early symptomatic and late stage disease by (1H-NMR spectroscopy. Metabolic profiling revealed markedly increased lactate and decreased acetate/acetyl-CoA levels in Npc1 (-/- cerebellum and cerebral cortex at all ages. Protein and gene expression analyses indicated a pre-symptomatic deficiency in the oxidative decarboxylation of pyruvate to acetyl-CoA, and an upregulation of glycolytic gene expression at the early symptomatic stage. We also observed a pre-symptomatic increase in several indicators of oxidative stress and antioxidant response systems in Npc1 (-/- cerebellum. Our findings suggest that energy metabolism and oxidative stress may present additional therapeutic targets in NPC disease, especially if intervention can be started at an early stage of the disease.

  7. Differential metabolic rates among the school going boys of a Central Indian Town (Sagar

    Directory of Open Access Journals (Sweden)

    R. Thakur

    2016-05-01

    Full Text Available The prime objective of the present study was to estimate the basal metabolic rate (BMR and resting metabolic rate (RMR among school going boys of 5-18 year of age. The subjects were recruited from government schools of Sagar town of Madhya Pradesh state of Indian Union. Height and weight of the boys were measured using standard anthropometric techniques. Body mass index (BMI and metabolic rates (BMR/RMR were computed for each individual. It was found that mean of BMI varies from 13.8±1.6 Kg m- 2 among boys of 8 year of age to 19.0±1.9 Kg m- 2 among boys of 17 year of age. Similarly, mean of Basal metabolic rate (BMR varies from 1219.0±106.9 K cal/day among boys aged 5 year of age to 2296.3±255.9 K cal/day among 17 year of age. Pre pubertal and pubertal boys have significant difference in their basal metabolic rates as well as stunted, underweight and undernourished boys have significant low BMR. The linear bivariate regression analysis shows that the BMR is dependent on BMI, weight and height. The RMR have highest regression coefficient (r2=0.935 on BMR, followed by Height (r2=0.664, weight (r2=0.631 and body mass index (r2=0.368. The similar trends can be seen for RMR also. The BMR is highly dependent on RMR followed by height, weight and BMI.

  8. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes

    Science.gov (United States)

    Shinohara, Shigeo; Gu, Yuanjun; Yang, Ying; Furuta, Yasuo; Tanaka, Masahiko; Yue, Xiaohua; Wang, Weiqing; Kitano, Masaru; Kimura, Hiroshi

    2016-01-01

    Desi-type chickpeas, which have long been used as a natural treatment for diabetes, have been reported to lower visceral adiposity, dyslipidemia and insulin resistance induced by a chronic high-fat diet in rats. In this study, in order to examine the effects of chickpeas of this type in an in vitro system, we used the 3T3-L1 mouse cell line, a subclone of Swiss 3T3 cells, which can differentiate into cells with an adipocyte-like phenotype, and we used ethanol extracts of chickpeas (ECP) instead of chickpeas. Treatment of the 3T3-L1 cells with ECP led to a decrease in the lipid content in the cells. The desaturation index, defined as monounsaturated fatty acids (MUFAs)/saturated fatty acids (SFAs), was also decreased by ECP due to an increase in the cellular content of SFAs and a decrease in the content of MUFAs. The decrease in this index may reflect a decreased reaction from SFA to MUFA, which is essential for fat storage. To confirm this hypothesis, we conducted a western blot analysis, which revealed a reduction in the amount of stearoyl-CoA desaturase 1 (SCD1), a key enzyme catalyzing the reaction from SFA to MUFA. We observed simultaneous inactivations of enzymes participating in lipogenesis, i.e., liver kinase B1 (LKB1), acetyl-CoA carboxylase (ACC) and AMPK, by phosphorylation, which may lead to the suppression of reactions from acetyl-CoA to SFA via malonyl-CoA in lipogenesis. We also investigated whether lipolysis is affected by ECP. The amount of carnitine palmitoyltransferase 1 (CPT1), an enzyme important for the oxidation of fatty acids, was increased by ECP treatment. ECP also led to an increase in uncoupling protein 2 (UCP2), reported as a key protein for the oxidation of fatty acids. All of these results obtained regarding lipogenesis and fatty acid metabolism in our in vitro system are consistent with the results previously shown in rats. We also examined the effects on SCD1 and lipid contents of ethanol extracts of Kabuli-type chickpeas, which are

  9. Ethanol extracts of chickpeas alter the total lipid content and expression levels of genes related to fatty acid metabolism in mouse 3T3-L1 adipocytes.

    Science.gov (United States)

    Shinohara, Shigeo; Gu, Yuanjun; Yang, Ying; Furuta, Yasuo; Tanaka, Masahiko; Yue, Xiaohua; Wang, Weiqing; Kitano, Masaru; Kimura, Hiroshi

    2016-08-01

    Desi-type chickpeas, which have long been used as a natural treatment for diabetes, have been reported to lower visceral adiposity, dyslipidemia and insulin resistance induced by a chronic high-fat diet in rats. In this study, in order to examine the effects of chickpeas of this type in an in vitro system, we used the 3T3-L1 mouse cell line, a subclone of Swiss 3T3 cells, which can differentiate into cells with an adipocyte-like phenotype, and we used ethanol extracts of chickpeas (ECP) instead of chickpeas. Treatment of the 3T3-L1 cells with ECP led to a decrease in the lipid content in the cells. The desaturation index, defined as monounsaturated fatty acids (MUFAs)/saturated fatty acids (SFAs), was also decreased by ECP due to an increase in the cellular content of SFAs and a decrease in the content of MUFAs. The decrease in this index may reflect a decreased reaction from SFA to MUFA, which is essential for fat storage. To confirm this hypothesis, we conducted a western blot analysis, which revealed a reduction in the amount of stearoyl-CoA desaturase 1 (SCD1), a key enzyme catalyzing the reaction from SFA to MUFA. We observed simultaneous inactivations of enzymes participating in lipogenesis, i.e., liver kinase B1 (LKB1), acetyl-CoA carboxylase (ACC) and AMPK, by phosphorylation, which may lead to the suppression of reactions from acetyl-CoA to SFA via malonyl-CoA in lipogenesis. We also investigated whether lipolysis is affected by ECP. The amount of carnitine palmitoyltransferase 1 (CPT1), an enzyme important for the oxidation of fatty acids, was increased by ECP treatment. ECP also led to an increase in uncoupling protein 2 (UCP2), reported as a key protein for the oxidation of fatty acids. All of these results obtained regarding lipogenesis and fatty acid metabolism in our in vitro system are consistent with the results previously shown in rats. We also examined the effects on SCD1 and lipid contents of ethanol extracts of Kabuli

  10. Modulation of the pentose phosphate pathway alters phase I metabolism of testosterone and dextromethorphan in HepG2 cells

    OpenAIRE

    Xiao, Wen-jing; Ma, Ting; Ge, Chun; Xia, Wen-juan; Mao, Yong; Sun, Run-bin; Yu, Xiao-yi; Aa, Ji-ye; Wang, Guang-ji

    2015-01-01

    Aim: The pentose phosphate pathway (PPP) is involved in the activity of glucose-6-phosphate dehydrogenase (G6PD) and generation of NADPH, which plays a key role in drug metabolism. The aim of this study was to investigate the effects of modulation of the PPP on drug metabolism capacity in vitro. Methods: A pair of hepatic cell lines, ie, the cancerous HepG2 cells and normal L02 cells, was used. The expression of CYP450 enzymes, p53 and G6PD in the cells were analyzed. The metabolism of testos...

  11. Applications of isotope differentiation for metabolic studies with di-(2-ethylhexyl) phthalate

    International Nuclear Information System (INIS)

    The pervasiveness of the plasticizer di-(2-ethylhexyl) phthalate (DEHP) in the environment and especially in the laboratory results in a background that may cause severe interference with analytical studies. Animal-to-animal variability in the distribution of DEHP metabolites in excreta normally makes it necessary to use large groups of animals when different treatments are compared. Finally, radioactive tracers are usually considered undesirable for metabolic studies involving human subjects. All of these problems can be overcome through the use of multiple isotopic labels, especially 12C/13C/14C. Examples are given involving rats and monkeys, and applicability to humans is discussed. The principles involved are not limited to any particular class of test compounds. In rats, the competing pathways for metabolism of phthalate esters produce a different distribution of metabolites from a small intravenous dose of DEHP than from a large oral dose

  12. Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent red sea brine pools

    KAUST Repository

    Wang, Yong

    2013-04-29

    In the Red Sea, two neighboring deep-sea brine pools, Atlantis II and Discovery, have been studied extensively, and the results have shown that the temperature and concentrations of metal and methane in Atlantis II have increased over the past decades. Therefore, we investigated changes in the microbial community and metabolic pathways. Here, we compared the metagenomes of the two pools to each other and to those of deep-sea water samples. Archaea were generally absent in the Atlantis II metagenome; Bacteria in the metagenome were typically heterotrophic and depended on aromatic compounds and other extracellular organic carbon compounds as indicated by enrichment of the related metabolic pathways. In contrast, autotrophic Archaea capable of CO2 fixation and methane oxidation were identified in Discovery but not in Atlantis II. Our results suggest that hydrothermal conditions and metal precipitation in the Atlantis II pool have resulted in elimination of the autotrophic community and methanogens.

  13. The progression from a lower to a higher invasive stage of bladder cancer is associated with severe alterations in glucose and pyruvate metabolism

    International Nuclear Information System (INIS)

    Cancer cells present a particular metabolic behavior. We hypothesized that the progression of bladder cancer could be accompanied by changes in cells glycolytic profile. We studied two human bladder cancer cells, RT4 and TCCSUP, in which the latter represents a more invasive stage. The levels of glucose, pyruvate, alanine and lactate in the extracellular media were measured by Proton Nuclear Magnetic Resonance. The protein expression levels of glucose transporters 1 (GLUT1) and 3 (GLUT3), monocarboxylate transporter 4 (MCT4), phosphofructokinase-1 (PFK1), glutamic-pyruvate transaminase (GPT) and lactate dehydrogenase (LDH) were determined. Our data showed that glucose consumption and GLUT3 levels were similar in both cell lines, but TCCSUP cells displayed lower levels of GLUT1 and PFK expression. An increase in pyruvate consumption, concordant with the higher levels of lactate and alanine production, was also detected in TCCSUP cells. Moreover, TCCSUP cells presented lower protein expression levels of GPT and LDH. These results illustrate that bladder cancer progression is associated with alterations in cells glycolytic profile, namely the switch from glucose to pyruvate consumption in the more aggressive stage. This may be useful to develop new therapies and to identify biomarkers for cancer progression. - Highlights: • Metabolic phenotype of less and high invasive bladder cancer cells was studied. • Bladder cancer progression involves alterations in cells glycolytic profile. • More invasive bladder cancer cells switch from glucose to pyruvate consumption. • Our results may help to identify metabolic biomarkers of bladder cancer progression

  14. The progression from a lower to a higher invasive stage of bladder cancer is associated with severe alterations in glucose and pyruvate metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Vanessa R. [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Oliveira, Pedro F. [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Institute of Biomedical Sciences, University of Porto – UMIB/ICBAS/UP (Portugal); Nunes, Ana R.; Rocha, Cátia S. [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Ramalhosa, Elsa; Pereira, José A. [Mountain Research Centre (CIMO), School of Agriculture, Polytechnic Institute of Bragança (Portugal); Alves, Marco G., E-mail: alvesmarc@gmail.com [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal); Silva, Branca M., E-mail: bmcms@ubi.pt [CICS-UBI–Health Sciences Research Centre, University of Beira Interior, Covilhã (Portugal)

    2015-07-01

    Cancer cells present a particular metabolic behavior. We hypothesized that the progression of bladder cancer could be accompanied by changes in cells glycolytic profile. We studied two human bladder cancer cells, RT4 and TCCSUP, in which the latter represents a more invasive stage. The levels of glucose, pyruvate, alanine and lactate in the extracellular media were measured by Proton Nuclear Magnetic Resonance. The protein expression levels of glucose transporters 1 (GLUT1) and 3 (GLUT3), monocarboxylate transporter 4 (MCT4), phosphofructokinase-1 (PFK1), glutamic-pyruvate transaminase (GPT) and lactate dehydrogenase (LDH) were determined. Our data showed that glucose consumption and GLUT3 levels were similar in both cell lines, but TCCSUP cells displayed lower levels of GLUT1 and PFK expression. An increase in pyruvate consumption, concordant with the higher levels of lactate and alanine production, was also detected in TCCSUP cells. Moreover, TCCSUP cells presented lower protein expression levels of GPT and LDH. These results illustrate that bladder cancer progression is associated with alterations in cells glycolytic profile, namely the switch from glucose to pyruvate consumption in the more aggressive stage. This may be useful to develop new therapies and to identify biomarkers for cancer progression. - Highlights: • Metabolic phenotype of less and high invasive bladder cancer cells was studied. • Bladder cancer progression involves alterations in cells glycolytic profile. • More invasive bladder cancer cells switch from glucose to pyruvate consumption. • Our results may help to identify metabolic biomarkers of bladder cancer progression.

  15. Amino acid starvation induced by protease inhibition produces differential alterations in redox status and the thiol proteome in organogenesis-stage rat embryos and visceral yolk sacs.

    Science.gov (United States)

    Harris, Craig; Jilek, Joseph L; Sant, Karilyn E; Pohl, Jan; Reed, Matthew; Hansen, Jason M

    2015-12-01

    tissues following leupeptin treatment. Analysis of the thiol proteome showed few alterations to specific pathways mapped to the Kyoto Encyclopedia of Genes and Genomes Pathway database, but did reveal significant increases in concentrations of proteins associated with glycolysis/gluconeogenesis in the VYS and decreased concentrations proteins associated with ribosome biogenesis and function in the EMB. A subset of proteins elevated by >2-23-fold in the VYS were identified as serum (blood) proteins and represent the maternal-side proteins captured by the VYS and which are not degraded in the lysosomes as a result of leupeptin's inhibitory action. The observed constellation of proteins decreased in the EMB by leupeptin represent proteins from several adaptive pathways that are commonly altered in responses to amino acid starvation. These studies show clear differential responses to protease inhibition in VYS and EMB during organogenesis and suggest the possibility for additional roles of redox regulation, cellular adaptations and metabolic insufficiency caused by protease inhibition. PMID:26365578

  16. The combined action of omega-3 polyunsaturated fatty acids and grape proanthocyanidins on a rat model of diet-induced metabolic alterations.

    Science.gov (United States)

    Ramos-Romero, Sara; Molinar-Toribio, Eunice; Pérez-Jiménez, Jara; Taltavull, Núria; Dasilva, Gabriel; Romeu, Marta; Medina, Isabel; Torres, Josep Lluís

    2016-08-10

    It has been suggested that food components such as ω-3 polyunsaturated fatty acids (ω-3 PUFAs) and (poly)phenols counteract diet-induced metabolic alterations by common or complementary mechanisms. To examine the effects of a combination of ω-3 PUFAs and (poly)phenols on such alterations, adult Wistar-Kyoto rats were fed an obesogenic high-fat high-sucrose diet supplemented, or not, for 24 weeks with: eicosapentaenoic acid (EPA)/docosahexaenoic acid (DHA) 1 : 1 (16.6 g kg(-1) feed); proanthocyanidin-rich grape seed extract (GSE, 0.8 g kg(-1) feed); or EPA/DHA 1 : 1 + GSE. Body weight, feed intake, and plasma glucose were evaluated every 6 weeks, while adipose tissue weight, insulin, glucagon, ghrelin, leptin, adiponectin, cholesterol, and triglycerides were evaluated at the end of the experiment. ω-3 PUFAs reduced plasma leptin and cholesterol levels, but did not modify diet-induced perigonadal fat or plasma insulin levels; while GSE increased plasma triglyceride levels. The combined action of ω-3 PUFAs and the proanthocyanidins reduced plasma insulin and leptin, as well as partially prevented perigonadal fat accumulation. While separate supplementation with ω-3 PUFAs or grape proanthocyanidins may not counteract all the key metabolic changes induced by a high-energy-dense diet, the combination of both supplements reverts altered insulin, leptin and triglyceride levels to normal. PMID:27418399

  17. Adolescent methylphenidate treatment differentially alters adult impulsivity and hyperactivity in the Spontaneously Hypertensive Rat model of ADHD.

    Science.gov (United States)

    Somkuwar, S S; Kantak, K M; Bardo, M T; Dwoskin, L P

    2016-02-01

    Impulsivity and hyperactivity are two facets of attention deficit/hyperactivity disorder (ADHD). Impulsivity is expressed as reduced response inhibition capacity, an executive control mechanism that prevents premature execution of an intermittently reinforced behavior. During methylphenidate treatment, impulsivity and hyperactivity are decreased in adolescents with ADHD, but there is little information concerning levels of impulsivity and hyperactivity in adulthood after adolescent methylphenidate treatment is discontinued. The current study evaluated impulsivity, hyperactivity as well as cocaine sensitization during adulthood after adolescent methylphenidate treatment was discontinued in the Spontaneously Hypertensive Rat (SHR) model of ADHD. Treatments consisted of oral methylphenidate (1.5mg/kg) or water vehicle provided Monday-Friday from postnatal days 28-55. During adulthood, impulsivity was measured in SHR and control strains (Wistar Kyoto and Wistar rats) using differential reinforcement of low rate (DRL) schedules. Locomotor activity and cocaine sensitization were measured using the open-field assay. Adult SHR exhibited decreased efficiency of reinforcement under the DRL30 schedule and greater levels of locomotor activity and cocaine sensitization compared to control strains. Compared to vehicle, methylphenidate treatment during adolescence reduced hyperactivity in adult SHR, maintained the lower efficiency of reinforcement, and increased burst responding under DRL30. Cocaine sensitization was not altered following adolescent methylphenidate in adult SHR. In conclusion, adolescent treatment with methylphenidate followed by discontinuation in adulthood had a positive benefit by reducing hyperactivity in adult SHR rats; however, increased burst responding under DRL compared to SHR given vehicle, i.e., elevated impulsivity, constituted an adverse consequence associated with increased risk for cocaine abuse liability. PMID:26657171

  18. Episodic intrusion, internal differentiation, and hydrothermal alteration of the miocene tatoosh intrusive suite south of Mount Rainier, Washington

    Science.gov (United States)

    du Bray, E.A.; Bacon, C.R.; John, D.A.; Wooden, J.L.; Mazdab, F.K.

    2011-01-01

    The Miocene Tatoosh intrusive suite south of Mount Rainier is composed of three broadly granodioritic plutons that are manifestations of ancestral Cascades arc magmatism. Tatoosh intrusive suite plutons have individually diagnostic characteristics, including texture, mineralogy, and geochemistry, and apparently lack internal contacts. New ion-microprobe U-Pb zircon ages indicate crystallization of the Stevens pluton ca. 19.2 Ma, Reflection-Pyramid pluton ca. 18.5 Ma, and Nisqually pluton ca. 17.5 Ma. The Stevens pluton includes rare, statistically distinct ca. 20.1 Ma zircon antecrysts. Wide-ranging zircon rare earth element (REE), Hf, U, and Th concentrations suggest late crystallization from variably evolved residual liquids. Zircon Eu/Eu*-Hf covariation is distinct for each of the Reflection-Pyramid, Nisqually, and Stevens plutons. Although most Tatoosh intrusive suite rocks have been affected by weak hydrothermal alteration, and sparse mineralized veins cut some of these rocks, significant base or precious metal mineralization is absent. At the time of shallow emplacement, each of these magma bodies was largely homogeneous in bulk composition and petrographic features, but, prior to final solidification, each of the Tatoosh intrusive suite plutons developed internal compositional variation. Geochemical and petrographic trends within each pluton are most consistent with differential loss of residual melt, possibly represented by late aplite dikes or erupted as rhyolite, from crystal-rich magma. Crystal-rich magma that formed each pluton evidently accumulated in reservoirs below the present level of exposure and then intruded to a shallow depth. Assembled by episodic intrusion, the Tatoosh intrusive suite may be representative of midsized composite plutonic complexes beneath arc volcanoes. ?? 2011 Geological Society of America.

  19. HIV infection results in metabolic alterations in the gut microbiota different from those induced by other diseases.

    Science.gov (United States)

    Serrano-Villar, Sergio; Rojo, David; Martínez-Martínez, Mónica; Deusch, Simon; Vázquez-Castellanos, Jorge F; Sainz, Talía; Vera, Mar; Moreno, Santiago; Estrada, Vicente; Gosalbes, María José; Latorre, Amparo; Margolles, Abelardo; Seifert, Jana; Barbas, Coral; Moya, Andrés; Ferrer, Manuel

    2016-01-01

    Imbalances in gut bacteria have been associated with multiple diseases. However, whether there are disease-specific changes in gut microbial metabolism remains unknown. Here, we demonstrate that human immunodeficiency virus (HIV) infection (n = 33) changes, at quantifiable levels, the metabolism of gut bacteria. These changes are different than those observed in patients with the auto-immune disease systemic lupus erythaematosus (n = 18), and Clostridium difficile-associated diarrhoea (n = 6). Using healthy controls as a baseline (n = 16), we demonstrate that a trend in the nature and directionality of the metabolic changes exists according to the type of the disease. The impact on the gut microbial activity, and thus the metabolite composition and metabolic flux of gut microbes, is therefore disease-dependent. Our data further provide experimental evidence that HIV infection drastically changed the microbial community, and the species responsible for the metabolism of 4 amino acids, in contrast to patients with the other two diseases and healthy controls. The identification in this present work of specific metabolic deficits in HIV-infected patients may define nutritional supplements to improve the health of these patients. PMID:27189771

  20. Differential stress resistance and metabolic traits underlie coexistence in a sympatrically evolved bacterial population

    NARCIS (Netherlands)

    Puentes Tellez, Pilar; van Elsas, Jan Dirk

    2015-01-01

    Following intermittent batch growth in Luria-Bertani (LB) broth for about 1000 generations, differentially evolved forms were found in a population of Escherichia coli cells. Studies on this population revealed the emergence of key polymorphisms, as evidenced by analysis of both whole genome sequenc

  1. Prenatal stress and peripubertal stimulation of the endocannabinoid system differentially regulate emotional responses and brain metabolism in mice.

    Directory of Open Access Journals (Sweden)

    Simone Macrì

    Full Text Available The central endocannabinoid system (ECS and the hypothalamic-pituitary-adrenal-axis mediate individual responses to emotionally salient stimuli. Their altered developmental adjustment may relate to the emergence of emotional disturbances. Although environmental influences regulate the individual phenotype throughout the entire lifespan, their effects may result particularly persistent during plastic developmental stages (e.g. prenatal life and adolescence. Here, we investigated whether prenatal stress--in the form of gestational exposure to corticosterone supplemented in the maternal drinking water (100 mg/l during the last week of pregnancy--combined with a pharmacological stimulation of the ECS during adolescence (daily fatty acid amide hydrolase URB597 i.p. administration--0.4 mg/kg--between postnatal days 29-38, influenced adult mouse emotional behaviour and brain metabolism measured through in vivo quantitative magnetic resonance spectroscopy. Compared to control mice, URB597-treated subjects showed, in the short-term, reduced locomotion and, in the long term, reduced motivation to execute operant responses to obtain palatable rewards paralleled by reduced levels of inositol and taurine in the prefrontal cortex. Adult mice exposed to prenatal corticosterone showed increased behavioural anxiety and reduced locomotion in the elevated zero maze, and altered brain metabolism (increased glutamate and reduced taurine in the hippocampus; reduced inositol and N-Acetyl-Aspartate in the hypothalamus. Present data further corroborate the view that prenatal stress and pharmacological ECS stimulation during adolescence persistently regulate emotional responses in adulthood. Yet, whilst we hypothesized these factors to be interactive in nature, we observed that the consequences of prenatal corticosterone administration were independent from those of ECS drug-induced stimulation during adolescence.

  2. Vitamin D metabolism and effects on pluripotency genes and cell differentiation in testicular germ cell tumors in vitro and in vivo

    DEFF Research Database (Denmark)

    Blomberg Jensen, Martin; Jørgensen, Anne; Nielsen, John Erik;

    2012-01-01

    ) treatment in vivo. These novel findings show that VD metabolism is involved in the mesodermal transition during differentiation of cancer cells with embryonic stem cell characteristics, which points to a function for VD during early embryonic development and possibly in the pathogenesis of TGCTs.......Testicular germ cell tumors (TGCTs) are classified as either seminomas or nonseminomas. Both tumors originate from carcinoma in situ (CIS) cells, which are derived from transformed fetal gonocytes. CIS, seminoma, and the undifferentiated embryonal carcinoma (EC) retain an embryonic phenotype and...... express pluripotency factors (NANOG/OCT4). Vitamin D (VD) is metabolized in the testes, and here, we examined VD metabolism in TGCT differentiation and pluripotency regulation. We established that the VD receptor (VDR) and VD-metabolizing enzymes are expressed in human fetal germ cells, CIS, and invasive...

  3. Oral ingestion of aloe vera phytosterols alters hepatic gene expression profiles and ameliorates obesity-associated metabolic disorders in zucker diabetic fatty rats.

    Science.gov (United States)

    Misawa, Eriko; Tanaka, Miyuki; Nomaguchi, Kouji; Nabeshima, Kazumi; Yamada, Muneo; Toida, Tomohiro; Iwatsuki, Keiji

    2012-03-21

    We investigated the effects of the oral administration of lophenol (Lo) and cycloartanol (Cy), two kinds of antidiabetic phytosterol isolated from Aloe vera , on glucose and lipid metabolism in Zucker diabetic fatty (ZDF) rats. We demonstrated that the administrations of Lo and Cy suppressed random and fasting glucose levels and reduced visceral fat weights significantly. It was also observed that treatments with Lo and Cy decreased serum and hepatic lipid concentrations (triglyceride, nonesterified fatty acid, and total cholesterol). Additionally, Lo and Cy treatments resulted in a tendency for reduction in serum monocyte chemotactic protein-1 (MCP-1) level and an elevation in serum adiponectin level. Furthermore, the expression levels of hepatic genes encoding gluconeogenic enzymes (G6 Pase, PEPCK), lipogenic enzymes (ACC, FAS), and SREBP-1 were decreased significantly by the administrations of aloe sterols. In contrast, Lo and Cy administration increased mRNA levels of glycolysis enzyme (GK) in the liver. It was also observed that the hepatic β-oxidation enzymes (ACO, CPT1) and PPARα expressions tended to increase in the livers of the Lo- and Cy-treated rats compared with those in ZDF-control rats. We therefore conclude that orally ingested aloe sterols altered the expressions of genes related to glucose and lipid metabolism, and ameliorated obesity-associated metabolic disorders in ZDF rats. These findings suggest that aloe sterols could be beneficial in preventing and improving metabolic disorders with obesity and diabetes in rats. PMID:22352711

  4. Differential Roles of the TRAF3 Adapter Protein in Adipogenesis and Glucose Metabolism

    OpenAIRE

    Loo, Lotus Kyi

    2015-01-01

    The main goal of this project is to delineate the roles and mechanisms of constitutive type II nuclear factor-kappa B (NF-kB) activation on adipogenesis and glucose metabolism. Our laboratory has shown that the tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) is a critical negative modulator of type II NF-kB and TRAF3 knockout (TRAF3-/-) have constitutive activation of non canonical or type II NF-kB pathway. However, TRAF3-/- pups die within two weeks after birth and the funct...

  5. Differential expression of microRNAs in mouse liver under aberrant energy metabolic status[S

    OpenAIRE

    Li, Shengjie; Chen, Xi; Zhang, Hongjie; Liang, Xiangying; Xiang, Yang; Yu, Chaohui; Zen, Ke; Li, Youming; Zhang, Chen-Yu

    2009-01-01

    Despite years of effort, exact pathogenesis of nonalcoholic fatty liver disease (NAFLD) remains obscure. To gain an insight into the regulatory roles of microRNAs (miRNAs) in aberrant energy metabolic status and pathogenesis of NAFLD, we analyzed the expression of miRNAs in livers of ob/ob mice, streptozotocin (STZ)-induced type 1 diabetic mice, and normal C57BL/6 mice by miRNA microarray. Compared with normal C57BL/6 mice, ob/ob mice showed upregulation of eight miRNAs and downregulation of ...

  6. Vitamin D Metabolism and Effects on Pluripotency Genes and Cell Differentiation in Testicular Germ Cell Tumors In Vitro and In Vivo12

    OpenAIRE

    Blomberg Jensen, Martin; Jørgensen, Anne; Nielsen, John Erik; Steinmeyer, Andreas; Leffers, Henrik; Juul, Anders; Rajpert-De Meyts, Ewa

    2012-01-01

    Testicular germ cell tumors (TGCTs) are classified as either seminomas or nonseminomas. Both tumors originate from carcinoma in situ (CIS) cells, which are derived from transformed fetal gonocytes. CIS, seminoma, and the undifferentiated embryonal carcinoma (EC) retain an embryonic phenotype and express pluripotency factors (NANOG/OCT4). Vitamin D (VD) is metabolized in the testes, and here, we examined VD metabolism in TGCT differentiation and pluripotency regulation. We estab...

  7. Vitamin D Metabolism and Effects on Pluripotency Genes and Cell Differentiation in Testicular Germ Cell Tumors In Vitro and In Vivo

    OpenAIRE

    Martin Blomberg Jensen; Anne Jørgensen; John Erik Nielsen; Andreas Steinmeyer; Henrik Leffers; Anders Juul; Ewa Rajpert-De Meyts

    2012-01-01

    Testicular germ cell tumors (TGCTs) are classified as either seminomas or nonseminomas. Both tumors originate from carcinoma in situ (CIS) cells, which are derived from transformed fetal gonocytes. CIS, seminoma, and the undifferentiated embryonal carcinoma (EC) retain an embryonic phenotype and express pluripotency factors (NANOG/OCT4). Vitamin D (VD) is metabolized in the testes, and here, we examined VD metabolism in TGCT differentiation and pluripotency regulation. We established that the...

  8. Melanogenesis stimulation in B16-F10 melanoma cells induces cell cycle alterations, increased ROS levels and a differential expression of proteins as revealed by proteomic analysis

    International Nuclear Information System (INIS)

    Considering that stimulation of melanogenesis may lead to alterations of cellular responses, besides melanin production, our main goal was to study the cellular effects of melanogenesis stimulation of B16-F10 melanoma cells. Our results show increased levels of the reactive oxygen species after 15 h of melanogenesis stimulation. Following 48 h of melanogenesis stimulation, proliferation was inhibited (by induction of cell cycle arrest in the G1 phase) and the expression levels of p21 mRNA were increased. In addition, melanogenesis stimulation did not induce cellular senescence. Proteomic analysis demonstrated the involvement of proteins from other pathways besides those related to the cell cycle, including protein disulfide isomerase A3, heat-shock protein 70, and fructose biphosphate aldolase A (all up-regulated), and lactate dehydrogenase (down-regulated). In RT-qPCR experiments, the levels of pyruvate kinase M2 mRNA dropped, whereas the levels of ATP synthase (beta-F1) mRNA increased. These data indicate that melanogenesis stimulation of B16-F10 cells leads to alterations in metabolism and cell cycle progression that may contribute to an induction of cell quiescence, which may provide a mechanism of resistance against cellular injury promoted by melanin synthesis. -- Highlights: ► Melanogenesis stimulation by L-tyrosine+NH4Cl in B16-F10 melanoma cells increases ROS levels. ► Melanogenesis inhibits cell proliferation, and induced cell cycle arrest in the G1 phase. ► Proteomic analysis showed alterations in proteins of the cell cycle and glucose metabolism. ► RT-qPCR analysis confirmed alterations of metabolic targets after melanogenesis stimulation.

  9. Melanogenesis stimulation in B16-F10 melanoma cells induces cell cycle alterations, increased ROS levels and a differential expression of proteins as revealed by proteomic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Elizabeth S.; Kawahara, Rebeca [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil); Kadowaki, Marina K. [Universidade Estadual do Oeste do Parana, Cascavel, PR (Brazil); Amstalden, Hudson G.; Noleto, Guilhermina R.; Cadena, Silvia Maria S.C.; Winnischofer, Sheila M.B. [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil); Martinez, Glaucia R., E-mail: grmartinez@ufpr.br [Departamento de Bioquimica e Biologia Molecular, Setor de Ciencias Biologicas, Universidade Federal do Parana, P.O. Box 19046, CEP 81531-990, Curitiba, PR (Brazil)

    2012-09-10

    Considering that stimulation of melanogenesis may lead to alterations of cellular responses, besides melanin production, our main goal was to study the cellular effects of melanogenesis stimulation of B16-F10 melanoma cells. Our results show increased levels of the reactive oxygen species after 15 h of melanogenesis stimulation. Following 48 h of melanogenesis stimulation, proliferation was inhibited (by induction of cell cycle arrest in the G1 phase) and the expression levels of p21 mRNA were increased. In addition, melanogenesis stimulation did not induce cellular senescence. Proteomic analysis demonstrated the involvement of proteins from other pathways besides those related to the cell cycle, including protein disulfide isomerase A3, heat-shock protein 70, and fructose biphosphate aldolase A (all up-regulated), and lactate dehydrogenase (down-regulated). In RT-qPCR experiments, the levels of pyruvate kinase M2 mRNA dropped, whereas the levels of ATP synthase (beta-F1) mRNA increased. These data indicate that melanogenesis stimulation of B16-F10 cells leads to alterations in metabolism and cell cycle progression that may contribute to an induction of cell quiescence, which may provide a mechanism of resistance against cellular injury promoted by melanin synthesis. -- Highlights: Black-Right-Pointing-Pointer Melanogenesis stimulation by L-tyrosine+NH{sub 4}Cl in B16-F10 melanoma cells increases ROS levels. Black-Right-Pointing-Pointer Melanogenesis inhibits cell proliferation, and induced cell cycle arrest in the G1 phase. Black-Right-Pointing-Pointer Proteomic analysis showed alterations in proteins of the cell cycle and glucose metabolism. Black-Right-Pointing-Pointer RT-qPCR analysis confirmed alterations of metabolic targets after melanogenesis stimulation.

  10. Asiatic Acid Alleviates Hemodynamic and Metabolic Alterations via Restoring eNOS/iNOS Expression, Oxidative Stress, and Inflammation in Diet-Induced Metabolic Syndrome Rats

    Directory of Open Access Journals (Sweden)

    Poungrat Pakdeechote

    2014-01-01

    Full Text Available Asiatic acid is a triterpenoid isolated from Centella asiatica. The present study aimed to investigate whether asiatic acid could lessen the metabolic, cardiovascular complications in rats with metabolic syndrome (MS induced by a high-carbohydrate, high-fat (HCHF diet. Male Sprague-Dawley rats were fed with HCHF diet with 15% fructose in drinking water for 12 weeks to induce MS. MS rats were treated with asiatic acid (10 or 20 mg/kg/day or vehicle for a further three weeks. MS rats had an impairment of oral glucose tolerance, increases in fasting blood glucose, serum insulin, total cholesterol, triglycerides, mean arterial blood pressure, heart rate, and hindlimb vascular resistance; these were related to the augmentation of vascular superoxide anion production, plasma malondialdehyde and tumor necrosis factor-alpha (TNF-α levels (p < 0.05. Plasma nitrate and nitrite (NOx were markedly high with upregulation of inducible nitric oxide synthase (iNOS expression, but dowregulation of endothelial nitric oxide synthase (eNOS expression (p < 0.05. Asiatic acid significantly improved insulin sensitivity, lipid profiles, hemodynamic parameters, oxidative stress markers, plasma TNF-α, NOx, and recovered abnormality of eNOS/iNOS expressions in MS rats (p < 0.05. In conclusion, asiatic acid improved metabolic, hemodynamic abnormalities in MS rats that could be associated with its antioxidant, anti-inflammatory effects and recovering regulation of eNOS/iNOS expression.

  11. Mice lacking natural killer T cells are more susceptible to metabolic alterations following high fat diet feeding.

    Directory of Open Access Journals (Sweden)

    Brittany V Martin-Murphy

    Full Text Available Current estimates suggest that over one-third of the adult population has metabolic syndrome and three-fourths of the obese population has non-alcoholic fatty liver disease (NAFLD. Inflammation in metabolic tissues has emerged as a universal feature of obesity and its co-morbidities, including NAFLD. Natural Killer T (NKT cells are a subset of innate immune cells that abundantly reside within the liver and are readily activated by lipid antigens. There is general consensus that NKT cells are pivotal regulators of inflammation; however, disagreement exists as to whether NKT cells exert pathogenic or suppressive functions in obesity. Here we demonstrate that CD1d(-/- mice, which lack NKT cells, were more susceptible to weight gain and fatty liver following high fat diet (HFD feeding. Compared with their WT counterparts, CD1d(-/- mice displayed increased adiposity and greater induction of inflammatory genes in the liver suggestive of the precursors of NAFLD. Calorimetry studies revealed a significant increase in food intake and trends toward decreased metabolic rate and activity in CD1d(-/- mice compared with WT mice. Based on these findings, our results suggest that NKT cells play a regulatory role that helps to prevent diet-induced obesity and metabolic dysfunction and may play an important role in mechanisms governing cross-talk between metabolism and the immune system to regulate energy balance and liver health.

  12. The arogenate dehydratase gene family: towards understanding differential regulation of carbon flux through phenylalanine into primary versus secondary metabolic pathways.

    Science.gov (United States)

    Corea, Oliver R A; Bedgar, Diana L; Davin, Laurence B; Lewis, Norman G

    2012-10-01

    Phe is formed from arogenate in planta through the action of arogenate dehydratase (ADT), and there are six ADT isoenzymes in the "model" vascular plant species Arabidopsis thaliana. This raised the possibility that specific ADTs may be differentially regulated so as to control Phe biosynthesis for protein synthesis vs its much more massive deployment for phenylpropanoid metabolism. In our previous reverse genetics study using 25 single/multiple ADT knockout (KO) lines, a subset of these knockouts was differentially reduced in their lignin contents. In the current investigation, it was hypothesized that Phe pool sizes might correlate well with reduction in lignin contents in the affected KO lines. The free amino acid contents of these KO lines were thus comprehensively analyzed in stem, leaf and root tissues, over a growth/developmental time course from 3 to 8 weeks until senescence. The data obtained were then compared to, and contrasted with, the differential extent of lignin deposition occurring in the various lines. Relative changes in pool sizes were also analyzed by performing a pairwise confirmatory factor analysis for Phe:Tyr, Phe:Trp and Tyr:Trp, following determination of the deviation from the mean for Phe, Tyr and Trp in each plant line. It was found that the Phe pool sizes measured were differentially reduced only in lignin-deficient lines, and in tissues and at time points where lignin biosynthesis was constitutively highly active (in wild type lines) under the growth conditions employed. In contrast, this trend was not evident across all ADT KO lines, possibly due to maintenance of Phe pools by non-targeted isoenzymes, or by feedback mechanisms known to be in place. PMID:22818526

  13. Differential expression analysis of transcripts related to oil metabolism in maturing seeds of Jatropha curcas L.

    OpenAIRE

    Chandran, Divya; Sankararamasubramanian, H. M.; Kumar, M Ashok; Parida, Ajay

    2014-01-01

    Jatropha curcas has been widely studied at the molecular level due to its potential as an alternative source of fuel. Many of the reports till date on this plant have focussed mainly on genes contributing to the accumulation of oil in its seeds. A suppression subtractive hybridization strategy was employed to identify genes which are differentially expressed in the mid maturation stage of J. curcas seeds. Random expressed sequence tag sequencing of the cDNA subtraction library resulted in 385...

  14. Prenatal metformin exposure in a maternal high fat diet mouse model alters the transcriptome and modifies the metabolic responses of the offspring.

    Directory of Open Access Journals (Sweden)

    Henriikka Salomäki

    Full Text Available AIMS: Despite the wide use of metformin in metabolically challenged pregnancies, the long-term effects on the metabolism of the offspring are not known. We studied the long-term effects of prenatal metformin exposure during metabolically challenged pregnancy in mice. MATERIALS AND METHODS: Female mice were on a high fat diet (HFD prior to and during the gestation. Metformin was administered during gestation from E0.5 to E17.5. Male and female offspring were weaned to a regular diet (RD and subjected to HFD at adulthood (10-11 weeks. Body weight and several metabolic parameters (e.g. body composition and glucose tolerance were measured during the study. Microarray and subsequent pathway analyses on the liver and subcutaneous adipose tissue of the male offspring were performed at postnatal day 4 in a separate experiment. RESULTS: Prenatal metformin exposure changed the offspring's response to HFD. Metformin exposed offspring gained less body weight and adipose tissue during the HFD phase. Additionally, prenatal metformin exposure prevented HFD-induced impairment in glucose tolerance. Microarray and annotation analyses revealed metformin-induced changes in several metabolic pathways from which electron transport chain (ETC was prominently affected both in the neonatal liver and adipose tissue. CONCLUSION: This study shows the beneficial effects of prenatal metformin exposure on the offspring's glucose tolerance and fat mass accumulation during HFD. The transcriptome data obtained at neonatal age indicates major effects on the genes involved in mitochondrial ATP production and adipocyte differentiation suggesting the mechanistic routes to improved metabolic phenotype at adulthood.

  15. [Management of metabolic disorders induced by everolimus in patients with differentiated neuroendocrine tumors: expert proposals].

    Science.gov (United States)

    Lombard-Bohas, Catherine; Cariou, Bertrand; Vergès, Bruno; Coriat, Romain; N'guyen, Thierry; François, Eric; Hammel, Pascal; Niccoli, Patricia; Hentic, Olivia

    2014-02-01

    Medical management of pancreatic neuroendocrine tumors has recently been improved by new molecules of which the mTOR inhibitor everolimus. If digestive neuroendocrine tumors are rare, the incidence is in constant increase and the prevalence in digestive cancers put them right behind colorectal cancers. Everolimus has demonstrated efficacy in unresectable and progressive pancreatic neuroendocrine tumors, by doubling the median progression free survival (11 versus 4.6 months), with a median time of exposure to everolimus of nine months. Everolimus is generally maintained until progression or intolerance and some patients are treated during several years. Potential metabolic disorders induced by everolimus (dyslipidemia, hyperglycemia) in patients with life expectancy of several years, justify monitoring of these parameters and accurate treatment management algorithm. These will avoid worsening patient's prognostic, but also prematurely discontinue potentially effective treatment or contraindicate other therapeutic weapons, in a pathology in which there are multiple therapeutic options in metastatic phase. We propose a standard practice in terms of initial assessment, monitoring, care threshold, and therapeutic objectives to manage metabolic disorders, fitted to our patients with advanced pancreatic neuroendocrine tumors. PMID:24557872

  16. Differential effects of iodoacetamide and iodoacetate on glycolysis and glutathione metabolism of cultured astrocytes

    Directory of Open Access Journals (Sweden)

    Maike Schmidt

    2009-03-01

    Full Text Available Iodoacetamide (IAA and iodoacetate (IA have frequently been used to inhibit glycolysis, since these compounds are known for their ability to irreversibly inhibit the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH. However, the consequences of a treatment with such thiol reagents on the glutathione (GSH metabolism of brain cells have not been explored. Exposure of astroglia-rich primary cultures to IAA or IA in concentrations of up to 1 mM deprived the cells of GSH, inhibited cellular GAPDH activity, lowered cellular lactate production, and caused a delayed cell death that was detectable after 90 min of incubation. However, the two thiol reagents differed substantially in their potential to deprive cellular GSH and to inhibit astrocytic glycolysis. IAA depleted the cellular GSH content more efficiently than IA as demonstrated by half-maximal effects for IAA and IA that were observed at concentrations of about 10 µM and 100 µM, respectively. In contrast, IA was highly efficient in inactivating GAPDH and lactate production with half-maximal effects observed already at a concentration below 100 µM, whereas IAA had to be applied in 10 times higher concentration to inhibit lactate production by 50%. These substantial differences of IAA and IA to affect GSH content and glycolysis of cultured astrocytes suggests that in order to inhibit astrocytic glycolysis without substantially compromising the cellular GSH metabolism, IA – and not IAA - should be used in low concentrations and/or for short incubation periods.

  17. Differential effects of acidosis, high potassium concentrations, and metabolic inhibition on noradrenaline release and its presynaptic muscarinic regulation.

    Science.gov (United States)

    Haunstetter, Armin; Schulze Icking, Babette; Backs, Johannes; Krüger, Carsten; Haass, Markus

    2002-03-01

    It was the aim of the present study to characterize the effect of single components of ischaemia, such as inhibition of aerobic and anaerobic energy production by combined anoxic and glucose-free perfusion (metabolic inhibition), high extracellular potassium concentrations (hyperkalaemia), and acidosis, on (1). the stimulated release of noradrenaline from the in situ perfused guinea-pig heart and (2). its presynaptic modulation by the muscarinic agonist carbachol. The release of endogenous noradrenaline from efferent cardiac sympathetic nerve endings was induced by electrical stimulation of the left stellate ganglion (1 min, 5 V, 12 Hz) and quantified in the coronary venous effluent by high-performance liquid chromatography. Under control conditions, two consecutive electrical stimulations (S1, S2) elicited a similar noradrenaline overflow (S2/S1: 0.98 plus minus 0.05). After 10 min of global myocardial ischaemia overflow of endogenous noradrenaline was significantly reduced (S2/S1: 0.18 plus minus 0.03; P< 0.05). When studied separately, metabolic inhibition, hyperkalaemia (16 mM), and acidosis (pH 6.0) each markedly attenuated stimulated noradrenaline overflow (S2/S1: 0.65 plus minus 0.05, 0.43 plus minus 0.14, and 0.37 plus minus 0.09, respectively; P< 0.05). The muscarinic agonist carbachol (10 microM) inhibited stimulated noradrenaline release under normoxic conditions (S2/S1: 0.41 plus minus 0.07; P< 0.05). However, after 10 min of global myocardial ischaemia the inhibitory effect of carbachol on noradrenaline overflow was completely lost. Single components of ischaemia had a differential effect on presynaptic muscarinic modulation. Whereas hyperkalaemia (8-16 mM) did not affect muscarinic inhibition of noradrenaline release, carbachol lost its inhibitory effect during acidosis and metabolic inhibition. In conclusion, hyperkalaemia, metabolic inhibition, and severe acidosis each contribute to reduced overflow of noradrenaline after 10 min of myocardial

  18. [5-0xoproline (pyroglutamic acid) acidosis and acetaminophen- a differential diagnosis in high anion gap metabolic acidosis].

    Science.gov (United States)

    Weiler, Stefan; Bellmann, Romuald; Kullak-Ublick, Gerd A

    2015-12-01

    Rare cases of high anion gap metabolic acidosis during long-term paracetamol administration in therapeutic doses with causative 5-oxoproline (pyroglutamic acid} accumulation have been reported. Other concomitant risk factors such as malnutrition, alcohol abuse, renal or hepatic dysfunction, comedication with flue/oxacillin, vigabatrin, netilmicin or sepsis have been described. The etiology seems to be a drug-induced reversible inhibition of glutathione synthetase or 5-oxoprolinase leading to elevated serum and urine levels of 5-oxoproline. Other more frequent differential diagnoses, such as intoxications, ketoacidosis or lactic acidosis should be excluded. Causative substances should be stopped. 5-oxoproline concentrations in urine can be quantified to establish the diagnosis. Adverse drug reactions, which are not listed or insufficiently described in the respective Swiss product information, should be reported to the regional pharmacovigilance centres for early signal detection. 5-0 xoproline acidosis will be integrated as a potential adverse drug reaction in the Swiss product information for paracetamol. PMID:26654818

  19. A High-Fat Diet Causes Impairment in Hippocampal Memory and Sex-Dependent Alterations in Peripheral Metabolism

    OpenAIRE

    Underwood, Erica L.; Thompson, Lucien T.

    2015-01-01

    While high-fat diets are associated with rising incidence of obesity/type-2 diabetes and can induce metabolic and cognitive deficits, sex-dependent comparisons are rarely systematically made. Effects of exclusive consumption of a high-fat diet (HFD) on systemic metabolism and on behavioral measures of hippocampal-dependent memory were compared in young male and female LE rats. Littermates were fed from weaning either a HFD or a control diet (CD) for 12 wk prior to testing. Sex-different effec...

  20. Application of Circuit Simulation Method for Differential Modeling of TIM-2 Iron Uptake and Metabolism in Mouse Kidney Cells

    Directory of Open Access Journals (Sweden)

    JianHan

    2013-06-01

    Full Text Available Circuit simulation is a powerful methodology to generate differential mathematical models. Due to its highly accurate modelling capability, circuit simulation can be used to investigate interactions between the parts and processes of a cellular system. Circuit simulation has become a core technology for the field of electrical engineering, but its application in biology has not yet been fully realized. As a case study for evaluating the more advanced features of a circuit simulation tool called Advanced Design System (ADS, we collected and modeled laboratory data for iron metabolism in mouse kidney cells for a H ferritin (HFt receptor, T cell immunoglobulin and mucin domain-2 (TIM-2. The internal controlling parameters of TIM-2 associated iron metabolism were extracted and the ratios of iron movement among cellular compartments were quantified by ADS. The differential model processed by circuit simulation demonstrated a capability to identify variables and predict outcomes that could not be readily measured by in vitro experiments. For example, an initial rate of uptake of iron-loaded HFt was 2.17 pmol per million cells. TIM-2 binding probability with iron-loaded HFt was 16.6%. An average of 8.5 minutes was required for the complex of TIM-2 and iron-loaded HFt to form an endosome. The endosome containing HFt lasted roughly 2 hours. At the end of endocytosis, about 28% HFt remained intact and the rest was degraded. Iron released from degraded HFt was in the labile iron pool (LIP and stimulated the generation of endogenous HFt for new storage. Both experimental data and the model showed that TIM-2 was not involved in the process of iron export. The extracted internal controlling parameters successfully captured the complexity of TIM-2 pathway and the use of circuit simulation-based modeling across a wider range of cellular systems is the next step for validating the significance and utility of this method.

  1. Application of circuit simulation method for differential modeling of TIM-2 iron uptake and metabolism in mouse kidney cells.

    Science.gov (United States)

    Xie, Zhijian; Harrison, Scott H; Torti, Suzy V; Torti, Frank M; Han, Jian

    2013-01-01

    Circuit simulation is a powerful methodology to generate differential mathematical models. Due to its highly accurate modeling capability, circuit simulation can be used to investigate interactions between the parts and processes of a cellular system. Circuit simulation has become a core technology for the field of electrical engineering, but its application in biology has not yet been fully realized. As a case study for evaluating the more advanced features of a circuit simulation tool called Advanced Design System (ADS), we collected and modeled laboratory data for iron metabolism in mouse kidney cells for a H ferritin (HFt) receptor, T cell immunoglobulin and mucin domain-2 (TIM-2). The internal controlling parameters of TIM-2 associated iron metabolism were extracted and the ratios of iron movement among cellular compartments were quantified by ADS. The differential model processed by circuit simulation demonstrated a capability to identify variables and predict outcomes that could not be readily measured by in vitro experiments. For example, an initial rate of uptake of iron-loaded HFt (Fe-HFt) was 2.17 pmol per million cells. TIM-2 binding probability with Fe-HFt was 16.6%. An average of 8.5 min was required for the complex of TIM-2 and Fe-HFt to form an endosome. The endosome containing HFt lasted roughly 2 h. At the end of endocytosis, about 28% HFt remained intact and the rest was degraded. Iron released from degraded HFt was in the labile iron pool (LIP) and stimulated the generation of endogenous HFt for new storage. Both experimental data and the model showed that TIM-2 was not involved in the process of iron export. The extracted internal controlling parameters successfully captured the complexity of TIM-2 pathway and the use of circuit simulation-based modeling across a wider range of cellular systems is the next step for validating the significance and utility of this method. PMID:23761763

  2. Contact sensitizers modulate the arachidonic acid metabolism of PMA-differentiated U-937 monocytic cells activated by LPS

    International Nuclear Information System (INIS)

    For the effective induction of a hapten-specific T cell immune response toward contact sensitizers, in addition to covalent-modification of skin proteins, the redox and inflammatory statuses of activated dendritic cells are crucial. The aim of this study was to better understand how sensitizers modulate an inflammatory response through cytokines production and COX metabolism cascade. To address this purpose, we used the human monocytic-like U-937 cell line differentiated by phorbol myristate acetate (PMA) and investigated the effect of 6 contact sensitizers (DNCB, PPD, hydroquinone, propyl gallate, cinnamaldehyde and eugenol) and 3 non sensitizers (lactic acid, glycerol and tween 20) on the production of pro-inflammatory cytokines (IL-1β and TNF-α) and on the arachidonic acid metabolic profile after bacterial lipopolysaccharide (LPS) stimulation. Our results showed that among the tested molecules, all sensitizers specifically prevent the production of PMA/LPS-induced COX-2 metabolites (PGE2, TxB2 and PGD2), eugenol and cinnamaldehyde inhibiting also the production of IL-1β and TNF-α. We further demonstrated that there is no unique PGE2 inhibition mechanism: while the release of arachidonic acid (AA) from membrane phospholipids does not appear do be a target of modulation, COX-2 expression and/or COX-2 enzymatic activity are the major steps of prostaglandin synthesis that are inhibited by sensitizers. Altogether these results add a new insight into the multiple biochemical effects described for sensitizers. - Highlights: → We investigated how contact sensitizers modulate an inflammatory response. → We used macrophage-differentiated cell line, U-937 treated with PMA/LPS. → Sensitizers specifically inhibit the production of COX metabolites (PGE2, TxB2). → Several mechanisms of inhibition: COX-2 expression/enzymatic activity, isomerases. → New insight in the biochemical properties of sensitizers.

  3. An analogue of atrial natriuretic peptide (C-ANP4-23) modulates glucose metabolism in human differentiated adipocytes.

    Science.gov (United States)

    Ruiz-Ojeda, Francisco Javier; Aguilera, Concepción María; Rupérez, Azahara Iris; Gil, Ángel; Gomez-Llorente, Carolina

    2016-08-15

    The present study was undertaken to investigate the effects of C-atrial natriuretic peptide (C-ANP4-23) in human adipose-derived stem cells differentiated into adipocytes over 10 days (1 μM for 4 h). The intracellular cAMP, cGMP and protein kinase A levels were determined by ELISA and gene and protein expression were determined by qRT-PCR and Western blot, respectively, in the presence or absence of C-ANP4-23. The levels of lipolysis and glucose uptake were also determined. C-ANP4-23 treatment significantly increased the intracellular cAMP levels and the gene expression of glucose transporter type 4 (GLUT4) and protein kinase, AMP-activated, alpha 1 catalytic subunit (AMPK). Western blot showed a significant increase in GLUT4 and phosphor-AMPKα levels. Importantly, the adenylate cyclase inhibitor SQ22536 abolished these effects. Additionally, C-ANP4-23 increased glucose uptake by 2-fold. Our results show that C-ANP4-23 enhances glucose metabolism and might contribute to the development of new peptide-based therapies for metabolic diseases. PMID:27181211

  4. Contact sensitizers modulate the arachidonic acid metabolism of PMA-differentiated U-937 monocytic cells activated by LPS.

    Science.gov (United States)

    Del Bufalo, Aurélia; Bernad, José; Dardenne, Christophe; Verda, Denis; Meunier, Jean Roch; Rousset, Françoise; Martinozzi-Teissier, Silvia; Pipy, Bernard

    2011-10-01

    For the effective induction of a hapten-specific T cell immune response toward contact sensitizers, in addition to covalent-modification of skin proteins, the redox and inflammatory statuses of activated dendritic cells are crucial. The aim of this study was to better understand how sensitizers modulate an inflammatory response through cytokines production and COX metabolism cascade. To address this purpose, we used the human monocytic-like U-937 cell line differentiated by phorbol myristate acetate (PMA) and investigated the effect of 6 contact sensitizers (DNCB, PPD, hydroquinone, propyl gallate, cinnamaldehyde and eugenol) and 3 non sensitizers (lactic acid, glycerol and tween 20) on the production of pro-inflammatory cytokines (IL-1β and TNF-α) and on the arachidonic acid metabolic profile after bacterial lipopolysaccharide (LPS) stimulation. Our results showed that among the tested molecules, all sensitizers specifically prevent the production of PMA/LPS-induced COX-2 metabolites (PGE(2,) TxB(2) and PGD(2)), eugenol and cinnamaldehyde inhibiting also the production of IL-1β and TNF-α. We further demonstrated that there is no unique PGE(2) inhibition mechanism: while the release of arachidonic acid (AA) from membrane phospholipids does not appear do be a target of modulation, COX-2 expression and/or COX-2 enzymatic activity are the major steps of prostaglandin synthesis that are inhibited by sensitizers. Altogether these results add a new insight into the multiple biochemical effects described for sensitizers. PMID:21807015

  5. Differential Changes in Expression of Stress- and Metabolic-Related Neuropeptides in the Rat Hypothalamus during Morphine Dependence and Withdrawal.

    Directory of Open Access Journals (Sweden)

    Bernadett Pintér-Kübler

    Full Text Available Chronic morphine treatment and naloxone precipitated morphine withdrawal activates stress-related brain circuit and results in significant changes in food intake, body weight gain and energy metabolism. The present study aimed to reveal hypothalamic mechanisms underlying these effects. Adult male rats were made dependent on morphine by subcutaneous implantation of constant release drug pellets. Pair feeding revealed significantly smaller weight loss of morphine treated rats compared to placebo implanted animals whose food consumption was limited to that eaten by morphine implanted pairs. These results suggest reduced energy expenditure of morphine-treated animals. Chronic morphine exposure or pair feeding did not significantly affect hypothalamic expression of selected stress- and metabolic related neuropeptides - corticotropin-releasing hormone (CRH, urocortin 2 (UCN2 and proopiomelanocortin (POMC compared to placebo implanted and pair fed animals. Naloxone precipitated morphine withdrawal resulted in a dramatic weight loss starting as early as 15-30 min after naloxone injection and increased adrenocorticotrophic hormone, prolactin and corticosterone plasma levels in morphine dependent rats. Using real-time quantitative PCR to monitor the time course of relative expression of neuropeptide mRNAs in the hypothalamus we found elevated CRH and UCN2 mRNA and dramatically reduced POMC expression. Neuropeptide Y (NPY and arginine vasopressin (AVP mRNA levels were transiently increased during opiate withdrawal. These data highlight that morphine withdrawal differentially affects expression of stress- and metabolic-related neuropeptides in the rat hypothalamus, while relative mRNA levels of these neuropeptides remain unchanged either in rats chronically treated with morphine or in their pair-fed controls.

  6. The housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT regulates multiple developmental and metabolic pathways of murine embryonic stem cell neuronal differentiation.

    Directory of Open Access Journals (Sweden)

    Tae Hyuk Kang

    Full Text Available The mechanisms by which mutations of the purinergic housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT cause the severe neurodevelopmental Lesch Nyhan Disease (LND are poorly understood. The best recognized neural consequences of HPRT deficiency are defective basal ganglia expression of the neurotransmitter dopamine (DA and aberrant DA neuronal function. We have reported that HPRT deficiency leads to dysregulated expression of multiple DA-related developmental functions and cellular signaling defects in a variety of HPRT-deficient cells, including human induced pluripotent stem (iPS cells. We now describe results of gene expression studies during neuronal differentiation of HPRT-deficient murine ESD3 embryonic stem cells and report that HPRT knockdown causes a marked switch from neuronal to glial gene expression and dysregulates expression of Sox2 and its regulator, genes vital for stem cell pluripotency and for the neuronal/glial cell fate decision. In addition, HPRT deficiency dysregulates many cellular functions controlling cell cycle and proliferation mechanisms, RNA metabolism, DNA replication and repair, replication stress, lysosome function, membrane trafficking, signaling pathway for platelet activation (SPPA multiple neurotransmission systems and sphingolipid, sulfur and glycan metabolism. We propose that the neural aberrations of HPRT deficiency result from combinatorial effects of these multi-system metabolic errors. Since some of these aberrations are also found in forms of Alzheimer's and Huntington's disease, we predict that some of these systems defects play similar neuropathogenic roles in diverse neurodevelopmental and neurodegenerative diseases in common and may therefore provide new experimental opportunities for clarifying pathogenesis and for devising new potential therapeutic targets in developmental and genetic disease.

  7. Medullary Endocannabinoids Contribute to the Differential Resting Baroreflex Sensitivity in Rats with Altered Brain Renin-Angiotensin System Expression

    Science.gov (United States)

    Schaich, Chris L.; Grabenauer, Megan; Thomas, Brian F.; Shaltout, Hossam A.; Gallagher, Patricia E.; Howlett, Allyn C.; Diz, Debra I.

    2016-01-01

    CB1 cannabinoid receptors are expressed on vagal afferent fibers and neurons within the solitary tract nucleus (NTS), providing anatomical evidence for their role in arterial baroreflex modulation. To better understand the relationship between the brain renin-angiotensin system (RAS) and endocannabinoid expression within the NTS, we measured dorsal medullary endocannabinoid tissue content and the effects of CB1 receptor blockade at this brain site on cardiac baroreflex sensitivity (BRS) in ASrAOGEN rats with low glial angiotensinogen, normal Sprague-Dawley rats and (mRen2)27 rats with upregulated brain RAS expression. Mass spectrometry revealed higher levels of the endocannabinoid 2-arachidonoylglycerol in (mRen2)27 compared to ASrAOGEN rats (2.70 ± 0.28 vs. 1.17 ± 0.09 ng/mg tissue; P NTS did not change cardiac BRS in anesthetized Sprague-Dawley rats (1.04 ± 0.05 ms/mmHg baseline vs. 1.17 ± 0.11 ms/mmHg after 10 min). However, SR141716A in (mRen2)27 rats dose-dependently improved BRS in this strain: 0.36 pmol of SR141716A increased BRS from 0.43 ± 0.03 to 0.71 ± 0.04 ms/mmHg (P < 0.001), and 36 pmol of SR141716A increased BRS from 0.47 ± 0.02 to 0.94 ± 0.10 ms/mmHg (P < 0.01). In contrast, 0.36 pmol (1.50 ± 0.12 vs. 0.86 ± 0.08 ms/mmHg; P < 0.05) and 36 pmol (1.38 ± 0.16 vs. 0.46 ± 0.003 ms/mmHg; P < 0.01) of SR141716A significantly reduced BRS in ASrAOGEN rats. These observations reveal differential dose-related effects of the brain endocannabinoid system that influence cardiovagal BRS in animals with genetic alterations in the brain RAS. PMID:27375489

  8. Medullary Endocannabinoids Contribute to the Differential Resting Baroreflex Sensitivity in Rats with Altered Brain Renin-Angiotensin System Expression.

    Science.gov (United States)

    Schaich, Chris L; Grabenauer, Megan; Thomas, Brian F; Shaltout, Hossam A; Gallagher, Patricia E; Howlett, Allyn C; Diz, Debra I

    2016-01-01

    CB1 cannabinoid receptors are expressed on vagal afferent fibers and neurons within the solitary tract nucleus (NTS), providing anatomical evidence for their role in arterial baroreflex modulation. To better understand the relationship between the brain renin-angiotensin system (RAS) and endocannabinoid expression within the NTS, we measured dorsal medullary endocannabinoid tissue content and the effects of CB1 receptor blockade at this brain site on cardiac baroreflex sensitivity (BRS) in ASrAOGEN rats with low glial angiotensinogen, normal Sprague-Dawley rats and (mRen2)27 rats with upregulated brain RAS expression. Mass spectrometry revealed higher levels of the endocannabinoid 2-arachidonoylglycerol in (mRen2)27 compared to ASrAOGEN rats (2.70 ± 0.28 vs. 1.17 ± 0.09 ng/mg tissue; P NTS did not change cardiac BRS in anesthetized Sprague-Dawley rats (1.04 ± 0.05 ms/mmHg baseline vs. 1.17 ± 0.11 ms/mmHg after 10 min). However, SR141716A in (mRen2)27 rats dose-dependently improved BRS in this strain: 0.36 pmol of SR141716A increased BRS from 0.43 ± 0.03 to 0.71 ± 0.04 ms/mmHg (P < 0.001), and 36 pmol of SR141716A increased BRS from 0.47 ± 0.02 to 0.94 ± 0.10 ms/mmHg (P < 0.01). In contrast, 0.36 pmol (1.50 ± 0.12 vs. 0.86 ± 0.08 ms/mmHg; P < 0.05) and 36 pmol (1.38 ± 0.16 vs. 0.46 ± 0.003 ms/mmHg; P < 0.01) of SR141716A significantly reduced BRS in ASrAOGEN rats. These observations reveal differential dose-related effects of the brain endocannabinoid system that influence cardiovagal BRS in animals with genetic alterations in the brain RAS. PMID:27375489

  9. Differential effects of prednisone and growth hormone on fuel metabolism and insulin antagonism in humans

    International Nuclear Information System (INIS)

    Human growth hormone (hGH) and prednisone cause insulin resistance and glucose intolerance. However, it is unknown whether hGH and prednisone antagonize insulin action on protein, fat, and carbohydrate metabolism by a common or independent mechanism. Therefore, protein, fat, and carbohydrate metabolism was assessed simultaneously in four groups of eight subjects each after 7 days of placebo, recombinant DNA hGH (rhGH; 0.1 mg.kg-1.day-1), prednisone (0.8 mg.kg-1.day-1), or rhGH and prednisone administration after an 18-h fast and during gut infusion of glucose and amino acids (fed state). Fasting plasma glucose concentrations were similar during placebo and rhGH but elevated (P less than 0.001) during combined treatment, whereas plasma insulin concentrations were higher (237 +/- 57 pmol/ml, P less than 0.001) during combined than during placebo, rhGH, or prednisone treatment (34, 52, and 91 pM, respectively). In the fed state, plasma glucose concentrations were elevated only during combined treatment (11.3 +/- 2.1 mM, P less than 0.001). Plasma insulin concentrations were elevated during therapy with prednisone alone and rhGH alone (667 +/- 72 and 564 +/- 65 pmol/ml, respectively, P less than 0.001) compared with placebo (226 +/- 44 pmol/ml) but lower than with the combined rhGH and prednisone treatment (1249 +/- 54 pmol/ml, P less than 0.01). Protein oxidation 14C leucine increased (P less than 0.001) with prednisone therapy, decreased (P less than 0.001) with rhGH treatment, and was normal during the combined treatment

  10. Differential effects of prednisone and growth hormone on fuel metabolism and insulin antagonism in humans

    Energy Technology Data Exchange (ETDEWEB)

    Horber, F.F.; Marsh, H.M.; Haymond, M.W. (Mayo Clinic, Rochester, MN (USA))

    1991-01-01

    Human growth hormone (hGH) and prednisone cause insulin resistance and glucose intolerance. However, it is unknown whether hGH and prednisone antagonize insulin action on protein, fat, and carbohydrate metabolism by a common or independent mechanism. Therefore, protein, fat, and carbohydrate metabolism was assessed simultaneously in four groups of eight subjects each after 7 days of placebo, recombinant DNA hGH (rhGH; 0.1 mg.kg-1.day-1), prednisone (0.8 mg.kg-1.day-1), or rhGH and prednisone administration after an 18-h fast and during gut infusion of glucose and amino acids (fed state). Fasting plasma glucose concentrations were similar during placebo and rhGH but elevated (P less than 0.001) during combined treatment, whereas plasma insulin concentrations were higher (237 +/- 57 pmol/ml, P less than 0.001) during combined than during placebo, rhGH, or prednisone treatment (34, 52, and 91 pM, respectively). In the fed state, plasma glucose concentrations were elevated only during combined treatment (11.3 +/- 2.1 mM, P less than 0.001). Plasma insulin concentrations were elevated during therapy with prednisone alone and rhGH alone (667 +/- 72 and 564 +/- 65 pmol/ml, respectively, P less than 0.001) compared with placebo (226 +/- 44 pmol/ml) but lower than with the combined rhGH and prednisone treatment (1249 +/- 54 pmol/ml, P less than 0.01). Protein oxidation {sup 14}C leucine increased (P less than 0.001) with prednisone therapy, decreased (P less than 0.001) with rhGH treatment, and was normal during the combined treatment.

  11. Cocoa and Whey Protein Differentially Affect Markers of Lipid and Glucose Metabolism and Satiety.

    Science.gov (United States)

    Campbell, Caroline L; Foegeding, E Allen; Harris, G Keith

    2016-03-01

    Food formulation with bioactive ingredients is a potential strategy to promote satiety and weight management. Whey proteins are high in leucine and are shown to decrease hunger ratings and increase satiety hormone levels; cocoa polyphenolics moderate glucose levels and slow digestion. This study examined the effects of cocoa and whey proteins on lipid and glucose metabolism and satiety in vitro and in a clinical trial. In vitro, 3T3-L1 preadipocytes were treated with 0.5-100 μg/mL cocoa polyphenolic extract (CPE) and/or 1-15 mM leucine (Leu) and assayed for lipid accumulation and leptin production. In vivo, a 6-week clinical trial consisted of nine panelists (age: 22.6 ± 1.7; BMI: 22.3 ± 2.1) consuming chocolate-protein beverages once per week, including placebo, whey protein isolate (WPI), low polyphenolic cocoa (LP), high polyphenolic cocoa (HP), LP-WPI, and HP-WPI. Measurements included blood glucose and adiponectin levels, and hunger ratings at baseline and 0.5-4.0 h following beverage consumption. At levels of 50 and 100 μg/mL, CPE significantly inhibited preadipocyte lipid accumulation by 35% and 50%, respectively, and by 22% and 36% when combined with 15 mM Leu. Leu treatment increased adipocyte leptin production by 26-37%. In the clinical trial, all beverages significantly moderated blood glucose levels 30 min postconsumption. WPI beverages elicited lowest peak glucose levels and HP levels were significantly lower than LP. The WPI and HP beverage treatments significantly increased adiponectin levels, but elicited no significant changes in hunger ratings. These trends suggest that combinations of WPI and cocoa polyphenols may improve markers of metabolic syndrome and satiety. PMID:26987021

  12. Altered transport and metabolism of phenolic compounds in obesity and diabetes: implications for functional food development and assessment

    Science.gov (United States)

    Interest in application of phenolic compounds from diet or supplements for prevention of chronic diseases has grown significantly, but efficacy of such approaches in humans is largely dependent on the bioavailability and metabolism of these compounds. While food and dietary factors have been the foc...

  13. Purple rice bran extract attenuates the aflatoxin B1-induced initiation stage of hepatocarcinogenesis by alteration of xenobiotic metabolizing enzymes.

    Science.gov (United States)

    Suwannakul, Nattawan; Punvittayagul, Charatda; Jarukamjorn, Kanokwan; Wongpoomchai, Rawiwan

    2015-01-01

    Pigmented rice bran has been suggested to be a valuable source of beneficial phytochemicals. We investigated genotoxic and anti-genotoxic effects of purple rice bran extract (PRBE) in rats using a liver micronucleus assay. Purple rice bran was extracted with methanol, obtaining large amounts of phenolic compounds, including anthocyanins and small amounts of gamma-oryzanol. The experimental protocols were divided into two sets. Male rats were divided into three groups. Group 1 was a negative control, while Groups 2 and 3 were fed with 100 and 500 mg/kg bw of PRBE, respectively, for 28 days. PRBE had no effect on micronucleus formation or xenobiotic metabolizing enzymes in rat liver. Experiments concerning the effect of PRBE on AFB1 showed that PRBE significantly lessened the amount of micronucleated hepatocytes in AFB1 treated rats. Furthermore, it modulated metabolic activation of AFB1 metabolism in the liver by suppressing activity and protein expression of CYP1A2, CYP3A and CYP 450 reductase, and enhancing phase II enzymes including GST and UGT. Overall, purple rice bran extract was not genotoxic in rats. It exhibited anti-genotoxicity by modulation some xenobiotic enzymes active in AFB1 metabolism. PMID:25921147

  14. Wounding of potato tubers induces increases in ABA biosynthesis and catabolism and alters expression of ABA metabolic genes

    Science.gov (United States)

    The effects of physical wounding on ABA biosynthesis and catabolism and expression of genes encoding key ABA metabolic enzymes were determined in potato (Solanum tuberosum L.) tubers. An increase in ABA and ABA metabolite content was observed 48 h after wounding and remained elevated through 96 h. ...

  15. Differential regulation of c-di-GMP metabolic enzymes by environmental signals modulates biofilm formation in Yersinia pestis

    Directory of Open Access Journals (Sweden)

    Gai-Xian eRen

    2016-06-01

    Full Text Available Cyclic diguanylate (c-di-GMP is essential for Yersinia pestis biofilm formation, which is important for flea-borne blockage-dependent plague transmission. Two diguanylate cyclases (DGCs, HmsT and HmsD and one phosphodiesterase (PDE, HmsP are responsible for the synthesis and degradation of c-di-GMP in Y. pestis. Here, we systematically analyzed the effect of various environmental signals on regulation of the biofilm phenotype, the c-di-GMP levels, and expression of HmsT, HmsD and HmsP in Y. pestis. Biofilm formation was higher in the presence of nonlethal high concentration of CaCl2, MgCl2, CuSO4, sucrose, sodium dodecyl sulfonate, or dithiothreitol, and was lower in the presence of FeCl2 or NaCl. In addition, we found that HmsD plays a major role in biofilm formation in acidic or redox environments. These environmental signals differentially regulated expression of HmsT, HmsP and HmsD, resulting in changes in the intracellular levels of c-di-GMP in Y. pestis. Our results suggest that bacteria can sense various environmental signals, and differentially regulates their DGCs and PDEs to coordinately regulate and adapt metabolism of c-di-GMP and biofilm formation to changing environments.

  16. A 6-week diet and exercise intervention alters metabolic syndrome risk factors in obese Chinese children aged 11-13 years

    Institute of Scientific and Technical Information of China (English)

    Beibei; Luo; Yang; Yang; David; C.Nieman; Yajun; Zhang; Jie; Wang; Ru; Wang; Peijie; Chen

    2013-01-01

    Purpose:A randomized,controlled trial was conducted to determine whether a 6-week low calorie diet and aerobic exercise intervention could alter metabolic syndrome(MetS) risk factors in