WorldWideScience

Sample records for alters behavioral activity

  1. Altered behavior in spotted hyenas associated with increased human activity

    Science.gov (United States)

    Boydston, Erin E.; Kapheim, Karen M.; Watts, Heather E.; Szykman, Micaela; Holekamp, Kay E.

    2003-01-01

    To investigate how anthropogenic activity might affect large carnivores, we studied the behaviour of spotted hyenas (Crocuta crocuta) during two time periods. From 1996 to 1998, we documented the ecological correlates of space utilization patterns exhibited by adult female hyenas defending a territory at the edge of a wildlife reserve in Kenya. Hyenas preferred areas near dense vegetation but appeared to avoid areas containing the greatest abundance of prey, perhaps because these were also the areas of most intensive livestock grazing. We then compared hyena behaviour observed in 1996–98 with that observed several years earlier and found many differences. Female hyenas in 1996–98 were found farther from dens, but closer to dense vegetation and to the edges of their territory, than in 1988–90. Recent females also had larger home ranges, travelled farther between consecutive sightings, and were more nocturnal than in 1988–90. Finally, hyenas occurred in smaller groups in 1996–98 than in 1988–90. We also found several changes in hyena demography between periods. We next attempted to explain differences observed between time periods by testing predictions of hypotheses invoking prey abundance, climate, interactions with lions, tourism and livestock grazing. Our data were consistent with the hypothesis that increased reliance on the reserve for livestock grazing was responsible for observed changes. That behavioural changes were not associated with decreased hyena population density suggests the behavioural plasticity typical of this species may protect it from extinction.

  2. Deletion of Rictor in catecholaminergic neurons alters locomotor activity and ingestive behavior.

    Science.gov (United States)

    Kaska, Sophia; Brunk, Rebecca; Bali, Vedrana; Kechner, Megan; Mazei-Robison, Michelle S

    2017-05-01

    While the etiology of depression is not fully understood, increasing evidence from animal models suggests a role for the ventral tegmental area (VTA) in pathogenesis. In this paper, we investigate the potential role of VTA mechanistic target of rapamycin 2 (TORC2) signaling in mediating susceptibility to chronic social defeat stress (CSDS), a well-established mouse model of depression. Utilizing genetic and viral knockout of Rictor (rapamycin-insensitive companion of target of rapamycin), a requisite component of TORC2, we demonstrate that decreasing Rictor-dependent TORC2 signaling in catecholaminergic neurons, or within the VTA specifically, does not alter susceptibility to CSDS. Opiate abuse and mood disorders are often comorbid, and previous data demonstrate a role for VTA TORC2 in mediating opiate reward. Thus, we also investigated its potential role in mediating changes in opiate reward following CSDS. Catecholaminergic deletion of Rictor increases water, sucrose, and morphine intake but not preference in a two-bottle choice assay in stress-naïve mice, and these effects are maintained after stress. VTA-specific knockout of Rictor increases water and sucrose intake after physical CSDS, but does not alter consummatory behavior in the absence of stress. These findings suggest a novel role for TORC2 in mediating stress-induced changes in consummatory behaviors that may contribute to some aspects of mood disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Dialectical behavior therapy alters emotion regulation and amygdala activity in patients with borderline personality disorder.

    Science.gov (United States)

    Goodman, Marianne; Carpenter, David; Tang, Cheuk Y; Goldstein, Kim E; Avedon, Jennifer; Fernandez, Nicolas; Mascitelli, Kathryn A; Blair, Nicholas J; New, Antonia S; Triebwasser, Joseph; Siever, Larry J; Hazlett, Erin A

    2014-10-01

    Siever and Davis' (1991) psychobiological framework of borderline personality disorder (BPD) identifies affective instability (AI) as a core dimension characterized by prolonged and intense emotional reactivity. Recently, deficient amygdala habituation, defined as a change in response to repeated relative to novel unpleasant pictures within a session, has emerged as a biological correlate of AI in BPD. Dialectical behavior therapy (DBT), an evidence-based treatment, targets AI by teaching emotion-regulation skills. This study tested the hypothesis that BPD patients would exhibit decreased amygdala activation and improved habituation, as well as improved emotion regulation with standard 12-month DBT. Event-related fMRI was obtained pre- and post-12-months of standard-DBT in unmedicated BPD patients. Healthy controls (HCs) were studied as a benchmark for normal amygdala activity and change over time (n = 11 per diagnostic-group). During each scan, participants viewed an intermixed series of unpleasant, neutral and pleasant pictures presented twice (novel, repeat). Change in emotion regulation was measured with the Difficulty in Emotion Regulation (DERS) scale. fMRI results showed the predicted Group × Time interaction: compared with HCs, BPD patients exhibited decreased amygdala activation with treatment. This post-treatment amygdala reduction in BPD was observed for all three pictures types, but particularly marked in the left hemisphere and during repeated-emotional pictures. Emotion regulation measured with the DERS significantly improved with DBT in BPD patients. Improved amygdala habituation to repeated-unpleasant pictures in patients was associated with improved overall emotional regulation measured by the DERS (total score and emotion regulation strategy use subscale). These findings have promising treatment implications and support the notion that DBT targets amygdala hyperactivity-part of the disturbed neural circuitry underlying emotional dysregulation

  4. Overexpression of cerebral and hepatic cytochrome P450s alters behavioral activity of rat offspring following prenatal exposure to lindane

    Energy Technology Data Exchange (ETDEWEB)

    Johri, Ashu; Yadav, Sanjay; Dhawan, Alok [Developmental Toxicology Division, Industrial Toxicology Research Centre, P. O. Box 80, M. G. Marg, Lucknow-226 001, U. P. (India); Parmar, Devendra [Developmental Toxicology Division, Industrial Toxicology Research Centre, P. O. Box 80, M. G. Marg, Lucknow-226 001, U. P. (India)

    2007-12-15

    Oral administration of different doses (0.0625, 0.125 or 0.25 mg/kg corresponding to 1/1400th, 1/700th or 1/350th of LD{sub 50}) of lindane to the pregnant Wistar rats from gestation days 5 to 21 were found to produce a dose-dependent increase in the activity of cytochrome P450 (CYP)-dependent 7-ethoxyresorufin-O-deethylase (EROD), 7-pentoxyresorufin-O-dealkylase (PROD) and N-nitrosodimethylamine demethylase (NDMA-d) in brain and liver of offspring postnatally at 3 weeks. The increase in the activity of CYP monooxygenases was found to be associated with the increase in the mRNA and protein expression of xenobiotic metabolizing CYP1A, 2B and 2E1 isoenzymes in the brain and liver of offspring. Dose-dependent alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 3 weeks have suggested that increase in CYP activity may possibly lead to the formation of metabolites to the levels that may be sufficient to alter the behavioral activity of the offspring. Interestingly, the inductive effect on cerebral and hepatic CYPs was found to persist postnatally up to 6 weeks in the offspring at the relatively higher doses (0.125 and 0.25 mg/kg) of lindane and up to 9 weeks at the highest dose (0.25 mg/kg), though the magnitude of induction was less than that observed at 3 weeks. Alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 6 and 9 weeks, though significant only in the offspring at 3 and 6-week of age, have further indicated that due to the reduced activity of the CYPs during the ontogeny, lindane and its metabolites may not be effectively cleared from the brain. The data suggest that low dose prenatal exposure to the pesticide has the potential to produce overexpression of xenobiotic metabolizing CYPs in brain and liver of the offspring which may account for the behavioral changes observed in the offspring.

  5. Overexpression of cerebral and hepatic cytochrome P450s alters behavioral activity of rat offspring following prenatal exposure to lindane

    International Nuclear Information System (INIS)

    Johri, Ashu; Yadav, Sanjay; Dhawan, Alok; Parmar, Devendra

    2007-01-01

    Oral administration of different doses (0.0625, 0.125 or 0.25 mg/kg corresponding to 1/1400th, 1/700th or 1/350th of LD 50 ) of lindane to the pregnant Wistar rats from gestation days 5 to 21 were found to produce a dose-dependent increase in the activity of cytochrome P450 (CYP)-dependent 7-ethoxyresorufin-O-deethylase (EROD), 7-pentoxyresorufin-O-dealkylase (PROD) and N-nitrosodimethylamine demethylase (NDMA-d) in brain and liver of offspring postnatally at 3 weeks. The increase in the activity of CYP monooxygenases was found to be associated with the increase in the mRNA and protein expression of xenobiotic metabolizing CYP1A, 2B and 2E1 isoenzymes in the brain and liver of offspring. Dose-dependent alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 3 weeks have suggested that increase in CYP activity may possibly lead to the formation of metabolites to the levels that may be sufficient to alter the behavioral activity of the offspring. Interestingly, the inductive effect on cerebral and hepatic CYPs was found to persist postnatally up to 6 weeks in the offspring at the relatively higher doses (0.125 and 0.25 mg/kg) of lindane and up to 9 weeks at the highest dose (0.25 mg/kg), though the magnitude of induction was less than that observed at 3 weeks. Alterations in the parameters of spontaneous locomotor activity in the offspring postnatally at 6 and 9 weeks, though significant only in the offspring at 3 and 6-week of age, have further indicated that due to the reduced activity of the CYPs during the ontogeny, lindane and its metabolites may not be effectively cleared from the brain. The data suggest that low dose prenatal exposure to the pesticide has the potential to produce overexpression of xenobiotic metabolizing CYPs in brain and liver of the offspring which may account for the behavioral changes observed in the offspring

  6. Electroconvulsive seizures (ECS) do not prevent LPS-induced behavioral alterations and microglial activation

    NARCIS (Netherlands)

    van Buel, E. M.; Bosker, F. J.; van Drunen, J.; Strijker, J.; Douwenga, W.; Klein, H. C.; Eisel, U. L. M.

    2015-01-01

    Background: Long-term neuroimmune activation is a common finding in major depressive disorder (MDD). Literature suggests a dual effect of electroconvulsive therapy (ECT), a highly effective treatment strategy for MDD, on neuroimmune parameters: while ECT acutely increases inflammatory parameters,

  7. Activation of adenosine A(1) receptors alters behavioral and biochemical parameters in hyperthyroid rats.

    Science.gov (United States)

    Bruno, Alessandra Nejar; Fontella, Fernanda Urruth; Bonan, Carla Denise; Barreto-Chaves, Maria Luiza M; Dalmaz, Carla; Sarkis, João José Freitas

    2006-02-28

    Adenosine acting on A(1) receptors has been related with neuroprotective and neuromodulatory actions, protection against oxidative stress and decrease of anxiety and nociceptive signaling. Previous studies demonstrated an inhibition of the enzymes that hydrolyze ATP to adenosine in the rat central nervous system after hyperthyroidism induction. Manifestations of hyperthyroidism include increased anxiety, nervousness, high O(2) consumption and physical hyperactivity. Here, we investigated the effects of administration of a specific agonist of adenosine A(1) receptor (N(6)-cyclopentyladenosine; CPA) on nociception, anxiety, exploratory response, locomotion and brain oxidative stress of hyperthyroid rats. Hyperthyroidism was induced by daily intraperitoneal injections of l-thyroxine (T4) for 14 days. Nociception was assessed with a tail-flick apparatus and exploratory behavior, locomotion and anxiety were analyzed by open-field and plus-maze tests. We verified the total antioxidant reactivity (TAR), lipid peroxide levels by the thiobarbituric acid reactive species (TBARS) reaction and the free radicals content by the DCF test. Our results demonstrated that CPA reverted the hyperalgesia induced by hyperthyroidism and decreased the exploratory behavior, locomotion and anxiety in hyperthyroid rats. Furthermore, CPA decreased lipid peroxidation in hippocampus and cerebral cortex of control rats and in cerebral cortex of hyperthyroid rats. CPA also increased the total antioxidant reactivity in hippocampus and cerebral cortex of control and hyperthyroid rats, but the production of free radicals verified by the DCF test was changed only in cerebral cortex. These results suggest that some of the hyperthyroidism effects are subjected to regulation by adenosine A(1) receptor, demonstrating the involvement of the adenosinergic system in this pathology.

  8. Behavior of nuclear waste elements during hydrothermal alteration of glassy rhyolite in an active geothermal system: Yellowstone National Park, Wyoming

    International Nuclear Information System (INIS)

    Sturchio, N.C.; Seitz, M.G.

    1984-01-01

    The behavior of a group of nuclear waste elements (U, Th, Sr, Zr, Sb, Cs, Ba, and Sm) during hydrothermal alteration of glassy rhyolite is investigated through detailed geochemical analyses of whole rocks, glass and mineral separates, and thermal waters. Significant mobility of U, Sr, Sb, Cs, and Ba is found, and the role of sorption processes in their observed behavior is identified. Th, Zr, and Sm are relatively immobile, except on a microscopic scale. 9 references, 2 figures, 2 tables

  9. Altered behavior and neural activity in conspecific cagemates co-housed with mouse models of brain disorders.

    Science.gov (United States)

    Yang, Hyunwoo; Jung, Seungmoon; Seo, Jinsoo; Khalid, Arshi; Yoo, Jung-Seok; Park, Jihyun; Kim, Soyun; Moon, Jangsup; Lee, Soon-Tae; Jung, Keun-Hwa; Chu, Kon; Lee, Sang Kun; Jeon, Daejong

    2016-09-01

    The psychosocial environment is one of the major contributors of social stress. Family members or caregivers who consistently communicate with individuals with brain disorders are considered at risk for physical and mental health deterioration, possibly leading to mental disorders. However, the underlying neural mechanisms of this phenomenon remain poorly understood. To address this, we developed a social stress paradigm in which a mouse model of epilepsy or depression was housed long-term (>4weeks) with normal conspecifics. We characterized the behavioral phenotypes and electrophysiologically investigated the neural activity of conspecific cagemate mice. The cagemates exhibited deficits in behavioral tasks assessing anxiety, locomotion, learning/memory, and depression-like behavior. Furthermore, they showed severe social impairment in social behavioral tasks involving social interaction or aggression. Strikingly, behavioral dysfunction remained in the cagemates 4weeks following co-housing cessation with the mouse models. In an electrophysiological study, the cagemates showed an increased number of spikes in medial prefrontal cortex (mPFC) neurons. Our results demonstrate that conspecifics co-housed with mouse models of brain disorders develop chronic behavioral dysfunctions, and suggest a possible association between abnormal mPFC neural activity and their behavioral pathogenesis. These findings contribute to the understanding of the psychosocial and psychiatric symptoms frequently present in families or caregivers of patients with brain disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Distinct alterations in motor & reward seeking behavior are dependent on the gestational age of exposure to LPS-induced maternal immune activation.

    Science.gov (United States)

    Straley, Megan E; Van Oeffelen, Wesley; Theze, Sarah; Sullivan, Aideen M; O'Mahony, Siobhain M; Cryan, John F; O'Keeffe, Gerard W

    2017-07-01

    The dopaminergic system is involved in motivation, reward and the associated motor activities. Mesodiencephalic dopaminergic neurons in the ventral tegmental area (VTA) regulate motivation and reward, whereas those in the substantia nigra (SN) are essential for motor control. Defective VTA dopaminergic transmission has been implicated in schizophrenia, drug addiction and depression whereas dopaminergic neurons in the SN are lost in Parkinson's disease. Maternal immune activation (MIA) leading to in utero inflammation has been proposed to be a risk factor for these disorders, yet it is unclear how this stimulus can lead to the diverse disturbances in dopaminergic-driven behaviors that emerge at different stages of life in affected offspring. Here we report that gestational age is a critical determinant of the subsequent alterations in dopaminergic-driven behavior in rat offspring exposed to lipopolysaccharide (LPS)-induced MIA. Behavioral analysis revealed that MIA on gestational day 16 but not gestational day 12 resulted in biphasic impairments in motor behavior. Specifically, motor impairments were evident in early life, which were resolved by adolescence, but subsequently re-emerged in adulthood. In contrast, reward seeking behaviors were altered in offspring exposed MIA on gestational day 12. These changes were not due to a loss of dopaminergic neurons per se in the postnatal period, suggesting that they reflect functional changes in dopaminergic systems. This highlights that gestational age may be a key determinant of how MIA leads to distinct alterations in dopaminergic-driven behavior across the lifespan of affected offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Alterations in grooming activity and syntax in heterozygous SERT and BDNF knockout mice: the utility of behavior-recognition tools to characterize mutant mouse phenotypes.

    Science.gov (United States)

    Kyzar, Evan J; Pham, Mimi; Roth, Andrew; Cachat, Jonathan; Green, Jeremy; Gaikwad, Siddharth; Kalueff, Allan V

    2012-12-01

    Serotonin transporter (SERT) and brain-derived neurotrophic factor (BDNF) are key modulators of molecular signaling, cognition and behavior. Although SERT and BDNF mutant mouse phenotypes have been extensively characterized, little is known about their self-grooming behavior. Grooming represents an important behavioral domain sensitive to environmental stimuli and is increasingly used as a model for repetitive behavioral syndromes, such as autism and attention deficit/hyperactivity disorder. The present study used heterozygous ((+/-)) SERT and BDNF male mutant mice on a C57BL/6J background and assessed their spontaneous self-grooming behavior applying both manual and automated techniques. Overall, SERT(+/-) mice displayed a general increase in grooming behavior, as indicated by more grooming bouts and more transitions between specific grooming stages. SERT(+/-) mice also aborted more grooming bouts, but showed generally unaltered activity levels in the observation chamber. In contrast, BDNF(+/-) mice displayed a global reduction in grooming activity, with fewer bouts and transitions between specific grooming stages, altered grooming syntax, as well as hypolocomotion and increased turning behavior. Finally, grooming data collected by manual and automated methods (HomeCageScan) significantly correlated in our experiments, confirming the utility of automated high-throughput quantification of grooming behaviors in various genetic mouse models with increased or decreased grooming phenotypes. Taken together, these findings indicate that mouse self-grooming behavior is a reliable behavioral biomarker of genetic deficits in SERT and BDNF pathways, and can be reliably measured using automated behavior-recognition technology. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Genetic deletion of P-glycoprotein alters stress responsivity and increases depression-like behavior, social withdrawal and microglial activation in the hippocampus of female mice.

    Science.gov (United States)

    Brzozowska, Natalia I; Smith, Kristie L; Zhou, Cilla; Waters, Peter M; Cavalcante, Ligia Menezes; Abelev, Sarah V; Kuligowski, Michael; Clarke, David J; Todd, Stephanie M; Arnold, Jonathon C

    2017-10-01

    P-glycoprotein (P-gp) is an ABC transporter expressed at the blood brain barrier and regulates the brain uptake of various xenobiotics and endogenous mediators including glucocorticoid hormones which are critically important to the stress response. Moreover, P-gp is expressed on microglia, the brain's immune cells, which are activated by stressors and have an emerging role in psychiatric disorders. We therefore hypothesised that germline P-gp deletion in mice might alter the behavioral and microglial response to stressors. Female P-gp knockout mice displayed an unusual, frantic anxiety response to intraperitoneal injection stress in the light-dark test. They also tended to display reduced conditioned fear responses compared to wild-type (WT) mice in a paradigm where a single electric foot-shock stressor was paired to a context. Foot-shock stress reduced social interaction and decreased microglia cell density in the amygdala which was not varied by P-gp genotype. Independently of stressor exposure, female P-gp deficient mice displayed increased depression-like behavior, idiosyncratic darting behavior, age-related social withdrawal and hyperactivity, facilitated sensorimotor gating and altered startle reactivity. In addition, P-gp deletion increased microglia cell density in the CA3 region of the hippocampus, and the microglial cells exhibited a reactive, hypo-ramified morphology. Further, female P-gp KO mice displayed increased glucocorticoid receptor (GR) expression in the hippocampus. In conclusion, this research shows that germline P-gp deletion affected various behaviors of relevance to psychiatric conditions, and that altered microglial cell activity and enhanced GR expression in the hippocampus may play a role in mediating these behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Midlife stress alters memory and mood-related behaviors in old age: Role of locally activated glucocorticoids.

    Science.gov (United States)

    Wheelan, Nicola; Kenyon, Christopher J; Harris, Anjanette P; Cairns, Carolynn; Al Dujaili, Emad; Seckl, Jonathan R; Yau, Joyce L W

    2018-03-01

    Chronic exposure to stress during midlife associates with subsequent age-related cognitive decline and may increase the vulnerability to develop psychiatric conditions. Increased hypothalamic-pituitary-adrenal (HPA) axis activity has been implicated in pathogenesis though any causative role for glucocorticoids is unestablished. This study investigated the contribution of local glucocorticoid regeneration by the intracellular enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), in persisting midlife stress-induced behavioral effects in mice. Middle-aged (10 months old) 11β-HSD1-deficient mice and wild-type congenic controls were randomly assigned to 28 days of chronic unpredictable stress or left undisturbed (non-stressed). All mice underwent behavioral testing at the end of the stress/non-stress period and again 6-7 months later. Chronic stress impaired spatial memory in middle-aged wild-type mice. The effects, involving a wide spectrum of behavioral modalities, persisted for 6-7 months after cessation of stress into early senescence. Enduring effects after midlife stress included impaired spatial memory, enhanced contextual fear memory, impaired fear extinction, heightened anxiety, depressive-like behavior, as well as reduced hippocampal glucocorticoid receptor mRNA expression. In contrast, 11β-HSD1 deficient mice resisted both immediate and enduring effects of chronic stress, despite similar stress-induced increases in systemic glucocorticoid activity during midlife stress. In conclusion, chronic stress in midlife exerts persisting effects leading to cognitive and affective dysfunction in old age via mechanisms that depend, at least in part, on brain glucocorticoids generated locally by 11β-HSD1. This finding supports selective 11β-HSD1 inhibition as a novel therapeutic target to ameliorate the long-term consequences of stress-related psychiatric disorders in midlife. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Repeated exposure to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength.

    Science.gov (United States)

    Marks, Wendie; Fournier, Neil M; Kalynchuk, Lisa E

    2009-08-04

    We have recently shown that repeated high dose injections of corticosterone (CORT) reliably increase depression-like behavior on a modified one-day version of the forced swim test. The main purpose of this experiment was to compare the effect of these CORT injections on our one-day version of the forced swim test and the more traditional two-day version of the test. A second purpose was to determine whether altered behavior in the forced swim test could be due to nonspecific changes in locomotor activity or muscle strength. Separate groups of rats received a high dose CORT injection (40 mg/kg) or a vehicle injection once per day for 21 consecutive days. Then, half the rats from each group were exposed to the traditional two-day forced swim test and the other half were exposed to our one-day forced swim test. After the forced swim testing, all the rats were tested in an open field and in a wire suspension grip strength test. The CORT injections significantly increased the time spent immobile and decreased the time spent swimming in both versions of the forced swim test. However, they had no significant effect on activity in the open field or grip strength in the wire suspension test. These results show that repeated CORT injections increase depression-like behavior regardless of the specific parameters of forced swim testing, and that these effects are independent of changes in locomotor activity or muscle strength.

  15. Glycogen synthase kinase 3 beta alters anxiety-, depression-, and addiction-related behaviors and neuronal activity in the nucleus accumbens shell

    Science.gov (United States)

    Crofton, Elizabeth J.; Nenov, Miroslav N.; Zhang, Yafang; Scala, Federico; Page, Sean A.; McCue, David L.; Li, Dingge; Hommel, Jonathan D.; Laezza, Fernanda; Green, Thomas A.

    2017-01-01

    Psychiatric disorders such as anxiety, depression and addiction are often comorbid brain pathologies thought to share common mechanistic biology. As part of the cortico-limbic circuit, the nucleus accumbens shell (NAcSh) plays a fundamental role in integrating information in the circuit, such that modulation of NAcSh circuitry alters anxiety, depression, and addiction-related behaviors. Intracellular kinase cascades in the NAcSh have proven important mediators of behavior. To investigate glycogen-synthase kinase 3 (GSK3) beta signaling in the NAcSh in vivo we knocked down GSK3beta expression with a novel adeno-associated viral vector (AAV2) and assessed changes in anxiety- and depression-like behavior and cocaine self-administration in GSK3beta knockdown rats. GSK3beta knockdown reduced anxiety-like behavior while increasing depression-like behavior and cocaine self-administration. Correlative electrophysiological recordings in acute brain slices were used to assess the effect of AAV-shGSK3beta on spontaneous firing and intrinsic excitability of tonically active interneurons (TANs), cells required for input and output signal integration in the NAcSh and for processing reward-related behaviors. Loose-patch recordings showed that TANs transduced by AAV-shGSK3beta exhibited reduction in tonic firing and increased spike half width. When assessed by whole-cell patch clamp recordings these changes were mirrored by reduction in action potential firing and accompanied by decreased hyperpolarization-induced depolarizing sag potentials, increased action potential current threshold, and decreased maximum rise time. These results suggest that silencing of GSK3beta in the NAcSh increases depression- and addiction-related behavior, possibly by decreasing intrinsic excitability of TANs. However, this study does not rule out contributions from other neuronal sub-types. PMID:28126496

  16. Hypergravity-induced altered behavior in Drosophila

    Science.gov (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  17. Grainyhead-like 3 (Grhl3) deficiency in brain leads to altered locomotor activity and decreased anxiety-like behaviors in aged mice.

    Science.gov (United States)

    Dworkin, Sebastian; Auden, Alana; Partridge, Darren D; Daglas, Maria; Medcalf, Robert L; Mantamadiotis, Theo; Georgy, Smitha R; Darido, Charbel; Jane, Stephen M; Ting, Stephen B

    2017-06-01

    The highly conserved Grainyhead-like (Grhl) family of transcription factors, comprising three members in vertebrates (Grhl1-3), play critical regulatory roles during embryonic development, cellular proliferation, and apoptosis. Although loss of Grhl function leads to multiple neural abnormalities in numerous animal models, a comprehensive analysis of Grhl expression and function in the mammalian brain has not been reported. Here they show that only Grhl3 expression is detectable in the embryonic mouse brain; particularly within the habenula, an organ known to modulate repressive behaviors. Using both Grhl3-knockout mice (Grhl3 -/- ), and brain-specific conditional deletion of Grhl3 in adult mice (Nestin-Cre/Grhl3 flox/flox ), they performed histological expression analyses and behavioral tests to assess long-term effects of Grhl3 loss on motor co-ordination, spatial memory, anxiety, and stress. They found that complete deletion of Grhl3 did not lead to noticeable structural or cell-intrinsic defects in the embryonic brain; however, aged Grhl3 conditional knockout (cKO) mice showed enlarged lateral ventricles and displayed marked changes in motor function and behaviors suggestive of decreased fear and anxiety. They conclude that loss of Grhl3 in the brain leads to significant alterations in locomotor activity and decreased self-inhibition, and as such, these mice may serve as a novel model of human conditions of impulsive behavior or hyperactivity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 775-788, 2017. © 2017 Wiley Periodicals, Inc.

  18. Behavioral correlates of cerebrospinal fluid amino acid and biogenic amine neurotransmitter alterations in dementia

    NARCIS (Netherlands)

    Vermeiren, Yannick; Le Bastard, Nathalie; Van Hemelrijck, An; Drinkenburg, Wilhelmus H.; Engelborghs, Sebastiaan; De Deyn, Peter P.

    Background: Behavioral and psychological signs and symptoms of dementia (BPSD) are a heterogeneous group of behavioral and psychiatric disturbances occurring in dementia patients of any etiology. Research suggests that altered activities of dopaminergic, serotonergic, (nor)adrenergic, as well as

  19. Algal Toxins Alter Copepod Feeding Behavior

    Science.gov (United States)

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A.; Waggett, Rebecca J.; Place, Allen R.

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod’s feeding appendages–a “sampling beating” that has short durations (<100 ms) and involves little fluid entrainment and a longer duration “grazing beating” that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod’s grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod’s feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  20. Algal toxins alter copepod feeding behavior.

    Directory of Open Access Journals (Sweden)

    Jiarong Hong

    Full Text Available Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods.

  1. Chronic bisphenol A exposure alters behaviors of zebrafish (Danio rerio)

    International Nuclear Information System (INIS)

    Wang, Ju; Wang, Xia; Xiong, Can; Liu, Jian; Hu, Bing; Zheng, Lei

    2015-01-01

    The adult zebrafish (Danio rerio) were exposed to treated-effluent concentration of bisphenol A (BPA) or 17β-estradiol (E2) for 6 months to evaluate their effects on behavioral characteristics: motor behavior, aggression, group preference, novel tank test and light/dark preference. E2 exposure evidently dampened fish locomotor activity, while BPA exposure had no marked effect. Interestingly, BPA-exposed fish reduced their aggressive behavior compared with control or E2. Both BPA and E2 exposure induced a significant decrease in group preference, as well as a weaker adaptability to new environment, exhibiting lower latency to reach the top, more entries to the top, longer time spent in the top, fewer frequent freezing, and fewer erratic movements. Furthermore, the circadian rhythmicity of light/dark preference was altered by either BPA or E2 exposure. Our results suggest that chronic exposure of treated-effluent concentration BPA or E2 induced various behavioral anomalies in adult fish and enhanced ecological risk to wildlife. - Highlights: • BPA exposure induces various adult behavioral anomalies. • BPA exposure decreases social interaction and environmental adaptation of zebrafish. • BPA exposure increases ecological risk to wildlife. - Chronic bisphenol A exposure alters zebrafish behaviors.

  2. Alterations in offspring behavior induced by chronic prenatal cocaine dosing.

    Science.gov (United States)

    Smith, R F; Mattran, K M; Kurkjian, M F; Kurtz, S L

    1989-01-01

    Sperm-positive female Long-Evans hooded rats were dosed subcutaneously with 10 mg/kg/day cocaine or an equal volume of vehicle (0.9% sterile saline) from gestation day 4 (GD4) through GD18. Offspring were assessed for development of negative geotaxis, righting reflex, spontaneous alternation, and open field activity, and for adult behaviors including DRL-20 acquisition, water maze, visual discrimination, barbiturate sleep time, shuttlebox avoidance, footshock sensitivity, and tail flick latency. Cocaine dosing produced no significant effects on dam weight gain, any measure of litter size and weight, or early postnatal behavioral tests, but there were significant drug effects on development of spontaneous alternation, development of open field activity, DRL-20 acquisition, water maze performance, tail flick, and footshock sensitivity. These data suggest that chronic administration of a modest dose of cocaine during gestation in the rat alters a number of behaviors in the offspring.

  3. Catechol-O-methyltransferase inhibition alters pain and anxiety-related volitional behaviors through activation of β-adrenergic receptors in the rat.

    Science.gov (United States)

    Kline, R H; Exposto, F G; O'Buckley, S C; Westlund, K N; Nackley, A G

    2015-04-02

    Reduced catechol-O-methyltransferase (COMT) activity resulting from genetic variation or pharmacological depletion results in enhanced pain perception in humans and nociceptive behaviors in animals. Using phasic mechanical and thermal reflex tests (e.g. von Frey, Hargreaves), recent studies show that acute COMT-dependent pain in rats is mediated by β-adrenergic receptors (βARs). In order to more closely mimic the characteristics of human chronic pain conditions associated with prolonged reductions in COMT, the present study sought to determine volitional pain-related and anxiety-like behavioral responses following sustained as well as acute COMT inhibition using an operant 10-45°C thermal place preference task and a light/dark preference test. In addition, we sought to evaluate the effects of sustained COMT inhibition on generalized body pain by measuring tactile sensory thresholds of the abdominal region. Results demonstrated that acute and sustained administration of the COMT inhibitor OR486 increased pain behavior in response to thermal heat. Further, sustained administration of OR486 increased anxiety behavior in response to bright light, as well as abdominal mechanosensation. Finally, all pain-related behaviors were blocked by the non-selective βAR antagonist propranolol. Collectively, these findings provide the first evidence that stimulation of βARs following acute or chronic COMT inhibition drives cognitive-affective behaviors associated with heightened pain that affects multiple body sites. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Catechol-O-methlytransferase inhibition alters pain and anxiety-related volitional behaviors through activation of β-adrenergic receptors in the rat

    Science.gov (United States)

    Kline, R. H.; Exposto, F. G.; O’Buckley, S. C.; Westlund, K. N.; Nackley, A. G.

    2015-01-01

    Reduced catechol-O-methyltransferase (COMT) activity resulting from genetic variation or pharmacological depletion results in enhanced pain perception in humans and nociceptive behaviors in animals. Using phasic mechanical and thermal reflex tests (e.g. von Frey, Hargreaves), recent studies show that acute COMT-dependent pain in rats is mediated by β-adrenergic receptors (βARs). In order to more closely mimic the characteristics of human chronic pain conditions associated with prolonged reductions in COMT, the present study sought to determine volitional pain-related and anxiety-like behavioral responses following sustained as well as acute COMT inhibition using an operant 10–45°C thermal place preference task and a light/dark preference test. In addition, we sought to evaluate the effects of sustained COMT inhibition on generalized body pain by measuring tactile sensory thresholds of the abdominal region. Results demonstrated that acute and sustained administration of the COMT inhibitor OR486 increased pain behavior in response to thermal heat. Further, sustained administration of OR486 increased anxiety behavior in response to bright light, as well as abdominal mechanosensation. Finally, all pain-related behaviors were blocked by the non-selective βAR antagonist propranolol. Collectively, these findings provide the first evidence that stimulation of ARs following acute or chronic COMT inhibition drives cognitive-affective behaviors associated with heightened pain that affects multiple body sites. PMID:25659347

  5. Reduced hippocampal IL-10 expression, altered monoaminergic activity and anxiety and depressive-like behavior in female mice subjected to chronic social instability stress.

    Science.gov (United States)

    Labaka, Ainitze; Gómez-Lázaro, Eneritz; Vegas, Oscar; Pérez-Tejada, Joana; Arregi, Amaia; Garmendia, Larraitz

    2017-09-29

    Evidence indicates that release of pro-inflammatory cytokines induced by social stress contributes to affective disorders. Additionally, there are known sex differences in both the stress response and the stressors that can elicit this response. In this regard, the chronic social instability (CSI) rodent model of stress appears to be the best fit for the social nature of females. This study analyzed the effects of CSI on female mouse behavior, hippocampal cytokine expression, tryptophan metabolism and monoaminergic activity. The activity of hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-gonadal (HPG) axes were also measured. Results showed a decrease in sucrose consumption in stressed subjects, indicative of anhedonic behavior and an increase in climbing activity in the forced swimming test (FST) and in whisking behavior, which have been associated with anxiety. Decreased interleukin-10 (IL-10) expression was found in the hippocampus of the stressed mice, while no differences in pro-inflammatory cytokine expression and tryptophan (TRYP), kynurenine (KYN) or 3-hydroxy kynurenine (3-HK) levels were found. Increased hippocampal serotoninergic and noradrenergic activity was observed in stressed mice. The higher plasma corticosterone and lower hypothalamic glucocorticoid receptor (GR) expression levels showed an increase in HPA activity after CSI. No differences were found in the plasma estradiol levels or the central estrogen receptors (ERα and ERβ) expression levels. These data indicate that the CSI stress-induced behavioral and physiological changes associated with anxiety and depressive disorders. Although additional studies are warranted, the results suggest an involvement of anti-inflammatory cytokines in the biobehavioral effects of social stress in female mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Parathion alters incubation behavior of laughing gulls

    Science.gov (United States)

    White, D.H.; Mitchell, C.A.; Hill, E.F.

    1983-01-01

    One member of each pair of incubating laughing gulls at 9 nests was trapped, orally dosed with either 6 mg/kg parathion in corn oil or corn oil alone, and marked about the neck with red dye. Each nest was marked with a numbered stake and the treatment was recorded. A pilot study with captive laughing gulls had determined the proper dosage of parathion that would significantly inhibit their brain AChE activity (about 50% of normal) without overt signs of poisoning. After dosing, birds were released and the nests were observed for 2 1/2 days from a blind on the nesting island. The activities of the birds at each marked nest were recorded at 10-minute intervals. Results indicated that on the day of treatment there was no difference (P greater than 0.05, Chi-square test) in the proportion of time spent on the nest between treated and control birds. However, birds dosed with 6 mg/kg parathion spent significantly less time incubating on days 2 and 3 than did birds receiving only corn oil. By noon on the third day, sharing of nest duties between pair members in the treated group had approached normal, indicating recovery from parathion intoxication. These findings suggest that sublethal exposure of nesting birds to an organophosphate (OP) insecticide, such as parathion, may result in decreased nest attentiveness, thereby making the clutch more susceptible to predation or egg failure. Behavioral changes caused by sublethal OP exposure could be especially detrimental in avian species where only one pair member incubates or where both members are exposed in species sharing nest duties.

  7. Isolation and characterization of altered root growth behavior and ...

    African Journals Online (AJOL)

    Ezedom Theresa

    2013-10-02

    Oct 2, 2013 ... contrasting root growth behavior and salinity tolerance in rice will help us to identify key genes controlling ..... In order to screen plants showing altered response ... were found to remain green even after 15 days of salinity.

  8. Silychristin: Skeletal Alterations and Biological Activities

    Czech Academy of Sciences Publication Activity Database

    Biedermann, David; Buchta, M.; Holečková, Veronika; Sedlák, David; Valentová, Kateřina; Cvačka, Josef; Bednárová, Lucie; Křenková, Alena; Kuzma, Marek; Škuta, Ctibor; Peikerová, Žaneta; Bartůněk, Petr; Křen, Vladimír

    2016-01-01

    Roč. 79, č. 12 (2016), s. 3086-3092 ISSN 0163-3864 R&D Projects: GA ČR(CZ) GA15-03037S; GA MZd(CZ) NV16-27317A; GA MŠk LO1220; GA MŠk LM2015063; GA MŠk(CZ) LD15081 Institutional support: RVO:61388971 ; RVO:68378050 ; RVO:61388963 Keywords : Silychristin * skeletal alterations * biological activities Subject RIV: CC - Organic Chemistry Impact factor: 3.281, year: 2016

  9. Alterations in Rubisco activity and in stomatal behavior induce a daily rhythm in photosynthesis of aerial leaves in the amphibious-plant Nuphar lutea.

    Science.gov (United States)

    Snir, Ainit; Gurevitz, Michael; Marcus, Yehouda

    2006-12-01

    Nuphar lutea is an amphibious plant with submerged and aerial foliage, which raises the question how do both leaf types perform photosynthetically in two different environments. We found that the aerial leaves function like terrestrial sun-leaves in that their photosynthetic capability was high and saturated under high irradiance (ca. 1,500 mumol photons m(-2) s(-1)). We show that stomatal opening and Rubisco activity in these leaves co-limited photosynthesis at saturating irradiance fluctuating in a daily rhythm. In the morning, sunlight stimulated stomatal opening, Rubisco synthesis, and the neutralization of a night-accumulated Rubisco inhibitor. Consequently, the light-saturated quantum efficiency and rate of photosynthesis increased 10-fold by midday. During the afternoon, gradual closure of the stomata and a decrease in Rubisco content reduced the light-saturated photosynthetic rate. However, at limited irradiance, stomatal behavior and Rubisco content had only a marginal effect on the photosynthetic rate, which did not change during the day. In contrast to the aerial leaves, the photosynthesis rate of the submerged leaves, adapted to a shaded environment, was saturated under lower irradiance. The light-saturated quantum efficiency of these leaves was much lower and did not change during the day. Due to their low photosynthetic affinity for CO(2) (35 muM) and inability to utilize other inorganic carbon species, their photosynthetic rate at air-equilibrated water was CO(2)-limited. These results reveal differences in the photosynthetic performance of the two types of Nuphar leaves and unravel how photosynthetic daily rhythm in the aerial leaves is controlled.

  10. A novel escapable social interaction test reveals that social behavior and mPFC activation during an escapable social encounter are altered by post-weaning social isolation and are dependent on the aggressiveness of the stimulus rat.

    Science.gov (United States)

    Goodell, Dayton J; Ahern, Megan A; Baynard, Jessica; Wall, Vanessa L; Bland, Sondra T

    2017-01-15

    Post-weaning social isolation (PSI) has been shown to increase aggressive behavior and alter medial prefrontal cortex (mPFC) function in social species such as rats. Here we developed a novel escapable social interaction test (ESIT) allowing for the quantification of escape and social behaviors in addition to mPFC activation in response to an aggressive or nonaggressive stimulus rat. Male rats were exposed to 3 weeks of PSI (ISO) or group (GRP) housing, and exposed to 3 trials, with either no trial, all trials, or the last trial only with a stimulus rat. Analysis of social behaviors indicated that ISO rats spent less time in the escape chamber and more time engaged in social interaction, aggressive grooming, and boxing than did GRP rats. Interestingly, during the third trial all rats engaged in more of the quantified social behaviors and spent less time escaping in response to aggressive but not nonaggressive stimulus rats. Rats exposed to nonaggressive stimulus rats on the third trial had greater c-fos and ARC immunoreactivity in the mPFC than those exposed to an aggressive stimulus rat. Conversely, a social encounter produced an increase in large PSD-95 punctae in the mPFC independently of trial number, but only in ISO rats exposed to an aggressive stimulus rat. The results presented here demonstrate that PSI increases interaction time and aggressive behaviors during escapable social interaction, and that the aggressiveness of the stimulus rat in a social encounter is an important component of behavioral and neural outcomes for both isolation and group-reared rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A novel escapable social interaction test reveals that social behavior and mPFC activation during an escapable social encounter are altered by post-weaning social isolation and are dependent on the aggressiveness of the stimulus rat

    Science.gov (United States)

    Goodell, Dayton J.; Ahern, Megan A.; Baynard, Jessica; Wall, Vanessa L.; Bland, Sondra T.

    2016-01-01

    Post-weaning social isolation (PSI) has been shown to increase aggressive behavior and alter medial prefrontal cortex (mPFC) function in social species such as rats. Here we developed a novel escapable social interaction test (ESIT) allowing for the quantification of escape and social behaviors in addition to mPFC activation in response to an aggressive or nonaggressive stimulus rat. Male rats were exposed to 3 weeks of PSI (ISO) or group (GRP) housing, and exposed to 3 trials, with either no trial, all trials, or the last trial only with a stimulus rat. Analysis of social behaviors indicated that ISO rats spent less time in the escape chamber and more time engaged in social interaction, aggressive grooming, and boxing than did GRP rats. Interestingly, during the third trial all rats engaged in more of the quantified social behaviors and spent less time escaping in response to aggressive but not nonaggressive stimulus rats. Rats exposed to nonaggressive stimulus rats on the third trial had greater c-fos and ARC immunoreactivity in the mPFC than those exposed to an aggressive stimulus rat. Conversely, a social encounter produced an increase in large PSD-95 punctae in the mPFC independently of trial number, but only in ISO rats exposed to an aggressive stimulus rat. The results presented here demonstrate that PSI increases interaction time and aggressive behaviors during escapable social interaction, and that the aggressiveness of the stimulus rat in a social encounter is an important component of behavioral and neural outcomes for both isolation and group-reared rats. PMID:27633556

  12. Exposure to chronic variable social stress during adolescence alters affect-related behaviors and adrenocortical activity in adult male and female inbred mice.

    Science.gov (United States)

    Caruso, Michael J; Kamens, Helen M; Cavigelli, Sonia A

    2017-09-01

    Rodent models provide valuable insight into mechanisms that underlie vulnerability to adverse effects of early-life challenges. Few studies have evaluated sex differences in anxiogenic or depressogenic effects of adolescent social stress in a rodent model. Furthermore, adolescent stress studies often use genetically heterogeneous outbred rodents which can lead to variable results. The current study evaluated the effects of adolescent social stress in male and female inbred (BALB/cJ) mice. Adolescent mice were exposed to repeat cycles of alternating social isolation and social novelty for 4 weeks. Adolescent social stress increased anxiety-related behaviors in both sexes and depression-related behavior in females. Locomotion/exploratory behavior was also decreased in both sexes by stress. Previously stressed adult mice produced less basal fecal corticosteroids than controls. Overall, the novel protocol induced sex-specific changes in anxiety- and depression-related behaviors and corticoid production in inbred mice. The chronic variable social stress protocol used here may be beneficial to systematically investigate sex-specific neurobiological mechanisms underlying adolescent stress vulnerability where genetic background can be controlled. © 2017 Wiley Periodicals, Inc.

  13. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, impaired adult social behavior and activity patterns

    OpenAIRE

    Wise, Alexandra; Tenezaca, Luis; Fernandez, Robert W.; Schatoff, Emma; Flores, Julian; Ueda, Atsushi; Zhong, Xiaotian; Wu, Chun-Fang; Simon, Anne F.; Venkatesh, Tadmiri

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions and hyperactivity. ASD exhibits a strong genetic component with underlying multi-gene interactions. Candidate gene studies have shown that the neurobeachin gene is disrupted in human patients with idiopathic autism (Castermans et al., 2003). The gene for neurobeachin (NBEA) spans the common fragile site FRA 13A ...

  14. Alterations in Striatal Circuits Underlying Addiction-Like Behaviors.

    Science.gov (United States)

    Kim, Hyun Jin; Lee, Joo Han; Yun, Kyunghwa; Kim, Joung-Hun

    2017-06-30

    Drug addiction is a severe psychiatric disorder characterized by the compulsive pursuit of drugs of abuse despite potential adverse consequences. Although several decades of studies have revealed that psychostimulant use can result in extensive alterations of neural circuits and physiology, no effective therapeutic strategies or medicines for drug addiction currently exist. Changes in neuronal connectivity and regulation occurring after repeated drug exposure contribute to addiction-like behaviors in animal models. Among the involved brain areas, including those of the reward system, the striatum is the major area of convergence for glutamate, GABA, and dopamine transmission, and this brain region potentially determines stereotyped behaviors. Although the physiological consequences of striatal neurons after drug exposure have been relatively well documented, it remains to be clarified how changes in striatal connectivity underlie and modulate the expression of addiction-like behaviors. Understanding how striatal circuits contribute to addiction-like behaviors may lead to the development of strategies that successfully attenuate drug-induced behavioral changes. In this review, we summarize the results of recent studies that have examined striatal circuitry and pathway-specific alterations leading to addiction-like behaviors to provide an updated framework for future investigations.

  15. Immune activation in lactating dams alters sucklings' brain cytokines and produces non-overlapping behavioral deficits in adult female and male offspring: A novel neurodevelopmental model of sex-specific psychopathology.

    Science.gov (United States)

    Arad, Michal; Piontkewitz, Yael; Albelda, Noa; Shaashua, Lee; Weiner, Ina

    2017-07-01

    Early immune activation (IA) in rodents, prenatal through the mother or early postnatal directly to the neonate, is widely used to produce behavioral endophenotypes relevant to schizophrenia and depression. Given that maternal immune response plays a crucial role in the deleterious effects of prenatal IA, and lactation is a critical vehicle of immunological support to the neonate, we predicted that immune activation of the lactating dam will produce long-term abnormalities in the sucklings. Nursing dams were injected on postnatal day 4 with the viral mimic poly-I:C (4mg/kg) or saline. Cytokine assessment was performed in dams' plasma and milk 2h, and in the sucklings' hippocampus, 6h and 24h following poly-I:C injection. Male and female sucklings were assessed in adulthood for: a) performance on behavioral tasks measuring constructs considered relevant to schizophrenia (selective attention and executive control) and depression (despair and anhedonia); b) response to relevant pharmacological treatments; c) brain structural changes. Maternal poly-I:C injection caused cytokine alterations in the dams' plasma and milk, as well as in the sucklings' hippocampus. Lactational poly-I:C exposure led to sex-dimorphic (non-overlapping) behavioral abnormalities in the adult offspring, with male but not female offspring exhibiting attentional and executive function abnormalities (manifested in persistent latent inhibition and slow reversal) and hypodopaminergia, and female but not male offspring exhibiting despair and anhedonia (manifested in increased immobility in the forced swim test and reduced saccharine preference) and hyperdopaminergia, mimicking the known sex-bias in schizophrenia and depression. The behavioral double-dissociation predicted distinct pharmacological profiles, recapitulating the pharmacology of negative/cognitive symptoms and depression. In-vivo imaging revealed hippocampal and striatal volume reductions in both sexes, as found in both disorders. This is

  16. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, and impaired adult social behavior and activity patterns.

    Science.gov (United States)

    Wise, Alexandria; Tenezaca, Luis; Fernandez, Robert W; Schatoff, Emma; Flores, Julian; Ueda, Atsushi; Zhong, Xiaotian; Wu, Chun-Fang; Simon, Anne F; Venkatesh, Tadmiri

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions, and hyperactivity. ASD exhibits a strong genetic component with underlying multigene interactions. Candidate gene studies have shown that the neurobeachin (NBEA) gene is disrupted in human patients with idiopathic autism ( Castermans et al., 2003 ). The NBEA gene spans the common fragile site FRA 13A and encodes a signal scaffold protein ( Savelyeva et al., 2006 ). In mice, NBEA has been shown to be involved in the trafficking and function of a specific subset of synaptic vesicles. ( Medrihan et al., 2009 ; Savelyeva et al., 2006 ). Rugose (rg) is the Drosophila homolog of the mammalian and human NBEA. Our previous genetic and molecular analyses have shown that rg encodes an A kinase anchor protein (DAKAP 550), which interacts with components of the epidermal growth factor receptor or EGFR and Notch-mediated signaling pathways, facilitating cross talk between these and other pathways ( Shamloula et al., 2002 ). We now present functional data from studies on the larval neuromuscular junction that reveal abnormal synaptic architecture and physiology. In addition, adult rg loss-of-function mutants exhibit defective social interactions, impaired habituation, aberrant locomotion, and hyperactivity. These results demonstrate that Drosophila NBEA (rg) mutants exhibit phenotypic characteristics reminiscent of human ASD and thus could serve as a genetic model for studying ASDs.

  17. Piroxicam attenuates 3-nitropropionic acid-induced brain oxidative stress and behavioral alteration in mice.

    Science.gov (United States)

    C, Jadiswami; H M, Megha; Dhadde, Shivsharan B; Durg, Sharanbasappa; Potadar, Pandharinath P; B S, Thippeswamy; V P, Veerapur

    2014-12-01

    3-Nitropropionic acid (3-NP) is a fungal toxin that produces Huntington's disease like symptoms in both animals and humans. Piroxicam, a non-selective cyclooxygenase (COX) inhibitor, used as anti-inflammatory agent and also known to decrease free oxygen radical production. In this study, the effect of piroxicam was evaluated against 3-NP-induced brain oxidative stress and behavioral alteration in mice. Adult male Swiss albino mice were injected with vehicle/piroxicam (10 and 20 mg/kg, i.p.) 30 min before 3-NP challenge (15 mg/kg, i.p.) regularly for 14 days. Body weights of the mice were measured on alternative days of the experiment. At the end of the treatment schedule, mice were evaluated for behavioral alterations (movement analysis, locomotor test, beam walking test and hanging wire test) and brain homogenates were used for the estimation of oxidative stress markers (lipid peroxidation, reduced glutathione and catalase). Administration of 3-NP significantly altered the behavioral activities and brain antioxidant status in mice. Piroxicam, at both the tested doses, caused a significant reversal of 3-NP-induced behavioral alterations and oxidative stress in mice. These findings suggest piroxicam protects the mice against 3-NP-induced brain oxidative stress and behavioral alteration. The antioxidant properties of piroxicam may be responsible for the observed beneficial actions.

  18. Elevated serum cytokines correlated with altered behavior, serum cortisol rhythm, and dampened 24-hour rest-activity patterns in patients with metastatic colorectal cancer.

    Science.gov (United States)

    Rich, Tyvin; Innominato, Pasquale F; Boerner, Julie; Mormont, M Christine; Iacobelli, Stefano; Baron, Benoit; Jasmin, Claude; Lévi, Francis

    2005-03-01

    Incapacitating symptom burden in cancer patients contributes to poor quality of life (QOL) and can influence treatment outcomes because of poor tolerance to therapy. In this study, the role of circulating cytokines in the production symptoms in cancer patients is evaluated. Eighty patients with metastatic colorectal cancer with either normal (group I, n = 40) or dampened (group II, n = 40) 24-hour rest/activity patterns measured by actigraphy were identified. Actigraphy patterns were correlated with QOL indices, serum cortisol obtained at 8:00 a.m. and 4:00 p.m. and with serum levels of transforming growth factor-alpha, tumor necrosis factor-alpha, and interleukin 6 (IL-6) obtained at 8:00 a.m. and analyzed in duplicate by ELISA. Cytokine levels and survival were also correlated. Group II patients had significantly higher pre treatment levels of all three cytokines, displayed significantly poorer emotional and social functioning, had higher fatigue, more appetite loss, and poorer performance status compared with group I patients. Transforming growth factor-alpha (TGF-alpha) and IL-6 were significantly increased in the patients with WHO performance status >1 and in those with appetite loss. Fatigue was significantly associated with elevated TGF-alpha only. IL-6 was increased in those patients with extensive liver involvement and multiple organ replacement, and it was significantly correlated with dampened cortisol rhythm. In a multivariate analysis, IL-6 was correlated with poor treatment outcome. Significant correlations were found between serum levels of TGF-alpha and IL-6, circadian patterns in wrist activity and serum cortisol and tumor-related symptoms in patients with metastatic colorectal cancer. These data support the hypothesis that some cancer patient's symptoms of fatigue, poor QOL, and treatment outcome are related to tumor or host generated cytokines and could reflect cytokine effects on the circadian timing system. This interplay between cytokine

  19. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice.

    Science.gov (United States)

    Bercik, Premysl; Verdu, Elena F; Foster, Jane A; Macri, Joseph; Potter, Murray; Huang, Xiaxing; Malinowski, Paul; Jackson, Wendy; Blennerhassett, Patricia; Neufeld, Karen A; Lu, Jun; Khan, Waliul I; Corthesy-Theulaz, Irene; Cherbut, Christine; Bergonzelli, Gabriela E; Collins, Stephen M

    2010-12-01

    Clinical and preclinical studies have associated gastrointestinal inflammation and infection with altered behavior. We investigated whether chronic gut inflammation alters behavior and brain biochemistry and examined underlying mechanisms. AKR mice were infected with the noninvasive parasite Trichuris muris and given etanercept, budesonide, or specific probiotics. Subdiaphragmatic vagotomy was performed in a subgroup of mice before infection. Gastrointestinal inflammation was assessed by histology and quantification of myeloperoxidase activity. Serum proteins were measured by proteomic analysis, circulating cytokines were measured by fluorescence activated cell sorting array, and serum tryptophan and kynurenine were measured by liquid chromatography. Behavior was assessed using light/dark preference and step-down tests. In situ hybridization was used to assess brain-derived neurotrophic factor (BDNF) expression in the brain. T muris caused mild to moderate colonic inflammation and anxiety-like behavior that was associated with decreased hippocampal BDNF messenger RNA (mRNA). Circulating tumor necrosis factor-α and interferon-γ, as well as the kynurenine and kynurenine/tryptophan ratio, were increased. Proteomic analysis showed altered levels of several proteins related to inflammation and neural function. Administration of etanercept, and to a lesser degree of budesonide, normalized behavior, reduced cytokine and kynurenine levels, but did not influence BDNF expression. The probiotic Bifidobacterium longum normalized behavior and BDNF mRNA but did not affect cytokine or kynurenine levels. Anxiety-like behavior was present in infected mice after vagotomy. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry, which can be normalized by inflammation-dependent and -independent mechanisms, neither of which requires the integrity of the vagus nerve. Copyright © 2010 AGA Institute. Published by Elsevier Inc

  20. Alterations in choice behavior by manipulations of world model.

    Science.gov (United States)

    Green, C S; Benson, C; Kersten, D; Schrater, P

    2010-09-14

    How to compute initially unknown reward values makes up one of the key problems in reinforcement learning theory, with two basic approaches being used. Model-free algorithms rely on the accumulation of substantial amounts of experience to compute the value of actions, whereas in model-based learning, the agent seeks to learn the generative process for outcomes from which the value of actions can be predicted. Here we show that (i) "probability matching"-a consistent example of suboptimal choice behavior seen in humans-occurs in an optimal Bayesian model-based learner using a max decision rule that is initialized with ecologically plausible, but incorrect beliefs about the generative process for outcomes and (ii) human behavior can be strongly and predictably altered by the presence of cues suggestive of various generative processes, despite statistically identical outcome generation. These results suggest human decision making is rational and model based and not consistent with model-free learning.

  1. Role of dopaminergic and serotonergic neurotransmitters in behavioral alterations observed in rodent model of hepatic encephalopathy.

    Science.gov (United States)

    Dhanda, Saurabh; Sandhir, Rajat

    2015-06-01

    The present study was designed to evaluate the role of biogenic amines in behavioral alterations observed in rat model of hepatic encephalopathy (HE) following bile duct ligation (BDL). Male Wistar rats subjected to BDL developed biliary fibrosis after four weeks which was supported by altered liver function tests, increased ammonia levels and histological staining (Sirius red). Animals were assessed for their behavioral performance in terms of cognitive, anxiety and motor functions. The levels of dopamine (DA), serotonin (5-HT), epinephrine and norepinephrine (NE) were estimated in different regions of brain viz. cortex, hippocampus, striatum and cerebellum using HPLC along with activity of monoamine oxidase (MAO). Cognitive assessment of BDL rats revealed a progressive decline in learning, memory formation, retrieval, exploration of novel environment and spontaneous locomotor activity along with decrease in 5-HT and NE levels. This was accompanied by an increase in MAO activity. Motor functions of BDL rats were also altered which were evident from decrease in the time spent on the rotating rod and higher foot faults assessed using narrow beam walk task. A global decrease was observed in the DA content along with an increase in MAO activity. Histopathological studies using hematoxylin-eosin (H&E) and cresyl violet exhibited marked neuronal degeneration, wherein neurons appeared more pyknotic, condensed and damaged. The results reveal that dopaminergic and serotonergic pathways are disturbed in chronic liver failure post-BDL which may be responsible for behavioral impairments observed in HE. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Frictional Behavior of Altered Basement Approaching the Nankai Trough

    Science.gov (United States)

    Saffer, D. M.; Ikari, M.; Rooney, T. O.; Marone, C.

    2017-12-01

    The frictional behavior of basement rocks plays an important role in subduction zone faulting and seismicity. This includes earthquakes seaward of the trench, large megathrust earthquakes where seamounts are subducting, or where the plate interface steps down to basement. In exhumed subduction zone rocks such as the Shimanto complex in Japan, slivers of basalt are entrained in mélange which is evidence of basement involvement in the fault system. Scientific drilling during the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) recovered basement rock from two reference sites (C0011 and C0012) located seaward of the trench offshore the Kii Peninsula during Integrated Ocean Discovery Program (IODP) Expeditions 322 and 333. The basement rocks are pillow basalts that appear to be heterogeneously altered, resulting in contrasting dense blue material and more vesicular gray material. Major element geochemistry shows differences in silica, calcium oxides and loss-on-ignition between the two types of samples. Minor element geochemistry reveals significant differences in vanadium, chromium, and barium. X-ray diffraction on a bulk sample powder representing an average composition shows a phyllosilicate content of 20%, most of which is expandable clays. We performed laboratory friction experiments in a biaxial testing apparatus as either intact sample blocks, or as gouge powders. We combine these experiments with measurements of Pennsylvania slate for comparison, including a mixed-lithology intact block experiment. Intact Nankai basement blocks exhibit a coefficient of sliding friction of 0.73; for Nankai basement powder, slate powder, slate blocks and slate-on-basement blocks the coefficient of sliding friction ranges from 0.44 to 0.57. At slip rates ranging from 3x10-8 to 3x10-4 m/s we observe predominantly velocity-strengthening frictional behavior, indicating a tendency for stable slip. At rates of < 1x10-6 m/s some velocity-weakening was observed, specifically in

  3. Stress-related behavioral alterations accompanying cocaine toxicity: the effects of mixed opioid drugs.

    Science.gov (United States)

    Hayase, T; Yamamoto, Y; Yamamoto, K

    2000-12-01

    The present study evaluated the effects of mixed opioid drugs on the severity of cocaine (COCA) toxicity by examining stress-related behavioral alterations in mice. In order to ascertain the strength of the stress, the continuous observation of the behavioral symptoms in the cage and the forced swimming test (Porsolt test) were performed in the COCA (75 mg/kg, i.p.)-treated groups, with or without the mixed mu-kappa receptor-related opioid drugs, buprenorphine (BUP) and pentazocine (PEN). Using the high-sensitivity activity measuring instrument Supermex, both the spontaneous behaviors in the cage and the forced swimming behaviors in the water were assessed as activity counts. The behavioral alterations in the COCA-treated groups were compared with a group of mice given a 10 min immobilization stress (IM group). In the COCA-only group, a prolonged increase in the spontaneous behaviors accompanied by convulsive seizures was observed even in the surviving mice, unlike in the IM group. However, an acceleration of behavioral despair in the Porsolt test similar to that observed in the IM group was observed in the COCA group after the disappearance of the acute toxic symptoms (5 hours after the COCA treatment). Among the opioid-treated groups, the mortality rate was attenuated only in the COCA-BUP (0.25 mg/kg, i.p.) group. In the COCA-BUP group, a prolonged suppression of the morbid hyperactivity in the cage except for the convulsive seizures, and a normalization of the swimming behavior in the Porsolt test were observed in the survivors. On the other hand, in the COCA-PEN (5 mg/kg, i.p.) group, the swimming behavior in the Porsolt test was abnormally increased in addition to the prolonged morbid hyperactivity in the cage. Therefore, the COCA-induced stress-related behaviors were normalized in the group of mice treated with BUP, a group with a good prognosis.

  4. Omega-3 Fatty Acid Deficient Male Rats Exhibit Abnormal Behavioral Activation in the Forced Swim Test Following Chronic Fluoxetine Treatment: Association with Altered 5-HT1A and Alpha2A Adrenergic Receptor Expression

    OpenAIRE

    Able, Jessica A.; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; McNamara, Robert K.

    2013-01-01

    Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n=34) or without (DEF, n=30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n=14) and DEF (n=12) rats were ...

  5. Acetylcholinesterase inhibition and altered locomotor behavior in the carabid beetle pterostichus

    DEFF Research Database (Denmark)

    Jensen, Charlotte S.; Krause-Jensen, Lone; Baatrup, Erik

    1997-01-01

    -aided video tracking, whereupon the whole body AChE activity was measured in the individual beetle. AChE inhibition was strongly correlated with dimethoate dose in both sexes. Alterations in the locomotor behavior were directly correlated with AChE inhibition in male beetles, which responded by reducing...... to locomotor behavior, representing a general effect biomarker at the organismal level. Both sexes of the carabid beetle Pterostichus cupreus were intoxicated with three doses of the organophosphorous insecticide dimethoate. Five elements of their locomotor behavior were measured for 4 h employing computer...... the time in locomotion, average velocity, and path length and by increasing the turning rate and frequency of stops. Females responded similarly at the two highest doses, whereas their locomotor behavior was not significantly different from the control group at the lowest dimethoate dose, suggesting a sex...

  6. Invasive plant species alters consumer behavior by providing refuge from predation.

    Science.gov (United States)

    Dutra, Humberto P; Barnett, Kirk; Reinhardt, Jason R; Marquis, Robert J; Orrock, John L

    2011-07-01

    Understanding the effects of invasive plants on native consumers is important because consumer-mediated indirect effects have the potential to alter the dynamics of coexistence in native communities. Invasive plants may promote changes in consumer pressure due to changes in protective cover (i.e., the architectural complexity of the invaded habitat) and in food availability (i.e., subsidies of fruits and seeds). No experimental studies have evaluated the relative interplay of these two effects. In a factorial experiment, we manipulated cover and food provided by the invasive shrub Amur honeysuckle (Lonicera maackii) to evaluate whether this plant alters the foraging activity of native mammals. Using tracking plates to quantify mammalian foraging activity, we found that removal of honeysuckle cover, rather than changes in the fruit resources it provides, reduced the activity of important seed consumers, mice in the genus Peromyscus. Two mesopredators, Procyon lotor and Didelphis virginiana, were also affected. Moreover, we found rodents used L. maackii for cover only on cloudless nights, indicating that the effect of honeysuckle was weather-dependent. Our work provides experimental evidence that this invasive plant species changes habitat characteristics, and in so doing alters the behavior of small- and medium-sized mammals. Changes in seed predator behavior may lead to cascading effects on the seeds that mice consume.

  7. Hericium erinaceus extracts alter behavioral rhythm in mice.

    Science.gov (United States)

    Furuta, Shoko; Kuwahara, Rika; Hiraki, Eri; Ohnuki, Koichiro; Yasuo, Shinobu; Shimizu, Kuniyoshi

    2016-01-01

    Hericium erinaceus (HE), an edible mushroom, has been used as a herbal medicine in several Asian countries since ancient times. HE has potential as a medicine for the treatment and prevention of dementia, a disorder closely linked with circadian rhythm. This study investigated the effects of the intake of HE extracts on behavioral rhythm, photosensitivity of the circadian clock, and clock gene mRNA expression in the suprachiasmatic nucleus (SCN), a central clock, in mice. Although the HE ethanol extract only affected the offset time of activity, the HE water extract advanced the sleep-wake cycle without affecting the free-running period, photosensitivity, or the clock gene mRNA expression in SCN. In addition, both extracts decreased wakefulness around end of active phase. The findings of the present study suggest that HE may serve as a functional food in the prevention and treatment of Alzheimer's disease and delayed sleep phase syndrome.

  8. Does mental exertion alter maximal muscle activation?

    Directory of Open Access Journals (Sweden)

    Vianney eRozand

    2014-09-01

    Full Text Available Mental exertion is known to impair endurance performance, but its effects on neuromuscular function remain unclear. The purpose of this study was to test the hypothesis that mental exertion reduces torque and muscle activation during intermittent maximal voluntary contractions of the knee extensors. Ten subjects performed in a randomized order three separate mental exertion conditions lasting 27 minutes each: i high mental exertion (incongruent Stroop task, ii moderate mental exertion (congruent Stroop task, iii low mental exertion (watching a movie. In each condition, mental exertion was combined with ten intermittent maximal voluntary contractions of the knee extensor muscles (one maximal voluntary contraction every 3 minutes. Neuromuscular function was assessed using electrical nerve stimulation. Maximal voluntary torque, maximal muscle activation and other neuromuscular parameters were similar across mental exertion conditions and did not change over time. These findings suggest that mental exertion does not affect neuromuscular function during intermittent maximal voluntary contractions of the knee extensors.

  9. Omega-3 fatty acid deficient male rats exhibit abnormal behavioral activation in the forced swim test following chronic fluoxetine treatment: association with altered 5-HT1A and alpha2A adrenergic receptor expression.

    Science.gov (United States)

    Able, Jessica A; Liu, Yanhong; Jandacek, Ronald; Rider, Therese; Tso, Patrick; McNamara, Robert K

    2014-03-01

    Omega-3 fatty acid deficiency during development leads to enduing alterations in central monoamine neurotransmission in rat brain. Here we investigated the effects of omega-3 fatty acid deficiency on behavioral and neurochemical responses to chronic fluoxetine (FLX) treatment. Male rats were fed diets with (CON, n = 34) or without (DEF, n = 30) the omega-3 fatty acid precursor alpha-linolenic acid (ALA) during peri-adolescent development (P21-P90). A subset of CON (n = 14) and DEF (n = 12) rats were administered FLX (10 mg/kg/d) through their drinking water for 30 d beginning on P60. The forced swimming test (FST) was initiated on P90, and regional brain mRNA markers of serotonin and noradrenaline neurotransmission were determined. Dietary ALA depletion led to significant reductions in frontal cortex docosahexaenoic acid (DHA, 22:6n-3) composition in DEF (-26%, p = 0.0001) and DEF + FLX (-32%, p = 0.0001) rats. Plasma FLX and norfluoxetine concentrations did not different between FLX-treated DEF and CON rats. During the 15-min FST pretest, DEF + FLX rats exhibited significantly greater climbing behavior compared with CON + FLX rats. During the 5-min test trial, FLX treatment reduced immobility and increased swimming in CON and DEF rats, and only DEF + FLX rats exhibited significant elevations in climbing behavior. DEF + FLX rats exhibited greater midbrain, and lower frontal cortex, 5-HT1A mRNA expression compared with all groups including CON + FLX rats. DEF + FLX rats also exhibited greater midbrain alpha2A adrenergic receptor mRNA expression which was positively correlated with climbing behavior in the FST. These preclinical data demonstrate that low omega-3 fatty acid status leads to abnormal behavioral and neurochemical responses to chronic FLX treatment in male rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Olfactory tubercle stimulation alters odor preference behavior and recruits forebrain reward and motivational centers

    Directory of Open Access Journals (Sweden)

    Brynn J FitzGerald

    2014-03-01

    Full Text Available Rodents show robust behavioral responses to odors, including strong preferences or aversions for certain odors. The neural mechanisms underlying the effects of odors on these behaviors in animals are not well understood. Here, we provide an initial proof-of-concept study into the role of the olfactory tubercle (OT, a structure with known anatomical connectivity with both brain reward and olfactory structures, in regulating odor-motivated behaviors. We implanted c57bl/6 male mice with an ipsilateral bipolar electrode into the OT to administer electric current and thereby yield gross activation of the OT. We confirmed that electrical stimulation of the OT was rewarding, with mice frequently self-administering stimulation on a fixed ratio schedule. In a separate experiment, mice were presented with either fox urine or peanut odors in a three-chamber preference test. In absence of OT stimulation, significant preference for the peanut odor chamber was observed which was abolished in the presence of OT stimulation. Perhaps providing a foundation for this modulation in behavior, we found that OT stimulation significantly increased the number of c-Fos positive neurons in not only the OT, but also in forebrain structures essential to motivated behaviors, including the nucleus accumbens and lateral septum. The present results support the notion that the OT is integral to the display of motivated behavior and possesses the capacity to modulate odor hedonics either by directly altering odor processing or perhaps by indirect actions on brain reward and motivation structures.

  11. Behavioral correlates of cerebrospinal fluid amino acid and biogenic amine neurotransmitter alterations in dementia.

    Science.gov (United States)

    Vermeiren, Yannick; Le Bastard, Nathalie; Van Hemelrijck, An; Drinkenburg, Wilhelmus H; Engelborghs, Sebastiaan; De Deyn, Peter P

    2013-09-01

    Behavioral and psychological signs and symptoms of dementia (BPSD) are a heterogeneous group of behavioral and psychiatric disturbances occurring in dementia patients of any etiology. Research suggests that altered activities of dopaminergic, serotonergic, (nor)adrenergic, as well as amino acid neurotransmitter systems play a role in the etiopathogenesis of BPSD. In this study we attempted to identify cerebrospinal fluid (CSF) neurochemical correlates of BPSD to provide further insight into its underlying neurochemical pathophysiological mechanisms. Patients with probable Alzheimer's disease (AD; n = 202), probable AD with cerebrovascular disease (n = 37), probable frontotemporal dementia (FTD; n = 32), and probable dementia with Lewy bodies (DLB; n = 26) underwent behavioral assessment and lumbar puncture. CSF levels of six amino acids and several biogenic amines and metabolites were analyzed using ultraperformance liquid chromatography with fluorescence detection and reversed-phase high-performance liquid chromatography with fluorescence detection. In the AD patients, CSF homovanillic acid/5-hydroxyindoleacetic acid (HVA/5HIAA) ratios correlated positively with anxieties/phobias, whereas CSF levels of taurine correlated negatively with depression and behavioral disturbances in general. In FTD patients, CSF levels of glutamate correlated negatively with verbally agitated behavior. In DLB patients, CSF levels of HVA correlated negatively with hallucinations. Several neurotransmitter systems can be linked to one specific behavioral syndrome depending on the dementia subtype. In addition to biogenic amines and metabolites, amino acids seem to play a major role in the neurochemical etiology of BPSD as well. Copyright © 2013 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  12. Can human activities alter the drowning fate of barrier islands?

    Science.gov (United States)

    Lorenzo-Trueba, J.; Ashton, A. D.; Jin, D.; Hoagland, P.; Kite-Powell, H.

    2012-12-01

    during landward migration. The model also demonstrates the potential for discontinuous shoreline retreat, with alternating periods of barrier stability and rapid migration, even for constant rates of sea-level rise. Anthropic activities can strongly interact with these behaviors. In particular, considering only cross-shore processes, beach nourishment activities widen the beach and can affect shoreface fluxes, and dune building, which curtails the overwash process, can potentially enhance barrier drowning by reducing overwash fluxes. Furthermore, coastal protection activities of adjacent communities or even individual property holders can be uncoordinated or coordinated, with their effects coupled along the coast through coastal reorientation and gradients in alongshore sediment transport. In the coordinated framework, owners act in concert to alter the barrier based upon community benefits, whereas in the non-coordinated framework owners alter only their own property. Another important role in management is the perception of future sea-level-rise-associated losses—communities manage their coast differently depending on their adopted forecast for sea-level rise. We find that coordinated behavior coupled with natural processes can substantially affect the drowning scenarios from the individual decision-making process.

  13. Caffeine triggers behavioral and neurochemical alterations in adolescent rats.

    Science.gov (United States)

    Ardais, A P; Borges, M F; Rocha, A S; Sallaberry, C; Cunha, R A; Porciúncula, L O

    2014-06-13

    Caffeine is the psychostimulant most consumed worldwide but concerns arise about the growing intake of caffeine-containing drinks by adolescents since the effects of caffeine on cognitive functions and neurochemical aspects of late brain maturation during adolescence are poorly known. We now studied the behavioral impact in adolescent male rats of regular caffeine intake at low (0.1mg/mL), moderate (0.3mg/mL) and moderate/high (1.0mg/mL) doses only during their active period (from 7:00 P.M. to 7:00 A.M.). All tested doses of caffeine were devoid of effects on locomotor activity, but triggered anxiogenic effects. Caffeine (0.3 and 1mg/mL) improved the performance in the object recognition task, but the higher dose of caffeine (1.0mg/mL) decreased the habituation to an open-field arena, suggesting impaired non-associative memory. All tested doses of caffeine decreased the density of glial fibrillary acidic protein and synaptosomal-associated protein-25, but failed to modify neuron-specific nuclear protein immunoreactivity in the hippocampus and cerebral cortex. Caffeine (0.3-1mg/mL) increased the density of brain-derived neurotrophic factor (BDNF) and proBDNF density as well as adenosine A1 receptor density in the hippocampus, whereas the higher dose of caffeine (1mg/mL) increased the density of proBDNF and BDNF and decreased A1 receptor density in the cerebral cortex. These findings document an impact of caffeine consumption in adolescent rats with a dual impact on anxiety and recognition memory, associated with changes in BDNF levels and decreases of astrocytic and nerve terminal markers without overt neuronal damage in hippocampal and cortical regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. A Molecular Genetic Basis Explaining Altered Bacterial Behavior in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — Bacterial behavior has been observed to change during spaceflight. Higher final cell counts enhanced biofilm formation increased virulence and reduced susceptibility...

  15. Parasite-altered feeding behavior in insects: integrating functional and mechanistic research frontiers.

    Science.gov (United States)

    Bernardo, Melissa A; Singer, Michael S

    2017-08-15

    Research on parasite-altered feeding behavior in insects is contributing to an emerging literature that considers possible adaptive consequences of altered feeding behavior for the host or the parasite. Several recent ecoimmunological studies show that insects can adaptively alter their foraging behavior in response to parasitism. Another body of recent work shows that infection by parasites can change the behavior of insect hosts to benefit the parasite; manipulations of host feeding behavior may be part of this phenomenon. Here, we address both the functional and the underlying physiological frontiers of parasite-altered feeding behavior in order to spur research that better integrates the two. Functional categories of parasite-altered behavior that are adaptive for the host include prophylaxis, therapy and compensation, while host manipulation is adaptive for the parasite. To better understand and distinguish prophylaxis, therapy and compensation, further study of physiological feedbacks affecting host sensory systems is especially needed. For host manipulation in particular, research on mechanisms by which parasites control host feedbacks will be important to integrate with functional approaches. We see this integration as critical to advancing the field of parasite-altered feeding behavior, which may be common in insects and consequential for human and environmental health. © 2017. Published by The Company of Biologists Ltd.

  16. Aloe arborescens aqueous gel extract alters the activities of key ...

    African Journals Online (AJOL)

    Mogale

    2011-05-16

    May 16, 2011 ... glucose uptake by fat and muscle cells; 3) altering the activity of some ... aqueous A. arborescens leaf gel extract on fasting blood glucose levels, insulin ..... weight loss of treated diabetic rats as compared to untreated alloxan ...

  17. Neonatal blockade of GABA-A receptors alters behavioral and physiological phenotypes in adult mice.

    Science.gov (United States)

    Salari, Ali-Akbar; Amani, Mohammad

    2017-04-01

    Gamma-aminobutyric acid (GABA) plays an inhibitory role in the mature brain, and has a complex and bidirectional effect in different parts of the immature brain which affects proliferation, migration and differentiation of neurons during development. There is also increasing evidence suggesting that activation or blockade of the GABA-A receptors during early life can induce brain and behavioral abnormalities in adulthood. We investigated whether neonatal blockade of the GABA-A receptors by bicuculline can alter anxiety- and depression-like behaviors, body weight, food intake, corticosterone and testosterone levels in adult mice (postnatal days 80-95). To this end, neonatal mice were treated with either DMSO or bicuculline (70, 150 and 300μg/kg) during postnatal days 7, 9 and 11. When grown to adulthood, mice were exposed to behavioral tests to measure anxiety- (elevated plus-maze and light-dark box) and depression-like behaviors (tail suspension test and forced swim test). Stress-induced serum corticosterone and testosterone levels, body weight and food intake were also evaluated. Neonatal bicuculline exposure at dose of 300μg/kg decreased anxiety-like behavior, stress-induced corticosterone levels and increased testosterone levels, body weight and food intake, without significantly influencing depression-like behavior in adult male mice. However, no significant changes in these parameters were observed in adult females. These findings suggest that neonatal blockade of GABA-A receptors affects anxiety-like behavior, physiological and hormonal parameters in a sex-dependent manner in mice. Taken together, these data corroborate the concept that GABA-A receptors during early life have an important role in programming neurobehavioral phenotypes in adulthood. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  18. AN ENVIRONMENTAL ANTIANDROGEN, VINCLOZOLIN, ALTERS THE ORGANIZATION OF PLAY BEHAVIOR

    Science.gov (United States)

    ABSTRACT During mammalian sexual differentiation, the androgens, testosterone and dihydrotestosterone are critical for the organization of the male phenotype. In rats, play behavior is sexually dimorphic. Administration of exogenous androgens during the perinatal period r...

  19. Motivation alters response bias and neural activation patterns in a perceptual decision-making task.

    Science.gov (United States)

    Reckless, G E; Bolstad, I; Nakstad, P H; Andreassen, O A; Jensen, J

    2013-05-15

    Motivation has been demonstrated to affect individuals' response strategies in economic decision-making, however, little is known about how motivation influences perceptual decision-making behavior or its related neural activity. Given the important role motivation plays in shaping our behavior, a better understanding of this relationship is needed. A block-design, continuous performance, perceptual decision-making task where participants were asked to detect a picture of an animal among distractors was used during functional magnetic resonance imaging (fMRI). The effect of positive and negative motivation on sustained activity within regions of the brain thought to underlie decision-making was examined by altering the monetary contingency associated with the task. In addition, signal detection theory was used to investigate the effect of motivation on detection sensitivity, response bias and response time. While both positive and negative motivation resulted in increased sustained activation in the ventral striatum, fusiform gyrus, left dorsolateral prefrontal cortex (DLPFC) and ventromedial prefrontal cortex, only negative motivation resulted in the adoption of a more liberal, closer to optimal response bias. This shift toward a liberal response bias correlated with increased activation in the left DLPFC, but did not result in improved task performance. The present findings suggest that motivation alters aspects of the way perceptual decisions are made. Further, this altered response behavior is reflected in a change in left DLPFC activation, a region involved in the computation of perceptual decisions. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Differential behavioral and molecular alterations upon protracted abstinence from cocaine versus morphine, nicotine, THC and alcohol.

    Science.gov (United States)

    Becker, Jérôme A J; Kieffer, Brigitte L; Le Merrer, Julie

    2017-09-01

    Unified theories of addiction are challenged by differing drug-seeking behaviors and neurobiological adaptations across drug classes, particularly for narcotics and psychostimulants. We previously showed that protracted abstinence to opiates leads to despair behavior and social withdrawal in mice, and we identified a transcriptional signature in the extended amygdala that was also present in animals abstinent from nicotine, Δ9-tetrahydrocannabinol (THC) and alcohol. Here we examined whether protracted abstinence to these four drugs would also share common behavioral features, and eventually differ from abstinence to the prototypic psychostimulant cocaine. We found similar reduced social recognition, increased motor stereotypies and increased anxiety with relevant c-fos response alterations in morphine, nicotine, THC and alcohol abstinent mice. Protracted abstinence to cocaine, however, led to strikingly distinct, mostly opposing adaptations at all levels, including behavioral responses, neuronal activation and gene expression. Together, these data further document the existence of common hallmarks for protracted abstinence to opiates, nicotine, THC and alcohol that develop within motivation/emotion brain circuits. In our model, however, these do not apply to cocaine, supporting the notion of unique mechanisms in psychostimulant abuse. © 2016 Society for the Study of Addiction.

  1. Ileal brake activation: macronutrient-specific effects on eating behavior?

    NARCIS (Netherlands)

    Avesaat, van M.; Troost, F.J.; Ripken, D.; Hendriks, H.F.; Masclee, A.A.M.

    2015-01-01

    Background:Activation of the ileal brake, by infusing lipid directly into the distal part of the small intestine, alters gastrointestinal (GI) motility and inhibits food intake. The ileal brake effect on eating behavior of the other macronutrients is currently unknown.Objective:The objective of this

  2. Ileal brake activation: Macronutrient-specific effects on eating behavior?

    NARCIS (Netherlands)

    Avesaat, M. van; Troost, F.J.; Ripken, D.; Hendriks, H.F.; Aam, M.

    2015-01-01

    BACKGROUND: Activation of the ileal brake, by infusing lipid directly into the distal part of the small intestine, alters gastrointestinal (GI) motility and inhibits food intake. The ileal brake effect on eating behavior of the other macronutrients is currently unknown. OBJECTIVE: The objective of

  3. Alterations in HIV-1 LTR promoter activity during AIDS progression

    International Nuclear Information System (INIS)

    Hiebenthal-Millow, Kirsten; Greenough, Thomas C.; Bretttler, Doreen B.; Schindler, Michael; Wildum, Steffen; Sullivan, John L.; Kirchhoff, Frank

    2003-01-01

    HIV-1 variants evolving in AIDS patients frequently show increased replicative capacity compared to those present during early asymptomatic infection. It is known that late stage HIV-1 variants often show an expanded coreceptor tropism and altered Nef function. In the present study we investigated whether enhanced HIV-1 LTR promoter activity might also evolve during disease progression. Our results demonstrate increased LTR promoter activity after AIDS progression in 3 of 12 HIV-1-infected individuals studied. Further analysis revealed that multiple alterations in the U3 core-enhancer and in the transactivation-response (TAR) region seem to be responsible for the enhanced functional activity. Our findings show that in a subset of HIV-1-infected individuals enhanced LTR transcription contributes to the increased replicative potential of late stage virus isolates and might accelerate disease progression

  4. On the Behavior of Phosphorus During the Aqueous Alteration of CM2 Carbonaceous Chondrites

    Science.gov (United States)

    Brearley, Adrian J.; Chizmadia, Lysa J.

    2005-01-01

    During the earliest period of solar system formation, water played an important role in the evolution of primitive dust, both after accretion of planetesimals and possible before accretion within the protoplanetary disk. Many chondrites show evidence of variable degrees of aqueous alteration, the CM2 chondrites being among the most studied [1]. This group of chondrites is characterized by mineral assemblages of both primary and secondary alteration phases. Hence, these meteorites retain a particularly important record of the reactions that occurred between primary high temperature nebular phases and water. Studies of these chondrites can provide information on the conditions and environments of aqueous alteration and the mobility of elements during alteration. This latter question is at the core of a debate concerning the location of aqueous alteration, i.e. whether alteration occurred predominantly within a closed system after accretion (parent body alteration) or whether some degree of alteration occurred within the solar nebula or on ephemeral protoplanetary bodies prior to accretion. At the core of the parent body alteration model is the hypothesis that elemental exchange between different components, principally chondrules and matrix, must have occurred. chondrules and matrix, must have occurred. In this study, we focus on the behavior of the minor element, phosphorus. This study was stimulated by observations of the behavior of P during the earliest stages of alteration in glassy mesostasis in type II chondrules in CR chondrites and extends the preliminary observations of on Y791198 to other CM chondrites.

  5. Schoolyard Characteristics, Physical Activity, and Sedentary Behavior

    DEFF Research Database (Denmark)

    Van Kann, Dave H H; de Vries, Sanne I; Schipperijn, Jasper

    2016-01-01

    BACKGROUND: Physical activity (PA) is decreasing among children, while sedentary behavior (SB) is increasing. Schoolyards seem suitable settings to influence children's PA behavior. This study investigated the associations between schoolyard characteristics and moderate-to-vigorous physical activ...

  6. Isolation and characterization of altered root growth behavior and ...

    African Journals Online (AJOL)

    Generation, screening and isolating mutants for any developmental and adaptive traits plays a major role in plant functional genomics research. Identification and exploitation of mutants possessing contrasting root growth behavior and salinity tolerance in rice will help us to identify key genes controlling these traits and in ...

  7. Hostile behavior during marital conflict alters pituitary and adrenal hormones.

    Science.gov (United States)

    Malarkey, W B; Kiecolt-Glaser, J K; Pearl, D; Glaser, R

    1994-01-01

    We evaluated hormonal changes and problem-solving behaviors in 90 newlywed couples who were admitted to a hospital research unit for 24 hours. The subjects were selected on the basis of stringent mental and physical health criteria, and admissions were scheduled during the follicular phase of the woman's menstrual cycle. For frequent, unobtrusive endocrine sampling during the interaction tasks, a long polyethylene tube was attached to a heparin well, allowing nurses to draw blood samples at set intervals, out of subjects' sight. Five blood samples were obtained before, during, and after a 30-minute structured problem-solving or conflict task. The conflict session was recorded on videotapes that were later scored for problem-solving behaviors using the Marital Interaction Coding System (MICS). Marital conflict and MICS-coded hostile or negative behavior during conflict was closely linked to changes in serum hormonal levels across five of the six hormones we studied, in spite of the high marital satisfaction of our newlywed couples and the healthy lifestyles demanded by our exclusion criteria. Hostile behavior was associated with decreased levels of prolactin (PRL) and increases in epinephrine (EPI), norepinephrine (NEPI), ACTH, and growth hormone (GH), but not cortisol. These data suggest that the endocrine system may be an important mediator between personal relationships and health.

  8. Probiotics Improve Inflammation-Associated Sickness Behavior by Altering Communication between the Peripheral Immune System and the Brain.

    Science.gov (United States)

    D'Mello, Charlotte; Ronaghan, Natalie; Zaheer, Raza; Dicay, Michael; Le, Tai; MacNaughton, Wallace K; Surrette, Michael G; Swain, Mark G

    2015-07-29

    Patients with systemic inflammatory diseases (e.g., rheumatoid arthritis, inflammatory bowel disease, chronic liver disease) commonly develop debilitating symptoms (i.e., sickness behaviors) that arise from changes in brain function. The microbiota-gut-brain axis alters brain function and probiotic ingestion can influence behavior. However, how probiotics do this remains unclear. We have previously described a novel periphery-to-brain communication pathway in the setting of peripheral organ inflammation whereby monocytes are recruited to the brain in response to systemic TNF-α signaling, leading to microglial activation and subsequently driving sickness behavior development. Therefore, we investigated whether probiotic ingestion (i.e., probiotic mixture VSL#3) alters this periphery-to-brain communication pathway, thereby reducing subsequent sickness behavior development. Using a well characterized mouse model of liver inflammation, we now show that probiotic (VSL#3) treatment attenuates sickness behavior development in mice with liver inflammation without affecting disease severity, gut microbiota composition, or gut permeability. Attenuation of sickness behavior development was associated with reductions in microglial activation and cerebral monocyte infiltration. These events were paralleled by changes in markers of systemic immune activation, including decreased circulating TNF-α levels. Our observations highlight a novel pathway through which probiotics mediate cerebral changes and alter behavior. These findings allow for the potential development of novel therapeutic interventions targeted at the gut microbiome to treat inflammation-associated sickness behaviors in patients with systemic inflammatory diseases. This research shows that probiotics, when eaten, can improve the abnormal behaviors (including social withdrawal and immobility) that are commonly associated with inflammation. Probiotics are able to cause this effect within the body by changing how

  9. Alterations in the brain adenosine metabolism cause behavioral and neurological impairment in ADA-deficient mice and patients

    Science.gov (United States)

    Sauer, Aisha V.; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L.; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S.; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D.; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D’Adamo, Patrizia; Aiuti, Alessandro

    2017-01-01

    Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency. PMID:28074903

  10. Handling newborn monkeys alters later exploratory, cognitive, and social behaviors.

    Science.gov (United States)

    Simpson, Elizabeth A; Sclafani, Valentina; Paukner, Annika; Kaburu, Stefano S K; Suomi, Stephen J; Ferrari, Pier F

    2017-08-18

    Touch is one of the first senses to develop and one of the earliest modalities for infant-caregiver communication. While studies have explored the benefits of infant touch in terms of physical health and growth, the effects of social touch on infant behavior are relatively unexplored. Here, we investigated the influence of neonatal handling on a variety of domains, including memory, novelty seeking, and social interest, in infant monkeys (Macaca mulatta; n=48) from 2 to 12 weeks of age. Neonates were randomly assigned to receive extra holding, with or without accompanying face-to-face interactions. Extra-handled infants, compared to standard-reared infants, exhibited less stress-related behavior and more locomotion around a novel environment, faster approach of novel objects, better working memory, and less fear towards a novel social partner. In sum, infants who received more tactile stimulation in the neonatal period subsequently demonstrated more advanced motor, social, and cognitive skills-particularly in contexts involving exploration of novelty-in the first three months of life. These data suggest that social touch may support behavioral development, offering promising possibilities for designing future early interventions, particularly for infants who are at heightened risk for social disorders. Copyright © 2017. Published by Elsevier Ltd.

  11. Glyphosate and Roundup® alter morphology and behavior in zebrafish.

    Science.gov (United States)

    Bridi, Daiane; Altenhofen, Stefani; Gonzalez, Jonas Brum; Reolon, Gustavo Kellermann; Bonan, Carla Denise

    2017-12-01

    Glyphosate has become the most widely used herbicide in the world, due to the wide scale adoption of transgenic glyphosate resistant crops after its introduction in 1996. Glyphosate may be used alone, but it is commonly applied as an active ingredient of the herbicide Roundup ® . This pesticide contains several adjuvants, which may promote an unknown toxicity. The indiscriminate application poses numerous problems, both for the health of the applicators and consumers, and for the environment, contaminating the soil, water and leading to the death of plants and animals. Zebrafish (Danio rerio) is quickly gaining popularity in behavioral research, because of physiological similarity to mammals, sensitivity to pharmacological factors, robust performance, low cost, short spawning intervals, external fertilization, transparency of embryos through larval stages, and rapid development. The aim of this study was evaluate the effects of glyphosate and Roundup ® on behavioral and morphological parameters in zebrafish larvae and adults. Zebrafish larvae at 3days post-fertilization and adults were exposed to glyphosate (0.01, 0.065, and 0.5mg/L) or Roundup ® (0.01, 0.065, and 0.5mg/L) for 96h. Immediately after the exposure, we performed the analysis of locomotor activity, aversive behavior, and morphology for the larvae and exploratory behavior, aggression and inhibitory avoidance memory for adult zebrafish. In zebrafish larvae, there were significant differences in the locomotor activity and aversive behavior after glyphosate or Roundup ® exposure when compared to the control group. Our findings demonstrated that exposure to glyphosate at the concentration of 0.5mg/L, Roundup ® at 0.065 or 0.5mg/L reduced the distance traveled, the mean speed and the line crossings in adult zebrafish. A decreased ocular distance was observed for larvae exposed at 0.5mg/L of glyphosate. We verified that at 0.5mg/L of Roundup ® -treated adult zebrafish demonstrated a significant

  12. Prenatal Cigarette Smoke Exposure Causes Hyperactivity and Agressive Behavior: Role of Altered Catcholamines and BDNF

    Science.gov (United States)

    Yochum, Carrie; Doherty-Lyon, Shannon; Hoffman, Carol; Hossain, Muhammad M.; Zellikoff, Judith T.; Richardson, Jason R.

    2014-01-01

    Smoking during pregnancy is associated with a variety of untoward effects on the offspring. However, recent epidemiological studies have brought into question whether the association between neurobehavioral deficits and maternal smoking is causal. We utilized an animal model of maternal smoking to determine the effects of prenatal cigarette smoke (CS) exposure on neurobehavioral development. Pregnant mice were exposed to either filtered air or mainstream CS from gestation day (GD) 4 to parturition for 4 hr/d and 5 d/wk, with each exposure producing maternal plasma concentration of cotinine equivalent to smoking <1 pack of cigarettes per day (25 ng/ml plasma cotinine level). Pups were weaned at postnatal day (PND) 21 and behavior assessed on at 4 weeks of age and again at 4–6 months of age. Male, but not female, offspring of CS-exposed dams demonstrated a significant increase in locomotor activity during adolescence and adulthood that was ameliorated by methylphenidate treatment. Additionally, male offspring exhibited increased aggression, as evidenced by decreased latency to attack and number of attacks in a resident intruder task. These behavioral abnormalities were accompanied by a significant decrease in striatal and cortical dopamine and serotonin and a significant reduction in brain-derived neurotrophic factor (BDNF) mRNA and protein. Taken in concert, these data demonstrate that prenatal exposure to CS produces behavioral alterations in mice that are similar to those observed in epidemiological studies linking maternal smoking to neurodevelopmental disorders and suggest a role for monoaminergic and BDNF alterations in these effects. PMID:24486851

  13. Toxicity assessment of polluted sediments using swimming behavior alteration test with Daphnia magna

    Science.gov (United States)

    Nikitin, O. V.; Nasyrova, E. I.; Nuriakhmetova, V. R.; Stepanova, N. Yu; Danilova, N. V.; Latypova, V. Z.

    2018-01-01

    Recently behavioral responses of organisms are increasingly used as a reliable and sensitive tool in aquatic toxicology. Behavior-related endpoints allow efficiently studying the effects of sub-lethal exposure to contaminants. At present behavioural parameters frequently are determined with the use of digital analysis of video recording by computer vision technology. However, most studies evaluate the toxicity of aqueous solutions. Due to methodological difficulties associated with sample preparation not a lot of examples of the studies related to the assessment of toxicity of other environmental objects (wastes, sewage sludges, soils, sediments etc.) by computer vision technology. This paper presents the results of assessment of the swimming behavior alterations of Daphnia magna in elutriates from both uncontaminated natural and artificially chromium-contaminated bottom sediments. It was shown, that in elutriate from chromium contaminated bottom sediments (chromium concentration 115±5.7 μg l-1) the swimming speed of daphnids was decreases from 0.61 cm s-1 (median speed over the period) to 0.50 cm s-1 (median speed at the last minute of the experiment). The relocation of Daphnia from the culture medium to the extract from the non-polluted sediments does not essential changes the swimming activity.

  14. Altering the activation mechanism in Thermomyces lanuginosus lipase

    DEFF Research Database (Denmark)

    Skjold-Jørgensen, Jakob; Vind, Jesper; Svendsen, Allan

    2014-01-01

    It is shown by rational site-directed mutagenesis of the lid region in Thermomyces lanuginosus lipase that it is possible to generate lipase variants with attractive features, e.g., high lipase activity, fast activation at the lipid interface, ability to act on water-soluble substrates......, and enhanced calcium independence. The rational design was based on the lid residue composition in Aspergillus niger ferulic acid esterase (FAEA). Five constructs included lipase variants containing the full FAEA lid, a FAEA-like lid, an intermediate lid of FAEA and TlL character, and the entire lid region...... from Aspergillus terreus lipase (AtL). To investigate an altered activation mechanism for each variant compared to that of TlL, a combination of activity- and spectroscopic-based measurements were applied. The engineered variant with a lid from AtL displayed interfacial activation comparable...

  15. Effects of water quality alterations on fish behavior

    International Nuclear Information System (INIS)

    Gray, R.H.; Haynes, J.M.; Montgomery, J.C.; Genoway, R.G.; Barraclough, S.A.; Anderson, D.R.; Thatcher, T.O.; Bean, R.M.; Page, T.L.

    1977-01-01

    Objectives of this project are to study behavioral patterns of ecologically or economically valuable fish. Information on sensory--avoidance behavior, or preferential foraging habits, if definitively established by systematic observation can be constructively used in both outfall and water intake design to ameliorate potentially noxious disturbances caused by these structures. The work is applicable to both nuclear and fossil fuel-fired steam electric plants. The instantaneous response of juvenile chinook salmon encountering a simulated river thermal plume interface was also evaluated in a model raceway. Tests indicate that juvenile chinook salmon perceive and avoid discharge temperatures greater than 9 to 11 0 C above ambient, regardless of acclimation temperature. Chlorine is a major chemical compound to reduce biofouling in steam electric power plants. Chlorination of large volumes of cooling waters poses the problem of the formation of chlorination by-products discharged to natural water systems. Long-term bioassays, both fresh and salt water, are underway with indepth analytical chemistry to determine the magnitude of the chlorination by-product problem

  16. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner.

    Science.gov (United States)

    Bollinger, Justin L; Collins, Kaitlyn E; Patel, Rushi; Wellman, Cara L

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress

  17. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner

    Science.gov (United States)

    Bollinger, Justin L.; Collins, Kaitlyn E.; Patel, Rushi

    2017-01-01

    Women are more susceptible to numerous stress-linked psychological disorders (e.g., depression) characterized by dysfunction of corticolimbic brain regions critical for emotion regulation and cognitive function. Although sparsely investigated, a number of studies indicate sex differences in stress effects on neuronal structure, function, and behaviors associated with these regions. We recently demonstrated a basal sex difference in- and differential effects of stress on- microglial activation in medial prefrontal cortex (mPFC). The resident immune cells of the brain, microglia are implicated in synaptic and dendritic plasticity, and cognitive-behavioral function. Here, we examined the effects of acute (3h/day, 1 day) and chronic (3h/day, 10 days) restraint stress on microglial density and morphology, as well as immune factor expression in orbitofrontal cortex (OFC), basolateral amygdala (BLA), and dorsal hippocampus (DHC) in male and female rats. Microglia were visualized, classified based on their morphology, and stereologically counted. Microglia-associated transcripts (CD40, iNOS, Arg1, CX3CL1, CX3CR1, CD200, and CD200R) were assessed in brain punches from each region. Expression of genes linked with cellular stress, neuroimmune state, and neuron-microglia communication varied between unstressed male and female rats in a region-specific manner. In OFC, chronic stress upregulated a wider variety of immune factors in females than in males. Acute stress increased microglia-associated transcripts in BLA in males, whereas chronic stress altered immune factor expression in BLA more broadly in females. In DHC, chronic stress increased immune factor expression in males but not females. Moreover, acute and chronic stress differentially affected microglial morphological activation state in male and female rats across all brain regions investigated. In males, chronic stress altered microglial activation in a pattern consistent with microglial involvement in stress

  18. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    Energy Technology Data Exchange (ETDEWEB)

    Blossom, Sarah J., E-mail: blossomsarah@uams.edu [Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children' s Hospital Research Institute, 13 Children' s Way, Little Rock, AR 72202 (United States); Cooney, Craig A. [Department of Research and Development, Central Arkansas Veterans Healthcare System, John L. McClellan Memorial Veterans Hospital, 4300 West 7th St., Little Rock, AR 72205-5484 (United States); Melnyk, Stepan B.; Rau, Jenny L.; Swearingen, Christopher J. [Department of Pediatrics, University of Arkansas for Medical Sciences, College of Medicine, Arkansas Children' s Hospital Research Institute, 13 Children' s Way, Little Rock, AR 72202 (United States); Wessinger, William D. [Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, College of Medicine, 4301 West Markham St., Little Rock, AR 72205 (United States)

    2013-06-15

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor

  19. Metabolic changes and DNA hypomethylation in cerebellum are associated with behavioral alterations in mice exposed to trichloroethylene postnatally

    International Nuclear Information System (INIS)

    Blossom, Sarah J.; Cooney, Craig A.; Melnyk, Stepan B.; Rau, Jenny L.; Swearingen, Christopher J.; Wessinger, William D.

    2013-01-01

    Previous studies demonstrated that low-level postnatal and early life exposure to the environmental contaminant, trichloroethylene (TCE), in the drinking water of MRL +/+ mice altered glutathione redox homeostasis and increased biomarkers of oxidative stress indicating a more oxidized state. Plasma metabolites along the interrelated transmethylation pathway were also altered indicating impaired methylation capacity. Here we extend these findings to further characterize the impact of TCE exposure in mice exposed to water only or two doses of TCE in the drinking water (0, 2, and 28 mg/kg/day) postnatally from birth until 6 weeks of age on redox homeostasis and biomarkers of oxidative stress in the cerebellum. In addition, pathway intermediates involved in methyl metabolism and global DNA methylation patterns were examined in cerebellar tissue. Because the cerebellum is functionally important for coordinating motor activity, including exploratory and social approach behaviors, these parameters were evaluated in the present study. Mice exposed to 28 mg/kg/day TCE exhibited increased locomotor activity over time as compared with control mice. In the novel object exploration test, these mice were more likely to enter the zone with the novel object as compared to control mice. Similar results were obtained in a second test when an unfamiliar mouse was introduced into the testing arena. The results show for the first time that postnatal exposure to TCE causes key metabolic changes in the cerebellum that may contribute to global DNA methylation deficits and behavioral alterations in TCE-exposed mice. - Highlights: • We exposed male mice to low-level trichloroethylene from postnatal days 1 through 42. • This exposure altered redox potential and increased oxidative stress in cerebellum. • This exposure altered metabolites important in cellular methylation in cerebellum. • This exposure promoted DNA hypomethylation in cerebellum. • This exposure enhanced locomotor

  20. Anabolic steroids alter the physiological activity of aggression circuits in the lateral anterior hypothalamus.

    Science.gov (United States)

    Morrison, T R; Sikes, R W; Melloni, R H

    2016-02-19

    Syrian hamsters exposed to anabolic/androgenic steroids (AAS) during adolescence consistently show increased aggressive behavior across studies. Although the behavioral and anatomical profiles of AAS-induced alterations have been well characterized, there is a lack of data describing physiological changes that accompany these alterations. For instance, behavioral pharmacology and neuroanatomical studies show that AAS-induced changes in the vasopressin (AVP) neural system within the latero-anterior hypothalamus (LAH) interact with the serotonin (5HT) and dopamine (DA) systems to modulate aggression. To characterize the electrophysiological profile of the AAS aggression circuit, we recorded LAH neurons in adolescent male hamsters in vivo and microiontophoretically applied agonists and antagonists of aggressive behavior. The interspike interval (ISI) of neurons from AAS-treated animals correlated positively with aggressive behaviors, and adolescent AAS exposure altered parameters of activity in regular firing neurons while also changing the proportion of neuron types (i.e., bursting, regular, irregular). AAS-treated animals had more responsive neurons that were excited by AVP application, while cells from control animals showed the opposite effect and were predominantly inhibited by AVP. Both DA D2 antagonists and 5HT increased the firing frequency of AVP-responsive cells from AAS animals and dual application of AVP and D2 antagonists doubled the excitatory effect of AVP or D2 antagonist administration alone. These data suggest that multiple DA circuits in the LAH modulate AAS-induced aggressive responding. More broadly, these data show that multiple neurochemical interactions at the neurophysiological level are altered by adolescent AAS exposure. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Exposure to dietary mercury alters cognition and behavior of zebra finches.

    Science.gov (United States)

    Swaddle, John P; Diehl, Tessa R; Taylor, Capwell E; Fanaee, Aaron S; Benson, Jessica L; Huckstep, Neil R; Cristol, Daniel A

    2017-04-01

    Environmental stressors can negatively affect avian cognitive abilities, potentially reducing fitness, for example by altering response to predators, display to mates, or memory of locations of food. We expand on current knowledge by investigating the effects of dietary mercury, a ubiquitous environmental pollutant and known neurotoxin, on avian cognition. Zebra finches Taeniopygia guttata were dosed for their entire lives with sub-lethal levels of mercury, at the environmentally relevant dose of 1.2 parts per million. In our first study, we compared the dosed birds with controls of the same age using tests of three cognitive abilities: spatial memory, inhibitory control, and color association. In the spatial memory assay, birds were tested on their ability to learn and remember the location of hidden food in their cage. The inhibitory control assay measured their ability to ignore visible but inaccessible food in favor of a learned behavior that provided the same reward. Finally, the color association task tested each bird's ability to associate a specific color with the presence of hidden food. Dietary mercury negatively affected spatial memory ability but not inhibitory control or color association. Our second study focused on three behavioral assays not tied to a specific skill or problem-solving: activity level, neophobia, and social dominance. Zebra finches exposed to dietary mercury throughout their lives were subordinate to, and more active than, control birds. We found no evidence that mercury exposure influenced our metric of neophobia. Together, these results suggest that sub-lethal exposure to environmental mercury selectively harms neurological pathways that control different cognitive abilities, with complex effects on behavior and fitness.

  2. Ketogenic diet alters dopaminergic activity in the mouse cortex.

    Science.gov (United States)

    Church, William H; Adams, Ryan E; Wyss, Livia S

    2014-06-13

    The present study was conducted to determine if the ketogenic diet altered basal levels of monoamine neurotransmitters in mice. The catecholamines dopamine (DA) and norephinephrine (NE) and the indolamine serotonin (5HT) were quantified postmortem in six different brain regions of adult mice fed a ketogenic diet for 3 weeks. The dopamine metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) and the serotonin metabolite 5-hydroxyindole acetic acid (5HIAA) were also measured. Tissue punches were collected bilaterally from the motor cortex, somatosensory cortex, nucleus accumbens, anterior caudate-putamen, posterior caudate-putamen and the midbrain. Dopaminergic activity, as measured by the dopamine metabolites to dopamine content ratio - ([DOPAC]+[HVA])/[DA] - was significantly increased in the motor and somatosensory cortex regions of mice fed the ketogenic diet when compared to those same areas in brains of mice fed a normal diet. These results indicate that the ketogenic diet alters the activity of the meso-cortical dopaminergic system, which may contribute to the diet's therapeutic effect in reducing epileptic seizure activity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Behavioral Modulation by Spontaneous Activity of Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    Toshiharu Ichinose

    2017-12-01

    Full Text Available Dopamine modulates a variety of animal behaviors that range from sleep and learning to courtship and aggression. Besides its well-known phasic firing to natural reward, a substantial number of dopamine neurons (DANs are known to exhibit ongoing intrinsic activity in the absence of an external stimulus. While accumulating evidence points at functional implications for these intrinsic “spontaneous activities” of DANs in cognitive processes, a causal link to behavior and its underlying mechanisms has yet to be elucidated. Recent physiological studies in the model organism Drosophila melanogaster have uncovered that DANs in the fly brain are also spontaneously active, and that this activity reflects the behavioral/internal states of the animal. Strikingly, genetic manipulation of basal DAN activity resulted in behavioral alterations in the fly, providing critical evidence that links spontaneous DAN activity to behavioral states. Furthermore, circuit-level analyses have started to reveal cellular and molecular mechanisms that mediate or regulate spontaneous DAN activity. Through reviewing recent findings in different animals with the major focus on flies, we will discuss potential roles of this physiological phenomenon in directing animal behaviors.

  4. Does insertion of intramuscular electromyographic electrodes alter motor behavior during locomotion?

    Science.gov (United States)

    Armour Smith, Jo; Kulig, Kornelia

    2015-06-01

    Intramuscular electromyography (EMG) is commonly used to quantify activity in the trunk musculature. However, it is unclear if the discomfort or fear of pain associated with insertion of intramuscular EMG electrodes results in altered motor behavior. This study examined whether intramuscular EMG affects locomotor speed and trunk motion, and examined the anticipated and actual pain associated with electrode insertion in healthy individuals and individuals with a history of low back pain (LBP). Before and after insertion of intramuscular electrodes into the lumbar and thoracic paraspinals, participants performed multiple repetitions of a walking turn at self-selected and controlled average speed. Low levels of anticipated and actual pain were reported in both groups. Self-selected locomotor speed was significantly increased following insertion of the electrodes. At the controlled speed, the amplitude of sagittal plane lumbo-pelvic motion decreased significantly post-insertion, but the extent of this change was the same in both groups. Lumbo-pelvic motion in the frontal and axial planes and thoraco-lumbar motion in all planes were not affected by the insertions. This study demonstrates that intramuscular EMG is an appropriate methodology to selectively quantify the activation patterns of the individual muscles in the paraspinal group, both in healthy individuals and individuals with a history of LBP. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Enhancement of Extinction Learning Attenuates Ethanol-Seeking Behavior and Alters Plasticity in the Prefrontal Cortex

    Science.gov (United States)

    Trantham-Davidson, Heather; Kassab, Amanda S.; Glen, William B.; Olive, M. Foster; Chandler, L. Judson

    2014-01-01

    Addiction is a chronic relapsing disorder in which relapse is often initiated by exposure to drug-related cues. The present study examined the effects of mGluR5 activation on extinction of ethanol-cue-maintained responding, relapse-like behavior, and neuronal plasticity. Rats were trained to self-administer ethanol and then exposed to extinction training during which they were administered either vehicle or the mGluR5 positive allosteric modulator 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) or CDPPB. CDPPB treatment reduced active lever responding during extinction, decreased the total number of extinction sessions required to meet criteria, and attenuated cue-induced reinstatement of ethanol seeking. CDPPB facilitation of extinction was blocked by the local infusion of the mGluR5 antagonist 3-((2-methyl-4-thiazolyl)ethynyl) pyridine into the infralimbic (IfL) cortex, but had no effect when infused into the prelimbic (PrL) cortex. Analysis of dendritic spines revealed alterations in structural plasticity, whereas electrophysiological recordings demonstrated differential alterations in glutamatergic neurotransmission in the PrL and IfL cortex. Extinction was associated with increased amplitude of evoked synaptic PrL and IfL NMDA currents but reduced amplitude of PrL AMPA currents. Treatment with CDPPB prevented the extinction-induced enhancement of NMDA currents in PrL without affecting NMDA currents in the IfL. Whereas CDPPB treatment did not alter the amplitude of PrL or IfL AMPA currents, it did promote the expression of IfL calcium-permeable GluR2-lacking receptors in both abstinence- and extinction-trained rats, but had no effect in ethanol-naive rats. These results confirm changes in the PrL and IfL cortex in glutamatergic neurotransmission during extinction learning and demonstrate that manipulation of mGluR5 facilitates extinction of ethanol cues in association with neuronal plasticity. PMID:24872560

  6. Enhancement of extinction learning attenuates ethanol-seeking behavior and alters plasticity in the prefrontal cortex.

    Science.gov (United States)

    Gass, Justin T; Trantham-Davidson, Heather; Kassab, Amanda S; Glen, William B; Olive, M Foster; Chandler, L Judson

    2014-05-28

    Addiction is a chronic relapsing disorder in which relapse is often initiated by exposure to drug-related cues. The present study examined the effects of mGluR5 activation on extinction of ethanol-cue-maintained responding, relapse-like behavior, and neuronal plasticity. Rats were trained to self-administer ethanol and then exposed to extinction training during which they were administered either vehicle or the mGluR5 positive allosteric modulator 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl) or CDPPB. CDPPB treatment reduced active lever responding during extinction, decreased the total number of extinction sessions required to meet criteria, and attenuated cue-induced reinstatement of ethanol seeking. CDPPB facilitation of extinction was blocked by the local infusion of the mGluR5 antagonist 3-((2-methyl-4-thiazolyl)ethynyl) pyridine into the infralimbic (IfL) cortex, but had no effect when infused into the prelimbic (PrL) cortex. Analysis of dendritic spines revealed alterations in structural plasticity, whereas electrophysiological recordings demonstrated differential alterations in glutamatergic neurotransmission in the PrL and IfL cortex. Extinction was associated with increased amplitude of evoked synaptic PrL and IfL NMDA currents but reduced amplitude of PrL AMPA currents. Treatment with CDPPB prevented the extinction-induced enhancement of NMDA currents in PrL without affecting NMDA currents in the IfL. Whereas CDPPB treatment did not alter the amplitude of PrL or IfL AMPA currents, it did promote the expression of IfL calcium-permeable GluR2-lacking receptors in both abstinence- and extinction-trained rats, but had no effect in ethanol-naive rats. These results confirm changes in the PrL and IfL cortex in glutamatergic neurotransmission during extinction learning and demonstrate that manipulation of mGluR5 facilitates extinction of ethanol cues in association with neuronal plasticity. Copyright © 2014 the authors 0270-6474/14/347562-13$15.00/0.

  7. Alteration In Bones Metabolism In Active Rheumatoid Arthritis

    International Nuclear Information System (INIS)

    Salem, E.S.

    2013-01-01

    The strength and integrity of the human skeleton depends on a delicate equilibrium between bone resorption and bone formation. Osteocalcin (OC) is synthesized by osteoblasts and is considered to be a marker of bone formation and helps in corporating calcium into bone tissue. Rheumatoid arthritis (RA) is an autoimmune inflammatory joint disease characterized by bone complication including bone pain, erosion and osteoporosis. The aim of the present study is to evaluate some factors responsible in bone metabolism termed OC, vitamin D (vit. D), oncostatin M (OSM), ionized calcium and alkaline phosphatase. Fifty pre-menopausal female patients with active RA and twenty healthy controls of the same age were included in the present study. Radioimmunoassay (RIA) was used to estimate serum OC and active vitamin D. The quantitative determination of ionized calcium and alkaline phosphatase were carried out colorimetrically. OSM was measured by ELISA and serum levels of OC and active vitamin D were significantly decreased in RA patients as compared to those of the control group. On the other hand, the levels of serum OSM, ionized calcium and alkaline phosphatase were significantly increased in the RA patients as compared to their healthy control subjects. The results of this study indicated that early investigation and therapy of disturbances of bone metabolism in active RA are necessary for better prognosis and exhibited the importance of OC as a diagnostic tool of alterations of bone metabolism in RA patients.

  8. Anthropogenic noise alters bat activity levels and echolocation calls

    Directory of Open Access Journals (Sweden)

    Jessie P. Bunkley

    2015-01-01

    Full Text Available Negative impacts from anthropogenic noise are well documented for many wildlife taxa. Investigations of the effects of noise on bats however, have not been conducted outside of the laboratory. Bats that hunt arthropods rely on auditory information to forage. Part of this acoustic information can fall within the spectrum of anthropogenic noise, which can potentially interfere with signal reception and processing. Compressor stations associated with natural gas extraction produce broadband noise 24 hours a day, 365 days a year. With over half a million producing gas wells in the U.S. this infrastructure is a major source of noise pollution across the landscape. We conducted a ‘natural experiment’ in the second largest gas extraction field in the U.S. to investigate the potential effects of gas compressor station noise on the activity levels of the local bat assemblage. We used acoustic monitoring to compare the activity level (number of minutes in a night with a bat call of the bat assemblage at sites with compressor stations to sites lacking this infrastructure. We found that activity levels for the Brazilian free-tailed bat (Tadarida brasiliensis were 40% lower at loud compressor sites compared to quieter well pads, whereas the activity levels of four other species (Myotis californicus, M. cillolabrum, M. lucifugus, Parastrellus hesperus were not affected by noise. Furthermore, our results reveal that the assemblage of bat species emitting low frequency (35 kHz echolocation did not exhibit altered activity levels in noise. Lower activity levels of Brazilian free-tailed bats at loud sites indicate a potential reduction in habitat for this species. Additionally, a comparison of echolocation search calls produced by free-tailed bats at sites with and without compressor stations reveal that this species modifies its echolocation search calls in noise—producing longer calls with a narrower bandwidth. Call alterations might affect prey

  9. Activity of Raphé Serotonergic Neurons Controls Emotional Behaviors

    Directory of Open Access Journals (Sweden)

    Anne Teissier

    2015-12-01

    Full Text Available Despite the well-established role of serotonin signaling in mood regulation, causal relationships between serotonergic neuronal activity and behavior remain poorly understood. Using a pharmacogenetic approach, we find that selectively increasing serotonergic neuronal activity in wild-type mice is anxiogenic and reduces floating in the forced-swim test, whereas inhibition has no effect on the same measures. In a developmental mouse model of altered emotional behavior, increased anxiety and depression-like behaviors correlate with reduced dorsal raphé and increased median raphé serotonergic activity. These mice display blunted responses to serotonergic stimulation and behavioral rescues through serotonergic inhibition. Furthermore, we identify opposing consequences of dorsal versus median raphé serotonergic neuron inhibition on floating behavior, together suggesting that median raphé hyperactivity increases anxiety, whereas a low dorsal/median raphé serotonergic activity ratio increases depression-like behavior. Thus, we find a critical role of serotonergic neuronal activity in emotional regulation and uncover opposing roles of median and dorsal raphé function.

  10. Activity of Raphé Serotonergic Neurons Controls Emotional Behaviors.

    Science.gov (United States)

    Teissier, Anne; Chemiakine, Alexei; Inbar, Benjamin; Bagchi, Sneha; Ray, Russell S; Palmiter, Richard D; Dymecki, Susan M; Moore, Holly; Ansorge, Mark S

    2015-12-01

    Despite the well-established role of serotonin signaling in mood regulation, causal relationships between serotonergic neuronal activity and behavior remain poorly understood. Using a pharmacogenetic approach, we find that selectively increasing serotonergic neuronal activity in wild-type mice is anxiogenic and reduces floating in the forced-swim test, whereas inhibition has no effect on the same measures. In a developmental mouse model of altered emotional behavior, increased anxiety and depression-like behaviors correlate with reduced dorsal raphé and increased median raphé serotonergic activity. These mice display blunted responses to serotonergic stimulation and behavioral rescues through serotonergic inhibition. Furthermore, we identify opposing consequences of dorsal versus median raphé serotonergic neuron inhibition on floating behavior, together suggesting that median raphé hyperactivity increases anxiety, whereas a low dorsal/median raphé serotonergic activity ratio increases depression-like behavior. Thus, we find a critical role of serotonergic neuronal activity in emotional regulation and uncover opposing roles of median and dorsal raphé function. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  11. [Practice of Behavioral Activation in Cognitive-behavioral Therapy].

    Science.gov (United States)

    Kitagawa, Nobuki

    2015-01-01

    An approach focusing on behavioral activation (BA) was adopted in the cognitive therapy of A. T. Beck, and it came to be considered that BA can play an important role in cognitive-behavioral therapy (CBT) for depression. Therefore, in recent years, BA based on clinical behavior analysis has been developed as a new treatment (Martell, et al.). The core characteristics are as follows: 1) focusing attention on context in daily life to promote the behavior control of patients and avoidance of a hatred experience ; 2) breaking the vicious circle; 3) promoting the behavior according to the purpose that the patients originally expect; 4) recognizing a relationship between behavior and the situation (contingency), thereby recovering self-efficacy tied to the long-term results that one originally expects. This does not increase pleasant activity at random when the patient is inactive, or give a sense of accomplishment. We know that depression is maintained by conducting functional analysis of detailed life behavior, and encourage the patients to have healthy behavior according to individual values. We help them to complete schedules regardless of mood and reflect on the results patiently. It is considered that those processes are important. BA may be easy to apply in clinical practice and effective for the chronic cases, or the patients in a convalescent stage. Also, in principle in the CBT for major depression, it may be effective that behavioral activation is provided in an early stage, and cognitive reconstruction in a latter stage. However, an approach to carry out functional analysis by small steps with careful activity monitoring is essential when the symptoms are severe. Furthermore, it should be considered that the way of psychoeducation requires caution because we encourage rest in the treatment of depression in our country. In particular, we must be careful not to take an attitude that an inactive behavior pattern is unproductive only based model cases.

  12. Inorganic mercury exposure in drinking water alters essential metal homeostasis in pregnant rats without altering rat pup behavior.

    Science.gov (United States)

    Oliveira, Cláudia S; Oliveira, Vitor A; Costa, Lidiane M; Pedroso, Taíse F; Fonseca, Mariana M; Bernardi, Jamile S; Fiuza, Tiago L; Pereira, Maria E

    2016-10-01

    The aim of this work was to investigate the effects of HgCl 2 exposure in the doses of 0, 10 and 50μg Hg 2+ /mL in drinking water during pregnancy on tissue essential metal homeostasis, as well as the effects of HgCl 2 exposure in utero and breast milk on behavioral tasks. Pregnant rats exposed to both inorganic mercury doses presented high renal Hg content and an increase in renal Cu and hepatic Zn levels. Mercury exposure increased fecal Hg and essential metal contents. Pups exposed to inorganic Hg presented no alterations in essential metal homeostasis or in behavioral task markers of motor function. In conclusion, this work showed that the physiologic pregnancy and lactation states protected the offspring from adverse effects of low doses of Hg 2+ . This protection is likely to be related to the endogenous scavenger molecule, metallothionein, which may form an inert complex with Hg 2+ . Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Eating behavior and physical activity in adolescents

    Directory of Open Access Journals (Sweden)

    Leonardo de Sousa Fortes

    2013-10-01

    Full Text Available OBJECTIVE: The aim of this study was to compare the inappropriate eating behaviors of adolescents as a function of habitual level of physical activity. METHODS: Participants were 462 youth of both genders aged 10 to 19 years. The Eating Attitudes Test-26 was used for inappropriate eating behaviors assessment. A short version of the International Physical Activity Questionnaire was used for classifying the habitual level of physical activity. RESULTS: No statistically significant differences were found for the comparison of inappropriate eating behaviors in the multivariate covariance model either for females or males. Moreover, the level of physical activity had no significant influence on the inappropriate eating behaviors of these adolescents. CONCLUSION: In conclusion, inappropriate eating behaviors in both genders were similar regardless of the habitual level of physical activity.

  14. Human ecstasy (MDMA) polydrug users have altered brain activation during semantic processing.

    Science.gov (United States)

    Watkins, Tristan J; Raj, Vidya; Lee, Junghee; Dietrich, Mary S; Cao, Aize; Blackford, Jennifer U; Salomon, Ronald M; Park, Sohee; Benningfield, Margaret M; Di Iorio, Christina R; Cowan, Ronald L

    2013-05-01

    Ecstasy (3,4-methylenedioxymethamphetamine [MDMA]) polydrug users have verbal memory performance that is statistically significantly lower than that of control subjects. Studies have correlated long-term MDMA use with altered brain activation in regions that play a role in verbal memory. The aim of our study was to examine the association of lifetime ecstasy use with semantic memory performance and brain activation in ecstasy polydrug users. A total of 23 abstinent ecstasy polydrug users (age = 24.57 years) and 11 controls (age = 22.36 years) performed a two-part functional magnetic resonance imaging (fMRI) semantic encoding and recognition task. To isolate brain regions activated during each semantic task, we created statistical activation maps in which brain activation was greater for word stimuli than for non-word stimuli (corrected p ecstasy polydrug users had greater activation during semantic encoding bilaterally in language processing regions, including Brodmann areas 7, 39, and 40. Of this bilateral activation, signal intensity with a peak T in the right superior parietal lobe was correlated with lifetime ecstasy use (r s = 0.43, p = 0.042). Behavioral performance did not differ between groups. These findings demonstrate that ecstasy polydrug users have increased brain activation during semantic processing. This increase in brain activation in the absence of behavioral deficits suggests that ecstasy polydrug users have reduced cortical efficiency during semantic encoding, possibly secondary to MDMA-induced 5-HT neurotoxicity. Although pre-existing differences cannot be ruled out, this suggests the possibility of a compensatory mechanism allowing ecstasy polydrug users to perform equivalently to controls, providing additional support for an association of altered cerebral neurophysiology with MDMA exposure.

  15. Supporting smartphone-based behavioral activation

    DEFF Research Database (Denmark)

    Bardram, Jakob Eyvind; Rohani, Darius A.; Tuxen, Nanna

    2017-01-01

    Behavioral activation has shown to be a simple yet efective therapy for depressive patients. The method relies on extensive collection of patient reported activity data on an hourly basis. We are currently in the process of designing a smartphone-based behavioral activation system for depressive...... disorders. However, it is an open question to what degree patients would use this approach given the high demand for user input. In order to investigate this question, we collected paper-based behavioral activation forms from 5 patients, covering in total 18 weeks, 115 days, and 1,614 hours of self......-reported activity data. In this paper we present an analysis of this data and discuss the implications for the design of a smartphone-based system for behavioral activation....

  16. Eating behavior and physical activity in adolescents

    OpenAIRE

    Fortes,Leonardo de Sousa; Morgado,Fabiane Frota da Rocha; Almeida,Sebastião de Sousa; Ferreira,Maria Elisa Caputo

    2013-01-01

    OBJECTIVE: The aim of this study was to compare the inappropriate eating behaviors of adolescents as a function of habitual level of physical activity. METHODS: Participants were 462 youth of both genders aged 10 to 19 years. The Eating Attitudes Test-26 was used for inappropriate eating behaviors assessment. A short version of the International Physical Activity Questionnaire was used for classifying the habitual level of physical activity. RESULTS: No statistically significant differences w...

  17. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in CD-1 mouse pups.

    Science.gov (United States)

    Venerosi, Aldina; Ricceri, Laura; Scattoni, Maria Luisa; Calamandrei, Gemma

    2009-03-30

    Chlorpyrifos (CPF) is a non-persistent organophosphate (OP) largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Late gestational exposure [gestational day (GD) 14-17] to CPF at the dose of 6 mg/kg was evaluated in CD-1 mice during early development, by assessment of somatic and sensorimotor maturation [reflex-battery on postnatal days (PNDs) 3, 6, 9, 12 and 15] and ultrasound emission after isolation from the mother and siblings (PNDs 4, 7 and 10). Pups' motor skills were assessed in a spontaneous activity test on PND 12. Maternal behavior of lactating dams in the home cage and in response to presentation of a pup previously removed from the nest was scored on PND 4, to verify potential alterations in maternal care directly induced by CPF administration. As for the effects on the offspring, results indicated that on PND 10, CPF significantly decreased number and duration of ultrasonic calls while increasing latency to emit the first call after isolation. Prenatal CPF also reduced motor behavior on PND 12, while a tendency to hyporeflexia was observed in CPF pups by means of reflex-battery scoring. Dams administered during gestation with CPF showed baseline levels of maternal care comparable to those of controls, but higher levels of both pup-directed (licking) and explorative (wall rearing) responses. Overall our results are consistent with previous epidemiological data on OP neurobehavioral toxicity, and also indicate ultrasonic vocalization as an early marker of CPF exposure during development in rodent studies, with potential translational value to human infants.

  18. Prenatal chlorpyrifos exposure alters motor behavior and ultrasonic vocalization in cd-1 mouse pups

    Directory of Open Access Journals (Sweden)

    Calamandrei Gemma

    2009-03-01

    Full Text Available Abstract Background Chlorpyrifos (CPF is a non-persistent organophosphate (OP largely used as pesticide. Studies from animal models indicate that CPF is a developmental neurotoxicant able to target immature central nervous system at dose levels well below the threshold of systemic toxicity. So far, few data are available on the potential short- and long-term adverse effects in children deriving from low-level exposures during prenatal life and infancy. Methods Late gestational exposure [gestational day (GD 14–17] to CPF at the dose of 6 mg/kg was evaluated in CD-1 mice during early development, by assessment of somatic and sensorimotor maturation [reflex-battery on postnatal days (PNDs 3, 6, 9, 12 and 15] and ultrasound emission after isolation from the mother and siblings (PNDs 4, 7 and 10. Pups' motor skills were assessed in a spontaneous activity test on PND 12. Maternal behavior of lactating dams in the home cage and in response to presentation of a pup previously removed from the nest was scored on PND 4, to verify potential alterations in maternal care directly induced by CPF administration. Results As for the effects on the offspring, results indicated that on PND 10, CPF significantly decreased number and duration of ultrasonic calls while increasing latency to emit the first call after isolation. Prenatal CPF also reduced motor behavior on PND 12, while a tendency to hyporeflexia was observed in CPF pups by means of reflex-battery scoring. Dams administered during gestation with CPF showed baseline levels of maternal care comparable to those of controls, but higher levels of both pup-directed (licking and explorative (wall rearing responses. Conclusion Overall our results are consistent with previous epidemiological data on OP neurobehavioral toxicity, and also indicate ultrasonic vocalization as an early marker of CPF exposure during development in rodent studies, with potential translational value to human infants.

  19. Pseudorabies virus infection alters neuronal activity and connectivity in vitro.

    Directory of Open Access Journals (Sweden)

    Kelly M McCarthy

    2009-10-01

    Full Text Available Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV, infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural

  20. Mycobacterium leprae alters classical activation of human monocytes in vitro.

    Science.gov (United States)

    Fallows, Dorothy; Peixoto, Blas; Kaplan, Gilla; Manca, Claudia

    2016-01-01

    Macrophages play a central role in the pathogenesis of leprosy, caused by Mycobacterium leprae. The polarized clinical presentations in leprosy are associated with differential immune activation. In tuberculoid leprosy, macrophages show a classical activation phenotype (M1), while macrophages in lepromatous disease display characteristics of alternative activation (M2). Bacille Calmette-Guérin (BCG) vaccination, which protects against leprosy, can promote sustained changes in monocyte response to unrelated pathogens and may preferentially direct monocytes towards an M1 protective phenotype. We previously reported that M. leprae can dampen the response of naïve human monocytes to a strong inducer of pro-inflammatory cytokines, such as BCG. Here, we investigated the ability of the pathogen to alter the direction of macrophage polarization and the impact of BCG vaccination on the monocyte response to M. leprae. We show that in vitro exposure of monocytes from healthy donors to M. leprae interferes with subsequent M1 polarization, indicated by lower levels of M1-associated cytokine/chemokines released and reduced expression of M1 cell surface markers. Exposure to M. leprae phenolic glycolipid (PGL) 1, instead of whole bacteria, demonstrated a similar effect on M1 cytokine/chemokine release. In addition, we found that monocytes from 10-week old BCG-vaccinated infants released higher levels of the pro-inflammatory cytokines TNF-α and IL-1β in response to M. leprae compared to those from unvaccinated infants. Exposure to M. leprae has an inhibitory effect on M1 macrophage polarization, likely mediated through PGL-1. By directing monocyte/macrophages preferentially towards M1 activation, BCG vaccination may render the cells more refractory to the inhibitory effects of subsequent M. leprae infection.

  1. Homeostasis-altering molecular processes as mechanisms of inflammasome activation.

    Science.gov (United States)

    Liston, Adrian; Masters, Seth L

    2017-03-01

    The innate immune system uses a distinct set of germline-encoded pattern recognition receptors (PRRs) to initiate downstream inflammatory cascades. This recognition system is in stark contrast to the adaptive immune system, which relies on highly variable, randomly generated antigen receptors. A key limitation of the innate immune system's reliance on fixed PRRs is its inflexibility in responding to rapidly evolving pathogens. Recent advances in our understanding of inflammasome activation suggest that the innate immune system also has sophisticated mechanisms for responding to pathogens for which there is no fixed PRR. This includes the recognition of debris from dying cells, known as danger-associated molecular patterns (DAMPs), which can directly activate PRRs in a similar manner to pathogen-associated molecular patterns (PAMPs). Distinct from this, emerging data for the inflammasome components NLRP3 (NOD-, LRR- and pyrin domain-containing 3) and pyrin suggest that they do not directly detect molecular patterns, but instead act as signal integrators that are capable of detecting perturbations in cytoplasmic homeostasis, for example, as initiated by infection. Monitoring these perturbations, which we term 'homeostasis-altering molecular processes' (HAMPs), provides potent flexibility in the capacity of the innate immune system to detect evolutionarily novel infections; however, HAMP sensing may also underlie the sterile inflammation that drives chronic inflammatory diseases.

  2. Synergistic interactions promote behavior spreading and alter phase transitions on multiplex networks

    Science.gov (United States)

    Liu, Quan-Hui; Wang, Wei; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-02-01

    Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions in behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior spreading model on a double layer network, where the key manifestation of the synergistic interactions is that the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous (second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A surprising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt the behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis to fully understand, in the weak synergistic interaction regime where the dynamical correlation between the network layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics in the whole system.

  3. Making Activity Recognition Robust against Deceptive Behavior.

    Directory of Open Access Journals (Sweden)

    Sohrab Saeb

    Full Text Available Healthcare services increasingly use the activity recognition technology to track the daily activities of individuals. In some cases, this is used to provide incentives. For example, some health insurance companies offer discount to customers who are physically active, based on the data collected from their activity tracking devices. Therefore, there is an increasing motivation for individuals to cheat, by making activity trackers detect activities that increase their benefits rather than the ones they actually do. In this study, we used a novel method to make activity recognition robust against deceptive behavior. We asked 14 subjects to attempt to trick our smartphone-based activity classifier by making it detect an activity other than the one they actually performed, for example by shaking the phone while seated to make the classifier detect walking. If they succeeded, we used their motion data to retrain the classifier, and asked them to try to trick it again. The experiment ended when subjects could no longer cheat. We found that some subjects were not able to trick the classifier at all, while others required five rounds of retraining. While classifiers trained on normal activity data predicted true activity with ~38% accuracy, training on the data gathered during the deceptive behavior increased their accuracy to ~84%. We conclude that learning the deceptive behavior of one individual helps to detect the deceptive behavior of others. Thus, we can make current activity recognition robust to deception by including deceptive activity data from a few individuals.

  4. Alterations in calcium metabolism during human monocyte activation

    International Nuclear Information System (INIS)

    Scully, S.P.

    1984-01-01

    Human peripheral blood monocytes have been prepared from plateletpheresis residues by counterflow centrifugal elutriation in sufficient quantities to enable quantitative studies of cell calcium. Kinetic analysis of 45 Ca exchange data in resting monocytes was compatible with a model of cellular calcium containing three exchangeable calcium pools. These pools are thought to represent a putative ectocellular pool, a putative cytoplasmic chelated pool, and a putative organelle sequestered pool. Exposure of monocytes to the plant lectin Con A at a concentration that maximally simulated superoxide production caused an increase in the size and a doubling in the exchange rate of the putative cytoplasmic pool without a change in the other cellular pools. The cytoplasmic ionized calcium, [Ca]/sub i/, measured with the fluorescent probe, Quin 2 rose from a resting level of 83 nM to 165 mN within 30 sec of exposure to Con A. This increase in cytoplasmic calcium preceded the release of superoxide radicals. Calcium transport and calcium ATPase activities were identified and characterized in plasma membrane vesicles prepared from monocytes. Both activities were strictly dependent on ATP and Mg, had a Km/sub Ca/ in the submicromolar range and were stimulated by calmodulin. Thus, it seems that monocyte calcium is in a dynamic steady state that is a balance between efflux and influx rates, and that the activation of these cells results in the transition to a new steady state. The alteration in [Ca]/sub i/ that accompany the new steady state are essential for superoxide production by human monocytes

  5. Scaling behavior of online human activity

    Science.gov (United States)

    Zhao, Zhi-Dan; Cai, Shi-Min; Huang, Junming; Fu, Yan; Zhou, Tao

    2012-11-01

    The rapid development of the Internet technology enables humans to explore the web and record the traces of online activities. From the analysis of these large-scale data sets (i.e., traces), we can get insights about the dynamic behavior of human activity. In this letter, the scaling behavior and complexity of human activity in the e-commerce, such as music, books, and movies rating, are comprehensively investigated by using the detrended fluctuation analysis technique and the multiscale entropy method. Firstly, the interevent time series of rating behaviors of these three types of media show similar scaling properties with exponents ranging from 0.53 to 0.58, which implies that the collective behaviors of rating media follow a process embodying self-similarity and long-range correlation. Meanwhile, by dividing the users into three groups based on their activities (i.e., rating per unit time), we find that the scaling exponents of the interevent time series in the three groups are different. Hence, these results suggest that a stronger long-range correlations exist in these collective behaviors. Furthermore, their information complexities vary in the three groups. To explain the differences of the collective behaviors restricted to the three groups, we study the dynamic behavior of human activity at the individual level, and find that the dynamic behaviors of a few users have extremely small scaling exponents associated with long-range anticorrelations. By comparing the interevent time distributions of four representative users, we can find that the bimodal distributions may bring forth the extraordinary scaling behaviors. These results of the analysis of the online human activity in the e-commerce may not only provide insight into its dynamic behaviors but may also be applied to acquire potential economic interest.

  6. The effect of altering self-descriptive behavior on self-concept and classroom behavior.

    Science.gov (United States)

    Lane, J; Muller, D

    1977-09-01

    This research examined the impact of operant reinforcement of positive self-descriptive behavior on the self-concepts and classroom behavior of 60 fifth-grade students. Three groups of 10 male and 10 female low self-concept students wrote a series of eight essays describing their school performance. The first group (P) received written reinforcement for positive self-descriptions of their school performance. The second group (G) received an equal number of reinforcements for general statements. The third group (C) received no reinforcement for written statements. Three areas of self-concept were measured with the Primary Self-Concept Inventory: personal-self, social-self, and intellectual-self. A frequency count was also made of nine classroom behaviors thought to be influenced by self-concept. The P group displayed increases in the frequency of positive self-descriptive statement and in intellectual self-concept but no changes in personal self-concept, social self-concept, or the nine classroom behaviors. The G and C groups showed no change in self-description, self-concept, or the nine classroom behaviors.

  7. Prenatal choline supplementation mitigates behavioral alterations associated with prenatal alcohol exposure in rats.

    Science.gov (United States)

    Thomas, Jennifer D; Idrus, Nirelia M; Monk, Bradley R; Dominguez, Hector D

    2010-10-01

    Prenatal alcohol exposure can alter physical and behavioral development, leading to a range of fetal alcohol spectrum disorders. Despite warning labels, pregnant women continue to drink alcohol, creating a need to identify effective interventions to reduce the severity of alcohol's teratogenic effects. Choline is an essential nutrient that influences brain and behavioral development. Recent studies indicate that choline supplementation can reduce the teratogenic effects of developmental alcohol exposure. The present study examined whether choline supplementation during prenatal ethanol treatment could mitigate the adverse effects of ethanol on behavioral development. Pregnant Sprague-Dawley rats were intubated with 6 g/kg/day ethanol in a binge-like manner from gestational days 5-20; pair-fed and ad libitum chow controls were included. During treatment, subjects from each group were intubated with either 250 mg/kg/day choline chloride or vehicle. Spontaneous alternation, parallel bar motor coordination, Morris water maze, and spatial working memory were assessed in male and female offspring. Subjects prenatally exposed to alcohol exhibited delayed development of spontaneous alternation behavior and deficits on the working memory version of the Morris water maze during adulthood, effects that were mitigated with prenatal choline supplementation. Neither alcohol nor choline influenced performance on the motor coordination task. These data indicate that choline supplementation during prenatal alcohol exposure may reduce the severity of fetal alcohol effects, particularly on alterations in tasks that require behavioral flexibility. These findings have important implications for children of women who drink alcohol during pregnancy. © 2010 Wiley-Liss, Inc.

  8. Acute Exposure to Fluoxetine Alters Aggressive Behavior of Zebrafish and Expression of Genes Involved in Serotonergic System Regulation

    Directory of Open Access Journals (Sweden)

    Michail Pavlidis

    2017-04-01

    Full Text Available Zebrafish, Danio rerio, is an emerging model organism in stress and neurobehavioral studies. In nature, the species forms shoals, yet when kept in pairs it exhibits an agonistic and anxiety-like behavior that leads to the establishment of dominant-subordinate relationships. Fluoxetine, a selective serotonin reuptake inhibitor, is used as an anxiolytic tool to alter aggressive behavior in several vertebrates and as an antidepressant drug in humans. Pairs of male zebrafish were held overnight to develop dominant—subordinate behavior, either treated or non-treated for 2 h with fluoxetine (5 mg L−1, and allowed to interact once more for 1 h. Behavior was recorded both prior and after fluoxetine administration. At the end of the experiment, trunk and brain samples were also taken for cortisol determination and mRNA expression studies, respectively. Fluoxetine treatment significantly affected zebrafish behavior and the expression levels of several genes, by decreasing offensive aggression in dominants and by eliminating freezing in the subordinates. There was no statistically significant difference in whole-trunk cortisol concentrations between dominant and subordinate fish, while fluoxetine treatment resulted in higher (P = 0.004 cortisol concentrations in both groups. There were statistically significant differences between dominant and subordinate fish in brain mRNA expression levels of genes involved in stress axis (gr, mr, neural activity (bdnf, c-fos, and the serotonergic system (htr2b, slc6a4b. The significant decrease in the offensive and defensive aggression following fluoxetine treatment was concomitant with a reversed pattern in c-fos expression levels. Overall, an acute administration of a selective serotonin reuptake inhibitor alters aggressive behavior in male zebrafish in association with changes in the neuroendocrine mediators of coping styles.

  9. Cross-fostering does not alter the neurochemistry or behavior of spontaneously hypertensive rats

    Directory of Open Access Journals (Sweden)

    Russell Vivienne A

    2009-06-01

    Full Text Available Abstract Background Attention-deficit/hyperactivity disorder (ADHD is a highly heritable developmental disorder resulting from complex gene-gene and gene-environment interactions. The most widely used animal model, the spontaneously hypertensive rat (SHR, displays the major symptoms of ADHD (deficits in attention, impulsivity and hyperactivity and has a disturbance in the noradrenergic system when compared to control Wistar-Kyoto rats (WKY. The aim of the present study was to determine whether the ADHD-like characteristics of SHR were purely genetically determined or dependent on the gene-environment interaction provided by the SHR dam. Methods SHR/NCrl (Charles River, USA, WKY/NCrl (Charles River, USA and Sprague Dawley rats (SD/Hsd, Harlan, UK were bred at the University of Cape Town. Rat pups were cross-fostered on postnatal day 2 (PND 2. Control rats remained with their birth mothers to serve as a reference for their particular strain phenotype. Behavior in the open-field and the elevated-plus maze was assessed between PND 29 and 33. Two days later, rats were decapitated and glutamate-stimulated release of [3H]norepinephrine was determined in prefrontal cortex and hippocampal slices. Results There was no significant effect of "strain of dam" but there was a significant effect of "pup strain" on all parameters investigated. SHR pups travelled a greater distance in the open field, spent a longer period of time in the inner zone and entered the inner zone of the open-field more frequently than SD or WKY. SD were more active than WKY in the open-field. WKY took longer to enter the inner zone than SHR or SD. In the elevated-plus maze, SHR spent less time in the closed arms, more time in the open arms and entered the open arms more frequently than SD or WKY. There was no difference between WKY and SD behavior in the elevated-plus maze. SHR released significantly more [3H]norepinephrine in response to glutamate than SD or WKY in both hippocampus

  10. Increased Subjective Distaste and Altered Insula Activity to Umami Tastant in Patients with Bulimia Nervosa

    Directory of Open Access Journals (Sweden)

    Rikukage Setsu

    2017-09-01

    Full Text Available The aim of this study was to examine differences in brain neural activation in response to monosodium glutamate (MSG, the representative component of umami, between patients with bulimia nervosa (BN and healthy women (HW controls. We analyzed brain activity after ingestion of an MSG solution using functional magnetic resonance imaging (fMRI in a group of women with BN (n = 18 and a group of HW participants (n = 18. Both groups also provided a subjective assessment of the MSG solution via a numerical rating scale. The BN group subjectively rated the MSG solution lower in pleasantness and liking than the control group, although no difference in subjective intensity was noted. The fMRI results demonstrated greater activation of the right insula in the BN group versus the control group. Compared with the HW controls, the BN patients demonstrated both altered taste perception-related brain activity and more negative hedonic scores in response to MSG stimuli. Different hedonic evaluation, expressed as the relative low pleasing taste of umami tastant and associated with altered insula function, may explain disturbed eating behaviors, including the imbalance in food choices, in BN patients.

  11. Increased Subjective Distaste and Altered Insula Activity to Umami Tastant in Patients with Bulimia Nervosa.

    Science.gov (United States)

    Setsu, Rikukage; Hirano, Yoshiyuki; Tokunaga, Miki; Takahashi, Toru; Numata, Noriko; Matsumoto, Koji; Masuda, Yoshitada; Matsuzawa, Daisuke; Iyo, Masaomi; Shimizu, Eiji; Nakazato, Michiko

    2017-01-01

    The aim of this study was to examine differences in brain neural activation in response to monosodium glutamate (MSG), the representative component of umami, between patients with bulimia nervosa (BN) and healthy women (HW) controls. We analyzed brain activity after ingestion of an MSG solution using functional magnetic resonance imaging (fMRI) in a group of women with BN ( n  = 18) and a group of HW participants ( n  = 18). Both groups also provided a subjective assessment of the MSG solution via a numerical rating scale. The BN group subjectively rated the MSG solution lower in pleasantness and liking than the control group, although no difference in subjective intensity was noted. The fMRI results demonstrated greater activation of the right insula in the BN group versus the control group. Compared with the HW controls, the BN patients demonstrated both altered taste perception-related brain activity and more negative hedonic scores in response to MSG stimuli. Different hedonic evaluation, expressed as the relative low pleasing taste of umami tastant and associated with altered insula function, may explain disturbed eating behaviors, including the imbalance in food choices, in BN patients.

  12. Altered brain activation and connectivity during anticipation of uncertain threat in trait anxiety.

    Science.gov (United States)

    Geng, Haiyang; Wang, Yi; Gu, Ruolei; Luo, Yue-Jia; Xu, Pengfei; Huang, Yuxia; Li, Xuebing

    2018-06-08

    In the research field of anxiety, previous studies generally focus on emotional responses following threat. A recent model of anxiety proposes that altered anticipation prior to uncertain threat is related with the development of anxiety. Behavioral findings have built the relationship between anxiety and distinct anticipatory processes including attention, estimation of threat, and emotional responses. However, few studies have characterized the brain organization underlying anticipation of uncertain threat and its role in anxiety. In the present study, we used an emotional anticipation paradigm with functional magnetic resonance imaging (fMRI) to examine the aforementioned topics by employing brain activation and general psychophysiological interactions (gPPI) analysis. In the activation analysis, we found that high trait anxious individuals showed significantly increased activation in the thalamus, middle temporal gyrus (MTG), and dorsomedial prefrontal cortex (dmPFC), as well as decreased activation in the precuneus, during anticipation of uncertain threat compared to the certain condition. In the gPPI analysis, the key regions including the amygdala, dmPFC, and precuneus showed altered connections with distributed brain areas including the ventromedial prefrontal cortex (vmPFC), dorsolateral prefrontal cortex (dlPFC), inferior parietal sulcus (IPS), insula, para-hippocampus gyrus (PHA), thalamus, and MTG involved in anticipation of uncertain threat in anxious individuals. Taken together, our findings indicate that during the anticipation of uncertain threat, anxious individuals showed altered activations and functional connectivity in widely distributed brain areas, which may be critical for abnormal perception, estimation, and emotion reactions during the anticipation of uncertain threat. © 2018 Wiley Periodicals, Inc.

  13. Transgenerational Social Stress Alters Immune–Behavior Associations and the Response to Vaccination

    Directory of Open Access Journals (Sweden)

    Alexandria Hicks-Nelson

    2017-07-01

    Full Text Available Similar to the multi-hit theory of schizophrenia, social behavior pathologies are mediated by multiple factors across generations, likely acting additively, synergistically, or antagonistically. Exposure to social adversity, especially during early life, has been proposed to induce depression symptoms through immune mediated mechanisms. Basal immune factors are altered in a variety of neurobehavioral models. In the current study, we assessed two aspects of a transgenerational chronic social stress (CSS rat model and its effects on the immune system. First, we asked whether exposure of F0 dams and their F1 litters to CSS changes basal levels of IL-6, TNF, IFN-γ, and social behavior in CSS F1 female juvenile rats. Second, we asked whether the F2 generation could generate normal immunological responses following vaccination with Mycobacterium bovis Bacillus Calmette–Guérin (BCG. We report several changes in the associations between social behaviors and cytokines in the F1 juvenile offspring of the CSS model. It is suggested that changes in the immune–behavior relationships in F1 juveniles indicate the early stages of immune mediated disruption of social behavior that becomes more apparent in F1 dams and the F2 generation. We also report preliminary evidence of elevated IL-6 and impaired interferon-gamma responses in BCG-vaccinated F2 females. In conclusion, transgenerational social stress alters both immune–behavior associations and responses to vaccination. It is hypothesized that the effects of social stress may accumulate over generations through changes in the immune system, establishing the immune system as an effective preventative or treatment target for social behavior pathologies.

  14. Litter size reduction accentuates maternal care and alters behavioral and physiological phenotypes in rat adult offspring.

    Science.gov (United States)

    Enes-Marques, Silvia; Giusti-Paiva, Alexandre

    2018-01-27

    Maternal behavior has a substantial impact on the behavioral, endocrine, and neural development of the pups. This study investigated the effect of altering the neonatal nutritional environment by modifying the litter size on maternal care and anxiety- and fear-like behaviors in rats during adulthood. On postnatal day (PND) 2, litters were adjusted to a small litter (SL) size of three pups per dam or normal litter (NL) size of 12 pups per dam. Maternal behaviors were scored daily during lactation (PND2-21). The weight gain, food intake, adiposity, and biochemical landmarks of offspring rats were evaluated. On PND60, performances in the open field, elevated plus-maze (EPM), and fear conditioning test were measured. The reduction of the litter size enhanced maternal care in lactating rats, increasing the arched-back posture and licking pups. SL offspring exhibited accelerated weight gain, hyperphagia, increased visceral fat mass, dyslipidemia, and hyperleptinemia in adulthood. The SL offspring of both sexes showed an increase in the anti-thigmotactic effect in the open field, an intact anxious-phenotype in the EPM, and a decrease in the time spent freezing during the fear-conditioning test, compared to NL. The neonatal environment as determined by litter size plays a crucial role in programming the adult metabolic phenotype as well as behavioral responses to stressful stimuli, with an impact on anxiety-like and fear behaviors. These behavioral changes in offspring may be, at least in part, a result of increased maternal care.

  15. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels.

    Science.gov (United States)

    Uran, S L; Aon-Bertolino, M L; Caceres, L G; Capani, F; Guelman, L R

    2012-08-30

    Noise exposure is known to affect auditory structures in living organisms. However, it should not be ignored that many of the effects of noise are extra-auditory. Previous findings of our laboratory demonstrated that noise was able to induce behavioral alterations that are mainly related to the cerebellum (CE) and the hippocampus (HC). Therefore, the aim of this work was to reveal new data about the vulnerability of developing rat HC to moderate noise levels through the assessment of potential histological changes and hippocampal-related behavioral alterations. Male Wistar rats were exposed to noise (95-97 dB SPL, 2h daily) either for 1 day (acute noise exposure, ANE) or between postnatal days 15 and 30 (sub-acute noise exposure, SANE). Hippocampal histological evaluation as well as short (ST) and long term (LT) habituation and recognition memory assessments were performed. Results showed a mild disruption in the different hippocampal regions after ANE and SANE schemes, along with significant behavioral abnormalities. These data suggest that exposure of developing rats to noise levels of moderate intensity is able to trigger changes in the HC, an extra-auditory structure of the Central Nervous System (CNS), that could underlie the observed behavioral effects. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Aggressive Behavior and Altered Amounts of Brain Serotonin and Norepinephrine in Mice Lacking MAOA

    Science.gov (United States)

    Cases, Olivier; Grimsby, Joseph; Gaspar, Patricia; Chen, Kevin; Pournin, Sandrine; Müller, Ulrike; Aguet, Michel; Babinet, Charles; Shih, Jean Chen; De Maeyer, Edward

    2010-01-01

    Deficiency in monoamine oxidase A (MAOA), an enzyme that degrades serotonin and norepinephrine, has recently been shown to be associated with aggressive behavior in men of a Dutch family. A line of transgenic mice was isolated in which transgene integration caused a deletion in the gene encoding MAOA, providing an animal model of MAOA deficiency. In pup brains, serotonin concentrations were increased up to ninefold, and serotonin-like immunoreactivity was present in catecholaminergic neurons. In pup and adult brains, norepinephrine concentrations were increased up to twofold, and cytoarchitectural changes were observed in the somatosensory cortex. Pup behavioral alterations, including trembling, difficulty in righting, and fearfulness were reversed by the serotonin synthesis inhibitor parachlorophenylalanine. Adults manifested a distinct behavioral syndrome, including enhanced aggression in males. PMID:7792602

  17. Reduced anxiety-like behavior and altered hippocampal morphology in female p75NTR exon IV-/- mice.

    Directory of Open Access Journals (Sweden)

    Zoe ePuschban

    2016-06-01

    Full Text Available The presence of the neurotrophin receptor p75NTR in adult basal forebrain cholinergic neurons, precursor cells in the subventricular cell layer and the subgranular cell layer of the hippocampus has been linked to alterations in learning as well as anxiety- and depression- related behaviors. In contrast to previous studies performed in a p75NTR exonIII-/- model still expressing the short isoform of the p75NTR, we focused on locomotor and anxiety–associated behavior in p75NTR exonIV-/- mice lacking both p75NTR isoforms. Comparing p75NTR exonIV-/- and wildtype mice for both male and female animals showed an anxiolytic-like behavior as evidenced by increased central activities in the open field paradigm and flex field activity system as well as higher numbers of open arm entries in the elevated plus maze test in female p75NTR knockout mice.Morphometrical analyses of dorsal and ventral hippocampus revealed a reduction of width of the dentate gyrus and the granular cell layer in the dorsal but not ventral hippocampus in male and female p75NTR exonIV -/- mice. We conclude that germ-line deletion of p75NTR seems to differentially affect morphometry of dorsal and ventral dentate gyrus and that p75NTR may play a role in anxiety-like behavior, specifically in female mice.

  18. Possible GABAergic modulation in the protective effect of zolpidem in acute hypoxic stress-induced behavior alterations and oxidative damage.

    Science.gov (United States)

    Kumar, Anil; Goyal, Richa

    2008-03-01

    Hypoxia is an environmental stressor that is known to elicit alterations in both the autonomic nervous system and endocrine functions. The free radical or oxidative stress theory holds that oxidative reactions are mainly underlying neurodegenerative disorders. In fact among complex metabolic reactions occurring during hypoxia, many could be related to the formation of oxygen derived free radicals, causing a wide spectrum of cell damage. In present study, we investigated possible involvement of GABAergic mechanism in the protective effect of zolpidem against acute hypoxia-induced behavioral modification and biochemical alterations in mice. Mice were subjected to acute hypoxic stress for a period of 2 h. Acute hypoxic stress for 2 h caused significant impairment in locomotor activity, anxiety-like behavior, and antinocioceptive effect in mice. Biochemical analysis revealed a significant increased malondialdehyde, nitrite concentrations and depleted reduced glutathione and catalase levels. Pretreatment with zolpidem (5 and 10 mg/kg, i.p.) significantly improved locomotor activity, anti-anxiety effect, reduced tail flick latency and attenuated oxidative damage (reduced malondialdehyde, nitrite concentration, and restoration of reduced glutathione and catalase levels) as compared to stressed control (hypoxia) (P zolpidem (5 mg/kg) was blocked significantly by picrotoxin (1.0 mg/kg) or flumazenil (2 mg/kg) and potentiated by muscimol (0.05 mg/kg) in hypoxic animals (P zolpidem (5 mg/kg) per se (P zolpidem against hypoxic stress.

  19. Bisphenol S Alters the Lactating Mammary Gland and Nursing Behaviors in Mice Exposed During Pregnancy and Lactation.

    Science.gov (United States)

    LaPlante, Charlotte D; Catanese, Mary C; Bansal, Ruby; Vandenberg, Laura N

    2017-10-01

    High doses of estrogenic pharmaceuticals were once prescribed to women to halt lactation. Yet, the effects of low-level xenoestrogens on lactation remain poorly studied. We investigated the effects of bisphenol S (BPS), an estrogen receptor (ER) agonist, on the lactating mammary gland; the arcuate nucleus, a region of the hypothalamus important for neuroendocrine control of lactational behaviors; and nursing behavior in CD-1 mice. Female mice were exposed to vehicle, 2 or 200 µg BPS/kg/d from pregnancy day 9 until lactational day (LD) 20, and tissues were collected on LD21. Tissues were also collected from a second group at LD2. BPS exposure significantly reduced the fraction of the mammary gland comprised of lobules, the milk-producing units, on LD21, but not LD2. BPS also altered expression of Esr1 and ERα in the mammary gland at LD21, consistent with early involution. In the arcuate nucleus, no changes were observed in expression of signal transducer and activator of transcription 5, a marker of prolactin signaling, or ERα, suggesting that BPS may act directly on the mammary gland. However, observations of nursing behavior collected during the lactational period revealed stage-specific effects on both pup and maternal nursing behaviors; BPS-treated dams spent significantly more time nursing later in the lactational period, and BPS-treated pups were less likely to initiate nursing. Pup growth and development were also stunted. These data indicate that low doses of BPS can alter lactational behaviors and the maternal mammary gland. Together, they support the hypothesis that pregnancy and lactation are sensitive to low-dose xenoestrogen exposures. Copyright © 2017 Endocrine Society.

  20. Integration of Theory of Planned Behavior and Norm Activation Model on Student Behavior Model Using Cars for Traveling to Campus

    Directory of Open Access Journals (Sweden)

    Setiawan, R.

    2014-01-01

    Full Text Available Although there are clear environmental, economic, and social drawbacks in using private vehicles, students still choose cars to get to campus. This study reports an investigation of psychological factors influencing this behavior from the perspective of the Theory of Planned Behavior and Norm Activation Model. Students from three different university campuses in Surabaya, Indonesia, (n = 312 completed a survey on their car commuting behavior. Results indicated that perceived behavioral control and personal norm were the strongest factors that influence behavioral intention. Attitude, subjective norm, perceived behavioral control, and personal norm explain 62.7% variance of the behavioral intention. In turn, behavioral intention explains 42.5% of the variance of the actual car use. Implications of these findings are that in order to alter the use of car, university should implement both structural and psychological interventions. Effective interventions should be designed to raise the awareness of negative aspects of car use.

  1. Impact of prebiotics on metabolic and behavioral alterations in a mouse model of metabolic syndrome.

    Science.gov (United States)

    de Cossío, Lourdes Fernández; Fourrier, Célia; Sauvant, Julie; Everard, Amandine; Capuron, Lucile; Cani, Patrice D; Layé, Sophie; Castanon, Nathalie

    2017-08-01

    Mounting evidence shows that the gut microbiota, an important player within the gut-brain communication axis, can affect metabolism, inflammation, brain function and behavior. Interestingly, gut microbiota composition is known to be altered in patients with metabolic syndrome (MetS), who also often display neuropsychiatric symptoms. The use of prebiotics, which beneficially alters the microbiota, may therefore be a promising way to potentially improve physical and mental health in MetS patients. This hypothesis was tested in a mouse model of MetS, namely the obese and type-2 diabetic db/db mice, which display emotional and cognitive alterations associated with changes in gut microbiota composition and hippocampal inflammation compared to their lean db/+ littermates. We assessed the impact of chronic administration (8weeks) of prebiotics (oligofructose) on both metabolic (body weight, food intake, glucose homeostasis) and behavioral (increased anxiety-like behavior and impaired spatial memory) alterations characterizing db/db mice, as well as related neurobiological correlates, with particular attention to neuroinflammatory processes. Prebiotic administration improved excessive food intake and glycemic dysregulations (glucose tolerance and insulin resistance) in db/db mice. This was accompanied by an increase of plasma anti-inflammatory cytokine IL-10 levels and hypothalamic mRNA expression of the anorexigenic cytokine IL-1β, whereas unbalanced mRNA expression of hypothalamic orexigenic (NPY) and anorexigenic (CART, POMC) peptides was unchanged. We also detected signs of improved blood-brain-barrier integrity in the hypothalamus of oligofructose-treated db/db mice (normalized expression of tight junction proteins ZO-1 and occludin). On the contrary, prebiotic administration did not improve behavioral alterations and associated reduction of hippocampal neurogenesis displayed by db/db mice, despite normalization of increased hippocampal IL-6 mRNA expression. Of note

  2. Can antibodies against flies alter malaria transmission in birds by changing vector behavior?

    Science.gov (United States)

    Ghosh, Suma; Waite, Jessica L; Clayton, Dale H; Adler, Frederick R

    2014-10-07

    Transmission of insect-borne diseases is shaped by the interactions among parasites, vectors, and hosts. Any factor that alters movement of infected vectors from infected to uninfeced hosts will in turn alter pathogen spread. In this paper, we study one such pathogen-vector-host system, avian malaria in pigeons transmitted by fly ectoparasites, where both two-way and three-way interactions play a key role in shaping disease spread. Bird immune defenses against flies can decrease malaria prevalence by reducing fly residence time on infected birds or increase disease prevalence by enhancing fly movement and thus infection transmission. We develop a mathematical model that illustrates how these changes in vector behavior influence pathogen transmission and show that malaria prevalence is maximized at an intermediate level of defense avoidance by the flies. Understanding how host immune defenses indirectly alter disease transmission by influencing vector behavior has implications for reducing the transmission of human malaria and other vectored pathogens. Published by Elsevier Ltd.

  3. ALTERATION RELATED TO HYDROTHERMAL ACTIVITY OF THE NEVADO DEL RUIZ VOLCANO (NRV), COLOMBIA

    OpenAIRE

    Forero, Jhon; Zuluaga, Carlos; Mojica, Jaime

    2011-01-01

    The hydrothermal activity in the NRV generates alteration characterized by mineral associations depending on a number of physic-chemical factors of the hydrothermal system. Petrography of unaltered rocks was used to establish the mineral assemblage prior to rock-fluid interaction. XRD was used in altered rocks, where it was not possible to recognize the alteration products. The observed mineral assemblages indicate advanced and intermediate argillic alterations, this and the observation of ve...

  4. Differential Rearing Alters Forced Swim Test Behavior, Fluoxetine Efficacy, and Post-Test Weight Gain in Male Rats

    Science.gov (United States)

    Arndt, David L.; Peterson, Christy J.; Cain, Mary E.

    2015-01-01

    Environmental factors play a key role in the etiology of depression. The rodent forced swim test (FST) is commonly used as a preclinical model of depression, with increases in escape-directed behavior reflecting antidepressant effects, and increases in immobility reflecting behavioral despair. Environmental enrichment leads to serotonergic alterations in rats, but it is unknown whether these alterations may influence the efficacy of common antidepressants. Male Sprague-Dawley rats were reared in enriched (EC), standard (SC), or isolated (IC) conditions. Following the rearing period, fluoxetine (10 or 20 mg/kg, i.p.) was administered 23.5 hrs, 5 hrs, and 1 hr before locomotor and FST measures. Following locomotor testing and FST exposure, rats were weighed to assess fluoxetine-, FST-, and environmental condition-induced moderations in weight gain. Results revealed an antidepressant effect of environmental enrichment and a depressant effect of isolation. Regardless of significant fluoxetine effects on locomotor activity, fluoxetine generally decreased swimming and increased immobility in all three environmental conditions, with IC-fluoxetine (10 mg/kg) rats and EC-fluoxetine (20 mg/kg) rats swimming less than vehicle counterparts. Subchronic 20 mg/kg fluoxetine also induced significant weight loss, and differential rearing appeared to moderate weight gain following FST stress. These results suggest that differential rearing has the ability to alter FST behaviors, fluoxetine efficacy, and post-stressor well-being. Moreover, 20 mg/kg fluoxetine, administered subchronically, may lead to atypical effects of those commonly observed in the FST, highlighting the importance and impact of both environmental condition and dosing regimen in common animal models of depression. PMID:26154768

  5. Differential Rearing Alters Forced Swim Test Behavior, Fluoxetine Efficacy, and Post-Test Weight Gain in Male Rats.

    Directory of Open Access Journals (Sweden)

    David L Arndt

    Full Text Available Environmental factors play a key role in the etiology of depression. The rodent forced swim test (FST is commonly used as a preclinical model of depression, with increases in escape-directed behavior reflecting antidepressant effects, and increases in immobility reflecting behavioral despair. Environmental enrichment leads to serotonergic alterations in rats, but it is unknown whether these alterations may influence the efficacy of common antidepressants. Male Sprague-Dawley rats were reared in enriched (EC, standard (SC, or isolated (IC conditions. Following the rearing period, fluoxetine (10 or 20 mg/kg, i.p. was administered 23.5 hrs, 5 hrs, and 1 hr before locomotor and FST measures. Following locomotor testing and FST exposure, rats were weighed to assess fluoxetine-, FST-, and environmental condition-induced moderations in weight gain. Results revealed an antidepressant effect of environmental enrichment and a depressant effect of isolation. Regardless of significant fluoxetine effects on locomotor activity, fluoxetine generally decreased swimming and increased immobility in all three environmental conditions, with IC-fluoxetine (10 mg/kg rats and EC-fluoxetine (20 mg/kg rats swimming less than vehicle counterparts. Subchronic 20 mg/kg fluoxetine also induced significant weight loss, and differential rearing appeared to moderate weight gain following FST stress. These results suggest that differential rearing has the ability to alter FST behaviors, fluoxetine efficacy, and post-stressor well-being. Moreover, 20 mg/kg fluoxetine, administered subchronically, may lead to atypical effects of those commonly observed in the FST, highlighting the importance and impact of both environmental condition and dosing regimen in common animal models of depression.

  6. Differential Rearing Alters Forced Swim Test Behavior, Fluoxetine Efficacy, and Post-Test Weight Gain in Male Rats.

    Science.gov (United States)

    Arndt, David L; Peterson, Christy J; Cain, Mary E

    2015-01-01

    Environmental factors play a key role in the etiology of depression. The rodent forced swim test (FST) is commonly used as a preclinical model of depression, with increases in escape-directed behavior reflecting antidepressant effects, and increases in immobility reflecting behavioral despair. Environmental enrichment leads to serotonergic alterations in rats, but it is unknown whether these alterations may influence the efficacy of common antidepressants. Male Sprague-Dawley rats were reared in enriched (EC), standard (SC), or isolated (IC) conditions. Following the rearing period, fluoxetine (10 or 20 mg/kg, i.p.) was administered 23.5 hrs, 5 hrs, and 1 hr before locomotor and FST measures. Following locomotor testing and FST exposure, rats were weighed to assess fluoxetine-, FST-, and environmental condition-induced moderations in weight gain. Results revealed an antidepressant effect of environmental enrichment and a depressant effect of isolation. Regardless of significant fluoxetine effects on locomotor activity, fluoxetine generally decreased swimming and increased immobility in all three environmental conditions, with IC-fluoxetine (10 mg/kg) rats and EC-fluoxetine (20 mg/kg) rats swimming less than vehicle counterparts. Subchronic 20 mg/kg fluoxetine also induced significant weight loss, and differential rearing appeared to moderate weight gain following FST stress. These results suggest that differential rearing has the ability to alter FST behaviors, fluoxetine efficacy, and post-stressor well-being. Moreover, 20 mg/kg fluoxetine, administered subchronically, may lead to atypical effects of those commonly observed in the FST, highlighting the importance and impact of both environmental condition and dosing regimen in common animal models of depression.

  7. Manipulation of the oxytocin system alters social behavior and attraction in pair-bonding primates, Callithrix penicillata.

    Science.gov (United States)

    Smith, Adam S; Agmo, Anders; Birnie, Andrew K; French, Jeffrey A

    2010-02-01

    The establishment and maintenance of stable, long-term male-female relationships, or pair-bonds, are marked by high levels of mutual attraction, selective preference for the partner, and high rates of sociosexual behavior. Central oxytocin (OT) affects social preference and partner-directed social behavior in rodents, but the role of this neuropeptide has yet to be studied in heterosexual primate relationships. The present study evaluated whether the OT system plays a role in the dynamics of social behavior and partner preference during the first 3 weeks of cohabitation in male and female marmosets, Callithrix penicillata. OT activity was stimulated by intranasal administration of OT, and inhibited by oral administration of a non-peptide OT-receptor antagonist (L-368,899; Merck). Social behavior throughout the pairing varied as a function of OT treatment. Compared to controls, marmosets initiated huddling with their social partner more often after OT treatments but reduced proximity and huddling after OT antagonist treatments. OT antagonist treatment also eliminated food sharing between partners. During the 24-h preference test, all marmosets interacted more with an opposite-sex stranger than with the partner. By the third-week preference test, marmosets interacted with the partner and stranger equally with the exception that intranasal-OT treatments facilitated initial partner-seeking behavior over initial contact with the stranger. Our findings demonstrate that pharmacological manipulations of OT activity alter partner-directed social behavior during pair interactions, suggesting that central OT may facilitate the process of pair-bond formation and social relationships in marmoset monkeys. Published by Elsevier Inc.

  8. Behavioral disturbances, not cognitive deterioration, are associated with altered food selection in seniors with Alzheimer's disease.

    Science.gov (United States)

    Greenwood, Carol E; Tam, Carolyn; Chan, Mae; Young, Karen W H; Binns, Malcolm A; van Reekum, Robert

    2005-04-01

    We previously reported alterations in circadian patterns of food intake that are associated with measures of functional and cognitive deterioration in seniors with probable Alzheimer's disease (AD). This study further explored disturbed eating patterns in AD, focusing on alterations in macronutrient (protein, carbohydrate, and fat) selection, and their association with measures of functional and behavioral losses. Forty-nine days of food intake collections were conducted on 32 residents (26 females, 6 males; age = 88.4 +/- 4.1 years; body mass index = 24.1 +/- 4.0 kg/m(2)) with probable AD residing at a nursing home (a fully accredited geriatric teaching facility affiliated with the University of Toronto's Medical School). All residents ate their meals independently. The relationships between patterns of habitual food consumption and measures of cognitive function (Severe Impairment Battery), behavioral disturbances (Neuropsychiatric Inventory-Nursing Home Version) and behavioral function (London Psychogeriatric Rating Scale) were examined, cross-sectionally. Consistent with our previous studies, breakfast intakes were not predicted by any of the measures of behavioral, cognitive, or functional deterioration, although those residents with greater functional deterioration, especially disengagement, attained lower 24-hour energy intakes. The presence of "psychomotor disturbances," including irritability, agitation, and disinhibition, were strongly associated with shifts in eating patterns toward carbohydrate and away from protein, placing individuals with these conditions at increased risk for inadequate protein intakes. Between-individual differences in intake patterns could not be explained by the use of either anorexic or orexigenic medications. Behavioral, not cognitive, deterioration is associated with appetite modifications that increase risk of poor protein intake, perhaps indicating a common monoaminergic involvement.

  9. Altered osmotic swelling behavior of proteoglycan-depleted bovine articular cartilage using high frequency ultrasound

    International Nuclear Information System (INIS)

    Wang, Q; Zheng, Y P; Leung, G; Mak, A F T; Lam, W L; Guo, X; Lu, H B; Qin, L

    2008-01-01

    Swelling behavior is an electrochemical mechanical property of articular cartilage. It plays an important role in weight bearing and joint lubrication. In this study, the altered transient and inhomogeneous swelling behavior of the degenerated articular cartilage was observed and quantified in situ using ultrasound. Three groups of bovine patellar articular cartilage samples (n = 10 x 3) were obtained and digested by trypsin for 10, 20 and 30 min respectively to mimic different levels of degeneration. The osmotic-free shrinkage and swelling behavior induced by changing the concentration of the bathing saline solution from 0.15 M to 2 M and then back to 0.15 M were characterized using high-frequency ultrasound (central frequency = 35 MHz) before and after digestion. It was found that the degenerated cartilage specimens showed a weaker shrinkage-swelling behavior compared with the normal cartilage samples. However, no significant differences in the peak shrinkage or swelling strains were observed between different groups. The absolute values of the peak shrinkage strain significantly (p < 0.05) decreased by 45.4%, 42.1% and 50.6% respectively after the trypsin digestion for 10, 20 and 30 min, but such significance was not demonstrated for the peak swelling strains. Due to the potential alterations in the collagen-PG matrix during trypsin digestion, the correlation between the swelling strain and the shrinkage strain of the degenerated samples changed slightly in comparison with the normal samples. The proposed ultrasound method has been successfully used to measure the transient and inhomogeneous swelling behavior of the degenerated articular cartilage and has the potential for the characterization of osteoarthritis

  10. Using dissolved carbon dioxide to alter the behavior of invasive round goby

    Science.gov (United States)

    Cupp, Aaron R.; Tix, John; Smerud, Justin R.; Erickson, Richard A.; Fredricks, Kim; Amberg, Jon J.; Suski, Cory D.; Wakeman, Robert

    2017-01-01

    Fisheries managers need effective methods to limit the spread of invasive round goby Neogobius melanostomus in North America. Elevating carbon dioxide (CO2) in water at pinch points of rivers (e.g., inside locks) is one approach showing potential to deter the passage of invasive fishes, such as bigheaded carps Hypophthalmichthys spp., but the effectiveness of this method to alter round goby behavior has not been determined. The goal for this study was to determine CO2 concentrations that alter round goby behavior across a range of water temperatures. Free-swimming avoidance (voluntary response) and loss of equilibrium (involuntary response) were quantified by exposing round goby to increasing CO2 concentrations at 5, 15, and 25 °C using a shuttle box choice arena and static tank. Water chemistry was measured concurrent with behavioral endpoints and showed that round goby avoided a threshold of 99–169 mg/L CO2(79,000–178,000 µatm) and lost equilibrium at 197–280 mg/L CO2 (163,000–303,000 µatm). Approximately 50% lower CO2 concentrations were found to modify behavior at 5 °C relative to 25 °C, suggesting greater effectiveness at lower water temperatures. We conclude that CO2 modified round goby behavior and concentrations determined in this study are intended to guide field testing of CO2 as an invasive fish deterrent.

  11. Beauty and the burn: tanning and other appearance-altering attitudes and behaviors.

    Science.gov (United States)

    Gillen, Meghan M; Markey, Charlotte H

    2017-12-01

    Tanning is often prompted by appearance concerns, yet little is known about associations between tanning and other appearance-altering behaviors. In the current study, we examined potential correlates of indoor and outdoor tanning that, like tanning, may enhance appearance but present health risks. College students (N = 284; Mage = 20.14, SD = 3.39) completed a survey. The main outcome measures were indoor tanning and outdoor sunbathing. Participants also answered questions pertaining to piercings and tattoos, healthy and unhealthy dieting behaviors, cigarette smoking, and interest in cosmetic surgery and enhancements. Results indicate that indoor tanners were more likely to have piercings, tattoos, to engage in healthy dieting behaviors, and to express interest in cosmetic enhancements. Outdoor sunbathers were more interested in cosmetic enhancements than non-outdoor sunbathers, and female outdoor sunbathers reported more unhealthy dieting behaviors than male outdoor sunbathers. These findings provide evidence for college students' engagement in a constellation of appearance-oriented risk behaviors.

  12. Chronic fluoxetine treatment induces anxiolytic responses and altered social behaviors in medaka, Oryzias latipes.

    Science.gov (United States)

    Ansai, Satoshi; Hosokawa, Hiroshi; Maegawa, Shingo; Kinoshita, Masato

    2016-04-15

    Medaka (Oryzias latipes) is a small freshwater teleost that is an emerging model system for neurobehavioral research and toxicological testing. The selective serotonin reuptake inhibitor class of antidepressants such as fluoxetine is one of the widely prescribed drugs, but little is known about the effects of these drugs on medaka behaviors. To assess the behavioral effects of fluoxetine, we chronically administrated fluoxetine to medaka adult fish and analyzed the anxiety-related and social behaviors using five behavioral paradigms (diving, open-field, light-dark transition, mirror-biting, and social interaction) with an automated behavioral testing system. Fish chronically treated with fluoxetine exhibited anxiolytic responses such as an overall increased time spent in the top area in the diving test and an increased time spent in center area in the open-field test. Analysis of socially evoked behavior showed that chronic fluoxetine administration decreased the number of mirror biting times in the mirror-biting test and increased latency to first contact in the social interaction test. Additionally, chronic fluoxetine administration reduced the horizontal locomotor activity in the open-field test but not the vertical activity in the diving test. These investigations are mostly consistent with previous reports in the other teleost species and rodent models. These results indicate that behavioral assessment in medaka adult fish will become useful for screening of effects of pharmaceutical and toxicological compounds in animal behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Circadian wheel running behavior is altered in an APP/E4 mouse model of late onset Alzheimer's disease.

    Science.gov (United States)

    Boggs, Katelyn N; Kakalec, Peter A; Smith, Meghann L; Howell, Stefanie N; Flinn, Jane M

    2017-12-01

    Circadian rhythms are altered in several diseases associated with aging, one of which is Alzheimer's disease (AD). One example of a circadian rhythm is the rest-activity cycle, which can be measured in mice by monitoring their wheel-running. The present study sought to investigate differences in light phase/dark phase activity between a mouse model of late onset AD (APP/E4) and control (C57Bl6J) mice, in both the pre-plaque and post-plaques stages of the disease. To assess activity level, 24-h wheel running behavior was monitored at six months (pre-plaque) and twelve months (post-plaque) for a period of nine days. The following measures were analyzed: counts (wheel rotations) during the dark phase, counts during the light phase, hour of activity onset, and hour of activity offset. Key findings indicate that activity onset is delayed in APP/E4 mice at six and twelve months, and activity profiles for APP/E4 and C57Bl6J mice differ during the light and dark phase in such a way that APP/E4 mice run less in the early hours of the dark phase and more in the later hours of the dark phase compared to C57Bl6J mice. These findings imply that rest-activity cycle is altered in the pre-plaque stages of AD in APP/E4 mice, as they show impairments as early as six months of age. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Anhedonic behavior in cryptochrome 2-deficient mice is paralleled by altered diurnal patterns of amygdala gene expression.

    Science.gov (United States)

    Savalli, Giorgia; Diao, Weifei; Berger, Stefanie; Ronovsky, Marianne; Partonen, Timo; Pollak, Daniela D

    2015-07-01

    Mood disorders are frequently paralleled by disturbances in circadian rhythm-related physiological and behavioral states and genetic variants of clock genes have been associated with depression. Cryptochrome 2 (Cry2) is one of the core components of the molecular circadian machinery which has been linked to depression, both, in patients suffering from the disease and animal models of the disorder. Despite this circumstantial evidence, a direct causal relationship between Cry2 expression and depression has not been established. Here, a genetic mouse model of Cry2 deficiency (Cry2 (-/-) mice) was employed to test the direct relevance of Cry2 for depression-like behavior. Augmented anhedonic behavior in the sucrose preference test, without alterations in behavioral despair, was observed in Cry2 (-/-) mice. The novelty suppressed feeding paradigm revealed reduced hyponeophagia in Cry2 (-/-) mice compared to wild-type littermates. Given the importance of the amygdala in the regulation of emotion and their relevance for the pathophysiology of depression, potential alterations in diurnal patterns of basolateral amygdala gene expression in Cry2 (-/-) mice were investigated focusing on core clock genes and neurotrophic factor systems implicated in the pathophysiology of depression. Differential expression of the clock gene Bhlhe40 and the neurotrophic factor Vegfb were found in the beginning of the active (dark) phase in Cry2 (-/-) compared to wild-type animals. Furthermore, amygdala tissue of Cry2 (-/-) mice contained lower levels of Bdnf-III. Collectively, these results indicate that Cry2 exerts a critical role in the control of depression-related emotional states and modulates the chronobiological gene expression profile in the mouse amygdala.

  15. Food, stress, and reproduction: short-term fasting alters endocrine physiology and reproductive behavior in the zebra finch.

    Science.gov (United States)

    Lynn, Sharon E; Stamplis, Teresa B; Barrington, William T; Weida, Nicholas; Hudak, Casey A

    2010-07-01

    Stress is thought to be a potent suppressor of reproduction. However, the vast majority of studies focus on the relationship between chronic stress and reproductive suppression, despite the fact that chronic stress is rare in the wild. We investigated the role of fasting in altering acute stress physiology, reproductive physiology, and reproductive behavior of male zebra finches (Taeniopygia guttata) with several goals in mind. First, we wanted to determine if acute fasting could stimulate an increase in plasma corticosterone and a decrease in corticosteroid binding globulin (CBG) and testosterone. We then investigated whether fasting could alter expression of undirected song and courtship behavior. After subjecting males to fasting periods ranging from 1 to 10h, we collected plasma to measure corticosterone, CBG, and testosterone. We found that plasma corticosterone was elevated, and testosterone was decreased after 4, 6, and 10h of fasting periods compared with samples collected from the same males during nonfasted (control) periods. CBG was lower than control levels only after 10h of fasting. We also found that, coincident with these endocrine changes, males sang less and courted females less vigorously following short-term fasting relative to control conditions. Our data demonstrate that acute fasting resulted in rapid changes in endocrine physiology consistent with hypothalamo-pituitary-adrenal axis activation and hypothalamo-pituitary-gonadal axis deactivation. Fasting also inhibited reproductive behavior. We suggest that zebra finches exhibit physiological and behavioral flexibility that makes them an excellent model system for studying interactions of acute stress and reproduction. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice

    Directory of Open Access Journals (Sweden)

    Alessandro Ieraci

    2016-01-01

    Full Text Available Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice.

  17. Potential role of licofelone, minocycline and their combination against chronic fatigue stress induced behavioral, biochemical and mitochondrial alterations in mice.

    Science.gov (United States)

    Kumar, Anil; Vashist, Aditi; Kumar, Puneet; Kalonia, Harikesh; Mishra, Jitendriya

    2012-01-01

    Chronic fatigue stress (CFS) is a common complaint among general population. Persistent and debilitating fatigue severely impairs daily functioning and is usually accompanied by combination of several physical and psychiatric problems. It is now well established fact that oxidative stress and neuroinflammation are involved in the pathophysiology of chronic fatigue and related disorders. Targeting both COX (cyclooxygenase) and 5-LOX (lipoxygenase) pathways have been proposed to be involved in neuroprotective effect. In the present study, mice were put on the running wheel apparatus for 6 min test session daily for 21 days, what produced fatigue like condition. The locomotor activity and anxiety like behavior were measured on 0, 8(th), 15(th) and 22(nd) day. The brains were isolated on 22(nd) day immediately after the behavioral assessments for the estimation of oxidative stress parameters and mitochondrial enzyme complexes activity. Pre-treatment with licofelone (2.5, 5 and 10 mg/kg, po) and minocycline (50 and 100 mg/kg, po) for 21 days, significantly attenuated fatigue like behavior as compared to the control (rotating wheel activity test session, RWATS) group. Further, licofelone (5 and 10 mg/kg, po) and minocycline (50 and 100 mg/kg, po) drug treatments for 21 days significantly attenuated behavioral alterations, oxidative damage and restored mitochondrial enzyme complex activities (I, II, III and IV) as compared to control, whereas combination of licofelone (5 mg/kg) with minocycline (50 mg/kg) significantly potentiated their protective effect which was significant as compared to their effect per se. The present study highlights the therapeutic potential of licofelone, minocycline and their combination against CFS in mice.

  18. Behavioral alterations in autism model induced by valproic acid and translational analysis of circulating microRNA.

    Science.gov (United States)

    Hirsch, Mauro Mozael; Deckmann, Iohanna; Fontes-Dutra, Mellanie; Bauer-Negrini, Guilherme; Della-Flora Nunes, Gustavo; Nunes, Walquiria; Rabelo, Bruna; Riesgo, Rudimar; Margis, Rogerio; Bambini-Junior, Victorio; Gottfried, Carmem

    2018-05-01

    Autism spectrum disorder (ASD) is characterized by difficulties in social interaction, communication and language, and restricted repertoire of activities and interests. The etiology of ASD remains unknown and no clinical markers for diagnosis were identified. Environmental factors, including prenatal exposure to valproic acid (VPA), may contribute to increased risk of developing ASD. MicroRNA (miRNA) are small noncoding RNA that regulate gene expression and are frequently linked to biological processes affected in neurodevelopmental disorders. In this work, we analyzed the effects of resveratrol (an antioxidant and anti-inflammatory molecule) on behavioral alterations of the VPA model of autism, as well as the levels of circulating miRNA. We also evaluated the same set of miRNA in autistic patients. Rats of the VPA model of autism showed reduced total reciprocal social interaction, prevented by prenatal treatment with resveratrol (RSV). The levels of miR134-5p and miR138-5p increased in autistic patients. Interestingly, miR134-5p is also upregulated in animals of the VPA model, which is prevented by RSV. In conclusion, our findings revealed important preventive actions of RSV in the VPA model, ranging from behavior to molecular alterations. Further evaluation of preventive mechanisms of RSV can shed light in important biomarkers and etiological triggers of ASD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Awake intranasal insulin delivery modifies protein complexes and alters memory, anxiety, and olfactory behaviors.

    Science.gov (United States)

    Marks, David R; Tucker, Kristal; Cavallin, Melissa A; Mast, Thomas G; Fadool, Debra A

    2009-05-20

    The role of insulin pathways in olfaction is of significant interest with the widespread pathology of diabetes mellitus and its associated metabolic and neuronal comorbidities. The insulin receptor (IR) kinase is expressed at high levels in the olfactory bulb, in which it suppresses a dominant Shaker ion channel (Kv1.3) via tyrosine phosphorylation of critical N- and C-terminal residues. We optimized a 7 d intranasal insulin delivery (IND) in awake mice to ascertain the biochemical and behavioral effects of insulin to this brain region, given that nasal sprays for insulin have been marketed notwithstanding our knowledge of the role of Kv1.3 in olfaction, metabolism, and axon targeting. IND evoked robust phosphorylation of Kv1.3, as well as increased channel protein-protein interactions with IR and postsynaptic density 95. IND-treated mice had an increased short- and long-term object memory recognition, increased anxiolytic behavior, and an increased odor discrimination using an odor habituation protocol but only moderate change in odor threshold using a two-choice paradigm. Unlike Kv1.3 gene-targeted deletion that alters metabolism, adiposity, and axonal targeting to defined olfactory glomeruli, suppression of Kv1.3 via IND had no effect on body weight nor the size and number of M72 glomeruli or the route of its sensory axon projections. There was no evidence of altered expression of sensory neurons in the epithelium. In mice made prediabetic via diet-induced obesity, IND was no longer effective in increasing long-term object memory recognition nor increasing anxiolytic behavior, suggesting state dependency or a degree of insulin resistance related to these behaviors.

  20. Phencyclidine administration during neurodevelopment alters network activity in prefrontal cortex and hippocampus in adult rats.

    Science.gov (United States)

    Kjaerby, Celia; Hovelsø, Nanna; Dalby, Nils Ole; Sotty, Florence

    2017-08-01

    Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim of this study was to determine how administration of the NMDAR antagonist phencyclidine (PCP) during neurodevelopment affects functional network activity within the hippocampus and medial prefrontal cortex (mPFC). We recorded field potentials in vivo after electrical brain stem stimulation and observed a suppression of evoked theta power in ventral hippocampus, while evoked gamma power in mPFC was enhanced in rats administered with PCP neonatally. In addition, increased gamma synchrony elicited by acute administration of the NMDAR antagonist MK-801 was exaggerated in neonatal PCP animals. These data suggest that NMDAR antagonist exposure during brain development alters functional networks within hippocampus and mPFC possibly contributing to the reported behavioral symptoms of this animal model of schizophrenia. NEW & NOTEWORTHY We show that insults with a NMDA receptor antagonist during neurodevelopment lead to suppressed evoked theta oscillations in ventral hippocampus in adult rats, while evoked gamma oscillations are enhanced and hypersensitive to an acute challenge with a NMDA receptor antagonist in prefrontal cortex. These observations reveal the significance of neurodevelopmental disturbances in the evolvement of schizophrenia-like symptoms and contribute to the understanding of the functional deficits underlying aberrant behavior in this disease. Copyright © 2017 the American Physiological Society.

  1. Autonomous motivation mediates the relation between goals for physical activity and physical activity behavior in adolescents.

    Science.gov (United States)

    Duncan, Michael J; Eyre, Emma Lj; Bryant, Elizabeth; Seghers, Jan; Galbraith, Niall; Nevill, Alan M

    2017-04-01

    Overall, 544 children (mean age ± standard deviation = 14.2 ± .94 years) completed self-report measures of physical activity goal content, behavioral regulations, and physical activity behavior. Body mass index was determined from height and mass. The indirect effect of intrinsic goal content on physical activity was statistically significant via autonomous ( b = 162.27; 95% confidence interval [89.73, 244.70]), but not controlled motivation ( b = 5.30; 95% confidence interval [-39.05, 45.16]). The indirect effect of extrinsic goal content on physical activity was statistically significant via autonomous ( b = 106.25; 95% confidence interval [63.74, 159.13]) but not controlled motivation ( b = 17.28; 95% confidence interval [-31.76, 70.21]). Weight status did not alter these findings.

  2. C75, a fatty acid synthase inhibitor, modulates AMP-activated protein kinase to alter neuronal energy metabolism.

    Science.gov (United States)

    Landree, Leslie E; Hanlon, Andrea L; Strong, David W; Rumbaugh, Gavin; Miller, Ian M; Thupari, Jagan N; Connolly, Erin C; Huganir, Richard L; Richardson, Christine; Witters, Lee A; Kuhajda, Francis P; Ronnett, Gabriele V

    2004-01-30

    C75, a synthetic inhibitor of fatty acid synthase (FAS), is hypothesized to alter the metabolism of neurons in the hypothalamus that regulate feeding behavior to contribute to the decreased food intake and profound weight loss seen with C75 treatment. In the present study, we characterize the suitability of primary cultures of cortical neurons for studies designed to investigate the consequences of C75 treatment and the alteration of fatty acid metabolism in neurons. We demonstrate that in primary cortical neurons, C75 inhibits FAS activity and stimulates carnitine palmitoyltransferase-1 (CPT-1), consistent with its effects in peripheral tissues. C75 alters neuronal ATP levels and AMP-activated protein kinase (AMPK) activity. Neuronal ATP levels are affected in a biphasic manner with C75 treatment, decreasing initially, followed by a prolonged increase above control levels. Cerulenin, a FAS inhibitor, causes a similar biphasic change in ATP levels, although levels do not exceed control. C75 and cerulenin modulate AMPK phosphorylation and activity. TOFA, an inhibitor of acetyl-CoA carboxylase, increases ATP levels, but does not affect AMPK activity. Several downstream pathways are affected by C75 treatment, including glucose metabolism and acetyl-CoA carboxylase (ACC) phosphorylation. These data demonstrate that C75 modulates the levels of energy intermediates, thus, affecting the energy sensor AMPK. Similar effects in hypothalamic neurons could form the basis for the effects of C75 on feeding behavior.

  3. Modulation ofTcf7l2 expression alters behavior in mice.

    Directory of Open Access Journals (Sweden)

    Daniel Savic

    Full Text Available The comorbidity of type 2 diabetes (T2D with several psychiatric diseases is well established. While environmental factors may partially account for these co-occurrences, common genetic susceptibilities could also be implicated in the confluence of these diseases. In support of shared genetic burdens, TCF7L2, the strongest genetic determinant for T2D risk in the human population, has been recently implicated in schizophrenia (SCZ risk, suggesting that this may be one of many loci that pleiotropically influence both diseases. To investigate whether Tcf7l2 is involved in behavioral phenotypes in addition to its roles in glucose metabolism, we conducted several behavioral tests in mice with null alleles of Tcf7l2 or overexpressing Tcf7l2. We identified a role for Tcf7l2 in anxiety-like behavior and a dose-dependent effect of Tcf7l2 alleles on fear learning. None of the mutant mice showed differences in prepulse inhibition (PPI, which is a well-established endophenotype for SCZ. These results show that Tcf7l2 alters behavior in mice. Importantly, these differences are observed prior to the onset of detectable glucose metabolism abnormalities. Whether these differences are related to human anxiety-disorders or schizophrenia remains to be determined. These animal models have the potential to elucidate the molecular basis of psychiatric comorbidities in diabetes and should therefore be studied further.

  4. Limited Nesting Stress Alters Maternal Behavior and In Vivo Intestinal Permeability in Male Wistar Pup Rats.

    Directory of Open Access Journals (Sweden)

    Nabila Moussaoui

    Full Text Available A few studies indicate that limited nesting stress (LNS alters maternal behavior and the hypothalamic pituitary adrenal (HPA axis of dams and offspring in male Sprague Dawley rats. In the present study, we evaluated the impact of LNS on maternal behavior in Wistar rats, and on the HPA axis, glycemia and in vivo intestinal permeability of male and female offspring. Intestinal permeability is known to be elevated during the first week postnatally and influenced by glucocorticoids. Dams and neonatal litters were subjected to LNS or normal nesting conditions (control from days 2 to 10 postnatally. At day 10, blood was collected from pups for determination of glucose and plasma corticosterone by enzyme immunoassay and in vivo intestinal permeability by oral gavage of fluorescein isothiocyanate-dextran 4kDa. Dams exposed to LNS compared to control showed an increase in the percentage of time spent building a nest (118%, self-grooming (69%, and putting the pups back to the nest (167%. LNS male and female pups exhibited a reduction of body weight by 5% and 4%, adrenal weights/100g body weight by 17% and 18%, corticosterone plasma levels by 64% and 62% and blood glucose by 11% and 12% respectively compared to same sex control pups. In male LNS pups, intestinal permeability was increased by 2.7-fold while no change was observed in females compared to same sex control. There was no sex difference in any of the parameters in control pups except the body weight. These data indicate that Wistar dams subjected to LNS during the first postnatal week have an altered repertoire of maternal behaviors which affects the development of the HPA axis in both sexes and intestinal barrier function in male offspring.

  5. Guanosine prevents behavioral alterations in the forced swimming test and hippocampal oxidative damage induced by acute restraint stress.

    Science.gov (United States)

    Bettio, Luis E B; Freitas, Andiara E; Neis, Vivian B; Santos, Danúbia B; Ribeiro, Camille M; Rosa, Priscila B; Farina, Marcelo; Rodrigues, Ana Lúcia S

    2014-12-01

    Guanosine is a guanine-based purine that modulates glutamate uptake and exerts neurotrophic and neuroprotective effects. In a previous study, our group demonstrated that this endogenous nucleoside displays antidepressant-like properties in a predictive animal model. Based on the role of oxidative stress in modulating depressive disorders as well as on the association between the neuroprotective and antioxidant properties of guanosine, here we investigated if its antidepressant-like effect is accompanied by a modulation of hippocampal oxidant/antioxidant parameters. Adult Swiss mice were submitted to an acute restraint stress protocol, which is known to cause behavioral changes that are associated with neuronal oxidative damage. Animals submitted to ARS exhibited an increased immobility time in the forced swimming test (FST) and the administration of guanosine (5mg/kg, p.o.) or fluoxetine (10mg/kg, p.o., positive control) before the exposure to stressor prevented this alteration. Moreover, the significantly increased levels of hippocampal malondialdehyde (MDA; an indicator of lipid peroxidation), induced by ARS were not observed in stressed mice treated with guanosine. Although no changes were found in the hippocampal levels of reduced glutathione (GSH), the group submitted to ARS procedure presented enhanced glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) activities and reduced catalase (CAT) activity in the hippocampus. Guanosine was able to prevent the alterations in GPx, GR, CAT activities, and in SOD/CAT activity ratio, but potentiated the increase in SOD activity elicited by ARS. Altogether, the present findings indicate that the observed antidepressant-like effects of guanosine might be related, at least in part, to its capability of modulating antioxidant defenses and mitigating hippocampal oxidative damage induced by ARS. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Aniracetam Does Not Alter Cognitive and Affective Behavior in Adult C57BL/6J Mice

    Science.gov (United States)

    Elston, Thomas W.; Pandian, Ashvini; Smith, Gregory D.; Holley, Andrew J.; Gao, Nanjing; Lugo, Joaquin N.

    2014-01-01

    There is a growing community of individuals who self-administer the nootropic aniracetam for its purported cognitive enhancing effects. Aniracetam is believed to be therapeutically useful for enhancing cognition, alleviating anxiety, and treating various neurodegenerative conditions. Physiologically, aniracetam enhances both glutamatergic neurotransmission and long-term potentiation. Previous studies of aniracetam have demonstrated the cognition-restoring effects of acute administration in different models of disease. No previous studies have explored the effects of aniracetam in healthy subjects. We investigated whether daily 50 mg/kg oral administration improves cognitive performance in naïve C57BL/6J mice in a variety of aspects of cognitive behavior. We measured spatial learning in the Morris water maze test; associative learning in the fear conditioning test; motor learning in the accelerating rotarod test; and odor discrimination. We also measured locomotion in the open field test, anxiety through the elevated plus maze test and by measuring time in the center of the open field test. We measured repetitive behavior through the marble burying test. We detected no significant differences between the naive, placebo, and experimental groups across all measures. Despite several studies demonstrating efficacy in impaired subjects, our findings suggest that aniracetam does not alter behavior in normal healthy mice. This study is timely in light of the growing community of healthy humans self-administering nootropic drugs. PMID:25099639

  7. Aniracetam does not alter cognitive and affective behavior in adult C57BL/6J mice.

    Directory of Open Access Journals (Sweden)

    Thomas W Elston

    Full Text Available There is a growing community of individuals who self-administer the nootropic aniracetam for its purported cognitive enhancing effects. Aniracetam is believed to be therapeutically useful for enhancing cognition, alleviating anxiety, and treating various neurodegenerative conditions. Physiologically, aniracetam enhances both glutamatergic neurotransmission and long-term potentiation. Previous studies of aniracetam have demonstrated the cognition-restoring effects of acute administration in different models of disease. No previous studies have explored the effects of aniracetam in healthy subjects. We investigated whether daily 50 mg/kg oral administration improves cognitive performance in naïve C57BL/6J mice in a variety of aspects of cognitive behavior. We measured spatial learning in the Morris water maze test; associative learning in the fear conditioning test; motor learning in the accelerating rotarod test; and odor discrimination. We also measured locomotion in the open field test, anxiety through the elevated plus maze test and by measuring time in the center of the open field test. We measured repetitive behavior through the marble burying test. We detected no significant differences between the naive, placebo, and experimental groups across all measures. Despite several studies demonstrating efficacy in impaired subjects, our findings suggest that aniracetam does not alter behavior in normal healthy mice. This study is timely in light of the growing community of healthy humans self-administering nootropic drugs.

  8. Ropivacaine and Bupivacaine prevent increased pain sensitivity without altering neuroimmune activation following repeated social defeat stress.

    Science.gov (United States)

    Sawicki, Caroline M; Kim, January K; Weber, Michael D; Jarrett, Brant L; Godbout, Jonathan P; Sheridan, John F; Humeidan, Michelle

    2018-03-01

    Mounting evidence indicates that stress influences the experience of pain. Exposure to psychosocial stress disrupts bi-directional communication pathways between the central nervous system and peripheral immune system, and can exacerbate the frequency and severity of pain experienced by stressed subjects. Repeated social defeat (RSD) is a murine model of psychosocial stress that recapitulates the immune and behavioral responses to stress observed in humans, including activation of stress-reactive neurocircuitry and increased pro-inflammatory cytokine production. It is unclear, however, how these stress-induced neuroimmune responses contribute to increased pain sensitivity in mice exposed to RSD. Here we used a technique of regional analgesia with local anesthetics in mice to block the development of mechanical allodynia during RSD. We next investigated the degree to which pain blockade altered stress-induced neuroimmune activation and depressive-like behavior. Following development of a mouse model of regional analgesia with discrete sensory blockade over the dorsal-caudal aspect of the spine, C57BL/6 mice were divided into experimental groups and treated with Ropivacaine (0.08%), Liposomal Bupivacaine (0.08%), or Vehicle (0.9% NaCl) prior to exposure to stress. This specific region was selected for analgesia because it is the most frequent location for aggression-associated pain due to biting during RSD. Mechanical allodynia was assessed 12 h after the first, third, and sixth day of RSD after resolution of the sensory blockade. In a separate experiment, social avoidance behavior was determined after the sixth day of RSD. Blood, bone marrow, brain, and spinal cord were collected for immunological analyses after the last day of RSD in both experiments following behavioral assessments. RSD increased mechanical allodynia in an exposure-dependent manner that persisted for at least one week following cessation of the stressor. Mice treated with either Ropivacaine or

  9. Protective effects of antidepressants against chronic fatigue syndrome-induced behavioral changes and biochemical alterations.

    Science.gov (United States)

    Kumar, Anil; Garg, Ruchika

    2009-02-01

    Chronic fatigue syndrome (CFS) is characterized by profound fatigue, which substantially interferes with daily activities. The aim of this study was to explore the protective effects of antidepressants in an animal model of CFS in mice. Male albino mice were forced to swim individually for a period of 6-min session each for 7 days. Imipramine (10 and 20 mg/kg), desipramine (10 and 20 mg/kg) and citalopram (5 and 10 mg/kg) were administered 30 min before forced swimming test on each day. Various behavior tests (immobility time, locomotor activity, anxiety-like behavior by plus maze and mirror chamber) followed by biochemical parameters (lipid peroxidation, reduced glutathione, catalase and nitrite level) were assessed in chronic stressed mice. Chronic forced swimming for 7 days significantly caused increase in immobility period, impairment in locomotor activity, anxiety-like behavior, and oxidative stress (raised lipid peroxidation, nitrite activity and reduced glutathione and catalase activity) as compared with naïve mice (P immobility time, improved locomotor activity and anti-anxiety effect (in both plus maze and mirror chamber test), and attenuated oxidative stress in chronic stressed mice as compared with control (chronic fatigues) (P < 0.05). These results suggested that these drugs have protective effect and could be used in the management of chronic fatigue like conditions.

  10. Autogenic training alters cerebral activation patterns in fMRI.

    Science.gov (United States)

    Schlamann, Marc; Naglatzki, Ryan; de Greiff, Armin; Forsting, Michael; Gizewski, Elke R

    2010-10-01

    Cerebral activation patterns during the first three auto-suggestive phases of autogenic training (AT) were investigated in relation to perceived experiences. Nineteen volunteers trained in AT and 19 controls were studied with fMRI during the first steps of autogenic training. FMRI revealed activation of the left postcentral areas during AT in those with experience in AT, which also correlated with the level of AT experience. Activation of prefrontal and insular cortex was significantly higher in the group with experience in AT while insular activation was correlated with number years of simple relaxation exercises. Specific activation in subjects experienced in AT may represent a training effect. Furthermore, the correlation of insular activation suggests that these subjects are different from untrained subjects in emotional processing or self-awareness.

  11. [X tetrasomy (48,XXXX karyotype) in a girl with altered behavior].

    Science.gov (United States)

    Rodado, Maria José; Manchón Trives, Irene; Lledó Bosch, Belén; Galán Sánchez, Francisco

    2010-07-01

    We report the case of a 14-year-old girl with mental retardation and dysmorphic features referred to child psychiatry because of altered behavior at school. Karyotyping (GTG banding), in situ fluorescent hybridization (FISH) and molecular study of parental origin by polymorphic STS were performed. Genetic study revealed a 48,XXXX karyotype with a maternal origin of the X-tetrasomy. The mechanism was successive non-dysjunction at meiosis I and II. The interest of this case lies in the rarity of the chromosomal anomaly and its late diagnosis, leading to a failure to adapt the girl's education to her needs, with consequences for her psyche. Copyright © 2010 SEP y SEPB. Published by Elsevier Espana. All rights reserved.

  12. Altered Neural Activity Associated with Mindfulness during Nociception: A Systematic Review of Functional MRI.

    Science.gov (United States)

    Bilevicius, Elena; Kolesar, Tiffany A; Kornelsen, Jennifer

    2016-04-19

    To assess the neural activity associated with mindfulness-based alterations of pain perception. The Cochrane Central, EMBASE, Ovid Medline, PsycINFO, Scopus, and Web of Science databases were searched on 2 February 2016. Titles, abstracts, and full-text articles were independently screened by two reviewers. Data were independently extracted from records that included topics of functional neuroimaging, pain, and mindfulness interventions. The literature search produced 946 total records, of which five met the inclusion criteria. Records reported pain in terms of anticipation (n = 2), unpleasantness (n = 5), and intensity (n = 5), and how mindfulness conditions altered the neural activity during noxious stimulation accordingly. Although the studies were inconsistent in relating pain components to neural activity, in general, mindfulness was able to reduce pain anticipation and unpleasantness ratings, as well as alter the corresponding neural activity. The major neural underpinnings of mindfulness-based pain reduction consisted of altered activity in the anterior cingulate cortex, insula, and dorsolateral prefrontal cortex.

  13. Picrotoxin-induced behavioral tolerance and altered susceptibility to seizures: effects of naloxone.

    Science.gov (United States)

    Thomas, J; Nores, W L; Pariser, R

    1993-07-01

    The role of opiate mechanisms in the development of tolerance and altered susceptibility to seizures after repeated injections of picrotoxin was investigated. Independent groups of rats were pretreated with naloxone (0.3, 1.0, 3.0, and 10.0 mg/kg) or the saline vehicle and then tested for seizures induced by picrotoxin. The procedure was performed on 3 days at 1-week intervals, for a total of 3 testing days. Latencies to different types of seizures, the duration of postseizure immobility, and the number of focal seizure episodes were scored. In the vehicle-treated group, repeated picrotoxin injections led to an increased susceptibility to myoclonic and focal seizures and to decreased duration of postseizure immobility. Naloxone pretreatment significantly decreased the duration of the postseizure akinetic periods in the 1.0- and 10.0-mg/kg groups across all days, suggesting that endogenous opiates are involved in postseizure immobility and that there are interactions between opiate and picrotoxin mechanisms in some seizure-related behaviors. Naloxone did not alter the development of tolerance or sensitivity, indicating that naloxone-insensitive opiate mechanisms or nonopiate mechanisms may be involved in these processes.

  14. Metabolic and feeding behavior alterations provoked by prenatal exposure to aspartame.

    Science.gov (United States)

    von Poser Toigo, E; Huffell, A P; Mota, C S; Bertolini, D; Pettenuzzo, L F; Dalmaz, C

    2015-04-01

    The use of artificial sweeteners has increased together with the epidemic growth of obesity. In addition to their widespread use in sodas, artificial sweeteners are added to nearly 6000 other products sold in the US, including baby foods, frozen dinners and even yogurts. It has been suggested that the use of nonnutritive sweeteners can lead to body weight gain and an altered metabolic profile. However, very few studies have evaluated the effects of maternal consumption of artificial non-caloric sweeteners on body weight, feeding behavior or the metabolism of offspring in adult life. In this study, we found that animals exposed to aspartame during the prenatal period presented a higher consumption of sweet foods during adulthood and a greater susceptibility to alterations in metabolic parameters, such as increased glucose, LDL and triglycerides. These effects were observed in both males and females, although they were more pronounced in males. Despite the preliminary nature of this study, and the need for further confirmation of these effects, our data suggest that the consumption of sweeteners during gestation may have deleterious long-term effects and should be used with caution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Ras activation by SOS: Allosteric regulation by altered fluctuation dynamics

    Science.gov (United States)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen; Christensen, Sune M.; Abel, Steven M.; Iwig, Jeff; Wu, Hung-Jen; Gureasko, Jodi; Rhodes, Christopher; Petit, Rebecca S.; Hansen, Scott D.; Thill, Peter; Yu, Cheng-Han; Stamou, Dimitrios; Chakraborty, Arup K.; Kuriyan, John; Groves, Jay T.

    2014-01-01

    Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS by Ras–guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather than the ensemble average. PMID:24994643

  16. Invasive plant architecture alters trophic interactions by changing predator abundance and behavior.

    Science.gov (United States)

    Pearson, Dean E

    2009-03-01

    As primary producers, plants are known to influence higher trophic interactions by initiating food chains. However, as architects, plants may bypass consumers to directly affect predators with important but underappreciated trophic ramifications. Invasion of western North American grasslands by the perennial forb, spotted knapweed (Centaurea maculosa), has fundamentally altered the architecture of native grassland vegetation. Here, I use long-term monitoring, observational studies, and field experiments to document how changes in vegetation architecture have affected native web spider populations and predation rates. Native spiders that use vegetation as web substrates were collectively 38 times more abundant in C. maculosa-invaded grasslands than in uninvaded grasslands. This increase in spider abundance was accompanied by a large shift in web spider community structure, driven primarily by the strong response of Dictyna spiders to C. maculosa invasion. Dictyna densities were 46-74 times higher in C. maculosa-invaded than native grasslands, a pattern that persisted over 6 years of monitoring. C. maculosa also altered Dictyna web building behavior and foraging success. Dictyna webs on C. maculosa were 2.9-4.0 times larger and generated 2.0-2.3 times higher total prey captures than webs on Achillea millefolium, their primary native substrate. Dictyna webs on C. maculosa also captured 4.2 times more large prey items, which are crucial for reproduction. As a result, Dictyna were nearly twice as likely to reproduce on C. maculosa substrates compared to native substrates. The overall outcome of C. maculosa invasion and its transformative effects on vegetation architecture on Dictyna density and web building behavior were to increase Dictyna predation on invertebrate prey >/=89 fold. These results indicate that invasive plants that change the architecture of native vegetation can substantially impact native food webs via nontraditional plant --> predator --> consumer

  17. Alterations in nasal mucociliary activity in polycystic ovary syndrome.

    Science.gov (United States)

    Kabil Kucur, Suna; Seven, Ali; Yuksel, Beril; Kucur, Cuneyt; Sencan, Halime; Gozukara, Ilay; Keskin, Nadi

    2016-12-01

    Polycystic ovary syndrome (PCOS) is a common endocrine disorder in women of reproductive age. It can affect various organ systems, and respiratory mucosa has been reported as being hormone responsive. A case-control study consisting of 50 women with PCOS and 30 control subjects matched for age and body mass index was conducted, in order to investigate nasal mucociliary clearance time (NMCT) in patients with PCOS. Serum basal hormonal-biochemical parameters and NMCT were evaluated on menstrual cycle days 2-5 for all participants. The mean NMCT in PCOS and control groups was 10.45±2.88 and 6.92±1.78, respectively (p=0.0001). A significant positive correlation was found between NMCT and duration of disease (r=0.52; p=0.001), serum total testosterone level (r=0.28; p=0.04), and luteinizing hormone/follicle stimulating hormone (r=0.29; p=0.04). Our findings indicate that PCOS is associated with altered NMCT. Prolonged NMCT predisposes patients to respiratory tract and middle ear infections, and clinicians should be aware of this. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Transient alterations in neurotransmitter activity in the caudate nucleus of rat brain after a high dose of ionizing radiation

    International Nuclear Information System (INIS)

    Hunt, W.A.; Dalton, T.K.; Darden, J.H.

    1979-01-01

    A single 10,000-rad dose of high-energy electrons induced an increase in dopaminergic and cholinergic activity in the caudate nucleus of the rat brain as assessed by K + -stimulated dopamine release in vitro and high-affinity choline uptake. These alterations occur during early transient incapacitation (ETI) and dissipate as the animal recovers behaviorally, in about 30 min after irradiation. Although the responses observed resemble those that result from blockade of dopamine receptors, no radiation-induced changes were found in dopamine-sensitive adenylate cyclase activity and [ 3 H]haloperidol binding, two indices of dopaminergic receptor function. The data suggest that changes in dopaminergic and cholinergic activity are associated with the development of ETI and may play a role in the behavioral decrement observed under this condition

  19. Activity-Based Anorexia Alters the Expression of BDNF Transcripts in the Mesocorticolimbic Reward Circuit.

    Science.gov (United States)

    Ho, Emily V; Klenotich, Stephanie J; McMurray, Matthew S; Dulawa, Stephanie C

    2016-01-01

    Anorexia nervosa (AN) is a complex eating disorder with severe dysregulation of appetitive behavior. The activity-based anorexia (ABA) paradigm is an animal model in which rodents exposed to both running wheels and scheduled feeding develop aspects of AN including paradoxical hypophagia, dramatic weight loss, and hyperactivity, while animals exposed to only one condition maintain normal body weight. Brain-derived neurotrophic factor (BDNF), an activity-dependent modulator of neuronal plasticity, is reduced in the serum of AN patients, and is a known regulator of feeding and weight maintenance. We assessed the effects of scheduled feeding, running wheel access, or both on the expression of BDNF transcripts within the mesocorticolimbic pathway. We also assessed the expression of neuronal cell adhesion molecule 1 (NCAM1) to explore the specificity of effects on BDNF within the mesocorticolimbic pathway. Scheduled feeding increased the levels of both transcripts in the hippocampus (HPC), increased NCAM1 mRNA expression in the ventral tegmental area (VTA), and decreased BDNF mRNA levels in the medial prefrontal cortex (mPFC). In addition, wheel running increased BDNF mRNA expression in the VTA. No changes in either transcript were observed in the nucleus accumbens (NAc). Furthermore, no changes in either transcript were induced by the combined scheduled feeding and wheel access condition. These data indicate that scheduled feeding or wheel running alter BDNF and NCAM1 expression levels in specific regions of the mesocorticolimbic pathway. These findings contribute to our current knowledge of the molecular alterations induced by ABA and may help elucidate possible mechanisms of AN pathology.

  20. Neonatal GLP1R activation limits adult adiposity by durably altering hypothalamic architecture

    Directory of Open Access Journals (Sweden)

    Andrea V. Rozo

    2017-07-01

    Conclusion: These observations suggest that the acute activation of GLP1R in neonates durably alters hypothalamic architecture to limit adult weight gain and adiposity, identifying GLP1R as a therapeutic target for obesity prevention.

  1. Altered functional connectivity in lesional peduncular hallucinosis with REM sleep behavior disorder.

    Science.gov (United States)

    Geddes, Maiya R; Tie, Yanmei; Gabrieli, John D E; McGinnis, Scott M; Golby, Alexandra J; Whitfield-Gabrieli, Susan

    2016-01-01

    Brainstem lesions causing peduncular hallucinosis (PH) produce vivid visual hallucinations occasionally accompanied by sleep disorders. Overlapping brainstem regions modulate visual pathways and REM sleep functions via gating of thalamocortical networks. A 66-year-old man with paroxysmal atrial fibrillation developed abrupt-onset complex visual hallucinations with preserved insight and violent dream enactment behavior. Brain MRI showed restricted diffusion in the left rostrodorsal pons suggestive of an acute ischemic stroke. REM sleep behavior disorder (RBD) was diagnosed on polysomnography. We investigated the integrity of ponto-geniculate-occipital circuits with seed-based resting-state functional connectivity MRI (rs-fcMRI) in this patient compared to 46 controls. Rs-fcMRI revealed significantly reduced functional connectivity between the lesion and lateral geniculate nuclei (LGN), and between LGN and visual association cortex compared to controls. Conversely, functional connectivity between brainstem and visual association cortex, and between visual association cortex and prefrontal cortex (PFC) was significantly increased in the patient. Focal damage to the rostrodorsal pons is sufficient to cause RBD and PH in humans, suggesting an overlapping mechanism in both syndromes. This lesion produced a pattern of altered functional connectivity consistent with disrupted visual cortex connectivity via de-afferentation of thalamocortical pathways. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  2. Can a tablet device alter undergraduate science students' study behavior and use of technology?

    Science.gov (United States)

    Morris, Neil P; Ramsay, Luke; Chauhan, Vikesh

    2012-06-01

    This article reports findings from a study investigating undergraduate biological sciences students' use of technology and computer devices for learning and the effect of providing students with a tablet device. A controlled study was conducted to collect quantitative and qualitative data on the impact of a tablet device on students' use of devices and technology for learning. Overall, we found that students made extensive use of the tablet device for learning, using it in preference to laptop computers to retrieve information, record lectures, and access learning resources. In line with other studies, we found that undergraduate students only use familiar Web 2.0 technologies and that the tablet device did not alter this behavior for the majority of tools. We conclude that undergraduate science students can make extensive use of a tablet device to enhance their learning opportunities without institutions changing their teaching methods or computer systems, but that institutional intervention may be needed to drive changes in student behavior toward the use of novel Web 2.0 technologies.

  3. Agmatine attenuates chronic unpredictable mild stress induced behavioral alteration in mice.

    Science.gov (United States)

    Taksande, Brijesh G; Faldu, Dharmesh S; Dixit, Madhura P; Sakaria, Jay N; Aglawe, Manish M; Umekar, Milind J; Kotagale, Nandkishor R

    2013-11-15

    Chronic stress exposure and resulting dysregulation of the hypothalamic pituitary adrenal axis develops susceptibility to variety of neurological and psychiatric disorders. Agmatine, a putative neurotransmitter has been reported to be released in response to various stressful stimuli to maintain the homeostasis. Present study investigated the role of agmatine on chronic unpredictable mild stress (CUMS) induced behavioral and biochemical alteration in mice. Exposure of mice to CUMS protocol for 28 days resulted in diminished performance in sucrose preference test, splash test, forced swim test and marked elevation in plasma corticosterone levels. Chronic agmatine (5 and 10 mg/kg, ip, once daily) treatment started on day-15 and continued till the end of the CUMS protocol significantly increased sucrose preference, improved self-care and motivational behavior in the splash test and decreased duration of immobility in the forced swim test. Agmatine treatment also normalized the elevated corticosterone levels and prevented the body weight changes in chronically stressed animals. The pharmacological effect of agmatine was comparable to selective serotonin reuptake inhibitor, fluoxetine (10mg/kg, ip). Results of present study clearly demonstrated the anti-depressant like effect of agmatine in chronic unpredictable mild stress induced depression in mice. Thus the development of drugs based on brain agmatinergic modulation may represent a new potential approach for the treatment of stress related mood disorders like depression. © 2013 Published by Elsevier B.V.

  4. Lipopolysaccharide Alters Motivated Behavior in a Monetary Reward Task: a Randomized Trial

    Science.gov (United States)

    Lasselin, Julie; Treadway, Michael T; Lacourt, Tamara E; Soop, Anne; Olsson, Mats J; Karshikoff, Bianka; Paues-Göranson, Sofie; Axelsson, John; Dantzer, Robert; Lekander, Mats

    2017-01-01

    Inflammation-induced sickness is associated with a large set of behavioral alterations; however, its motivational aspects remain poorly explored in humans. The present study assessed the effect of lipopolysaccharide (LPS) administration at a dose of 2 ng/kg of body weight on motivation in 21 healthy human subjects in a double-blinded, placebo (saline)-controlled, cross-over design. Incentive motivation and reward sensitivity were measured using the Effort Expenditure for Rewards Task (EEfRT), in which motivation for high-effort/high-reward trials vs low-effort/low-reward trials are manipulated by variations in reward magnitude and probability to win. Because of the strong interactions between sleepiness and motivation, the role of sleepiness was also determined. As expected, the probability to win predicted the choice to engage in high-effort/high-reward trials; however, this occurred at a greater extent after LPS than after saline administration. This effect was related to the level of sleepiness. Sleepiness increased motivation to choose the high-effort/high-reward mode of response, but only when the probability to win was the highest. LPS had no effect on reward sensitivity either directly or via sleepiness. These results indicate that systemic inflammation induced by LPS administration causes motivational changes in young healthy subjects, which are associated with sleepiness. Thus, despite its association with energy-saving behaviors, sickness allows increased incentive motivation when the effort is deemed worthwhile. PMID:27620550

  5. Agomelatine's effect on circadian locomotor rhythm alteration and depressive-like behavior in 6-OHDA lesioned rats.

    Science.gov (United States)

    Souza, Leonardo C; Martynhak, Bruno J; Bassani, Taysa B; Turnes, Joelle de M; Machado, Meira M; Moura, Eric; Andreatini, Roberto; Vital, Maria A B F

    2018-05-01

    Parkinson's disease (PD) patients often suffer from circadian locomotor rhythms impairment and depression, important non-motor symptoms. It is known that toxin-based animal models of PD can reproduce these features. In a 6-hydroxydopamine (6-OHDA) intranigral model, we first investigated the possible disturbances on circadian rhythms of locomotor activity. The rats were divided into 6-OHDA and Sham groups. After a partial dopaminergic lesion, the 6-OHDA group showed slight alterations in different circadian locomotor rhythms parameters. In a second experiment, we hypothesized agomelatine, an melatoninergic antidepressant with potential to resynchronize disturbed rhythms, could prevent neuronal damage and rhythm alterations in the same 6-OHDA model. The animals were divided into four groups: 6-OHDA+vehicle, 6-OHDA+ago, Sham+vehicle and 6-OHDA+ago. However, the treated animals (agomelatine 50 mg/kg for 22 days) showed an impaired rhythm robustness, and agomelatine did not induce significant changes in the other circadian parameters nor neuroprotection. Finally, in a third experiment, we examined the effects of agomelatine in the 6-OHDA model regarding depressive-like behavior, evaluated by sucrose preference test. The animals were also divided into four groups: 6-OHDA+vehicle, 6-OHDA+ago, Sham+vehicle and 6-OHDA+ago. The toxin infused animals showed a decrease in sucrose preference in comparison with the vehicle infused animals, however, agomelatine did not prevent this decrease. Our findings indicate that agomelatine worsened circadian locomotor rhythm and was not able to reverse the depressive-like behavior of rats in the 6-OHDA PD model. Copyright © 2018. Published by Elsevier Inc.

  6. 3. Impact of altered gravity on CNS development and behavior in male and female rats

    Science.gov (United States)

    Sajdel-Sulkowska, E. M.; Nguon, K.; Ladd, B.; Sulkowski, V. A.; Sulkowski, Z. L.; Baxter, M. G.

    The present study examined the effect of altered gravity on CNS development. Specifically, we compared neurodevelopment, behavior, cerebellar structure and protein expression in rat neonates exposed perinatally to hypergravity. Pregnant Sprague-Dawley rats were exposed to 1.5G-1.75G hypergravity on a 24-ft centrifuge starting on gestational day (G) 10, through giving birth on G22/G23, and nursing their offspring through postnatal day (P) 21. Cerebellar mass on P6 was decreased in 1.75G-exposed male pups by 27.5 percent; in 1.75G-exposed female pups it was decreased by 22.5 percent. The observed cerebellar changes were associated with alterations in neurodevelopment and motor behavior. Exposure to hypergravity impaired performance on the following neurocognitive tests: (1) righting time on P3 was more than doubled in 1.75G-exposed rats and the effect appeared more pronounced in female pups, (2) startle response on P10 was delayed in both male and female HG pups; HG pups were one-fifth as likely to respond to a clapping noise as SC pups, and (3) performance on a rotorod on P21 was decreased in HG pups; the duration of the stay on rotorod recorded for HG pups of both sexes was one tenth of the SC pups. Furthermore, Western blot analysis of selected cerebellar proteins suggested gender-specific changes in glial and neuronal proteins. On P6, GFAP expression was decreased by 59.2 percent in HG males, while no significant decrease was observed in female cerebella. Synaptophysin expression was decreased in HG male neonates by 29.9 percent and in HG female neonates by 20.7 percent as compared to its expression in SC cerebella. The results of this experiment suggest that perinatal exposure to hypergravity affects cerebellar development and behavior differently in male and female neonates. If one accepts that hypergravity is a good paradigm to study the effect of microgravity on the CNS, and since males and females were shown to respond differently to hypergravity, it can be

  7. Aloe arborescens aqueous gel extract alters the activities of key ...

    African Journals Online (AJOL)

    The present study investigated the antidiabetic activity and the possible mechanisms of action of aqueous extract of Aloe arborescens leaf gel (AALGEt) on normal and alloxan-induced diabetic rats. Diabetes was induced in 12 h fasted rats by intraperitoneal injection of 140 mg/kg body weight of alloxan. Blood glucose ...

  8. Altered Peptidase Activities in Thyroid Neoplasia and Hyperplasia

    Directory of Open Access Journals (Sweden)

    Gorka Larrinaga

    2013-01-01

    Full Text Available Background. Papillary thyroid carcinoma (PTC, follicular thyroid adenoma (FTA, and thyroid nodular hyperplasia (TNH are the most frequent diseases of the thyroid gland. Previous studies described the involvement of dipeptidyl-peptidase IV (DPPIV/CD26 in the development of thyroid neoplasia and proposed it as an additional tool in the diagnosis/prognosis of these diseases. However, very little is known about the involvement of other peptidases in neoplastic and hyperplastic processes of this gland. Methods. The catalytic activity of 10 peptidases in a series of 30 PTC, 10 FTA, and 14 TNH was measured fluorimetrically in tumour and nontumour adjacent tissues. Results. The activity of DPPIV/CD26 was markedly higher in PTC than in FTA, TNH, and nontumour tissues. Aspartyl aminopeptidase (AspAP, alanyl aminopeptidase (AlaAP, prolyl endopeptidase, pyroglutamyl peptidase I, and aminopeptidase B activities were significantly increased in thyroid neoplasms when compared to nontumour tissues. AspAP and AlaAP activities were also significantly higher in PTC than in FTA and TNH. Conclusions. These data suggest the involvement of DPPIV/CD26 and some cytosolic peptidases in the neoplastic development of PTC and FTA. Further studies will help to define the possible clinical usefulness of AlaAP and AspAP in the diagnosis/prognosis of thyroid neoplasms.

  9. Altered peptidase activities in thyroid neoplasia and hyperplasia.

    Science.gov (United States)

    Larrinaga, Gorka; Blanco, Lorena; Errarte, Peio; Beitia, Maider; Sanz, Begoña; Perez, Itxaro; Irazusta, Amaia; Sánchez, Clara E; Santaolalla, Francisco; Andrés, Leire; López, José I

    2013-01-01

    Papillary thyroid carcinoma (PTC), follicular thyroid adenoma (FTA), and thyroid nodular hyperplasia (TNH) are the most frequent diseases of the thyroid gland. Previous studies described the involvement of dipeptidyl-peptidase IV (DPPIV/CD26) in the development of thyroid neoplasia and proposed it as an additional tool in the diagnosis/prognosis of these diseases. However, very little is known about the involvement of other peptidases in neoplastic and hyperplastic processes of this gland. The catalytic activity of 10 peptidases in a series of 30 PTC, 10 FTA, and 14 TNH was measured fluorimetrically in tumour and nontumour adjacent tissues. The activity of DPPIV/CD26 was markedly higher in PTC than in FTA, TNH, and nontumour tissues. Aspartyl aminopeptidase (AspAP), alanyl aminopeptidase (AlaAP), prolyl endopeptidase, pyroglutamyl peptidase I, and aminopeptidase B activities were significantly increased in thyroid neoplasms when compared to nontumour tissues. AspAP and AlaAP activities were also significantly higher in PTC than in FTA and TNH. These data suggest the involvement of DPPIV/CD26 and some cytosolic peptidases in the neoplastic development of PTC and FTA. Further studies will help to define the possible clinical usefulness of AlaAP and AspAP in the diagnosis/prognosis of thyroid neoplasms.

  10. Compounds from silicones alter enzyme activity in curing barnacle glue and model enzymes.

    Science.gov (United States)

    Rittschof, Daniel; Orihuela, Beatriz; Harder, Tilmann; Stafslien, Shane; Chisholm, Bret; Dickinson, Gary H

    2011-02-17

    Attachment strength of fouling organisms on silicone coatings is low. We hypothesized that low attachment strength on silicones is, in part, due to the interaction of surface available components with natural glues. Components could alter curing of glues through bulk changes or specifically through altered enzyme activity. GC-MS analysis of silicone coatings showed surface-available siloxanes when the coatings were gently rubbed with a cotton swab for 15 seconds or given a 30 second rinse with methanol. Mixtures of compounds were found on 2 commercial and 8 model silicone coatings. The hypothesis that silicone components alter glue curing enzymes was tested with curing barnacle glue and with commercial enzymes. In our model, barnacle glue curing involves trypsin-like serine protease(s), which activate enzymes and structural proteins, and a transglutaminase which cross-links glue proteins. Transglutaminase activity was significantly altered upon exposure of curing glue from individual barnacles to silicone eluates. Activity of purified trypsin and, to a greater extent, transglutaminase was significantly altered by relevant concentrations of silicone polymer constituents. Surface-associated silicone compounds can disrupt glue curing and alter enzyme properties. Altered curing of natural glues has potential in fouling management.

  11. DEPRESSIVE BEHAVIOR AND METABOLIC ALTERATIONS IN MICE ARE MUSICAL STYLE-DEPENDENT

    Directory of Open Access Journals (Sweden)

    V. S. Lima

    2015-10-01

    Full Text Available Nowadays, the world population has been affected by two serious psychological disorders, anxiety and depression, but there are few discoveries for new therapies to combat them. Studies have shown that music therapy has its beneficial behavioral effects. Therefore, the aim of the present study it was to investigate the possible effects of two music styles in some lipids and carbohydrate metabolism parameters resulting from behavioral changes related to anxiety and depression. So, mice were used with 30 days of age, divided into 6 groups: G1: saline, G2: Diazepam (DZP, G3: Fluoxetine (FLX, G4: control (no treatment, G5: Rock, and G6: Mozart Sonata. The animals from groups G1, G2 and G3 received treatments by oral route (gavage for 15 days. The music therapy sessions (2x/day 4 hours/day occurred in the same period of time at a 65dB frequency for G5 and G6 groups. After being evaluated in spontaneous locomotion, elevated plus maze and forced swimming tests, the animals were euthanized. The lactate, total cholesterol and plasma glucose levels were measured from the blood. No change was observed in spontaneous locomotion test and elevated plus maze. In the forced swimming test animals exposed to Rock showed an increase in immobility time. Furthermore, it was observed an increase in glucose and a reduction in cholesterol levels in the groups exposed to Rock and Mozart, while a decrease of lactate was observed only in group Rock. It was concluded that the auditory stimulus caused by music in mice was able to encourage depressive behavior and alter some lipids and carbohydrate metabolism parameters dependently of the musical style.

  12. Manipulating the Cellular Circadian Period of Arginine Vasopressin Neurons Alters the Behavioral Circadian Period.

    Science.gov (United States)

    Mieda, Michihiro; Okamoto, Hitoshi; Sakurai, Takeshi

    2016-09-26

    As the central pacemaker in mammals, the circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is a heterogeneous structure consisting of multiple types of GABAergic neurons with distinct chemical identities [1, 2]. Although individual cells have a cellular clock driven by autoregulatory transcriptional/translational feedback loops of clock genes, interneuronal communication among SCN clock neurons is likely essential for the SCN to generate a highly robust, coherent circadian rhythm [1]. However, neuronal mechanisms that determine circadian period length remain unclear. The SCN is composed of two subdivisions: a ventral core region containing vasoactive intestinal peptide (VIP)-producing neurons and a dorsal shell region characterized by arginine vasopressin (AVP)-producing neurons. Here we examined whether AVP neurons act as pacemaker cells that regulate the circadian period of behavior rhythm in mice. The deletion of casein kinase 1 delta (CK1δ) specific to AVP neurons, which was expected to lengthen the period of cellular clocks [3-6], lengthened the free-running period of circadian behavior as well. Conversely, the overexpression of CK1δ specific to SCN AVP neurons shortened the free-running period. PER2::LUC imaging in slices confirmed that cellular circadian periods of the SCN shell were lengthened in mice without CK1δ in AVP neurons. Thus, AVP neurons may be an essential component of circadian pacemaker cells in the SCN. Remarkably, the alteration of the shell-core phase relationship in the SCN of these mice did not impair the generation per se of circadian behavior rhythm, thereby underscoring the robustness of the SCN network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Theory of mind network activity is altered in subjects with familial liability for schizophrenia

    Science.gov (United States)

    Mohnke, Sebastian; Erk, Susanne; Schnell, Knut; Romanczuk-Seiferth, Nina; Schmierer, Phöbe; Romund, Lydia; Garbusow, Maria; Wackerhagen, Carolin; Ripke, Stephan; Grimm, Oliver; Haller, Leila; Witt, Stephanie H.; Degenhardt, Franziska; Tost, Heike; Heinz, Andreas; Meyer-Lindenberg, Andreas; Walter, Henrik

    2016-01-01

    As evidenced by a multitude of studies, abnormalities in Theory of Mind (ToM) and its neural processing might constitute an intermediate phenotype of schizophrenia. If so, neural alterations during ToM should be observable in unaffected relatives of patients as well, since they share a considerable amount of genetic risk. While behaviorally, impaired ToM function is confirmed meta-analytically in relatives, evidence on aberrant function of the neural ToM network is sparse and inconclusive. The present study therefore aimed to further explore the neural correlates of ToM in relatives of schizophrenia. About 297 controls and 63 unaffected first-degree relatives of patients with schizophrenia performed a ToM task during functional magnetic resonance imaging. Consistent with the literature relatives exhibited decreased activity of the medial prefrontal cortex. Additionally, increased recruitment of the right middle temporal gyrus and posterior cingulate cortex was found, which was related to subclinical paranoid symptoms in relatives. These results further support decreased medial prefrontal activation during ToM as an intermediate phenotype of genetic risk for schizophrenia. Enhanced recruitment of posterior ToM areas in relatives might indicate inefficiency mechanisms in the presence of genetic risk. PMID:26341902

  14. Environmental prenatal stress eliminates brain and maternal behavioral sex differences and alters hormone levels in female rats.

    Science.gov (United States)

    Del Cerro, M C R; Ortega, E; Gómez, F; Segovia, S; Pérez-Laso, C

    2015-07-01

    Environmental prenatal stress (EPS) has effects on fetuses that are long-lasting, altering their hormone levels, brain morphology and behavior when they reach maturity. In previous research, we demonstrated that EPS affects the expression of induced maternal behavior (MB), the neuroendocrine system, and morphology of the sexually dimorphic accessory olfactory bulb (AOB) involved in reproductive behavior patterns. The bed nucleus of the accessory olfactory tract (BAOT) is another vomeronasal (VN) structure that plays an inhibitory role in rats in the expression of induced maternal behavior in female and male virgins. In the present study, we have ascertained whether the behavioral, neuroendocrine, and neuromorphological alterations of the AOB found after EPS also appear in the BAOT. After applying EPS to pregnant rats during the late gestational period, in their female offspring at maturity we tested induced maternal behavior, BAOT morphology and plasma levels of testosterone (T), estradiol (E2), progesterone (P), adrenocorticotropic hormone (ACTH) and corticosterone (Cpd B). EPS: a) affected the induction of MB, showed a male-like pattern of care for pups, b) elevated plasma levels of Cpd B and reduced E2 in comparison with the controls, and c) significantly increased the number of BAOT neurons compared to the control females and comparable to the control male group. These findings provide further evidence that stress applied to pregnant rats produces long-lasting behavioral, endocrine and neuroanatomical alterations in the female offspring that are evident when they become mature. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Vaccinium virgatum fruit extract as an important adjuvant in biochemical and behavioral alterations observed in animal model of metabolic syndrome.

    Science.gov (United States)

    Oliveira, Pathise Souto; Gazal, Marta; Flores, Natália Porto; Zimmer, Aline Rigon; Chaves, Vitor Clasen; Reginatto, Flávio Henrique; Kaster, Manuella Pinto; Tavares, Rejane Giacomelli; Spanevello, Roselia Maria; Lencina, Claiton Leoneti; Stefanello, Francieli Moro

    2017-04-01

    The aim of this study was to investigate the effect of blueberry (Vaccinium virgatum) fruit extract on metabolic, behavioral and oxidative stress parameters in the hippocampus and cerebral cortex of mice submitted to an experimental model of metabolic syndrome induced by a highly palatable diet (HPD). Mice C57BL/6 were divided into 4 experimental groups: (1) received standard chow and saline orally, (2) received standard chow and blueberry hydroalcoholic extract, (3) received HPD and saline orally, (4) received HPD and blueberry hydroalcoholic extract. The animals were treated for 150days. Our results showed that the animals fed with HPD presented insulin resistance, increased body weight, visceral fat, glucose, triglycerides, and total cholesterol when compared to the control group. The blueberry extract prevented the increase of these metabolic parameters. Also, the extract was able to reduce the levels of thiobarbituric acid reactive substances in the cerebral cortex and hippocampus of animals submitted to HPD. In contrast, no differences were observed in the total thiol content, activity of the antioxidant enzymes catalase and superoxide dismutase. In addition, the HPD fed animals showed a significant increase in immobility time in the forced swimming test and blueberry prevented this alteration, although no changes were observed in the ambulatory behavior, as well as in the anxiolytic profile of these animals. Overall, our findings suggest that chronic consumption of blueberry extract exhibits hypoglycemic, hypolipidemic, antidepressant-like and antiperoxidative effects in an animal model of metabolic syndrome. Copyright © 2017. Published by Elsevier Masson SAS.

  16. Alteration of Depressive-like Behaviors by Psilocybe cubensis Alkaloid Extract in Mice: the Role of Glutamate Pathway

    Directory of Open Access Journals (Sweden)

    Elaheh Mahmoudi

    2018-03-01

    Full Text Available Background and objectives: Considering the increasing prevalence of depression, many studies are launched to investigate new antidepressant treatments. The present research has shown how psilocybin as an active compound of Psilocybe cubensis (Earle Singer extract (PCE can change the parameters related to depression and anxiety in animal models. Both serotonin (5-hydroxytryptamine: 5-HT and glutamate modulate depressive-like behaviors and, therefore, we examined the possible interaction of psilocybin as 5-HT1 agonist with glutamate receptor N-methyl-D-aspartate (NMDA. Methods: Psilocybe cubensis extract of this mushroom was prepared by ethyl acetate. NMRI mice involved in all experiments and were treated with the vehicle, extract, or standard drug intraperitoneally. Open field (OFT, forced swimming (FST and tail suspension tests (TST were applied to measure the intended parameters. OFT was performed to verify the applied doses for measuring the following antidepressant activity.  Results: PCE at the doses of 100 mg/kg significantly changed the locomotion, time spent in center and velocity of the animals in OFT. While treatment of the animals with PCE 10 and 40 mg/kg or ketamine 1 mg/kg did not alter the locomotor activity, co-administration of these subeffective amounts significantly reduced the immobility time in both FST and TST. Conclusion: These effects may indicate possible implication of psilocybin with NMDA receptor which consequently produces the antidepressant effects.

  17. Sex influences in behavior and brain inflammatory and oxidative alterations in mice submitted to lipopolysaccharide-induced inflammatory model of depression.

    Science.gov (United States)

    Mello, Bruna Stefânia Ferreira; Chaves Filho, Adriano José Maia; Custódio, Charllyany Sabino; Cordeiro, Rafaela Carneiro; Miyajima, Fabio; de Sousa, Francisca Cléa Florenço; Vasconcelos, Silvânia Maria Mendes; de Lucena, David Freitas; Macedo, Danielle

    2018-07-15

    Peripheral inflammation induced by lipopolysaccharide (LPS) causes a behavioral syndrome with translational relevance for depression. This mental disorder is twice more frequent among women. Despite this, the majority of experimental studies investigating the neurobiological effects of inflammatory models of depression have been performed in males. Here, we sought to determine sex influences in behavioral and oxidative changes in brain regions implicated in the pathophysiology of mood disorders (hypothalamus, hippocampus and prefrontal cortex - PFC) in adult mice 24 h post LPS challenge. Myeloperoxidase (MPO) activity and interleukin (IL)-1β levels were measured as parameters of active inflammation, while reduced glutathione (GSH) and lipid peroxidation as parameters of oxidative imbalance. We observed that male mice presented behavioral despair, while females anxiety-like alterations. Both sexes were vulnerable to LPS-induced anhedonia. Both sexes presented increased MPO activity in the PFC, while male only in the hippocampus. IL-1β increased in the PFC and hypothalamus of animals of both sexes, while in the hippocampus a relative increase of this cytokine in males compared to females was detected. GSH levels were decreased in all brain areas investigated in animals of both sexes, while increased lipid peroxidation was observed in the hypothalamus of females and in the hippocampus of males after LPS exposure. Therefore, the present study gives additional evidence of sex influence in LPS-induced behavioral alterations and, for the first time, in the oxidative changes in brain areas relevant for mood regulation. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Children's Physical Activity Behavior during School Recess

    DEFF Research Database (Denmark)

    Pawlowski, Charlotte Skau; Andersen, Henriette Bondo; Troelsen, Jens

    2016-01-01

    participated in go-along group interviews, and recess behavior was observed using an ethnographical participant observation approach. All data were analyzed separated systematically answering the Five W Questions. Children were categorized into Low, Middle and High physical activity groups and these groups...... quantitative GPS and accelerometer measurements with qualitative go-along group interviews and participant observations. Data were collected during three weekdays in a public school in Denmark. Eighty-one children (47 girls) wore an accelerometer (ActiGraph GT3X) and GPS (QStarz BT-Q1000xt), sixteen children...

  19. Exposure to Forced Swim Stress Alters Local Circuit Activity and Plasticity in the Dentate Gyrus of the Hippocampus

    Directory of Open Access Journals (Sweden)

    Mouna Maroun

    2008-02-01

    Full Text Available Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  20. Exposure to Forced Swim Stress Alters Local Circuit Activity and Plasticity in the Dentate Gyrus of the Hippocampus

    Science.gov (United States)

    Yarom, Orli; Maroun, Mouna; Richter-Levin, Gal

    2008-01-01

    Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP) of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI) and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS) reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience. PMID:18301720

  1. Alterations in electrodermal activity and cardiac parasympathetic tone during hypnosis.

    Science.gov (United States)

    Kekecs, Zoltán; Szekely, Anna; Varga, Katalin

    2016-02-01

    Exploring autonomic nervous system (ANS) changes during hypnosis is critical for understanding the nature and extent of the hypnotic phenomenon and for identifying the mechanisms underlying the effects of hypnosis in different medical conditions. To assess ANS changes during hypnosis, electrodermal activity and pulse rate variability (PRV) were measured in 121 young adults. Participants either received hypnotic induction (hypnosis condition) or listened to music (control condition), and both groups were exposed to test suggestions. Blocks of silence and experimental sound stimuli were presented at baseline, after induction, and after de-induction. Skin conductance level (SCL) and high frequency (HF) power of PRV measured at each phase were compared between groups. Hypnosis decreased SCL compared to the control condition; however, there were no group differences in HF power. Furthermore, hypnotic suggestibility did not moderate ANS changes in the hypnosis group. These findings indicate that hypnosis reduces tonic sympathetic nervous system activity, which might explain why hypnosis is effective in the treatment of disorders with strong sympathetic nervous system involvement, such as rheumatoid arthritis, hot flashes, hypertension, and chronic pain. Further studies with different control conditions are required to examine the specificity of the sympathetic effects of hypnosis. © 2015 Society for Psychophysiological Research.

  2. Neuroimmune mechanisms of behavioral alterations in a syngeneic murine model of human papilloma virus-related head and neck cancer.

    Science.gov (United States)

    Vichaya, Elisabeth G; Vermeer, Daniel W; Christian, Diana L; Molkentine, Jessica M; Mason, Kathy A; Lee, John H; Dantzer, Robert

    2017-05-01

    Patients with cancer often experience a high symptom burden prior to the start of treatment. As disease- and treatment-related neurotoxicities appear to be additive, targeting disease-related symptoms may attenuate overall symptom burden for cancer patients and improve the tolerability of treatment. It has been hypothesized that disease-related symptoms are a consequence of tumor-induced inflammation. We tested this hypothesis using a syngeneic heterotopic murine model of human papilloma virus (HPV)-related head and neck cancer. This model has the advantage of being mildly aggressive and not causing cachexia or weight loss. We previously showed that this tumor leads to increased IL-6, IL-1β, and TNF-α expression in the liver and increased IL-1β expression in the brain. The current study confirmed these features and demonstrated that the tumor itself exhibits high inflammatory cytokine expression (e.g., IL-6, IL-1β, and TNF-α) compared to healthy tissue. While there is a clear relationship between cytokine levels and behavioral deficits in this model, the behavioral changes are surprisingly mild. Therefore, we sought to confirm the relationship between behavior and inflammation by amplifying the effect using a low dose of lipopolysaccharide (LPS, 0.1mg/kg). In tumor-bearing mice LPS induced deficits in nest building, tail suspension, and locomotor activity approximately 24h after LPS. However, these mice did not display an exacerbation of LPS-induced weight loss, anorexia, or anhedonia. Further, while heightened serum IL-6 was observed there was minimal priming of liver or brain cytokine expression. Next we sought to inhibit tumor-induced burrowing deficits by reducing inflammation using minocycline. Minocycline (∼50mg/kg/day in drinking water) was able to attenuate tumor-induced inflammation and burrowing deficits. These data provide evidence in favor of an inflammatory-like mechanism for the behavioral alterations associated with tumor growth in a syngeneic

  3. Deletion of vanilloid receptor (TRPV1) in mice alters behavioral effects of ethanol

    Science.gov (United States)

    Blednov, Y.A.; Harris, R.A.

    2009-01-01

    The vanilloid receptor TRPV1 is activated by ethanol and this may be important for some of the central and peripheral actions of ethanol. To determine if this receptor has a role in ethanol-mediated behaviors, we studied null mutant mice in which the Trpv1 gene was deleted. Mice lacking this gene showed significantly higher preference for ethanol and consumed more ethanol in a two-bottle choice test as compared with wild type littermates. Null mutant mice showed shorter duration of loss of righting reflex induced by low doses of ethanol (3.2 and 3.4 g/kg) and faster recovery from motor incoordination induced by ethanol (2 g/kg). However, there were no differences between null mutant and wild type mice in severity of ethanol-induced acute withdrawal (4 g/kg) or conditioned taste aversion to ethanol (2.5 g/kg). Two behavioral phenotypes (decreased sensitivity to ethanol-induced sedation and faster recovery from ethanol-induced motor incoordination) seen in null mutant mice were reproduced in wild type mice by injection of a TRPV1 antagonist, capsazepine (10 mg/kg). These two ethanol behaviors were changed in the opposite direction after injection of capsaicin, a selective TRPV1 agonist, in wild type mice. The studies provide the first evidence that TRPV1 is important for specific behavioral actions of ethanol. PMID:19705551

  4. Diet, age, and prior injury status differentially alter behavioral outcomes following concussion in rats.

    Science.gov (United States)

    Mychasiuk, Richelle; Hehar, Harleen; van Waes, Linda; Esser, Michael J

    2015-01-01

    Mild traumatic brain injury (mTBI) or concussion affects a large portion of the population and although many of these individuals recover completely, a small subset of people experience lingering symptomology and poor outcomes. Little is known about the factors that affect individual susceptibility or resilience to poor outcomes after mTBI and there are currently no biomarkers to delineate mTBI diagnosis or prognosis. Based upon the growing literature associated with caloric intake and altered neurological aging and the ambiguous link between repetitive mTBI and progressive neurodegeneration, the current study was designed to examine the effect of a high fat diet (HFD), developmental age, and repetitive mTBI on behavioral outcomes following a mTBI. In addition, telomere length was examined before and after experimental mTBI. Sprague Dawley rats were maintained on a HFD or standard rat chow throughout life (including the prenatal period) and then experienced an mTBI/concussion at P30, P30 and P60, or only at P60. Behavioral outcomes were examined using a test battery that was administered between P61-P80 and included; beam-walking, open field, elevated plus maze, novel context mismatch, Morris water task, and forced swim task. Animals with a P30 mTBI often demonstrated lingering symptomology that was still present during testing at P80. Injuries at P30 and P60 rarely produced cumulative effects, and in some tests (i.e., beam walking), the first injury may have protected the brain from the second injury. Exposure to the high fat diet exacerbated many of the behavioral deficits associated with concussion. Finally, telomere length was shortened following mTBI and was influenced by the animal's dietary intake. Diet, age at the time of injury, and the number of prior concussion incidents differentially contribute to behavioral deficits and may help explain individual variations in susceptibility and resilience to poor outcomes following an mTBI. Copyright © 2014

  5. Smart home-based health platform for behavioral monitoring and alteration of diabetes patients.

    Science.gov (United States)

    Helal, Abdelsalam; Cook, Diane J; Schmalz, Mark

    2009-01-01

    Researchers and medical practitioners have long sought the ability to continuously and automatically monitor patients beyond the confines of a doctor's office. We describe a smart home monitoring and analysis platform that facilitates the automatic gathering of rich databases of behavioral information in a manner that is transparent to the patient. Collected information will be automatically or manually analyzed and reported to the caregivers and may be interpreted for behavioral modification in the patient. Our health platform consists of five technology layers. The architecture is designed to be flexible, extensible, and transparent, to support plug-and-play operation of new devices and components, and to provide remote monitoring and programming opportunities. The smart home-based health platform technologies have been tested in two physical smart environments. Data that are collected in these implemented physical layers are processed and analyzed by our activity recognition and chewing classification algorithms. All of these components have yielded accurate analyses for subjects in the smart environment test beds. This work represents an important first step in the field of smart environment-based health monitoring and assistance. The architecture can be used to monitor the activity, diet, and exercise compliance of diabetes patients and evaluate the effects of alternative medicine and behavior regimens. We believe these technologies are essential for providing accessible, low-cost health assistance in an individual's own home and for providing the best possible quality of life for individuals with diabetes. © Diabetes Technology Society

  6. Wheel-running activity modulates circadian organization and the daily rhythm of eating behavior

    Science.gov (United States)

    Pendergast, Julie S.; Branecky, Katrina L.; Huang, Roya; Niswender, Kevin D.; Yamazaki, Shin

    2014-01-01

    Consumption of high-fat diet acutely alters the daily rhythm of eating behavior and circadian organization (the phase relationship between oscillators in central and peripheral tissues) in mice. Voluntary wheel-running activity counteracts the obesogenic effects of high-fat diet and also modulates circadian rhythms in mice. In this study, we sought to determine whether voluntary wheel-running activity could prevent the proximate effects of high-fat diet consumption on circadian organization and behavioral rhythms in mice. Mice were housed with locked or freely rotating running wheels and fed chow or high-fat diet for 1 week and rhythms of locomotor activity, eating behavior, and molecular timekeeping (PERIOD2::LUCIFERASE luminescence rhythms) in ex vivo tissues were measured. Wheel-running activity delayed the phase of the liver rhythm by 4 h in both chow- and high-fat diet-fed mice. The delayed liver phase was specific to wheel-running activity since an enriched environment without the running wheel did not alter the phase of the liver rhythm. In addition, wheel-running activity modulated the effect of high-fat diet consumption on the daily rhythm of eating behavior. While high-fat diet consumption caused eating events to be more evenly dispersed across the 24 h-day in both locked-wheel and wheel-running mice, the effect of high-fat diet was much less pronounced in wheel-running mice. Together these data demonstrate that wheel-running activity is a salient factor that modulates liver phase and eating behavior rhythms in both chow- and high-fat-diet fed mice. Wheel-running activity in mice is both a source of exercise and a self-motivating, rewarding behavior. Understanding the putative reward-related mechanisms whereby wheel-running activity alters circadian rhythms could have implications for human obesity since palatable food and exercise may modulate similar reward circuits. PMID:24624109

  7. Structural Alterations in the Corpus Callosum Are Associated with Suicidal Behavior in Women with Borderline Personality Disorder

    Directory of Open Access Journals (Sweden)

    Alexander Lischke

    2017-04-01

    Full Text Available Structural alterations in the corpus callosum (CC, the major white matter tract connecting functionally related brain regions in the two hemispheres, have been shown to be associated with emotional instability, impulsivity and suicidality in various mental disorders. To explore whether structural alterations of the CC would be similarly associated with emotional instability, impulsivity and suicidality in borderline personality disorder (BPD, we used diffusion tensor imaging (DTI to assess the structural integrity of the CC in 21 BPD and 20 healthy control (HC participants. Our hypothesis-driven analyses revealed a positive correlation between BPD participants’ suicidal behavior and fractional anisotropy (FA in the splenium and genu of the CC and a negative correlation between BPD participants’ suicidal behavior and mean diffusivity (MD in the splenium of CC. Our exploratory analyses suggested that suicidal BPD participants showed less FA and more MD in these regions than HC participants but that non-suicidal BPD participants showed similar FA and MD in these regions as HC participants. Taken together, our findings suggest an association between BPD participants’ suicidal behavior and structural alterations in regions of the CC that are connected with brain regions implicated in emotion regulation and impulse control. Structural alterations of the CC may, thus, account for deficits in emotion regulation and impulse control that lead to suicidal behavior in BPD. However, these findings should be considered as preliminary until replicated and extended in future studies that comprise larger samples of suicidal and non-suicidal BPD participants.

  8. The Relationship between Instructor Misbehaviors and Student Antisocial Behavioral Alteration Techniques: The Roles of Instructor Attractiveness, Humor, and Relational Closeness

    Science.gov (United States)

    Claus, Christopher J.; Booth-Butterfield, Melanie; Chory, Rebecca M.

    2012-01-01

    Using rhetorical/relational goal theory as a guiding frame, we examined relationships between instructor misbehaviors (i.e., indolence, incompetence, and offensiveness) and the likelihood of students communicating antisocial behavioral alteration techniques (BATs). More specifically, the study focused on whether students' perceptions of instructor…

  9. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring

    NARCIS (Netherlands)

    Boulle, F.; Pawluski, J.L.; Homberg, J.R.; Machiels, B.; Kroeze, Y.; Kumar, N.; Steinbusch, H.W.; Kenis, G.; Hove, D.L. van den

    2016-01-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has

  10. Arsenic moiety in gallium arsenide is responsible for neuronal apoptosis and behavioral alterations in rats

    International Nuclear Information System (INIS)

    Flora, Swaran J.S.; Bhatt, Kapil; Mehta, Ashish

    2009-01-01

    Gallium arsenide (GaAs), an intermetallic semiconductor finds widespread applications in high frequency microwave and millimeter wave, and ultra fast supercomputers. Extensive use of GaAs has led to increased exposure to humans working in semiconductor industry. GaAs has the ability to dissociate into its constitutive moieties at physiological pH and might be responsible for the oxidative stress. The present study was aimed at evaluating, the principle moiety (Ga or As) in GaAs to cause neurological dysfunction based on its ability to cause apoptosis, in vivo and in vitro and if this neuronal dysfunction translated to neurobehavioral changes in chronically exposed rats. Result indicated that arsenic moiety in GaAs was mainly responsible for causing oxidative stress via increased reactive oxygen species (ROS) and nitric oxide (NO) generation, both in vitro and in vivo. Increased ROS further caused apoptosis via mitochondrial driven pathway. Effects of oxidative stress were also confirmed based on alterations in antioxidant enzymes, GPx, GST and SOD in rat brain. We noted that ROS induced oxidative stress caused changes in the brain neurotransmitter levels, Acetylcholinesterase and nitric oxide synthase, leading to loss of memory and learning in rats. The study demonstrates for the first time that the slow release of arsenic moiety from GaAs is mainly responsible for oxidative stress induced apoptosis in neuronal cells causing behavioral changes.

  11. Mild myelin disruption elicits early alteration in behavior and proliferation in the subventricular zone.

    Science.gov (United States)

    Gould, Elizabeth A; Busquet, Nicolas; Shepherd, Douglas; Dietz, Robert M; Herson, Paco S; Simoes de Souza, Fabio M; Li, Anan; George, Nicholas M; Restrepo, Diego; Macklin, Wendy B

    2018-02-13

    Myelin, the insulating sheath around axons, supports axon function. An important question is the impact of mild myelin disruption. In the absence of the myelin protein proteolipid protein (PLP1), myelin is generated but with age, axonal function/maintenance is disrupted. Axon disruption occurs in Plp1 -null mice as early as 2 months in cortical projection neurons. High-volume cellular quantification techniques revealed a region-specific increase in oligodendrocyte density in the olfactory bulb and rostral corpus callosum that increased during adulthood. A distinct proliferative response of progenitor cells was observed in the subventricular zone (SVZ), while the number and proliferation of parenchymal oligodendrocyte progenitor cells was unchanged. This SVZ proliferative response occurred prior to evidence of axonal disruption. Thus, a novel SVZ response contributes to the region-specific increase in oligodendrocytes in Plp1 -null mice. Young adult Plp1- null mice exhibited subtle but substantial behavioral alterations, indicative of an early impact of mild myelin disruption. © 2018, Gould et al.

  12. Paradoxical sleep deprivation: neurochemical, hormonal and behavioral alterations. Evidence from 30 years of research

    Directory of Open Access Journals (Sweden)

    Sergio Tufik

    2009-09-01

    Full Text Available Sleep comprises approximately one-third of a person's lifetime, but its impact on health and medical conditions remains partially unrecognized. The prevalence of sleep disorders is increasing in modern societies, with significant repercussions on people's well-being. This article reviews past and current literature on the paradoxical sleep deprivation method as well as data on its consequences to animals, ranging from behavioral changes to alterations in the gene expression. More specifically, we highlight relevant experimental studies and our group's contribution over the last three decades.O sono ocupa cerca de um terço de nossas vidas, entretanto seu impacto na saúde e sua influência nas condições patológicas ainda não foi completamente elucidado. A prevalência dos distúrbios de sono é cada vez maior, sobretudo nas regiões mais industrializadas, repercutindo diretamente no bem-estar da população. Este artigo tem como objetivo sintetizar e atualizar a literatura a respeito do método de privação de sono paradoxal e seu panorama de conseqüências desde comportamentais até genéticas em animais. Ainda, destacamos a contribuição e relevância dos estudos experimentais realizados por nosso grupo nas ultimas três décadas.

  13. The effects of a single memantine treatment on behavioral alterations associated with binge alcohol exposure in neonatal rats.

    Science.gov (United States)

    Idrus, Nirelia M; McGough, Nancy N H; Spinetta, Michael J; Thomas, Jennifer D; Riley, Edward P

    2011-01-01

    The third trimester in human fetal development represents a critical time of brain maturation referred to as the "brain growth spurt". This period occurs in rats postnatally, and exposure to ethanol during this time can increase the risk of impairments on a variety of cognitive and motor tasks. It has been proposed that one potential mechanism for the teratogenic effects of ethanol is NMDA receptor-mediated excitotoxicity during periods of ethanol withdrawal. In neonatal rats, antagonism of NMDA receptors during ethanol withdrawal, with drugs such as MK-801 and eliprodil, has been shown to mitigate some of the behavioral deficits induced by developmental ethanol exposure. The current study examined whether memantine, an NMDA receptor antagonist and a drug used clinically in Alzheimer's patients, would attenuate impairments associated with binge ethanol exposure in neonatal rats. On postnatal day 6, rats were exposed to 6 g/kg ethanol via intubation with controls receiving an isocaloric maltose dextrin solution. Twenty-one hours following the ethanol binge, rats received intraperitoneal injections of memantine at 0, 10, 15, or 20 mg/kg. Ethanol's teratogenic effects were assessed using multiple behavioral tasks: open field activity, parallel bars and spatial discrimination reversal learning. Ethanol-treated rats were overactive in the open field and were impaired on both reversal learning and motor performance. Administration of 15 or 20 mg/kg memantine during withdrawal significantly attenuated ethanol's adverse effects on motor coordination, but did not significantly alter activity levels or improve the spatial learning deficits associated with neonatal alcohol exposure. These results indicate that a single memantine administration during ethanol withdrawal can mitigate motor impairments but not spatial learning impairments or overactivity observed following a binge ethanol exposure during development in the rat. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. CRIEPI's research results (2006-2011) and clarified future issues on alteration behavior of bentonite barrier by alkaline solutions

    International Nuclear Information System (INIS)

    Yokoyama, Shingo; Nakamura, Kunihiko; Tanaka, Yukihisa; Hironaga, Michihiko

    2013-01-01

    In radioactive waste disposal facilities, bentonite barrier would be altered by alkaline solutions which arise by leaching of cementitious materials. Consequently suitable properties of the bentonite barrier would be degraded for a long time period. In CRIEPI, the investigation on the alteration of the bentonite under alkaline conditions was started in 2006, and several CRIEPI reports have been published. Specifically, we have investigated the kinetics of montmorillonite dissolution, the mineralogical alteration of compacted bentonite (with high- and low-dry density) and the change of permeability of the compacted bentonite (with high- and low-dry density) during alteration under the alkaline conditions. Furthermore, stability of saponite, which has similar physical properties to the bentonite, under the alkaline conditions was also examined. In this report, we show the outline of those research results, and lay out the clarified future issues extracted from our results. Ten clarified future issues were divided three categories as follows: 1) the estimation of the alteration behavior of the bentonite by alkaline solutions, 2) the elucidation of the mechanism of physical properties (e.g., permeability, swelling properties and mechanistic properties) change of the compacted bentonites during alteration, and 3) the development of the model building and simulation technology concerning the change in physical properties during alteration under alkaline conditions. (author)

  15. Systemic L-Kynurenine sulfate administration disrupts object recognition memory, alters open field behavior and decreases c-Fos immunopositivity in C57Bl/6 mice.

    Science.gov (United States)

    Varga, Dániel; Herédi, Judit; Kánvási, Zita; Ruszka, Marian; Kis, Zsolt; Ono, Etsuro; Iwamori, Naoki; Iwamori, Tokuko; Takakuwa, Hiroki; Vécsei, László; Toldi, József; Gellért, Levente

    2015-01-01

    L-Kynurenine (L-KYN) is a central metabolite of tryptophan degradation through the kynurenine pathway (KP). The systemic administration of L-KYN sulfate (L-KYNs) leads to a rapid elevation of the neuroactive KP metabolite kynurenic acid (KYNA). An elevated level of KYNA may have multiple effects on the synaptic transmission, resulting in complex behavioral changes, such as hypoactivity or spatial working memory deficits. These results emerged from studies that focused on rats, after low-dose L-KYNs treatment. However, in several studies neuroprotection was achieved through the administration of high-dose L-KYNs. In the present study, our aim was to investigate whether the systemic administration of a high dose of L-KYNs (300 mg/bwkg; i.p.) would produce alterations in behavioral tasks (open field or object recognition) in C57Bl/6j mice. To evaluate the changes in neuronal activity after L-KYNs treatment, in a separate group of animals we estimated c-Fos expression levels in the corresponding subcortical brain areas. The L-KYNs treatment did not affect the general ambulatory activity of C57Bl/6j mice, whereas it altered their moving patterns, elevating the movement velocity and resting time. Additionally, it seemed to increase anxiety-like behavior, as peripheral zone preference of the open field arena emerged and the rearing activity was attenuated. The treatment also completely abolished the formation of object recognition memory and resulted in decreases in the number of c-Fos-immunopositive-cells in the dorsal part of the striatum and in the CA1 pyramidal cell layer of the hippocampus. We conclude that a single exposure to L-KYNs leads to behavioral disturbances, which might be related to the altered basal c-Fos protein expression in C57Bl/6j mice.

  16. Maternal environment alters social interactive traits but not open-field behavior in Fischer 344 rats.

    Science.gov (United States)

    Yamamuro, Yutaka

    2008-10-01

    Although it is recognized that the genetic background governs behavioral phenotypes, environmental factors also play a critical role in the development of various behavioral processes. The maternal environment has a major impact on pups, and the cross-fostering procedure is used to determine the influence of early life experiences. The present study examined the influence of maternal environment on behavioral traits in inbred Fischer 344 (F344) rats. F344/DuCrlCrlj and Wistar (Crlj:WI) pups were fostered from postnatal day 1 as follows: Wistar pups raised by Wistar dams, F344 raised by Wistar, Wistar raised by F344, and F344 raised by F344. At 10 weeks of age, rats were randomly assigned to an open-field test and social interaction test. In the open-field test, irrespective of the rearing conditions, the activity during the first 1 min was significantly lower in F344 rats than in Wistar rats. Latency to the onset of movement showed no difference between groups. In the social interaction test, the recognition performance during the first 1 min in F344 raised by F344 was significantly shorter than that in the other groups. The onset of recognition to a novel social partner in F344 raised by F344 was significantly delayed, and the delay disappeared upon cross-fostering by Wistar dams. These results raise the possibility that the behavioral phenotype of F344 rats results from the interplay of genetic factors and maternal environment during early life, and that F344 rats are a strain with high susceptibility to rearing conditions for the formation of their emotionality.

  17. Protective effect of curcumin (Curcuma longa), against aluminium toxicity: Possible behavioral and biochemical alterations in rats.

    Science.gov (United States)

    Kumar, Anil; Dogra, Samrita; Prakash, Atish

    2009-12-28

    Aluminium is a potent neurotoxin and has been associated with Alzheimer's disease (AD) causality for decades. Prolonged aluminium exposure induces oxidative stress and increases amyloid beta levels in vivo. Current treatment modalities for AD provide only symptomatic relief thus necessitating the development of new drugs with fewer side effects. The aim of the study was to demonstrate the protective effect of chronic curcumin administration against aluminium-induced cognitive dysfunction and oxidative damage in rats. Aluminium chloride (100 mg/kg, p.o.) was administered to rats daily for 6 weeks. Rats were concomitantly treated with curcumin (per se; 30 and 60 mg/kg, p.o.) daily for a period of 6 weeks. On the 21st and 42nd day of the study behavioral studies to evaluate memory (Morris water maze and elevated plus maze task paradigms) and locomotion (photoactometer) were done. The rats were sacrificed on 43rd day following the last behavioral test and various biochemical tests were performed to assess the extent of oxidative damage. Chronic aluminium chloride administration resulted in poor retention of memory in Morris water maze, elevated plus maze task paradigms and caused marked oxidative damage. It also caused a significant increase in the acetylcholinesterase activity and aluminium concentration in aluminium treated rats. Chronic administration of curcumin significantly improved memory retention in both tasks, attenuated oxidative damage, acetylcholinesterase activity and aluminium concentration in aluminium treated rats (Paluminium-induced cognitive dysfunction and oxidative damage.

  18. Altered synaptic phospholipid signaling in PRG-1 deficient mice induces exploratory behavior and motor hyperactivity resembling psychiatric disorders.

    Science.gov (United States)

    Schneider, Patrick; Petzold, Sandra; Sommer, Angela; Nitsch, Robert; Schwegler, Herbert; Vogt, Johannes; Roskoden, Thomas

    2018-01-15

    Plasticity related gene 1 (PRG-1) is a neuron specific membrane protein located at the postsynaptic density of glutamatergic synapses. PRG-1 modulates signaling pathways of phosphorylated lipid substrates such as lysophosphatidic acid (LPA). Deletion of PRG-1 increases presynaptic glutamate release probability leading to neuronal over-excitation. However, due to its cortical expression, PRG-1 deficiency leading to increased glutamatergic transmission is supposed to also affect motor pathways. We therefore analyzed the effects of PRG-1 function on exploratory and motor behavior using homozygous PRG-1 knockout (PRG-1 -/- ) mice and PRG-1/LPA 2 -receptor double knockout (PRG-1 -/- /LPA 2 -/- ) mice in two open field settings of different size and assessing motor behavior in the Rota Rod test. PRG-1 -/- mice displayed significantly longer path lengths and higher running speed in both open field conditions. In addition, PRG-1 -/- mice spent significantly longer time in the larger open field and displayed rearing and self-grooming behavior. Furthermore PRG-1 -/- mice displayed stereotypical behavior resembling phenotypes of psychiatric disorders in the smaller sized open field arena. Altogether, this behavior is similar to the stereotypical behavior observed in animal models for psychiatric disease of autistic spectrum disorders which reflects a disrupted balance between glutamatergic and GABAergic synapses. These differences indicate an altered excitation/inhibition balance in neuronal circuits in PRG-1 -/- mice as recently shown in the somatosensory cortex [38]. In contrast, PRG-1 -/- /LPA 2 -/- did not show significant changes in behavior in the open field suggesting that these specific alterations were abolished when the LPA 2 -receptor was lacking. Our findings indicate that PRG-1 deficiency led to over-excitability caused by an altered LPA/LPA 2 -R signaling inducing a behavioral phenotype typically observed in animal models for psychiatric disorders. Copyright

  19. Phencyclidine administration during neurodevelopment alters network activity in prefrontal cortex and hippocampus in adult rats

    DEFF Research Database (Denmark)

    Kjaerby, Celia; Hovelsø, Nanna; Dalby, Nils Ole

    2017-01-01

    Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim of...... in the evolvement of schizophrenia-like symptoms and contribute to the understanding of the functional deficits underlying aberrant behavior in this disease.......Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim...... that NMDAR antagonist exposure during brain development alters functional networks within hippocampus and mPFC possibly contributing to the reported behavioral symptoms of this animal model of schizophrenia.NEW & NOTEWORTHY We show that insults with a NMDA receptor antagonist during neurodevelopment lead...

  20. Physical Activity, Sedentary Behavior, and Dietary Patterns among Children

    NARCIS (Netherlands)

    Gubbels, J.S.; van Assema, P.; Kremers, S.P.

    2013-01-01

    Energy balance-related behavioral patterns find their origin in early The current paper provides an overview of studies that have examined behavioral patterns, i.e., the clustering of dietary behaviors, physical activity, and/or sedentary behavior. The paper discusses the importance examining energy

  1. Aqueous exposure to the progestin, levonorgestrel, alters anal fin development and reproductive behavior in the eastern mosquitofish (Gambusia holbrooki)

    Science.gov (United States)

    Frankel, Tyler E.; Meyer, Michael T.; Orlando, Edward F.

    2016-01-01

    Endogenous progestogens are important regulators of vertebrate reproduction. Synthetic progestins are components of human contraceptive and hormone replacement pharmaceuticals. Both progestogens and progestins enter the environment through a number of sources, and have been shown to cause profound effects on reproductive health in various aquatic vertebrates. Progestins are designed to bind human progesterone receptors, but they also have been shown to strongly activate androgen receptors in fish. Levonorgestrel (LNG) activates fish androgen receptors and induces development of male secondary sex characteristics in females of other species. Although behavior has been postulated to be a sensitive early indicator of exposure to certain environmental contaminants, no such research on the reproductive behavior of gestagen-exposed fish has been conducted to date. The goal of our study was to examine the exposure effects of a human contraceptive progestin, LNG, on the reproductive development and behavior of the viviparous eastern mosquitofish (Gambusia holbrooki). Internal fertilization is a requisite characteristic of viviparous species, and is enabled by an androgen driven elongation of the anal fin into the male gonopodium (i.e., phallus). In this study, we exposed adult mosquitofish to ethanol (EtOH control), 10 ng/L, and 100 ng/L LNG for 8 d using a static replacement exposure design. After 8 d, a subset of males and females from each treatment were examined for differences in the 4:6 anal fin ratio. In addition, paired social interaction trials were performed using individual control males and control females or females treated 10 ng/L or 100 ng/L LNG. Female mosquitofish exposed to LNG were masculinized as evidenced by the elongation of the anal fin rays, a feature normal to males and abnormal to females. LNG caused significant increases in the 4:6 anal fin ratios of female mosquitofish in both the 10 ng/L and 100 ng/L treatments, although these

  2. Altered mucosal DNA methylation in parallel with highly active Helicobacter pylori-related gastritis.

    Science.gov (United States)

    Yoshida, Takeichi; Kato, Jun; Maekita, Takao; Yamashita, Satoshi; Enomoto, Shotaro; Ando, Takayuki; Niwa, Tohru; Deguchi, Hisanobu; Ueda, Kazuki; Inoue, Izumi; Iguchi, Mikitaka; Tamai, Hideyuki; Ushijima, Toshikazu; Ichinose, Masao

    2013-10-01

    Chronic inflammation triggered by Helicobacter pylori causes altered DNA methylation in stomach mucosae, which is deeply involved in gastric carcinogenesis. This study aimed to elucidate the correlation between altered mucosal DNA methylation levels and activity of H. pylori-related gastritis, because inflammatory activity shows particular correlations with the development of diffuse-type cancer. Methylation levels in stomach mucosae of 78 healthy volunteers were determined by real-time methylation-specific PCR or bisulfite pyrosequencing. Examined loci were the promoter CpG islands of six genes (FLNc, HAND1, THBD, p41ARC, HRASLS, and LOX) and the CpG sites of non-coding repetitive elements (Alu and Satα) that are reportedly altered by H. pylori infection. Activity of H. pylori-related gastritis was evaluated using two serum markers: H. pylori antibody titer and pepsinogen II. Methylation levels of the six CpG islands were consistently increased, and those of the two repetitive elements were consistently decreased in a stepwise manner with the activity of gastric inflammation as represented by serum marker levels. Each serum marker level was well correlated with the overall DNA methylation status of stomach mucosa, and these two serologic markers were additive in the detection of the mucosa with severely altered DNA methylation. Alteration in mucosal DNA methylation level was closely correlated with activity of H. pylori-related gastritis as evaluated by serum markers. The observed correlation between altered DNA methylation levels and activity of H. pylori-related gastritis appears to be one of the relevant molecular mechanisms underlying the development of diffuse-type cancer.

  3. Alterations in Resting-State Activity Relate to Performance in a Verbal Recognition Task

    Science.gov (United States)

    López Zunini, Rocío A.; Thivierge, Jean-Philippe; Kousaie, Shanna; Sheppard, Christine; Taler, Vanessa

    2013-01-01

    In the brain, resting-state activity refers to non-random patterns of intrinsic activity occurring when participants are not actively engaged in a task. We monitored resting-state activity using electroencephalogram (EEG) both before and after a verbal recognition task. We show a strong positive correlation between accuracy in verbal recognition and pre-task resting-state alpha power at posterior sites. We further characterized this effect by examining resting-state post-task activity. We found marked alterations in resting-state alpha power when comparing pre- and post-task periods, with more pronounced alterations in participants that attained higher task accuracy. These findings support a dynamical view of cognitive processes where patterns of ongoing brain activity can facilitate –or interfere– with optimal task performance. PMID:23785436

  4. Dietary isoflavones alter regulatory behaviors, metabolic hormones and neuroendocrine function in Long-Evans male rats

    Directory of Open Access Journals (Sweden)

    Bu Lihong

    2004-12-01

    protein (UCP-1 mRNA levels in brown adipose tissue (BAT were seen in Phyto-600 fed males. However, decreased core body temperature was recorded in these same animals compared to Phyto-free fed animals. Conclusions This study demonstrates that consumption of a soy-based (isoflavone-rich diet, significantly alters several parameters involved in maintaining body homeostatic balance, energy expenditure, feeding behavior, hormonal, metabolic and neuroendocrine function in male rats.

  5. Gender-specific alteration of energy balance and circadian locomotor activity in the Crtc1 knockout mouse model of depression

    KAUST Repository

    Rossetti, Clara

    2017-12-06

    Obesity and depression are major public health concerns, and there is increasing evidence that they share etiological mechanisms. CREB-regulated transcription coactivator 1 (CRTC1) participates in neurobiological pathways involved in both mood and energy balance regulation. Crtc1 -/- mice rapidly develop a depressive-like and obese phenotype in early adulthood, and are therefore a relevant animal model to explore possible common mechanisms underlying mood disorders and obesity. Here, the obese phenotype of male and female Crtc1 -/- mice was further characterized by investigating CRTC1\\'s role in the homeostatic and hedonic regulation of food intake, as well as its influence on daily locomotor activity. Crtc1 -/- mice showed a strong gender difference in the homeostatic regulation of energy balance. Mutant males were hyperphagic and rapidly developed obesity on normal chow diet, whereas Crtc1 -/- females exhibited mild late-onset obesity without hyperphagia. Overeating of mutant males was accompanied by alterations in the expression of several orexigenic and anorexigenic hypothalamic genes, thus confirming a key role of CRTC1 in the central regulation of food intake. No alteration in preference and conditioned response for saccharine was observed in Crtc1 -/- mice, suggesting that mutant males\\' hyperphagia was not due to an altered hedonic regulation of food intake. Intriguingly, mutant males exhibited a hyperphagic behavior only during the resting (diurnal) phase of the light cycle. This abnormal feeding behavior was associated with a higher diurnal locomotor activity indicating that the lack of CRTC1 may affect circadian rhythmicity. Collectively, these findings highlight the male-specific involvement of CRTC1 in the central control of energy balance and circadian locomotor activity.

  6. Gender-specific alteration of energy balance and circadian locomotor activity in the Crtc1 knockout mouse model of depression

    KAUST Repository

    Rossetti, Clara; Sciarra, Daniel; Petit, Jean-Marie; Eap, Chin B.; Halfon, Olivier; Magistretti, Pierre J.; Boutrel, Benjamin; Cardinaux, Jean-René

    2017-01-01

    Obesity and depression are major public health concerns, and there is increasing evidence that they share etiological mechanisms. CREB-regulated transcription coactivator 1 (CRTC1) participates in neurobiological pathways involved in both mood and energy balance regulation. Crtc1 -/- mice rapidly develop a depressive-like and obese phenotype in early adulthood, and are therefore a relevant animal model to explore possible common mechanisms underlying mood disorders and obesity. Here, the obese phenotype of male and female Crtc1 -/- mice was further characterized by investigating CRTC1's role in the homeostatic and hedonic regulation of food intake, as well as its influence on daily locomotor activity. Crtc1 -/- mice showed a strong gender difference in the homeostatic regulation of energy balance. Mutant males were hyperphagic and rapidly developed obesity on normal chow diet, whereas Crtc1 -/- females exhibited mild late-onset obesity without hyperphagia. Overeating of mutant males was accompanied by alterations in the expression of several orexigenic and anorexigenic hypothalamic genes, thus confirming a key role of CRTC1 in the central regulation of food intake. No alteration in preference and conditioned response for saccharine was observed in Crtc1 -/- mice, suggesting that mutant males' hyperphagia was not due to an altered hedonic regulation of food intake. Intriguingly, mutant males exhibited a hyperphagic behavior only during the resting (diurnal) phase of the light cycle. This abnormal feeding behavior was associated with a higher diurnal locomotor activity indicating that the lack of CRTC1 may affect circadian rhythmicity. Collectively, these findings highlight the male-specific involvement of CRTC1 in the central control of energy balance and circadian locomotor activity.

  7. Altered Neural Activity Associated with Mindfulness during Nociception: A Systematic Review of Functional MRI

    Directory of Open Access Journals (Sweden)

    Elena Bilevicius

    2016-04-01

    Full Text Available Objective: To assess the neural activity associated with mindfulness-based alterations of pain perception. Methods: The Cochrane Central, EMBASE, Ovid Medline, PsycINFO, Scopus, and Web of Science databases were searched on 2 February 2016. Titles, abstracts, and full-text articles were independently screened by two reviewers. Data were independently extracted from records that included topics of functional neuroimaging, pain, and mindfulness interventions. Results: The literature search produced 946 total records, of which five met the inclusion criteria. Records reported pain in terms of anticipation (n = 2, unpleasantness (n = 5, and intensity (n = 5, and how mindfulness conditions altered the neural activity during noxious stimulation accordingly. Conclusions: Although the studies were inconsistent in relating pain components to neural activity, in general, mindfulness was able to reduce pain anticipation and unpleasantness ratings, as well as alter the corresponding neural activity. The major neural underpinnings of mindfulness-based pain reduction consisted of altered activity in the anterior cingulate cortex, insula, and dorsolateral prefrontal cortex.

  8. The behavior of an opponent alters pacing decisions in 4-km cycling time trials.

    Science.gov (United States)

    Konings, Marco J; Schoenmakers, Patrick P J M; Walker, Andrew J; Hettinga, Florentina J

    2016-05-01

    The present study aimed to explore how athletes respond to different behaviors of their opponents. Twelve moderately to highly physically active participants with at least two years of cycling experience completed four 4-km time trials on a Velotron cycle ergometer. After a familiarization time trial (FAM), participants performed three experimental time trials in randomized order with no opponent (NO), a virtual opponent who started slower and finished faster compared to FAM (OP-SLOWFAST), or a virtual opponent who started faster and finished slower compared to FAM (OP-FASTSLOW). Repeated-measures ANOVAs (Ppower output, velocity and RPE. OP-SLOWFAST and OP-FASTSLOW were completed faster compared to NO (385.5±27.5, 385.0±28.6, and 390.6±29.3s, respectively). An interaction effect for condition×distance (F=3.944, Ppower outputs by the participants in the initial 750m compared to a slower starting opponent. The present study is the first to show that the behavior of an opponent affects pacing-related decisions in laboratory-controlled conditions. Our findings support the recently proposed interdependence of perception and action, and emphasize the interaction with the environment as an important determinant for an athlete's pacing decisions, especially during the initial stages of a race. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Alternative complement pathway and factor B activities in rats with altered blood levels of thyroid hormone

    Energy Technology Data Exchange (ETDEWEB)

    Bitencourt, C.S. [Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Duarte, C.G.; Azzolini, A.E.C.S.; Assis-Pandochi, A.I. [Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2012-03-02

    Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP) activity in male Wistar rats (180 ± 10 g) after altering their thyroid hormone levels by treatment with triiodothyronine (T3), propylthiouracil (PTU) or thyroidectomy. T3 and thyroxine (T4) levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg). Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01). In contrast, increased factor B concentration and activity (32%) were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production.

  10. Alternative complement pathway and factor B activities in rats with altered blood levels of thyroid hormone

    International Nuclear Information System (INIS)

    Bitencourt, C.S.; Duarte, C.G.; Azzolini, A.E.C.S.; Assis-Pandochi, A.I.

    2012-01-01

    Evaluating the activity of the complement system under conditions of altered thyroid hormone levels might help elucidate the role of complement in triggering autoimmune processes. Here, we investigated alternative pathway (AP) activity in male Wistar rats (180 ± 10 g) after altering their thyroid hormone levels by treatment with triiodothyronine (T3), propylthiouracil (PTU) or thyroidectomy. T3 and thyroxine (T4) levels were determined by chemiluminescence assays. Hemolytic assays were performed to evaluate the lytic activity of the AP. Factor B activity was evaluated using factor B-deficient serum. An anti-human factor B antibody was used to measure factor B levels in serum by radial immunodiffusion. T3 measurements in thyroidectomized animals or animals treated with PTU demonstrated a significant reduction in hormone levels compared to control. The results showed a reduction in AP lytic activity in rats treated with increasing amounts of T3 (1, 10, or 50 µg). Factor B activity was also decreased in the sera of hyperthyroid rats treated with 1 to 50 µg T3. Additionally, treating rats with 25 µg T3 significantly increased factor B levels in their sera (P < 0.01). In contrast, increased factor B concentration and activity (32%) were observed in hypothyroid rats. We conclude that alterations in thyroid hormone levels affect the activity of the AP and factor B, which may in turn affect the roles of AP and factor B in antibody production

  11. Functional inactivation of dorsal medial striatum alters behavioral flexibility and recognition process in mice.

    Science.gov (United States)

    Qiao, Yanhua; Wang, Xingyue; Ma, Lian; Li, Shengguang; Liang, Jing

    2017-10-01

    Deficits in behavioral flexibility and recognition memory are commonly observed in mental illnesses and neurodegenerative diseases. Abnormality of the striatum has been implicated in an association with the pathology of these diseases. However, the exact roles of striatal heterogeneous structures in these cognitive functions are still unknown. In the present study, we investigated the effects of suppressing neuronal activity in the dorsomedial striatum (DMStr) and nucleus accumbens core (NAcC) on reversal learning and novelty recognition in mice. In addition, the locomotor activity, anxiety-like behavior and social interaction were analyzed. Neuronal inactivation was performed by expressing lentivirus-mediated tetanus toxin (TeNT) in the target regions. The results showed that reversal learning was facilitated by neuronal inactivation in the DMStr but not the NAcC, which was attributable to accelerated extinction of acquired strategy but not to impaired memory retention. Furthermore, mice with NAcC inactivation spent more time exploring a novel object than a familiar one, comparable to control mice. In contrast, mice with DMStr inactivation exhibited no preference to a novel environment during the novel object or place recognition test. The DMStr mice also exhibited decreased anxiety level. No phenotypic effect was observed in the locomotion or social interaction in mice with either DMStr or NAcC inactivation. Altogether, these findings suggest that the DMStr but not the ventral area of the striatum plays a crucial role in learning and memory by coordinating spatial exploration as well as mediating information updating. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Trpc2-deficient lactating mice exhibit altered brain and behavioral responses to bedding stimuli.

    Science.gov (United States)

    Hasen, Nina S; Gammie, Stephen C

    2011-03-01

    The trpc2 gene encodes an ion channel involved in pheromonal detection and is found in the vomeronasal organ. In tprc2(-/-) knockout (KO) mice, maternal aggression (offspring protection) is impaired and brain Fos expression in females in response to a male are reduced. Here we examine in lactating wild-type (WT) and KO mice behavioral and brain responses to different olfactory/pheromonal cues. Consistent with previous studies, KO dams exhibited decreased maternal aggression and nest building, but we also identified deficits in nighttime nursing and increases in pup weight. When exposed to the bedding tests, WT dams typically ignored clean bedding, but buried male-soiled bedding from unfamiliar males. In contrast, KO dams buried both clean and soiled bedding. Differences in brain Fos expression were found between WT and KO mice in response to either no bedding, clean bedding, or soiled bedding. In the accessory olfactory bulb, a site of pheromonal signal processing, KO mice showed suppressed Fos activation in the anterior mitral layer relative to WT mice in response to clean and soiled bedding. However, in the medial and basolateral amygdala, KO mice showed a robust Fos response to bedding, suggesting that regions of the amygdala canonically associated with pheromonal sensing can be active in the brains of KO mice, despite compromised signaling from the vomeronasal organ. Together, these results provide further insights into the complex ways by which pheromonal signaling regulates the brain and behavior of the maternal female. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. AAV-mediated overexpression of the CB1 receptor in the mPFC of adult rats alters cognitive flexibility, social behavior and emotional reactivity

    Directory of Open Access Journals (Sweden)

    Matthias eKlugmann

    2011-07-01

    Full Text Available The endocannabinoid (ECB system is strongly involved in the regulation of cognitive processing and emotional behavior and evidence indicates that ECB signaling might affect these behavioral abilities by modulations of prefrontal cortical functions. The aim of the present study was to examine the role of the CB1 receptor in the medial prefrontal cortex (mPFC on cognitive flexibility and emotional behavior. Therefore, the CB1 receptor was overexpressed by adeno-associated virus (AAV vector-mediated gene transfer specifically in the mPFC of adult Wistar rats. Animals were then tested in different anxiety-related paradigms for emotional reactivity (e.g. elevated plus maze (EPM, light/dark emergence test (EMT, social interaction and the attentional set shift task (ASST - an adaptation of the human Wisconsin card sorting test - for cognitive abilities and behavioral flexibility. A subtle increase in exploratory behavior was found in CB1 receptor overexpressing animals (CB1-R compared to empty vector injected controls (Empty in the EMT and EPM, although general locomotor activity did not differ between the groups. During social interaction testing, social contact behavior towards the unknown conspecific was found to be decreased, whereas social withdrawal was increased in CB1-R animals and they showed an inadequate increase in exploratory behavior compared to control animals. In the ASST, impaired reversal learning abilities were detected in CB1-R animals compared to controls, indicating reduced behavioral flexibility. In conclusion, upregulation of the CB1 receptor specifically in the rat mPFC induces alterations in emotional reactivity, leads to inadequate social behavior and impairs cognitive flexibility. These findings might be relevant for neuropsychiatric disorders, since higher cortical CB1 receptor expression levels as well as similar behavioral impairments as observed in the present study have been described in schizophrenic patients.

  14. Physical Activity, Sedentary Behavior, and Dietary Patterns among Children

    OpenAIRE

    Gubbels, Jessica S.; van Assema, Patricia; Kremers, Stef P. J.

    2013-01-01

    Energy balance-related behavioral patterns find their origin in early childhood. The current paper provides an overview of studies that have examined such behavioral patterns, i.e., the clustering of dietary behaviors, physical activity, and/or sedentary behavior. The paper discusses the importance of examining energy balance-related behavioral patterns in children, outlines methods to examine these patterns, and provides examples of patterns that have been found (e.g., the universal sedentar...

  15. Prenatal exposure to aflatoxin B1: developmental, behavioral, and reproductive alterations in male rats

    Science.gov (United States)

    Supriya, Ch.; Reddy, P. Sreenivasula

    2015-06-01

    Previous studies have shown that aflatoxin B1 (AfB1) inhibits androgen biosynthesis as a result of its ability to form a high-affinity complex with the steroidogenic acute regulatory protein. The results of the present study demonstrate the postnatal effects of in utero exposure to AfB1 in the rat. Pregnant Wistar rats were given 10, 20, or 50 μg AfB1/kg body weight daily from gestation day (GD) 12 to GD 19. At parturition, newborns were observed for clinical signs and survival. All animals were born alive and initially appeared to be active. Male pups from control and AfB1-exposed animals were weaned and maintained up to postnatal day (PD) 100. Litter size, birth weight, sex ratio, survival rate, and crown-rump length of the pups were significantly decreased in AfB1-exposed rats when compared to controls. Elapsed time (days) for testes to descend into the scrotal sac was significantly delayed in experimental pups when compared to control pups. Behavioral observations such as cliff avoidance, negative geotaxis, surface rightening activity, ascending wire mesh, open field behavior, and exploratory and locomotory activities were significantly impaired in experimental pups. Body weights and the indices of testis, cauda epididymis, prostate, seminal vesicles, and liver were significantly reduced on PD 100 in male rats exposed to AfB1 during embryonic development when compared with controls. Significant reduction in the testicular daily sperm production, epididymal sperm count, and number of viable, motile, and hypo-osmotic tail coiled sperm was observed in experimental rats. The levels of serum testosterone and activity levels of testicular hydroxysteroid dehydrogenases were significantly decreased in a dose-dependent manner with a significant increase in the serum follicle-stimulating hormone and luteinizing hormone in experimental rats. Deterioration in the testicular and cauda epididymal architecture was observed in experimental rats. The results of fertility

  16. Maternal Inflammation Contributes to Brain Overgrowth and Autism-Associated Behaviors through Altered Redox Signaling in Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Janel E. Le Belle

    2014-11-01

    Full Text Available A period of mild brain overgrowth with an unknown etiology has been identified as one of the most common phenotypes in autism. Here, we test the hypothesis that maternal inflammation during critical periods of embryonic development can cause brain overgrowth and autism-associated behaviors as a result of altered neural stem cell function. Pregnant mice treated with low-dose lipopolysaccharide at embryonic day 9 had offspring with brain overgrowth, with a more pronounced effect in PTEN heterozygotes. Exposure to maternal inflammation also enhanced NADPH oxidase (NOX-PI3K pathway signaling, stimulated the hyperproliferation of neural stem and progenitor cells, increased forebrain microglia, and produced abnormal autism-associated behaviors in affected pups. Our evidence supports the idea that a prenatal neuroinflammatory dysregulation in neural stem cell redox signaling can act in concert with underlying genetic susceptibilities to affect cellular responses to environmentally altered cellular levels of reactive oxygen species.

  17. A Secure Behavior Modification Sensor System for Physical Activity Improvement

    Science.gov (United States)

    Price, Alan

    2011-01-01

    Today, advances in wireless sensor networks are making it possible to capture large amounts of information about a person and their interaction within their home environment. However, what is missing is how to ensure the security of the collected data and its use to alter human behavior for positive benefit. In this research, exploration was…

  18. Translational Rodent Paradigms to Investigate Neuromechanisms Underlying Behaviors Relevant to Amotivation and Altered Reward Processing in Schizophrenia.

    Science.gov (United States)

    Young, Jared W; Markou, Athina

    2015-09-01

    Amotivation and reward-processing deficits have long been described in patients with schizophrenia and considered large contributors to patients' inability to integrate well in society. No effective treatments exist for these symptoms, partly because the neuromechanisms mediating such symptoms are poorly understood. Here, we propose a translational neuroscientific approach that can be used to assess reward/motivational deficits related to the negative symptoms of schizophrenia using behavioral paradigms that can also be conducted in experimental animals. By designing and using objective laboratory behavioral tools that are parallel in their parameters in rodents and humans, the neuromechanisms underlying behaviors with relevance to these symptoms of schizophrenia can be investigated. We describe tasks that measure the motivation of rodents to expend physical and cognitive effort to gain rewards, as well as probabilistic learning tasks that assess both reward learning and feedback-based decision making. The latter tasks are relevant because of demonstrated links of performance deficits correlating with negative symptoms in patients with schizophrenia. These tasks utilize operant techniques in order to investigate neural circuits targeting a specific domain across species. These tasks therefore enable the development of insights into altered mechanisms leading to negative symptom-relevant behaviors in patients with schizophrenia. Such findings will then enable the development of targeted treatments for these altered neuromechanisms and behaviors seen in schizophrenia. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  19. An Integrative Neuroscience Framework for the Treatment of Chronic Pain: From Cellular Alterations to Behavior

    Directory of Open Access Journals (Sweden)

    Jess D. Greenwald

    2018-05-01

    Full Text Available Chronic pain can result from many pain syndromes including complex regional pain syndrome (CRPS, phantom limb pain and chronic low back pain, among others. On a molecular level, chronic pain syndromes arise from hypersensitization within the dorsal horn of the spinal cord, a process known as central sensitization. Central sensitization involves an upregulation of ionotropic and metabotropic glutamate receptors (mGluRs similar to that of long-term potentiation (LTP. Regions of the brain in which LTP occurs, such as the amygdala and hippocampus, are implicated in fear- and memory-related brain circuity. Chronic pain dramatically influences patient quality of life. Individuals with chronic pain may develop pain-related anxiety and pain-related fear. The syndrome also alters functional connectivity in the default-mode network (DMN and salience network. On a cellular/molecular level, central sensitization may be reversed through degradative glutamate receptor pathways. This, however, rarely happens. Instead, cortical brain regions may serve in a top-down regulatory capacity for the maintenance or alleviation of pain. Specifically, the medial prefrontal cortex (mPFC, which plays a critical role in fear-related brain circuits, the DMN, and salience network may be the driving forces in this process. On a cellular level, the mPFC may form new neural circuits through LTP that may cause extinction of pre-existing pain pathways found within fear-related brain circuits, the DMN, and salience network. In order to promote new LTP connections between the mPFC and other key brain structures, such as the amygdala and insula, we propose a holistic rehabilitation program including cognitive behavioral therapy (CBT and revolving around: (1 cognitive reappraisals; (2 mindfulness meditation; and (3 functional rehabilitation. Unlike current medical interventions focusing upon pain-relieving medications, we do not believe that chronic pain treatment should focus on

  20. Nanomolar Bifenthrin Alters Synchronous Ca2+ Oscillations and Cortical Neuron Development Independent of Sodium Channel Activity

    OpenAIRE

    Cao, Zhengyu; Cui, Yanjun; Nguyen, Hai M.; Jenkins, David Paul; Wulff, Heike; Pessah, Isaac N.

    2014-01-01

    Bifenthrin, a relatively stable type I pyrethroid that causes tremors and impairs motor activity in rodents, is broadly used. We investigated whether nanomolar bifenthrin alters synchronous Ca 2+ oscillations (SCOs) necessary for activity-dependent dendritic development. Primary mouse cortical neurons were cultured 8 or 9 days in vitro (DIV), loaded with the Ca2+ indicator Fluo-4, and imaged using a Fluorescence Imaging Plate Reader Tetra. Acute exposure to bifenthrin rapidly increased the fr...

  1. MDMA self-administration fails to alter the behavioral response to 5-HT(1A) and 5-HT(1B) agonists.

    Science.gov (United States)

    Aronsen, Dane; Schenk, Susan

    2016-04-01

    Regular use of the street drug, ecstasy, produces a number of cognitive and behavioral deficits. One possible mechanism for these deficits is functional changes in serotonin (5-HT) receptors as a consequence of prolonged 3,4 methylenedioxymethamphetamine (MDMA)-produced 5-HT release. Of particular interest are the 5-HT(1A) and 5-HT(1B) receptor subtypes since they have been implicated in several of the behaviors that have been shown to be impacted in ecstasy users and in animals exposed to MDMA. This study aimed to determine the effect of extensive MDMA self-administration on behavioral responses to the 5-HT(1A) agonist, 8-hydroxy-2-(n-dipropylamino)tetralin (8-OH-DPAT), and the 5-HT(1B/1A) agonist, RU 24969. Male Sprague-Dawley rats self-administered a total of 350 mg/kg MDMA, or vehicle, over 20-58 daily self-administration sessions. Two days after the last self-administration session, the hyperactive response to 8-OH-DPAT (0.03-1.0 mg/kg) or the adipsic response to RU 24969 (0.3-3.0 mg/kg) were assessed. 8-OH-DPAT dose dependently increased horizontal activity, but this response was not altered by MDMA self-administration. The dose-response curve for RU 24969-produced adipsia was also not altered by MDMA self-administration. Cognitive and behavioral deficits produced by repeated exposure to MDMA self-administration are not likely due to alterations in 5-HT(1A) or 5-HT(1B) receptor mechanisms.

  2. Sesamol, a lipid lowering agent, ameliorates aluminium chloride induced behavioral and biochemical alterations in rats.

    Science.gov (United States)

    John, Jessy; Nampoothiri, Madhavan; Kumar, Nitesh; Mudgal, Jayesh; Nampurath, Gopalan Kutty; Chamallamudi, Mallikarjuna Rao

    2015-01-01

    Sesame oil from the seeds of Sesamum indicum Linn. (Pedaliaceae) has been used traditionally in Indian medical practice of Ayurveda in the treatment of central nervous system disorders and insomnia. A few published reports favor the anti-dementia effect of sesamol (SML), an active constituent of sesame oil. Thus, the present study was aimed to explore the anti-dementia effect and possible mechanism (s) of SML in aluminium chloride (AlCl3)-induced cognitive dysfunction model in rodents with special emphasis on memory centers viz., hippocampus and frontal cortex. Male Wistar rats were exposed to AlCl3 (175 mg/kg p.o.) for 60 days. SML (10 and 20 mg/kg) and rivastigmine (1 mg/kg) were administered orally 45 min before administration of AlCl3 for 60 days. Spatial memory was assessed using Morris water maze test. After 60 days of treatment animals were sacrificed, hippocampus and frontal cortex were collected and analyzed for acetylcholinesterase (AChE) activity, tumor necrosis factor (TNF-α) level, antioxidant enzymes (Glutathione, catalase), lipid peroxidation, and nitrite level. The circulating triglycerides, total cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) levels were also analyzed. SML significantly prevented behavioral impairments in aluminium-exposed rats. Treatment with SML reversed the increased cholesterol, triglycerides and LDL while raised the HDL levels. SML significantly corrected the effect of AlCl3 on AChE activity. Further, SML reversed the elevated nitric oxide, TNF-α and reduced antioxidant enzymes in hippocampus and frontal cortex. The present study suggests the neuro-protection by SML against cognitive dysfunction induced by environmental toxin (AlCl3) in hippocampus and frontal cortex.

  3. Meal time shift disturbs circadian rhythmicity along with metabolic and behavioral alterations in mice.

    Directory of Open Access Journals (Sweden)

    Ji-Ae Yoon

    Full Text Available In modern society, growing numbers of people are engaged in various forms of shift works or trans-meridian travels. Such circadian misalignment is known to disturb endogenous diurnal rhythms, which may lead to harmful physiological consequences including metabolic syndrome, obesity, cancer, cardiovascular disorders, and gastric disorders as well as other physical and mental disorders. However, the precise mechanism(s underlying these changes are yet unclear. The present work, therefore examined the effects of 6 h advance or delay of usual meal time on diurnal rhythmicities in home cage activity (HCA, body temperature (BT, blood metabolic markers, glucose homeostasis, and expression of genes that are involved in cholesterol homeostasis by feeding young adult male mice in a time-restrictive manner. Delay of meal time caused locomotive hyperactivity in a significant portion (42% of subjects, while 6 h advance caused a torpor-like symptom during the late scotophase. Accordingly, daily rhythms of blood glucose and triglyceride were differentially affected by time-restrictive feeding regimen with concurrent metabolic alterations. Along with these physiological changes, time-restrictive feeding also influenced the circadian expression patterns of low density lipoprotein receptor (LDLR as well as most LDLR regulatory factors. Strikingly, chronic advance of meal time induced insulin resistance, while chronic delay significantly elevated blood glucose levels. Taken together, our findings indicate that persistent shifts in usual meal time impact the diurnal rhythms of carbohydrate and lipid metabolisms in addition to HCA and BT, thereby posing critical implications for the health and diseases of shift workers.

  4. Differential Larval Toxicity and Oviposition Altering Activity of Some Indigenous Plant Extracts against Dengue and Chikungunya Vector Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Ruchi Yadav

    2014-12-01

    Full Text Available Mosquitoes are well known as vectors of several disease causing pathogens. The extensive use of synthetic insecticides in the mosquito control strategies resulted to the development of pesticide resistance and fostered environmental deterioration. Hence in recent years plants become alternative source of mosquito control agents. The present study assessed the larvicidal and oviposition altering activity of six different plants species-Alstonia scholaris, Callistemon viminalis, Hyptis suaveolens, Malvastrum coromandelianum, Prosopis juliflora, Vernonia cinerea against Aedes albopictus mosquito in laboratory.Leaf extracts of all the six plants species in five different solvents of various polarities were used in the range of 20-400ppm for larval bioassay and 50,100 and 200ppm for cage bioassay (for the study of oviposition behavior against Ae. albopictus. The larval mortality data were recorded after 24 h and subjected to Probit analysis to determine the lethal concentrations (LC50, while OAI (Oviposition activity index was calculated for oviposition altering activity of the plant extracts.Vernonia cinerea extract in acetone and C. viminalis extract in isopropanol were highly effective against Aedes albopictus larvae with LC50 value 64.57, 71.34ppm respectively. Acetone extract of P. juliflora found to be strong oviposition-deterrent which inhibited >2 fold egg laying (OAI-0.466 at 100ppm.Vernonia cinerea and C. viminallis leaf extracts have the potential to be used as larvicide and P. juliflora as an oviposition-deterrent for the control of Ae. albopictus mosquito.

  5. Differential Larval Toxicity and Oviposition Altering Activity of Some Indigenous Plant Extracts against Dengue and Chikungunya Vector Aedes albopictus

    Science.gov (United States)

    Yadav, Ruchi; Tyagi, Varun; Tikar, Sachin N; Sharma, Ajay K; Mendki, Murlidhar J; Jain, Ashok K; Sukumaran, Devanathan

    2014-01-01

    Background: Mosquitoes are well known as vectors of several disease causing pathogens. The extensive use of synthetic insecticides in the mosquito control strategies resulted to the development of pesticide resistance and fostered environmental deterioration. Hence in recent years plants become alternative source of mosquito control agents. The present study assessed the larvicidal and oviposition altering activity of six different plants species-Alstonia scholaris, Callistemon viminalis, Hyptis suaveolens, Malvastrum coromandelianum, Prosopis juliflora, Vernonia cinerea against Aedes albopictus mosquito in laboratory. Methods: Leaf extracts of all the six plants species in five different solvents of various polarities were used in the range of 20–400ppm for larval bioassay and 50,100 and 200ppm for cage bioassay (for the study of oviposition behavior) against Ae. albopictus. The larval mortality data were recorded after 24 h and subjected to Probit analysis to determine the lethal concentrations (LC50), while OAI (Oviposition activity index) was calculated for oviposition altering activity of the plant extracts. Results: Vernonia cinerea extract in acetone and C. viminalis extract in isopropanol were highly effective against Aedes albopictus larvae with LC50 value 64.57, 71.34ppm respectively. Acetone extract of P. juliflora found to be strong oviposition-deterrent which inhibited >2 fold egg laying (OAI-0.466) at 100ppm. Conclusion: Vernonia cinerea and C. viminallis leaf extracts have the potential to be used as larvicide and P. juliflora as an oviposition-deterrent for the control of Ae. albopictus mosquito. PMID:26114131

  6. The Adolescent Behavioral Activation Program: Adapting Behavioral Activation as a Treatment for Depression in Adolescence.

    Science.gov (United States)

    McCauley, Elizabeth; Gudmundsen, Gretchen; Schloredt, Kelly; Martell, Christopher; Rhew, Isaac; Hubley, Samuel; Dimidjian, Sona

    2016-01-01

    This study aimed to examine implementation feasibility and initial treatment outcomes of a behavioral activation (BA) based treatment for adolescent depression, the Adolescent Behavioral Activation Program (A-BAP). A randomized, controlled trial was conducted with 60 clinically referred adolescents with a depressive disorder who were randomized to receive either 14 sessions of A-BAP or uncontrolled evidenced-based practice for depression. The urban sample was 64% female, predominantly Non-Hispanic White (67%), and had an average age of 14.9 years. Measures of depression, global functioning, activation, and avoidance were obtained through clinical interviews and/or through parent and adolescent self-report at preintervention and end of intervention. Intent-to-treat linear mixed effects modeling and logistic regression analysis revealed that both conditions produced statistically significant improvement from pretreatment to end of treatment in depression, global functioning, and activation and avoidance. There were no significant differences across treatment conditions. These findings provide the first step in establishing the efficacy of BA as a treatment for adolescent depression and support the need for ongoing research on BA as a way to enhance the strategies available for treatment of depression in this population.

  7. Supplemental feeding for ecotourism reverses diel activity and alters movement patterns and spatial distribution of the southern stingray, Dasyatis americana.

    Directory of Open Access Journals (Sweden)

    Mark J Corcoran

    Full Text Available Southern stingrays, Dasyatis americana, have been provided supplemental food in ecotourism operations at Stingray City Sandbar (SCS, Grand Cayman since 1986, with this site becoming one of the world's most famous and heavily visited marine wildlife interaction venues. Given expansion of marine wildlife interactive tourism worldwide, there are questions about the effects of such activities on the focal species and their ecosystems. We used a combination of acoustic telemetry and tag-recapture efforts to test the hypothesis that human-sourced supplemental feeding has altered stingray activity patterns and habitat use at SCS relative to wild animals at control sites. Secondarily, we also qualitatively estimated the population size of stingrays supporting this major ecotourism venue. Tag-recapture data indicated that a population of at least 164 stingrays, over 80% female, utilized the small area at SCS for prolonged periods of time. Examination of comparative movements of mature female stingrays at SCS and control sites revealed strong differences between the two groups: The fed animals demonstrated a notable inversion of diel activity, being constantly active during the day with little movement at night compared to the nocturnally active wild stingrays; The fed stingrays utilized significantly (p<0.05 smaller 24 hour activity spaces compared to wild conspecifics, staying in close proximity to the ecotourism site; Fed stingrays showed a high degree of overlap in their core activity spaces compared to wild stingrays which were largely solitary in the spaces utilized (72% vs. 3% overlap respectively. Supplemental feeding has strikingly altered movement behavior and spatial distribution of the stingrays, and generated an atypically high density of animals at SCS which could have downstream fitness costs for individuals and potentially broader ecosystem effects. These findings should help environmental managers plan mitigating measures for existing

  8. Mind the movement: Frontal asymmetry stands for behavioral motivation, bilateral frontal activation for behavior.

    Science.gov (United States)

    Rodrigues, Johannes; Müller, Mathias; Mühlberger, Andreas; Hewig, Johannes

    2018-01-01

    Frontal asymmetry has been investigated over the past 30 years, and several theories have been developed about its meaning. The original theory of Davidson and its diversification by Harmon-Jones & Allen allocated approach motivation to relative left frontal brain activity and withdrawal motivation to relative right frontal brain activity. Hewig and colleagues extended this theory by adding bilateral frontal activation representing a biological correlate of the behavioral activation system if actual behavior is shown. Wacker and colleagues formulated a theory related to the revised reinforcement sensitivity theory by Gray & McNaughton. Here, relative left frontal brain activation represents the revised behavioral activation system and behavior, while relative right frontal brain activation represents the revised behavioral inhibition system, representing the experience of conflict. These theories were investigated with a newly developed paradigm where participants were able to move around freely in a virtual T maze via joystick while having their EEG recorded. Analyzing the influence of frontal brain activation during this virtual reality task on observable behavior for 30 participants, we found more relative left frontal brain activation during approach behavior and more relative right brain activation for withdrawal behavior of any kind. Additionally, there was more bilateral frontal brain activation when participants were engaged in behavior compared to doing nothing. Hence, this study provides evidence for the idea that frontal asymmetry stands for behavioral approach or avoidance motivation, and bilateral frontal activation stands for behavior. Additionally, observable behavior is not only determined by frontal asymmetry, but also by relevant traits. © 2017 Society for Psychophysiological Research.

  9. Evidence for microbial activity at the glass-alteration interface in oceanic basalts

    Science.gov (United States)

    Torsvik, Terje; Furnes, Harald; Muehlenbachs, Karlis; Thorseth, Ingunn H.; Tumyr, Ole

    1998-10-01

    A detailed microbiological and geochemical study related to the alteration of basaltic glass of pillow lavas from the oceanic crust recovered from Hole 896A on the Costa Rica Rift (penetrating 290 m into the volcanic basement) has been carried out. A number of independent observations, pointing to the influence of microbes, may be summarized as follows: (1) Alteration textures are reminiscent of microbes in terms of form and shape. (2) Altered material contains appreciable amounts of C, N and K, and the N/C ratios are comparable to those of nitrogen-starved bacteria. (3) Samples stained with a dye (DAPI) that binds specifically to nucleic acids show the presence of DNA in the altered glass. Further, staining with fluorescent labeled oligonucleotide probes that hybridize specifically to 16S-ribosomal RNA of bacteria and archaea demonstrate their presence in the altered part of the glass. (4) Disseminated carbonate in the glassy margin of the majority of pillows shows δ 13C values, significantly lower than that of fresh basalt, also suggests biological activity. The majority of the samples have δ 18O values indicating temperatures of 20-100°C, which is in the range of mesophilic and thermophilic micro-organisms.

  10. Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID.

    Science.gov (United States)

    Wang, Meng; Rada, Cristina; Neuberger, Michael S

    2010-01-18

    High-affinity antibodies are generated by somatic hypermutation with nucleotide substitutions introduced into the IgV in a semirandom fashion, but with intrinsic mutational hotspots strategically located to optimize antibody affinity maturation. The process is dependent on activation-induced deaminase (AID), an enzyme that can deaminate deoxycytidine in DNA in vitro, where its activity is sensitive to the identity of the 5'-flanking nucleotide. As a critical test of whether such DNA deamination activity underpins antibody diversification and to gain insight into the extent to which the antibody mutation spectrum is dependent on the intrinsic substrate specificity of AID, we investigated whether it is possible to change the IgV mutation spectrum by altering AID's active site such that it prefers a pyrimidine (rather than a purine) flanking the targeted deoxycytidine. Consistent with the DNA deamination mechanism, B cells expressing the modified AID proteins yield altered IgV mutation spectra (exhibiting a purine-->pyrimidine shift in flanking nucleotide preference) and altered hotspots. However, AID-catalyzed deamination of IgV targets in vitro does not yield the same degree of hotspot dominance to that observed in vivo, indicating the importance of features beyond AID's active site and DNA local sequence environment in determining in vivo hotspot dominance.

  11. Supplemental feeding for ecotourism reverses diel activity and alters movement patterns and spatial distribution of the southern stingray, Dasyatis americana.

    Science.gov (United States)

    Corcoran, Mark J; Wetherbee, Bradley M; Shivji, Mahmood S; Potenski, Matthew D; Chapman, Demian D; Harvey, Guy M

    2013-01-01

    Southern stingrays, Dasyatis americana, have been provided supplemental food in ecotourism operations at Stingray City Sandbar (SCS), Grand Cayman since 1986, with this site becoming one of the world's most famous and heavily visited marine wildlife interaction venues. Given expansion of marine wildlife interactive tourism worldwide, there are questions about the effects of such activities on the focal species and their ecosystems. We used a combination of acoustic telemetry and tag-recapture efforts to test the hypothesis that human-sourced supplemental feeding has altered stingray activity patterns and habitat use at SCS relative to wild animals at control sites. Secondarily, we also qualitatively estimated the population size of stingrays supporting this major ecotourism venue. Tag-recapture data indicated that a population of at least 164 stingrays, over 80% female, utilized the small area at SCS for prolonged periods of time. Examination of comparative movements of mature female stingrays at SCS and control sites revealed strong differences between the two groups: The fed animals demonstrated a notable inversion of diel activity, being constantly active during the day with little movement at night compared to the nocturnally active wild stingrays; The fed stingrays utilized significantly (pecotourism site; Fed stingrays showed a high degree of overlap in their core activity spaces compared to wild stingrays which were largely solitary in the spaces utilized (72% vs. 3% overlap respectively). Supplemental feeding has strikingly altered movement behavior and spatial distribution of the stingrays, and generated an atypically high density of animals at SCS which could have downstream fitness costs for individuals and potentially broader ecosystem effects. These findings should help environmental managers plan mitigating measures for existing operations, and develop precautionary policies regarding proposed feeding sites.

  12. Sodium Butyrate, a Histone Deacetylase Inhibitor, Reverses Behavioral and Mitochondrial Alterations in Animal Models of Depression Induced by Early- or Late-life Stress.

    Science.gov (United States)

    Valvassori, Samira S; Resende, Wilson R; Budni, Josiane; Dal-Pont, Gustavo C; Bavaresco, Daniela V; Réus, Gislaine Z; Carvalho, André F; Gonçalves, Cinara L; Furlanetto, Camila B; Streck, Emilio L; Quevedo, João

    2015-01-01

    The aim of the present study was to evaluate the effects of sodium butyrate on depressive-like behavior and mitochondrial alteration parameters in animal models of depression induced by maternal deprivation or chronic mild stress in Wistar rats. maternal deprivation was established by separating pups from their mothers for 3 h daily from postnatal day 1 to day 10. Chronic mild stress was established by water deprivation, food deprivation, restraint stress, isolation and flashing lights. Sodium butyrate or saline was administered twice a day for 7 days before the behavioral tests. Depressive behavior was evaluated using the forced swim test. The activity of tricarboxylic acid cycle enzymes (succinate dehydrogenase and malate dehydrogenase) and of mitochondrial chain complexes (I, II, II-III and IV) was measured in the striatum of rats. From these analyses it can be observed that sodium butyrate reversed the depressive-like behavior observed in both animal models of depression. Additionally, maternal deprivation and chronic mild stress inhibited mitochondrial respiratory chain complexes and increased the activity of tricarboxylic acid cycle enzymes. Sodium butyrate treatment reversed -maternal deprivation and chronic mild stress- induced dysfunction in the striatum of rats. In conclusion, sodium butyrate showed antidepressant effects in maternal deprivation and chronic mild stress-treated rats, and this effect can be attributed to its action on the neurochemical pathways related to depression.

  13. Association of Active Play-Related Parenting Behaviors, Orientations, and Practices with Preschool Sedentary Behavior

    Science.gov (United States)

    Loprinzi, Paul D.; Cardinal, Bradley J.; Kane, Christy; Lee, Hyo; Beets, Michael W.

    2014-01-01

    Background: Parents' behaviors, practices, beliefs, and attitudes greatly influence children's active play behavior; however, little research has examined these parental influences on preschool children's sedentary behavior (SB). Purpose: The purpose of this study was to examine the association between parental influences on preschool SB. Methods:…

  14. Factors Associated with Physical Activity Behaviors Among Rural Adolescents

    OpenAIRE

    Urruty, Kenli A.

    2009-01-01

    The "obesity epidemic" in the United States is a current health concern that has sparked research interest in physical activity as a means of weight management. However, little research has examined the physical activity behaviors of rural adolescents. The goal of the current study was to use a biopsychosocial framework to examine the physical activity behaviors of a sample of rural adolescents, and explore factors associated with physical activity participation. A sample of 162 ninth- an...

  15. Fuzzy Behavior Modulation with Threshold Activation for Autonomous Vehicle Navigation

    Science.gov (United States)

    Tunstel, Edward

    2000-01-01

    This paper describes fuzzy logic techniques used in a hierarchical behavior-based architecture for robot navigation. An architectural feature for threshold activation of fuzzy-behaviors is emphasized, which is potentially useful for tuning navigation performance in real world applications. The target application is autonomous local navigation of a small planetary rover. Threshold activation of low-level navigation behaviors is the primary focus. A preliminary assessment of its impact on local navigation performance is provided based on computer simulations.

  16. Behavioral Activation Is an Evidence-Based Treatment for Depression

    Science.gov (United States)

    Sturmey, Peter

    2009-01-01

    Recent reviews of evidence-based treatment for depression did not identify behavioral activation as an evidence-based practice. Therefore, this article conducted a systematic review of behavioral activation treatment of depression, which identified three meta-analyses, one recent randomized controlled trial and one recent follow-up of an earlier…

  17. The cognitive-behavioral system of leadership: cognitive antecedents of active and passive leadership behaviors

    Science.gov (United States)

    Dóci, Edina; Stouten, Jeroen; Hofmans, Joeri

    2015-01-01

    In the present paper, we propose a cognitive-behavioral understanding of active and passive leadership. Building on core evaluations theory, we offer a model that explains the emergence of leaders’ active and passive behaviors, thereby predicting stable, inter-individual, as well as variable, intra-individual differences in both types of leadership behavior. We explain leaders’ stable behavioral tendencies by their fundamental beliefs about themselves, others, and the world (core evaluations), while their variable, momentary behaviors are explained by the leaders’ momentary appraisals of themselves, others, and the world (specific evaluations). By introducing interactions between the situation the leader enters, the leader’s beliefs, appraisals, and behavior, we propose a comprehensive system of cognitive mechanisms that underlie active and passive leadership behavior. PMID:26441721

  18. Altered [99mTc]Tc-MDP biodistribution from neutron activation sourced 99Mo.

    Science.gov (United States)

    Demeter, Sandor; Szweda, Roman; Patterson, Judy; Grigoryan, Marine

    2018-01-01

    Given potential worldwide shortages of fission sourced 99 Mo/ 99m Tc medical isotopes there is increasing interest in alternate production strategies. A neutron activated 99 Mo source was utilized in a single center phase III open label study comparing 99m Tc, as 99m Tc Methylene Diphosphonate ([ 99m Tc]Tc-MDP), obtained from solvent generator separation of neutron activation produced 99 Mo, versus nuclear reactor produced 99 Mo (e.g., fission sourced) in oncology patients for which an [ 99m Tc]Tc-MDP bone scan would normally have been indicated. Despite the investigational [ 99m Tc]Tc-MDP passing all standard, and above standard of care, quality assurance tests, which would normally be sufficient to allow human administration, there was altered biodistribution which could lead to erroneous clinical interpretation. The cause of the altered biodistribution remains unknown and requires further research.

  19. Physical activity behavior and role overload in mothers.

    Science.gov (United States)

    Lovell, Geoff P; Butler, Frances R

    2015-01-01

    We examined physical activity stages of change, physical activity behavior, and role overload in different stages of motherhood in a predominantly Australian sample. Neither physical activity behavior, stages of physical activity change, nor role overload significantly differed across motherhood groups. Role overload was significantly higher for mothers in the contemplation, planning, and action stages of physical activity than in the maintenance stage of change. Role overload had a weak, although significant, negative correlation with leisure-time physical activity. We conclude that strategies focused upon reducing role overload or perceived role overload have only limited potential to meaningfully increase leisure-time physical activity in mothers.

  20. Influencing Eating Choices: Biological Food Cues in Advertising and Packaging Alter Trajectories of Decision Making and Behavior.

    Science.gov (United States)

    Bailey, Rachel L

    2017-10-01

    From an ecological perception perspective (Gibson, 1977), the availability of perceptual information alters what behaviors are more and less likely at different times. This study examines how perceptual information delivered in food advertisements and packaging alters the time course of information processing and decision making. Participants categorized images of food that varied in information delivered in terms of color, glossiness, and texture (e.g., food cues) before and after being exposed to a set of advertisements that also varied in this way. In general, items with more direct cues enhanced appetitive motivational processes, especially if they were also advertised with direct food cues. Individuals also chose to eat products that were packaged with more available direct food cues compared to opaque packaging.

  1. Systemic Immune Activation Leads to Neuroinflammation and Sickness Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Steven Biesmans

    2013-01-01

    Full Text Available Substantial evidence indicates an association between clinical depression and altered immune function. Systemic administration of bacterial lipopolysaccharide (LPS is commonly used to study inflammation-associated behavioral changes in rodents. In these experiments, we tested the hypothesis that peripheral immune activation leads to neuroinflammation and depressive-like behavior in mice. We report that systemic administration of LPS induced astrocyte activation in transgenic GFAP-luc mice and increased immunoreactivity against the microglial marker ionized calcium-binding adapter molecule 1 in the dentate gyrus of wild-type mice. Furthermore, LPS treatment caused a strong but transient increase in cytokine levels in the serum and brain. In addition to studying LPS-induced neuroinflammation, we tested whether sickness could be separated from depressive-like behavior by evaluating LPS-treated mice in a panel of behavioral paradigms. Our behavioral data indicate that systemic LPS administration caused sickness and mild depressive-like behavior. However, due to the overlapping time course and mild effects on depression-related behavior per se, it was not possible to separate sickness from depressive-like behavior in the present rodent model.

  2. Alterations in Neuronal Activity in Basal Ganglia-Thalamocortical Circuits in the Parkinsonian State

    Directory of Open Access Journals (Sweden)

    Adriana eGalvan

    2015-02-01

    Full Text Available In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials, electroencephalograms or electrocorticograms. Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation therapy.

  3. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state

    Science.gov (United States)

    Galvan, Adriana; Devergnas, Annaelle; Wichmann, Thomas

    2015-01-01

    In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials (LFPs), electroencephalograms (EEGs) or electrocorticograms (ECoGs). Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation (DBS) therapy. PMID:25698937

  4. Sub-acute nickel exposure impairs behavior, alters neuronal microarchitecture, and induces oxidative stress in rats' brain.

    Science.gov (United States)

    Ijomone, Omamuyovwi Meashack; Okori, Stephen Odey; Ijomone, Olayemi Kafilat; Ebokaiwe, Azubike Peter

    2018-02-26

    Nickel (Ni) is a heavy metal with wide industrial uses. Environmental and occupational exposures to Ni are potential risk factors for neurological symptoms in humans. The present study investigated the behavior and histomorphological alterations in brain of rats sub-acutely exposed to nickel chloride (NiCl 2 ) and the possible involvement of oxidative stress. Rats were administered with 5, 10 or 20 mg/kg NiCl 2 via intraperitoneal injections for 21 days. Neurobehavioral assessment was performed using the Y-maze and open field test (OFT). Histomorphological analyses of brain tissues, as well as biochemical determination of oxidative stress levels were performed. Results showed that Ni treatments significantly reduced body weight and food intake. Cognitive and motor behaviors on the Y-maze and OFT, respectively, were compromised following Ni treatments. Administration of Ni affected neuronal morphology in the brain and significantly reduced percentage of intact neurons in both hippocampus and striatum. Additionally, markers of oxidative stress levels and nitric oxide (NO) levels were significantly altered following Ni treatments. These data suggest that compromised behavior and brain histomorphology following Ni exposures is associated with increase in oxidative stress.

  5. Embryonic GABA(B receptor blockade alters cell migration, adult hypothalamic structure, and anxiety- and depression-like behaviors sex specifically in mice.

    Directory of Open Access Journals (Sweden)

    Matthew S Stratton

    Full Text Available Neurons of the paraventricular nucleus of the hypothalamus (PVN regulate the hypothalamic- pituitary-adrenal (HPA axis and the autonomic nervous system. Females lacking functional GABA(B receptors because of a genetic disruption of the R1 subunit have altered cellular characteristics in and around the PVN at birth. The genetic disruption precluded appropriate assessments of physiology or behavior in adulthood. The current study was conducted to test the long term impact of a temporally restricting pharmacological blockade of the GABA(B receptor to a 7-day critical period (E11-E17 during embryonic development. Experiments tested the role of GABA(B receptor signaling in fetal development of the PVN and later adult capacities for adult stress related behaviors and physiology. In organotypic slices containing fetal PVN, there was a female specific, 52% increase in cell movement speeds with GABA(B receptor antagonist treatment that was consistent with a sex-dependent lateral displacement of cells in vivo following 7 days of fetal exposure to GABA(B receptor antagonist. Anxiety-like and depression-like behaviors, open-field activity, and HPA mediated responses to restraint stress were measured in adult offspring of mothers treated with GABA(B receptor antagonist. Embryonic exposure to GABA(B receptor antagonist resulted in reduced HPA axis activation following restraint stress and reduced depression-like behaviors. There was also increased anxiety-like behavior selectively in females and hyperactivity in males. A sex dependent response to disruptions of GABA(B receptor signaling was identified for PVN formation and key aspects of physiology and behavior. These changes correspond to sex specific prevalence in similar human disorders, namely anxiety disorders and hyperactivity.

  6. Alteration related to hydrothermal activity of the Nevado del Ruiz volcano (NRV), Colombia

    International Nuclear Information System (INIS)

    Forero, Jhon; Zuluaga, Carlos; Mojica, Jaime

    2011-01-01

    The hydrothermal activity in the NRV generates alteration characterized by mineral associations depending one number of physic-chemical factors of the hydrothermal system. Petrography of unaltered rocks was used to establish the mineral assemblage prior to rock-fluid interaction. XRD was used in altered rocks, where it was not possible to recognize the alteration products. the observed mineral assemblages indicate advanced and intermediate argillic alterations, this and the observation of very low modal proportion of sulphates, sulphides and native sulphur in some areas could point to a low sulphidation zone. However, the proximity to the volcano and the presence of acid thermal waters and steam pose an apparent contradiction with an expected high sulphidation zone which is explained by climatic conditions, where excess water has dissolved and leached sulfides, sulphur and sulphates close to the volcano. fault zones serve as conducts for fluid transport and have acid-sulphate mineral associations produced by atmospheric oxidation at the water table in a steam-heated environment of H 2 S released by deeper, boiling fluids or by the disproportionation of magmatic SO 2 to H 2 S and H 2 SO 4 during condensation of magmatic vapor plume at intermedia depths in magmatic hydrothermal environment in andesitic volcanic terrain characteristic of high sulphidation zones.

  7. Theory-driven intervention for changing personality: expectancy value theory, behavioral activation, and conscientiousness.

    Science.gov (United States)

    Magidson, Jessica F; Roberts, Brent W; Collado-Rodriguez, Anahi; Lejuez, C W

    2014-05-01

    Considerable evidence suggests that personality traits may be changeable, raising the possibility that personality traits most linked to health problems can be modified with intervention. A growing body of research suggests that problematic personality traits may be altered with behavioral intervention using a bottom-up approach. That is, by targeting core behaviors that underlie personality traits with the goal of engendering new, healthier patterns of behavior that, over time, become automatized and manifest in changes in personality traits. Nevertheless, a bottom-up model for changing personality traits is somewhat diffuse and requires clearer integration of theory and relevant interventions to enable real clinical application. As such, this article proposes a set of guiding principles for theory-driven modification of targeted personality traits using a bottom-up approach, focusing specifically on targeting the trait of conscientiousness using a relevant behavioral intervention, Behavioral Activation (BA), considered within the motivational framework of expectancy value theory (EVT). We conclude with a real case example of the application of BA to alter behaviors counter to conscientiousness in a substance-dependent patient, highlighting the EVT principles most relevant to the approach and the importance and viability of a theoretically driven, bottom-up approach to changing personality traits. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  8. A Low-Protein Diet Alters Rat Behavior and Neurotransmission in Normothermic and Hyperthermic Environments

    National Research Council Canada - National Science Library

    Lieberman, Harris R; Yeghiayan, Sylva K; Maher, Timothy J

    2005-01-01

    .... Therefore, the behavioral and neurochemical consequences of exposure to a brief (11 days), low-protein (4%) diet in animals exposed to normothermic and hyperthermic test conditions were examined...

  9. Altered brain serotonergic neurotransmission following caffeine withdrawal produces behavioral deficits in rats.

    Science.gov (United States)

    Khaliq, Saima; Haider, Saida; Naqvi, Faizan; Perveen, Tahira; Saleem, Sadia; Haleem, Darakhshan Jabeen

    2012-01-01

    Caffeine administration has been shown to enhance performance and memory in rodents and humans while its withdrawal on the other hand produces neurobehavioral deficits which are thought to be mediated by alterations in monoamines neurotransmission. A role of decreased brain 5-HT (5-hydroxytryptamine, serotonin) levels has been implicated in impaired cognitive performance and depression. Memory functions of rats were assessed by Water Maze (WM) and immobility time by Forced Swim Test (FST). The results of this study showed that repeated caffeine administration for 6 days at 30 mg/kg dose significantly increases brain 5-HT (pcaffeine. Withdrawal of caffeine however produced memory deficits and significantly increases the immobility time of rats in FST. The results of this study are linked with caffeine induced alterations in serotonergic neurotransmission and its role in memory and depression.

  10. Physical activity and sedentary behavior patterns are associated with selected adolescent health risk behaviors.

    Science.gov (United States)

    Nelson, Melissa C; Gordon-Larsen, Penny

    2006-04-01

    Little is known about how physical activity (PA), sedentary behavior, and various adolescent health risk behaviors are associated. The objective of this study was to examine relationships between PA and sedentary behavior patterns and an array of risk behaviors, including leading causes of adolescent morbidity/mortality. Nationally representative self-reported data were collected (National Longitudinal Study of Adolescent Health; wave I: 1994-1995; II: 1996; N = 11957). Previously developed and validated cluster analyses identified 7 homogeneous groups of adolescents sharing PA and sedentary behaviors. Poisson regression predicted the relative risk of health risk behaviors, other weekly activities, and self-esteem across the 7 PA/sedentary behavior clusters controlling for demographics and socioeconomic status. Main outcome measures were adolescent risk behaviors (eg, truancy, cigarette smoking, sexual intercourse, delinquency), other weekly activities (eg, work, academic performance, sleep), self-esteem. Relative to high television (TV) and video viewers, adolescents in clusters characterized by skating and video gaming, high overall sports and sports participation with parents, using neighborhood recreation center, strict parental control of TV, reporting few activities overall, and being active in school were less likely to participate in a range of risky behaviors, ranging from an adjusted risk ratio (ARR) of 0.42 (outcome: illegal drug use, cluster: strict parental control of TV) to 0.88 (outcome: violence, cluster: sports with parents). Active teens were less likely to have low self-esteem (eg, adolescents engaging in sports with parents, ARR: 0.73) and more likely to have higher grades (eg, active in school, ARR: 1.20). Participation in a range of PA-related behaviors, particularly those characterized by high parental sports/exercise involvement, was associated with favorable adolescent risk profiles. Adolescents with high TV/video viewership were less

  11. Effects of topographical and mechanical property alterations induced by oxygen plasma modification on stem cell behavior.

    Science.gov (United States)

    Yang, Yong; Kulangara, Karina; Lam, Ruby T S; Dharmawan, Rena; Leong, Kam W

    2012-10-23

    Polymeric substrates intended for cell culture and tissue engineering are often surface-modified to facilitate cell attachment of most anchorage-dependent cell types. The modification alters the surface chemistry and possibly topography. However, scant attention has been paid to other surface property alterations. In studying oxygen plasma treatment of polydimethylsiloxane (PDMS), we show that oxygen plasma treatment alters the surface chemistry and, consequently, the topography and elasticity of PDMS at the nanoscale level. The elasticity factor has the predominant effect, compared with the chemical and topographical factors, on cell adhesions of human mesenchymal stem cells (hMSCs). The enhanced focal adhesions favor cell spreading and osteogenesis of hMSCs. Given the prevalent use of PDMS in biomedical device construction and cell culture experiments, this study highlights the importance of understanding how oxygen plasma treatment would impact subsequent cell-substrate interactions. It helps explain inconsistency in the literature and guides preparation of PDMS-based biomedical devices in the future.

  12. Nicotine dependence, physical activity, and sedentary behavior among adult smokers

    OpenAIRE

    Paul D Loprinzi; Jerome F Walker

    2015-01-01

    Background: Research has previously demonstrated an inverse association between smoking status and physical activity; however, few studies have examined the association between nicotine dependence and physical activity or sedentary behavior. Aim: This study examined the association between nicotine dependence and accelerometer-determined physical activity and sedentary behavior. Materials and Methods: Data from the 2003-2006 National Health and Nutrition Examination Survey (NHANES) were used....

  13. Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors.

    Directory of Open Access Journals (Sweden)

    Carolina R den Hartog

    Full Text Available Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs. In this study, we determined how expression of a mutant GluN1 subunit (F639A that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75-2.0 g/kg; i.p. increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg. In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol.

  14. Alterations in ethanol-induced behaviors and consumption in knock-in mice expressing ethanol-resistant NMDA receptors.

    Science.gov (United States)

    den Hartog, Carolina R; Beckley, Jacob T; Smothers, Thetford C; Lench, Daniel H; Holseberg, Zack L; Fedarovich, Hleb; Gilstrap, Meghin J; Homanics, Gregg E; Woodward, John J

    2013-01-01

    Ethanol's action on the brain likely reflects altered function of key ion channels such as glutamatergic N-methyl-D-aspartate receptors (NMDARs). In this study, we determined how expression of a mutant GluN1 subunit (F639A) that reduces ethanol inhibition of NMDARs affects ethanol-induced behaviors in mice. Mice homozygous for the F639A allele died prematurely while heterozygous knock-in mice grew and bred normally. Ethanol (44 mM; ∼0.2 g/dl) significantly inhibited NMDA-mediated EPSCs in wild-type mice but had little effect on responses in knock-in mice. Knock-in mice had normal expression of GluN1 and GluN2B protein across different brain regions and a small reduction in levels of GluN2A in medial prefrontal cortex. Ethanol (0.75-2.0 g/kg; i.p.) increased locomotor activity in wild-type mice but had no effect on knock-in mice while MK-801 enhanced activity to the same extent in both groups. Ethanol (2.0 g/kg) reduced rotarod performance equally in both groups but knock-in mice recovered faster following a higher dose (2.5 g/kg). In the elevated zero maze, knock-in mice had a blunted anxiolytic response to ethanol (1.25 g/kg) as compared to wild-type animals. No differences were noted between wild-type and knock-in mice for ethanol-induced loss of righting reflex, sleep time, hypothermia or ethanol metabolism. Knock-in mice consumed less ethanol than wild-type mice during daily limited-access sessions but drank more in an intermittent 24 h access paradigm with no change in taste reactivity or conditioned taste aversion. Overall, these data support the hypothesis that NMDA receptors are important in regulating a specific constellation of effects following exposure to ethanol.

  15. Geochemical behavior of rare earth elements of the hydrothermal alterations within the Tepeoba porphyry Cu-Mo-Au deposits at Balikesir, NW Turkey

    Science.gov (United States)

    Doner, Zeynep; Abdelnasser, Amr; Kiran Yildirim, Demet; Kumral, Mustafa

    2016-04-01

    This work reports the geochemical characteristics and behavior of the rare earth elements (REE) of the hydrothermal alteration of the Tepeoba porphyry Cu-Mo-Au deposit located in the Anatolian tectonic belt at Biga peninsula (Locally Balikesir province), NW Turkey. The Cu-Mo-Au mineralization at this deposit hosted in the hornfels rocks and related to the silicic to intermediate intrusion of Eybek pluton. It locally formed with brecciated zones and quartz vein stockworks, as well as the brittle fracture zones associated with intense hydrothermal alteration. Three main alteration zones with gradual boundaries formed in the mine area in the hornfels rock that represents the host rock, along that contact the Eybek pluton; potassic, propylitic and phyllic alteration zones. The potassic alteration zone that formed at the center having high amount of Cu-sulfide minerals contains biotite, muscovite, and sericite with less amount of K-feldspar and associated with tourmalinization alteration. The propylitic alteration surrounds the potassic alteration having high amount of Mo and Au and contains chlorite, albite, epidote, calcite and pyrite. The phyllic alteration zone also surrounds the potassic alteration containing quartz, sericite and pyrite minerals. Based on the REE characteristics and content and when we correlate the Alteration index (AI) with the light REEs and heavy REEs of each alteration zone, it concluded that the light REEs decrease and heavy REEs increase during the alteration processes. The relationships between K2O index with Eu/Eu* and Sr/Sr* reveals a positive correlation in the potassic and phyllic alteration zones and a negative correlation in the propylitic alteration zone. This refers to the hydrothermal solution which is responsible for the studied porphyry deposits and associated potassic and phyllic alterations has a positive Eu and Sr anomaly as well as these elements were added to the altered rock from the hydrothermal solution. Keywords: Rare

  16. Physical activity attenuates age-related biomarker alterations in preclinical AD.

    Science.gov (United States)

    Okonkwo, Ozioma C; Schultz, Stephanie A; Oh, Jennifer M; Larson, Jordan; Edwards, Dorothy; Cook, Dane; Koscik, Rebecca; Gallagher, Catherine L; Dowling, N M; Carlsson, Cynthia M; Bendlin, Barbara B; LaRue, Asenath; Rowley, Howard A; Christian, Brad T; Asthana, Sanjay; Hermann, Bruce P; Johnson, Sterling C; Sager, Mark A

    2014-11-04

    To examine whether engagement in physical activity might favorably alter the age-dependent evolution of Alzheimer disease (AD)-related brain and cognitive changes in a cohort of at-risk, late-middle-aged adults. Three hundred seventeen enrollees in the Wisconsin Registry for Alzheimer's Prevention underwent T1 MRI; a subset also underwent (11)C-Pittsburgh compound B-PET (n = 186) and (18)F-fluorodeoxyglucose-PET (n = 152) imaging. Participants' responses on a self-report measure of current physical activity were used to classify them as either physically active or physically inactive based on American Heart Association guidelines. They also completed a comprehensive neuropsychological battery. Covariate-adjusted regression analyses were used to test whether the adverse effect of age on imaging and cognitive biomarkers was modified by physical activity. There were significant age × physical activity interactions for β-amyloid burden (p = 0.014), glucose metabolism (p = 0.015), and hippocampal volume (p = 0.025) such that, with advancing age, physically active individuals exhibited a lesser degree of biomarker alterations compared with the physically inactive. Similar age × physical activity interactions were also observed on cognitive domains of Immediate Memory (p = 0.042) and Visuospatial Ability (p = 0.016). In addition, the physically active group had higher scores on Speed and Flexibility (p = 0.002) compared with the inactive group. In a middle-aged, at-risk cohort, a physically active lifestyle is associated with an attenuation of the deleterious influence of age on key biomarkers of AD pathophysiology. However, because our observational, cross-sectional design cannot establish causality, randomized controlled trials/longitudinal studies will be necessary for determining whether midlife participation in structured physical exercise forestalls the development of AD and related disorders in later life. © 2014 American Academy of Neurology.

  17. Essays on investor behavior and trading activity

    OpenAIRE

    Kyröläinen, P. (Petri)

    2007-01-01

    Abstract This thesis investigates a set of equity market phenomena associated with investors' trading activity, using a comprehensive Finnish Central Securities Depository (FCSD) database that records practically all trades by Finnish investors. This database enables us to classify a large number of heterogeneous investors using both economic and institutional characteristics. The first essay classifies investors by trading activity. It analyzes trading styles of active and passive inv...

  18. Framing alters risk-taking behavior on a modified Balloon Analogue Risk Task (BART) in a sex-specific manner.

    Science.gov (United States)

    Gabriel, Kara I; Williamson, Ashley

    2010-12-01

    Framing uncertain scenarios to emphasize potential positive or negative elements influences decision making and behavior. The current experiment investigated sex differences in framing effects on risk-taking propensity in a modified version of the Balloon Analogue Risk Task (BART). Male and female undergraduates completed questionnaires on sensation seeking, impulsiveness, and risk and benefit perception prior to viewing one of three framing conditions for the BART: (1) positively-framed instructions emphasizing the ability to earn money if balloons were inflated to large size; (2) negatively framed instructions emphasizing the possibility that money could be lost if balloons were inflated to bursting; and (3) completely framed instructions noting both possible outcomes. Results revealed correlations between BART performance and impulsiveness for both sexes. Compared to positive and complete framing, negatively framed instructions decreased balloon inflation time in women but not men, indicating sex differences in response to treatments designed to alter risk-taking behavior.

  19. The use of messages in altering risky gambling behavior in experienced gamblers.

    Science.gov (United States)

    Jardin, Bianca F; Wulfert, Edelgard

    2012-03-01

    The present study was an experimental analogue that examined the relationship between gambling-related irrational beliefs and risky gambling behavior. Eighty high-frequency gamblers were randomly assigned to four conditions and played a chance-based computer game in a laboratory setting. Depending on the condition, during the game a pop-up screen repeatedly displayed either accurate or inaccurate messages concerning the game, neutral messages, or no messages. Consistent with a cognitive-behavioral model of gambling, accurate messages that correctly described the random contingencies governing the game decreased risky gambling behavior. Contrary to predictions, inaccurate messages designed to mimic gamblers' irrational beliefs about their abilities to influence chance events did not lead to more risky gambling behavior than exposure to neutral or no messages. Participants in the latter three conditions did not differ significantly from one another and all showed riskier gambling behavior than participants in the accurate message condition. The results suggest that harm minimization strategies that help individuals maintain a rational perspective while gambling may protect them from unreasonable risk-taking. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  20. Hippocampal 3alpha,5alpha-THP may alter depressive behavior of pregnant and lactating rats.

    Science.gov (United States)

    Frye, Cheryl A; Walf, Alicia A

    2004-07-01

    The 5alpha-reduced metabolite of progesterone (P), 5alpha-pregnan-3alpha-ol-20-one (3alpha,5alpha-THP), may mediate progestins' effects to reduce depressive behavior of female rats in part through actions in the hippocampus. To investigate, forced swim test behavior and plasma and hippocampal progestin levels were assessed in groups of rats expected to differ in their 3alpha,5alpha-THP levels due to endogenous differences (pregnant and postpartum), administration of a 5alpha-reductase inhibitor (finasteride; 50 mg/kg sc), and/or gestational stress [prenatal stress (PNS)], an animal model of depression. Pregnant rats had higher plasma and hippocampal 3alpha,5alpha-THP levels and less depressive behavior (decreased immobility, increased struggling and swimming) in the forced swim test than did postpartum rats. Finasteride, compared to vehicle-administration, reduced plasma and hippocampal 3alpha,5alpha-THP levels and increased depressive behavior (increased immobility, decreased struggling and swimming). PNS was associated with lower hippocampal, but not plasma, 3alpha,5alpha-THP levels and increased swimming compared to that observed in control rats. Together, these data suggest that 3alpha,5alpha-THP in the hippocampus may mediate antidepressive behavior of female rats.

  1. Elevated dopamine alters consummatory pattern generation and increases behavioral variability during learning

    Directory of Open Access Journals (Sweden)

    Mark A. Rossi

    2015-05-01

    Full Text Available The role of dopamine in controlling behavior remains poorly understood. In this study we examined licking behavior in an established hyperdopaminergic mouse model—dopamine transporter knockout (DAT KO mice. DAT KO mice showed higher rates of licking, which is due to increased perseveration of licking in a bout. By contrast, they showed increased individual lick durations, and reduced inter-lick-intervals. During extinction, both KO and control mice transiently increased variability in lick pattern generation while reducing licking rate, yet they showed very different behavioral patterns. Control mice gradually increased lick duration as well as variability. By contrast, DAT KO mice exhibited more immediate (within 10 licks adjustments—an immediate increase in lick duration variability, as well as more rapid extinction. These results suggest that the level of dopamine can modulate the persistence and pattern generation of a highly stereotyped consummatory behavior like licking, as well as new learning in response to changes in environmental feedback. Increased dopamine in DAT KO mice not only increased perseveration of bouts and individual lick duration, but also increased the behavioral variability in response to the extinction contingency and the rate of extinction.

  2. Neonatal oxytocin and vasopressin manipulation alter social behavior during the juvenile period in Mongolian gerbils.

    Science.gov (United States)

    Taylor, Jack H; Cavanaugh, Jon; French, Jeffrey A

    2017-07-01

    Oxytocin and vasopressin are important modulators of a wide variety of social behaviors, and increasing evidence is showing that these neuropeptides are important organizational effectors of later-life behavior as well. We treated day-old gerbil pups with oxytocin, vasopressin, an oxytocin receptor antagonist, a vasopressin V1a receptor antagonist, or saline control, and then measured received parental responsiveness during the early postnatal period and juvenile social behavior during weaning. Neonatal vasopressin treatment enhanced sociality in males, but not females, at both developmental time points. When pups were individually placed outside the nest, parents were more responsive to male pups treated with vasopressin compared with littermates, and vasopressin treated male pups exhibited increased play with littermates as juveniles. These results show that vasopressin during very early life can enhance social interactions throughout early development. © 2017 Wiley Periodicals, Inc.

  3. Modelling activity transport behavior in PWR plant

    International Nuclear Information System (INIS)

    Henshaw, Jim; McGurk, John; Dickinson, Shirley; Burrows, Robert; Hinds, Kelvin; Hussey, Dennis; Deshon, Jeff; Barrios Figueras, Joan Pau; Maldonado Sanchez, Santiago; Fernandez Lillo, Enrique; Garbett, Keith

    2012-09-01

    The activation and transport of corrosion products around a PWR circuit is a major concern to PWR plant operators as these may give rise to high personnel doses. The understanding of what controls dose rates on ex-core surfaces and shutdown releases has improved over the years but still several questions remain unanswered. For example the relative importance of particle and soluble deposition in the core to activity levels in the plant is not clear. Wide plant to plant and cycle to cycle variations are noted with no apparent explanations why such variations are observed. Over the past few years this group have been developing models to simulate corrosion product transport around a PWR circuit. These models form the basis for the latest version of the BOA code and simulate the movement of Fe and Ni around the primary circuit. Part of this development is to include the activation and subsequent transport of radioactive species around the circuit and this paper describes some initial modelling work in this area. A simple model of activation, release and deposition is described and then applied to explain the plant behaviour at Sizewell B and Vandellos II. This model accounts for activation in the core, soluble and particulate activity movement around the circuit and for activity capture ex-core on both the inner and outer oxides. The model gives a reasonable comparison with plant observations and highlights what controls activity transport in these plants and importantly what factors can be ignored. (authors)

  4. Fluoxetine treatment induces dose dependent alterations in depression associated behavior and neural plasticity in female mice

    OpenAIRE

    Hodes, Georgia E.; Hill-Smith, Tiffany E.; Lucki, Irwin

    2010-01-01

    Antidepressant induced increases in neurogenesis and neurotrophin mobilization in rodents and primates are proposed to be necessary for behavioral efficacy. The current study examines the relationship between the effects of fluoxetine treatment on behavior, cell proliferation and the neurotrophin BDNF in females. Female MRL/MpJ mice were treated acutely (5 and 10 mg/kg) or chronically (2.5, 5 and 10 mg/kg b.i.d.) with fluoxetine and tested in the tail suspension test (TST) and or novelty indu...

  5. Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles

    DEFF Research Database (Denmark)

    Mattsson, Karin; Ekvall, Mikael T; Hansson, Lars-Anders

    2015-01-01

    that enter natural ecosystems, such as oceans and lakes, is increasing, and degradation of the disposed plastics produces smaller particles toward the nano scale. Therefore, it is of utmost importance to gain knowledge about how plastic nanoparticles enter and affect living organisms. Here we have...... administered 24 and 27 nm polystyrene nanoparticles to fish through an aquatic food chain, from algae through Daphnia, and studied the effects on behavior and metabolism. We found severe effects on feeding and shoaling behavior as well as metabolism of the fish; hence, we conclude that polystyrene...

  6. Altered autonomic nervous system activity as a potential etiological factor of premenstrual syndrome and premenstrual dysphoric disorder.

    Science.gov (United States)

    Matsumoto, Tamaki; Ushiroyama, Takahisa; Kimura, Tetsuya; Hayashi, Tatsuya; Moritani, Toshio

    2007-12-20

    Premenstrual syndrome (PMS) encompasses a wide variety of cyclic and recurrent physical, emotional, and behavioral symptoms occurring during the late luteal phase of the menstrual cycle and abating shortly following the beginning of menses. Although PMS is widely recognized, its etiopathogenesis is not yet understood. The present study investigates whether the activity of the autonomic nervous system, which plays a vital role in orchestrating physiological homeostasis within the human body, is altered during the menstrual cycle of women with different degrees of premenstrual symptomatology. Sixty-two women in their 20s to 40s with regular menstrual cycles participated in this study. All subjects were examined during the follicular and late luteal phases. Cycle phase was determined by the onset of menstruation and oral temperature and was verified by concentrations of ovarian hormones, estrone, and pregnanediol in a urine sample taken early in the morning. Autonomic nervous system activity was assessed by means of heart-rate variability (HRV) power spectral analysis during supine rest. The Menstrual Distress Questionnaire was used to evaluate physical, emotional, and behavioral symptoms accompanying the menstrual cycle of the subjects. The subjects were categorized in three groups, Control, PMS, and premenstrual dysphoric disorder (PMDD) groups, depending on the severity of premenstrual symptomatology. No intramenstrual cycle difference in any of the parameters of HRV was found in the Control group, which had no or a small increase in premenstrual symptoms. In contrast, Total power and high frequency power, which reflect overall autonomic and parasympathetic nerve activity, respectively, significantly decreased in the late luteal phase from the follicular phase in the PMS group. As for the PMDD group, which had more severe symptoms premenstrually, heart-rate fluctuation as well as all components of the power spectrum of HRV were markedly decreased regardless of the

  7. Altered muscular activation during prone hip extension in women with and without low back pain

    Directory of Open Access Journals (Sweden)

    Arab Amir M

    2011-08-01

    Full Text Available Abstract Background Altered movement pattern has been associated with the development of low back pain (LBP. The purpose of this study was to investigate the activity pattern of the ipsilateral erector spinae (IES and contralateral erectorspinae (CES, gluteus maximus (GM and hamstring (HAM muscles during prone hip extension (PHE test in women with and without LBP. A cross-sectional non-experimental design was used. Methods Convenience sample of 20 female participated in the study. Subjects were categorized into two groups: with LBP (n = 10 and without LBP (n = 10. The electromyography (EMG signal amplitude of the tested muscles during PHE (normalized to maximum voluntary electrical activity (MVE was measured in the dominant lower extremity in all subjects. Results Statistical analysis revealed greater normalized EMG signal amplitude in women with LBP compared to non-LBP women. There was significant difference in EMG activity of the IES (P = 0.03 and CES (P = 0.03 between two groups. However, no significant difference was found in EMG signals of the GM (P = 0.11 and HAM (P = 0.14 among two groups. Conclusion The findings of this study demonstrated altered activation pattern of the lumbo-pelvic muscles during PHE in the women with chronic LBP. This information is important for investigators using PHE as either an evaluation tool or a rehabilitation exercise.

  8. Altered muscular activation during prone hip extension in women with and without low back pain.

    Science.gov (United States)

    Arab, Amir M; Ghamkhar, Leila; Emami, Mahnaz; Nourbakhsh, Mohammad R

    2011-08-14

    Altered movement pattern has been associated with the development of low back pain (LBP). The purpose of this study was to investigate the activity pattern of the ipsilateral erector spinae (IES) and contralateral erectorspinae (CES), gluteus maximus (GM) and hamstring (HAM) muscles during prone hip extension (PHE) test in women with and without LBP. A cross-sectional non-experimental design was used. Convenience sample of 20 female participated in the study. Subjects were categorized into two groups: with LBP (n = 10) and without LBP (n = 10). The electromyography (EMG) signal amplitude of the tested muscles during PHE (normalized to maximum voluntary electrical activity (MVE)) was measured in the dominant lower extremity in all subjects. Statistical analysis revealed greater normalized EMG signal amplitude in women with LBP compared to non-LBP women. There was significant difference in EMG activity of the IES (P = 0.03) and CES (P = 0.03) between two groups. However, no significant difference was found in EMG signals of the GM (P = 0.11) and HAM (P = 0.14) among two groups. The findings of this study demonstrated altered activation pattern of the lumbo-pelvic muscles during PHE in the women with chronic LBP. This information is important for investigators using PHE as either an evaluation tool or a rehabilitation exercise.

  9. Effect of altering starting length and activation timing of muscle on fiber strain and muscle damage.

    Science.gov (United States)

    Butterfield, Timothy A; Herzog, Walter

    2006-05-01

    Muscle strain injuries are some of the most frequent injuries in sports and command a great deal of attention in an effort to understand their etiology. These injuries may be the culmination of a series of subcellular events accumulated through repetitive lengthening (eccentric) contractions during exercise, and they may be influenced by a variety of variables including fiber strain magnitude, peak joint torque, and starting muscle length. To assess the influence of these variables on muscle injury magnitude in vivo, we measured fiber dynamics and joint torque production during repeated stretch-shortening cycles in the rabbit tibialis anterior muscle, at short and long muscle lengths, while varying the timing of activation before muscle stretch. We found that a muscle subjected to repeated stretch-shortening cycles of constant muscle-tendon unit excursion exhibits significantly different joint torque and fiber strains when the timing of activation or starting muscle length is changed. In particular, measures of fiber strain and muscle injury were significantly increased by altering activation timing and increasing the starting length of the muscle. However, we observed differential effects on peak joint torque during the cyclic stretch-shortening exercise, as increasing the starting length of the muscle did not increase torque production. We conclude that altering activation timing and muscle length before stretch may influence muscle injury by significantly increasing fiber strain magnitude and that fiber dynamics is a more important variable than muscle-tendon unit dynamics and torque production in influencing the magnitude of muscle injury.

  10. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions.

    Directory of Open Access Journals (Sweden)

    Yoshio Iguchi

    Full Text Available Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.

  11. Postnatal undernutrition in rats: attempts to develop alternative methods to food deprive pups without maternal behavioral alteration.

    Science.gov (United States)

    Codo, W; Carlini, E A

    1979-09-01

    Two methods were investigated as attempts to undernourish rat pups without the disturbances in maternal behavior that accompany the procedures used to date for this purpose. In the 1st method, a litter of 12 pups was raised by both a lactating mother and a "sensitized" female. The sensitized female was provided under the assumption that she could correct for the deficit in maternal care when 1 mother raises a large litter. The results showed that the pups raised by the 2 females were constantly removed by the females from each other's nests; the females engaged in constant fighting and showed altered maternal behavior. As a consequence the pups lost more weight than control underfed young. The 2nd method consisted of removing 6-8 nipples from virgin females which were mated 10 days later. After delivery these females raised litters of 6 pups. Their maternal behavior was equal to that of unoperated controls, and at weaning the pups had 20-50% less body weight. This method could be useful to study undernutrition effects on behavior, without confounding experimental variables.

  12. When do traumatic experiences alter risk-taking behavior? A machine learning analysis of reports from refugees.

    Directory of Open Access Journals (Sweden)

    Mareike Augsburger

    Full Text Available Exposure to traumatic stressors and subsequent trauma-related mental changes may alter a person's risk-taking behavior. It is unclear whether this relationship depends on the specific types of traumatic experiences. Moreover, the association has never been tested in displaced individuals with substantial levels of traumatic experiences. The present study assessed risk-taking behavior in 56 displaced individuals by means of the balloon analogue risk task (BART. Exposure to traumatic events, symptoms of posttraumatic stress disorder and depression were assessed by means of semi-structured interviews. Using a novel statistical approach (stochastic gradient boosting machines, we analyzed predictors of risk-taking behavior. Exposure to organized violence was associated with less risk-taking, as indicated by fewer adjusted pumps in the BART, as was the reported experience of physical abuse and neglect, emotional abuse, and peer violence in childhood. However, civil traumatic stressors, as well as other events during childhood were associated with lower risk taking. This suggests that the association between global risk-taking behavior and exposure to traumatic stress depends on the particular type of the stressors that have been experienced.

  13. When do traumatic experiences alter risk-taking behavior? A machine learning analysis of reports from refugees.

    Science.gov (United States)

    Augsburger, Mareike; Elbert, Thomas

    2017-01-01

    Exposure to traumatic stressors and subsequent trauma-related mental changes may alter a person's risk-taking behavior. It is unclear whether this relationship depends on the specific types of traumatic experiences. Moreover, the association has never been tested in displaced individuals with substantial levels of traumatic experiences. The present study assessed risk-taking behavior in 56 displaced individuals by means of the balloon analogue risk task (BART). Exposure to traumatic events, symptoms of posttraumatic stress disorder and depression were assessed by means of semi-structured interviews. Using a novel statistical approach (stochastic gradient boosting machines), we analyzed predictors of risk-taking behavior. Exposure to organized violence was associated with less risk-taking, as indicated by fewer adjusted pumps in the BART, as was the reported experience of physical abuse and neglect, emotional abuse, and peer violence in childhood. However, civil traumatic stressors, as well as other events during childhood were associated with lower risk taking. This suggests that the association between global risk-taking behavior and exposure to traumatic stress depends on the particular type of the stressors that have been experienced.

  14. Brief Report: Altered Social Behavior in Isolation-Reared "Fmr1" Knockout Mice

    Science.gov (United States)

    Heitzer, Andrew M.; Roth, Alexandra K.; Nawrocki, Lauren; Wrenn, Craige C.; Valdovinos, Maria G.

    2013-01-01

    Social behavior abnormalities in Fragile X syndrome (FXS) are characterized by social withdrawal, anxiety, and deficits in social cognition. To assess these deficits, a model of FXS, the "Fmr1" knockout mouse ("Fmr1" KO), has been utilized. This mouse model has a null mutation in the fragile X mental retardation 1 gene ("Fmr1") and displays…

  15. Dietary fatty acids alter blood pressure, behavior and brain membrane composition of hypertensive rats

    NARCIS (Netherlands)

    de Wilde, MC; Hogyes, E; Kiliaan, AJ; Farkas, T; Luiten, PGM; Farkas, E; Wilde, Martijn C. de; Hőgyes, Endre; Kiliaan, Amanda J.

    2003-01-01

    The beneficial effect of dietary n-3 polyunsaturated fatty acids (PUFAs) on developing hypertension has been repeatedly demonstrated. However. related changes in brain membrane composition and its cognitive correlates have remained unclear. Our study aimed at a comprehensive analysis of behavior and

  16. Prenatal Exposure to Maternal Obesity Alters Anxiety and Stress Coping Behaviors in Aged Mice.

    Science.gov (United States)

    Balsevich, Georgia; Baumann, Valentin; Uribe, Andres; Chen, Alon; Schmidt, Mathias V

    2016-01-01

    There is growing evidence that maternal obesity and prenatal exposure to a high-fat diet program fetal development to regulate the physiology and behavior of the offspring in adulthood. Yet the extent to which the maternal dietary environment contributes to adult disease vulnerability remains unclear. In the current study we tested whether prenatal exposure to maternal obesity increases the offspring's vulnerability to stress-related psychiatric disorders. We used a mouse model of maternal diet-induced obesity to investigate whether maternal obesity affects the response to adult chronic stress exposure in young adult (3-month-old) and aged adult (12-month-old) offspring. Long-lasting, delayed impairments to anxiety-like behaviors and stress coping strategies resulted on account of prenatal exposure to maternal obesity. Although maternal obesity did not change the offspring's behavioral response to chronic stress per se, we demonstrate that the behavioral outcomes induced by prenatal exposure to maternal obesity parallel the deleterious effects of adult chronic stress exposure in aged male mice. We found that the glucocorticoid receptor (GR, Nr3c1) is upregulated in various hypothalamic nuclei on account of maternal obesity. In addition, gene expression of a known regulator of the GR, FKBP51, is increased specifically within the paraventricular nucleus. These findings indicate that maternal obesity parallels the deleterious effects of adult chronic stress exposure, and furthermore identifies GR/FKBP51 signaling as a novel candidate pathway regulated by maternal obesity. © 2015 S. Karger AG, Basel.

  17. Alteration of the soliton behavior in silica-fibers doped with passive resonant atoms

    International Nuclear Information System (INIS)

    Torres-Cisneros, G. E.; Nabiev, R.F.

    1991-01-01

    We have numerically studied for the first time the full dynamics describing the pulse propagation phenomenon in single-mode-silica-fibers doped with passive resonant two level atoms. For the specific case of a 3-order soliton we show that the inclusion of the resonant nonlinearities destroys the fundamental characteristics of the pulse soliton behavior. (Author)

  18. Targeting the-Dopaminergic Nervous System: Altering Behavior in Larval Zebrafish

    Science.gov (United States)

    Zebrafish (Dania rerio) are becoming an important model system in studying the effects of environmental chemicals on behavior. In order to develop a rapid in vivo screen to prioritize toxic chemicals, we have begun assessing the acute locomotor effects of drugs that act on the do...

  19. Altered ingestive behavior, weight changes, and intact olfactory sense in an APP overexpression model.

    Science.gov (United States)

    Vloeberghs, Ellen; Van Dam, Debby; Franck, Frieda; Serroyen, Jan; Geert, Molenberghs; Staufenbiel, Matthias; De Deyn, Peter Paul

    2008-06-01

    Transgenic APP23 mice were generated to model Alzheimer's disease. The APP23 model develops pathological features, learning deficits, and memory deficits analogous to dementing patients. In this report, transgenic mice exhibited several behavioral disturbances indicating the presence of neuropsychiatric symptoms of dementia. Aiming to verify whether the model also develops other behavioral problems, the authors investigated ingestive behavior in APP23 males of 3, 6 and 12 months. In addition, body weights of a naive male group were longitudinally monitored starting at weaning. Olfactory acuity was evaluated in mice of different age groups. Although olfactory functioning of APP23 mice appeared intact, they drank more and took more food pellets compared with wild-type littermates during a 1-week registration period. From the age of 4.5 weeks onward, APP23 males weighed significantly less than their control littermates, whereas this difference became more prominent with increasing age. Our results suggest the presence of a hypermetabolic state in this model. This is the first report, evidencing the presence of changes in eating and drinking behavior in a single transgenic Alzheimer mouse model. (Copyright) 2008 APA, all rights reserved.

  20. Pine Plantations and Invasion Alter Fuel Structure and Potential Fire Behavior in a Patagonian Forest-Steppe Ecotone

    Directory of Open Access Journals (Sweden)

    Juan Paritsis

    2018-03-01

    Full Text Available Planted and invading non-native plant species can alter fire regimes through changes in fuel loads and in the structure and continuity of fuels, potentially modifying the flammability of native plant communities. Such changes are not easily predicted and deserve system-specific studies. In several regions of the southern hemisphere, exotic pines have been extensively planted in native treeless areas for forestry purposes and have subsequently invaded the native environments. However, studies evaluating alterations in flammability caused by pines in Patagonia are scarce. In the forest-steppe ecotone of northwestern Patagonia, we evaluated fine fuels structure and simulated fire behavior in the native shrubby steppe, pine plantations, pine invasions, and mechanically removed invasions to establish the relative ecological vulnerability of these forestry and invasion scenarios to fire. We found that pine plantations and their subsequent invasion in the Patagonian shrubby steppe produced sharp changes in fine fuel amount and its vertical and horizontal continuity. These changes in fuel properties have the potential to affect fire behavior, increasing fire intensity by almost 30 times. Pruning of basal branches in plantations may substantially reduce fire hazard by lowering the probability of fire crowning, and mechanical removal of invasion seems effective in restoring original fuel structure in the native community. The current expansion of pine plantations and subsequent invasions acting synergistically with climate warming and increased human ignitions warrant a highly vulnerable landscape in the near future for northwestern Patagonia if no management actions are undertaken.

  1. A literature review of surface alteration layer effects on waste glass behavior

    International Nuclear Information System (INIS)

    Feng, X.; Cunnane, J.C.; Bates, J.K.

    1993-01-01

    When in contact with an aqueous solution, nuclear waste glass is subject to a chemical attack that results in progressive alteration. During tills alteration, constituent elements of the glass pass into the solution; elements initially in solution diffuse into, or are adsorbed onto, the solid; and new phases appear. This results in the formation of surface layers on the reacted glass. The glass corrosion and radionuclide release can be better understood by investigating these surface layer effects. In the past decade, there have been numerous studies regarding the effects of surface layers on glass reactions. This paper presents a systematic analysis and summary of the past knowledge regarding the effects of surface layers on glass-water interaction. This paper describes the major formation mechanisms of surface layers; reviews the role of surface layers in controlling mass transport and glass reaction affinity (through crystalline phases, an amorphous silica, a gel layer, or all the components in the glass); and discusses how the surface layers contribute to the retention of radionuclides during glass dissolution

  2. Mercury alters initiation and construction of nests by zebra finches, but not incubation or provisioning behaviors.

    Science.gov (United States)

    Chin, Stephanie Y; Hopkins, William A; Cristol, Daniel A

    2017-11-01

    Mercury is an environmental contaminant that impairs avian reproduction, but the behavioral and physiological mechanisms underlying this effect are poorly understood. The objective of this study was to determine whether lifetime dietary exposure to mercury (1.2 µg/g wet weight in food) impacted avian parental behaviors, and how this might influence reproductive success. To distinguish between the direct effects of mercury on parents and offspring, we created four treatment groups of captive-bred zebra finches (Taeniopygia guttata), with control and mercury-exposed adults raising cross-fostered control or mercury-exposed eggs (from maternal transfer). Control parents were 23% more likely to fledge young than parents exposed to mercury, regardless of egg exposure. Mercury-exposed parents were less likely to initiate nests than controls and spent less time constructing them. Nests of mercury-exposed pairs were lighter, possibly due to an impaired ability to bring nest material into the nestbox. However, nest temperature, incubation behavior, and provisioning rate did not differ between parental treatments. Unexposed control eggs tended to have shorter incubation periods and higher hatching success than mercury-exposed eggs, but there was no effect of parental exposure on these parameters. We accidentally discovered that parent finches transfer some of their body burden of mercury to nestlings during feeding through secretion in the crop. These results suggest that, in mercury-exposed songbirds, pre-laying parental behaviors, combined with direct exposure of embryos to mercury, likely contribute to reduced reproductive success and should be considered in future studies. Further research is warranted in field settings, where parents are exposed to greater environmental challenges and subtle behavioral differences might have more serious consequences than were observed in captivity.

  3. Altered Neural Activity during Semantic Object Memory Retrieval in Amnestic Mild Cognitive Impairment as Measured by Event-Related Potentials.

    Science.gov (United States)

    Chiang, Hsueh-Sheng; Mudar, Raksha A; Pudhiyidath, Athula; Spence, Jeffrey S; Womack, Kyle B; Cullum, C Munro; Tanner, Jeremy A; Eroh, Justin; Kraut, Michael A; Hart, John

    2015-01-01

    Deficits in semantic memory in individuals with amnestic mild cognitive impairment (aMCI) have been previously reported, but the underlying neurobiological mechanisms remain to be clarified. We examined event-related potentials (ERPs) associated with semantic memory retrieval in 16 individuals with aMCI as compared to 17 normal controls using the Semantic Object Retrieval Task (EEG SORT). In this task, subjects judged whether pairs of words (object features) elicited retrieval of an object (retrieval trials) or not (non-retrieval trials). Behavioral findings revealed that aMCI subjects had lower accuracy scores and marginally longer reaction time compared to controls. We used a multivariate analytical technique (STAT-PCA) to investigate similarities and differences in ERPs between aMCI and control groups. STAT-PCA revealed a left fronto-temporal component starting at around 750 ms post-stimulus in both groups. However, unlike controls, aMCI subjects showed an increase in the frontal-parietal scalp potential that distinguished retrieval from non-retrieval trials between 950 and 1050 ms post-stimulus negatively correlated with the performance on the logical memory subtest of the Wechsler Memory Scale-III. Thus, individuals with aMCI were not only impaired in their behavioral performance on SORT relative to controls, but also displayed alteration in the corresponding ERPs. The altered neural activity in aMCI compared to controls suggests a more sustained and effortful search during object memory retrieval, which may be a potential marker indicating disease processes at the pre-dementia stage.

  4. Chronic Anabolic Androgenic Steroid Exposure Alters Corticotropin Releasing Factor Expression and Anxiety-Like Behaviors in the Female Mouse

    Science.gov (United States)

    Costine, Beth A; Oberlander, Joseph G; Davis, Matthew C; Penatti, Carlos A A; Porter, Donna M; Leaton, Robert N; Henderson, Leslie P

    2010-01-01

    Summary In the past several decades, the therapeutic use of anabolic androgenic steroids (AAS) has been overshadowed by illicit use of these drugs by elite athletes and a growing number of adolescents to enhance performance and body image. As with adults, AAS use by adolescents is associated with a range of behavioral effects, including increased anxiety and altered responses to stress. It has been suggested that adolescents, especially adolescent females, may be particularly susceptible to the effects of these steroids, but few experiments in animal models have been performed to test this assertion. Here we show that chronic exposure of adolescent female mice to a mixture of three commonly abused AAS (testosterone cypionate, nandrolone decanoate and methandrostenolone; 7.5 mg/kg/day for 5 days) significantly enhanced anxiety-like behavior as assessed by the acoustic startle response (ASR), but did not augment the fear-potentiated startle response (FPS) or alter sensorimotor gating as assessed by prepulse inhibition of the acoustic startle response (PPI). AAS treatment also significantly increased the levels of corticotropin releasing factor (CRF) mRNA and somal-associated CRF immunoreactivity in the central amygdala (CeA), as well as neuropil-associated immunoreactivity in the dorsal aspect of the anterolateral division of the bed nucleus of the stria terminalis (dBnST). AAS treatment did not alter CRF receptor 1 or 2 mRNA in either the CeA or the dBnST; CRF immunoreactivity in the ventral BNST, the paraventricular nucleus (PVN) or the median eminence (ME); or peripheral levels of corticosterone. These results suggest that chronic AAS treatment of adolescent female mice may enhance generalized anxiety, but not sensorimotor gating or learned fear, via a mechanism that involves increased CRF-mediated signaling from CeA neurons projecting to the dBnST. PMID:20537804

  5. Altered neural activity and emotions following right middle cerebral artery stroke.

    Science.gov (United States)

    Paradiso, Sergio; Anderson, Beth M; Boles Ponto, Laura L; Tranel, Daniel; Robinson, Robert G

    2011-01-01

    Stroke of the right MCA is common. Such strokes often have consequences for emotional experience, but these can be subtle. In such cases diagnosis is difficult because emotional awareness (limiting reporting of emotional changes) may be affected. The present study sought to clarify the mechanisms of altered emotion experience after right MCA stroke. It was predicted that after right MCA stroke the anterior cingulate cortex (ACC), a brain region concerned with emotional awareness, would show reduced neural activity. Brain activity during presentation of emotional stimuli was measured in 6 patients with stable stroke, and in 12 age- and sex-matched nonlesion comparisons using positron emission tomography and the [(15)O]H(2)O autoradiographic method. MCA stroke was associated with weaker pleasant experience and decreased activity ipsilaterally in the ACC. Other regions involved in emotional processing including thalamus, dorsal and medial prefrontal cortex showed reduced activity ipsilaterally. Dorsal and medial prefrontal cortex, association visual cortex and cerebellum showed reduced activity contralaterally. Experience from unpleasant stimuli was unaltered and was associated with decreased activity only in the left midbrain. Right MCA stroke may reduce experience of pleasant emotions by altering brain activity in limbic and paralimbic regions distant from the area of direct damage, in addition to changes due to direct tissue damage to insula and basal ganglia. The knowledge acquired in this study begins to explain the mechanisms underlying emotional changes following right MCA stroke. Recognizing these changes may improve diagnoses, management and rehabilitation of right MCA stroke victims. Copyright © 2011 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  6. Effects of In utero environment and maternal behavior on neuroendocrine and behavioral alterations in a mouse model of prenatal trauma.

    Science.gov (United States)

    Golub, Y; Canneva, F; Funke, R; Frey, S; Distler, J; von Hörsten, S; Freitag, C M; Kratz, O; Moll, G H; Solati, J

    2016-11-01

    Maternal posttraumatic stress disorder (PTSD) following trauma exposure during pregnancy is associated with an increased risk of affective disorders in children. To investigate the mechanisms by which prenatal trauma and/or maternal PTSD affect brain development and behavior we established a mouse model of prenatal traumatic (PT) experience based on the application of an electric foot shock to C57Bl/6N female mice on the gestational day 12 during their pregnancy. The model is based on a previously validated animal model of PTSD. We found high anxiety levels and poor maternal care along with reduced serum prolactin and increased corticosterone levels in dams following maternal trauma (MT). PT-pups were born smaller and stayed smaller throughout their life. We show increased time and frequency of ultrasonic calls in PT-pups when separated from the mothers on the postnatal day (PND) 9. Cross-fostering experiments reveal lower anxiety levels in PT pups raised by healthy mothers as compared to trauma-naive pups raised by MT-dams. Importantly, the combination of prenatal trauma and being raised by a traumatized mother leads to: (1) the highest corticosterone levels in pups, (2) longest USV-call time and (3) highest anxiety levels in comparison to other experimental groups. Our data indicates a distinct change in maternal care following MT which is possibly associated with trauma-induced decrease in prolactin levels. Furthermore, we show that maternal behavior is crucial for the development of the offspring anxiety and specific aspects in maternal care overwrite to a significant extend the effects of in utero and postnatal environment. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1254-1265, 2016. © 2016 Wiley Periodicals, Inc.

  7. Nutrition, Physical Activity, and Obesity - Behavioral Risk Factor Surveillance System

    Data.gov (United States)

    U.S. Department of Health & Human Services — This dataset includes data on adult's diet, physical activity, and weight status from Behavioral Risk Factor Surveillance System. This data is used for DNPAO's Data,...

  8. A Behaviorally-Oriented Activities Therapy Program for Adolescents.

    Science.gov (United States)

    Chasanoff, Enid; Schrader, Carl

    1979-01-01

    A behaviorally-oriented activities therapy program was designed and implemented with adolescents who manifested problems at school, at home, and with peers. Techniques employed included: contingency contracting, assertiveness training, relaxation training, and cognitive restructuring. (Author/KC)

  9. Nutrition, Physical Activity, and Obesity - Youth Risk Behavior Surveillance System

    Data.gov (United States)

    U.S. Department of Health & Human Services — This dataset includes data on adolescent's diet, physical activity, and weight status from Youth Risk Behavior Surveillance System (YRBSS). This data is used for...

  10. Altered Baseline and Nicotine-Mediated Behavioral and Cholinergic Profiles in ChAT-Cre Mouse Lines.

    Science.gov (United States)

    Chen, Edison; Lallai, Valeria; Sherafat, Yasmine; Grimes, Nickolas P; Pushkin, Anna N; Fowler, J P; Fowler, Christie D

    2018-02-28

    The recent development of transgenic rodent lines expressing cre recombinase in a cell-specific manner, along with advances in engineered viral vectors, has permitted in-depth investigations into circuit function. However, emerging evidence has begun to suggest that genetic modifications may introduce unexpected caveats. In the current studies, we sought to extensively characterize male and female mice from both the ChAT (BAC) -Cre mouse line, created with the bacterial artificial chromosome (BAC) method, and ChAT (IRES) -Cre mouse line, generated with the internal ribosome entry site (IRES) method. ChAT (BAC) -Cre transgenic and wild-type mice did not differ in general locomotor behavior, anxiety measures, drug-induced cataplexy, nicotine-mediated hypolocomotion, or operant food training. However, ChAT (BAC) -Cre transgenic mice did exhibit significant deficits in intravenous nicotine self-administration, which paralleled an increase in vesicular acetylcholine transporter and choline acetyltransferase (ChAT) hippocampal expression. For the ChAT (IRES) -Cre line, transgenic mice exhibited deficits in baseline locomotor, nicotine-mediated hypolocomotion, and operant food training compared with wild-type and hemizygous littermates. No differences among ChAT (IRES) -Cre wild-type, hemizygous, and transgenic littermates were found in anxiety measures, drug-induced cataplexy, and nicotine self-administration. Given that increased cre expression was present in the ChAT (IRES) -Cre transgenic mice, as well as a decrease in ChAT expression in the hippocampus, altered neuronal function may underlie behavioral phenotypes. In contrast, ChAT (IRES) -Cre hemizygous mice were more similar to wild-type mice in both protein expression and the majority of behavioral assessments. As such, interpretation of data derived from ChAT-Cre rodents must consider potential limitations dependent on the line and/or genotype used in research investigations. SIGNIFICANCE STATEMENT Altered

  11. Sleep fragmentation exacerbates mechanical hypersensitivity and alters subsequent sleep-wake behavior in a mouse model of musculoskeletal sensitization.

    Science.gov (United States)

    Sutton, Blair C; Opp, Mark R

    2014-03-01

    Sleep deprivation, or sleep disruption, enhances pain in human subjects. Chronic musculoskeletal pain is prevalent in our society, and constitutes a tremendous public health burden. Although preclinical models of neuropathic and inflammatory pain demonstrate effects on sleep, few studies focus on musculoskeletal pain. We reported elsewhere in this issue of SLEEP that musculoskeletal sensitization alters sleep of mice. In this study we hypothesize that sleep fragmentation during the development of musculoskeletal sensitization will exacerbate subsequent pain responses and alter sleep-wake behavior of mice. This is a preclinical study using C57BL/6J mice to determine the effect on behavioral outcomes of sleep fragmentation combined with musculoskeletal sensitization. Musculoskeletal sensitization, a model of chronic muscle pain, was induced using two unilateral injections of acidified saline (pH 4.0) into the gastrocnemius muscle, spaced 5 days apart. Musculoskeletal sensitization manifests as mechanical hypersensitivity determined by von Frey filament testing at the hindpaws. Sleep fragmentation took place during the consecutive 12-h light periods of the 5 days between intramuscular injections. Electroencephalogram (EEG) and body temperature were recorded from some mice at baseline and for 3 weeks after musculoskeletal sensitization. Mechanical hypersensitivity was determined at preinjection baseline and on days 1, 3, 7, 14, and 21 after sensitization. Two additional experiments were conducted to determine the independent effects of sleep fragmentation or musculoskeletal sensitization on mechanical hypersensitivity. Five days of sleep fragmentation alone did not induce mechanical hypersensitivity, whereas sleep fragmentation combined with musculoskeletal sensitization resulted in prolonged and exacerbated mechanical hypersensitivity. Sleep fragmentation combined with musculoskeletal sensitization had an effect on subsequent sleep of mice as demonstrated by increased

  12. Practice of leisure-time physical activities and episodes of mood alteration amongst men and women.

    Science.gov (United States)

    Branco, Jerônimo Costa; Jansen, Karen; Oses, Jean Pierre; de Mattos Souza, Luciano Dias; da Silva Alves, Giovanna Del Grande; Lara, Diogo Rizzato; da Silva, Ricardo Azevedo

    2014-12-01

    To evaluate the prevalence of leisure-time physical activity and episodes of mood alteration in a population-based sample of adults, and its relation with gender. This is a cross-sectional population-based study with young adults aged between 18 and 35 years old. Sample selection was performed by clusters. The practice of physical activity was evaluated through the International Physical Activity Questionnaire (IPAQ), whereas mood disorders were evaluated using a short structured diagnostic interview-the Mini International Neuropsychiatric Interview (MINI) for DSM-IV and ICD-10 psychiatric disorders. Causal inferences are limited due the study׳s design. Sample consisted of 1953 young adults. The prevalence of leisure-time physical activity and of depressive episodes in the total sample was 25.3% and 17.2%, respectively. The prevalence of activity amongst men was 1.18 (CI 95% 1.18-1.32) times higher than in the women׳s group, whereas depression was 1.87 (CI 95% 1.41-2.47) times more prevalent amongst women than men. The prevalence of physical activity was not different between women (p=0.287), nor between men (p=0.895) regarding the presence of mania/hypomania episode. The prevalence of physical activity and depression was different concerning gender. The prevalence of physical activity is lower amongst women, whereas the prevalence of depression is higher amongst women when compared to men. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Mutations in the catalytic loop HRD motif alter the activity and function of Drosophila Src64.

    Directory of Open Access Journals (Sweden)

    Taylor C Strong

    Full Text Available The catalytic loop HRD motif is found in most protein kinases and these amino acids are predicted to perform functions in catalysis, transition to, and stabilization of the active conformation of the kinase domain. We have identified mutations in a Drosophila src gene, src64, that alter the three HRD amino acids. We have analyzed the mutants for both biochemical activity and biological function during development. Mutation of the aspartate to asparagine eliminates biological function in cytoskeletal processes and severely reduces fertility, supporting the amino acid's critical role in enzymatic activity. The arginine to cysteine mutation has little to no effect on kinase activity or cytoskeletal reorganization, suggesting that the HRD arginine may not be critical for coordinating phosphotyrosine in the active conformation. The histidine to leucine mutant retains some kinase activity and biological function, suggesting that this amino acid may have a biochemical function in the active kinase that is independent of its side chain hydrogen bonding interactions in the active site. We also describe the phenotypic effects of other mutations in the SH2 and tyrosine kinase domains of src64, and we compare them to the phenotypic effects of the src64 null allele.

  14. Altered sensorimotor activation patterns in idiopathic dystonia-an activation likelihood estimation meta-analysis of functional brain imaging studies

    DEFF Research Database (Denmark)

    Løkkegaard, Annemette; Herz, Damian M; Haagensen, Brian Numelin

    2016-01-01

    Dystonia is characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements or postures. Functional neuroimaging studies have yielded abnormal task-related sensorimotor activation in dystonia, but the results appear to be rather variable across studies....... Further, study size was usually small including different types of dystonia. Here we performed an activation likelihood estimation (ALE) meta-analysis of functional neuroimaging studies in patients with primary dystonia to test for convergence of dystonia-related alterations in task-related activity...... postcentral gyrus, right superior temporal gyrus and dorsal midbrain. Apart from the midbrain cluster, all between-group differences in task-related activity were retrieved in a sub-analysis including only the 14 studies on patients with focal dystonia. For focal dystonia, an additional cluster of increased...

  15. Cigarette smoking and schizophrenia independently and reversibly altered intrinsic brain activity.

    Science.gov (United States)

    Liu, Huan; Luo, Qi; Du, Wanyi; Li, Xingbao; Zhang, Zhiwei; Yu, Renqiang; Chen, Xiaolu; Meng, Huaqing; Du, Lian

    2018-01-03

    Schizophrenia patients are at high risk for cigarette smoking, but the neurobiological mechanisms of this comorbid association are relatively unknown. Long-term nicotine intake may impact brain that are independently and additively associated with schizophrenia. We investigated whether altered intrinsic brain activity (iBA) related to schizophrenia pathology is also associated with nicotine addiction. Forty-two schizophrenia patients (21 smokers and 21 nonsmokers) and 21 sex- and age-matched healthy nonsmokers underwent task-free functional MRI. Whole brain iBA was measured by the amplitude of spontaneous low frequency fluctuation. Furthermore, correlation analyses between iBA, symptom severity and nicotine addiction severity were performed. We found that prefrontal cortex, right caudate, and right postcentral gyrus were related to both disease and nicotine addiction effects. More importantly, schizophrenia smokers, compared to schizophrenia nonsmokers showed reversed iBA in the above brain regions. In addition, schizophrenia smokers, relative to nonsmokers, altered iBA in the left striatal and motor cortices. The iBA of the right caudate was negatively correlated with symptom severity. The iBA of the right postcentral gyrus negatively correlated with nicotine addiction severity. The striatal and motor cortices could potentially increase the vulnerability of smoking in schizophrenia. More importantly, smoking reversed iBA in the right striatal and prefrontal cortices, consistent with the self-medication theory in schizophrenia. Smoking altered left striatal and motor cortices activity, suggesting that the nicotine addiction effect was independent of disease. These results provide a local property of intrinsic brain activity mechanism that contributes to cigarette smoking and schizophrenia.

  16. Estradiol or fluoxetine alters depressive behavior and tryptophan hydroxylase in rat raphe.

    Science.gov (United States)

    Yang, Fu-Zhong; Wu, Yan; Zhang, Wei-Guo; Cai, Yi-Yun; Shi, Shen-Xun

    2010-03-10

    The effects of 17beta-estradiol and fluoxetine on behavior of ovariectomized rats subjected to the forced swimming test and the expression of tryptophan hydroxylase (TPH) in dorsal and median raphe were investigated, respectively through time sampling technique of behavior scoring and immunohistochemistry. Both estradiol and fluoxetine increased swimming and decreased immobility in the forced swimming test. The forced swimming stress decreased integrated optical density of TPH-positive regions in dorsal and median raphe. Both estradiol and fluoxetine administration prevented integrated optical density of TPH-positive regions from being decreased by forced swimming stress. These observations suggest that both estradiol and fluoxetine have protective bearing on ovariectomized rats enduring forced swimming stress.

  17. Prenatal Exposure to Maternal Obesity Alters Anxiety and Stress Coping Behaviors in Aged Mice

    OpenAIRE

    Balsevich, G.; Baumann, V.; Uribe, A.; Chen, A.; Schmidt, M.

    2016-01-01

    Background: There is growing evidence that maternal obesity and prenatal exposure to a high-fat diet program fetal development to regulate the physiology and behavior of the offspring in adulthood. Yet the extent to which the maternal dietary environment contributes to adult disease vulnerability remains unclear. In the current study we tested whether prenatal exposure to maternal obesity increases the offspring's vulnerability to stress-related psychiatric disorders. Methods: We used a mouse...

  18. Altered brain activity during reward anticipation in pathological gambling and obsessive-compulsive disorder.

    Directory of Open Access Journals (Sweden)

    Jung-Seok Choi

    Full Text Available BACKGROUND: Pathological gambling (PG and obsessive-compulsive disorder (OCD are conceptualized as a behavioral addiction, with a dependency on repetitive gambling behavior and rewarding effects following compulsive behavior, respectively. However, no neuroimaging studies to date have examined reward circuitry during the anticipation phase of reward in PG compared with in OCD while considering repetitive gambling and compulsion as addictive behaviors. METHODS/PRINCIPAL FINDINGS: To elucidate the neural activities specific to the anticipation phase of reward, we performed event-related functional magnetic resonance imaging (fMRI in young adults with PG and compared them with those in patients with OCD and healthy controls. Fifteen male patients with PG, 13 patients with OCD, and 15 healthy controls, group-matched for age, gender, and IQ, participated in a monetary incentive delay task during fMRI scanning. Neural activation in the ventromedial caudate nucleus during anticipation of both gain and loss decreased in patients with PG compared with that in patients with OCD and healthy controls. Additionally, reduced activation in the anterior insula during anticipation of loss was observed in patients with PG compared with that in patients with OCD which was intermediate between that in OCD and healthy controls (healthy controls < PG < OCD, and a significant positive correlation between activity in the anterior insula and South Oaks Gambling Screen score was found in patients with PG. CONCLUSIONS: Decreased neural activity in the ventromedial caudate nucleus during anticipation may be a specific neurobiological feature for the pathophysiology of PG, distinguishing it from OCD and healthy controls. Correlation of anterior insular activity during loss anticipation with PG symptoms suggests that patients with PG fit the features of OCD associated with harm avoidance as PG symptoms deteriorate. Our findings have identified functional disparities and

  19. Prenatal and lactational exposure to low-doses of bisphenol A alters adult mice behavior.

    Science.gov (United States)

    Nakamura, Keiko; Itoh, Kyoko; Dai, Hongmei; Han, Longzhe; Wang, Xiaohang; Kato, Shingo; Sugimoto, Tohru; Fushiki, Shinji

    2012-01-01

    Bisphenol A (BPA) is an endocrine-disrupting chemical, widely used in dentistry and various industries. We previously reported that BPA affected murine neocortical development by accelerating neuronal differentiation/migration, resulting in abnormal neocortical architecture as well as aberrant thalamocortical connections in the brains of adult mice. The aim of this study was to investigate whether prenatal and lactational BPA exposure affected behavior in adult mice. Pregnant mice were injected subcutaneously with 20μg/kg of BPA daily from embryonic day 0 (E0) until postnatal day 21 (P21). Control animals received a vehicle alone. Behavioral tests (n=15-20) were conducted at postnatal 3weeks (P3W) and P10-15W. After an open-field test, an elevated plus maze and Morris water maze tests were performed. The total distance in the elevated plus maze test at P3W and in the open-field test at P10W was significantly decreased in the BPA-exposed group, compared with the control group. Significant sex differences were observed in the time spent in the central area in the open-field test at P3W and in the total distance in the elevated plus maze test at P11W. These results indicated that prenatal and lactational BPA exposure disturbed the murine behavior in the postnatal development period and the adult mice. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  20. Associations of Physical Activity and Sedentary Behaviors with Dietary Behaviors among US High School Students

    Directory of Open Access Journals (Sweden)

    Richard Lowry

    2015-01-01

    Full Text Available Background. Physical activity (PA, sedentary behaviors, and dietary behaviors are each associated with overweight and obesity among youth. However, the associations of PA and sedentary behaviors with dietary behaviors are complex and not well understood. Purpose. To describe the associations of PA and sedentary behaviors with dietary behaviors among a representative sample of US high school students. Methods. We analyzed data from the 2010 National Youth Physical Activity and Nutrition Study (NYPANS. Using logistic regression models which controlled for sex, race/ethnicity, grade, body weight status, and weight management goals, we compared dietary behaviors among students who did and did not meet national recommendations for PA and sedentary behaviors. Results. Students who participated in recommended levels of daily PA (DPA and muscle strengthening PA (MSPA were more likely than those who did not to eat fruits and vegetables. Students who exceeded recommended limits for television (TV and computer/video game (C/VG screen time were less likely than those who did not to consume fruits and vegetables and were more likely to consume fast food and sugar-sweetened beverages. Conclusions. Researchers may want to address PA, sedentary behaviors, and dietary behaviors jointly when developing health promotion and obesity prevention programs for youth.

  1. Behavioral inhibition system (BIS), Behavioral activation system (BAS) and schizophrenia : Relationship with psychopathology and physiology

    NARCIS (Netherlands)

    Scholten, Marion R. M.; van Honk, Jack; Aleman, Andre; Kahn, Rene S.

    2006-01-01

    Objective: The Behavioral Inhibition System (BIS) and the Behavioral Activation System (BAS) have been conceptualized as two neural motivational systems that regulate sensitivity to punishment (BIS) and reward (BAS). Imbalance in BIS and BAS levels has been reported to be related to various forms of

  2. The crowded sea: incorporating multiple marine activities in conservation plans can significantly alter spatial priorities.

    Directory of Open Access Journals (Sweden)

    Tessa Mazor

    Full Text Available Successful implementation of marine conservation plans is largely inhibited by inadequate consideration of the broader social and economic context within which conservation operates. Marine waters and their biodiversity are shared by a host of stakeholders, such as commercial fishers, recreational users and offshore developers. Hence, to improve implementation success of conservation plans, we must incorporate other marine activities while explicitly examining trade-offs that may be required. In this study, we test how the inclusion of multiple marine activities can shape conservation plans. We used the entire Mediterranean territorial waters of Israel as a case study to compare four planning scenarios with increasing levels of complexity, where additional zones, threats and activities were added (e.g., commercial fisheries, hydrocarbon exploration interests, aquaculture, and shipping lanes. We applied the marine zoning decision support tool Marxan to each planning scenario and tested a the ability of each scenario to reach biodiversity targets, b the change in opportunity cost and c the alteration of spatial conservation priorities. We found that by including increasing numbers of marine activities and zones in the planning process, greater compromises are required to reach conservation objectives. Complex plans with more activities incurred greater opportunity cost and did not reach biodiversity targets as easily as simplified plans with less marine activities. We discovered that including hydrocarbon data in the planning process significantly alters spatial priorities. For the territorial waters of Israel we found that in order to protect at least 10% of the range of 166 marine biodiversity features there would be a loss of ∼15% of annual commercial fishery revenue and ∼5% of prospective hydrocarbon revenue. This case study follows an illustrated framework for adopting a transparent systematic process to balance biodiversity goals and

  3. Altered Ca2+ homeostasis induces Calpain-Cathepsin axis activation in sporadic Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Llorens, Franc; Thüne, Katrin; Sikorska, Beata; Schmitz, Matthias; Tahir, Waqas; Fernández-Borges, Natalia; Cramm, Maria; Gotzmann, Nadine; Carmona, Margarita; Streichenberger, Nathalie; Michel, Uwe; Zafar, Saima; Schuetz, Anna-Lena; Rajput, Ashish; Andréoletti, Olivier; Bonn, Stefan; Fischer, Andre; Liberski, Pawel P; Torres, Juan Maria; Ferrer, Isidre; Zerr, Inga

    2017-04-27

    Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent form of human prion disease and it is characterized by the presence of neuronal loss, spongiform degeneration, chronic inflammation and the accumulation of misfolded and pathogenic prion protein (PrP Sc ). The molecular mechanisms underlying these alterations are largely unknown, but the presence of intracellular neuronal calcium (Ca 2+ ) overload, a general feature in models of prion diseases, is suggested to play a key role in prion pathogenesis.Here we describe the presence of massive regulation of Ca 2+ responsive genes in sCJD brain tissue, accompanied by two Ca 2+ -dependent processes: endoplasmic reticulum stress and the activation of the cysteine proteases Calpains 1/2. Pathogenic Calpain proteins activation in sCJD is linked to the cleavage of their cellular substrates, impaired autophagy and lysosomal damage, which is partially reversed by Calpain inhibition in a cellular prion model. Additionally, Calpain 1 treatment enhances seeding activity of PrP Sc in a prion conversion assay. Neuronal lysosomal impairment caused by Calpain over activation leads to the release of the lysosomal protease Cathepsin S that in sCJD mainly localises in axons, although massive Cathepsin S overexpression is detected in microglial cells. Alterations in Ca 2+ homeostasis and activation of Calpain-Cathepsin axis already occur at pre-clinical stages of the disease as detected in a humanized sCJD mouse model.Altogether our work indicates that unbalanced Calpain-Cathepsin activation is a relevant contributor to the pathogenesis of sCJD at multiple molecular levels and a potential target for therapeutic intervention.

  4. Resveratrol Prevents Cellular and Behavioral Sensory Alterations in the Animal Model of Autism Induced by Valproic Acid

    Directory of Open Access Journals (Sweden)

    Mellanie Fontes-Dutra

    2018-05-01

    Full Text Available Autism spectrum disorder (ASD is characterized by impairments in both social communication and interaction and repetitive or stereotyped behaviors. Although its etiology remains unknown, genetic and environmental risk factors have been associated with this disorder, including the exposure to valproic acid (VPA during pregnancy. Resveratrol (RSV is an anti-inflammatory and antioxidant molecule known to prevent social impairments in the VPA animal model of autism. This study aimed to analyze the effects of prenatal exposure to VPA, as well as possible preventive effects of RSV, on sensory behavior, the localization of GABAergic parvalbumin (PV+ neurons in sensory brain regions and the expression of proteins of excitatory and inhibitory synapses. Pregnant rats were treated daily with RSV (3.6 mg/kg from E6.5 to E18.5 and injected with VPA (600 mg/kg in the E12.5. Male pups were analyzed in Nest Seeking (NS behavior and in whisker nuisance task (WNT. At P30, the tissues were removed and analyzed by immunofluorescence and western blotting. Our data showed for the first time an altered localization of PV+-neurons in primary sensory cortex and amygdala. We also showed a reduced level of gephyrin in the primary somatosensory area (PSSA of VPA animals. The treatment with RSV prevented all the aforementioned alterations triggered by VPA. Our data shed light on the relevance of sensory component in ASD and highlights the interplay between RSV and VPA animal model as an important tool to investigate the pathophysiology of ASD.

  5. Behavioral and Psychological Phenotyping of Physical Activity and Sedentary Behavior: Implications for Weight Management.

    Science.gov (United States)

    Bryan, Angela D; Jakicic, John M; Hunter, Christine M; Evans, Mary E; Yanovski, Susan Z; Epstein, Leonard H

    2017-10-01

    Risk for obesity is determined by a complex mix of genetics and lifetime exposures at multiple levels, from the metabolic milieu to psychosocial and environmental influences. These phenotypic differences underlie the variability in risk for obesity and response to weight management interventions, including differences in physical activity and sedentary behavior. As part of a broader effort focused on behavioral and psychological phenotyping in obesity research, the National Institutes of Health convened a multidisciplinary workshop to explore the state of the science in behavioral and psychological phenotyping in humans to explain individual differences in physical activity, both as a risk factor for obesity development and in response to activity-enhancing interventions. Understanding the behavioral and psychological phenotypes that contribute to differences in physical activity and sedentary behavior could allow for improved treatment matching and inform new targets for tailored, innovative, and effective weight management interventions. This summary provides the rationale for identifying psychological and behavioral phenotypes relevant to physical activity and identifies opportunities for future research to better understand, define, measure, and validate putative phenotypic factors and characterize emerging phenotypes that are empirically associated with initiation of physical activity, response to intervention, and sustained changes in physical activity. © 2017 The Obesity Society.

  6. Teachers' Cognitive Activities and Overt Behaviors.

    Science.gov (United States)

    Brophy, Jere E.

    Recent research on teacher planning, thinking, and decision making is reviewed. The work on planning reveals that teachers typically do not use the objectives-based, rational models stressed in textbooks, but instead concentrate on the activities included in a curriculum as they seem to relate to the needs and interests of the students. This…

  7. The study of the mineralogy and rare earth elements behavior in the hydrothermal alteration zones of the Astaneh granitoid massif (SW Arak, Markazi province, Iran)

    International Nuclear Information System (INIS)

    Esmaeily, D.; Afshooni, S. Z.; Valizadeh, M. V.

    2009-01-01

    The Astaneh granitoid massif is located about 40 km to Arak city, central Iran, is a part of Sanandaj-Sirjan structural zone. These intrusive rocks which are mainly composed of gronodioritic rocks, widely affected under hydrothermal alteration. The alteration zones, on the basis of field studies and mineralogy as well as the study of the REE behavior, are investigated in this paper. Eight alteration zones including phyllic (sericitic) with quartz, sericite and pyrite; chloritic with quartz, sericite and chlorite; propylitic with chlorite, epidot, calcite and albite; argillic with clay minerals (chlorite and illite); silicic with abundant quartz; albitic with albite, chlorite and quartz; hematitisation with hematite, Fe-carbonates (ankerite and siderite) and tourmalinisation with tourmaline (dravite) are identified. The results demonstrate notable differences in the REE behavior in the different alteration zones. Accordingly, comparison with the fresh rocks, in the phyllic (sericitic) alteration, LREE are enriched, but HREE, except Yb which enriched, unchanged. Also in chloritic alteration zone, LREEs are depleted, but HREEs represent different behaviors. In the argillic and propylitic alteration zones, all REE are depleted, but compared with HREE, the LREE represent more depletion. In the silicic and hematitisation alteration zones, compared with HREE, the LREE are enriched. Finally, in the albitic and tourmalinisation alteration zones all REE are depleted. These features indicate that the behavior of REE in the hydrothermal alteration zones of the Astaneh granitoid rocks is mainly controlled by p H, availability of complexing ions in the fluid as well as the presence of secondary phases as host REE minerals

  8. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring.

    Science.gov (United States)

    Boulle, Fabien; Pawluski, Jodi L; Homberg, Judith R; Machiels, Barbie; Kroeze, Yvet; Kumar, Neha; Steinbusch, Harry W M; Kenis, Gunter; van den Hove, Daniel L A

    2016-04-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Bisphenol S (BPS) Alters Maternal Behavior and Brain in Mice Exposed During Pregnancy/Lactation and Their Daughters.

    Science.gov (United States)

    Catanese, Mary C; Vandenberg, Laura N

    2017-03-01

    Estrogenic endocrine disrupting chemicals have been shown to disrupt maternal behavior in rodents. We investigated the effects of an emerging xenoestrogen, bisphenol S (BPS), on maternal behavior and brain in CD-1 mice exposed during pregnancy and lactation (F0 generation) and in female offspring exposed during gestation and perinatal development (F1 generation). We observed different effects in F0 and F1 dams for a number of components of maternal behavior, including time on the nest, time spent on nest building, latency to retrieve pups, and latency to retrieve the entire litter. We also characterized expression of estrogen receptor α in the medial preoptic area (MPOA) and quantified tyrosine hydroxylase immunoreactive cells in the ventral tegmental area, 2 brain regions critical for maternal care. BPS-treated females in the F0 generation had a statistically significant increase in estrogen receptor α expression in the caudal subregion of the central MPOA in a dose-dependent manner. In contrast, there were no statistically significant effects of BPS on the MPOA in F1 dams or the ventral tegmental area in either generation. This work demonstrates that BPS affects maternal behavior and brain with outcomes depending on generation, dose, and postpartum period. Many studies examining effects of endocrine disrupting chemicals view the mother as a means by which offspring can be exposed during critical periods of development. Here, we demonstrate that pregnancy and lactation are vulnerable periods for the mother. We also show that developmental BPS exposure alters maternal behavior later in adulthood. Both findings have potential public health implications. Copyright © 2017 by the Endocrine Society.

  10. Application of activity sensors for estimating behavioral patterns

    Science.gov (United States)

    Roberts, Caleb P.; Cain, James W.; Cox, Robert D.

    2016-01-01

    The increasing use of Global Positioning System (GPS) collars in habitat selection studies provides large numbers of precise location data points with reduced field effort. However, inclusion of activity sensors in many GPS collars also grants the potential to remotely estimate behavioral state. Thus, only using GPS collars to collect location data belies their full capabilities. Coupling behavioral state with location data would allow researchers and managers to refine habitat selection models by using diel behavioral state changes to partition fine-scale temporal shifts in habitat selection. We tested the capability of relatively unsophisticated GPS-collar activity sensors to estimate behavior throughout diel periods using free-ranging female elk (Cervus canadensis) in the Jemez Mountains of north-central New Mexico, USA, 2013–2014. Collars recorded cumulative number of movements (hits) per 15-min recording period immediately preceding GPS fixes at 0000, 0600, 1200, and 1800 hr. We measured diel behavioral patterns of focal elk, categorizing active (i.e., foraging, traveling, vigilant, grooming) and inactive (i.e., resting) states. Active behaviors (foraging, traveling) produced more average hits (0.87 ± 0.69 hits/min, 4.0 ± 2.2 hits/min, respectively; 95% CI) and inactive (resting) behavior fewer hits (−1.1 ± 0.61 95% CI). We differentiated active and inactive behavioral states with a bootstrapped threshold of 5.9 ± 3.9 hits/15-min recording period. Mean cumulative activity-sensor hits corresponded with observed diel behavioral patterns: hits increased during crepuscular (0600, 1800 hr) observations when elk were most active (0000–0600 hr: d = 0.19; 1200–1800 hr: d = 0.64) and decreased during midday and night (0000 hr, 1200 hr) when elk were least active (1800–0000 hr: d = −0.39; 0600–1200 hr: d = −0.43). Even using relatively unsophisticated GPS-collar activity sensors, managers can

  11. Exercise in rats does not alter hypothalamic AMP-activated protein kinase activity

    DEFF Research Database (Denmark)

    Andersson, Ulrika; Treebak, Jonas Thue; Nielsen, Jakob Nis

    2005-01-01

    . In recovery, glucose feeding increased plasma glucose and insulin concentrations whereas ghrelin and PYY decreased to (ghrelin) or below (PPY) resting levels. It is concluded that 1 h of strenuous exercise in rats does not elicit significant changes in hypothalamic AMPK activity despite an increase in plasma...... ghrelin. Thus, changes in energy metabolism during or after exercise are likely not coordinated by changes in hypothalamic AMPK activity.......Recent studies have demonstrated that AMP-activated protein kinase (AMPK) in the hypothalamus is involved in the regulation of food intake. Because exercise is known to influence appetite and cause substrate depletion, it may also influence AMPK in the hypothalamus. Male rats that either rested...

  12. ALTERED HIPPOCAMPAL NEUROGENESIS AND AMYGDALAR NEURONAL ACTIVITY IN ADULT MICE WITH REPEATED EXPERIENCE OF AGGRESSION

    Directory of Open Access Journals (Sweden)

    Dmitriy eSmagin

    2015-12-01

    Full Text Available The repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety. When winning males are deprived of opportunities to engage in further fights, they demonstrate increased levels of aggressiveness. Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus. This increase is not diminished after a fighting deprivation period. Furthermore, repeated winning experience decreases the number of activated (c-fos positive cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells. Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights.

  13. Nanomolar bifenthrin alters synchronous Ca2+ oscillations and cortical neuron development independent of sodium channel activity.

    Science.gov (United States)

    Cao, Zhengyu; Cui, Yanjun; Nguyen, Hai M; Jenkins, David Paul; Wulff, Heike; Pessah, Isaac N

    2014-04-01

    Bifenthrin, a relatively stable type I pyrethroid that causes tremors and impairs motor activity in rodents, is broadly used. We investigated whether nanomolar bifenthrin alters synchronous Ca(2+) oscillations (SCOs) necessary for activity-dependent dendritic development. Primary mouse cortical neurons were cultured 8 or 9 days in vitro (DIV), loaded with the Ca(2+) indicator Fluo-4, and imaged using a Fluorescence Imaging Plate Reader Tetra. Acute exposure to bifenthrin rapidly increased the frequency of SCOs by 2.7-fold (EC50 = 58 nM) and decreased SCO amplitude by 36%. Changes in SCO properties were independent of modifications in voltage-gated sodium channels since 100 nM bifenthrin had no effect on the whole-cell Na(+) current, nor did it influence neuronal resting membrane potential. The L-type Ca(2+) channel blocker nifedipine failed to ameliorate bifenthrin-triggered SCO activity. By contrast, the metabotropic glutamate receptor (mGluR)5 antagonist MPEP [2-methyl-6-(phenylethynyl)pyridine] normalized bifenthrin-triggered increase in SCO frequency without altering baseline SCO activity, indicating that bifenthrin amplifies mGluR5 signaling independent of Na(+) channel modification. Competitive [AP-5; (-)-2-amino-5-phosphonopentanoic acid] and noncompetitive (dizocilpine, or MK-801 [(5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate]) N-methyl-d-aspartate antagonists partially decreased both basal and bifenthrin-triggered SCO frequency increase. Bifenthrin-modified SCO rapidly enhanced the phosphorylation of cAMP response element-binding protein (CREB). Subacute (48 hours) exposure to bifenthrin commencing 2 DIV-enhanced neurite outgrowth and persistently increased SCO frequency and reduced SCO amplitude. Bifenthrin-stimulated neurite outgrowth and CREB phosphorylation were dependent on mGluR5 activity since MPEP normalized both responses. Collectively these data identify a new mechanism by which bifenthrin potently alters Ca(2

  14. 5-HT2A receptor deficiency alters the metabolic and transcriptional, but not the behavioral, consequences of chronic unpredictable stress

    Directory of Open Access Journals (Sweden)

    Minal Jaggar

    2017-12-01

    Full Text Available Chronic stress enhances risk for psychiatric disorders, and in animal models is known to evoke depression-like behavior accompanied by perturbed neurohormonal, metabolic, neuroarchitectural and transcriptional changes. Serotonergic neurotransmission, including serotonin2A (5-HT2A receptors, have been implicated in mediating specific aspects of stress-induced responses. Here we investigated the influence of chronic unpredictable stress (CUS on depression-like behavior, serum metabolic measures, and gene expression in stress-associated neurocircuitry of the prefrontal cortex (PFC and hippocampus in 5-HT2A receptor knockout (5-HT2A−/− and wild-type mice of both sexes. While 5-HT2A−/− male and female mice exhibited a baseline reduced anxiety-like state, this did not alter the onset or severity of behavioral despair during and at the cessation of CUS, indicating that these mice can develop stress-evoked depressive behavior. Analysis of metabolic parameters in serum revealed a CUS-evoked dyslipidemia, which was abrogated in 5-HT2A−/− female mice with a hyperlipidemic baseline phenotype. 5-HT2A−/− male mice in contrast did not exhibit such a baseline shift in their serum lipid profile. Specific stress-responsive genes (Crh, Crhr1, Nr3c1, and Nr3c2, trophic factors (Bdnf, Igf1 and immediate early genes (IEGs (Arc, Fos, Fosb, Egr1-4 in the PFC and hippocampus were altered in 5-HT2A−/− mice both under baseline and CUS conditions. Our results support a role for the 5-HT2A receptor in specific metabolic and transcriptional, but not behavioral, consequences of CUS, and highlight that the contribution of the 5-HT2A receptor to stress-evoked changes is sexually dimorphic. Keywords: 5-HT2A−/− mice, Prefrontal cortex, Hippocampus, Gene expression, Sexual dimorphism, Despair

  15. ACTIVATED HOT PRESSING BEHAVIOR OF WC NANOPOWDERS

    Directory of Open Access Journals (Sweden)

    Edwin GEVORKYAN

    2010-06-01

    Full Text Available The questions of consolidation of nanopowders concerning hot compaction by pressing activated by electric current action are considered. Mechanisms of grain boundary creep-sliding which are sequentially prevalent in a forming of compacted structures under influence of temperature factor and in the presence of a direct electric heating are discussed. Structural-transformational sources and conditions of forming of high physical-mechanical properties of nanopowder refractory solid-state products are described.

  16. Nicotine Dependence, Physical Activity, and Sedentary Behavior among Adult Smokers.

    Science.gov (United States)

    Loprinzi, Paul D; Walker, Jerome F

    2015-03-01

    Research has previously demonstrated an inverse association between smoking status and physical activity; however, few studies have examined the association between nicotine dependence and physical activity or sedentary behavior. This study examined the association between nicotine dependence and accelerometer-determined physical activity and sedentary behavior. Data from the 2003-2006 National Health and Nutrition Examination Survey (NHANES) were used. A total of 851 adult (≥20 years) smokers wore an accelerometer for ≥4 days and completed the Fagerstrom Test for Nicotine Dependence scale. Regression models were used to examine the association between nicotine dependence and physical activity/sedentary behavior. After adjusting for age, gender, race-ethnicity, poverty level, hypertension, emphysema, bronchitis, body mass index (BMI), cotinine, and accelerometer wear time, smokers 50 + years of age with greater nicotine dependence engaged in more sedentary behavior (β = 11.4, P = 0.02) and less light-intensity physical activity (β = -9.6, P = 0.03) and moderate-to-vigorous physical activity (MVPA; β = -0.14, P = 0.003) than their less nicotine dependent counterparts. Older adults who are more nicotine dependent engage in less physical activity (both MVPA and light-intensity) and more sedentary behavior than their less nicotine dependent counterparts.

  17. Altered activity of heme biosynthesis pathway enzymes in individuals chronically exposed to arsenic in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Zavala, A.; Del Razo, L.M.; Garcia-Vargas, G.G.; Aguilar, C.; Borja, V.H.; Albores, A.; Cebrian, M.E. [CINVESTAV-IPN, Mexico (Mexico). Dept. de Farmacologia y Toxicologica

    1999-03-01

    Our objective was to evaluate the activities of some enzymes of the heme biosynthesis pathway and their relationship with the profile of urinary porphyrin excretion in individuals exposed chronically to arsenic (As) via drinking water in Region Lagunera, Mexico. We selected 17 individuals from each village studied: Benito Juarez, which has current exposure to 0.3 mg As/l; Santa Ana, where individuals have been exposed for more than 35 years to 0.4 mg As/l, but due to changes in the water supply (in 1992) exposure was reduced to its current level (0.1 mg As/l), and Nazareno, with 0.014 mg As/l. Average arsenic concentrations in urine were 2058, 398, and 88 {mu}g As/g creatinine, respectively. The more evident alterations in heme metabolism observed in the highly exposed individuals were: (1) small but significant increases in porphobilinogen deaminase (PBG-D) and uroporphyrinogen decarboxylase (URO-D) activities in peripheral blood erythrocytes; (2) increases in the urinary excretion of total porphyrins, mainly due to coproporphyrin III (COPROIII) and uroporphyrin III (UROIII); and (3) increases in the COPRO/URO and COPROIII/COPROI ratios. No significant changes were observed in uroporphyrinogen III synthetase (UROIII-S) activity. The direct relationships between enzyme activities and urinary porphyrins, suggest that the increased porphyrin excretion was related to PBG-D, whereas the increased URO-D activity would enhance coproporphyrin synthesis and excretion at the expense of uroporphyrin. None of the human studies available have reported the marked porphyric response and enzyme inhibition observed in rodents. In conclusion, chronic As exposure alters human heme metabolism; however the severity of the effects appears to depend on characteristics of exposure not yet fully characterized. (orig.) With 1 fig., 3 tabs., 20 refs.

  18. [Occupational sedentary behaviors and physical activity at work].

    Science.gov (United States)

    Dutheil, Frédéric; Ferrières, Jean; Esquirol, Yolande

    Sedentary behaviors are a leading cause of preventable mortality in developed countries. We mainly have sedentary behaviors at work. Sedentary behaviors must be considered as an occupational risk, and therefore must be a major concern for managers and physicians/health researchers. Recreational physical activity only partly compensates for the negative effects of physical inactivity at work. Physical activity at work without excess (walking, standing) is beneficial. Initiatives to reduce physical inactivity and increase physical activity among employees are effective in terms of mental health, physical health, and productivity. Prevention of sedentary behaviors at work is a win-win partnership between employers and employees. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Maternal obesity alters feto-placental Cytochrome P4501A1 activity

    Science.gov (United States)

    DuBois, Barent N.; O’Tierney, Perrie; Pearson, Jacob; Friedman, Jacob E.; Thornburg, Kent; Cherala, Ganesh

    2012-01-01

    Cytochrome P4501A1 (CYP1A1), an important drug metabolizing enzyme, is expressed in human placenta throughout gestation as well as in fetal liver. Obesity, a chronic inflammatory condition, is known to alter CYP enzyme expression in non-placental tissues. In the present study, we test the hypothesis that maternal obesity alters the distribution of CYP1A1 activity in feto-placental unit. Placentas were collected from non-obese (BMI30) women at term. Livers were collected from gestation day 130 fetuses of non-human primates fed either control diet or high-fat diet (HFD). Cytosol and microsomes were collected using differential centrifugation, and incubated with 7-Ethoxyresorufin. The CYP1A1 specific activity (pmoles of resorufin formed/min/mg of protein) was measured at excitation/emission wavelength of 530/590nm. Placentas of obese women had significantly reduced microsomal CYP1A1 activity compared to non-obese women (0.046 vs. 0.082; p<0.05); however no such effect was observed on cytosolic activity. Similarly, fetal liver from HFD fed mothers had significantly reduced microsomal CYP1A1 activity (0.44±0.04 vs. 0.20±0.10; p<0.05), with no significant difference in cytosolic CYP1A1 activity (control, 1.23±0.20; HFD, 0.80±0.40). Interestingly, multiple linear regression analyses of placental efficiency indicates cytosolic CYP1A1 activity is a main effect (5.67±2.32 (β±SEM); p=0.022) along with BMI (−0.57±0.26; p=0.037), fetal gender (1.07±0.26; p<0.001), and maternal age (0.07±0.03; p=0.011). In summary, while maternal obesity affects microsomal CYP1A1 activity alone, cytosolic activity along with maternal BMI is an important determinant of placental efficiency. Together, these data suggest that maternal lifestyle could have a significant impact on CYP1A1 activity, and hints at a possible role for CYP1A1 in feto-placental growth and thereby well-being of fetus. PMID:23046808

  20. Alterations in knee kinematics after partial medial meniscectomy are activity dependent.

    Science.gov (United States)

    Edd, Shannon N; Netravali, Nathan A; Favre, Julien; Giori, Nicholas J; Andriacchi, Thomas P

    2015-06-01

    Alterations in knee kinematics after partial meniscectomy have been linked to the increased risk of osteoarthritis in this population. Understanding differences in kinematics during static versus dynamic activities of increased demand can provide important information regarding the possible underlying mechanisms of these alterations. Differences in the following 2 kinematics measures will increase with activity demand: (1) the offset toward external tibial rotation for the meniscectomized limb compared with the contralateral limb during stance and (2) the difference in knee flexion angle at initial foot contact between the meniscectomized and contralateral limbs. Controlled laboratory study. This study compared side-to-side differences in knee flexion and rotation angles during static and dynamic activities. Thirteen patients (2 female) were tested in a motion capture laboratory at 6 ± 2 months after unilateral, arthroscopic, partial medial meniscectomy during a static reference pose and during 3 dynamic activities: walking, stair ascent, and stair descent. The meniscectomized limb demonstrated more external tibial rotation compared with the contralateral limb during dynamic activities, and there was a trend that this offset increased with activity demand (repeated-measures analysis of variance [ANOVA] for activity, P = .07; mean limb difference: static pose, -0.1° ± 3.3°, P = .5; walking, 1.2° ± 3.8°, P = .1; stair ascent, 2.0° ± 3.2°, P = .02; stair descent, 3.0° ± 3.5°, P = .005). Similarly, the meniscectomized knee was more flexed at initial contact than the contralateral limb during dynamic activities (repeated-measures ANOVA for activity P = .006; mean limb difference: reference pose, 1.0° ± 2.5°, P = .09; walking, 2.0° ± 3.9°, P = .05; stair ascent, 5.9° ± 5.3°, P = .009; stair descent, 3.5° ± 4.0°, P = .004). These results suggest both a structural element and a potential muscular element for the differences in kinematics after

  1. Caffeine differentially alters cortical hemodynamic activity during working memory: a near infrared spectroscopy study.

    Science.gov (United States)

    Heilbronner, Urs; Hinrichs, Hermann; Heinze, Hans-Jochen; Zaehle, Tino

    2015-10-01

    Caffeine is a widely used stimulant with potentially beneficial effects on cognition as well as vasoconstrictive properties. In functional magnetic imaging research, caffeine has gained attention as a potential enhancer of the blood oxygenation level-dependent (BOLD) response. In order to clarify changes of oxy- and deoxyhemoglobin (HbO and HbR) induced by caffeine during a cognitive task, we investigated a working memory (WM) paradigm (visual 2-back) using near-infrared spectroscopy (NIRS). Behaviorally, caffeine had no effect on the WM performance but influenced reaction times in the 0-back condition. NIRS data demonstrate caffeine-dependent alterations of the course of the hemodynamic response. The intake of 200 mg caffeine caused a significant decrease of the HbO response between 20 and 40 s after the onset of a 2-back task in the bilateral inferior frontal cortex (IFC). In parallel, the HbR response of the left IFC was significantly increased due to caffeine intake. In line with previous results, we did not detect an effect of caffeine on most aspects of behavior. Effects of caffeine on brain vasculature were detected as general reduction of HbO. Neuronal effects of caffeine are reflected in an increased concentration of HbR in the left hemisphere when performing a verbal memory task and suggest influences on metabolism.

  2. Impact of A Waning Vaccine and Altered Behavior on the Spread of Influenza

    Directory of Open Access Journals (Sweden)

    Kasia A. Pawelek

    2017-06-01

    Full Text Available Influenza remains one of the major infectious diseases that targets humankind. Understanding within-host dynamics of the virus and how it translates into the spread of the disease at a population level can help us obtain more accurate disease outbreak predictions. We created an ordinary differential equation model with parameter estimates based on the disease symptoms score data to determine various disease stages and parameters associated with infectiousness and disease progression. Having various stages with different intensities of symptoms enables us to incorporate spontaneous behavior change due to the onset/offset of disease symptoms. Additionally, we incorporate the effect of a waning vaccine on delaying the time and decreasing the size of an epidemic peak. Our results showed that the epidemic peak in the model was significantly lowered when public vaccination was performed up to two months past the onset of an epidemic. Also, behavior change in the earliest stages of the epidemic lowers and delays the epidemic peak. This study further provides information on the potential impact of pharmaceutical and non-pharmaceutical interventions during an influenza epidemic.

  3. Distal muscle activity alterations during the stance phase of gait in restless leg syndrome (RLS) patients.

    Science.gov (United States)

    Dafkin, Chloe; Green, Andrew; Olivier, Benita; McKinon, Warrick; Kerr, Samantha

    2018-05-01

    To assess if there is a circadian variation in electromyographical (EMG) muscle activity during gait in restless legs syndrome (RLS) patients and healthy control participants. Gait assessment was done in 14 RLS patients and 13 healthy control participants in the evening (PM) and the morning (AM). Muscle activity was recorded bilaterally from the tibialis anterior (TA), lateral gastrocnemius (GL), rectus femoris (RF) and biceps femoris (BF) muscles. A circadian variation during the stance phase in only TA (PM > AM, p  Controls, p < 0.05) during early stance and decreased GL activity (RLS < Controls, p < 0.01) during terminal stance in comparison to control participants in the evening. No other significant differences were noted between RLS patients and control participants. Activation of GL during the swing phase was noted in 79% of RLS patients and in 23% of control participants in the morning compared to 71% and 38% in the evening, respectively. EMG muscle activity shows no circadian variation in RLS patients. Evening differences in gait muscle activation patterns between RLS patients and control participants are evident. These results extend our knowledge about alterations in spinal processing during gait in RLS. A possible explanation for these findings is central pattern generator sensitization caused by increased sensitivity in cutaneous afferents in RLS patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Altered time course of amygdala activation during speech anticipation in social anxiety disorder.

    Science.gov (United States)

    Davies, Carolyn D; Young, Katherine; Torre, Jared B; Burklund, Lisa J; Goldin, Philippe R; Brown, Lily A; Niles, Andrea N; Lieberman, Matthew D; Craske, Michelle G

    2017-02-01

    Exaggerated anticipatory anxiety is common in social anxiety disorder (SAD). Neuroimaging studies have revealed altered neural activity in response to social stimuli in SAD, but fewer studies have examined neural activity during anticipation of feared social stimuli in SAD. The current study examined the time course and magnitude of activity in threat processing brain regions during speech anticipation in socially anxious individuals and healthy controls (HC). Participants (SAD n=58; HC n=16) underwent functional magnetic resonance imaging (fMRI) during which they completed a 90s control anticipation task and 90s speech anticipation task. Repeated measures multi-level modeling analyses were used to examine group differences in time course activity during speech vs. control anticipation for regions of interest, including bilateral amygdala, insula, ventral striatum, and dorsal anterior cingulate cortex. The time course of amygdala activity was more prolonged and less variable throughout speech anticipation in SAD participants compared to HCs, whereas the overall magnitude of amygdala response did not differ between groups. Magnitude and time course of activity was largely similar between groups across other regions of interest. Analyses were restricted to regions of interest and task order was the same across participants due to the nature of deception instructions. Sustained amygdala time course during anticipation may uniquely reflect heightened detection of threat or deficits in emotion regulation in socially anxious individuals. Findings highlight the importance of examining temporal dynamics of amygdala responding. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Multifunctional Ebselen drug functions through the activation of DNA damage response and alterations in nuclear proteins.

    Science.gov (United States)

    Azad, Gajendra K; Balkrishna, Shah Jaimin; Sathish, Narayanan; Kumar, Sangit; Tomar, Raghuvir S

    2012-01-15

    Several studies have demonstrated that Ebselen is an anti-inflammatory and anti-oxidative agent. Contrary to this, studies have also shown a high degree of cellular toxicity associated with Ebselen usage, the underlying mechanism of which remains less understood. In this study we have attempted to identify a possible molecular mechanism behind the above by investigating the effects of Ebselen on Saccharomyces cerevisiae. Significant growth arrest was documented in yeast cells exposed to Ebselen similar to that seen in presence of DNA damaging agents (including methyl methane sulfonate [MMS] and hydroxy urea [HU]). Furthermore, mutations in specific lysine residues in the histone H3 tail (H3 K56R) resulted in increased sensitivity of yeast cells to Ebselen presumably due to alterations in post-translational modifications of histone proteins towards regulating replication and DNA damage repair. Our findings suggest that Ebselen functions through activation of DNA damage response, alterations in histone modifications, activation of checkpoint kinase pathway and derepression of ribonucleotide reductases (DNA repair genes) which to the best of our knowledge is being reported for the first time. Interestingly subsequent to Ebselen exposure there were changes in global yeast protein expression and specific histone modifications, identification of which is expected to reveal a fundamental cellular mechanism underlying the action of Ebselen. Taken together these observations will help to redesign Ebselen-based therapy in clinical trials. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Stat1 activation attenuates IL-6 induced Stat3 activity but does not alter apoptosis sensitivity in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Dimberg Lina Y

    2012-07-01

    Full Text Available Abstract Background Multiple myeloma (MM is at present an incurable malignancy, characterized by apoptosis-resistant tumor cells. Interferon (IFN treatment sensitizes MM cells to Fas-induced apoptosis and is associated with an increased activation of Signal transducer and activator of transcription (Stat1. The role of Stat1 in MM has not been elucidated, but Stat1 has in several studies been ascribed a pro-apoptotic role. Conversely, IL-6 induction of Stat3 is known to confer resistance to apoptosis in MM. Methods To delineate the role of Stat1 in IFN mediated sensitization to apoptosis, sub-lines of the U-266-1970 MM cell line with a stable expression of the active mutant Stat1C were utilized. The influence of Stat1C constitutive transcriptional activation on endogenous Stat3 expression and activation, and the expression of apoptosis-related genes were analyzed. To determine whether Stat1 alone would be an important determinant in sensitizing MM cells to apoptosis, the U-266-1970-Stat1C cell line and control cells were exposed to high throughput compound screening (HTS. Results To explore the role of Stat1 in IFN mediated apoptosis sensitization of MM, we established sublines of the MM cell line U-266-1970 constitutively expressing the active mutant Stat1C. We found that constitutive nuclear localization and transcriptional activity of Stat1 was associated with an attenuation of IL-6-induced Stat3 activation and up-regulation of mRNA for the pro-apoptotic Bcl-2 protein family genes Harakiri, the short form of Mcl-1 and Noxa. However, Stat1 activation alone was not sufficient to sensitize cells to Fas-induced apoptosis. In a screening of > 3000 compounds including bortezomib, dexamethasone, etoposide, suberoylanilide hydroxamic acid (SAHA, geldanamycin (17-AAG, doxorubicin and thalidomide, we found that the drug response and IC50 in cells constitutively expressing active Stat1 was mainly unaltered. Conclusion We conclude that Stat1 alters IL-6

  7. Stat1 activation attenuates IL-6 induced Stat3 activity but does not alter apoptosis sensitivity in multiple myeloma

    International Nuclear Information System (INIS)

    Dimberg, Lina Y; Nilsson, Kenneth; Öberg, Fredrik; Wiklund, Helena Jernberg; Dimberg, Anna; Ivarsson, Karolina; Fryknäs, Mårten; Rickardson, Linda; Tobin, Gerard; Ekman, Simon; Larsson, Rolf; Gullberg, Urban

    2012-01-01

    Multiple myeloma (MM) is at present an incurable malignancy, characterized by apoptosis-resistant tumor cells. Interferon (IFN) treatment sensitizes MM cells to Fas-induced apoptosis and is associated with an increased activation of Signal transducer and activator of transcription (Stat)1. The role of Stat1 in MM has not been elucidated, but Stat1 has in several studies been ascribed a pro-apoptotic role. Conversely, IL-6 induction of Stat3 is known to confer resistance to apoptosis in MM. To delineate the role of Stat1 in IFN mediated sensitization to apoptosis, sub-lines of the U-266-1970 MM cell line with a stable expression of the active mutant Stat1C were utilized. The influence of Stat1C constitutive transcriptional activation on endogenous Stat3 expression and activation, and the expression of apoptosis-related genes were analyzed. To determine whether Stat1 alone would be an important determinant in sensitizing MM cells to apoptosis, the U-266-1970-Stat1C cell line and control cells were exposed to high throughput compound screening (HTS). To explore the role of Stat1 in IFN mediated apoptosis sensitization of MM, we established sublines of the MM cell line U-266-1970 constitutively expressing the active mutant Stat1C. We found that constitutive nuclear localization and transcriptional activity of Stat1 was associated with an attenuation of IL-6-induced Stat3 activation and up-regulation of mRNA for the pro-apoptotic Bcl-2 protein family genes Harakiri, the short form of Mcl-1 and Noxa. However, Stat1 activation alone was not sufficient to sensitize cells to Fas-induced apoptosis. In a screening of > 3000 compounds including bortezomib, dexamethasone, etoposide, suberoylanilide hydroxamic acid (SAHA), geldanamycin (17-AAG), doxorubicin and thalidomide, we found that the drug response and IC50 in cells constitutively expressing active Stat1 was mainly unaltered. We conclude that Stat1 alters IL-6 induced Stat3 activity and the expression of pro

  8. Does respondent driven sampling alter the social network composition and health-seeking behaviors of illicit drug users followed prospectively?

    Directory of Open Access Journals (Sweden)

    Abby E Rudolph

    2011-05-01

    Full Text Available Respondent driven sampling (RDS was originally developed to sample and provide peer education to injection drug users at risk for HIV. Based on the premise that drug users' social networks were maintained through sharing rituals, this peer-driven approach to disseminate educational information and reduce risk behaviors capitalizes and expands upon the norms that sustain these relationships. Compared with traditional outreach interventions, peer-driven interventions produce greater reductions in HIV risk behaviors and adoption of safer behaviors over time, however, control and intervention groups are not similarly recruited. As peer-recruitment may alter risk networks and individual risk behaviors over time, such comparison studies are unable to isolate the effect of a peer-delivered intervention. This analysis examines whether RDS recruitment (without an intervention is associated with changes in health-seeking behaviors and network composition over 6 months. New York City drug users (N = 618 were recruited using targeted street outreach (TSO and RDS (2006-2009. 329 non-injectors (RDS = 237; TSO = 92 completed baseline and 6-month surveys ascertaining demographic, drug use, and network characteristics. Chi-square and t-tests compared RDS- and TSO-recruited participants on changes in HIV testing and drug treatment utilization and in the proportion of drug using, sex, incarcerated and social support networks over the follow-up period. The sample was 66% male, 24% Hispanic, 69% black, 62% homeless, and the median age was 35. At baseline, the median network size was 3, 86% used crack, 70% used cocaine, 40% used heroin, and in the past 6 months 72% were tested for HIV and 46% were enrolled in drug treatment. There were no significant differences by recruitment strategy with respect to changes in health-seeking behaviors or network composition over 6 months. These findings suggest no association between RDS recruitment and changes in

  9. Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells.

    Science.gov (United States)

    Witek, Rafal P; Yang, Liu; Liu, Renshui; Jung, Youngmi; Omenetti, Alessia; Syn, Wing-Kin; Choi, Steve S; Cheong, Yeiwon; Fearing, Caitlin M; Agboola, Kolade M; Chen, Wei; Diehl, Anna Mae

    2009-01-01

    Angiogenesis contributes to vascular remodeling during cirrhosis. In cirrhotic livers, cholangiocytes, and myofibroblastic hepatic stellate cells (MF-HSC) produce Hedgehog (Hh) ligands. During embryogenesis Hh ligands are released from ligand-producing cells in microparticles and activate Hh signaling in endothelial cells. We studied whether adult liver cell-derived microparticles contain Hh ligands that alter hepatic sinusoidal endothelial cells (SEC). MF-HSC and cholangiocytes were exposed to platelet-derived growth factor to induce Hh ligands; microparticles were isolated from medium, analyzed by transmission electron microscopy and immunoblots, and applied to Hh-reporter-containing cells. Microparticles were obtained from serum and bile of rats after bile duct ligation (BDL) or sham surgery and applied to normal primary liver SEC with or without cyclopamine, an Hh signaling inhibitor. Effects on SEC gene expression were evaluated by quantitative reverse-transcription polymerase chain reaction and immunoblotting. Hh target gene expression and SEC activation markers were compared in primary SEC and in liver sections from healthy and BDL rats. Platelet-derived growth factor-treated MF-HSC and cholangiocytes released exosome-enriched microparticles containing biologically-active Hh ligands. BDL increased release of Hh-containing exosome-enriched microparticles into plasma and bile. Transmission electron microscopy and immunoblots revealed similarities among microparticles from all sources; all microparticles induced similar Hh-dependent changes in SEC gene expression. SEC from healthy livers did not express Hh target genes or activation markers, but both were up-regulated in SEC after BDL. Hh-containing exosome-enriched microparticles released from liver cells alter hepatic SEC gene expression, suggesting a novel mechanism for cirrhotic vasculopathy.

  10. La Crosse virus infection alters blood feeding behavior in Aedes triseriatus and Aedes albopictus (Diptera: Culicidae).

    Science.gov (United States)

    Jackson, Bryan T; Brewster, Carlyle C; Paulson, Sally L

    2012-11-01

    The effects of La Crosse virus (LACV) infection on blood feeding behavior in Aedes triseriatus (Say) and Aedes albopictus (Skuse) were investigated in the laboratory by measuring the size of the bloodmeal imbibed and the extent of refeeding by virus-infected and uninfected mosquitoes. LACV-infected Ae. triseriatus and Ae. albopictus took significantly less blood compared with uninfected mosquitoes. Twice as many virus-infected Ae. triseriatus mosquitoes refed compared with uninfected individuals (18 vs. 9%; P < 0.05); however, virus infection had no significant effect on the refeeding rate of Ae. albopictus. Reduction in bloodmeal size followed by an increased avidity for refeeding may lead to enhanced horizontal transmission of the LACV by its principal vector, Ae. triseriatus.

  11. Spared behavioral repetition effects in Alzheimer's disease linked to an altered neural mechanism at posterior cortex.

    Science.gov (United States)

    Broster, Lucas S; Li, Juan; Wagner, Benjamin; Smith, Charles D; Jicha, Gregory A; Schmitt, Frederick A; Munro, Nancy; Haney, Ryan H; Jiang, Yang

    2018-02-20

    Individuals with dementia of the Alzheimer type (AD) classically show disproportionate impairment in measures of working memory, but repetition learning effects are relatively preserved. As AD affects brain regions implicated in both working memory and repetition effects, the neural basis of this discrepancy is poorly understood. We hypothesized that the posterior repetition effect could account for this discrepancy due to the milder effects of AD at visual cortex. Participants with early AD, amnestic mild cognitive impairment (MCI), and healthy controls performed a working memory task with superimposed repetition effects while electroencephalography was collected to identify possible neural mechanisms of preserved repetition effects. Participants with AD showed preserved behavioral repetition effects and a change in the posterior repetition effect. Visual cortex may play a role in maintained repetition effects in persons with early AD.

  12. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is why active learning is such an effective instructional tool and the limits of this instructional method’s ability to influence performance. This dissertation builds a case in three steps for why active learning is an effective instructional tool. In step one, I assessed the influence of different types of active learning (clickers, group activities, and whole class discussions) on student engagement behavior in one semester of two different introductory biology courses and found that active learning positively influenced student engagement behavior significantly more than lecture. For step two, I examined over four semesters whether student engagement behavior was a predictor of performance and found participation (engagement behavior) in the online (video watching) and in-class course activities (clicker participation) that I measure were significant predictors of performance. In the third, I assessed whether certain active learning satisfied the psychological needs that lead to students’ intrinsic motivation to participate in those activities when compared over two semesters and across two different institutions of higher learning. Findings from this last step show us that student’s perceptions of autonomy, competency, and relatedness in doing various types of active learning are significantly higher than lecture and consistent across two institutions of higher learning. Lastly, I tie everything together, discuss implications of the research, and address future directions for research on biology student motivation and behavior.

  13. Omega-3 fatty acids alter behavioral and oxidative stress parameters in animals subjected to fenproporex administration.

    Science.gov (United States)

    Model, Camila S; Gomes, Lara M; Scaini, Giselli; Ferreira, Gabriela K; Gonçalves, Cinara L; Rezin, Gislaine T; Steckert, Amanda V; Valvassori, Samira S; Varela, Roger B; Quevedo, João; Streck, Emilio L

    2014-03-01

    Studies have consistently reported the participation of oxidative stress in bipolar disorder (BD). Evidences indicate that omega-3 (ω3) fatty acids play several important roles in brain development and functioning. Moreover, preclinical and clinical evidence suggests roles for ω3 fatty acids in BD. Considering these evidences, the present study aimed to investigate the effects of ω3 fatty acids on locomotor behavior and oxidative stress parameters (TBARS and protein carbonyl content) in brain of rats subjected to an animal model of mania induced by fenproporex. The fenproporex treatment increased locomotor behavior in saline-treated rats under reversion and prevention model, and ω3 fatty acids prevented fenproporex-related hyperactivity. Moreover, fenproporex increased protein carbonyls in the prefrontal cortex and cerebral cortex, and the administration of ω3 fatty acids reversed this effect. Lipid peroxidation products also are increased in prefrontal cortex, striatum, hippocampus and cerebral after fenproporex administration, but ω3 fatty acids reversed this damage only in the hippocampus. On the other hand, in the prevention model, fenproporex increased carbonyl content only in the cerebral cortex, and administration of ω3 fatty acids prevented this damage. Additionally, the administration of fenproporex resulted in a marked increased of TBARS in the prefrontal cortex, hippocampus, striatum and cerebral cortex, and prevent this damage in the prefrontal cortex, hippocampus and striatum. In conclusion, we are able to demonstrate that fenproporex-induced hyperlocomotion and damage through oxidative stress were prevented by ω3 fatty acids. Thus, the ω3 fatty acids may be important adjuvant therapy of bipolar disorder.

  14. Life History Responses and Feeding Behavior of Microcrustacea in Altered Gravity - Applicability in Bioregenerative Life Support Systems (BLSS)

    Science.gov (United States)

    Fischer, Jessica; Schoppmann, Kathrin; Laforsch, Christian

    2017-06-01

    Manned space missions, as for example to the planet Mars, are a current objective in space exploration. During such long-lasting missions, aquatic bioregenerative life support systems (BLSS) could facilitate independence of resupply from Earth by regenerating the atmosphere, purifying water, producing food and processing waste. In such BLSS, microcrustaceans could, according to their natural role in aquatic ecosystems, link oxygen liberating, autotrophic algae and higher trophic levels, such as fish. However, organisms employed in BLSS will be exposed to high acceleration (hyper- g) during launch of spacecrafts as well as to microgravity (μ g) during space travel. It is thus essential that these organisms survive, perform and reproduce under altered gravity conditions. In this study we present the first data in this regard for the microcrustaceas Daphnia magna and Heterocypris incongruens. We found that after hyper- g exposure (centrifugation) approximately one third of the D. magna population died within one week (generally indicating that possible belated effects have to be considered when conducting and interpreting experiments during which hyper- g occurs). However, suchlike and even higher losses could be countervailed by the surviving daphnids' unaltered high reproductive capacity. Furthermore, we can show that foraging and feeding behavior of D. magna (drop tower) and H. incongruens (parabolic flights) are rarely altered in μ g. Our results thus indicate that both species are suitable candidates for BLSS utilized in space.

  15. Alterations of neurotransmitter norepinephrine and gamma-aminobutyric acid correlate with murine behavioral perturbations related to bisphenol A exposure.

    Science.gov (United States)

    Ogi, Hiroshi; Itoh, Kyoko; Ikegaya, Hiroshi; Fushiki, Shinji

    2015-09-01

    Humans are commonly exposed to endocrine-disrupting chemical bisphenol A (BPA), giving rise to concern over the psychobehavioral effects of BPA. The aim of this study was to investigate the effects of prenatal and lactational BPA exposure on neurotransmitters, including norepinephrine (NE), gamma-aminobutyric acid (GABA) and glutamate (Glu), and to assess the association with behavioral phenotypes. C57BL/6J mice were orally administered with BPA (500 μg/bwkg/day) or vehicle daily from embryonic day 0 to postnatal week 3 (P3W), through their dams. The IntelliCage behavioral experiments were conducted from P11W to P15W. At around P14-16W, NE, GABA and Glu levels in nine brain regions were measured by high performance liquid chromatography. Furthermore, the associations between the neurotransmitter levels and the behavioral indices were statistically analyzed. In females exposed to BPA, the GABA and Glu levels in almost all regions, and the NE levels in the cortex, hypothalamus and thalamus were higher than those in the controls. In males exposed to BPA, the GABA levels in the amygdala and hippocampus showed lower values, while Glu levels were higher in some regions, compared with the controls. In regard to the associations, the number of "diurnal corner visits without drinking" was correlated with the NE levels in the cortex and thalamus in females. The "nocturnal corner visit duration without drinking" was correlated with the GABA level in the hippocampus in males. These results suggest that prenatal and lactational exposure to low doses of BPA might modulate the NE, GABA and Glu systems, resulting in behavioral alterations. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  16. Sustained Treatment with Insulin Detemir in Mice Alters Brain Activity and Locomotion.

    Directory of Open Access Journals (Sweden)

    Tina Sartorius

    Full Text Available Recent studies have identified unique brain effects of insulin detemir (Levemir®. Due to its pharmacologic properties, insulin detemir may reach higher concentrations in the brain than regular insulin. This might explain the observed increased brain stimulation after acute insulin detemir application but it remained unclear whether chronic insulin detemir treatment causes alterations in brain activity as a consequence of overstimulation.In mice, we examined insulin detemir's prolonged brain exposure by continuous subcutaneous (s.c. application using either micro-osmotic pumps or daily s.c. injections and performed continuous radiotelemetric electrocorticography and locomotion recordings.Acute intracerebroventricular injection of insulin detemir activated cortical and locomotor activity significantly more than regular insulin in equimolar doses (0.94 and 5.63 mU in total, suggesting an enhanced acute impact on brain networks. However, given continuously s.c., insulin detemir significantly reduced cortical activity (theta: 21.3±6.1% vs. 73.0±8.1%, P<0.001 and failed to maintain locomotion, while regular insulin resulted in an increase of both parameters.The data suggest that permanently-increased insulin detemir levels in the brain convert its hyperstimulatory effects and finally mediate impairments in brain activity and locomotion. This observation might be considered when human studies with insulin detemir are designed to target the brain in order to optimize treatment regimens.

  17. The alterations in biochemical signaling of hippocampal network activity in the autism brain The alterations in biochemical signaling of hippocampal network activity in the autism brain The alterations in biochemical signaling of hippocampal network activity in the autism brain

    Institute of Scientific and Technical Information of China (English)

    田允; 黄继云; 王锐; 陶蓉蓉; 卢应梅; 廖美华; 陆楠楠; 李静; 芦博; 韩峰

    2012-01-01

    Autism is a highly heritable neurodevelopmental condition characterized by impaired social interaction and communication. However, the role of synaptic dysfunction during development of autism remains unclear. In the present study, we address the alterations of biochemical signaling in hippocampal network following induction of the autism in experimental animals. Here, the an- imal disease model and DNA array being used to investigate the differences in transcriptome or- ganization between autistic and normal brain by gene co--expression network analysis.

  18. Altered left ventricular performance in aging physically active mice with an ankle sprain injury.

    Science.gov (United States)

    Turner, Michael J; Guderian, Sophie; Wikstrom, Erik A; Huot, Joshua R; Peck, Bailey D; Arthur, Susan T; Marino, Joseph S; Hubbard-Turner, Tricia

    2016-02-01

    We assessed the impact of differing physical activity levels throughout the lifespan, using a musculoskeletal injury model, on the age-related changes in left ventricular (LV) parameters in active mice. Forty male mice (CBA/J) were randomly placed into one of three running wheel groups (transected CFL group, transected ATFL/CFL group, SHAM group) or a SHAM Sedentary group (SHAMSED). Before surgery and every 6 weeks after surgery, LV parameters were measured under 2.5 % isoflurane inhalation. Group effects for daily distance run was significantly greater for the SHAM and lesser for the ATLF/CFL mice (p = 0.013) with distance run decreasing with age for all mice (p age, interaction (group × age) was noted with LV posterior wall thickness-to-radius ratios (h/r) where h/r increased with age in the ATFL/CFL and SHAMSED mice while the SHAM and CFL mice exhibited decreased h/r with age (p = 0.0002). Passive filling velocity (E wave) was significantly greater in the SHAM mice and lowest for the ATFL/CFL and SHAMSED mice (p age. Active filling velocity (A wave) was not different between groups (p = 0.10). Passive-to-active filling velocity ratio (E/A ratio) was different between groups (p activity beginning at 9 months of age. Passive-to-active filling velocity ratio decreased with age (p activity throughout the lifespan improved LV structure, passive filling velocity, and E/A ratio by 6 to 9 months of age and attenuated any negative alterations throughout the second half of life. The diastolic filling differences were found to be significantly related to the amount of activity performed by 9 months and at the end of the lifespan.

  19. Physical Activity, Sedentary Behavior, and Dietary Patterns among Children.

    Science.gov (United States)

    Gubbels, Jessica S; van Assema, Patricia; Kremers, Stef P J

    2013-06-01

    Energy balance-related behavioral patterns find their origin in early childhood. The current paper provides an overview of studies that have examined such behavioral patterns, i.e., the clustering of dietary behaviors, physical activity, and/or sedentary behavior. The paper discusses the importance of examining energy balance-related behavioral patterns in children, outlines methods to examine these patterns, and provides examples of patterns that have been found (e.g., the universal sedentary-snacking and healthy intake patterns, as well as more unique or local patterns), child and parental characteristics predicting such patterns (e.g., child gender and maternal educational level), and the relationship of these patterns with overweight and related measures.

  20. Altered gene activity correlated with long-term memory formation of conditioned taste aversion in Lymnaea.

    Science.gov (United States)

    Azami, Sachiyo; Wagatsuma, Akiko; Sadamoto, Hisayo; Hatakeyama, Dai; Usami, Takeshi; Fujie, Manabu; Koyanagi, Ryo; Azumi, Kaoru; Fujito, Yutaka; Lukowiak, Ken; Ito, Etsuro

    2006-11-15

    The pond snail Lymnaea stagnalis is capable of learning conditioned taste aversion (CTA) and then consolidating that learning into long-term memory (LTM) that persists for at least 1 month. LTM requires de novo protein synthesis and altered gene activity. Changes in gene activity in Lymnaea that are correlated with, much less causative, memory formation have not yet been identified. As a first step toward rectifying this situation, we constructed a cDNA microarray with mRNAs extracted from the central nervous system (CNS) of Lymnaea. We then, using this microarray assay, identified genes whose activity either increased or decreased following CTA memory consolidation. We also identified genes whose expression levels were altered after inhibition of the cyclic AMP response element-binding protein (CREB) that is hypothesized to be a key transcription factor for CTA memory. We found that the molluscan insulin-related peptide II (MIP II) was up-regulated during CTA-LTM, whereas the gene encoding pedal peptide preprohormone (Pep) was down-regulated by CREB2 RNA interference. We next examined mRNAs of MIP II and Pep using real-time RT-PCR with SYBR Green. The MIP II mRNA level in the CNS of snails exhibiting "good" memory for CTA was confirmed to be significantly higher than that from the CNS of snails exhibiting "poor" memory. In contrast, there was no significant difference in expression levels of the Pep mRNA between "good" and "poor" performers. These data suggest that in Lymnaea MIP II may play a role in the consolidation process that forms LTM following CTA training.

  1. Does cognitive behavioral therapy alter mental defeat and cognitive flexibility in patients with panic disorder?

    Science.gov (United States)

    Nagata, Shinobu; Seki, Yoichi; Shibuya, Takayuki; Yokoo, Mizue; Murata, Tomokazu; Hiramatsu, Yoichi; Yamada, Fuminori; Ibuki, Hanae; Minamitani, Noriko; Yoshinaga, Naoki; Kusunoki, Muga; Inada, Yasushi; Kawasoe, Nobuko; Adachi, Soichiro; Oshiro, Keiko; Matsuzawa, Daisuke; Hirano, Yoshiyuki; Yoshimura, Kensuke; Nakazato, Michiko; Iyo, Masaomi; Nakagawa, Akiko; Shimizu, Eiji

    2018-01-12

    Mental defeat and cognitive flexibility have been studied as explanatory factors for depression and posttraumatic stress disorder. This study examined mental defeat and cognitive flexibility scores in patients with panic disorder (PD) before and after cognitive behavioral therapy (CBT), and compared them to those of a gender- and age-matched healthy control group. Patients with PD (n = 15) received 16 weekly individual CBT sessions, and the control group (n = 35) received no treatment. Patients completed the Mental Defeat Scale and the Cognitive Flexibility Scale before the intervention, following eight CBT sessions, and following 16 CBT sessions, while the control group did so only prior to receiving CBT (baseline). The patients' pre-CBT Mental Defeat and Cognitive Flexibility Scale scores were significantly higher on the Mental Defeat Scale and lower on the Cognitive Flexibility Scale than those of the control group participants were. In addition, the average Mental Defeat Scale scores of the patients decreased significantly, from 22.2 to 12.4, while their average Cognitive Flexibility Scale scores increased significantly, from 42.8 to 49.5. These results suggest that CBT can reduce mental defeat and increase cognitive flexibility in patients with PD Trial registration The study was registered retrospectively in the national UMIN Clinical Trials Registry on June 10, 2016 (registration ID: UMIN000022693).

  2. Side of Onset in Parkinson’s Disease and Alterations in Religiosity: Novel Behavioral Phenotypes

    Directory of Open Access Journals (Sweden)

    Paul M. Butler

    2011-01-01

    Full Text Available Behavioral neurologists have long been interested in changes in religiosity following circumscribed brain lesions. Advances in neuroimaging and cognitive experimental techniques have been added to these classical lesion-correlational approaches in attempt to understand changes in religiosity due to brain damage. In this paper we assess processing dynamics of religious cognition in patients with Parkinson’s disease (PD. We administered a four-condition story-based priming procedure, and then covertly probed for changes in religious belief. Story-based priming emphasized mortality salience, religious ritual, and beauty in nature (Aesthetic. In neurologically intact controls, religious belief-scores significantly increased following the Aesthetic prime condition. When comparing effects of right (RO versus left onset (LO in PD patients, a double-dissociation in religious belief-scores emerged based on prime condition. RO patients exhibited a significant increase in belief following the Aesthetic prime condition and LO patients significantly increased belief in the religious ritual prime condition. Results covaried with executive function measures. This suggests lateral cerebral specialization for ritual-based (left frontal versus aesthetic-based (right frontal religious cognition. Patient-centered individualized treatment plans should take religiosity into consideration as a complex disease-associated phenomenon connected to other clinical variables and health outcomes.

  3. Alterations in premating behavior and pheromone biology of gamma-irradiated Trichoplusia ni (Lepidoptera:Noctuidae)

    International Nuclear Information System (INIS)

    Szentesi, A.; McLaughlin, J.R.; Coffelt, J.A.

    1977-01-01

    Exposure of female cabbage looper pupae, Trichoplusia ni, to gamma irradiation at 0 to 72 hr before eclosion resulted in significantly reduced moving and calling activity of the adults. The effects were dose-related from 10 to 40 kR. Generally, irradiation in a nitrogen atmosphere slightly reduced deleterious effects, but fractionation of the radiation dose did not. Four-day-old irradiated females contained significantly more sex pheromone than untreated females, indicating that loss of pheromone is positively correlated to the amount of calling activity. Males exposed to 20 kR or 40 kR in nitrogen were not affected in their flight response in an olfactometer to a level of synthetic pheromone ca. equal to that released by a calling female or to 0.1 x this level. The response of males exposed to 40 kR in air, however, was significantly decreased at the lower pheromone concentration

  4. Perinatal methadone exposure produces physical dependence and altered behavioral development in the rat.

    Science.gov (United States)

    Kunko, P M; Smith, J A; Wallace, M J; Maher, J R; Saady, J J; Robinson, S E

    1996-06-01

    Pregnant rats were implanted with osmotic minipumps containing either methadone hydrochloride (9 mg/kg/day) or sterile water. Their offspring were cross-fostered so that the following prenatal/postnatal exposure groups were obtained: water/water, methadone/water, water/methadone and methadone/methadone. Methadone slightly reduced litter size, particularly the number of male offspring, and reduced litter birth weight. The induction or maintenance of physical dependence in the postnatal methadone exposure groups was confirmed by an experiment in which PD19 pups were challenged with naloxone (1 mg/kg, s.c.). Methadone concentrations were assayed in pup brain on postnatal days 4, 10 and 22. Postnatal exposure to methadone via maternal milk produced measurable levels of methadone which decreased with age. Neuromuscular and physical development were assessed. Exposure to methadone accelerated acquisition of the righting reflex, but tended to delay the acquisition of the negative geotaxic response. Postnatal exposure to methadone was associated with decreased somatic growth as measured through postnatal day 21. The older pups (postnatal day 21) exposed to methadone exhibited variations in activity levels: pups exposed to methadone both prenatally and postnatally exhibited the least amount of spontaneous locomotor activity and pups exposed only postnatally exhibited the most activity. Therefore, it is possible to induce and/or maintain physical dependence via lactation in rat pups fostered to methadone-treated dams. Perinatal exposure to methadone by this route produces several subtle disruptions of pup development in the absence of gross maternal or fetal toxicity.

  5. Neuropeptide s alters anxiety but not depression-like behaviors in the flinders sensitive line rats, a genetic animal model

    DEFF Research Database (Denmark)

    Mathe, A.; Wegener, Gregers; Finger, B.

    2010-01-01

    Background: Neuropeptide S (NPS) and its receptor (NPSR) have been implicated in the mediation of anxiolytic-like behavior in rodents. However, little knowledge is available to what extent the NPS system is involved in depression-related behaviors. The aim of the present work was to characterize...... the effects of centrally administered NPS on depression- and anxiety-related behaviors, using a well validated animal model of depression, the Flinders Sensitive Line (FSL) rats and their controls the Flinders Resistant Line (FRL). Methods: Male and female were tested. Seven days following insertion....... In selected animals effect of NPS on home cage activity was explored. Finally, brains from separate groups of naive animals were harvested; hippocampi, amygdalae and PVN punched out, and mRNA transcripts measured with the real-time quantitative polymerase chain reaction (rt-qPCR). Results: The most salient...

  6. Alterations in cardiac sarcolemmal Ca2+ pump activity during diabetes mellitus

    International Nuclear Information System (INIS)

    Heyliger, C.E.; Prakash, A.; McNeill, J.

    1987-01-01

    Diabetes mellitus is frequently associated with a primary cardiomyopathy. The mechanisms responsible for this heart disease are not clear, but an alteration in myocardial Ca 2+ transport is believed to be involved in its development. Even though sarcolemma plays a crucial role in cellular Ca 2+ transport, little appears to be known about its Ca 2+ transporting capability in the diabetic myocardium. In this regard, the authors have examined the status of the cardiac sarcolemmal Ca 2+ pump during diabetes mellitus. Purified sarcolemmal membranes were isolated from male Wistar diabetic rat hearts 8 wk after streptozotocin injection. Ca 2+ pump activity assessed by measuring its Ca 2+ -stimulated adenosine triphosphatase and Ca 2+ -uptake ability in the absence and presence of calmodulin was significantly depressed in the diabetic myocardium relative to controls. These results did not appear to have been influenced by the minimal sarcoplasmic reticular and mitochondrial contamination of this membrane preparation. Hence, it appears that the sarcolemmal Ca 2+ pump is defective in the diabetic myocardium and may be involved in the altered Ca 2+ transport of the heart during diabetes mellitus

  7. Altered default mode network activity in patient with anxiety disorders: An fMRI study

    International Nuclear Information System (INIS)

    Zhao Xiaohu; Wang Peijun; Li Chunbo; Hu Zhenghui; Xi Qian; Wu Wenyuan; Tang Xiaowei

    2007-01-01

    Anxiety disorder, a common mental disorder in our clinical practice, is characterized by unprovoked anxiety. Medial prefrontal cortex (MPFC) and posterior cingulate cortex (PCC), which closely involved in emotional processing, are critical regions in the default mode network. We used functional magnetic resonance imaging (fMRI) to investigate whether default mode network activity is altered in patients with anxiety disorder. Ten anxiety patients and 10 healthy controls underwent fMRI while listening to emotionally neutral words alternating with rest (Experiment 1) and threat-related words alternating with emotionally neutral words (Experiment 2). In Experiment 1, regions of deactivation were observed in patients and controls. In Experiment 2, regions of deactivation were observed only in patients. The observed deactivation patterns in the two experiments, which included MPFC, PCC, and inferior parietal cortex, were similar and consistent with the default model network. Less deactivation in MPFC and greater deactivation in PCC were observed for patients group comparing to controls in Experiment 1. Our observations suggest that the default model network is altered in anxiety patients and dysfunction in MPFC and PCC may play an important role in anxiety psychopathology

  8. Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation.

    Science.gov (United States)

    Alkorta, Itziar; Epelde, Lur; Garbisu, Carlos

    2017-10-16

    Bioremediation, based on the use of microorganisms to break down pollutants, can be very effective at reducing soil pollution. But the climate change we are now experiencing is bound to have an impact on bioremediation performance, since the activity and degrading abilities of soil microorganisms are dependent on a series of environmental parameters that are themselves being altered by climate change, such as soil temperature, moisture, amount of root exudates, etc. Many climate-induced effects on soil microorganisms occur indirectly through changes in plant growth and physiology derived from increased atmospheric CO2 concentrations and temperatures, the alteration of precipitation patterns, etc., with a concomitant effect on rhizoremediation performance (i.e. the plant-assisted microbial degradation of pollutants in the rhizosphere). But these effects are extremely complex and mediated by processes such as acclimation and adaptation. Besides, soil microorganisms form complex networks of interactions with a myriad of organisms from many taxonomic groups that will also be affected by climate change, further complicating data interpretation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Alterations in protein kinase C activity and processing during zinc-deficiency-induced cell death.

    Science.gov (United States)

    Chou, Susan S; Clegg, Michael S; Momma, Tony Y; Niles, Brad J; Duffy, Jodie Y; Daston, George P; Keen, Carl L

    2004-10-01

    Protein kinases C (PKCs) are a family of serine/threonine kinases that are critical for signal transduction pathways involved in growth, differentiation and cell death. All PKC isoforms have four conserved domains, C1-C4. The C1 domain contains cysteine-rich finger-like motifs, which bind two zinc atoms. The zinc-finger motifs modulate diacylglycerol binding; thus, intracellular zinc concentrations could influence the activity and localization of PKC family members. 3T3 cells were cultured in zinc-deficient or zinc-supplemented medium for up to 32 h. Cells cultured in zinc-deficient medium had decreased zinc content, lowered cytosolic classical PKC activity, increased caspase-3 processing and activity, and reduced cell number. Zinc-deficient cytosols had decreased activity and expression levels of PKC-alpha, whereas PKC-alpha phosphorylation was not altered. Inhibition of PKC-alpha with Gö6976 had no effect on cell number in the zinc-deficient group. Proteolysis of the novel PKC family member, PKC-delta, to its 40-kDa catalytic fragment occurred in cells cultured in the zinc-deficient medium. Occurrence of the PKC-delta fragment in mitochondria was co-incident with caspase-3 activation. Addition of the PKC-delta inhibitor, rottlerin, or zinc to deficient medium reduced or eliminated proteolysis of PKC-delta, activated caspase-3 and restored cell number. Inhibition of caspase-3 processing by Z-DQMD-FMK (Z-Asp-Gln-Met-Asp-fluoromethylketone) did not restore cell number in the zinc-deficient group, but resulted in processing of full-length PKC-delta to a 56-kDa fragment. These results support the concept that intracellular zinc concentrations influence PKC activity and processing, and that zinc-deficiency-induced apoptosis occurs in part through PKC-dependent pathways.

  10. Fluvoxamine alters the activity of energy metabolism enzymes in the brain

    Directory of Open Access Journals (Sweden)

    Gabriela K. Ferreira

    2014-09-01

    Full Text Available Objective: Several studies support the hypothesis that metabolism impairment is involved in the pathophysiology of depression and that some antidepressants act by modulating brain energy metabolism. Thus, we evaluated the activity of Krebs cycle enzymes, the mitochondrial respiratory chain, and creatine kinase in the brain of rats subjected to prolonged administration of fluvoxamine. Methods: Wistar rats received daily administration of fluvoxamine in saline (10, 30, and 60 mg/kg for 14 days. Twelve hours after the last administration, rats were killed by decapitation and the prefrontal cortex, cerebral cortex, hippocampus, striatum, and cerebellum were rapidly isolated. Results: The activities of citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV were decreased after prolonged administration of fluvoxamine in rats. However, the activities of complex II, succinate dehydrogenase, and creatine kinase were increased. Conclusions: Alterations in activity of energy metabolism enzymes were observed in most brain areas analyzed. Thus, we suggest that the decrease in citrate synthase, malate dehydrogenase, and complexes I, II-III, and IV can be related to adverse effects of pharmacotherapy, but long-term molecular adaptations cannot be ruled out. In addition, we demonstrated that these changes varied according to brain structure or biochemical analysis and were not dose-dependent.

  11. Altered spontaneous brain activity in patients with hemifacial spasm: a resting-state functional MRI study.

    Directory of Open Access Journals (Sweden)

    Ye Tu

    Full Text Available Resting-state functional magnetic resonance imaging (fMRI has been used to detect the alterations of spontaneous neuronal activity in various neurological and neuropsychiatric diseases, but rarely in hemifacial spasm (HFS, a nervous system disorder. We used resting-state fMRI with regional homogeneity (ReHo analysis to investigate changes in spontaneous brain activity of patients with HFS and to determine the relationship of these functional changes with clinical features. Thirty patients with HFS and 33 age-, sex-, and education-matched healthy controls were included in this study. Compared with controls, HFS patients had significantly decreased ReHo values in left middle frontal gyrus (MFG, left medial cingulate cortex (MCC, left lingual gyrus, right superior temporal gyrus (STG and right precuneus; and increased ReHo values in left precentral gyrus, anterior cingulate cortex (ACC, right brainstem, and right cerebellum. Furthermore, the mean ReHo value in brainstem showed a positive correlation with the spasm severity (r = 0.404, p = 0.027, and the mean ReHo value in MFG was inversely related with spasm severity in HFS group (r = -0.398, p = 0.028. This study reveals that HFS is associated with abnormal spontaneous brain activity in brain regions most involved in motor control and blinking movement. The disturbances of spontaneous brain activity reflected by ReHo measurements may provide insights into the neurological pathophysiology of HFS.

  12. Early prenatal androgen exposure reduces testes size and sperm concentration in sheep without altering neuroendocrine differentiation and masculine sexual behavior.

    Science.gov (United States)

    Scully, C M; Estill, C T; Amodei, R; McKune, A; Gribbin, K P; Meaker, M; Stormshak, F; Roselli, C E

    2018-01-01

    Prenatal androgens are largely responsible for growth and differentiation of the genital tract and testis and for organization of the control mechanisms regulating male reproductive physiology and behavior. The aim of the present study was to evaluate the impact of inappropriate exposure to excess testosterone (T) during the first trimester of fetal development on the reproductive function, sexual behavior, and fertility potential of rams. We found that biweekly maternal T propionate (100 mg) treatment administered from Day 30-58 of gestation significantly decreased (P < 0.05) postpubertal scrotal circumference and sperm concentration. Prenatal T exposure did not alter ejaculate volume, sperm motility and morphology or testis morphology. There was, however, a trend for more T-exposed rams than controls to be classified as unsatisfactory potential breeders during breeding soundness examinations. Postnatal serum T concentrations were not affected by prenatal T exposure, nor was the expression of key testicular genes essential for spermatogenesis and steroidogenesis. Basal serum LH did not differ between treatment groups, nor did pituitary responsiveness to GnRH. T-exposed rams, like control males, exhibited vigorous libido and were sexually attracted to estrous females. In summary, these results suggest that exposure to exogenous T during the first trimester of gestation can negatively impact spermatogenesis and compromise the reproductive fitness of rams. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests.

    Directory of Open Access Journals (Sweden)

    Frederick A Schroeder

    Full Text Available Psychiatric diseases, including schizophrenia, bipolar disorder and major depression, are projected to lead global disease burden within the next decade. Pharmacotherapy, the primary--albeit often ineffective--treatment method, has remained largely unchanged over the past 50 years, highlighting the need for novel target discovery and improved mechanism-based treatments. Here, we examined in wild type mice the impact of chronic, systemic treatment with Compound 60 (Cpd-60, a slow-binding, benzamide-based inhibitor of the class I histone deacetylase (HDAC family members, HDAC1 and HDAC2, in mood-related behavioral assays responsive to clinically effective drugs. Cpd-60 treatment for one week was associated with attenuated locomotor activity following acute amphetamine challenge. Further, treated mice demonstrated decreased immobility in the forced swim test. These changes are consistent with established effects of clinical mood stabilizers and antidepressants, respectively. Whole-genome expression profiling of specific brain regions (prefrontal cortex, nucleus accumbens, hippocampus from mice treated with Cpd-60 identified gene expression changes, including a small subset of transcripts that significantly overlapped those previously reported in lithium-treated mice. HDAC inhibition in brain was confirmed by increased histone acetylation both globally and, using chromatin immunoprecipitation, at the promoter regions of upregulated transcripts, a finding consistent with in vivo engagement of HDAC targets. In contrast, treatment with suberoylanilide hydroxamic acid (SAHA, a non-selective fast-binding, hydroxamic acid HDAC 1/2/3/6 inhibitor, was sufficient to increase histone acetylation in brain, but did not alter mood-related behaviors and had dissimilar transcriptional regulatory effects compared to Cpd-60. These results provide evidence that selective inhibition of HDAC1 and HDAC2 in brain may provide an epigenetic-based target for developing

  14. Can group-based reassuring information alter low back pain behavior?

    DEFF Research Database (Denmark)

    Frederiksen, Pernille; Indahl, Aage; Andersen, Lars L.

    2017-01-01

    activities, but increased odds for more days of work participation in the intervention group (OR = 1.83 95% CI: 1.08-3.12). Furthermore, the intervention group was more likely to report: higher work ability, reduced visits to healthcare professionals, lower bothersomeness, lower levels of sadness......BACKGROUND: Low back pain (LBP) is common in the population and multifactorial in nature, often involving negative consequences. Reassuring information to improve coping is recommended for reducing the negative consequences of LBP. Adding a simple non-threatening explanation for the pain (temporary......-randomized controlled trial. METHODS: Publically employed workers (n = 505) from 11 Danish municipality centers were randomized at center-level (cluster) to either intervention (two 1-hour group-based talks at the workplace) or control. The talks provided reassuring information together with a simple non...

  15. Alteration in unhealthy nutrition behaviors in adolescents through community intervention: Isfahan Healthy Heart Program

    Directory of Open Access Journals (Sweden)

    Noushin Mohammadifard

    2013-03-01

    Full Text Available BACKGROUND: Primary prevention of chronic diseases has been suggested to initiate health promotion activities from childhoods. The impact of Isfahan Healthy Heart Program (IHHP, a comprehensive community trial, on unhealthy snacks and fast food intake changes was evaluated in Iranian adolescents between 2001 and 2007. METHODS: Healthy Heart Promotion from Childhood (HHPC as one of the IHHP interventional projects was conducted in adolescents aged 11-18 years, selected randomly by multistage random sampling. Isfahan and Najafabad districts were intervention areas (IA and Arak district was reference area (RA. The baseline and post-intervention surveys were conducted on 1941 and 1997 adolescents, respectively. Healthy lifestyle interventions were performed during the 2nd phase of the study targeting about 410000 students in urban and rural areas of the IA via education, environmental and legislation activities. Dietary intake was assessed annually using a fifty-item food frequency questionnaire in both communities. RESULTS: The interaction of year×area demonstrated that the consumption of unhealthy snacks decreased significantly in middle school boys of RA compared to IA (P for interaction=0.01. However, middle school girls (P for interaction = 0.002 and both sexes of high school students in IA showed a significant reduction in fast food consumption against RA (P for interaction < 0.001. CONCLUSION: The HHPC interventions made some improvement in fast food consumption. It did not show significant decrease regarding unhealthy snacks in adolescents. Proper and higher dose of interventions may be effective in achieving this goal.   Keywords: Nutrition, Dietary Behaviour, Adolescent, Lifestyle, Community Trial

  16. Alterations of telomerase activity and terminal restriction fragment in gastric cancer and its premalignant lesions.

    Science.gov (United States)

    Yang, S M; Fang, D C; Luo, Y H; Lu, R; Battle, P D; Liu, W W

    2001-08-01

    In order to explore the role of alterations of telomerase activity and terminal restriction fragment (TRF) length in the development and progression of gastric cancer. Telomerase activity was detected in 176 specimens of gastric mucosa obtained through an operation or endoscopical biopsy by using the telomeric repeat amplification protocol (TRAP) assay. Meanwhile, the mean length of TRF was measured with the use of a Southern blot in part of those samples. Telomerase activity was detected in 14 of 57 (24.6%) chronic atrophy gastritis patients, six of 18 (33.3%) intestinal metaplasia patients, three of eight (37.5%) dysplasia patients and 60 of 65 (92.3%) gastric cancer patients, respectively. Normal gastric mucosa revealed no telomerase activity. No association was found between telomerase activity and any clinicopathological parameters. The mean TRF length was decreased gradually with age in normal mucosa and in gastric cancer tissue. Regression analysis demonstrated that the reduction rate in these tissues was 41 +/- 12 base pairs/year. Among 35 gastric cancers, TRF length was shown to be shorter in 20 cases (57.1%), similar in 12 cases (34.3%) and elongated in three cases (7.6%), compared to the corresponding adjacent tissues. The mean TRF length tended to decrease as the mucosa underwent chronic atrophy gastritis, intestinal metaplasia, dysplasia and into gastric cancer. The mean TRF length in gastric cancer was not statistically correlated with clinicopathological parameters and telomerase activity. Our results suggest that telomerase is expressed during the early stage of gastric carcinogenesis, and that the clinical significance of TRF length appears to be limited in gastric cancer.

  17. Visual feedback alters force control and functional activity in the visuomotor network after stroke

    Directory of Open Access Journals (Sweden)

    Derek B. Archer

    2018-01-01

    Full Text Available Modulating visual feedback may be a viable option to improve motor function after stroke, but the neurophysiological basis for this improvement is not clear. Visual gain can be manipulated by increasing or decreasing the spatial amplitude of an error signal. Here, we combined a unilateral visually guided grip force task with functional MRI to understand how changes in the gain of visual feedback alter brain activity in the chronic phase after stroke. Analyses focused on brain activation when force was produced by the most impaired hand of the stroke group as compared to the non-dominant hand of the control group. Our experiment produced three novel results. First, gain-related improvements in force control were associated with an increase in activity in many regions within the visuomotor network in both the stroke and control groups. These regions include the extrastriate visual cortex, inferior parietal lobule, ventral premotor cortex, cerebellum, and supplementary motor area. Second, the stroke group showed gain-related increases in activity in additional regions of lobules VI and VIIb of the ipsilateral cerebellum. Third, relative to the control group, the stroke group showed increased activity in the ipsilateral primary motor cortex, and activity in this region did not vary as a function of visual feedback gain. The visuomotor network, cerebellum, and ipsilateral primary motor cortex have each been targeted in rehabilitation interventions after stroke. Our observations provide new insight into the role these regions play in processing visual gain during a precisely controlled visuomotor task in the chronic phase after stroke.

  18. Dopamine Release and Uptake Impairments and Behavioral Alterations Observed in Mice that Model Fragile X Mental Retardation Syndrome.

    Science.gov (United States)

    Fulks, Jenny L; O'Bryhim, Bliss E; Wenzel, Sara K; Fowler, Stephen C; Vorontsova, Elena; Pinkston, Jonathan W; Ortiz, Andrea N; Johnson, Michael A

    2010-10-20

    In this study we evaluated the relationship between amphetamine-induced behavioral alterations and dopamine release and uptake characteristics in Fmr1 knockout (Fmr1 KO) mice, which model fragile X syndrome. The behavioral analyses, obtained at millisecond temporal resolution and 2 mm spatial resolution using a force-plate actometer, revealed that Fmr1 KO mice express a lower degree of focused stereotypy compared to wild type (WT) control mice after injection with 10 mg/kg (ip) amphetamine. To identify potentially related neurochemical mechanisms underlying this phenomenon, we measured electrically-evoked dopamine release and uptake using fast-scan cyclic voltammetry at carbon-fiber microelectrodes in striatal brain slices. At 10 weeks of age, dopamine release per pulse, which is dopamine release corrected for differences in uptake, was unchanged. However, at 15 (the age of behavioral testing) and 20 weeks of age, dopamine per pulse and the maximum rate of dopamine uptake was diminished in Fmr1 KO mice compared to WT mice. Dopamine uptake measurements, obtained at different amphetamine concentrations, indicated that dopamine transporters in both genotypes have equal affinities for amphetamine. Moreover, dopamine release measurements from slices treated with quinpirole, a D2-family receptor agonist, rule out enhanced D2 autoreceptor sensitivity as a mechanism of release inhibition. However, dopamine release, uncorrected for uptake and normalized against the corresponding pre-drug release peaks, increased in Fmr1 KO mice, but not in WT mice. Collectively, these data are consistent with a scenario in which a decrease in extracellular dopamine levels in the striatum result in diminished expression of focused stereotypy in Fmr1 KO mice.

  19. Early stress is associated with alterations in the orbitofrontal cortex: a tensor-based morphometry investigation of brain structure and behavioral risk.

    Science.gov (United States)

    Hanson, Jamie L; Chung, Moo K; Avants, Brian B; Shirtcliff, Elizabeth A; Gee, James C; Davidson, Richard J; Pollak, Seth D

    2010-06-02

    Individuals who experience early adversity, such as child maltreatment, are at heightened risk for a broad array of social and health difficulties. However, little is known about how this behavioral risk is instantiated in the brain. Here we examine a neurobiological contribution to individual differences in human behavior using methodology appropriate for use with pediatric populations paired with an in-depth measure of social behavior. We show that alterations in the orbitofrontal cortex among individuals who experienced physical abuse are related to social difficulties. These data suggest a biological mechanism linking early social learning to later behavioral outcomes.

  20. Transcranial direct current stimulation (tDCS) reverts behavioral alterations and brainstem BDNF level increase induced by neuropathic pain model: Long-lasting effect.

    Science.gov (United States)

    Filho, Paulo Ricardo Marques; Vercelino, Rafael; Cioato, Stefania Giotti; Medeiros, Liciane Fernandes; de Oliveira, Carla; Scarabelot, Vanessa Leal; Souza, Andressa; Rozisky, Joanna Ripoll; Quevedo, Alexandre da Silva; Adachi, Lauren Naomi Spezia; Sanches, Paulo Roberto S; Fregni, Felipe; Caumo, Wolnei; Torres, Iraci L S

    2016-01-04

    Neuropathic pain (NP) is a chronic pain modality that usually results of damage in the somatosensory system. NP often shows insufficient response to classic analgesics and remains a challenge to medical treatment. The transcranial direct current stimulation (tDCS) is a non-invasive technique, which induces neuroplastic changes in central nervous system of animals and humans. The brain derived neurotrophic factor plays an important role in synaptic plasticity process. Behavior changes such as decreased locomotor and exploratory activities and anxiety disorders are common comorbidities associated with NP. Evaluate the effect of tDCS treatment on locomotor and exploratory activities, and anxiety-like behavior, and peripheral and central BDNF levels in rats submitted to neuropathic pain model. Rats were randomly divided: Ss, SsS, SsT, NP, NpS, and NpT. The neuropathic pain model was induced by partial sciatic nerve compression at 14 days after surgery; the tDCS treatment was initiated. The animals of treated groups were subjected to a 20 minute session of tDCS, for eight days. The Open Field and Elevated Pluz Maze tests were applied 24 h (phase I) and 7 days (phase II) after the end of tDCS treatment. The serum, spinal cord, brainstem and cerebral cortex BDNF levels were determined 48 h (phase I) and 8 days (phase II) after tDCS treatment by ELISA. The chronic constriction injury (CCI) induces decrease in locomotor and exploratory activities, increases in the behavior-like anxiety, and increases in the brainstem BDNF levels, the last, in phase II (one-way ANOVA/SNK, PtDCS treatment already reverted all these effects induced by CCI (one-way ANOVA/SNK, PtDCS treatment decreased serum and cerebral cortex BDNF levels and it increased these levels in the spinal cord in phase II (one-way ANOVA/SNK, PtDCS reverts behavioral alterations associated to neuropathic pain, indicating possible analgesic and anxiolytic tDCS effects. tDCS treatment induces changes in the BDNF levels

  1. Altered movement patterns and muscular activity during single and double leg squats in individuals with anterior cruciate ligament injury.

    Science.gov (United States)

    Trulsson, Anna; Miller, Michael; Hansson, Gert-Åke; Gummesson, Christina; Garwicz, Martin

    2015-02-13

    Individuals with Anterior Cruciate Ligament (ACL) injury often show altered movement patterns, suggested to be partly due to impaired sensorimotor control. Here, we therefore aimed to assess muscular activity during movements often used in ACL-rehabilitation and to characterize associations between deviations in muscular activity and specific altered movement patterns, using and further exploring the previously developed Test for substitution Patterns (TSP). Sixteen participants (10 women) with unilateral ACL rupture performed Single and Double Leg Squats (SLS; DLS). Altered movement patterns were scored according to TSP, and Surface Electromyography (SEMG) was recorded bilaterally in six hip, thigh and shank muscles. To quantify deviations in muscular activity, SEMG ratios were calculated between homonymous muscles on injured and non-injured sides, and between antagonistic muscles on the same side. Correlations between deviations of injured/non-injured side SEMG ratios and specific altered movement patterns were calculated. Injured/non-injured ratios were low at transition from knee flexion to extension in quadriceps in SLS, and in quadriceps and hamstrings in DLS. On injured side, the quadriceps/hamstrings ratio prior to the beginning of DLS and end of DLS and SLS, and tibialis/gastrocnemius ratio at end of DLS were lower than on non-injured side. Correlations were found between specific altered movement patterns and deviating muscular activity at transition from knee flexion to extension in SLS, indicating that the more deviating the muscular activity on injured side, the more pronounced the altered movement pattern. "Knee medial to supporting foot" correlated to lower injured/non-injured ratios in gluteus medius (rs = -0.73, p = 0.001), "lateral displacement of hip-pelvis-region" to lower injured/non-injured ratios in quadriceps (rs = -0.54, p = 0.03) and "displacement of trunk" to higher injured/non-injured ratios in gluteus medius (rs = 0.62, p = 0

  2. Exogenous Alpha-Synuclein Alters Pre- and Post-Synaptic Activity by Fragmenting Lipid Rafts

    Directory of Open Access Journals (Sweden)

    Marco Emanuele

    2016-05-01

    Full Text Available Alpha-synuclein (αSyn interferes with multiple steps of synaptic activity at pre-and post-synaptic terminals, however the mechanism/s by which αSyn alters neurotransmitter release and synaptic potentiation is unclear. By atomic force microscopy we show that human αSyn, when incubated with reconstituted membrane bilayer, induces lipid rafts' fragmentation. As a consequence, ion channels and receptors are displaced from lipid rafts with consequent changes in their activity. The enhanced calcium entry leads to acute mobilization of synaptic vesicles, and exhaustion of neurotransmission at later stages. At the post-synaptic terminal, an acute increase in glutamatergic transmission, with increased density of PSD-95 puncta, is followed by disruption of the interaction between N-methyl-d-aspartate receptor (NMDAR and PSD-95 with ensuing decrease of long term potentiation. While cholesterol loading prevents the acute effect of αSyn at the presynapse; inhibition of casein kinase 2, which appears activated by reduction of cholesterol, restores the correct localization and clustering of NMDARs.

  3. Ablation of p120-Catenin Altering the Activity of Small GTPase in Human Lung Cancer Cells

    Directory of Open Access Journals (Sweden)

    Nan LIU

    2009-05-01

    Full Text Available Background and objective p120-catenin (p120ctn, a member of the Armadillo gene family, has emerged as an important modulator of small GTPase activities. Therefore, it plays novel roles in tumor malignant phenotype, such as invasion and metastasis, whose mechanism are not well clarified yet. The aim of this study is to explore the roles of p120ctn on the regulation of small GTP family members in lung cancer and the effects to lung cancer invasions andmetastasis. Methods After p120ctn was knocked down by siRNA, in vivo and in vitro analysis was applied to investigate the role and possible mechanism of p120ctn in lung cancer, such as Western Blot, pull-down analysis, and nude mice models. Results p120ctn depletion inactivated RhoA, with the the activity of Cdc42 and Rac1 increased, the invasiveness of lung cancer cells was promoted both in vitro and in vivo . Conclusion p120ctn gene knockdown enhances the metastasis of lung cancer cells, probably by altering expression of small GTPase, such as inactivation of RhoA and activation of Cdc42/Rac1.

  4. Altered microRNA signatures in sputum of patients with active pulmonary tuberculosis.

    Directory of Open Access Journals (Sweden)

    Zhengjun Yi

    Full Text Available Role of microRNA (miRNA has been highlighted in pathogen-host interactions recently. At present, their role in active pulmonary tuberculosis is unknown. The aim of the study was to delineate miRNA expression in sputum supernatant of patients with active pulmonary tuberculosis. Expression of miRNAs was evaluated by microarray analysis and differentially expressed miRNAs were validated by RT-qPCR. Secreted cytokines TNF-α and IL-6 were measured by ELISA. We found that 95 miRNAs were differentially expressed between tuberculosis group and controls. More miRNAs (52 out of 95 miRNAs were underexpressed than overexpressed during tuberculosis infection. Overexpression of miR-3179, miR-147 and underexpression of miR-19b-2* in TB group compared with controls were confirmed in the validation cohort. TNF-α and IL-6 levels were not significantly altered between TB group and controls. For the first time, differential expression of miRNAs in sputum was found in active pulmonary tuberculosis. The study provides rationale for identifying the role of miRNAs in the pathogenesis of pulmonary tuberculosis and indicates potential for miRNA-based therapeutic strategies.

  5. Altered microRNA signatures in sputum of patients with active pulmonary tuberculosis.

    Science.gov (United States)

    Yi, Zhengjun; Fu, Yurong; Ji, Rui; Li, Ruifang; Guan, Zhiyu

    2012-01-01

    Role of microRNA (miRNA) has been highlighted in pathogen-host interactions recently. At present, their role in active pulmonary tuberculosis is unknown. The aim of the study was to delineate miRNA expression in sputum supernatant of patients with active pulmonary tuberculosis. Expression of miRNAs was evaluated by microarray analysis and differentially expressed miRNAs were validated by RT-qPCR. Secreted cytokines TNF-α and IL-6 were measured by ELISA. We found that 95 miRNAs were differentially expressed between tuberculosis group and controls. More miRNAs (52 out of 95 miRNAs) were underexpressed than overexpressed during tuberculosis infection. Overexpression of miR-3179, miR-147 and underexpression of miR-19b-2* in TB group compared with controls were confirmed in the validation cohort. TNF-α and IL-6 levels were not significantly altered between TB group and controls. For the first time, differential expression of miRNAs in sputum was found in active pulmonary tuberculosis. The study provides rationale for identifying the role of miRNAs in the pathogenesis of pulmonary tuberculosis and indicates potential for miRNA-based therapeutic strategies.

  6. Chronophin activation is necessary in Doxorubicin-induced actin cytoskeleton alteration.

    Science.gov (United States)

    Lee, Su Jin; Park, Jeen Woo; Kang, Beom Sik; Lee, Dong-Seok; Lee, Hyun-Shik; Choi, Sooyoung; Kwon, Oh-Shin

    2017-06-01

    Although doxorubicin (Dox)-induced oxidative stress is known to be associated with cytotoxicity, the precise mechanism remains unclear. Genotoxic stress not only generates free radicals, but also affects actin cytoskeleton stability. We showed that Dox-induced RhoA signaling stimulated actin cytoskeleton alterations, resulting in central stress fiber disruption at early time points and cell periphery cortical actin formation at a later stage, in HeLa cells. Interestingly, activation of a cofilin phosphatase, chronophin (CIN), was initially evoked by Dox-induced RhoA signaling, resulting in a rapid phosphorylated cofilin turnover leading to actin cytoskeleton remodeling. In addition, a novel interaction between CIN and 14-3-3ζ was detected in the absence of Dox treatment. We demonstrated that CIN activity is quite contrary to 14-3-3ζ binding, and the interaction leads to enhanced phosphorylated cofilin levels. Therefore, initial CIN activation regulation could be critical in Dox-induced actin cytoskeleton remodeling through RhoA/cofilin signaling. [BMB Reports 2017; 50(6): 335-340].

  7. Prediction of BMI by impulsivity, eating behavior and activity level

    Directory of Open Access Journals (Sweden)

    Jiang Xiaxia

    2016-01-01

    Full Text Available Objective: Discuss the relationship between the impulsivity, eating behavior and activity level and the body mass index (BMI. Method: Test 147 female college students with the impulsivity questionnaire (BIS-11 and BIS/BAS, Dutch Eating Behavior Questionnaire (DBEQ, Sitting Time Scale (STS and Exercising Time Scale (ETS. Results: (1 The correlation analysis indicates that BMI and impulsivity (r = 0.43 and 0.52 have a significant positive correlation with the sitting time (r = 0.61 and a significant negative correlation with the activity level (r= −0.49. (2 The path analysis indicates that the reward sensitivity directly affects BMI and indirectly affects BMI through the activity level as well; the eating behavior has an insignificantly direct impact on BMI, because its impact is generated by the intermediary role of induced diet. Conclusion: (1 The impulsivity, eating behavior and activity level are closely related to BMI; (2 the activity level, sitting time and induced diet play an intermediary role between the impulsivity and BMI.

  8. Life course socioeconomic position and C-reactive protein: mediating role of health-risk behaviors and metabolic alterations. The Brazilian Longitudinal Study of Adult Health (ELSA-Brasil.

    Directory of Open Access Journals (Sweden)

    Lidyane V Camelo

    Full Text Available BACKGROUND: Chronic inflammation has been postulated to be one mediating mechanism explaining the association between low socioeconomic position (SEP and cardiovascular disease (CVD. We sought to examine the association between life course SEP and C-reactive protein (CRP levels in adulthood, and to evaluate the extent to which health-risk behaviors and metabolic alterations mediate this association. Additionally, we explored the possible modifying influence of gender. METHODS AND FINDINGS: Our analytical sample comprised 13,371 participants from ELSA-Brasil baseline, a multicenter prospective cohort study of civil servants. SEP during childhood, young adulthood, and adulthood were considered. The potential mediators between life course SEP and CRP included clusters of health-risk behaviors (smoking, low leisure time physical activity, excessive alcohol consumption, and metabolic alterations (obesity, hypertension, low HDL, hypertriglyceridemia, and diabetes. Linear regression models were performed and structural equation modeling was used to evaluate mediation. Although lower childhood SEP was associated with higher levels of CRP in adult life, this association was not independent of adulthood SEP. However, CRP increased linearly with increasing number of unfavorable social circumstances during the life course (p trend <0.001. The metabolic alterations were the most important mediator between cumulative SEP and CRP. This mediation path accounted for 49.5% of the total effect of cumulative SEP on CRP among women, but only 20.2% among men. In consequence, the portion of the total effect of cumulative SEP on CRP that was mediated by risk behaviors and metabolic alterations was higher among women (55.4% than among men (36.8%. CONCLUSIONS: Cumulative SEP across life span was associated with elevated systemic inflammation in adulthood. Although health-risk behaviors and metabolic alterations were important mediators of this association, a sizable

  9. Biopesticide-induced behavioral and morphological alterations in the stingless bee Melipona quadrifasciata.

    Science.gov (United States)

    Barbosa, Wagner F; Tomé, Hudson Vaner V; Bernardes, Rodrigo C; Siqueira, Maria Augusta L; Smagghe, Guy; Guedes, Raul Narciso C

    2015-09-01

    Because of their natural origin, biopesticides are assumed to be less harmful to beneficial insects, including bees, and therefore their use has been widely encouraged for crop protection. There is little evidence, however, to support this ingrained notion of biopesticide safety to pollinators. Because larval exposure is still largely unexplored in ecotoxicology and risk assessment on bees, an investigation was performed on the lethal and sublethal effects of a diet treated with 2 bioinsecticides, azadirachtin and spinosad, on the stingless bee, Melipona quadrifasciata, which is one of the most important pollinators in the Neotropics. Survival of stingless bee larvae was significantly compromised at doses above 210 ng a.i./bee for azadirachtin and 114 ng a.i./bee for spinosad. No sublethal effect was observed on larvae developmental time, but doses of both compounds negatively affected pupal body mass. Azadirachtin produced deformed pupae and adults as a result of its insect growth regulator properties, but spinosad was more harmful and produced greater numbers of deformed individuals. Only spinosad compromised walking activity of the adult workers at doses as low as 2.29 ng a.i./bee, which is 1/5000 of the maximum field recommended rate. In conclusion, the results demonstrated that bioinsecticides can pose significant risks to native pollinators with lethal and sublethal effects; future investigations are needed on the likelihood of such effects under field conditions. © 2015 SETAC.

  10. [Associations of sedentary behavior and physical activity with dyslipidemia].

    Science.gov (United States)

    Zhou, J; Zhou, Q; Wang, D P; Zhang, T; Wang, H J; Song, Y; He, H Z; Wang, M; Wang, P Y; Liu, A P

    2017-06-18

    To analyze associations of sedentary behavior and physical activity with dyslipidemia among residents in Wuhai city. Data about social demographic characteristics, life style, health status and other covariate required for analysis in this study was obtained from a cross-sectional study on a total of 11 497 18-79 years old residents in Wuhai City by questionnaire, body mea-surement and laboratory examination. In this study, sedentary behavior and physical activity were evaluated using international physical activity questionnaire long version (IPAQ). IPAQ is widely used all over the world, and its reliability and validity have been tested in Chinese population. 2016 Chinese Guideline for the Management of Dyslipidemia in Adults was used to define dyslipidemia in this study. According to IPAQ scoring protocol, 124 participants were excluded as a result of reporting more than 960 min of physical activity per day. 50.58% of 11 373 participants included in the analysis reported more than 4 hours of sedentary behavior per day in this study, thus 49.42% participants reported no more than 4 hours of sedentary behavior per day; the proportions of these 11 373 participants who reached Low level physical activity, Moderate level physical activity and high level physical activity were 23.43%, 37.29% and 39.28% respectively; and the detection ratios of new cases and prevalent cases of dyslipidemia in Wuhai City were 20.46% and 16.13% respectively. After controlling for confounders in this study, we found out that sedentary behavior increased the risk of new cases of dyslipidemia in women (OR=1.17, 95% CI: 1.00-1.36), and increased the risk of prevalent cases of dyslipidemia in both men (OR=1.21, 95% CI: 1.02-1.44) and women (OR=1.24, 95% CI: 1.04-1.48); as for association of physical activity with dyslipidemia, association was found between high level physical activity and prevalent cases of dyslipidemia in men in this study (OR=0.78, 95% CI: 0.62-0.98), suggested that high

  11. Is running away right? The behavioral activation-behavioral inhibition model of anterior asymmetry.

    Science.gov (United States)

    Wacker, Jan; Chavanon, Mira-Lynn; Leue, Anja; Stemmler, Gerhard

    2008-04-01

    The measurement of anterior electroencephalograph (EEG) asymmetries has become an important standard paradigm for the investigation of affective states and traits. Findings in this area are typically interpreted within the motivational direction model, which suggests a lateralization of approach and withdrawal motivational systems to the left and right anterior region, respectively. However, efforts to compare this widely adopted model with an alternative account-which relates the left anterior region to behavioral activation independent of the direction of behavior (approach or withdrawal) and the right anterior region to goal conflict-induced behavioral inhibition-are rare and inconclusive. Therefore, the authors measured the EEG in a sample of 93 young men during emotional imagery designed to provide a critical test between the 2 models. The results (e.g., a correlation between left anterior activation and withdrawal motivation) favor the alternative model on the basis of the concepts of behavioral activation and behavioral inhibition. In addition, the present study also supports an association of right parietal activation with physiological arousal and the conceptualization of parietal EEG asymmetry as a mediator of emotion-related physiological arousal. (Copyright) 2008 APA.

  12. Field Trip Guide to Serpentinite, Silica-Carbonate Alteration, and Related Hydrothermal Activity in the Clear Lake Region, California

    Energy Technology Data Exchange (ETDEWEB)

    Fraser Goff; George Guthrie

    1999-06-01

    This guide is designed to familiarize scientists with the geology, structure, alteration, and fluids typical of California serpentinites for purposes of carbon dioxide sequestration (Lackner et al., 1995). Goff et al. (1997) and Goff and Lackner (1998) describe the geology and geochemistry of some of the serpentinites from this area. Mechanisms of silica-carbonate alteration were outlined by Barnes et al. (1973). Donnelly-Nolan et al. (1993) most recently reviewed relations between regional hydrothermal alteration and Quarternary volcanic activity. Stanley et al. (1998) summarized geophysical characteristics of the region.

  13. Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels.

    Science.gov (United States)

    Hallaq, Haifa; Wang, Dao W; Kunic, Jennifer D; George, Alfred L; Wells, K Sam; Murray, Katherine T

    2012-02-01

    Na(+) current derived from expression of the cardiac isoform SCN5A is reduced by receptor-mediated or direct activation of protein kinase C (PKC). Previous work has suggested a possible role for loss of Na(+) channels at the plasma membrane in this effect, but the results are controversial. In this study, we tested the hypothesis that PKC activation acutely modulates the intracellular distribution of SCN5A channels and that this effect can be visualized in living cells. In human embryonic kidney cells that stably expressed SCN5A with green fluorescent protein (GFP) fused to the channel COOH-terminus (SCN5A-GFP), Na(+) currents were suppressed by an exposure to PKC activation. Using confocal microscopy, colocalization of SCN5A-GFP channels with the plasma membrane under control and stimulated conditions was quantified. A separate population of SCN5A channels containing an extracellular epitope was immunolabeled to permit temporally stable labeling of the plasma membrane. Our results demonstrated that Na(+) channels were preferentially trafficked away from the plasma membrane by PKC activation, with a major contribution by Ca(2+)-sensitive or conventional PKC isoforms, whereas stimulation of protein kinase A (PKA) had the opposite effect. Removal of the conserved PKC site Ser(1503) or exposure to the NADPH oxidase inhibitor apocynin eliminated the PKC-mediated effect to alter channel trafficking, indicating that both channel phosphorylation and ROS were required. Experiments using fluorescence recovery after photobleaching demonstrated that both PKC and PKA also modified channel mobility in a manner consistent with the dynamics of channel distribution. These results demonstrate that the activation of protein kinases can acutely regulate the intracellular distribution and molecular mobility of cardiac Na(+) channels in living cells.

  14. Altered frontocingulate activation during aversive interoceptive processing in young adults transitioning to problem stimulant use

    Directory of Open Access Journals (Sweden)

    Jennifer Lorraine Stewart

    2013-11-01

    Full Text Available Problems associated with stimulant use have been linked to frontocingulate, insular, and thalamic dysfunction during decision-making and alterations in interoceptive processing. However, little is known about how interoception and decision-making interact and contribute to dysfunctions that promote the transition from recreational drug use to abuse or dependence. Here, we investigate brain activation in response to reward, punishment, and uncertainty during an aversive interoceptive challenge in current and former stimulant (cocaine and amphetamine users using functional magnetic resonance imaging (fMRI. Young adults previously identified as recreational users (n=184 were followed up three years later. Of these, 18 individuals progressed to problem stimulant use (PSU, whereas 15 desisted stimulant use (DSU. PSU, DSU, and 14 healthy comparison subjects (CTL performed a two-choice prediction task at three fixed error rates (20%=reward, 50%=uncertainty, 80%=punishment during which they anticipated and experienced episodes of inspiratory breathing load. Although groups did not differ in insula activation or subjective breathing load ratings, PSU exhibited lower right inferior frontal gyrus (IFG and bilateral anterior cingulate (ACC activation than DSU and CTL during aversive interoceptive processing as well as lower right IFG in response to decision making involving uncertainty. However, PSU exhibited greater bilateral IFG activation than DSU and CTL while making choices within the context of punishing feedback, and both PSU and DSU showed lower thalamic activation during breathing load than CTL. Findings suggest that frontocingulate attenuation, reflecting reduced resources devoted to goal maintenance and action selection in the presence of uncertainty and interoceptive perturbations, may be a biomarker for susceptibility to problem stimulant use.

  15. Rodent ultrasonic vocalizations are bound to active sniffing behavior

    Directory of Open Access Journals (Sweden)

    Yevgeniy B Sirotin

    2014-11-01

    Full Text Available During rodent active behavior, multiple orofacial sensorimotor behaviors, including sniffing and whisking, display rhythmicity in the theta range (~5-10 Hz. During specific behaviors, these rhythmic patterns interlock, such that execution of individual motor programs becomes dependent on the state of the others. Here we performed simultaneous recordings of the respiratory cycle and ultrasonic vocalization emission by adult rats and mice in social settings. We used automated analysis to examine the relationship between breathing patterns and vocalization over long time periods. Rat ultrasonic vocalizations (USVs, ’50 kHz’ were emitted within stretches of active sniffing (5−10 Hz and were largely absent during periods of passive breathing (1-4 Hz. Because ultrasound was tightly linked to the exhalation phase, the sniffing cycle segmented vocal production into discrete calls and imposed its theta rhythmicity on their timing. In turn, calls briefly prolonged exhalations, causing an immediate drop in sniffing rate. Similar results were obtained in mice. Our results show that ultrasonic vocalizations are an integral part of the rhythmic orofacial behavioral ensemble. This complex behavioral program is thus involved not only in active sensing but also in the temporal structuring of social communication signals. Many other social signals of mammals, including monkey calls and human speech, show structure in the theta range. Our work points to a mechanism for such structuring in rodent ultrasonic vocalizations.

  16. Sex-dependent alterations in motor and anxiety-like behavior of aged bacterial peptidoglycan sensing molecule 2 knockout mice.

    Science.gov (United States)

    Arentsen, Tim; Khalid, Roksana; Qian, Yu; Diaz Heijtz, Rochellys

    2018-01-01

    Peptidoglycan recognition proteins (PGRPs) are key sensing-molecules of the innate immune system that specifically detect bacterial peptidoglycan (PGN) and its derivates. PGRPs have recently emerged as potential key regulators of normal brain development and behavior. To test the hypothesis that PGRPs play a role in motor control and anxiety-like behavior in later life, we used 15-month old male and female peptidoglycan recognition protein 2 (Pglyrp2) knockout (KO) mice. Pglyrp2 is an N-acetylmuramyl-l-alanine amidase that hydrolyzes PGN between the sugar backbone and the peptide chain (which is unique among the mammalian PGRPs). Using a battery of behavioral tests, we demonstrate that Pglyrp2 KO male mice display decreased levels of anxiety-like behavior compared with wild type (WT) males. In contrast, Pglyrp2 KO female mice show reduced rearing activity and increased anxiety-like behavior compared to WT females. In the accelerated rotarod test, however, Pglyrp2 KO female mice performed better compared to WT females (i.e., they had longer latency to fall off the rotarod). Further, Pglyrp2 KO male mice exhibited decreased expression levels of synaptophysin, gephyrin, and brain-derived neurotrophic factor in the frontal cortex, but not in the amygdala. Pglyrp2 KO female mice exhibited increased expression levels of spinophilin and alpha-synuclein in the frontal cortex, while exhibiting decreased expression levels of synaptophysin, gephyrin and spinophilin in the amygdala. Our findings suggest a novel role for Pglyrp2asa key regulator of motor and anxiety-like behavior in late life. Copyright © 2017. Published by Elsevier Inc.

  17. School environment, sedentary behavior and physical activity in preschool children.

    Science.gov (United States)

    Barbosa, Sara Crosatti; Coledam, Diogo Henrique Constantino; Stabelini Neto, Antonio; Elias, Rui Gonçalves Marques; Oliveira, Arli Ramos de

    2016-09-01

    To analyze physical activity and sedentary behavior in preschool children during their stay at school and the associated factors. 370 preschoolers, aged 4 to 6 years, stratified according to gender, age and school region in the city of Londrina, PR, participated in the study. A questionnaire was applied to principals of preschools to analyze the school infrastructure and environment. Physical activity and sedentary behavior were estimated using accelerometers for five consecutive days during the children's stay at school. The odds ratio (OR) was estimated through binary logistic regression. At school, regardless of age, preschoolers spend relatively more time in sedentary behaviors (89.6%-90.9%), followed by light (4.6%-7.6%), moderate (1.3%-3.0%) and vigorous (0.5%-2.3%) physical activity. The indoor recreation room (OR=0.20; 95%CI 0.05 to 0.83) and the playground (OR=0.08; 95%CI 0.00 to 0.80) protect four-year-old schoolchildren from highly sedentary behavior. An inverse association was found between the indoor recreation room and physical activity (OR=0.20; 95%CI 0.00 to 0.93) in five-year-old children. The indoor recreation room (OR=1.54; 95%CI 1.35 to 1.77), the playground (OR=2.82; 95%CI 1.14 to 6.96) and the recess (OR=1.54; 95%CI 1.35 to 1.77) are factors that increase the chance of six-year-old schoolchildren to be active. The school infrastructure and environment should be seen as strategies to promote physical activity and reduce sedentary behavior in preschool children. Copyright © 2016 Sociedade de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  18. Promoting physical activity through video games based on self-behavioral models

    Directory of Open Access Journals (Sweden)

    M. Abreu

    2014-06-01

    Full Text Available Physical activity is an essential component of a healthy lifestyle, promoting health and preventing various chronic diseases. Despite this evidence, it is known that the younger generations invest much time in sedentary activities such as television viewing, videogames or reading, which potentially can lead to an increase in the prevalence of sedentary behaviors in adulthood. These behaviors have been identified as factors of disturbance in the balance between intake and energy expenditure, contributing to the increasing number of overweight and obese people and, further downstream, the prevalence of cardiovascular diseases and cancer (among others. The emergence of the Exergames (videogames that involve physical activity, either light, moderate or intense and games whose narrative alters pathogenic beliefs, contrary to the potential risk effect of gaming, by combining the playful context of videogames with physical activity (mild to intense. This study discusses some salutogenic principles of a new generation of videogames where virtual and real come together, ipromoting salutogenic behavioral patterns, namely through greater energy expenditure. The ideas are based on theoretical and empirical contributions from health psychology, in addition to the potential of computer technology applicable to traditional videogames and Exergames.

  19. Activation of D2 autoreceptors alters cocaine-induced locomotion and slows down local field oscillations in the rat ventral tegmental area.

    Science.gov (United States)

    Koulchitsky, Stanislav; Delairesse, Charlotte; Beeken, Thom; Monteforte, Alexandre; Dethier, Julie; Quertemont, Etienne; Findeisen, Rolf; Bullinger, Eric; Seutin, Vincent

    2016-09-01

    Psychoactive substances affecting the dopaminergic system induce locomotor activation and, in high doses, stereotypies. Network mechanisms underlying the shift from an active goal-directed behavior to a "seemingly purposeless" stereotypic locomotion remain unclear. In the present study we sought to determine the relationships between the behavioral effects of dopaminergic drugs and their effects on local field potentials (LFPs), which were telemetrically recorded within the ventral tegmental area (VTA) of freely moving rats. We used the D2/D3 agonist quinpirole in a low, autoreceptor-selective (0.1 mg/kg, i.p.) and in a high (0.5 mg/kg, i.p.) dose, and a moderate dose of cocaine (10 mg/kg, i.p.). In the control group, power spectrum analysis revealed a prominent peak of LFP power in the theta frequency range during active exploration. Cocaine alone stimulated locomotion, but had no significant effect on the peak of the LFP power. In contrast, co-administration of low dose quinpirole with cocaine markedly altered the pattern of locomotion, from goal-directed exploratory behavior to recurrent motion resembling locomotor stereotypy. This behavioral effect was accompanied by a shift of the dominant theta power toward a significantly lower (by ∼15%) frequency. High dose quinpirole also provoked an increased locomotor activity with signs of behavioral stereotypies, and also induced a shift of the dominant oscillation frequency toward the lower range. These results demonstrate a correlation between the LFP oscillation frequency within the VTA and a qualitative aspect of locomotor behavior, perhaps due to a variable level of coherence of this region with its input or output areas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Alteration of phospholipase D activity in the rat tissues by irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, M. S. [Korea Univ., Seoul (Korea, Republic of). Coll. of Medicine; Cho, Y. J. [Hanyang Univ., Seoul (Korea, Republic of). Coll. of Medicine; Choi, M. U. [Seoul National Univ. (Korea, Republic of). Coll. of Natural Sciences

    1997-09-01

    Phospholipase D (PLD) catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid (PA) and choline. Recently, PLD has been drawing much attentions and considered to be associated with cancer process since it is involved in cellular signal transduction. In this experiment, oleate-PLD activities were measured in various tissues of the living rats after whole body irradiation. The reaction mixture for the PLD assay contained 0.1{mu}Ci 1,2-di[1-{sup 14}C]palmitoyl phosphatidylcholine, 0.5mM phosphatidylcholine, 5mM sodium oleate, 0.2% taurodeoxycholate, 50mM HEPES buffer(pH 6.5), 10mM CaCl{sub 2}, and 25mM KF. phosphatidic acid, the reaction product, was separated by TLC and its radioactivity was measured with a scintillation counter. The whole body irradiation was given to the female Wistar rats via Cobalt 60 Teletherapy with field size of 10cm x 10cm and an exposure of 2.7Gy per minute to the total doses of 10Gy and 25Gy. Among the tissues examined, PLD activity in lung was the highest one and was followed by kidney, skeletal muscle, brain, spleen, bone marrow, thymus, and liver. Upon irradiation, alteration of PLD activity was observed in thymus, spleen, lung, and bone marrow. Especially PLD activities of the spleen and thymus revealed the highest sensitivity toward {gamma}-ray with more than two times amplification in their activities. In contrast, the PLD activity of bone marrow appears to be reduced to nearly 30%. Irradiation effect was hardly detected in liver which showed the lowest PLD activity. The PLD activities affected most sensitively by the whole-body irradiation seem to be associated with organs involved in immunity and hematopoiesis. This observation strongly indicates that the PLD is closely related to the physiological function of these organs. Furthermore, radiation stress could offer an important means to explore the phenomena covering from cell proliferation to cell death on these organs. (author).

  1. Transient Activation of Apomixis in Sexual Neotriploids May Retain Genomically Altered States and Enhance Polyploid Establishment

    Directory of Open Access Journals (Sweden)

    Diego Hojsgaard

    2018-02-01

    Full Text Available Polyploid genomes evolve and follow a series of dynamic transfigurations along with adaptation and speciation. The initial formation of a new polyploid individual within a diploid population usually involves a triploid bridge, a two-step mechanism of cell fusions between ubiquitous (reduced and rare (unreduced gametes. The primary fusion event creates an intermediate triploid individual with unbalanced genome sets, a situation of genomic-shock characterized by gene expression dysregulation, high dosage sensitivity, disturbed cell divisions, and physiological and reproductive attributes drastically altered. This near-sterile neotriploid must produce (even eupolyploids through secondary fusion events to restore genome steadiness, meiotic balance, and fertility required for the demographic establishment of a nascent lineage. Natural conditions locate several difficulties to polyploid establishment, including the production of highly unbalanced and rarely unreduced (euploid gametes, frequency-dependent disadvantages (minority cytotype exclusion, severe fitness loss, and ecological competition with diploid parents. Persistence and adaptation of neopolyploids depend upon genetic and phenotypic novelty coupled to joint selective forces that preserve shock-induced genomic changes (subgenome homeolog partitioning and drive meiotic (reproductive stabilization and ecological diversification. Thus, polyploid establishment through the triploid bridge is a feasible but not ubiquitous process that requires a number of low-probability events and singular circumstances. Yet, frequencies of polyploids suggest that polyploid establishment is a pervasive process. To explain this disparity, and supported in experimental evidence, I propose that situations like hybridization and ploidy-state transitions associated to genomic shock and substantial developmental alterations can transiently activate apomixis as a mechanism to halt genomic instability and cancel factors

  2. Agreeableness and activeness as components of conflict behaviors

    NARCIS (Netherlands)

    Van de Vliert, E; Euwema, M C

    Handling social conflict is usually described in terms of 2 dimensions that either cause the behavior (concern for one's own and others' goals) or that result from it (integration and distribution). In contrast, agreeableness and activeness are common factors of modes and taxonomies of conflict

  3. Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses.

    Science.gov (United States)

    Lau, Colleen M; Nish, Simone A; Yogev, Nir; Waisman, Ari; Reiner, Steven L; Reizis, Boris

    2016-03-07

    A common genetic alteration in acute myeloid leukemia is the internal tandem duplication (ITD) in FLT3, the receptor for cytokine FLT3 ligand (FLT3L). Constitutively active FLT3-ITD promotes the expansion of transformed progenitors, but also has pleiotropic effects on hematopoiesis. We analyzed the effect of FLT3-ITD on dendritic cells (DCs), which express FLT3 and can be expanded by FLT3L administration. Pre-leukemic mice with the Flt3(ITD) knock-in allele manifested an expansion of classical DCs (cDCs) and plasmacytoid DCs. The expansion originated in DC progenitors, was cell intrinsic, and was further enhanced in Flt3(ITD/ITD) mice. The mutation caused the down-regulation of Flt3 on the surface of DCs and reduced their responsiveness to Flt3L. Both canonical Batf3-dependent CD8(+) cDCs and noncanonical CD8(+) cDCs were expanded and showed specific alterations in their expression profiles. Flt3(ITD) mice showed enhanced capacity to support T cell proliferation, including a cell-extrinsic expansion of regulatory T (T reg) cells. Accordingly, these mice restricted alloreactive T cell responses during graft-versus-host reaction, but failed to control autoimmunity without T reg cells. Thus, the FLT3-ITD mutation directly affects DC development, indirectly modulating T cell homeostasis and supporting T reg cell expansion. We hypothesize that this effect of FLT3-ITD might subvert immunosurveillance and promote leukemogenesis in a cell-extrinsic manner. © 2016 Lau et al.

  4. Prenatal androgen exposure and children's aggressive behavior and activity level.

    Science.gov (United States)

    Spencer, Debra; Pasterski, Vickie; Neufeld, Sharon; Glover, Vivette; O'Connor, Thomas G; Hindmarsh, Peter C; Hughes, Ieuan A; Acerini, Carlo L; Hines, Melissa

    2017-11-01

    Some human behaviors, including aggression and activity level, differ on average for males and females. Here we report findings from two studies investigating possible relations between prenatal androgen and children's aggression and activity level. For study 1, aggression and activity level scores for 43 girls and 38 boys, aged 4 to 11years, with congenital adrenal hyperplasia (CAH, a genetic condition causing increased adrenal androgen production beginning prenatally) were compared to those of similarly-aged, unaffected relatives (41 girls, 31 boys). Girls with CAH scored higher on aggression than unaffected girls, d=0.69, and unaffected boys scored higher on activity level than unaffected girls, d=0.50. No other group differences were significant. For study 2, the relationship of amniotic fluid testosterone to aggression and activity level was investigated in typically-developing children (48 girls, 44 boys), aged 3 to 5years. Boys scored higher than girls on aggression, d=0.41, and activity level, d=0.50. However, amniotic fluid testosterone was not a significant predictor of aggression or activity level for either sex. The results of the two studies provide some support for an influence of prenatal androgen exposure on children's aggressive behavior, but not activity level. The within-sex variation in amniotic fluid testosterone may not be sufficient to allow reliable assessment of relations to aggression or activity level. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Altered fatty acid metabolism and reduced stearoyl-coenzyme a desaturase activity in asthma.

    Science.gov (United States)

    Rodriguez-Perez, N; Schiavi, E; Frei, R; Ferstl, R; Wawrzyniak, P; Smolinska, S; Sokolowska, M; Sievi, N A; Kohler, M; Schmid-Grendelmeier, P; Michalovich, D; Simpson, K D; Hessel, E M; Jutel, M; Martin-Fontecha, M; Palomares, O; Akdis, C A; O'Mahony, L

    2017-11-01

    Fatty acids and lipid mediator signaling play an important role in the pathogenesis of asthma, yet this area remains largely underexplored. The aims of this study were (i) to examine fatty acid levels and their metabolism in obese and nonobese asthma patients and (ii) to determine the functional effects of altered fatty acid metabolism in experimental models. Medium- and long-chain fatty acid levels were quantified in serum from 161 human volunteers by LC/MS. Changes in stearoyl-coenzyme A desaturase (SCD) expression and activity were evaluated in the ovalbumin (OVA) and house dust mite (HDM) murine models. Primary human bronchial epithelial cells from asthma patients and controls were evaluated for SCD expression and activity. The serum desaturation index (an indirect measure of SCD) was significantly reduced in nonobese asthma patients and in the OVA murine model. SCD1 gene expression was significantly reduced within the lungs following OVA or HDM challenge. Inhibition of SCD in mice promoted airway hyper-responsiveness. SCD1 expression was suppressed in bronchial epithelial cells from asthma patients. IL-4 and IL-13 reduced epithelial cell SCD1 expression. Inhibition of SCD reduced surfactant protein C expression and suppressed rhinovirus-induced IP-10 secretion, which was associated with increased viral titers. This is the first study to demonstrate decreased fatty acid desaturase activity in humans with asthma. Experimental models in mice and human epithelial cells suggest that inhibition of desaturase activity leads to airway hyper-responsiveness and reduced antiviral defense. SCD may represent a new target for therapeutic intervention in asthma patients. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.

  6. Altered enzymatic activity and allele frequency of OMI/HTRA2 in Alzheimer's disease

    Science.gov (United States)

    Westerlund, Marie; Behbahani, Homira; Gellhaar, Sandra; Forsell, Charlotte; Belin, Andrea Carmine; Anvret, Anna; Zettergren, Anna; Nissbrandt, Hans; Lind, Charlotta; Sydow, Olof; Graff, Caroline; Olson, Lars; Ankarcrona, Maria; Galter, Dagmar

    2011-01-01

    The serine-protease OMI/HTRA2, required for several cellular processes, including mitochondrial function, autophagy, chaperone activity, and apoptosis, has been implicated in the pathogenesis of both Alzheimer's disease (AD) and Parkinson's disease (PD). Western blot quantification of OMI/HTRA2 in frontal cortex of patients with AD (n=10) and control subjects (n=10) in two separate materials indicated reduced processed (active, 35 kDa) OMI/HTRA2 levels, whereas unprocessed (50 kDa) enzyme levels were not significantly different between the groups. Interestingly, the specific protease activity of OMI/HTRA2 was found to be significantly increased in patients with AD (n=10) compared to matched control subjects (n=10) in frontal cortex in two separate materials. Comparison of OMI/HTRA2 mRNA levels in frontal cortex and hippocampus, two brain areas particularly affected by AD, indicated similar levels in patients with AD (n=10) and matched control subjects (n=10). In addition, we analyzed the occurrence of the OMI/HTRA2 variants A141S and G399S in Swedish case-control materials for AD and PD and found a weak association of A141S with AD, but not with PD. In conclusion, our genetic, histological, and biochemical findings give further support to an involvement of OMI/HTRA2 in the pathology of AD; however, further studies are needed to clarify the role of this gene in neurodegeneration.—Westerlund, M., Behbahani, H., Gellhaar, S., Forsell, C., Carmine Belin, A., Anvret, A., Zettergren, A., Nissbrandt, H., Lind, C., Sydow, O., Graff, C., Olson, L., Ankarcrona, M., Galter, D. Altered enzymatic activity and allele frequency of OMI/HTRA2 in Alzheimer's disease. PMID:21163861

  7. Altered polymorphonuclear leukocyte Fc gamma R expression contributes to decreased candicidal activity during intraabdominal sepsis

    International Nuclear Information System (INIS)

    Simms, H.H.; D'Amico, R.; Monfils, P.; Burchard, K.W.

    1991-01-01

    We investigated the effects of untreated intraabdominal sepsis on polymorphonuclear leukocyte (PMN) candicidal activity. Two groups of swine were studied. Group I (n=6) underwent sham laparotomy, group II (n=7) underwent cecal ligation and incision. Untreated intraabdominal sepsis resulted in a progressive decrease in PMN candicidal activity. Concomitant rosetting and phagocytosis assays demonstrated a decrease in both the attachment and phagocytosis of Candida albicans opsonized with both normal and septic swine serum by PMNs in group II. Iodine 125-labeled swine immunoglobulin G (IgG) and fluorescein isothioalanate (FITC)-labeled swine IgG were used to investigate Fc gamma receptor ligand interactions. Scatchard analyses demonstrated a progressive decline in both the binding affinity constant and number of IgG molecules bound per PMN. Stimulation of the oxidative burst markedly reduced 125I-labeled IgG binding in both group I and group II, with a greater decrement being seen in animals with intraabdominal sepsis. Further, in group II, PMN recycling of the Fc gamma receptor to the cell surface after generation of the oxidative burst was reduced by postoperative day 4. Binding of monoclonal antibodies to Fc gamma receptor II, but not Fc gamma receptor I/III markedly reduced intracellular candicidal activity. Immunofluorescence studies revealed a homogeneous pattern of FITC-IgG uptake by nearly all group I PMNs, whereas by postoperative day 8 a substantial number of PMNs from group II failed to internalize the FITC-IgG. These studies suggest that untreated intraabdominal sepsis reduces PMN candicidal activity and that this is due, in part, to altered PMN Fc gamma receptor ligand interactions

  8. Alteration of intestinal barrier function during activity-based anorexia in mice.

    Science.gov (United States)

    Jésus, Pierre; Ouelaa, Wassila; François, Marie; Riachy, Lina; Guérin, Charlène; Aziz, Moutaz; Do Rego, Jean-Claude; Déchelotte, Pierre; Fetissov, Sergueï O; Coëffier, Moïse

    2014-12-01

    Anorexia nervosa is a severe eating disorder often leading to malnutrition and cachexia, but its pathophysiology is still poorly defined. Chronic food restriction during anorexia nervosa may induce gut barrier dysfunction, which may contribute to disease development and its complications. Here we have characterized intestinal barrier function in mice with activity-based anorexia (ABA), an animal model of anorexia nervosa. Male C57Bl/6 ABA or limited food access (LFA) mice were placed respectively in cages with or without activity wheel. After 5 days of acclimatization, both ABA and LFA mice had progressively limited access to food from 6 h/d at day 6 to 3 h/d at day 9 and until the end of experiment at day 17. A group of pair-fed mice (PF) was also compared to ABA. On day 17, food intake was lower in ABA than LFA mice (2.0 ± 0.18 g vs. 3.0 ± 0.14 g, p anorexia nervosa. The role of these alterations in the pathophysiology of anorexia nervosa should be further evaluated. Copyright © 2013 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  9. Altered intrinsic brain activity after chemotherapy in patients with gastric cancer: A preliminary study

    International Nuclear Information System (INIS)

    Kim, Hyun Gi; Shin, Na-Young; Bak, Yunjin; Lim, Soo Mee; Kim, Kyung Ran; Jung, Young-Chul; Han, Kyunghwa; Lee, Seung-Koo

    2017-01-01

    To characterize the pattern of altered intrinsic brain activity in gastric cancer patients after chemotherapy (CTx). Patients before and after CTx (n = 14) and control subjects (n = 11) underwent resting-state functional MRI (rsfMRI) at baseline and 3 months after CTx. Regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF), and fractional ALFF (fALFF) were calculated and compared between the groups using the two-sample t test. Correlation analysis was also performed between rsfMRI values (i.e., ReHo, ALFF, and fALFF) and neuropsychological test results. Patients showed poor performance in verbal memory and executive function and decreased rsfMRI values in the frontal areas even before CTx and showed decreased attention/working memory and executive function after CTx compared to the control subjects. In direct comparison of values before and after CTx, there were no significant differences in neuropsychological test scores, but decreased rsfMRI values were observed at the frontal lobes and right cerebellar region. Among rsfMRI values, lower ALFF in the left inferior frontal gyrus was significantly associated with poor performance of the executive function test. We observed decreased attention/working memory and executive function that corresponded to the decline of frontal region activation in gastric cancer patients who underwent CTx. (orig.)

  10. Consequences of age on ischemic wound healing in rats: altered antioxidant activity and delayed wound closure.

    Science.gov (United States)

    Moor, Andrea N; Tummel, Evan; Prather, Jamie L; Jung, Michelle; Lopez, Jonathan J; Connors, Sarah; Gould, Lisa J

    2014-04-01

    Advertisements targeted at the elderly population suggest that antioxidant therapy will reduce free radicals and promote wound healing, yet few scientific studies substantiate these claims. To better understand the potential utility of supplemental antioxidant therapy for wound healing, we tested the hypothesis that age and tissue ischemia alter the balance of endogenous antioxidant enzymes. Using a bipedicled skin flap model, ischemic and non-ischemic wounds were created on young and aged rats. Wound closure and the balance of the critical antioxidants superoxide dismutase and glutathione in the wound bed were determined. Ischemia delayed wound closure significantly more in aged rats. Lower superoxide dismutase 2 and glutathione in non-ischemic wounds of aged rats indicate a basal deficit due to age alone. Ischemic wounds from aged rats had lower superoxide dismutase 2 protein and activity initially, coupled with decreased ratios of reduced/oxidized glutathione and lower glutathione peroxidase activity. De novo glutathione synthesis, to restore redox balance in aged ischemic wounds, was initiated as evidenced by increased glutamate cysteine ligase. Results demonstrate deficiencies in two antioxidant pathways in aged rats that become exaggerated in ischemic tissue, culminating in profoundly impaired wound healing and prolonged inflammation.

  11. Chlorovirus-mediated membrane depolarization of Chlorella alters secondary active transport of solutes.

    Science.gov (United States)

    Agarkova, Irina; Dunigan, David; Gurnon, James; Greiner, Timo; Barres, Julia; Thiel, Gerhard; Van Etten, James L

    2008-12-01

    Paramecium bursaria chlorella virus 1 (PBCV-1) is the prototype of a family of large, double-stranded DNA, plaque-forming viruses that infect certain eukaryotic chlorella-like green algae from the genus Chlorovirus. PBCV-1 infection results in rapid host membrane depolarization and potassium ion release. One interesting feature of certain chloroviruses is that they code for functional potassium ion-selective channel proteins (Kcv) that are considered responsible for the host membrane depolarization and, as a consequence, the efflux of potassium ions. This report examines the relationship between cellular depolarization and solute uptake. Annotation of the virus host Chlorella strain NC64A genome revealed 482 putative transporter-encoding genes; 224 are secondary active transporters. Solute uptake experiments using seven radioactive compounds revealed that virus infection alters the transport of all the solutes. However, the degree of inhibition varied depending on the solute. Experiments with nystatin, a drug known to depolarize cell membranes, produced changes in solute uptake that are similar but not identical to those that occurred during virus infection. Therefore, these studies indicate that chlorovirus infection causes a rapid and sustained depolarization of the host plasma membrane and that this depolarization leads to the inhibition of secondary active transporters that changes solute uptake.

  12. Ethanol alters cellular activation and CD14 partitioning in lipid rafts

    International Nuclear Information System (INIS)

    Dai Qun; Zhang Jun; Pruett, Stephen B.

    2005-01-01

    Alcohol consumption interferes with innate immunity. In vivo EtOH administration suppresses cytokine responses induced through Toll-like receptor 4 (TLR4) and inhibits TLR4 signaling. Actually, EtOH exhibits a generalized suppressive effect on signaling and cytokine responses induced by through most TLRs. However, the underlying mechanism remains unknown. RAW264.7 cells were treated with LPS or co-treated with EtOH or with lipid raft-disrupting drugs. TNF-α production, IRAK-1 activation, and CD14 partition were evaluated. EtOH or nystatin, a lipid raft-disrupting drug, suppressed LPS-induced production of TNF-α. The suppressive effect of EtOH on LPS-induced TNF-α production was additive with that of methyl-β-cyclodextrin (MCD), another lipid raft-disrupting drug. EtOH interfered with IRAK-1 activation, an early TLR4 intracellular signaling event. Cell fractionation analyses show that acute EtOH altered LPS-related partition of CD14, a critical component of the LPS receptor complex. These results suggest a novel mechanism of EtOH action that involves interference with lipid raft clustering induced by LPS. This membrane action of EtOH might be one of the mechanisms by which EtOH acts as a generalized suppressor for TLR signaling

  13. Enhanced carotid body chemosensory activity and the cardiovascular alterations induced by intermittent hypoxia

    Directory of Open Access Journals (Sweden)

    Rodrigo eIturriaga

    2014-12-01

    Full Text Available The carotid body (CB plays a main role in the maintenance of the oxygen homeostasis. The hypoxic stimulation of the CB increases the chemosensory discharge, which in turn elicits reflex sympathetic, cardiovascular and ventilatory adjustments. An exacerbate carotid chemosensory activity has been associated with human sympathetic-mediated diseases such as hypertension, insulin resistance, heart failure and obstructive sleep apnea (OSA. Indeed, the CB chemosensory discharge becomes tonically hypereactive in experimental models of OSA and heart failure. Chronic intermittent hypoxia (CIH, a main feature of OSA, enhances CB chemosensory baseline discharges in normoxia and in response to hypoxia, inducing sympathetic overactivity and hypertension. Oxidative stress, increased levels of ET-1, Angiotensin II and pro-inflammatory cytokines, along with a reduced production of NO in the CB, have been associated with the enhanced carotid chemosensory activity. In this review, we will discuss new evidence supporting a main role for the CB chemoreceptor in the autonomic and cardiorespiratory alterations induced by intermittent hypoxia, as well as the molecular mechanisms involved in the CB chemosensory potentiation.

  14. Enhanced carotid body chemosensory activity and the cardiovascular alterations induced by intermittent hypoxia

    Science.gov (United States)

    Iturriaga, Rodrigo; Andrade, David C.; Del Rio, Rodrigo

    2014-01-01

    The carotid body (CB) plays a main role in the maintenance of the oxygen homeostasis. The hypoxic stimulation of the CB increases the chemosensory discharge, which in turn elicits reflex sympathetic, cardiovascular, and ventilatory adjustments. An exacerbate carotid chemosensory activity has been associated with human sympathetic-mediated diseases such as hypertension, insulin resistance, heart failure, and obstructive sleep apnea (OSA). Indeed, the CB chemosensory discharge becomes tonically hypereactive in experimental models of OSA and heart failure. Chronic intermittent hypoxia (CIH), a main feature of OSA, enhances CB chemosensory baseline discharges in normoxia and in response to hypoxia, inducing sympathetic overactivity and hypertension. Oxidative stress, increased levels of ET-1, Angiotensin II and pro-inflammatory cytokines, along with a reduced production of NO in the CB, have been associated with the enhanced carotid chemosensory activity. In this review, we will discuss new evidence supporting a main role for the CB chemoreceptor in the autonomic and cardiorespiratory alterations induced by intermittent hypoxia, as well as the molecular mechanisms involved in the CB chemosensory potentiation. PMID:25520668

  15. The impact of initiation: Early onset marijuana smokers demonstrate altered Stroop performance and brain activation

    Directory of Open Access Journals (Sweden)

    K.A. Sagar

    2015-12-01

    Full Text Available Marijuana (MJ use is on the rise, particularly among teens and emerging adults. This poses serious public health concern, given the potential deleterious effects of MJ on the developing brain. We examined 50 chronic MJ smokers divided into early onset (regular MJ use prior to age 16; n = 24 and late onset (age 16 or later; n = 26, and 34 healthy control participants (HCs. All completed a modified Stroop Color Word Test during fMRI. Results demonstrated that MJ smokers exhibited significantly poorer performance on the Interference subtest of the Stroop, as well as altered patterns of activation in the cingulate cortex relative to HCs. Further, early onset MJ smokers exhibited significantly poorer performance relative to both HCs and late onset smokers. Additionally, earlier age of MJ onset as well as increased frequency and magnitude (grams/week of MJ use were predictive of poorer Stroop performance. fMRI results revealed that while late onset smokers demonstrated a more similar pattern of activation to the control group, a different pattern was evident in the early onset group. These findings underscore the importance of assessing age of onset and patterns of MJ use and support the need for widespread education and intervention efforts among youth.

  16. Altered regional and circuit resting-state activity associated with unilateral hearing loss.

    Directory of Open Access Journals (Sweden)

    Xingchao Wang

    Full Text Available The deprivation of sensory input after hearing damage results in functional reorganization of the brain including cross-modal plasticity in the sensory cortex and changes in cognitive processing. However, it remains unclear whether partial deprivation from unilateral auditory loss (UHL would similarly affect the neural circuitry of cognitive processes in addition to the functional organization of sensory cortex. Here, we used resting-state functional magnetic resonance imaging to investigate intrinsic activity in 34 participants with UHL from acoustic neuroma in comparison with 22 matched normal controls. In sensory regions, we found decreased regional homogeneity (ReHo in the bilateral calcarine cortices in UHL. However, there was an increase of ReHo in the right anterior insular cortex (rAI, the key node of cognitive control network (CCN and multimodal sensory integration, as well as in the left parahippocampal cortex (lPHC, a key node in the default mode network (DMN. Moreover, seed-based resting-state functional connectivity analysis showed an enhanced relationship between rAI and several key regions of the DMN. Meanwhile, lPHC showed more negative relationship with components in the CCN and greater positive relationship in the DMN. Such reorganizations of functional connectivity within the DMN and between the DMN and CCN were confirmed by a graph theory analysis. These results suggest that unilateral sensory input damage not only alters the activity of the sensory areas but also reshapes the regional and circuit functional organization of the cognitive control network.

  17. 3'-Azido-3'-deoxythymidine (AZT) induces apoptosis and alters metabolic enzyme activity in human placenta

    International Nuclear Information System (INIS)

    Collier, Abby C.; Helliwell, Rachel J.A.; Keelan, Jeffrey A.; Paxton, James W.; Mitchell, Murray D.; Tingle, Malcolm D.

    2003-01-01

    The anti-HIV drug 3'-azido-3'-deoxythymidine (AZT) is the drug of choice for preventing maternal-fetal HIV transmission during pregnancy. Our aim was to assess the cytotoxic effects of AZT on human placenta in vitro. The mechanisms of AZT-induced effects were investigated using JEG-3 choriocarcinoma cells and primary explant cultures from term and first-trimester human placentas. Cytotoxicity measures included trypan blue exclusion, MTT, and reactive oxygen species (ROS) assays. Apoptosis was measured with an antibody specific to cleaved caspase-3 and by rescue of cells by the general caspase inhibitor Boc-D-FMK. The effect of AZT on the activities of glutathione-S-transferase, β-glucuronidase, UDP-glucuronosyl transferase, cytochrome P450 (CYP) 1A, and CYP reductase (CYPR) in the placenta was assessed using biochemical assays and immunoblotting. AZT increased ROS levels, decreased cellular proliferation rates, was toxic to mitochondria, and initiated cell death by a caspase-dependent mechanism in the human placenta in vitro. In the absence of serum, the effects of AZT were amplified in all the models used. AZT also increased the amounts of activity of GST, β-glucuronidase, and CYP1A, whereas UGT and CYPR were decreased. We conclude that AZT causes apoptosis in the placenta and alters metabolizing enzymes in human placental cells. These findings have implications for the safe administration of AZT in pregnancy with respect to the maintenance of integrity of the maternal-fetal barrier

  18. Alterations in myoelectric activity of the small bowel in rabbits after transarterial embolization

    International Nuclear Information System (INIS)

    Ai Songtao; Wang Xiaolin; Gong Gaoquan; Chen Yi; Lin Genlai; Zhang Feng; Li Guoping; Liu Lingxiao

    2005-01-01

    Objective: To explore alterations in myoelectric activity of the small bowel in rabbits after transarterial embolization and provide academic basis for assessing bowel viability and management. Methods: Twenty normal rabbits were selected and divided into three groups (2 mg group, n=10; 6 mg group, n=5; control group, n=5). Members of 2 mg group were embolized with PVA 2 mg, those of 6 mg group with PVA 6 mg, and the control group with normal saline 2 ml. After microcatherization embolization, myoelectric activity of the small bowel was recorded for 24 hr using chronically implanted electrodes in conscious rabbits. Results: In 2 mg group, the frequency and the amplitude of slow wave of proximal jejunum were significantly lower in post-embolization period than pre-embolization period [(17.83±0.55) cpm vs (11.59±0.23) cpm(P 0.05) and (0.1632±0.002) mV vs (0.1606±0.003) mV (P>0.05), respectively]. Conclusions: Embolization with PVA evokes significant and passive effect on basal electrical rhythm of small bowel. It could provide academic basis for assessing bowel viability to interventional embolization. (authors)

  19. Altered intrinsic brain activity after chemotherapy in patients with gastric cancer: A preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Gi [Ajou University Medical Center, Department of Radiology, Ajou University School of Medicine, Suwon (Korea, Republic of); Shin, Na-Young [Ewha Womans University School of Medicine, Department of Radiology, Seoul (Korea, Republic of); Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Seoul (Korea, Republic of); Bak, Yunjin; Lim, Soo Mee [Ewha Womans University School of Medicine, Department of Radiology, Seoul (Korea, Republic of); Kim, Kyung Ran; Jung, Young-Chul [Yonsei University College of Medicine, Department of Psychiatry, Seoul (Korea, Republic of); Han, Kyunghwa; Lee, Seung-Koo [Yonsei University College of Medicine, Department of Radiology, Research Institute of Radiological Science, Seoul (Korea, Republic of)

    2017-07-15

    To characterize the pattern of altered intrinsic brain activity in gastric cancer patients after chemotherapy (CTx). Patients before and after CTx (n = 14) and control subjects (n = 11) underwent resting-state functional MRI (rsfMRI) at baseline and 3 months after CTx. Regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF), and fractional ALFF (fALFF) were calculated and compared between the groups using the two-sample t test. Correlation analysis was also performed between rsfMRI values (i.e., ReHo, ALFF, and fALFF) and neuropsychological test results. Patients showed poor performance in verbal memory and executive function and decreased rsfMRI values in the frontal areas even before CTx and showed decreased attention/working memory and executive function after CTx compared to the control subjects. In direct comparison of values before and after CTx, there were no significant differences in neuropsychological test scores, but decreased rsfMRI values were observed at the frontal lobes and right cerebellar region. Among rsfMRI values, lower ALFF in the left inferior frontal gyrus was significantly associated with poor performance of the executive function test. We observed decreased attention/working memory and executive function that corresponded to the decline of frontal region activation in gastric cancer patients who underwent CTx. (orig.)

  20. Atp1a3-deficient heterozygous mice show lower rank in the hierarchy and altered social behavior.

    Science.gov (United States)

    Sugimoto, H; Ikeda, K; Kawakami, K

    2017-10-23

    Atp1a3 is the Na-pump alpha3 subunit gene expressed mainly in neurons of the brain. Atp1a3-deficient heterozygous mice (Atp1a3 +/- ) show altered neurotransmission and deficits of motor function after stress loading. To understand the function of Atp1a3 in a social hierarchy, we evaluated social behaviors (social interaction, aggression, social approach and social dominance) of Atp1a3 +/- and compared the rank and hierarchy structure between Atp1a3 +/- and wild-type mice within a housing cage using the round-robin tube test and barbering observations. Formation of a hierarchy decreases social conflict and promote social stability within the group. The hierarchical rank is a reflection of social dominance within a cage, which is heritable and can be regulated by specific genes in mice. Here we report: (1) The degree of social interaction but not aggression was lower in Atp1a3 +/- than wild-type mice, and Atp1a3 +/- approached Atp1a3 +/- mice more frequently than wild type. (2) The frequency of barbering was lower in the Atp1a3 +/- group than in the wild-type group, while no difference was observed in the mixed-genotype housing condition. (3) Hierarchy formation was not different between Atp1a3 +/- and wild type. (4) Atp1a3 +/- showed a lower rank in the mixed-genotype housing condition than that in the wild type, indicating that Atp1a3 regulates social dominance. In sum, Atp1a3 +/- showed unique social behavior characteristics of lower social interaction and preference to approach the same genotype mice and a lower ranking in the hierarchy. © 2017 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  1. Altered ratio of D1 and D2 dopamine receptors in mouse striatum is associated with behavioral sensitization to cocaine.

    Directory of Open Access Journals (Sweden)

    Dawn Thompson

    Full Text Available BACKGROUND: Drugs of abuse elevate brain dopamine levels, and, in vivo, chronic drug use is accompanied by a selective decrease in dopamine D2 receptor (D2R availability in the brain. Such a decrease consequently alters the ratio of D1R:D2R signaling towards the D1R. Despite a plethora of behavioral studies dedicated to the understanding of the role of dopamine in addiction, a molecular mechanism responsible for the downregulation of the D2R, in vivo, in response to chronic drug use has yet to be identified. METHODS AND FINDINGS: ETHICS STATEMENT: All animal work was approved by the Gallo Center IACUC committee and was performed in our AAALAC approved facility. In this study, we used wild type (WT and G protein coupled receptor associated sorting protein-1 (GASP-1 knock out (KO mice to assess molecular changes that accompany cocaine sensitization. Here, we show that downregulation of D2Rs or upregulation of D1Rs is associated with a sensitized locomotor response to an acute injection of cocaine. Furthermore, we demonstrate that disruption of GASP-1, that targets D2Rs for degradation after endocytosis, prevents cocaine-induced downregulation of D2Rs. As a consequence, mice with a GASP-1 disruption show a reduction in the sensitized locomotor response to cocaine. CONCLUSIONS: Together, our data suggests that changes in the ratio of the D1:D2R could contribute to cocaine-induced behavioral plasticity and demonstrates a role of GASP-1 in regulating both the levels of the D2R and cocaine sensitization.

  2. Adolescent opiate exposure in the female rat induces subtle alterations in maternal care and transgenerational effects on play behavior.

    Directory of Open Access Journals (Sweden)

    Nicole L. Johnson

    2011-06-01

    Full Text Available The non-medical use of prescription opiates, such as Vicodin® and MSContin®, has increased dramatically over the past decade. Of particular concern is the rising popularity of these drugs in adolescent female populations. Use during this critical developmental period could have significant long-term consequences for both the female user as well as potential effects on her future offspring. To address this issue, we have begun modeling adolescent opiate exposure in female rats and have observed significant transgenerational effects despite the fact that all drugs are withdrawn several weeks prior to pregnancy. The purpose of the current set of studies was to determine whether adolescent morphine exposure modifies postpartum care. In addition, we also examined juvenile play behavior in both male and female offspring. The choice of the social play paradigm was based on previous findings demonstrating effects of both postpartum care and opioid activity on play behavior. The findings revealed subtle modifications in the maternal behavior of adolescent morphine-exposed females, primarily related to the amount of time females’ spend nursing and in non-nursing contact with their young. In addition, male offspring of adolescent morphine-exposed mothers (MOR-F1 demonstrate decreased rough and tumble play behaviors, with no significant differences in general social behaviors (i.e. social grooming and social exploration. Moreover, there was a tendency toward increased rough and tumble play in MOR-F1 females, demonstrating the sex-specific nature of these effects. Given the importance of the postpartum environment on neurodevelopment, it is possible that modifications in maternal-offspring interactions, related to a history of adolescent opiate exposure, plays a role in the observed transgenerational effects. Overall, these studies indicate that the long-term consequences of adolescent opiate exposure can impact both the female and her future offspring.

  3. Altered cerebellar development in nuclear receptor TAK1/ TR4 null mice is associated with deficits in GLAST(+) glia, alterations in social behavior, motor learning, startle reactivity, and microglia.

    Science.gov (United States)

    Kim, Yong-Sik; Harry, G Jean; Kang, Hong Soon; Goulding, David; Wine, Rob N; Kissling, Grace E; Liao, Grace; Jetten, Anton M

    2010-09-01

    Previously, deficiency in the expression of the nuclear orphan receptor TAK1 was found to be associated with delayed cerebellar granule cell migration and Purkinje cell maturation with a permanent deficit in foliation of lobules VI–VII, suggesting a role for TAK1 in cerebellum development. In this study, we confirm that TAK1-deficient (TAK1(−/−)) mice have a smaller cerebellum and exhibit a disruption of lobules VI–VII. We extended these studies and show that at postnatal day 7, TAK1(−/−) mice exhibit a delay in monolayer maturation of dysmorphic calbindin 28K-positive Purkinje cells. The astrocyte-specific glutamate transporter (GLAST) was expressed within Bergmann fibers and internal granule cell layer at significantly lower levels in the cerebellum of TAK1(−/−) mice. At PND21, Golgi-positive Purkinje cells in TAK1(−/−) mice displayed a smaller soma (18%) and shorter distance to first branch point (35%). Neuronal death was not observed in TAK1(−/−) mice at PND21; however, activated microglia were present in the cerebellum, suggestive of earlier cell death. These structural deficits in the cerebellum were not sufficient to alter motor strength, coordination, or activity levels; however, deficits in acoustic startle response, prepulse startle inhibition, and social interactions were observed. Reactions to a novel environment were inhibited in a light/dark chamber, open-field, and home-cage running wheel. TAK1(−/−) mice displayed a plateau in performance on the running wheel, suggesting a deficit in learning to coordinate performance on a motor task. These data indicate that TAK1 is an important transcriptional modulator of cerebellar development and neurodevelopmentally regulated behavior.

  4. Anomalous behavior of the diffusion coefficient in thin active films

    International Nuclear Information System (INIS)

    Basu, Abhik; Joanny, Jean-Francois; Prost, Jacques; Jülicher, Frank

    2012-01-01

    Inspired by recent experiments in cell biology, we elucidate the visco-elastic properties of an active gel by studying the dynamics of a small tracer particle inside it. In a stochastic hydrodynamic approach for an active gel of finite thickness L, we calculate the mean square displacement of a particle. These particle displacements are governed by fluctuations in the velocity field. We characterize the short-time behavior when the gel is a solid as well as the limit of long times when the gel becomes a fluid and the particle shows simple diffusion. Active stresses together with local polar order give rise to velocity fluctuations that lead to characteristic behaviors of the diffusion coefficient that differ fundamentally from those found in a passive system: the diffusion coefficient can depend on system size and diverges as L approaches an instability threshold. Furthermore, the diffusion coefficient becomes independent of the particle size in this case. (paper)

  5. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    International Nuclear Information System (INIS)

    Teodorov, E.; Ferrari, M.F.R.; Fior-Chadi, D.R.; Camarini, R.; Felício, L.F.

    2012-01-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  6. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Teodorov, E. [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, São Paulo, SP (Brazil); Ferrari, M.F.R. [Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Fior-Chadi, D.R. [Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP (Brazil); Camarini, R. [Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Felício, L.F. [Departamento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP (Brazil)

    2012-06-01

    The periaqueductal gray (PAG) has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc) or 0.9% saline (up to 1 mL/kg) and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05) because a lower percentage of U69593 group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR). A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05) and lactating female rats (P < 0.01), with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in female

  7. Behavioral meaningful opioidergic stimulation activates kappa receptor gene expression

    Directory of Open Access Journals (Sweden)

    E. Teodorov

    2012-10-01

    Full Text Available The periaqueductal gray (PAG has been reported to be a location for opioid regulation of pain and a potential site for behavioral selection in females. Opioid-mediated behavioral and physiological responses differ according to the activity of opioid receptor subtypes. The present study investigated the effects of the peripheral injection of the kappa-opioid receptor agonist U69593 into the dorsal subcutaneous region of animals on maternal behavior and on Oprk1 gene activity in the PAG of female rats. Female Wistar rats weighing 200-250 g at the beginning of the study were randomly divided into 2 groups for maternal behavior and gene expression experiments. On day 5, pups were removed at 7:00 am and placed in another home cage that was distant from their mother. Thirty minutes after removing the pups, the dams were treated with U69593 (0.15 mg/kg, sc or 0.9% saline (up to 1 mL/kg and after 30 min were evaluated in the maternal behavior test. Latencies in seconds for pup retrieval, grouping, crouching, and full maternal behavior were scored. The results showed that U69593 administration inhibited maternal behavior (P < 0.05 because a lower percentage of kappa group dams showed retrieval of first pup, retrieving all pups, grouping, crouching and displaying full maternal behavior compared to the saline group. Opioid gene expression was evaluated using real-time reverse-transcription polymerase chain reaction (RT-PCR. A single injection of U69593 increased Oprk1 PAG expression in both virgin (P < 0.05 and lactating female rats (P < 0.01, with no significant effect on Oprm1 or Oprd1 gene activity. Thus, the expression of kappa-opioid receptors in the PAG may be modulated by single opioid receptor stimulation and behavioral meaningful opioidergic transmission in the adult female might occur simultaneously to specific changes in gene expression of kappa-opioid receptor subtype. This is yet another alert for the complex role of the opioid system in

  8. The rare DAT coding variant Val559 perturbs DA neuron function, changes behavior, and alters in vivo responses to psychostimulants.

    Science.gov (United States)

    Mergy, Marc A; Gowrishankar, Raajaram; Gresch, Paul J; Gantz, Stephanie C; Williams, John; Davis, Gwynne L; Wheeler, C Austin; Stanwood, Gregg D; Hahn, Maureen K; Blakely, Randy D

    2014-11-04

    Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness.

  9. Altered spontaneous brain activity in adolescent boys with pure conduct disorder revealed by regional homogeneity analysis.

    Science.gov (United States)

    Wu, Qiong; Zhang, Xiaocui; Dong, Daifeng; Wang, Xiang; Yao, Shuqiao

    2017-07-01

    Functional magnetic resonance imaging (fMRI) studies have revealed abnormal neural activity in several brain regions of adolescents with conduct disorder (CD) performing various tasks. However, little is known about the spontaneous neural activity in people with CD in a resting state. The aims of this study were to investigate CD-associated regional activity abnormalities and to explore the relationship between behavioral impulsivity and regional activity abnormalities. Resting-state fMRI (rs-fMRI) scans were administered to 28 adolescents with CD and 28 age-, gender-, and IQ-matched healthy controls (HCs). The rs-fMRI data were subjected to regional homogeneity (ReHo) analysis. ReHo can demonstrate the temporal synchrony of regional blood oxygen level-dependent signals and reflect the coordination of local neuronal activity facilitating similar goals or representations. Compared to HCs, the CD group showed increased ReHo bilaterally in the insula as well as decreased ReHo in the right inferior parietal lobule, right middle temporal gyrus and right fusiform gyrus, left anterior cerebellum anterior, and right posterior cerebellum. In the CD group, mean ReHo values in the left and the right insula correlated positively with Barratt Impulsivity Scale (BIS) total scores. The results suggest that CD is associated with abnormal intrinsic brain activity, mainly in the cerebellum and temporal-parietal-limbic cortices, regions that are related to emotional and cognitive processing. BIS scores in adolescents with CD may reflect severity of abnormal neuronal synchronization in the insula.

  10. Spatiotemporal alterations of cortical network activity by selective loss of NOS-expressing interneurons .

    Directory of Open Access Journals (Sweden)

    Dan eShlosberg

    2012-02-01

    Full Text Available Deciphering the role of GABAergic neurons in large neuronal networks such as the neocortex forms a particularly complex task as they comprise a highly diverse population. The neuronal isoform of the enzyme nitric oxide synthase (nNOS is expressed in the neocortex by specific subsets of GABAergic neurons. These neurons can be identified in live brain slices by the nitric oxide (NO fluorescent indicator DAF-2DA. However, this indicator was found to be highly toxic to the stained neurons. We used this feature to induce acute phototoxic damage to NO-producing neurons in cortical slices, and measured subsequent alterations in parameters of cellular and network activity.Neocortical slices were briefly incubated in DAF-2DA and then illuminated through the 4X objective. Histochemistry for NADPH diaphorase, a marker for nNOS activity, revealed elimination of staining in the illuminated areas following treatment. Whole cell recordings from several neuronal types before, during and after illumination confirmed the selective damage to non fast-spiking interneurons. Treated slices displayed mild disinhibition. The reversal potential of compound synaptic events on pyramidal neurons became more positive, and their decay time constant was elongated, substantiating the removal of an inhibitory conductance. The horizontal decay of local field potentials (LFPs was significantly reduced at distances of 300-400 m from the stimulation, but not when inhibition was non-selectively weakened with the GABAA blocker picrotoxin. Finally, whereas the depression of LFPs along short trains of 40 Hz stimuli was linearly reduced with distance or initial amplitude in control slices, this ordered relationship was disrupted in DAF-treated slices. These results reveal that NO-producing interneurons in the neocortex convey lateral inhibition to neighboring columns, and shape the spatiotemporal dynamics of the network's activity.

  11. Spatiotemporal alterations of cortical network activity by selective loss of NOS-expressing interneurons.

    Science.gov (United States)

    Shlosberg, Dan; Buskila, Yossi; Abu-Ghanem, Yasmin; Amitai, Yael

    2012-01-01

    Deciphering the role of GABAergic neurons in large neuronal networks such as the neocortex forms a particularly complex task as they comprise a highly diverse population. The neuronal isoform of the enzyme nitric oxide synthase (nNOS) is expressed in the neocortex by specific subsets of GABAergic neurons. These neurons can be identified in live brain slices by the nitric oxide (NO) fluorescent indicator diaminofluorescein-2 diacetate (DAF-2DA). However, this indicator was found to be highly toxic to the stained neurons. We used this feature to induce acute phototoxic damage to NO-producing neurons in cortical slices, and measured subsequent alterations in parameters of cellular and network activity. Neocortical slices were briefly incubated in DAF-2DA and then illuminated through the 4× objective. Histochemistry for NADPH-diaphorase (NADPH-d), a marker for nNOS activity, revealed elimination of staining in the illuminated areas following treatment. Whole cell recordings from several neuronal types before, during, and after illumination confirmed the selective damage to non-fast-spiking (FS) interneurons. Treated slices displayed mild disinhibition. The reversal potential of compound synaptic events on pyramidal neurons became more positive, and their decay time constant was elongated, substantiating the removal of an inhibitory conductance. The horizontal decay of local field potentials (LFPs) was significantly reduced at distances of 300-400 μm from the stimulation, but not when inhibition was non-selectively weakened with the GABA(A) blocker picrotoxin. Finally, whereas the depression of LFPs along short trains of 40 Hz stimuli was linearly reduced with distance or initial amplitude in control slices, this ordered relationship was disrupted in DAF-treated slices. These results reveal that NO-producing interneurons in the neocortex convey lateral inhibition to neighboring columns, and shape the spatiotemporal dynamics of the network's activity.

  12. The time course of altered brain activity during 7-day simulated microgravity

    Directory of Open Access Journals (Sweden)

    Yang eLiao

    2015-05-01

    Full Text Available Microgravity causes multiple changes in physical and mental levels in humans, which can induce performance deficiency among astronauts. Studying the variations in brain activity that occur during microgravity would help astronauts to deal with these changes. In the current study, resting-state functional magnetic resonance imaging (rs-fMRI was used to observe the variations in brain activity during a 7-day head down tilt (HDT bed rest, which is a common and reliable model for simulated microgravity. The amplitudes of low frequency fluctuation (ALFF of twenty subjects were recorded pre-head down tilt (pre-HDT, during a bed rest period (HDT0, and then each day in the HDT period (HDT1–HDT7. One-way analysis of variance of the ALFF values over these 8 days was used to test the variation across time period (P<0.05, corrected. Compared to HDT0, subjects presented lower ALFF values in the posterior cingulate cortex and higher ALFF values in the anterior cingulate cortex during the HDT period, which may partially account for the lack of cognitive flexibility and alterations in autonomic nervous system seen among astronauts in microgravity. Additionally, the observed improvement in function in CPL during the HDT period may play a compensatory role to the functional decline in the paracentral lobule to sustain normal levels of fine motor control for astronauts in a microgravity environment. Above all, those floating brain activities during 7 days of simulated microgravity may indicate that the brain self-adapts to help astronauts adjust to the multiple negative stressors encountered in a microgravity environment.

  13. Alteration of synaptic activity-regulating genes underlying functional improvement by long-term exposure to an enriched environment in the adult brain.

    Science.gov (United States)

    Lee, Min-Young; Yu, Ji Hea; Kim, Ji Yeon; Seo, Jung Hwa; Park, Eun Sook; Kim, Chul Hoon; Kim, Hyongbum; Cho, Sung-Rae

    2013-01-01

    Housing animals in an enriched environment (EE) enhances behavioral function. However, the mechanism underlying this EE-mediated functional improvement and the resultant changes in gene expression have yet to be elucidated. We attempted to investigate the underlying mechanisms associated with long-term exposure to an EE by evaluating gene expression patterns. We housed 6-week-old CD-1 (ICR) mice in standard cages or an EE comprising a running wheel, novel objects, and social interaction for 2 months. Motor and cognitive performances were evaluated using the rotarod test and passive avoidance test, and gene expression profile was investigated in the cerebral hemispheres using microarray and gene set enrichment analysis (GSEA). In behavioral assessment, an EE significantly enhanced rotarod performance and short-term working memory. Microarray analysis revealed that genes associated with neuronal activity were significantly altered by an EE. GSEA showed that genes involved in synaptic transmission and postsynaptic signal transduction were globally upregulated, whereas those associated with reuptake by presynaptic neurotransmitter transporters were downregulated. In particular, both microarray and GSEA demonstrated that EE exposure increased opioid signaling, acetylcholine release cycle, and postsynaptic neurotransmitter receptors but decreased Na+ / Cl- -dependent neurotransmitter transporters, including dopamine transporter Slc6a3 in the brain. Western blotting confirmed that SLC6A3, DARPP32 (PPP1R1B), and P2RY12 were largely altered in a region-specific manner. An EE enhanced motor and cognitive function through the alteration of synaptic activity-regulating genes, improving the efficient use of neurotransmitters and synaptic plasticity by the upregulation of genes associated with postsynaptic receptor activity and downregulation of presynaptic reuptake by neurotransmitter transporters.

  14. A Background of a Volatile Plant Compound Alters Neural and Behavioral Responses to the Sex Pheromone Blend in a Moth.

    Science.gov (United States)

    Dupuy, Fabienne; Rouyar, Angéla; Deisig, Nina; Bourgeois, Thomas; Limousin, Denis; Wycke, Marie-Anne; Anton, Sylvia; Renou, Michel

    2017-01-01

    Recognition of intra-specific olfactory signals within a complex environment of plant-related volatiles is crucial for reproduction in male moths. Sex pheromone information is detected by specific olfactory receptor neurons (Phe-ORNs), highly abundant on the male antenna. The information is then transmitted to the pheromone processing macroglomerular complex (MGC) within the primary olfactory center, the antennal lobe, where it is processed by local interneurons and projection neurons. Ultimately a behavioral response, orientation toward the pheromone source, is elicited. Volatile plant compounds (VPCs) are detected by other functional types of olfactory receptor neurons (ORNs) projecting in another area of the antennal lobe. However, Phe-ORNs also respond to some VPCs. Female-produced sex pheromones are emitted within a rich environment of VPCs, some of which have been shown to interfere with the detection and processing of sex pheromone information. As interference between the different odor sources might depend on the spatial and temporal features of the two types of stimuli, we investigated here behavioral and neuronal responses to a brief sex pheromone blend pulse in a VPC background as compared to a control background in the male noctuid moth Agrotis ipsilon . We observed male orientation behavior in a wind tunnel and recorded responses of Phe-ORNs and MGC neurons to a brief sex pheromone pulse within a background of individual VPCs. We also recorded the global input signal to the MGC using in vivo calcium imaging with the same stimulation protocol. We found that VPCs eliciting a response in Phe-ORNs and MGC neurons masked responses to the pheromone and decreased the contrast between background odor and the sex pheromone at both levels, whereas α-pinene did not interfere with first order processing. The calcium signal produced in response to a VPC background was tonic, lasting longer than the VPC stimulus duration, and masked entirely the pheromone response

  15. Selenium exposure results in reduced reproduction in an invasive ant species and altered competitive behavior for a native ant species

    International Nuclear Information System (INIS)

    De La Riva, Deborah G.; Trumble, John T.

    2016-01-01

    Competitive ability and numerical dominance are important factors contributing to the ability of invasive ant species to establish and expand their ranges in new habitats. However, few studies have investigated the impact of environmental contamination on competitive behavior in ants as a potential factor influencing dynamics between invasive and native ant species. Here we investigated the widespread contaminant selenium to investigate its potential influence on invasion by the exotic Argentine ant, Linepithema humile, through effects on reproduction and competitive behavior. For the fecundity experiment, treatments were provided to Argentine ant colonies via to sugar water solutions containing one of three concentrations of selenium (0, 5 and 10 μg Se mL −1 ) that fall within the range found in soil and plants growing in contaminated areas. Competition experiments included both the Argentine ant and the native Dorymyrmex bicolor to determine the impact of selenium exposure (0 or 15 μg Se mL −1 ) on exploitation- and interference-competition between ant species. The results of the fecundity experiment revealed that selenium negatively impacted queen survival and brood production of Argentine ants. Viability of the developing brood was also affected in that offspring reached adulthood only in colonies that were not given selenium, whereas those in treated colonies died in their larval stages. Selenium exposure did not alter direct competitive behaviors for either species, but selenium exposure contributed to an increased bait discovery time for D. bicolor. Our results suggest that environmental toxins may not only pose problems for native ant species, but may also serve as a potential obstacle for establishment among exotic species. - Highlights: • Argentine ant colonies exposed to selenium had reduced fecundity compared to unexposed colonies. • Viability of offspring was negatively impacted by selenium. • Queen survival was reduced in colonies

  16. Development of diabetes does not alter behavioral and molecular circadian rhythms in a transgenic rat model of type 2 diabetes mellitus.

    Science.gov (United States)

    Qian, Jingyi; Thomas, Anthony P; Schroeder, Analyne M; Rakshit, Kuntol; Colwell, Christopher S; Matveyenko, Aleksey V

    2017-08-01

    Metabolic state and circadian clock function exhibit a complex bidirectional relationship. Circadian disruption increases propensity for metabolic dysfunction, whereas common metabolic disorders such as obesity and type 2 diabetes (T2DM) are associated with impaired circadian rhythms. Specifically, alterations in glucose availability and glucose metabolism have been shown to modulate clock gene expression and function in vitro; however, to date, it is unknown whether development of diabetes imparts deleterious effects on the suprachiasmatic nucleus (SCN) circadian clock and SCN-driven outputs in vivo. To address this question, we undertook studies in aged diabetic rats transgenic for human islet amyloid polypeptide, an established nonobese model of T2DM (HIP rat), which develops metabolic defects closely recapitulating those present in patients with T2DM. HIP rats were also cross-bred with a clock gene reporter rat model (Per1:luciferase transgenic rat) to permit assessment of the SCN and the peripheral molecular clock function ex vivo. Utilizing these animal models, we examined effects of diabetes on 1 ) behavioral circadian rhythms, 2 ) photic entrainment of circadian activity, 3 ) SCN and peripheral tissue molecular clock function, and 4 ) melatonin secretion. We report that circadian activity, light-induced entrainment, molecular clockwork, as well as melatonin secretion are preserved in the HIP rat model of T2DM. These results suggest that despite the well-characterized ability of glucose to modulate circadian clock gene expression acutely in vitro, SCN clock function and key behavioral and physiological outputs appear to be preserved under chronic diabetic conditions characteristic of nonobese T2DM. Copyright © 2017 the American Physiological Society.

  17. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects

    Science.gov (United States)

    Bilbao, Ainhoa; Rieker, Claus; Cannella, Nazzareno; Parlato, Rosanna; Golda, Slawomir; Piechota, Marcin; Korostynski, Michal; Engblom, David; Przewlocki, Ryszard; Schütz, Günther; Spanagel, Rainer; Parkitna, Jan R.

    2014-01-01

    It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB. PMID:24966820

  18. Alterations on the morphology, nitric oxide synthesis and activity of platelets reproduced in rats as possible biomarkers for depression are reversed by fluoxetine.

    Science.gov (United States)

    González-Trujano, María Eva; Alvarado-Vásquez, Noé; Mendoza-Sotelo, José; López, Guadalupe; Estrada-Camarena, Erika; Martínez-Mota, Lucia; Moreno, Julia

    2012-08-01

    Biochemical markers associated with the prognosis of depression in humans are being described in the literature, whereas experimental studies in animal models in search for antidepressant strategies are lacking. The aim of this study was to evaluate platelet morphology, platelet activity and nitric oxide (NO) synthesis as possible biomarkers of depressive-like behavior by using FST alone and in the presence of fluoxetine. Naïve rats were compared to those receiving vehicle or fluoxetine at 10mg/kg i.p. in acute, subchronic and chronic administration in the FST. After behavioral assessment, platelets were isolated from blood samples and analyzed by flow cytometry to determine the platelet mitochondrial membrane potential and NO synthesis. In addition, HPLC and electron microscopy were used to examine 5-HT and tryptophan levels and morphology of platelets, respectively. Rats receiving vehicle and exposed to FST showed depressive-like behavior at all the times tested; after chronic FST rats showed a similar pattern of alteration in platelet morphology and in the studied as possible biochemical markers as those previously recognized in depressive humans. Depressive-like behavior in rats exposed to FST was prevented in the presence of fluoxetine administration at all the times tested and associated with the prevention of alterations in platelet morphology, platelet activity and NO synthesis, and/or in 5-HT concentrations. The results of the present study suggest that platelet function and morphology might be relevant markers for the prognosis of depression and the search for functional treatments. Besides, the relevance of FST as model to study this psychiatric illness is reinforced. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Voluntary physical exercise alters attentional orienting and social behavior in a rat model of attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Hopkins, Michael E; Sharma, Mita; Evans, Gretchen C; Bucci, David J

    2009-06-01

    The effects of voluntary physical exercise on attentional function and social behavior were examined in male and female spontaneously hypertensive rats (SHR), a commonly used animal model of attention-deficit/hyperactivity disorder (ADHD). Rats in the exercise groups had free access to a running wheel for 2 weeks and then all rats received nonreinforced presentations of a visual stimulus (light) during the 1st training session, followed by daily sessions in which the light was paired with food. Nonexercising male and female SHR rats exhibited more unconditioned orienting behavior than Wistar-Kyoto rats. SHRs also exhibited impaired conditioning when the light was paired with food. Exercise reduced orienting in female SHRs but not in male SHRs. In the social interaction task, nonexercising male and female SHRs interacted more with an unfamiliar rat than Wistar-Kyoto rats. Exercise reduced the number of social interactions in female SHRs but not male SHRs. There were no differences in general locomotor activity observed between the nonexercising and exercising SHRs. These data indicate that exercise may preferentially benefit female SHRs, and has implications for using exercise as an intervention for ADHD and for understanding sex differences in the effects of exercise on behavior. Copyright (c) 2009 APA, all rights reserved.

  20. Vitamin A depletion alters sensitivity of motor behavior to MK-801 in C57BL/6J mice

    Directory of Open Access Journals (Sweden)

    Zhu Hui

    2010-01-01

    Full Text Available Abstract Background Vitamin A and its derivatives (retinoids are crucial for the development, maintenance and morphogenesis of the central nervous system (CNS. Although motor impairment has been reported in postnatal vitamin A depletion rodents, the effect of vitamin A depletion on homeostasis maintaining capability in response to external interference is not clear. Methods In the current study, we measured the effect of vitamin A depletion on motor ability and pain sensitivity under two different conditions: 1. prior to any injection and 2. after the injection of an N-methyl-D-aspartate (NMDA receptor antagonist (MK-801. Results Vitamin A depletion mice showed decreased body weight, enhanced locomotor activity, increased rearing and less tail flick latency. Vitamin A depletion also induced hypersensitivity of stereotypy, ataxia, rearing, and tail flick latency to MK-801, but hyposensitivity of locomotion to MK-801. Conclusions These findings suggest that vitamin A depletion affect broad basal behavior and disrupt homeostasis maintaining capability in response to glutamate perturbation. We provide a useful animal model for assessing the role of vitamin A depletion in regulating animal behavior, and for detecting how neurotransmitter pathways might be involved in vitamin A depletion related behavioral abnormalities.

  1. Alterations in visual cortical activation and connectivity with prefrontal cortex during working memory updating in major depressive disorder.

    Science.gov (United States)

    Le, Thang M; Borghi, John A; Kujawa, Autumn J; Klein, Daniel N; Leung, Hoi-Chung

    2017-01-01

    The present study examined the impacts of major depressive disorder (MDD) on visual and prefrontal cortical activity as well as their connectivity during visual working memory updating and related them to the core clinical features of the disorder. Impairment in working memory updating is typically associated with the retention of irrelevant negative information which can lead to persistent depressive mood and abnormal affect. However, performance deficits have been observed in MDD on tasks involving little or no demand on emotion processing, suggesting dysfunctions may also occur at the more basic level of information processing. Yet, it is unclear how various regions in the visual working memory circuit contribute to behavioral changes in MDD. We acquired functional magnetic resonance imaging data from 18 unmedicated participants with MDD and 21 age-matched healthy controls (CTL) while they performed a visual delayed recognition task with neutral faces and scenes as task stimuli. Selective working memory updating was manipulated by inserting a cue in the delay period to indicate which one or both of the two memorized stimuli (a face and a scene) would remain relevant for the recognition test. Our results revealed several key findings. Relative to the CTL group, the MDD group showed weaker postcue activations in visual association areas during selective maintenance of face and scene working memory. Across the MDD subjects, greater rumination and depressive symptoms were associated with more persistent activation and connectivity related to no-longer-relevant task information. Classification of postcue spatial activation patterns of the scene-related areas was also less consistent in the MDD subjects compared to the healthy controls. Such abnormalities appeared to result from a lack of updating effects in postcue functional connectivity between prefrontal and scene-related areas in the MDD group. In sum, disrupted working memory updating in MDD was revealed by

  2. Modified prokaryotic glucose isomerase enzymes with altered pH activity profiles

    NARCIS (Netherlands)

    Lambeir, Anne-Marie; Lasters, Ignace; Mrabet, Nadir; Quax, Wim; Van Der Laan, Jan M.; Misset, Onno

    1994-01-01

    A method for selecting amino acid residues is disclosed which upon replacement will give rise to an enzyme with an altered pH optimum. The method is specific for metalloenzymes which are inactivated at low pH due to the dissociation of the metal ions. The method is based on altering the pKa of the

  3. Lithium ameliorates sleep deprivation-induced mania-like behavior, hypothalamic-pituitary-adrenal (HPA) axis alterations, oxidative stress and elevations of cytokine concentrations in the brain and serum of mice.

    Science.gov (United States)

    Valvassori, Samira S; Resende, Wilson R; Dal-Pont, Gustavo; Sangaletti-Pereira, Heron; Gava, Fernanda F; Peterle, Bruna R; Carvalho, André F; Varela, Roger B; Dal-Pizzol, Felipe; Quevedo, João

    2017-06-01

    The goal of the present study was to investigate the effects of lithium administration on behavior, oxidative stress parameters and cytokine levels in the periphery and brain of mice subjected to an animal model of mania induced by paradoxical sleep deprivation (PSD). Male C57 mice were treated with saline or lithium for 7 days. The sleep deprivation protocol started on the 5th day during for the last 36 hours of the treatment period. Immediately after the sleep deprivation protocol, animals locomotor activity was evaluated and serum and brain samples was extracted to evaluation of corticosterone and adrenocorticotropic hormone circulating levels, oxidative stress parameters and citokynes levels. The results showed that PSD induced hyperactivity in mice, which is considered a mania-like behavior. PSD increased lipid peroxidation and oxidative damage to DNA, as well as causing alterations to antioxidant enzymes in the frontal cortex, hippocampus and serum of mice. In addition, PSD increased the levels of cytokines in the brains of mice. Treatment with lithium prevented the mania-like behavior, oxidative damage and cytokine alterations induced by PSD. Improving our understanding of oxidative damage in biomolecules, antioxidant mechanisms and the inflammatory system - alterations presented in the animal models of mania - is important in helping us to improve our knowledge concerning the pathophysiology of BD, and the mechanisms of action employed by mood stabilizers. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Maternal high fat diet alters skeletal muscle mitochondrial catalytic activity in adult male rat offspring.

    Directory of Open Access Journals (Sweden)

    Chantal Anne Pileggi

    2016-11-01

    Full Text Available A maternal high-fat (HF diet during pregnancy can lead to metabolic compromise such as insulin resistance in adult offspring. Skeletal muscle mitochondrial dysfunction is one mechanism contributing to metabolic impairments in insulin resistant states. Therefore, the present study aimed to investigate whether mitochondrial dysfunction is evident in metabolically compromised offspring born to HF-fed dams. Sprague-Dawley dams were randomly assigned to receive a purified control diet (CD; 10% kcal from fat or a high fat diet (HFD; 45% kcal from fat for 10 days prior to mating, throughout pregnancy and during lactation. From weaning, all male offspring received a standard chow diet and soleus muscle was collected at day 150. Expression of the mitochondrial transcription factors nuclear respiratory factor-1 (NRF1 and mitochondrial transcription factor A (mtTFA were downregulated in HF offspring. Furthermore, genes encoding the mitochondrial electron transport system (ETS respiratory complex subunits were supressed in HF offspring. Moreover, protein expression of the complex I subunit, NDUFB8, was downregulated in HF offspring (36%, which was paralleled by decreased maximal catalytic linked activity of complex I and III (40%. Together, these results indicate that exposure to a maternal HF diet during development may elicit lifelong mitochondrial alterations in offspring skeletal muscle.

  5. Stress-induced alterations of left-right electrodermal activity coupling indexed by pointwise transinformation.

    Science.gov (United States)

    Světlák, M; Bob, P; Roman, R; Ježek, S; Damborská, A; Chládek, J; Shaw, D J; Kukleta, M

    2013-01-01

    In this study, we tested the hypothesis that experimental stress induces a specific change of left-right electrodermal activity (EDA) coupling pattern, as indexed by pointwise transinformation (PTI). Further, we hypothesized that this change is associated with scores on psychometric measures of the chronic stress-related psychopathology. Ninety-nine university students underwent bilateral measurement of EDA during rest and stress-inducing Stroop test and completed a battery of self-report measures of chronic stress-related psychopathology. A significant decrease in the mean PTI value was the prevalent response to the stress conditions. No association between chronic stress and PTI was found. Raw scores of psychometric measures of stress-related psychopathology had no effect on either the resting levels of PTI or the amount of stress-induced PTI change. In summary, acute stress alters the level of coupling pattern of cortico-autonomic influences on the left and right sympathetic pathways to the palmar sweat glands. Different results obtained using the PTI, EDA laterality coefficient, and skin conductance level also show that the PTI algorithm represents a new analytical approach to EDA asymmetry description.

  6. The topography of the environment alters the optimal search strategy for active particles

    Science.gov (United States)

    Volpe, Giorgio; Volpe, Giovanni

    2017-10-01

    In environments with scarce resources, adopting the right search strategy can make the difference between succeeding and failing, even between life and death. At different scales, this applies to molecular encounters in the cell cytoplasm, to animals looking for food or mates in natural landscapes, to rescuers during search and rescue operations in disaster zones, and to genetic computer algorithms exploring parameter spaces. When looking for sparse targets in a homogeneous environment, a combination of ballistic and diffusive steps is considered optimal; in particular, more ballistic Lévy flights with exponent α≤1 are generally believed to optimize the search process. However, most search spaces present complex topographies. What is the best search strategy in these more realistic scenarios? Here, we show that the topography of the environment significantly alters the optimal search strategy toward less ballistic and more Brownian strategies. We consider an active particle performing a blind cruise search for nonregenerating sparse targets in a 2D space with steps drawn from a Lévy distribution with the exponent varying from α=1 to α=2 (Brownian). We show that, when boundaries, barriers, and obstacles are present, the optimal search strategy depends on the topography of the environment, with α assuming intermediate values in the whole range under consideration. We interpret these findings using simple scaling arguments and discuss their robustness to varying searcher's size. Our results are relevant for search problems at different length scales from animal and human foraging to microswimmers' taxis to biochemical rates of reaction.

  7. Postural vascular response in human skin: passive and active reactions to alteration of transmural pressure.

    Science.gov (United States)

    Jepsen, H; Gaehtgens, P

    1993-09-01

    Laser-Doppler (LD) fluxmetry was performed in the palmar finger skin of healthy subjects to study the mechanisms contributing to the postural vascular response. Local transmural pressure in the skin blood vessels of the region studied was altered for 1 min in two experimental series either by passive movement of the arm to different vertical hand positions relative to heart level or by application of external pressure (-120-180 mmHg) to the finger. Heart and respiratory rate, arterial blood pressure, and LD flux in the contralateral finger (kept at heart level) were measured. The measurements suggest a compound reaction of local (myogenic) and systemic (neurogenic) mechanisms: the local regulatory component appears as a graded active vascular response elicited by passive vessel distension or compression. A systemic component, associated with a single deep inspiration, is frequently observed during the actual movement of the arm. In addition, prolonged holding of the test hand in a given vertical position also elicits a delayed vascular response in the control hand at heart level, which may be generated by volume receptors in the intrathoracic low-pressure system.

  8. Convulsant activity and neurochemical alterations induced by a fraction obtained from fruit Averrhoa carambola (Oxalidaceae: Geraniales).

    Science.gov (United States)

    Carolino, Ruither O G; Beleboni, Renê O; Pizzo, Andrea B; Vecchio, Flavio Del; Garcia-Cairasco, Norberto; Moyses-Neto, Miguel; Santos, Wagner F Dos; Coutinho-Netto, Joaquim

    2005-06-01

    We obtained a neurotoxic fraction (AcTx) from star fruit (Averrhoa carambola) and studied its effects on GABAergic and glutamatergic transmission systems. AcTx had no effect on GABA/glutamate uptake or release, or on glutamate binding. However, it specifically inhibited GABA binding in a concentration-dependent manner (IC(50)=0.89muM). Video-electroencephalogram recordings demonstrated that following cortical administration of AcTx, animals showed behavioral changes, including tonic-clonic seizures, evolving into status epilepticus, accompanied by cortical epileptiform activity. Chemical characterization of AcTx showed that this compound is a nonproteic molecule with a molecular weight less than 500, differing from oxalic acid. This neurotoxic fraction of star fruit may be considered a new tool for neurochemical and neuroethological research.

  9. Influence of altered precipitation pattern on greenhouse gas emissions and soil enzyme activities in Pannonian soils

    Science.gov (United States)

    Forstner, Stefan Johannes; Michel, Kerstin; Berthold, Helene; Baumgarten, Andreas; Wanek, Wolfgang; Zechmeister-Boltenstern, Sophie; Kitzler, Barbara

    2013-04-01

    Precipitation patterns are likely to be altered due to climate change. Recent models predict a reduction of mean precipitation during summer accompanied by a change in short-term precipitation variability for central Europe. Correspondingly, the risk for summer drought is likely to increase. This may especially be valid for regions which already have the potential for rare, but strong precipitation events like eastern Austria. Given that these projections hold true, soils in this area will receive water irregularly in few, heavy rainfall events and be subjected to long-lasting dry periods in between. This pattern of drying/rewetting can alter soil greenhouse gas fluxes, creating a potential feedback mechanism for climate change. Microorganisms are the key players in most soil carbon (C) and nitrogen (N) transformation processes including greenhouse gas exchange. A conceptual model proposed by Schimel and colleagues (2007) links microbial stress-response physiology to ecosystem-scale biogeochemical processes: In order to cope with decreasing soil water potential, microbes modify resource allocation patterns from growth to survival. However, it remains unclear how microbial resource acquisition via extracellular enzymes and microbial-controlled greenhouse gas fluxes respond to water stress induced by soil drying/rewetting. We designed a laboratory experiment to test for effects of multiple drying/rewetting cycles on soil greenhouse gas fluxes (CO2, CH4, N2O, NO), microbial biomass and extracellular enzyme activity. Three soils representing the main soil types of eastern Austria were collected in June 2012 at the Lysimeter Research Station of the Austrian Agency for Health and Food Safety (AGES) in Vienna. Soils were sieved to 2mm, filled in steel cylinders and equilibrated for one week at 50% water holding capacity (WHC) for each soil. Then soils were separated into two groups: One group received water several times per week (C=control), the other group received

  10. Physical activity and senior games participation: benefits, constraints, and behaviors.

    Science.gov (United States)

    Cardenas, David; Henderson, Karla A; Wilson, Beth E

    2009-04-01

    The purpose of the article was to examine the physical activity perceptions and behaviors of older adults who were active participants in a statewide senior games (i.e., North Carolina Senior Games; NCSG) program with its focus on year-round involvement through activities in local communities. A random sample of 440 older adults (55 years and older) completed a questionnaire in 2006 about their participation in community-based senior games. A uniqueness of this study is its focus on active older adults, which provides insight into how to maintain physical involvement. Older adults who were most active perceived the most benefits from senior games but did not necessarily have the fewest constraints. This study of NCSG as an organization designed to promote healthy living in communities offered an example of how a social-ecological framework aimed at health promotion can be applied.

  11. GABAB-receptor activation alters the firing pattern of dopamine neurons in the rat substantia nigra.

    Science.gov (United States)

    Engberg, G; Kling-Petersen, T; Nissbrandt, H

    1993-11-01

    Previous electrophysiological experiments have emphasized the importance of the firing pattern for the functioning of midbrain dopamine (DA) neurons. In this regard, excitatory amino acid receptors appear to constitute an important modulatory control mechanism. In the present study, extracellular recording techniques were used to investigate the significance of GABAB-receptor activation for the firing properties of DA neurons in the substantia nigra (SN) in the rat. Intravenous administration of the GABAB-receptor agonist baclofen (1-16 mg/kg) was associated with a dose-dependent regularization of the firing pattern, concomitant with a reduction in burst firing. At higher doses (16-32 mg/kg), the firing rate of the DA neurons was dose-dependently decreased. Also, microiontophoretic application of baclofen regularized the firing pattern of nigral DA neurons, including a reduction of burst firing. Both the regularization of the firing pattern and inhibition of firing rate produced by systemic baclofen administration was antagonized by the GABAB-receptor antagonist CGP 35348 (200 mg/kg, i.v.). The GABAA-receptor agonist muscimol produced effects on the firing properties of DA neurons that were opposite to those observed following baclofen, i.e., an increase in firing rate accompanied by a decreased regularity. The NMDA receptor antagonist MK 801 (0.4-3.2 mg/kg, i.v.) produced a moderate, dose-dependent increase in the firing rate of the nigral DA neurons as well as a slightly regularized firing pattern. Pretreatment with MK 801 (3.2 mg/kg, i.v., 3-10 min) did neither promote nor prevent the regularization of the firing pattern or inhibition of firing rate on the nigral DA neurons produced by baclofen. The present results clearly show that GABAB-receptors can alter the firing pattern of nigral DA neurons, hereby counterbalancing the previously described ability of glutamate to induce burst firing activity on these neurons.

  12. The effect of NGATHA altered activity in auxin signaling pathways within the Arabidopsis gynoecium

    Directory of Open Access Journals (Sweden)

    Irene eMartinez-Fernandez

    2014-05-01

    Full Text Available The four NGATHA genes (NGA form a small subfamily within the large family of B3-domain transcription factors of Arabidopsis thaliana. NGA genes act redundantly to direct the development of the apical tissues of the gynoecium, the style and the stigma. Previous studies indicate that NGA genes could exert this function at least partially by directing the synthesis of auxin at the distal end of the developing gynoecium through the upregulation of two different YUCCA genes, which encode flavin monooxygenases involved in auxin biosynthesis. We have compared three developing pistil transcriptome data sets from wildtype, nga quadruple mutants and a 35S::NGA3 line. The differentially expressed genes showed a significant enrichment for auxin-related genes, supporting the idea of NGA genes as major regulators of auxin accumulation and distribution within the developing gynoecium.We have introduced reporter lines for several of these differentially expressed genes involved in synthesis, transport and response to auxin in NGA gain- and loss-of-function backgrounds. We present here a detailed map of the response of these reporters to NGA misregulation that could help to clarify the role of NGA in auxin-mediated gynoecium morphogenesis. Our data point to a very reduced auxin synthesis in the developing apical gynoecium of nga mutants, likely responsible for the lack of DR5rev::GFP reporter activity observed in these mutants. In addition, NGA altered activity affects the expression of protein kinases that regulate the cellular localization of auxin efflux regulators, and thus likely impact auxin tran