WorldWideScience

Sample records for alters bacterial colonization

  1. Influence of bacterial interactions on pneumococcal colonization of the nasopharynx.

    Science.gov (United States)

    Shak, Joshua R; Vidal, Jorge E; Klugman, Keith P

    2013-03-01

    Streptococcus pneumoniae (the pneumococcus) is a common commensal inhabitant of the nasopharynx and a frequent etiologic agent in serious diseases such as pneumonia, otitis media, bacteremia, and meningitis. Multiple pneumococcal strains can colonize the nasopharynx, which is also home to many other bacterial species. Intraspecies and interspecies interactions influence pneumococcal carriage in important ways. Co-colonization by two or more pneumococcal strains has implications for vaccine serotype replacement, carriage detection, and pneumonia diagnostics. Interactions between the pneumococcus and other bacterial species alter carriage prevalence, modulate virulence, and affect biofilm formation. By examining these interactions, this review highlights how the bacterial ecosystem of the nasopharynx changes the nature and course of pneumococcal carriage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Dynamic alteration of the colonic microbiota in intestinal ischemia-reperfusion injury.

    Directory of Open Access Journals (Sweden)

    Fan Wang

    Full Text Available Intestinal ischemia-reperfusion (I/R plays an important role in critical illnesses. Gut flora participate in the pathogenesis of the injury. This study is aimed at unraveling colonic microbiota alteration pattern and identifying specific bacterial species that differ significantly as well as observing colonic epithelium change in the same injury model during the reperfusion time course.Denaturing gradient gel electrophoresis (DGGE was used to monitor the colonic microbiota of control rats and experimental rats that underwent 0.5 hour ischemia and 1, 3, 6, 12, 24, and 72 hours following reperfusion respectively. The microbiota similarity, bacterial diversity and species that characterized the dysbiosis were estimated based on the DGGE profiles using a combination of statistical approaches. The interested bacterial species in the gel were cut and sequenced and were subsequently quantified and confirmed with real-time PCR. Meanwhile, the epithelial barrier was checked by microscopy and D-lactate analysis. Colonic flora changed early and differed significantly at 6 hours after reperfusion and then started to recover. The shifts were characterized by the increase of Escherichia coli and Prevotella oralis, and Lactobacilli proliferation together with epithelia healing.This study shows for the first time that intestinal ischemia-reperfusion results in colonic flora dysbiosis that follows epithelia damage, and identifies the bacterial species that contribute most.

  3. Bacterial colonization of colonic crypt mucous gel and disease activity in ulcerative colitis.

    LENUS (Irish Health Repository)

    Rowan, Fiachra

    2012-02-01

    OBJECTIVE: To optimize total bacterial 16S rRNA quantification in microdissected colonic crypts in healthy controls and patients with ulcerative colitis (UC) and to characterize the findings with disease activity. BACKGROUND: Microscopic and molecular techniques have recently converged to allow bacterial enumeration in remote anatomic locations [eg, crypt-associated mucous gel (CAMG)]. The aims of this study were to combine laser capture microdissection (LCM) and 16S rRNA-based quantitative polymerase chain reaction (qPCR) to determine total bacterial copy number in CAMG both in health and in UC and to characterize the findings with disease activity. METHODS: LCM was used to microdissect CAMG from colonic mucosal biopsies from controls (n = 20) and patients with acute (n = 10) or subacute (n = 10) UC. Pan-bacterial 16S rRNA copy number per millimeter square in samples from 6 locations across the large bowel was obtained by qPCR using Desulfovibrio desulfuricans as a reference strain. Copy numbers were correlated with the UC disease activity index (UCDAI) and the simple clinical colitis activity index (SCCAI). RESULTS: Bacterial colonization of CAMG was detectable in all groups. Copy numbers were significantly reduced in acute UC. In subacute colitis, there was a positive correlation between copy number and UCDAI and SCCAI in the ascending, transverse and sigmoid colon. CONCLUSIONS: This study describes a sensitive method of quantitatively assessing bacterial colonization of the colonic CAMG. A positive correlation was found between CAMG bacterial load and subacute disease activity in UC, whereas detectable bacterial load was reduced in acute UC.

  4. Airway fungal colonization compromises the immune system allowing bacterial pneumonia to prevail.

    Science.gov (United States)

    Roux, Damien; Gaudry, Stéphane; Khoy-Ear, Linda; Aloulou, Meryem; Phillips-Houlbracq, Mathilde; Bex, Julie; Skurnik, David; Denamur, Erick; Monteiro, Renato C; Dreyfuss, Didier; Ricard, Jean-Damien

    2013-09-01

    To study the correlation between fungal colonization and bacterial pneumonia and to test the effect of antifungal treatments on the development of bacterial pneumonia in colonized rats. Experimental animal investigation. University research laboratory. Pathogen-free male Wistar rats weighing 250-275 g. Rats were colonized by intratracheal instillation of Candida albicans. Fungal clearance from the lungs and immune response were measured. Both colonized and noncolonized animals were secondarily instilled with different bacterial species (Pseudomonas aeruginosa, Escherichia coli, or Staphylococcus aureus). Bacterial phagocytosis by alveolar macrophages was evaluated in the presence of interferon-gamma, the main cytokine produced during fungal colonization. The effect of antifungal treatments on fungal colonization and its immune response were assessed. The prevalence of P. aeruginosa pneumonia was compared in antifungal treated and control colonized rats. C. albicans was slowly cleared and induced a Th1-Th17 immune response with very high interferon-gamma concentrations. Airway fungal colonization favored the development of bacterial pneumonia. Interferon-gamma was able to inhibit the phagocytosis of unopsonized bacteria by alveolar macrophages. Antifungal treatment decreased airway fungal colonization, lung interferon-gamma levels and, consequently, the prevalence of subsequent bacterial pneumonia. C. albicans airway colonization elicited a Th1-Th17 immune response that favored the development of bacterial pneumonia via the inhibition of bacterial phagocytosis by alveolar macrophages. Antifungal treatment decreased the risk of bacterial pneumonia in colonized rats.

  5. Childhood asthma after bacterial colonization of the airway in neonates

    DEFF Research Database (Denmark)

    Bisgaard, Hans; Hermansen, Mette Northman; Buchvald, Frederik

    2007-01-01

    Pathological features of the airway in young children with severe recurrent wheeze suggest an association between bacterial colonization and the initiating events of early asthma. We conducted a study to investigate a possible association between bacterial colonization of the hypopharynx in asymp......Pathological features of the airway in young children with severe recurrent wheeze suggest an association between bacterial colonization and the initiating events of early asthma. We conducted a study to investigate a possible association between bacterial colonization of the hypopharynx...... in asymptomatic neonates and later development of recurrent wheeze, asthma, and allergy during the first 5 years of life....

  6. Bacterial colonization of psoriasis plaques. Is it relevant?

    Directory of Open Access Journals (Sweden)

    Eva Marcus

    2011-08-01

    Full Text Available Bacterial colonization was investigated retrospectively in patients with plaque psoriasis (n=98 inpatient treatments, n=73 patients. At least one pathogen was found in 46% of all cases. Staphylococcus aureus was the most frequent bacterium. Bacterial colonization of psoriasis plaques could be relevant in individual cases.

  7. Effect of dietary monensin on the bacterial population structure of dairy cattle colonic contents.

    Science.gov (United States)

    McGarvey, Jeffery A; Hamilton, Scott W; DePeters, Edward J; Mitloehner, Frank M

    2010-02-01

    To determine the effect of monensin, a carboxylic polyether ionophore antibiotic, on the bacterial population structure of dairy cattle colonic contents, we fed six lactating Holstein cows a diet containing monensin (600 mg day(-1)) or an identical diet without monensin. Fresh waste samples were taken directly from the animals once a month for 3 months and assayed for their bacterial population structure via 16S rRNA gene sequence analysis. In total 6,912 16S rRNA genes were examined, comprising 345 and 315 operational taxonomic units (OTUs) from the monensin fed and control animals, respectively. Coverage estimates of the OTUs identified were 87.6% for the monensin fed and 88.3% for the control colonic content derived library. Despite this high level of coverage, no significant difference was found between the libraries down to the genus level. Thus we concluded that although monensin is believed to increase milk production in dairy cattle by altering the bacterial population structure within the bovine gastrointestinal tract, we were unable to identify any significant difference in the bacterial population structure of the colonic contents of monensin fed vs. the control dairy cattle, down to the genus level.

  8. Early Administration of Probiotics Alters Bacterial Colonization and Limits Diet-Induced Gut Dysfunction and Severity of Necrotizing Enterocolitis in Preterm Pigs

    DEFF Research Database (Denmark)

    Siggers, Richard H.; Siggers, Jayda; Boye, Mette

    2008-01-01

    Following preterm birth, bacterial colonization and interal formula feeding predispose neonates to gut dysfunction and necrotizing enterocilitis (NEC), a serious gastrointestinal inflammatory disease. We hypothesized that administration of probiotics would beneficially influence early bacterial...... colonization, thereby reducing the susceptibility to formula-induced gut atrophy, dysfunction, and NEC. Caesarean-delivered preterm pigs were provided total parenteral nutrition (1.5 d) followed by enteral feeding (2d) with porcine colosstrum (COLOS; n= 5), formula (FORM; n = 9), or formula with probiotics...

  9. Streptococcus pneumoniae Colonization Is Required To Alter the Nasal Microbiota in Cigarette Smoke-Exposed Mice.

    Science.gov (United States)

    Shen, Pamela; Whelan, Fiona J; Schenck, L Patrick; McGrath, Joshua J C; Vanderstocken, Gilles; Bowdish, Dawn M E; Surette, Michael G; Stämpfli, Martin R

    2017-10-01

    Smokers have nasal microbiota dysbiosis, with an increased frequency of colonizing bacterial pathogens. It is possible that cigarette smoke increases pathogen acquisition by perturbing the microbiota and decreasing colonization resistance. However, it is difficult to disentangle microbiota dysbiosis due to cigarette smoke exposure from microbiota changes caused by increased pathogen acquisition in human smokers. Using an experimental mouse model, we investigated the impact of cigarette smoke on the nasal microbiota in the absence and presence of nasal pneumococcal colonization. We observed that cigarette smoke exposure alone did not alter the nasal microbiota composition. The microbiota composition was also unchanged at 12 h following low-dose nasal pneumococcal inoculation, suggesting that the ability of the microbiota to resist initial nasal pneumococcal acquisition was not impaired in smoke-exposed mice. However, nasal microbiota dysbiosis occurred as a consequence of established high-dose nasal pneumococcal colonization at day 3 in smoke-exposed mice. Similar to clinical reports on human smokers, an enrichment of potentially pathogenic bacterial genera such as Fusobacterium , Gemella , and Neisseria was observed. Our findings suggest that cigarette smoke exposure predisposes to pneumococcal colonization independent of changes to the nasal microbiota and that microbiota dysbiosis observed in smokers may occur as a consequence of established pathogen colonization. Copyright © 2017 American Society for Microbiology.

  10. Bacterial colonization and gut development in preterm neonates

    DEFF Research Database (Denmark)

    Cilieborg, Malene S.; Boye, Mette; Sangild, Per Torp

    2012-01-01

    Necrotizing enterocolitis (NEC) develops in 5–10% of preterm infants in association with enteral feeding and bacterial colonization. It remains unclear how diet and bacteria interact to protect or provoke the immature gastrointestinal tract. Understanding the factors that control bacterial...

  11. Childhood asthma after bacterial colonization of the airway in neonates

    DEFF Research Database (Denmark)

    Bisgaard, H.; Hermansen, M.N.; Buchvald, F.

    2007-01-01

    Pathological features of the airway in young children with severe recurrent wheeze suggest an association between bacterial colonization and the initiating events of early asthma. We conducted a study to investigate a possible association between bacterial colonization of the hypopharynx in asymp...... in asymptomatic neonates and later development of recurrent wheeze, asthma, and allergy during the first 5 years of life....

  12. Predicted Bacterial Interactions Affect in Vivo Microbial Colonization Dynamics in Nematostella

    Science.gov (United States)

    Domin, Hanna; Zurita-Gutiérrez, Yazmín H.; Scotti, Marco; Buttlar, Jann; Hentschel Humeida, Ute; Fraune, Sebastian

    2018-01-01

    The maintenance and resilience of host-associated microbiota during development is a fundamental process influencing the fitness of many organisms. Several host properties were identified as influencing factors on bacterial colonization, including the innate immune system, mucus composition, and diet. In contrast, the importance of bacteria–bacteria interactions on host colonization is less understood. Here, we use bacterial abundance data of the marine model organism Nematostella vectensis to reconstruct potential bacteria–bacteria interactions through co-occurrence networks. The analysis indicates that bacteria–bacteria interactions are dynamic during host colonization and change according to the host’s developmental stage. To assess the predictive power of inferred interactions, we tested bacterial isolates with predicted cooperative or competitive behavior for their ability to influence bacterial recolonization dynamics. Within 3 days of recolonization, all tested bacterial isolates affected bacterial community structure, while only competitive bacteria increased bacterial diversity. Only 1 week after recolonization, almost no differences in bacterial community structure could be observed between control and treatments. These results show that predicted competitive bacteria can influence community structure for a short period of time, verifying the in silico predictions. However, within 1 week, the effects of the bacterial isolates are neutralized, indicating a high degree of resilience of the bacterial community. PMID:29740401

  13. Predicted Bacterial Interactions Affect in Vivo Microbial Colonization Dynamics in Nematostella

    Directory of Open Access Journals (Sweden)

    Hanna Domin

    2018-04-01

    Full Text Available The maintenance and resilience of host-associated microbiota during development is a fundamental process influencing the fitness of many organisms. Several host properties were identified as influencing factors on bacterial colonization, including the innate immune system, mucus composition, and diet. In contrast, the importance of bacteria–bacteria interactions on host colonization is less understood. Here, we use bacterial abundance data of the marine model organism Nematostella vectensis to reconstruct potential bacteria–bacteria interactions through co-occurrence networks. The analysis indicates that bacteria–bacteria interactions are dynamic during host colonization and change according to the host’s developmental stage. To assess the predictive power of inferred interactions, we tested bacterial isolates with predicted cooperative or competitive behavior for their ability to influence bacterial recolonization dynamics. Within 3 days of recolonization, all tested bacterial isolates affected bacterial community structure, while only competitive bacteria increased bacterial diversity. Only 1 week after recolonization, almost no differences in bacterial community structure could be observed between control and treatments. These results show that predicted competitive bacteria can influence community structure for a short period of time, verifying the in silico predictions. However, within 1 week, the effects of the bacterial isolates are neutralized, indicating a high degree of resilience of the bacterial community.

  14. Disturbance opens recruitment sites for bacterial colonization in activated sludge

    OpenAIRE

    Marr, Junko; Spear, John; Drewes, Jörg; Vuono, David

    2015-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we sh...

  15. Nasal Bacterial Colonization in Pediatric Epistaxis: The Role of Topical Antibacterial Treatment

    Directory of Open Access Journals (Sweden)

    Mukaddder Korkmaz

    2016-04-01

    Full Text Available Background: Epistaxis is a common problem in childhood. It has been shown that children with recurrent epistaxis are more likely to have nasal colonization with Staphylococcus aureus. It has been suggested that low-grade inflammation, crusting and increased vascularity due to bacterial colonization contributes to the development of epistaxis in children. Aims: This study aimed to investigate the nasal colonization and treatment outcome in pediatric epistaxis patients. Study Design: Retrospective cross-sectional study. Methods: Charts of the pediatric patients referred to our university hospital otolaryngology outpatient clinics for the evaluation of epistaxis were reviewed. The patients whose nasal cultures had been taken at the first clinical visit comprised the study group. Results: Staphylococcus aureus was the most common bacteria grown. The presence of crusting and hypervascularity was not dependent on the type of bacterial growth and there was no relation between hypervascularity and crusting of the nasal mucosa. Thirty-six patients were evaluated for the outcome analysis. Resolution of bleeding was not dependent on nasal colonization; in patients with colonization, there was no difference between topical antibacterial and non-antibacterial treatments. Conclusion: Despite the high colonization rates, topical antibacterial treatment was not found superior to non-antibacterial treatment. Our study does not support the belief that bacterial colonization results in hypervascularity of the septal mucosa causing epistaxis since no relation was found between nasal colonization, hypervascularity and crusting. The role of bacterial colonization in pediatric epistaxis need to be further investigated and treatment protocols must be determined accordingly.

  16. Disturbance opens recruitment sites for bacterial colonization in activated sludge.

    Science.gov (United States)

    Vuono, David C; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E

    2016-01-01

    Little is known about the role of immigration in shaping bacterial communities or the factors that may dictate success or failure of colonization by bacteria from regional species pools. To address these knowledge gaps, the influence of bacterial colonization into an ecosystem (activated sludge bioreactor) was measured through a disturbance gradient (successive decreases in the parameter solids retention time) relative to stable operational conditions. Through a DNA sequencing approach, we show that the most abundant bacteria within the immigrant community have a greater probability of colonizing the receiving ecosystem, but mostly as low abundance community members. Only during the disturbance do some of these bacterial populations significantly increase in abundance beyond background levels and in few cases become dominant community members post-disturbance. Two mechanisms facilitate the enhanced enrichment of immigrant populations during disturbance: (i) the availability of resources left unconsumed by established species and (ii) the increased availability of niche space for colonizers to establish and displace resident populations. Thus, as a disturbance decreases local diversity, recruitment sites become available to promote colonization. This work advances our understanding of microbial resource management and diversity maintenance in complex ecosystems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Identification of bacteriology and risk factor analysis of asymptomatic bacterial colonization in pacemaker replacement patients.

    Directory of Open Access Journals (Sweden)

    Xian-Ming Chu

    Full Text Available Recent researches revealed that asymptomatic bacterial colonization on PMs might be ubiquitous and increase the risk of clinical PM infection. Early diagnosis of patients with asymptomatic bacterial colonization could provide opportunity for targeted preventive measures.The present study explores the incidence of bacterial colonization of generator pockets in pacemaker replacement patients without signs of infection, and to analyze risk factors for asymptomatic bacterial colonization.From June 2011 to December 2013, 118 patients underwent pacemaker replacement or upgrade. Identification of bacteria was carried out by bacterial culture and 16S rRNA sequencing. Clinical risk characteristics were analyzed.The total bacterial positive rate was 37.3% (44 cases, and the coagulase-negative Staphylococcus aureus detection rate was the highest. Twenty two (18.6% patients had positive bacterial culture results, of which 50% had coagulase-negative staphylococcus. The bacterial DNA detection rate was 36.4 % (43 cases. Positive bacterial DNA results from pocket tissues and the surface of the devices were 22.0% and 29.7%, respectively. During follow-up (median, 27.0 months, three patients (6.8%, 3/44 became symptomatic with the same genus of microorganism, S. aureus (n=2 and S. epidermidis (n=1. Multivariable logistic regression analysis showed that history of bacterial infection, use of antibiotics, application of antiplatelet drugs, replacement frequency were independent risk factors for asymptomatic bacterial colonization.There was a high incidence of asymptomatic bacterial colonization in pacemaker patients with independent risk factors. Bacterial culture combined genetic testing could improve the detection rate.

  18. Elevator buttons as unrecognized sources of bacterial colonization in hospitals.

    Science.gov (United States)

    Kandel, Christopher E; Simor, Andrew E; Redelmeier, Donald A

    2014-01-01

    Elevators are ubiquitous and active inside hospitals, potentially facilitating bacterial transmission. The objective of this study was to estimate the prevalence of bacterial colonization on elevator buttons in large urban teaching hospitals. A total of 120 elevator buttons and 96 toilet surfaces were swabbed over separate intervals at 3 tertiary care hospitals on weekdays and weekends in Toronto, Ontario. For the elevators, swabs were taken from 2 interior buttons (buttons for the ground floor and one randomly selected upper-level floor) and 2 exterior buttons (the "up" button from the ground floor and the "down" button from the upper-level floor). For the toilet surfaces, swabs were taken from the exterior and interior handles of the entry door, the privacy latch, and the toilet flusher. Samples were obtained using standard bacterial collection techniques, followed by plating, culture, and species identification by a technician blind to sample source. The prevalence of colonization of elevator buttons was 61% (95% confidence interval 52%-70%). No significant differences in colonization prevalence were apparent in relation to location of the buttons, day of the week, or panel position within the elevator. Coagulase-negative staphylococci were the most common organisms cultured, whereas Enterococcus and Pseudomonas species were infrequent. Elevator buttons had a higher prevalence of colonization than toilet surfaces (61% v. 43%, p = 0.008). Hospital elevator buttons were commonly colonized by bacteria, although most pathogens were not clinically relevant. The risk of pathogen transmission might be reduced by simple countermeasures.

  19. An obesity-associated gut microbiome reprograms the intestinal epigenome and leads to altered colonic gene expression.

    Science.gov (United States)

    Qin, Yufeng; Roberts, John D; Grimm, Sara A; Lih, Fred B; Deterding, Leesa J; Li, Ruifang; Chrysovergis, Kaliopi; Wade, Paul A

    2018-01-23

    The gut microbiome, a key constituent of the colonic environment, has been implicated as an important modulator of human health. The eukaryotic epigenome is postulated to respond to environmental stimuli through alterations in chromatin features and, ultimately, gene expression. How the host mediates epigenomic responses to gut microbiota is an emerging area of interest. Here, we profile the gut microbiome and chromatin characteristics in colon epithelium from mice fed either an obesogenic or control diet, followed by an analysis of the resultant changes in gene expression. The obesogenic diet shapes the microbiome prior to the development of obesity, leading to altered bacterial metabolite production which predisposes the host to obesity. This microbiota-diet interaction leads to changes in histone modification at active enhancers that are enriched for binding sites for signal responsive transcription factors. These alterations of histone methylation and acetylation are associated with signaling pathways integral to the development of colon cancer. The transplantation of obesogenic diet-conditioned microbiota into germ free mice, combined with an obesogenic diet, recapitulates the features of the long-term diet regimen. The diet/microbiome-dependent changes are reflected in both the composition of the recipient animals' microbiome as well as in the set of transcription factor motifs identified at diet-influenced enhancers. These findings suggest that the gut microbiome, under specific dietary exposures, stimulates a reprogramming of the enhancer landscape in the colon, with downstream effects on transcription factors. These chromatin changes may be associated with those seen during colon cancer development.

  20. Endogenous Antimicrobial Peptide Expression in Response to Bacterial Epidermal Colonization

    Directory of Open Access Journals (Sweden)

    Michael Brandwein

    2017-11-01

    Full Text Available Bacterial commensal colonization of human skin is vital for the training and maintenance of the skin’s innate and adaptive immune functions. In addition to its physical barrier against pathogen colonization, the skin expresses a variety of antimicrobial peptides (AMPs which are expressed constitutively and induced in response to pathogenic microbial stimuli. These AMPs are differentially effective against a suite of microbial skin colonizers, including both bacterial and fungal residents of the skin. We review the breadth of microorganism-induced cutaneous AMP expression studies and their complementary findings on the efficacy of skin AMPs against different bacterial and fungal species. We suggest further directions for skin AMP research based on emerging skin microbiome knowledge in an effort to advance our understanding of the nuanced host–microbe balance on human skin. Such advances should enable the scientific community to bridge the gap between descriptive disease-state AMP studies and experimental single-species in vitro studies, thereby enabling research endeavors that more closely mimic the natural skin environs.

  1. Nasal bacterial colonization in cases of idiopathic epistaxis in children.

    Science.gov (United States)

    Kamble, Payal; Saxena, Sonal; Kumar, Sunil

    2015-11-01

    To evaluate the role of nasal bacterial colonization in cases of idiopathic epistaxis in children. A descriptive, hospital based, observational study in our hospital was conducted on total 112 pediatric patients in the age group 4-16 years. Group A (control): 56 patients with no epistaxis; Group B (epistaxis): 56 patients with idiopathic epistaxis. A swab for microbiological evaluation was taken from the anterior nasal cavity of each child. A highly significant association between nasal colonization with pathological Staphylococcus aureus and idiopathic epistaxis was found. The presence of pathological S. aureus colonization in the anterior nasal cavity was also associated with statistically significant number of crusting and presence of dilated blood vessels on the anterior nasal septum of children in epistaxis group. Nasal bacterial colonization with S. aureus leads to a sequence of pathological events i.e. low grade inflammation, crusting and new vessel formation. This leads to irritation in nasal cavity resulting in digital trauma and subsequently epistaxis and thus it plays an important role in causing idiopathic epistaxis in children. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Effects of bacterial colonization on the porcine intestinal proteome

    DEFF Research Database (Denmark)

    Danielsen, Marianne; Hornshøj, Henrik; Siggers, Richard Harvey

    2007-01-01

    comparison of 12 animals. Our results showed that bacterial colonization differentially affected mechanisms such as proteolysis, epithelial proliferation, and lipid metabolism, which is in good agreement with previous studies of other germ-free animal models. We have also found that E. coli has a profound...... effect on actin remodeling and intestinal proliferation, which may be related to stimulated migration and turnover of enterocytes. Regulations related to L. fermentum colonization involved individual markers for immunoregulatory mechanisms...

  3. Colonization of Tomato Root by Antagonistic Bacterial Strains to Fusarium Wilt of Tomato

    Directory of Open Access Journals (Sweden)

    Arif Wibowo

    2005-12-01

    Full Text Available Fusarium wilt of tomato caused by Fusarium oxysporum f.sp. lycopersici (Fol is an important disease in tomato which cause a significant loss of yield in major growing regions of the world. This study examined the ability of bacterial strains antagonistic to F. oxysporum f.sp. lycopersici (H5, H22, H63, H71, Burkholderia cepacia strain 65 and 526 to colonize tomato seedlings and the effect of plant growth. The effect of bacterial population size and air temperature on the bacterial colonization and their spread along the root systems was also assessed.The results of this study showed that the bacterial population at 28°/23° C day/night temperature 14 days after planting was significantly greater than 23°/18° C for 4 of 6 strains tested. Although there was no significant effect of temperature on bacterial population observed in this study, the ability of the baacterial strains to colonize the rhizosphere was significantly different. Three strains (H5, B. cepacia strain 65 and 526 survived well in the rhizosphere and at 4 weeks after planting rhizosphere populations per gram fresh root were not significantly different from those recovered 2 weeks after planting. The largest population of the bacterial inoculants developed in the basal region of the roots and this differed between strains by log10 2.7 cfu/cm root. The bacterial populations in other parts of the root were also strain dependent. Strain H71, for example, was able to colonize the root segments at a high population level. However strain H63 was recovered only in small number in all root segments.

  4. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

    International Nuclear Information System (INIS)

    Möller, Jens; Emge, Philippe; Vizcarra, Ima Avalos; Kollmannsberger, Philip; Vogel, Viola

    2013-01-01

    Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length. (paper)

  5. Bacterial filamentation accelerates colonization of adhesive spots embedded in biopassive surfaces

    Science.gov (United States)

    Möller, Jens; Emge, Philippe; Avalos Vizcarra, Ima; Kollmannsberger, Philip; Vogel, Viola

    2013-12-01

    Sessile bacteria adhere to engineered surfaces and host tissues and pose a substantial clinical and economical risk when growing into biofilms. Most engineered and biological interfaces are of chemically heterogeneous nature and provide adhesive islands for bacterial attachment and growth. To mimic either defects in a surface coating of biomedical implants or heterogeneities within mucosal layers (Peyer's patches), we embedded micrometre-sized adhesive islands in a poly(ethylene glycol) biopassive background. We show experimentally and computationally that filamentation of Escherichia coli can significantly accelerate the bacterial surface colonization under physiological flow conditions. Filamentation can thus provide an advantage to a bacterial population to bridge non-adhesive distances exceeding 5 μm. Bacterial filamentation, caused by blocking of bacterial division, is common among bacterial species and can be triggered by environmental conditions or antibiotic treatment. While great awareness exists that the build-up of antibiotic resistance serves as intrinsic survival strategy, we show here that antibiotic treatment can actually promote surface colonization by triggering filamentation, which in turn prevents daughter cells from being washed away. Our combined microfabrication and computational approaches provide quantitative insights into mechanisms that enable biofouling of biopassive surfaces with embedded adhesive spots, even for spot distances that are multiples of the bacterial length.

  6. Cultivated vaginal microbiomes alter HIV-1 infection and antiretroviral efficacy in colonized epithelial multilayer cultures.

    Science.gov (United States)

    Pyles, Richard B; Vincent, Kathleen L; Baum, Marc M; Elsom, Barry; Miller, Aaron L; Maxwell, Carrie; Eaves-Pyles, Tonyia D; Li, Guangyu; Popov, Vsevolod L; Nusbaum, Rebecca J; Ferguson, Monique R

    2014-01-01

    There is a pressing need for modeling of the symbiotic and at times dysbiotic relationship established between bacterial microbiomes and human mucosal surfaces. In particular clinical studies have indicated that the complex vaginal microbiome (VMB) contributes to the protection against sexually-transmitted pathogens including the life-threatening human immunodeficiency virus (HIV-1). The human microbiome project has substantially increased our understanding of the complex bacterial communities in the vagina however, as is the case for most microbiomes, very few of the community member species have been successfully cultivated in the laboratory limiting the types of studies that can be completed. A genetically controlled ex vivo model system is critically needed to study the complex interactions and associated molecular dialog. We present the first vaginal mucosal culture model that supports colonization by both healthy and dysbiotic VMB from vaginal swabs collected from routine gynecological patients. The immortalized vaginal epithelial cells used in the model and VMB cryopreservation methods provide the opportunity to reproducibly create replicates for lab-based evaluations of this important mucosal/bacterial community interface. The culture system also contains HIV-1 susceptible cells allowing us to study the impact of representative microbiomes on replication. Our results show that our culture system supports stable and reproducible colonization by VMB representing distinct community state types and that the selected representatives have significantly different effects on the replication of HIV-1. Further, we show the utility of the system to predict unwanted alterations in efficacy or bacterial community profiles following topical application of a front line antiretroviral.

  7. Dietary proline supplementation alters colonic luminal microbiota and bacterial metabolite composition between days 45 and 70 of pregnancy in Huanjiang mini-pigs.

    Science.gov (United States)

    Ji, Yujiao; Guo, Qiuping; Yin, Yulong; Blachier, Francois; Kong, Xiangfeng

    2018-01-01

    Pregnancy is associated with important changes in gut microbiota composition. Dietary factors may affect the diversity, composition, and metabolic activity of the intestinal microbiota. Among amino acids, proline is known to play important roles in protein metabolism and structure, cell differentiation, conceptus growth and development, and gut microbiota re-equilibration in case of dysbiosis. Dietary supplementation with 1% proline decreased ( P  spp. in distal colonic contents than that in the control group. The colonic contents of Butyrivibrio fibrisolvens , Bifidobacterium sp., Clostridium coccoides , Clostridium coccoides-Eubacterium rectale , Clostridium leptum subgroup, Escherichia coli , Faecalibacterium prausnitzii , Fusobacterium prausnitzii , and Prevotella increased ( P  < 0.05) on d 70 of pregnancy as compared with those on d 45 of pregnancy. The colonic concentrations of acetate, total straight-chain fatty acid, and total short-chain fatty acids (SCFA) in the proline-supplemented group were lower ( P  < 0.05), and butyrate level ( P  = 0.06) decreased as compared with the control group. Almost all of the SCFA displayed higher ( P  < 0.05) concentrations in proximal colonic contents on d 70 of pregnancy than those on d 45 of pregnancy. The concentrations of 1,7-heptyl diamine ( P  = 0.09) and phenylethylamine ( P  < 0.05) in proximal colonic contents were higher, while those of spermidine ( P  = 0.05) and total bioamine ( P  = 0.06) tended to be lower in the proline-supplemented group than those in the control group. The concentrations of spermidine, spermine, and total bioamine in colonic contents were higher ( P  < 0.05) on d 70 of pregnancy than those measured on d 45 of pregnancy. In contrast, the concentration of phenylethylamine was lower ( P  < 0.05) on d 70 than on d 45 of pregnancy. These findings indicate that L -proline supplementation modifies both the colonic microbiota composition and the luminal

  8. Systemic cytokine signaling via IL-17 in smokers with obstructive pulmonary disease: a link to bacterial colonization?

    Science.gov (United States)

    Andelid, Kristina; Tengvall, Sara; Andersson, Anders; Levänen, Bettina; Christenson, Karin; Jirholt, Pernilla; Åhrén, Christina; Qvarfordt, Ingemar; Ekberg-Jansson, Ann; Lindén, Anders

    2015-01-01

    We examined whether systemic cytokine signaling via interleukin (IL)-17 and growth-related oncogene-α (GRO-α) is impaired in smokers with obstructive pulmonary disease including chronic bronchitis (OPD-CB). We also examined how this systemic cytokine signaling relates to bacterial colonization in the airways of the smokers with OPD-CB. Currently smoking OPD-CB patients (n=60, corresponding to Global initiative for chronic Obstructive Lung Disease [GOLD] stage I–IV) underwent recurrent blood and sputum sampling over 60 weeks, during stable conditions and at exacerbations. We characterized cytokine protein concentrations in blood and bacterial growth in sputum. Asymptomatic smokers (n=10) and never-smokers (n=10) were included as control groups. During stable clinical conditions, the protein concentrations of IL-17 and GRO-α were markedly lower among OPD-CB patients compared with never-smoker controls, whereas the asymptomatic smoker controls displayed intermediate concentrations. Notably, among OPD-CB patients, colonization by opportunistic pathogens was associated with markedly lower IL-17 and GRO-α, compared with colonization by common respiratory pathogens or oropharyngeal flora. During exacerbations in the OPD-CB patients, GRO-α and neutrophil concentrations were increased, whereas protein concentrations and messenger RNA for IL-17 were not detectable in a reproducible manner. In smokers with OPD-CB, systemic cytokine signaling via IL-17 and GRO-α is impaired and this alteration may be linked to colonization by opportunistic pathogens in the airways. Given the potential pathogenic and therapeutic implications, these findings deserve to be validated in new and larger patient cohorts. PMID:25848245

  9. Nasopharyngeal polymicrobial colonization during health, viral upper respiratory infection and upper respiratory bacterial infection.

    Science.gov (United States)

    Xu, Qingfu; Wischmeyer, Jareth; Gonzalez, Eduardo; Pichichero, Michael E

    2017-07-01

    We sought to understand how polymicrobial colonization varies during health, viral upper respiratory infection (URI) and acute upper respiratory bacterial infection to understand differences in infection-prone vs. non-prone patients. Nasopharyngeal (NP) samples were collected from 74 acute otitis media (AOM) infection-prone and 754 non-prone children during 2094 healthy visits, 673 viral URI visits and 631 AOM visits. Three otopathogens Streptococcus pneumoniae (Spn), Nontypeable Haemophilus influenzae (NTHi), and Moraxella catarrhalis (Mcat) were identified by culture. NP colonization rates of multiple otopathogens during health were significantly lower than during viral URI, and during URI they were lower than at onset of upper respiratory bacterial infection in both AOM infection-prone and non-prone children. AOM infection-prone children had higher polymicrobial colonization rates than non-prone children during health, viral URI and AOM. Polymicrobial colonization rates of AOM infection-prone children during health were equivalent to that of non-prone children during viral URI, and during viral URI were equivalent to that of non-prone during AOM infection. Spn colonization was positively associated with NTHi and Mcat colonization during health, but negatively during AOM infection. The infection-prone patients more frequently have multiple potential bacterial pathogens in the NP than the non-prone patients. Polymicrobial interaction in the NP differs during health and at onset of infection. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  10. Gauze Impregnated With Quaternary Ammonium Salt Reduces Bacterial Colonization of Surgical Drains After Breast Reconstruction.

    Science.gov (United States)

    Strong, Amy L; Wolfe, Emily T; Shank, Nina; Chaffin, Abigail E; Jansen, David A

    2018-06-01

    Surgical site infection after breast reconstruction is associated with increased length of hospital stay, readmission rates, cost, morbidity, and mortality. Identifying methods to reduce surgical site infection without the use of antibiotics may be beneficial at reducing antimicrobial resistance, reserving the use of antibiotics for more severe cases. Quaternary ammonium salts have previously been shown to be a safe and effective antimicrobial agent in the setting of in vitro and in vivo animal experiments. A retrospective study was conducted to investigate the antimicrobial properties of a quaternary ammonium salt, 3-trimethoxysilyl propyldimethyloctadecyl ammonium chloride (QAS-3PAC; Bio-spear), at reducing surgical drain site colonization and infection after breast reconstruction (deep inferior epigastric perforator flap reconstruction or tissue expander placement). Twenty patients were enrolled, with 14 surgical drains covered with nonimpregnated gauze and 17 surgical drains covered with QAS-3PAC impregnated gauze, for the purposes of investigating bacterial colonization. Antibiotic sensitivity analysis was also conducted when bacterial cultures were positive. The overall incidence of bacterial colonization of surgical drains was lower in the treatment group compared with the control group (17.6% vs 64.3%, respectively; P = 0.008). QAS-3PAC impregnated gauze reduced the incidence of bacterial colonization of surgical drains during the first (0.0% vs 33.3%) and second (33.3% vs 87.5%; P = 0.04) postoperative week. Furthermore, no enhanced antibiotic resistance was noted on drains treated with QAS-3PAC impregnated gauze. The results of this study suggest that QAS-3PAC impregnated gauze applied over surgical drains may be an effective method for reducing the incidence of bacterial colonization.

  11. Prevention of bacterial colonization of contact lenses with covalently attached selenium and effects on the rabbit cornea.

    Science.gov (United States)

    Mathews, Steven M; Spallholz, Julian E; Grimson, Mark J; Dubielzig, Richard R; Gray, Tracy; Reid, Ted W

    2006-08-01

    Although silicone hydrogel materials have produced many corneal health benefits to patients wearing contact lenses, bacteria that cause acute red eye or corneal ulcers are still a concern. A coating that inhibits bacterial colonization while not adversely affecting the cornea should improve the safety of contact lens wear. A covalent selenium (Se) coating on contact lenses was evaluated for safety using rabbits and prevention of bacterial colonization of the contact lenses in vitro. Contact lenses coated with Se were worn on an extended-wear schedule for up to 2 months by 10 New Zealand White rabbits. Corneal health was evaluated with slit-lamp biomicroscopy, pachymetry, electron microscopy, and histology. Lenses worn by the rabbits were analyzed for protein and lipid deposits. In addition, the ability of Se to block bacterial colonization was tested in vitro by incubating lenses in a Pseudomonas aeruginosa broth followed by scanning electron microscopy of the contact lens surface. The covalent Se coating decreased bacterial colonization in vitro while not adversely affecting the corneal health of rabbits in vivo. The Se coating produced no noticeable negative effects as observed with slit-lamp biomicroscopy, pachymetry, electron microscopy, and histology. The Se coating did not affect protein or lipid deposition on the contact lenses. The data from this pilot study suggest that a Se coating on contact lenses might reduce acute red eye and bacterial ulceration because of an inhibition of bacterial colonization. In addition, our safety tests suggest that this positive effect can be produced without an adverse effect on corneal health.

  12. Probiotic E. coli Nissle 1917 biofilms on silicone substrates for bacterial interference against pathogen colonization.

    Science.gov (United States)

    Chen, Quan; Zhu, Zhiling; Wang, Jun; Lopez, Analette I; Li, Siheng; Kumar, Amit; Yu, Fei; Chen, Haoqing; Cai, Chengzhi; Zhang, Lijuan

    2017-03-01

    Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, a non-pathogenic bacterial biofilm is used as a live, protective barrier to fence off pathogen colonization. In this work, biofilms formed by probiotic Escherichia coli strain Nissle 1917 (EcN) are investigated for their potential for long-term bacterial interference against infections associated with silicone-based urinary catheters and indwelling catheters used in the digestive system, such as feeding tubes and voice prostheses. We have shown that EcN can form stable biofilms on silicone substrates, particularly those modified with a biphenyl mannoside derivative. These biofilms greatly reduced the colonization by pathogenic Enterococcus faecalis in Lysogeny broth (LB) for 11days. Bacterial interference is an alternative strategy to fight against device-associated bacterial infections. Pursuing this strategy, we use non-pathogenic bacteria to form a biofilm that serves as a live, protective barrier against pathogen colonization. Herein, we report the first use of preformed probiotic E. coli Nissle 1917 biofilms on the mannoside-presenting silicone substrates to prevent pathogen colonization. The biofilms serve as a live, protective barrier to fence off the pathogens, whereas current antimicrobial/antifouling coatings are subjected to gradual coverage by the biomass from the rapidly growing pathogens in a high-nutrient environment. It should be noted that E. coli Nissle 1917 is commercially available and has been used in many clinical trials. We also demonstrated that this probiotic strain performed significantly better than the non-commercial, genetically modified E. coli strain that we previously reported. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Does circumcision alter the periurethral uropathogenic bacterial flora

    African Journals Online (AJOL)

    Background: The aim of this study was to assess the pattern of periurethral bacterial flora in uncircumcised boys and to evaluate the effect of circumcision on alteration of periurethral uropathogenic bacterial flora. Materials and Methods: Pattern of periurethral bacterial flora before and after circumcision was studied ...

  14. Preterm Birth and Necrotizing Enterocolitis Alter Gut Colonization in Pigs

    DEFF Research Database (Denmark)

    Cilieborg, Malene S.; Boye, Mette; Mølbak, Lars

    2011-01-01

    perfringens predisposes to NEC. By using terminal-RFLP and FISH, we characterized the gut microbiota of preterm, caesarean-delivered, formula-fed pigs (n = 44) with or without NEC and of formula- or colostrum-fed term, and vaginally born pigs (n = 13). A different microbiota with high C. perfringens abundance......Necrotizing enterocolitis (NEC) in preterm neonates is dependent on bacterial colonization, but it remains unclear whether a particular microbiota or specific pathogens are involved. We hypothesized that gut colonization differs between preterm and term neonates and that overgrowth of Clostridium...

  15. Effect of flow and active mixing on bacterial growth in a colon-like geometry

    Science.gov (United States)

    Cremer, Jonas; Segota, Igor; Arnoldini, Markus; Groisman, Alex; Hwa, Terence

    The large intestine harbors bacteria from hundreds of species, with bacterial densities reaching up to 1012 cells per gram. Many different factors influence bacterial growth dynamics and thus bacterial density and microbiota composition. One dominant force is flow which can in principle lead to a washout of bacteria from the proximal colon. Active mixing by Contractions of the colonic wall together with bacterial growth might counteract such flow-forces and allow high bacterial densities to occur. As a step towards understanding bacterial growth in the presence of mixing and flow, we constructed an in-vitro setup where controlled wall-deformations of a channel emulate Contractions. We investigate growth along the channel under a steady nutrient inflow. In the limits of no or very frequent Contractions, the device behaves like a plug-flow reactor and a chemostat respectively. Depending on mixing and flow, we observe varying spatial gradients in bacterial density along the channel. Active mixing by deformations of the channel wall is shown to be crucial in maintaining a steady-state bacterial population in the presence of flow. The growth-dynamics is quantitatively captured by a simple mathematical model, with the effect of mixing described by an effective diffusion term.

  16. Clostridium difficile suppresses colonic vasoactive intestinal peptide associated with altered motility

    Directory of Open Access Journals (Sweden)

    A. Nassif

    1995-01-01

    Full Text Available We investigated whether Clostridium difficile toxin alters colonic tissue levels of vasoactive intestinal peptide (VIP at the expense of changes in colonic motility in the isolated perfused rabbit left colon. Colonic inflammation was induced by the intracolonic administration of 10−8 M C. difflcile toxin. Strain gauge transducers were sewn onto the serosal surface of the colon to evaluate colonic motility. C. difflcile administration produced histologic changes consistent with epithelial damage. This was associated with an increased production of prostaglandin E2 and thromboxane B2. Tissue levels of VIP but not substance P were significantly reduced. This was associated with an increased number of contractions per minute and an average force of each colonic contraction. These results suggest that tissue levels of VIP are suppressed by C. difflcile and may participate in colonic dysmotility during active inflammation.

  17. Bacterial colonization of the freshwater planktonic diatom Fragilaria crotonensis

    Czech Academy of Sciences Publication Activity Database

    Znachor, Petr; Šimek, Karel; Nedoma, Jiří

    2012-01-01

    Roč. 66, č. 1 (2012), s. 87-94 ISSN 0948-3055 R&D Projects: GA ČR(CZ) GA206/08/0015; GA ČR(CZ) GAP504/11/2177; GA ČR(CZ) GAP504/11/2182 Institutional research plan: CEZ:AV0Z60170517 Keywords : PDMPO * bacterial colonization * diatoms * Fragilaria crotonensis * flood * reservoir Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.037, year: 2012

  18. Bacterial species colonizing the vagina of healthy women are not associated with race.

    Science.gov (United States)

    Beamer, May A; Austin, Michele N; Avolia, Hilary A; Meyn, Leslie A; Bunge, Katherine E; Hillier, Sharon L

    2017-06-01

    The vaginal microbiota of 36 white versus 25 black asymptomatic women were compared using both cultivation-dependent and -independent identification. Significant differences by race were found in colonization and density of bacterial species. However, exclusion of 12 women with bacterial vaginosis by Nugent criteria resulted in no significant differences by race. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Bacterial colonization on coated and uncoated orthodontic wires: A prospective clinical trial.

    Science.gov (United States)

    Raji, Seyed Hamid; Shojaei, Hasan; Ghorani, Parinaz Saeidi; Rafiei, Elahe

    2014-11-01

    The advantages of coated orthodontic wires such as esthetic and their effects on reduced friction, corrosion and allergic reaction and the significant consequences of plaque accumulation on oral health encouraged us to assess bacterial colonization on these wires. A total of 18 (9 upper and 9 lower) epoxy resin coated 16 × 22 nickel-titanium wires (Spectra, GAC, USA) and 18 (9 upper and 9 lower) non-coated 16 × 22 nickel-titanium wires (Sentalloy, GAC, USA) with isolated packages were selected and sterilized before application. The samples were divided randomly between upper and lower arches in 18 patients and hence that every patient received one coated and one uncoated wire at the same time. Samples were removed and cut in equal lengths after 3 weeks and placed in phosphate buffered saline buffer. After separation of bacteria in trypsin and ethylenediaminetetraacetic acid solution, the diluted solution was cultured in blood agar and bacterial colony forming units were counted. Finally, the data was analyzed using the paired t-test and the significance was set at 0.05. Mean of bacterial colonization on uncoated wires was more than that of coated wires (P < 0.001). Bacterial plaque accumulation on epoxy resin coated nickel-titanium orthodontic wires is significantly lower than uncoated nickel-titanium wires.

  20. Acidic Conditions in the NHE2-/- Mouse Intestine Result in an Altered Mucosa-Associated Bacterial Population with Changes in Mucus Oligosaccharides

    Directory of Open Access Journals (Sweden)

    Melinda A. Engevik

    2013-12-01

    Full Text Available Background: The mechanisms bacteria use to proliferate and alter the normal bacterial composition remain unknown. The ability to link changes in the intestinal micro-environment, such as ion composition and pH, to bacterial proliferation is clinically advantageous for diseases that involve an altered gut microbiota, such as Inflammatory Bowel Disease, obesity and diabetes. In human and mouse intestine, the apical Na+/H+ exchangers NHE2 and NHE3 affect luminal Na+, water, and pH. Loss of NHE2 results in acidic luminal pH. Since acid resistance systems in gram-positive bacteria are well documented, we hypothesize that gram-positive bacteria would increase in representation in the acidic NHE2-/- intestine. Methods: Intestinal ion composition was measured by fame photometry and chloridometry and pH measured electrochemically. DNA extracted from intestinal flushes or from mucosal scrapings was analyzed by qRT-PCR to examine luminal and mucosa-associated bacterial populations. Epithelial mucus oligosaccharide patterns were examined by histology with FIT-C labeled lectins. Results: Although total luminal and mucosa-associated bacteria were unchanged in NHE2-/- intestine, gram-positive bacterial phyla were increased in the mucosa-associated bacterial population in a region-specific manner. The genera Clostridium and Lactobacillus were increased in the cecum and colon which corresponded to changes in NHE2-/- mucus oligosaccharide composition of mannose, N-acetyglucosamine, N-acetygalactosamine and galactose. Conclusions: Together these data indicate that changes in ion transport induce region-specific bacterial changes, which alter host mucus oligosaccharide patterns. These host-bacterial interactions provide a possible mechanism of niche-development and shed insight on how certain groups proliferate in changing environments and maintain their proliferation by altering the host.

  1. Role of Streptococcus sanguinis sortase A in bacterial colonization.

    Science.gov (United States)

    Yamaguchi, Masaya; Terao, Yutaka; Ogawa, Taiji; Takahashi, Toshihito; Hamada, Shigeyuki; Kawabata, Shigetada

    2006-10-01

    Streptococcus sanguinis, a normal inhabitant of the human oral cavity, has low cariogenicity, though colonization on tooth surfaces by this bacterium initiates aggregation by other oral bacteria and maturation of dental plaque. Additionally, S. sanguinis is frequently isolated from infective endocarditis patients. We investigated the functions of sortase A (SrtA), which cleaves LPXTG-containing proteins and anchors them to the bacterial cell wall, as a possible virulence factor of S. sanguinis. We identified the srtA gene of S. sanguinis by searching a homologous gene of Streptococcus mutans in genome databases. Next, we constructed an srtA-deficient mutant strain of S. sanguinis by insertional inactivation and compared it to the wild type strain. In the case of the mutant strain, some surface proteins could not anchor to the cell wall and were partially released into the culture supernatant. Furthermore, adherence to saliva-coated hydroxyapatite beads and polystyrene plates, as well as adherence to and invasion of human epithelial cells were reduced significantly in the srtA-deficient strain when compared to the wild type. In addition, antiopsonization levels and bacterial survival of the srtA-deficient mutant were decreased in human whole blood. This is the first known study to report that SrtA contributes to antiopsonization in streptococci. Our results suggest that SrtA anchors surface adhesins as well as some proteins that function as antiopsonic molecules as a means of evading the human immune system. Furthermore, they demonstrate that SrtA of S. sanguinis plays important roles in bacterial colonization.

  2. Native arbuscular mycorrhizal symbiosis alters foliar bacterial community composition.

    Science.gov (United States)

    Poosakkannu, Anbu; Nissinen, Riitta; Kytöviita, Minna-Maarit

    2017-11-01

    The effects of arbuscular mycorrhizal (AM) fungi on plant-associated microbes are poorly known. We tested the hypothesis that colonization by an AM fungus affects microbial species richness and microbial community composition of host plant tissues. We grew the grass, Deschampsia flexuosa in a greenhouse with or without the native AM fungus, Claroideoglomus etunicatum. We divided clonally produced tillers into two parts: one inoculated with AM fungus spores and one without AM fungus inoculation (non-mycorrhizal, NM). We characterized bacterial (16S rRNA gene) and fungal communities (internal transcribed spacer region) in surface-sterilized leaf and root plant compartments. AM fungus inoculation did not affect microbial species richness or diversity indices in leaves or roots, but the AM fungus inoculation significantly affected bacterial community composition in leaves. A total of three OTUs in leaves belonging to the phylum Firmicutes positively responded to the presence of the AM fungus in roots. Another six OTUs belonging to the Proteobacteria (Alpha, Beta, and Gamma) and Bacteroidetes were significantly more abundant in NM plants when compared to AM fungus-inoculated plants. Further, there was a significant correlation between plant dry weight and leaf microbial community compositional shift. Also, there was a significant correlation between leaf bacterial community compositional shift and foliar nitrogen content changes due to AM fungus inoculation. The results suggest that AM fungus colonization in roots has a profound effect on plant physiology that is reflected in leaf bacterial community composition.

  3. Bacterial strategies of resistance to antimicrobial peptides.

    Science.gov (United States)

    Joo, Hwang-Soo; Fu, Chih-Iung; Otto, Michael

    2016-05-26

    Antimicrobial peptides (AMPs) are a key component of the host's innate immune system, targeting invasive and colonizing bacteria. For successful survival and colonization of the host, bacteria have a series of mechanisms to interfere with AMP activity, and AMP resistance is intimately connected with the virulence potential of bacterial pathogens. In particular, because AMPs are considered as potential novel antimicrobial drugs, it is vital to understand bacterial AMP resistance mechanisms. This review gives a comparative overview of Gram-positive and Gram-negative bacterial strategies of resistance to various AMPs, such as repulsion or sequestration by bacterial surface structures, alteration of membrane charge or fluidity, degradation and removal by efflux pumps.This article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Author(s).

  4. Sutures coated with antiseptic pomade to prevent bacterial colonization: a randomized clinical trial.

    Science.gov (United States)

    Cruz, Fernando; Leite, Fabiola; Cruz, Gustavo; Cruz, Silvia; Reis, Juarez; Pierce, Matthew; Cruz, Mauro

    2013-08-01

    The aim of this study was to assess if an antiseptic pomade could reduce the bacterial colonization on multifilament sutures. A randomized clinical trial was conducted with 40 volunteer patients of both sexes aged 18-70, randomly separated into experimental (n = 20) and control (n = 20) groups. The experimental group received pomade-coated sutures (iodoform + calendula) and the control group uncoated sutures. Two millimeters of the suture was harvested from each patient from the 1st to the 15th postoperative day. The bacteria that had adhered to them were cultured. The number of colony-forming units per milliliter (CFU/mL) was determined and the groups were compared using the Mann-Whitney statistical test (P antiseptic pomade was effective in reducing bacterial colonization on silk braided sutures. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Candida albicans and bacterial microbiota interactions in the cecum during recolonization following broad-spectrum antibiotic therapy.

    Science.gov (United States)

    Mason, Katie L; Erb Downward, John R; Mason, Kelly D; Falkowski, Nicole R; Eaton, Kathryn A; Kao, John Y; Young, Vincent B; Huffnagle, Gary B

    2012-10-01

    Candida albicans is a normal member of the gastrointestinal (GI) tract microbiota of healthy humans, but during host immunosuppression or alterations in the bacterial microbiota, C. albicans can disseminate and cause life-threatening illness. The bacterial microbiome of the GI tract, including lactic acid bacteria (LAB), plays a vital role in preventing fungal invasion. However, little is known about the role of C. albicans in shaping the bacterial microbiota during antibiotic recovery. We investigated the fungal burdens in the GI tracts of germfree mice and mice with a disturbed microbiome to demonstrate the role of the microbiota in preventing C. albicans colonization. Histological analysis demonstrated that colonization with C. albicans during antibiotic treatment does not trigger overt inflammation in the murine cecum. Bacterial diversity is reduced long term following cefoperazone treatment, but the presence of C. albicans during antibiotic recovery promoted the recovery of bacterial diversity. Cefoperazone diminishes Bacteroidetes populations long term in the ceca of mice, but the presence of C. albicans during cefoperazone recovery promoted Bacteroidetes population recovery. However, the presence of C. albicans resulted in a long-term reduction in Lactobacillus spp. and promoted Enterococcus faecalis populations. Previous studies have focused on the ability of bacteria to alter C. albicans; this study addresses the ability of C. albicans to alter the bacterial microbiota during nonpathogenic colonization.

  6. Bacterial adaptation to the gut environment favors successful colonization: microbial and metabonomic characterization of a simplified microbiota mouse model.

    Science.gov (United States)

    Rezzonico, Enea; Mestdagh, Renaud; Delley, Michèle; Combremont, Séverine; Dumas, Marc-Emmanuel; Holmes, Elaine; Nicholson, Jeremy; Bibiloni, Rodrigo

    2011-01-01

    Rodent models harboring a simple yet functional human intestinal microbiota provide a valuable tool to study the relationships between mammals and their bacterial inhabitants. In this study, we aimed to develop a simplified gnotobiotic mouse model containing 10 easy-to-grow bacteria, readily available from culture repositories, and of known genome sequence, that overall reflect the dominant commensal bacterial makeup found in adult human feces. We observed that merely inoculating a mix of fresh bacterial cultures into ex-germ free mice did not guarantee a successful intestinal colonization of the entire bacterial set, as mice inoculated simultaneously with all strains only harbored 3 after 21 d. Therefore, several inoculation procedures were tested and levels of individual strains were quantified using molecular tools. Best results were obtained by inoculating single bacterial strains into individual animals followed by an interval of two weeks before allowing the animals to socialize to exchange their commensal microbes. Through this procedure, animals were colonized with almost the complete bacterial set (9/10). Differences in the intestinal composition were also reflected in the urine and plasma metabolic profiles, where changes in lipids, SCFA, and amino acids were observed. We conclude that adaptation of bacterial strains to the host's gut environment (mono-colonization) may predict a successful establishment of a more complex microbiota in rodents.

  7. NMR study of the 1-13C glucose colon bacterial metabolism

    International Nuclear Information System (INIS)

    Briet, F.; Flourie, B.; Pochart, P.; Rambaud, J.C.; Desjeux, J.F.; Dallery, L.; Grivet, J.P.

    1994-01-01

    The aim of the study is to examine in-vitro and by nuclear magnetic resonance the biological pathways for the fermentation of the 1- 13 C labelled glucose (99 atoms percent) by human colon bacteria. The preparation of the bacterial suspension and the glucose degradation kinetics are presented; the NMR analysis sensitivity and quantification features are discussed and results are presented. 2 figs., 1 ref

  8. A Root-Colonizing Pseudomonad Lessens Stress Responses in Wheat Imposed by CuO Nanoparticles.

    Directory of Open Access Journals (Sweden)

    Melanie Wright

    Full Text Available Nanoparticle (NPs containing essential metals are being considered in formulations of fertilizers to boost plant nutrition in soils with low metal bioavailability. This paper addresses whether colonization of wheat roots by the bacterium, Pseudomonas chlororaphis O6 (PcO6, protected roots from the reduced elongation caused by CuO NPs. There was a trend for slightly elongated roots when seedlings with roots colonized by PcO6 were grown with CuO NPs; the density of bacterial cells on the root surface was not altered by the NPs. Accumulations of reactive oxygen species in the plant root cells caused by CuO NPs were little affected by root colonization. However, bacterial colonization did reduce the extent of expression of an array of genes associated with plant responses to stress induced by root exposure to CuO NPs. PcO6 colonization also reduced the levels of two important chelators of Cu ions, citric and malic acids, in the rhizosphere solution; presumably because these acids were used as nutrients for bacterial growth. There was a trend for lower levels of soluble Cu in the rhizosphere solution and reduced Cu loads in the true leaves with PcO6 colonization. These studies indicate that root colonization by bacterial cells modulates plant responses to contact with CuO NPs.

  9. Metabolomics analysis identifies intestinal microbiota-derived biomarkers of colonization resistance in clindamycin-treated mice.

    Directory of Open Access Journals (Sweden)

    Robin L P Jump

    Full Text Available The intestinal microbiota protect the host against enteric pathogens through a defense mechanism termed colonization resistance. Antibiotics excreted into the intestinal tract may disrupt colonization resistance and alter normal metabolic functions of the microbiota. We used a mouse model to test the hypothesis that alterations in levels of bacterial metabolites in fecal specimens could provide useful biomarkers indicating disrupted or intact colonization resistance after antibiotic treatment.To assess in vivo colonization resistance, mice were challenged with oral vancomycin-resistant Enterococcus or Clostridium difficile spores at varying time points after treatment with the lincosamide antibiotic clindamycin. For concurrent groups of antibiotic-treated mice, stool samples were analyzed using quantitative real-time polymerase chain reaction to assess changes in the microbiota and using non-targeted metabolic profiling. To assess whether the findings were applicable to another antibiotic class that suppresses intestinal anaerobes, similar experiments were conducted with piperacillin/tazobactam.Colonization resistance began to recover within 5 days and was intact by 12 days after clindamycin treatment, coinciding with the recovery bacteria from the families Lachnospiraceae and Ruminococcaceae, both part of the phylum Firmicutes. Clindamycin treatment caused marked changes in metabolites present in fecal specimens. Of 484 compounds analyzed, 146 (30% exhibited a significant increase or decrease in concentration during clindamycin treatment followed by recovery to baseline that coincided with restoration of in vivo colonization resistance. Identified as potential biomarkers of colonization resistance, these compounds included intermediates in carbohydrate or protein metabolism that increased (pentitols, gamma-glutamyl amino acids and inositol metabolites or decreased (pentoses, dipeptides with clindamycin treatment. Piperacillin

  10. Evaluation of quantitative PCR measurement of bacterial colonization of epithelial cells.

    Science.gov (United States)

    Schmidt, Marcin T; Olejnik-Schmidt, Agnieszka K; Myszka, Kamila; Borkowska, Monika; Grajek, Włodzimierz

    2010-01-01

    Microbial colonization is an important step in establishing pathogenic or probiotic relations to host cells and in biofilm formation on industrial or medical devices. The aim of this work was to verify the applicability of quantitative PCR (Real-Time PCR) to measure bacterial colonization of epithelial cells. Salmonella enterica and Caco-2 intestinal epithelial cell line was used as a model. To verify sensitivity of the assay a competition of the pathogen cells to probiotic microorganism was tested. The qPCR method was compared to plate count and radiolabel approach, which are well established techniques in this area of research. The three methods returned similar results. The best quantification accuracy had radiolabel method, followed by qPCR. The plate count results showed coefficient of variation two-times higher than this of qPCR. The quantitative PCR proved to be a reliable method for enumeration of microbes in colonization assay. It has several advantages that make it very useful in case of analyzing mixed populations, where several different species or even strains can be monitored at the same time.

  11. Host imprints on bacterial genomes--rapid, divergent evolution in individual patients.

    Directory of Open Access Journals (Sweden)

    Jaroslaw Zdziarski

    Full Text Available Bacteria lose or gain genetic material and through selection, new variants become fixed in the population. Here we provide the first, genome-wide example of a single bacterial strain's evolution in different deliberately colonized patients and the surprising insight that hosts appear to personalize their microflora. By first obtaining the complete genome sequence of the prototype asymptomatic bacteriuria strain E. coli 83972 and then resequencing its descendants after therapeutic bladder colonization of different patients, we identified 34 mutations, which affected metabolic and virulence-related genes. Further transcriptome and proteome analysis proved that these genome changes altered bacterial gene expression resulting in unique adaptation patterns in each patient. Our results provide evidence that, in addition to stochastic events, adaptive bacterial evolution is driven by individual host environments. Ongoing loss of gene function supports the hypothesis that evolution towards commensalism rather than virulence is favored during asymptomatic bladder colonization.

  12. ‘Tidjanibacter massiliensis’ gen. nov., sp. nov., a new bacterial species isolated from human colon

    Directory of Open Access Journals (Sweden)

    M. Mailhe

    2017-05-01

    Full Text Available We report the summary of main characteristics of Tidjanibacter massiliensis strain Marseille-P3084T, a new bacterial species isolated from the liquid sample of the colon of a patient with a history of irritable bowel syndrome.

  13. Seagrass (Zostera marina) Colonization Promotes the Accumulation of Diazotrophic Bacteria and Alters the Relative Abundances of Specific Bacterial Lineages Involved in Benthic Carbon and Sulfur Cycling.

    Science.gov (United States)

    Sun, Feifei; Zhang, Xiaoli; Zhang, Qianqian; Liu, Fanghua; Zhang, Jianping; Gong, Jun

    2015-10-01

    Seagrass colonization changes the chemistry and biogeochemical cycles mediated by microbes in coastal sediments. In this study, we molecularly characterized the diazotrophic assemblages and entire bacterial community in surface sediments of a Zostera marina-colonized coastal lagoon in northern China. Higher nitrogenase gene (nifH) copy numbers were detected in the sediments from the vegetated region than in the sediments from the unvegetated region nearby. The nifH phylotypes detected were mostly affiliated with the Geobacteraceae, Desulfobulbus, Desulfocapsa, and Pseudomonas. Redundancy analysis based on terminal restriction fragment length polymorphism analysis showed that the distribution of nifH genotypes was mostly shaped by the ratio of total organic carbon to total organic nitrogen, the concentration of cadmium in the sediments, and the pH of the overlying water. High-throughput sequencing and phylogenetic analyses of bacterial 16S rRNA genes also indicated the presence of Geobacteraceae and Desulfobulbaceae phylotypes in these samples. A comparison of these results with those of previous studies suggests the prevalence and predominance of iron(III)-reducing Geobacteraceae and sulfate-reducing Desulfobulbaceae diazotrophs in coastal sedimentary environments. Although the entire bacterial community structure was not significantly different between these two niches, Desulfococcus (Deltaproteobacteria) and Anaerolineae (Chloroflexi) presented with much higher proportions in the vegetated sediments, and Flavobacteriaceae (Bacteroidetes) occurred more frequently in the bare sediments. These data suggest that the high bioavailability of organic matter (indicated by relatively lower carbon-to-nitrogen ratios) and the less-reducing anaerobic condition in vegetated sediments may favor Desulfococcus and Anaerolineae lineages, which are potentially important populations in benthic carbon and sulfur cycling in the highly productive seagrass ecosystem. Copyright © 2015

  14. Antibiotic use during pregnancy alters the commensal vaginal microbiota

    DEFF Research Database (Denmark)

    Stokholm, J.; Schjørring, S.; Eskildsen, Carl Emil Aae

    2014-01-01

    Antibiotics may induce alterations in the commensal microbiota of the birth canal in pregnant women. Therefore, we studied the effect of antibiotic administration during pregnancy on commensal vaginal bacterial colonization at gestational week 36. Six hundred and sixty-eight pregnant women from...

  15. Does circumcision alter the periurethral uropathogenic bacterial flora

    Directory of Open Access Journals (Sweden)

    Mushtaq Ahmad Laway

    2012-01-01

    Full Text Available Background: The aim of this study was to assess the pattern of periurethral bacterial flora in uncircumcised boys and to evaluate the effect of circumcision on alteration of periurethral uropathogenic bacterial flora. Materials and Methods: Pattern of periurethral bacterial flora before and after circumcision was studied prospectively in 124 boys. The results were analysed to compare change in bacterial colonisation before and after circumcision. Results: The age range was 6 weeks to 96 months. Most (94.3% of the boys had religious indication and 5.7% had medical indication for circumcision. E. coli, Proteus and Klebsiella were most common periurethral bacterial flora in uncircumcised subjects. Coagulase-negative staphylococcus and Staphylococcus aureus was most common periurethral bacterial flora in circumcised subjects. In 66.1% of circumcised subjects, no bacteria were grown from periurethral region. Conclusion: We conclude that presence of prepuce is associated with great quantity of periurethral bacteria, greater likelihood of the presence of high concentration of uropathogens and high incidence of urinary tract infection (UTI. This study provides circumstantial evidence supporting the idea that early circumcision may be beneficial for prevention of UTI.

  16. The Relation Between Ocular/Nasal Bacterial Distribution, Staphylococcus aureus Colonization and Ocular and Nasal Involvement in Atopic Dermatitis Patients

    Directory of Open Access Journals (Sweden)

    Nida Kaçar

    2008-12-01

    Full Text Available Objective: It was aimed to determine bacteria distribution and S.aureus colonization in nares, fornix and eyelid margin of patients with atopic dermatitis (AD compared to controls and to investigate it?s relationship with skin and eye involvement. Methods: Patients dermatological and opthalmologic examinations were done. The standart tear break-up time and Schirmer tests were performed. Samples were taken from fornix, eyelid margin and nares for bacterial culture. Results: Tweenty seven patients and 28 controls were included. There was no difference between the patients with and without eye involvement with respect to dry eye (p>0.05. The bacteria was more frequently isolated in patients (85.2% than controls (60.7%, however S.aureus colonization (51.9%, 50.0% respectively didn?t differ in both groups (p=0.042, p>0.05. The disease severity was positively correlated with S.aureus colonization (p=0.031. There was no difference between the patients with and without eye involvement with respect to S.aureus colonization and presence of bacteria (p>0.05. No bacteria was isolated from patients whom tear function analyses were performed. Conclusions: It wasn?t established an increased percent of S.aureus colonization in AD patients compared with controls. There was no association between dry eye and eye involvement. No comment could be remarked about the possible relation between dry eye and bacterial colonization.

  17. Pre-treatment with Bifidobacterium breve UCC2003 modulates Citrobacter rodentium-induced colonic inflammation and organ specificity.

    Science.gov (United States)

    Collins, James W; Akin, Ali R; Kosta, Artemis; Zhang, Ning; Tangney, Mark; Francis, Kevin P; Frankel, Gad

    2012-11-01

    Citrobacter rodentium, which colonizes the gut mucosa via formation of attaching and effacing (A/E) lesions, causes transmissible colonic hyperplasia. The aim of this study was to evaluate whether prophylactic treatment with Bifidobacterium breve UCC2003 can improve the outcome of C. rodentium infection. Six-week-old albino C57BL/6 mice were pre-treated for 3 days with B. breve, challenged with bioluminescent C. rodentium and administered B. breve or PBS-C for 8 days post-infection; control mice were either administered B. breve and mock-infected with PBS, or mock-treated with PBS-C and mock-infected with PBS. C. rodentium colonization was monitored by bacterial enumeration from faeces and by a combination of both 2D bioluminescence imaging (BLI) and composite 3D diffuse light imaging tomography with µCT imaging (DLIT-µCT). At day 8 post-infection, colons were removed and assessed for crypt hyperplasia, histology by light microscopy, bacterial colonization by immunofluorescence, and A/E lesion formation by electron microscopy. Prophylactic administration of B. breve did not prevent C. rodentium colonization or A/E lesion formation. However, this treatment did alter C. rodentium distribution within the large intestine and significantly reduced colonic crypt hyperplasia at the peak of bacterial infection. These results show that B. breve could not competitively exclude C. rodentium, but reduced pathogen-induced colonic inflammation.

  18. Maternal antibiotic-induced early changes in microbial colonization selectively modulate colonic permeability and inducible heat shock proteins, and digesta concentrations of alkaline phosphatase and TLR-stimulants in swine offspring.

    Directory of Open Access Journals (Sweden)

    Marie-Edith Arnal

    Full Text Available Elevated intake of high energy diets is a risk factor for the development of metabolic diseases and obesity. High fat diets cause alterations in colonic microbiota composition and increase gut permeability to bacterial lipopolysaccharide, and subsequent low-grade chronic inflammation in mice. Chronic inflammatory bowel diseases are increasing worldwide and may involve alterations in microbiota-host dialog. Metabolic disorders appearing in later life are also suspected to reflect changes in early programming. However, how the latter affects the colon remains poorly studied. Here, we hypothesized that various components of colonic physiology, including permeability, ion exchange and protective inducible heat shock proteins (HSP are influenced in the short- and long-terms by early disturbances in microbial colonization. The hypothesis was tested in a swine model. Offspring were born to control mothers (n = 12 or mothers treated with the antibiotic (ATB amoxicillin around parturition (n = 11. Offspring were slaughtered between 14 and 42 days of age to study short-term effects. For long-term effects, young adult offspring from the same litters consumed a normal or a palm oil-enriched diet for 4 weeks between 140 and 169 days of age. ATB treatment transiently modified maternal fecal microbiota although the minor differences observed for offspring colonic microbiota were nonsignificant. In the short-term, consistently higher HSP27 and HSP70 levels and transiently increased horseradish peroxidase permeability in ATB offspring colon were observed. Importantly, long-term consequences included reduced colonic horseradish peroxidase permeability, and increased colonic digesta alkaline phosphatase (AP and TLR2- and TLR4-stimulant concentrations in rectal digesta in adult ATB offspring. Inducible HSP27 and HSP70 did not change. Interactions between early ATB treatment and later diet were noted for paracellular permeability and concentrations of colonic

  19. Xylo-Oligosaccharides and Inulin Affect Genotoxicity and Bacterial Populations Differently in a Human Colonic Simulator Challenged with Soy Protein

    Science.gov (United States)

    Christophersen, Claus T.; Petersen, Anne; Licht, Tine R.; Conlon, Michael A.

    2013-01-01

    High dietary intakes of some protein sources, including soy protein, can increase colonic DNA damage in animals, whereas some carbohydrates attenuate this. We investigated whether inulin and xylo-oligosaccharides (XOS) could be protective against DNA strand breaks by adding them to a human colonic simulator consisting of a proximal vessel (PV) (pH 5.5) and a distal vessel (DV) (pH 6.8) inoculated with human faeces and media containing soy protein. Genotoxicity of the liquid phase and microbial population changes in the vessels were measured. Soy protein (3%) was fermented with 1% low amylose cornstarch for 10 day followed by soy protein with 1% XOS or 1% inulin for 10 day. Inulin did not alter genotoxicity but XOS significantly reduced PV genotoxicity and increased DV genotoxicity. Inulin and XOS significantly increased butyrate concentration in the DV but not PV. Numbers of the key butyrate-producing bacterium Faecalibacterium prausnitzii were significantly increased in the PV and DV by inulin but significantly decreased by XOS in both vessels. Other bacteria examined were also significantly impacted by the carbohydrate treatments or by the vessel (i.e., pH). There was a significant overall inverse correlation between levels of damage induced by the ferments and levels of sulphate-reducing bacteria, Bacteroides fragilis, and acetate. In conclusion, dietary XOS can potentially modulate the genotoxicity of the colonic environment and specific bacterial groups and short chain fatty acids may mediate this. PMID:24064573

  20. Copper Is a Host Effector Mobilized to Urine during Urinary Tract Infection To Impair Bacterial Colonization

    Science.gov (United States)

    Hyre, Amanda N.; Kavanagh, Kylie; Kock, Nancy D.; Donati, George L.

    2016-01-01

    ABSTRACT Urinary tract infection (UTI) is a major global infectious disease affecting millions of people annually. Human urinary copper (Cu) content is elevated during UTI caused by uropathogenic Escherichia coli (UPEC). UPEC upregulates the expression of Cu efflux genes during clinical UTI in patients as an adaptive response to host-derived Cu. Whether Cu is mobilized to urine as a host response to UTI and its role in protection against UTI remain unresolved. To address these questions, we tested the hypothesis that Cu is a host effector mobilized to urine during UTI to limit bacterial growth. Our results reveal that Cu is mobilized to urine during UTI caused by the major uropathogens Proteus mirabilis and Klebsiella pneumoniae, in addition to UPEC, in humans. Ceruloplasmin, a Cu-containing ferroxidase, is found at higher levels in UTI urine than in healthy control urine and serves as the molecular source of urinary Cu during UTI. Our results demonstrate that ceruloplasmin decreases the bioavailability of iron in urine by a transferrin-dependent mechanism. Experimental UTI with UPEC in nonhuman primates recapitulates the increased urinary Cu content observed during clinical UTI. Furthermore, Cu-deficient mice are highly colonized by UPEC, indicating that Cu is involved in the limiting of bacterial growth within the urinary tract. Collectively, our results indicate that Cu is a host effector that is involved in protection against pathogen colonization of the urinary tract. Because urinary Cu levels are amenable to modulation, augmentation of the Cu-based host defense against UTI represents a novel approach to limiting bacterial colonization during UTI. PMID:28031261

  1. Bacterial colonization on coated and uncoated orthodontic wires: A prospective clinical trial

    OpenAIRE

    Seyed Hamid Raji; Hasan Shojaei; Parinaz Saeidi Ghorani; Elahe Rafiei

    2014-01-01

    Background: The advantages of coated orthodontic wires such as esthetic and their effects on reduced friction, corrosion and allergic reaction and the significant consequences of plaque accumulation on oral health encouraged us to assess bacterial colonization on these wires. Materials and Methods: A total of 18 (9 upper and 9 lower) epoxy resin coated 16 × 22 nickel-titanium wires (Spectra, GAC, USA) and 18 (9 upper and 9 lower) non-coated 16 × 22 nickel-titanium wires (Sentalloy, GAC, U...

  2. Osteopontin mediates Citrobacter rodentium-induced colonic epithelial cell hyperplasia and attaching-effacing lesions.

    Science.gov (United States)

    Wine, Eytan; Shen-Tu, Grace; Gareau, Mélanie G; Goldberg, Harvey A; Licht, Christoph; Ngan, Bo-Yee; Sorensen, Esben S; Greenaway, James; Sodek, Jaro; Zohar, Ron; Sherman, Philip M

    2010-09-01

    Although osteopontin (OPN) is up-regulated in inflammatory bowel diseases, its role in disease pathogenesis remains controversial. The objective of this study was to determine the role of OPN in host responses to a non-invasive bacterial pathogen, Citrobacter rodentium, which serves as a murine infectious model of colitis. OPN gene knockout and wild-type mice were infected orogastrically with either C. rodentium or Luria-Bertani (LB) broth. Mouse-derived OPN(+/+) and OPN(-/-) fibroblasts were incubated with C. rodentium and attaching-effacing lesions were demonstrated using transmission electron microscopy and immunofluorescence. Colonic expression of OPN was increased by C. rodentium infection of wild-type mice. Furthermore, colonic epithelial cell hyperplasia, the hallmark of C. rodentium infection, was reduced in OPN(-/-) mice, and spleen enlargement by infection was absent in OPN(-/-) mice. Rectal administration of OPN to OPN(-/-) mice restored these effects. There was an 8- to 17-fold reduction in bacterial colonization in OPN(-/-) mice, compared with wild-type mice, which was accompanied by reduced attaching-effacing lesions, both in infected OPN(-/-) mice and OPN(-/-) mouse fibroblasts. Moreover, adhesion pedestals were restored in OPN(-/-) cells complemented with human OPN. Therefore, lack of OPN results in decreased pedestal formation, colonization, and colonic epithelial cell hyperplasia responses to C. rodentium infection, indicating that OPN impacts disease pathogenesis through bacterial attachment and altered host immune responses.

  3. Clostridium difficile – From Colonization to Infection

    Science.gov (United States)

    Schäffler, Holger; Breitrück, Anne

    2018-01-01

    Clostridium difficile is the most frequent cause of nosocomial antibiotic-associated diarrhea. The incidence of C. difficile infection (CDI) has been rising worldwide with subsequent increases in morbidity, mortality, and health care costs. Asymptomatic colonization with C. difficile is common and a high prevalence has been found in specific cohorts, e.g., hospitalized patients, adults in nursing homes and in infants. However, the risk of infection with C. difficile differs significantly between these cohorts. While CDI is a clear indication for therapy, colonization with C. difficile is not believed to be a direct precursor for CDI and therefore does not require treatment. Antibiotic therapy causes alterations of the intestinal microbial composition, enabling C. difficile colonization and consecutive toxin production leading to disruption of the colonic epithelial cells. Clinical symptoms of CDI range from mild diarrhea to potentially life-threatening conditions like pseudomembranous colitis or toxic megacolon. While antibiotics are still the treatment of choice for CDI, new therapies have emerged in recent years such as antibodies against C. difficile toxin B and fecal microbial transfer (FMT). This specific therapy for CDI underscores the role of the indigenous bacterial composition in the prevention of the disease in healthy individuals and its role in the pathogenesis after alteration by antibiotic treatment. In addition to the pathogenesis of CDI, this review focuses on the colonization of C. difficile in the human gut and factors promoting CDI. PMID:29692762

  4. Gene expression profile and genomic alterations in colonic tumours induced by 1,2-dimethylhydrazine (DMH) in rats

    International Nuclear Information System (INIS)

    Femia, Angelo Pietro; Luceri, Cristina; Toti, Simona; Giannini, Augusto; Dolara, Piero; Caderni, Giovanna

    2010-01-01

    Azoxymethane (AOM) or 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis in rats shares many phenotypical similarities with human sporadic colon cancer and is a reliable model for identifying chemopreventive agents. Genetic mutations relevant to human colon cancer have been described in this model, but comprehensive gene expression and genomic analysis have not been reported so far. Therefore, we applied genome-wide technologies to study variations in gene expression and genomic alterations in DMH-induced colon cancer in F344 rats. For gene expression analysis, 9 tumours (TUM) and their paired normal mucosa (NM) were hybridized on 4 × 44K Whole rat arrays (Agilent) and selected genes were validated by semi-quantitative RT-PCR. Functional analysis on microarray data was performed by GenMAPP/MappFinder analysis. Array-comparative genomic hybridization (a-CGH) was performed on 10 paired TUM-NM samples hybridized on Rat genome arrays 2 × 105K (Agilent) and the results were analyzed by CGH Analytics (Agilent). Microarray gene expression analysis showed that Defcr4, Igfbp5, Mmp7, Nos2, S100A8 and S100A9 were among the most up-regulated genes in tumours (Fold Change (FC) compared with NM: 183, 48, 39, 38, 36 and 32, respectively), while Slc26a3, Mptx, Retlna and Muc2 were strongly down-regulated (FC: -500; -376, -167, -79, respectively). Functional analysis showed that pathways controlling cell cycle, protein synthesis, matrix metalloproteinases, TNFα/NFkB, and inflammatory responses were up-regulated in tumours, while Krebs cycle, the electron transport chain, and fatty acid beta oxidation were down-regulated. a-CGH analysis showed that four TUM out of ten had one or two chromosomal aberrations. Importantly, one sample showed a deletion on chromosome 18 including Apc. The results showed complex gene expression alterations in adenocarcinomas encompassing many altered pathways. While a-CGH analysis showed a low degree of genomic imbalance, it is interesting to

  5. Colonization of Vitis vinifera by a green fluorescence protein-labeled, gfp-marked strain of Xylophilus ampelinus, the causal agent of bacterial necrosis of grapevine.

    Science.gov (United States)

    Grall, Sophie; Manceau, Charles

    2003-04-01

    The dynamics of Xylophilus ampelinus were studied in Vitis vinifera cv. Ugni blanc using gfp-marked bacterial strains to evaluate the relative importance of epiphytic and endophytic phases of plant colonization in disease development. Currently, bacterial necrosis of grapevine is of economic importance in vineyards in three regions in France: the Cognac, Armagnac, and Die areas. This disease is responsible for progressive destruction of vine shoots, leading to their death. We constructed gfp-marked strains of the CFBP2098 strain of X. ampelinus for histological studies. We studied the colonization of young plants of V. vinifera cv. Ugni blanc by X. ampelinus after three types of artificial contamination in a growth chamber and in a greenhouse. (i) After wounding of the stem and inoculation, the bacteria progressed down to the crown through the xylem vessels, where they organized into biofilms. (ii) When the bacteria were forced into woody cuttings, they rarely colonized the emerging plantlets. Xylem vessels could play a key role in the multiplication and conservation of the bacteria, rather than being a route for plant colonization. (iii) When bacterial suspensions were sprayed onto the plants, bacteria progressed in two directions: both in emerging organs and down to the crown, thus displaying the importance of epiphytic colonization in disease development.

  6. MicroRNA, SND1, and alterations in translational regulation in colon carcinogenesis

    International Nuclear Information System (INIS)

    Tsuchiya, Naoto; Nakagama, Hitoshi

    2010-01-01

    Post-transcriptional regulation of gene expression by microRNA (miRNA) has recently attracted major interest in relation to its involvement in cancer development. miRNA is a member of small non-coding RNA, consists of 22-24 nucleotides and regulates expression of target mRNA species in a post-transcriptional manner by being incorporated with RNA-induced silencing complex (RISC). Staphylococcal nuclease homology domain containing 1 (SND1), a component of RISC, is frequently up-regulated in human colon cancers and also chemically induced colon cancers in animals. We here showed that SDN1 is involved in miRNA-mediated gene suppression and overexpression of SND1 in colon cancer cells causes down-regulation of APC without altering APC mRNA levels. As for the miRNA expression profile in human colon cancer, miR-34a was among the list of down-regulated miRNA. Expression of miR-34a is tightly regulated by p53, and ectopic expression of miR-34a in colon cancer cells causes remarkable reduction of cell proliferation and induces senescence-like phenotypes. MiR-34a also participates in the positive feedback loop of the p53 tumor suppressor network. This circuitry mechanism for p53 activation is of interest in understanding the tumor suppressive function of miR-34a in colon carcinogenesis. miRNA should also be considered as novel anti-cancer agents in tumor suppressive therapeutic applications.

  7. Impact of Tigecycline Versus Other Antibiotics on the Fecal Metabolome and on Colonization Resistance to Clostridium difficile in Mice

    Directory of Open Access Journals (Sweden)

    Robin L.P. Jump

    2017-01-01

    Full Text Available Background: The glycylcycline antibiotic tigecycline may have a relatively low propensity to promote Clostridium difficile infection in part because it causes less disruption of the indigenous intestinal microbiota than other broad-spectrum antibiotics.  We used a mouse model to compare the compare the effects of tigecycline versus other commonly used antibiotics on colonization resistance to C. difficile and on metabolic functions of the intestinal microbiota.   Methods: To assess in vivo colonization resistance to C. difficile, mice were challenged with oral C. difficile spores 1, 7, or 12 days after completion of 3 days of treatment with subcutaneous saline, tigecycline, ceftriaxone, piperacillin-tazobactam, or linezolid.  Levels of bacterial metabolites in fecal specimens of mice treated with the same antibiotics were analyzed using non-targeted metabolic profiling by gas chromatograph (GC/mass spectrometry (MS and ultra-high performance liquid chromatography-tandem MS (UPLC-MS/MS.  Results:  All of the antibiotics disrupted colonization resistance to C. difficile when challenge occurred 2 days after treatment.  Only piperacillin/tazobactam and ceftriaxone-treated mice had disturbed colonization resistance at 7 days after treatment.  All of the antibiotics altered fecal metabolites in comparison to controls, but tigecycline caused significantly less alteration than the other antibiotics, including less suppression of multiple amino acids, bile acids, and lipid metabolites.    Conclusions:  Tigecycline and linezolid caused transient disruption of colonization resistance to C. difficile, whereas ceftriaxone and piperacillin/tazobactam caused disruption that persisted for 7 days post-treatment.  Tigecycline caused less profound alteration of fecal bacterial metabolites than the other antibiotics, suggesting that the relatively short period of disruption of colonization resistance might be related in part to reduced alteration of the

  8. Patterns of gut bacterial colonization in three primate species.

    Directory of Open Access Journals (Sweden)

    Erin A McKenney

    Full Text Available Host fitness is impacted by trillions of bacteria in the gastrointestinal tract that facilitate development and are inextricably tied to life history. During development, microbial colonization primes the gut metabolism and physiology, thereby setting the stage for adult nutrition and health. However, the ecological rules governing microbial succession are poorly understood. In this study, we examined the relationship between host lineage, captive diet, and life stage and gut microbiota characteristics in three primate species (infraorder, Lemuriformes. Fecal samples were collected from captive lemur mothers and their infants, from birth to weaning. Microbial DNA was extracted and the v4 region of 16S rDNA was sequenced on the Illumina platform using protocols from the Earth Microbiome Project. Here, we show that colonization proceeds along different successional trajectories in developing infants from species with differing dietary regimes and ecological profiles: frugivorous (fruit-eating Varecia variegata, generalist Lemur catta, and folivorous (leaf-eating Propithecus coquereli. Our analyses reveal community membership and succession patterns consistent with previous studies of human infants, suggesting that lemurs may serve as a useful model of microbial ecology in the primate gut. Each lemur species exhibits distinct species-specific bacterial diversity signatures correlating to life stages and life history traits, implying that gut microbial community assembly primes developing infants at species-specific rates for their respective adult feeding strategies.

  9. Dietary flaxseed modulates the colonic microenvironment in healthy C57Bl/6 male mice which may alter susceptibility to gut-associated diseases.

    Science.gov (United States)

    Power, Krista A; Lepp, Dion; Zarepoor, Leila; Monk, Jennifer M; Wu, Wenqing; Tsao, Rong; Liu, Ronghua

    2016-02-01

    Understanding how dietary components alter the healthy baseline colonic microenvironment is important in determining their roles in influencing gut health and gut-associated diseases. Dietary flaxseed (FS) has demonstrated anti-colon cancer effects in numerous rodent models, however, exacerbated acute colonic mucosal injury and inflammation in a colitis model. This study investigates whether FS alters critical aspects of gut health in healthy unchallenged mice, which may help explain some of the divergent effects observed following different gut-associated disease challenges. Four-week-old C57Bl/6 male mice were fed an AIN-93G basal diet (BD) or an isocaloric BD+10% ground FS diet for 3 weeks. FS enhanced colon goblet cell density, mucus production, MUC2 mRNA expression, and cecal short chain fatty acid levels, indicative of beneficial intestinal barrier integrity responses. Additionally, FS enhanced colonic regenerating islet-derived protein 3 gamma (RegIIIγ) and reduced MUC1 and resistin-like molecule beta (RELMβ) mRNA expression which may indicate altered responses in regulating microbial defense and injury repair responses. FS diet altered the fecal microbial community structure (16S rRNA gene profiling), including a 20-fold increase in Prevotella spp. and a 30-fold reduction in Akkermansia muciniphila abundance. A 10-fold reduction in A. muciniphila abundance by FS was also demonstrated in the colon tissue-associated microbiota (quantitative PCR). Furthermore, fecal branched chain fatty acids were increased by FS, indicative of increased microbial-derived putrefactive compounds. In conclusion, consumption of a FS-supplemented diet alters the baseline colonic microenvironment of healthy mice which may modify subsequent mucosal microbial defense and injury-repair responses leading to altered susceptibility to different gut-associated diseases. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  10. The Relation Between Ocular/Nasal Bacterial Distribution, Staphylococcus aureus Colonization and Ocular and Nasal Involvement in Atopic Dermatitis Patients - Original Article

    Directory of Open Access Journals (Sweden)

    Berna Şanlı Erdoğan

    2008-12-01

    Full Text Available Objective: It was aimed to determine bacteria distribution and S.aureus colonization in nares, fornix and eyelid margin of patients with atopic dermatitis (AD compared to controls and to investigate it’s relationship with skin and eye involvement. Methods: Patients dermatological and opthalmologic examinations were done. The standart tear break-up time and Schirmer tests were performed. Samples were taken from fornix, eyelid margin and nares for bacterial culture. Results: Tweenty seven patients and 28 controls were included. There was no difference between the patients with and without eye involvement with respect to dry eye (p>0.05. The bacteria was more frequently isolated in patients (85.2% than controls (60.7%, however S.aureus colonization (51.9%, 50.0% respectively didn’t differ in both groups (p=0.042, p>0.05. The disease severity was positively correlated with S.aureus colonization (p=0.031. There was no difference between the patients with and without eye involvement with respect to S.aureus colonization and presence of bacteria (p>0.05. No bacteria was isolated from patients whom tear function analyses were performed. Conclusions: It wasn’t established an increased percent of S.aureus colonization in AD patients compared with controls. There was no association between dry eye and eye involvement. No comment could be remarked about the possible relation between dry eye and bacterial colonization.

  11. Copolymers enhance selective bacterial community colonization for potential root zone applications.

    Science.gov (United States)

    Pham, Vy T H; Murugaraj, Pandiyan; Mathes, Falko; Tan, Boon K; Truong, Vi Khanh; Murphy, Daniel V; Mainwaring, David E

    2017-11-21

    Managing the impact of anthropogenic and climate induced stress on plant growth remains a challenge. Here we show that polymeric hydrogels, which maintain their hydrous state, can be designed to exploit functional interactions with soil microorganisms. This microbial enhancement may mitigate biotic and abiotic stresses limiting productivity. The presence of mannan chains within synthetic polyacrylic acid (PAA) enhanced the dynamics and selectivity of bacterial ingress in model microbial systems and soil microcosms. Pseudomonas fluorescens exhibiting high mannan binding adhesins showed higher ingress and localised microcolonies throughout the polymeric network. In contrast, ingress of Bacillus subtilis, lacking adhesins, was unaltered by mannan showing motility comparable to bulk liquids. Incubation within microcosms of an agricultural soil yielded hydrogel populations significantly increased from the corresponding soil. Bacterial diversity was markedly higher in mannan containing hydrogels compared to both control polymer and soil, indicating enhanced selectivity towards microbial families that contain plant beneficial species. Here we propose functional polymers applied to the potential root zone which can positively influence rhizobacteria colonization and potentially plant growth as a new approach to stress tolerance.

  12. Use of portable electronic devices in a hospital setting and their potential for bacterial colonization.

    Science.gov (United States)

    Khan, Amber; Rao, Amitha; Reyes-Sacin, Carlos; Hayakawa, Kayoko; Szpunar, Susan; Riederer, Kathleen; Kaye, Keith; Fishbain, Joel T; Levine, Diane

    2015-03-01

    Portable electronic devices are increasingly being used in the hospital setting. As with other fomites, these devices represent a potential reservoir for the transmission of pathogens. We conducted a convenience sampling of devices in 2 large medical centers to identify bacterial colonization rates and potential risk factors. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  13. Standard colonic lavage alters the natural state of mucosal-associated microbiota in the human colon.

    Directory of Open Access Journals (Sweden)

    Laura Harrell

    Full Text Available Past studies of the human intestinal microbiota are potentially confounded by the common practice of using bowel-cleansing preparations. We examined if colonic lavage changes the natural state of enteric mucosal-adherent microbes in healthy human subjects.Twelve healthy individuals were divided into three groups; experimental group, control group one, and control group two. Subjects in the experimental group underwent an un-prepped flexible sigmoidoscopy with biopsies. Within two weeks, subjects were given a standard polyethylene glycol-based bowel cleansing preparation followed by a second flexible sigmoidoscopy. Subjects in control group one underwent two un-prepped flexible sigmoidoscopies within one week. Subjects in the second control group underwent an un-prepped flexible sigmoidoscopy followed by a second flexible sigmoidoscopy after a 24-hour clear liquid diet within one week. The mucosa-associated microbial communities from the two procedures in each subject were compared using 16S rRNA gene based terminal restriction fragment length polymorphism (T-RFLP, and library cloning and sequencing.Clone library sequencing analysis showed that there were changes in the composition of the mucosa-associated microbiota in subjects after colonic lavage. These changes were not observed in our control groups. Standard bowel preparation altered the diversity of mucosa-associated microbiota. Taxonomic classification did not reveal significant changes at the phylum level, but there were differences observed at the genus level.Standard bowel cleansing preparation altered the mucosal-adherent microbiota in all of our subjects, although the degree of change was variable. These findings underscore the importance of considering the confounding effects of bowel preparation when designing experiments exploring the gut microbiota.

  14. Sequential colonization of periodontal pathogens in induction of periodontal disease and atherosclerosis in LDLRnull mice.

    Science.gov (United States)

    Chukkapalli, Sasanka S; Easwaran, Meena; Rivera-Kweh, Mercedes F; Velsko, Irina M; Ambadapadi, Sriram; Dai, Jiayin; Larjava, Hannu; Lucas, Alexandra R; Kesavalu, Lakshmyya

    2017-01-01

    Periodontal disease (PD) and atherosclerotic vascular disease (ASVD) are both chronic inflammatory diseases with a polymicrobial etiology and have been epidemiologically associated. The purpose is to examine whether periodontal bacteria that infect the periodontium can also infect vascular tissues and enhance pre-existing early aortic atherosclerotic lesions in LDLRnull mice. Mice were orally infected with intermediate bacterial colonizer Fusobacterium nucleatum for the first 12 weeks followed by late bacterial colonizers (Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia) for the remaining 12 weeks mimicking the human oral microbiota ecological colonization. Genomic DNA from all four bacterial was detected in gingival plaque by PCR, consistently demonstrating infection of mouse gingival surfaces. Infected mice had significant levels of IgG and IgM antibodies, alveolar bone resorption, and showed apical migration of junctional epithelium revealing the induction of PD. These results support the ability of oral bacteria to cause PD in mice. Detection of bacterial genomic DNA in systemic organs indicates hematogenous dissemination from the gingival pockets. Bacterial infection did not alter serum lipid fractions or serum amyloid A levels and did not induce aortic atherosclerotic plaque. This is the first study examining the causal role of periodontal bacteria in induction of ASVD in LDLRnull mice. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Tolerance to oxidative stress is required for maximal xylem colonization by the xylem-limited bacterial phytopathogen, Xylella fastidiosa.

    Science.gov (United States)

    Wang, Peng; Lee, Yunho; Igo, Michele M; Roper, M Caroline

    2017-09-01

    Bacterial plant pathogens often encounter reactive oxygen species (ROS) during host invasion. In foliar bacterial pathogens, multiple regulatory proteins are involved in the sensing of oxidative stress and the activation of the expression of antioxidant genes. However, it is unclear whether xylem-limited bacteria, such as Xylella fastidiosa, experience oxidative stress during the colonization of plants. Examination of the X. fastidiosa genome uncovered only one homologue of oxidative stress regulatory proteins, OxyR. Here, a knockout mutation in the X. fastidiosa oxyR gene was constructed; the resulting strain was significantly more sensitive to hydrogen peroxide (H 2 O 2 ) relative to the wild-type. In addition, during early stages of grapevine infection, the survival rate was 1000-fold lower for the oxyR mutant than for the wild-type. This supports the hypothesis that grapevine xylem represents an oxidative environment and that X. fastidiosa must overcome this challenge to achieve maximal xylem colonization. Finally, the oxyR mutant exhibited reduced surface attachment and cell-cell aggregation and was defective in biofilm maturation, suggesting that ROS could be a potential environmental cue stimulating biofilm development during the early stages of host colonization. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  16. Diets that differ in their FODMAP content alter the colonic luminal microenvironment.

    Science.gov (United States)

    Halmos, Emma P; Christophersen, Claus T; Bird, Anthony R; Shepherd, Susan J; Gibson, Peter R; Muir, Jane G

    2015-01-01

    A low FODMAP (Fermentable Oligosaccharides, Disaccharides, Monosaccharides And Polyols) diet reduces symptoms of IBS, but reduction of potential prebiotic and fermentative effects might adversely affect the colonic microenvironment. The effects of a low FODMAP diet with a typical Australian diet on biomarkers of colonic health were compared in a single-blinded, randomised, cross-over trial. Twenty-seven IBS and six healthy subjects were randomly allocated one of two 21-day provided diets, differing only in FODMAP content (mean (95% CI) low 3.05 (1.86 to 4.25) g/day vs Australian 23.7 (16.9 to 30.6) g/day), and then crossed over to the other diet with ≥21-day washout period. Faeces passed over a 5-day run-in on their habitual diet and from day 17 to day 21 of the interventional diets were pooled, and pH, short-chain fatty acid concentrations and bacterial abundance and diversity were assessed. Faecal indices were similar in IBS and healthy subjects during habitual diets. The low FODMAP diet was associated with higher faecal pH (7.37 (7.23 to 7.51) vs. 7.16 (7.02 to 7.30); p=0.001), similar short-chain fatty acid concentrations, greater microbial diversity and reduced total bacterial abundance (9.63 (9.53 to 9.73) vs. 9.83 (9.72 to 9.93) log10 copies/g; pdiet. To indicate direction of change, in comparison with the habitual diet the low FODMAP diet reduced total bacterial abundance and the typical Australian diet increased relative abundance for butyrate-producing Clostridium cluster XIVa (median ratio 6.62; pDiets differing in FODMAP content have marked effects on gut microbiota composition. The implications of long-term reduction of intake of FODMAPs require elucidation. ACTRN12612001185853. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. The Colonic Microbiome and Epithelial Transcriptome Are Altered in Rats Fed a High-Protein Diet Compared with a Normal-Protein Diet.

    Science.gov (United States)

    Mu, Chunlong; Yang, Yuxiang; Luo, Zhen; Guan, Leluo; Zhu, Weiyun

    2016-03-01

    A high-protein diet (HPD) can produce hazardous compounds and reduce butyrate-producing bacteria in feces, which may be detrimental to gut health. However, information on whether HPD affects intestinal function is limited. The aim of this study was to determine the impact of an HPD on the microbiota, microbial metabolites, and epithelial transcriptome in the colons of rats. Adult male Wistar rats were fed either a normal-protein diet (20% protein, 56% carbohydrate) or an HPD (45% protein, 30% carbohydrate) for 6 wk (n = 10 rats per group, individually fed). After 6 wk, the colonic microbiome, microbial metabolites, and epithelial transcriptome were determined. Compared with the normal-protein diet, the HPD adversely altered the colonic microbiota by increasing (P 0.7, P < 0.05) with genes and metabolites generally regarded as being involved in disease pathogenesis, suggesting these bacteria may mediate the detrimental effects of HPDs on colonic health. Our findings suggest that the HPD altered the colonic microbial community, shifted the metabolic profile, and affected the host response in the colons of rats toward an increased risk of colonic disease. © 2016 American Society for Nutrition.

  18. Mutualistic interaction between Salmonella enterica and Aspergillus niger and its effects on Zea mays colonization.

    Science.gov (United States)

    Balbontín, Roberto; Vlamakis, Hera; Kolter, Roberto

    2014-11-01

    Salmonella Typhimurium inhabits a variety of environments and is able to infect a broad range of hosts. Throughout its life cycle, some hosts can act as intermediates in the path to the infection of others. Aspergillus niger is a ubiquitous fungus that can often be found in soil or associated to plants and microbial consortia. Recently, S. Typhimurium was shown to establish biofilms on the hyphae of A. niger. In this work, we have found that this interaction is stable for weeks without a noticeable negative effect on either organism. Indeed, bacterial growth is promoted upon the establishment of the interaction. Moreover, bacterial biofilms protect the fungus from external insults such as the effects of the anti-fungal agent cycloheximide. Thus, the Salmonella-Aspergillus interaction can be defined as mutualistic. A tripartite gnotobiotic system involving the bacterium, the fungus and a plant revealed that co-colonization has a greater negative effect on plant growth than colonization by either organism in dividually. Strikingly, co-colonization also causes a reduction in plant invasion by S. Typhimurium. This work demonstrates that S. Typhimurium and A. niger establish a mutualistic interaction that alters bacterial colonization of plants and affects plant physiology. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  19. Chemopreventive effect of myrtenal on bacterial enzyme activity and the development of 1,2-dimethyl hydrazine-induced aberrant crypt foci in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Lokesh Kumar Booupathy

    2016-01-01

    Full Text Available Colon cancer remains as a serious health problem around the world despite advances in diagnosis and treatment. Dietary fibers are considered to reduce the risk of colon cancer as they are converted to short chain fatty acids by the presence of anaerobic bacteria in the intestine, but imbalanced diet and high fat consumption may promote tumor formation at different sites, including the large bowel via increased bacterial enzymes activity. The present study was conducted to characterize the inhibitory action of myrtenal on bacterial enzymes and aberrant crypt foci (ACF. Experimental colon carcinogenesis induced by 1,2-dimethylhydrazine is histologically, morphologically, and anatomically similar to human colonic epithelial neoplasm. Discrete microscopic mucosal lesions such as ACF and malignant tumors function as important biomarkers in the diagnosis of colon cancer. Methylene blue staining was carried out to visualize the impact of 1,2-dimethylhydrazine and myrtenal. Myrtenal-treated animals showed decreased levels of bacterial enzymes such as β-glucuronidase, β-glucosidase, and mucinase. Characteristic changes in the colon were noticed by inhibiting ACF formation in the colon. In conclusion, treatment with myrtenal provided altered pathophysiological condition in colon cancer-bearing animals with evidence of decreased crypt multiplicity and tumor progression.

  20. Function and phylogeny of bacterial butyryl-CoA:acetate transferases and their diversity in the proximal colon of swine

    Science.gov (United States)

    Studying the host-associated butyrate-producing bacterial community is important because butyrate is essential for colonic homeostasis and gut health. Previous research has identified the butyryl-coA:acetate transferase (2.3.8.3) as a the main gene for butyrate production in intestinal ecosystems; h...

  1. Helicobacter bilis Infection Alters Mucosal Bacteria and Modulates Colitis Development in Defined Microbiota Mice.

    Science.gov (United States)

    Atherly, Todd; Mosher, Curtis; Wang, Chong; Hostetter, Jesse; Proctor, Alexandra; Brand, Meghan W; Phillips, Gregory J; Wannemuehler, Michael; Jergens, Albert E

    2016-11-01

    Helicobacter bilis infection of C3H/HeN mice harboring the altered Schaedler flora (ASF) triggers progressive immune responsiveness and the development of colitis. We sought to investigate temporal alterations in community structure of a defined (ASF-colonized) microbiota in normal and inflamed murine intestines and to correlate microbiota changes to histopathologic lesions. The colonic mucosal microbiota of healthy mice and ASF mice colonized with H. bilis for 3, 6, or 12 weeks were investigated by fluorescence in situ hybridization targeting the 16S ribosomal RNA genes of total bacteria, group-specific organisms, and individual ASF bacterial species. Microbial profiling of ASF and H. bilis abundance was performed on cecal contents. Helicobacter bilis-colonized mice developed colitis associated with temporal changes in composition and spatial distribution of the mucosal microbiota. The number of total bacteria, ASF519, and helicobacter-positive bacteria were increased (P attachment, or by invasion, and this interaction is differentially expressed over time.

  2. Early canine plaque biofilms: characterization of key bacterial interactions involved in initial colonization of enamel.

    Directory of Open Access Journals (Sweden)

    Lucy J Holcombe

    Full Text Available Periodontal disease (PD is a significant problem in dogs affecting between 44% and 63.6% of the population. The main etiological agent for PD is plaque, a microbial biofilm that colonizes teeth and causes inflammation of the gingiva. Understanding how this biofilm initiates on the tooth surface is of central importance in developing interventions against PD. Although the stages of plaque development on human teeth have been well characterized little is known about how canine plaque develops. Recent studies of the canine oral microbiome have revealed distinct differences between the canine and human oral environments and the bacterial communities they support, particularly with respect to healthy plaque. These differences mean knowledge about the nature of plaque formation in humans may not be directly translatable to dogs. The aim of this study was to identify the bacterial species important in the early stages of canine plaque formation in vivo and then use isolates of these species in a laboratory biofilm model to develop an understanding of the sequential processes which take place during the initial colonization of enamel. Supra-gingival plaque samples were collected from 12 dogs at 24 and 48 hour time points following a full mouth descale and polish. Pyrosequencing of the 16S rDNA identified 134 operational taxonomic units after statistical analysis. The species with the highest relative abundance were Bergeyella zoohelcum, Neisseria shayeganii and a Moraxella species. Streptococcal species, which tend to dominate early human plaque biofilms, had very low relative abundance. In vitro testing of biofilm formation identified five primary colonizer species, three of which belonged to the genus Neisseria. Using these pioneer bacteria as a starting point, viable two and three species communities were developed. Combining in vivo and in vitro data has led us to construct novel models of how the early canine plaque biofilm develops.

  3. Functional anatomy of the colonic bioreactor: Impact of antibiotics and Saccharomyces boulardii on bacterial composition in human fecal cylinders.

    Science.gov (United States)

    Swidsinski, Alexander; Loening-Baucke, Vera; Schulz, Stefan; Manowsky, Julia; Verstraelen, Hans; Swidsinski, Sonja

    2016-02-01

    Sections of fecal cylinders were analyzed using fluorescence in situ hybridization targeting 180 bacterial groups. Samples were collected from three groups of women (N=20 each) treated for bacterial vaginosis with ciprofloxacin+metronidazole. Group A only received the combined antibiotic regimen, whereas the A/Sb group received concomitant Saccharomyces boulardii CNCM I-745 treatment, and the A_Sb group received S. boulardii prophylaxis following the 14-day antibiotic course. The number of stool cylinders analyzed was 188 out of 228 in group A, 170 out of 228 in group A/Sb, and 172 out of 216 in group A_Sb. The colonic biomass was organized into a separate mucus layer with no bacteria, a 10-30μm broad unstirred transitional layer enriched with bacteria, and a patchy fermentative area that mixed digestive leftovers with bacteria. The antibiotics suppressed bacteria mainly in the fermentative area, whereas abundant bacterial clades retreated to the transitional mucus and survived. As a result, the total concentration of bacteria decreased only by one order. These effects were lasting, since the overall recovery of the microbial mass, bacterial diversity and concentrations were still below pre-antibiotic values 4 months after the end of antibiotic treatment. Sb-prophylaxis markedly reduced antibiotic effects and improved the recovery rates. Since the colon is a sophisticated bioreactor, the study indicated that the spatial anatomy of its biomass was crucial for its function. Copyright © 2015 The Authors. Published by Elsevier GmbH.. All rights reserved.

  4. Bacterial Endophyte Colonization and Distribution within Plants

    Directory of Open Access Journals (Sweden)

    Shyam L. Kandel

    2017-11-01

    Full Text Available The plant endosphere contains a diverse group of microbial communities. There is general consensus that these microbial communities make significant contributions to plant health. Both recently adopted genomic approaches and classical microbiology techniques continue to develop the science of plant-microbe interactions. Endophytes are microbial symbionts residing within the plant for the majority of their life cycle without any detrimental impact to the host plant. The use of these natural symbionts offers an opportunity to maximize crop productivity while reducing the environmental impacts of agriculture. Endophytes promote plant growth through nitrogen fixation, phytohormone production, nutrient acquisition, and by conferring tolerance to abiotic and biotic stresses. Colonization by endophytes is crucial for providing these benefits to the host plant. Endophytic colonization refers to the entry, growth and multiplication of endophyte populations within the host plant. Lately, plant microbiome research has gained considerable attention but the mechanism allowing plants to recruit endophytes is largely unknown. This review summarizes currently available knowledge about endophytic colonization by bacteria in various plant species, and specifically discusses the colonization of maize plants by Populus endophytes.

  5. Altered expression pattern of molecular factors involved in colonic smooth muscle functions: an immunohistochemical study in patients with diverticular disease.

    Science.gov (United States)

    Mattii, Letizia; Ippolito, Chiara; Segnani, Cristina; Battolla, Barbara; Colucci, Rocchina; Dolfi, Amelio; Bassotti, Gabrio; Blandizzi, Corrado; Bernardini, Nunzia

    2013-01-01

    The pathogenesis of diverticular disease (DD) is thought to result from complex interactions among dietary habits, genetic factors and coexistence of other bowel abnormalities. These conditions lead to alterations in colonic pressure and motility, facilitating the formation of diverticula. Although electrophysiological studies on smooth muscle cells (SMCs) have investigated colonic motor dysfunctions, scarce attention has been paid to their molecular abnormalities, and data on SMCs in DD are lacking. Accordingly, the main purpose of this study was to evaluate the expression patterns of molecular factors involved in the contractile functions of SMCs in the tunica muscularis of colonic specimens from patients with DD. By means of immunohistochemistry and image analysis, we examined the expression of Cx26 and Cx43, which are prominent components of gap junctions in human colonic SMCs, as well as pS368-Cx43, PKCps, RhoA and αSMA, all known to regulate the functions of gap junctions and the contractile activity of SMCs. The immunohistochemical analysis revealed significant abnormalities in DD samples, concerning both the expression and distribution patterns of most of the investigated molecular factors. This study demonstrates, for the first time, that an altered pattern of factors involved in SMC contractility is present at level of the tunica muscularis of DD patients. Moreover, considering that our analysis was conducted on colonic tissues not directly affected by diverticular lesions or inflammatory reactions, it is conceivable that these molecular alterations may precede and predispose to the formation of diverticula, rather than being mere consequences of the disease.

  6. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH

    Directory of Open Access Journals (Sweden)

    Yuting Zhang

    2017-07-01

    Full Text Available Application of chemical fertilizer or manure can affect soil microorganisms directly by supplying nutrients and indirectly by altering soil pH. However, it remains uncertain which effect mostly shapes microbial community structure. We determined soil bacterial diversity and community structure by 454 pyrosequencing the V1-V3 regions of 16S rRNA genes after 7-years (2007–2014 of applying chemical nitrogen, phosphorus and potassium (NPK fertilizers, composted manure or their combination to acidic (pH 5.8, near-neutral (pH 6.8 or alkaline (pH 8.4 Eutric Regosol soil in a maize-vegetable rotation in southwest China. In alkaline soil, nutrient sources did not affect bacterial Operational Taxonomic Unit (OTU richness or Shannon diversity index, despite higher available N, P, K, and soil organic carbon in fertilized than in unfertilized soil. In contrast, bacterial OTU richness and Shannon diversity index were significantly lower in acidic and near-neutral soils under NPK than under manure or their combination, which corresponded with changes in soil pH. Permutational multivariate analysis of variance showed that bacterial community structure was significantly affected across these three soils, but the PCoA ordination patterns indicated the effect was less distinct among nutrient sources in alkaline than in acidic and near-neural soils. Distance-based redundancy analysis showed that bacterial community structures were significantly altered by soil pH in acidic and near-neutral soils, but not by any soil chemical properties in alkaline soil. The relative abundance (% of most bacterial phyla was higher in near-neutral than in acidic or alkaline soils. The most dominant phyla were Proteobacteria (24.6%, Actinobacteria (19.7%, Chloroflexi (15.3% and Acidobacteria (12.6%; the medium dominant phyla were Bacterioidetes (5.3%, Planctomycetes (4.8%, Gemmatimonadetes (4.5%, Firmicutes (3.4%, Cyanobacteria (2.1%, Nitrospirae (1.8%, and candidate division TM7 (1

  7. Fertilization Shapes Bacterial Community Structure by Alteration of Soil pH.

    Science.gov (United States)

    Zhang, Yuting; Shen, Hong; He, Xinhua; Thomas, Ben W; Lupwayi, Newton Z; Hao, Xiying; Thomas, Matthew C; Shi, Xiaojun

    2017-01-01

    Application of chemical fertilizer or manure can affect soil microorganisms directly by supplying nutrients and indirectly by altering soil pH. However, it remains uncertain which effect mostly shapes microbial community structure. We determined soil bacterial diversity and community structure by 454 pyrosequencing the V1-V3 regions of 16S rRNA genes after 7-years (2007-2014) of applying chemical nitrogen, phosphorus and potassium (NPK) fertilizers, composted manure or their combination to acidic (pH 5.8), near-neutral (pH 6.8) or alkaline (pH 8.4) Eutric Regosol soil in a maize-vegetable rotation in southwest China. In alkaline soil, nutrient sources did not affect bacterial Operational Taxonomic Unit (OTU) richness or Shannon diversity index, despite higher available N, P, K, and soil organic carbon in fertilized than in unfertilized soil. In contrast, bacterial OTU richness and Shannon diversity index were significantly lower in acidic and near-neutral soils under NPK than under manure or their combination, which corresponded with changes in soil pH. Permutational multivariate analysis of variance showed that bacterial community structure was significantly affected across these three soils, but the PCoA ordination patterns indicated the effect was less distinct among nutrient sources in alkaline than in acidic and near-neural soils. Distance-based redundancy analysis showed that bacterial community structures were significantly altered by soil pH in acidic and near-neutral soils, but not by any soil chemical properties in alkaline soil. The relative abundance (%) of most bacterial phyla was higher in near-neutral than in acidic or alkaline soils. The most dominant phyla were Proteobacteria (24.6%), Actinobacteria (19.7%), Chloroflexi (15.3%) and Acidobacteria (12.6%); the medium dominant phyla were Bacterioidetes (5.3%), Planctomycetes (4.8%), Gemmatimonadetes (4.5%), Firmicutes (3.4%), Cyanobacteria (2.1%), Nitrospirae (1.8%), and candidate division TM7 (1

  8. Impact of Neonatal Intensive Care Unit Admission on Bacterial Colonization of Donated Human Milk.

    Science.gov (United States)

    Elmekkawi, Amir; O'Connor, Deborah L; Stone, Debbie; Yoon, Eugene W; Larocque, Michael; McGeer, Allison; Unger, Sharon

    2018-05-01

    Unpasteurized human donor milk typically contains a variety of bacteria. The impact of neonatal intensive care unit (NICU) admission of the donor's infant and duration of lactation on bacterial contamination of human milk is unknown. Research aim: This study aimed (a) to describe the frequency/concentration of skin commensal bacteria and pathogens in unpasteurized human donor milk and (b) to assess the impact of NICU admission and (c) the duration of milk expression on bacterial colonization of donated milk. The authors conducted a retrospective cohort study of human milk donated to the Rogers Hixon Ontario Human Milk Bank from January 2013 to June 2014. Milk samples from each donor were cultured every 2 weeks. The study included 198 donor mothers, of whom 63 had infants admitted to the NICU. Of 1,289 cultures obtained, 1,031 (80%) had detectable bacterial growth and 363 (28%) yielded bacterial growth in excess of 10 7 cfu/L, a local threshold for allowable bacteria prior to pasteurization. The mean (standard deviation) donation period per donor was 13.0 (7.5) weeks. Milk from mothers with NICU exposure had significantly higher concentrations of commensals, but not pathogens, at every time period compared with other mothers. For every 1-month increase in donation from all donors, the odds ratio of presence of any commensal in milk increased by 1.13 (95% confidence interval [1.03, 1.23]) and any pathogen by 1.31 (95% confidence interval [1.20, 1.43]). Commensal bacteria were more abundant in donor milk expressed from mothers exposed to neonatal intensive care. Bacterial contamination increased over the milk donation period.

  9. The influence of Staphylococcus aureus on gut microbial ecology in an in vitro continuous culture human colonic model system.

    Science.gov (United States)

    Sannasiddappa, Thippeswamy H; Costabile, Adele; Gibson, Glenn R; Clarke, Simon R

    2011-01-01

    An anaerobic three-stage continuous culture model of the human colon (gut model), which represent different anatomical areas of the large intestine, was used to study the effect of S. aureus infection of the gut on the resident faecal microbiota. Studies on the development of the microbiota in the three vessels were performed and bacteria identified by culture independent fluorescence in situ hybridization (FISH). Furthermore, short chain fatty acids (SCFA), as principal end products of gut bacterial metabolism, were measured along with a quantitative assessment of the predominant microbiota. During steady state conditions, numbers of S. aureus cells stabilised until they were washed out, but populations of indigenous bacteria were transiently altered; thus S. aureus was able to compromise colonisation resistance by the colonic microbiota. Furthermore, the concentration of butyric acid in the vessel representing the proximal colon was significantly decreased by infection. Thus infection by S. aureus appears to be able to alter the overall structure of the human colonic microbiota and the microbial metabolic profiles. This work provides an initial in vitro model to analyse interactions with pathogens.

  10. Protozoa and their bacterial prey colonize sterile soil fast

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Ekelund, Flemming; Jacobsen, Carsten Suhr

    2010-01-01

    We know little about the ability of protozoa to colonize soils, including their successional patterns. To elucidate this issue, we investigated in which order different protozoan morpho-types colonize sterile soil. We used sterilized soils with different carbon content, and exposed them to the at......We know little about the ability of protozoa to colonize soils, including their successional patterns. To elucidate this issue, we investigated in which order different protozoan morpho-types colonize sterile soil. We used sterilized soils with different carbon content, and exposed them...

  11. Alterations in biomechanical properties and microstructure of colon wall in early-stage experimental colitis.

    Science.gov (United States)

    Gong, Xiaohui; Xu, Xiaojuan; Lin, Sisi; Cheng, Yu; Tong, Jianhua; Li, Yongyu

    2017-08-01

    The aim of the current study was to investigate the effects of early-stage dextran sodium sulfate (DSS)-induced mouse colitis on the biomechanical properties and microstructure of colon walls. In the present study, colitis was induced in 8-week-old mice by the oral administration of DSS, and then 10 control and 10 experimental colitis samples were harvested. Uniaxial tensile tests were performed to measure the ultimate tensile strength and ultimate stretches of colon tissues. In addition, histological investigations were performed to characterize changes in the microstructure of the colon wall following treatment. The results revealed that the ultimate tensile stresses were 232±33 and 183±25 kPa for the control and DSS groups, respectively (P=0.001). Ultimate stretches at rupture for the control and DSS groups were 1.43±0.04 and 1.51±0.06, respectively (P=0.006). However, there was no statistically significant difference in tissue stiffness between the two groups. Histological analysis demonstrated high numbers of inflammatory cells infiltrated into the stroma in the DSS group, leading to significant submucosa edema. Hyperplasia was also identified in the DSS-treated submucosa, causing a disorganized microstructure within the colon wall. Furthermore, a large number of collagen fibers in the DSS-treated muscular layer were disrupted, and fiber bundles were thinner when compared with the control group. In conclusion, early-stage experimental colitis alters the mechanical properties and microstructural characteristics of the colon walls, further contributing to tissue remodeling in the pathological process.

  12. A High Grain Diet Dynamically Shifted the Composition of Mucosa-Associated Microbiota and Induced Mucosal Injuries in the Colon of Sheep

    Directory of Open Access Journals (Sweden)

    Yue Wang

    2017-10-01

    Full Text Available This study investigated the dynamic shifts in mucosa-associated microbiota composition and mucosal morphology in the colon of sheep fed a high grain (HG diet. A total of 20 male sheep were randomly assigned to four groups (n = 5 for each. The sheep in first group received hay diet. The animals in other 3 groups were fed an HG diet for 7 (HG7, 14 (HG14, or 28 (HG28 days, respectively. Colonic digesta samples were collected to determine the pH and the concentrations of volatile fatty acid (VFA and lactate. The colonic mucosa was sampled to characterize the bacterial communities using Illumina MiSeq sequencing and to determine mRNA expression levels of cytokines and tight junction protein genes using quantitative real-time PCR. As time advanced, results revealed that colonic pH linearly decreased (P = 0.007, and the concentrations of total VFA linearly increased (P < 0.001. Microbial analysis showed that an HG diet linearly reduced (P < 0.050 the diversity and richness of the colonic microbiota. The principal coordinate analysis results showed that the colonic mucosa-associated bacterial communities of the four groups significantly shifted with number of days fed an HG diet. At the genus level, HG feeding significantly increased the relative abundance of some taxa including Prevotella, Coprococcus, Roseburia, and Clostridium_sensu_stricto_1, and decreased the proportion of Treponema, and the percentage of these taxa was not affected by days fed an HG diet. The microscopic examination showed that HG feeding caused the mucosal epithelial injury. The RT-PCR results showed that the mRNA expression of claudin-1 (P = 0.038, IL-1β (P = 0.045, IL-6 (P = 0.050, and TNF-α (P = 0.020 increased linearly with number of days fed an HG diet. The correlation analysis revealed significant correlation between the colonic mucosal mRNA expression of cytokines and mucosal bacterial composition. Generally, HG feeding increased colonic fermentation and altered colonic

  13. Biocontrol of Bacterial Fruit Blotch by Bacillus subtilis 9407 via Surfactin-Mediated Antibacterial Activity and Colonization

    Science.gov (United States)

    Fan, Haiyan; Zhang, Zhanwei; Li, Yan; Zhang, Xun; Duan, Yongming; Wang, Qi

    2017-01-01

    In this study, Bacillus subtilis 9407 showed a strong antibacterial activity against Acidovorax citrulli in vitro and 61.7% biocontrol efficacy on melon seedlings 4 days post inoculation under greenhouse conditions. To understand the biocontrol mechanism of B. subtilis 9407, identify the primary antibacterial compound and determine its role in controlling bacterial fruit blotch (BFB), a srfAB deletion mutant (ΔsrfAB) was constructed. The ΔsrfAB which was deficient in production of surfactin, not only showed almost no ability to inhibit growth of A. citrulli but also decreased biofilm formation and reduced swarming motility. Colonization assay demonstrated that B. subtilis 9407 could conlonize on melon roots and leaves in a large population, while ΔsrfAB showed a four- to ten-fold reduction in colonization of melon roots and leaves. Furthermore, a biocontrol assay showed that ΔsrfAB lost the biocontrol efficacy. In summary, our results indicated that surfactin, which consists of C13- to C16-surfactin A was the primary antibacterial compound of B. subtilis 9407, and it played a major role in biofilm formation, swarming motility, colonization and suppressing BFB. We propose that the biocontrol activity of B. subtilis 9407 is the results of the coordinated action of surfactin-mediated antibacterial activity and colonization. This study reveals for the first time that the use of a B. subtilis strain as a potential biological control agent could efficiently control BFB by producing surfactin. PMID:29075242

  14. Bacterial translocation in clinical intestinal transplantation.

    Science.gov (United States)

    Cicalese, L; Sileri, P; Green, M; Abu-Elmagd, K; Kocoshis, S; Reyes, J

    2001-05-27

    Bacterial translocation (BT) has been suggested to be responsible for the high incidence of infections occurring after small bowel transplantation (SBTx). Bacterial overgrowth, alteration of the mucosal barrier function as a consequence of preservation injury or acute rejection (AR), and potent immunosuppression are all associated with BT. The aim of this study was to evaluate and quantify the correlation of BT with these events. Fifty pediatric SBTx recipients on tacrolimus and prednisone immunosuppression were analyzed. Blood, stool, and liver biopsies and peritoneal fluid were cultured (circa 4000 total specimens) when infection was clinically suspected or as part of follow-up. BT episodes were considered when microorganisms were found simultaneously in blood or liver biopsy and stool. BT (average of 2.0 episodes/patient) was evident in 44% of patients and was most frequently caused by Enterococcus, Staphylococcus, Enterobacter, and Klebsiella. The presence of a colon allograft was associated with a higher rate of BT (75% vs. 33.3%). Furthermore, the transplantation procedure (colon vs. no colon) affected the rate of BT: SBTx=40% vs. 25%, combined liver and SBTx=100% vs. 30%, multivisceral transplantation=25% vs. 50%. AR was associated with 39% of BT episodes. BT followed AR in 9.6% of the cases. In 5.2% of the cases, positive blood cultures without stool confirmation of the bacteria were seen. Prolonged cold ischemia time (CIT) affected BT rate significantly (CIT>9 hr 76% vs. CIT<9 hr 20.8%). This study shows that 1) a substantial percentage of, but not all, BT is associated with AR, 2) the presence of a colon allograft increases the risk for BT, and 3) a long CIT is associated with a high incidence of BT after SBTx.

  15. Canopy soil bacterial communities altered by severing host tree limbs

    Directory of Open Access Journals (Sweden)

    Cody R. Dangerfield

    2017-09-01

    Full Text Available Trees of temperate rainforests host a large biomass of epiphytic plants, which are associated with soils formed in the forest canopy. Falling of epiphytic material results in the transfer of carbon and nutrients from the canopy to the forest floor. This study provides the first characterization of bacterial communities in canopy soils enabled by high-depth environmental sequencing of 16S rRNA genes. Canopy soil included many of the same major taxonomic groups of Bacteria that are also found in ground soil, but canopy bacterial communities were lower in diversity and contained different operational taxonomic units. A field experiment was conducted with epiphytic material from six Acer macrophyllum trees in Olympic National Park, Washington, USA to document changes in the bacterial communities of soils associated with epiphytic material that falls to the forest floor. Bacterial diversity and composition of canopy soil was highly similar, but not identical, to adjacent ground soil two years after transfer to the forest floor, indicating that canopy bacteria are almost, but not completely, replaced by ground soil bacteria. Furthermore, soil associated with epiphytic material on branches that were severed from the host tree and suspended in the canopy contained altered bacterial communities that were distinct from those in canopy material moved to the forest floor. Therefore, the unique nature of canopy soil bacteria is determined in part by the host tree and not only by the physical environmental conditions associated with the canopy. Connection to the living tree appears to be a key feature of the canopy habitat. These results represent an initial survey of bacterial diversity of the canopy and provide a foundation upon which future studies can more fully investigate the ecological and evolutionary dynamics of these communities.

  16. The Composition of Colonic Commensal Bacteria According to Anatomical Localization in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Liuyang Zhao

    2017-02-01

    Full Text Available Colorectal cancer (CRC is a multistage disease resulting from complex factors, including genetic mutations, epigenetic changes, chronic inflammation, diet, and lifestyle. Recent accumulating evidence suggests that the gut microbiota is a new and important player in the development of CRC. Imbalance of the gut microbiota, especially dysregulated gut bacteria, contributes to colon cancer through mechanisms of inflammation, host defense modulations, oxidative stress, and alterations in bacterial-derived metabolism. Gut commensal bacteria are anatomically defined as four populations: luminal commensal bacteria, mucus-resident bacteria, epithelium-resident bacteria, and lymphoid tissue-resident commensal bacteria. The bacterial flora that are harbored in the gastrointestinal (GI tract vary both longitudinally and cross-sectionally by different anatomical localization. It is notable that the translocation of colonic commensal bacteria is closely related to CRC progression. CRC-associated bacteria can serve as a non-invasive and accurate biomarker for CRC diagnosis. In this review, we summarize recent findings on the oncogenic roles of gut bacteria with different anatomical localization in CRC progression.

  17. Alterations in Helicobacter pylori triggered by contact with gastric epithelial cells

    Directory of Open Access Journals (Sweden)

    Elizabeth M. Johnson

    2012-02-01

    Full Text Available Helicobacter pylori lives within the mucus layer of the human stomach, in close proximity to gastric epithelial cells. While a great deal is known about the effects of H. pylori on human cells and the specific bacterial products that mediate these effects, relatively little work has been done to investigate alterations in H. pylori that may be triggered by bacterial contact with human cells. In this review, we discuss the spectrum of changes in bacterial physiology and morphology that occur when H. pylori is in contact with gastric epithelial cells. Several studies have reported that cell contact causes alterations in H. pylori gene transcription. In addition, H. pylori contact with gastric epithelial cells promotes the formation of pilus-like structures at the bacteria-host cell interface. The formation of these structures requires multiple genes in the cag pathogenicity island, and these structures are proposed to have an important role in the type IV secretion system-dependent process through which CagA enters host cells. Finally, H. pylori contact with epithelial cells can promote bacterial replication and the formation of microcolonies, phenomena that are facilitated by the acquisition of iron and other nutrients from infected cells. In summary, the gastric epithelial cell surface represents an important niche for H. pylori, and upon entry into this niche, the bacteria alter their behavior in a manner that optimizes bacterial proliferation and persistent colonization of the host.

  18. Colonization of Vitis vinifera by a Green Fluorescence Protein-Labeled, gfp-Marked Strain of Xylophilus ampelinus, the Causal Agent of Bacterial Necrosis of Grapevine

    OpenAIRE

    Grall, Sophie; Manceau, Charles

    2003-01-01

    The dynamics of Xylophilus ampelinus were studied in Vitis vinifera cv. Ugni blanc using gfp-marked bacterial strains to evaluate the relative importance of epiphytic and endophytic phases of plant colonization in disease development. Currently, bacterial necrosis of grapevine is of economic importance in vineyards in three regions in France: the Cognac, Armagnac, and Die areas. This disease is responsible for progressive destruction of vine shoots, leading to their death. We constructed gfp-...

  19. Of the Phrensy: an update on the epidemiology and pathogenesis of bacterial meningitis in the pediatric population [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Andrew Janowski

    2017-01-01

    Full Text Available In the past century, advances in antibiotics and vaccination have dramatically altered the incidence and clinical outcomes of bacterial meningitis. We review the shifting epidemiology of meningitis in children, including after the implementation of vaccines that target common meningitic pathogens and the introduction of intrapartum antibiotic prophylaxis offered to mothers colonized with Streptococcus agalactiae. We also discuss what is currently known about the pathogenesis of meningitis. Recent studies of the human microbiome have illustrated dynamic relationships of bacterial and viral populations with the host, which may potentiate the risk of bacterial meningitis.

  20. Long-term nitrogen amendment alters the diversity and assemblage of soil bacterial communities in tallgrass prairie.

    Directory of Open Access Journals (Sweden)

    Joseph D Coolon

    Full Text Available Anthropogenic changes are altering the environmental conditions and the biota of ecosystems worldwide. In many temperate grasslands, such as North American tallgrass prairie, these changes include alteration in historically important disturbance regimes (e.g., frequency of fires and enhanced availability of potentially limiting nutrients, particularly nitrogen. Such anthropogenically-driven changes in the environment are known to elicit substantial changes in plant and consumer communities aboveground, but much less is known about their effects on soil microbial communities. Due to the high diversity of soil microbes and methodological challenges associated with assessing microbial community composition, relatively few studies have addressed specific taxonomic changes underlying microbial community-level responses to different fire regimes or nutrient amendments in tallgrass prairie. We used deep sequencing of the V3 region of the 16S rRNA gene to explore the effects of contrasting fire regimes and nutrient enrichment on soil bacterial communities in a long-term (20 yrs experiment in native tallgrass prairie in the eastern Central Plains. We focused on responses to nutrient amendments coupled with two extreme fire regimes (annual prescribed spring burning and complete fire exclusion. The dominant bacterial phyla identified were Proteobacteria, Verrucomicrobia, Bacteriodetes, Acidobacteria, Firmicutes, and Actinobacteria and made up 80% of all taxa quantified. Chronic nitrogen enrichment significantly impacted bacterial community diversity and community structure varied according to nitrogen treatment, but not phosphorus enrichment or fire regime. We also found significant responses of individual bacterial groups including Nitrospira and Gammaproteobacteria to long-term nitrogen enrichment. Our results show that soil nitrogen enrichment can significantly alter bacterial community diversity, structure, and individual taxa abundance, which have

  1. Quorum-sensing regulation governs bacterial adhesion, biofilm development, and host colonization in Pantoea stewartii subspecies stewartii.

    Science.gov (United States)

    Koutsoudis, Maria D; Tsaltas, Dimitrios; Minogue, Timothy D; von Bodman, Susanne B

    2006-04-11

    The phytopathogenic bacterium Pantoea stewartii subsp. stewartii synthesizes stewartan exo/capsular polysaccharide (EPS) in a cell density-dependent manner governed by the EsaI/EsaR quorum-sensing (QS) system. This study analyzes biofilm development and host colonization of the WT and QS regulatory mutant strains of P. stewartii. First, we show that the cell density-dependent synthesis of stewartan EPS, governed by the EsaI/EsaR QS system, is required for proper bacterial adhesion and development of spatially defined, 3D biofilms. Second, a nonvirulent mutant lacking the esaI gene adheres strongly to surfaces and develops densely packed, less structurally defined biofilms in vitro. This strain appears to be arrested in a low cell density developmental mode. Exposure of this strain to exogenous N-acyl-homoserine lactone counteracts this adhesion phenotype. Third, QS mutants lacking the EsaR repressor attach poorly to surfaces and form amorphous biofilms heavily enmeshed in excess EPS. Fourth, the WT strain disseminates efficiently within the xylem, primarily in a basipetal direction. In contrast, the two QS mutant strains remain largely localized at the site of infection. Fifth, and most significantly, epifluorescence microscopic imaging of infected leaf tissue and excised xylem vessels reveals that the bacteria colonize the xylem with unexpected specificity, particularly toward the annular rings and spiral secondary wall thickenings of protoxylem, as opposed to indiscriminate growth to fill the xylem lumen. These observations are significant to bacterial plant pathogenesis in general and may reveal targets for disease control.

  2. Mechanisms and rates of bacterial colonization of sinking aggregates

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Grossart, H.P.; Ploug, H.

    2002-01-01

    Quantifying the rate at which bacteria colonize aggregates is a key to understanding microbial turnover of aggregates. We used encounter models based on random walk and advection-diffusion considerations to predict colonization rates from the bacteria's motility patterns (swimming speed, tumbling...

  3. Electronic cigarette inhalation alters innate immunity and airway cytokines while increasing the virulence of colonizing bacteria.

    Science.gov (United States)

    Hwang, John H; Lyes, Matthew; Sladewski, Katherine; Enany, Shymaa; McEachern, Elisa; Mathew, Denzil P; Das, Soumita; Moshensky, Alexander; Bapat, Sagar; Pride, David T; Ongkeko, Weg M; Crotty Alexander, Laura E

    2016-06-01

    Electronic (e)-cigarette use is rapidly rising, with 20 % of Americans ages 25-44 now using these drug delivery devices. E-cigarette users expose their airways, cells of host defense, and colonizing bacteria to e-cigarette vapor (EV). Here, we report that exposure of human epithelial cells at the air-liquid interface to fresh EV (vaped from an e-cigarette device) resulted in dose-dependent cell death. After exposure to EV, cells of host defense-epithelial cells, alveolar macrophages, and neutrophils-had reduced antimicrobial activity against Staphylococcus aureus (SA). Mouse inhalation of EV for 1 h daily for 4 weeks led to alterations in inflammatory markers within the airways and elevation of an acute phase reactant in serum. Upon exposure to e-cigarette vapor extract (EVE), airway colonizer SA had increased biofilm formation, adherence and invasion of epithelial cells, resistance to human antimicrobial peptide LL-37, and up-regulation of virulence genes. EVE-exposed SA were more virulent in a mouse model of pneumonia. These data suggest that e-cigarettes may be toxic to airway cells, suppress host defenses, and promote inflammation over time, while also promoting virulence of colonizing bacteria. Acute exposure to e-cigarette vapor (EV) is cytotoxic to airway cells in vitro. Acute exposure to EV decreases macrophage and neutrophil antimicrobial function. Inhalation of EV alters immunomodulating cytokines in the airways of mice. Inhalation of EV leads to increased markers of inflammation in BAL and serum. Staphylococcus aureus become more virulent when exposed to EV.

  4. Distinctive colonization of Bacillus sp. bacteria and the influence of the bacterial biofilm on electrochemical behaviors of aluminum coatings.

    Science.gov (United States)

    Abdoli, Leila; Suo, Xinkun; Li, Hua

    2016-09-01

    Formation of biofilm is usually essential for the development of biofouling and crucially impacts the corrosion of marine structures. Here we report the attachment behaviors of Bacillus sp. bacteria and subsequent formation of bacterial biofilm on stainless steel and thermal sprayed aluminum coatings in artificial seawater. The colonized bacteria accelerate the corrosion of the steel plates, and markedly enhance the anti-corrosion performances of the Al coatings in early growth stage of the bacterial biofilm. After 7days incubation, the biofilm formed on the steel is heterogeneous while exhibits homogeneous feature on the Al coating. Atomic force microscopy examination discloses inception of formation of local pitting on steel plates associated with significantly roughened surface. Electrochemical testing suggests that the impact of the bacterial biofilm on the corrosion behaviors of marine structures is not decided by the biofilm alone, it is instead attributed to synergistic influence by both the biofilm and physicochemical characteristics of the substratum materials. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem.

    Science.gov (United States)

    Hao, Yi; Ma, Chuanxin; Zhang, Zetian; Song, Youhong; Cao, Weidong; Guo, Jing; Zhou, Guopeng; Rui, Yukui; Liu, Liming; Xing, Baoshan

    2018-01-01

    The aim of this study was to compare the toxicity effects of carbon nanomaterials (CNMs), namely fullerene (C 60 ), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs), on a mini-ecosystem of rice grown in a loamy potted soil. We measured plant physiological and biochemical parameters and examined bacterial community composition in the CNMs-treated plant-soil system. After 30 days of exposure, all the three CNMs negatively affected the shoot height and root length of rice, significantly decreased root cortical cells diameter and resulted in shrinkage and deformation of cells, regardless of exposure doses (50 or 500 mg/kg). Additionally, at the high exposure dose of CNM, the concentrations of four phytohormones, including auxin, indoleacetic acid, brassinosteroid and gibberellin acid 4 in rice roots significantly increased as compared to the control. At the high exposure dose of MWCNTs and C 60 , activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) in roots increased significantly. High-throughput sequencing showed that three typical CNMs had little effect on shifting the predominant soil bacterial species, but the presence of CNMs significantly altered the composition of the bacterial community. Our results indicate that different CNMs indeed resulted in environmental toxicity to rice and soil bacterial community in the rhizosphere and suggest that CNMs themselves and their incorporated products should be reasonably used to control their release/discharge into the environment to prevent their toxic effects on living organisms and the potential risks to food safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Novel salicylazo polymers for colon drug delivery: dissolving polymers by means of bacterial degradation.

    Science.gov (United States)

    Saphier, Sigal; Karton, Yishai

    2010-02-01

    Novel azo polymers were prepared for colonic drug delivery with a release mechanism based on structural features of azo derivatives designed for rapid bacterial degradation leading to soluble polymers. Two Salicylazo derivatives were prepared and conjugated as side chains at different ratios to methacrylic acid-methyl methacrylate copolymers (Eudragits). The azo compounds were designed to have a hydrophilic and a hydrophobic part on opposite sides of the azo bond. Upon reduction of the azo bonds, the hydrophobic part is released, resulting in a more water soluble polymer. The solubility of the polymeric films was studied relative to Eudragit S known to dissolve toward the end of the small intestine. One of the two azo derivatives prepared gave rise to polymers, which showed reduced solubility relative to Eudragit S. These polymers were subjected to reduction tests in anaerobic rat cecal suspensions by following the release of the hydrophobic product. Reduction rate was found to be rapid, comparable to that of Sulfasalazine. Studies on the azopolymeric films in anaerobic rat cecal suspensions, showed that these polymers dissolve faster than in sterilized suspensions. Solid dosage forms may be coated with these polymers to provide an efficient delivery system to the colon with a rapid release mechanism. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  7. Mutations That Alter the Bacterial Cell Envelope Increase Lipid Production

    Energy Technology Data Exchange (ETDEWEB)

    Lemmer, Kimberly C.; Zhang, Weiping; Langer, Samantha J.; Dohnalkova, Alice; Hu, Dehong; Lemke, Rachelle A.; Piotrowski, Jeff S.; Orr, Galya; Noguera, Daniel R.; Donohue, Timothy J.

    2017-05-23

    ABSTRACT

    Lipids from microbes offer a promising source of renewable alternatives to petroleum-derived compounds. In particular, oleaginous microbes are of interest because they accumulate a large fraction of their biomass as lipids. In this study, we analyzed genetic changes that alter lipid accumulation inRhodobacter sphaeroides. By screening anR. sphaeroidesTn5mutant library for insertions that increased fatty acid content, we identified 10 high-lipid (HL) mutants for further characterization. These HL mutants exhibited increased sensitivity to drugs that target the bacterial cell envelope and changes in shape, and some had the ability to secrete lipids, with two HL mutants accumulating ~60% of their total lipids extracellularly. When one of the highest-lipid-secreting strains was grown in a fed-batch bioreactor, its lipid content was comparable to that of oleaginous microbes, with the majority of the lipids secreted into the medium. Based on the properties of these HL mutants, we conclude that alterations of the cell envelope are a previously unreported approach to increase microbial lipid production. We also propose that this approach may be combined with knowledge about biosynthetic pathways, in this or other microbes, to increase production of lipids and other chemicals.

    IMPORTANCEThis paper reports on experiments to understand how to increase microbial lipid production. Microbial lipids are often cited as one renewable replacement for petroleum-based fuels and chemicals, but strategies to increase the yield of these compounds are needed to achieve this goal. While lipid biosynthesis is often well understood, increasing yields of these compounds to industrially relevant levels is a challenge, especially since genetic, synthetic biology, or engineering approaches are not feasible in many microbes. We show that altering the bacterial cell envelope can be used to increase

  8. DGGE and 16S rDNA sequencing analysis of bacterial communities in colon content and feces of pigs fed whole crop rice.

    Science.gov (United States)

    Wang, Hai-Feng; Zhu, Wei-Yun; Yao, Wen; Liu, Jian-Xin

    2007-01-01

    The effect of feeding whole crop rice (WCR) to growing-finishing pigs at three levels 0 (Control), 10% and 20% on bacterial communities in colon content and feces was analyzed using 16S rDNA-based techniques. Amplicons of the V6-V8 variable regions of bacterial 16S rDNA were analyzed by denaturing gradient gel electrophoresis (DGGE), cloning and sequencing. The total number of DGGE bands and Shannon index of diversity for feces samples were higher in the pigs fed WCR-containing diets compared with the control, while a decrease trend was observed in these two parameters for colon content samples with the inclusion of WCR in the diets, although statistical differences were not significant. In general, the intestinal bacterial communities were prone to form the cluster for pig fed the same diet. Feeding of WCR induced the presence of special DGGE band with the sequence showing 99% similarity to that of Lactobacillus reuteri (DSM 20016T). The sequences of seven amplicons in total nine clones showed less than 97% similarity with those of previously identified or unidentified bacteria, suggesting that most bacteria in gastrointestinal tracts have not been cultured or identified. The results suggest that the diet containing WCR did not affect the major groups of bacteria, but stimulated the growth of L. reuteri-like species.

  9. Uropathogenic E. coli Exploit CEA to Promote Colonization of the Urogenital Tract Mucosa

    Science.gov (United States)

    Muenzner, Petra; Kengmo Tchoupa, Arnaud; Klauser, Benedikt; Brunner, Thomas; Putze, Johannes; Dobrindt, Ulrich; Hauck, Christof R.

    2016-01-01

    Attachment to the host mucosa is a key step in bacterial pathogenesis. On the apical surface of epithelial cells, members of the human carcinoembryonic antigen (CEA) family are abundant glycoproteins involved in cell-cell adhesion and modulation of cell signaling. Interestingly, several gram-negative bacterial pathogens target these receptors by specialized adhesins. The prototype of a CEACAM-binding pathogen, Neisseria gonorrhoeae, utilizes colony opacity associated (Opa) proteins to engage CEA, as well as the CEA-related cell adhesion molecules CEACAM1 and CEACAM6 on human epithelial cells. By heterologous expression of neisserial Opa proteins in non-pathogenic E. coli we find that the Opa protein-CEA interaction is sufficient to alter gene expression, to increase integrin activity and to promote matrix adhesion of infected cervical carcinoma cells and immortalized vaginal epithelial cells in vitro. These CEA-triggered events translate in suppression of exfoliation and improved colonization of the urogenital tract by Opa protein-expressing E. coli in CEA-transgenic compared to wildtype mice. Interestingly, uropathogenic E. coli expressing an unrelated CEACAM-binding protein of the Afa/Dr adhesin family recapitulate the in vitro and in vivo phenotype. In contrast, an isogenic strain lacking the CEACAM-binding adhesin shows reduced colonization and does not suppress epithelial exfoliation. These results demonstrate that engagement of human CEACAMs by distinct bacterial adhesins is sufficient to blunt exfoliation and to promote host infection. Our findings provide novel insight into mucosal colonization by a common UPEC pathotype and help to explain why human CEACAMs are a preferred epithelial target structure for diverse gram-negative bacteria to establish a foothold on the human mucosa. PMID:27171273

  10. Quantitative assay for the colonization ability of heterogeneous bacteria on controlled nanopillar structures

    International Nuclear Information System (INIS)

    Jin, Lin; Guo, Wen; Zhang, Yali; Xue, Peihong; Gao, Hainan; Zhao, Ming; Zheng, Chen; Han, Dong

    2015-01-01

    The colonization ability of bacteria on biomaterial surfaces is influenced by the morphology of the bacteria and the nanotopography of the biomaterial. However, interactions between the bacterial morphology and nanotopography of biomaterials have not yet been completely elucidated. In this article, we quantitatively characterized the bacterial morphology to illuminate the integrated effects of polyethylene terephthalate (PET) nanopillar arrays on the colonization of bacteria cells with different shapes. Our results demonstrated that the interaction between interpillar spacing and the diameter of the bacterial cells impacted the number of bacterial cells that adhered to different PET substrates. The interpillar spacing of nanopillar arrays promotes bacterial adhesion in a definite range (<50 nm). However, further increasing the interpillar spacing inhibited the adhesion of bacteria to the nanopillar arrays. Moreover, the interpillar spacing also influenced the morphologies of adherent bacterial cells on the PET nanopillar arrays, which consequently facilitated bacterial adhesion to the nanopillar arrays. Our findings enhance the understanding of interactions between controlled nanotopography and bacterial colonization and provide an appropriate parameter for the design of antibacterial materials with nanotopography. (paper)

  11. Muc2 Protects against Lethal Infectious Colitis by Disassociating Pathogenic and Commensal Bacteria from the Colonic Mucosa

    Science.gov (United States)

    Bergstrom, Kirk S. B.; Kissoon-Singh, Vanessa; Gibson, Deanna L.; Ma, Caixia; Montero, Marinieve; Sham, Ho Pan; Ryz, Natasha; Huang, Tina; Velcich, Anna; Finlay, B. Brett; Chadee, Kris; Vallance, Bruce A.

    2010-01-01

    Despite recent advances in our understanding of the pathogenesis of attaching and effacing (A/E) Escherichia coli infections, the mechanisms by which the host defends against these microbes are unclear. The goal of this study was to determine the role of goblet cell-derived Muc2, the major intestinal secretory mucin and primary component of the mucus layer, in host protection against A/E pathogens. To assess the role of Muc2 during A/E bacterial infections, we inoculated Muc2 deficient (Muc2−/−) mice with Citrobacter rodentium, a murine A/E pathogen related to diarrheagenic A/E E. coli. Unlike wildtype (WT) mice, infected Muc2−/− mice exhibited rapid weight loss and suffered up to 90% mortality. Stool plating demonstrated 10–100 fold greater C. rodentium burdens in Muc2−/− vs. WT mice, most of which were found to be loosely adherent to the colonic mucosa. Histology of Muc2−/− mice revealed ulceration in the colon amid focal bacterial microcolonies. Metabolic labeling of secreted mucins in the large intestine demonstrated that mucin secretion was markedly increased in WT mice during infection compared to uninfected controls, suggesting that the host uses increased mucin release to flush pathogens from the mucosal surface. Muc2 also impacted host-commensal interactions during infection, as FISH analysis revealed C. rodentium microcolonies contained numerous commensal microbes, which was not observed in WT mice. Orally administered FITC-Dextran and FISH staining showed significantly worsened intestinal barrier disruption in Muc2−/− vs. WT mice, with overt pathogen and commensal translocation into the Muc2−/− colonic mucosa. Interestingly, commensal depletion enhanced C. rodentium colonization of Muc2−/− mice, although colonic pathology was not significantly altered. In conclusion, Muc2 production is critical for host protection during A/E bacterial infections, by limiting overall pathogen and commensal numbers associated with the colonic

  12. Supplemental Dietary Inulin of Variable Chain Lengths Alters Intestinal Bacterial Populations in Young Pigs123

    Science.gov (United States)

    Patterson, Jannine K.; Yasuda, Koji; Welch, Ross M.; Miller, Dennis D.; Lei, Xin Gen

    2010-01-01

    Previously, we showed that supplementation of diets with short-chain inulin (P95), long-chain inulin (HP), and a 50:50 mixture of both (Synergy 1) improved body iron status and altered expression of the genes involved in iron homeostasis and inflammation in young pigs. However, the effects of these 3 types of inulin on intestinal bacteria remain unknown. Applying terminal restriction fragment length polymorphism analysis, we determined the abundances of luminal and adherent bacterial populations from 6 segments of the small and large intestines of pigs (n = 4 for each group) fed an iron-deficient basal diet (BD) or the BD supplemented with 4% of P95, Synergy 1, or HP for 5 wk. Compared with BD, all 3 types of inulin enhanced (P inulin on bacterial populations in the lumen contents were found. Meanwhile, all 3 types of inulin suppressed the less desirable bacteria Clostridium spp. and members of the Enterobacteriaceae in the lumen and mucosa of various gut segments. Our findings suggest that the ability of dietary inulin to alter intestinal bacterial populations may partially account for its iron bioavailability-promoting effect and possibly other health benefits. PMID:20980641

  13. Effect of co-administration of probiotics with polysaccharide based colon targeted delivery systems to optimize site specific drug release.

    Science.gov (United States)

    Prudhviraj, G; Vaidya, Yogyata; Singh, Sachin Kumar; Yadav, Ankit Kumar; Kaur, Puneet; Gulati, Monica; Gowthamarajan, K

    2015-11-01

    Significant clinical success of colon targeted dosage forms has been limited by their inappropriate release profile at the target site. Their failure to release the drug completely in the colon may be attributed to changes in the colonic milieu because of pathological state, drug effect and psychological stress accompanying the diseased state or, a combination of these. Alteration in normal colonic pH and bacterial picture leads to incomplete release of drug from the designed delivery system. We report the effectiveness of a targeted delivery system wherein the constant replenishment of the colonic microbiota is achieved by concomitant administration of probiotics along with the polysaccharide based drug delivery system. Guar gum coated spheroids of sulfasalazine were prepared. In the dissolution studies, these spheroids showed markedly higher release in the simulated colonic fluid. In vivo experiments conducted in rats clearly demonstrated the therapeutic advantage of co-administration of probiotics with guar gum coated spheroids. Our results suggest that concomitant use of probiotics along with the polysaccharide based delivery systems can be a simple strategy to achieve satisfactory colon targeting of drugs. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Inhibition of Nitzschia ovalis biofilm settlement by a bacterial bioactive compound through alteration of EPS and epiphytic bacteria

    Directory of Open Access Journals (Sweden)

    Claudia D. Infante

    2018-05-01

    Full Text Available Background: Marine ecosystems contain benthic microalgae and bacterial species that are capable of secreting extracellular polymeric substances (EPS, suggesting that settlement of these microorganisms can occur on submerged surfaces, a key part of the first stage of biofouling. Currently, anti-fouling treatments that help control this phenomenon involve the use of biocides or antifouling paints that contain heavy metals, which over a long period of exposure can spread to the environment. The bacterium Alteromonas sp. Ni1-LEM has an inhibitory effect on the adhesion of Nitzschia ovalis, an abundant diatom found on submerged surfaces. Results: We evaluated the effect of the bioactive compound secreted by this bacterium on the EPS of biofilms and associated epiphytic bacteria. Three methods of EPS extraction were evaluated to determine the most appropriate and efficient methodology based on the presence of soluble EPS and the total protein and carbohydrate concentrations. Microalgae were cultured with the bacterial compound to evaluate its effect on EPS secretion and variations in its protein and carbohydrate concentrations. An effect of the bacterial supernatant on EPS was observed by assessing biofilm formation and changes in the concentration of proteins and carbohydrates present in the biofilm. Conclusions: These results indicate that a possible mechanism for regulating biofouling could be through alteration of biofilm EPS and alteration of the epiphytic bacterial community associated with the microalga.How to cite: Infante, C.D., Castillo, F., Pérez, V., et al. Inhibition of Nitzschia ovalis biofilm settlement by a bacterial bioactive compound through alteration of EPS and epiphytic bacteria. Electron J Biotechnol 2018;33 https://doi.org/10.1016/j.ejbt.2018.03.002. Keywords: Anti-fouling, Benthic microalgae, Biofilm, Biofouling, Epiphytic bacterial community, EPS, Marine ecosystems, Metagenomic, Nitzschia ovalis, Settlement inhibition

  15. Characterization of initial events in bacterial surface colonization by two Pseudomonas species using image analysis.

    Science.gov (United States)

    Mueller, R F; Characklis, W G; Jones, W L; Sears, J T

    1992-05-01

    The processes leading to bacterial colonization on solid-water interfaces are adsorption, desorption, growth, and erosion. These processes have been measured individually in situ in a flowing system in real time using image analysis. Four different substrata (copper, silicon, 316 stainless-steel and glass) and 2 different bacterial species (Pseudomonas aeruginosa and Pseudomonas fluorescens) were used in the experiments. The flow was laminar (Re = 1.4) and the shear stress was kept constant during all experiments at 0.75 N m(-2). The surface roughness varied among the substrata from 0.002 microm (for silicon) to 0.015 microm (for copper). Surface free energies varied from 25.1 dynes cm(-1) for silicon to 31.2 dynes cm(-1) for copper. Cell curface hydrophobicity, reported as hydrocarbon partitioning values, ranged from 0.67 for Ps. fluorescens to 0.97 for Ps. aeruginosa.The adsorption rate coefficient varied by as much as a factor of 10 among the combinations of bacterial strain and substratum material, and was positively correlated with surface free energy, the surface roughness of the substratum, and the hydrophobicity of the cells. The probability of desorption decreased with increasing surface free energy and surface roughness of the substratum. Cell growth was inhibited on copper, but replication of cells overlying an initial cell layer was observed with increased exposure time to the cell-containing bulk water. A mathematical model describing cell accumulation on a substratum is presented.

  16. Weight loss following diet-induced obesity does not alter colon tumorigenesis in the AOM mouse model.

    Science.gov (United States)

    Velázquez, Kandy T; Enos, Reilly T; Carson, Meredith S; Cranford, Taryn L; Bader, Jackie E; Chatzistamou, Ioulia; Singh, Udai P; Nagarkatti, Prakash S; Nagarkatti, Mitzi; Davis, J Mark; Carson, James A; Murphy, E Angela

    2016-10-01

    Obesity presents a significant public health concern given its association with increased cancer incidence, unfavorable prognosis, and metastasis. However, there is very little literature on the effects of weight loss, following obesity, on risk for colon cancer or liver cancer. Therefore, we sought to study whether intentional weight loss through diet manipulation was capable of mitigating colon and liver cancer in mice. We fed mice with a high-fat diet (HFD) comprised of 47% carbohydrates, 40% fat, and 13% protein for 20 wk to mimic human obesity. Subsequently, azoxymethane (AOM) was used to promote colon and liver carcinogenesis. A subset of obese mice was then switched to a low-fat diet (LFD) containing 67.5% carbohydrate, 12.2% fat, and 20% protein to promote intentional weight loss. Body weight loss and excess fat reduction did not protect mice from colon cancer progression and liver dysplastic lesion in the AOM-chemical-cancer model even though these mice had improved blood glucose and leptin levels. Intentional weight loss in AOM-treated mice actually produced histological changes that resemble dysplastic alterations in the liver and presented a higher percentage of F4/80 + CD206 + macrophages and activated T cells (CD4 + CD69 + ) in the spleen and lymph nodes, respectively. In addition, the liver of AOM-treated mice exposed to a HFD during the entire period of the experiment exhibited a marked increase in proliferation and pNF-κB activation. Altogether, these data suggest that intentional weight loss following chemical-induced carcinogenesis does not affect colon tumorigenesis but may in fact negatively impact liver repair mechanisms. Copyright © 2016 the American Physiological Society.

  17. Desulfovibrio bacterial species are increased in ulcerative colitis.

    LENUS (Irish Health Repository)

    Rowan, Fiachra

    2012-02-01

    BACKGROUND: Debate persists regarding the role of Desulfovibrio subspecies in ulcerative colitis. Combined microscopic and molecular techniques enable this issue to be investigated by allowing precise enumeration of specific bacterial species within the colonic mucous gel. The aim of this study was to combine laser capture microdissection and quantitative polymerase chain reaction to determine Desulfovibrio copy number in crypt-associated mucous gel in health and in acute and chronic ulcerative colitis. METHODS: Colonic mucosal biopsies were harvested from healthy controls (n = 19) and patients with acute (n = 10) or chronic (n = 10) ulcerative colitis. Crypt-associated mucous gel was obtained by laser capture microdissection throughout the colon. Pan-bacterial 16S rRNA and Desulfovibrio copy number\\/mm were obtained by polymerase chain reaction at each locus. Bacterial copy numbers were interrogated for correlation with location and disease activity. Data were evaluated using a combination of ordinary linear methods and linear mixed-effects models to cater for multiple interactions. RESULTS: Desulfovibrio positivity was significantly increased in acute and chronic ulcerative colitis at multiple levels within the colon, and after normalization with total bacterial signal, the relative Desulfovibrio load was increased in acute colitis compared with controls. Desulfovibrio counts did not significantly correlate with age, disease duration, or disease activity but interlevel correlations were found in adjacent colonic segments in the healthy control and chronic ulcerative colitis groups. CONCLUSION: The presence of Desulfovibrio subspecies is increased in ulcerative colitis and the data presented suggest that these bacteria represent an increased percentage of the colonic microbiome in acute ulcerative colitis.

  18. Enterobacter Strains Might Promote Colon Cancer.

    Science.gov (United States)

    Yurdakul, Dilşad; Yazgan-Karataş, Ayten; Şahin, Fikrettin

    2015-09-01

    Many studies have been performed to determine the interaction between bacterial species and cancer. However, there has been no attempts to demonstrate a possible relationship between Enterobacter spp. and colon cancer so far. Therefore, in the present study, it is aimed to investigate the effects of Enterobacter strains on colon cancer. Bacterial proteins were isolated from 11 Enterobacter spp., one Morganella morganii, and one Escherichia coli strains, and applied onto NCM460 (Incell) and CRL1790 (ATCC) cell lines. Cell viability and proliferation were determined in MTS assay. Flow Cytometry was used to detect CD24 level and apoptosis. Real-Time PCR studies were performed to determine NFKB and Bcl2 expression. Graphpad Software was used for statistical analysis. The results showed that proteins, isolated from the Enterobacter spp., have significantly increased cell viability and proliferation, while decreasing the apoptosis of the cell lines tested. The data in the present study indicated that Enterobacter strains might promote colon cancer. Moreover, Enterobacter spp. could be a clinically important factor for colon cancer initiation and progression. Studies can be extended on animal models in order to develop new strategies for treatment.

  19. Determinants and Duration of Impact of Early Gut Bacterial Colonization.

    Science.gov (United States)

    Edwards, Christine Ann

    2017-01-01

    An increasing number of studies show low diversity of the gut microbiome in those with chronic diseases such as obesity, inflammatory bowel disease, and allergy. Manipulation of the microbiota may promote health. However, the adult microbiota is stable and may be difficult to change. Understanding the fixed and modifiable factors, which determine colonization in early life, may provide strategies for acquisition of a health-promoting microbiome. Not enough is known about the long-term effects of established determinants of gut colonization, including delivery mode, perinatal antibiotics, and infant diet. It has been suggested that weaning onto solid diet containing non-digestible carbohydrates and cessation of breastfeeding are key stages in the colonization process. In addition, the microbiome of the placenta, amniotic fluid, and breast milk, alongside vaginal and fecal bacteria, may aid the transfer of maternal bacteria to the infant. However, methodological issues such as contamination during collection and/or analysis should be considered. Key Messages: The factors determining early colonization are becoming more evident. However, longitudinal studies of microbiome maturation into late childhood and adulthood are required. The nutrition and health status of the mother before, during, and after birth may be major factors in the early colonization of the infant. © 2017 S. Karger AG, Basel.

  20. High fat diet induced atherosclerosis is accompanied with low colonic bacterial diversity and altered abundances that correlates with plaque size, plasma A-FABP and cholesterol: a pilot study of high fat diet and its intervention with Lactobacillus rhamnosus GG (LGG) or telmisartan in ApoE-/- mice.

    Science.gov (United States)

    Chan, Yee Kwan; Brar, Manreetpal Singh; Kirjavainen, Pirkka V; Chen, Yan; Peng, Jiao; Li, Daxu; Leung, Frederick Chi-Ching; El-Nezami, Hani

    2016-11-08

    Atherosclerosis appears to have multifactorial causes - microbial component like lipopolysaccharides (LPS) and other pathogen associated molecular patterns may be plausible factors. The gut microbiota is an ample source of such stimulants, and its dependent metabolites and altered gut metagenome has been an established link to atherosclerosis. In this exploratory pilot study, we aimed to elucidate whether microbial intervention with probiotics L. rhamnosus GG (LGG) or pharmaceuticals telmisartan (TLM) could improve atherosclerosis in a gut microbiota associated manner. Atherosclerotic phenotype was established by 12 weeks feeding of high fat (HF) diet as opposed to normal chow diet (ND) in apolipoprotein E knockout (ApoE -/- ) mice. LGG or TLM supplementation to HF diet was studied. Both LGG and TLM significantly reduced atherosclerotic plaque size and improved various biomarkers including endotoxin to different extents. Colonial microbiota analysis revealed that TLM restored HF diet induced increase in Firmicutes/Bacteroidetes ratio and decrease in alpha diversity; and led to a more distinct microbial clustering closer to ND in PCoA plot. Eubacteria, Anaeroplasma, Roseburia, Oscillospira and Dehalobacteria appeared to be protective against atherosclerosis and showed significant negative correlation with atherosclerotic plaque size and plasma adipocyte - fatty acid binding protein (A-FABP) and cholesterol. LGG and TLM improved atherosclerosis with TLM having a more distinct alteration in the colonic gut microbiota. Altered bacteria genera and reduced alpha diversity had significant correlations to atherosclerotic plaque size, plasma A-FABP and cholesterol. Future studies on such bacterial functional influence in lipid metabolism will be warranted.

  1. Lectin histochemistry of 1,2-dimethylhydrazine-induced rat colon neoplasia.

    Science.gov (United States)

    Freeman, H J

    1983-10-01

    Lectins linked to fluorescein were used as carbohydrate probes to examine the goblet cell mucin and epithelial cell surface glycoconjugate alterations in an experimental rodent model of colonic neoplasia induced with parenteral 1,2-dimethylhydrazine dihydrochloride. Lectins derived from Triticum vulgare (WGA), Ricinus communis (RCA1), and Limulus polyphemus (LPA) showed reduced labeling of goblet cell mucin in these tumors, while binding with peanut lectin from Arachis hypogaea (PNA), a lectin ordinarily failing to bind to mucin in normal colon, was positive. In addition, RCA1 and LPA showed increased cell surface labeling of neoplastic epithelial cells. Finally, alterations were observed in lectin binding to "transitional" colonic mucosa adjacent to colonic tumors from carcinogen-treated rats. These findings indicate that significant alterations in both membrane and mucin glycoconjugates occur in colonic tumors and mucosa adjacent to tumors in a chemically induced experimental animal model of human colon cancer.

  2. Molecular adaptations of Herbaspirillum seropedicae during colonization of the maize rhizosphere.

    Science.gov (United States)

    Balsanelli, Eduardo; Tadra-Sfeir, Michelle Z; Faoro, Helisson; Pankievicz, Vânia Cs; de Baura, Valter A; Pedrosa, Fábio O; de Souza, Emanuel M; Dixon, Ray; Monteiro, Rose A

    2016-09-01

    Molecular mechanisms of plant recognition and colonization by diazotrophic bacteria are barely understood. Herbaspirillum seropedicae is a Betaproteobacterium capable of colonizing epiphytically and endophytically commercial grasses, to promote plant growth. In this study, we utilized RNA-seq to compare the transcriptional profiles of planktonic and maize root-attached H. seropedicae SmR1 recovered 1 and 3 days after inoculation. The results indicated that nitrogen metabolism was strongly activated in the rhizosphere and polyhydroxybutyrate storage was mobilized in order to assist the survival of H. seropedicae during the early stages of colonization. Epiphytic cells showed altered transcription levels of several genes associated with polysaccharide biosynthesis, peptidoglycan turnover and outer membrane protein biosynthesis, suggesting reorganization of cell wall envelope components. Specific methyl-accepting chemotaxis proteins and two-component systems were differentially expressed between populations over time, suggesting deployment of an extensive bacterial sensory system for adaptation to the plant environment. An insertion mutation inactivating a methyl-accepting chemosensor induced in planktonic bacteria, decreased chemotaxis towards the plant and attachment to roots. In summary, analysis of mutant strains combined with transcript profiling revealed several molecular adaptations that enable H. seropedicae to sense the plant environment, attach to the root surface and survive during the early stages of maize colonization. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Pathogenic bacteria colonizing the airways in asymptomatic neonates stimulates topical inflammatory mediator release

    DEFF Research Database (Denmark)

    Følsgaard, Nilofar Vahman; Schjørring, Susanne; Chawes, Bo Lund Krogsgaard

    2013-01-01

    Rationale: Bacterial colonization of neonatal airways with the pathogenic bacterial species, Moraxella catarrhalis, Streptococcus pneumoniae, and Haemophilus influenzae, is associated with later development of childhood asthma. Objectives: To study a possible association between colonization...... with pathogenic bacterial strains and the immune signature of the upper airways in healthy neonates. Methods: A total of 20 cytokines and chemokines were quantified in vivo in the airway mucosal lining fluid of 662 neonates from the Copenhagen Prospective Study of Asthma in Childhood 2010 birth cohort...

  4. Effects on the equine colon ecosystem of grass silage and haylage diets after an abrupt change from hay.

    Science.gov (United States)

    Muhonen, S; Julliand, V; Lindberg, J E; Bertilsson, J; Jansson, A

    2009-07-01

    the same crop does not induce any major alterations in the colon ecosystem during the first 28 h. During the subsequent 3-wk period, colon and fecal DM decreased and there were alterations in the lactobacilli and streptococci bacterial counts. The changes in lactobacilli and streptococci counts need further investigation.

  5. Effect of antibiotics on bacterial populations: a multi-hierachical selection process.

    Science.gov (United States)

    Martínez, José Luis

    2017-01-01

    Antibiotics have been widely used for a number of decades for human therapy and farming production. Since a high percentage of antibiotics are discharged from the human or animal body without degradation, this means that different habitats, from the human body to river water or soils, are polluted with antibiotics. In this situation, it is expected that the variable concentration of this type of microbial inhibitor present in different ecosystems may affect the structure and the productivity of the microbiota colonizing such habitats. This effect can occur at different levels, including changes in the overall structure of the population, selection of resistant organisms, or alterations in bacterial physiology. In this review, I discuss the available information on how the presence of antibiotics may alter the microbiota and the consequences of such alterations for human health and for the activity of microbiota from different habitats.

  6. Increased Risk of Pneumonia and Bronchiolitis after Bacterial Colonization of the Airways as Neonates

    DEFF Research Database (Denmark)

    Vissing, Nadja Hawwa; Chawes, Bo Lk; Bisgaard, Hans

    2013-01-01

    Rationale: The frequency of pneumonia and bronchiolitis exhibits considerable variation in otherwise healthy children, and suspected risk factors explain only a minor proportion of the variation. We hypothesized that alterations in the airway microbiome in early life may be associated with suscep......Rationale: The frequency of pneumonia and bronchiolitis exhibits considerable variation in otherwise healthy children, and suspected risk factors explain only a minor proportion of the variation. We hypothesized that alterations in the airway microbiome in early life may be associated...... with susceptibility to pneumonia and bronchiolitis in young children. Objectives: To investigate the relation between neonatal airway colonization and pneumonia and bronchiolitis during the first three years of life. Methods: Participants comprised children of the COPSAC2000 cohort; a prospective birth cohort study...... of 411 children born to asthmatic mothers. Aspirates from the hypopharynx at age four weeks were cultured for S.pneumoniae, H.influenzae, M.catarrhalis, and S.aureus. Clinical information on pneumonia and bronchiolitis within the first three years of life was prospectively collected by the research...

  7. Impact of ileocecal resection and concomitant antibiotics on the microbiome of the murine jejunum and colon.

    Directory of Open Access Journals (Sweden)

    Anthony A Devine

    Full Text Available Ileocecal resection (ICR is a commonly required surgical intervention in unmanageable Crohn's disease and necrotizing enterocolitis. However, the impact of ICR, and the concomitant doses of antibiotic routinely given with ICR, on the intestinal commensal microbiota has not been determined. In this study, wild-type C57BL6 mice were subjected to ICR and concomitant single intraperitoneal antibiotic injection. Intestinal lumen contents were collected from jejunum and colon at 7, 14, and 28 days after resection and compared to non-ICR controls. Samples were analyzed by 16S rRNA gene pyrosequencing and quantitative PCR. The intestinal microbiota was altered by 7 days after ICR and accompanying antibiotic treatment, with decreased diversity in the colon. Phylogenetic diversity (PD decreased from 11.8 ± 1.8 in non-ICR controls to 5.9 ± 0.5 in 7-day post-ICR samples. There were also minor effects in the jejunum where PD values decreased from 8.3 ± 0.4 to 7.5 ± 1.4. PCoA analysis indicated that bacterial populations 28 days post-ICR differed significantly from non-ICR controls. Moreover, colon and jejunum bacterial populations were remarkably similar 28 days after resection, whereas the initial communities differed markedly. Firmicutes and Bacteroidetes were the predominant phyla in jejunum and colon before ICR; however, Firmicutes became the vastly predominant phylum in jejunum and colon 28 days after ICR. Although the microbiota returned towards a homeostatic state, with re-establishment of Firmicutes as the predominant phylum, we did not detect Bacteroidetes in the colon 28 days after ICR. In the jejunum Bacteroidetes was detected at a 0.01% abundance after this time period. The changes in jejunal and colonic microbiota induced by ICR and concomitant antibiotic injection may therefore be considered as potential regulators of post-surgical adaptive growth or function, and in a setting of active IBD, potential contributors to post

  8. Vizantin inhibits bacterial adhesion without affecting bacterial growth and causes Streptococcus mutans biofilm to detach by altering its internal architecture.

    Science.gov (United States)

    Takenaka, Shoji; Oda, Masataka; Domon, Hisanori; Ohsumi, Tatsuya; Suzuki, Yuki; Ohshima, Hayato; Yamamoto, Hirofumi; Terao, Yutaka; Noiri, Yuichiro

    2016-11-11

    An ideal antibiofilm strategy is to control both in the quality and quantity of biofilm while maintaining the benefits derived from resident microflora. Vizantin, a recently developed immunostimulating compound, has also been found to have antibiofilm property. This study evaluated the influence on biofilm formation of Streptococcus mutans in the presence of sulfated vizantin and biofilm development following bacterial adhesion on a hydroxyapatite disc coated with sulfated vizantin. Supplementation with sulfated vizantin up to 50 μM did not affect either bacterial growth or biofilm formation, whereas 50 μM sulfated vizantin caused the biofilm to readily detach from the surface. Sulfated vizantin at the concentration of 50 μM upregulated the expression of the gtfB and gtfC genes, but downregulated the expression of the gtfD gene, suggesting altered architecture in the biofilm. Biofilm development on the surface coated with sulfated vizantin was inhibited depending on the concentration, suggesting prevention from bacterial adhesion. Among eight genes related to bacterial adherence in S. mutans, expression of gtfB and gtfC was significantly upregulated, whereas the expression of gtfD, GbpA and GbpC was downregulated according to the concentration of vizantin, especially with 50 μM vizantin by 0.8-, 0.4-, and 0.4-fold, respectively. These findings suggest that sulfated vizantin may cause structural degradation as a result of changing gene regulation related to bacterial adhesion and glucan production of S. mutans. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Impervious Surfaces Alter Soil Bacterial Communities in Urban Areas: A Case Study in Beijing, China

    Directory of Open Access Journals (Sweden)

    Yinhong Hu

    2018-02-01

    Full Text Available The rapid expansion of urbanization has caused land cover change, especially the increasing area of impervious surfaces. Such alterations have significant effects on the soil ecosystem by impeding the exchange of gasses, water, and materials between soil and the atmosphere. It is unclear whether impervious surfaces have any effects on soil bacterial diversity and community composition. In the present study, we conducted an investigation of bacterial communities across five typical land cover types, including impervious surfaces (concrete, permeable pavement (bricks with round holes, shrub coverage (Buxus megistophylla Levl., lawns (Festuca elata Keng ex E. Alexeev, and roadside trees (Sophora japonica Linn. in Beijing, to explore the response of bacteria to impervious surfaces. The soil bacterial communities were addressed by high-throughput sequencing of the bacterial 16S rRNA gene. We found that Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi, and Firmicutes were the predominant phyla in urban soils. Soil from impervious surfaces presented a lower bacterial diversity, and differed greatly from other types of land cover. Soil bacterial diversity was predominantly affected by Zn, dissolved organic carbon (DOC, and soil moisture content (SMC. The composition of the bacterial community was similar under shrub coverage, roadside trees, and lawns, but different from beneath impervious surfaces and permeable pavement. Variance partitioning analysis showed that edaphic properties contributed to 12% of the bacterial community variation, heavy metal pollution explained 3.6% of the variation, and interaction between the two explained 33% of the variance. Together, our data indicate that impervious surfaces induced changes in bacterial community composition and decrease of bacterial diversity. Interactions between edaphic properties and heavy metals were here found to change the composition of the bacterial community and

  10. Ecology of root colonizing Massilia (Oxalobacteraceae.

    Directory of Open Access Journals (Sweden)

    Maya Ofek

    Full Text Available BACKGROUND: Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae, a major group of rhizosphere and root colonizing bacteria of many plant species. METHODOLOGY/PRINCIPAL FINDINGS: The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter and potential competitors. Massilia absolute abundance and relative abundance (dominance were positively related, and peaked (up to 85% at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. CONCLUSIONS: In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche.

  11. Ecology of root colonizing Massilia (Oxalobacteraceae).

    Science.gov (United States)

    Ofek, Maya; Hadar, Yitzhak; Minz, Dror

    2012-01-01

    Ecologically meaningful classification of bacterial populations is essential for understanding the structure and function of bacterial communities. As in soils, the ecological strategy of the majority of root-colonizing bacteria is mostly unknown. Among those are Massilia (Oxalobacteraceae), a major group of rhizosphere and root colonizing bacteria of many plant species. The ecology of Massilia was explored in cucumber root and seed, and compared to that of Agrobacterium population, using culture-independent tools, including DNA-based pyrosequencing, fluorescence in situ hybridization and quantitative real-time PCR. Seed- and root-colonizing Massilia were primarily affiliated with other members of the genus described in soil and rhizosphere. Massilia colonized and proliferated on the seed coat, radicle, roots, and also on hyphae of phytopathogenic Pythium aphanidermatum infecting seeds. High variation in Massilia abundance was found in relation to plant developmental stage, along with sensitivity to plant growth medium modification (amendment with organic matter) and potential competitors. Massilia absolute abundance and relative abundance (dominance) were positively related, and peaked (up to 85%) at early stages of succession of the root microbiome. In comparison, variation in abundance of Agrobacterium was moderate and their dominance increased at later stages of succession. In accordance with contemporary models for microbial ecology classification, copiotrophic and competition-sensitive root colonization by Massilia is suggested. These bacteria exploit, in a transient way, a window of opportunity within the succession of communities within this niche.

  12. Interplay between the gastric bacterial microbiota and Candida albicans during postantibiotic recolonization and gastritis.

    Science.gov (United States)

    Mason, Katie L; Erb Downward, John R; Falkowski, Nicole R; Young, Vincent B; Kao, John Y; Huffnagle, Gary B

    2012-01-01

    The indigenous bacterial microbiome of the stomach, including lactobacilli, is vital in promoting colonization resistance against Candida albicans. However, there are gaps in our understanding about C. albicans gastric colonization versus disease, especially during the postantibiotic recovery phase. This study compared the gastric responses to C. albicans strains CHN1 and SC5314 in microbiome-disturbed and germfree mice to elucidate the contribution of the indigenous microbiota in C. albicans colonization versus disease and yeast-bacterium antagonism during the post-cefoperazone recolonization period. C. albicans can prevent the regrowth of Lactobacillus spp. in the stomach after cefoperazone and promote increased colonization by Enterococcus spp. Using a culture-independent analysis, the effects of oral cefoperazone on the gastric bacterial microbiota were observed to last at least 3 weeks after the cessation of the antibiotic. Disturbance of the gastric bacterial community by cefoperazone alone was not sufficient to cause gastritis, C. albicans colonization was also needed. Gastritis was not evident until after day 7 in cefoperazone-treated infected mice. In contrast, in germfree mice which lack a gastric microbiota, C. albicans induced gastric inflammation within 1 week of inoculation. Therefore, the gastric bacterial community in cefoperazone-treated mice during the first week of postantibiotic recolonization was sufficient to prevent the development of gastritis, despite being ineffective at conferring colonization resistance against C. albicans. Altogether, these data implicate a dichotomy between C. albicans colonization and gastric disease that is bacterial microbiome dependent.

  13. Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Hansen, Lea Benedicte Skov; Bahl, Martin Iain

    2016-01-01

    Little is known about how colonic transit time relates to human colonic metabolism and its importance for host health, although a firm stool consistency, a proxy for a long colonic transit time, has recently been positively associated with gut microbial richness. Here, we show that colonic transi...... does not per se imply a healthy gut microbial ecosystem and points at colonic transit time as a highly important factor to consider in microbiome and metabolomics studies.......Little is known about how colonic transit time relates to human colonic metabolism and its importance for host health, although a firm stool consistency, a proxy for a long colonic transit time, has recently been positively associated with gut microbial richness. Here, we show that colonic transit...... time in humans, assessed using radio-opaque markers, is associated with overall gut microbial composition, diversity and metabolism. We find that a long colonic transit time associates with high microbial richness and is accompanied by a shift in colonic metabolism from carbohydrate fermentation...

  14. Aerobic bacterial microbiota of the conjunctiva in diabetic patients with normal and altered glycated hemoglobin levels in two regions in Brazil

    Directory of Open Access Journals (Sweden)

    Natalia Pimentel Moreno

    2014-12-01

    Full Text Available Purpose: To study the aerobic bacterial microbiota of the conjunctiva in diabetic patients with regard to the management of diabetes, assessed using glycated hemoglobin levels. Methods: A cross-sectional study was conducted using conjunctival smears of diabetic patients from both sexes and with different ages, residing in two different Brazilian cities (Sorocaba and Rio Branco. A control group of non-diabetic patients was also included. The diabetic patients were considered to have controlled diabetes when their glycated hemoglobin level was ≤7% and blood glucose level was ≤126 mg/dL. Patients with non-controlled diabetes were those with glycated hemoglobin levels >7% and blood glucose levels >126 mg/dL. The samples obtained were inoculated in Brain-Heart Infusion broth and in culture media for aerobic bacteria (blood and chocolate agars; bacterial growth was evaluated in a microbiology laboratory. Results: A total of 120 eyes of 120 patients were included in the present study. The percentage of cultures in which bacterial growth was observed was greater in diabetic patients, although the difference was not statistically significant (p=0.103. There was a greater trend toward bacterial growth in the conjunctiva of diabetic patients with altered fasting blood glucose. There was no difference in the frequency of bacterial growth on the conjunctiva between diabetic patients with normal or altered glycated hemoglobin levels. In Sorocaba, conjunctival bacterial growth was similar to that observed in Rio Branco. The microorganism most frequently detected in the present study was Staphylococcus epidermidis, followed by Staphylococcus aureus, Proteus mirabilis, and Escherichia coli. Conclusion: There was no difference between diabetic patients with normal or altered glycated hemoglobin levels. The microorganisms found were similar to those found in studies investigating the conjunctival bacterial flora of diabetic and non-diabetic patients.

  15. Root exudate-induced alterations in Bacillus cereus cell wall contribute to root colonization and plant growth promotion.

    Directory of Open Access Journals (Sweden)

    Swarnalee Dutta

    Full Text Available The outcome of an interaction between plant growth promoting rhizobacteria and plants may depend on the chemical composition of root exudates (REs. We report the colonization of tobacco, and not groundnut, roots by a non-rhizospheric Bacillus cereus (MTCC 430. There was a differential alteration in the cell wall components of B. cereus in response to the REs from tobacco and groundnut. Attenuated total reflectance infrared spectroscopy revealed a split in amide I region of B. cereus cells exposed to tobacco-root exudates (TRE, compared to those exposed to groundnut-root exudates (GRE. In addition, changes in exopolysaccharides and lipid-packing were observed in B. cereus grown in TRE-amended minimal media that were not detectable in GRE-amended media. Cell-wall proteome analyses revealed upregulation of oxidative stress-related alkyl hydroperoxide reductase, and DNA-protecting protein chain (Dlp-2, in response to GRE and TRE, respectively. Metabolism-related enzymes like 2-amino-3-ketobutyrate coenzyme A ligase and 2-methylcitrate dehydratase and a 60 kDa chaperonin were up-regulated in response to TRE and GRE. In response to B. cereus, the plant roots altered their exudate-chemodiversity with respect to carbohydrates, organic acids, alkanes, and polyols. TRE-induced changes in surface components of B. cereus may contribute to successful root colonization and subsequent plant growth promotion.

  16. Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanum tuberosum)

    NARCIS (Netherlands)

    Andreote, F.D.; Rocha, da U.N.; Araujo, W.L.; Azevedo, J.L.; Overbeek, van L.S.

    2010-01-01

    Beneficial bacteria interact with plants by colonizing the rhizosphere and roots followed by further spread through the inner tissues, resulting in endophytic colonization. The major factors contributing to these interactions are not always well understood for most bacterial and plant species. It is

  17. The inoculation method affects colonization and performance of bacterial inoculant strains in the phytoremediation of soil contaminated with diesel oil.

    Science.gov (United States)

    Afzal, Muhammad; Yousaf, Sohail; Reichenauer, Thomas G; Sessitsch, Angela

    2012-01-01

    Plants in combination with microorganisms can remediate soils, which are contaminated with organic pollutants such as petroleum hydrocarbons. Inoculation of plants with degrading bacteria is one approach to improve remediation processes, but is often not successful due to the competition with resident microorganisms. It is therefore of high importance to address the persistence and colonization behavior of inoculant strains. The objective of this study was to determine whether the inoculation method (seed imbibement and soil inoculation) influences bacterial colonization, plant growth promotion and hydrocarbon degradation. Italian ryegrass was grown in non-sterilized soil polluted with diesel and inoculated with different alkane-degrading strains Pantoea sp. ITSI10, Pantoea sp. BTRH79 and Pseudomonas sp. MixRI75 individually as well as in combination. Inoculation generally had a beneficial effect on plant biomass production and hydrocarbon degradation, however, strains inoculated in soil performed better than applied by seed imbibement. Performance correlated with the colonization efficiency of the inoculated strains. The highest hydrocarbon degradation was observed in the treatment, in which all three strains were inoculated in combination into soil. Our study revealed that besides the degradation potential and competitive ability of inoculant strains the inoculation method plays an important role in determining the success of microbial inoculation.

  18. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Klara Klimesova

    2018-04-01

    Full Text Available Host’s physiology is significantly influenced by microbiota colonizing the epithelial surfaces. Complex microbial communities contribute to proper mucosal barrier function, immune response, and prevention of pathogen invasion and have many other crucial functions. The oral cavity and large intestine are distant parts of the digestive tract, both heavily colonized by commensal microbiota. Nevertheless, they feature different proportions of major bacterial and fungal phyla, mostly due to distinct epithelial layers organization and different oxygen levels. A few obligate anaerobic strains inhabiting the oral cavity are involved in the pathogenesis of oral diseases. Interestingly, these microbiota components are also enriched in gut inflammatory and tumor tissue. An altered microbiota composition – dysbiosis – and formation of polymicrobial biofilms seem to play important roles in the development of oral diseases and colorectal cancer. In this review, we describe the differences in composition of commensal microbiota in the oral cavity and large intestine and the mechanisms by which microbiota affect the inflammatory and carcinogenic response of the host.

  19. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production.

    Directory of Open Access Journals (Sweden)

    Mitsuharu Matsumoto

    Full Text Available BACKGROUND: Chronic low-grade inflammation is recognized as an important factor contributing to senescence and age-related diseases. In mammals, levels of polyamines (PAs decrease during the ageing process; PAs are known to decrease systemic inflammation by inhibiting inflammatory cytokine synthesis in macrophages. Reductions in intestinal luminal PAs levels have been associated with intestinal barrier dysfunction. The probiotic strain Bifidobacterium animalis subsp. lactis LKM512 is known to increase intestinal luminal PA concentrations. METHODOLOGY/PRINCIPAL FINDINGS: We supplemented the diet of 10-month-old Crj:CD-1 female mice with LKM512 for 11 months, while the controls received no supplementation. Survival rates were compared using Kaplan-Meier survival curves. LKM512-treated mice survived significantly longer than controls (P<0.001; moreover, skin ulcers and tumors were more common in the control mice. We then analyzed inflammatory and intestinal conditions by measuring several markers using HPLC, ELISA, reverse transcription-quantitative PCR, and histological slices. LKM512 mice showed altered 16S rRNA gene expression of several predominant intestinal bacterial groups. The fecal concentrations of PAs, but not of short-chain fatty acids, were significantly higher in LKM512-treated mice (P<0.05. Colonic mucosal function was also better in LKM512 mice, with increased mucus secretion and better maintenance of tight junctions. Changes in gene expression levels were evaluated using the NimbleGen mouse DNA microarray. LKM512 administration also downregulated the expression of ageing-associated and inflammation-associated genes and gene expression levels in 21-month-old LKM512-treated mice resembled those in 10-month-old untreated (younger mice. CONCLUSION/SIGNIFICANCE: Our study demonstrated increased longevity in mice following probiotic treatment with LKM512, possibly due to the suppression of chronic low-grade inflammation in the colon

  20. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion

    NARCIS (Netherlands)

    Younes, Jessica A.; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J.; Reid, Gregor; van der Mei, Henny C.

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether

  1. Stomach as a source of colonization of the respiratory tract during mechanical ventilation: association with ventilator-associated pneumonia.

    Science.gov (United States)

    Torres, A; El-Ebiary, M; Soler, N; Montón, C; Fàbregas, N; Hernández, C

    1996-08-01

    The aetiopathogenesis of ventilator-associated pneumonia (VAP) requires abnormal oropharyngeal and gastric colonization and the further aspiration of their contents to the lower airways. VAP develops easily if aspiration or inoculation of microorganisms occur in patients with artificial airways, in whom mechanical, cellular and/or humoral defences are altered. Well-known risk factors for gastric colonization include: alterations in gastric juice secretion; alkalinization of gastric contents; administration of enteral nutrition; and the presence of bilirubin. However, the role of the colonized gastric reservoir in the development of VAP remains debatable. Evidence in favour of the role of the stomach in the development of VAP comes mainly from randomized, controlled trials of selective gut decontamination and stress ulcer prophylaxis in the intensive care unit (ICU), in which reducing the bacterial burden of the stomach decreases the incidence of nosocomial respiratory infections. However, at least three studies of flora have found an absence of stomach origin of pneumonia occurring during mechanical ventilation. Prophylactic measures suggested to prevent VAP in relation to the gastric reservoir include: treatment for stress ulcers with sucralfate; prevention of duodenal reflux with metoclopramide; reduction of gastric burden and bacterial translocation by selective digestive decontamination; acidification of enteral feeding; and jejunal feeding. Gastro-oesophageal reflux can be prevented by using small bore nasogastric tubes and jejunal feeding. The aspiration of gastric contents can be reduced by positioning patients in a semirecumbent position, checking the patency of the tube cuff, and aspiration of subglottic secretions. The role of the stomach as a reservoir for microorganisms causing ventilator-associated pneumonia is still controversial but despite the debate, there is major evidence in the literature in favour of the gastric origin of part of these

  2. A Method for Quantification of Epithelium Colonization Capacity by Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Rune M. Pedersen

    2018-02-01

    Full Text Available Most bacterial infections initiate at the mucosal epithelium lining the gastrointestinal, respiratory, and urogenital tracts. At these sites, bacterial pathogens must adhere and increase in numbers to effectively breach the outer barrier and invade the host. If the bacterium succeeds in reaching the bloodstream, effective dissemination again requires that bacteria in the blood, reestablish contact to distant endothelium sites and form secondary site foci. The infectious potential of bacteria is therefore closely linked to their ability to adhere to, colonize, and invade epithelial and endothelial surfaces. Measurement of bacterial adhesion to epithelial cells is therefore standard procedure in studies of bacterial virulence. Traditionally, such measurements have been conducted with microtiter plate cell cultures to which bacteria are added, followed by washing procedures and final quantification of retained bacteria by agar plating. This approach is fast and straightforward, but yields only a rough estimate of the adhesive properties of the bacteria upon contact, and little information on the ability of the bacterium to colonize these surfaces under relevant physiological conditions. Here, we present a method in which epithelia/endothelia are simulated by flow chamber-grown human cell layers, and infection is induced by seeding of pathogenic bacteria on these surfaces under conditions that simulate the physiological microenvironment. Quantification of bacterial adhesion and colonization of the cell layers is then performed by in situ time-lapse fluorescence microscopy and automatic detection of bacterial surface coverage. The method is demonstrated in three different infection models, simulating Staphylococcus aureus endothelial infection and Escherichia coli intestinal- and uroepithelial infection. The approach yields valuable information on the fitness of the bacterium to successfully adhere to and colonize epithelial surfaces and can be used

  3. Bacterial colonization of the ovarian bursa in dogs with clinically suspected pyometra and in controls.

    Science.gov (United States)

    Rubio, Alejandro; Boyen, Filip; Tas, Olaf; Kitshoff, Adriaan; Polis, Ingeborgh; Van Goethem, Bart; de Rooster, Hilde

    2014-10-15

    Septic peritonitis occurs relatively commonly in dogs. Secondary septic peritonitis is usually associated with perforation of intestines or infected viscera, such as the uterus in pyometra cases. The aim of this study was to evaluate the bacterial flora in the ovarian bursae of intact bitches as a potential source of contamination. One hundred forty dogs, clinically suspected of pyometra, were prospectively enrolled. The control group consisted of 26 dogs that underwent elective ovariohysterectomies and 18 dogs with mammary gland tumors that were neutered at the time of mastectomy. Bacteriology samples were taken aseptically at the time of surgery from the bursae and the uterus in all dogs. Twenty-two dogs that were clinically suspected of pyometra had sterile uterine content ("mucometra" cases); the remaining 118 had positive uterine cultures ("pyometra" cases) and septic peritoneal fluid was present in 10% of these cases. Of the 118 pyometra cases, 9 had unilateral and 15 had bilateral bacterial colonization of their ovarian bursae. However, the bacteria from the ovarian bursa were similar to those recovered from the uterine pus in only half of the cases. Furthermore, positive bursae were also seen in one mucometra dog (unilateral) and in four control dogs (two unilateral and two bilateral). The data illustrate that the canine ovarian bursa can harbor bacteria. The biological importance of these isolations remains unclear. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Bacterial desorption from food container and food processing surfaces.

    Science.gov (United States)

    McEldowney, S; Fletcher, M

    1988-03-01

    The desorption ofStaphylococcus aureus, Acinetobacter calcoaceticus, and a coryneform from the surfaces of materials used for manufacturing food containers (glass, tin plate, and polypropylene) or postprocess canning factory conveyor belts (stainless steel and nylon) was investigated. The effect of time, pH, temperature, and adsorbed organic layers on desorption was studied.S. aureus did not detach from the substrata at any pH investigated (between pH 5 and 9).A. calcoaceticus and the coryneform in some cases detached, depending upon pH and substratum composition. The degree of bacterial detachment from the substrata was not related to bacterial respiration at experimental pH values. Bacterial desorption was not affected by temperature (4-30°C) nor by an adsorbed layer of peptone and yeast extract on the substrata. The results indicate that bacterial desorption, hence bacterial removal during cleaning or their transfer via liquids flowing over colonized surfaces, is likely to vary with the surface composition and the bacterial species colonizing the surfaces.

  5. Impact of experimental human pneumococcal carriage on nasopharyngeal bacterial densities in healthy adults.

    Science.gov (United States)

    Shak, Joshua R; Cremers, Amelieke J H; Gritzfeld, Jenna F; de Jonge, Marien I; Hermans, Peter W M; Vidal, Jorge E; Klugman, Keith P; Gordon, Stephen B

    2014-01-01

    Colonization of the nasopharynx by Streptococcus pneumoniae is a necessary precursor to pneumococcal diseases that result in morbidity and mortality worldwide. The nasopharynx is also host to other bacterial species, including the common pathogens Staphylococcus aureus, Haemophilus influenzae, and Moraxella catarrhalis. To better understand how these bacteria change in relation to pneumococcal colonization, we used species-specific quantitative PCR to examine bacterial densities in 52 subjects 7 days before, and 2, 7, and 14 days after controlled inoculation of healthy human adults with S. pneumoniae serotype 6B. Overall, 33 (63%) of subjects carried S. pneumoniae post-inoculation. The baseline presence and density of S. aureus, H. influenzae, and M. catarrhalis were not statistically associated with likelihood of successful pneumococcal colonization at this study's sample size, although a lower rate of pneumococcal colonization in the presence of S. aureus (7/14) was seen compared to that in the presence of H. influenzae (12/16). Among subjects colonized with pneumococci, the number also carrying either H. influenzae or S. aureus fell during the study and at 14 days post-inoculation, the proportion carrying S. aureus was significantly lower among those who were colonized with S. pneumoniae (p = 0.008) compared to non-colonized subjects. These data on bacterial associations are the first to be reported surrounding experimental human pneumococcal colonization and show that co-colonizing effects are likely subtle rather than absolute.

  6. Gastric acid reduction leads to an alteration in lower intestinal microflora

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Takayuki [Department of Gastroenterology, Wakayama Medical University, 811-1 Kimiidera, Wakayama-city, Wakayama 641-0012 (Japan); Matsuki, Takahiro [Yakult Central Institute for Microbiological Research, Tokyo (Japan); Oka, Masashi; Utsunomiya, Hirotoshi [Department of Gastroenterology, Wakayama Medical University, 811-1 Kimiidera, Wakayama-city, Wakayama 641-0012 (Japan); Inada, Kenichi [First Department of Pathology, Fujita Health University School of Medicine, Aichi (Japan); Magari, Hirohito; Inoue, Izumi; Maekita, Takao; Ueda, Kazuki; Enomoto, Shotaro; Iguchi, Mikitaka; Yanaoka, Kimihiko; Tamai, Hideyuki [Department of Gastroenterology, Wakayama Medical University, 811-1 Kimiidera, Wakayama-city, Wakayama 641-0012 (Japan); Akimoto, Shigeru [Department of Microbiology, Wakayama Medical University, 811-1 Kimiidera, Wakayama-city, Wakayama 641-0012 (Japan); Nomoto, Koji; Tanaka, Ryuichiro [Yakult Central Institute for Microbiological Research, Tokyo (Japan); Ichinose, Masao, E-mail: ichinose@wakayama-med.ac.jp [Department of Gastroenterology, Wakayama Medical University, 811-1 Kimiidera, Wakayama-city, Wakayama 641-0012 (Japan)

    2009-04-17

    To clarify the alterations in lower intestinal microflora induced by gastric acid reduction, the dynamics of 12 major genera or groups of bacteria comprising the microflora in feces and colonic contents were examined by quantitative real-time PCR in proton pump inhibitor-treated rats and in asymptomatic human subjects with hypochlorhydria. In both rat and human experiments, most genera or groups of intestinal microflora (facultative and obligate anaerobes) proliferated by gastric acid reduction, and marked and significant increases in the Lactobacilli group and Veillonella, oropharyngeal bacteria, were observed. In rats, potent gastric acid inhibition led to a marked and significant increase of intestinal bacteria, including the Bacteroidesfragilis group, while Bifidobacterium, a beneficial bacterial species, remained at a constant level. These results strongly indicate that the gastric acid barrier not only controls the colonization and growth of oropharyngeal bacteria, but also regulates the population and composition of lower intestinal microflora.

  7. Gastric acid reduction leads to an alteration in lower intestinal microflora

    International Nuclear Information System (INIS)

    Kanno, Takayuki; Matsuki, Takahiro; Oka, Masashi; Utsunomiya, Hirotoshi; Inada, Kenichi; Magari, Hirohito; Inoue, Izumi; Maekita, Takao; Ueda, Kazuki; Enomoto, Shotaro; Iguchi, Mikitaka; Yanaoka, Kimihiko; Tamai, Hideyuki; Akimoto, Shigeru; Nomoto, Koji; Tanaka, Ryuichiro; Ichinose, Masao

    2009-01-01

    To clarify the alterations in lower intestinal microflora induced by gastric acid reduction, the dynamics of 12 major genera or groups of bacteria comprising the microflora in feces and colonic contents were examined by quantitative real-time PCR in proton pump inhibitor-treated rats and in asymptomatic human subjects with hypochlorhydria. In both rat and human experiments, most genera or groups of intestinal microflora (facultative and obligate anaerobes) proliferated by gastric acid reduction, and marked and significant increases in the Lactobacilli group and Veillonella, oropharyngeal bacteria, were observed. In rats, potent gastric acid inhibition led to a marked and significant increase of intestinal bacteria, including the Bacteroidesfragilis group, while Bifidobacterium, a beneficial bacterial species, remained at a constant level. These results strongly indicate that the gastric acid barrier not only controls the colonization and growth of oropharyngeal bacteria, but also regulates the population and composition of lower intestinal microflora.

  8. Xylo-oligosaccharides and inulin affect genotoxicity and bacterial populations differently in a human colonic simulator challenged with soy protein

    DEFF Research Database (Denmark)

    Christophersen, C. T.; Petersen, Anne; Licht, Tine Rask

    2013-01-01

    High dietary intakes of some protein sources, including soy protein, can increase colonic DNA damage in animals, whereas some carbohydrates attenuate this. We investigated whether inulin and xylo-oligosaccharides (XOS) could be protective against DNA strand breaks by adding them to a human colonic...... cornstarch for 10 day followed by soy protein with 1% XOS or 1% inulin for 10 day. Inulin did not alter genotoxicity but XOS significantly reduced PV genotoxicity and increased DV genotoxicity. Inulin and XOS significantly increased butyrate concentration in the DV but not PV. Numbers of the key butyrate......-producing bacterium Faecalibacterium prausnitzii were significantly increased in the PV and DV by inulin but significantly decreased by XOS in both vessels. Other bacteria examined were also significantly impacted by the carbohydrate treatments or by the vessel (i.e., pH). There was a significant overall inverse...

  9. Malignant transformation of colonic epithelial cells by a colon-derived long noncoding RNA

    International Nuclear Information System (INIS)

    Franklin, Jeffrey L.; Rankin, Carl R.; Levy, Shawn; Snoddy, Jay R.; Zhang, Bing; Washington, Mary Kay; Thomson, J. Michael; Whitehead, Robert H.; Coffey, Robert J.

    2013-01-01

    Highlights: •Non-coding RNAs are found in the colonic crypt progenitor compartment. •Colonocytes transformed by ncNRFR are highly invasive and metastatic. •ncNRFR has a region similar to the miRNA, let-7 family. •ncNRFR expression alters let-7 activity as measured by reporter construct. •ncNRFR expression upregulates let-7b targets. -- Abstract: Recent progress has been made in the identification of protein-coding genes and miRNAs that are expressed in and alter the behavior of colonic epithelia. However, the role of long non-coding RNAs (lncRNAs) in colonic homeostasis is just beginning to be explored. By gene expression profiling of post-mitotic, differentiated tops and proliferative, progenitor-compartment bottoms of microdissected adult mouse colonic crypts, we identified several lncRNAs more highly expressed in crypt bottoms. One identified lncRNA, designated non-coding Nras functional RNA (ncNRFR), resides within the Nras locus but appears to be independent of the Nras coding transcript. Stable overexpression of ncNRFR in non-transformed, conditionally immortalized mouse colonocytes results in malignant transformation, as determined by growth in soft agar and formation of highly invasive tumors in nude mice. Moreover, ncNRFR appears to inhibit the function of the tumor suppressor let-7. These results suggest precise regulation of ncNRFR is necessary for proper cell growth in the colonic crypt, and its misregulation results in neoplastic transformation

  10. Colonization by non-pathogenic bacteria alters mRNA expression of cytochromes P450 in originally germ-free mice.

    Science.gov (United States)

    Jourová, L; Anzenbacher, P; Lišková, B; Matušková, Z; Hermanová, P; Hudcovic, T; Kozáková, H; Hrnčířová, L; Anzenbacherová, E

    2017-11-01

    Gut microbiota provides a wide range of beneficial function for the host and has an immense effect on the host's health state. It has also been shown that gut microbiome is often involved in the biotransformation of xenobiotics; however, the molecular mechanisms of the interaction between the gut bacteria and the metabolism of drugs by the host are still unclear. To investigate the effect of microbial colonization on messenger RNA (mRNA) expression of liver cytochromes P450 (CYPs), the main drug-metabolizing enzymes, we used germ-free (GF) mice, lacking the intestinal flora and mice monocolonized by non-pathogenic bacteria Lactobacillus plantarum NIZO2877 or probiotic bacteria Escherichia coli Nissle 1917 compared to specific pathogen-free (SPF) mice. Our results show that the mRNA expression of Cyp1a2 and Cyp2e1 was significantly increased, while the expression of Cyp3a11 mRNA was decreased under GF conditions compared to the SPF mice. The both bacteria L. plantarum NIZO2877 and E. coli Nissle 1917 given to the GF mice decreased the level of Cyp1a2 mRNA and normalized it to the control level. On the other hand, the colonization by these bacteria had no effect on the expression of Cyp3a11 mRNA in the liver of the GF mice (which remained decreased). Surprisingly, monocolonization with chosen bacterial strains has shown a different effect on the expression of Cyp2e1 mRNA in GF mice. Increased level of Cyp2e1 expression observed in the GF mice was found also in mice colonized by L. plantarum NIZO2877 ; however, the colonization with probiotic E. coli Nissle 1917 caused a decrease in Cyp2e1 expression and partially restored the SPF mice conditions.

  11. Composing a Tumor Specific Bacterial Promoter.

    Directory of Open Access Journals (Sweden)

    Igor V Deyneko

    Full Text Available Systemically applied Salmonella enterica spp. have been shown to invade and colonize neoplastic tissues where it retards the growth of many tumors. This offers the possibility to use the bacteria as a vehicle for the tumor specific delivery of therapeutic molecules. Specificity of such delivery is solely depending on promoter sequences that control the production of a target molecule. We have established the functional structure of bacterial promoters that are transcriptionally active exclusively in tumor tissues after systemic application. We observed that the specific transcriptional activation is accomplished by a combination of a weak basal promoter and a strong FNR binding site. This represents a minimal set of control elements required for such activation. In natural promoters, additional DNA remodeling elements are found that alter the level of transcription quantitatively. Inefficiency of the basal promoter ensures the absence of transcription outside tumors. As a proof of concept, we compiled an artificial promoter sequence from individual motifs representing FNR and basal promoter and showed specific activation in a tumor microenvironment. Our results open possibilities for the generation of promoters with an adjusted level of expression of target proteins in particular for applications in bacterial tumor therapy.

  12. MTG16 contributes to colonic epithelial integrity in experimental colitis

    Science.gov (United States)

    Williams, Christopher S; Bradley, Amber M; Chaturvedi, Rupesh; Singh, Kshipra; Piazuelo, Maria B; Chen, Xi; McDonough, Elizabeth M; Schwartz, David A; Brown, Caroline T; Allaman, Margaret M; Coburn, Lori A; Horst, Sara N; Beaulieu, Dawn B; Choksi, Yash A; Washington, Mary Kay; Williams, Amanda D; Fisher, Melissa A; Zinkel, Sandra S; Peek, Richard M; Wilson, Keith T; Hiebert, Scott W

    2013-01-01

    Objective The myeloid translocation genes (MTGs) are transcriptional corepressors with both Mtg8−/− and Mtgr1−/− mice showing developmental and/or differentiation defects in the intestine. We sought to determine the role of MTG16 in intestinal integrity. Methods Baseline and stress induced colonic phenotypes were examined in Mtg16−/− mice. To unmask phenotypes, we treated Mtg16−/− mice with dextran sodium sulphate (DSS) or infected them with Citrobacter rodentium and the colons were examined for ulceration and for changes in proliferation, apoptosis and inflammation. Results Mtg16−/− mice have altered immune subsets, suggesting priming towards Th1 responses. Mtg16−/− mice developed increased weight loss, diarrhoea, mortality and histological colitis and there were increased innate (Gr1+, F4/80+, CD11c+ and MHCII+; CD11c+) and Th1 adaptive (CD4) immune cells in Mtg16−/− colons after DSS treatment. Additionally, there was increased apoptosis and a compensatory increased proliferation in Mtg16−/− colons. Compared with wild-type mice, Mtg16−/− mice exhibited increased colonic CD4;IFN-γ cells in vehicle-treated and DSS-treated mice. Adoptive transfer of wildtype marrow into Mtg16−/− recipients did not rescue the Mtg16−/− injury phenotype. Isolated colonic epithelial cells from DSS-treated Mtg16−/− mice exhibited increased KC (Cxcl1) mRNA expression when compared with wild-type mice. Mtg16−/− mice infected with C rodentium had more severe colitis and greater bacterial colonisation. Last, MTG16 mRNA levels were reduced in human ulcerative colitis versus normal colon tissues. Conclusions These observations indicate that MTG16 is critical for colonocyte survival and regeneration in response to intestinal injury and provide evidence that this transcriptional corepressor regulates inflammatory recruitment in response to injury. PMID:22833394

  13. Honey Bees Avoid Nectar Colonized by Three Bacterial Species, But Not by a Yeast Species, Isolated from the Bee Gut

    Science.gov (United States)

    Good, Ashley P.; Gauthier, Marie-Pierre L.; Vannette, Rachel L.; Fukami, Tadashi

    2014-01-01

    The gut microflora of the honey bee, Apis mellifera, is receiving increasing attention as a potential determinant of the bees’ health and their efficacy as pollinators. Studies have focused primarily on the microbial taxa that appear numerically dominant in the bee gut, with the assumption that the dominant status suggests their potential importance to the bees’ health. However, numerically minor taxa might also influence the bees’ efficacy as pollinators, particularly if they are not only present in the gut, but also capable of growing in floral nectar and altering its chemical properties. Nonetheless, it is not well understood whether honey bees have any feeding preference for or against nectar colonized by specific microbial species. To test whether bees exhibit a preference, we conducted a series of field experiments at an apiary using synthetic nectar inoculated with specific species of bacteria or yeast that had been isolated from the bee gut, but are considered minor components of the gut microflora. These species had also been found in floral nectar. Our results indicated that honey bees avoided nectar colonized by the bacteria Asaia astilbes, Erwinia tasmaniensis, and Lactobacillus kunkeei, whereas the yeast Metschnikowia reukaufii did not affect the feeding preference of the insects. Our results also indicated that avoidance of bacteria-colonized nectar was caused not by the presence of the bacteria per se, but by the chemical changes to nectar made by the bacteria. These findings suggest that gut microbes may not only affect the bees’ health as symbionts, but that some of the microbes may possibly affect the efficacy of A. mellifera as pollinators by altering nectar chemistry and influencing their foraging behavior. PMID:24466119

  14. Lactobacillus salivarius REN counteracted unfavorable 4-nitroquinoline-1-oxide-induced changes in colonic microflora of rats.

    Science.gov (United States)

    Zhang, Ming; Qiao, Xuewei; Zhao, Liang; Jiang, Lu; Ren, Fazheng

    2011-12-01

    Probiotics and carcinogens both have a significant effect on the microfloral composition of the human intestine. The objective of this study was to investigate the impact of an important carcinogen, 4-Nitroquinoline-1-Oxide on colonic microflora and the efficacy of the probiotic Lactobacillus salivarius REN as an agent of counteracting these effects. Using denaturing gradient gel electrophoresis (DGGE) combined with redundancy analysis, we demonstrated that both 4-Nitroquinoline-1-Oxide and L. salivarius REN significantly altered the bacterial communities of rat colons. A total of 27 bacterial strains were identified as being affected by treatment with 4-Nitroquinoline-1-Oxide or L. salivarius REN using a t-value biplot combined with band sequencing. 4-Nitroquinoline-1-Oxide treatment increased the abundance of two potential pathogens (one Helicobacter strain and one Desulfovibrio strain), as well as reducing the abundance of two potentially beneficial strains (one Ruminococcaceae strain and one Rumen bacteria). The Helicobacter strain was initally detected in carcinogen-treated rat intestinal microflora, but L. salivarius REN treatment effectively suppressed the growth of the Helicobacter strain. These results suggested that L. salivarius REN may be a potential probiotic, efficiently acting against the initial infection with, and the growth of pathogenic bacteria.

  15. Impact of experimental human pneumococcal carriage on nasopharyngeal bacterial densities in healthy adults.

    Directory of Open Access Journals (Sweden)

    Joshua R Shak

    Full Text Available Colonization of the nasopharynx by Streptococcus pneumoniae is a necessary precursor to pneumococcal diseases that result in morbidity and mortality worldwide. The nasopharynx is also host to other bacterial species, including the common pathogens Staphylococcus aureus, Haemophilus influenzae, and Moraxella catarrhalis. To better understand how these bacteria change in relation to pneumococcal colonization, we used species-specific quantitative PCR to examine bacterial densities in 52 subjects 7 days before, and 2, 7, and 14 days after controlled inoculation of healthy human adults with S. pneumoniae serotype 6B. Overall, 33 (63% of subjects carried S. pneumoniae post-inoculation. The baseline presence and density of S. aureus, H. influenzae, and M. catarrhalis were not statistically associated with likelihood of successful pneumococcal colonization at this study's sample size, although a lower rate of pneumococcal colonization in the presence of S. aureus (7/14 was seen compared to that in the presence of H. influenzae (12/16. Among subjects colonized with pneumococci, the number also carrying either H. influenzae or S. aureus fell during the study and at 14 days post-inoculation, the proportion carrying S. aureus was significantly lower among those who were colonized with S. pneumoniae (p = 0.008 compared to non-colonized subjects. These data on bacterial associations are the first to be reported surrounding experimental human pneumococcal colonization and show that co-colonizing effects are likely subtle rather than absolute.

  16. Reduced Mass and Diversity of the Colonic Microbiome in Patients with Multiple Sclerosis and Their Improvement with Ketogenic Diet

    Directory of Open Access Journals (Sweden)

    Alexander Swidsinski

    2017-06-01

    Full Text Available Background: Colonic microbiome is thought to be involved in auto-immune multiple sclerosis (MS. Interactions between diet and the colonic microbiome in MS are unknown.Methods: We compared the composition of the colonic microbiota quantitatively in 25 MS patients and 14 healthy controls.Fluorescence in situ hybridization (FISH with 162 ribosomal RNA derived bacterial FISH probes was used. Ten of the MS patients received a ketogenic diet for 6 months. Changes in concentrations of 35 numerically substantial bacterial groups were monitored at baseline and at 2, 12, and 23/24 weeks.Results: No MS typical microbiome pattern was apparent.The total concentrations and diversity of substantial bacterial groups were reduced in MS patients (P < 0.001. Bacterial groups detected with EREC (mainly Roseburia, Bac303 (Bacteroides, and Fprau (Faecalibacterium prausnitzii probes were diminished the most. The individual changes were multidirectional and inconsistent. The effects of a ketogenic diet were biphasic. In the short term, bacterial concentrations and diversity were further reduced. They started to recover at week 12 and exceeded significantly the baseline values after 23–24 weeks on the ketogenic diet.Conclusions: Colonic biofermentative function is markedly impaired in MS patients.The ketogenic diet normalized concentrations of the colonic microbiome after 6 months.

  17. Colonic transit time is related to bacterial metabolism and mucosal turnover in the human gut

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Hansen, Lea Benedicte Skov; Bahl, Martin Iain

    Little is known about how colonic transit time relates to human colonic metabolism, and its importance for host health, although stool consistency, a proxy for colonic transit time, has recently been negatively associated with gut microbial richness. To address the relationships between colonic t...... imply a healthy gut microbial ecosystem and points at colonic transit time as a highly important factor to consider in microbiome and metabolomics studies.......Little is known about how colonic transit time relates to human colonic metabolism, and its importance for host health, although stool consistency, a proxy for colonic transit time, has recently been negatively associated with gut microbial richness. To address the relationships between colonic...... transit time and the gut microbial composition and metabolism, we assessed the colonic transit time of 98 subjects using radiopaque markers, and profiled their gut microbiota by16S rRNA gene sequencing and their urine metabolome by ultra performance liquid chromatography mass spectrometry. Based...

  18. Cesarean section changes neonatal gut colonization

    DEFF Research Database (Denmark)

    Stokholm, Jakob; Thorsen, Jonathan; Chawes, Bo L

    2016-01-01

    BACKGROUND: Delivery by means of cesarean section has been associated with increased risk of childhood immune-mediated diseases, suggesting a role of early bacterial colonization patterns for immune maturation. OBJECTIVE: We sought to describe the influence of delivery method on gut and airway......-driven partial least squares analyses. The initial airway microbiota was unaffected by birth method. CONCLUSION: Delivery by means of cesarean section was associated with early colonization patterns of the neonatal gut but not of the airways. The differences normalized within the first year of life. We speculate...

  19. A Method for Quantification of Epithelium Colonization Capacity by Pathogenic Bacteria

    DEFF Research Database (Denmark)

    Micha Pedersen, Rune; Grønnemose, Rasmus Birkholm; Stærk, Kristian

    2018-01-01

    a method in which epithelia/endothelia are simulated by flow chamber-grown human cell layers, and infection is induced by seeding of pathogenic bacteria on these surfaces under conditions that simulate the physiological microenvironment. Quantification of bacterial adhesion and colonization of the cell......Most bacterial infections initiate at the mucosal epithelium lining the gastrointestinal, respiratory, and urogenital tracts. At these sites, bacterial pathogens must adhere and increase in numbers to effectively breach the outer barrier and invade the host. If the bacterium succeeds in reaching...... the bloodstream, effective dissemination again requires that bacteria in the blood, reestablish contact to distant endothelium sites and form secondary site foci. The infectious potential of bacteria is therefore closely linked to their ability to adhere to, colonize, and invade epithelial and endothelial...

  20. Effect of Aging on Periodontal Inflammation, Microbial Colonization, and Disease Susceptibility.

    Science.gov (United States)

    Wu, Y; Dong, G; Xiao, W; Xiao, E; Miao, F; Syverson, A; Missaghian, N; Vafa, R; Cabrera-Ortega, A A; Rossa, C; Graves, D T

    2016-04-01

    Periodontitis is a chronic inflammatory disease induced by a biofilm that forms on the tooth surface. Increased periodontal disease is associated with aging. We investigated the effect of aging on challenge by oral pathogens, examining the host response, colonization, and osteoclast numbers in aged versus young mice. We also compared the results with mice with lineage-specific deletion of the transcription factor FOXO1, which reduces dendritic cell (DC) function. Periodontitis was induced by oral inoculation of Porphyromonas gingivalis and Fusobacterium nucleatum in young (4 to 5 mo) and aged (14 to 15 mo) mice. Aged mice as well as mice with reduced DC function had decreased numbers of DCs in lymph nodes, indicative of a diminished host response. In vitro studies suggest that reduced DC numbers in lymph nodes of aged mice may involve the effect of advanced glycation end products on DC migration. Surprisingly, aged mice but not mice with genetically altered DC function had greater production of antibody to P. gingivalis, greater IL-12 expression, and more plasma cells in lymph nodes following oral inoculation as compared with young mice. The greater adaptive immune response in aged versus young mice was linked to enhanced levels of P. gingivalis and reduced bacterial diversity. Thus, reduced bacterial diversity in aged mice may contribute to increased P. gingivalis colonization following inoculation and increased periodontal disease susceptibility, reflected by higher TNF levels and osteoclast numbers in the periodontium of aged versus young mice. © International & American Associations for Dental Research 2016.

  1. Combination of therapeutic ultrasound with antibiotics interfere with the growth of bacterial culture that colonizes skin ulcers: An in-vitro study.

    Science.gov (United States)

    Guirro, Elaine Caldeira de Oliveira; Angelis, Dejanira de Franceschi de; Sousa, Natanael Teixeira Alves de; Guirro, Rinaldo Roberto de Jesus

    2016-09-01

    Staphylococcus aureus and Escherichia coli are among the major bacterial species that colonize skin ulcers. Therapeutic ultrasound (TUS) produces biophysical effects that are relevant to wound healing; however, its application over a contaminated injury is not evidence-based. The objective of this research was to analyze the effect of TUS on in vitro-isolated S. aureus and E. coli, including the combination of ultrasound and antibiotics, in order to assess their antibiotic action on bacterial susceptibility. For the experiments, the bacterial strains were suspended in saline, then diluted (10(4)CFU/mL) for irradiation (at 1 and 3MHz, 0.5 and 0.8W/cm(2) for 0 and 15min) and the combination treatment of ultrasonication and antibiotics was administered by adding nalidixic acid (S. aureus) and tetracycline (E. coli) at concentrations equivalent to 50% of the minimum inhibitory concentration (MIC). The experiments were carried out in duplicate with six repetitions. The suspensions were inoculated on to Petri plates and incubated at 37°C and the colony forming units (CFUs) were counted after 24h. The results were subjected to the Shapiro-Wilk normality test, followed by parametric ANOVA and Tukey's post hoc test at a significance level of 1%. The results demonstrated that the action of TUS at 1MHz inhibited bacterial growth while at 3MHz, bacterial growth was observed in both species. However, the synergistic combination of ultrasound and antibiotics was able to inhibit the growth of both bacteria completely after 15min of ultrasonication. The results suggest that the action of ultrasound on S. aureus and E. coli are dependent on the oscillation frequency as well as the intensity and time of application. The combination of ultrasound with antibiotics was able to inhibit bacterial growth fully at all frequencies and doses in both species. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Oncogenetic tree model of somatic mutations and DNA methylation in colon tumors.

    Science.gov (United States)

    Sweeney, Carol; Boucher, Kenneth M; Samowitz, Wade S; Wolff, Roger K; Albertsen, Hans; Curtin, Karen; Caan, Bette J; Slattery, Martha L

    2009-01-01

    Our understanding of somatic alterations in colon cancer has evolved from a concept of a series of events taking place in a single sequence to a recognition of multiple pathways. An oncogenetic tree is a model intended to describe the pathways and sequence of somatic alterations in carcinogenesis without assuming that tumors will fall in mutually exclusive categories. We applied this model to data on colon tumor somatic alterations. An oncogenetic tree model was built using data on mutations of TP53, KRAS2, APC, and BRAF genes, methylation at CpG sites of MLH1 and TP16 genes, methylation in tumor (MINT) markers, and microsatellite instability (MSI) for 971 colon tumors from a population-based series. Oncogenetic tree analysis resulted in a reproducible tree with three branches. The model represents methylation of MINT markers as initiating a branch and predisposing to MSI, methylation of MHL1 and TP16, and BRAF mutation. APC mutation is the first alteration in an independent branch and is followed by TP53 mutation. KRAS2 mutation was placed a third independent branch, implying that it neither depends on, nor predisposes to, the other alterations. Individual tumors were observed to have alteration patterns representing every combination of one, two, or all three branches. The oncogenetic tree model assumptions are appropriate for the observed heterogeneity of colon tumors, and the model produces a useful visual schematic of the sequence of events in pathways of colon carcinogenesis.

  3. Bacterial acquisition in juveniles of several broadcast spawning coral species.

    Science.gov (United States)

    Sharp, Koty H; Ritchie, Kim B; Schupp, Peter J; Ritson-Williams, Raphael; Paul, Valerie J

    2010-05-28

    Coral animals harbor diverse microorganisms in their tissues, including archaea, bacteria, viruses, and zooxanthellae. The extent to which coral-bacterial associations are specific and the mechanisms for their maintenance across generations in the environment are unknown. The high diversity of bacteria in adult coral colonies has made it challenging to identify species-specific patterns. Localization of bacteria in gametes and larvae of corals presents an opportunity for determining when bacterial-coral associations are initiated and whether they are dynamic throughout early development. This study focuses on the early onset of bacterial associations in the mass spawning corals Montastraea annularis, M. franksi, M. faveolata, Acropora palmata, A. cervicornis, Diploria strigosa, and A. humilis. The presence of bacteria and timing of bacterial colonization was evaluated in gametes, swimming planulae, and newly settled polyps by fluorescence in situ hybridization (FISH) using general eubacterial probes and laser-scanning confocal microscopy. The coral species investigated in this study do not appear to transmit bacteria via their gametes, and bacteria are not detectable in or on the corals until after settlement and metamorphosis. This study suggests that mass-spawning corals do not acquire, or are not colonized by, detectable numbers of bacteria until after larval settlement and development of the juvenile polyp. This timing lays the groundwork for developing and testing new hypotheses regarding general regulatory mechanisms that control bacterial colonization and infection of corals, and how interactions among bacteria and juvenile polyps influence the structure of bacterial assemblages in corals.

  4. Bacterial lipopolysaccharide-induced systemic inflammation alters perfusion of white matter-rich regions without altering flow in brain-irrigating arteries: Relationship to blood-brain barrier breakdown?

    Science.gov (United States)

    Dhaya, Ibtihel; Griton, Marion; Raffard, Gérard; Amri, Mohamed; Hiba, Bassem; Konsman, Jan Pieter

    2018-01-15

    To better understand brain dysfunction during sepsis, cerebral arterial blood flow was assessed with Phase Contrast Magnetic Resonance Imaging, perfusion with Arterial Spin Labeling and structure with diffusion-weighted Magnetic Resonance Imaging in rats after intraperitoneal administration of bacterial lipopolysaccharides. Although cerebral arterial flow was not altered, perfusion of the corpus callosum region and diffusion parallel to its fibers were higher after lipopolysaccharide administration as compared to saline injection. In parallel, lipopolysaccharide induced perivascular immunoglobulin-immunoreactivity in white matter. These findings indicate that systemic inflammation can result in increased perfusion, blood-brain barrier breakdown and altered water diffusion in white matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Intestinal Colonization Dynamics of Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Salvador Almagro-Moreno

    2015-05-01

    Full Text Available To cause the diarrheal disease cholera, Vibrio cholerae must effectively colonize the small intestine. In order to do so, the bacterium needs to successfully travel through the stomach and withstand the presence of agents such as bile and antimicrobial peptides in the intestinal lumen and mucus. The bacterial cells penetrate the viscous mucus layer covering the epithelium and attach and proliferate on its surface. In this review, we discuss recent developments and known aspects of the early stages of V. cholerae intestinal colonization and highlight areas that remain to be fully understood. We propose mechanisms and postulate a model that covers some of the steps that are required in order for the bacterium to efficiently colonize the human host. A deeper understanding of the colonization dynamics of V. cholerae and other intestinal pathogens will provide us with a variety of novel targets and strategies to avoid the diseases caused by these organisms.

  6. Effects of Glucosinolates and Flavonoids on Colonization of the Roots of Brassica napus by Azorhizobium caulinodans ORS571

    Science.gov (United States)

    O'Callaghan, Kenneth J.; Stone, Philip J.; Hu, Xiaojia; Griffiths, D. Wynne; Davey, Michael R.; Cocking, Edward C.

    2000-01-01

    Plants of Brassica napus were assessed quantitatively for their susceptibility to lateral root crack colonization by Azorhizobium caulinodans ORS571(pXLGD4) (a rhizobial strain carrying the lacZ reporter gene) and for the concentration of glucosinolates in their roots by high-pressure liquid chromatography (HPLC). High- and low-glucosinolate-seed (HGS and LGS) varieties exhibited a relatively low and high percentage of colonized lateral roots, respectively. HPLC showed that roots of HGS plants contained a higher concentration of glucosinolates than roots of LGS plants. One LGS variety showing fewer colonized lateral roots than other LGS varieties contained a higher concentration of glucosinolates than other LGS plants. Inoculated HGS plants treated with the flavonoid naringenin showed significantly more colonization than untreated HGS plants. This increase was not mediated by a naringenin-induced lowering of the glucosinolate content of HGS plant roots, nor did naringenin induce bacterial resistance to glucosinolates or increase the growth of bacteria. The erucic acid content of seed did not appear to influence colonization by azorhizobia. Frequently, leaf assays are used to study glucosinolates and plant defense; this study provides data on glucosinolates and bacterial colonization in roots and describes a bacterial reporter gene assay tailored easily to the study of ecologically important phytochemicals that influence bacterial colonization. These data also form a basis for future assessments of the benefits to oilseed rape plants of interaction with plant growth-promoting bacteria, especially diazotrophic bacteria potentially able to extend the benefits of nitrogen fixation to nonlegumes. PMID:10788398

  7. Bisphosphonates enhance bacterial adhesion and biofilm formation on bone hydroxyapatite.

    Science.gov (United States)

    Kos, Marcin; Junka, Adam; Smutnicka, Danuta; Szymczyk, Patrycja; Gluza, Karolina; Bartoszewicz, Marzenna

    2015-07-01

    Because of the suspicion that bisphosphonates enhance bacterial colonization, this study evaluated adhesion and biofilm formation by Streptococcus mutans 25175, Staphylococcus aureus 6538, and Pseudomonas aeruginosa 14454 reference strains on hydroxyapatite coated with clodronate, pamidronate, or zoledronate. Bacterial strains were cultured on bisphosphonate-coated and noncoated hydroxyapatite discs. After incubation, nonadhered bacteria were removed by centrifugation. Biofilm formation was confirmed by scanning electron microscopy. Bacterial colonization was estimated using quantitative cultures compared by means with Kruskal-Wallis and post-hoc Student-Newman-Keuls tests. Modeling of the interactions between bisphosphonates and hydroxyapatite was performed using the Density Functional Theory method. Bacterial colonization of the hydroxyapatite discs was significantly higher for all tested strains in the presence of bisphosphonates vs. Adherence in the presence of pamidronate was higher than with other bisphosphonates. Density Functional Theory analysis showed that the protonated amine group of pamidronate, which are not present in clodronate or zoledronate, forms two additional hydrogen bonds with hydroxyapatite. Moreover, the reactive cationic amino group of pamidronate may attract bacteria by direct electrostatic interaction. Increased bacterial adhesion and biofilm formation can promote osteomyelitis, cause failure of dental implants or bisphosphonate-coated joint prostheses, and complicate bone surgery in patients on bisphosphonates. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  8. [Bacterial Translocation from Intestine: Microbiological, Immunological and Pathophysiological Aspects].

    Science.gov (United States)

    Podoprigora, G I; Kafarskaya, L I; Bainov, N A; Shkoporov, A N

    2015-01-01

    Bacterial translocation (BT) is both pathology and physiology phenomenon. In healthy newborns it accompanies the process of establishing the autochthonous intestinal microbiota and the host microbiome. In immunodeficiency it can be an aethio-pathogenetic link and a manifestation of infection or septic complications. The host colonization resistance to exogenous microbic colonizers is provided by gastrointestinal microbiota in concert with complex constitutional and adaptive defense mechanisms. BT may be result of barrier dysfunction and self-purification mechanisms involving the host myeloid cell phagocytic system and opsonins. Dynamic cell humoral response to microbial molecular patterns that occurs on the mucous membranes initiates receptorsignalingpathways and cascade ofreactions. Their vector and results are largely determined by cross-reactivity between microbiome and the host genome. Enterocyte barriers interacting with microbiota play leading role in providing adaptive, homeostatic and stress host reactivity. Microcirculatory ischemic tissue alterations and inflammatory reactions increase the intestinal barrier permeability and BT These processes a well as mechanisms for apoptotic cells and bacteria clearance are justified to be of prospective research interest. The inflammatory and related diseases caused by alteration and dysfunction of the intestinal barrier are reasonably considered as diseases of single origin. Maternal microbiota affects theformation of the innate immune system and the microbiota of the newborn, including intestinal commensal translocation during lactation. Deeper understanding of intestinal barrier mechanisms needs complex microbiological, immunological, pathophysiological, etc. investigations using adequate biomodels, including gnotobiotic animals.

  9. Effect of antibiotics on bacterial populations: a multi-hierachical selection process [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    José Luis Martínez

    2017-01-01

    Full Text Available Antibiotics have been widely used for a number of decades for human therapy and farming production. Since a high percentage of antibiotics are discharged from the human or animal body without degradation, this means that different habitats, from the human body to river water or soils, are polluted with antibiotics. In this situation, it is expected that the variable concentration of this type of microbial inhibitor present in different ecosystems may affect the structure and the productivity of the microbiota colonizing such habitats. This effect can occur at different levels, including changes in the overall structure of the population, selection of resistant organisms, or alterations in bacterial physiology. In this review, I discuss the available information on how the presence of antibiotics may alter the microbiota and the consequences of such alterations for human health and for the activity of microbiota from different habitats.

  10. Comparison of the effect of topical application of human milk and dry cord care on the bacterial colonization of umbilical cord in newborn infants

    OpenAIRE

    Fatemeh Abbaszadeh; zanab Hajizadeh; Mahboobeh Kafaei Atrian; Azam Bagheri; Nahid Sarafraz

    2014-01-01

    Background: Breast milk contains significant amounts of compounds that act as natural antimicrobial agents. This study was conducted to compare the effect of topical application of human milk and dry cord care on bacterial colonization in the umbilical cord of newborn infants. Methods: This clinical trial study was carried out on 174 infants in Kashan. The newborns were randomized to mother's milk group and dry cord care group from the birth. In group 1, the mother rubbed her own milk on ...

  11. The effect of a changed environment on bacterial colonization rates in an established burns centre.

    Science.gov (United States)

    Wormald, P J

    1970-12-01

    In an established burns centre which moved from an old building to new purpose-designed premises, colonization rates of patients' burns with Staphylococcus aureus, Pseudomonas aeruginosa and other Gram-negative bacilli were not reduced. Colonization rates with Streptococcus pyogenes increased but the increase was mainly due to multiple importations in the new premises of a strain of higher communicability than any seen in the old.In the first 32 months in the new environment 10 patients were found colonized with pseudomonas on admission and 20 became colonized in the unit. A much higher proportion of patients with burns of more than 30% body surface became colonized than of patients with less. About one-third of the above 20 patients became colonized with strains already isolated from another patient; all but one of them had small area burns. Cross-infection was not observed from numerous heavily colonized patients with high percentage burns. This paradox is discussed in detail. Basin outflows in the new premises became colonized with P. aeruginosa of two serotypes not found on patients in this unit.

  12. Comparative analysis of the intestinal bacterial and RNA viral communities from sentinel birds placed on selected broiler chicken farms.

    Directory of Open Access Journals (Sweden)

    J Michael Day

    Full Text Available There is a great deal of interest in characterizing the complex microbial communities in the poultry gut, and in understanding the effects of these dynamic communities on poultry performance, disease status, animal welfare, and microbes with human health significance. Investigations characterizing the poultry enteric virome have identified novel poultry viruses, but the roles these viruses play in disease and performance problems have yet to be fully characterized. The complex bacterial community present in the poultry gut influences gut development, immune status, and animal health, each of which can be an indicator of overall performance. The present metagenomic investigation was undertaken to provide insight into the colonization of specific pathogen free chickens by enteric microorganisms under field conditions and to compare the pre-contact intestinal microbiome with the altered microbiome following contact with poultry raised in the field. Analysis of the intestinal virome from contact birds ("sentinels" placed on farms revealed colonization by members of the Picornaviridae, Picobirnaviridae, Reoviridae, and Astroviridae that were not present in pre-contact birds or present in proportionally lower numbers. Analysis of the sentinel gut bacterial community revealed an altered community in the post-contact birds, notably by members of the Lachnospiracea/Clostridium and Lactobacillus families and genera. Members of the avian enteric Reoviridae and Astroviridae have been well-characterized and have historically been implicated in poultry enteric disease; members of the Picobirnaviridae and Picornaviridae have only relatively recently been described in the poultry and avian gut, and their roles in the recognized disease syndromes and in poultry performance in general have not been determined. This metagenomic analysis has provided insight into the colonization of the poultry gut by enteric microbes circulating in commercial broiler flocks, and

  13. [Processes of plant colonization by Methylobacterium strains and some bacterial properties ].

    Science.gov (United States)

    Romanovskaia, V A; Stoliar, S M; Malashenko, Iu R; Dodatko, T N

    2001-01-01

    The pink-pigmented facultative methylotrophic bacteria (PPFMB) of the genus Methylobacterium are indespensible inhabitants of the plant phyllosphere. Using maize Zea mays as a model, the ways of plant colonization by PPFMB and some properties of the latter that might be beneficial to plants were studied. A marked strain, Methylobacterium mesophilicum APR-8 (pULB113), was generated to facilitate the detection of the methylotrophic bacteria inoculated into the soil or applied to the maize leaves. Colonization of maize leaves by M. mesophilicum APR-8 (pULB113) occurred only after the bacteria were applied onto the leaf surface. In this case, the number of PPFMB cells on inoculated leaves increased with plant growth. During seed germination, no colonization of maize leaves with M. mesophilicum cells occurred immediately from the soil inoculated with the marked strain. Thus, under natural conditions, colonization of plant leaves with PPFMB seems to occur via soil particle transfer to the leaves by air. PPFMB monocultures were not antagonistic to phytopathogenic bacteria. However, mixed cultures of epiphytic bacteria containing Methylobacterium mesophilicum or M. extorquens did exhibit an antagonistic effect against the phytopathogenic bacteria studied (Xanthomonas camprestris, Pseudomonas syringae, Erwinia carotovora, Clavibacter michiganense, and Agrobacterium tumifaciens). Neither epiphytic and soil strains of Methylobacterium extorquens, M. organophillum, M. mesophilicum, and M. fujisawaense catalyzed ice nucleation. Hence, they cause no frost injury to plants. Thus, the results indicate that the strains of the genus Methylobacterium can protect plants against adverse environmental factors.

  14. Oral and endotracheal tubes colonization by periodontal bacteria: a case-control ICU study.

    Science.gov (United States)

    Porto, A N; Cortelli, S C; Borges, A H; Matos, F Z; Aquino, D R; Miranda, T B; Oliveira Costa, F; Aranha, A F; Cortelli, J R

    2016-03-01

    Periodontal infection is a possible risk factor for respiratory disorders; however, no studies have assessed the colonization of periodontal pathogens in endotracheal tubes (ET). This case-control study analyzed whether periodontal pathogens are able to colonize ET of dentate and edentulous patients in intensive care units (ICU) and whether oral and ET periodontal pathogen profiles have any correlation between these patients. We selected 18 dentate and 18 edentulous patients from 78 eligible ICU patients. Oral clinical examination including probing depth, clinical attachment level, gingival index , and plaque index was performed by a single examiner, followed by oral and ET sampling and processing by quantitative polymerase chain reaction (total bacterial load, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythia). Data were statistically analyzed by Mann-Whitney U, two-way analysis of variance (p Periodontal pathogens can colonize ET and the oral cavity of ICU patients. Periodontal pathogen profiles tend to be similar between dentate and edentulous ICU patients. In ICU patients, oral cavity represents a source of ET contamination. Although accompanied by higher oral bacterial levels, teeth do not seem to influence ET bacterial profiles.

  15. Contribution of Urease to Colonization by Shiga Toxin-Producing Escherichia coli

    Science.gov (United States)

    Steyert, Susan R.

    2012-01-01

    Shiga toxin-producing Escherichia coli (STEC) is a food-borne pathogen with a low infectious dose that colonizes the colon in humans and can cause severe clinical manifestations such as hemolytic-uremic syndrome. The urease enzyme, encoded in the STEC chromosome, has been demonstrated to act as a virulence factor in other bacterial pathogens. The NH3 produced as urease hydrolyzes urea can aid in buffering bacteria in acidic environments as well as provide an easily assimilated source of nitrogen that bacteria can use to gain a metabolic advantage over intact microflora. Here, we explore the role of urease in STEC pathogenicity. The STEC urease enzyme exhibited maximum activity near neutral pH and during the stationary-growth phase. Experiments altering growth conditions performed with three phylogenetically distinct urease-positive strains demonstrated that the STEC ure gene cluster is inducible by neither urea nor pH but does respond to nitrogen availability. Quantitative reverse transcription-PCR (qRT-PCR) data indicate that nitrogen inhibits the transcriptional response. The deletion of the ure gene locus was constructed in STEC strain 88-0643, and the ure mutant was used with the wild-type strain in competition experiments in mouse models to examine the contribution of urease. The wild-type strain was twice as likely to survive passage through the acidic stomach and demonstrated an enhanced ability to colonize the intestinal tract compared to the ure mutant strain. These in vivo experiments reveal that, although the benefit STEC gains from urease expression is modest and not absolutely required for colonization, urease can contribute to the pathogenicity of STEC. PMID:22665380

  16. Bacterial acquisition in juveniles of several broadcast spawning coral species.

    Directory of Open Access Journals (Sweden)

    Koty H Sharp

    Full Text Available Coral animals harbor diverse microorganisms in their tissues, including archaea, bacteria, viruses, and zooxanthellae. The extent to which coral-bacterial associations are specific and the mechanisms for their maintenance across generations in the environment are unknown. The high diversity of bacteria in adult coral colonies has made it challenging to identify species-specific patterns. Localization of bacteria in gametes and larvae of corals presents an opportunity for determining when bacterial-coral associations are initiated and whether they are dynamic throughout early development. This study focuses on the early onset of bacterial associations in the mass spawning corals Montastraea annularis, M. franksi, M. faveolata, Acropora palmata, A. cervicornis, Diploria strigosa, and A. humilis. The presence of bacteria and timing of bacterial colonization was evaluated in gametes, swimming planulae, and newly settled polyps by fluorescence in situ hybridization (FISH using general eubacterial probes and laser-scanning confocal microscopy. The coral species investigated in this study do not appear to transmit bacteria via their gametes, and bacteria are not detectable in or on the corals until after settlement and metamorphosis. This study suggests that mass-spawning corals do not acquire, or are not colonized by, detectable numbers of bacteria until after larval settlement and development of the juvenile polyp. This timing lays the groundwork for developing and testing new hypotheses regarding general regulatory mechanisms that control bacterial colonization and infection of corals, and how interactions among bacteria and juvenile polyps influence the structure of bacterial assemblages in corals.

  17. The impact of short chain fatty acids on GLP-1 and PYY secretion from the isolated perfused rat colon

    DEFF Research Database (Denmark)

    Christiansen, Charlotte Bayer; Gabe, Maria Buur Nordskov; Svendsen, Berit

    2018-01-01

    chain fatty acids (SCFAs) produced by local bacterial fermentation are suggested to activate the colonic free fatty acid receptors FFAR2 (GPR43) and FFAR3 (GPR41), stimulating the colonic L-cells. We used the isolated perfused rat colon as a model of colonic endocrine secretion and studied the effects...

  18. Mercury alters the bacterial community structure and diversity in soil even at concentrations lower than the guideline values.

    Science.gov (United States)

    Mahbub, Khandaker Rayhan; Subashchandrabose, Suresh Ramraj; Krishnan, Kannan; Naidu, Ravi; Megharaj, Mallavarapu

    2017-03-01

    This study evaluated the effect of inorganic mercury (Hg) on bacterial community and diversity in different soils. Three soils-neutral, alkaline and acidic-were spiked with six different concentrations of Hg ranging from 0 to 200 mg kg -1 and aged for 90 days. At the end of the ageing period, 18 samples from three different soils were investigated for bacterial community structure and soil physicochemical properties. Illumina MiSeq-based 16s ribosomal RNA (rRNA) amplicon sequencing revealed the alteration in the bacterial community between un-spiked control soils and Hg-spiked soils. Among the bacterial groups, Actinobacteria (22.65%) were the most abundant phyla in all samples followed by Proteobacteria (21.95%), Bacteroidetes (4.15%), Firmicutes (2.9%) and Acidobacteria (2.04%). However, the largest group showing increased abundance with higher Hg doses was the unclassified group (45.86%), followed by Proteobacteria. Mercury had a considerable negative impact on key soil functional bacteria such as ammonium oxidizers and nitrifiers. Canonical correspondence analysis (CCA) indicated that among the measured soil properties, Hg had a major influence on bacterial community structure. Furthermore, nonlinear regression analysis confirmed that Hg significantly decreased soil bacterial alpha diversity in lower organic carbon containing neutral and alkaline soils, whereas in acidic soil with higher organic carbon there was no significant correlation. EC 20 values obtained by a nonlinear regression analysis indicated that Hg significantly decreased soil bacterial diversity in concentrations lower than several guideline values.

  19. Mucin dynamics in intestinal bacterial infection.

    Directory of Open Access Journals (Sweden)

    Sara K Lindén

    Full Text Available Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract.Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17 in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05. Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon.Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection.

  20. Muscarinic Receptor Signaling in Colon Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rosenvinge, Erik C. von, E-mail: evonrose@medicine.umaryland.edu; Raufman, Jean-Pierre [University of Maryland School of Medicine, Division of Gastroenterology & Hepatology, 22 S. Greene Street, N3W62, Baltimore, MD 21201 (United States); Department of Veterans Affairs, VA Maryland Health Care System, 10 North Greene Street, Baltimore, MD 21201 (United States)

    2011-03-02

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  1. Muscarinic Receptor Signaling in Colon Cancer

    International Nuclear Information System (INIS)

    Rosenvinge, Erik C. von; Raufman, Jean-Pierre

    2011-01-01

    According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer

  2. Muscarinic Receptor Signaling in Colon Cancer

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Raufman

    2011-03-01

    Full Text Available According to the adenoma-carcinoma sequence, colon cancer results from accumulating somatic gene mutations; environmental growth factors accelerate and augment this process. For example, diets rich in meat and fat increase fecal bile acids and colon cancer risk. In rodent cancer models, increased fecal bile acids promote colon dysplasia. Conversely, in rodents and in persons with inflammatory bowel disease, low-dose ursodeoxycholic acid treatment alters fecal bile acid composition and attenuates colon neoplasia. In the course of elucidating the mechanism underlying these actions, we discovered that bile acids interact functionally with intestinal muscarinic receptors. The present communication reviews muscarinic receptor expression in normal and neoplastic colon epithelium, the role of autocrine signaling following synthesis and release of acetylcholine from colon cancer cells, post-muscarinic receptor signaling including the role of transactivation of epidermal growth factor receptors and activation of the ERK and PI3K/AKT signaling pathways, the structural biology and metabolism of bile acids and evidence for functional interaction of bile acids with muscarinic receptors on human colon cancer cells. In murine colon cancer models, deficiency of subtype 3 muscarinic receptors attenuates intestinal neoplasia; a proof-of-concept supporting muscarinic receptor signaling as a therapeutic target for colon cancer.

  3. Effect of early measles vaccine on pneumococcal colonization

    DEFF Research Database (Denmark)

    Hansen, Nadja Skadkær; Byberg, Stine; Hervig Jacobsen, Lars

    2017-01-01

    BACKGROUND: Measles vaccine (MV) may have non-specific beneficial effects for child health and particularly seems to prevent respiratory infections. Streptococcus pneumoniae is the leading cause of bacterial pneumonia among children worldwide, and nasopharyngeal colonization precedes infection....... OBJECTIVE: We investigated whether providing early MV at 18 weeks of age reduced pneumococcal colonization and/or density up to 9 months of age. METHOD: The study was conducted in 2013-2014 in Guinea-Bissau. Pneumococcal vaccine was not part of the vaccination program. Infants aged 18 weeks were block...

  4. Comparison of the effect of topical application of human milk and dry cord care on the bacterial colonization of umbilical cord in newborn infants

    Directory of Open Access Journals (Sweden)

    Fatemeh Abbaszadeh

    2014-04-01

    Full Text Available Background: Breast milk contains significant amounts of compounds that act as natural antimicrobial agents. This study was conducted to compare the effect of topical application of human milk and dry cord care on bacterial colonization in the umbilical cord of newborn infants. Methods: This clinical trial study was carried out on 174 infants in Kashan. The newborns were randomized to mother's milk group and dry cord care group from the birth. In group 1, the mother rubbed her own milk on the cord stump every 12 hours from 3 hours after birth to 2 days after the umbilical cord separation. In group 2, the mother was recommended not to use any material on the cord. Then, the cord samples were taken four times; 3hours after birth, at days 3 and 7, and 2 days after the umbilical cord separation. Results: The findings of the culture two days after umbilical cord separation indicated that low percentage of neonates in the breast milk (23.1% and dry cord care (28.8% groups had bacterial colonization. Moreover, no significant difference was found between the two groups in terms of growth of pathogenic organisms and normal flora of the skin (P>0.05. Conclusion: Given the low prevalence of pathogenic microorganisms in the two groups, it seems using breast milk and dry cord care are equally effective methods of taking care of umbilical cord.

  5. Nutrition and Helicobacter pylori: Host Diet and Nutritional Immunity Influence Bacterial Virulence and Disease Outcome

    Directory of Open Access Journals (Sweden)

    Kathryn P. Haley

    2016-01-01

    Full Text Available Helicobacter pylori colonizes the stomachs of greater than 50% of the world’s human population making it arguably one of the most successful bacterial pathogens. Chronic H. pylori colonization results in gastritis in nearly all patients; however in a subset of people, persistent infection with H. pylori is associated with an increased risk for more severe disease outcomes including B-cell lymphoma of mucosal-associated lymphoid tissue (MALT lymphoma and invasive adenocarcinoma. Research aimed at elucidating determinants that mediate disease progression has revealed genetic differences in both humans and H. pylori which increase the risk for developing gastric cancer. Furthermore, host diet and nutrition status have been shown to influence H. pylori-associated disease outcomes. In this review we will discuss how H. pylori is able to create a replicative niche within the hostile host environment by subverting and modifying the host-generated immune response as well as successfully competing for limited nutrients such as transition metals by deploying an arsenal of metal acquisition proteins and virulence factors. Lastly, we will discuss how micronutrient availability or alterations in the gastric microbiome may exacerbate negative disease outcomes associated with H. pylori colonization.

  6. Effect of flow and peristaltic mixing on bacterial growth in a gut-like channel

    Science.gov (United States)

    Cremer, Jonas; Segota, Igor; Yang, Chih-yu; Arnoldini, Markus; Sauls, John T.; Zhang, Zhongge; Gutierrez, Edgar; Groisman, Alex; Hwa, Terence

    2016-01-01

    The ecology of microbes in the gut has been shown to play important roles in the health of the host. To better understand microbial growth and population dynamics in the proximal colon, the primary region of bacterial growth in the gut, we built and applied a fluidic channel that we call the “minigut.” This is a channel with an array of membrane valves along its length, which allows mimicking active contractions of the colonic wall. Repeated contraction is shown to be crucial in maintaining a steady-state bacterial population in the device despite strong flow along the channel that would otherwise cause bacterial washout. Depending on the flow rate and the frequency of contractions, the bacterial density profile exhibits varying spatial dependencies. For a synthetic cross-feeding community, the species abundance ratio is also strongly affected by mixing and flow along the length of the device. Complex mixing dynamics due to contractions is described well by an effective diffusion term. Bacterial dynamics is captured by a simple reaction–diffusion model without adjustable parameters. Our results suggest that flow and mixing play a major role in shaping the microbiota of the colon. PMID:27681630

  7. Klebsiella pneumoniae capsule expression is necessary for colonization of large intestines of streptomycin-treated mice

    DEFF Research Database (Denmark)

    Favre-Bonte, S.; Licht, Tine Rask; Forestier, C.

    1999-01-01

    The role of the Klebsiella pneumoniae capsular polysaccharide (K antigen) during colonization of the mouse large intestine was assessed with mild-type K. pneumoniae LM21 and its isogenic capsule-defective mutant. When bacterial strains were fed alone to mice, the capsulated bacteria persisted...... in the intestinal tract at levels of 10(8) CFU/g of feces while the capsule-defective strain colonized at low levels, 10(4) CFU/g of feces. In mixed-infection experiments, the mutant was rapidly outcompeted by the wild type. In situ hybridization on colonic sections revealed that bacterial cells of both strains...... were evenly distributed in the mucus layer at day 1 after infection, while at day 20 the wild type remained dispersed and the capsule-defective strain was seen in clusters in the mucus layer. These results suggest that capsular polysaccharide plays an important role in the gut colonization ability of K...

  8. Casticin induced apoptotic cell death and altered associated gene expression in human colon cancer colo 205 cells.

    Science.gov (United States)

    Shang, Hung-Sheng; Liu, Jia-You; Lu, Hsu-Feng; Chiang, Han-Sun; Lin, Chia-Hain; Chen, Ann; Lin, Yuh-Feng; Chung, Jing-Gung

    2017-08-01

    Casticin, a polymethoxyflavone, derived from natural plant Fructus Viticis exhibits biological activities including anti-cancer characteristics. The anti-cancer and alter gene expression of casticin on human colon cancer cells and the underlying mechanisms were investigated. Flow cytometric assay was used to measure viable cell, cell cycle and sub-G1 phase, reactive oxygen species (ROS) and Ca 2+ productions, level of mitochondria membrane potential (ΔΨ m ) and caspase activity. Western blotting assay was used to detect expression of protein level associated with cell death. Casticin induced cell morphological changes, decreased cell viability and induced G2/M phase arrest in colo 205 cells. Casticin increased ROS production but decreased the levels of ΔΨ m , and Ca 2+ , increased caspase-3, -8, and -9 activities. The cDNA microarray indicated that some of the cell cycle associated genes were down-regulated such as cyclin-dependent kinase inhibitor 1A (CDKN1A) (p21, Cip1) and p21 protein (Cdc42/Rac)-activated kinase 3 (PAK3). TNF receptor-associated protein 1 (TRAP1), CREB1 (cAMP responsive element binding protein 1) and cyclin-dependent kinase inhibitor 1B (CDKN1B) (p27, Kip1) genes were increased but matrix metallopeptidase 2 (MMP-2), toll-like receptor 4 (TLR4), PRKAR2B (protein kinase, cAMP-dependent, regulatory, type II, bet), and CaMK4 (calcium/calmodulin-dependent protein kinase IV) genes were inhibited. Results suggest that casticin induced cell apoptosis via the activation of the caspase- and/or mitochondria-dependent signaling cascade, the accumulation of ROS and altered associated gene expressions in colo 205 human colon cancer cells. © 2016 Wiley Periodicals, Inc.

  9. Campylobacter jejuni Colonization in Wild Birds: Results from an Infection Experiment

    Science.gov (United States)

    Waldenström, Jonas; Axelsson-Olsson, Diana; Olsen, Björn; Hasselquist, Dennis; Griekspoor, Petra; Jansson, Lena; Teneberg, Susann; Svensson, Lovisa; Ellström, Patrik

    2010-01-01

    Campylobacter jejuni is a common cause of bacterial gastroenteritis in most parts of the world. The bacterium has a broad host range and has been isolated from many animals and environments. To investigate shedding patterns and putative effects on an avian host, we developed a colonization model in which a wild bird species, the European Robin Erithacus rubecula, was inoculated orally with C. jejuni from either a human patient or from another wild bird species, the Song Thrush Turdus philomelos. These two isolates were genetically distinct from each other and provoked very different host responses. The Song Thrush isolate colonized all challenged birds and colonization lasted 6.8 days on average. Birds infected with this isolate also showed a transient but significant decrease in body mass. The human isolate did not colonize the birds and could be detected only in the feces of the birds shortly after inoculation. European Robins infected with the wild bird isolate generated a specific antibody response to C. jejuni membrane proteins from the avian isolate, which also was cross-reactive to membrane proteins of the human isolate. In contrast, European Robins infected with the human isolate did not mount a significant response to bacterial membrane proteins from either of the two isolates. The difference in colonization ability could indicate host adaptations. PMID:20140204

  10. Clinical and diagnostic importance of changes of colon at chronic prostatitis

    Directory of Open Access Journals (Sweden)

    V.M. Popkov

    2010-06-01

    Full Text Available The aim of researches was studying clinical, microbiological and morphological characteristic of colon at patients at chronic prostatitis, definition of method of pathogenetic therapy on the basis of the received results. Material and methods of investigation. 50 patients at chronic bacterial prostatitis, 50 patients at asymptomatic inflammatory prostatitis and 30 practically healthy males were inspected. Microflora of prostata's secret and colon, morphology and structure of components of diffuse neuroendocrine system of colon were studied. Clinical, microbiological, иммуногистохимические methods and morphometrical analysis were applied. Results. It is defined, that at 74% patients with asymptomatic inflammatory prostatitis irritable bowel syndrome and at 26% - chronic nonulcerative colitis were diagnosed. At all patients at chronic bacterial prostatitis chronic nonulcerative colitis were detected. These variants were correlleted with different types of intestinal dysbiosis and degree of microbe producing of prostate. Use probiotic Bactistatin® at patients with a chronic prostatitis raises clinical efficiency of antibacterial therapy, promotes reduction of inflammatory changes, restoration of its microbic landscape and neuroendocrine homeostasis of colon. inclusion. At chronic prostatitis structural and functional pathology of colon are often registered, they are connected with clinical variant of prostatitis and can mask of prostata's pathology. Using Bactistatin® at patients with a chronic prostatitis is proved and effective

  11. Oral Bacterial and Fungal Microbiome Impacts Colorectal Carcinogenesis

    OpenAIRE

    Klara Klimesova; Zuzana Jiraskova Zakostelska; Helena Tlaskalova-Hogenova

    2018-01-01

    Host’s physiology is significantly influenced by microbiota colonizing the epithelial surfaces. Complex microbial communities contribute to proper mucosal barrier function, immune response, and prevention of pathogen invasion and have many other crucial functions. The oral cavity and large intestine are distant parts of the digestive tract, both heavily colonized by commensal microbiota. Nevertheless, they feature different proportions of major bacterial and fungal phyla, mostly due to distin...

  12. The nonfermentable dietary fiber lignin alters putative colon cancer risk factors but does not protect against DMH-induced colon cancer in rats.

    Science.gov (United States)

    Cameron, I L; Hardman, W E; Heitman, D W

    1997-01-01

    The effect of supplementation of the diet with autohydrolyzed lignin on 1,2-dimethylhydrazine (DMH)-induced colon carcinogenesis was studied using 112 male Sprague-Dawley rats. Rats received eight weekly injections of DMH (9.5 mg/kg s.c.) or the saline vehicle solution and then were maintained on a basal AIN-76 fiber-free diet or the basal fiber-free diet plus 5% or 10% (wt/wt) lignin for 24 weeks. Rats were killed 32 weeks after the start of the experiment. Colon tumor incidence, location, and multiplicity were determined. Body weight, caloric intake, fecal dry weight, gut transit time, pH of cecal contents, and total fecal bile acid excretion were measured. Supplementation of the diet with 5% or 10% lignin resulted in increased fecal dry weight and total fecal bile acid excretion and in decreased gut transit time, colon pH, and fecal bile acid concentration. Dietary lignin did not significantly affect colon tumor incidence or multiplicity compared with the fiber-free diet. Thus dietary supplementation with autohydrolyzed lignin, a food fiber with good bulking characteristics, had a significant effect on several factors that have previously been linked to reduction of colon cancer risk, but the consumption of high levels of lignin did not decrease the risk for colon cancer.

  13. Effect of nematodes on rhizosphere colonization by seed-applied bacteria.

    Science.gov (United States)

    Knox, Oliver G G; Killham, Ken; Artz, Rebekka R E; Mullins, Chris; Wilson, Michael

    2004-08-01

    There is much interest in the use of seed-applied bacteria for biocontrol and biofertilization, and several commercial products are available. However, many attempts to use this strategy fail because the seed-applied bacteria do not colonize the rhizosphere. Mechanisms of rhizosphere colonization may involve active bacterial movement or passive transport by percolating water or plant roots. Transport by other soil biota is likely to occur, but this area has not been well studied. We hypothesized that interactions with soil nematodes may enhance colonization. To test this hypothesis, a series of microcosm experiments was carried out using two contrasting soils maintained under well-defined physical conditions where transport by mass water flow could not occur. Seed-applied Pseudomonas fluorescens SBW25 was capable of rhizosphere colonization at matric potentials of -10 and -40 kPa in soil without nematodes, but colonization levels were substantially increased by the presence of nematodes. Our results suggest that nematodes can have an important role in rhizosphere colonization by bacteria in soil.

  14. Alteration in the endogenous intestinal flora of swiss webster mice by experimental Angiostrongylus costaricensis infection

    Directory of Open Access Journals (Sweden)

    Vandack Nobre

    2004-11-01

    Full Text Available The association between worm infections and bacterial diseases has only recently been emphasized. This study examined the effect of experimental Angiostrongylus costaricensis infection on endogenous intestinal flora of Swiss Webster mice. Eight mice aging six weeks were selected for this experiment. Four were infected with A. costaricensis and the other four were used as controls. Twenty eight days after the worm infection, all mice in both groups were sacrificed and samples of the contents of the ileum and colon were obtained and cultured for aerobic and anaerobic bacteria. In the mice infected with A. costaricensis there was a significant increase in the number of bacteria of the endogenous intestinal flora, accompanied by a decrease in the number of Peptostreptococcus spp. This alteration in the intestinal flora of mice infected by the nematode may help to understand some bacterial infections described in humans.

  15. Altered Bacterial Profiles in Saliva from Adults with Caries Lesions

    DEFF Research Database (Denmark)

    Belstrøm, D; Fiehn, N-E; Nielsen, C H

    2014-01-01

    -Whitney's test with Benjamini-Hochberg correction for multiple comparisons. Principal component analysis was used to visualize bacterial community profiles. A reduced bacterial diversity was observed in samples from subjects with dental caries. Five bacterial taxa (Veillonella parvula, Veillonella atypica......, Megasphaera micronuciformis, Fusobacterium periodontium and Achromobacter xylosoxidans) and one bacterial cluster (Leptotrichia sp. clones C3MKM102 and GT018_ot417/462) were less frequently found in the caries group (adjusted p value ... salivarius) and three bacterial clusters (Streptococcus parasanguinis I and II and sp. clone BE024_ot057/411/721, Streptococcus parasanguinis I and II and sinensis_ot411/721/767, Streptococcus salivarius and sp. clone FO042_ot067/755) were present at significantly higher levels (adjusted p value

  16. Dietary factors and microsatellite instability in sporadic colon carcinomas

    NARCIS (Netherlands)

    Diergaarde, B.; Braam, H.; Muijen, van G.N.P.; Ligtenberg, M.J.L.; Kok, F.J.; Kampman, E.

    2003-01-01

    Microsatellite instability (MSI) occurs in 10-20% of the sporadic colon carcinomas and appears to be primarily due to alterations in hMLH1 and hMSH2. Little is known about the role of diet in MSI-related colon carcinogenesis. We used data from a Dutch population-based case-control study on sporadic

  17. Dietary factors and microsatellite instability in sporadic colon carcinomas.

    NARCIS (Netherlands)

    Diergaarde, B.; Braam, H.; Muijen, G.N.P. van; Ligtenberg, M.J.L.; Kok, F.J.; Kampman, E.

    2003-01-01

    Microsatellite instability (MSI) occurs in 10-20% of the sporadic colon carcinomas and appears to be primarily due to alterations in hMLH1 and hMSH2. Little is known about the role of diet in MSI-related colon carcinogenesis. We used data from a Dutch population-based case-control study on sporadic

  18. Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease

    Energy Technology Data Exchange (ETDEWEB)

    Kamdar, Karishma; Khakpour, Samira; Chen, Jingyu; Leone, Vanessa; Brulc, Jennifer; Mangatu, Thomas; Antonopoulos, Dionysios A.; Chang, Eugene B; Kahn, Stacy A.; Kirschner, Barbara S; Young, Glenn; DePaolo, R. William

    2016-01-13

    Chronic inflammatory disorders are thought to arise due to an interplay between predisposing host genetics and environmental factors. For example, the onset of inflammatory bowel disease is associated with enteric proteobacterial infection, yet the mechanistic basis for this association is unclear. We have shown previously that genetic defiency in TLR1 promotes acute enteric infection by the proteobacteria Yersinia enterocolitica. Examining that model further, we uncovered an altered cellular immune response that promotes the recruitment of neutrophils which in turn increases metabolism of the respiratory electron acceptor tetrathionate by Yersinia. These events drive permanent alterations in anti-commensal immunity, microbiota composition, and chronic inflammation, which persist long after Yersinia clearence. Deletion of the bacterial genes involved in tetrathionate respiration or treatment using targeted probiotics could prevent microbiota alterations and inflammation. Thus, acute infection can drive long term immune and microbiota alterations leading to chronic inflammatory disease in genetically predisposed individuals.

  19. Bacterially-Associated Transcriptional Remodelling in a Distinct Genomic Subtype of Colorectal Cancer Provides a Plausible Molecular Basis for Disease Development.

    Directory of Open Access Journals (Sweden)

    Katie S Lennard

    Full Text Available The relevance of specific microbial colonisation to colorectal cancer (CRC disease pathogenesis is increasingly recognised, but our understanding of possible underlying molecular mechanisms that may link colonisation to disease in vivo remains limited. Here, we investigate the relationships between the most commonly studied CRC-associated bacteria (Enterotoxigenic Bacteroides fragilis, pks+ Escherichia coli, Fusobacterium spp., afaC+ E. coli, Enterococcus faecalis & Enteropathogenic E. coli and altered transcriptomic and methylation profiles of CRC patients, in order to gain insight into the potential contribution of these bacteria in the aetiopathogenesis of CRC. We show that colonisation by E. faecalis and high levels of Fusobacterium is associated with a specific transcriptomic subtype of CRC that is characterised by CpG island methylation, microsatellite instability and a significant increase in inflammatory and DNA damage pathways. Analysis of the significant, bacterially-associated changes in host gene expression, both at the level of individual genes as well as pathways, revealed a transcriptional remodeling that provides a plausible mechanistic link between specific bacterial colonisation and colorectal cancer disease development and progression in this subtype; these included upregulation of REG3A, REG1A and REG1P in the case of high-level colonization by Fusobacterium, and CXCL10 and BMI1 in the case of colonisation by E. faecalis. The enrichment of both E. faecalis and Fusobacterium in this CRC subtype suggests that polymicrobial colonisation of the colonic epithelium may well be an important aspect of colonic tumourigenesis.

  20. Importance of neural mechanisms in colonic mucosal and muscular dysfunction in adult rats following neonatal colonic irritation.

    Science.gov (United States)

    Chaloner, A; Rao, A; Al-Chaer, E D; Greenwood-Van Meerveld, B

    2010-02-01

    Previous studies have shown that early life trauma induced by maternal separation or colonic irritation leads to hypersensitivity to colorectal distension in adulthood. We tested the hypothesis that repetitive colorectal distension in neonates leads to abnormalities in colonic permeability and smooth muscle function in the adult rat. In neonatal rats, repetitive colorectal distension was performed on days 8, 10, and 12. As adults, stool consistency was graded from 0 (formed stool) to 3 (liquid stool). Colonic tissue was isolated for histology and myeloperoxidase levels. The colonic mucosa was placed in modified Ussing chambers for measurements of permeability and short-circuit current responses to forskolin, electrical field stimulation, and carbachol. Segments of colonic musculature were placed in organ baths and contractile response to potassium chloride, electrical field stimulation, and carbachol were determined. In adult rats that experienced neonatal colonic irritation, no significant changes in colonic histology or myeloperoxidase activity were observed; however, stool consistency scores were increased. Mucosal permeability, measured as an increase in basal conductance, was significantly increased but no changes in short-circuit current responses were observed. In adulthood, rats that underwent colorectal distension as neonates exhibited an elevated smooth muscle contractile response to potassium chloride, but no changes in response to electrical field stimulation or carbachol. In summary, neonatal colonic irritation, shown previously to produce colonic hypersensitivity, leads to significant alterations in colonic mucosal and smooth muscle function characterized by loose stools, increased mucosal permeability, and increased smooth muscle contractility in the absence of colon inflammation in adulthood. Published by Elsevier Ltd.

  1. Bacterial endophytes enhance competition by invasive plants.

    Science.gov (United States)

    Rout, Marnie E; Chrzanowski, Thomas H; Westlie, Tara K; DeLuca, Thomas H; Callaway, Ragan M; Holben, William E

    2013-09-01

    Invasive plants can alter soil microbial communities and profoundly alter ecosystem processes. In the invasive grass Sorghum halepense, these disruptions are consequences of rhizome-associated bacterial endophytes. We describe the effects of N2-fixing bacterial strains from S. halepense (Rout and Chrzanowski, 2009) on plant growth and show that bacteria interact with the plant to alter soil nutrient cycles, enabling persistence of the invasive. • We assessed fluxes in soil nutrients for ∼4 yr across a site invaded by S. halepense. We assayed the N2-fixing bacteria in vitro for phosphate solubilization, iron chelation, and production of the plant-growth hormone indole-3-acetic acid (IAA). We assessed the plant's ability to recruit bacterial partners from substrates and vertically transmit endophytes to seeds and used an antibiotic approach to inhibit bacterial activity in planta and assess microbial contributions to plant growth. • We found persistent alterations to eight biogeochemical cycles (including nitrogen, phosphorus, and iron) in soils invaded by S. halepense. In this context, three bacterial isolates solubilized phosphate, and all produced iron siderophores and IAA in vitro. In growth chamber experiments, bacteria were transmitted vertically, and molecular analysis of bacterial community fingerprints from rhizomes indicated that endophytes are also horizontally recruited. Inhibiting bacterial activity with antibiotics resulted in significant declines in plant growth rate and biomass, with pronounced rhizome reductions. • This work suggests a major role of endophytes on growth and resource allocation of an invasive plant. Indeed, bacterial isolate physiology is correlated with invader effects on biogeochemical cycles of nitrogen, phosphate, and iron.

  2. Intestinal microbial dysbiosis and colonic epithelial cell hyperproliferation by dietary α-mangostin is independent of mouse strain.

    Science.gov (United States)

    Gutierrez-Orozco, Fabiola; Thomas-Ahner, Jennifer M; Galley, Jeffrey D; Bailey, Michael T; Clinton, Steven K; Lesinski, Gregory B; Failla, Mark L

    2015-01-22

    Beverages and supplements prepared from mangosteen fruit are claimed to support gut health and immunity, despite the absence of supporting evidence from clinical trials. We recently reported that α-mangostin (α-MG), the most abundant xanthone in mangosteen fruit, altered the intestinal microbiome, promoted dysbiosis, and exacerbated colitis in C57BL/6J mice. The objective of this study was to determine whether induction of dysbiosis by dietary α-MG is limited to the C57BL/6J strain or represents a more generic response to chronic intake of the xanthone on the gut microbiota of mice. C3H, Balb/c, Nude FoxN1nu, and C57BL/6J mice, each demonstrating unique microbiomes, were fed standard diet or diet containing 0.1% α-MG for four weeks. Dietary α-MG significantly altered the cecal and colonic microbiota in all four strains of mice, promoting a reduction in generally assumed beneficial bacterial groups while increasing the abundance of pathogenic bacteria. Consumption of α-MG was associated with reduced abundance of Firmicutes and increased abundance of Proteobacteria. The abundance of Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae was reduced in α-MG-fed mice, while that of Enterobacteriaceae and Enterococcaceae was increased. Dietary α-MG also was associated with increased proliferation of colonic epithelial cells, infiltration of immune cells, infiltration of immune cells and increased fluid content in stool. These results suggest that ingestion of pharmacologic doses of xanthones in mangosteen-containing supplements may adversely alter the gut microbiota and should be used with caution.

  3. Intestinal Microbial Dysbiosis and Colonic Epithelial Cell Hyperproliferation by Dietary α-Mangostin is Independent of Mouse Strain

    Directory of Open Access Journals (Sweden)

    Fabiola Gutierrez-Orozco

    2015-01-01

    Full Text Available Beverages and supplements prepared from mangosteen fruit are claimed to support gut health and immunity, despite the absence of supporting evidence from clinical trials. We recently reported that α-mangostin (α-MG, the most abundant xanthone in mangosteen fruit, altered the intestinal microbiome, promoted dysbiosis, and exacerbated colitis in C57BL/6J mice. The objective of this study was to determine whether induction of dysbiosis by dietary α-MG is limited to the C57BL/6J strain or represents a more generic response to chronic intake of the xanthone on the gut microbiota of mice. C3H, Balb/c, Nude FoxN1nu, and C57BL/6J mice, each demonstrating unique microbiomes, were fed standard diet or diet containing 0.1% α-MG for four weeks. Dietary α-MG significantly altered the cecal and colonic microbiota in all four strains of mice, promoting a reduction in generally assumed beneficial bacterial groups while increasing the abundance of pathogenic bacteria. Consumption of α-MG was associated with reduced abundance of Firmicutes and increased abundance of Proteobacteria. The abundance of Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae was reduced in α-MG-fed mice, while that of Enterobacteriaceae and Enterococcaceae was increased. Dietary α-MG also was associated with increased proliferation of colonic epithelial cells, infiltration of immune cells, infiltration of immune cells and increased fluid content in stool. These results suggest that ingestion of pharmacologic doses of xanthones in mangosteen-containing supplements may adversely alter the gut microbiota and should be used with caution.

  4. Factors that mediate colonization of the human stomach by Helicobacter pylori.

    Science.gov (United States)

    Dunne, Ciara; Dolan, Brendan; Clyne, Marguerite

    2014-05-21

    Helicobacter pylori (H. pylori) colonizes the stomach of humans and causes chronic infection. The majority of bacteria live in the mucus layer overlying the gastric epithelial cells and only a small proportion of bacteria are found interacting with the epithelial cells. The bacteria living in the gastric mucus may act as a reservoir of infection for the underlying cells which is essential for the development of disease. Colonization of gastric mucus is likely to be key to the establishment of chronic infection. How H. pylori manages to colonise and survive in the hostile environment of the human stomach and avoid removal by mucus flow and killing by gastric acid is the subject of this review. We also discuss how bacterial and host factors may together go some way to explaining the susceptibility to colonization and the outcome of infection in different individuals. H. pylori infection of the gastric mucosa has become a paradigm for chronic infection. Understanding of why H. pylori is such a successful pathogen may help us understand how other bacterial species colonise mucosal surfaces and cause disease.

  5. Colonic transit time relates to bacterial metabolism and mucosal turnover in the human gut

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Hansen, Lea Benedicte Skov; Bahl, Martin Iain

    catabolism as reflected by microbial metabolites in urine. This results in a number of potentially deleterious protein-derived metabolites. Additionally, longer colonic transit time correlates with metabolites likely reflecting reduced renewal of the colonic mucosa. Together, this suggests that a high gut...

  6. Hospitalized Premature Infants Are Colonized by Related Bacterial Strains with Distinct Proteomic Profiles

    Directory of Open Access Journals (Sweden)

    Christopher T. Brown

    2018-04-01

    Full Text Available During the first weeks of life, microbial colonization of the gut impacts human immune system maturation and other developmental processes. In premature infants, aberrant colonization has been implicated in the onset of necrotizing enterocolitis (NEC, a life-threatening intestinal disease. To study the premature infant gut colonization process, genome-resolved metagenomics was conducted on 343 fecal samples collected during the first 3 months of life from 35 premature infants housed in a neonatal intensive care unit, 14 of whom developed NEC, and metaproteomic measurements were made on 87 samples. Microbial community composition and proteomic profiles remained relatively stable on the time scale of a week, but the proteome was more variable. Although genetically similar organisms colonized many infants, most infants were colonized by distinct strains with metabolic profiles that could be distinguished using metaproteomics. Microbiome composition correlated with infant, antibiotics administration, and NEC diagnosis. Communities were found to cluster into seven primary types, and community type switched within infants, sometimes multiple times. Interestingly, some communities sampled from the same infant at subsequent time points clustered with those of other infants. In some cases, switches preceded onset of NEC; however, no species or community type could account for NEC across the majority of infants. In addition to a correlation of protein abundances with organism replication rates, we found that organism proteomes correlated with overall community composition. Thus, this genome-resolved proteomics study demonstrated that the contributions of individual organisms to microbiome development depend on microbial community context.

  7. Hospitalized Premature Infants Are Colonized by Related Bacterial Strains with Distinct Proteomic Profiles

    Science.gov (United States)

    Xiong, Weili; Olm, Matthew R.; Thomas, Brian C.; Baker, Robyn; Firek, Brian; Morowitz, Michael J.; Hettich, Robert L.

    2018-01-01

    ABSTRACT During the first weeks of life, microbial colonization of the gut impacts human immune system maturation and other developmental processes. In premature infants, aberrant colonization has been implicated in the onset of necrotizing enterocolitis (NEC), a life-threatening intestinal disease. To study the premature infant gut colonization process, genome-resolved metagenomics was conducted on 343 fecal samples collected during the first 3 months of life from 35 premature infants housed in a neonatal intensive care unit, 14 of whom developed NEC, and metaproteomic measurements were made on 87 samples. Microbial community composition and proteomic profiles remained relatively stable on the time scale of a week, but the proteome was more variable. Although genetically similar organisms colonized many infants, most infants were colonized by distinct strains with metabolic profiles that could be distinguished using metaproteomics. Microbiome composition correlated with infant, antibiotics administration, and NEC diagnosis. Communities were found to cluster into seven primary types, and community type switched within infants, sometimes multiple times. Interestingly, some communities sampled from the same infant at subsequent time points clustered with those of other infants. In some cases, switches preceded onset of NEC; however, no species or community type could account for NEC across the majority of infants. In addition to a correlation of protein abundances with organism replication rates, we found that organism proteomes correlated with overall community composition. Thus, this genome-resolved proteomics study demonstrated that the contributions of individual organisms to microbiome development depend on microbial community context. PMID:29636439

  8. Influence of Moraxella sp. colonization on the kidney proteome of farmed gilthead sea breams (Sparus aurata, L.

    Directory of Open Access Journals (Sweden)

    Viale Iolanda

    2010-10-01

    Full Text Available Abstract Background Currently, presence of Moraxella sp. in internal organs of fish is not considered detrimental for fish farming. However, bacterial colonization of internal organs can affect fish wellness and decrease growth rate, stress resistance, and immune response. Recently, there have been reports by farmers concerning slow growth, poor feed conversion, and low average weight increase of fish farmed in offshore floating sea cages, often associated with internal organ colonization by Moraxella sp. Therefore, presence of these opportunistic bacteria deserves further investigations for elucidating incidence and impact on fish metabolism. Results A total of 960 gilthead sea breams (Sparus aurata, L., collected along 17 months from four offshore sea cage plants and two natural lagoons in Sardinia, were subjected to routine microbiological examination of internal organs throughout the production cycle. Thirteen subjects (1.35% were found positive for Moraxella sp. in the kidney (7, brain (3, eye (1, spleen (1, and perivisceral fat (1. In order to investigate the influence of Moraxella sp. colonization, positive and negative kidney samples were subjected to a differential proteomics study by means of 2-D PAGE and mass spectrometry. Interestingly, Moraxella sp. infected kidneys displayed a concerted upregulation of several mitochondrial enzymes compared to negative tissues, reinforcing previous observations following lipopolysaccharide (LPS challenge in fish. Conclusions Presence of Moraxella sp. in farmed sea bream kidney is able to induce proteome alterations similar to those described following LPS challenge in other fish species. This study revealed that Moraxella sp. might be causing metabolic alterations in fish, and provided indications on proteins that could be investigated as markers of infection by Gram-negative bacteria within farming plants.

  9. Microbial biomass in compost during colonization of Agaricus bisporus

    NARCIS (Netherlands)

    Vos, Aurin M.; Heijboer, Amber; Boschker, Henricus T.S.; Bonnet, Barbara; Lugones, Luis G.; Wösten, Han A.B.

    2017-01-01

    Agaricus bisporus mushrooms are commercially produced on a microbe rich compost. Here, fungal and bacterial biomass was quantified in compost with and without colonization by A. bisporus. Chitin content, indicative of total fungal biomass, increased during a 26-day period from 576 to 779 nmol

  10. Plant innate immunity against human bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Maeli eMelotto

    2014-08-01

    Full Text Available Certain human bacterial pathogens such as the enterohemorrhagic Escherichia coli and Salmonella enterica are not proven to be plant pathogens yet. Nonetheless, under certain conditions they can survive on, penetrate into, and colonize internal plant tissues causing serious food borne disease outbreaks. In this review, we highlight current understanding on the molecular mechanisms of plant responses against human bacterial pathogens and discuss salient common and contrasting themes of plant interactions with phytopathogens or human pathogens.

  11. Live Attenuated Influenza Vaccine Enhances Colonization of Streptococcus pneumoniae and Staphylococcus aureus in Mice

    Science.gov (United States)

    Mina, Michael J.; McCullers, Jonathan A.; Klugman, Keith P.

    2014-01-01

    ABSTRACT Community interactions at mucosal surfaces between viruses, like influenza virus, and respiratory bacterial pathogens are important contributors toward pathogenesis of bacterial disease. What has not been considered is the natural extension of these interactions to live attenuated immunizations, and in particular, live attenuated influenza vaccines (LAIVs). Using a mouse-adapted LAIV against influenza A (H3N2) virus carrying the same mutations as the human FluMist vaccine, we find that LAIV vaccination reverses normal bacterial clearance from the nasopharynx and significantly increases bacterial carriage densities of the clinically important bacterial pathogens Streptococcus pneumoniae (serotypes 19F and 7F) and Staphylococcus aureus (strains Newman and Wright) within the upper respiratory tract of mice. Vaccination with LAIV also resulted in 2- to 5-fold increases in mean durations of bacterial carriage. Furthermore, we show that the increases in carriage density and duration were nearly identical in all aspects to changes in bacterial colonizing dynamics following infection with wild-type (WT) influenza virus. Importantly, LAIV, unlike WT influenza viruses, had no effect on severe bacterial disease or mortality within the lower respiratory tract. Our findings are, to the best of our knowledge, the first to demonstrate that vaccination with a live attenuated viral vaccine can directly modulate colonizing dynamics of important and unrelated human bacterial pathogens, and does so in a manner highly analogous to that seen following wild-type virus infection. PMID:24549845

  12. Label-free Raman spectroscopy provides early determination and precise localization of breast cancer-colonized bone alterations.

    Science.gov (United States)

    Zhang, Chi; Winnard, Paul T; Dasari, Sidarth; Kominsky, Scott L; Doucet, Michele; Jayaraman, Swaathi; Raman, Venu; Barman, Ishan

    2018-01-21

    Breast neoplasms frequently colonize bone and induce development of osteolytic bone lesions by disrupting the homeostasis of the bone microenvironment. This degenerative process can lead to bone pain and pathological bone fracture, a major cause of cancer morbidity and diminished quality of life, which is exacerbated by our limited ability to monitor early metastatic disease in bone and assess fracture risk. Spurred by its label-free, real-time nature and its exquisite molecular specificity, we employed spontaneous Raman spectroscopy to assess and quantify early metastasis driven biochemical alterations to bone composition. As early as two weeks after intracardiac inoculations of MDA-MB-435 breast cancer cells in NOD-SCID mice, Raman spectroscopic measurements in the femur and spine revealed consistent changes in carbonate substitution, overall mineralization as well as crystallinity increase in tumor-bearing bones when compared with their normal counterparts. Our observations reveal the possibility of early stage detection of biochemical changes in the tumor-bearing bones - significantly before morphological variations are captured through radiographic diagnosis. This study paves the way for a better molecular understanding of altered bone remodeling in such metastatic niches, and for further clinical studies with the goal of establishing a non-invasive tool for early metastasis detection and prediction of pathological fracture risk in breast cancer.

  13. The short-circuit current of the ileum, but not the colon, is altered in the streptozotocin diabetic rat.

    Science.gov (United States)

    Forrest, Abigail; Makwana, Rajesh; Parsons, Mike

    2006-02-01

    Ion transport in control and streptozotocin-diabetic rat colon and ileum was studied using the Ussing chamber technique. No differences were observed between control and diabetic colonic mucosal short-circuit current under either basal or carbachol (100 nmol/L-1 micromol/L)-stimulated or prostaglandin E2 (100 nmol/L-1 micromol/L)-stimulated conditions. Similarly to colonic tissues, no differences in the short circuit current in either carbachol-stimulated or prostaglandin E2-stimulated tissues were observed between control and diabetic ileal mucosa. The basal diabetic ileal short circuit current (99.58 +/- 22.67 microA) was significantly greater than that of control ileal tissues (29.67 +/- 4.45 microA). This difference was abolished by the sodium-glucose-cotransporter inhibitor, phloridzin (50 micromol/L) (118.00 +/- 28.09 microA vs. 25.60 +/- 4.59 microA) and was also prevented by the replacement of glucose with mannitol in the buffer bathing the apical side of the tissue (control: 17.05 +/- 5.85 microA vs. 17.90 +/- 3.10 microA). Acetazolamide (450 micromol/L; a carbonic anhydrase inhibitor), amiloride, and bumetanide (100 micromol/L each; Na+-channel blockers), piroxicam (50 micromol/L; a COX1 cyclooxygenase inhibitor), and ouabain (1 mmol/L; a K+ transport inhibitor) had no effect on the basal short circuit current of either control or diabetic ileal tissues. This indicated that the alteration in the basal short circuit current of diabetic ileal tissues was due to a change in cellular glucose transport, whereas the evoked changes in short circuit current were unaffected by the diabetic state.

  14. Gibberellins interfere with symbiosis signaling and gene expression and alter colonization by arbuscular mycorrhizal fungi in Lotus japonicus.

    Science.gov (United States)

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-02-01

    Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root. © 2015 American Society of Plant Biologists. All Rights Reserved.

  15. Biofilm is a Major Virulence Determinant in Bacterial Colonization of Chronic Skin Ulcers Independently from the Multidrug Resistant Phenotype

    Directory of Open Access Journals (Sweden)

    Enea Gino Di Domenico

    2017-05-01

    Full Text Available Bacterial biofilm is a major factor in delayed wound healing and high levels of biofilm production have been repeatedly described in multidrug resistant organisms (MDROs. Nevertheless, a quantitative correlation between biofilm production and the profile of antimicrobial drug resistance in delayed wound healing remains to be determined. Microbial identification, antibiotic susceptibility and biofilm production were assessed in 135 clinical isolates from 87 patients. Gram-negative bacteria were the most represented microorganisms (60.8% with MDROs accounting for 31.8% of the total isolates. Assessment of biofilm production revealed that 80% of the strains were able to form biofilm. A comparable level of biofilm production was found with both MDRO and not-MDRO with no significant differences between groups. All the methicillin-resistant Staphylococcus aureus (MRSA and 80% of Pseudomonas aeruginosa MDR strains were found as moderate/high biofilm producers. Conversely, less than 17% of Klebsiella pneumoniae extended-spectrum beta-lactamase (ESBL, Escherichia coli-ESBL and Acinetobacter baumannii were moderate/high biofilm producers. Notably, those strains classified as non-biofilm producers, were always associated with biofilm producer bacteria in polymicrobial colonization. This study shows that biofilm producers were present in all chronic skin ulcers, suggesting that biofilm represents a key virulence determinant in promoting bacterial persistence and chronicity of ulcerative lesions independently from the MDRO phenotype.

  16. The normal bacterial flora prevents GI disease

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. The normal bacterial flora prevents GI disease. Inhibits pathogenic enteric bacteria. Decrease luminal pH; Secrete bacteriocidal proteins; Colonization resistance; Block epithelial binding – induce MUC2. Improves epithelial and mucosal barrier integrity. Produce ...

  17. Colonization of torrefied grass fibers by plant-beneficial microorganisms

    NARCIS (Netherlands)

    Trifonova, R.; Babini, V.; Postma, J.; Ketelaars, J.J.M.H.; van Elsas, J.D.

    This study aimed to assess the colonization of thermally treated (i.e. torrefied) grass fibers (TGFs), a new prospective ingredient of potting soil. Eleven bacterial strains and one fungus, Coniochaeta ligniaria F/TGF15, all isolated from TGF or its extract after inoculation with a soil microbial

  18. Colonization of torrefied grass fibers by plant beneficial microorganisms

    NARCIS (Netherlands)

    Trifonova, R.D.; Babini, V.; Postma, J.; Ketelaars, J.J.M.H.; Elsas, van J.D.

    2009-01-01

    This study aimed to assess the colonization of thermally treated (i.e. torrefied) grass fibers (TGFs), a new prospective ingredient of potting soil. Eleven bacterial strains and one fungus, Coniochaeta ligniaria F/TGF15, all isolated from TGF or its extract after inoculation with a soil microbial

  19. Influenza A virus alters pneumococcal nasal colonization and middle ear infection independently of phase variation.

    Science.gov (United States)

    Wren, John T; Blevins, Lance K; Pang, Bing; King, Lauren B; Perez, Antonia C; Murrah, Kyle A; Reimche, Jennifer L; Alexander-Miller, Martha A; Swords, W Edward

    2014-11-01

    Streptococcus pneumoniae (pneumococcus) is both a widespread nasal colonizer and a leading cause of otitis media, one of the most common diseases of childhood. Pneumococcal phase variation influences both colonization and disease and thus has been linked to the bacteria's transition from colonizer to otopathogen. Further contributing to this transition, coinfection with influenza A virus has been strongly associated epidemiologically with the dissemination of pneumococci from the nasopharynx to the middle ear. Using a mouse infection model, we demonstrated that coinfection with influenza virus and pneumococci enhanced both colonization and inflammatory responses within the nasopharynx and middle ear chamber. Coinfection studies were also performed using pneumococcal populations enriched for opaque or transparent phase variants. As shown previously, opaque variants were less able to colonize the nasopharynx. In vitro, this phase also demonstrated diminished biofilm viability and epithelial adherence. However, coinfection with influenza virus ameliorated this colonization defect in vivo. Further, viral coinfection ultimately induced a similar magnitude of middle ear infection by both phase variants. These data indicate that despite inherent differences in colonization, the influenza A virus exacerbation of experimental middle ear infection is independent of the pneumococcal phase. These findings provide new insights into the synergistic link between pneumococcus and influenza virus in the context of otitis media. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  20. High-grain diets altered rumen fermentation and epithelial bacterial community and resulted in rumen epithelial injuries of goats.

    Science.gov (United States)

    Zhang, Ruiyang; Ye, Huimin; Liu, Junhua; Mao, Shengyong

    2017-09-01

    This study evaluated the effects of high-grain diets on the rumen fermentation, epithelial bacterial community, morphology of rumen epithelium, and local inflammation of goats during high-grain feeding. Twelve 8-month-old goats were randomly assigned to two different diets, a hay diet or a high-grain diet (65% grain, HG). At the end of 7 weeks of treatment, samples of rumen content and rumen epithelium were collected. Rumen pH was lower (P rumen epithelial bacterial community, with an increase in the proportion of genus Prevotella and a decrease in the relative abundance of the genera Shuttleworthia and Fibrobacteres. PICRUSt analysis suggested that the HG-fed group had a higher (P rumen epithelial injury and upregulated (P rumen pH, LPS level, and rumen epithelial bacteria abundance. In conclusion, our results indicated that the alterations in the rumen environment and epithelial bacterial community which were induced by HG feeding may result in the damage and local inflammation in the rumen epithelium, warranting further study of rumen microbial-host interactions in the HG feeding model.

  1. Nuclear microscopy of rat colon epithelial cells

    International Nuclear Information System (INIS)

    Ren, M.; Rajendran, Reshmi; Ng, Mary; Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank; Jenner, Andrew Michael

    2011-01-01

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  2. Nuclear microscopy of rat colon epithelial cells

    Science.gov (United States)

    Ren, M.; Rajendran, Reshmi; Ng, Mary; Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank; Jenner, Andrew Michael

    2011-10-01

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  3. Nuclear microscopy of rat colon epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, M., E-mail: phyrenmq@nus.edu.sg [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Rajendran, Reshmi [Lab of Molecular Imaging, Singapore Bioimaging Consotium, 11 Biopolis Way, 02-02 Helios, Singapore 138667 (Singapore); Ng, Mary [Department of Pharmacology, National University of Singapore (Singapore); Udalagama, Chammika; Rodrigues, Anna E.; Watt, Frank [Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542 (Singapore); Jenner, Andrew Michael [Illawara Health and Medical Research Institute (IHMRI), University of Wollongong, NSW 2522 (Australia)

    2011-10-15

    Using Nuclear microscopy, we have investigated iron distributions in the colons of Sprague Dawley rats, in order to elucidate heme uptake. Four groups of five Sprague Dawley rats (mean weight 180 g) were fed different purified diets containing either heme diet (2.5% w/w hemoglobin), high fat diet (HFD) (18% w/w fat, 1% w/w cholesterol), 'western' diet (combination of hemoglobin 2.5% and 18% fat, 1% cholesterol) or control diet (7% w/w fat). After 4 weeks, animals were sacrificed by exsanguination after anaesthesia. Thin sections of frozen colon tissue were taken, freeze dried and scanned using nuclear microscopy utilising the techniques PIXE, RBS and STIM. The new data acquisition system (IonDaq) developed in CIBA was used to obtain high resolution images and line scans were used to map the iron distributions across the colon boundaries. The nuclear microscope results indicate that when HFD is given in addition to heme, the iron content of the epithelial cells that line the colon decreases, and the zinc in the smooth muscle wall increases. This implies that the level of heme and fat in diet has an important role in colon health, possibly by influencing epithelial cells directly or changing luminal composition such as bacterial flora or levels of metabolites and cytotoxins.

  4. Exploring the chemotactic attraction of Campylobacter jejuni in chicken colonization

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Brøndsted, Lone; Ingmer, Hanne

    Campylobacter jejuni is the primary food borne bacterial pathogen in the developed world. The most important reservoir for C. jejuni is the gut of chickens, which are colonized commensally and efficiently by this organism. Predominantly the mucus filled crypts of the lower gastrointestinal tract....... These mutants will be analyzed for their chemotatic capacity in order to investigate the chemoreceptor function and to identify matching chemoeffectors. Furthermore, selected mutants will be investigated for their ability to colonize chickens with focus on establishment, level, and persistence. Special emphasis...

  5. Bacterial dynamics in intestines of the black tiger shrimp and the Pacific white shrimp during Vibrio harveyi exposure.

    Science.gov (United States)

    Rungrassamee, Wanilada; Klanchui, Amornpan; Maibunkaew, Sawarot; Karoonuthaisiri, Nitsara

    2016-01-01

    . Our findings provide evidence of intestinal bacterial population altered by a presence of the pathogen in shrimp intestines and intestinal bacterial stability might provide colonization resistance against the invading pathogen in the host shrimp. Hence, intestinal microbial ecology management may potentially contribute to disease prevention in aquaculture. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Changes in Composition of Caecal Microbiota Associated with Increased Colon Inflammation in Interleukin-10 Gene-Deficient Mice Inoculated with Enterococcus Species

    Directory of Open Access Journals (Sweden)

    Shalome A. Bassett

    2015-03-01

    Full Text Available Human inflammatory bowel disease (IBD is a chronic intestinal disease where the resident microbiota contributes to disease development, yet the specific mechanisms remain unclear. Interleukin-10 gene-deficient (Il10-/- mice develop inflammation similar to IBD, due in part to an inappropriate response to commensal bacteria. We have previously reported changes in intestinal morphology and colonic gene expression in Il10-/- mice in response to oral bacterial inoculation. In this study, we aimed to identify specific changes in the caecal microbiota associated with colonic inflammation in these mice. The microbiota was evaluated using pyrotag sequencing, denaturing gradient gel electrophoresis (DGGE and quantitative real-time PCR. Microbiota profiles were influenced by genotype of the mice and by bacterial inoculation, and a strong correlation was observed between the microbiota and colonic inflammation scores. Although un-inoculated Il10-/- and C57 mice had similar microbiota communities, bacterial inoculation resulted in different changes to the microbiota in Il10-/- and C57 mice. Inoculated Il10-/- mice had significantly less total bacteria than un-inoculated Il10-/- mice, with a strong negative correlation between total bacterial numbers, relative abundance of Escherichia/Shigella, microbiota diversity, and colonic inflammation score. Our results show a putative causative role for the microbiota in the development of IBD, with potentially key roles for Akkermansia, or for Bacteroides, Helicobacter, Parabacteroides, and Alistipes, depending on the composition of the bacterial inoculum. These data support the use of bacterially-inoculated Il10-/- mice as an appropriate model to investigate human IBD.

  7. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota.

    Science.gov (United States)

    Bulgarelli, Davide; Rott, Matthias; Schlaeppi, Klaus; Ver Loren van Themaat, Emiel; Ahmadinejad, Nahal; Assenza, Federica; Rauf, Philipp; Huettel, Bruno; Reinhardt, Richard; Schmelzer, Elmon; Peplies, Joerg; Gloeckner, Frank Oliver; Amann, Rudolf; Eickhorst, Thilo; Schulze-Lefert, Paul

    2012-08-02

    The plant root defines the interface between a multicellular eukaryote and soil, one of the richest microbial ecosystems on Earth. Notably, soil bacteria are able to multiply inside roots as benign endophytes and modulate plant growth and development, with implications ranging from enhanced crop productivity to phytoremediation. Endophytic colonization represents an apparent paradox of plant innate immunity because plant cells can detect an array of microbe-associated molecular patterns (also known as MAMPs) to initiate immune responses to terminate microbial multiplication. Several studies attempted to describe the structure of bacterial root endophytes; however, different sampling protocols and low-resolution profiling methods make it difficult to infer general principles. Here we describe methodology to characterize and compare soil- and root-inhabiting bacterial communities, which reveals not only a function for metabolically active plant cells but also for inert cell-wall features in the selection of soil bacteria for host colonization. We show that the roots of Arabidopsis thaliana, grown in different natural soils under controlled environmental conditions, are preferentially colonized by Proteobacteria, Bacteroidetes and Actinobacteria, and each bacterial phylum is represented by a dominating class or family. Soil type defines the composition of root-inhabiting bacterial communities and host genotype determines their ribotype profiles to a limited extent. The identification of soil-type-specific members within the root-inhabiting assemblies supports our conclusion that these represent soil-derived root endophytes. Surprisingly, plant cell-wall features of other tested plant species seem to provide a sufficient cue for the assembly of approximately 40% of the Arabidopsis bacterial root-inhabiting microbiota, with a bias for Betaproteobacteria. Thus, this root sub-community may not be Arabidopsis-specific but saprophytic bacteria that would naturally be found

  8. Bacterial Infection of Fly Ovaries Reduces Egg Production and Induces Local Hemocyte Activation

    OpenAIRE

    Brandt, Stephanie M.; Schneider, David S.

    2007-01-01

    Morbidity, the state of being diseased, is an important aspect of pathogenesis that has gone relatively unstudied in fruit flies. Our interest is in characterizing how bacterial pathogenesis affects various physiologies of the fly. We chose to examine the fly ovary because we found bacterial infection had a striking effect on fly reproduction. We observed decreased egg laying after bacterial infection that correlated with increased bacterial virulence. We also found that bacteria colonized th...

  9. [Spontaneous bacterial peritonitis].

    Science.gov (United States)

    Velkey, Bálint; Vitális, Eszter; Vitális, Zsuzsanna

    2017-01-01

    Spontaneous bacterial peritonitis occurs most commonly in cirrhotic patients with ascites. Pathogens get into the circulation by intestinal translocation and colonize in peritoneal fluid. Diagnosis of spontaneous bacterial peritonitis is based on elevated polymorphonuclear leukocyte count in the ascites (>0,25 G/L). Ascites culture is often negative but aids to get information about antibiotic sensitivity in positive cases. Treatment in stable patient can be intravenous then orally administrated ciprofloxacin or amoxicillin/clavulanic acid, while in severe cases intravenous III. generation cephalosporin. Nosocomial spontaneous bacterial peritonitis often caused by Gram-positive bacteria and multi-resistant pathogens can also be expected thus carbapenem should be the choice of the empiric treatment. Antibiotic prophylaxis should be considered. Norfloxacin is used most commonly, but changes are expected due to increase in quinolone resistance. As a primary prophylaxis, a short-term antibiotic treatment is recommended after gastrointestinal bleeding for 5 days, while long-term prophylaxis is for patients with low ascites protein, and advanced disease (400 mg/day). Secondary prophylaxis is recommended for all patients recovered from spontaneous bacterial peritonitis. Due to increasing antibiotic use of antibiotics prophylaxis is debated to some degree. Orv. Hetil., 2017, 158(2), 50-57.

  10. Relationship between airway colonization, inflammation and exacerbation frequency in COPD.

    Science.gov (United States)

    Tumkaya, Munir; Atis, Sibel; Ozge, Cengiz; Delialioglu, Nuran; Polat, Gurbuz; Kanik, Arzu

    2007-04-01

    To evaluate bacterial colonization and the airway inflammatory response, and its relationship to the frequency of exacerbation in patients with stable chronic obstructive pulmonary disease (COPD). Quantitative bacteriologic cultures, neutrophil elastase, myeloperoxidase (MPO), tumor necrosis factor alpha (TNF-alpha) and interleukin (IL)-8 were measured in bronchoalveoler lavage (BAL) in 39 patients with stable COPD [19 with frequent exacerbation (> or = 3/year), and 20 with infrequent] and in 18 healthy controls (10 smokers and 8 non-smokers). BAL revealed the microorganisms with potential pathogenicity above the established threshold (> or = 10(3)cfu/ml) in 68.4% of patients with frequent exacerbation, 55% of infrequent exacerbation, 40% of smokers and 12.5% of non-smokers controls (P=0.05). BAL MPO, IL-8 and TNF-alpha levels were found to be significantly higher in COPD as compared to controls (P=0.001). However, only IL-8 level was significantly higher in COPD patients with frequent exacerbation as compared to infrequent (P=0.001). Airway bacterial load correlated with levels of airway inflammation markers in COPD (P<0.05). The bacterial load and airway inflammation contributes to each other in stable COPD. However, there is a link only between interleukine (IL)-8 and frequent exacerbations. Clearly, the relationship between bacterial colonization, airway inflammation and frequent exacerbations is of major importance in understanding of the COPD pathogenesis.

  11. Cryptogenic pyogenic liver abscess as the herald of colon cancer.

    Science.gov (United States)

    Jeong, Soung Won; Jang, Jae Young; Lee, Tae Hee; Kim, Hyun Gun; Hong, Sung Wook; Park, Seung Hoon; Kim, Sang Gyune; Cheon, Young Koog; Kim, Young Seok; Cho, Young Deok; Kim, Jin-Oh; Kim, Boo Sung; Lee, Eun Jung; Kim, Tae Hyong

    2012-02-01

    Colonic mucosal defects might be a route for bacterial invasion into the portal system, with subsequent hematogenous spread to the liver. We retrospectively investigated the results of colonoscopy and the clinical characteristics of patients with pyogenic liver abscess of colonic origin. A total of 230 consecutive patients with pyogenic liver abscess were reviewed between 2003 and 2010. The 230 patients were categorized into three groups (pancreatobiliary [n = 135], cryptogenic [n = 81], and others [n = 14]). Of the 81 cryptogenic patients, 37 (45.7%) underwent colonoscopy. Colonic lesions with mucosal defects were considered colonic causes of abscess. In the 37 colonoscopic investigations, colon cancer was found in six patients (16.2%), laterally-spreading tumor (LST) in two patients (5.4%), multiple colon ulcers in one patient (2.7%), colon polyps in 17 patients (45.9%), and diverticula in four patients (10.8%). Nine (11%) of 81 cryptogenic abscesses were therefore reclassified as being of colonic origin (colon cancer = 6, LST = 2, ulcer = 1). Three cases were stage III colon cancer, and the others were stage I. Two LST were high-grade dysplasia. The percentage of patients with Klebsiella pneumoniae (K. pneumoniae) and diabetes mellitus (DM) of colonic origin was 66.7%, which was significantly higher than the 8.6% for other causes (P colonic cause. Colonoscopy should be considered for the detection of hidden colonic malignant lesions in patients with cryptogenic pyogenic liver abscess, especially for patients with K. pneumoniae and DM. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  12. Study shows colon and rectal tumors constitute a single type of cancer

    Science.gov (United States)

    The pattern of genomic alterations in colon and rectal tissues is the same regardless of anatomic location or origin within the colon or the rectum, leading researchers to conclude that these two cancer types can be grouped as one, according to The Cancer

  13. The potential of endomycorrhizal fungi in controlling tomato bacterial ...

    African Journals Online (AJOL)

    user

    2012-08-21

    Aug 21, 2012 ... The impact of colonization by three mycorrhizal fungi on tomato bacterial wilt caused by Ralstonia ... Three species of arbuscular mycorrhizal fungal (AMF) were tested. (Glomus ...... management of fruits and vegetables. Vol.

  14. Bloom and bust: intestinal microbiota dynamics in response to hospital exposures and Clostridium difficile colonization or infection.

    Science.gov (United States)

    Vincent, Caroline; Miller, Mark A; Edens, Thaddeus J; Mehrotra, Sudeep; Dewar, Ken; Manges, Amee R

    2016-03-14

    Clostridium difficile infection (CDI) is the leading infectious cause of nosocomial diarrhea. Hospitalized patients are at increased risk of developing CDI because they are exposed to C. difficile spores through contact with the hospital environment and often receive antibiotics and other medications that can disrupt the integrity of the indigenous intestinal microbiota and impair colonization resistance. Using whole metagenome shotgun sequencing, we examined the diversity and composition of the fecal microbiota in a prospective cohort study of 98 hospitalized patients. Four patients had asymptomatic C. difficile colonization, and four patients developed CDI. We observed dramatic shifts in the structure of the gut microbiota during hospitalization. In contrast to CDI cases, asymptomatic patients exhibited elevated relative abundance of potentially protective bacterial taxa in their gut at the onset of C. difficile colonization. Use of laxatives was associated with significant reductions in the relative abundance of Clostridium and Eubacterium; species within these genera have previously been shown to enhance resistance to CDI via the production of secondary bile acids. Cephalosporin and fluoroquinolone exposure decreased the frequency of Clostridiales Family XI Incertae Sedis, a bacterial family that has been previously associated with decreased CDI risk. This study underscores the detrimental impact of antibiotics as well as other medications, particularly laxatives, on the intestinal microbiota and suggests that co-colonization with key bacterial taxa may prevent C. difficile overgrowth or the transition from asymptomatic C. difficile colonization to CDI.

  15. The human jejunum has an endogenous microbiota that differs from those in the oral cavity and colon.

    Science.gov (United States)

    Sundin, Olof H; Mendoza-Ladd, Antonio; Zeng, Mingtao; Diaz-Arévalo, Diana; Morales, Elisa; Fagan, B Matthew; Ordoñez, Javier; Velez, Philip; Antony, Nishaal; McCallum, Richard W

    2017-07-17

    The upper half of the human small intestine, known as the jejunum, is the primary site for absorption of nutrient-derived carbohydrates, amino acids, small peptides, and vitamins. In contrast to the colon, which contains 10 11 -10 12 colony forming units of bacteria per ml (CFU/ml), the normal jejunum generally ranges from 10 3 to 10 5  CFU per ml. Because invasive procedures are required to access the jejunum, much less is known about its bacterial microbiota. Bacteria inhabiting the jejunal lumen have been investigated by classical culture techniques, but not by culture-independent metagenomics. The lumen of the upper jejunum was sampled during enteroscopy of 20 research subjects. Culture on aerobic and anaerobic media gave live bacterial counts ranging from 5.8 × 10 3 CFU/ml to 8.0 × 10 6 CFU/ml. DNA from the same samples was analyzed by 16S rRNA gene-specific quantitative PCR, yielding values from 1.5 × 10 5 to 3.1 × 10 7 bacterial genomes per ml. When calculated for each sample, estimated bacterial viability ranged from effectively 100% to a low of 0.3%. 16S rRNA metagenomic analysis of uncultured bacteria by Illumina MiSeq sequencing gave detailed microbial composition by phylum, genus and species. The genera Streptococcus, Prevotella, Veillonella and Fusobacterium, were especially abundant, as well as non-oral genera including Escherichia, Klebsiella, and Citrobacter. The jejunum was devoid of the genera Alistipes, Ruminococcus, Faecalibacterium, and other extreme anaerobes abundant in the colon. In patients with higher bacterial loads, there was no significant change in microbial species composition. The jejunal lumen contains a distinctive bacterial population consisting primarily of facultative anaerobes and oxygen-tolerant obligate anaerobes similar to those found in the oral cavity. However, the frequent abundance of Enterobacteriaceae represents a major difference from oral microbiota. Although a few genera are shared with the colon, we

  16. Bacterial flora of sturgeon fingerling

    International Nuclear Information System (INIS)

    Arani, A.S.; Mosahab, R.

    2008-01-01

    The study on microbial populations is a suitable tool to understand and apply control methods to improve the sanitary level of production in fish breeding and rearing centers, ensure health of sturgeon fingerlings at the time of their release into the rivers and also in the conversation and restoration of these valuable stocks in the Caspian Sea, Iran. A laboratory research based on Austin methods (Austin, B., Austin, D.A. 1993) was conducted for bacterial study on 3 sturgeon species naming A. persicus, A. stellatus and A. nudiventris during different growth stages. Bacterial flora of Acinetobacter, Moraxella, Aeromonas, Vibrio, Edwardsiella, Staphylococcus, Proteus, Yersinia, Pseudomonas and Plesiomonas were determined. The factors which may induce changes in bacterial populations during different stages of fife are the followings: quality of water in rearing ponds, different conditions for growth stages, suitable time for colonization of bacterial flora in rearing pond, water temperature increase in fingerlings size and feeding condition. (author)

  17. Altered perineal microbiome is associated with vulvovaginitis and urinary tract infection in preadolescent girls.

    Science.gov (United States)

    Gorbachinsky, Ilya; Sherertz, Robert; Russell, Gregory; Krane, L Spencer; Hodges, Steve J

    2014-12-01

    Vulvovaginitis has a known association with urinary tract infections (UTIs) in girls. We hypothesize that vulvovaginitis is a major contributor to UTIs in prepubertal girls by increasing periurethral colonization with uropathogens. Periurethral swabs and urine specimens were obtained from a total of 101 girls (58 with vulvovaginitis and 43 without vulvovaginitis). Specimens were cultured for bacterial growth. The dominant organism in the periurethral swabs and urine cultures was recorded and antibiotic sensitivity profiles were compared. Periurethral swabs from children with vulvovaginitis were associated with a statistically significant increase in uropathogenic bacteria (79% Enterococcus species or Escherichia coli) as the dominant culture compared with swabs from girls without vaginitis (18%) (p vulvovaginitis, 52% of the urine cultures were positive for UTIs, and the dominant organism in the urine cultures matched the species and antibiotic sensitivity profile of the corresponding periurethral swab. Only 11% of the urine cultures from girls without vulvovaginitis were positive for UTIs. Vulvovaginitis may cause UTIs by altering the perineal biome such that there is increased colonization of uropathogens.

  18. The tad locus: postcards from the widespread colonization island.

    Science.gov (United States)

    Tomich, Mladen; Planet, Paul J; Figurski, David H

    2007-05-01

    The Tad (tight adherence) macromolecular transport system, which is present in many bacterial and archaeal species, represents an ancient and major new subtype of type II secretion. The tad genes are present on a genomic island named the widespread colonization island (WCI), and encode the machinery that is required for the assembly of adhesive Flp (fimbrial low-molecular-weight protein) pili. The tad genes are essential for biofilm formation, colonization and pathogenesis in the genera Aggregatibacter (Actinobacillus), Haemophilus, Pasteurella, Pseudomonas, Yersinia, Caulobacter and perhaps others. Here we review the structure, function and evolution of the Tad secretion system.

  19. Vulvovaginal Candidiasis in Pregnant Women and its Importance for Candida Colonization of Newborns

    Directory of Open Access Journals (Sweden)

    Zisova Liliya G.

    2016-06-01

    Full Text Available Vulvovaginal candidiasis is the second most common cause of vaginitis worldwide (after bacterial candidiasis. Maternal vulvovaginal candidiasis is a major risk factor for Candida colonization and infection of the infant where prognosis depends on different predisposing factors. The aim of this study was to determine the incidence and the etiological structure of vulvovaginal candidiasis in pregnant women and its impact on Candida colonization of newborns.

  20. Bacterial colonization of the implant-abutment interface of conical connection with an internal octagon: an in vitro study using real-time PCR.

    Science.gov (United States)

    Baj, A; Beltramini, G A; Bolzoni, A; Cura, F; Palmieri, A; Scarano, A; Ottria, L; Giannì, A B

    2017-01-01

    Bacterial leakage at the implant-abutment connection of a two-piece implant system is considered the main cause of peri-implantitis. Prevention of bacterial leakage at the implant-abutment connection is mandatory for reducing inflammation process around implant neck and achieving bone stability. Micro-cavities at implant-abutment connection level can favour bacterial leakage, even in modern two-piece implant systems. The conical connection with an internal octagon (CCIO) is considered to be more stable mechanically and allows a more tight link between implant and abutment. As P. gingivalis and T. forsythia penetration might have clinical relevance, it was the purpose of this investigation to evaluate molecular leakage of these two bacteria in a new two-implant system with an internal conical implant-abutment connection with internal octagon (Shiner XT, FMD Falappa Medical Devices S.p.A. Rome, Italy). To verify the ability of the implant in protecting the internal space from the external environment, the passage of genetically modified Escherichia c oli across implant-abutment interface was evaluated. Four Shiner XT implants (FMD, Falappa Medical Devices®, Rome, Italy) were immerged in a bacterial culture for 24 h and bacteria amount was measured inside implant-abutment interface with Real-time PCR. Bacteria were detected inside all studied implants, with a median percentage of 6% for P. gingivalis and 5% for T. forsythia. Other comparable studies about the tightness of the tested implant system reported similar results. The gap size at the implant-abutment connection of CCIOs was measured by other authors discovering a gap size of 1–2μm of the AstraTech system and of 4μm for the Ankylos system. Bacterial leakage along implant-abutment connection of cylindrical and tapered implants, Shiner XT, (FMD Falappa Medical Devices S.p.A. Rome, Italy) showed better results compared to other implants. Additional studies are needed to explore the relationship in terms of

  1. Overexpression of GRß in colonic mucosal cell line partly reflects altered gene expression in colonic mucosa of patients with inflammatory bowel disease.

    Science.gov (United States)

    Nagy, Zsolt; Acs, Bence; Butz, Henriett; Feldman, Karolina; Marta, Alexa; Szabo, Peter M; Baghy, Kornelia; Pazmany, Tamas; Racz, Karoly; Liko, Istvan; Patocs, Attila

    2016-01-01

    The glucocorticoid receptor (GR) plays a crucial role in inflammatory responses. GR has several isoforms, of which the most deeply studied are the GRα and GRß. Recently it has been suggested that in addition to its negative dominant effect on GRα, the GRß may have a GRα-independent transcriptional activity. The GRß isoform was found to be frequently overexpressed in various autoimmune diseases, including inflammatory bowel disease (IBD). In this study, we wished to test whether the gene expression profile found in a GRß overexpressing intestinal cell line (Caco-2GRß) might mimic the gene expression alterations found in patients with IBD. Whole genome microarray analysis was performed in both normal and GRß overexpressing Caco-2 cell lines with and without dexamethasone treatment. IBD-related genes were identified from a meta-analysis of 245 microarrays available in online microarray deposits performed on intestinal mucosa samples from patients with IBD and healthy individuals. The differentially expressed genes were further studied using in silico pathway analysis. Overexpression of GRß altered a large proportion of genes that were not regulated by dexamethasone suggesting that GRß may have a GRα-independent role in the regulation of gene expression. About 10% of genes differentially expressed in colonic mucosa samples from IBD patients compared to normal subjects were also detected in Caco-2 GRß intestinal cell line. Common genes are involved in cell adhesion and cell proliferation. Overexpression of GRß in intestinal cells may affect appropriate mucosal repair and intact barrier function. The proposed novel role of GRß in intestinal epithelium warrants further studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Root bacterial endophytes alter plant phenotype, but not physiology

    DEFF Research Database (Denmark)

    Henning, Jeremiah A.; Weston, David J.; Pelletier, Dale A.

    2016-01-01

    (root:shoot, biomass production, root and leaf growth rates) and physiological traits (chlorophyll content, net photosynthesis, net photosynthesis at saturating light-Asat, and saturating CO2-Amax). Overall, we found that bacterial root endophyte infection increased root growth rate up to 184% and leaf...... growth rate up to 137% relative to non-inoculated control plants, evidence that plants respond to bacteria by modifying morphology. However, endophyte inoculation had no influence on total plant biomass and photosynthetic traits (net photosynthesis, chlorophyll content). In sum, bacterial inoculation did......Plant traits, such as root and leaf area, influence how plants interact with their environment and the diverse microbiota living within plants can influence plant morphology and physiology. Here, we explored how three bacterial strains isolated from the Populus root microbiome, influenced plant...

  3. Role of microsatellite instability in colon cancer

    Directory of Open Access Journals (Sweden)

    M. Yu. Fedyanin

    2012-01-01

    Full Text Available Coloncancer is among leading causes of cancer morbidity and mortality both inRussiaand worldwide. Development of molecular biology lead to decoding of carcinogenesis and tumor progression mechanisms. These processes require accumulation of genetic and epigenetic alterations in a tumor cell.Coloncancer carcinogenesis is characterized by mutations cumulation in genes controlling growth and differentiation of epithelial cells, which leads to their genetic instability. Microsatellite instability is a type of genetic instability characterized by deterioration of mismatch DNA repair. This leads to faster accumulation of mutations in DNA. Loss of mismatch repair mechanism can easily be diagnosed by length of DNA microsatellites. These alterations are termed microsatellite instability. They can be found both in hereditary and sporadic colon cancers. This review covers the questions of microsatellite instability, its prognostic and predictive value in colon cancer.

  4. Prospective study of vaginal bacterial flora and other risk factors for vulvovaginal candidiasis.

    Science.gov (United States)

    McClelland, R Scott; Richardson, Barbra A; Hassan, Wisal M; Graham, Susan M; Kiarie, James; Baeten, Jared M; Mandaliya, Kishorchandra; Jaoko, Walter; Ndinya-Achola, Jeckoniah O; Holmes, King K

    2009-06-15

    It has been suggested that vaginal colonization with lactobacilli may reduce the risk of vulvovaginal candidiasis (VVC), but supporting data are limited. Our objective was to determine the relationship between vaginal bacterial flora and VVC. We conducted a prospective cohort analysis that involved 151 Kenyan sex workers. At monthly follow-up visits, VVC was defined as the presence of yeast buds, pseudohyphae, or both on a wet preparation (including potassium hydroxide preparation) of vaginal secretions. Generalized estimating equations were used to identify correlates of VVC. Participants returned for a median of 12 visits (interquartile range, 11-12 visits). VVC was identified at 162 visits, including 26 involving symptomatic VVC. Bacterial vaginosis was associated with fewer episodes of VVC (adjusted odds ratio [aOR], 0.29 [95% confidence interval {CI}, 0.16-0.50]). After excluding women with concurrent bacterial vaginosis, another possible cause of vaginal symptoms, the likelihood of symptomatic VVC was higher among those who had had yeast identified on wet preparation of vaginal secretions during the past 60 days (aOR, 4.06 [95% CI, 1.12-14.74]) and those with concurrent vaginal Lactobacillus colonization (aOR, 3.75 [95% CI, 1.30-10.83]). Contrary to the commonly posited hypothesis that vaginal Lactobacillus colonization has a protective effect, we found that such colonization was associated with a nearly 4-fold increase in the likelihood of symptomatic VVC.

  5. Antibiotic-Loaded Synthetic Calcium Sulfate Beads for Prevention of Bacterial Colonization and Biofilm Formation in Periprosthetic Infections

    Science.gov (United States)

    Howlin, R. P.; Brayford, M. J.; Webb, J. S.; Cooper, J. J.; Aiken, S. S.

    2014-01-01

    Periprosthetic infection (PI) causes significant morbidity and mortality after fixation and joint arthroplasty and has been extensively linked to the formation of bacterial biofilms. Poly(methyl methacrylate) (PMMA), as a cement or as beads, is commonly used for antibiotic release to the site of infection but displays variable elution kinetics and also represents a potential nidus for infection, therefore requiring surgical removal once antibiotics have eluted. Absorbable cements have shown improved elution of a wider range of antibiotics and, crucially, complete biodegradation, but limited data exist as to their antimicrobial and antibiofilm efficacy. Synthetic calcium sulfate beads loaded with tobramycin, vancomycin, or vancomycin-tobramycin dual treatment (in a 1:0.24 [wt/wt] ratio) were assessed for their abilities to eradicate planktonic methicillin-resistant Staphylococcus aureus (MRSA) and Staphylococcus epidermidis relative to that of PMMA beads. The ability of the calcium sulfate beads to prevent biofilm formation over multiple days and to eradicate preformed biofilms was studied using a combination of viable cell counts, confocal microscopy, and scanning electron microscopy of the bead surface. Biofilm bacteria displayed a greater tolerance to the antibiotics than their planktonic counterparts. Antibiotic-loaded beads were able to kill planktonic cultures of 106 CFU/ml, prevent bacterial colonization, and significantly reduce biofilm formation over multiple days. However, established biofilms were harder to eradicate. These data further demonstrate the difficulty in clearing established biofilms; therefore, early preventive measures are key to reducing the risk of PI. Synthetic calcium sulfate loaded with antibiotics has the potential to reduce or eliminate biofilm formation on adjacent periprosthetic tissue and prosthesis material and, thus, to reduce the rates of periprosthetic infection. PMID:25313221

  6. Radiogenic stenosis of the colon following hypernephroma irradiation

    International Nuclear Information System (INIS)

    Razzaghipour, A.I.

    1973-01-01

    Refering to extensive home and foreign literature and to the number of 200 patients who were treated during the last 12 years, this paper reports about the radiogenic damage of the colon after irradiating renal tumors. Although no side dispositions of these types of radiation damage were mentioned in the literature, it was noticed in the group of the patients asked as well as in an Anglo-Saxon publication that both after conventional and after cobalt treatment exclusively the upper descending colon resp. the left half of the transverse colon showed alterations in the sense of a stenosing radiation colitis. The possible causes like differing topography of the colon as well as an individual disposition for increased radiation sensibility are discussed. The results of the clinical examination and the radiological symptoms colon stenosis in the number of the patients examined are shown casuistically, the successful surgical treatment of the colon stenosis is put briefly. This should help to contradict the reservations against a combined therapy for renal tumors and make the prognoses of malignant growth more pleasant. (orig.) [de

  7. Colonization of plants by human pathogenic bacteria in the course of organic vegetable production

    Directory of Open Access Journals (Sweden)

    Andreas eHofmann

    2014-05-01

    Full Text Available In recent years, increasing numbers of outbreaks caused by the consumption of vegetables contaminated with human pathogenic bacteria were reported. The application of organic fertilizers during vegetable production is one of the possible reasons for contamination with those pathogens. In this study laboratory experiments in axenic and soil systems following common practices in organic farming were conducted to identify the minimal dose needed for bacterial colonization of plants and to identify possible factors like bacterial species or serovariation, plant species or organic fertilizer types used, influencing the success of plant colonization by human pathogenic bacteria. Spinach and corn salad were chosen as model plants and were inoculated with different concentrations of Salmonella enterica sv. Weltevreden, Listeria monocytogenes sv. 4b and EGD-E sv. 1/2a either directly (axenic system or via agricultural soil amended with spiked organic fertilizers (soil system. In addition to PCR- and culture-based detection methods, fluorescence in situ hybridization (FISH was applied in order to localize bacteria on or in plant tissues. Our results demonstrate that shoots were colonized by the pathogenic bacteria at inoculation doses as low as 4x10CFU/ml in the axenic system or 4x105CFU/g in the soil system. In addition, plant species dependent effects were observed. Spinach was colonized more often and at lower inoculation doses compared to corn salad. Differential colonization sites on roots, depending on the plant species could be detected using FISH-CLSM analysis. Furthermore, the transfer of pathogenic bacteria to plants via organic fertilizers was observed more often and at lower initial inoculation doses when fertilization was performed with inoculated slurry compared to inoculated manure. Finally, it could be shown that by introducing a simple washing step, the bacterial contamination was reduced in most cases or even was removed completely in

  8. Gibberellins Interfere with Symbiosis Signaling and Gene Expression and Alter Colonization by Arbuscular Mycorrhizal Fungi in Lotus japonicus1

    Science.gov (United States)

    Takeda, Naoya; Handa, Yoshihiro; Tsuzuki, Syusaku; Kojima, Mikiko; Sakakibara, Hitoshi; Kawaguchi, Masayoshi

    2015-01-01

    Arbuscular mycorrhiza is a mutualistic plant-fungus interaction that confers great advantages for plant growth. Arbuscular mycorrhizal (AM) fungi enter the host root and form symbiotic structures that facilitate nutrient supplies between the symbionts. The gibberellins (GAs) are phytohormones known to inhibit AM fungal infection. However, our transcriptome analysis and phytohormone quantification revealed GA accumulation in the roots of Lotus japonicus infected with AM fungi, suggesting that de novo GA synthesis plays a role in arbuscular mycorrhiza development. We found pleiotropic effects of GAs on the AM fungal infection. In particular, the morphology of AM fungal colonization was drastically altered by the status of GA signaling in the host root. Exogenous GA treatment inhibited AM hyphal entry into the host root and suppressed the expression of Reduced Arbuscular Mycorrhization1 (RAM1) and RAM2 homologs that function in hyphal entry and arbuscule formation. On the other hand, inhibition of GA biosynthesis or suppression of GA signaling also affected arbuscular mycorrhiza development in the host root. Low-GA conditions suppressed arbuscular mycorrhiza-induced subtilisin-like serine protease1 (SbtM1) expression that is required for AM fungal colonization and reduced hyphal branching in the host root. The reduced hyphal branching and SbtM1 expression caused by the inhibition of GA biosynthesis were recovered by GA treatment, supporting the theory that insufficient GA signaling causes the inhibitory effects on arbuscular mycorrhiza development. Most studies have focused on the negative role of GA signaling, whereas our study demonstrates that GA signaling also positively interacts with symbiotic responses and promotes AM colonization of the host root. PMID:25527715

  9. Non-invasive vibrational SFG spectroscopy reveals that bacterial adhesion can alter the conformation of grafted "brush" chains on SAM.

    Science.gov (United States)

    Bulard, Emilie; Guo, Ziang; Zheng, Wanquan; Dubost, Henri; Fontaine-Aupart, Marie-Pierre; Bellon-Fontaine, Marie-Noëlle; Herry, Jean-Marie; Briandet, Romain; Bourguignon, Bernard

    2011-04-19

    Understanding bacterial adhesion on a surface is a crucial step to design new materials with improved properties or to control biofilm formation and eradication. Sum Frequency Generation (SFG) vibrational spectroscopy has been employed to study in situ the conformational response of a self-assembled monolayer (SAM) of octadecanethiol (ODT) on a gold film to the adhesion of hydrophilic and hydrophobic ovococcoid model bacteria. The present work highlights vibrational SFG spectroscopy as a powerful and unique non-invasive biophysical technique to probe and control bacteria interaction with ordered surfaces. Indeed, the SFG vibrational spectral changes reveal different ODT SAM conformations in air and upon exposure to aqueous solution or bacterial adhesion. Furthermore, this effect depends on the bacterial cell surface properties. The SFG spectral modeling demonstrates that hydrophobic bacteria flatten the ODT SAM alkyl chain terminal part, whereas the hydrophilic ones raise this ODT SAM terminal part. Microorganism-induced alteration of grafted chains can thus affect the desired interfacial functionality, a result that should be considered for the design of new reactive materials. © 2011 American Chemical Society

  10. Bifidobacterium breve alters immune function and ameliorates DSS-induced inflammation in weanling rats.

    Science.gov (United States)

    Izumi, Hirohisa; Minegishi, Mario; Sato, Yohei; Shimizu, Takashi; Sekine, Kazunori; Takase, Mitsunori

    2015-10-01

    Bifidobacterium breve M-16V (M16V) is a probiotic bacterial strain with a long tradition of use in neonatal intensive care units in some countries. Previous study showed that the effects of M16V administration on gene expression were greater during the weaning period than in the neonatal period and were greater in the colon than in the small intestine and spleen, suggesting that M16V has anti-inflammatory effects. In this study, we evaluated the effects of inflammation during the weaning period and the effects of M16V on normal and inflammatory conditions. From postnatal day (PD) 21 to 34, weanling rats were administered of 2.5 × 10(9) of M16V daily, and colitis was induced by administration of 2% dextran sulfate sodium from PD28 to 35. Colitis severity, immune function, and microbiota were investigated. Colitis caused a reduction in body weight gain, colon shortening, poor nutritional status, anemia, changes in blood and spleen lymphocyte populations, spleen T-cell malfunctions, and alterations in colon microbiota. M16V administration improved some but not all of the changes induced by colitis. M16V could suppress inflammation and, therefore, can be considered a safe strain to use not only during the neonatal period but also the weaning period.

  11. A model for bacterial colonization of sinking aggregates.

    Science.gov (United States)

    Bearon, R N

    2007-01-01

    Sinking aggregates provide important nutrient-rich environments for marine bacteria. Quantifying the rate at which motile bacteria colonize such aggregations is important in understanding the microbial loop in the pelagic food web. In this paper, a simple analytical model is presented to predict the rate at which bacteria undergoing a random walk encounter a sinking aggregate. The model incorporates the flow field generated by the sinking aggregate, the swimming behavior of the bacteria, and the interaction of the flow with the swimming behavior. An expression for the encounter rate is computed in the limit of large Péclet number when the random walk can be approximated by a diffusion process. Comparison with an individual-based numerical simulation is also given.

  12. Bacterial pathogen manipulation of host membrane trafficking.

    Science.gov (United States)

    Asrat, Seblewongel; de Jesús, Dennise A; Hempstead, Andrew D; Ramabhadran, Vinay; Isberg, Ralph R

    2014-01-01

    Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.

  13. Epidemiology of Streptococcus pneumoniae and Staphylococcus aureus colonization in healthy Venezuelan children.

    Science.gov (United States)

    Quintero, B; Araque, M; van der Gaast-de Jongh, C; Escalona, F; Correa, M; Morillo-Puente, S; Vielma, S; Hermans, P W M

    2011-01-01

    Streptococcus pneumoniae and Staphylococcus aureus cause significant morbidity and mortality worldwide. We investigated both the colonization and co-colonization characteristics for these pathogens among 250 healthy children from 2 to 5 years of age in Merida, Venezuela, in 2007. The prevalence of S. pneumoniae colonization, S. aureus colonization, and S. pneumoniae-S. aureus co-colonization was 28%, 56%, and 16%, respectively. Pneumococcal serotypes 6B (14%), 19F (12%), 23F (12%), 15 (9%), 6A (8%), 11 (8%), 23A (6%), and 34 (6%) were the most prevalent. Non-respiratory atopy was a risk factor for S. aureus colonization (p = 0.017). Vaccine serotypes were negatively associated with preceding respiratory infection (p = 0.02) and with S. aureus colonization (p = 0.03). We observed a high prevalence of pneumococcal resistance against trimethoprim-sulfamethoxazole (40%), erythromycin (38%), and penicillin (14%). Semi-quantitative measurement of pneumococcal colonization density showed that children with young siblings and low socioeconomic status were more densely colonized (p = 0.02 and p = 0.02, respectively). In contrast, trimethoprim-sulfamethoxazole- and multidrug-resistant-pneumococci colonized children sparsely (p = 0.03 and p = 0.01, respectively). Our data form an important basis to monitor the future impact of pneumococcal vaccination on bacterial colonization, as well as to recommend a rationalized and restrictive antimicrobial use in our community.

  14. Bacterial growth, flow, and mixing shape human gut microbiota density and composition.

    Science.gov (United States)

    Arnoldini, Markus; Cremer, Jonas; Hwa, Terence

    2018-03-13

    The human gut microbiota is highly dynamic, and host physiology and diet exert major influences on its composition. In our recent study, we integrated new quantitative measurements on bacterial growth physiology with a reanalysis of published data on human physiology to build a comprehensive modeling framework. This can generate predictions of how changes in different host factors influence microbiota composition. For instance, hydrodynamic forces in the colon, along with colonic water absorption that manifests as transit time, exert a major impact on microbiota density and composition. This can be mechanistically explained by their effect on colonic pH which directly affects microbiota competition for food. In this addendum, we describe the underlying analysis in more detail. In particular, we discuss the mixing dynamics of luminal content by wall contractions and its implications for bacterial growth and density, as well as the broader implications of our insights for the field of gut microbiota research.

  15. Role of neutral ceramidase in colon cancer.

    Science.gov (United States)

    García-Barros, Mónica; Coant, Nicolas; Kawamori, Toshihiko; Wada, Masayuki; Snider, Ashley J; Truman, Jean-Philip; Wu, Bill X; Furuya, Hideki; Clarke, Christopher J; Bialkowska, Agnieszka B; Ghaleb, Amr; Yang, Vincent W; Obeid, Lina M; Hannun, Yusuf A

    2016-12-01

    Alterations in sphingolipid metabolism, especially ceramide and sphingosine 1-phosphate, have been linked to colon cancer, suggesting that enzymes of sphingolipid metabolism may emerge as novel regulators and targets in colon cancer. Neutral ceramidase (nCDase), a key enzyme in sphingolipid metabolism that hydrolyzes ceramide into sphingosine, is highly expressed in the intestine; however, its role in colon cancer has not been defined. Here we show that molecular and pharmacological inhibition of nCDase in colon cancer cells increases ceramide, and this is accompanied by decreased cell survival and increased apoptosis and autophagy, with minimal effects on noncancerous cells. Inhibition of nCDase resulted in loss of β-catenin and inhibition of ERK, components of pathways relevant for colon cancer development. Furthermore, inhibition of nCDase in a xenograft model delayed tumor growth and increased ceramide while decreasing proliferation. It is noteworthy that mice lacking nCDase treated with azoxymethane were protected from tumor formation. Taken together, these studies show that nCDase is pivotal for regulating initiation and development of colon cancer, and these data suggest that this enzyme is a suitable and novel target for colon cancer therapy.-García-Barros, M., Coant, N., Kawamori, T., Wada, M., Snider, A. J., Truman, J.-P., Wu, B. X., Furuya, H., Clarke, C. J., Bialkowska, A. B., Ghaleb, A., Yang, V. W., Obeid, L. M., Hannun, Y. A. Role of neutral ceramidase in colon cancer. © FASEB.

  16. Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops.

    Science.gov (United States)

    Bae, Chungyun; Han, Sang Wook; Song, Yu-Rim; Kim, Bo-Young; Lee, Hyung-Jin; Lee, Je-Min; Yeam, Inhwa; Heu, Sunggi; Oh, Chang-Sik

    2015-07-01

    Disease resistance against xylem-colonizing pathogenic bacteria in crops. Plant pathogenic bacteria cause destructive diseases in many commercially important crops. Among these bacteria, eight pathogens, Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, Erwinia amylovora, Pantoea stewartii subsp. stewartii, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. actinidiae, and Xylella fastidiosa, infect their host plants through different infection sites and paths and eventually colonize the xylem tissues of their host plants, resulting in wilting symptoms by blocking water flow or necrosis of xylem tissues. Noticeably, only a relatively small number of resistant cultivars in major crops against these vascular bacterial pathogens except X. oryzae pv. oryzae have been found or generated so far, although these pathogens threaten productivity of major crops. In this review, we summarize the lifestyles of major xylem-colonizing bacterial pathogens and then discuss the progress of current research on disease resistance controlled by qualitative disease resistance genes or quantitative trait loci against them. Finally, we propose infection processes of xylem-colonizing bacterial pathogens as one of possible reasons for why so few qualitative disease resistance genes against these pathogens have been developed or identified so far in crops.

  17. Aspergillus fumigatus colonization of punctal plugs.

    Science.gov (United States)

    Tabbara, Khalid F

    2007-01-01

    Punctal plugs are used in patients with dry eye syndrome to preserve the tears. In this report, I present two cases of Aspergillus fumigatus colonization of punctal plugs. Observational series of two cases. Approval was obtained from the institutional review board. Two men aged 29 and 31 years developed black spots inside the hole of punctal plug, which looked like eyeliner deposits. The deposits inside the hole of the plug in each patient were removed and cultured. Cultures of the two punctal plugs black deposits grew A fumigatus. Bacterial cultures were negative. Colonization of the punctal plug hole with A fumigatus was observed in two cases. It is recommended that punctal plugs be removed in patients undergoing refractive or intraocular procedures or in patients who are receiving topical corticosteroids. Current punctal plugs should be redesigned to avoid the presence of an inserter hole.

  18. Exposure to bacterial signals does not alter pea aphids' survival upon a second challenge or investment in production of winged offspring.

    Directory of Open Access Journals (Sweden)

    Bas ter Braak

    Full Text Available Pea aphids have an obligate nutritional symbiosis with the bacteria Buchneraaphidicola and frequently also harbor one or more facultative symbionts. Aphids are also susceptible to bacterial pathogen infections, and it has been suggested that aphids have a limited immune response towards such pathogen infections compared to other, more well-studied insects. However, aphids do possess at least some of the genes known to be involved in bacterial immune responses in other insects, and immune-competent hemocytes. One possibility is that immune priming with microbial elicitors could stimulate immune protection against subsequent bacterial infections, as has been observed in several other insect systems. To address this hypothesis we challenged aphids with bacterial immune elicitors twenty-four hours prior to live bacterial pathogen infections and then compared their survival rates to aphids that were not pre-exposed to bacterial signals. Using two aphid genotypes, we found no evidence for immune protection conferred by immune priming during infections with either Serratia marcescens or with Escherichia coli. Immune priming was not altered by the presence of facultative, beneficial symbionts in the aphids. In the absence of inducible immune protection, aphids may allocate energy towards other defense traits, including production of offspring with wings that could escape deteriorating conditions. To test this, we monitored the ratio of winged to unwinged offspring produced by adult mothers of a single clone that had been exposed to bacterial immune elicitors, to live E. coli infections or to no challenge. We found no correlation between immune challenge and winged offspring production, suggesting that this mechanism of defense, which functions upon exposure to fungal pathogens, is not central to aphid responses to bacterial infections.

  19. Interactions of seedborne bacterial pathogens with host and non-host plants in relation to seed infestation and seedling transmission.

    Science.gov (United States)

    Dutta, Bhabesh; Gitaitis, Ronald; Smith, Samuel; Langston, David

    2014-01-01

    The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea) to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean) and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1 × 10(6) colony forming units (CFUs)/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion). Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO) assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating), respectively and they were not significantly different (P = 0.67). The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating) and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03). None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be colonized by

  20. Interactions of seedborne bacterial pathogens with host and non-host plants in relation to seed infestation and seedling transmission.

    Directory of Open Access Journals (Sweden)

    Bhabesh Dutta

    Full Text Available The ability of seed-borne bacterial pathogens (Acidovorax citrulli, Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato, Xanthomonas euvesicatoria, and Pseudomonas syringae pv. glycinea to infest seeds of host and non-host plants (watermelon, tomato, pepper, and soybean and subsequent pathogen transmission to seedlings was investigated. A non-pathogenic, pigmented strain of Serratia marcescens was also included to assess a null-interacting situation with the same plant species. Flowers of host and non-host plants were inoculated with 1 × 10(6 colony forming units (CFUs/flower for each bacterial species and allowed to develop into fruits or umbels (in case of onion. Seeds harvested from each host/non-host bacterial species combination were assayed for respective bacteria by plating on semi-selective media. Additionally, seedlots for each host/non-host bacterial species combination were also assayed for pathogen transmission by seedling grow-out (SGO assays under greenhouse conditions. The mean percentage of seedlots infested with compatible and incompatible pathogens was 31.7 and 30.9% (by plating, respectively and they were not significantly different (P = 0.67. The percentage of seedlots infested with null-interacting bacterial species was 16.8% (by plating and it was significantly lower than the infested lots generated with compatible and incompatible bacterial pathogens (P = 0.03. None of the seedlots with incompatible/null-interacting bacteria developed symptoms on seedlings; however, when seedlings were assayed for epiphytic bacterial presence, 19.5 and 9.4% of the lots were positive, respectively. These results indicate that the seeds of non-host plants can become infested with incompatible and null-interacting bacterial species through flower colonization and they can be transmitted via epiphytic colonization of seedlings. In addition, it was also observed that flowers and seeds of non-host plants can be

  1. Characterizing the bacterial microbiota in different gastrointestinal tract segments of the Bactrian camel

    OpenAIRE

    He, Jing; Yi, Li; Hai, Le; Ming, Liang; Gao, Wanting; Ji, Rimutu

    2018-01-01

    The bacterial community plays important roles in the gastrointestinal tracts (GITs) of animals. However, our understanding of the microbial communities in the GIT of Bactrian camels remains limited. Here, we describe the bacterial communities from eight different GIT segments (rumen, reticulum, abomasum, duodenum, ileum, jejunum, caecum, colon) and faeces determined from 11 Bactrian camels using 16S rRNA gene amplicon sequencing. Twenty-seven bacterial phyla were found in the GIT, with Firmic...

  2. Absorption of wheat starch in patients resected for left-sided colonic cancer

    DEFF Research Database (Denmark)

    Nordgaard, I; Rumessen, J J; Nielsen, S A

    1992-01-01

    Bacterial fermentation of carbohydrate in the colon, producing short-chain fatty acids (SCFA)--and especially butyrate--has been shown possibly to impede cell proliferation and regulate cell differentiation of colonocytes. In patients with diverticular disease or benign polyps in the colon...... a hyperabsorption of potato starch in the small intestine has been found. We have investigated the absorption of wheat starch in 15 patients radically resected for cancer in the descending or sigmoid colon, and the results were compared with those of 15 healthy controls. The starch malabsorption was quantified...... also similar in patients and controls. The results do not support the theory that hyperabsorption of starch is characteristic of patients with malignant disease in the large intestine....

  3. Papillary Adenocarcinoma of the descending colon in a dog: case report

    Directory of Open Access Journals (Sweden)

    M.G.P.A. Ferreira

    Full Text Available ABSTRACT The aim of this report was to describe the clinical findings and therapeutic management of a case of papillary adenocarcinoma of the descending colon in a Beagle. The patient presented soft stools, haematochezia, tenesmus, and dyschezia. Clinical examination revealed alterations on the ultrasonographic features of the descending colon suggestive of colitis and neoplasia. Following local mass resection, histopathology analysis revealed mild lymphoplasmocytic enteritis and papillary adenocarcinoma of the colon. Enterectomy for tumoral resection and biopsy of locoregional lymph nodes were carried out. Subsequent to the surgical procedure, it was possible to confirm the previous diagnosis and the tumor was classified as intestinal intraluminal papillary adenocarcinoma, with incomplete surgical margins. Adjuvant chemotherapy was performed using carboplatin, cyclophosphamide, and piroxicam, leading to remission of clinical signs and absence of any clinical or imaging alterations compatible with the patient’s previous clinical condition.

  4. Haemophilus influenzae from Patients with Chronic Obstructive Pulmonary Disease Exacerbation Induce More Inflammation than Colonizers

    Science.gov (United States)

    Chin, Cecilia L.; Manzel, Lori J.; Lehman, Erin E.; Humlicek, Alicia L.; Shi, Lei; Starner, Timothy D.; Denning, Gerene M.; Murphy, Timothy F.; Sethi, Sanjay; Look, Dwight C.

    2005-01-01

    Rationale: Airway infection with Haemophilus influenzae causes airway inflammation, and isolation of new strains of this bacteria is associated with increased risk of exacerbations in patients with chronic obstructive pulmonary disease (COPD). Objective: To determine whether strains of H. influenzae associated with exacerbations cause more inflammation than strains that colonize the airways of patients with COPD. Methods: Exacerbation strains of H. influenzae were isolated from patients during exacerbation of clinical symptoms with subsequent development of a homologous serum antibody response and were compared with colonization strains that were not associated with symptom worsening or an antibody response. Bacterial strains were compared using an in vivo mouse model of airway infection and in vitro cell culture model of bacterial adherence and defense gene and signaling pathway activation in primary human airway epithelial cells. Results: H. influenzae associated with exacerbations caused more airway neutrophil recruitment compared with colonization strains in the mouse model of airway bacterial infection. Furthermore, exacerbation strains adhered to epithelial cells in significantly higher numbers and induced more interleukin-8 release after interaction with airway epithelial cells. This effect was likely mediated by increased activation of the nuclear factor-κB and p38 mitogen-activated protein kinase signaling pathways. Conclusions: The results indicate that H. influenzae strains isolated from patients during COPD exacerbations often induce more airway inflammation and likely have differences in virulence compared with colonizing strains. These findings support the concept that bacteria infecting the airway during COPD exacerbations mediate increased airway inflammation and contribute to decreased airway function. PMID:15805181

  5. The potential of endomycorrhizal fungi in controlling tomato bacterial ...

    African Journals Online (AJOL)

    The impact of colonization by three mycorrhizal fungi on tomato bacterial wilt caused by Ralstonia solanaceraum was investigated. Three species of arbuscular mycorrhizal fungal (AMF) were tested (Glomus mosseae, Scutellospora sp. and Gigaspora margarita). Siginificant differences in tomato growth based on plant ...

  6. Alteration of chromophoric dissolved organic matter by solar UV radiation causes rapid changes in bacterial community composition†

    Science.gov (United States)

    Piccini, Claudia; Conde, Daniel; Pernthaler, Jakob; Sommaruga, Ruben

    2010-01-01

    We evaluated the effect of photochemical alterations of chromophoric dissolved organic matter (CDOM) on bacterial abundance, activity and community composition in a coastal lagoon of the Atlantic Ocean with high dissolved organic carbon concentration. On two occasions during the austral summer, bacteria-free water of the lagoon was exposed to different regions of the solar spectrum (full solar radiation, UV-A + PAR, PAR) or kept in the dark. Subsequently, dilution cultures were established with bacterioplankton from the lagoon that were incubated in the pre-exposed water for 5 h in the dark. Cell abundance, activity, and community composition of bacterioplankton were assessed before and after incubation in the different treatments. Changes in absorption, fluorescence, and DOC concentration were used as proxies for CDOM photoalteration. We found a significant CDOM photobleaching signal, DOC loss, as well as a stimulation of bacterial activity in the treatments pre-exposed to UV radiation, suggesting increased bioavailability of DOM. Bacterial community analysis by fluorescence in situ hybridization revealed that this stimulation was mainly accompanied by the specific enrichment of Alpha- and Betaproteobacteria. Thus, our results suggest that CDOM photoalteration not only stimulates bacterioplankton growth, but also induces rapid changes in bacterioplankton composition, which can be of relevance for ecosystem functioning, particularly considering present and future changes in the input of terrestrial CDOM to aquatic systems. PMID:19707620

  7. Alteration of chromophoric dissolved organic matter by solar UV radiation causes rapid changes in bacterial community composition.

    Science.gov (United States)

    Piccini, Claudia; Conde, Daniel; Pernthaler, Jakob; Sommaruga, Ruben

    2009-09-01

    We evaluated the effect of photochemical alterations of chromophoric dissolved organic matter (CDOM) on bacterial abundance, activity and community composition in a coastal lagoon of the Atlantic Ocean with high dissolved organic carbon concentration. On two occasions during the austral summer, bacteria-free water of the lagoon was exposed to different regions of the solar spectrum (full solar radiation, UV-A+PAR, PAR) or kept in the dark. Subsequently, dilution cultures were established with bacterioplankton from the lagoon that were incubated in the pre-exposed water for 5 h in the dark. Cell abundance, activity, and community composition of bacterioplankton were assessed before and after incubation in the different treatments. Changes in absorption, fluorescence, and DOC concentration were used as proxies for CDOM photoalteration. We found a significant CDOM photobleaching signal, DOC loss, as well as a stimulation of bacterial activity in the treatments pre-exposed to UV radiation, suggesting increased bioavailability of DOM. Bacterial community analysis by fluorescence in situ hybridization revealed that this stimulation was mainly accompanied by the specific enrichment of Alpha- and Betaproteobacteria. Thus, our results suggest that CDOM photoalteration not only stimulates bacterioplankton growth, but also induces rapid changes in bacterioplankton composition, which can be of relevance for ecosystem functioning, particularly considering present and future changes in the input of terrestrial CDOM to aquatic systems.

  8. Gut Immune Maturation Depends on Colonization with a Host-Specific Microbiota

    Science.gov (United States)

    Chung, Hachung; Pamp, Sünje J.; Hill, Jonathan A.; Surana, Neeraj K.; Edelman, Sanna M.; Troy, Erin B.; Reading, Nicola C.; Villablanca, Eduardo J.; Wang, Sen; Mora, Jorge R.; Umesaki, Yoshinori; Mathis, Diane; Benoist, Christophe; Relman, David A.; Kasper, Dennis L.

    2012-01-01

    SUMMARY Gut microbial induction of host immune maturation exemplifies host-microbe mutualism. We colonized germ-free (GF) mice with mouse microbiota (MMb) or human microbiota (HMb) to determine whether small intestinal immune maturation depends on a coevolved host-specific microbiota. Gut bacterial numbers and phylum abundance were similar in MMb and HMb mice, but bacterial species differed, especially the Firmicutes. HMb mouse intestines had low levels of CD4+ and CD8+ T cells, few proliferating T cells, few dendritic cells, and low antimicrobial peptide expression–all characteristics of GF mice. Rat microbiota also failed to fully expand intestinal T cell numbers in mice. Colonizing GF or HMb mice with mouse-segmented filamentous bacteria (SFB) partially restored T cell numbers, suggesting that SFB and other MMb organisms are required for full immune maturation in mice. Importantly, MMb conferred better protection against Salmonella infection than HMb. A host-specific microbiota appears to be critical for a healthy immune system. PMID:22726443

  9. O antigen modulates insect vector acquisition of the bacterial plant pathogen Xylella fastidiosa.

    Science.gov (United States)

    Rapicavoli, Jeannette N; Kinsinger, Nichola; Perring, Thomas M; Backus, Elaine A; Shugart, Holly J; Walker, Sharon; Roper, M Caroline

    2015-12-01

    Hemipteran insect vectors transmit the majority of plant pathogens. Acquisition of pathogenic bacteria by these piercing/sucking insects requires intimate associations between the bacterial cells and insect surfaces. Lipopolysaccharide (LPS) is the predominant macromolecule displayed on the cell surface of Gram-negative bacteria and thus mediates bacterial interactions with the environment and potential hosts. We hypothesized that bacterial cell surface properties mediated by LPS would be important in modulating vector-pathogen interactions required for acquisition of the bacterial plant pathogen Xylella fastidiosa, the causative agent of Pierce's disease of grapevines. Utilizing a mutant that produces truncated O antigen (the terminal portion of the LPS molecule), we present results that link this LPS structural alteration to a significant decrease in the attachment of X. fastidiosa to blue-green sharpshooter foreguts. Scanning electron microscopy confirmed that this defect in initial attachment compromised subsequent biofilm formation within vector foreguts, thus impairing pathogen acquisition. We also establish a relationship between O antigen truncation and significant changes in the physiochemical properties of the cell, which in turn affect the dynamics of X. fastidiosa adhesion to the vector foregut. Lastly, we couple measurements of the physiochemical properties of the cell with hydrodynamic fluid shear rates to produce a Comsol model that predicts primary areas of bacterial colonization within blue-green sharpshooter foreguts, and we present experimental data that support the model. These results demonstrate that, in addition to reported protein adhesin-ligand interactions, O antigen is crucial for vector-pathogen interactions, specifically in the acquisition of this destructive agricultural pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. Finger millet arabinoxylan protects mice from high-fat diet induced lipid derangements, inflammation, endotoxemia and gut bacterial dysbiosis.

    Science.gov (United States)

    Sarma, Siddhartha Mahadeva; Singh, Dhirendra Pratap; Singh, Paramdeep; Khare, Pragyanshu; Mangal, Priyanka; Singh, Shashank; Bijalwan, Vandana; Kaur, Jaspreet; Mantri, Shrikant; Boparai, Ravneet Kaur; Mazumder, Koushik; Bishnoi, Mahendra; Bhutani, Kamlesh Kumar; Kondepudi, Kanthi Kiran

    2018-01-01

    Arabinoxylan (AX), a non-starch polysaccharide extracted from cereals such as wheat, rice and millets, is known to impart various health promoting effects. Our earlier study suggested that finger millet (FM) could ameliorate high fat diet (HFD)-induced metabolic derangements. The present study is aimed to evaluate the effect of FM-AX supplementation, a key bioactive from finger millet, on HFD-induced metabolic and gut bacterial derangements. Male Swiss albino mice were fed with normal chow diet (NPD) or HFD (60%kcal from fat) for 10 weeks. FM-AX was orally supplemented at doses of 0.5 and 1.0g/kg bodyweight on every alternate day for 10 weeks. Glucose tolerance, serum hormones, hepatic lipid accumulation and inflammation, white adipose tissue marker gene expression, adipocyte size and inflammation; metagenomic alterations in cecal bacteria; cecal short chain fatty acids and colonic tight junction gene expressions were studied. FM-AX supplementation prevented HFD-induced weight gain, alerted glucose tolerance and serum lipid profile, hepatic lipid accumulation and inflammation. Hepatic and white adipose tissue gene expressions were beneficially modulated. Further, AX supplementation prevented metagenomic alterations in cecum; improved ileal and colonic health and overall prevented metabolic endotoxemia. Present work suggests that AX from finger millet can be developed as a nutraceutical for the management of HFD- induced obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dietary factors and the occurence of truncating APC mutations in sporadic colon carcinomas: a Dutch population-based study

    NARCIS (Netherlands)

    Diergaarde, B.; Geloof, van W.L.; Muijen, van G.N.P.; Kok, F.J.; Kampman, E.

    2003-01-01

    The interactions between environmental factors and the genetic and epigenetic changes that drive colon carcinogenesis are not clear. Dietary factors reported previously to be associated with colon cancer risk may well influence the occurrence of specific somatic alterations in colon tumors. To

  12. Dietary factors and the occurrence of truncating APC mutations in sporadic colon carcinomas: a Dutch population-based study.

    NARCIS (Netherlands)

    Diergaarde, B.; Geloof, W. van; Muijen, G.N.P. van; Kok, F.J.; Kampman, E.

    2003-01-01

    The interactions between environmental factors and the genetic and epigenetic changes that drive colon carcinogenesis are not clear. Dietary factors reported previously to be associated with colon cancer risk may well influence the occurrence of specific somatic alterations in colon tumors. To

  13. Ultrastructural Histopathology of Vervet Monkey Colonic Epithelium After In Vitro Exposure to Cell-free Supernatants of Shigella Cultures

    OpenAIRE

    Hill, R. R.; Collins, N. E.; Cowley, H. M.

    2011-01-01

    The full dysentery syndrome of human shigellosis is often preceded by a transient diarrhoea that may be induced by bacterial extracellular products before invasion of the colonic mucosa and development of subsequent pathology. To examine this hypothesis, we studied the effects of cell-free cultures of Shigella sp. on the ultrastructure of monkey colonic epithelium in vitro. Clinical isolates of shigella strains were grown in a niche-simulating medium. Sheets of colon wall collected from verve...

  14. Optimization of low energy sonication treatment for granular activated carbon colonizing biomass assessment.

    Science.gov (United States)

    Saccani, G; Bernasconi, M; Antonelli, M

    2014-01-01

    This study is aimed at optimizing a low energy sonication (LES) treatment for granular activated carbon (GAC)-colonizing biomass detachment and determination, evaluating detachment efficiency and the effects of ultrasound exposure on bacterial cell viability. GAC samples were collected from two filters fed with groundwater. Conventional heterotrophic plate count (HPC) and fluorescence microscopy with a double staining method were used to evaluate cell viability, comparing two LES procedures, without and with periodical bulk substitution. A 20 min LES treatment, with bulk substitution after cycles of 5 min as maximum treatment time, allowed to recover 87%/100% of attached biomass, protecting detached bacteria from ultrasound damaging effects. Observed viable cell inactivation rate was 6.5/7.9% cell/min, with membrane-compromised cell damage appearing to be even higher (11.5%/13.1% cell/min). Assessing bacterial detachment and damaging ultrasound effects, fluorescence microscopy turned out to be more sensitive compared to conventional HPC. The optimized method revealed a GAC-colonizing biomass of 9.9 x 10(7) cell/gGAC for plant 1 and 8.8 x 10(7) cell/gGAC for plant 2, 2 log lower than reported in literature. The difference between the two GAC-colonizing biomasses is higher in terms of viable cells (46.3% of total cells in plant 1 GAC-colonizing biomass compared to the 33.3% in plant 2). Studying influent water contamination through multivariate statistical analyses, apossible combined toxic and genotoxic effect of chromium VI and trichloroethylene was suggested as a reason for the lower viable cell fraction observed in plant 2 GAC-colonizing population.

  15. Diverticular Disease of the Colon: Neuromuscular Function Abnormalities.

    Science.gov (United States)

    Bassotti, Gabrio; Villanacci, Vincenzo; Bernardini, Nunzia; Dore, Maria P

    2016-10-01

    Colonic diverticular disease is a frequent finding in daily clinical practice. However, its pathophysiological mechanisms are largely unknown. This condition is likely the result of several concomitant factors occurring together to cause anatomic and functional abnormalities, leading as a result to the outpouching of the colonic mucosa. A pivotal role seems to be played by an abnormal colonic neuromuscular function, as shown repeatedly in these patients, and by an altered visceral perception. There is recent evidence that these abnormalities might be related to the derangement of the enteric innervation, to an abnormal distribution of mucosal neuropeptides, and to low-grade mucosal inflammation. The latter might be responsible for the development of visceral hypersensitivity, often causing abdominal pain in a subset of these patients.

  16. Bacteria from diverse habitats colonize and compete in the mouse gut.

    Science.gov (United States)

    Seedorf, Henning; Griffin, Nicholas W; Ridaura, Vanessa K; Reyes, Alejandro; Cheng, Jiye; Rey, Federico E; Smith, Michelle I; Simon, Gabriel M; Scheffrahn, Rudolf H; Woebken, Dagmar; Spormann, Alfred M; Van Treuren, William; Ursell, Luke K; Pirrung, Megan; Robbins-Pianka, Adam; Cantarel, Brandi L; Lombard, Vincent; Henrissat, Bernard; Knight, Rob; Gordon, Jeffrey I

    2014-10-09

    To study how microbes establish themselves in a mammalian gut environment, we colonized germ-free mice with microbial communities from human, zebrafish, and termite guts, human skin and tongue, soil, and estuarine microbial mats. Bacteria from these foreign environments colonized and persisted in the mouse gut; their capacity to metabolize dietary and host carbohydrates and bile acids correlated with colonization success. Cohousing mice harboring these xenomicrobiota or a mouse cecal microbiota, along with germ-free "bystanders," revealed the success of particular bacterial taxa in invading guts with established communities and empty gut habitats. Unanticipated patterns of ecological succession were observed; for example, a soil-derived bacterium dominated even in the presence of bacteria from other gut communities (zebrafish and termite), and human-derived bacteria colonized germ-free bystander mice before mouse-derived organisms. This approach can be generalized to address a variety of mechanistic questions about succession, including succession in the context of microbiota-directed therapeutics. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Effects of three approaches to standardized oral hygiene to reduce bacterial colonization and ventilator associated pneumonia in mechanically ventilated patients: a randomised control trial.

    Science.gov (United States)

    Berry, A M; Davidson, P M; Masters, J; Rolls, K; Ollerton, R

    2011-06-01

    Ventilator associated pneumonia remains an important concern in the intensive care unit (ICU). An increasing body of evidence shows that mortality and morbidity can be reduced by implementing a range of preventive strategies, including optimizing oral hygiene. The aim of this feasibility study was to test two oral hygiene strategies on the effects of microbial colonization of dental plaque with respiratory pathogens (primary outcome) and incidence of ventilator associated pneumonia (secondary outcome). A single blind randomised comparative study was conducted in a 20-bed adult intensive care unit in a university hospital. Patients with an expected duration of mechanical ventilation more than 48 h were eligible. Patients were randomised to one of three study regimens (Group A control, second hourly oral rinse with sterile water, Group B sodium bicarbonate mouth wash second hourly, and Group C twice daily irrigations with chlorhexidine 0.2% aqueous oral rinse and second hourly irrigations with sterile water). All study options included cleaning with a toothbrush and non foaming toothpaste. Data from a total of 109 patients were analyzed. Group A 43, Group B 33 and Group C 33 (mean age: 58 ± 17 years, simplified acute physiology score II: 44 ± 14 points). On admission no significant differences were found between groups for all clinical data. While Group B showed a greater trend to reduction in bacterial colonization no significant differences could be demonstrated at Day 4 of admission (p=0.302). The incidence of ventilator associated pneumonia was evenly spread between Groups B and C (5%) while Group A was only 1%. While a number of studies have advocated the use of various mouth rinses in reducing colonization of dental plaque a standardized oral hygiene protocol which includes the use of mechanical cleaning with a toothbrush may be a factor in the reduction of colonization of dental plaque with respiratory pathogens. This feasibility study provides data to

  18. Multiple Acid Sensors Control Helicobacter pylori Colonization of the Stomach.

    Science.gov (United States)

    Huang, Julie Y; Goers Sweeney, Emily; Guillemin, Karen; Amieva, Manuel R

    2017-01-01

    Helicobacter pylori's ability to respond to environmental cues in the stomach is integral to its survival. By directly visualizing H. pylori swimming behavior when encountering a microscopic gradient consisting of the repellent acid and attractant urea, we found that H. pylori is able to simultaneously detect both signals, and its response depends on the magnitudes of the individual signals. By testing for the bacteria's response to a pure acid gradient, we discovered that the chemoreceptors TlpA and TlpD are each independent acid sensors. They enable H. pylori to respond to and escape from increases in hydrogen ion concentration near 100 nanomolar. TlpD also mediates attraction to basic pH, a response dampened by another chemoreceptor TlpB. H. pylori mutants lacking both TlpA and TlpD (ΔtlpAD) are unable to sense acid and are defective in establishing colonization in the murine stomach. However, blocking acid production in the stomach with omeprazole rescues ΔtlpAD's colonization defect. We used 3D confocal microscopy to determine how acid blockade affects the distribution of H. pylori in the stomach. We found that stomach acid controls not only the overall bacterial density, but also the microscopic distribution of bacteria that colonize the epithelium deep in the gastric glands. In omeprazole treated animals, bacterial abundance is increased in the antral glands, and gland colonization range is extended to the corpus. Our findings indicate that H. pylori has evolved at least two independent receptors capable of detecting acid gradients, allowing not only survival in the stomach, but also controlling the interaction of the bacteria with the epithelium.

  19. Exploring the chemotatic attraction of Campylobacter jejuni in chicken colonization

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Brøndsted, Lone; Ingmer, Hanne

    Campylobacter jejuni is the primary food borne bacterial pathogen in the developed world and the bacteria causes millions of gastroenteritis cases each year. The most important reservoir for C. jejuni is the gut of chickens, which are colonized commensally and efficiently by this organism...

  20. Particle surface area and bacterial activity in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Per Bovbjerg; von Ahnen, Mathis; Fernandes, Paulo

    2017-01-01

    Suspended particles in recirculating aquaculture systems (RAS) provide surface area that can be colonized by bacteria. More particles accumulate as the intensity of recirculation increases thus potentially increasing the bacterial carrying capacity of the systems. Applying a recent, rapid, culture...... but may provide significant surface area. Hence, the study substantiates that particles in RAS provide surface area supporting bacterial activity, and that particles play a key role in controlling the bacterial carrying capacity at least in less intensive RAS. Applying fast, culture-independent techniques......-independent fluorometric detection method (Bactiquant®) for measuring bacterial activity, the current study explored the relationship between total particle surface area (TSA, derived from the size distribution of particles >5 μm) and bacterial activity in freshwater RAS operated at increasing intensity of recirculation...

  1. PhyloChip microarray analysis reveals altered gastrointestinal microbial communities in a rat model of colonic hypersensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, T.A.; Holmes, S.; Alekseyenko, A.V.; Shenoy, M.; DeSantis, T.; Wu, C.H.; Andersen, G.L.; Winston, J.; Sonnenburg, J.; Pasricha, P.J.; Spormann, A.

    2010-12-01

    Irritable bowel syndrome (IBS) is a chronic, episodic gastrointestinal disorder that is prevalent in a significant fraction of western human populations; and changes in the microbiota of the large bowel have been implicated in the pathology of the disease. Using a novel comprehensive, high-density DNA microarray (PhyloChip) we performed a phylogenetic analysis of the microbial community of the large bowel in a rat model in which intracolonic acetic acid in neonates was used to induce long lasting colonic hypersensitivity and decreased stool water content and frequency, representing the equivalent of human constipation-predominant IBS. Our results revealed a significantly increased compositional difference in the microbial communities in rats with neonatal irritation as compared with controls. Even more striking was the dramatic change in the ratio of Firmicutes relative to Bacteroidetes, where neonatally irritated rats were enriched more with Bacteroidetes and also contained a different composition of species within this phylum. Our study also revealed differences at the level of bacterial families and species. The PhyloChip is a useful and convenient method to study enteric microflora. Further, this rat model system may be a useful experimental platform to study the causes and consequences of changes in microbial community composition associated with IBS.

  2. Motility and chemotaxis mediate the preferential colonization of gastric injury sites by Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Eitaro Aihara

    2014-07-01

    Full Text Available Helicobacter pylori (H. pylori is a pathogen contributing to peptic inflammation, ulceration, and cancer. A crucial step in the pathogenic sequence is when the bacterium first interacts with gastric tissue, an event that is poorly understood in vivo. We have shown that the luminal space adjacent to gastric epithelial damage is a microenvironment, and we hypothesized that this microenvironment might enhance H. pylori colonization. Inoculation with 106 H. pylori (wild-type Sydney Strain 1, SS1 significantly delayed healing of acetic-acid induced ulcers at Day 1, 7 and 30 post-inoculation, and wild-type SS1 preferentially colonized the ulcerated area compared to uninjured gastric tissue in the same animal at all time points. Gastric resident Lactobacillus spp. did not preferentially colonize ulcerated tissue. To determine whether bacterial motility and chemotaxis are important to ulcer healing and colonization, we analyzed isogenic H. pylori mutants defective in motility (ΔmotB or chemotaxis (ΔcheY. ΔmotB (10(6 failed to colonize ulcerated or healthy stomach tissue. ΔcheY (10(6 colonized both tissues, but without preferential colonization of ulcerated tissue. However, ΔcheY did modestly delay ulcer healing, suggesting that chemotaxis is not required for this process. We used two-photon microscopy to induce microscopic epithelial lesions in vivo, and evaluated accumulation of fluorescently labeled H. pylori at gastric damage sites in the time frame of minutes instead of days. By 5 min after inducing damage, H. pylori SS1 preferentially accumulated at the site of damage and inhibited gastric epithelial restitution. H. pylori ΔcheY modestly accumulated at the gastric surface and inhibited restitution, but did not preferentially accumulate at the injury site. H. pylori ΔmotB neither accumulated at the surface nor inhibited restitution. We conclude that bacterial chemosensing and motility rapidly promote H. pylori colonization of injury sites

  3. Motility and Chemotaxis Mediate the Preferential Colonization of Gastric Injury Sites by Helicobacter pylori

    Science.gov (United States)

    Aihara, Eitaro; Closson, Chet; Matthis, Andrea L.; Schumacher, Michael A.; Engevik, Amy C.; Zavros, Yana; Ottemann, Karen M.; Montrose, Marshall H.

    2014-01-01

    Helicobacter pylori (H. pylori) is a pathogen contributing to peptic inflammation, ulceration, and cancer. A crucial step in the pathogenic sequence is when the bacterium first interacts with gastric tissue, an event that is poorly understood in vivo. We have shown that the luminal space adjacent to gastric epithelial damage is a microenvironment, and we hypothesized that this microenvironment might enhance H. pylori colonization. Inoculation with 106 H. pylori (wild-type Sydney Strain 1, SS1) significantly delayed healing of acetic-acid induced ulcers at Day 1, 7 and 30 post-inoculation, and wild-type SS1 preferentially colonized the ulcerated area compared to uninjured gastric tissue in the same animal at all time points. Gastric resident Lactobacillus spp. did not preferentially colonize ulcerated tissue. To determine whether bacterial motility and chemotaxis are important to ulcer healing and colonization, we analyzed isogenic H. pylori mutants defective in motility (ΔmotB) or chemotaxis (ΔcheY). ΔmotB (106) failed to colonize ulcerated or healthy stomach tissue. ΔcheY (106) colonized both tissues, but without preferential colonization of ulcerated tissue. However, ΔcheY did modestly delay ulcer healing, suggesting that chemotaxis is not required for this process. We used two-photon microscopy to induce microscopic epithelial lesions in vivo, and evaluated accumulation of fluorescently labeled H. pylori at gastric damage sites in the time frame of minutes instead of days. By 5 min after inducing damage, H. pylori SS1 preferentially accumulated at the site of damage and inhibited gastric epithelial restitution. H. pylori ΔcheY modestly accumulated at the gastric surface and inhibited restitution, but did not preferentially accumulate at the injury site. H. pylori ΔmotB neither accumulated at the surface nor inhibited restitution. We conclude that bacterial chemosensing and motility rapidly promote H. pylori colonization of injury sites, and thereby biases

  4. Evaluation of "instant" preparation of the colon with povidone-iodine.

    Science.gov (United States)

    Jones, F E; DeCosse, J J; Condon, R E

    1976-01-01

    The antimicrobial effect of 20 minutes exposure to 10% povidone-iodine solution and to 5% neomycin-erythromycin solution was evaluated in vitro in 6 suspensions of dog feces. Povidone-iodine eliminated aerobic growth (P less than 0.001) and reduced anaerobes 4.01 +/- 1.06 (P less than 0.02); C. perfringens was the only anaerobic organism grown. Forty unprepared dogs underwent resection of the sigmoid colon and primary anastomosis. Twenty received normal saline and 20 povidone-iodine injected intraluminally immediately before resection. The colon contents of povidone-iodine treated dogs grew only 0.07 +/- 0.07 aerobes and 3.74 +/- 0.49 anaerobes (all Clostridia) (log10/ml colon contents) (P less than 0.001). All povidone-iodine dogs survived 3 weeks with no anastomotic leaks; three controls died from anastomotic leak within the first week (P = 0.12). Reexploration of survivors revealed less perianastomotic reaction in the povidone-iodine group. Twenty minutes exposure to povidone-iodine produced a significant decrease in bacterial counts in vitro and in unprepared sigmoid colon. No adverse effects were demonstrated. Images Fig. 4. PMID:180916

  5. Bacterial contamination hypothesis: a new concept in endometriosis.

    Science.gov (United States)

    Khan, Khaleque N; Fujishita, Akira; Hiraki, Koichi; Kitajima, Michio; Nakashima, Masahiro; Fushiki, Shinji; Kitawaki, Jo

    2018-04-01

    Endometriosis is a multifactorial disease that mainly affects women of reproductive age. The exact pathogenesis of this disease is still debatable. The role of bacterial endotoxin (lipopolysaccharide, LPS) and Toll-like receptor 4 (TLR4) in endometriosis were investigated and the possible source of endotoxin in the pelvic environment was examined. The limulus amoebocyte lysate test was used to measure the endotoxin levels in the menstrual fluid and peritoneal fluid and their potential role in the growth of endometriosis was investigated. Menstrual blood and endometrial samples were cultured for the presence of microbes. The effect of gonadotrophin-releasing hormone agonist (GnRHa) treatment on intrauterine microbial colonization (IUMC) and the occurrence of endometritis was investigated. Lipopolysaccharide regulates the pro-inflammatory response in the pelvis and growth of endometriosis via the LPS/TLR4 cascade. The menstrual blood was highly contaminated with Escherichea coli and the endometrial samples were colonized with other microbes. A cross-talk between inflammation and ovarian steroids or the stress reaction also was observed in the pelvis. Treatment with GnRHa further worsens intrauterine microbial colonization, with the consequent occurrence of endometritis in women with endometriosis. For the first time, a new concept called the "bacterial contamination hypothesis" is proposed in endometriosis. This study's findings of IUMC in women with endometriosis could hold new therapeutic potential in addition to the conventional estrogen-suppressing agent.

  6. Molecular and biopharmaceutical investigation of alginate-inulin synbiotic coencapsulation of probiotic to target the colon.

    Science.gov (United States)

    Atia, Abdelbasset; Gomma, Ahmed I; Fliss, Ismail; Beyssac, Eric; Garrait, Ghislain; Subirade, Muriel

    2017-03-01

    Colon targeting, as a site-specific delivery for oral formulation, remains a major challenge, especially for sensitive bioactive components such as therapeutic forms of phages, live attenuated virus and prebiotics-probiotics association. Synbiotics could be used to protect encapsulated probiotics during the gastrointestinal tract and control their release in the colon. To achieve these goals, effective prebiotics, such as inulin, could be combined with alginate - the most exploited polymer used for probiotic encapsulation - in the form of beads. This work aimed to study the biopharmaceutical behaviour of alginate beads (A) and inulin-alginate beads of different inulin concentrations (5 or 20%) in 2% alginate (AI5, AI20). Beads were loaded with three probiotic strains (Pediococcus acidilactici Ul5, Lactobacillus reuteri and Lactobacillus salivarius). Dissolution of beads was studied by USP4 under conditions simulating the gastrointestinal condition. The survival rates of the bacterial strains were measured by a specific qPCR bacterial count. Mucoadhesiveness of beads was studied by an ex vivo method using intestinal mucosa. To understand the behaviour of each formulation, the ultrastructure of the polymeric network was studied using scanning electron microscopy (SEM). Molecular interactions between alginate and inulin were studied by Fourier transform infra-red spectroscopy (FTIR). Dissolution results suggested that the presence of inulin in beads provided more protection for the tested bacterial strains against the acidic pH. AI5 was the most effective formulation to deliver probiotics to the colon simulation conditions. FTIR and SEM investigations explained the differences in behaviour of each formula. The developed symbiotic form provided a promising matrix for the development of colonic controlled release systems.

  7. Membrane biofouling in a wastewater nitrification reactor: microbial succession from autotrophic colonization to heterotrophic domination

    KAUST Repository

    Lu, Huijie

    2015-10-22

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles.

  8. Patterns of DNA methylation in the normal colon vary by anatomical location, gender, and age

    Science.gov (United States)

    Kaz, Andrew M; Wong, Chao-Jen; Dzieciatkowski, Slavomir; Luo, Yanxin; Schoen, Robert E; Grady, William M

    2014-01-01

    Alterations in DNA methylation have been proposed to create a field cancerization state in the colon, where molecular alterations that predispose cells to transformation occur in histologically normal tissue. However, our understanding of the role of DNA methylation in field cancerization is limited by an incomplete characterization of the methylation state of the normal colon. In order to determine the colon’s normal methylation state, we extracted DNA from normal colon biopsies from the rectum, sigmoid, transverse, and ascending colon and assessed the methylation status of the DNA by pyrosequencing candidate loci as well as with HumanMethylation450 arrays. We found that methylation levels of repetitive elements LINE-1 and SAT-α showed minimal variability throughout the colon in contrast to other loci. Promoter methylation of EVL was highest in the rectum and progressively lower in the proximal segments, whereas ESR1 methylation was higher in older individuals. Genome-wide methylation analysis of normal DNA revealed 8388, 82, and 93 differentially methylated loci that distinguished right from left colon, males from females, and older vs. younger individuals, respectively. Although variability in methylation between biopsies and among different colon segments was minimal for repetitive elements, analyses of specific cancer-related genes as well as a genome-wide methylation analysis demonstrated differential methylation based on colon location, individual age, and gender. These studies advance our knowledge regarding the variation of DNA methylation in the normal colon, a prerequisite for future studies aimed at understanding methylation differences indicative of a colon field effect. PMID:24413027

  9. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves.

    Science.gov (United States)

    Dias, Juliana; Marcondes, Marcos I; Noronha, Melline F; Resende, Rafael T; Machado, Fernanda S; Mantovani, Hilário C; Dill-McFarland, Kimberly A; Suen, Garret

    2017-01-01

    At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea , and Succinivribrio ). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides , and Parabacteroides ). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces . Relative

  10. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves

    Science.gov (United States)

    Dias, Juliana; Marcondes, Marcos I.; Noronha, Melline F.; Resende, Rafael T.; Machado, Fernanda S.; Mantovani, Hilário C.; Dill-McFarland, Kimberly A.; Suen, Garret

    2017-01-01

    At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed) on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days). Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio). Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides). In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces. Relative

  11. Effect of Pre-weaning Diet on the Ruminal Archaeal, Bacterial, and Fungal Communities of Dairy Calves

    Directory of Open Access Journals (Sweden)

    Juliana Dias

    2017-08-01

    Full Text Available At birth, calves display an underdeveloped rumen that eventually matures into a fully functional rumen as a result of solid food intake and microbial activity. However, little is known regarding the gradual impact of pre-weaning diet on the establishment of the rumen microbiota. Here, we employed next-generation sequencing to investigate the effects of the inclusion of starter concentrate (M: milk-fed vs. MC: milk plus starter concentrate fed on archaeal, bacterial and anaerobic fungal communities in the rumens of 45 crossbred dairy calves across pre-weaning development (7, 28, 49, and 63 days. Our results show that archaeal, bacterial, and fungal taxa commonly found in the mature rumen were already established in the rumens of calves at 7 days old, regardless of diet. This confirms that microbiota colonization occurs in the absence of solid substrate. However, diet did significantly impact some microbial taxa. In the bacterial community, feeding starter concentrate promoted greater diversity of bacterial taxa known to degrade readily fermentable carbohydrates in the rumen (e.g., Megasphaera, Sharpea, and Succinivribrio. Shifts in the ruminal bacterial community also correlated to changes in fermentation patterns that favored the colonization of Methanosphaera sp. A4 in the rumen of MC calves. In contrast, M calves displayed a bacterial community dominated by taxa able to utilize milk nutrients (e.g., Lactobacillus, Bacteroides, and Parabacteroides. In both diet groups, the dominance of these milk-associated taxa decreased with age, suggesting that diet and age simultaneously drive changes in the structure and abundance of bacterial communities in the developing rumen. Changes in the composition and abundance of archaeal communities were attributed exclusively to diet, with more highly abundant Methanosphaera and less abundant Methanobrevibacter in MC calves. Finally, the fungal community was dominated by members of the genus SK3 and Caecomyces

  12. Significant relationship between soil bacterial community structure and incidence of bacterial wilt disease under continuous cropping system.

    Science.gov (United States)

    She, Siyuan; Niu, Jiaojiao; Zhang, Chao; Xiao, Yunhua; Chen, Wu; Dai, Linjian; Liu, Xueduan; Yin, Huaqun

    2017-03-01

    Soil bacteria are very important in biogeochemical cycles and play significant role in soil-borne disease suppression. Although continuous cropping is responsible for soil-borne disease enrichment, its effect on tobacco plant health and how soil bacterial communities change are yet to be elucidated. In this study, soil bacterial communities across tobacco continuous cropping time-series fields were investigated through high-throughput sequencing of 16S ribosomal RNA genes. The results showed that long-term continuous cropping could significantly alter soil microbial communities. Bacterial diversity indices and evenness indices decreased over the monoculture span and obvious variations for community structures across the three time-scale tobacco fields were detected. Compared with the first year, the abundances of Arthrobacter and Lysobacter showed a significant decrease. Besides, the abundance of the pathogen Ralstonia spp. accumulated over the monoculture span and was significantly correlated with tobacco bacterial wilt disease rate. Moreover, Pearson's correlation demonstrated that the abundance of Arthrobacter and Lysobacter, which are considered to be beneficial bacteria had significant negative correlation with tobacco bacterial wilt disease. Therefore, after long-term continuous cropping, tobacco bacterial wilt disease could be ascribed to the alteration of the composition as well as the structure of the soil microbial community.

  13. Colonization of fish skin is vital for Vibrio anguillarum to cause disease.

    Science.gov (United States)

    Weber, Barbara; Chen, Chang; Milton, Debra L

    2010-02-01

    Vibrio anguillarum causes a fatal haemorrhagic septicaemia in marine fish. During initial stages of infection, host surfaces are colonized; however, few virulence factors required for colonization of the host are identified. In this study, in vivo bioluminescent imaging was used to analyse directly the colonization of the whole rainbow trout animal by V. anguillarum. The wild type rapidly colonized both the skin and the intestines by 24 h; however, the bacterial numbers on the skin were significantly higher than in the intestines indicating that skin colonization may be important for disease to occur. Mutants defective for the anguibactin iron uptake system, exopolysaccharide transport, or Hfq, an RNA chaperone, were attenuated for virulence, did not colonize the skin, and penetrated skin mucus less efficiently than the wild type. These mutants, however, did colonize the intestines and were as resistant to 2% bile salts as is the wild type. Moreover, exopolysaccharide mutants were significantly more sensitive to lysozyme and antimicrobial peptides, while the Hfq and anguibactin mutants were sensitive to lysozyme compared with the wild type. Vibrio anguillarum encodes several mechanisms to protect against antimicrobial components of skin mucus enabling an amazingly abundant growth on the skin enhancing its disease opportunities. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.

  14. Studying the Differences of Bacterial Metabolome and Microbiome in the Colon between Landrace and Meihua Piglets

    Directory of Open Access Journals (Sweden)

    Shijuan Yan

    2017-09-01

    Full Text Available This study was conducted to compare the microbiome and metabolome differences in the colon lumen from two pig breeds with different genetic backgrounds. Fourteen weaned piglets at 30 days of age, including seven Landrace piglets (a lean-type pig breed with a fast growth rate and seven Meihua piglets (a fatty-type Chinese local pig breed with a slow growth rate, were fed the same diets for 35 days. Untargeted metabolomics analyses showed that a total of 401 metabolites differed between Landrace and Meihua. Seventy of these 401 metabolites were conclusively identified. Landrace accumulated more short-chain fatty acids (SCFAs and secondary bile acids in the colon lumen. Moreover, expression of the SCFAs transporter (solute carrier family 5 member 8, SLC5A8 and receptor (G protein-coupled receptor 41, GPR41 in the colon mucosa was higher, while the bile acids receptor (farnesoid X receptor, FXR had lower expression in Landrace compared to Meihua. The relative abundances of 8 genera and 16 species of bacteria differed significantly between Landrace and Meihua, and were closely related to the colonic concentrations of bile acids or SCFAs based on Pearson's correlation analysis. Collectively, our results demonstrate for the first time that there were differences in the colonic microbiome and metabolome between Meihua and Landrace piglets, with the most profound disparity in production of SCFAs and secondary bile acids.

  15. Ca2+ response in neutrophils after exposure to bacterial N-formyl-methionyl-leucyl-phenylalanine: delayed response in ulcerative colitis

    DEFF Research Database (Denmark)

    Vainer, Ben; Lamberth, Kasper; Brimnes, Jens

    2003-01-01

    In acute stages of ulcerative colitis (UC), neutrophils migrate from the circulation into inflamed colonic tissue, initiated by yet unknown stimuli. The bacterial peptide N-formyl-methionyl-leucyl-phenylalanine (FMLP) is a component of the surface membrane of colonic bacteria such as Escherichia ...

  16. A characterization of anaerobic colonization and associated mucosal adaptations in the undiseased ileal pouch.

    LENUS (Irish Health Repository)

    Smith, F M

    2012-02-03

    INTRODUCTION: The resolution of pouchitis with metronidazole points to an anaerobic aetiology. Pouchitis is mainly seen in patients with ulcerative colitis pouches (UCP). We have recently found that sulphate reducing bacteria (SRB), a species of strict anaerobe, colonize UCP exclusively. Herein, we aimed to correlate levels of different bacterial species (including SRB) with mucosal inflammation and morphology. METHODS: Following ethical approval, fresh faecal samples and mucosal biopsies were taken from 9 patients with UCP and 5 patients with familial adenomatous polyposis pouches (FAPP). For the purposes of comparison, faecal samples and mucosal biopsies were also taken from the stomas of 7 of the 9 patients with UC (UCS). Colonization by four types of strict anaerobes (SRB, Clostridium perfringens, Bifidobacteria and Bacteroides) as well as by three types of facultative anaerobes (Enterococci, Coliforms and Lactobacilli) was evaluated. Inflammatory scores and mucosal morphology were assessed histologically in a blinded fashion by a pathologist. RESULTS: In general, strict anaerobes predominated over facultative in the UCP (P = 0.041). SRB were present in UCP exclusively. Even after exclusion of SRB from total bacterial counts, strict anaerobes still predominated. In the UCS, facultative anaerobes predominated. Strict and facultative anaerobes were present at similar levels in the FAPP. Enterococci were present at significantly reduced levels in the UCP when compared with the UCS (P = 0.031). When levels of SRB and other anaerobic species were individually correlated with mucosal inflammation and morphology, no trends were observed. CONCLUSION: We have previously identified that SRB exclusively colonize UCP. In addition we have now identified a novel increase in the strict\\/facultative anaerobic ratio within the UCP compared to UCS. These stark differences in bacterial colonization, however, appear to have limited impact on mucosal inflammation or morphology.

  17. Bacterial Succession on Rat Carcasses and Applications for PMI Estimation.

    Science.gov (United States)

    Zhang, Lin; Guo, Juan-juan; Telet-Siyit; Peng, Yu-long; Xie, Dan; Guo, Ya-dong; Yan, Jie; Zha, Lagabaiyila; Cai, Ji-feng

    2016-02-01

    Abstract: To investigate the bacterial succession on rat carcasses and to evaluate the use of bacterial succession for postmortem interval (PMI) estimation. Adult female SD rat remains were placed in carton boxes. The bacterial colonization of circumocular skin, mouth and vagina was collected to be identified using culture-dependent biochemical methods. The changes in community composition were regularly documented. The bacterial succession in three habitats showed that Staphylococcus and Neisseria were predominated in early PMI, especially Staphylococcus aureus and Neisseria lactamica in 6 hours after death. Lactobacillus casei developed on the 3-4 days regularly, and kept stable at a certain level in late PMI. The involvement of normal and putrefactive bacteria in three body habitats of rat remains can be used for PMI estimation.

  18. Bacteria: a new player in gastrointestinal motility disorders--infections, bacterial overgrowth, and probiotics.

    LENUS (Irish Health Repository)

    Quigley, Eamonn M M

    2012-02-03

    Irritable bowel syndrome (IBS) may result from a dysfunctional interaction between the indigenous flora and the intestinal mucosa, which in turn leads to immune activation in the colonic mucosa. Some propose that bacterial overgrowth is a common causative factor in the pathogenesis of symptoms in IBS; others point to evidence suggesting that the cause stems from more subtle qualitative changes in the colonic flora. Bacterial overgrowth will probably prove not to be a major factor in what will eventually be defined as IBS. Nevertheless, short-term therapy with either antibiotics or probiotics seems to reduce symptoms among IBS patients. However, in the long term, safety issues will favor the probiotic approach; results of long-term studies with these agents are eagerly awaited.

  19. Injury and mechanism of recombinant E. coli expressing STa on piglets colon.

    Science.gov (United States)

    Lv, Yang; Li, Xueni; Zhang, Lin; Shi, Yutao; DU, Linxiao; Ding, Binying; Hou, Yongqing; Gong, Joshua; Wu, Tao

    2018-02-09

    Enterotoxigenic Escherichia coli (ETEC) is primary pathogenic bacteria of piglet diarrhea, over two thirds of piglets diarrhea caused by ETEC are resulted from STa-producing ETEC strains. This experiment was conducted to construct the recombinant E. coli expressing STa and study the injury and mechanism of recombinant E. coli expressing STa on 7 days old piglets colon. Twenty-four 7 days old piglets were allotted to four treatments: control group, STa group (2 × 10 9 CFU E. coli LMG194-STa), LMG194 group (2 × 10 9 CFU E. coli LMG194) and K88 group (2 × 10 9 CFU E. coli K88). The result showed that E. coli infection significantly increased diarrhea rates; changed DAO activity in plasma and colon; damaged colonic mucosal morphology including crypt depth, number of globet cells, density of lymphocytes and lamina propria cell density; substantially reduced antioxidant capacity by altering activities of GSH-Px, SOD, and TNOS and productions of MDA and H 2 O 2 ; obviously decreased AQP3, AQP4 and KCNJ13 protein expression levels; substantially altered the gene expression levels of inflammatory cytokines. Conclusively, STa group had the biggest effect on these indices in four treatment groups. These results suggested that the recombinant strain expressed STa can induce piglets diarrhea and colonic morphological and funtional damage by altering expression of proteins connect to transportation function and genes associated with intestinal injury and inflammatory cytokines.

  20. Bacterial Shifts in Nutrient Solutions Flowing Through Biofilters Used in Tomato Soilless Culture.

    Science.gov (United States)

    Renault, David; Déniel, Franck; Vallance, Jessica; Bruez, Emilie; Godon, Jean-Jacques; Rey, Patrice

    2017-11-25

    In soilless culture, slow filtration is used to eliminate plant pathogenic microorganisms from nutrient solutions. The present study focused on the characterization and the potential functions of microbial communities colonizing the nutrient solutions recycled on slow filters during a whole cultivation season of 7 months in a tomato growing system. Bacterial microflora colonizing the solutions before and after they flew through the columns were studied. Two filters were amended with Pseudomonas putida (P-filter) or Bacillus cereus strains (B-filter), and a third filter was a control (C-filter). Biological activation of filter unit through bacterial amendment enhanced very significantly filter efficacy against plant potential pathogens Pythium spp. and Fusarium oxysporum. However, numerous bacteria (10 3 -10 4  CFU/mL) were detected in the effluent solutions. The community-level physiological profiling indicated a temporal shift of bacterial microflora, and the metabolism of nutrient solutions originally oriented towards carbohydrates progressively shifted towards degradation of amino acids and carboxylic acids over the 7-month period of experiment. Single-strand conformation polymorphism fingerprinting profiles showed that a shift between bacterial communities colonizing influent and effluent solutions of slow filters occurred. In comparison with influent, 16S rDNA sequencing revealed that phylotype diversity was low in the effluent of P- and C-filters, but no reduction was observed in the effluent of the B-filter. Suppressive potential of solutions filtered on a natural filter (C-filter), where the proportion of Proteobacteria (α- and β-) increased, whereas the proportion of uncultured candidate phyla rose in P- and B-filters, is discussed.

  1. Inflammatory chronic disease of the colon: How to image

    International Nuclear Information System (INIS)

    Ambrosini, Roberta; Barchiesi, Annalisa; Di Mizio, Veronica; Di Terlizzi, Marco; Leo, Luca; Filippone, Antonella; Canalis, Luigi; Fossaceca, Rita; Carriero, Alessandro

    2007-01-01

    Inflammatory bowel disease, including Crohn's disease and UC, is a chronic disorder of the gastrointestinal tract. The inflammatory process in UC is confined to the mucosa and submucosa and it involves only the colon. In contrast, in Crohn's disease the inflammation process extends through the bowel wall layers and it can involve any part of gastrointestinal tract. Moreover, inflammatory bowel disease of the colon may be associated with complications, such as toxic megacolon, fulminant colitis, acute bleeding, fistulas and abscesses. Radiographic imaging studies are useful for the diagnosis of inflammatory bowel disease, and may be used to assess the extent and severity of disease, rule out complications, and monitor the response to therapy. The double-contrast barium study is a valuable technique for diagnosing inflammatory bowel disease colonic alterations, even in patients with early mucosal abnormalities. The earliest finding of UC is characterized by a fine granular appeareance of the colonic mucosa, usually involving the rectosigmoid junction. In chronic UC double-contrast enema may reveal marked colonic shortening with tubular narrowing of the bowel and loss of haustration. The earliest radiographics findings of Crohn's disease are represented by aphthous ulcers. As disease progresses, aphthous ulcers may enlarge and coalesce to form stellate or linear areas of ulceration. In advanced Crohn's disease, transmural ulceration may lead to the development of fissures, sinus tracts, fistulas, and abscesses. Cross sectional studies such as computed tomography, magnetic resonance imaging and sometimes ultrasound, are useful alternative tools not only in the assessment of bowel wall abnormalities, but also for the assessment of extraluminal alterations in patients with advanced disease

  2. Persistence of nasal colonization with human pathogenic bacteria and associated antimicrobial resistance in the German general population

    Directory of Open Access Journals (Sweden)

    R. Köck

    2016-01-01

    Full Text Available The nares represent an important bacterial reservoir for endogenous infections. This study aimed to assess the prevalence of nasal colonization by different important pathogens, the associated antimicrobial susceptibility and risk factors. We performed a prospective cohort study among 1878 nonhospitalized volunteers recruited from the general population in Germany. Participants provided nasal swabs at three time points (each separated by 4–6 months. Staphylococcus aureus, Enterobacteriaceae and important nonfermenters were cultured and subjected to susceptibility testing. Factors potentially influencing bacterial colonization patterns were assessed. The overall prevalence of S. aureus, Enterobacteriaceae and nonfermenters was 41.0, 33.4 and 3.7%, respectively. Thirteen participants (0.7% were colonized with methicillin-resistant S. aureus. Enterobacteriaceae were mostly (>99% susceptible against ciprofloxacin and carbapenems (100%. Extended-spectrum β-lactamase–producing isolates were not detected among Klebsiella oxytoca, Klebsiella pneumoniae and Escherichia coli. Several lifestyle- and health-related factors (e.g. household size, travel, livestock density of the residential area or occupational livestock contact, atopic dermatitis, antidepressant or anti-infective drugs were associated with colonization by different microorganisms. This study unexpectedly demonstrated high nasal colonization rates with Enterobacteriaceae in the German general population, but rates of antibiotic resistance were low. Methicillin-resistant S. aureus carriage was rare but highly associated with occupational livestock contact.

  3. MICROBIAL COLONIZATION, RESPIRATION, AND BREAKDOWN OF MAPLE LEAVES ALONG A STREAM-MARSH CONTINUUM

    Science.gov (United States)

    Breakdown rates, macroinvertebrate and bacterial colonization, and microbial respiration were measured on decaying maple (Acer saccharum) leaves at three sites along a stream-marsh continuum. Breakdown rates (-k+-SE) were 0.0284+-0.0045 d-1 for leaves in a high-gradient, non-tida...

  4. Isolation and characterisation of new putative probiotic bacteria from human colonic flora.

    Science.gov (United States)

    Raz, Irit; Gollop, Natan; Polak-Charcon, Sylvie; Schwartz, Betty

    2007-04-01

    The present study describes a novel bacterial isolate exhibiting high ability to synthesise and secrete butyrate. The novel isolated bacterium was obtained from human faeces and grown in selective liquid intestinal microflora medium containing rumen fluid under microaerobic conditions. Its probiotic properties were demonstrated by the ability of the isolate to survive high acidity and medium containing bile acids and the ability to adhere to colon cancer cells (Caco-2) in vitro. Phylogenetic identity to Enterococcus durans was established using specific primers for 16S rRNA (99% probability). PCR analyses with primers to the bacterial gene encoding butyrate kinase, present in the butyrogenic bacteria Clostridium, showed that this gene is present in E. durans. The in vivo immunoprotective and anti-inflammatory effects of E. durans were assessed in dextran sodium sulfate (DSS)-induced colitis in Balb/c mice. Administration of E. durans ameliorated histological, clinical and biochemical scores directly related to intestinal inflammation whereas the lactic acid bacterium Lactobacillus delbrueckii was ineffective in this regard. Colonic cDNA concentrations of IL-1beta and TNF-alpha were significantly down regulated in DSS-treated E. durans-fed mice but not in control or DSS-treated L. delbrueckii- fed mice. Fluorescent in situ hybridisation analyses of colonic tissue from mice fed E. durans, using a butyrate kinase probe, demonstrated that E. durans significantly adheres to the colonic tissue. The novel isolated bacterium described in the present paper, upon further characterisation, can be developed into a useful probiotic aimed at the treatment of patients suffering from ulcerative colitis.

  5. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  6. Colon cancer

    Science.gov (United States)

    Colorectal cancer; Cancer - colon; Rectal cancer; Cancer - rectum; Adenocarcinoma - colon; Colon - adenocarcinoma; Colon carcinoma ... eat may play a role in getting colon cancer. Colon cancer may be linked to a high-fat, ...

  7. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy.

    Science.gov (United States)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-08-01

    To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analyzing size and number of intracellular bacterial colonies in infected tissue culture cells. Cells are seeded in 48-well plates and infected with a GFP-expressing bacterial pathogen. Following gentamicin treatment to remove extracellular pathogens, cells are fixed and cell nuclei stained. This is followed by automated microscopy and subsequent semi-automated spot detection to determine the number of intracellular bacterial colonies, their size distribution, and the average number per host cell. Multiple 48-well plates can be processed sequentially and the procedure can be completed in one working day. As a model we quantified intracellular bacterial colonies formed by uropathogenic Escherichia coli (UPEC) during infection of human kidney cells (HKC-8). Urinary tract infections caused by UPEC are among the most common bacterial infectious diseases in humans. UPEC can colonize tissues of the urinary tract and is responsible for acute, chronic, and recurrent infections. In the bladder, UPEC can form intracellular quiescent reservoirs, thought to be responsible for recurrent infections. In the kidney, UPEC can colonize renal epithelial cells and pass to the blood stream, either via epithelial cell disruption or transcellular passage, to cause sepsis. Intracellular colonies are known to be clonal, originating from single invading UPEC. In our experimental setup, we found UPEC CFT073 intracellular bacterial colonies to be heterogeneous in size and present in nearly one third of the HKC-8 cells. This high-throughput experimental format substantially reduces experimental time and enables fast screening of the intracellular bacterial load and cellular distribution of multiple

  8. Recombinant bacterial hemoglobin alters metabolism of Aspergillus niger

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Diano, Audrey; Nielsen, Jens

    2009-01-01

    , the fungus will produce various by-products like organic acids and polyols. In order to circumvent this problem we here study the effects of the expression of a bacterial hemoglobin protein on the metabolism of A. niger. We integrated the vgb gene from Vitreoscilla sp. into the genome at the pyrA locus...

  9. Effects of treatment with antimicrobial agents on the human colonic microflora

    Directory of Open Access Journals (Sweden)

    Fatemeh Rafii

    2008-12-01

    Full Text Available Fatemeh Rafii, John B Sutherland, Carl E CernigliaDivision of Microbiology, National Center for Toxicological Research, FDA, Jefferson, AR, USAAbstract: Antimicrobial agents are the most valuable means available for treating bacterial infections. However, the administration of therapeutic doses of antimicrobial agents to patients is a leading cause of disturbance of the normal gastrointestinal microflora. This disturbance results in diminishing the natural defense mechanisms provided by the colonic microbial ecosystem, making the host vulnerable to infection by commensal microorganisms or nosocomial pathogens. In this minireview, the impacts of antimicrobials, individually and in combinations, on the human colonic microflora are discussed.Keywords: antibiotics, intestinal bacteria

  10. Bacterial profiling of White Plague Disease in a comparative coral species framework.

    KAUST Repository

    Roder, Cornelia; Arif, Chatchanit; Bayer, Till; Aranda, Manuel; Daniels, Camille Arian; Shibl, Ahmed A.; Chavanich, Suchana; Voolstra, Christian R.

    2014-01-01

    agents, hosts and vectors. It is known that compromised health in corals is correlated with shifts in bacterial assemblages colonizing coral mucus and tissue. However, general disease patterns remain, to a large extent, ambiguous as comparative studies

  11. Colonic aberrant crypt formation accompanies an increase of opportunistic pathogenic bacteria in C57BL/6 mice fed a high-fat diet.

    Science.gov (United States)

    Zeng, Huawei; Ishaq, Suzanne L; Liu, Zhenhua; Bukowski, Michael R

    2018-04-01

    The increasing worldwide incidence of colon cancer has been linked to obesity and consumption of a high-fat Western diet. To test the hypothesis that a high-fat diet (HFD) promotes colonic aberrant crypt (AC) formation in a manner associated with gut bacterial dysbiosis, we examined the susceptibility to azoxymethane (AOM)-induced colonic AC and microbiome composition in C57/BL6 mice fed a modified AIN93G diet (AIN, 16% fat, energy) or an HFD (45% fat, energy) for 14 weeks. Mice receiving the HFD exhibited increased plasma leptin, body weight, body fat composition and inflammatory cell infiltration in the ileum compared with those in the AIN group. Consistent with the gut inflammatory phenotype, we observed an increase in colonic AC, plasma interleukin-6, tumor necrosis factor-α, monocyte chemoattractant protein-1 and inducible nitric oxide synthase in the ileum of the HFD-AOM group compared with the AIN-AOM group. Although the HFD and AIN groups did not differ in bacterial species number, the HFD and AIN diets resulted in different bacterial community structures in the colon. The abundance of certain short-chain fatty acid (SCFA) producing bacteria (e.g., Barnesiella) and fecal SCFA (e.g., acetic acid) content were lower in the HFD-AOM group compared with the AIN and AIN-AOM groups. Furthermore, we identified a high abundance of Anaeroplasma bacteria, an opportunistic pathogen in the HFD-AOM group. Collectively, we demonstrate that an HFD promotes AC formation concurrent with an increase of opportunistic pathogenic bacteria in the colon of C57BL/6 mice. Published by Elsevier Inc.

  12. Bacterial colonization of metallic surfaces exposed in marine environment. Use of bacterial lipids

    International Nuclear Information System (INIS)

    Guezennec, Jean

    1986-01-01

    Addressing fouling and more particularly biofouling phenomena occurring notably on structures in marine environment, this research thesis first describes the fouling phenomenon (components, sequences of biofouling development, bio-film chemical composition). The author reports the study of the composition of the biological veil (microbiological methods, presentation of the different components), addresses the various types of lipids (bacterial markers and others). Then, after a presentation of the experimental equipment and methods (test cells, sample preparation, gas phase chromatography, hydrogenation and bromination, mass spectrometry), the author discusses the influence of different parameters such as the substrate type, speed, season, chlorination, and correlation with thermal transfer [fr

  13. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion.

    Science.gov (United States)

    Younes, Jessica A; Klappe, Karin; Kok, Jan Willem; Busscher, Henk J; Reid, Gregor; van der Mei, Henny C

    2016-04-01

    Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus. © 2015 John Wiley & Sons Ltd.

  14. The Role of Curcumin in Modulating Colonic Microbiota During Colitis and Colon Cancer Prevention

    Science.gov (United States)

    McFadden, Rita-Marie T.; Larmonier, Claire B.; Shehab, Kareem W.; Midura-Kiela, Monica; Ramalingam, Rajalakshmy; Harrison, Christy A.; Besselsen, David G.; Chase, John H.; Caporaso, J. Gregory; Jobin, Christian; Ghishan, Fayez K.; Kiela, Pawel R.

    2015-01-01

    Background Intestinal microbiota influences the progression of colitis-associated colorectal cancer (CAC). With diet being a key determinant of the gut microbial ecology, dietary interventions are an attractive avenue for the prevention of CAC. Curcumin is the most active constituent of the ground rhizome of the Curcuma Longa plant, which has been demonstrated to have anti-inflammatory, anti-oxidative and anti-proliferative properties. Methods Il10−/− mice on 129/SvEv background were used as a model of CAC. Starting at 10 weeks of age, WT or Il10−/− mice received six weekly i.p. injections of azoxymethane (AOM) or saline, and were started on either a control or curcumin-supplemented diet. Stools were collected every 4 weeks for microbial community analysis. Mice were sacrificed at 30 weeks of age. Results Curcumin-supplemented diet increased survival, decreased colon weight/length ratio, and at 0.5%, entirely eliminated tumor burden. Although colonic histology indicated improvement with curcumin, no effects of mucosal immune responses have been observed in PBS/Il10−/− mice, and limited effects were seen in AOM/Il10−/− mice. In WT and in Il10−/− mice, curcumin increased bacterial richness, prevented age-related decrease in alpha diversity, increased the relative abundance of Lactobacillales, and decreased Coriobacterales order. Taxonomic profile of AOM/Il10−/− mice receiving curcumin was more similar to those of wild-type mice than those fed control diet. Conclusions In AOM/Il10−/− model, curcumin reduced or eliminated colonic tumor burden with limited effects on mucosal immune responses. The beneficial effect of curcumin on tumorigenesis was associated with the maintenance of a more diverse colonic microbial ecology. PMID:26218141

  15. Membrane biofouling in a wastewater nitrification reactor: Microbial succession from autotrophic colonization to heterotrophic domination.

    Science.gov (United States)

    Lu, Huijie; Xue, Zheng; Saikaly, Pascal; Nunes, Suzana P; Bluver, Ted R; Liu, Wen-Tso

    2016-01-01

    Membrane biofouling is a complex process that involves bacterial adhesion, extracellular polymeric substances (EPS) excretion and utilization, and species interactions. To obtain a better understanding of the microbial ecology of biofouling process, this study conducted rigorous, time-course analyses on the structure, EPS and microbial composition of the fouling layer developed on ultrafiltration membranes in a nitrification bioreactor. During a 14-day fouling event, three phases were determined according to the flux decline and microbial succession patterns. In Phase I (0-2 days), small sludge flocs in the bulk liquid were selectively attached on membrane surfaces, leading to the formation of similar EPS and microbial community composition as the early biofilms. Dominant populations in small flocs, e.g., Nitrosomonas, Nitrobacter, and Acinetobacter spp., were also the major initial colonizers on membranes. In Phase II (2-4 d), fouling layer structure, EPS composition, and bacterial community went through significant changes. Initial colonizers were replaced by fast-growing and metabolically versatile heterotrophs (e.g., unclassified Sphingobacteria). The declining EPS polysaccharide to protein (PS:PN) ratios could be correlated well with the increase in microbial community diversity. In Phase III (5-14 d), heterotrophs comprised over 90% of the community, whereas biofilm structure and EPS composition remained relatively stable. In all phases, AOB and NOB were constantly found within the top 40% of the fouling layer, with the maximum concentrations around 15% from the top. The overall microbial succession pattern from autotrophic colonization to heterotrophic domination implied that MBR biofouling could be alleviated by forming larger bacterial flocs in bioreactor suspension (reducing autotrophic colonization), and by designing more specific cleaning procedures targeting dominant heterotrophs during typical filtration cycles. Copyright © 2015 Elsevier Ltd. All

  16. In Vitro Degradation and Fermentation of Three Dietary Fiber Sources by Human Colonic Bacteria

    Science.gov (United States)

    Bliss, Donna Z.; Weimer, Paul J.; Jung, Hans-Joachim G.; Savik, Kay

    2013-01-01

    Although clinical benefits of dietary fiber supplementation seem to depend partially on the extent of fiber degradation and fermentation by colonic bacteria, little is known about the effect of supplemental fiber type on bacterial metabolism. In an experiment using a non-adapted human bacterial population from three normal subjects, extent of in vitro fermentation was greater for gum arabic (GA) than for psyllium (PSY), which was greater than that for carboxymethylcellulose (CMC). In a separate experiment, in vitro incubation with feces from 52 subjects with fecal incontinence, before and after random assignment to and consumption of one of three fiber (GA, PSY, or CMC) supplements or a placebo for 20-21d, indicated that prior consumption of a specific fiber source did not increase its degradation by fecal bacteria. Results suggest that the colonic microbial community enriched on a particular fiber substrate can rapidly adapt to the presentation of a new fiber substrate. Clinical implications of the findings are that intake of a fiber source by humans is not expected to result in bacterial adaptation that would require continually larger and eventually intolerable amounts of fiber to achieve therapeutic benefits. PMID:23556460

  17. Oral administration of yessotoxin stabilizes E-cadherin in mouse colon

    International Nuclear Information System (INIS)

    Callegari, Federica; Sosa, Silvio; Ferrari, Sara; Soranzo, Maria Rosa; Pierotti, Silvia; Yasumoto, Takeshi; Tubaro, Aurelia; Rossini, Gian Paolo

    2006-01-01

    YTX has been shown to disrupt the E-cadherin-catenin system in cultured epithelial cells, raising some concern that ingestion of seafood contaminated by YTX might favour tumour spreading and metastasis formation in vivo. In order to probe whether YTX might affect cadherin systems in vivo, we have set up a study involving repeated oral dosing of the toxin in mice (1 mg/kg/day, for 7 days) and analysis of E-cadherin and N-cadherin in tissue extracts obtained at the end of the dosing scheme, as well as 1 and 3 months after YTX administration. We found that the E-cadherin pools obtained from lung and kidney were not altered by YTX in any of our experimental conditions. Extracts from mouse colon contained intact E-cadherin and an E-cadherin fragment of about 90 kDa (ECRA 9 ), displaying a molecular alteration resembling that caused by YTX in cultured cells. We found that the relative proportion of ECRA 9 , as compared to intact E-cadherin, was higher in colon extracts from control mice than from YTX-treated animals, indicating that oral administration of YTX to mice stabilizes E-cadherin of mouse colon. No significant difference could be detected in samples prepared from colons obtained 30 or 90 days after termination of YTX treatment. Oral administration of YTX to mice did not lead to a significant increase in the fragments of E-cadherin detectable in serum, neither it altered the N-cadherin pool of mouse heart. Electron microscopy analysis showed no substantial ultrastructural differences between controls and YTX-treated mice. Our findings show that ingestion of food contaminated by YTX poses a low risk of disruption of the E-cadherin system in vivo

  18. Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment

    Science.gov (United States)

    Davin-Regli, Anne; Pagès, Jean-Marie

    2015-01-01

    Enterobacter aerogenes and E. cloacae have been reported as important opportunistic and multiresistant bacterial pathogens for humans during the last three decades in hospital wards. These Gram-negative bacteria have been largely described during several outbreaks of hospital-acquired infections in Europe and particularly in France. The dissemination of Enterobacter sp. is associated with the presence of redundant regulatory cascades that efficiently control the membrane permeability ensuring the bacterial protection and the expression of detoxifying enzymes involved in antibiotic degradation/inactivation. In addition, these bacterial species are able to acquire numerous genetic mobile elements that strongly contribute to antibiotic resistance. Moreover, this particular fitness help them to colonize several environments and hosts and rapidly and efficiently adapt their metabolism and physiology to external conditions and environmental stresses. Enterobacter is a versatile bacterium able to promptly respond to the antibiotic treatment in the colonized patient. The balance of the prevalence, E. aerogenes versus E. cloacae, in the reported hospital infections during the last period, questions about the horizontal transmission of mobile elements containing antibiotic resistance genes, e.g., the efficacy of the exchange of resistance genes Klebsiella pneumoniae to Enterobacter sp. It is also important to mention the possible role of antibiotic use in the treatment of bacterial infectious diseases in this E. aerogenes/E. cloacae evolution. PMID:26042091

  19. Diazotrophic Bacterial Community of Degraded Pastures

    Directory of Open Access Journals (Sweden)

    João Tiago Correia Oliveira

    2017-01-01

    Full Text Available Pasture degradation can cause changes in diazotrophic bacterial communities. Thus, this study aimed to evaluate the culturable and total diazotrophic bacterial community, associated with regions of the rhizosphere and roots of Brachiaria decumbens Stapf. pastures in different stages of degradation. Samples of roots and rhizospheric soil were collected from slightly, partially, and highly degraded pastures. McCrady’s table was used to obtain the Most Probable Number (MPN of bacteria per gram of sample, in order to determine population density and calculate the Shannon-Weaver diversity index. The diversity of total diazotrophic bacterial community was determined by the technique of Denaturing Gradient Gel Electrophoresis (DGGE of the nifH gene, while the diversity of the culturable diazotrophic bacteria was determined by the Polymerase Chain Reaction (BOX-PCR technique. The increase in the degradation stage of the B. decumbens Stapf. pasture did not reduce the population density of the cultivated diazotrophic bacterial community, suggesting that the degradation at any degree of severity was highly harmful to the bacteria. The structure of the total diazotrophic bacterial community associated with B. decumbens Stapf. was altered by the pasture degradation stage, suggesting a high adaptive capacity of the bacteria to altered environments.

  20. Epigenetic repression of ROR2 has a Wnt-mediated, pro-tumourigenic role in colon cancer

    Directory of Open Access Journals (Sweden)

    López-Otín Carlos

    2010-06-01

    Full Text Available Abstract Background Wnt factors control cell differentiation through semi-independent molecular cascades known as the β-catenin-dependent (canonical and -independent (non-canonical Wnt signalling pathways. Genetic and epigenetic alteration of components of the canonical Wnt signalling pathway is one of the primary mechanisms underlying colon cancer. Despite increasing evidence of the role of the non-canonical pathways in tumourigenesis, however, the underlying molecular mechanisms are poorly understood. Results Here we report that the receptor tyrosine kinase-like orphan receptor 2 (ROR2, a transmembrane receptor for Wnt factors that activates non-canonical pathways, is frequently repressed by aberrant promoter hypermethylation in human colon cancer cell lines and primary tumours. By restoring ROR2 activity in colon cancer cells harbouring ROR2 promoter hypermethylation, we show that the role of ROR2 in colon cancer cells is mediated, at least in part, by canonical Wnt and that its epigenetic-dependent loss can be pro-tumourigenic. Conclusions Our data show the importance of epigenetic alterations of ROR2 in colon cancer, highlighting the close interconnection between canonical and non-canonical Wnt signalling pathways in this type of tumour.

  1. Intestinal Microbiota Containing Barnesiella Species Cures Vancomycin-Resistant Enterococcus faecium Colonization

    Science.gov (United States)

    Bucci, Vanni; Caballero, Silvia; Djukovic, Ana; Toussaint, Nora C.; Equinda, Michele; Lipuma, Lauren; Ling, Lilan; Gobourne, Asia; No, Daniel; Taur, Ying; Jenq, Robert R.; van den Brink, Marcel R. M.; Xavier, Joao B.

    2013-01-01

    Bacteria causing infections in hospitalized patients are increasingly antibiotic resistant. Classical infection control practices are only partially effective at preventing spread of antibiotic-resistant bacteria within hospitals. Because the density of intestinal colonization by the highly antibiotic-resistant bacterium vancomycin-resistant Enterococcus (VRE) can exceed 109 organisms per gram of feces, even optimally implemented hygiene protocols often fail. Decreasing the density of intestinal colonization, therefore, represents an important approach to limit VRE transmission. We demonstrate that reintroduction of a diverse intestinal microbiota to densely VRE-colonized mice eliminates VRE from the intestinal tract. While oxygen-tolerant members of the microbiota are ineffective at eliminating VRE, administration of obligate anaerobic commensal bacteria to mice results in a billionfold reduction in the density of intestinal VRE colonization. 16S rRNA gene sequence analysis of intestinal bacterial populations isolated from mice that cleared VRE following microbiota reconstitution revealed that recolonization with a microbiota that contains Barnesiella correlates with VRE elimination. Characterization of the fecal microbiota of patients undergoing allogeneic hematopoietic stem cell transplantation demonstrated that intestinal colonization with Barnesiella confers resistance to intestinal domination and bloodstream infection with VRE. Our studies indicate that obligate anaerobic bacteria belonging to the Barnesiella genus enable clearance of intestinal VRE colonization and may provide novel approaches to prevent the spread of highly antibiotic-resistant bacteria. PMID:23319552

  2. Activins and their related proteins in colon carcinogenesis: insights from early and advanced azoxymethane rat models of colon cancer.

    Science.gov (United States)

    Refaat, Bassem; El-Shemi, Adel Galal; Mohamed, Amr Mohamed; Kensara, Osama Adnan; Ahmad, Jawwad; Idris, Shakir

    2016-11-11

    Activin-A may exert pro- or anti-tumorigenic activities depending on cellular context. However, little is known about its role, or the other mature activin proteins, in colorectal carcinoma (CRC). This study measured the expression of activin βA- & βB-subunits, activin type IIA & IIB receptors, smads 2/3/4/6/7 and follistatin in CRC induced by azoxymethane (AOM) in rats. The results were compared with controls and disseminated according to the characteristics of histopathological lesions. Eighty male Wistar rats were allocated into 20 controls and the remaining were equally divided between short 'S-AOM' (15 weeks) and long 'L-AOM' (35 weeks) groups following injecting AOM for 2 weeks. Subsequent to gross and histopathological examinations and digital image analysis, the expression of all molecules was measured by immunohistochemistry and quantitative RT-PCR. Activin-A, activin-B, activin-AB and follistatin were measured by ELISA in serum and colon tissue homogenates. Colonic pre-neoplastic and cancerous lesions were identified in both AOM groups and their numbers and sizes were significantly (P colonic epithelial cells. There was a significantly (P cancerous tissues. Oppositely, a significant (P colonic lesions. Normal rat colon epithelial cells are capable of synthesising, controlling as well as responding to activins in a paracrine/autocrine manner. Colonic activin systems are pathologically altered during tumorigenesis and appear to be time and lesion-dependent. Activins could also be potential sensitive markers and/or molecular targets for the diagnosis and/or treatment of CRC. Further studies are required to illustrate the clinical value of activins and their related proteins in colon cancer.

  3. Bacterial Cell Surface Damage Due to Centrifugal Compaction

    NARCIS (Netherlands)

    Peterson, Brandon W.; Sharma, Prashant K.; van der Mei, Henny C.; Busscher, Henk J.

    Centrifugal damage has been known to alter bacterial cell surface properties and interior structures, including DNA. Very few studies exist on bacterial damage caused by centrifugation because of the difficulty in relating centrifugation speed and container geometry to the damage caused. Here, we

  4. Compartment-specific immunity in the human gut: properties and functions of dendritic cells in the colon versus the ileum.

    Science.gov (United States)

    Mann, Elizabeth R; Bernardo, David; English, Nicholas R; Landy, Jon; Al-Hassi, Hafid O; Peake, Simon T C; Man, Ripple; Elliott, Timothy R; Spranger, Henning; Lee, Gui Han; Parian, Alyssa; Brant, Steven R; Lazarev, Mark; Hart, Ailsa L; Li, Xuhang; Knight, Stella C

    2016-02-01

    Dendritic cells (DC) mediate intestinal immune tolerance. Despite striking differences between the colon and the ileum both in function and bacterial load, few studies distinguish between properties of immune cells in these compartments. Furthermore, information of gut DC in humans is scarce. We aimed to characterise human colonic versus ileal DC. Human DC from paired colonic and ileal samples were characterised by flow cytometry, electron microscopy or used to stimulate T cell responses in a mixed leucocyte reaction. A lower proportion of colonic DC produced pro-inflammatory cytokines (tumour necrosis factor-α and interleukin (IL)-1β) compared with their ileal counterparts and exhibited an enhanced ability to generate CD4(+)FoxP3(+)IL-10(+) (regulatory) T cells. There were enhanced proportions of CD103(+)Sirpα(-) DC in the colon, with increased proportions of CD103(+)Sirpα(+) DC in the ileum. A greater proportion of colonic DC subsets analysed expressed the lymph-node-homing marker CCR7, alongside enhanced endocytic capacity, which was most striking in CD103(+)Sirpα(+) DC. Expression of the inhibitory receptor ILT3 was enhanced on colonic DC. Interestingly, endocytic capacity was associated with CD103(+) DC, in particular CD103(+)Sirpα(+) DC. However, expression of ILT3 was associated with CD103(-) DC. Colonic and ileal DC differentially expressed skin-homing marker CCR4 and small-bowel-homing marker CCR9, respectively, and this corresponded to their ability to imprint these homing markers on T cells. The regulatory properties of colonic DC may represent an evolutionary adaptation to the greater bacterial load in the colon. The colon and the ileum should be regarded as separate entities, each comprising DC with distinct roles in mucosal immunity and imprinting. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Bacterial repopulation of drinking water pipe walls after chlorination.

    Science.gov (United States)

    Mathieu, Laurence; Francius, Grégory; El Zein, Racha; Angel, Edith; Block, Jean-Claude

    2016-09-01

    The short-term kinetics of bacterial repopulation were evaluated after chlorination of high-density polyethylene (HDPE) colonized with drinking water biofilms and compared with bare HDPE surfaces. The effect of chlorination was partial as a residual biofilm persisted and was time-limited as repopulation occurred immediately after water resupply. The total number of bacteria reached the same levels on both the bare and chlorinated biofilm-fouled HDPE after a seven-day exposure to drinking water. Due to the presence of a residual biofilm, the hydrophobicity of chlorinated biofilm-fouled surface exhibited much lower adhesion forces (2.1 nN) compared to bare surfaces (8.9 nN). This could explain the rapid repopulation after chlorination, with a twofold faster bacterial accumulation rate on the bare HDPE surface. γ-Proteobacteria dominated the early stages of repopulation of both surfaces and a shift in the dominance occurred over the colonization time. Such observations define a timescale for cleaning frequency in industrial environments and guidelines for a rinsing procedure using drinking water.

  6. Fermented dairy products modulate Citrobacter rodentium-induced colonic hyperplasia.

    Science.gov (United States)

    Collins, James W; Chervaux, Christian; Raymond, Benoit; Derrien, Muriel; Brazeilles, Rémi; Kosta, Artemis; Chambaud, Isabelle; Crepin, Valerie F; Frankel, Gad

    2014-10-01

    We evaluated the protective effects of fermented dairy products (FDPs) in an infection model, using the mouse pathogen Citrobacter rodentium (CR). Treatment of mice with FDP formulas A, B, and C or a control product did not affect CR colonization, organ specificity, or attaching and effacing lesion formation. Fermented dairy product A (FDP-A), but neither the supernatant from FDP-A nor β-irradiated (IR) FDP-A, caused a significant reduction in colonic crypt hyperplasia and CR-associated pathology. Profiling the gut microbiota revealed that IR-FDP-A promoted higher levels of phylotypes belonging to Alcaligenaceae and a decrease in Lachnospiraceae (Ruminococcus) during CR infection. Conversely, FDP-A prevented a decrease in Ruminococcus and increased Turicibacteraceae (Turicibacter). Importantly, loss of Ruminococcus and Turicibacter has been associated with susceptibility to dextran sodium sulfate-induced colitis. Our results demonstrate that viable bacteria in FDP-A reduced CR-induced colonic crypt hyperplasia and prevented the loss of key bacterial genera that may contribute to disease pathology. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America.

  7. Inactivation of the Ecs ABC transporter of Staphylococcus aureus attenuates virulence by altering composition and function of bacterial wall.

    Directory of Open Access Journals (Sweden)

    Ing-Marie Jonsson

    2010-12-01

    Full Text Available Ecs is an ATP-binding cassette (ABC transporter present in aerobic and facultative anaerobic gram-positive Firmicutes. Inactivation of Bacillus subtilis Ecs causes pleiotropic changes in the bacterial phenotype including inhibition of intramembrane proteolysis. The molecule(s transported by Ecs is (are still unknown.In this study we mutated the ecsAB operon in two Staphylococcus aureus strains, Newman and LS-1. Phenotypic and functional characterization of these Ecs deficient mutants revealed a defect in growth, increased autolysis and lysostaphin sensitivity, altered composition of cell wall proteins including the precursor form of staphylokinase and an altered bacterial surface texture. DNA microarray analysis indicated that the Ecs deficiency changed expression of the virulence factor regulator protein Rot accompanied by differential expression of membrane transport proteins, particularly ABC transporters and phosphate-specific transport systems, protein A, adhesins and capsular polysaccharide biosynthesis proteins. Virulence of the ecs mutants was studied in a mouse model of hematogenous S. aureus infection. Mice inoculated with the ecs mutant strains developed markedly milder infections than those inoculated with the wild-type strains and had consequently lower mortality, less weight loss, milder arthritis and decreased persistence of staphylococci in the kidneys. The ecs mutants had higher susceptibility to ribosomal antibiotics and plant alkaloids chelerythrine and sanguinarine.Our results show that Ecs is essential for staphylococcal virulence and antimicrobial resistance probably since the transport function of Ecs is essential for the normal structure and function of the cell wall. Thus targeting Ecs may be a new approach in combating staphylococcal infection.

  8. Inactivation of the Ecs ABC transporter of Staphylococcus aureus attenuates virulence by altering composition and function of bacterial wall.

    Science.gov (United States)

    Jonsson, Ing-Marie; Juuti, Jarmo T; François, Patrice; AlMajidi, Rana; Pietiäinen, Milla; Girard, Myriam; Lindholm, Catharina; Saller, Manfred J; Driessen, Arnold J M; Kuusela, Pentti; Bokarewa, Maria; Schrenzel, Jacques; Kontinen, Vesa P

    2010-12-02

    Ecs is an ATP-binding cassette (ABC) transporter present in aerobic and facultative anaerobic gram-positive Firmicutes. Inactivation of Bacillus subtilis Ecs causes pleiotropic changes in the bacterial phenotype including inhibition of intramembrane proteolysis. The molecule(s) transported by Ecs is (are) still unknown. In this study we mutated the ecsAB operon in two Staphylococcus aureus strains, Newman and LS-1. Phenotypic and functional characterization of these Ecs deficient mutants revealed a defect in growth, increased autolysis and lysostaphin sensitivity, altered composition of cell wall proteins including the precursor form of staphylokinase and an altered bacterial surface texture. DNA microarray analysis indicated that the Ecs deficiency changed expression of the virulence factor regulator protein Rot accompanied by differential expression of membrane transport proteins, particularly ABC transporters and phosphate-specific transport systems, protein A, adhesins and capsular polysaccharide biosynthesis proteins. Virulence of the ecs mutants was studied in a mouse model of hematogenous S. aureus infection. Mice inoculated with the ecs mutant strains developed markedly milder infections than those inoculated with the wild-type strains and had consequently lower mortality, less weight loss, milder arthritis and decreased persistence of staphylococci in the kidneys. The ecs mutants had higher susceptibility to ribosomal antibiotics and plant alkaloids chelerythrine and sanguinarine. Our results show that Ecs is essential for staphylococcal virulence and antimicrobial resistance probably since the transport function of Ecs is essential for the normal structure and function of the cell wall. Thus targeting Ecs may be a new approach in combating staphylococcal infection.

  9. A comparative study on adhesion and recovery of potential probiotic strains of Lactobacillus spp. by in vitro assay and analysis of human colon biopsies

    DEFF Research Database (Denmark)

    Larsen, Nadejda Nikolajevna; Michaelsen, Kim F.; Pærregaard, Anders

    2009-01-01

    Adhesion of the new Lactobacillus isolates, L. casei D12, L. casei Q85, L. casei Z11 and L. plantarum Q47, to the porcine intestinal cell line IPEC-J2 was investigated and compared to the recovery of the same bacterial strains from colon biopsies and faeces obtained from human intervention studies....... Probiotic bacteria L. rhamnosus 19070, L. reuteri 12246 and L. casei F19 were used as reference strains. The new isolates exhibited low to moderate adhesion to IPEC-J2 cells in the range of 7-26%. A large variation in the recovery of strains was observed between the persons, suggesting host specificity...... of intestinal colonization. High correlation was shown between recovery from the different sections of the colon of the same subject, indicating consistency of bacterial colonization of the epithelium. The recovery of L. casei Z11 and L. casei Q85 was highest and comparable to the reference strains of L...

  10. Salivary bacterial leakage into implant-abutment connections: preliminary results of an in vitro study.

    Science.gov (United States)

    Mencio, F; Papi, P; Di Carlo, S; Pompa, G

    2016-06-01

    The occurrence of bacterial leakage in the internal surface of implants, through implant-abutment interface (IAI), is one of the parameters for analyzing the fabrication quality of the connections. The aim of this in vitro study is to evaluate two different types of implant-abutment connections: the screwed connection (Group 1) and the cemented connection (Group 2), analyzing the permeability of the IAI to bacterial colonization, using human saliva as culture medium. A total of twelve implants were tested, six in each experimental group. Five healthy patients were enrolled in this study. Two milliliters of non-stimulated saliva were collected from each subject and mixed in a test tube. After 14 days of incubation of the bacteria sample in the implant fixtures, a PCR-Real Time analysis was performed. Fisher's exact test was used to compare the proportions of implant-abutment assembled structures detected with bacterial leakage. Differences in the bacterial counts of the two groups were compared using the Mann-Whitney U test. A p value abutment connections compared to the cemented implant-abutment connections. A mean total bacterial count of 1.2E+07 (± 0.25E+07) for Group 1 and of 7.2E+04 (± 14.4E+04) for Group 2 was found, with a high level of significance, p = .0001. Within the limitations of this study it can be concluded that bacterial species from human saliva may penetrate along the implant-abutment interface in both connections, however the cemented connection implants showed the lowest amount of bacterial colonization.

  11. Intestinal helminth infection drives carcinogenesis in colitis-associated colon cancer.

    Directory of Open Access Journals (Sweden)

    Eva Pastille

    2017-09-01

    Full Text Available Inflammatory bowel diseases (IBD are chronic inflammatory disorders of the gastrointestinal tract, strongly associated with an increased risk of colorectal cancer development. Parasitic infections caused by helminths have been shown to modulate the host's immune response by releasing immunomodulatory molecules and inducing regulatory T cells (Tregs. This immunosuppressive state provoked in the host has been considered as a novel and promising approach to treat IBD patients and alleviate acute intestinal inflammation. On the contrary, specific parasite infections are well known to be directly linked to carcinogenesis. Whether a helminth infection interferes with the development of colitis-associated colon cancer (CAC is not yet known. In the present study, we demonstrate that the treatment of mice with the intestinal helminth Heligmosomoides polygyrus at the onset of tumor progression in a mouse model of CAC does not alter tumor growth and distribution. In contrast, H. polygyrus infection in the early inflammatory phase of CAC strengthens the inflammatory response and significantly boosts tumor development. Here, H. polygyrus infection was accompanied by long-lasting alterations in the colonic immune cell compartment, with reduced frequencies of colonic CD8+ effector T cells. Moreover, H. polygyrus infection in the course of dextran sulfate sodium (DSS mediated colitis significantly exacerbates intestinal inflammation by amplifying the release of colonic IL-6 and CXCL1. Thus, our findings indicate that the therapeutic application of helminths during CAC might have tumor-promoting effects and therefore should be well-considered.

  12. [The composition of the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora].

    Science.gov (United States)

    Lei, D; Lin, Y; Jiang, X; Lan, L; Zhang, W; Wang, B X

    2017-03-02

    Objective: To explore the composition of the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora. Method: Twenty-four specimens were collected from pregnant Kunming mouse including 8 mice of early embryonic (12-13 days) gastrointestinal tissues, 8 cases of late embryonic (19-20 days)gastrointestinal tissues, 8 of late pregnancy placental tissues.The 24 samples were extracted by DNeasy Blood & Tissue kit for high-throughput DNA sequencing. Result: The level of Proteobacteria, Bacteroidetes, Actino-bacteria and Firmicutes were predominantin all specimens.The relative content of predominant bacterial phyla in each group: Proteobacteria (95.00%, 88.14%, 87.26%), Bacteroidetes(1.71%, 2.15%, 2.63%), Actino-Bacteria(1.16%, 4.10%, 3.38%), Firmicutes(0.75%, 2.62%, 2.01%). At the level of family, there were nine predominant bacterial families in which Enterobacteriaeae , Shewanel laceae and Moraxellaceae were dominant.The relative content of dominant bacterial family in eachgroup: Enterobacteriaeae (46.99%, 44.34%, 41.08%), Shewanellaceae (21.99%, 21.10%, 19.05%), Moraxellaceae (9.18%, 7.09%, 5.64%). From the species of flora, the flora from fetal gastrointestinal in early pregnancy and late pregnancy (65.44% and 62.73%) were the same as that from placenta tissue in the late pregnancy.From the abundance of bacteria, at the level of family, the same content of bacteria in three groups accounted for 78.16%, 72.53% and 65.78% respectively. Conclusion: It was proved that the gastrointestinal bacterial flora of mouse embryos and the placenta tissue bacterial flora were colonized. At the same time the bacteria are classified.

  13. Colonization and infection by Helicobacter pylori in humans.

    Science.gov (United States)

    Andersen, Leif Percival

    2007-11-01

    When Helicobacter pylori arrives in the human stomach, it may penetrate the mucin layer and adhere to the gastric epithelial cells or it may pass through the stomach without colonizing the mucosa. In this paper, the colonization process and the ensuing immunological response will be briefly described. Urease production is necessary for H. pylori to establish a pH-neutral microenvironment around the bacteria. The flagella enable the bacteria to move and the shape of H. pylori makes it possible to penetrate the mucin layer where it comes into contact with the gastric epithelial cells. H. pylori contains several adhesins that enable it to adhere to the epithelial cells. This adherence activates IL-8 which, together with bacterial antigens, attracts polymorphs and monocytes and causes acute gastritis. Antigen-presenting cells activate lymphocytes and other mononuclear cells that are attracted to the inflamed mucosa, causing chronic superficial gastritis and initiating a cytotoxic or an antigen-producing Th response. The infection is established within a few weeks after the primary exposure to H. pylori. After this initial colonization, many chemical, biochemical, and immunologic reactions take place that are of importance in the progress of the infection and the development of disease.

  14. Gene Signature in Sessile Serrated Polyps Identifies Colon Cancer Subtype

    Science.gov (United States)

    Kanth, Priyanka; Bronner, Mary P.; Boucher, Kenneth M.; Burt, Randall W.; Neklason, Deborah W.; Hagedorn, Curt H.; Delker, Don A.

    2016-01-01

    Sessile serrated colon adenoma/polyps (SSA/Ps) are found during routine screening colonoscopy and may account for 20–30% of colon cancers. However, differentiating SSA/Ps from hyperplastic polyps (HP) with little risk of cancer is challenging and complementary molecular markers are needed. Additionally, the molecular mechanisms of colon cancer development from SSA/Ps are poorly understood. RNA sequencing was performed on 21 SSA/Ps, 10 HPs, 10 adenomas, 21 uninvolved colon and 20 control colon specimens. Differential expression and leave-one-out cross validation methods were used to define a unique gene signature of SSA/Ps. Our SSA/P gene signature was evaluated in colon cancer RNA-Seq data from The Cancer Genome Atlas (TCGA) to identify a subtype of colon cancers that may develop from SSA/Ps. A total of 1422 differentially expressed genes were found in SSA/Ps relative to controls. Serrated polyposis syndrome (n=12) and sporadic SSA/Ps (n=9) exhibited almost complete (96%) gene overlap. A 51-gene panel in SSA/P showed similar expression in a subset of TCGA colon cancers with high microsatellite instability (MSI-H). A smaller seven-gene panel showed high sensitivity and specificity in identifying BRAF mutant, CpG island methylator phenotype high (CIMP-H) and MLH1 silenced colon cancers. We describe a unique gene signature in SSA/Ps that identifies a subset of colon cancers likely to develop through the serrated pathway. These gene panels may be utilized for improved differentiation of SSA/Ps from HPs and provide insights into novel molecular pathways altered in colon cancer arising from the serrated pathway. PMID:27026680

  15. Resistance to Innate Immunity Contributes to Colonization of the Insect Gut by Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Shaun C Earl

    Full Text Available Yersinia pestis, the causative agent of bubonic and pneumonic plague, is typically a zoonotic vector-borne disease of wild rodents. Bacterial biofilm formation in the proventriculus of the flea contributes to chronic infection of fleas and facilitates efficient disease transmission. However prior to biofilm formation, ingested bacteria must survive within the flea midgut, and yet little is known about vector-pathogen interactions that are required for flea gut colonization. Here we establish a Drosophila melanogaster model system to gain insight into Y. pestis colonization of the insect vector. We show that Y. pestis establishes a stable infection in the anterior midgut of fly larvae, and we used this model system to study the roles of genes involved in biofilm production and/or resistance to gut immunity stressors. We find that PhoP and GmhA both contribute to colonization and resistance to antimicrobial peptides in flies, and furthermore, the data suggest biofilm formation may afford protection against antimicrobial peptides. Production of reactive oxygen species in the fly gut, as in fleas, also serves to limit bacterial infection, and OxyR mediates Y. pestis survival in both insect models. Overall, our data establish the fruit fly as an informative model to elucidate the relationship between Y. pestis and its flea vector.

  16. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators

    Directory of Open Access Journals (Sweden)

    Rory M. Welsh

    2017-05-01

    consuming foreign or “alien” gram negative bacteria. Halobacteriovorax inoculation also altered the microbiome but to a lesser degree than V. coralliilyticus, and Halobacteriovorax were never detected after inoculation. Simultaneous challenge with both V. coralliilyticus and predatory Halobacteriovorax eliminated the increase in V. coralliilyticus, ameliorated changes to the rest of the coral microbiome, and prevented the secondary blooms of opportunistic Rhodobacterales and Cytophagales seen in the V. coralliilyticus challenge. These data suggest that, under certain circumstances, host-associated bacterial predators may mitigate the ability of other bacteria to destabilize the microbiome.

  17. Gut barrier function and systemic endotoxemia after laparotomy or laparoscopic resection for colon cancer: A prospective randomized study

    Directory of Open Access Journals (Sweden)

    Mario Schietroma

    2016-01-01

    Full Text Available Purpose: The gut barrier is altered in certain pathologic conditions (shock, trauma, or surgical stress, resulting in bacterial and/or endotoxin translocation from the gut lumen into the systemic circulation. In this prospective randomized study, we investigated the effect of surgery on intestinal permeability (IP and endotoxemia in patients undergoing elective colectomy for colon cancer by comparing the laparoscopic with the open approach. Patients and Methods: A hundred twenty-three consecutive patients underwent colectomy for colon cancer: 61 cases were open resection (OR and 62 cases were laparoscopic resection (LR. IP was measured preoperatively and at days 1 and 3 after surgery. Serial venous blood sample were taken at 0, 30, 60, 90, 120, and 180 min, and at 12, 24, and 48 h after surgery for endotoxin measurement. Results: IP was significantly increased in the open and closed group at day 1 compared with the preoperative level (P < 0.05, but no difference was found between laparoscopic and open surgery group. The concentration endotoxin systemic increased significantly in the both groups during the course of surgery and returned to baseline levels at the second day. No difference was found between laparoscopic and open surgery. A significant correlation was observed between the maximum systemic endotoxin concentration and IP measured at day 1 in the open group and in the laparoscopic group. Conclusion: An increase in IP, and systemic endotoxemia were observed during the open and laparoscopic resection for colon cancer, without significant statistically difference between the two groups.

  18. Nesting of colon and ovarian cancer cells in the endothelial niche is associated with alterations in glycan and lipid metabolism.

    Science.gov (United States)

    Halama, Anna; Guerrouahen, Bella S; Pasquier, Jennifer; Satheesh, Noothan J; Suhre, Karsten; Rafii, Arash

    2017-01-04

    The metabolic phenotype of a cancer cell is determined by its genetic makeup and microenvironment, which dynamically modulates the tumor landscape. The endothelial cells provide both a promoting and protective microenvironment - a niche for cancer cells. Although metabolic alterations associated with cancer and its progression have been fairly defined, there is a significant gap in our understanding of cancer metabolism in context of its microenvironment. We deployed an in vitro co-culture system based on direct contact of cancer cells with endothelial cells (E4 + EC), mimicking the tumor microenvironment. Metabolism of colon (HTC15 and HTC116) and ovarian (OVCAR3 and SKOV3) cancer cell lines was profiled with non-targeted metabolic approaches at different time points in the first 48 hours after co-culture was established. We found significant, coherent and non-cell line specific changes in fatty acids, glycerophospholipids and carbohydrates over time, induced by endothelial cell contact. The metabolic patterns pinpoint alterations in hexosamine biosynthetic pathway, glycosylation and lipid metabolism as crucial for cancer - endothelial cells interaction. We demonstrated that "Warburg effect" is not modulated in the initial stage of nesting of cancer cell in the endothelial niche. Our study provides novel insight into cancer cell metabolism in the context of the endothelial microenvironment.

  19. Colonic lymphoid follicles associated with colonic neoplasms

    International Nuclear Information System (INIS)

    Glick, S.N.; Teplick, S.K.; Ross, W.M.

    1986-01-01

    The authors prospectively evaluated 62 patients over 40 years old in whom lymphoid follicles were demonstrated on double-contrast enema examinations. Eighteen patients (29%) had no current radiographic evidence of, or history of, colonic neoplasms. Forty-four patients (71%) had an associated neoplasm. Fourteen patients had associated colonic carcinoma, and ten patients had a history of a previously resected colon cancer. One patient had previously undergone resection for ''polyps.'' Twenty-two patients had an associated ''polyp.'' There were no clinical or radiographic features that could reliably distinguish the neoplastic from the nonneoplastic groups. However, lymphoid follicles in the left colon or diffusely involving the colon were more likely to be associated with a colonic neoplasm. Lymphoid follicles were almost always identified near a malignant lesion

  20. Urine cytokine and chemokine levels predict urinary tract infection severity independent of uropathogen, urine bacterial burden, host genetics, and host age.

    Science.gov (United States)

    Armbruster, Chelsie E; Smith, Sara N; Mody, Lona; Mobley, Harry L T

    2018-06-11

    Urinary tract infections (UTIs) are among the most common infections worldwide. Diagnosing UTIs in older adults poses a significant challenge as asymptomatic colonization is common. Identification of a non-invasive profile that predicts likelihood of progressing from urine colonization to severe disease would provide a significant advantage in clinical practice. We monitored colonization susceptibility, disease severity, and immune response to two uropathogens in two mouse strains across three age groups to identify predictors of infection outcome. Proteus mirabilis caused more severe disease than Escherichia coli, regardless of mouse strain or age, and was associated with differences in IL-1β, IFN-β, CXCL5 (LIX), CCL5 (RANTES), and CCL2 (MCP-1). In comparing the response to infection across age groups, mature adult mice were better able to control colonization and prevent progression to kidney colonization and bacteremia than young or aged mice, regardless of mouse strain or bacterial species, and this was associated with differences in IL-23, CXCL1, and CCL5. A bimodal distribution was noted for urine colonization, which was strongly associated with bladder CFUs and the magnitude of the immune response but independent of age or disease severity. To determine the value of urine cytokine and chemokine levels for predicting severe disease, all infection datasets were combined and subjected to a series of logistic regressions. A multivariate model incorporating IL-1β, CXCL1, and CCL2 had strong predictive value for identifying mice that did not develop kidney colonization or bacteremia, regardless of mouse genetic background, age, infecting bacterial species, or urine bacterial burden. In conclusion, urine cytokine profiles could potentially serve as a non-invasive decision-support tool in clinical practice and contribute to antimicrobial stewardship. Copyright © 2018 American Society for Microbiology.

  1. Soil bacterial community and functional shifts in response to altered snowpack in moist acidic tundra of northern Alaska

    Science.gov (United States)

    Ricketts, Michael P.; Poretsky, Rachel S.; Welker, Jeffrey M.; Gonzalez-Meler, Miquel A.

    2016-09-01

    functional potential was inferred using ancestral state reconstruction to approximate functional gene abundance, revealing a decreased abundance of genes required for soil organic matter (SOM) decomposition in the organic layers of the deep snow accumulation zones. These results suggest that predicted climate change scenarios may result in altered soil bacterial community structure and function, and indicate a reduction in decomposition potential, alleviated temperature limitations on extracellular enzymatic efficiency, or both. The fate of stored C in Arctic soils ultimately depends on the balance between these mechanisms.

  2. The effect of E coli virulence on bacterial translocation and systemic sepsis in the neonatal rabbit model.

    Science.gov (United States)

    Jackson, R J; Smith, S D; Wadowsky, R M; DePudyt, L; Rowe, M I

    1991-04-01

    In the surgical neonate, three factors that promote bacterial translocation and systemic infection are: (1) intestinal bacterial colonization and overgrowth; (2) compromised host defenses; and (3) disruption of the mucosal epithelial barrier. The newborn rabbit provides an excellent model to study these factors. Like the human, there is early closure of the gut mucosa to macromolecules, and nutrition can be maintained by breast or formula feeding. This study examines translocation and systemic sepsis after colonization with virulent K1 and avirulent K100 strains of Escherichia coli. New Zealand white rabbit pups (2 to 5 days old) were studied. The gastrointestinal tracts of 12 were colonized with K1 E coli; 14 were colonized with K100 E coli; 12 control animals were not inoculated. Mesenteric lymph node (MLN), liver, spleen, and colon homogenate were cultured 72 hours postinoculation. No bacteria were isolated from the colons of all but one control animal. Translocation or systemic sepsis did not occur. Translocation to the MLN was significantly increased (P less than .03) in K1 (50%) and K100 (36%) groups compared with controls (0%). Translocation to liver and spleen (systemic sepsis) was significantly increased (P less than .03) in K1 animals (67%) compared with K100 (0%) or controls (0%). Colonization by both strains of E coli led to translocation to the MLN, but only K1 E coli caused systemic sepsis. This suggests that although colonization by E coli in the newborn leads to translocation to the MLN, progression to systemic sepsis is the result of characteristics of the bacteria and/or neonatal host responses.

  3. Bacterial Infection of Fly Ovaries Reduces Egg Production and Induces Local Hemocyte Activation

    Science.gov (United States)

    Brandt, Stephanie M.; Schneider, David S.

    2009-01-01

    Summary Morbidity, the state of being diseased, is an important aspect of pathogenesis that has gone relatively unstudied in fruit flies. Our interest is in characterizing how bacterial pathogenesis affects various physiologies of the fly. We chose to examine the fly ovary because we found bacterial infection had a striking effect on fly reproduction. We observed decreased egg laying after bacterial infection that correlated with increased bacterial virulence. We also found that bacteria colonized the ovary in a previously undescribed manner; bacteria were found in the posterior of the ovary, adjacent to the lateral oviduct. This local infection in the ovary resulted in melanization and activation of the cellular immune response at the site of infection. PMID:17400292

  4. Impact of experimental human pneumococcal carriage on nasopharyngeal bacterial densities in healthy adults

    NARCIS (Netherlands)

    Shak, J.R.; Cremers, A.J.H.; Gritzfeld, J.F.; Jonge, M.I. de; Hermans, P.W.M.; Vidal, J.E.; Klugman, K.P.; Gordon, S.B.

    2014-01-01

    Colonization of the nasopharynx by Streptococcus pneumoniae is a necessary precursor to pneumococcal diseases that result in morbidity and mortality worldwide. The nasopharynx is also host to other bacterial species, including the common pathogens Staphylococcus aureus, Haemophilus influenzae, and

  5. Assessment of the conservation state of stone materials in relation to the level environmental pollution in the conservation place

    Directory of Open Access Journals (Sweden)

    Giovanni Rizzo

    2007-07-01

    Full Text Available The patina represents a superficial natural alteration of the constituting matter of the work of art. It emerges from the natural and usual stabilization process that the materials of the surface undergo because of the interaction with outdoor agents characterizing the surrounding environment. Besides, it is not linked to an obvious phenomenon of degradation that can be noticed through the change in the original colour of the matter. This is what we intend when we talk about biological patina usually generated by macro and/or micro-organic colonization (fungi, bacteria, alga which contributes to surface bio-deterioration and thus lead to the formation of orange, red or even brown and dark pigmented areas. The presence of chromatic alterations (rose-coloured areas, as a consequence of bacterial colonization, was most particularly pointed out in different sites, such as in the marble slabs on the facades of both the Cathedral of Siena (Duomo di Siena and the Certosa of Pavia. The present study shows an example of chromatic alteration of the surface of marble works due to bacterial colonization.

  6. [Identification, colonization and disease prevention capacity of an antagonistic bacterium against Ralstonia Solanacearum].

    Science.gov (United States)

    Li, Zhikun; Zhu, Honghui

    2010-03-01

    To isolate a bacterial strain YPP-9, dominantly colonizing the rhizosphere of tomato using root exudate medium. In this study, we investigated the antagnism and disease-controling effect against Ralstonia solanacearum, evaluated the ability to colonize the rhizosphere of tomato, and further analyzed the phylogeny of YPP-9. To evaluate the antagnism against R. solanacearum and the biocontrol on tomato bacterial wilt by YPP-9 respectively employing plate culture method and pot experiment in green house. We analyzed the rhizosphere colonization of YPP-9 by PCR-denaturing gradient gel electrophoresis, and also identified the taxonomic position of YPP-9 using morphological and chemotaxonomic characteristics together with 16S rRNA gene phylogenetic analysis. YPP-9 suppressed the growth of R. solanacearum (strains SSF-4) in vitro with the inhibition zone of 5 mm. The disease-control efficiency against tomato bacterial wilt in pot was 63.4%. YPP-9 also colonized the rhizosphere of tomato well. The colonies were cream in colour after 24 h culture. Cells were gram-positive, rods (1.8 -4.1 microm x 0.9 - 1.1 microm) and formed endospores. Endospores were mainly ellipsoidal to cylindrical and lied in subterminal, and occasionally paracentral, positions in no swollen sporangia. No crystal protein. The pH range for YPP-9 growth was 5.5 - 8.5 with the optimum at pH 6.0, and the temperature for YPP-9 growth was 20 to 45 degrees with the optimum at 30 degrees. The results of BIOLOG GP2 showed that YPP-9 was Bacillus. Phylogenetic analysis of the 16S rRNA gene sequence revealed that YPP-9 was the most closely related to Bacillus fumarioli, with the sequence similarity of 97.7%. The sequence number was FJ231500. The DNA G + C content was 41.9%. The major menaquinone was MK-7. The dominant fatty acids in cell wall were C14 : 0 iso, C15 : 0 iso, C16 : 0 iso and C16 : 1omega 7c alcohol, with the contents of 28.27%, 19.59%, 12.93% and 10.88%, respectively. Bacterium YPP-9 strongly

  7. CT Findings of Colonic Complications Associated with Colon Cancer

    International Nuclear Information System (INIS)

    Kim, Sang Won; Shin, Hyeong Cheol; Kim, Il Young; Kim, Young Tong; Kim, Chang Jin

    2010-01-01

    A broad spectrum of colonic complications can occur in patients with colon cancer. Clinically, some of these complications can obscure the presence of underlying malignancies in the colon and these complications may require emergency surgical management. The complications of the colon that can be associated with colon cancer include obstruction, perforation, abscess formation, acute appendicitis, ischemic colitis and intussusception. Although the majority of these complications only rarely occur, familiarity with the various manifestations of colon cancer complications will facilitate making an accurate diagnosis and administering prompt management in these situations. The purpose of this pictorial essay is to review the CT appearance of the colonic complications associated with colon cancer

  8. CT Findings of Colonic Complications Associated with Colon Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Won; Shin, Hyeong Cheol; Kim, Il Young; Kim, Young Tong; Kim, Chang Jin [Cheonan Hospital, Soonchunhyang University, Cheonan (Korea, Republic of)

    2010-04-15

    A broad spectrum of colonic complications can occur in patients with colon cancer. Clinically, some of these complications can obscure the presence of underlying malignancies in the colon and these complications may require emergency surgical management. The complications of the colon that can be associated with colon cancer include obstruction, perforation, abscess formation, acute appendicitis, ischemic colitis and intussusception. Although the majority of these complications only rarely occur, familiarity with the various manifestations of colon cancer complications will facilitate making an accurate diagnosis and administering prompt management in these situations. The purpose of this pictorial essay is to review the CT appearance of the colonic complications associated with colon cancer.

  9. Transported biofilms and their influence on subsequent macrofouling colonization.

    Science.gov (United States)

    Sweat, L Holly; Swain, Geoffrey W; Hunsucker, Kelli Z; Johnson, Kevin B

    2017-05-01

    Biofilm organisms such as diatoms are potential regulators of global macrofouling dispersal because they ubiquitously colonize submerged surfaces, resist antifouling efforts and frequently alter larval recruitment. Although ships continually deliver biofilms to foreign ports, it is unclear how transport shapes biofilm microbial structure and subsequent macrofouling colonization. This study demonstrates that different ship hull coatings and transport methods change diatom assemblage composition in transported coastal marine biofilms. Assemblages carried on the hull experienced significant cell losses and changes in composition through hydrodynamic stress, whereas those that underwent sheltered transport, even through freshwater, were largely unaltered. Coatings and their associated biofilms shaped distinct macrofouling communities and affected recruitment for one third of all species, while biofilms from different transport treatments had little effect on macrofouling colonization. These results demonstrate that transport conditions can shape diatom assemblages in biofilms carried by ships, but the properties of the underlying coatings are mainly responsible for subsequent macrofouling. The methods by which organisms colonize and are transferred by ships have implications for their distribution, establishment and invasion success.

  10. Blocking of bacterial biofilm formation by a fish protein coating

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk; Klemm, Per

    2008-01-01

    Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development......, this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition...... examined. The biofilm-reducing activity did, however, vary depending on the substratum physicochemical characteristics and the environmental conditions studied. These data illustrate the importance of protein conditioning layers with respect to bacterial biofilm formation and suggest that antiadhesive...

  11. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    International Nuclear Information System (INIS)

    Asting, Annika Gustafsson; Carén, Helena; Andersson, Marianne; Lönnroth, Christina; Lagerstedt, Kristina; Lundholm, Kent

    2011-01-01

    Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4) showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3) were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue

  12. COX-2 gene expression in colon cancer tissue related to regulating factors and promoter methylation status

    Directory of Open Access Journals (Sweden)

    Lagerstedt Kristina

    2011-06-01

    Full Text Available Abstract Background Increased cyclooxygenase activity promotes progression of colorectal cancer, but the mechanisms behind COX-2 induction remain elusive. This study was therefore aimed to define external cell signaling and transcription factors relating to high COX-2 expression in colon cancer tissue. Method Tumor and normal colon tissue were collected at primary curative operation in 48 unselected patients. COX-2 expression in tumor and normal colon tissue was quantified including microarray analyses on tumor mRNA accounting for high and low tumor COX-2 expression. Cross hybridization was performed between tumor and normal colon tissue. Methylation status of up-stream COX-2 promoter region was evaluated. Results Tumors with high COX-2 expression displayed large differences in gene expression compared to normal colon. Numerous genes with altered expression appeared in tumors of high COX-2 expression compared to tumors of low COX-2. COX-2 expression in normal colon was increased in patients with tumors of high COX-2 compared to normal colon from patients with tumors of low COX-2. IL1β, IL6 and iNOS transcripts were up-regulated among external cell signaling factors; nine transcription factors (ATF3, C/EBP, c-Fos, Fos-B, JDP2, JunB, c-Maf, NF-κB, TCF4 showed increased expression and 5 (AP-2, CBP, Elk-1, p53, PEA3 were decreased in tumors with high COX-2. The promoter region of COX-2 gene did not show consistent methylation in tumor or normal colon tissue. Conclusions Transcription and external cell signaling factors are altered as covariates to COX-2 expression in colon cancer tissue, but DNA methylation of the COX-2 promoter region was not a significant factor behind COX-2 expression in tumor and normal colon tissue.

  13. Probing living bacterial adhesion by single cell force spectroscopy using atomic force microscopy

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    be considered. We have therefore developed a simple and versatile method to make single-cell bacterial probes for measuring single cell adhesion with atomic force microscopy (AFM).[1] A single-cell probe was readily made by picking up a bacterial cell from a glass surface using a tipless AFM cantilever coated...... random immobilization is obtained by submerging the cantilever in a bacterial suspension. The reported method provides a general platform for investigating single cell interactions of bacteria with different surfaces and other cells by AFM force spectroscopy, thus improving our understanding....... The strain-dependent susceptibility to bacterial colonization on conventional PLL-g-PEG illustrates how bacterial diversity challenges development of “universal” antifouling coatings, and AFM single-cell force spectroscopy was proven to be a powerful tool to provide insights into the molecular mechanisms...

  14. Major Anaerobic Bacteria Responsible for the Production of Carcinogenic Acetaldehyde from Ethanol in the Colon and Rectum.

    Science.gov (United States)

    Tsuruya, Atsuki; Kuwahara, Akika; Saito, Yuta; Yamaguchi, Haruhiko; Tenma, Natsuki; Inai, Makoto; Takahashi, Seiji; Tsutsumi, Eri; Suwa, Yoshihide; Totsuka, Yukari; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Mizukami, Takeshi; Yokoyama, Akira; Shimoyama, Takefumi; Nakayama, Toru

    2016-07-01

    The importance of ethanol oxidation by intestinal aerobes and facultative anaerobes under aerobic conditions in the pathogenesis of ethanol-related colorectal cancer has been proposed. However, the role of obligate anaerobes therein remains to be established, and it is still unclear which bacterial species, if any, are most important in the production and/or elimination of carcinogenic acetaldehyde under such conditions. This study was undertaken to address these issues. More than 500 bacterial strains were isolated from the faeces of Japanese alcoholics and phylogenetically characterized, and their aerobic ethanol metabolism was studied in vitro to examine their ability to accumulate acetaldehyde beyond the minimum mutagenic concentration (MMC, 50 µM). Bacterial strains that were considered to potentially accumulate acetaldehyde beyond the MMC under aerobic conditions in the colon and rectum were identified and referred to as 'potential acetaldehyde accumulators' (PAAs). Ruminococcus, an obligate anaerobe, was identified as a genus that includes a large number of PAAs. Other obligate anaerobes were also found to include PAAs. The accumulation of acetaldehyde by PAAs colonizing the colorectal mucosal surface could be described, at least in part, as the response of PAAs to oxidative stress. Ethanol oxidation by intestinal obligate anaerobes under aerobic conditions in the colon and rectum could also play an important role in the pathogenesis of ethanol-related colorectal cancer. © The Author 2016. Medical Council on Alcohol and Oxford University Press. All rights reserved.

  15. Temperature increases from 55 to 75 C in a two-phase biogas reactor result in fundamental alterations within the bacterial and archaeal community structure

    Energy Technology Data Exchange (ETDEWEB)

    Rademacher, Antje [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Abt. Bioverfahrenstechnik; Technische Univ. Berlin (Germany). Inst. fuer Technischen Umweltschutz; Nolte, Christine; Schoenberg, Mandy; Klocke, Michael [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Abt. Bioverfahrenstechnik

    2012-10-15

    Agricultural biogas plants were operated in most cases below their optimal performance. An increase in the fermentation temperature and a spatial separation of hydrolysis/acetogenesis and methanogenesis are known strategies in improving and stabilizing biogas production. In this study, the dynamic variability of the bacterial and archaeal community was monitored within a two-phase leach bed biogas reactor supplied with rye silage and straw during a stepwise temperature increase from 55 to 75 C within the leach bed reactor (LBR), using TRFLP analyses. To identify the terminal restriction fragments that were obtained, bacterial and archaeal 16S rRNA gene libraries were constructed. Above 65 C, the bacterial community structure changed from being Clostridiales-dominated toward being dominated by members of the Bacteroidales, Clostridiales, and Thermotogales orders. Simultaneously, several changes occurred, including a decrease in the total cell count, degradation rate, and biogas yield along with alterations in the intermediate production. A bioaugmentation with compost at 70 C led to slight improvements in the reactor performance; these did not persist at 75 C. However, the archaeal community within the downstream anaerobic filter reactor (AF), operated constantly at 55 C, altered by the temperature increase in the LBR. At an LBR temperature of 55 C, members of the Methanobacteriales order were prevalent in the AF, whereas at higher LBR temperatures Methanosarcinales prevailed. Altogether, the best performance of this two-phase reactor was achieved at an LBR temperature of below 65 C, which indicates that this temperature range has a favorable effect on the microbial community responsible for the production of biogas. (orig.)

  16. Pneumococcal lipoproteins involved in bacterial fitness, virulence, and immune evasion.

    Science.gov (United States)

    Kohler, Sylvia; Voß, Franziska; Gómez Mejia, Alejandro; Brown, Jeremy S; Hammerschmidt, Sven

    2016-11-01

    Streptococcus pneumoniae (pneumococcus) has evolved sophisticated strategies to survive in several niches within the human body either as a harmless commensal or as a serious pathogen causing a variety of diseases. The dynamic interaction between pneumococci and resident host cells during colonization of the upper respiratory tract and at the site of infection is critical for bacterial survival and the development of disease. Pneumococcal lipoproteins are peripherally anchored membrane proteins and have pivotal roles in bacterial fitness including envelope stability, cell division, nutrient acquisition, signal transduction, transport (as substrate-binding proteins of ABC transporter systems), resistance to oxidative stress and antibiotics, and protein folding. In addition, lipoproteins are directly involved in virulence-associated processes such as adhesion, colonization, and persistence through immune evasion. Conversely, lipoproteins are also targets for the host response both as ligands for toll-like receptors and as targets for acquired antibodies. This review summarizes the multifaceted roles of selected pneumococcal lipoproteins and how this knowledge can be exploited to combat pneumococcal infections. © 2016 Federation of European Biochemical Societies.

  17. A Molecular Genetic Basis Explaining Altered Bacterial Behavior in Space

    Data.gov (United States)

    National Aeronautics and Space Administration — Bacterial behavior has been observed to change during spaceflight. Higher final cell counts enhanced biofilm formation increased virulence and reduced susceptibility...

  18. Differential Colonization Dynamics of Cucurbit Hosts by Erwinia tracheiphila.

    Science.gov (United States)

    Vrisman, Cláudio M; Deblais, Loïc; Rajashekara, Gireesh; Miller, Sally A

    2016-07-01

    Bacterial wilt is one of the most destructive diseases of cucurbits in the Midwestern and Northeastern United States. Although the disease has been studied since 1900, host colonization dynamics remain unclear. Cucumis- and Cucurbita-derived strains exhibit host preference for the cucurbit genus from which they were isolated. We constructed a bioluminescent strain of Erwinia tracheiphila (TedCu10-BL#9) and colonization of different cucurbit hosts was monitored. At the second-true-leaf stage, Cucumis melo plants were inoculated with TedCu10-BL#9 via wounded leaves, stems, and roots. Daily monitoring of colonization showed bioluminescent bacteria in the inoculated leaf and petiole beginning 1 day postinoculation (DPI). The bacteria spread to roots via the stem by 2 DPI, reached the plant extremities 4 DPI, and the plant wilted 6 DPI. However, Cucurbita plants inoculated with TedCu10-BL#9 did not wilt, even at 35 DPI. Bioluminescent bacteria were detected 6 DPI in the main stem of squash and pumpkin plants, which harbored approximately 10(4) and 10(1) CFU/g, respectively, of TedCu10-BL#9 without symptoms. Although significantly less systemic plant colonization was observed in nonpreferred host Cucurbita plants compared with preferred hosts, the mechanism of tolerance of Cucurbita plants to E. tracheiphila strains from Cucumis remains unknown.

  19. Different matrix micro-environments in colon cancer and diverticular disease.

    Science.gov (United States)

    Klinge, U; Rosch, R; Junge, K; Krones, C J; Stumpf, M; Lynen-Jansen, P; Mertens, P R; Schumpelick, V

    2007-05-01

    The extracellular matrix and the interactive signalling between its components are thought to play a pivotal role for tumour development and metastasis formation. An altered matrix composition as potential underlying pathology for the development of colorectal cancer was hypothesized. In a retrospective study of patients with colon cancer, the extracellular matrix in tumour-free bowel specimen was investigated in comparison with non-infected bowel specimen from patients operated on for colonic diverticulosis. The following matrix parameters with known associations to tumour formation, cell proliferation, invasion and metastasis were analysed by immunohistochemistry and quantified by a scoring system: VEGF, TGF-beta, ESDN, CD117, c-erb-2, cyclin D1, p53, p27, COX-2, YB-1, collagen I/III, MMP-13, PAI and uPAR. Expression profiles and correlations were calculated. The comparison of the two groups revealed a significantly decreased immunostaining for CD117 and TGF-beta in the cancer group (8.5+/-2.6 vs 10.3+/-2,1 and 4.9+/-1.5 vs 8.1+/-3, respectively), whereas PAI scores were significantly higher than in patients with diverticular disease (8.1+/-1.6 vs 6.2+/-0.9). Overall correlation patterns of matrix parameters indicated pronounced differences between tumour-free tissue in cancer patients compared with patients with diverticular disease. Our results indicate distinct differences in the colonic tissue architecture between cancer patients and patients with diverticulitis that support the notion of an altered matrix composition predisposing to the development of colon cancer.

  20. Persistence of nasal colonization with human pathogenic bacteria and associated antimicrobial resistance in the German general population

    NARCIS (Netherlands)

    Köck, R; Werner, P; Friedrich, A W; Fegeler, C; Becker, K

    The nares represent an important bacterial reservoir for endogenous infections. This study aimed to assess the prevalence of nasal colonization by different important pathogens, the associated antimicrobial susceptibility and risk factors. We performed a prospective cohort study among 1878

  1. Dietary pectin and calcium inhibit colonic proliferation in vivo by differing mechanisms.

    Science.gov (United States)

    Umar, S; Morris, A P; Kourouma, F; Sellin, J H

    2003-12-01

    Diet plays an important role in promoting and/or preventing colon cancer; however, the effects of specific nutrients remain uncertain because of the difficulties in correlating epidemiological and basic observations. Transmissible murine colonic hyperplasia (TMCH) induced by Citrobacter rodentium, causes significant hyperproliferation and hyperplasia in the mouse distal colon and increases the risk of subsequent neoplasia. We have recently shown that TMCH is associated with an increased abundance of cellular beta-catenin and its nuclear translocation coupled with up-regulation of its downstream targets, c-myc and cyclin D1. In this study, we examined the effects of two putatively protective nutrients, calcium and soluble fibre pectin, on molecular events linked to proliferation in the colonic epithelium during TMCH. Dietary intervention incorporating changes in calcium [high (1.0%) and low (0.1%)] and alterations in fibre content (6% pectin and fibre-free) were compared with the standard AIN-93 diet (0.5% calcium, 5% cellulose), followed by histomorphometry and immunochemical assessment of potential oncogenes. Dietary interventions did not alter the time course of Citrobacter infection. Both 1.0% calcium and 6% pectin diet inhibited increases in proliferation and crypt length typically seen in TMCH. Neither the low calcium nor fibre-free diets had significant effect. Pectin diet blocked increases in cellular beta-catenin, cyclin D1 and c-myc levels associated with TMCH by 70%, whereas neither high nor low calcium diet had significant effect on these molecules. Diets supplemented with either calcium or pectin therefore, exert anti-proliferative effects in mouse distal colon involving different molecular pathways. TMCH is thus a diet-sensitive model for examining the effect of specific nutrients on molecular characteristics of the pre-neoplastic colonic epithelium.

  2. Slc5a8, a Na+-coupled high-affinity transporter for short-chain fatty acids, is a conditional tumour suppressor in colon that protects against colitis and colon cancer under low-fibre dietary conditions.

    Science.gov (United States)

    Gurav, Ashish; Sivaprakasam, Sathish; Bhutia, Yangzom D; Boettger, Thomas; Singh, Nagendra; Ganapathy, Vadivel

    2015-07-15

    Mammalian colon harbours trillions of bacteria under physiological conditions; this symbiosis is made possible because of a tolerized response from the mucosal immune system. The mechanisms underlying this tolerogenic phenomenon remain poorly understood. In the present study we show that Slc5a8 (solute carrier gene family 5a, member 8), a Na(+)-coupled high-affinity transporter in colon for the bacterial fermentation product butyrate, plays a critical role in this process. Among various immune cells in colon, dendritic cells (DCs) are unique not only in their accessibility to luminal contents but also in their ability to induce tolerogenic phenotype in T-cells. We found that DCs exposed to butyrate express the immunosuppressive enzymes indoleamine 2,3-dioxygenase 1 (IDO1) and aldehyde dehydrogenase 1A2 (Aldh1A2), promote conversion of naive T-cells into immunosuppressive forkhead box P3(+) (FoxP3(+)) Tregs (regulatory T-cells) and suppress conversion of naive T-cells into pro-inflammatory interferon (IFN)-γ-producing cells. Slc5a8-null DCs do not induce IDO1 and Aldh1A2 and do not generate Tregs or suppress IFN-γ-producing T-cells in response to butyrate. We also provide in vivo evidence for an obligatory role for Slc5a8 in suppression of IFN-γ-producing T-cells. Furthermore, Slc5a8 protects against colitis and colon cancer under conditions of low-fibre intake but not when dietary fibre intake is optimal. This agrees with the high-affinity nature of the transporter to mediate butyrate entry into cells. We conclude that Slc5a8 is an obligatory link between dietary fibre and mucosal immune system via the bacterial metabolite butyrate and that this transporter is a conditional tumour suppressor in colon linked to dietary fibre content. © 2015 Authors; published by Portland Press Limited.

  3. Abundance of Enterobacteriaceae in the colon mucosa in diverticular disease.

    Science.gov (United States)

    Linninge, Caroline; Roth, Bodil; Erlanson-Albertsson, Charlotte; Molin, Göran; Toth, Ervin; Ohlsson, Bodil

    2018-02-15

    To compare gut bacterial diversity and amount of Enterobacteriaceae in colonic mucosa between patients with and without diverticular disease (DD). Patients in a stable clinical condition with planned elective colonoscopy were included. Blood samples and colon mucosa biopsies were collected at the colonoscopy. Study questionnaires including questions about gastrointestinal symptoms were completed by the patients and physicians. DNA from mucosa samples was isolated and the amount of Enterobacteriaceae was estimated using PCR assay. Terminal restriction fragment length polymorphism was applied to assess microbial diversity. Diversity was estimated by calculations of richness (number of terminal restriction fragments) and Shannon-Wiener and Simpson's indices. A total of 51 patients were included, 16 patients with DD [68 (62-76) years] and 35 controls [62 (40-74) years] without any diverticula. Patients with DD had significantly higher levels of Enterobacteriaceae than those without DD ( P = 0.043), and there was an inverse relationship between the amount of Enterobacteriaceae and the Simpson's index (rs = -0.361, P = 0.033) and the Shannon-Wiener index (rs = -0.299, P = 0.081). The Simpson's index ( P = 0.383), Shannon-Wiener index ( P = 0.401) or number of restrictions fragments ( P = 0.776) did not differ between DD and controls. The majority of patients experienced gastrointestinal symptoms, and 22 patients (43.1%) fulfilled the criteria for irritable bowel syndrome, with no difference between the groups ( P = 0.212). Demography, socioeconomic status, lifestyle habits, inflammatory biomarkers, or symptoms were not related to the amount of Enterobacteriaceae or bacterial diversity. Patients with DD had higher amount of Enterobacteriaceae in the colon mucosa compared to patients without diverticula.

  4. The effect of parenteral immunisation on antibody production in the pig colon.

    Science.gov (United States)

    Rees, A S; Lysons, R J; Stokes, C R; Bourne, F J

    1989-11-30

    Local and systemic antibody production was studied in pigs to compare responses to live and killed bacterial antigen and purified protein antigen, with and without prior mucosal stimulation. Recovery from challenge with live bacteria and intramuscular injection with killed bacteria gave rise to similar high levels of serum IgG antibody, but the ratio of specific IgA to IgG in the colon was significantly higher after infection than following vaccination with killed bacteria. Vaccination with a protein antigen gave rise to serum and local antibody production. Prior feeding of the antigen had a tolerising effect on the serum antibody response, but production of IgG and IgA antibody by the colon was not suppressed.

  5. Evaluation of an in vitro faecal degradation method for early assessment of the impact of colonic degradation on colonic absorption in humans.

    Science.gov (United States)

    Tannergren, Christer; Borde, Anders; Boreström, Cecilia; Abrahamsson, Bertil; Lindahl, Anders

    2014-06-16

    The objective of this study was to develop and evaluate an in vitro method to investigate bacterial-mediated luminal degradation of drugs in colon in humans. This would be a valuable tool for the assessment of drug candidates during early drug development, especially for compounds intended to be developed as oral extended release formulations. Freshly prepared faecal homogenate from healthy human volunteers (n=3-18), dog (n=6) and rat (colon and caecal content, n=3) was homogenised with 3.8 parts (w/w) physiological saline under anaerobical conditions. Four model compounds (almokalant, budesonide, ximelagatran and metoprolol) were then incubated (n=3-18) separately in the human faecal homogenate for up to 120min at 37°C. In addition, ximelagatran was also incubated in the faecal or colonic content from dog and rat. The mean (±SD) in vitro half-life for almokalant, budesonide and ximelagatran was 39±1, 68±21 and 26±12min, respectively, in the human faecal homogenate. Metoprolol was found to be stable in the in vitro model. The in vitro degradation data was then compared to literature data on fraction absorbed after direct colon administration in humans. The percentage of drug remaining after 60min of in vitro incubation correlated (R(2)=0.90) with the fraction absorbed from colon in humans. The mean in vitro half-life of ximelagatran was similar in human faeces (26±12min) and rat colon content (34±31min), but significantly (pdegradation in vivo was rapidly degraded in the faecal homogenates as well as quantitatively since a correlation was established between percentage degraded in vitro at 60min and fraction absorbed in the colon for the model drugs, which have no other absorption limiting properties. Also, the method is easy to use from a technical point of view, which suggests that the method is suitable for use in early assessment of colonic absorption of extended release formulation candidates. Further improvement of the confidence in the use of the

  6. Bacterial Cell Mechanics.

    Science.gov (United States)

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  7. Alterations in Lipid Mediated Signaling and Wnt/β-Catenin Signaling in DMH Induced Colon Cancer on Supplementation of Fish Oil

    Directory of Open Access Journals (Sweden)

    Shevali Kansal

    2014-01-01

    Full Text Available Ceramide mediates inhibition of cyclooxygenase-2 (COX-2 which catalyzes formation of prostaglandin further activating peroxisome proliferator-activated receptorγ (PPARγ and Wnt/β-catenin pathway; and hence plays a critical role in cancer. Therefore, in current study, ceramide, COX-2, 15-deoxy prostaglandin J2(15-deoxy PGJ2, PPARγ, and β-catenin were estimated to evaluate the effect of fish oil on lipid mediated and Wnt/β-catenin signaling in colon carcinoma. Male Wistar rats in Group I received purified diet while Groups II and III received modified diet supplemented with FO : CO(1 : 1 and FO : CO(2.5 : 1, respectively. These were further subdivided into controls receiving ethylenediaminetetraacetic acid and treated groups receiving dimethylhydrazine dihydrochloride (DMH/week for 4 weeks. Animals sacrificed 48 hours after last injection constituted initiation phase and those sacrificed after 16 weeks constituted postinitiation phase. Decreased ceramide and increased PPARγ were observed in postinitiation phase only. On receiving FO+CO(1 : 1+DMH and FO+CO(2.5 : 1+DMH in both phases, ceramide was augmented whereas COX-2, 15-deoxy PGJ2, and nuclear translocation of β-catenin were reduced with respect to cancerous animals. Decrease was more significant in postinitiation phase with FO+CO(2.5 : 1+DMH. Treatment with oils increased PPARγ in initiation phase but decreased it in postinitiation phase. Hence, fish oil altered lipid mediated signalling in a dose and time dependent manner so as to inhibit progression of colon cancer.

  8. Gut microbiota utilize immunoglobulin A for mucosal colonization.

    Science.gov (United States)

    Donaldson, G P; Ladinsky, M S; Yu, K B; Sanders, J G; Yoo, B B; Chou, W-C; Conner, M E; Earl, A M; Knight, R; Bjorkman, P J; Mazmanian, S K

    2018-05-18

    The immune system responds vigorously to microbial infection while permitting lifelong colonization by the microbiome. Mechanisms that facilitate the establishment and stability of the gut microbiota remain poorly described. We found that a regulatory system in the prominent human commensal Bacteroides fragilis modulates its surface architecture to invite binding of immunoglobulin A (IgA) in mice. Specific immune recognition facilitated bacterial adherence to cultured intestinal epithelial cells and intimate association with the gut mucosal surface in vivo. The IgA response was required for B. fragilis (and other commensal species) to occupy a defined mucosal niche that mediates stable colonization of the gut through exclusion of exogenous competitors. Therefore, in addition to its role in pathogen clearance, we propose that IgA responses can be co-opted by the microbiome to engender robust host-microbial symbiosis. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  9. MicroRNAs as Regulator of Signaling Networks in Metastatic Colon Cancer

    Science.gov (United States)

    Wang, Jian; Du, Yong; Liu, Xiaoming; Cho, William C.; Yang, Yinxue

    2015-01-01

    MicroRNAs (miRNAs) are a class of small, noncoding RNA molecules capable of regulating gene expression translationally and/or transcriptionally. A large number of evidence have demonstrated that miRNAs have a functional role in both physiological and pathological processes by regulating the expression of their target genes. Recently, the functionalities of miRNAs in the initiation, progression, angiogenesis, metastasis, and chemoresistance of tumors have gained increasing attentions. Particularly, the alteration of miRNA profiles has been correlated with the transformation and metastasis of various cancers, including colon cancer. This paper reports the latest findings on miRNAs involved in different signaling networks leading to colon cancer metastasis, mainly focusing on miRNA profiling and their roles in PTEN/PI3K, EGFR, TGFβ, and p53 signaling pathways of metastatic colon cancer. The potential of miRNAs used as biomarkers in the diagnosis, prognosis, and therapeutic targets in colon cancer is also discussed. PMID:26064956

  10. MicroRNAs as Regulator of Signaling Networks in Metastatic Colon Cancer.

    Science.gov (United States)

    Wang, Jian; Du, Yong; Liu, Xiaoming; Cho, William C; Yang, Yinxue

    2015-01-01

    MicroRNAs (miRNAs) are a class of small, noncoding RNA molecules capable of regulating gene expression translationally and/or transcriptionally. A large number of evidence have demonstrated that miRNAs have a functional role in both physiological and pathological processes by regulating the expression of their target genes. Recently, the functionalities of miRNAs in the initiation, progression, angiogenesis, metastasis, and chemoresistance of tumors have gained increasing attentions. Particularly, the alteration of miRNA profiles has been correlated with the transformation and metastasis of various cancers, including colon cancer. This paper reports the latest findings on miRNAs involved in different signaling networks leading to colon cancer metastasis, mainly focusing on miRNA profiling and their roles in PTEN/PI3K, EGFR, TGFβ, and p53 signaling pathways of metastatic colon cancer. The potential of miRNAs used as biomarkers in the diagnosis, prognosis, and therapeutic targets in colon cancer is also discussed.

  11. MicroRNAs as Regulator of Signaling Networks in Metastatic Colon Cancer

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2015-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small, noncoding RNA molecules capable of regulating gene expression translationally and/or transcriptionally. A large number of evidence have demonstrated that miRNAs have a functional role in both physiological and pathological processes by regulating the expression of their target genes. Recently, the functionalities of miRNAs in the initiation, progression, angiogenesis, metastasis, and chemoresistance of tumors have gained increasing attentions. Particularly, the alteration of miRNA profiles has been correlated with the transformation and metastasis of various cancers, including colon cancer. This paper reports the latest findings on miRNAs involved in different signaling networks leading to colon cancer metastasis, mainly focusing on miRNA profiling and their roles in PTEN/PI3K, EGFR, TGFβ, and p53 signaling pathways of metastatic colon cancer. The potential of miRNAs used as biomarkers in the diagnosis, prognosis, and therapeutic targets in colon cancer is also discussed.

  12. Differences in telomerase activity between colon and rectal cancer.

    Science.gov (United States)

    Ayiomamitis, Georgios D; Notas, George; Zaravinos, Apostolos; Zizi-Sermpetzoglou, Adamantia; Georgiadou, Maria; Sfakianaki, Ourania; Kouroumallis, Elias

    2014-06-01

    Colorectal cancer is one of the most common cancers and the third leading cause of cancer death in both sexes. The disease progresses as a multistep process and is associated with genetic alterations. One of the characteristic features of cancer is telomerase activation. We sought to evaluate the differences in telomerase activity between colon cancer and adjacent normal tissue and to correlate the differences in telomerase activity between different locations with clinicopathological factors and survival. Matched colon tumour samples and adjacent normal mucosa samples 10 cm away from the tumour were collected during colectomy. We assessed telomerase activity using real time polymerase chain reaction. Several pathological characteristics of tumours, including p53, Ki-67, p21, bcl2 and MLH1 expression were also studied. We collected samples from 49 patients. There was a significantly higher telomerase activity in colon cancer tissue than normal tissue. Adenocarcinomas of the right colon express significantly higher telomerase than left-side cancers. Colon cancers and their adjacent normal tissue had significantly more telomerase and were more positive to MLH1 than rectal cancers. The expression of p53 negatively correlated to telomerase activity and was linked to better patient survival. Colon and rectal cancers seem to have different telomerase and MLH1 profiles, and this could be another factor for their different biologic and clinical behaviour and progression. These results support the idea that the large bowel cannot be considered a uniform organ, at least in the biology of cancer.

  13. Molecular analysis of bacterial microbiota associated with oysters (Crassostrea gigas and Crassostrea corteziensis) in different growth phases at two cultivation sites.

    Science.gov (United States)

    Trabal, Natalia; Mazón-Suástegui, José M; Vázquez-Juárez, Ricardo; Asencio-Valle, Felipe; Morales-Bojórquez, Enrique; Romero, Jaime

    2012-08-01

    Microbiota presumably plays an essential role in inhibiting pathogen colonization and in the maintenance of health in oysters, but limited data exist concerning their different growth phases and conditions. We analyzed the bacterial microbiota composition of two commercial oysters: Crassostrea gigas and Crassostrea corteziensis. Differences in microbiota were assayed in three growth phases: post-larvae at the hatchery, juvenile, and adult at two grow-out cultivation sites. Variations in the microbiota were assessed by PCR analysis of the 16S rRNA gene in DNA extracted from depurated oysters. Restriction fragment length polymorphism (RFLP) profiles were studied using Dice's similarity coefficient (Cs) and statistical principal component analysis (PCA). The microbiota composition was determined by sequencing temperature gradient gel electrophoresis (TGGE) bands. The RFLP analysis of post-larvae revealed homology in the microbiota of both oyster species (Cs > 88 %). Dice and PCA analyses of C. corteziensis but not C. gigas showed differences in the microbiota according to the cultivation sites. The sequencing analysis revealed low bacterial diversity (primarily β-Proteobacteria, Firmicutes, and Spirochaetes), with Burkholderia cepacia being the most abundant bacteria in both oyster species. This study provides the first description of the microbiota in C. corteziensis, which was shown to be influenced by cultivation site conditions. During early growth, we observed that B. cepacia colonized and remained strongly associated with the two oysters, probably in a symbiotic host-bacteria relationship. This association was maintained in the three growth phases and was not altered by environmental conditions or the management of the oysters at the grow-out site.

  14. Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ya C Wu

    Full Text Available Hydrogen sulfide (H(2S is a gaseous bacterial metabolite that reaches high levels in the large intestine. In the present study, the effect of H(2S on the proliferation of normal and cancerous colon epithelial cells was investigated. An immortalized colon epithelial cell line (YAMC and a panel of colon cancer cell lines (HT-29, SW1116, HCT116 were exposed to H(2S at concentrations similar to those found in the human colon. H(2S inhibited normal and cancerous colon epithelial cell proliferation as measured by MTT assay. The anti-mitogenic effect of H(2S was accompanied by G(1-phase cell cycle arrest and the induction of the cyclin-dependent kinase inhibitor p21(Cip. Moreover, exposure to H(2S led to features characteristic of autophagy, including increased formation of LC3B(+ autophagic vacuoles and acidic vesicular organelles as determined by immunofluorescence and acridine orange staining, respectively. Abolition of autophagy by RNA interference targeting Vps34 or Atg7 enhanced the anti-proliferative effect of H(2S. Further mechanistic investigation revealed that H(2S stimulated the phosphorylation of AMP-activated protein kinase (AMPK and inhibited the phosphorylation of mammalian target of rapamycin (mTOR and S6 kinase. Inhibition of AMPK significantly reversed H(2S-induced autophagy and inhibition of cell proliferation. Collectively, we demonstrate that H(2S inhibits colon epithelial cell proliferation and induces protective autophagy via the AMPK pathway.

  15. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    Science.gov (United States)

    Molina-Romero, Dalia; Baez, Antonino; Quintero-Hernández, Verónica; Castañeda-Lucio, Miguel; Fuentes-Ramírez, Luis Ernesto; Bustillos-Cristales, María Del Rocío; Rodríguez-Andrade, Osvaldo; Morales-García, Yolanda Elizabeth; Munive, Antonio; Muñoz-Rojas, Jesús

    2017-01-01

    Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  16. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    Directory of Open Access Journals (Sweden)

    Dalia Molina-Romero

    Full Text Available Plant growth-promoting rhizobacteria (PGPR increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440 and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02 strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  17. A Case of Sigmoid Colon Tuberculosis Mimicking Colon Cancer

    OpenAIRE

    Yu, Seong-Min; Park, Jong-Hwan; Kim, Min-Dae; Lee, Hee-Ryong; Jung, Peel; Ryu, Tae-Hyun; Choi, Seung-Ho; Lee, Il-Seon

    2012-01-01

    Tuberculosis of the sigmoid colon is a rare disorder. An 80-year-old man visited Bongseng Memorial Hospital for medical examination. A colonoscopy was performed, and a lesion in the sigmoid colon that was suspected to be colon cancer was found. A biopsy was performed, and tuberculous enteritis with chronic granulomatous inflammation was diagnosed. Intestinal tuberculosis is most frequent in the ileocecal area, followed by the ascending colon, transverse colon, duodenum, stomach, and sigmoid c...

  18. The Effect of Therapeutic Clowning on Handwashing Technique and Microbial Colonization in Preschool Children.

    Science.gov (United States)

    Arıkan, Duygu; Gürarslan Baş, Nazan; Kurudirek, Fatma; Baştopcu, Ayşe; Uslu, Hakan

    2018-05-15

    This study aimed to determine the effect of therapeutic clowning on handwashing technique and microbial colonization in preschool children. This randomized controlled trial was conducted using pre-test and post-test experimental and control groups. The study was conducted between March and June 2016 in two kindergartens in eastern Turkey. The study was completed with a total of 195 students, including 90 students in the experimental group and 105 students in the control group. A questionnaire was used for data collection. This questionnaire included sections about the subjects' descriptive characteristics and the results of the bacterial cultures of their hand swabs. For the collection of these swabs, the subjects were informed in advance, and samples were collected at predetermined times. The swabs were analyzed to determine the bacterial colonization of the subjects' hands. Clowns and video activities were used as intervention tools in the study. In the post-test, the microbial growth was ≤10 3 in 68.9% and >10 3 in 31.1% of the subjects in the experimental group. In contrast, the growth was ≤10 3 in 34.3% and >10 3 in 65.7% of the control group subjects. The difference in the post-test microbial growths of the two groups was statistically significant (p < .000). The hygienic handwashing technique taught in the therapeutic clowning and videos reduced the bacterial colonization on the preschool children's hands by 50%. Moreover, this method was effective in reducing the growth rate of coliform bacteria that indicate undesirable, poor hygiene of the hands. Considering these results, we recommend that pediatric healthcare professionals use entertaining methods such as those involving clowns to teach and guide children regarding hygienic handwashing techniques. © 2018 Sigma Theta Tau International.

  19. A short-time scale colloidal system reveals early bacterial adhesion dynamics.

    Directory of Open Access Journals (Sweden)

    Christophe Beloin

    2008-07-01

    Full Text Available The development of bacteria on abiotic surfaces has important public health and sanitary consequences. However, despite several decades of study of bacterial adhesion to inert surfaces, the biophysical mechanisms governing this process remain poorly understood, due, in particular, to the lack of methodologies covering the appropriate time scale. Using micrometric colloidal surface particles and flow cytometry analysis, we developed a rapid multiparametric approach to studying early events in adhesion of the bacterium Escherichia coli. This approach simultaneously describes the kinetics and amplitude of early steps in adhesion, changes in physicochemical surface properties within the first few seconds of adhesion, and the self-association state of attached and free-floating cells. Examination of the role of three well-characterized E. coli surface adhesion factors upon attachment to colloidal surfaces--curli fimbriae, F-conjugative pilus, and Ag43 adhesin--showed clear-cut differences in the very initial phases of surface colonization for cell-bearing surface structures, all known to promote biofilm development. Our multiparametric analysis revealed a correlation in the adhesion phase with cell-to-cell aggregation properties and demonstrated that this phenomenon amplified surface colonization once initial cell-surface attachment was achieved. Monitoring of real-time physico-chemical particle surface properties showed that surface-active molecules of bacterial origin quickly modified surface properties, providing new insight into the intricate relations connecting abiotic surface physicochemical properties and bacterial adhesion. Hence, the biophysical analytical method described here provides a new and relevant approach to quantitatively and kinetically investigating bacterial adhesion and biofilm development.

  20. Observation of rat's colon polyps in real time by mini-endoscopy and raman spectroscopy

    Science.gov (United States)

    Andriana, Bibin Bintang; Mahardika, Anggara; Taketani, Akihiro; Sato, Hidetoshi

    2018-02-01

    Colorectal adenoma (CA) is a disease caused by various factors (such as genetic factors or environmental exposures). The appearance of colon polyp (CP) within colorectal might indicate the hint of CA development. Ball-lens hollow fiber Raman probe (BHRP) may has a high capability for detection of CA in living experimental animal and have already tested to rat's CP in this study, which was designed to collaborate between BHRP with mini-endoscopy to observe the biochemical alteration within normal colon tissue and rat's colon polyps in real time. BHRP and mini-endoscopy can distinguish the differences in their finger print spectra and make pictures the control and CP in the real time. At the first step, the real situation of normal colon and Rat's CP were washed by saline and observed with mini-endoscopy. BHRP was introduced to Dextran sodium sulphate (DSS)-induced Rat's CP to detect some of biochemical alteration. The main purpose of this study was to introduce mini-endoscopy to guide the BHRP for diagnosing of CP in real time and to compare it with spectra of normal colon (control group) in living rat. As the result, BHRP can provide the differences in band of control and CP group, which can inform that the biochemical of normal and CP has changed. As a major parameter to distinct normal and CP tissue were phosphatidylinositol, phosphodiester group, lipid, and collagen. Mini endoscopy and BHRP is very sensitive devices for diagnosing of CP in real time.

  1. Effectiveness of Bioactive Food Components in Experimental Colon Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Emília Hijová

    2009-01-01

    Full Text Available The aim of the present study was the evaluation of possible protective effects of selected bioactive food components in experimental N,N-dimethylhydrazine (DMH-induced colon carcinogenesis. Wistar albino rats (n = 92 were fed a high fat diet or conventional laboratory diet. Two weeks after the beginning of the trial, DMH injections were given to six groups of rats at the dose of 20 mg/kg b.w. twice weekly. The activity of bacterial enzymes in faeces and serum bile acid concentrations were determined. High fat diet, DMH injections, and their combination significantly increased the activies of β-galactosidase, β-glucuronidase, and α-glucosidase (p p < 0.001, as well as the bile acid concentration compared to the group at the highest risk. The protective effects of selected bioactive food components in experimentally induced colon carcinogenesis allow for their possible use in cancer prevention or treatment.

  2. Lipopolysaccharide from Crypt-Specific Core Microbiota Modulates the Colonic Epithelial Proliferation-to-Differentiation Balance

    Directory of Open Access Journals (Sweden)

    Tomoaki Naito

    2017-10-01

    Full Text Available We identified a crypt-specific core microbiota (CSCM dominated by strictly aerobic, nonfermentative bacteria in murine cecal and proximal colonic (PC crypts and hypothesized that, among its possible functions, it may affect epithelial regeneration. In the present work, we isolated representative CSCM strains using selective media based upon our initial 16S rRNA-based molecular identification (i.e., Acinetobacter, Delftia, and Stenotrophomonas. Their tropism for the crypt was confirmed, and their influence on epithelial regeneration was demonstrated in vivo by monocolonization of germfree mice. We also showed that lipopolysaccharide (LPS, through its endotoxin activity, was the dominant bacterial agonist controlling proliferation. The relevant molecular mechanisms were analyzed using colonic crypt-derived organoids exposed to bacterial sonicates or highly purified LPS as agonists. We identified a Toll-like receptor 4 (TLR4-dependent program affecting crypts at different stages of epithelial differentiation. LPS played a dual role: it repressed cell proliferation through RIPK3-mediated necroptosis of stem cells and cells of the transit-amplifying compartment and concurrently enhanced cell differentiation, particularly the goblet cell lineage.

  3. Strain-specific quantification of root colonization by plant growth promoting rhizobacteria Bacillus firmus I-1582 and Bacillus amyloliquefaciens QST713 in non-sterile soil and field conditions.

    Directory of Open Access Journals (Sweden)

    Hajeewaka C Mendis

    Full Text Available Bacillus amyloliquefaciens QST713 and B. firmus I-1582 are bacterial strains which are used as active ingredients of commercially-available soil application and seed treatment products Serenade® and VOTiVO®, respectively. These bacteria colonize plant roots promoting plant growth and offering protection against pathogens/pests. The objective of this study was to develop a qPCR protocol to quantitate the dynamics of root colonization by these two strains under field conditions. Primers and TaqMan® probes were designed based on genome comparisons of the two strains with publicly-available and unpublished bacterial genomes of the same species. An optimized qPCR protocol was developed to quantify bacterial colonization of corn roots after seed treatment. Treated corn seeds were planted in non-sterile soil in the greenhouse and grown for 28 days. Specific detection of bacteria was quantified weekly, and showed stable colonization between ~104-105 CFU/g during the experimental period for both bacteria, and the protocol detected as low as 103 CFU/g bacteria on roots. In a separate experiment, streptomycin-resistant QST713 and rifampicin-resistant I-1582 strains were used to compare dilution-plating on TSA with the newly developed qPCR method. Results also indicated that the presence of natural microflora and another inoculated strain does not affect root colonization of either one of these strains. The same qPCR protocol was used to quantitate root colonization by QST713 and I-1582 in two corn and two soybean varieties grown in the field. Both bacteria were quantitated up to two weeks after seeds were planted in the field and there were no significant differences in root colonization in either bacteria strain among varieties. Results presented here confirm that the developed qPCR protocol can be successfully used to understand dynamics of root colonization by these bacteria in plants growing in growth chamber, greenhouse and the field.

  4. A compositional look at the human gastrointestinal microbiome and immune activation parameters in HIV infected subjects.

    Directory of Open Access Journals (Sweden)

    Ece A Mutlu

    2014-02-01

    Full Text Available HIV progression is characterized by immune activation and microbial translocation. One factor that may be contributing to HIV progression could be a dysbiotic microbiome. We therefore hypothesized that the GI mucosal microbiome is altered in HIV patients and this alteration correlates with immune activation in HIV. 121 specimens were collected from 21 HIV positive and 22 control human subjects during colonoscopy. The composition of the lower gastrointestinal tract mucosal and luminal bacterial microbiome was characterized using 16S rDNA pyrosequencing and was correlated to clinical parameters as well as immune activation and circulating bacterial products in HIV patients on ART. The composition of the HIV microbiome was significantly different than that of controls; it was less diverse in the right colon and terminal ileum, and was characterized by loss of bacterial taxa that are typically considered commensals. In HIV samples, there was a gain of some pathogenic bacterial taxa. This is the first report characterizing the terminal ileal and colonic mucosal microbiome in HIV patients with next generation sequencing. Limitations include use of HIV-infected subjects on HAART therapy.

  5. Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania.

    Science.gov (United States)

    Coman, Cristian; Drugă, Bogdan; Hegedus, Adriana; Sicora, Cosmin; Dragoş, Nicolae

    2013-05-01

    The diversity of archaea and bacteria was investigated in two slightly alkaline, mesophilic hot springs from the Western Plain of Romania. Phylogenetic analysis showed a low diversity of Archaea, only three Euryarchaeota taxa being detected: Methanomethylovorans thermophila, Methanomassiliicoccus luminyensis and Methanococcus aeolicus. Twelve major bacterial groups were identified, both springs being dominated by Cyanobacteria, Chloroflexi and Proteobacteria. While at the phylum/class-level the microbial mats share a similar biodiversity; at the species level the geothermal springs investigated seem to be colonized by specific consortia. The dominant taxa were filamentous heterocyst-containing Fischerella, at 45 °C and non-heterocyst Leptolyngbya and Geitlerinema, at 55 °C. Other bacterial taxa (Thauera sp., Methyloversatilis universalis, Pannonibacter phragmitetus, Polymorphum gilvum, Metallibacterium sp. and Spartobacteria) were observed for the first time in association with a geothermal habitat. Based on their bacterial diversity the two mats were clustered together with other similar habitats from Europe and part of Asia, most likely the water temperature playing a major role in the formation of specific microbial communities that colonize the investigated thermal springs.

  6. Specific Fluorescence in Situ Hybridization (FISH) Test to Highlight Colonization of Xylem Vessels by Xylella fastidiosa in Naturally Infected Olive Trees (Olea europaea L.)

    Science.gov (United States)

    Cardinale, Massimiliano; Luvisi, Andrea; Meyer, Joana B.; Sabella, Erika; De Bellis, Luigi; Cruz, Albert C.; Ampatzidis, Yiannis; Cherubini, Paolo

    2018-01-01

    The colonization behavior of the Xylella fastidiosa strain CoDiRO, the causal agent of olive quick decline syndrome (OQDS), within the xylem of Olea europaea L. is still quite controversial. As previous literature suggests, even if xylem vessel occlusions in naturally infected olive plants were observed, cell aggregation in the formation of occlusions had a minimal role. This observation left some open questions about the whole behavior of the CoDiRO strain and its actual role in OQDS pathogenesis. In order to evaluate the extent of bacterial infection in olive trees and the role of bacterial aggregates in vessel occlusions, we tested a specific fluorescence in situ hybridization (FISH) probe (KO 210) for X. fastidiosa and quantified the level of infection and vessel occlusion in both petioles and branches of naturally infected and non-infected olive trees. All symptomatic petioles showed colonization by X. fastidiosa, especially in the larger innermost vessels. In several cases, the vessels appeared completely occluded by a biofilm containing bacterial cells and extracellular matrix and the frequent colonization of adjacent vessels suggested a horizontal movement of the bacteria. Infected symptomatic trees had 21.6 ± 10.7% of petiole vessels colonized by the pathogen, indicating an irregular distribution in olive tree xylem. Thus, our observations point out the primary role of the pathogen in olive vessel occlusions. Furthermore, our findings indicate that the KO 210 FISH probe is suitable for the specific detection of X. fastidiosa. PMID:29681910

  7. Murine colon proteome and characterization of the protein pathways

    Directory of Open Access Journals (Sweden)

    Magdeldin Sameh

    2012-08-01

    Full Text Available Abstract Background Most of the current proteomic researches focus on proteome alteration due to pathological disorders (i.e.: colorectal cancer rather than normal healthy state when mentioning colon. As a result, there are lacks of information regarding normal whole tissue- colon proteome. Results We report here a detailed murine (mouse whole tissue- colon protein reference dataset composed of 1237 confident protein (FDR I and Mw ranged from 3–12 and 4–600 KDa, respectively. Gravy index scoring predicted 19.5% membranous and 80.5% globularly located proteins. GO hierarchies and functional network analysis illustrated proteins function together with their relevance and implication of several candidates in malignancy such as Mitogen- activated protein kinase (Mapk8, 9 in colorectal cancer, Fibroblast growth factor receptor (Fgfr 2, Glutathione S-transferase (Gstp1 in prostate cancer, and Cell division control protein (Cdc42, Ras-related protein (Rac1,2 in pancreatic cancer. Protein abundances calculated with 3 different algorithms (NSAF, PAF and emPAI provide a relative quantification under normal condition as guidance. Conclusions This highly confidence colon proteome catalogue will not only serve as a useful reference for further experiments characterizing differentially expressed proteins induced from diseased conditions, but also will aid in better understanding the ontology and functional absorptive mechanism of the colon as well.

  8. Genetic Control of Plant Root Colonization by the Biocontrol agent, Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Benjamin J.; Fletcher, Meghan; Waters, Jordan; Wetmore, Kelly; Blow, Matthew J.; Deutschbauer, Adam M.; Dangl, Jeffry L.; Visel, Axel

    2015-03-19

    Plant growth promoting rhizobacteria (PGPR) are a critical component of plant root ecosystems. PGPR promote plant growth by solubilizing inaccessible minerals, suppressing pathogenic microorganisms in the soil, and directly stimulating growth through hormone synthesis. Pseudomonas fluorescens is a well-established PGPR isolated from wheat roots that can also colonize the root system of the model plant, Arabidopsis thaliana. We have created barcoded transposon insertion mutant libraries suitable for genome-wide transposon-mediated mutagenesis followed by sequencing (TnSeq). These libraries consist of over 105 independent insertions, collectively providing loss-of-function mutants for nearly all genes in the P.fluorescens genome. Each insertion mutant can be unambiguously identified by a randomized 20 nucleotide sequence (barcode) engineered into the transposon sequence. We used these libraries in a gnotobiotic assay to examine the colonization ability of P.fluorescens on A.thaliana roots. Taking advantage of the ability to distinguish individual colonization events using barcode sequences, we assessed the timing and microbial concentration dependence of colonization of the rhizoplane niche. These data provide direct insight into the dynamics of plant root colonization in an in vivo system and define baseline parameters for the systematic identification of the bacterial genes and molecular pathways using TnSeq assays. Having determined parameters that facilitate potential colonization of roots by thousands of independent insertion mutants in a single assay, we are currently establishing a genome-wide functional map of genes required for root colonization in P.fluorescens. Importantly, the approach developed and optimized here for P.fluorescens>A.thaliana colonization will be applicable to a wide range of plant-microbe interactions, including biofuel feedstock plants and microbes known or hypothesized to impact on biofuel-relevant traits including biomass productivity

  9. Colonic Oxidative and Mitochondrial Function in Parkinson’s Disease and Idiopathic REM Sleep Behavior Disorder

    OpenAIRE

    Morén, C.; González-Casacuberta, Í.; Navarro-Otano, J.; Juárez-Flores, D.; Vilas, D.; Garrabou, G.; Milisenda, J. C.; Pont-Sunyer, C.; Catalán-García, M.; Guitart-Mampel, M.; Tobías, E.; Cardellach, F.; Valldeoriola, F.; Iranzo, A.; Tolosa, E.

    2017-01-01

    Objective To determine potential mitochondrial and oxidative alterations in colon biopsies from idiopathic REM sleep behavior disorder (iRBD) and Parkinson's disease (PD) subjects. Methods Colonic biopsies from 7 iRBD subjects, 9 subjects with clinically diagnosed PD, and 9 healthy controls were homogenized in 5% w/v mannitol. Citrate synthase (CS) and complex I (CI) were analyzed spectrophotometrically. Oxidative damage was assessed either by lipid peroxidation, through malondialdehyde and h...

  10. Heterogeneous Family of Cyclomodulins: Smart Weapons That Allow Bacteria to Hijack the Eukaryotic Cell Cycle and Promote Infections

    Directory of Open Access Journals (Sweden)

    Rachid A. El-Aouar Filho

    2017-05-01

    Full Text Available Some bacterial pathogens modulate signaling pathways of eukaryotic cells in order to subvert the host response for their own benefit, leading to successful colonization and invasion. Pathogenic bacteria produce multiple compounds that generate favorable conditions to their survival and growth during infection in eukaryotic hosts. Many bacterial toxins can alter the cell cycle progression of host cells, impairing essential cellular functions and impeding host cell division. This review summarizes current knowledge regarding cyclomodulins, a heterogeneous family of bacterial effectors that induce eukaryotic cell cycle alterations. We discuss the mechanisms of actions of cyclomodulins according to their biochemical properties, providing examples of various cyclomodulins such as cycle inhibiting factor, γ-glutamyltranspeptidase, cytolethal distending toxins, shiga toxin, subtilase toxin, anthrax toxin, cholera toxin, adenylate cyclase toxins, vacuolating cytotoxin, cytotoxic necrotizing factor, Panton-Valentine leukocidin, phenol soluble modulins, and mycolactone. Special attention is paid to the benefit provided by cyclomodulins to bacteria during colonization of the host.

  11. Pharyngeal colonization and drug resistance profiles of Morraxella catarrrhalis, Streptococcus pneumoniae, Staphylococcus aureus, and Haemophilus influenzae among HIV infected children attending ART Clinic of Felegehiwot Referral Hospital, Ethiopia.

    Directory of Open Access Journals (Sweden)

    Wondemagegn Mulu

    Full Text Available Asymptomatic pharyngeal colonization by potential bacteria is the primary reservoir for bacterial species within a population and is considered a prerequisite for development of major childhood diseases such as sinusitis, otitis media, pneumonia, bacteremia, and meningitis. However, there is dearth of data on the colonization and drug resistance pattern of the main bacterial pathogens in the pharynx of HIV infected children in Ethiopia. Therefore, this study determined the pharyngeal colonization and drug resistance profile of bacterial pathogens in HIV infected children attending ART clinic of Felegehiwot Referral Hospital (FHRH, Amhara Region, Ethiopia.A hospital based cross-sectional study was conducted from May 2016 to June 2017 at the ART clinic of FHRH. A total of 300 HIV infected children were enrolled in the study. Data on socio-demographic characteristics of the study participants were collected with face-to-face interview and patient-card review using structured questionnaire. Bacterial species were identified using standard bacteriological techniques. Drug susceptibility testing was performed using disk diffusion technique. Chi-square test was done to determine associations among variables.The median age of the participants was 11 years. Overall, 153 (51% of children were colonized by respiratory bacteria in their pharynx. Colonization rate was higher in children from mothers who had attained college and above levels of education than others (P = 0.04. It was also higher in children without the sign of malnutrition than others (P = 0.004. The colonization rate of S.aureus, M.catarrhalis, S.pneumoniae and H.influenzae were 88 (29%, 37 (12.3%, 31 (10.3% and 6 (2%, respectively. S.aureus-M.catarrhalis concurrent colonization was found in 14 (4.7% of children. Age (P = 0.03, schooling (P = 0.045 and history of running nose (P = 0.043 were significantly associated with S.aureus colonization. Living in urban setting (P = 0.042 and children

  12. Patterns of Early-Life Gut Microbial Colonization during Human Immune Development: An Ecological Perspective

    Directory of Open Access Journals (Sweden)

    Isabelle Laforest-Lapointe

    2017-07-01

    Full Text Available Alterations in gut microbial colonization during early life have been reported in infants that later developed asthma, allergies, type 1 diabetes, as well as in inflammatory bowel disease patients, previous to disease flares. Mechanistic studies in animal models have established that microbial alterations influence disease pathogenesis via changes in immune system maturation. Strong evidence points to the presence of a window of opportunity in early life, during which changes in gut microbial colonization can result in immune dysregulation that predisposes susceptible hosts to disease. Although the ecological patterns of microbial succession in the first year of life have been partly defined in specific human cohorts, the taxonomic and functional features, and diversity thresholds that characterize these microbial alterations are, for the most part, unknown. In this review, we summarize the most important links between the temporal mosaics of gut microbial colonization and the age-dependent immune functions that rely on them. We also highlight the importance of applying ecology theory to design studies that explore the interactions between this complex ecosystem and the host immune system. Focusing research efforts on understanding the importance of temporally structured patterns of diversity, keystone groups, and inter-kingdom microbial interactions for ecosystem functions has great potential to enable the development of biologically sound interventions aimed at maintaining and/or improving immune system development and preventing disease.

  13. Bacterial community affects toxin production by Gymnodinium catenatum.

    Directory of Open Access Journals (Sweden)

    Maria E Albinsson

    Full Text Available The paralytic shellfish toxin (PST-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01 and grown with: 1 complex bacterial communities derived from each of the two parent cultures; 2 simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3 a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell of clonal offspring (134-197 fmol STX cell(-1 was similar to the parent cultures (169-206 fmol STX cell(-1, however cultures grown with single bacterial types contained less toxin (134-146 fmol STX cell(-1 than offspring or parent cultures grown with more complex mixed bacterial communities (152-176 fmol STX cell(-1. Specific toxin production rate (fmol STX day(-1 was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell(-1 day(-1 did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX

  14. Bacterial community affects toxin production by Gymnodinium catenatum.

    Science.gov (United States)

    Albinsson, Maria E; Negri, Andrew P; Blackburn, Susan I; Bolch, Christopher J S

    2014-01-01

    The paralytic shellfish toxin (PST)-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01) and grown with: 1) complex bacterial communities derived from each of the two parent cultures; 2) simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3) a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell) of clonal offspring (134-197 fmol STX cell(-1)) was similar to the parent cultures (169-206 fmol STX cell(-1)), however cultures grown with single bacterial types contained less toxin (134-146 fmol STX cell(-1)) than offspring or parent cultures grown with more complex mixed bacterial communities (152-176 fmol STX cell(-1)). Specific toxin production rate (fmol STX day(-1)) was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell(-1) day(-1)) did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX

  15. In vitro continuous fermentation model (PolyFermS) of the swine proximal colon for simultaneous testing on the same gut microbiota.

    Science.gov (United States)

    Tanner, Sabine A; Zihler Berner, Annina; Rigozzi, Eugenia; Grattepanche, Franck; Chassard, Christophe; Lacroix, Christophe

    2014-01-01

    In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v) five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation.

  16. In vitro continuous fermentation model (PolyFermS of the swine proximal colon for simultaneous testing on the same gut microbiota.

    Directory of Open Access Journals (Sweden)

    Sabine A Tanner

    Full Text Available In vitro gut modeling provides a useful platform for a fast and reproducible assessment of treatment-related changes. Currently, pig intestinal fermentation models are mainly batch models with important inherent limitations. In this study we developed a novel in vitro continuous fermentation model, mimicking the porcine proximal colon, which we validated during 54 days of fermentation. This model, based on our recent PolyFermS design, allows comparing different treatment effects on the same microbiota. It is composed of a first-stage inoculum reactor seeded with immobilized fecal swine microbiota and used to constantly inoculate (10% v/v five second-stage reactors, with all reactors fed with fresh nutritive chyme medium and set to mimic the swine proximal colon. Reactor effluents were analyzed for metabolite concentrations and bacterial composition by HPLC and quantitative PCR, and microbial diversity was assessed by 454 pyrosequencing. The novel PolyFermS featured stable microbial composition, diversity and metabolite production, consistent with bacterial activity reported for swine proximal colon in vivo. The constant inoculation provided by the inoculum reactor generated reproducible microbial ecosystems in all second-stage reactors, allowing the simultaneous investigation and direct comparison of different treatments on the same porcine gut microbiota. Our data demonstrate the unique features of this novel PolyFermS design for the swine proximal colon. The model provides a tool for efficient, reproducible and cost-effective screening of environmental factors, such as dietary additives, on pig colonic fermentation.

  17. How dysregulated colonic crypt dynamics cause stem cell overpopulation and initiate colon cancer.

    Science.gov (United States)

    Boman, Bruce M; Fields, Jeremy Z; Cavanaugh, Kenneth L; Guetter, Arthur; Runquist, Olaf A

    2008-05-01

    Based on investigation of the earliest colonic tissue alteration in familial adenomatous polyposis (FAP) patients, we present the hypothesis that initiation of colorectal cancer by adenomatous polyposis coli (APC) mutation is mediated by dysregulation of two cellular mechanisms. One involves differentiation, which normally decreases the proportion (proliferative fraction) of colonic crypt cells that can proliferate; the other is a cell cycle mechanism that simultaneously increases the probability that proliferative cells are in S phase. In normal crypts, stem cells (SC) at the crypt bottom generate rapidly proliferating cells, which undergo differentiation while migrating up the crypt. Our modeling of normal crypts suggests that these transitions are mediated by mechanisms that regulate proliferative fraction and S-phase probability. In FAP crypts, the population of rapidly proliferating cells is shifted upwards, as indicated by the labeling index (LI; i.e., crypt distribution of cells in S phase). Our analysis of FAP indicates that these transitions are delayed because the proliferative fraction and S-phase probability change more slowly as a function of crypt level. This leads to expansion of the proliferative cell population, including a subpopulation that has a low frequency of S-phase cells. We previously reported that crypt SC overpopulation explains the LI shift. Here, we determine that SCs (or cells having high stemness) are proliferative cells with a low probability of being in S phase. Thus, dysregulation of mechanisms that control proliferative fraction and S-phase probability explains how APC mutations induce SC overpopulation at the crypt bottom, shift the rapidly proliferating cell population upwards, and initiate colon tumorigenesis.

  18. Bacterial microbiomes of individual ectomycorrhizal Pinus sylvestris roots are shaped by soil horizon and differentially sensitive to nitrogen addition.

    Science.gov (United States)

    Marupakula, Srisailam; Mahmood, Shahid; Jernberg, Johanna; Nallanchakravarthula, Srivathsa; Fahad, Zaenab A; Finlay, Roger D

    2017-11-01

    Plant roots select non-random communities of fungi and bacteria from the surrounding soil that have effects on their health and growth, but we know little about the factors influencing their composition. We profiled bacterial microbiomes associated with individual ectomycorrhizal Pinus sylvestris roots colonized by different fungi and analyzed differences in microbiome structure related to soils from distinct podzol horizons and effects of short-term additions of N, a growth-limiting nutrient commonly applied as a fertilizer, but known to influence patterns of carbon allocation to roots. Ectomycorrhizal roots growing in soil from different horizons harboured distinct bacterial communities. The fungi colonizing individual roots had a strong effect on the associated bacterial communities. Even closely related species within the same ectomycorrhizal genus had distinct bacterial microbiomes in unfertilized soil, but fertilization removed this specificity. Effects of N were rapid and context dependent, being influenced by both soil type and the particular ectomycorrhizal fungi involved. Fungal community composition changed in soil from all horizons, but bacteria only responded strongly to N in soil from the B horizon where community structure was different and bacterial diversity was significantly reduced, possibly reflecting changed carbon allocation patterns. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Single-bacterium nanomechanics in biomedicine: unravelling the dynamics of bacterial cells

    International Nuclear Information System (INIS)

    Aguayo, S; Bozec, L; Donos, N; Spratt, D

    2015-01-01

    The use of the atomic force microscope (AFM) in microbiology has progressed significantly throughout the years since its first application as a high-resolution imaging instrument. Modern AFM setups are capable of characterizing the nanomechanical behaviour of bacterial cells at both the cellular and molecular levels, where elastic properties and adhesion forces of single bacterium cells can be examined under different experimental conditions. Considering that bacterial and biofilm-mediated infections continue to challenge the biomedical field, it is important to understand the biophysical events leading towards bacterial adhesion and colonization on both biological and non-biological substrates. The purpose of this review is to present the latest findings concerning the field of single-bacterium nanomechanics, and discuss future trends and applications of nanoindentation and single-cell force spectroscopy techniques in biomedicine. (topical review)

  20. Novel Antimicrobial Peptides That Inhibit Gram Positive Bacterial Exotoxin Synthesis

    Science.gov (United States)

    Merriman, Joseph A.; Nemeth, Kimberly A.; Schlievert, Patrick M.

    2014-01-01

    Gram-positive bacteria, such as Staphylococcus aureus, cause serious human illnesses through combinations of surface virulence factors and secretion of exotoxins. Our prior studies using the protein synthesis inhibitor clindamycin and signal transduction inhibitors glycerol monolaurate and α-globin and β-globin chains of hemoglobin indicate that their abilities to inhibit exotoxin production by S. aureus are separable from abilities to inhibit growth of the organism. Additionally, our previous studies suggest that inhibition of exotoxin production, in absence of ability to kill S. aureus and normal flora lactobacilli, will prevent colonization by pathogenic S. aureus, while not interfering with lactobacilli colonization. These disparate activities may be important in development of novel anti-infective agents that do not alter normal flora. We initiated studies to explore the exotoxin-synthesis-inhibition activity of hemoglobin peptides further to develop potential agents to prevent S. aureus infections. We tested synthesized α-globin chain peptides, synthetic variants of α-globin chain peptides, and two human defensins for ability to inhibit exotoxin production without significantly inhibiting S. aureus growth. All of these peptides were weakly or not inhibitory to bacterial growth. However, the peptides were inhibitory to exotoxin production with increasing activity dependent on increasing numbers of positively-charged amino acids. Additionally, the peptides could be immobilized on agarose beads or have amino acid sequences scrambled and still retain exotoxin-synthesis-inhibition. The peptides are not toxic to human vaginal epithelial cells and do not inhibit growth of normal flora L. crispatus. These peptides may interfere with plasma membrane signal transduction in S. aureus due to their positive charges. PMID:24748386

  1. Detection of unsuspected colonic abnormalities using the pneumocolon technique during small bowel meal examination

    International Nuclear Information System (INIS)

    Chou, S.; Skehan, S.J.; Brown, A.L.; Rawlinson, J.; Somers, S.

    2000-01-01

    AIMS: The pneumocolon technique in small bowel meal examination is used to obtain double-contrast views of the distal ileum. The purpose of this study was to determine the proportion of cases in which an overhead pneumocolon radiograph demonstrated clinically relevant findings in the colon. METHODS: The overhead pneumocolon radiographs in 151 patients who underwent small bowel meals were evaluated retrospectively. A chart review was performed on those patients with positive colonic findings to determine if the suspected abnormalities affected patient management. RESULTS: Colonic abnormalities were identified in 34 of the 151 patients. One patient had a previously undiagnosed ascending colonic cancer; 17 had evidence of acute or chronic colitis; 13 had diverticulosis; one had a caecal polyp; one had an ileosigmoid fistula; one had a filling defect in the ascending colon. In 25 cases the colonic abnormality was visible only on the pneumocolon radiograph and not on the preceding single-contrast images. Management was altered by the colonic findings in seven cases. False-positive findings occurred in two cases. CONCLUSIONS: A routine overhead radiograph following use of the pneumocolon technique is a useful adjunct to small bowel meal examination as it can yield unsuspected and clinically significant colonic findings. Chou, S. (2000)

  2. Nano and Microscale Topographies for the Prevention of Bacterial Surface Fouling

    Directory of Open Access Journals (Sweden)

    Mary V. Graham

    2014-01-01

    Full Text Available Bacterial surface fouling is problematic for a wide range of applications and industries, including, but not limited to medical devices (implants, replacement joints, stents, pacemakers, municipal infrastructure (pipes, wastewater treatment, food production (food processing surfaces, processing equipment, and transportation (ship hulls, aircraft fuel tanks. One method to combat bacterial biofouling is to modify the topographical structure of the surface in question, thereby limiting the ability of individual cells to attach to the surface, colonize, and form biofilms. Multiple research groups have demonstrated that micro and nanoscale topographies significantly reduce bacterial biofouling, for both individual cells and bacterial biofilms. Antifouling strategies that utilize engineered topographical surface features with well-defined dimensions and shapes have demonstrated a greater degree of controllable inhibition over initial cell attachment, in comparison to undefined, texturized, or porous surfaces. This review article will explore the various approaches and techniques used by researches, including work from our own group, and the underlying physical properties of these highly structured, engineered micro/nanoscale topographies that significantly impact bacterial surface attachment.

  3. Inoculum pretreatment affects bacterial survival, activity and catabolic gene expression during phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Khan, Sumia; Afzal, Muhammad; Iqbal, Samina; Mirza, Muhammad Sajjad; Khan, Qaiser M

    2013-04-01

    Plant-bacteria partnership is a promising approach for remediating soil contaminated with organic pollutants. The colonization and metabolic activity of an inoculated microorganism depend not only on environmental conditions but also on the physiological condition of the applied microorganisms. This study assessed the influence of different inoculum pretreatments on survival, gene abundance and catabolic gene expression of an applied strain (Pantoea sp. strain BTRH79) in the rhizosphere of ryegrass vegetated in diesel contaminated soil. Maximum bacterium survival, gene abundance and expression were observed in the soil inoculated with bacterial cells that had been pregrown on complex medium, and hydrocarbon degradation and genotoxicity reduction were also high in this soil. These findings propose that use of complex media for growing plant inocula may enhance bacterial survival and colonization and subsequently the efficiency of pollutant degradation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Toll-like receptor mRNA expression is selectively increased in the colonic mucosa of two animal models relevant to irritable bowel syndrome.

    Directory of Open Access Journals (Sweden)

    Declan P McKernan

    2009-12-01

    Full Text Available Irritable bowel syndrome (IBS is largely viewed as a stress-related disorder caused by aberrant brain-gut-immune communication and altered gastrointestinal (GI homeostasis. Accumulating evidence demonstrates that stress modulates innate immune responses; however, very little is known on the immunological effects of stress on the GI tract. Toll-like receptors (TLRs are critical pattern recognition molecules of the innate immune system. Activation of TLRs by bacterial and viral molecules leads to activation of NF-kB and an increase in inflammatory cytokine expression. It was our hypothesis that innate immune receptor expression may be changed in the gastrointestinal tract of animals with stress-induced IBS-like symptoms.In this study, our objective was to evaluate the TLR expression profile in the colonic mucosa of two rat strains that display colonic visceral hypersensitivity; the stress-sensitive Wistar-Kyoto (WKY rat and the maternally separated (MS rat. Quantitative PCR of TLR2-10 mRNA in both the proximal and distal colonic mucosae was carried out in adulthood. Significant increases are seen in the mRNA levels of TLR3, 4 & 5 in both the distal and proximal colonic mucosa of MS rats compared with controls. No significant differences were noted for TLR 2, 7, 9 & 10 while TLR 6 could not be detected in any samples in both rat strains. The WKY strain have increased levels of mRNA expression of TLR3, 4, 5, 7, 8, 9 & 10 in both the distal and proximal colonic mucosa compared to the control Sprague-Dawley strain. No significant differences in expression were found for TLR2 while as before TLR6 could not be detected in all samples in both strains.These data suggest that both early life stress (MS and a genetic predisposition (WKY to stress affect the expression of key sentinels of the innate immune system which may have direct relevance for the molecular pathophysiology of IBS.

  5. Centralized Drinking Water Treatment Operations Shape Bacterial and Fungal Community Structure.

    Science.gov (United States)

    Ma, Xiao; Vikram, Amit; Casson, Leonard; Bibby, Kyle

    2017-07-05

    Drinking water microbial communities impact opportunistic pathogen colonization and corrosion of water distribution systems, and centralized drinking water treatment represents a potential control for microbial community structure in finished drinking water. In this article, we examine bacterial and fungal abundance and diversity, as well as the microbial community taxonomic structure following each unit operation in a conventional surface water treatment plant. Treatment operations drove the microbial composition more strongly than sampling time. Both bacterial and fungal abundance and diversity decreased following sedimentation and filtration; however, only bacterial abundance and diversity was significantly impacted by free chlorine disinfection. Similarly, each treatment step was found to shift bacterial and fungal community beta-diversity, with the exception of disinfection on the fungal community structure. We observed the enrichment of bacterial and fungal taxa commonly found in drinking water distribution systems through the treatment process, for example, Sphingomonas following filtration and Leptospirillium and Penicillium following disinfection. Study results suggest that centralized drinking water treatment processes shape the final drinking water microbial community via selection of community members and that the bacterial community is primarily driven by disinfection while the eukaryotic community is primarily controlled by physical treatment processes.

  6. Pathophysiology and Therapeutic Strategies for Symptomatic Uncomplicated Diverticular Disease of the Colon.

    Science.gov (United States)

    Scaioli, Eleonora; Colecchia, Antonio; Marasco, Giovanni; Schiumerini, Ramona; Festi, Davide

    2016-03-01

    Colonic diverticulosis imposes a significant burden on industrialized societies. The current accepted causes of diverticula formation include low fiber content in the western diet with decreased intestinal content and size of the lumen, leading to the transmission of muscular contraction pressure to the wall of the colon, inducing the formation of diverticula usually at the weakest point of the wall where penetration of the blood vessels occurs. Approximately 20 % of the patients with colonic diverticulosis develop abdominal symptoms (i.e., abdominal pain and discomfort, bloating, constipation, and diarrhea), a condition which is defined as symptomatic uncomplicated diverticular disease (SUDD). The pathogenesis of SUDD symptoms remains uncertain and even less is known about how to adequately manage bowel symptoms. Recently, low-grade inflammation, altered intestinal microbiota, visceral hypersensitivity, and abnormal colonic motility have been identified as factors leading to symptom development, thus changing and improving the therapeutic approach. In this review, a comprehensive search of the literature regarding on SUDD pathogenetic hypotheses and pharmacological strategies was carried out. The pathogenesis of SUDD, although not completely clarified, seems to be related to an interaction between colonic microbiota alterations, and immune, enteric nerve, and muscular system dysfunction (Cuomo et al. in United Eur Gastroenterol J 2:413-442, 2014). Greater understanding of the inflammatory pathways and gut microbiota composition in subjects affected by SUDD has increased therapeutic options, including the use of gut-directed antibiotics, mesalazine, and probiotics (Bianchi et al. in Aliment Pharmacol Ther 33:902-910, 2011; Comparato et al. in Dig Dis Sci 52:2934-2941, 2007; Tursi et al. in Aliment Pharmacol Ther 38:741-751, 2013); however, more research is necessary to validate the safety, effectiveness, and cost-effectiveness of these interventions.

  7. miR-155, identified as anti-metastatic by global miRNA profiling of a metastasis model, inhibits cancer cell extravasation and colonization in vivo and causes significant signaling alterations

    DEFF Research Database (Denmark)

    Gravgaard, Karina Hedelund; Terp, Mikkel G; Lund, Rikke R

    2015-01-01

    To gain insight into miRNA regulation in metastasis formation, we used a metastasis cell line model that allows investigation of extravasation and colonization of circulating cancer cells to lungs in mice. Using global miRNA profiling, 28 miRNAs were found to exhibit significantly altered...... proliferation or apoptosis in established lung tumors. To identify proteins regulated by miR-155 and thus delineate its function in our cell model, we compared the proteome of xenograft tumors derived from miR-155-overexpressing CL16 cells and CL16 control cells using mass spectrometry-based proteomics. >4......,000 proteins were identified, of which 92 were consistently differentially expressed. Network analysis revealed that the altered proteins were associated with cellular functions such as movement, growth and survival as well as cell-to-cell signaling and interaction. Downregulation of the three metastasis...

  8. Lake Bacterial Assemblage Composition Is Sensitive to Biological Disturbance Caused by an Invasive Filter Feeder.

    Science.gov (United States)

    Denef, Vincent J; Carrick, Hunter J; Cavaletto, Joann; Chiang, Edna; Johengen, Thomas H; Vanderploeg, Henry A

    2017-01-01

    One approach to improve forecasts of how global change will affect ecosystem processes is to better understand how anthropogenic disturbances alter bacterial assemblages that drive biogeochemical cycles. Species invasions are important contributors to global change, but their impacts on bacterial community ecology are rarely investigated. Here, we studied direct impacts of invasive dreissenid mussels (IDMs), one of many invasive filter feeders, on freshwater lake bacterioplankton. We demonstrated that direct effects of IDMs reduced bacterial abundance and altered assemblage composition by preferentially removing larger and particle-associated bacteria. While this increased the relative abundances of many free-living bacterial taxa, some were susceptible to filter feeding, in line with efficient removal of phytoplankton cells of <2 μm. This selective removal of particle-associated and larger bacteria by IDMs altered inferred bacterial functional group representation, defined by carbon and energy source utilization. Specifically, we inferred an increased relative abundance of chemoorganoheterotrophs predicted to be capable of rhodopsin-dependent energy generation. In contrast to the few previous studies that have focused on the longer-term combined direct and indirect effects of IDMs on bacterioplankton, our study showed that IDMs act directly as a biological disturbance to which freshwater bacterial assemblages are sensitive. The negative impacts on particle-associated bacteria, which have been shown to be more active than free-living bacteria, and the inferred shifts in functional group representation raise the possibility that IDMs may directly alter bacterially mediated ecosystem functions. IMPORTANCE Freshwater bacteria play fundamental roles in global elemental cycling and are an intrinsic part of local food webs. Human activities are altering freshwater environments, and much has been learned regarding the sensitivity of bacterial assemblages to a variety of

  9. Use of a colon simulation technique to assess the effect of live yeast on fermentation parameters and microbiota of the colon of pig.

    Science.gov (United States)

    Pinloche, E; Williams, M; D'Inca, R; Auclair, E; Newbold, C J

    2012-12-01

    The impact of 2 doses of a Saccharomyces cerevisiae were evaluated, 5 × 10(10) cfu/kg of feed (L1) and 5 × 10(11) cfu/kg of feed (L2) against a control (CON) with no added yeast, using an in vitro model [colon simulation technique (Cositec)] to mimic digestion in the pig colon. The L2 (but not L1) dose significantly improved DM digestibility compared to CON (61 v 58%) and increased NH(3) concentrations (+15%). Volatile fatty acid concentrations increased with L2 compared to CON--isobutyrate (+13.5%), propionate (+8.5%), isovalerate (+17.8%), and valerate (+25%)--but only valerate was increased with L1 (+14.2%). The analysis of microbiota from the liquid associated bacteria (LAB) and solid associated bacteria (SAB) revealed an interaction between the fraction and treatment (P simulation model but only at the higher dose used and this effect was associated with a shift in the bacterial population therein.

  10. Routine habitat change: a source of unrecognized transient alteration of intestinal microbiota in laboratory mice.

    Science.gov (United States)

    Ma, Betty W; Bokulich, Nicholas A; Castillo, Patricia A; Kananurak, Anchasa; Underwood, Mark A; Mills, David A; Bevins, Charles L

    2012-01-01

    The mammalian intestine harbors a vast, complex and dynamic microbial population, which has profound effects on host nutrition, intestinal function and immune response, as well as influence on physiology outside of the alimentary tract. Imbalance in the composition of the dense colonizing bacterial population can increase susceptibility to various acute and chronic diseases. Valuable insights on the association of the microbiota with disease critically depend on investigation of mouse models. Like in humans, the microbial community in the mouse intestine is relatively stable and resilient, yet can be influenced by environmental factors. An often-overlooked variable in research is basic animal husbandry, which can potentially alter mouse physiology and experimental outcomes. This study examined the effects of common husbandry practices, including food and bedding alterations, as well as facility and cage changes, on the gut microbiota over a short time course of five days using three culture-independent techniques, quantitative PCR, terminal restriction fragment length polymorphism (TRFLP) and next generation sequencing (NGS). This study detected a substantial transient alteration in microbiota after the common practice of a short cross-campus facility transfer, but found no comparable alterations in microbiota within 5 days of switches in common laboratory food or bedding, or following an isolated cage change in mice acclimated to their housing facility. Our results highlight the importance of an acclimation period following even simple transfer of mice between campus facilities, and highlights that occult changes in microbiota should be considered when imposing husbandry variables on laboratory animals.

  11. Intestinal Epithelial Cells Modulate Antigen-Presenting Cell Responses to Bacterial DNA

    Science.gov (United States)

    Campeau, J. L.; Salim, S. Y.; Albert, E. J.; Hotte, N.

    2012-01-01

    Intestinal epithelial cells and antigen-presenting cells orchestrate mucosal innate immunity. This study investigated the role of bacterial DNA in modulating epithelial and bone marrow-derived antigen-presenting cells (BM-APCs) and subsequent T-lymphocyte responses. Murine MODE-K epithelial cells and BM-APCs were treated with DNA from either Bifidobacterium breve or Salmonella enterica serovar Dublin directly and under coculture conditions with CD4+ T cells. Apical stimulation of MODE-K cells with S. Dublin DNA enhanced secretion of cytokines from underlying BM-APCs and induced interleukin-17 (IL-17) and gamma interferon (IFN-γ) secretion from CD4+ T cells. Bacterial DNA isolated from either strain induced maturation and increased cytokine secretion from BM-APCs. Conditioned medium from S. Dublin-treated MODE-K cells elicited an increase in cytokine secretion similar to that seen for S. Dublin DNA. Treatment of conditioned medium from MODE-K cells with RNase and protease prevented the S. Dublin-induced increased cytokine secretion. Oral feeding of mice with B. breve DNA resulted in enhanced levels of colonic IL-10 and transforming growth factor β (TGFβ) compared with what was seen for mice treated with S. Dublin DNA. In contrast, feeding mice with S. Dublin DNA increased levels of colonic IL-17 and IL-12p70. T cells from S. Dublin DNA-treated mice secreted high levels of IL-12 and IFN-γ compared to controls and B. breve DNA-treated mice. These results demonstrate that intestinal epithelial cells are able to modulate subsequent antigen-presenting and T-cell responses to bacterial DNA with pathogenic but not commensal bacterial DNA inducing effector CD4+ T lymphocytes. PMID:22615241

  12. Navy and black bean supplementation primes the colonic mucosal microenvironment to improve gut health.

    Science.gov (United States)

    Monk, Jennifer M; Lepp, Dion; Wu, Wenqing; Pauls, K Peter; Robinson, Lindsay E; Power, Krista A

    2017-11-01

    Common beans (Phaseolus vulgaris L.) are enriched in non-digestible fermentable carbohydrates and phenolic compounds that can modulate the colonic microenvironment (microbiota and host epithelial barrier) to improve gut health. In a comprehensive assessment of the impact of two commonly consumed bean varieties (differing in levels and types of phenolic compounds) within the colonic microenvironment, C57Bl/6 mice were fed diets supplemented with 20% cooked navy bean (NB) or black bean (BB) flours or an isocaloric basal diet control (BD) for 3 weeks. NB and BB similarly altered the fecal microbiota community structure (16S rRNA sequencing) notably by increasing the abundance of carbohydrate fermenting bacteria such as Prevotella, S24-7 and Ruminococcus flavefaciens, which coincided with enhanced short chain fatty acid (SCFA) production (microbial-derived carbohydrate fermentation products) and colonic expression of the SCFA receptors GPR-41/-43/-109a. Both NB and BB enhanced multiple aspects of mucus and epithelial barrier integrity vs. BD including: (i) goblet cell number, crypt mucus content and mucin mRNA expression, (ii) anti-microbial defenses (Reg3γ), (iii) crypt length and epithelial cell proliferation, (iv) apical junctional complex components (occludin, JAM-A, ZO-1 and E-cadherin) mRNA expression and (v) reduced serum endotoxin concentrations. Interestingly, biomarkers of colon barrier integrity (crypt height, mucus content, cell proliferation and goblet cell number) were enhanced in BB vs. NB-fed mice, suggesting added benefits attributable to unique BB components (e.g., phenolics). Overall, NB and BB improved baseline colonic microenvironment function by altering the microbial community structure and activity and promoting colon barrier integrity and function; effects which may prove beneficial in attenuating gut-associated diseases. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  13. Host Physiologic Changes Induced by Influenza A Virus Lead to Staphylococcus aureus Biofilm Dispersion and Transition from Asymptomatic Colonization to Invasive Disease

    Directory of Open Access Journals (Sweden)

    Ryan M. Reddinger

    2016-08-01

    Full Text Available Staphylococcus aureus is a ubiquitous opportunistic human pathogen and a major health concern worldwide, causing a wide variety of diseases from mild skin infections to systemic disease. S. aureus is a major source of severe secondary bacterial pneumonia after influenza A virus infection, which causes widespread morbidity and mortality. While the phenomenon of secondary bacterial pneumonia is well established, the mechanisms behind the transition from asymptomatic colonization to invasive staphylococcal disease following viral infection remains unknown. In this report, we have shown that S. aureus biofilms, grown on an upper respiratory epithelial substratum, disperse in response to host physiologic changes related to viral infection, such as febrile range temperatures, exogenous ATP, norepinephrine, and increased glucose. Mice that were colonized with S. aureus and subsequently exposed to these physiologic stimuli or influenza A virus coinfection developed pronounced pneumonia. This study provides novel insight into the transition from colonization to invasive disease, providing a better understanding of the events involved in the pathogenesis of secondary staphylococcal pneumonia.

  14. Tissue-associated bacterial alterations in rectal carcinoma patients revealed by 16S rRNA community profiling

    Directory of Open Access Journals (Sweden)

    Andrew Maltez Thomas

    2016-12-01

    Full Text Available Sporadic and inflammatory forms of colorectal cancer (CRC account for more than 80% of cases. Recent publications have shown mechanistic evidence for the involvement of gut bacteria in the development of both CRC-forms. Whereas colon and rectal cancer have been routinely studied together as CRC, increasing evidence show these to be distinct diseases. Also, the common use of fecal samples to study microbial communities may reflect disease state but possibly not the tumor microenvironment. We performed this study to evaluate differences in bacterial communities found in tissue samples of 18 rectal-cancer subjects when compared to 18 non-cancer controls. Samples were collected during exploratory colonoscopy (non-cancer group or during surgery for tumor excision (rectal-cancer group. High throughput 16S rRNA amplicon sequencing of the V4-V5 region was conducted on the Ion PGM platform, reads were filtered using Qiime and clustered using UPARSE. We observed significant increases in species richness and diversity in rectal cancer samples, evidenced by the total number of OTUs and the Shannon and Simpson indexes. Enterotyping analysis divided our cohort into two groups, with the majority of rectal cancer samples clustering into one enterotype, characterized by a greater abundance of Bacteroides and Dorea. At the phylum level, rectal-cancer samples had increased abundance of candidate phylum OD1 (also known as Parcubacteria whilst non-cancer samples had increased abundance of Planctomycetes. At the genera level, rectal-cancer samples had higher abundances of Bacteroides, Phascolarctobacterium, Parabacteroides, Desulfovibrio and Odoribacter whereas non-cancer samples had higher abundances of Pseudomonas, Escherichia, Acinetobacter, Lactobacillus and Bacillus. Two Bacteroides fragilis OTUs were more abundant among rectal-cancer patients seen through 16S rRNA amplicon sequencing, whose presence was confirmed by immunohistochemistry and enrichment verified

  15. Pentavalent single-domain antibodies reduce Campylobacter jejuni motility and colonization in chickens.

    Directory of Open Access Journals (Sweden)

    Ali Riazi

    Full Text Available Campylobacter jejuni is the leading cause of bacterial foodborne illness in the world, with symptoms ranging from acute diarrhea to severe neurological disorders. Contaminated poultry meat is a major source of C. jejuni infection, and therefore, strategies to reduce this organism in poultry, are expected to reduce the incidence of Campylobacter-associated diseases. We have investigated whether oral administration of C. jejuni-specific single-domain antibodies would reduce bacterial colonization levels in chickens. Llama single-domain antibodies specific for C. jejuni were isolated from a phage display library generated from the heavy chain IgG variable domain repertoire of a llama immunized with C. jejuni flagella. Two flagella-specific single-domain antibodies were pentamerized to yield high avidity antibodies capable of multivalent binding to the target antigen. When administered orally to C. jejuni-infected two-day old chicks, the pentabodies significantly reduced C. jejuni colonization in the ceca. In vitro, the motility of the bacteria was also reduced in the presence of the flagella-specific pentabodies, suggesting the mechanism of action is through either direct interference with flagellar motility or antibody-mediated aggregation. Fluorescent microscopy and Western blot analyses revealed specific binding of the anti-flagella pentabodies to the C. jejuni flagellin.

  16. The type VI secretion system impacts bacterial invasion and population dynamics in a model intestinal microbiota

    Science.gov (United States)

    Logan, Savannah L.; Shields, Drew S.; Hammer, Brian K.; Xavier, Joao B.; Parthasarathy, Raghuveer

    Animal gastrointestinal tracts are home to a diverse community of microbes. The mechanisms by which microbial species interact and compete in this dense, physically dynamic space are poorly understood, limiting our understanding of how natural communities are assembled and how different communities could be engineered. Here, we focus on a physical mechanism for competition: the type VI secretion system (T6SS). The T6SS is a syringe-like organelle used by certain bacteria to translocate effector proteins across the cell membranes of target bacterial cells, killing them. Here, we use T6SS+ and T6SS- strains of V. cholerae, the pathogen that causes cholera in humans, and light sheet fluorescence microscopy for in vivo imaging to show that the T6SS provides an advantage to strains colonizing the larval zebrafish gut. Furthermore, we show that T6SS+ bacteria can invade and alter an existing population of a different species in the zebrafish gut, reducing its abundance and changing the form of its population dynamics. This work both demonstrates a mechanism for altering the gut microbiota with an invasive species and explores the processes controlling the stability and dynamics of the gut ecosystem. Research Corporation, Gordon and Betty Moore Foundation, and the Simons Foundation.

  17. Air suctioning during colon biopsy forceps removal reduces bacterial air contamination in the endoscopy suite.

    Science.gov (United States)

    Vavricka, S R; Tutuian, R; Imhof, A; Wildi, S; Gubler, C; Fruehauf, H; Ruef, C; Schoepfer, A M; Fried, M

    2010-09-01

    Bacterial contamination of endoscopy suites is of concern; however studies evaluating bacterial aerosols are lacking. We aimed to determine the effectiveness of air suctioning during removal of biopsy forceps in reducing bacterial air contamination. This was a prospective single-blinded trial involving 50 patients who were undergoing elective nontherapeutic colonoscopy. During colonoscopy, endoscopists removed the biopsy forceps first without and then with suctioning following contact with the sigmoid mucosa. A total of 50 L of air was collected continuously for 30 seconds at 30-cm distance from the biopsy channel valve of the colonoscope, with time starting at forceps removal. Airborne bacteria were collected by an impactor air sampler (MAS-100). Standard Petri dishes with CNA blood agar were used to culture Gram-positive bacteria. Main outcome measure was the bacterial load in endoscopy room air. At the beginning and end of the daily colonoscopy program, the median (and interquartile [IQR] range) bioaerosol burden was 4 colony forming units (CFU)/m (3) (IQR 3 - 6) and 16 CFU/m (3) (IQR 13 - 18), respectively. Air suctioning during removal of the biopsy forceps reduced the bioaerosol burden from a median of 14 CFU/m (3) (IQR 11 - 29) to a median of 7 CFU/m (3) (IQR 4 - 16) ( P = 0.0001). Predominantly enterococci were identified on the agar plates. The bacterial aerosol burden during handling of biopsy forceps can be reduced by applying air suction while removing the forceps. This simple method may reduce transmission of infectious agents during gastrointestinal endoscopies. Copyright Georg Thieme Verlag KG Stuttgart . New York.

  18. Specific inflammatory response of Anemonia sulcata (Cnidaria) after bacterial injection causes tissue reaction and enzymatic activity alteration.

    Science.gov (United States)

    Trapani, M R; Parisi, M G; Parrinello, D; Sanfratello, M A; Benenati, G; Palla, F; Cammarata, M

    2016-03-01

    The evolution of multicellular organisms was marked by adaptations to protect against pathogens. The mechanisms for discriminating the ''self'' from ''non-self" have evolved into a long history of cellular and molecular strategies, from damage repair to the co-evolution of host-pathogen interactions. We investigated the inflammatory response in Anemonia sulcata (Cnidaria: Anthozoa) following injection of substances that varied in type and dimension, and observed clear, strong and specific reactions, especially after injection of Escherichia coli and Vibrio alginolyticus. Moreover, we analyzed enzymatic activity of protease, phosphatase and esterase, showing how the injection of different bacterial strains alters the expression of these enzymes and suggesting a correlation between the appearance of the inflammatory reaction and the modification of enzymatic activities. Our study shows for the first time, a specific reaction and enzymatic responses following injection of bacteria in a cnidarian. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Streptococcus pyogenes pharyngeal colonization resulting in recurrent, prepubertal vulvovaginitis.

    Science.gov (United States)

    Hansen, Megan T; Sanchez, Veronica T; Eyster, Kathleen; Hansen, Keith A

    2007-10-01

    Recurrent, prepubertal, vaginal infections are an uncommon, troublesome problem for the patient and her family. Failure of initial therapy to alleviate vulvovaginitis may be related to vulvar skin disease, foreign body, sexual abuse, pinworms, reactions to medications, anatomic anomalies, or allergies. This report describes a case of recurrent Streptococcus pyogenes vulvovaginitis secondary to presumed vaginal re-inoculation from pharyngeal colonization. A 4-yr-old presented with one year of culture proven, recurrent Streptococcus pyogenes vulvovaginitis. Her symptoms repeatedly resolved with penicillin therapy, but continued to recur following cessation of antibiotic therapy. Evaluation included physical examination, trans-abdominal pelvic ultrasound, and vaginoscopy which all revealed normal upper and lower genital tract anatomy. Both the patient and her mother demonstrated culture proven, Group A Streptococcus pharyngeal colonization. Because of the possibility of repeated inoculations of the vaginal area from the colonized pharynx, they were both treated for decolonization with a regimen of amoxicillin and rifampin for ten days. Following this therapy there was resolution of vaginal symptoms with no further recurrence. Follow-up pharyngeal culture done on both mother and child on their last visit were negative for Group A Streptococcus. This case demonstrated an unusual specific cause of recurrent vaginitis resulting from presumed self or maternal re-inoculation with group A beta-hemolytic streptococcus from pharyngeal colonization. Group A beta-hemolytic streptococcus are consistently sensitive to penicillin, but up to 25% of acute pharyngitis cases treated with penicillin having continued asymptomatic, bacterial carriage within the nasopharynx. Thus initial alleviation of symptoms in a patient with Group A beta-hemolytic vulvovaginitis treated with penicillin, can have continued asymptomatic pharyngeal colonization which can result in recurrence of the

  20. No difference in portal and hepatic venous bacterial DNA in patients with cirrhosis undergoing transjugular intrahepatic portosystemic shunt insertion

    DEFF Research Database (Denmark)

    Mortensen, Christian; Karlsen, Stine; Grønbaek, Henning

    2013-01-01

    Bacterial translocation (BT) with immune activation may lead to hemodynamical alterations and poor outcomes in patients with cirrhosis.......Bacterial translocation (BT) with immune activation may lead to hemodynamical alterations and poor outcomes in patients with cirrhosis....

  1. Hijacking Complement Regulatory Proteins for Bacterial Immune Evasion.

    Science.gov (United States)

    Hovingh, Elise S; van den Broek, Bryan; Jongerius, Ilse

    2016-01-01

    The human complement system plays an important role in the defense against invading pathogens, inflammation and homeostasis. Invading microbes, such as bacteria, directly activate the complement system resulting in the formation of chemoattractants and in effective labeling of the bacteria for phagocytosis. In addition, formation of the membrane attack complex is responsible for direct killing of Gram-negative bacteria. In turn, bacteria have evolved several ways to evade complement activation on their surface in order to be able to colonize and invade the human host. One important mechanism of bacterial escape is attraction of complement regulatory proteins to the microbial surface. These molecules are present in the human body for tight regulation of the complement system to prevent damage to host self-surfaces. Therefore, recruitment of complement regulatory proteins to the bacterial surface results in decreased complement activation on the microbial surface which favors bacterial survival. This review will discuss recent advances in understanding the binding of complement regulatory proteins to the bacterial surface at the molecular level. This includes, new insights that have become available concerning specific conserved motives on complement regulatory proteins that are favorable for microbial binding. Finally, complement evasion molecules are of high importance for vaccine development due to their dominant role in bacterial survival, high immunogenicity and homology as well as their presence on the bacterial surface. Here, the use of complement evasion molecules for vaccine development will be discussed.

  2. Microbiological and molecular identification of bacterial species isolated from nasal and oropharyngeal mucosa of fuel workers in Riyadh, Saudi Arabia.

    Science.gov (United States)

    AlWakeel, Suaad S

    2017-09-01

    This study aimed to determine the bacterial species colonizing the nasal and oropharyngeal mucosa of fuel workers in Central Riyadh, Saudi Arabia on a microbiological and molecular level. Throat and nasal swab samples were obtained from 29 fuel station attendants in the period of time extending from March to May 2014 in Riyadh, Saudi Arabia. Microbiological identification techniques were utilized to identify the bacterial species isolated. Antibiotic sensitivity was assessed for each of the bacterial isolates. Molecular identification techniques based on PCR analysis of specific genomic sequences was conducted and was the basis on which phylogeny representation was done for 10 randomly selected samples of the isolates. Blood was drawn and a complete blood count was conducted to note the hematological indices for each of the study participants. Nineteen bacterial species were isolated from both the nasal cavity and the oropharynx including Streptococcus thoraltensis , alpha-hemolytic streptococci, Staphylococcus hominis , coagulase-negative staphylococci, Leuconostoc mesenteroides , Erysipelothrix rhusiopathiae and several others. We found 100% sensitivity of the isolates to ciprofloxacin, cefuroxime and gentamicin. Whereas cefotaxime and azithromycin posted sensitivities of 85.7% and 91.4%, respectively. Low sensitivities (fuel products may be a contributing factor to bacterial colonization of the respiratory tract in fuel workers.

  3. Reducing Campylobacter jejuni colonization of poultry via vaccination.

    Directory of Open Access Journals (Sweden)

    Jason M Neal-McKinney

    Full Text Available Campylobacter jejuni is a leading bacterial cause of human gastrointestinal disease worldwide. While C. jejuni is a commensal organism in chickens, case-studies have demonstrated a link between infection with C. jejuni and the consumption of foods that have been cross-contaminated with raw or undercooked poultry. We hypothesized that vaccination of chickens with C. jejuni surface-exposed colonization proteins (SECPs would reduce the ability of C. jejuni to colonize chickens, thereby reducing the contamination of poultry products at the retail level and potentially providing a safer food product for consumers. To test our hypothesis, we injected chickens with recombinant C. jejuni peptides from CadF, FlaA, FlpA, CmeC, and a CadF-FlaA-FlpA fusion protein. Seven days following challenge, chickens were necropsied and cecal contents were serially diluted and plated to determine the number of C. jejuni per gram of material. The sera from the chickens were also analyzed to determine the concentration and specificity of antibodies reactive against the C. jejuni SECPs. Vaccination of chickens with the CadF, FlaA, and FlpA peptides resulted in a reduction in the number of C. jejuni in the ceca compared to the non-vaccinated C. jejuni-challenged group. The greatest reduction in C. jejuni colonization was observed in chickens injected with the FlaA, FlpA, or CadF-FlaA-FlpA fusion proteins. Vaccination of chickens with different SECPs resulted in the production of C. jejuni-specific IgY antibodies. In summary, we show that the vaccination of poultry with individual C. jejuni SECPs or a combination of SECPs provides protection of chickens from C. jejuni colonization.

  4. Taurine does not affect the composition, diversity, or metabolism of human colonic microbiota simulated in a single-batch fermentation system.

    Science.gov (United States)

    Sasaki, Kengo; Sasaki, Daisuke; Okai, Naoko; Tanaka, Kosei; Nomoto, Ryohei; Fukuda, Itsuko; Yoshida, Ken-Ichi; Kondo, Akihiko; Osawa, Ro

    2017-01-01

    Accumulating evidence suggests that dietary taurine (2-aminoethanesulfonic acid) exerts beneficial anti-inflammatory effects in the large intestine. In this study, we investigated the possible impact of taurine on human colonic microbiota using our single-batch fermentation system (Kobe University Human Intestinal Microbiota Model; KUHIMM). Fecal samples from eight humans were individually cultivated with and without taurine in the KUHIMM. The results showed that taurine remained largely undegraded after 30 h of culturing in the absence of oxygen, although some 83% of the taurine was degraded after 30 h of culturing under aerobic conditions. Diversity in bacterial species in the cultures was analyzed by 16S rRNA gene sequencing, revealing that taurine caused no significant change in the diversity of the microbiota; both operational taxonomic unit and Shannon-Wiener index of the cultures were comparable to those of the respective source fecal samples. In addition, principal coordinate analysis indicated that taurine did not alter the composition of bacterial species, since the 16S rRNA gene profile of bacterial species in the original fecal sample was maintained in each of the cultures with and without taurine. Furthermore, metabolomic analysis revealed that taurine did not affect the composition of short-chain fatty acids produced in the cultures. These results, under these controlled but artificial conditions, suggested that the beneficial anti-inflammatory effects of dietary taurine in the large intestine are independent of the intestinal microbiota. We infer that dietary taurine may act directly in the large intestine to exert anti-inflammatory effects.

  5. Low Efficacy of Antibiotics Against Staphylococcus aureus Airway Colonization in Ventilated Patients.

    Science.gov (United States)

    Stulik, Lukas; Hudcova, Jana; Craven, Donald E; Nagy, Gabor; Nagy, Eszter

    2017-04-15

    Airway-colonization by Staphylococcus aureus predisposes to the development of ventilator-associated tracheobronchitis (VAT) and ventilator-associated pneumonia (VAP). Despite extensive antibiotic treatment of intensive care unit patients, limited data are available on the efficacy of antibiotics on bacterial airway colonization and/or prevention of infections. Therefore, microbiologic responses to antibiotic treatment were evaluated in ventilated patients. Results of semiquantitative analyses of S. aureus burden in serial endotracheal-aspirate (ETA) samples and VAT/VAP diagnosis were correlated to antibiotic treatment. Minimum inhibitory concentrations of relevant antibiotics using serially collected isolates were evaluated. Forty-eight mechanically ventilated patients who were S. aureus positive by ETA samples and treated with relevant antibiotics for at least 2 consecutive days were included in the study. Vancomycin failed to reduce methicillin-resistant S. aureus (MRSA) or methicillin-susceptible S. aureus (MSSA) burden in the airways. Oxacillin was ineffective for MSSA colonization in approximately 30% of the patients, and responders were typically coadministered additional antibiotics. Despite antibiotic exposure, 15 of the 39 patients (approximately 38%) colonized only by S. aureus and treated with appropriate antibiotic for at least 2 days still progressed to VAP. Importantly, no change in antibiotic susceptibility of S. aureus isolates was observed during treatment. Staphylococcus aureus colonization levels inversely correlated with the presence of normal respiratory flora. Antibiotic treatment is ineffective in reducing S. aureus colonization in the lower airways and preventing VAT or VAP. Staphylococcus aureus is in competition for colonization with the normal respiratory flora. To improve patient outcomes, alternatives to antibiotics are urgently needed. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of

  6. Bacterial infection increases risk of carcinogenesis by targeting mitochondria

    DEFF Research Database (Denmark)

    Strickertsson, Jesper A.B.; Desler, Claus; Rasmussen, Lene Juel

    2017-01-01

    pathways, and compares the impact of the bacterial alteration of mitochondrial function to that of cancer. Bacterial virulence factors have been demonstrated to induce mutations of mitochondrial DNA (mtDNA) and to modulate DNA repair pathways of the mitochondria. Furthermore, virulence factors can induce...... or impair the intrinsic apoptotic pathway. The effect of bacterial targeting of mitochondria is analogous to behavior of mitochondria in a wide array of tumours, and this strongly suggests that mitochondrial targeting of bacteria is a risk factor for carcinogenesis....

  7. Ammonia produced by bacterial colonies promotes growth of ampicillin-sensitive Serratia sp. by means of antibiotic inactivation.

    Science.gov (United States)

    Cepl, Jaroslav; Blahůšková, Anna; Cvrčková, Fatima; Markoš, Anton

    2014-05-01

    Volatiles produced by bacterial cultures are known to induce regulatory and metabolic alterations in nearby con-specific or heterospecific bacteria, resulting in phenotypic changes including acquisition of antibiotic resistance. We observed unhindered growth of ampicillin-sensitive Serratia rubidaea and S. marcescens on ampicillin-containing media, when exposed to volatiles produced by dense bacterial growth. However, this phenomenon appeared to result from pH increase in the medium caused by bacterial volatiles rather than alterations in the properties of the bacterial cultures, as alkalization of ampicillin-containing culture media to pH 8.5 by ammonia or Tris exhibited the same effects, while pretreatment of bacterial cultures under the same conditions prior to antibiotic exposure did not increase ampicillin resistance. Ampicillin was readily inactivated at pH 8.5, suggesting that observed bacterial growth results from metabolic alteration of the medium, rather than an active change in the target bacterial population (i.e. induction of resistance or tolerance). However, even such seemingly simple mechanism may provide a biologically meaningful basis for protection against antibiotics in microbial communities growing on semi-solid media. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  8. Modeling the integration of bacterial rRNA fragments into the human cancer genome.

    Science.gov (United States)

    Sieber, Karsten B; Gajer, Pawel; Dunning Hotopp, Julie C

    2016-03-21

    Cancer is a disease driven by the accumulation of genomic alterations, including the integration of exogenous DNA into the human somatic genome. We previously identified in silico evidence of DNA fragments from a Pseudomonas-like bacteria integrating into the 5'-UTR of four proto-oncogenes in stomach cancer sequencing data. The functional and biological consequences of these bacterial DNA integrations remain unknown. Modeling of these integrations suggests that the previously identified sequences cover most of the sequence flanking the junction between the bacterial and human DNA. Further examination of these reads reveals that these integrations are rich in guanine nucleotides and the integrated bacterial DNA may have complex transcript secondary structures. The models presented here lay the foundation for future experiments to test if bacterial DNA integrations alter the transcription of the human genes.

  9. The colon revisited or the key to wellness, health and disease.

    Science.gov (United States)

    Gonzalez-Correa, C A; Mulett-Vásquez, E; Miranda, D A; Gonzalez-Correa, C H; Gómez-Buitrago, P A

    2017-10-01

    The hypothesis being advanced in this paper is that there is a new medical paradigm emerging from the biomedical research carried out in this century, mainly due to the explosion of the so called "omics" and associated techniques. The main idea is that there is a common pathway from wellbeing and health to chronic disease ("chronopathy") and even to death, which comprises following steps: 1) unhealthy diet, sedentary life style and permanent exposition to xenobiotics and all kinds of noxious stimuli;→2) intestinal dysbiosis;→3) alteration of the intestinal mucus layer (especially that of the colon);→4) disruption of the endothelial tight junctions;→5) metabolic endotoxemia+bacterial translocation;→6) inflammation;→7) exacerbation of the enteric nervous system (ENS) and consequent maladaptation and malfunctioning of the colon;→8) epigenetic manifestations;→9) "chronopathy" and premature death. Therefore, in order to maintain a good health or to improve or even reverse chronic diseases in a person, the main outcome to look for is a homeostatic balance of the intestinal microbiota (eubiosis), most of which is located in the colon. Lynn Margulis was one of the main scientists to highlight the importance of the role played by bacteria not only in the origin of all biological species now present on earth, but also on their role in global homeostasis. Bacteria do not rely on other living beings for their existence, while the latter depend completely on the former. Humans are no exemption, and new evidence emerges each day about the pivotal role of intestinal microbiota in human health, disease and, in general, in its wellbeing. The following facts about intestinal microbiota are nowadays generally accepted: there are about 10 times more bacteria in the gut than human cells in every human being; the microbioma is about 100-150 times bigger that the human genome, and there is a clear link between intestinal microbiota and many of the most common chronic

  10. Elderly patients with colon cancer have unique tumor characteristics and poor survival.

    Science.gov (United States)

    Patel, Supriya S; Nelson, Rebecca; Sanchez, Julian; Lee, Wendy; Uyeno, Lori; Garcia-Aguilar, Julio; Hurria, Arti; Kim, Joseph

    2013-02-15

    The incidence of colon cancer increases with age, and colon cancer predominantly affects individuals >65 years old. However, there are limited data regarding clinical and pathologic factors, treatment characteristics, and survival of older patients with colon cancer. The objective of this study was to determine the effects of increasing age on colon cancer. Patients diagnosed with colon cancer between 1988 and 2006 were identified through the Los Angeles County Cancer Surveillance Program, in Southern California. Patients were stratified into 4 age groups: 18-49, 50-64, 65-79, and ≥80 years. Clinical and pathologic characteristics and disease-specific and overall survival were compared between patients from different age groups. A total of 32,819 patients were assessed. Patients aged 18 to 49 and 65 to 79 years represented the smallest and largest groups, respectively. A near equal number of males and females were diagnosed with colon cancer in the 3 youngest age groups, whereas patients who were ≥80 years old were more commonly white and female. Tumor location was different between groups, and the frequency of larger tumors (>5 cm) was greatest in youngest patients (18-49 years). The oldest patients (≥80 years) were administered chemotherapy at the lowest frequency, and disease-specific and overall survival rates decreased with increasing age. This investigation demonstrates that older age is associated with alterations in clinical and pathologic characteristics and decreased survival. This suggests that the phenotype of colon cancer and the efficacy of colon cancer therapies may be dependent on the age of patients. Copyright © 2012 American Cancer Society.

  11. Secreted Human Adipose Leptin Decreases Mitochondrial Respiration in HCT116 Colon Cancer Cells

    Science.gov (United States)

    Yehuda-Shnaidman, Einav; Nimri, Lili; Tarnovscki, Tanya; Kirshtein, Boris; Rudich, Assaf; Schwartz, Betty

    2013-01-01

    Obesity is a key risk factor for the development of colon cancer; however, the endocrine/paracrine/metabolic networks mediating this connection are poorly understood. Here we hypothesize that obesity results in secreted products from adipose tissue that induce malignancy-related metabolic alterations in colon cancer cells. Human HCT116 colon cancer cells, were exposed to conditioned media from cultured human adipose tissue fragments of obese vs. non-obese subjects. Oxygen consumption rate (OCR, mostly mitochondrial respiration) and extracellular acidification rate (ECAR, mostly lactate production via glycolysis) were examined vis-à-vis cell viability and expression of related genes and proteins. Our results show that conditioned media from obese (vs. non-obese) subjects decreased basal (40%, prespiration and function in HCT116 colon cancer cells, an effect that is at least partly mediated by leptin. These results highlight a putative novel mechanism for obesity-associated risk of gastrointestinal malignancies, and suggest potential new therapeutic avenues. PMID:24073224

  12. Gemifloxacin, a Fluoroquinolone Antimicrobial Drug, Inhibits Migration and Invasion of Human Colon Cancer Cells

    Directory of Open Access Journals (Sweden)

    Jung-Yu Kan

    2013-01-01

    Full Text Available Gemifloxacin (GMF is an orally administered broad-spectrum fluoroquinolone antimicrobial agent used to treat acute bacterial exacerbation of pneumonia and bronchitis. Although fluoroquinolone antibiotics have also been found to have anti-inflammatory and anticancer effects, studies on the effect of GMF on treating colon cancer have been relatively rare. To the best of our knowledge, this is the first report to describe the antimetastasis activities of GMF in colon cancer and the possible mechanisms involved. Results have shown that GMF inhibits the migration and invasion of colon cancer SW620 and LoVo cells and causes epithelial mesenchymal transition (EMT. In addition, GMF suppresses the activation of NF-κB and cell migration and invasion induced by TNF-α and inhibits the TAK1/TAB2 interaction, resulting in decreased IκB phosphorylation and NF-κB nuclear translocation in SW620 cells. Furthermore, Snail, a critical transcriptional factor of EMT, was downregulated after GMF treatment. Overexpression of Snail by cDNA transfection significantly decreases the inhibitory effect of GMF on EMT and cell migration and invasion. In conclusion, GMF may be a novel anticancer agent for the treatment of metastasis in colon cancer.

  13. Dual RNA-seq transcriptional analysis of wheat roots colonized by Azospirillum brasilense reveals up-regulation of nutrient acquisition and cell cycle genes.

    Science.gov (United States)

    Camilios-Neto, Doumit; Bonato, Paloma; Wassem, Roseli; Tadra-Sfeir, Michelle Z; Brusamarello-Santos, Liziane C C; Valdameri, Glaucio; Donatti, Lucélia; Faoro, Helisson; Weiss, Vinicius A; Chubatsu, Leda S; Pedrosa, Fábio O; Souza, Emanuel M

    2014-05-16

    The rapid growth of the world's population demands an increase in food production that no longer can be reached by increasing amounts of nitrogenous fertilizers. Plant growth promoting bacteria (PGPB) might be an alternative to increase nitrogenous use efficiency (NUE) in important crops such wheat. Azospirillum brasilense is one of the most promising PGPB and wheat roots colonized by A. brasilense is a good model to investigate the molecular basis of plant-PGPB interaction including improvement in plant-NUE promoted by PGPB. We performed a dual RNA-Seq transcriptional profiling of wheat roots colonized by A. brasilense strain FP2. cDNA libraries from biological replicates of colonized and non-inoculated wheat roots were sequenced and mapped to wheat and A. brasilense reference sequences. The unmapped reads were assembled de novo. Overall, we identified 23,215 wheat expressed ESTs and 702 A. brasilense expressed transcripts. Bacterial colonization caused changes in the expression of 776 wheat ESTs belonging to various functional categories, ranging from transport activity to biological regulation as well as defense mechanism, production of phytohormones and phytochemicals. In addition, genes encoding proteins related to bacterial chemotaxi, biofilm formation and nitrogen fixation were highly expressed in the sub-set of A. brasilense expressed genes. PGPB colonization enhanced the expression of plant genes related to nutrient up-take, nitrogen assimilation, DNA replication and regulation of cell division, which is consistent with a higher proportion of colonized root cells in the S-phase. Our data support the use of PGPB as an alternative to improve nutrient acquisition in important crops such as wheat, enhancing plant productivity and sustainability.

  14. The mechanics of bacterial cluster formation on plant leaf surfaces as revealed by bioreporter technology

    NARCIS (Netherlands)

    Tecon, R.; Leveau, J.H.J.

    2012-01-01

    Bacteria that colonize the leaves of terrestrial plants often occur in clusters whose size varies from a few to thousands of cells. For the formation of such bacterial clusters, two non-mutually exclusive but very different mechanisms may be proposed: aggregation of multiple cells or clonal

  15. The flavonoid compound apigenin prevents colonic inflammation and motor dysfunctions associated with high fat diet-induced obesity.

    Science.gov (United States)

    Gentile, Daniela; Fornai, Matteo; Colucci, Rocchina; Pellegrini, Carolina; Tirotta, Erika; Benvenuti, Laura; Segnani, Cristina; Ippolito, Chiara; Duranti, Emiliano; Virdis, Agostino; Carpi, Sara; Nieri, Paola; Németh, Zoltán H; Pistelli, Laura; Bernardini, Nunzia; Blandizzi, Corrado; Antonioli, Luca

    2018-01-01

    Apigenin can exert beneficial actions in the prevention of obesity. However, its putative action on obesity-associated bowel motor dysfunctions is unknown. This study examined the effects of apigenin on colonic inflammatory and motor abnormalities in a mouse model of diet-induced obesity. Male C57BL/6J mice were fed with standard diet (SD) or high-fat diet (HFD). SD or HFD mice were treated with apigenin (10 mg/Kg/day). After 8 weeks, body and epididymal fat weight, as well as cholesterol, triglycerides and glucose levels were evaluated. Malondialdehyde (MDA), IL-1β and IL-6 levels, and let-7f expression were also examined. Colonic infiltration by eosinophils, as well as substance P (SP) and inducible nitric oxide synthase (iNOS) expressions were evaluated. Motor responses elicited under blockade of NOS and tachykininergic contractions were recorded in vitro from colonic longitudinal muscle preparations. When compared to SD mice, HFD animals displayed increased body weight, epididymal fat weight and metabolic indexes. HFD mice showed increments in colonic MDA, IL-1β and IL-6 levels, as well as a decrease in let-7f expression in both colonic and epididymal tissues. HFD mice displayed an increase in colonic eosinophil infiltration. Immunohistochemistry revealed an increase in SP and iNOS expression in myenteric ganglia of HFD mice. In preparations from HFD mice, electrically evoked contractions upon NOS blockade or mediated by tachykininergic stimulation were enhanced. In HFD mice, Apigenin counteracted the increase in body and epididymal fat weight, as well as the alterations of metabolic indexes. Apigenin reduced also MDA, IL-1β and IL-6 colonic levels as well as eosinophil infiltration, SP and iNOS expression, along with a normalization of electrically evoked tachykininergic and nitrergic contractions. In addition, apigenin normalized let-7f expression in epididymal fat tissues, but not in colonic specimens. Apigenin prevents systemic metabolic alterations

  16. Alteration of the digestive motility linked with radiation-induced inflammatory processes in rats; Alterations de la motricite digestive associees aux processus inflammatoires induits par les rayonnements ionisants chez le rat

    Energy Technology Data Exchange (ETDEWEB)

    Picard, C

    2000-12-01

    Exposure to ionizing radiation, whether accidental or for medical reasons, may lead to gastro-intestinal injury, characterized by nausea, vomiting, diarrhea and abdominal cramps. The aetiology of radiation-induced diarrhea remains to date unclear. In this study, we have investigated the acute effects of a 10 Gy abdominal irradiation on rat digestive functions. The objective of the first study was to evaluate the role of sensory afferent neurons, capsaicin-sensitive, on morphological changes and the inflammatory response following exposure. Three days after irradiation, we observed an inflammatory response characterized by neutrophils infiltration and mast cells de-granulation. No effect of capsaicin pre-treatment was seen on these parameters. However, neutrophils infiltration was increased as early as one day after irradiation in capsaicin-treated rats. No difference in severity of diarrhea was observed after denervation nor in morphological changes. These data demonstrate that abdominal irradiation results in diarrhea concomitant with an inflammatory response, and that sensory innervation does not play a major protective role. The objective of the rest of the work was in the first instance to characterize radiation-induced alterations of intestinal and colonic motility leading to diarrhea and secondly to evaluate the role of serotonin in such disorders. Perturbations in intestinal (MMC) and colonic (LSB) motor profiles were observed from the first day onwards. Migrating motor complexes (MMC) were completely disrupted at three days at the same time as the onset of diarrhea. In addition to inhibition of LSB, colonic fluid absorptive capacity was decreased and serotonin colonic tissue levels were increased three days after irradiation. Radiation-induced diarrhea was reduced by treatment with an antagonist of 5-HT{sub 3} receptors, granisetron, as were alterations of colonic motility and serotonin tissue levels. However, this treatment did not significantly ameliorate

  17. Host Defense and the Airway Epithelium: Frontline Responses That Protect against Bacterial Invasion and Pneumonia

    Directory of Open Access Journals (Sweden)

    Nicholas A. Eisele

    2011-01-01

    Full Text Available Airway epithelial cells are the first line of defense against invading microbes, and they protect themselves through the production of carbohydrate and protein matrices concentrated with antimicrobial products. In addition, they act as sentinels, expressing pattern recognition receptors that become activated upon sensing bacterial products and stimulate downstream recruitment and activation of immune cells which clear invading microbes. Bacterial pathogens that successfully colonize the lungs must resist these mechanisms or inhibit their production, penetrate the epithelial barrier, and be prepared to resist a barrage of inflammation. Despite the enormous task at hand, relatively few virulence factors coordinate the battle with the epithelium while simultaneously providing resistance to inflammatory cells and causing injury to the lung. Here we review mechanisms whereby airway epithelial cells recognize pathogens and activate a program of antibacterial pathways to prevent colonization of the lung, along with a few examples of how bacteria disrupt these responses to cause pneumonia.

  18. Neonatal Bacterial Colonization Predispose to Lower Respiratory Infections in Early Childhood

    DEFF Research Database (Denmark)

    Vissing, Nadja Hawwa

    2014-01-01

    , and high sensitivity to respiratory, infectious and skin related illness. In particular, sensitivity on LRI was 96%. There was no evidence of bias from concurrent asthmatic disease or socioeconomic status. In conclusion, the study confirmed that COPSAC data is a valid source for investigating childhood......Lower respiratory infections (LRI) in childhood are common and account for considerable morbidity and health care utilization. The frequency of LRI varies significantly between otherwise healthy children, but extrinsic and intrinsic triggers of such variation are poorly understood. Traditionally...... neonatal airway colonization and risk of the LRI in a validated study cohort, and whether a possible association could be reflected in the early immune response to airway pathogens. In study I we aimed to ascertain the quality of information on child’s health, including asthma, allergy, eczema, respiratory...

  19. Influence of diet or intrarectal bile acid injections on colon epithelial cell proliferation in rats previously injected with 1,2-dimethylhydrazine

    International Nuclear Information System (INIS)

    Glauert, H.P.; Bennink, M.R.

    1983-01-01

    The effects of varying colon bile acid concentrations on rat colon epithelial cell proliferation were studied. Bile acid concentrations were altered by intrarectally injecting either deoxycholic or lithocholic acid for 4 weeks or by increasing the dietary fat or fiber (wheat bran, agar, or carrageenan) intake for 4 weeks. 1,2-Dimethylhydrazine (DMH) was s.c. injected into half of the rats 1 week before treatments began. Colon epithelial cell proliferation was measured by [ 3 H]thymidine autoradiography of colon crypts. Rats injected with DMH had more DNA-synthesizing cells per crypt. Neither bile acid injection nor any of the diets altered the number of DNA-synthesizing cells per crypt. DMH injections, deoxycholic and lithocholic acid intrarectal injections, and dietary agar and wheat bran all increased the total number of cells per crypt. High fat diets and dietary carrageenan did not affect cell number. All diets containing fiber lowered total fecal bile acid concentrations, but increasing the fat content of the diet did not affect them. These results indicate that the bile acid injections and dietary agar and wheat bran induce a slight hyperplasia in the colon

  20. Manipulation of host membranes by bacterial effectors.

    Science.gov (United States)

    Ham, Hyeilin; Sreelatha, Anju; Orth, Kim

    2011-07-18

    Bacterial pathogens interact with host membranes to trigger a wide range of cellular processes during the course of infection. These processes include alterations to the dynamics between the plasma membrane and the actin cytoskeleton, and subversion of the membrane-associated pathways involved in vesicle trafficking. Such changes facilitate the entry and replication of the pathogen, and prevent its phagocytosis and degradation. In this Review, we describe the manipulation of host membranes by numerous bacterial effectors that target phosphoinositide metabolism, GTPase signalling and autophagy.

  1. Frequency of colonization and isolated bacteria from the tip of epidural catheter implanted for postoperative analgesia.

    Science.gov (United States)

    Stabille, Débora Miranda Diogo; Diogo Filho, Augusto; Mandim, Beatriz Lemos da Silva; de Araújo, Lúcio Borges; Mesquita, Priscila Miranda Diogo; Jorge, Miguel Tanús

    2015-01-01

    The increased use of epidural analgesia with catheter leads to the need to demonstrate the safety of this method and know the incidence of catheter colonization, inserted postoperatively for epidural analgesia, and the bacteria responsible for this colonization. From November 2011 to April 2012, patients electively operated and maintained under epidural catheter for postoperative analgesia were evaluated. The catheter tip was collected for semiquantitative and qualitative microbiological analysis. Of 68 cultured catheters, six tips (8.8%) had positive cultures. No patient had superficial or deep infection. The mean duration of catheter use was 43.45 h (18-118) (p=0.0894). The type of surgery (contaminated or uncontaminated), physical status of patients, and surgical time showed no relation with the colonization of catheters. Microorganisms isolated from the catheter tip were Staphylococcus aureus, Pseudomonas aeruginosa and Sphingomonas paucimobilis. Postoperative epidural catheter analgesia, under these study conditions, was found to be low risk for bacterial colonization in patients at surgical wards. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. Temporal Dynamics of Bacterial and Fungal Colonization on Plastic Debris in the North Sea.

    Science.gov (United States)

    De Tender, Caroline; Devriese, Lisa I; Haegeman, Annelies; Maes, Sara; Vangeyte, Jürgen; Cattrijsse, André; Dawyndt, Peter; Ruttink, Tom

    2017-07-05

    Despite growing evidence that biofilm formation on plastic debris in the marine environment may be essential for its biodegradation, the underlying processes have yet to be fully understood. Thus, far, bacterial biofilm formation had only been studied after short-term exposure or on floating plastic, yet a prominent share of plastic litter accumulates on the seafloor. In this study, we explored the taxonomic composition of bacterial and fungal communities on polyethylene plastic sheets and dolly ropes during long-term exposure on the seafloor, both at a harbor and an offshore location in the Belgian part of the North Sea. We reconstructed the sequence of events during biofilm formation on plastic in the harbor environment and identified a core bacteriome and subsets of bacterial indicator species for early, intermediate, and late stages of biofilm formation. Additionally, by implementing ITS2 metabarcoding on plastic debris, we identified and characterized for the first time fungal genera on plastic debris. Surprisingly, none of the plastics exposed to offshore conditions displayed the typical signature of a late stage biofilm, suggesting that biofilm formation is severely hampered in the natural environment where most plastic debris accumulates.

  3. DETECTION OF BACTERIAL CYTOTOXIC ACTIVITIES FROM WATER-DAMAGED CEILING TILE MATERIAL FOLLOWING INCUBATION ON BLOOD AGAR

    Science.gov (United States)

    Samples of ceiling tiles with high levels of bacteria exhibited cytotoxic activities on a HEP-2 tissue culture assay. Ceiling tiles containing low levels of bacterial colonization did not show cytotoxic activities on the HEP-2 tissue culture assay. Using a spread plate procedure ...

  4. Alteration of the digestive motility linked with radiation-induced inflammatory processes in rats

    International Nuclear Information System (INIS)

    Picard, C.

    2000-12-01

    Exposure to ionizing radiation, whether accidental or for medical reasons, may lead to gastro-intestinal injury, characterized by nausea, vomiting, diarrhea and abdominal cramps. The aetiology of radiation-induced diarrhea remains to date unclear. In this study, we have investigated the acute effects of a 10 Gy abdominal irradiation on rat digestive functions. The objective of the first study was to evaluate the role of sensory afferent neurons, capsaicin-sensitive, on morphological changes and the inflammatory response following exposure. Three days after irradiation, we observed an inflammatory response characterized by neutrophils infiltration and mast cells de-granulation. No effect of capsaicin pre-treatment was seen on these parameters. However, neutrophils infiltration was increased as early as one day after irradiation in capsaicin-treated rats. No difference in severity of diarrhea was observed after denervation nor in morphological changes. These data demonstrate that abdominal irradiation results in diarrhea concomitant with an inflammatory response, and that sensory innervation does not play a major protective role. The objective of the rest of the work was in the first instance to characterize radiation-induced alterations of intestinal and colonic motility leading to diarrhea and secondly to evaluate the role of serotonin in such disorders. Perturbations in intestinal (MMC) and colonic (LSB) motor profiles were observed from the first day onwards. Migrating motor complexes (MMC) were completely disrupted at three days at the same time as the onset of diarrhea. In addition to inhibition of LSB, colonic fluid absorptive capacity was decreased and serotonin colonic tissue levels were increased three days after irradiation. Radiation-induced diarrhea was reduced by treatment with an antagonist of 5-HT 3 receptors, granisetron, as were alterations of colonic motility and serotonin tissue levels. However, this treatment did not significantly ameliorate

  5. Calreticulin is a fine tuning molecule in epibrassinolide-induced apoptosis through activating endoplasmic reticulum stress in colon cancer cells.

    Science.gov (United States)

    Obakan-Yerlikaya, Pinar; Arisan, Elif Damla; Coker-Gurkan, Ajda; Adacan, Kaan; Ozbey, Utku; Somuncu, Berna; Baran, Didem; Palavan-Unsal, Narcin

    2017-06-01

    Epibrassinolide (EBR), a member of brassinostreoids plant hormones with cell proliferation promoting role in plants, is a natural polyhydroxysteroid with structural similarity to steroid hormones of vertebrates. EBR has antiproliferative and apoptosis-inducing effect in various cancer cells. Although EBR has been shown to affect survival and mitochondria-mediated apoptosis pathways in a p53-independent manner, the exact molecular targets of EBR are still under investigation. Our recent SILAC (Stable Isotope Labeling by Amino Acids in Cell Culture) data showed that the most significantly altered protein after EBR treatment was calreticulin (CALR). CALR, a chaperone localized in endoplasmic reticulum (ER) lumen, plays role in protein folding and buffering Ca 2+ ions. The alteration of CALR may cause ER stress and unfolded protein response correspondingly the induction of apoptosis. Unfolded proteins are conducted to 26S proteasomal degradation following ubiquitination. Our study revealed that EBR treatment caused ER stress and UPR by altering CALR expression causing caspase-dependent apoptosis in HCT 116, HT29, DLD-1, and SW480 colon cancer cells. Furthermore, 48 h EBR treatment did not caused UPR in Fetal Human Colon cells (FHC) and Mouse Embryonic Fibroblast cells (MEF). In addition our findings showed that HCT 116 colon cancer cells lacking Bax and Puma expression still undergo UPR and related apoptosis. CALR silencing and rapamycin co-treatment prevented EBR-induced UPR and apoptosis, whereas 26S proteasome inhibition further increased the effect of EBR in colon cancer cells. All these findings showed that EBR is an ER stress and apoptotic inducer in colon cancer cells without affecting non-malignant cells. © 2017 Wiley Periodicals, Inc.

  6. Vulvovaginal Candidiasis in Pregnant Women and its Importance for Candida Colonization of Newborns.

    Science.gov (United States)

    Zisova, Liliya G; Chokoeva, Anastasia A; Amaliev, Georgi I; Petleshkova, Penka V; Miteva-Katrandzhieva, Tsonka М; Krasteva, Maya B; Uchikova, Ekaterina H; Kouzmanov, Andrei H; Ivanova, Zoya V

    2016-01-01

    Vulvovaginal candidiasis is the second most common cause of vaginitis worldwide (after bacterial candidiasis). Maternal vulvovaginal candidiasis is a major risk factor for Candida colonization and infection of the infant where prognosis depends on different predisposing factors. The aim of this study was to determine the incidence and the etiological structure of vulvovaginal candidiasis in pregnant women and its impact on Candida colonization of newborns. Samples of vaginal secretions from 80 healthy pregnant women who were clinically suspicious for Candida vaginitis were collected within 48 hours before delivery. Samples for probable Candida colonization from the oral mucosa and feces were collected from their newborns within 47-72 hours after birth. Samples were plated on Sabouraud agar, followed by species identification by API Candida yeast assay. Twenty-three (28.75 ± 5.06%) of the evaluated pregnant women were positive for Candida spp. Positive samples for Candida colonization were found in 18 (22.22 ± 4.62%) of the examined 81 newborns (one pair of twins) from mothers who were clinically suspicious for vaginal candidiasis. Isolates of the newborns were 100% identical to those of the mothers' vaginal secretion. Candida albicans was the predominant species identified in the pregnant women (91.67 ± 0.06%) and in the neonates (83.33±8.78%).

  7. The Arbuscular Mycorrhizal Fungus Funneliformis mosseae Alters Bacterial Communities in Subtropical Forest Soils during Litter Decomposition

    Directory of Open Access Journals (Sweden)

    Heng Gui

    2017-06-01

    Full Text Available Bacterial communities and arbuscular mycorrhizal fungi (AMF co-occur in the soil, however, the interaction between these two groups during litter decomposition remains largely unexplored. In order to investigate the effect of AMF on soil bacterial communities, we designed dual compartment microcosms, where AMF (Funneliformis mosseae was allowed access (AM to, or excluded (NM from, a compartment containing forest soil and litterbags. Soil samples from this compartment were analyzed at 0, 90, 120, 150, and 180 days. For each sample, Illumina sequencing was used to assess any changes in the soil bacterial communities. We found that most of the obtained operational taxonomic units (OTUs from both treatments belonged to the phylum of Proteobacteria, Acidobacteria, and Actinobacteria. The community composition of bacteria at phylum and class levels was slightly influenced by both time and AMF. In addition, time and AMF significantly affected bacterial genera (e.g., Candidatus Solibacter, Dyella, Phenylobacterium involved in litter decomposition. Opposite to the bacterial community composition, we found that overall soil bacterial OTU richness and diversity are relatively stable and were not significantly influenced by either time or AMF inoculation. OTU richness at phylum and class levels also showed consistent results with overall bacterial OTU richness. Our study provides new insight into the influence of AMF on soil bacterial communities at the genus level.

  8. A computer investigation of chemically mediated detachment in bacterial biofilms.

    Science.gov (United States)

    Hunt, Stephen M; Hamilton, Martin A; Sears, John T; Harkin, Gary; Reno, Jason

    2003-05-01

    A three-dimensional computer model was used to evaluate the effect of chemically mediated detachment on biofilm development in a negligible-shear environment. The model, BacLAB, combines conventional diffusion-reaction equations for chemicals with a cellular automata algorithm to simulate bacterial growth, movement and detachment. BacLAB simulates the life cycle of a bacterial biofilm from its initial colonization of a surface to the development of a mature biofilm with cell areal densities comparable to those in the laboratory. A base model founded on well established transport equations that are easily adaptable to investigate conjectures at the biological level has been created. In this study, the conjecture of a detachment mechanism involving a bacterially produced chemical detachment factor in which high local concentrations of this detachment factor cause the bacteria to detach from the biofilm was examined. The results show that the often observed 'mushroom'-shaped structure can occur if detachment events create voids so that the remaining attached cells look like mushrooms.

  9. Nest Material Shapes Eggs Bacterial Environment.

    Directory of Open Access Journals (Sweden)

    Cristina Ruiz-Castellano

    Full Text Available Selective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature. During two consecutive years, we explored experimentally the effects of these nest materials on loads of different groups of bacteria (mesophilic bacteria, Enterobacteriaceae, Staphylococcus and Enterococcus of eggshells in nests of spotless starlings (Sturnus unicolor at the beginning and at the end of the incubation period. This was also explored in artificial nests without incubation activity. We also experimentally increased bacterial density of eggs in natural and artificial nests and explored the effects of nest lining treatments on eggshell bacterial load. Support for the hypothetical antimicrobial function of nest materials was mainly detected for the year and location with larger average values of eggshell bacterial density. The beneficial effects of feathers and plants were more easily detected in artificial nests with no incubation activity, suggesting an active role of incubation against bacterial colonization of eggshells. Pigmented and unpigmented feathers reduced eggshell bacterial load in starling nests and artificial nest boxes. Results from artificial nests allowed us to discuss and discard alternative scenarios explaining the detected association, particularly those related to the possible sexual role of feathers and aromatic plants in starling nests. All these results considered together confirm the antimicrobial functionality mainly of feathers but also of plants used as nest materials, and highlight the importance of temporally and

  10. Nest Material Shapes Eggs Bacterial Environment.

    Science.gov (United States)

    Ruiz-Castellano, Cristina; Tomás, Gustavo; Ruiz-Rodríguez, Magdalena; Martín-Gálvez, David; Soler, Juan José

    2016-01-01

    Selective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature. During two consecutive years, we explored experimentally the effects of these nest materials on loads of different groups of bacteria (mesophilic bacteria, Enterobacteriaceae, Staphylococcus and Enterococcus) of eggshells in nests of spotless starlings (Sturnus unicolor) at the beginning and at the end of the incubation period. This was also explored in artificial nests without incubation activity. We also experimentally increased bacterial density of eggs in natural and artificial nests and explored the effects of nest lining treatments on eggshell bacterial load. Support for the hypothetical antimicrobial function of nest materials was mainly detected for the year and location with larger average values of eggshell bacterial density. The beneficial effects of feathers and plants were more easily detected in artificial nests with no incubation activity, suggesting an active role of incubation against bacterial colonization of eggshells. Pigmented and unpigmented feathers reduced eggshell bacterial load in starling nests and artificial nest boxes. Results from artificial nests allowed us to discuss and discard alternative scenarios explaining the detected association, particularly those related to the possible sexual role of feathers and aromatic plants in starling nests. All these results considered together confirm the antimicrobial functionality mainly of feathers but also of plants used as nest materials, and highlight the importance of temporally and geographically

  11. Epithelial response to a high-protein diet in rat colon.

    Science.gov (United States)

    Beaumont, Martin; Andriamihaja, Mireille; Armand, Lucie; Grauso, Marta; Jaffrézic, Florence; Laloë, Denis; Moroldo, Marco; Davila, Anne-Marie; Tomé, Daniel; Blachier, François; Lan, Annaïg

    2017-01-31

    High-protein diets (HPD) alter the large intestine microbiota composition in association with a metabolic shift towards protein degradation. Some amino acid-derived metabolites produced by the colon bacteria are beneficial for the mucosa while others are deleterious at high concentrations. The aim of the present work was to define the colonic epithelial response to an HPD. Transcriptome profiling was performed on colonocytes of rats fed an HPD or an isocaloric normal-protein diet (NPD) for 2 weeks. The HPD downregulated the expression of genes notably implicated in pathways related to cellular metabolism, NF-κB signaling, DNA repair, glutathione metabolism and cellular adhesion in colonocytes. In contrast, the HPD upregulated the expression of genes related to cell proliferation and chemical barrier function. These changes at the mRNA level in colonocytes were not associated with detrimental effects of the HPD on DNA integrity (comet assay), epithelium renewal (quantification of proliferation and apoptosis markers by immunohistochemistry and western blot) and colonic barrier integrity (Ussing chamber experiments). The modifications of the luminal environment after an HPD were associated with maintenance of the colonic homeostasis that might be the result of adaptive processes in the epithelium related to the observed transcriptional regulations.

  12. Identifying molecular targets of lifestyle modifications in colon cancer prevention

    Directory of Open Access Journals (Sweden)

    Molly Marie Derry

    2013-05-01

    Full Text Available One in four deaths in the United States is cancer-related, and colorectal cancer (CRC is the second leading cause of cancer-associated deaths. Screening strategies are utilized but have not reduced disease incidence or mortality. In this regard, there is an interest in cancer preventive strategies focusing on lifestyle intervention, where specific etiologic factors involved in cancer initiation, promotion, and progression could be targeted. For example, exposure to dietary carcinogens, such as nitrosamines and polycyclic aromatic hydrocarbons influences colon carcinogenesis. Furthermore, dietary deficiencies could alter sensitivity to genetic damage and influence carcinogen metabolism contributing to CRC. High alcohol consumption increases the risk of mutations including the fact that acetaldehyde, an ethanol metabolite, is classified as a group 1 carcinogen. Tobacco smoke exposure is also a risk factor for cancer development; ~20% of CRCs are associated with smoking. Additionally, obese patients have a higher risk of cancer development, which is further supported by the fact that physical activity decreases CRC risk by 55%. Similarly, chronic inflammatory conditions also increase the risk of CRC development. Moreover, the circadian clock alters digestion and regulates other biochemical, physiological and behavioral processes that could positively influence CRC. Taken together, colon carcinogenesis involves a number of etiological factors, and therefore, to create effective preventive strategies, molecular targets need to be identified and beleaguered prior to disease progression. With this in mind, the following is a comprehensive review identifying downstream target proteins of the above lifestyle risk factors, which are modulated during colon carcinogenesis and could be targeted for CRC prevention by novel agents including phytochemicals.

  13. Charles River altered Schaedler flora (CRASF) remained stable for four years in a mouse colony housed in individually ventilated cages.

    Science.gov (United States)

    Stehr, Matthias; Greweling, Marina C; Tischer, Sabine; Singh, Mahavir; Blöcker, Helmut; Monner, David A; Müller, Werner

    2009-10-01

    As recommendations for specific pathogen-free housing change, mouse facilities need to re-derive their colonies repeatedly in order to eliminate specified bacteria or viruses. This paper describes the establishment of a new mouse facility using as starting point a small colony of CD-1 mice colonized with the Charles River altered Schaedler flora (CRASF) housed in individually ventilated cages (IVCs). The import of new strains was performed exclusively via embryo transfer using CD-1 mice as recipients. The integrity of the CRASF in caecum samples of the original CD-1 colony and of three inbred mouse lines imported into the colony was proven by a quantitative realtime polymerase chain reaction approach. Furthermore, we searched for bacterial contaminants in the gut flora using non-specific 16S rRNA primers. The bacterial sequences found were closely related to but not exclusively sequences of altered Schaedler flora (ASF) members, suggesting that the ASF is heterogeneous rather than restricted to the eight defined bacteria. Moreover, no pathogens were found, neither using the non-specific 16S rRNA primers nor in routine quarterly health monitoring. As one effect of this defined gut flora, interleukin-10 knockout mice are devoid of colitis in our facility. In conclusion, our approach building up a mouse facility using foster mothers and embryo transfer as well as a strict barrier system and IVCs is suitable to maintain a colony free from contaminating bacteria over the long term. CRASF remained stable for seven mouse generations and was efficiently transferred to the imported mouse strains.

  14. POLYSACCHARIDES AND eDNA AID BACTERIAL ATTACHMENT TO POLYMER BRUSH COATINGS (PLL-g-PEG)

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.

    measured the adsorption of peptides, polysaccharides and DNA to these coatings, as they represent bacterial adhesins with very different properties. While protein adsorption was minimized, we found considerable adsorption of polysaccharides, and exposure to DNA resulted in complete desorption...... of the conventional coating. These results explain why S. epidermidis, which produces polysaccharides and extracellular DNA, could successfully colonize the conventional PLL-g-PEG coatings. The ability of high-density PLL-g-PEG to resist polysaccharides, DNA, and bacterial adhesion of all strains is thus highly......Polymer brush coatings of poly(ethylene glycol) are considered the gold standard for nonfouling surfaces, but nevertheless, a few bacteria manage to attach and initiate biofilm formation on these coatings. To achieve robust resistance against bacterial adhesion and biofilm formation, grafting...

  15. Outcomes of colon resection in patients with metastatic colon cancer.

    Science.gov (United States)

    Moghadamyeghaneh, Zhobin; Hanna, Mark H; Hwang, Grace; Mills, Steven; Pigazzi, Alessio; Stamos, Michael J; Carmichael, Joseph C

    2016-08-01

    Patients with advanced colorectal cancer have a high incidence of postoperative complications. We sought to identify outcomes of patients who underwent resection for colon cancer by cancer stage. The National Surgical Quality Improvement Program database was used to evaluate all patients who underwent colon resection with a diagnosis of colon cancer from 2012 to 2014. Multivariate logistic regression analysis was performed to investigate patient outcomes by cancer stage. A total of 7,786 colon cancer patients who underwent colon resection were identified. Of these, 10.8% had metastasis at the time of operation. Patients with metastatic disease had significantly increased risks of perioperative morbidity (adjusted odds ratio [AOR]: 1.44, P = .01) and mortality (AOR: 3.72, P = .01). Patients with metastatic disease were significantly younger (AOR: .99, P colon cancer have metastatic disease. Postoperative morbidity and mortality are significantly higher than in patients with localized disease. Published by Elsevier Inc.

  16. Deletion of P2X2 and P2X3 receptor subunits does not alter motility of the mouse colon

    Directory of Open Access Journals (Sweden)

    Matthew DeVries

    2010-03-01

    Full Text Available Purinergic P2X receptors contribute to neurotransmission in the gut. P2X receptors are ligand-gated cation channels that mediate synaptic excitation in subsets of enteric neurons. The present study evaluated colonic motility in vitro and in vivo in wild type (WT and P2X2 and P2X3 subunit knockout (KO mice. The muscarinic receptor agonist, bethanechol (0.3-3 micromolar, caused similar contractions of the longitudinal muscle in colon segments from WT, P2X2 and P2X3 subunit KO mice. Nicotine (1-300 micromolar, acting at neuronal nicotinic receptors, caused similar longitudinal muscle relaxations in colonic segments from WT and P2X2 and P2X3 subunit KO mice. Nicotine-induced relaxations were inhibited by nitro-L-arginine (NLA, 100 micromolar and apamin (0.1 micromolar which block inhibitory neuromuscular transmission. ATP (1-1000 micromolar caused contractions only in the presence of NLA and apamin. ATP-induced contractions were similar in colon segments from WT, P2X2 and P2X3 KO mice. The mouse colon generates spontaneous migrating motor complexes (MMCs in vitro. The MMC frequency was higher in P2X2 KO compared to WT tissues; other parameters of the MMC were similar in colon segments from WT, P2X2 and P2X3 KO mice. 5-Hydroxytryptophan-induced fecal output was similar in WT, P2X2 and P2X3 KO mice. These data indicate that nicotinic receptors are located predominately on inhibitory motor neurons supplying the longitudinal muscle in the mouse colon. P2X2 or P2X3 subunit containing receptors are not localized to motorneurons supplying the longitudinal muscle. Synaptic transmission mediated by P2X2 or P2X3 subunit containing receptors is not required for propulsive motility in the mouse colon.

  17. Antegrade Colonic Lavage in Acute Colonic Obstruction

    OpenAIRE

    Foster, Michael E.; Johnson, Colin D.

    1986-01-01

    Conventional management of acute left sided colonic obstruction employs some form of proximal colostomy. Intraoperative antegrade colonic irrigation relieves proximal faecal loading and may permit safer primary resection and anastomosis. The results of a pilot study are presented, and are shown to be favourable.

  18. Colonization of overlaying water by bacteria from dry river sediments.

    Science.gov (United States)

    Fazi, Stefano; Amalfitano, Stefano; Piccini, Claudia; Zoppini, Annamaria; Puddu, Alberto; Pernthaler, Jakob

    2008-10-01

    We studied the diversity, community composition and activity of the primary microbial colonizers of the water above freshly re-wetted sediments from a temporary river. Dried sediments, collected from Mulargia River (Sardinia, Italy), were covered with sterile freshwater in triplicate microcosms, and changes of the planktonic microbial assemblage were monitored over a 48 h period. During the first 9 h bacterial abundance was low (1.5 x 10(4) cells ml(-1)); it increased to 3.4 x 10(6) cells ml(-1) after 28 h and did not change thereafter. Approximately 20% of bacteria exhibited DNA de novo synthesis already after 9 h of incubation. Changes of the ratios of (3)H-leucine to (3)H-thymidine incorporation rates indicated a shift of growth patterns during the experiment. Extracellular enzyme activity showed a maximum at 48 h with aminopeptidase activity (430.8 +/- 22.6 nmol MCA l(-1) h(-1)) significantly higher than alkaline phosphatase (98.6 +/- 4.3 nmol MUF l(-1) h(-1)). The primary microbial colonizers of the overlaying water - as determined by 16S rRNA gene sequence analysis - were related to at least six different phylogenetic lineages of Bacilli and to Alphaproteobacteria (Brevundimonas spp. and Caulobacter spp.). Large bacterial cells affiliated to one clade of Bacillus sp. were rare in the dried sediments, but constituted the majority of the planktonic microbial assemblage and of cells with detectable DNA-synthesis until 28 h after re-wetting. Their community contribution decreased in parallel with a rise of flagellated and ciliated protists. Estimates based on cell production rates suggested that the rapidly enriched Bacillus sp. suffered disproportionally high loss rates from selective predation, thus favouring the establishment of a more heterogenic assemblage of microbes (consisting of Proteobacteria, Actinobacteria and Cytophaga-Flavobacteria). Our results suggest that the primary microbial colonizers of the water above dried sediments are passively released

  19. Traditional Chinese Medicine Curcumin Sensitizes Human Colon Cancer to Radiation by Altering the Expression of DNA Repair-related Genes.

    Science.gov (United States)

    Yang, Guangen; Qiu, Jianming; Wang, Dong; Tao, Yong; Song, Yihuan; Wang, Hongtao; Tang, Juping; Wang, Xing; Sun, Y U; Yang, Zhijian; Hoffman, Robert M

    2018-01-01

    The aim of the present study was to investigate the radio-sensitizing efficacy of curcumin, a traditional Chinese medicine (TCM) on colon cancer cells in vitro and in vivo. Human colon cancer HT-29 cells were treated with curcumin (2.5 μM), irradiation (10 Gy) and the combination of irradiation and curcumin. Cell proliferation was assessed using the MTT assay. Apoptotic cells were detected by Annexin V-PE/7-AAD analysis. PCR was performed to determine differential-expression profiling of 95 DNA-repair genes in irradiated cells and cells treated with both irradiation and curcumin. Differentially-expressed genes were confirmed by Western blotting. In vivo radio-sensitizing efficacy of curcumin was assessed in a xenograft mouse model of HT-29 colon cancer. Curcumin was administrated daily by intraperitoneal injection at 20 mg/kg/dose. Mice received irradiation (10 Gy) twice weekly. Apoptosis of the cancer cells following treatment was determined by TUNEL staining. Irradiation induced proliferation inhibition and apoptosis of HT-29 cells in vitro. Concurrent curcumin treatment sensitized the HT-29 tumor to irradiation (pcurcumin and irradiation compared with irradiation alone (pcurcumin and irradiation resulted in a significantly greater tumor-growth inhibition and apoptosis compared to irradiation treatment alone (pCurcumin sensitizes human colon cancer in vitro and in vivo to radiation. Downregulation of LIG4 and PNKP and upregulation of XRCC5 and CCNH DNA-repair-related genes were involved in the radio-sensitizing efficacy of curcumin in colon cancer. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  20. Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents.

    Science.gov (United States)

    Ochoa-Hueso, Raúl; Collins, Scott L; Delgado-Baquerizo, Manuel; Hamonts, Kelly; Pockman, William T; Sinsabaugh, Robert L; Smith, Melinda D; Knapp, Alan K; Power, Sally A

    2018-03-05

    The effects of short-term drought on soil microbial communities remain largely unexplored, particularly at large scales and under field conditions. We used seven experimental sites from two continents (North America and Australia) to evaluate the impacts of imposed extreme drought on the abundance, community composition, richness, and function of soil bacterial and fungal communities. The sites encompassed different grassland ecosystems spanning a wide range of climatic and soil properties. Drought significantly altered the community composition of soil bacteria and, to a lesser extent, fungi in grasslands from two continents. The magnitude of the fungal community change was directly proportional to the precipitation gradient. This greater fungal sensitivity to drought at more mesic sites contrasts with the generally observed pattern of greater drought sensitivity of plant communities in more arid grasslands, suggesting that plant and microbial communities may respond differently along precipitation gradients. Actinobateria, and Chloroflexi, bacterial phyla typically dominant in dry environments, increased their relative abundance in response to drought, whereas Glomeromycetes, a fungal class regarded as widely symbiotic, decreased in relative abundance. The response of Chlamydiae and Tenericutes, two phyla of mostly pathogenic species, decreased and increased along the precipitation gradient, respectively. Soil enzyme activity consistently increased under drought, a response that was attributed to drought-induced changes in microbial community structure rather than to changes in abundance and diversity. Our results provide evidence that drought has a widespread effect on the assembly of microbial communities, one of the major drivers of soil function in terrestrial ecosystems. Such responses may have important implications for the provision of key ecosystem services, including nutrient cycling, and may result in the weakening of plant-microbial interactions and a

  1. Deleted in Malignant Brain Tumors 1 is up-regulated in bacterial endocarditis and binds to components of vegetations

    DEFF Research Database (Denmark)

    Müller, Hanna; Renner, Marcus; Helmke, Burkhard M

    2009-01-01

    OBJECTIVE: Bacterial endocarditis is a frequent infectious cardiac disease, especially in patients with congenital or acquired heart defects. It is characterized by bacterial colonization of the heart valves and the appearance of vegetations consisting of fibrin, blood cells, and bacteria....... The glycoprotein Deleted in Malignant Brain Tumors 1 is a scavenger receptor cysteine-rich protein with functions in innate immunity and epithelial differentiation. Because of the aggregating capacity of Deleted in Malignant Brain Tumors 1, we hypothesized that an up-regulation in bacterial endocarditis may...... be linked to the development of vegetations. METHODS: Heart tissue of 19 patients with bacterial endocarditis and 10 controls without bacterial endocarditis was analyzed by immunohistochemistry. The effect of human recombinant Deleted in Malignant Brain Tumors 1 on erythrocyte aggregation was measured using...

  2. Role of Gamma Radiation and Some Natural Products in Alteration of Bacterial Outer Membrane Porins Permeability for Uptake of Certain Antibiotics

    International Nuclear Information System (INIS)

    El-Bastawisy, H.S.

    2015-01-01

    Membrane permeability is the first step involved in resistance of bacteria to an antibiotic. The bacterial outer membrane proteins (OMPs) that constitute porins play role in the definition of intrinsic resistance in Gram negative bacilli that is altered under antibiotic pressure. It has been noted that the response to prolonged exposure to increasing levels of antibiotic cause major changes in the permeability of the bacterium due to down regulation of porins and over expression of efflux pumps. In this study a total of 92 bacterial isolates of different species were isolated from different sites of cancer and non cancer patients; the microorganisms were identified using API system. The susceptibility test was carried out for all the isolates to detect the multidrug resistant isolates; from this test eleven strains were selected for further studies. Antimicrobial susceptibility of the eleven strains against some selected antibiotics acting on the inhibition of cell wall synthesis before and after in vitro gamma irradiation was carried out. The obtained results showed a clear increase in the number of resistant isolates after irradiation as compared to those before irradiation. The efficacy of the citrus fruits (Citrus limon, Citrus paradise, Citrus reticulate and Citrus sinensis) was tested to improve the performance of the tested antibiotics by increasing its permeability through the porin channels. The dried crushed citrus fruits peels were decontaminated by gamma irradiation at 700 Gray; then the aqueous extract of the citrus fruits were prepared to test its antimicrobial activity against the selected bacterial strains. The obtained results revealed that the aqueous extracts of different citrus fruits peels did not show any antibacterial activities against six bacterial isolates (Acinetobacter calcoaceticus 44, Enterbacter cloacae 51, Escherichia coli 52, Pseudomonas fluorescens 64, Klebsiella pneumoniae 78 and Pseudomonas aeruginosa 90). Therefore, these six

  3. Antepartum Antibiotic Treatment Increases Offspring Susceptibility to Experimental Colitis: A Role of the Gut Microbiota.

    Directory of Open Access Journals (Sweden)

    Peris Mumbi Munyaka

    Full Text Available Postnatal maturation of the immune system is largely driven by exposure to microbes, and thus the nature of intestinal colonization may be associated with development of childhood diseases that may persist into adulthood. We investigated whether antepartum antibiotic (ATB therapy can increase offspring susceptibility to experimental colitis through alteration of the gut microbiota.Pregnant C57Bl/6 mice were treated with cefazolin at 160 mg/kg body weight or with saline starting six days before due date. At 7 weeks, fecal samples were collected from male offspring after which they received 4% dextran sulfate sodium (DSS in drinking water for 5 days. Disease activity index, histology, colonic IL-6, IL-1β and serum C-reactive protein (CRP were determined. The V3-V4 region of colonic and fecal bacterial 16S rRNA was sequenced. Alpha-, beta-diversity and differences at the phylum and genus levels were determined, while functional pathways of classified bacteria were predicted.ATB influenced fecal bacterial composition and hence bacterial functional pathways before induction of colitis. After induction of colitis, ATB increased onset of clinical disease, histologic score, and colonic IL-6. In addition, ATB decreased fecal microbial richness, changed fecal and colon microbial composition, which was accompanied by a modification of microbial functional pathways. Also, several taxa were associated with ATB at lower taxonomical levels.The results support the hypothesis that antepartum antibiotics modulate offspring intestinal bacterial colonization and increase susceptibility to develop colonic inflammation in a murine model of colitis, and may guide future interventions to restore physiologic intestinal colonization in offspring born by antibiotic-exposed mothers.

  4. Antepartum Antibiotic Treatment Increases Offspring Susceptibility to Experimental Colitis: A Role of the Gut Microbiota.

    Science.gov (United States)

    Munyaka, Peris Mumbi; Eissa, N; Bernstein, Charles Noah; Khafipour, Ehsan; Ghia, Jean-Eric

    2015-01-01

    Postnatal maturation of the immune system is largely driven by exposure to microbes, and thus the nature of intestinal colonization may be associated with development of childhood diseases that may persist into adulthood. We investigated whether antepartum antibiotic (ATB) therapy can increase offspring susceptibility to experimental colitis through alteration of the gut microbiota. Pregnant C57Bl/6 mice were treated with cefazolin at 160 mg/kg body weight or with saline starting six days before due date. At 7 weeks, fecal samples were collected from male offspring after which they received 4% dextran sulfate sodium (DSS) in drinking water for 5 days. Disease activity index, histology, colonic IL-6, IL-1β and serum C-reactive protein (CRP) were determined. The V3-V4 region of colonic and fecal bacterial 16S rRNA was sequenced. Alpha-, beta-diversity and differences at the phylum and genus levels were determined, while functional pathways of classified bacteria were predicted. ATB influenced fecal bacterial composition and hence bacterial functional pathways before induction of colitis. After induction of colitis, ATB increased onset of clinical disease, histologic score, and colonic IL-6. In addition, ATB decreased fecal microbial richness, changed fecal and colon microbial composition, which was accompanied by a modification of microbial functional pathways. Also, several taxa were associated with ATB at lower taxonomical levels. The results support the hypothesis that antepartum antibiotics modulate offspring intestinal bacterial colonization and increase susceptibility to develop colonic inflammation in a murine model of colitis, and may guide future interventions to restore physiologic intestinal colonization in offspring born by antibiotic-exposed mothers.

  5. Colonization and Succession within the Human Gut Microbiome by Archaea, Bacteria, and Microeukaryotes during the First Year of Life

    Directory of Open Access Journals (Sweden)

    Paul Wilmes

    2017-05-01

    Full Text Available Perturbations to the colonization process of the human gastrointestinal tract have been suggested to result in adverse health effects later in life. Although much research has been performed on bacterial colonization and succession, much less is known about the other two domains of life, archaea, and eukaryotes. Here we describe colonization and succession by bacteria, archaea and microeukaryotes during the first year of life (samples collected around days 1, 3, 5, 28, 150, and 365 within the gastrointestinal tract of infants delivered either vaginally or by cesarean section and using a combination of quantitative real-time PCR as well as 16S and 18S rRNA gene amplicon sequencing. Sequences from organisms belonging to all three domains of life were detectable in all of the collected meconium samples. The microeukaryotic community composition fluctuated strongly over time and early diversification was delayed in infants receiving formula milk. Cesarean section-delivered (CSD infants experienced a delay in colonization and succession, which was observed for all three domains of life. Shifts in prokaryotic succession in CSD infants compared to vaginally delivered (VD infants were apparent as early as days 3 and 5, which were characterized by increased relative abundances of the genera Streptococcus and Staphylococcus, and a decrease in relative abundance for the genera Bifidobacterium and Bacteroides. Generally, a depletion in Bacteroidetes was detected as early as day 5 postpartum in CSD infants, causing a significantly increased Firmicutes/Bacteroidetes ratio between days 5 and 150 when compared to VD infants. Although the delivery mode appeared to have the strongest influence on differences between the infants, other factors such as a younger gestational age or maternal antibiotics intake likely contributed to the observed patterns as well. Our findings complement previous observations of a delay in colonization and succession of CSD infants

  6. [Frequency of colonization and isolated bacteria from the tip of the epidural catheter implanted for postoperative analgesia].

    Science.gov (United States)

    Stabille, Débora Miranda Diogo; Filho, Augusto Diogo; Mandim, Beatriz Lemos da Silva; Araújo, Lúcio Borges de; Mesquita, Priscila Miranda Diogo; Jorge, Miguel Tanús

    2015-01-01

    The increased use of epidural analgesia with catheter leads to the need to demonstrate the safety of this method and know the incidence of catheter colonization, inserted postoperatively for epidural analgesia, and the bacteria responsible for this colonization. From November 2011 to April 2012, patients electively operated and maintained under epidural catheter for postoperative analgesia were evaluated. The catheter tip was collected for semiquantitative and qualitative microbiological analysis. Of 68 cultured catheters, six tips (8.8%) had positive cultures. No patient had superficial or deep infection. The mean duration of catheter use was 43.45hours (18-118) (p=0.0894). The type of surgery (contaminated or uncontaminated), physical status of patients, and surgical time showed no relation with the colonization of catheters. Microorganisms isolated from the catheter tip were Staphylococcus aureus, Pseudomonas aeruginosa and Sphingomonas paucimobilis. Postoperative epidural catheter analgesia, under this study conditions, was found to be low risk for bacterial colonization in patients at surgical wards. Copyright © 2014 Sociedade Brasileira de Anestesiologia. Publicado por Elsevier Editora Ltda. All rights reserved.

  7. Bacterial anoxygenic photosynthesis on plant leaf surfaces.

    Science.gov (United States)

    Atamna-Ismaeel, Nof; Finkel, Omri; Glaser, Fabian; von Mering, Christian; Vorholt, Julia A; Koblížek, Michal; Belkin, Shimshon; Béjà, Oded

    2012-04-01

    The aerial surface of plants, the phyllosphere, is colonized by numerous bacteria displaying diverse metabolic properties that enable their survival in this specific habitat. Recently, we reported on the presence of microbial rhodopsin harbouring bacteria on the top of leaf surfaces. Here, we report on the presence of additional bacterial populations capable of harvesting light as a means of supplementing their metabolic requirements. An analysis of six phyllosphere metagenomes revealed the presence of a diverse community of anoxygenic phototrophic bacteria, including the previously reported methylobacteria, as well as other known and unknown phototrophs. The presence of anoxygenic phototrophic bacteria was also confirmed in situ by infrared epifluorescence microscopy. The microscopic enumeration correlated with estimates based on metagenomic analyses, confirming both the presence and high abundance of these microorganisms in the phyllosphere. Our data suggest that the phyllosphere contains a phylogenetically diverse assemblage of phototrophic species, including some yet undescribed bacterial clades that appear to be phyllosphere-unique. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  8. Bacterial Colonization of Disposable Soft Contact Lenses Is Greater during Corneal Infiltrative Events than during Asymptomatic Extended Lens Wear

    Science.gov (United States)

    Sankaridurg, Padmaja R.; Sharma, Savitri; Willcox, Mark; Naduvilath, Thomas J.; Sweeney, Deborah F.; Holden, Brien A.; Rao, Gullapalli N.

    2000-01-01

    Microorganisms, especially gram-negative bacteria, are considered to play a role in the etiology of certain corneal infiltrative events (CIEs) observed during soft contact lens wear. This study explored the possibility of microbial colonization of soft contact lenses as a risk factor leading to CIEs. In a clinical trial conducted from March 1993 to January 1996, 330 subjects wore disposable soft contact lenses on a 6-night extended-wear and disposal schedule. During this period, 4,321 lenses (118 during CIEs; 4,203 during asymptomatic lens wear) were recovered aseptically and analyzed for microbial colonization. A greater percentage of lenses were free from microbial colonization during asymptomatic wear than during CIEs (42 versus 23%; P bacteria, gram-negative bacteria and fungi was greater during CIEs than during asymptomatic lens wear (P bacteria were isolated most frequently and were usually normal external ocular microbiota. Of the gram-positive bacteria, the incidence of Streptococcus pneumoniae was greater during CIE than during asymptomatic wear (7.6 versus 0.6%; P bacteria were seen in few cases during asymptomatic wear, their incidence during CIE in comparison to asymptomatic wear was substantial and significant (23.7 versus 3.8%; P bacteria or S. pneumoniae. Colonization of soft contact lenses with pathogenic bacteria, especially gram-negative bacteria and S. pneumoniae, appears to be a significant risk factor leading to CIE. PMID:11101574

  9. The influence of arachidonic acid metabolites on cell division in the intestinal epithelium and in colonic tumors.

    Science.gov (United States)

    Petry, F M; Tutton, P J; Barkla, D H

    1984-09-01

    Various metabolites of arachidonic acid are now known to influence cell division. In this paper the effects on cell proliferation of arachidonic acid, some inhibitors of arachidonic acid metabolism and some analogs of arachidonic acid metabolites is described. The epithelial cell proliferation rate in the jejunum, in the descending colon and in dimethylhydrazine-induced tumors of rat colon was measured using a stathmokinetic technique. Administration of arachidonic acid resulted in retardation of cell proliferation in each of the tissues examined. A cyclooxygenase inhibitor (Flurbiprofen) prevented this effect of arachidonic acid in the jejunal crypts and in colonic tumors, but not in colonic crypts. In contrast, inhibitors of both cyclooxygenase and lipoxygenase (Benoxaprofen and BW755c) prevented the effect of arachidonic acid in the colonic crypts and reduced its effect on colonic tumours but did not alter its effect on the jejunum. An inhibitor of thromoboxane A2 synthetase (U51,605) was also able to prevent the inhibitory effect of arachidonic acid on colonic tumors. Treatment with 16,16-dimethyl PGE2 inhibited cell proliferation in jejunal crypts and in colonic tumors, as did a thromboxane A2 mimicking agent, U46619. Nafazatrom, an agent that stimulates prostacyclin synthesis and inhibits lypoxygenase, promoted cell proliferation in the jejunal crypts and colonic crypts, but inhibited cell proliferation in colonic tumours.

  10. Cellular reprogramming by gram-positive bacterial components: a review.

    LENUS (Irish Health Repository)

    Buckley, Julliette M

    2012-02-03

    LPS tolerance has been the focus of extensive scientific and clinical research over the last several decades in an attempt to elucidate the sequence of changes that occur at a molecular level in tolerized cells. Tolerance to components of gram-positive bacterial cell walls such as bacterial lipoprotein and lipoteichoic acid is a much lesser studied, although equally important, phenomenon. This review will focus on cellular reprogramming by gram-positive bacterial components and examines the alterations in cell surface receptor expression, changes in intracellular signaling, gene expression and cytokine production, and the phenomenon of cross-tolerance.

  11. Bacterial interactions in the rhizosphere of seagrass communities in shallow coastal lagoons.

    Science.gov (United States)

    Donnelly, A P; Herbert, R A

    1998-12-01

    Rooted phanerogam communities in the shallow intertidal and subtidal coastal zone represent productive and healthy ecosystems. Inorganic nutrients are assimilated into seagrass biomass. Much of the organic matter resulting from moribund seagrass is rapidly mineralized, principally by bacteria. The microbial community of the rhizosphere is also highly active due to the supply of organic matter released during photosynthesis. This active sediment community plays an important role through carbon, nitrogen and phosphorous cycling in maintaining the stability and productivity of seagrass meadows. Over the last two decades, however, seagrass meadows in European coastal areas have declined due to increasing pollution. As eutrophication advances a trasition occurs from rooted phanerogram dominated communities to planktonic algal blooms and/or cyanobacterial blooms. Such changes represent the decline of a stable, high biodiversity habitat to an unstable one dominated by a few species. These changes of community structure can occur rapidly once the internal nutrient and organic matter control cycles are exceeded. A field investigation was undertaken to establish the spatial distribution of bacterial populations of Zostera noltii colonized and uncolonized sediment in the Bassin d'Arcachon, France. Bacteria were enumerated using both plate count and MPN techniques for different functional groups as well as determining the total bacterial populations present. Nitrogen fixation, ammonification, sulphate reduction rates, as well as alkaline phosphatase activity were also determined. Colonization of the Z. noltii roots and rhizomes was studied by light and scanning electron microscopy. Results confirmed that higher bacterial populations were present in the rhizosphere of Z. noltii compared to uncolonized sediments. Furthermore, electron microscopy identified the rhizome as the main site of colonization for a diverse range of morphological groups of bacteria. Sulphate reducing

  12. Colon-specific prodrugs of 5-radioiodo-2'-deoxyuridine

    International Nuclear Information System (INIS)

    Baranowska-Kortylewicz, J.; Kortylewicz, Z.P.; Hoffman, D.; Winoto, A.; Lai, J.; Dalrymple, G.V.

    1996-01-01

    Two glycoside-based prodrugs, 125 IUdR-5'-β-D-glucopyranoside and 125 IUdR-5'-β-D-galactopyranoside, were synthesized. This selection was dictated by the abundance of appropriate enzymes in the GI tract of mice and similar levels of β-D-glycosidases in human and rodent large intestine. Studies to establish the ability of colonic microflora to release 125 IUdR were conducted in vitro and in Swiss Webster mice. Both prodrugs released 125 IUdR in the presence of the corresponding enzymes or the GI content homogenates in vitro, and in vivo. Luminal enzymes in the proximal and distal small intestine in mice degraded less than 10% of each prodrug whereas enzymes from the colonic/caecal lumen of mice released nearly 100% of 125 IUdR. 125 IUdR freed by bacterial glycosidases was stable in the GI content. No significant amounts of other metabolites or deiodination products were observed. Total radioactivity recovered as by-products was less than 10%. The efflux of prodrugs from the GI tract after oral administration in mice was slow and limited. Unlike 125 IUdR, prodrugs were not dehalogenated in vivo as indicated by biodistribution and imaging studies. (orig.)

  13. Characterization of the gut bacterial community in Manduca sexta and effect of antibiotics on bacterial diversity and nematode reproduction.

    Science.gov (United States)

    van der Hoeven, Ransome; Betrabet, Geeta; Forst, Steven

    2008-09-01

    The tobacco hornworm, Manduca sexta, is a model lepidopteran insect used to study the pathogenic and mutualistic phases of entomopathogenic nematodes (EPNs) and their bacterial symbionts. While intestinal microbial communities could potentially compete with the EPN and its bacterial partner for nutrient resources of the insect, the microbial gut community had not been characterized previously. Here, we show that the midgut of M. sexta raised on an artificial diet contained mostly Gram-positive cocci and coryneforms including Staphylococcus, Pediococcus, Micrococcus and Corynebacterium. Major perturbation in the gut community was observed on addition of antibiotics to the diet. Paenibacillus and several Proteobacteria such as Methylobacterium, Sphingomonas and Acinetobacter were primary genera identified under these conditions. Furthermore, the reproduction of the nematode Steinernema carpocapsae was less efficient, and the level of nematode colonization by its symbiont Xenorhabdus nematophila reduced, in insects reared on a diet containing antibiotics. The effect of antibiotics and perturbation of gut microbiota on nematode reproduction is discussed.

  14. Bacterial Biofilms and Catheters: A Key to Understanding Bacterial Strategies in Catheter-Associated Urinary Tract Infection

    Directory of Open Access Journals (Sweden)

    J Curtis Nickel

    1992-01-01

    Full Text Available Despite major technological improvements in catheter drainage systems, the indwelling Foley catheter remains the most common cause of nosocomial infection in medical practice. By approaching this common complicated urinary tract infection from the perspective of the biofilm strategy bacteria appear to use to overcome obstacles to produce bacteriuria, one appreciates a new understanding of these infections. An adherent biofilm of bacteria in their secretory products ascends the luminal and external surface of the catheter and drainage system from a contaminated drainage spigot or urethral meatus into the bladder. If the intraluminal route of bacterial ascent is delayed by strict sterile closed drainage or addition of internal modifications to the system, the extraluminal or urethral route assumes greater importance in the development of bacteriuria, but takes significantly longer. Bacterial growth within these thick coherent biofilms confers a large measure of relative resistance to antibiotics even though the individual bacterium remains sensitive, thus accounting for the failure of antibiotic therapy. With disruption of the protective mucous layer of the bladder by mechanical irritation, the bacteria colonizing the catheter can adhere to the bladder’s mucosal surface and cause infection. An appreciation of the role of bacterial biofilms in these infections should suggest future directions for research that may ultimately reduce the risk of catheter-associated infection.

  15. The in planta transcriptome of Ralstonia solanacearum: conserved physiological and virulence strategies during bacterial wilt of tomato.

    Science.gov (United States)

    Jacobs, Jonathan M; Babujee, Lavanya; Meng, Fanhong; Milling, Annett; Allen, Caitilyn

    2012-01-01

    Plant xylem fluid is considered a nutrient-poor environment, but the bacterial wilt pathogen Ralstonia solanacearum is well adapted to it, growing to 10(8) to 10(9) CFU/g tomato stem. To better understand how R. solanacearum succeeds in this habitat, we analyzed the transcriptomes of two phylogenetically distinct R. solanacearum strains that both wilt tomato, strains UW551 (phylotype II) and GMI1000 (phylotype I). We profiled bacterial gene expression at ~6 × 10(8) CFU/ml in culture or in plant xylem during early tomato bacterial wilt pathogenesis. Despite phylogenetic differences, these two strains expressed their 3,477 common orthologous genes in generally similar patterns, with about 12% of their transcriptomes significantly altered in planta versus in rich medium. Several primary metabolic pathways were highly expressed during pathogenesis. These pathways included sucrose uptake and catabolism, and components of these pathways were encoded by genes in the scrABY cluster. A UW551 scrA mutant was significantly reduced in virulence on resistant and susceptible tomato as well as on potato and the epidemiologically important weed host Solanum dulcamara. Functional scrA contributed to pathogen competitive fitness during colonization of tomato xylem, which contained ~300 µM sucrose. scrA expression was induced by sucrose, but to a much greater degree by growth in planta. Unexpectedly, 45% of the genes directly regulated by HrpB, the transcriptional activator of the type 3 secretion system (T3SS), were upregulated in planta at high cell densities. This result modifies a regulatory model based on bacterial behavior in culture, where this key virulence factor is repressed at high cell densities. The active transcription of these genes in wilting plants suggests that T3SS has a biological role throughout the disease cycle. IMPORTANCE Ralstonia solanacearum is a widespread plant pathogen that causes bacterial wilt disease. It inflicts serious crop losses on tropical

  16. Habitat alteration increases invasive fire ant abundance to the detriment of amphibians and reptiles

    Science.gov (United States)

    Todd, B.D.; Rothermel, B.B.; Reed, R.N.; Luhring, T.M.; Schlatter, K.; Trenkamp, L.; Gibbons, J.W.

    2008-01-01

    Altered habitats have been suggested to facilitate red imported fire ant (Solenopsis invicta) colonization and dispersal, possibly compounding effects of habitat alteration on native wildlife. In this study, we compared colonization intensity of wood cover boards by S. invicta among four forest management treatments in South Carolina, USA: an unharvested control (>30 years old); a partially thinned stand; a clearcut with coarse woody debris retained; and a clearcut with coarse woody debris removed. Additionally, we compared dehydration rates and survival of recently metamorphosed salamanders (marbled salamanders, Ambystoma opacum, and mole salamanders, A. talpoideum) among treatments. We found that the number of wood cover boards colonized by S. invicta differed significantly among treatments, being lowest in the unharvested forest treatments and increasing with the degree of habitat alteration. Salamanders that were maintained in experimental field enclosures to study water loss were unexpectedly subjected to high levels of S. invicta predation that differed among forest treatments. All known predation by S. invicta was restricted to salamanders in clearcuts. The amount of vegetative ground cover was inversely related to the likelihood of S. invicta predation of salamanders. Our results show that S. invicta abundance increases with habitat disturbance and that this increased abundance has negative consequences for amphibians that remain in altered habitats. Our findings also suggest that the presence of invasive S. invicta may compromise the utility of cover boards and other techniques commonly used in herpetological studies in the Southeast. ?? 2007 Springer Science+Business Media B.V.

  17. Radioimmunotoxin Therapy of Experimental Colon and Ovarian Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Buchsbaum, Donald J.; Vallera, Daniel A.

    2006-02-09

    To pursue the development of radiolabeled immunotoxins (RIT) for colon cancer, it was first necessary to identify an immunotoxin (IT) that could selectively kill colon cancer cell lines. Recently, our collaborators in the Vallera laboratory have observed that potent recombinant IT can be synthesized using recombinant single chain antibodies (sFv) spliced to truncated diphtheria toxin (DT) consisting of the first 390 amino acids of native DT. DT was chosen as a toxin because it is a catalytic bacterial toxin that is easily manipulated in genetic engineering studies. Also, the Vallera lab has developed new procedures for preparing the sFv fusion toxins from bacterial inclusion bodies such as DT and another good genetic engineering toxin pseudomonas exotoxin (PE) based on detergent refolding. This allows for enhanced yields and higher purity that is essential for generating the protein that will be needed for preparation of larger amounts of RIT for therapy. Many potential sFvs were considered for targeting colon cancer. The best results have been obtained with an sFv recognizing EpCam. EpCam, also known as ESA or EGP40, is a 40 kDa epithelial transmembrane glycoprotein found on the basolateral surface of simple, pseudostratified, and transitional epithelia. It has been found overexpressed on 81% of adenocarcinomas of the colon (Went et al. Human pathology 35:122, 2004). EpCam sliced to DT (DTEpCam) was highly potent in studies in which we measured its ability to inhibit the proliferation of the HT-29 and COLO 205 colon cancer cell lines since we measured its IC50 at 1-2 x 10-2 nM. Potency is important, but is also critical that DTEpCam is selective in its cytotoxicity against EpCam-expressing target colon cancer cells. The activity of DTEpCam was highly selective since irrelevant control IT that did not recognize any markers on cancer cells, did not show any activity against the same colon cancer cell lines. Also, blocking studies were performed in which DTEpCam was

  18. Radioimmunotoxin Therapy of Experimental Colon and Ovarian Cancer

    International Nuclear Information System (INIS)

    Buchsbaum, Donald J.; Vallera, Daniel A.

    2006-01-01

    To pursue the development of radiolabeled immunotoxins (RIT) for colon cancer, it was first necessary to identify an immunotoxin (IT) that could selectively kill colon cancer cell lines. Recently, our collaborators in the Vallera laboratory have observed that potent recombinant IT can be synthesized using recombinant single chain antibodies (sFv) spliced to truncated diphtheria toxin (DT) consisting of the first 390 amino acids of native DT. DT was chosen as a toxin because it is a catalytic bacterial toxin that is easily manipulated in genetic engineering studies. Also, the Vallera lab has developed new procedures for preparing the sFv fusion toxins from bacterial inclusion bodies such as DT and another good genetic engineering toxin pseudomonas exotoxin (PE) based on detergent refolding. This allows for enhanced yields and higher purity that is essential for generating the protein that will be needed for preparation of larger amounts of RIT for therapy. Many potential sFvs were considered for targeting colon cancer. The best results have been obtained with an sFv recognizing EpCam. EpCam, also known as ESA or EGP40, is a 40 kDa epithelial transmembrane glycoprotein found on the basolateral surface of simple, pseudostratified, and transitional epithelia. It has been found overexpressed on 81% of adenocarcinomas of the colon (Went et al. Human pathology 35:122, 2004). EpCam sliced to DT (DTEpCam) was highly potent in studies in which we measured its ability to inhibit the proliferation of the HT-29 and COLO 205 colon cancer cell lines since we measured its IC50 at 1-2 x 10-2 nM. Potency is important, but is also critical that DTEpCam is selective in its cytotoxicity against EpCam-expressing target colon cancer cells. The activity of DTEpCam was highly selective since irrelevant control IT that did not recognize any markers on cancer cells, did not show any activity against the same colon cancer cell lines. Also, blocking studies were performed in which DTEpCam was

  19. Chicken Caecal Microbiome Modifications Induced by Campylobacter jejuni Colonization and by a Non-Antibiotic Feed Additive.

    Directory of Open Access Journals (Sweden)

    Alexandre Thibodeau

    Full Text Available Campylobacter jejuni is an important zoonotic foodborne pathogen causing acute gastroenteritis in humans. Chickens are often colonized at very high numbers by C. jejuni, up to 10(9 CFU per gram of caecal content, with no detrimental effects on their health. Farm control strategies are being developed to lower the C. jejuni contamination of chicken food products in an effort to reduce human campylobacteriosis incidence. It is believed that intestinal microbiome composition may affect gut colonization by such undesirable bacteria but, although the chicken microbiome is being increasingly characterized, information is lacking on the factors affecting its modulation, especially by foodborne pathogens. This study monitored the effects of C. jejuni chicken caecal colonization on the chicken microbiome in healthy chickens. It also evaluated the capacity of a feed additive to affect caecal bacterial populations and to lower C. jejuni colonization. From day-0, chickens received or not a microencapsulated feed additive and were inoculated or not with C. jejuni at 14 days of age. Fresh caecal content was harvested at 35 days of age. The caecal microbiome was characterized by real time quantitative PCR and Ion Torrent sequencing. We observed that the feed additive lowered C. jejuni caecal count by 0.7 log (p<0.05. Alpha-diversity of the caecal microbiome was not affected by C. jejuni colonization or by the feed additive. C. jejuni colonization modified the caecal beta-diversity while the feed additive did not. We observed that C. jejuni colonization was associated with an increase of Bifidobacterium and affected Clostridia and Mollicutes relative abundances. The feed additive was associated with a lower Streptococcus relative abundance. The caecal microbiome remained relatively unchanged despite high C. jejuni colonization. The feed additive was efficient in lowering C. jejuni colonization while not disturbing the caecal microbiome.

  20. Bacterial diversity in the foreland of the Tianshan No. 1 glacier, China

    International Nuclear Information System (INIS)

    Wu Xiukun; Zhang Wei; Liu Guangxiu; Zhang Gaosen; Yang Xuan; Hu Ping; Chen Tuo; Li Zhongqin

    2012-01-01

    There is compelling evidence that glaciers are retreating in many mountainous areas of the world due to global warming. With this glacier retreat, new habitats are being exposed that are colonized by microorganisms whose diversity and function are less well studied. Here, we characterized bacterial diversity along the chronosequences of the glacier No. 1 foreland that follows glacier retreat. An average of 10 000 sequences was obtained from each sample by 454 pyrosequencing. Using non-parametric and rarefaction estimated analysis, we found bacterial phylotype richness was high. The bacterial species turnover rate was especially high between sites exposed for 6 and 10 yr. Pyrosequencing showed tremendous bacterial diversity, among which the Acidobacteria, Actinobacteria, Bacteroidetes and Proteobacteria were found to be present at larger numbers at the study area. Meanwhile, the proportion of Bacteroidetes and Proteobacteria decreased and the proportion of Acidobacteria increased along the chronosequences. Some known functional bacterial genera were also detected and the sulfur- and sulfate-reducing bacteria were present in a lower proportion of sequences. These findings suggest that high-throughput pyrosequencing can comprehensively detect bacteria in the foreland, including rare groups, and give a deeper understanding of the bacterial community structure and variation along the chronosequences. (letter)

  1. Bacterial diversity in the foreland of the Tianshan No. 1 glacier, China

    Energy Technology Data Exchange (ETDEWEB)

    Xiukun, Wu; Wei, Zhang; Guangxiu, Liu; Gaosen, Zhang [Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou (China); Xuan, Yang; Ping, Hu [School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou (China); Tuo, Chen; Li Zhongqin, E-mail: liugx@lzb.ac.cn [State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou (China)

    2012-03-15

    There is compelling evidence that glaciers are retreating in many mountainous areas of the world due to global warming. With this glacier retreat, new habitats are being exposed that are colonized by microorganisms whose diversity and function are less well studied. Here, we characterized bacterial diversity along the chronosequences of the glacier No. 1 foreland that follows glacier retreat. An average of 10 000 sequences was obtained from each sample by 454 pyrosequencing. Using non-parametric and rarefaction estimated analysis, we found bacterial phylotype richness was high. The bacterial species turnover rate was especially high between sites exposed for 6 and 10 yr. Pyrosequencing showed tremendous bacterial diversity, among which the Acidobacteria, Actinobacteria, Bacteroidetes and Proteobacteria were found to be present at larger numbers at the study area. Meanwhile, the proportion of Bacteroidetes and Proteobacteria decreased and the proportion of Acidobacteria increased along the chronosequences. Some known functional bacterial genera were also detected and the sulfur- and sulfate-reducing bacteria were present in a lower proportion of sequences. These findings suggest that high-throughput pyrosequencing can comprehensively detect bacteria in the foreland, including rare groups, and give a deeper understanding of the bacterial community structure and variation along the chronosequences. (letter)

  2. Maternal Colonization With Group B Streptococcus and Serotype Distribution Worldwide: Systematic Review and Meta-analyses.

    Science.gov (United States)

    Russell, Neal J; Seale, Anna C; O'Driscoll, Megan; O'Sullivan, Catherine; Bianchi-Jassir, Fiorella; Gonzalez-Guarin, Juan; Lawn, Joy E; Baker, Carol J; Bartlett, Linda; Cutland, Clare; Gravett, Michael G; Heath, Paul T; Le Doare, Kirsty; Madhi, Shabir A; Rubens, Craig E; Schrag, Stephanie; Sobanjo-Ter Meulen, Ajoke; Vekemans, Johan; Saha, Samir K; Ip, Margaret

    2017-11-06

    Maternal rectovaginal colonization with group B Streptococcus (GBS) is the most common pathway for GBS disease in mother, fetus, and newborn. This article, the second in a series estimating the burden of GBS, aims to determine the prevalence and serotype distribution of GBS colonizing pregnant women worldwide. We conducted systematic literature reviews (PubMed/Medline, Embase, Latin American and Caribbean Health Sciences Literature [LILACS], World Health Organization Library Information System [WHOLIS], and Scopus), organized Chinese language searches, and sought unpublished data from investigator groups. We applied broad inclusion criteria to maximize data inputs, particularly from low- and middle-income contexts, and then applied new meta-analyses to adjust for studies with less-sensitive sampling and laboratory techniques. We undertook meta-analyses to derive pooled estimates of maternal GBS colonization prevalence at national and regional levels. The dataset regarding colonization included 390 articles, 85 countries, and a total of 299924 pregnant women. Our adjusted estimate for maternal GBS colonization worldwide was 18% (95% confidence interval [CI], 17%-19%), with regional variation (11%-35%), and lower prevalence in Southern Asia (12.5% [95% CI, 10%-15%]) and Eastern Asia (11% [95% CI, 10%-12%]). Bacterial serotypes I-V account for 98% of identified colonizing GBS isolates worldwide. Serotype III, associated with invasive disease, accounts for 25% (95% CI, 23%-28%), but is less frequent in some South American and Asian countries. Serotypes VI-IX are more common in Asia. GBS colonizes pregnant women worldwide, but prevalence and serotype distribution vary, even after adjusting for laboratory methods. Lower GBS maternal colonization prevalence, with less serotype III, may help to explain lower GBS disease incidence in regions such as Asia. High prevalence worldwide, and more serotype data, are relevant to prevention efforts. © The Author 2017. Published by

  3. A study of the colonic transit function by dual radionuclide colon scintigraphy

    International Nuclear Information System (INIS)

    Yang Weidong; Sun Buzhou; Song Changyi; Lu Jinyan; Wang Shejiao; Zheng Xianghong; Huang Lin; Lei Yamei

    1999-01-01

    Objective: To establish a new, simple and noninvasive method which can quantitatively analyze the colonic transit function by dual radionuclide colon scintigraphy. Methods: 24 patients with constipation and 32 normal controls were studied. Na 131 I was sealed into capsule made by polyvinylchloride which can not be digested and absorbed in gastrointestinal tract. Patients and normal volunteers swallow 131 I capsules and drink 99 Tc m labelled sulfur colloid solution at the same time. The static image was acquired at the regular time, then calculate the Geometric Center values (GC). Results: 1) The capsules can be clearly located through the colonic contour shown by 99 Tc m labeled sulfur colloid when it reached the large bowel. 2) The transiting time from mouth to cecum, through colon and through whole gastrointestinal in normal people were (6.61 +- 1.94), (36.61 +- 10.51) and (42.72 +- 10.02) h, respectively, in constipation group were (8.03 +- 3.63), (65.50 +- 28.40) and (74.05 +- 28.17) h, respectively. There was no significant difference (P > 0.05) in two groups compared with each other. But the transiting time through colon and whole gastrointestinal in constipation was slower than that in normal people, with significant difference (P < 0.01). 3) Through examination the colonic transit abnormality can be divided into three patterns: whole colon transit delay, right-colon transit delay and left-colon transit delay. Conclusions: This method is a simple, physiologic and quantitative in evaluating the colonic transit, it can also stage the colonic dyskinesia of the patients

  4. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon.

    Science.gov (United States)

    Ward, Joseph B J; Lajczak, Natalia K; Kelly, Orlaith B; O'Dwyer, Aoife M; Giddam, Ashwini K; Ní Gabhann, Joan; Franco, Placido; Tambuwala, Murtaza M; Jefferies, Caroline A; Keely, Simon; Roda, Aldo; Keely, Stephen J

    2017-06-01

    Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 312: G550-G558, 2017. First published March 30, 2017; doi:10.1152/ajpgi.00256.2016.-Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic

  5. Activities and prevalence of proteobacteria members colonizing Echinacea purpurea fully account for in vitro macrophage activation exhibited by extracts of this botanical

    Science.gov (United States)

    Evidence supports the theory that bacterial communities colonizing Echinacea purpurea contribute to the innate immune enhancing activity of this botanical. Previously we reported that only about half of the variation in in vitro monocyte stimulating activity exhibited by E. purpurea extracts could ...

  6. Comparative transcriptome analysis by RNAseq of necrotic enteritis Clostridium perfringens during in vivo colonization and in vitro conditions.

    Science.gov (United States)

    Parreira, Valeria R; Russell, Kay; Athanasiadou, Spiridoula; Prescott, John F

    2016-08-12

    Necrotic enteritis (NE) caused by netB-positive type A Clostridium perfringens is an important bacterial disease of poultry. Through its complex regulatory system, C. perfringens orchestrates the expression of a collection of toxins and extracellular enzymes that are crucial for the development of the disease; environmental conditions play an important role in their regulation. In this study, and for the first time, global transcriptomic analysis was performed on ligated intestinal loops in chickens colonized with a netB-positive C. perfringens strain, as well as the same strain propagated in vitro under various nutritional and environmental conditions. Analysis of the respective pathogen transcriptomes revealed up to 673 genes that were significantly expressed in vivo. Gene expression profiles in vivo were most similar to those of C. perfringens grown in nutritionally-deprived conditions. Taken together, our results suggest a bacterial transcriptome responses to the early stages of adaptation, and colonization of, the chicken intestine. Our work also reveals how netB-positive C. perfringens reacts to different environmental conditions including those in the chicken intestine.

  7. Susceptibility of metallic magnesium implants to bacterial biofilm infections.

    Science.gov (United States)

    Rahim, Muhammad Imran; Rohde, Manfred; Rais, Bushra; Seitz, Jan-Marten; Mueller, Peter P

    2016-06-01

    Magnesium alloys have promising mechanical and biological properties as biodegradable medical implant materials for temporary applications during bone healing or as vascular stents. Whereas conventional implants are prone to colonization by treatment resistant microbial biofilms in which bacteria are embedded in a protective matrix, magnesium alloys have been reported to act antibacterial in vitro. To permit a basic assessment of antibacterial properties of implant materials in vivo an economic but robust animal model was established. Subcutaneous magnesium implants were inoculated with bacteria in a mouse model. Contrary to the expectations, bacterial activity was enhanced and prolonged in the presence of magnesium implants. Systemic antibiotic treatments were remarkably ineffective, which is a typical property of bacterial biofilms. Biofilm formation was further supported by electron microscopic analyses that revealed highly dense bacterial populations and evidence for the presence of extracellular matrix material. Bacterial agglomerates could be detected not only on the implant surface but also at a limited distance in the peri-implant tissue. Therefore, precautions may be necessary to minimize risks of metallic magnesium-containing implants in prospective clinical applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1489-1499, 2016. © 2016 Wiley Periodicals, Inc.

  8. MsmK, an ATPase, Contributes to Utilization of Multiple Carbohydrates and Host Colonization of Streptococcus suis.

    Science.gov (United States)

    Tan, Mei-Fang; Gao, Ting; Liu, Wan-Quan; Zhang, Chun-Yan; Yang, Xi; Zhu, Jia-Wen; Teng, Mu-Ye; Li, Lu; Zhou, Rui

    2015-01-01

    Acquisition and metabolism of carbohydrates are essential for host colonization and pathogenesis of bacterial pathogens. Different bacteria can uptake different lines of carbohydrates via ABC transporters, in which ATPase subunits energize the transport though ATP hydrolysis. Some ABC transporters possess their own ATPases, while some share a common ATPase. Here we identified MsmK, an ATPase from Streptococcus suis, an emerging zoonotic bacterium causing dead infections in pigs and humans. Genetic and biochemistry studies revealed that the MsmK was responsible for the utilization of raffinose, melibiose, maltotetraose, glycogen and maltotriose. In infected mice, the msmK-deletion mutant showed significant defects of survival and colonization when compared with its parental and complementary strains. Taken together, MsmK is an ATPase that contributes to multiple carbohydrates utilization and host colonization of S. suis. This study gives new insight into our understanding of the carbohydrates utilization and its relationship to the pathogenesis of this zoonotic pathogen.

  9. Colon interposition

    International Nuclear Information System (INIS)

    Isolauri, J.; Tampere Univ. Central Hospital; Paakkala, T.; Arajaervi, P.; Markkula, H.

    1987-01-01

    Colon interposition was carried out in 12 patients with oesophageal carcinoma and on 38 patients with benign oesophageal disease an average of 71 months before the radiographic examination. Various ischaemic changes including 'jejunization', loss of haustration and stricture formation were observed in 15 cases. In 12 patients one or several diverticula were seen in the colon graft. Reflux was observed in 17 cases in supine position. Double contrast technique in the examination of interposed colon is recommended. (orig.)

  10. Symbiosis initiation in the bacterially luminous sea urchin cardinalfish Siphamia versicolor.

    Science.gov (United States)

    Dunlap, P V; Gould, A L; Wittenrich, M L; Nakamura, M

    2012-09-01

    To determine how each new generation of the sea urchin cardinalfish Siphamia versicolor acquires the symbiotic luminous bacterium Photobacterium mandapamensis, and when in its development the S. versicolor initiates the symbiosis, procedures were established for rearing S. versicolor larvae in an aposymbiotic state. Under the conditions provided, larvae survived and developed for 28 days after their release from the mouths of males. Notochord flexion began at 8 days post release (dpr). By 28 dpr, squamation was evident and the caudal complex was complete. The light organ remained free of bacteria but increased in size and complexity during development of the larvae. Thus, aposymbiotic larvae of the fish can survive and develop for extended periods, major components of the luminescence system develop in the absence of the bacteria and the bacteria are not acquired directly from a parent, via the egg or during mouth brooding. Presentation of the symbiotic bacteria to aposymbiotic larvae at 8-10 dpr, but not earlier, led to initiation of the symbiosis. Upon colonization of the light organ, the bacterial population increased rapidly and cells forming the light-organ chambers exhibited a differentiated appearance. Therefore, the light organ apparently first becomes receptive to colonization after 1 week post-release development, the symbiosis is initiated by bacteria acquired from the environment and bacterial colonization induces morphological changes in the nascent light organ. The abilities to culture larvae of S. versicolor for extended periods and to initiate the symbiosis in aposymbiotic larvae are key steps in establishing the experimental tractability of this highly specific vertebrate and microbe mutualism. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the British Isles.

  11. Decreased microbiota diversity associated with urinary tract infection in a trial of bacterial interference.

    Science.gov (United States)

    Horwitz, Deborah; McCue, Tyler; Mapes, Abigail C; Ajami, Nadim J; Petrosino, Joseph F; Ramig, Robert F; Trautner, Barbara W

    2015-09-01

    Patients with long-term indwelling catheters are at high risk of catheter-associated urinary tract infection (CAUTI). We hypothesized that colonizing the bladder with a benign Escherichia coli strain (E. coli HU2117, a derivative of E. coli 83972) would prevent CAUTI in older, catheterized adults. Adults with chronic, indwelling urinary catheters received study catheters that had been pre-coated with E. coli HU2117. We monitored the cultivatable organisms in the bladder for 28 days or until loss of E. coli HU2117. Urine from 4 subjects was collected longitudinally for 16S rRNA gene profiling. Eight of the ten subjects (average age 70.9 years) became colonized with E. coli HU2117, with a mean duration of 57.7 days (median: 28.5, range 0-266). All subjects also remained colonized by uropathogens. Five subjects suffered invasive UTI, 3 febrile UTI and 2 urosepsis/bacteremia, all associated with overgrowth of a urinary pathogen. Colonization with E. coli HU2117 did not impact bacterial bladder diversity, but subjects who developed infections had less diverse bladder microbiota. Colonization with E. coli HU2117 did not prevent bladder colonization or subsequent invasive disease by uropathogens. Microbial diversity may play a protective role against invasive infection of the catheterized bladder. ClinicalTrials.gov, NCT00554996 http://clinicaltrials.gov/ct2/show/NCT00554996. Published by Elsevier Ltd.

  12. Distinct genetic alterations in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Hassan Ashktorab

    Full Text Available BACKGROUND: Colon cancer (CRC development often includes chromosomal instability (CIN leading to amplifications and deletions of large DNA segments. Epidemiological, clinical, and cytogenetic studies showed that there are considerable differences between CRC tumors from African Americans (AAs and Caucasian patients. In this study, we determined genomic copy number aberrations in sporadic CRC tumors from AAs, in order to investigate possible explanations for the observed disparities. METHODOLOGY/PRINCIPAL FINDINGS: We applied genome-wide array comparative genome hybridization (aCGH using a 105k chip to identify copy number aberrations in samples from 15 AAs. In addition, we did a population comparative analysis with aCGH data in Caucasians as well as with a widely publicized list of colon cancer genes (CAN genes. There was an average of 20 aberrations per patient with more amplifications than deletions. Analysis of DNA copy number of frequently altered chromosomes revealed that deletions occurred primarily in chromosomes 4, 8 and 18. Chromosomal duplications occurred in more than 50% of cases on chromosomes 7, 8, 13, 20 and X. The CIN profile showed some differences when compared to Caucasian alterations. CONCLUSIONS/SIGNIFICANCE: Chromosome X amplification in male patients and chromosomes 4, 8 and 18 deletions were prominent aberrations in AAs. Some CAN genes were altered at high frequencies in AAs with EXOC4, EPHB6, GNAS, MLL3 and TBX22 as the most frequently deleted genes and HAPLN1, ADAM29, SMAD2 and SMAD4 as the most frequently amplified genes. The observed CIN may play a distinctive role in CRC in AAs.

  13. A chitinase is required for Xylella fastidiosa colonization of its insect and plant hosts.

    Science.gov (United States)

    Labroussaa, Fabien; Ionescu, Michael; Zeilinger, Adam R; Lindow, Steven E; Almeida, Rodrigo P P

    2017-04-01

    Xylella fastidiosa colonizes the xylem network of host plant species as well as the foregut of its required insect vectors to ensure efficient propagation. Disease management strategies remain inefficient due to a limited comprehension of the mechanisms governing both insect and plant colonization. It was previously shown that X. fastidiosa has a functional chitinase (ChiA), and that chitin likely serves as a carbon source for this bacterium. We expand on that research, showing that a chiA mutant strain is unable to grow on chitin as the sole carbon source. Quantitative PCR assays allowed us to detect bacterial cells in the foregut of vectors after pathogen acquisition; populations of the wild-type and complemented mutant strain were both significantly larger than the chiA mutant strain 10 days, but not 3 days, post acquisition. These results indicate that adhesion of the chiA mutant strain to vectors may not be impaired, but that cell multiplication is limited. The mutant was also affected in its transmission by vectors to plants. In addition, the chiA mutant strain was unable to colonize host plants, suggesting that the enzyme has other substrates associated with plant colonization. Lastly, ChiA requires other X. fastidiosa protein(s) for its in vitro chitinolytic activity. The observation that the chiA mutant strain is not able to colonize plants warrants future attention to be paid to the substrates for this enzyme.

  14. Development of Human Breast Milk Microbiota-Associated Mice as a Method to Identify Breast Milk Bacteria Capable of Colonizing Gut.

    Science.gov (United States)

    Wang, Xiaoxin; Lu, Huifang; Feng, Zhou; Cao, Jie; Fang, Chao; Xu, Xianming; Zhao, Liping; Shen, Jian

    2017-01-01

    Human breast milk is recognized as one of multiple important sources of commensal bacteria for infant gut. Previous studies searched for the bacterial strains shared between breast milk and infant feces by isolating bacteria and performing strain-level bacterial genotyping, but only limited number of milk bacteria were identified to colonize infant gut, including bacteria from Bifidobacterium , Staphylococcus , Lactobacillus , and Escherichia / Shigella . Here, to identify the breast milk bacteria capable of colonizing gut without the interference of bacteria of origins other than the milk or the necessity to analyze infant feces, normal chow-fed germ-free mice were orally inoculated with the breast milk collected from a mother 2 days after vaginal delivery. According to 16S rRNA gene-based denaturant gradient gel electrophoresis and Illumina sequencing, bacteria at >1% abundance in the milk inoculum were only Streptococcus (56.0%) and Staphylococcus (37.4%), but in the feces of recipient mice were Streptococcus (80.3 ± 2.3%), Corynebacterium (10.0 ± 2.6 %), Staphylococcus (7.6 ± 1.6%), and Propionibacterium (2.1 ± 0.5%) that were previously shown as dominant bacterial genera in the meconium of C-section-delivered human babies; the abundance of anaerobic gut-associated bacteria, Faecalibacterium , Prevotella , Roseburia , Ruminococcus , and Bacteroides , was 0.01-1% in the milk inoculum and 0.003-0.01% in mouse feces; the abundance of Bifidobacterium spp. was below the detection limit of Illumina sequencing in the milk but at 0.003-0.01% in mouse feces. The human breast milk microbiota-associated mouse model may be used to identify additional breast milk bacteria that potentially colonize infant gut.

  15. Influence of microorganisms on the alteration of glasses; Influence des microorganismes sur l'alteration des verres

    Energy Technology Data Exchange (ETDEWEB)

    Besnainou, B; Libert, M F [CEA Cadarache, 13 - Saint Paul lez Durance (France). Dept. d' Entreposage et de Stockage des Dechets

    1997-07-01

    Under specific conditions, microorganisms may enhance the alteration process of basaltic glass. However bacterial activity in the near field of a glass container would be possible only in environmental conditions provide nutrients and energetic substrates for bacterial growth. Depending of these conditions, microorganisms can: - modify the pH or the medium, - consume or produce soluble organic acids. To qualify the long term behaviour of glass, in presence of microorganisms, a qualitative and quantitative estimation of microbial activity potentialities and their consequences is needed. This must be achieved in studying the availability of the chemical species in the environment. (authors)

  16. Smoking cessation alters subgingival microbial recolonization.

    Science.gov (United States)

    Fullmer, S C; Preshaw, P M; Heasman, P A; Kumar, P S

    2009-06-01

    Smoking cessation improves the clinical manifestations of periodontitis; however, its effect on the subgingival biofilm, the primary etiological agent of periodontitis, is unclear. The purpose of this study was to investigate, longitudinally, if smoking cessation altered the composition of the subgingival microbial community, by means of a quantitative, cultivation-independent assay for bacterial profiling. Subgingival plaque was collected at baseline, and 3, 6, and 12 months post-treatment from smokers who received root planing and smoking cessation counseling. The plaque was analyzed by terminal restriction fragment length polymorphism (t-RFLP). Microbial profiles differed significantly between smokers and quitters at 6 and 12 months following smoking cessation. The microbial community in smokers was similar to baseline, while quitters demonstrated significantly divergent profiles. Changes in bacterial levels contributed to this shift. These findings reveal a critical role for smoking cessation in altering the subgingival biofilm and suggest a mechanism for improved periodontal health associated with smoking cessation.

  17. Long-term nickel exposure altered the bacterial community composition but not diversity in two contrasting agricultural soils.

    Science.gov (United States)

    Li, Jing; Hu, Hang-Wei; Ma, Yi-Bing; Wang, Jun-Tao; Liu, Yu-Rong; He, Ji-Zheng

    2015-07-01

    Nickel pollution imposes deleterious effects on soil ecosystem. The responses of soil microorganisms to long-term nickel pollution under field conditions remain largely unknown. Here, we used high-throughput sequencing to elucidate the impacts of long-term nickel pollution on soil bacterial communities in two contrasting agricultural soils. Our results found that the soil microbial biomass carbon consistently decreased along the nickel gradients in both soils. Nickel pollution selectively favored or impeded the prevalence of several dominant bacterial guilds, in particular, Actinobacteria showed tolerance, while Acidobacteria and Planctomycetes displayed sensitivity. Despite the apparent shifts in the bacterial community composition, no clear tendency in the bacterial diversity and abundance was identified along the nickel gradients in either soil. Collectively, we provide evidence that long-term nickel pollution shifted the soil bacterial communities, resulting in the decrease of microbial biomass although the bacterial diversity was not significantly changed.

  18. Effects of dark chocolate on azoxymethane-induced colonic aberrant crypt foci.

    Science.gov (United States)

    Hong, Mee Young; Nulton, Emily; Shelechi, Mahshid; Hernández, Lisa M; Nemoseck, Tricia

    2013-01-01

    Epidemiologic evidence supports that diets rich in polyphenols promote health and may delay the onset of colon cancer. Cocoa and chocolate products have some of the highest polyphenolic concentrations compared to other polyphenolic food sources. This study tested the hypothesis that a diet including dark chocolate can protect against colon cancer by inhibiting aberrant crypt foci (ACF) formation, downregulating gene expression of inflammatory mediators, and favorably altering cell kinetics. We also investigated whether bloomed dark chocolate retains the antioxidant capacity and protects against colon cancer. Forty-eight rats received either a diet containing control (no chocolate), regular dark chocolate, or bloomed dark chocolate and were injected subcutaneously with saline or azoxymethane. Relative to control, both regular and bloomed dark chocolate diets lowered the total number of ACF (P = 0.022). Chocolate diet-fed animals downregulated transcription levels of COX-2 (P = 0.035) and RelA (P = 0.045). Both chocolate diets lowered the proliferation index (P = 0.001). These results suggest that a diet including dark chocolate can reduce cell proliferation and some gene expression involving inflammation, which may explain the lower number of early preneoplastic lesions. These results provide new insight on polyphenol-rich chocolate foods and colon cancer prevention.

  19. Bacterial Urease and its Role in Long-Lasting Human Diseases

    Science.gov (United States)

    Konieczna, Iwona; Żarnowiec, Paulina; Kwinkowski, Marek; Kolesińska, Beata; Frączyk, Justyna; Kamiński, Zbigniew; Kaca, Wiesław

    2012-01-01

    Urease is a virulence factor found in various pathogenic bacteria. It is essential in colonization of a host organism and in maintenance of bacterial cells in tissues. Due to its enzymatic activity, urease has a toxic effect on human cells. The presence of ureolytic activity is an important marker of a number of bacterial infections. Urease is also an immunogenic protein and is recognized by antibodies present in human sera. The presence of such antibodies is connected with progress of several long-lasting diseases, like rheumatoid arthritis, atherosclerosis or urinary tract infections. In bacterial ureases, motives with a sequence and/or structure similar to human proteins may occur. This phenomenon, known as molecular mimicry, leads to the appearance of autoantibodies, which take part in host molecules destruction. Detection of antibodies-binding motives (epitopes) in bacterial proteins is a complex process. However, organic chemistry tools, such as synthetic peptide libraries, are helpful in both, epitope mapping as well as in serologic investigations. In this review, we present a synthetic report on a molecular organization of bacterial ureases - genetic as well as structural. We characterize methods used in detecting urease and ureolytic activity, including techniques applied in disease diagnostic processes and in chemical synthesis of urease epitopes. The review also provides a summary of knowledge about a toxic effect of bacterial ureases on human body and about occurrence of anti-urease antibodies in long-lasting diseases. PMID:23305365

  20. Microbiological and molecular identification of bacterial species isolated from nasal and oropharyngeal mucosa of fuel workers in Riyadh,

    Directory of Open Access Journals (Sweden)

    Suaad S. AlWakeel

    2017-09-01

    Full Text Available This study aimed to determine the bacterial species colonizing the nasal and oropharyngeal mucosa of fuel workers in Central Riyadh, Saudi Arabia on a microbiological and molecular level. Throat and nasal swab samples were obtained from 29 fuel station attendants in the period of time extending from March to May 2014 in Riyadh, Saudi Arabia. Microbiological identification techniques were utilized to identify the bacterial species isolated. Antibiotic sensitivity was assessed for each of the bacterial isolates. Molecular identification techniques based on PCR analysis of specific genomic sequences was conducted and was the basis on which phylogeny representation was done for 10 randomly selected samples of the isolates. Blood was drawn and a complete blood count was conducted to note the hematological indices for each of the study participants. Nineteen bacterial species were isolated from both the nasal cavity and the oropharynx including Streptococcus thoraltensis, alpha-hemolytic streptococci, Staphylococcus hominis, coagulase-negative staphylococci, Leuconostoc mesenteroides, Erysipelothrix rhusiopathiae and several others. We found 100% sensitivity of the isolates to ciprofloxacin, cefuroxime and gentamicin. Whereas cefotaxime and azithromycin posted sensitivities of 85.7% and 91.4%, respectively. Low sensitivities (<60% sensitivity to the antibiotics ampicillin, erythromycin, clarithromycin and norfloxacin were observed. Ninety-seven percent similarity to the microbial bank species was noted when the isolates were compared to it. Most hematological indices recorded were within the normal range. In conclusion, exposure to toxic fumes and compounds within fuel products may be a contributing factor to bacterial colonization of the respiratory tract in fuel workers.