WorldWideScience

Sample records for alterntive substrate absorber

  1. Investigations into alterntive substrate, absorber, and buffer layer processing for Cu(In,Ga)Se{sub 2}-based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tuttle, J.R.; Berens, T.A.; Keane, J. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    High-performance Cu(In,Ga)Se{sub 2}(CIGS)-based solar cells are presently fabricated within a narrow range of processing options. In this contribution, alternative substrate, absorber, and buffer layer processing is considered. Cell performance varies considerably when alternative substrates are employed. These variations are narrowed with the addition of Na via a Na{sub 2}S compound. Sputtered and electrodeposited CIGS precursors and completed absorbers show promise as alternatives to evaporation. A recrystallization process is required to improve their quality. (In,Ga){sub y}Se buffer layers contribute to cell performance above 10. Further improvements in these alternatives will lead to combined cell performance greater than 10% in the near term.

  2. Multistep Cylindrical Structure Analysis at Normal Incidence Based on Water-Substrate Broadband Metamaterial Absorbers

    Science.gov (United States)

    Fang, Chonghua

    2018-01-01

    A new multistep cylindrical structure based on water-substrate broadband metamaterial absorbers is designed to reduce the traditional radar cross-section (RCS) of a rod-shaped object. The proposed configuration consists of two distinct parts. One of these components is formed by a four-step cylindrical metal structure, whereas the other one is formed by a new water-substrate broadband metamaterial absorber. The designed structure can significantly reduce the radar cross section more than 10 dB from 4.58 to 18.42 GHz which is the 86.5 % bandwidth of from C-band to 20 GHz. The results of measurement show reasonably good accordance with the simulated ones, which verifies the ability and effect of the proposed design.

  3. Optimum angle of incidence for monochromatic interference in transparent films on absorbing substrates

    International Nuclear Information System (INIS)

    Muller, R.H.; Sand, M.L.

    1980-01-01

    Angles of incidence for s- and p-polarized light have been computed and confirmed experimentally for which monochromatic interference in transparent thin films on absorbing substrates results in optimum interference fringe contrast (visibility=1). Under these angles of incidence and with polarized light, film thickness determinations which are not possible at normal incidence or with unpolarized light can be carried out by use of thin-film interference

  4. First principle analyses of direct bandgap solar cells with absorbing substrates versus mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Alexander P. [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Kirk, Wiley P. [Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2013-11-07

    Direct bandgap InP, GaAs, CdTe, and Ga{sub 0.5}In{sub 0.5}P solar cells containing backside mirrors as well as parasitically absorbing substrates are analyzed for their limiting open circuit voltage and power conversion efficiency with comparison to record solar cells. From the principle of detailed balance, it is shown quantitatively that mirror solar cells have greater voltage and power conversion efficiency than their substrate counterparts. Next, the radiative recombination coefficient and maximum radiative lifetime of GaAs mirror and substrate solar cells are calculated and compared to the nonradiative Auger and Shockley-Read-Hall (SRH) lifetimes. Mirror solar cells have greater radiative lifetime than their substrate variants. Auger lifetime exceeds radiative lifetime for both substrate and mirror cells while SRH lifetime may be less or greater than radiative lifetime depending on trap concentration and capture cross section. Finally, the change in free energy of the photogenerated carriers is analyzed in a comparison between InP, GaAs, CdTe, and Ga{sub 0.5}In{sub 0.5}P mirror and substrate solar cells in order to characterize the relationship between solar photon quality and free energy management in solar cells with differing bandgaps. Wider bandgap visible threshold Ga{sub 0.5}In{sub 0.5}P solar cells make better use of the available change in free energy of the photogenerated charge carriers, even when normalized to the bandgap energy, than narrower bandgap near-IR threshold InP, GaAs, and CdTe solar cells.

  5. Preparation and characterization of CuO nanostructures on copper substrate as selective solar absorbers

    International Nuclear Information System (INIS)

    Karthick Kumar, S.; Murugesan, S.; Suresh, S.

    2014-01-01

    Selective solar absorber coatings of copper oxide (CuO) on copper substrates are prepared by room temperature oxidation of copper at different alkaline conditions. The surface morphology and structural analyses of the CuO coatings are carried out by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and Raman spectroscopy techniques. XRD and Raman studies indicated the single phase nature and high crystallinity of the prepared CuO nanostructures. Different CuO nanostructures, viz., nanoneedles, nanofibers and nanoparticles are formed at different alkaline conditions. The influence of reaction time on morphology of the CuO nanostructures is also studied. The thermal emittance values of these nanostructured CuO samples are found to be in the range of 6–7% and their solar absorptances are ranged between 84 and 90%. The observed high solar selectivity values (>12.7) suggest that these coatings can be used as selective absorbers in solar thermal gadgets. - Highlights: • Nanostructured CuO thin films on Cu substrate have been prepared by a facile method. • Morphology of the CuO nanostructures varies with reaction pH. • The thin films show high absorptance in the visible region and low thermal emittance. • Multiple absorption in the porous structure leads to high solar absorptance. • Nanostructures posses solar selectivity values >12

  6. Microstructured extremely thin absorber solar cells

    DEFF Research Database (Denmark)

    Biancardo, Matteo; Krebs, Frederik C

    2007-01-01

    In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed by press......In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed...

  7. Theoretical development and validation of a Sharp Front model of the dewatering of a slurry by an absorbent substrate

    International Nuclear Information System (INIS)

    Collier, N C; Wilson, M A; Carter, M A; Hoff, W D; Hall, Christopher; Ball, R J; El-Turki, A; Allen, G C

    2007-01-01

    The absorption of water from a slurry into an absorbent substrate is analysed using Sharp Front theory. The analysis describes the relationship between the sorptivity S of the substrate, the desorptivity R of the slurry and the transfer sorptivity A between slurry and substrate, and leads to the relationship 1/A 2 = 1/R 2 + 1/S 2 . Experimental data are presented which validate this equation for the practically important case of the absorption of water from soft mortar mixes by fired clay bricks. A unique feature of the experimental work is the measurement of the desorptivity of the mortars at a pressure equal to the wetting front capillary pressure of the clay brick substrate. Analysis of the experimental data also enables, for the first time, the calculation of the capillary potential at the slurry/substrate interface. The analysis has relevance to many aspects of ceramic and mineral processing, industrial filtration and construction engineering

  8. High spectral selectivity for solar absorbers using a monolayer transparent conductive oxide coated on a metal substrate

    Science.gov (United States)

    Shimizu, Makoto; Suzuki, Mari; Iguchi, Fumitada; Yugami, Hiroo

    2017-05-01

    A spectrally selective absorber composed of a monolayer transparent conductive oxide (TCO) coated on a metal substrate is investigated for use in solar systems operating at temperatures higher (>973 K) than the operation temperature of conventional systems ( ˜ 673 K). This method is different from the currently used solar-selective coating technologies, such as those using multilayered and cermet materials. The spectral selective absorption property can be attributed to the inherent optical property of TCO owing to the plasma frequency and interferences between the substrates. Since spectral selectivity can be achieved using monolayered materials, the effect of atomic diffusion occurring at each layer boundary in a multilayer or cermet coatings under high-temperature conditions can be reduced. In addition, since this property is attributed to the inherent property of TCO, the precise control of the layer thickness can be omitted if the layer is sufficiently thick (>0.5 μm). The optimum TCO properties, namely, carrier density and mobility, required for solar-selective absorbers are analyzed to determine the cutoff wavelength and emittance in the infrared range. A solar absorptance of 0.95 and hemispherical emittance of 0.10 at 973 K are needed for achieving the optimum TCO properties, i.e., a carrier density of 5.5 × 1020 cm-3 and mobility of 90 cm2 V-1 s-1 are required. Optical simulations indicate that the spectrally selective absorption weakly depends on the incident angle and film thickness. The thermal stability of the fabricated absorber treated at temperatures up to 973 K for 10 h is verified in vacuum by introducing a SiO2 interlayer, which plays an important role as a diffusion barrier.

  9. Thin absorbers for large-area soft X-ray microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Rocks, L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States)]. E-mail: rocks@wisp.physics.wisc.edu; Anderson, M.B. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Bilgri, N. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Brekosky, R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gwynne Crowder, S. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Figueroa-Feliciano, E. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kelley, R. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Kilbourne, C.A. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Lai, T. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Lindeman, M.A. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Man, J. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); McCammon, D. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Nelms, K.L. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Porter, F.S. [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Sivananthan, S. [University of Illinois at Chicago, Chicago, IL 60607 (United States); Vidugiris, G. [Department of Physics, University of Wisconsin, Madison, WI 53706 (United States); Zhao, J. [University of Illinois at Chicago, Chicago, IL 60607 (United States)

    2006-04-15

    The X-ray Quantum Calorimeter (XQC) sounding rocket experiment utilizes a microcalorimeter array for observing the diffuse soft X-ray background. Observations of such low surface-brightness targets require a large-area detector. We will be using an array of large absorbers. Good absorbers must rapidly and completely thermalize photons, have small heat capacity for high stopping efficiency and have good lateral thermal transport. For observing the soft X-ray background (energies <1 keV), the volume and heat capacity of absorber material can be kept to a minimum by making the absorbers only as thick as needed for high quantum efficiency at these low energies. These thin, large-area absorbers are not self-supporting and have poor lateral heat transport. Depositing the absorber material on a Si substrate provides support and improves lateral thermal conduction. We present heat capacity results for thin HgTe and thin Bi, each on Si substrates. We also describe the HgTe absorber fabrication.

  10. A checkerboard selective absorber with excellent spectral selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liu, E-mail: optyang@zju.edu.cn [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); School of Electrical, Computer, and Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Mo, Lei; Chen, Tuo [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); Department of Physics, Zhejiang University, Hangzhou 310027 (China); Forsberg, Erik [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); He, Sailing [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China); Department of Electromagnetic Engineering, JORCEP, Roy Institute of Technology (KTH), S-100 44 Stockholm (Sweden)

    2015-11-14

    A selective absorber with excellent spectral selectivity is proposed and analyzed. The absorber is based on a germanium (Ge) checkerboard on top of a tantalum (Ta) substrate. At wavelengths shorter than the 1.2 μm cutoff, a very high absorption is achieved due to strong cavity resonances in the Ge nanosquares, and their interactions with adjacent nanocavities and the bottom Ta substrate. At longer wavelengths, absorption is greatly suppressed due to destructive interference between the transparent checkerboard layer and the highly reflective Ta substrate. To better describe the superior selectivity of our configuration, a new figure of merit (FOM) is introduced. We observe a FOM value of 0.88 compared to 0.69 for its planar counterpart. We also conduct a thermal analysis to verify the excellent selectivity of our absorber. A high temperature can be achieved and maintained, promising good potential for applications in solar thermophotovoltaic systems.

  11. Aluminium or copper substrate panel for selective absorption of solar energy

    Science.gov (United States)

    Roberts, M. L.; Sharpe, M. H.; Krupnick, A. C. (Inventor)

    1979-01-01

    A method for making panels which selectively absorb solar energy is disclosed. The panels are comprised of an aluminum substrate, a layer of zinc thereon, a layer of nickel over the zinc layer and an outer layer of solar energy absorbing nickel oxide or a copper substrate with a layer of nickel thereon and a layer of solar energy absorbing nickel oxide distal from the copper substrate.

  12. Cermet based solar selective absorbers : further selectivity improvement and developing new fabrication technique

    OpenAIRE

    Nejati, Mohammadreza

    2008-01-01

    Spectral selectivity of cermet based selective absorbers were increased by inducing surface roughness on the surface of the cermet layer using a roughening technique (deposition on hot substrates) or by micro-structuring the metallic substrates before deposition of the absorber coating using laser and imprint structuring techniques. Cu-Al2O3 cermet absorbers with very rough surfaces and excellent selectivity were obtained by employing a roughness template layer under the infrared reflective l...

  13. Direct growth of graphene on quartz substrate as saturable absorber for femtosecond solid-state laser

    International Nuclear Information System (INIS)

    Xu, S C; Man, B Y; Jiang, S Z; Chen, C S; Liu, M; Yang, C; Gao, S B; Zhang, C; Feng, D J; Huang, Q J; Hu, G D; Chen, X F

    2014-01-01

    We present a novel method for the direct metal-free growth of graphene on quartz substrate. The direct-grown graphene yields excellent nonlinear saturable absorption properties and is demonstrated to be suitable as a saturable absorber (SA) for an ultrafast solid-state laser. Nearly Fourier-limited 367 fs was obtained at a central wavelength of 1048 nm with a repetition rate of 105.7 MHz. At a pump power of 7.95 W, the average output power was 1.93 W and the highest pulse energy reached 18.3 nJ, with a peak power of 49.8 kW. Our work opens an easy route for making a reliable graphene SA with a mode-locking technique and also displays an exciting prospect in making low-cost and ultrafast lasers. (letter)

  14. Solar radiation absorbing material

    Science.gov (United States)

    Googin, John M.; Schmitt, Charles R.; Schreyer, James M.; Whitehead, Harlan D.

    1977-01-01

    Solar energy absorbing means in solar collectors are provided by a solar selective carbon surface. A solar selective carbon surface is a microporous carbon surface having pores within the range of 0.2 to 2 micrometers. Such a surface is provided in a microporous carbon article by controlling the pore size. A thermally conductive substrate is provided with a solar selective surface by adhering an array of carbon particles in a suitable binder to the substrate, a majority of said particles having diameters within the range of about 0.2-10 microns.

  15. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon modes that destructively interfere with the dipolar mode and generate electromagnetically induced absorption. (ii) The patterned graphene layers biased at different gate voltages backedup with dielectric substrates are stacked on top of each other. The resulting absorber is polarization dependent but has an ultra-broadband of operation. (iii) Graphene\\'s damping factor is increased by lowering its electron mobility to 1000cm 2=Vs. Indeed, numerical experiments demonstrate that with only three layers, bandwidth of 90% absorption can be extended upto 7THz, which is drastically larger than only few THz of bandwidth that can be achieved with existing metallic/graphene absorbers. © 2013 Optical Society of America.

  16. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals

    DEFF Research Database (Denmark)

    Ding, Fei; Dai, Jin; Chen, Yiting

    2016-01-01

    Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally...... demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO2) coated Au substrate, with the quality (Q) factor...

  17. Nuclear reactor core having nuclear fuel and composite burnable absorber arranged for power peaking and moderator temperature coefficient control

    International Nuclear Information System (INIS)

    Kapil, S.K.

    1992-01-01

    This patent describes a burnable absorber coated nuclear fuel. It comprises a nuclear fuel substrate containing a fissionable material; and an outer burnable absorber coating applied on an outer surface of the substrate; the outer absorber coating being composed of an inner layer of a boron-bearing material except for erbium boride and an outer layer of an erbium material

  18. Fabrication of high efficacy selective solar absorbers

    CSIR Research Space (South Africa)

    Tile, N

    2012-03-01

    Full Text Available High efficiency tandem selective solar absorber materials of carbon in nickel oxide (C-NiO) composite were fabricated on an aluminium substrate using a simple and cost effective sol-gel process. The process involved preparation of carbon and nickel...

  19. Low Absorbance Measurements

    Science.gov (United States)

    Harris, T. D.; Williams, A. M.

    1983-10-01

    The application of low absorption measurements to dilute solute determination requires specific instrumental characteristics. The use of laser intracavity absorption and thermal lens calorimetry to measure concentration is shown. The specific operating parameters that determine sensitivity are delineated along with the limits different measurement strategies impose. Finally areas of improvement in components that would result in improve sensitivity, accuracy, and reliability are discussed. During the past decade, a large number of methods have been developed for measuring the light absorbed by transparent materials. These include measurements on gases, liquids, and solids. The activity has been prompted by a variety of applications and a similar variety of disciplines. In Table 1 some representative examples of these methods is shown along with their published detection limits.1 It is clear that extraordinarily small absorbances can be measured. Most of the methods can be conveniently divided into two groups. These groups are those that measure the transmission of the sample and those that measure the light absorbed by the sample. The light absorbed methods are calorimetric in character. The advantages and disadvantages of each method varies depending on the principal application for which they were developed. The most prevalent motivation has been to characterize the bulk optical properties of transparent materials. Two examples are the development of extremely transparent glasses for use as fiber optic materials and the development of substrates for high power laser operation.

  20. Additive manufacturing of RF absorbers

    Science.gov (United States)

    Mills, Matthew S.

    The ability of additive manufacturing techniques to fabricate integrated electromagnetic absorbers tuned for specific radio frequency bands within structural composites allows for unique combinations of mechanical and electromagnetic properties. These composites and films can be used for RF shielding of sensitive electromagnetic components through in-plane and out-of-plane RF absorption. Structural composites are a common building block of many commercial platforms. These platforms may be placed in situations in which there is a need for embedded RF absorbing properties along with structural properties. Instead of adding radar absorbing treatments to the external surface of existing structures, which adds increased size, weight and cost; it could prove to be advantageous to integrate the microwave absorbing properties directly into the composite during the fabrication process. In this thesis, a method based on additive manufacturing techniques of composites structures with prescribed electromagnetic loss, within the frequency range 1 to 26GHz, is presented. This method utilizes screen printing and nScrypt micro dispensing to pattern a carbon based ink onto low loss substrates. The materials chosen for this study will be presented, and the fabrication technique that these materials went through to create RF absorbing structures will be described. The calibration methods used, the modeling of the RF structures, and the applications in which this technology can be utilized will also be presented.

  1. Optical properties and thermal stability of TiAlN/AlON tandem absorber prepared by reactive DC/RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Barshilia, Harish C.; Selvakumar, N.; Rajam, K.S. [Surface Engineering Division, National Aerospace Laboratories, Bangalore 560 017 (India); Biswas, A. [Spectroscopy Division, Bhabha Atomic Research Center, Mumbai 400 085 (India)

    2008-11-15

    Spectrally selective TiAlN/AlON tandem absorbers were deposited on copper and stainless steel substrates using a reactive DC/RF magnetron sputtering system. The compositions and thicknesses of the individual component layers were optimized to achieve high absorptance ({alpha}=0.931-0.942) and low emittance ({epsilon}=0.05-0.06) on copper substrate. The experimental spectroscopic ellipsometric data have been fitted with the theoretical models to derive the dispersion of the optical constants (n and k). In order to study the thermal stability of the tandem absorbers, they were subjected to heat treatment (in air and vacuum) for different durations and temperatures. The tandem absorber deposited on Cu substrates exhibited high solar selectivity ({alpha}/{epsilon}) of 0.946/0.07 even after heat treatment in air up to 600 C for 2 h. At 625 C, the solar selectivity decreased significantly on Cu substrates (e.g., {alpha}/{epsilon}=0.924/0.30). The tandem absorber on Cu substrates was also stable in air up to 100 h at 400 C with a solar selectivity of 0.919/0.06. Studies on the accelerated aging tests indicated that the activation energy for the degradation of the tandem absorber is of the order of 100 kJ/mol. (author)

  2. Absorbent agents for clean-up of liquid hydrocarbons

    International Nuclear Information System (INIS)

    Waldmann, J.J.

    1993-01-01

    A method is described for absorbing liquid hydrocarbon from a liquid hydrocarbon-contaminated substrate comprising applying to said contaminated substrate an effective amount of a chemical absorbent composition of formula: A m B n C p wherein A m is an acid leached bentonite in a form of hydrous silicate of alumina modified by a hydrophobic alkyl (C 12 -C 24 ) amine which has been double protonized by an aliphatic acid with C 1 -C 18 carbon atoms in which m = 0 to 100% by weight of the composition; B n is a modified aminoplast resin comprised of cyanoguanidine-melamine-urea-formaldehyde in a foam form in which n is 0 to 100% by weight; and C p is a siliceous support-modified hydrophobic material in which p is 0 to 100% by weight; provided that at least one of m and n is a positive numerical value

  3. Broadband polarization-independent and low-profile optically transparent metamaterial absorber

    Science.gov (United States)

    Li, Long; Xi, Rui; Liu, Haixia; Lv, Zhiyong

    2018-05-01

    A transparent metamaterial absorber with simultaneously high optical transparency and broadband microwave absorption is presented in this paper. Consisting of a two-layer soda-lime glass substrate and three-layer patch-shaped indium tin oxide (ITO) films, the proposed absorber has advantages of broadband absorption with an absorptivity higher than 85% in the range from 6.1 to 22.1 GHz, good polarization insensitiveness, a high transparency, a low profile, and wide-incident-angle stability. A prototype of the proposed absorber is fabricated and experimentally measured to demonstrate its excellent performance. The measured results agree well with the theoretical design and numerical simulations.

  4. Degradation of unglazed rough graphite-aluminium solar absorber surfaces in simulated acid and neutral rain

    International Nuclear Information System (INIS)

    Konttinen, P.; Lund, P.D.; Salo, T.

    2005-01-01

    Degradation mechanisms of unglazed solar absorber surfaces based on aluminium substrate were studied. Rough graphite-aluminium surfaces were total-immersion subjected to aerated and de-aerated simulated neutral and acid rain. Test conditions were based on calculated absorber stagnation temperature and global rain acidity measurements. Changes in optical properties, elemental composition and sample mass were examined by spectrometry, energy dispersive X-ray spectrometry and thermogravimetry, respectively. The absorbers exhibited almost no degradation at pH value of 3.5. At pH 5.5 alumina on the surface hydrated significantly degrading the optical properties of the surfaces severely in most cases. Therefore these absorber surfaces can not be recommended to be used in non-glazed applications if they are exposed to rain with pH exceeding ∼ 3.5-4.5. The total-immersion test needs to be developed further as the test results exhibited poor temperature and time dependency thus preventing accurate service lifetime estimates. Still, these tests were useful in determining favourable and non-favourable operating conditions for the absorber surfaces based on aluminium substrate. (author)

  5. Stretchable Metamaterial Absorber Using Liquid Metal-Filled Polydimethylsiloxane (PDMS

    Directory of Open Access Journals (Sweden)

    Kyeongseob Kim

    2016-04-01

    Full Text Available A stretchable metamaterial absorber is proposed in this study. The stretchability was achieved by liquid metal and polydimethylsiloxane (PDMS. To inject liquid metal, microfluidic channels were fabricated using PDMS powers and microfluidic-channel frames, which were built using a three-dimensional printer. A top conductive pattern and ground plane were designed after considering the easy injection of liquid metal. The proposed metamaterial absorber comprises three layers of PDMS substrate. The top layer is for the top conductive pattern, and the bottom layer is for the meandered ground plane. Flat PDMS layers were inserted between the top and bottom PDMS layers. The measured absorptivity of the fabricated absorber was 97.8% at 18.5 GHz, and the absorption frequency increased from 18.5 to 18.65 GHz as the absorber was stretched from its original length (5.2 cm to 6.4 cm.

  6. Mechanically Robust, Stretchable Solar Absorbers with Submicron-Thick Multilayer Sheets for Wearable and Energy Applications.

    Science.gov (United States)

    Lee, Hye Jin; Jung, Dae-Han; Kil, Tae-Hyeon; Kim, Sang Hyeon; Lee, Ki-Suk; Baek, Seung-Hyub; Choi, Won Jun; Baik, Jeong Min

    2017-05-31

    A facile method to fabricate a mechanically robust, stretchable solar absorber for stretchable heat generation and an enhanced thermoelectric generator (TEG) is demonstrated. This strategy is very simple: it uses a multilayer film made of titanium and magnesium fluoride optimized by a two-dimensional finite element frequency-domain simulation, followed by the application of mechanical stresses such as bending and stretching to the film. This process produces many microsized sheets with submicron thickness (∼500 nm), showing great adhesion to any substrates such as fabrics and polydimethylsiloxane. It exhibits a quite high light absorption of approximately 85% over a wavelength range of 0.2-4.0 μm. Under 1 sun illumination, the solar absorber on various stretchable substrates increased the substrate temperature to approximately 60 °C, irrespective of various mechanical stresses such as bending, stretching, rubbing, and even washing. The TEG with the absorber on the top surface also showed an enhanced output power of 60%, compared with that without the absorber. With an incident solar radiation flux of 38.3 kW/m 2 , the output power significantly increased to 24 mW/cm 2 because of the increase in the surface temperature to 141 °C.

  7. A Stretchable Electromagnetic Absorber Fabricated Using Screen Printing Technology.

    Science.gov (United States)

    Jeong, Heijun; Lim, Sungjoon

    2017-05-21

    A stretchable electromagnetic absorber fabricated using screen printing technology is proposed in this paper. We used a polydimethylsiloxane (PDMS) substrate to fabricate the stretchable absorber since PDMS exhibits good dielectric properties, flexibility, and restoring capabilities. DuPont PE872 (DuPont, Wilmington, CT, USA), a stretchable silver conductive ink, was used for the screen printing technique. The reflection coefficient of the absorber was measured using a vector network analyzer and a waveguide. The proposed absorber was designed as a rectangular patch unit cell, wherein the top of the unit cell acted as the patch and the bottom formed the ground. The size of the patch was 8 mm × 7 mm. The prototype of the absorber consisted of two unit cells such that it fits into the WR-90 waveguide (dimensions: 22.86 mm × 10.16 mm) for experimental measurement. Before stretching the absorber, the resonant frequency was 11 GHz. When stretched along the x -direction, the resonant frequency shifted by 0.1 GHz, from 11 to 10.9 GHz, demonstrating 99% absorption. Furthermore, when stretched along the y -direction, the resonant frequency shifted by 0.6 GHz, from 11 to 10.4 GHz, demonstrating 99% absorption.

  8. An ultrathin wide-band planar metamaterial absorber based on a fractal frequency selective surface and resistive film

    International Nuclear Information System (INIS)

    Fan Yue-Nong; Cheng Yong-Zhi; Nie Yan; Wang Xian; Gong Rong-Zhou

    2013-01-01

    We propose an ultrathin wide-band metamaterial absorber (MA) based on a Minkowski (MIK) fractal frequency selective surface and resistive film. This absorber consists of a periodic arrangement of dielectric substrates sandwiched with an MIK fractal loop structure electric resonator and a resistive film. The finite element method is used to simulate and analyze the absorption of the MA. Compared with the MA-backed copper film, the designed MA-backed resistive film exhibits an absorption of 90% at a frequency region of 2 GHz–20 GHz. The power loss density distribution of the MA is further illustrated to explain the mechanism of the proposed MA. Simulated absorptions at different incidence cases indicate that this absorber is polarization-insensitive and wide-angled. Finally, further simulated results indicate that the surface resistance of the resistive film and the dielectric constant of the substrate can affect the absorbing property of the MA. This absorber may be used in many military fields

  9. Ultrathin triple-band polarization-insensitive wide-angle compact metamaterial absorber

    International Nuclear Information System (INIS)

    Shang, Shuai; Yang, Shizhong; Tao, Lu; Yang, Lisheng; Cao, Hailin

    2016-01-01

    In this study, the design, realization, and characterization of an ultrathin triple-band polarization-insensitive wide-angle metamaterial absorber are reported. The metamaterial absorber comprises a periodic array of modified six-fold symmetric snowflake-shaped resonators with strip spiral line load, which is printed on a dielectric substrate backed by a metal ground plane. It is shown that the absorber exhibits three distinct near-unity absorption peaks, which are distributed across C, X, Ku bands, respectively. Owing to the six-fold symmetry, the absorber is insensitive to the polarization of the incident radiation. In addition, the absorber shows excellent absorption performance over wide oblique incident angles for both transverse electric and transverse magnetic polarizations. Simulated surface current and field distributions at the three absorption peaks are demonstrated to understand the absorption mechanism. Particularly, the absorption modes come from the fundamental and high-order dipole resonances. Furthermore, the experimental verification of the designed absorber is conducted, and the measured results are in reasonable agreement with the simulated ones. The proposed ultrathin (∼0.018λ 0 , λ 0 corresponding to the lowest peak absorption frequency) compact (0.168λ 0 ×0.168λ 0 corresponding to the area of a unit cell) absorber enables potential applications such as stealth technology, electromagnetic interference and spectrum identification.

  10. Control of base-excited dynamical systems through piezoelectric energy harvesting absorber

    Science.gov (United States)

    Abdelmoula, H.; Dai, H. L.; Abdelkefi, A.; Wang, L.

    2017-09-01

    The spring-mass absorber usually offers a good control to dynamical systems under direct base excitations for a specific value of the excitation frequency. As the vibrational energy of a primary dynamical system is transferred to the absorber, it gets dissipated. In this study, this energy is no longer dissipated but converted to available electrical power by designing efficient energy harvesters. A novel design of a piezoelectric beam installed inside an elastically-mounted dynamical system undergoing base excitations is considered. A design is carried out in order to determine the properties and dimensions of the energy harvester with the constraint of simultaneously decreasing the oscillating amplitudes of the primary dynamical system and increasing the harvested power of the energy harvesting absorber. An analytical model for the coupled system is constructed using Euler-Lagrange principle and Galerkin discretization. Different strategies for controlling the primary structure displacement and enhancing the harvested power as functions of the electrical load resistance and thickness of the beam substrate are performed. The linear polynomial approximation of the system’s key parameters as a function of the beam’s substrate thickness is first carried out. Then, the gradient method is applied to determine the adequate values of the electrical load resistance and thickness of the substrate under the constraints of minimizing the amplitudes of the primary structure or maximizing the levels of the harvested power. After that, an iterative strategy is considered in order to simultaneously minimize the amplitudes of the primary structure and maximize the levels of the harvested power as functions of the thickness of the substrate and electrical load resistance. In addition to harmonic excitations, the coupled system subjected to a white noise is explored. Through this analysis, the load resistance and thickness of the substrate of the piezoelectric energy harvester

  11. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.

    Science.gov (United States)

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-09-10

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  12. Adhesion of silver/polypyrrole nanocomposite coating to a fluoropolymer substrate

    Energy Technology Data Exchange (ETDEWEB)

    Horváth, Barbara; Kawakita, Jin, E-mail: KAWAKITA.Jin@nims.go.jp; Chikyow, Toyohiro

    2016-10-30

    Highlights: • Interfacial structure between Ag/polypyrrole (PPy) nanocomposite and PTFE was revealed. • PPy enters into PTFE substrate as a dispersion with up to 12 nm size Ag nanoparticles. • The nanocomposite is absorbed by PTFE substrate up to 1–2 μm deep. • Ag/PPy interlocks mechanically with PTFE causing strong adhesion. - Abstract: This paper describes the adhesive interface between a conducting polymer/metal composite and a polytetrafluoroethylene (PTFE) substrate. Strong adhesion was observed from using a Ag/polypyrrole (Ag/PPy) composite on a fluoropolymer substrate, which in most cases has a very low adhesion to different materials. To clarify the adhesion mechanism between the Ag/PPy composite and the PTFE substrate, the interfacial structure was studied by the use of transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Our results show that Ag/PPy composite is absorbed inside the nano-sized pores of PTFE and the composite mechanically interlocks after solidifying, which causes the nanocomposite to stick strongly to the substrate. The use of Ag/PPy coating could be a novel technique for developing electrodes, antennae or other high performance applications as this metal/conductive polymer composite has excellent adhesion properties on various plastics.

  13. Adhesion of silver/polypyrrole nanocomposite coating to a fluoropolymer substrate

    International Nuclear Information System (INIS)

    Horváth, Barbara; Kawakita, Jin; Chikyow, Toyohiro

    2016-01-01

    Highlights: • Interfacial structure between Ag/polypyrrole (PPy) nanocomposite and PTFE was revealed. • PPy enters into PTFE substrate as a dispersion with up to 12 nm size Ag nanoparticles. • The nanocomposite is absorbed by PTFE substrate up to 1–2 μm deep. • Ag/PPy interlocks mechanically with PTFE causing strong adhesion. - Abstract: This paper describes the adhesive interface between a conducting polymer/metal composite and a polytetrafluoroethylene (PTFE) substrate. Strong adhesion was observed from using a Ag/polypyrrole (Ag/PPy) composite on a fluoropolymer substrate, which in most cases has a very low adhesion to different materials. To clarify the adhesion mechanism between the Ag/PPy composite and the PTFE substrate, the interfacial structure was studied by the use of transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Our results show that Ag/PPy composite is absorbed inside the nano-sized pores of PTFE and the composite mechanically interlocks after solidifying, which causes the nanocomposite to stick strongly to the substrate. The use of Ag/PPy coating could be a novel technique for developing electrodes, antennae or other high performance applications as this metal/conductive polymer composite has excellent adhesion properties on various plastics.

  14. Influence of substrate temperature on properties of MgF2 coatings

    International Nuclear Information System (INIS)

    Yu Hua; Qi Hongji; Cui Yun; Shen Yanming; Shao Jianda; Fan Zhengxiu

    2007-01-01

    Thermal boat evaporation was employed to prepare MgF 2 single-layer coatings upon both JGS1 and UBK7 substrates at different substrate temperatures. Microstructure, transmittance and residual stress of these coatings were measured by X-ray diffraction, spectrophotometer, and optical interferometer, respectively. Measurement of laser induced damage threshold (LIDT) of the samples was performed at 355 nm, 8 ns pulses. The results showed that high substrate temperature was beneficial to crystallization of the film. Above 244 deg. C, the refractive index increased gradually with the substrate temperature rising. Whereas, it was exceptional at 210 deg. C that the refractive index was higher than those deposited at 244 and 277 deg. C. The tensile residual stresses were exhibited in all MgF 2 films, but not well correlated with the substrate temperature. In addition, the stresses were comparatively smaller upon JGS1 substrates. A tendency could be seen that the LIDTs reached the highest values at about 244 deg. C, and the films upon JGS1 had higher LIDTs than those upon UBK7 substrates at the same temperature. Meanwhile, the damage morphologies showed that the laser damage of the coating resulted from an absorbing center at the film-substrate interface. The features of the damages were displayed by an absorbing center dominated model. Furthermore, the reason of the difference in LIDT values was discussed in detail

  15. Optical characterization of nanoporous AAO sensor substrate

    Science.gov (United States)

    Kassu, Aschalew; Farley, Carlton W.; Sharma, Anup

    2014-05-01

    Nanoporous anodic aluminum oxide (AAO) has been investigated as an ideal and cost-effective chemical and biosensing platform. In this paper, we report the optical properties of periodic 100 micron thick nanoporous anodic alumina membranes with uniform and high density cylindrical pores penetrating the entire thickness of the substrate, ranging in size from 18 nm to 150 nm in diameter and pore periods from 44 nm to 243 nm. The surface geometry of the top and bottom surface of each membrane is studied using atomic force microscopy. The optical properties including transmittance, reflectance, and absorbance spectra on both sides of each substrate are studied and found to be symmetrical. It is observed that, as the pore size increases, the peak resonance intensity in transmittance decreases and in absorbance increases. The effects of the pore sizes on the optical properties of the bare nanoporous membranes and the benefit of using arrays of nanohole arrays with varying hole size and periodicity as a chemical sensing platform is also discussed. To characterize the optical sensing technique, transmittance and reflectance measurements of various concentrations of a standard chemical adsorbed on the bare nanoporous substrates are investigated. The preliminary results presented here show variation in transmittance and reflectance spectra with the concentration of the chemical used or the amount of the material adsorbed on the surface of the substrate.

  16. Inkjet Printing and Ebeam Sintering Approach to Fabrication of GHz Meta material Absorber

    International Nuclear Information System (INIS)

    Park, J. W.; Kim, Y. J.; Lee, Y. P.; Park, I. S.; Kang, J. H.; Lim, Jongwoo; Kim, Jonghee; Kim, Hyotae

    2013-01-01

    Metamaterial absorber structure of GHz range is fabricated by inkjet printing and e-beam sintering. The inkjet printing is of interest, which give the easier and quicker way to fabricate large scale metamaterials than the approaches by the lithographic process, Furthermore it is more suitable to make flexible electronics, which has yet been great technologic trend. Usual post process of inkjet printing is the sintering to ensure solvent-free from the printed pattern and to its better conductivity comparable to the ordinary vacuum deposition process. E-beam irradiation sintering of the pattern is promising because it is inherently local and low temperature process. The main procedure of metamaterials fabrication is printing a resonator structure with lossy metal such as Ag or Au. We designed two types of Ag based multiband absorber which are double and quadruple bands. Those adsorber patterns are printed on polyimide substrate with commercially available Ag ink (DGP 40LT-15C, 25C). The absorbance performance of fabricated metamaterials is characterized by Hewlett-Packard E836B network analyzer in microwave anechoic chamber. The conductivity enhancement after e-beam or other sintering process is checked by measuring sheet resistance. The absorbance of the fabricated metamaterial is measured around 60% for the types designed. The absorbance is not high enough to practical use, which is attributed to low conductivity of the printed pattern. The spectrum shows, however, quite interesting large broadness, which come in the interval between each pack absorbance, witch needs further study. Though the extent of its effectiveness of inkjet printing in metamaterials needs more experimental studies, the demonstrated capability of quick and large area fabrication to flexible substrate is excellent

  17. Flexible and conformable broadband metamaterial absorber with wide-angle and polarization stability for radar application

    Science.gov (United States)

    Chen, Huijie; Yang, Xiaoqing; Wu, Shiyue; Zhang, Di; Xiao, Hui; Huang, Kama; Zhu, Zhanxia; Yuan, Jianping

    2018-01-01

    In this work, a type of flexible, broadband electromagnetic microwave absorber is designed, fabricated and experimentally characterized. The absorber is composed of lumped resistors loaded frequency selective surface which is mounted on flexible substrate using silicone rubber and in turn backed by copper film. The simulated results show that an effective absorption (over 90%) bandwidth spans from 7.6 to 18.3 GHz, which covers both X (8-12 GHz) and Ku (12-18 GHz) bands, namely a 82.6% fraction bandwidth. And the bandwidth performs a good absorption response by varying the incident angle up to 60° for both TE and TM polarization. Moreover, the flexibility of the substrate enables the absorber conformably to bend and attach to cylinders of various radius without breakdown of the absorber. The designed structure has been fabricated and measured for both planar and conformable cases, and absorption responses show a good agreement of the broadband absorption feature with the simulated ones. This work has demonstrated specifically that proposed structure provides polarization-insensitive, wide-angle, flexible and conformable wideband absorption, which extends the absorber’s application to practical radar cross section reductions for radars and warships.

  18. Reactive decontamination of absorbing thin film polymer coatings: model development and parameter determination

    Science.gov (United States)

    Varady, Mark; Mantooth, Brent; Pearl, Thomas; Willis, Matthew

    2014-03-01

    A continuum model of reactive decontamination in absorbing polymeric thin film substrates exposed to the chemical warfare agent O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothioate (known as VX) was developed to assess the performance of various decontaminants. Experiments were performed in conjunction with an inverse analysis method to obtain the necessary model parameters. The experiments involved contaminating a substrate with a fixed VX exposure, applying a decontaminant, followed by a time-resolved, liquid phase extraction of the absorbing substrate to measure the residual contaminant by chromatography. Decontamination model parameters were uniquely determined using the Levenberg-Marquardt nonlinear least squares fitting technique to best fit the experimental time evolution of extracted mass. The model was implemented numerically in both a 2D axisymmetric finite element program and a 1D finite difference code, and it was found that the more computationally efficient 1D implementation was sufficiently accurate. The resulting decontamination model provides an accurate quantification of contaminant concentration profile in the material, which is necessary to assess exposure hazards.

  19. Towards corrosion testing of unglazed solar absorber surfaces in simulated acid rain

    International Nuclear Information System (INIS)

    Salo, T.; Pehkonen, A.; Konttinen, P.; Lund, P.

    2005-01-01

    Electrochemical impedance spectroscopy and potentiodynamic polarization tests were utilized for determining corrosion probabilities of unglazed C/Al 2 O 3 /Al solar absorber surfaces in simulated acid rain. Previously, the main degradation mechanism found was exponentially temperature-related hydration of aluminium oxide. In acid rain tests the main corrosion determinant was the pH value of the rain. Results indicate that these methods measure corrosion characteristics of Al substrate instead of the C/Al 2 O 3 /Al surface, probably mainly due to the rough and non-uniform microstructure of the latter. Further analyses of the test methods are required in order to estimate their applicability on Al-based uniform sputtered absorber surfaces. (author) (C/Al 2 O 3 /Al solar absorber; Acid rain; Corrosion; Electrochemical tests)

  20. Preparation and characterization of carbon/nickel oxide nanocomposite coatings for solar absorber applications

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2012-04-01

    Full Text Available Nanocomposite materials have wide range of applications in solar energy conversion. In this work, C/NiO nanocomposite solar energy absorbing surfaces were prepared using sol-gel synthesis and deposited on aluminium substrates using a spin coater...

  1. Vitreous carbon mask substrate for X-ray lithography

    Science.gov (United States)

    Aigeldinger, Georg [Livermore, CA; Skala, Dawn M [Fremont, CA; Griffiths, Stewart K [Livermore, CA; Talin, Albert Alec [Livermore, CA; Losey, Matthew W [Livermore, CA; Yang, Chu-Yeu Peter [Dublin, CA

    2009-10-27

    The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.

  2. Control of the sidewall angle of an absorber stack using the Faraday cage system for the change of pattern printability in EUVL

    Science.gov (United States)

    Jang, Il-Yong; Huh, Sung-Min; Moon, Seong-Yong; Woo, Sang-Gyun; Lee, Jin-Kwan; Moon, Sang Heup; Cho, HanKu

    2008-10-01

    A patterned TaN substrate, which is candidate for a mask absorber in extreme ultra-violet lithography (EUVL), was etched to have inclined sidewalls by using a Faraday cage system under the condition of a 2-step process that allowed the high etch selectivity of TaN over the resist. The sidewall angle (SWA) of the patterned substrate, which was in the shape of a parallelogram after etching, could be controlled by changing the slope of a substrate holder that was placed in the Faraday cage. The performance of an EUV mask, which contained the TaN absorber of an oblique pattern over the molybdenum/silicon multi-layer, was simulated for different cases of SWA. The results indicated that the optical properties, such as the critical dimension (CD), an offset in the CD bias between horizontal and vertical patterns (H-V bias), and a shift in the image position on the wafer, could be controlled by changing the SWA of the absorber stack. The simulation result showed that the effect of the SWA on the optical properties became more significant at larger thicknesses of the absorber and smaller sizes of the target CD. Nevertheless, the contrast of the aerial images was not significantly decreased because the shadow effect caused by either sidewall of the patterned substrate cancelled with each other.

  3. Natural cellulose fiber as substrate for supercapacitor.

    Science.gov (United States)

    Gui, Zhe; Zhu, Hongli; Gillette, Eleanor; Han, Xiaogang; Rubloff, Gary W; Hu, Liangbing; Lee, Sang Bok

    2013-07-23

    Cellulose fibers with porous structure and electrolyte absorption properties are considered to be a good potential substrate for the deposition of energy material for energy storage devices. Unlike traditional substrates, such as gold or stainless steel, paper prepared from cellulose fibers in this study not only functions as a substrate with large surface area but also acts as an interior electrolyte reservoir, where electrolyte can be absorbed much in the cellulose fibers and is ready to diffuse into an energy storage material. We demonstrated the value of this internal electrolyte reservoir by comparing a series of hierarchical hybrid supercapacitor electrodes based on homemade cellulose paper or polyester textile integrated with carbon nanotubes (CNTs) by simple solution dip and electrodeposited with MnO2. Atomic layer deposition of Al2O3 onto the fiber surface was used to limit electrolyte absorption into the fibers for comparison. Configurations designed with different numbers of ion diffusion pathways were compared to show that cellulose fibers in paper can act as a good interior electrolyte reservoir and provide an effective pathway for ion transport facilitation. Further optimization using an additional CNT coating resulted in an electrode of paper/CNTs/MnO2/CNTs, which has dual ion diffusion and electron transfer pathways and demonstrated superior supercapacitive performance. This paper highlights the merits of the mesoporous cellulose fibers as substrates for supercapacitor electrodes, in which the water-swelling effect of the cellulose fibers can absorb electrolyte, and the mesoporous internal structure of the fibers can provide channels for ions to diffuse to the electrochemical energy storage materials.

  4. Roof Integrated Solar Absorbers: The Measured Performance of ''Invisible'' Solar Collectors: Preprint

    International Nuclear Information System (INIS)

    Colon, C. J.; Merrigan, T.

    2001-01-01

    The Florida Solar Energy Center (FSEC), with the support of the National Renewable Energy Laboratory, has investigated the thermal performance of solar absorbers that are an integral, yet indistinguishable, part of a building's roof. The first roof-integrated solar absorber (RISA) system was retrofitted into FSEC's Flexible Roof Facility in Cocoa, Florida, in September 1998. This ''proof-of-concept'' system uses the asphalt shingle roof surface and the plywood decking under the shingles as an unglazed solar absorber. Data was gathered for a one-year period on the system performance. In Phase 2, two more RISA prototypes were constructed and submitted for testing. The first used the asphalt shingles on the roof surface with the tubing mounted on the underside of the plywood decking. The second prototype used metal roofing panels over a plywood substrate and placed the polymer tubing between the plywood decking and the metal roofing. This paper takes a first look at the thermal performance results for the ''invisible'' solar absorbers that use the actual roof surface of a building for solar heat collection

  5. Shock absorber

    International Nuclear Information System (INIS)

    Housman, J.J.

    1978-01-01

    A shock absorber is described for use in a hostile environment at the end of a blind passage for absorbing impact loads. The shock absorber includes at least one element which occupies the passage and which is comprised of a porous brittle material which is substantially non-degradable in the hostile environment. A void volume is provided in the element to enable the element to absorb a predetermined level of energy upon being crushed due to impact loading

  6. Imparting Icephobicity with Substrate Flexibility

    Science.gov (United States)

    Schutzius, Thomas; Vasileiou, Thomas; Poulikakos, Dimos

    2017-11-01

    Ice accumulation poses serious safety and performance issues for modern infrastructure. Rationally designed superhydrophobic surfaces have demonstrated potential as a passive means to mitigate ice accretion; however, further studies on solutions that reduce impalement and contact time for impacting supercooled droplets are urgently needed. Here we demonstrate the collaborative effect of substrate flexibility and surface texture on enhancing icephobicity and repelling viscous droplets. We first investigate the influence of increased viscosity on impalement resistance and droplet-substrate contact time. Then we examine the effect of droplet partial solidification on recoil by impacting supercooled water droplets onto surfaces containing ice nucleation promoters. We demonstrate a passive method for shedding partially solidified droplets that does not rely on the classic recoil mechanism. Using an energy-based model, we identify a previously unexplored mechanism whereby the substrate oscillation governs the rebound process by efficiently absorbing the droplet kinetic energy and rectifying it back, allowing for droplet recoil. This mechanism applies for a range of droplet viscosities and ice slurries, which do not rebound from rigid superhydrophobic substrates. Partial support of the Swiss National Science Foundation under Grant No. 162565 and the European Research Council under Advanced Grant No. 669908 (INTICE) is acknowledged.

  7. Shock absorbing structure

    International Nuclear Information System (INIS)

    Kojima, Naoki; Matsushita, Kazuo.

    1992-01-01

    Small pieces of shock absorbers are filled in a space of a shock absorbing vessel which is divided into a plurality of sections by partitioning members. These sections function to prevent excess deformation or replacement of the fillers upon occurrence of falling accident. Since the shock absorbing small pieces in the shock absorbing vessel are filled irregularly, shock absorbing characteristics such as compression strength is not varied depending on the direction, but they exhibit excellent shock absorbing performance. They surely absorb shocks exerted on a transportation vessel upon falling or the like. If existing artificial fillers such as pole rings made of metal or ceramic and cut pieces such as alumium extrusion molding products are used as the shock absorbing pieces, they have excellent fire-proofness and cold resistance since the small pieces are inflammable and do not contain water. (T.M.)

  8. Tungsten based anisotropic metamaterial as an ultra-broadband absorber

    DEFF Research Database (Denmark)

    Lin, Yinyue; Cui, Yanxia; Ding, Fei

    2017-01-01

    : We show theoretically that an array of tungsten/germanium anisotropic nano-cones placed on top of a reflective substrate can absorb light at the wavelength range from 0.3 μm to 9 μm with an average absorption efficiency approaching 98%. It is found that the excitation of multiple orders of slow...... of the nano-cones and the interaction between neighboring nano-cones is quite weak. Our proposal has some potential applications in the areas of solar energy harvesting and thermal emitters....

  9. Enhancement of absorption and color contrast in ultra-thin highly absorbing optical coatings

    Science.gov (United States)

    Kats, Mikhail A.; Byrnes, Steven J.; Blanchard, Romain; Kolle, Mathias; Genevet, Patrice; Aizenberg, Joanna; Capasso, Federico

    2013-09-01

    Recently a new class of optical interference coatings was introduced which comprises ultra-thin, highly absorbing dielectric layers on metal substrates. We show that these lossy coatings can be augmented by an additional transparent subwavelength layer. We fabricated a sample comprising a gold substrate, an ultra-thin film of germanium with a thickness gradient, and several alumina films. The experimental reflectivity spectra showed that the additional alumina layer increases the color range that can be obtained, in agreement with calculations. More generally, this transparent layer can be used to enhance optical absorption, protect against erosion, or as a transparent electrode for optoelectronic devices.

  10. Absorbing Property of Multi-layered Short Carbon Fiber Absorbing Coating

    OpenAIRE

    Liu, Zhaohui; Tao, Rui; Ban, Guodong; Luo, Ping

    2018-01-01

    The radar absorbing coating was prepared with short carbon fiber asabsorbent and waterborne polyurethane (WPU) as matrix resin. The coating’s absorbing property was tested with vectornetwork analyzer, using aramid honeycomb as air layer which was matched withcarbon fiber coating. The results demonstrate that the single-layered carbonfiber absorbing coating presented relatively poor absorbing property when thelayer was thin, and the performance was slightly improved after the matched airlayer ...

  11. Microwave Metamaterial Absorber for Non-Destructive Sensing Applications of Grain

    Directory of Open Access Journals (Sweden)

    Yin Zhang

    2018-06-01

    Full Text Available In this work, we propose a metamaterial absorber at microwave frequencies with significant sensitivity and non-destructive sensing capability for grain samples. This absorber is composed of cross-resonators periodically arranged on an ultrathin substrate, a sensing layer filled with grain samples, and a metal ground. The cross-resonator array is fabricated using the printed circuit board process on an FR-4 board. The performance of the proposed metamaterial is demonstrated with both full-wave simulation and measurement results, and the working mechanism is revealed through multi-reflection interference theory. It can serve as a non-contact sensor for food quality control such as adulteration, variety, etc. by detecting shifts in the resonant frequencies. As a direct application, it is shown that the resonant frequency displays a significant blue shift from 7.11 GHz to 7.52 GHz when the mass fraction of stale rice in the mixture of fresh and stale rice is changed from 0% to 100%. In addition, the absorber shows a distinct difference in the resonant absorption frequency for different varieties of grain, which also makes it a candidate for a grain classification sensor. The presented scheme could open up opportunities for microwave metamaterial absorbers to be applied as efficient sensors in the non-destructive evaluation of agricultural and food product quality.

  12. INFLUENCE OF TECHNOLOGICAL PARAMETERS ON AGROTEXTILES WATER ABSORBENCY USING ANOVA MODEL

    Directory of Open Access Journals (Sweden)

    LUPU Iuliana G.

    2016-05-01

    Full Text Available Agrotextiles are now days extensively being used in horticulture, farming and other agricultural activities. Agriculture and textiles are the largest industries in the world providing basic needs such as food and clothing. Agrotextiles plays a significant role to help control environment for crop protection, eliminate variations in climate, weather change and generate optimum condition for plant growth. Water absorptive capacity is a very important property of needle-punched nonwovens used as irrigation substrate in horticulture. Nonwovens used as watering substrate distribute water uniformly and act as slight water buffer owing to the absorbent capacity. The paper analyzes the influence of needling process parameters on water absorptive capacity of needle-punched nonwovens by using ANOVA model. The model allows the identification of optimal action parameters in a shorter time and with less material expenses than by experimental research. The frequency of needle board and needle depth penetration has been used as independent variables while the water absorptive capacity as dependent variable for ANOVA regression model. Based on employed ANOVA model we have established that there is a significant influence of needling parameters on water absorbent capacity. The higher of depth needle penetration and needle board frequency, the higher is the compactness of fabric. A less porous structure has a lower water absorptive capacity.

  13. Black Cr/α-Cr2O3 nanoparticles based solar absorbers

    International Nuclear Information System (INIS)

    Khamlich, S.; Nemraoui, O.; Mongwaketsi, N.; McCrindle, R.; Cingo, N.; Maaza, M.

    2012-01-01

    Monodisperse spherical core–shell particles of Cr/α-Cr 2 O 3 with high adhesion were successfully coated on rough copper substrates by a simple self-assembly-like method for the use in solar thermal absorbers. The structure and morphology of the core-shell particles of Cr/α-Cr 2 O 3 were effectively controlled by deposition temperature and the pH of the initial precursor solution. Their characterizations were carried out with X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry and attenuated total reflection, as well as UV–vis diffuse reflectance spectroscopy. The samples aged for more than 40 h at 75 °C exhibit the targeted high absorbing optical characteristic “Black chrome” while those aged for ≤40 h show a significant high UV–vis diffuse reflectance “green color”.

  14. Flexible metamaterial absorbers for stealth applications at terahertz frequencies

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof; Strikwerda, Andrew; Fan, K.

    2012-01-01

    We have wrapped metallic cylinders with strongly absorbing metamaterials. These resonant structures, which are patterned on flexible substrates, smoothly coat the cylinder and give it an electromagnetic response designed to minimize its radar cross section. We compare the normal-incidence, small......-beam reflection coefficient with the measurement of the far-field bistatic radar cross section of the sample, using a quasi-planar THz wave with a beam diameter significantly larger than the sample dimensions. In this geometry we demonstrate a near-400-fold reduction of the radar cross section at the design...

  15. Method of absorbing UF6 from gaseous mixtures in alkamine absorbents

    International Nuclear Information System (INIS)

    Lafferty, R.H.; Smiley, S.H.; Radimer, K.J.

    1976-01-01

    A method is described for recovering UF 6 from gaseous mixtures by absorption in a liquid. The liquid absorbent must have a relatively low viscosity and at least one component of the absorbent is an alkamine having less than 3 carbon atoms bonded to the amino nitrogen, less than 2 of the carbon atoms other than those bonded to the amino nitrogen are free of the hydroxy radical and precipitate the absorbed uranium from the absorbent. At least one component of the absorbent is chosen from the group consisting of ethanolamine, diethanolamine, and 3-methyl-3-amino-propane-diol-1,2

  16. Dielectric-based subwavelength metallic meanders for wide-angle band absorbers.

    Science.gov (United States)

    Shen, Su; Qiao, Wen; Ye, Yan; Zhou, Yun; Chen, Linsen

    2015-01-26

    We propose nano-meanders that can achieve wide-angle band absorption in visible regime. The nano-meander consists of a subwavelength dielectric grating covered by continuous ultra-thin Aluminum film (less than one tenth of the incident wavelength). The excited photonic resonant modes, such as cavity mode, surface plasmonic mode and Rayleigh-Wood anomaly, are discussed in detail. Nearly total resonant absorption due to funneling mechanism in the air nano-groove is almost invariant with large incident angle in transverse magnetic polarization. From both the structural geometry and the nanofabrication point of view, the light absorber has a very simple geometrical structure and it is easy to be integrated into complex photonic devices. The highly efficient angle-robust light absorber can be potential candidate for a range of passive and active photonic applications, including solar-energy harvesting as well as producing artificial colors on a large scale substrate.

  17. Growth and characterization of CdTe absorbers on GaAs by MBE for high concentration PV solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ari, Ozan; Polat, Mustafa; Selamet, Yusuf [Department of Physics, Izmir Institute of Technology, Izmir 35430 (Turkey); Karakaya, Merve [Department of Material Science and Engineering, Izmir Institute of Technology, Izmir 35430 (Turkey)

    2015-11-15

    CdTe based II-VI absorbers are promising candidates for high concentration PV solar cells with an ideal band gap for AM1.5 solar radiation. In this study, we propose single crystal CdTe absorbers grown on GaAs substrates with a molecular beam epitaxy (MBE) which is a clean deposition technology. We show that high quality CdTe absorber layers can be grown with full width half maximum of X-ray diffraction rocking curves (XRD RC) as low as 227 arc-seconds with 0.5% thickness uniformity that a 2 μm layer is capable of absorbing 99% of AM1.5 solar radiation. Bandgap of the CdTe absorber is found as 1.483 eV from spetroscopic ellipsometry (SE) measurements. Also, high absorption coefficient is calculated from the results, which is ∝5 x 10{sup 5}cm{sup -1} in solar radiation spectrum. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. The next generation CdTe technology- Substrate foil based solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Ferekides, Chris [Univ. of South Florida, Tampa, FL (United States)

    2017-03-22

    The main objective of this project was the development of one of the most promising Photovoltaic (PV) materials CdTe into a versatile, cost effective, and high throughput technology, by demonstrating substrate devices on foil substrates using high throughput fabrication conditions. The typical CdTe cell is of the superstrate configuration where the solar cell is fabricated on a glass superstrate by the sequential deposition of a TCO, n-type heterojunction partner, p-CdTe absorber, and back contact. Large glass modules are heavy and present significant challenges during manufacturing (uniform heating, etc.). If a substrate CdTe cell could be developed (the main goal of this project) a roll-to-toll high throughput technology could be developed.

  19. The design of wideband metamaterial absorber at E band based on defect

    Science.gov (United States)

    Wang, L. S.; Xia, D. Y.; Ding, X. Y.; Wang, Y.

    2018-01-01

    A kind of wideband metamaterial absorber at E band is designed in this paper; it is composed of round metal cells with defect, dielectric substrate and metal film. The electromagnetic parameters of unit cell are calculated by using the finite element method. The results show that the wideband metamaterial absorber presents nearly perfect absorption above 90% with absorption ranging from 65.38GHz to 67.86GHz; the reason of wideband absorption is the overlap of different absorption frequency which is caused by electromagnetic resonance; the size parameters and position of defect has important effect on its absorption property. It has many advantages, such as simply, easy to preparation and so on. It has potential application on aerospace measurement and control, remote data communication, LTE wideband mobile communication and other fields.

  20. Optimization of X-ray Absorbers for TES Microcalorimeters

    Science.gov (United States)

    Iyomoto, Naoko; Sadleir, John E.; Figueroa-Feliciano, Enectali; Saab, Tarek; Bandler, Simon; Kilbourne, Caroline; Chervenak, James; Talley, Dorothy; Finkbeiner, Fred; Brekosky, Regis

    2004-01-01

    We have investigated the thermal, electrical, and structural properties of Bi and BiCu films that are being developed as X-ray absorbers for transition-edge sensor (TES) microcalorimeter arrays for imaging X-ray spectroscopy. Bi could be an ideal material for an X-ray absorber due to its high X-ray stopping power and low heat capacity, but it has a low thermal conductivity, which can result in position dependence of the pulses in the absorber. In order to improve the thermal conductivity, we added Cu layers in between the Bi layers. We measured electrical and thermal conductivities of the films around 0.1 K(sub 1) the operating temperature of the TES calorimeter, to examine the films and to determine the optimal thickness of the Cu layer. From the electrical conductivity measurements, we found that the Cu is more resistive on the Bi than on a Si substrate. Together with an SEM picture of the Bi surface, we concluded that the rough surface of the Bi film makes the Cu layer resistive when the Cu layer is not thick enough t o fill in the roughness. From the thermal conductivity measurements, we determined the thermal diffusion constant to be 2 x l0(exp 3) micrometers squared per microsecond in a film that consists of 2.25 micrometers of Bi and 0.1 micrometers of Cu. We measured the position dependence in the film and found that its thermal diffusion constant is too low to get good energy resolution, because of the resistive Cu layer and/or possibly a very high heat capacity of our Bi films. We show plans to improve the thermal diffusion constant in our BiCu absorbers.

  1. Adhesion of silver/polypyrrole nanocomposite coating to a fluoropolymer substrate

    Science.gov (United States)

    Horváth, Barbara; Kawakita, Jin; Chikyow, Toyohiro

    2016-10-01

    This paper describes the adhesive interface between a conducting polymer/metal composite and a polytetrafluoroethylene (PTFE) substrate. Strong adhesion was observed from using a Ag/polypyrrole (Ag/PPy) composite on a fluoropolymer substrate, which in most cases has a very low adhesion to different materials. To clarify the adhesion mechanism between the Ag/PPy composite and the PTFE substrate, the interfacial structure was studied by the use of transmission electron microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Our results show that Ag/PPy composite is absorbed inside the nano-sized pores of PTFE and the composite mechanically interlocks after solidifying, which causes the nanocomposite to stick strongly to the substrate. The use of Ag/PPy coating could be a novel technique for developing electrodes, antennae or other high performance applications as this metal/conductive polymer composite has excellent adhesion properties on various plastics.

  2. Occupation of the cytochrome P450 substrate pocket by diverse compounds at general anesthesia concentrations.

    Science.gov (United States)

    LaBella, F S; Stein, D; Queen, G

    1998-10-02

    Each of a diverse array of compounds, at concentrations reported to effect general anesthesia, when added to liver microsomes, forms a complex with cytochromes P450 to generate, with reference to a cuvette containing microsomes only, a characteristic absorbance-difference spectrum. This spectrum results from a change in the electron-spin state of the heme iron atom induced upon entry by the anesthetic molecule into the enzyme catalytic pocket. The difference spectrum, representing the anesthetic-P450 complex, is characteristic of substances that are substrates for the enzyme. For the group of compounds as a whole, the magnitudes of the absorbance-difference spectra vary only about twofold, although the anesthetic potencies vary by several orders of magnitude. The dissociation constants (Ks), calculated from absorbance data and representing affinities of the anesthetics for P450, agree closely with the respective EC50 (concentration that effects anesthesia in 50% of individuals) values, and with the respective Ki (concentration that inhibits P450 catalytic activities half-maximally) values reported by us previously. The absorbance complex resulting from the occupation of the catalytic pocket by endogenous substrates, androstenedione and arachidonic acid, is inhibited, competitively, by anesthetics. Occupation of and perturbation of the heme catalytic pocket by anesthetic, as monitored by the absorbance-difference spectrum, is rapidly reversible. The presumed in vivo consequences of perturbation by general anesthetics of heme proteins is suppression of the generation of chemical signals that determine cell sensitivity and response.

  3. Aperiodic-metamaterial-based absorber

    Directory of Open Access Journals (Sweden)

    Quanlong Yang

    2017-09-01

    Full Text Available The periodic-metamaterial-based perfect absorber has been studied broadly. Conversely, if the unit cell in the metamaterial-based absorber is arranged aperiodically (aperiodic-metamaterial-based absorber, how does it perform? Inspired by this, here we present a systematic study of the aperiodic-metamaterial-based absorber. By investigating the response of metamaterial absorbers based on periodic, Fibonacci, Thue-Morse, and quasicrystal lattices, we found that aperiodic-metamaterial-based absorbers could display similar absorption behaviors as the periodic one in one hand. However, their absorption behaviors show different tendency depending on the thicknesses of the spacer. Further studies on the angle and polarization dependence of the absorption behavior are also presented.

  4. Absorbing rods for nuclear fast neutron reactor absorbing assembly

    International Nuclear Information System (INIS)

    Aji, M.; Ballagny, A.; Haze, R.

    1986-01-01

    The invention proposes a neutron absorber rod for neutron absorber assembly of a fast neutron reactor. The assembly comprises a bundle of vertical rods, each one comprising a stack of pellets made of a neutron absorber material contained in a long metallic casing with a certain radial play with regard to this casing; this casing includes traps for splinters from the pellets which may appear during reactor operation, at the level of contact between adjacent pellets. The present invention prevents the casing from rupture involved by the disintegration of the pellets producing pieces of boron carbide of high hardness [fr

  5. Methods for absorbing neutrons

    Science.gov (United States)

    Guillen, Donna P [Idaho Falls, ID; Longhurst, Glen R [Idaho Falls, ID; Porter, Douglas L [Idaho Falls, ID; Parry, James R [Idaho Falls, ID

    2012-07-24

    A conduction cooled neutron absorber may include a metal matrix composite that comprises a metal having a thermal neutron cross-section of at least about 50 barns and a metal having a thermal conductivity of at least about 1 W/cmK. Apparatus for providing a neutron flux having a high fast-to-thermal neutron ratio may include a source of neutrons that produces fast neutrons and thermal neutrons. A neutron absorber positioned adjacent the neutron source absorbs at least some of the thermal neutrons so that a region adjacent the neutron absorber has a fast-to-thermal neutron ratio of at least about 15. A coolant in thermal contact with the neutron absorber removes heat from the neutron absorber.

  6. Solar selective absorber functionality of carbon nanoparticles embedded in SiO2, NiO and ZnO matrices

    CSIR Research Space (South Africa)

    Katumba, G

    2008-01-01

    Full Text Available It is possible to design an optical material, through control of the substrate and coatings, to absorb a large fraction of the solar spectrum and to emit very little radiation energy in the near and far infra-red wavelength range. This requires a...

  7. [Preparation of a kind of SERS-active substrates for spot fast analysis].

    Science.gov (United States)

    Ji, Nan; Li, Zhi-Shi; Zhao, Bing; Zou, Bo

    2013-02-01

    A kind of SERS-active substrates was prepared using chemical self-assembly method, aiming at spot fast analysis using portable Raman spectrometer. PDDA was first absorbed on the inner wall of vials, and then Ag colloids were assembled on the inner wall. UV-Vis spectra and Raman spectra of two kinds of blank vials were investigated and the transparent vials were thought to be better for SERS-vials. UV-Vis spectra were used to monitor the assembly process of Ag colloids. SERS activity of our substrates was characterized using p-ATP as probing molecules.

  8. Effect of the bio-absorbent on the microwave absorption property of the flaky CIPs/rubber absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yang; Xu, Yonggang, E-mail: xuyonggang221@163.com; Cai, Jun; Yuan, Liming; Zhang, Deyuan

    2015-09-01

    Microwave absorbing composites filled with flaky carbonyl iron particles (CIPs) and the bio-absorbent were prepared by using a two-roll mixer and a vulcanizing machine. The electromagnetic (EM) parameters were measured by a vector network analyzer and the reflection loss (RL) was measured by the arch method in the frequency range of 1–4 GHz. The uniform dispersion of the absorbents was verified by comparing the calculated RL with the measured one. The results confirm that as the bio-absorbent was added, the permittivity was increased due to the volume content of absorbents, and the permeability was enlarged owing to the volume content of CIPs and interactions between the two absorbents. The composite filled with bio-absorbents achieved an excellent absorption property at a thickness of 1 mm (minimum RL reaches −7.8 dB), and as the RL was less than −10 dB the absorption band was widest (2.1–3.8 GHz) at a thickness of 2 mm. Therefore, the bio-absorbent is a promising additive candidate on fabricating microwave absorbing composites with a thinner thickness and wider absorption band. - Graphical abstract: Morphology of composites filled with flaky CIPs and the bio-absorbent. The enhancement of bio-absorbent on the electromagnetic absorption property of composites filled with flaky carbonyl iron particles (CIPs) is attributed to the interaction of the two absorbents. The volume content of the FCMPs with the larger shape CIPs play an important role in this effects, the composites filled with irons and bio-absorbents can achieve wider-band and thinner-thickness absorbing materials. - Highlights: • Absorbers filled with bio-absorbents and CIPs was fabricated. • Bio-absorbents enhanced the permittivity and permeability of the composites. • The absorbent interactions play a key role in the enhancement mechanism. • Bio-absorbents enhanced the composite RL in 1–4 GHz.

  9. Functional visual sensitivity to ultraviolet wavelengths in the Pileated Woodpecker (Dryocopus pileatus), and its influence on foraging substrate selection

    Science.gov (United States)

    O'Daniels, Sean T.; Kesler, Dylan C.; Mihail, Jeanne D.; Webb, Elisabeth B.; Werner, Scott J.

    2017-01-01

    Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2 m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2 m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms.

  10. Absorbant materials

    International Nuclear Information System (INIS)

    Quetier, Monique.

    1978-11-01

    Absorbants play a very important part in the nuclear industry. They serve for the control, shut-down and neutron shielding of reactors and increase the capacity of spent fuel storage pools and of special transport containers. This paper surveys the usual absorbant materials, means of obtainment, their essential characteristics relating to their use and their behaviour under neutron irradiation [fr

  11. Substrate attributes determine gait in a terrestrial gastropod.

    Science.gov (United States)

    McKee, Amberle; Voltzow, Janice; Pernet, Bruno

    2013-02-01

    Some terrestrial gastropods are able to move using two gaits: adhesive crawling, where the entire foot is separated from the substrate only by a thin layer of mucus and the snail leaves a continuous mucus trail; and loping, where regions of the foot arch above the substrate and the snail leaves a discontinuous mucus trail. Loping has been interpreted as a means of rapidly escaping predators. We found that the pulmonate Cornu aspersum moved using adhesive crawling on dry acrylic or glass substrates, but loped on dry concrete or wood. Loping snails did not move more rapidly than snails using adhesive crawling. Snails moving on concrete secreted a greater volume of pedal mucus per area of trail than those moving on acrylic; locomotion on concrete thus requires greater expenditure of mucus than does locomotion on acrylic. Because loping snails deposit a smaller area of mucus per distance traveled than do snails using adhesive crawling, loping may conserve mucus when moving on porous, absorbent substrates. Members of several other terrestrial pulmonate taxa can also lope on concrete, suggesting that this plasticity in gait is widespread among terrestrial snails.

  12. Absorber for terahertz radiation management

    Science.gov (United States)

    Biallas, George Herman; Apeldoorn, Cornelis; Williams, Gwyn P.; Benson, Stephen V.; Shinn, Michelle D.; Heckman, John D.

    2015-12-08

    A method and apparatus for minimizing the degradation of power in a free electron laser (FEL) generating terahertz (THz) radiation. The method includes inserting an absorber ring in the FEL beam path for absorbing any irregular THz radiation and thus minimizes the degradation of downstream optics and the resulting degradation of the FEL output power. The absorber ring includes an upstream side, a downstream side, and a plurality of wedges spaced radially around the absorber ring. The wedges form a scallop-like feature on the innermost edges of the absorber ring that acts as an apodizer, stopping diffractive focusing of the THz radiation that is not intercepted by the absorber. Spacing between the scallop-like features and the shape of the features approximates the Bartlett apodization function. The absorber ring provides a smooth intensity distribution, rather than one that is peaked on-center, thereby eliminating minor distortion downstream of the absorber.

  13. Investigation of blister formation in sputtered Cu{sub 2}ZnSnS{sub 4} absorbers for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Bras, Patrice, E-mail: patrice.bras@angstrom.uu.se [Midsummer AB, Elektronikhöjden 6, SE-17543 Järfälla, Sweden and Solid State Electronics, Angström Laboratory, Uppsala University, Box 534, SE-75121 Uppsala (Sweden); Sterner, Jan [Midsummer AB, Elektronikhöjden 6, SE-17543 Järfälla (Sweden); Platzer-Björkman, Charlotte [Solid State Electronics, Angström Laboratory, Uppsala University, Box 534, SE-75121 Uppsala (Sweden)

    2015-11-15

    Blister formation in Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films sputtered from a quaternary compound target is investigated. While the thin film structure, composition, and substrate material are not correlated to the blister formation, a strong link between sputtering gas entrapment, in this case argon, and blistering effect is found. It is shown that argon is trapped in the film during sputtering and migrates to locally form blisters during the high temperature annealing. Blister formation in CZTS absorbers is detrimental for thin film solar cell fabrication causing partial peeling of the absorber layer and potential shunt paths in the complete device. Reduced sputtering gas entrapment, and blister formation, is seen for higher sputtering pressure, higher substrate temperature, and change of sputtering gas to larger atoms. This is all in accordance with previous publications on blister formation caused by sputtering gas entrapment in other materials.

  14. Studying physical properties of CuInS2 absorber layers grown by spin coating method on different kinds of substrates

    Science.gov (United States)

    Amerioun, M. H.; Ghazi, M. E.; Izadifard, M.

    2018-03-01

    In this work, first the CuInS2 (CIS2) layers are deposited on Aluminum and polyethylene terephthalate (PET) as flexible substrates, and on glass and soda lime glass (SLG) as rigid substrates by the sol-gel method. Then the samples are analyzed by x-ray diffractomery (XRD) and atomic force microscope (AFM) to investigate the crystal structures and surface roughness of the samples. The I-V curve measurements and Seebeck effect setup are used to measure the electrical properties of the samples. The XRD data obtained for the CIS2 layers show that all the prepared samples have a single phase with a preferred orientation that is substrate-dependent. The samples grown on the rigid substrates had higher crystallite sizes. The results obtained for the optical measurements indicate the dependence of the band gap energy on the substrate type. The measured Seebeck coefficient showed that the carriers were of p-type in all the samples. According to the AFM images, the surface roughness also varied in the CIS2 layers with different substrates. In this regard, the type of substrate could be an important parameter for the final performance of the fabricated CIS2 cells.

  15. Surface plasmon enhanced SWIR absorption at the ultra n-doped substrate/PbSe nanostructure layer interface

    Science.gov (United States)

    Wittenberg, Vladimir; Rosenblit, Michael; Sarusi, Gabby

    2017-08-01

    This work presents simulation results of the plasmon enhanced absorption that can be achieved in the short wavelength infrared (SWIR - 1200 nm to 1800 nm) spectral range at the interface between ultra-heavily doped substrates and a PbSe nanostructure non-epitaxial growth absorbing layer. The absorption enhancement simulated in this study is due to surface plasmon polariton (SPP) excitation at the interface between these ultra-heavily n-doped GaAs or GaN substrates, which are nearly semimetals to SWIR light, and an absorption layer made of PbSe nano-spheres or nano-columns. The ultra-heavily doped GaAs or GaN substrates are simulated as examples, based on the Drude-Lorentz permittivity model. In the simulation, the substrates and the absorption layer were patterned jointly to forma blazed lattice, and then were back-illuminated using SWIR with a central wavelength of 1500 nm. The maximal field enhancement achieved was 17.4 with a penetration depth of 40 nm. Thus, such architecture of an ultra-heavily doped semiconductor and infrared absorbing layer can further increase the absorption due to the plasmonic enhanced absorption effect in the SWIR spectral band without the need to use a metallic layer as in the case of visible light.

  16. Bioceramic coating of hydroxyapatite on titanium substrate with Nd-YAG laser

    International Nuclear Information System (INIS)

    Cheng, Gary J.; Pirzada, Daniel; Cai, M.; Mohanty, Pravansu; Bandyopadhyay, Amit

    2005-01-01

    The ability to bond to bone tissue is a unique property of bioactive ceramics. Hydroxyapatite (HAp) is one of the potential bioceramics candidates due to its superior bio-compatibility. Significant effort has been devoted to coat HAp ceramics on metallic substrates. Most of these processes, such as ion-beam sputter coating, thermal spraying, and flame spraying, are high temperature line of sight processes, which suffer from undesirable phase formation and weak metal/HAP bonding strength. This paper presents a unique process to coat HAp powders on titanium substrates at low temperature and enhance the coating/substrate interface by laser surface engineering. Nd-YAG laser transmits HAp powders and the laser power is absorbed by titanium substrate to produce a thin layer of molten region. During coating process, HAp powders are kept at low temperature before they are entrapped in metallic layer. Scanning electron microscope (SEM) was used to investigate the microstructure of coating; the chemical composition of the coating is determined by energy dispersive spectrometry (EDS). Mechanical properties of the interface between coating and Ti substrate were investigated by nanoindentation

  17. The effect of substrate composition and storage time on urine specific gravity in dogs.

    Science.gov (United States)

    Steinberg, E; Drobatz, K; Aronson, L

    2009-10-01

    The purpose of this study is to evaluate the effects of substrate composition and storage time on urine specific gravity in dogs. A descriptive cohort study of 15 dogs. The urine specific gravity of free catch urine samples was analysed during a 5-hour time period using three separate storage methods; a closed syringe, a diaper pad and non-absorbable cat litter. The urine specific gravity increased over time in all three substrates. The syringe sample had the least change from baseline and the diaper sample had the greatest change from baseline. The urine specific gravity for the litter and diaper samples had a statistically significant increase from the 1-hour to the 5-hour time point. The urine specific gravity from canine urine stored either on a diaper or in a non-absorbable litter increased over time. Although the change was found to be statistically significant over the 5-hour study period it is unlikely to be clinically significant.

  18. Flexible metamaterial absorbers for stealth applications at terahertz frequencies.

    Science.gov (United States)

    Iwaszczuk, Krzysztof; Strikwerda, Andrew C; Fan, Kebin; Zhang, Xin; Averitt, Richard D; Jepsen, Peter Uhd

    2012-01-02

    We have wrapped metallic cylinders with strongly absorbing metamaterials. These resonant structures, which are patterned on flexible substrates, smoothly coat the cylinder and give it an electromagnetic response designed to minimize its radar cross section. We compare the normal-incidence, small-beam reflection coefficient with the measurement of the far-field bistatic radar cross section of the sample, using a quasi-planar THz wave with a beam diameter significantly larger than the sample dimensions. In this geometry we demonstrate a near-400-fold reduction of the radar cross section at the design frequency of 0.87 THz. In addition we discuss the effect of finite sample dimensions and the spatial dependence of the reflection spectrum of the metamaterial.

  19. Atmospheric pressure plasma polymerization of 1,3-butadiene for hydrophobic finishing of textile substrates

    International Nuclear Information System (INIS)

    Samanta, Kartick K; Jassal, Manjeet; Agrawal, Ashwini K

    2010-01-01

    Atmospheric pressure plasma processing of textile has both ecological and economical advantages over the wet-chemical processing. However, reaction in atmospheric pressure plasma has important challenges to be overcome before it can be successfully used for finishing applications in textile. These challenges are (i) generating stable glow plasma in presence liquid/gaseous monomer, and (ii) keeping the generated radicals active in the presence of contaminants such as oxygen and air. In this study, a stable glow plasma was generated at atmospheric pressure in the mixture of gaseous reactive monomer-1,3-butadiene and He and was made to react with cellulosic textile substrate. After 12 min of plasma treatment, the hydrophilic surface of the cellulosic substrate turned into highly hydrophobic surface. The hydrophobic finish was found to be durable to soap washing. After soap washing, a water drop of 37 μl took around 250 s to get absorbed in the treated sample compared to 0 . Both top and bottom sides of the fabric showed similar hydrophobic results in terms of water absorbency and contact angle. The results may be attributed to chemical reaction of butadiene with the cellulosic textile substrate. The surface characterization of the plasma modified samples under SEM and AFM revealed modification of the surface under <100 nm. The results showed that atmospheric pressure plasma can be successfully used for carrying out reaction of 1,3-butadiene with cellulosic textile substrates for producing hydrophobic surface finish.

  20. Diode-pumped passively Q-switched Nd:GdTaO4 laser based on tungsten disulfide nanosheets saturable absorber at 1066 nm

    Science.gov (United States)

    Li, M. X.; Jin, G. Y.; Li, Y.

    2018-05-01

    In this paper, we investigated the passively Q-switched Nd:GdTaO4 laser based on tungsten disulfide (WS2) saturable absorber (SA). The preparation method of WS2 SA was to attach the WS2-alcohol dispersion onto the quartz substrates. The diode-pumped passively Q-switched Nd:GdTaO4 laser operated at a central wavelength of 1066 nm. The stable pulse output could be obtained at the single pulse width of 560 ns. In a word, WS2 seems to be a suitable saturable absorber for solid state lasers.

  1. Hydraulic shock absorbers

    International Nuclear Information System (INIS)

    Thatcher, G.; Davidson, D. F.

    1984-01-01

    A hydraulic shock absorber of the dash pot kind for use with electrically conducting liquid such as sodium, has magnet means for electro magnetically braking a stream of liquid discharged from the cylinder. The shock absorber finds use in a liquid metal cooled nuclear reactor for arresting control rods

  2. Reflection measurements of microwave absorbers

    Science.gov (United States)

    Baker, Dirk E.; van der Neut, Cornelis A.

    1988-12-01

    A swept-frequency interferometer is described for making rapid, real-time assessments of localized inhomogeneities in planar microwave absorber panels. An aperture-matched exponential horn is used to reduce residual reflections in the system to about -37 dB. This residual reflection is adequate for making comparative measurements on planar absorber panels whose reflectivities usually fall in the -15 to -25 dB range. Reflectivity measurements on a variety of planar absorber panels show that multilayer Jaumann absorbers have the greatest inhomogeneity, while honeycomb absorbers generally have excellent homogeneity within a sheet and from sheet to sheet. The test setup is also used to measure the center frequencies of resonant absorbers. With directional couplers and aperture-matched exponential horns, the technique can be easily applied in the standard 2 to 40 GHz waveguide bands.

  3. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan [El Cerrito, CA; Farmer, Joseph C [Tracy, CA; Lee, Chuck K [Hayward, CA; Walker, Jeffrey [Gaithersburg, MD; Russell, Paige [Las Vegas, NV; Kirkwood, Jon [Saint Leonard, MD; Yang, Nancy [Lafayette, CA; Champagne, Victor [Oxford, PA

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  4. Fabrication of CIS Absorber Layers with Different Thicknesses Using A Non-Vacuum Spray Coating Method

    Directory of Open Access Journals (Sweden)

    Chien-Chen Diao

    2014-01-01

    Full Text Available In this study, a new thin-film deposition process, spray coating method (SPM, was investigated to deposit the high-densified CuInSe2 absorber layers. The spray coating method developed in this study was a non-vacuum process, based on dispersed nano-scale CuInSe2 precursor and could offer a simple, inexpensive, and alternative formation technology for CuInSe2 absorber layers. After spraying on Mo/glass substrates, the CuInSe2 thin films were annealed at 550 °C by changing the annealing time from 5 min to 30 min in a selenization furnace, using N2 as atmosphere. When the CuInSe2 thin films were annealed, without extra Se or H2Se gas used as the compensation source during the annealing process. The aim of this project was to investigate the influence of annealing time on the densification and crystallization of the CuInSe2 absorber layers to optimize the quality for cost effective solar cell production. The thickness of the CuInSe2 absorber layers could be controlled as the volume of used dispersed CuInSe2-isopropyl alcohol solution was controlled. In this work, X-ray diffraction patterns, field emission scanning electron microscopy, and Hall parameter measurements were performed in order to verify the quality of the CuInSe2 absorber layers obtained by the Spray Coating Method.

  5. PWR burnable absorber evaluation

    International Nuclear Information System (INIS)

    Cacciapouti, R.J.; Weader, R.J.; Malone, J.P.

    1995-01-01

    The purpose of the study was to evaluate the relative neurotic efficiency and fuel cycle cost benefits of PWR burnable absorbers. Establishment of reference low-leakage equilibrium in-core fuel management plans for 12-, 18- and 24-month cycles. Review of the fuel management impact of the integral fuel burnable absorber (IFBA), erbium and gadolinium. Calculation of the U 3 O 8 , UF 6 , SWU, fuel fabrication, and burnable absorber requirements for the defined fuel management plans. Estimation of fuel cycle costs of each fuel management plan at spot market and long-term market fuel prices. Estimation of the comparative savings of the different burnable absorbers in dollar equivalent per kgU of fabricated fuel. (author)

  6. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping

    2016-05-18

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  7. Multi-channel coherent perfect absorbers

    KAUST Repository

    Bai, Ping; Wu, Ying; Lai, Yun

    2016-01-01

    The absorption efficiency of a coherent perfect absorber usually depends on the phase coherence of the incident waves on the surfaces. Here, we present a scheme to create a multi-channel coherent perfect absorber in which the constraint of phase coherence is loosened. The scheme has a multi-layer structure such that incident waves in different channels with different angular momenta can be simultaneously and perfectly absorbed. This absorber is robust in achieving high absorption efficiency even if the incident waves become "incoherent" and possess "random" wave fronts. Our work demonstrates a unique approach to designing highly efficient metamaterial absorbers. © CopyrightEPLA, 2016.

  8. Feynman Integrals with Absorbing Boundaries

    OpenAIRE

    Marchewka, A.; Schuss, Z.

    1997-01-01

    We propose a formulation of an absorbing boundary for a quantum particle. The formulation is based on a Feynman-type integral over trajectories that are confined to the non-absorbing region. Trajectories that reach the absorbing wall are discounted from the population of the surviving trajectories with a certain weighting factor. Under the assumption that absorbed trajectories do not interfere with the surviving trajectories, we obtain a time dependent absorption law. Two examples are worked ...

  9. Thin-Film Solar Cells with InP Absorber Layers Directly Grown on Nonepitaxial Metal Substrates

    KAUST Repository

    Zheng, Maxwell

    2015-08-25

    The design and performance of solar cells based on InP grown by the nonepitaxial thin-film vapor-liquid-solid (TF-VLS) growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and indium tin oxide transparent top electrode. An ex situ p-doping process for TF-VLS grown InP is introduced. Properties of the cells such as optoelectronic uniformity and electrical behavior of grain boundaries are examined. The power conversion efficiency of first generation cells reaches 12.1% under simulated 1 sun illumination with open-circuit voltage (VOC) of 692 mV, short-circuit current (JSC) of 26.9 mA cm-2, and fill factor (FF) of 65%. The FF of the cell is limited by the series resistances in the device, including the top contact, which can be mitigated in the future through device optimization. The highest measured VOC under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP. The design and performance of solar cells based on indium phosphide (InP) grown by the nonepitaxial thin-film vapor-liquid-solid growth technique is investigated. The cell structure consists of a Mo back contact, p-InP absorber layer, n-TiO2 electron selective contact, and an indium tin oxide transparent top electrode. The highest measured open circuit voltage (VOC) under 1 sun is 692 mV, which approaches the optically implied VOC of ≈795 mV extracted from the luminescence yield of p-InP.

  10. Overview of risk analysis research on tanker groundings and collisions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1999-01-01

    for evaluation of the oil outlfow performance of alternative tanker designs in the event of a collision or grounding. The present paper is an invited contribution oto the first meeting of the Committee on Evaluating Double Hull Alterntive Tanker Designs held at the National Academy of Sciences' Georgetown...

  11. Profilometry of thin films on rough substrates by Raman spectroscopy

    KAUST Repository

    Ledinský, Martin

    2016-12-06

    Thin, light-absorbing films attenuate the Raman signal of underlying substrates. In this article, we exploit this phenomenon to develop a contactless thickness profiling method for thin films deposited on rough substrates. We demonstrate this technique by probing profiles of thin amorphous silicon stripes deposited on rough crystalline silicon surfaces, which is a structure exploited in high-efficiency silicon heterojunction solar cells. Our spatially-resolved Raman measurements enable the thickness mapping of amorphous silicon over the whole active area of test solar cells with very high precision; the thickness detection limit is well below 1 nm and the spatial resolution is down to 500 nm, limited only by the optical resolution. We also discuss the wider applicability of this technique for the characterization of thin layers prepared on Raman/photoluminescence-active substrates, as well as its use for single-layer counting in multilayer 2D materials such as graphene, MoS2 and WS2.

  12. Profilometry of thin films on rough substrates by Raman spectroscopy

    KAUST Repository

    Ledinský , Martin; Paviet-Salomon, Bertrand; Vetushka, Aliaksei; Geissbü hler, Jonas; Tomasi, Andrea; Despeisse, Matthieu; De Wolf, Stefaan; Ballif  , Christophe; Fejfar, Antoní n

    2016-01-01

    Thin, light-absorbing films attenuate the Raman signal of underlying substrates. In this article, we exploit this phenomenon to develop a contactless thickness profiling method for thin films deposited on rough substrates. We demonstrate this technique by probing profiles of thin amorphous silicon stripes deposited on rough crystalline silicon surfaces, which is a structure exploited in high-efficiency silicon heterojunction solar cells. Our spatially-resolved Raman measurements enable the thickness mapping of amorphous silicon over the whole active area of test solar cells with very high precision; the thickness detection limit is well below 1 nm and the spatial resolution is down to 500 nm, limited only by the optical resolution. We also discuss the wider applicability of this technique for the characterization of thin layers prepared on Raman/photoluminescence-active substrates, as well as its use for single-layer counting in multilayer 2D materials such as graphene, MoS2 and WS2.

  13. Visible light broadband perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Jia, X. L.; Meng, Q. X.; Yuan, C. X.; Zhou, Z. X.; Wang, X. O., E-mail: wxo@hit.edu.cn [School of Science, Harbin Institute of Technology, Harbin 150001 (China)

    2016-03-15

    The visible light broadband perfect absorbers based on the silver (Ag) nano elliptical disks and holes array are studied using finite difference time domain simulations. The semiconducting indium silicon dioxide thin film is introduced as the space layer in this sandwiched structure. Utilizing the asymmetrical geometry of the structures, polarization sensitivity for transverse electric wave (TE)/transverse magnetic wave (TM) and left circular polarization wave (LCP)/right circular polarization wave (RCP) of the broadband absorption are gained. The absorbers with Ag nano disks and holes array show several peaks absorbance of 100% by numerical simulation. These simple and flexible perfect absorbers are particularly desirable for various potential applications including the solar energy absorber.

  14. Thermally Resilient, Broadband Optical Absorber from UV to IR Derived from Carbon Nanostructures

    Science.gov (United States)

    Kaul, Anupama B.; Coles, James B.

    2012-01-01

    electric field inherent in a plasma yields vertically aligned CNTs at small length scales (less than 10 m), which still exhibit broadband, and high-efficiency optical absorption characteristics from the ultraviolet (UV) to IR. A thin and yet highly absorbing coating is extremely valuable for detector applications for radiometry in order to enhance sensitivity. A plasma-based process also increases the potential of forming the optical absorbers at lower synthesis temperatures in the future, increasing the prospects of integrating the absorbers with flexible substrates for low-cost solar cell applications, for example.

  15. Simplified MPN method for enumeration of soil naphthalene degraders using gaseous substrate.

    Science.gov (United States)

    Wallenius, Kaisa; Lappi, Kaisa; Mikkonen, Anu; Wickström, Annika; Vaalama, Anu; Lehtinen, Taru; Suominen, Leena

    2012-02-01

    We describe a simplified microplate most-probable-number (MPN) procedure to quantify the bacterial naphthalene degrader population in soil samples. In this method, the sole substrate naphthalene is dosed passively via gaseous phase to liquid medium and the detection of growth is based on the automated measurement of turbidity using an absorbance reader. The performance of the new method was evaluated by comparison with a recently introduced method in which the substrate is dissolved in inert silicone oil and added individually to each well, and the results are scored visually using a respiration indicator dye. Oil-contaminated industrial soil showed slightly but significantly higher MPN estimate with our method than with the reference method. This suggests that gaseous naphthalene was dissolved in an adequate concentration to support the growth of naphthalene degraders without being too toxic. The dosing of substrate via gaseous phase notably reduced the work load and risk of contamination. The result scoring by absorbance measurement was objective and more reliable than measurement with indicator dye, and it also enabled further analysis of cultures. Several bacterial genera were identified by cloning and sequencing of 16S rRNA genes from the MPN wells incubated in the presence of gaseous naphthalene. In addition, the applicability of the simplified MPN method was demonstrated by a significant positive correlation between the level of oil contamination and the number of naphthalene degraders detected in soil.

  16. XPS and SIMS characterisation of TiOxNy solar absorber films

    International Nuclear Information System (INIS)

    Metson, J.B.; Prince, K.E.; Bittar, A.; Tornquist, J.

    1999-01-01

    Full text: TiO x N y thin films have useful properties as selective solar absorbers when used in tandem with a collector substrate. Such films are transparent across a reasonable window of the solar spectrum, but have low thermal emissivity. They are however limited by their thermal stability under the typical operating conditions they experience. In this study, TiO x N y films have been deposited on Si and Cu substrates using ion beam assisted deposition. The films are amorphous and x and y were controlled by altering the O 2 /N 2 ratio in the gas source. After annealing at temperatures of 200 - 400 deg C, films have been depth profiled using Secondary Ion Mass Spectrometry. Profiles reveal the degradation of the film by migration of the substrate atoms through the films, to the sample surface. In general, films with x 1 show improved stability, ultimately at the expense of a reduced transmission window. Thermal stability is also improved by the use of diffusion barriers either at the substrate film interface or at the surface of the film. However contrary to previous suggestions, the degradation mechanism involves the formation not of an oxide at the film surface but a phase which is nitrogen rich. The nature of this phase, formed by diffusion of the substrate atoms, has been investigated by X-ray photoelectron spectroscopy (XPS). These investigations reveal very complex behaviour in the early stages of film failure, with an almost intact TiO x N y layer surviving, but being progressively buried by the growth of the reaction layer at the film surface. Copyright (1999) Australian X-ray Analytical Association Inc

  17. Propionate absorbed from the colon acts as gluconeogenic substrate in a strict carnivore, the domestic cat (Felis catus)

    DEFF Research Database (Denmark)

    Verbrugghe, A; Hesta, M; Daminet, S

    2012-01-01

    In six normal-weight and six obese cats, the metabolic effect of propionate absorbed from the colon was assessed. Two colonic infusions were tested in a crossover design with intervals of 4 weeks. The test solution contained 4 mmol sodium propionate per kg ideal body weight in a 0.2% NaCl solutio...

  18. Realistic reflectance spectrum of thin films covering a transparent optically thick substrate

    Energy Technology Data Exchange (ETDEWEB)

    Cesaria, M., E-mail: maura.cesaria@le.infn.it; Caricato, A. P.; Martino, M. [Department of Mathematics and Physics “Ennio De Giorgi,” University of Salento, Via Arnesano, I-73100 Lecce (Italy)

    2014-07-21

    A spectrophotometric strategy is presented and discussed for calculating realistically the reflectance spectrum of an absorbing film deposited over a thick transparent or semi-transparent substrate. The developed route exploits simple mathematics, has wide range of applicability (high-to-weak absorption regions and thick-to-ultrathin films), rules out numerical and curve-fitting procedures as well as model-functions, inherently accounts for the non-measurable contribution of the film-substrate interface as well as substrate backside, and describes the film reflectance spectrum as determined by the experimental situation (deposition approach and parameters). The reliability of the method is tested on films of a well-known material (indium tin oxide) by deliberately changing film thickness and structural quality through doping. Results are found consistent with usual information yielded by reflectance, its inherent relationship with scattering processes and contributions to the measured total reflectance.

  19. Performance of compact TES arrays with integrated high-fill-fraction X-ray absorbers

    International Nuclear Information System (INIS)

    Lindeman, Mark A.; Bandler, Simon; Brekosky, Regis P.; Chervenak, James A.; Figueroa-Feliciano, Enectali; Finkbeiner, Fred M.; Kelley, Richard L.; Saab, Tarek; Stahle, Caroline K.; Talley, D.J.

    2004-01-01

    We have recently produced and tested two-dimensional arrays of Mo/Au transition-edge-sensor (TES) calorimeters with Bi/Cu absorbers. The arrays represent a significant step towards meeting the specifications of NASA's Constellation-X mission. The calorimeters are compactly spaced within 5x5 arrays of 250 μm square pixels necessary for an angular resolution of 5 arcsec. Lithographically produced absorbers hang over the substrate and wiring between the TESs for high filling fraction and high quantum efficiency. We designed the calorimeters with heat capacities and thermal couplings such that X-rays produce pulses with fall times of approximately 300 μs to allow relatively high count rates with low dead time. We read out up to four of the pixels simultaneously. The arrays demonstrated very good energy resolution (5 eV at 1.5 keV and 7 eV at 6 keV) and little crosstalk between neighboring pixels

  20. Atmospheric pressure plasma polymerization of 1,3-butadiene for hydrophobic finishing of textile substrates

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Kartick K; Jassal, Manjeet; Agrawal, Ashwini K, E-mail: ashwini@smita-iitd.co, E-mail: manjeet.jassal@smita-iitd.co [Smart and Innovative Textile Materials Group (SMITA), Department of Textile Technology, Indian Institute of Technology, Hauz Khas, New Delhi-110016 (India)

    2010-02-01

    Atmospheric pressure plasma processing of textile has both ecological and economical advantages over the wet-chemical processing. However, reaction in atmospheric pressure plasma has important challenges to be overcome before it can be successfully used for finishing applications in textile. These challenges are (i) generating stable glow plasma in presence liquid/gaseous monomer, and (ii) keeping the generated radicals active in the presence of contaminants such as oxygen and air. In this study, a stable glow plasma was generated at atmospheric pressure in the mixture of gaseous reactive monomer-1,3-butadiene and He and was made to react with cellulosic textile substrate. After 12 min of plasma treatment, the hydrophilic surface of the cellulosic substrate turned into highly hydrophobic surface. The hydrophobic finish was found to be durable to soap washing. After soap washing, a water drop of 37 {mu}l took around 250 s to get absorbed in the treated sample compared to < 1 s in the untreated samples. The plasma modified samples showed water contact angle of around 134{sup 0}. Both top and bottom sides of the fabric showed similar hydrophobic results in terms of water absorbency and contact angle. The results may be attributed to chemical reaction of butadiene with the cellulosic textile substrate. The surface characterization of the plasma modified samples under SEM and AFM revealed modification of the surface under <100 nm. The results showed that atmospheric pressure plasma can be successfully used for carrying out reaction of 1,3-butadiene with cellulosic textile substrates for producing hydrophobic surface finish.

  1. Optimization of sound absorbing performance for gradient multi-layer-assembled sintered fibrous absorbers

    Science.gov (United States)

    Zhang, Bo; Zhang, Weiyong; Zhu, Jian

    2012-04-01

    The transfer matrix method, based on plane wave theory, of multi-layer equivalent fluid is employed to evaluate the sound absorbing properties of two-layer-assembled and three-layer-assembled sintered fibrous sheets (generally regarded as a kind of compound absorber or structures). Two objective functions which are more suitable for the optimization of sound absorption properties of multi-layer absorbers within the wider frequency ranges are developed and the optimized results of using two objective functions are also compared with each other. It is found that using the two objective functions, especially the second one, may be more helpful to exert the sound absorbing properties of absorbers at lower frequencies to the best of their abilities. Then the calculation and optimization of sound absorption properties of multi-layer-assembled structures are performed by developing a simulated annealing genetic arithmetic program and using above-mentioned objective functions. Finally, based on the optimization in this work the thoughts of the gradient design over the acoustic parameters- the porosity, the tortuosity, the viscous and thermal characteristic lengths and the thickness of each samples- of porous metals are put forth and thereby some useful design criteria upon the acoustic parameters of each layer of porous fibrous metals are given while applying the multi-layer-assembled compound absorbers in noise control engineering.

  2. Neutron Absorbing Ability Variation in Neutron Absorbing Material Caused by the Neutron Irradiation in Spent Fuel Storage Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Hee Dong; Han, Seul Gi; Lee, Sang Dong; Kim, Ki Hong; Ryu, Eag Hyang; Park, Hwa Gyu [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2014-10-15

    In spent fuel storage facility like high density spent fuel storage racks and dry storage casks, spent fuels are stored with neutron absorbing materials installed as a part of those facilities, and they are used for absorbing neutrons emitted from spent fuels. Usually structural material with neutron absorbing material of racks and casks are located around spent fuels, so it is irradiated by neutrons for long time. Neutron absorbing ability could be changed by the variation of nuclide composition in neutron absorbing material caused by the irradiation of neutrons. So, neutron absorbing materials are continuously faced with spent fuels with boric acid solution or inert gas environment. Major nuclides in neutron absorbing material are Al{sup 27}, C{sup 12}, B{sup 11}, B{sup 10} and they are changed to numerous other ones as radioactive decay or neutron absorption reaction. The B{sup 10} content in neutron absorbing material dominates the neutron absorbing ability, so, the variation of nuclide composition including the decrease of B{sup 10} content is the critical factor on neutron absorbing ability. In this study, neutron flux in spent fuel, the activation of neutron absorbing material and the variation of nuclide composition are calculated. And, the minimum neutron flux causing the decrease of B{sup 10} content is calculated in spent fuel storage facility. Finally, the variation of neutron multiplication factor is identified according to the one of B{sup 10} content in neutron absorbing material. The minimum neutron flux to impact the neutron absorbing ability is 10{sup 10} order, however, usual neutron flux from spent fuel is 10{sup 8} order. Therefore, even though neutron absorbing material is irradiated for over 40 years, B{sup 10} content is little decreased, so, initial neutron absorbing ability could be kept continuously.

  3. Annealing effect on the structural and optical properties of Cr/α-Cr2O3 monodispersed particles based solar absorbers

    International Nuclear Information System (INIS)

    Khamlich, S.; McCrindle, R.; Nuru, Z.Y.; Cingo, N.; Maaza, M.

    2013-01-01

    Graphical abstract: A cost-effective and environmentally friendly green chemical method, the so-called aqueous chemical growth (ACG) method, was used to deposit chromium/alpha-chromium(III) oxide, Cr/α-Cr 2 O 3 , monodispersed particles, for solar absorbers applications. Highlights: ► Cr/α-Cr 2 O 3 have been deposited by the aqueous chemical growth (ACG) method. ► High temperature annealing affects the optical selectivity of the deposited particles. ► Oxygen diffusion to the interface at high temperature results in the oxidization of the substrate. - Abstract: A cost-effective and environmentally friendly green chemical method, the so-called aqueous chemical growth (ACG) method, was used to deposit chromium/alpha-chromium(III) oxide, Cr/α-Cr 2 O 3 , monodispersed particles, for solar absorbers applications. The deposited particles were annealed at various temperatures in a hydrogen atmosphere for 2 h to study the annealing temperature dependence of the structural, chemical and optical properties of the particles grown on tantalum substrates. The deposited Cr/α-Cr 2 O 3 was characterized by X-ray diffraction (XRD), attenuated total reflection (ATR), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), and diffuse reflectance UV–vis–NIR spectroscopy. The XRD and ATR analysis indicated that by increasing annealing temperature, the particles crystallinity was improved and Ta 2 O 5 was formed around 600 °C, due to the fast oxygen diffusion from the deposited α-Cr 2 O 3 toward the tantalum substrate. The optical measurements show that samples annealed at 400 and 500 °C exhibit the targeted high absorbing optical characteristics of “Black chrome”, while those annealed below 400 °C and above 500 °C show a significant low absorptivity and high emissivity.

  4. GaAsPN-based PIN solar cells MBE-grown on GaP substrates: toward the III-V/Si tandem solar cell

    Science.gov (United States)

    Da Silva, M.; Almosni, S.; Cornet, C.; Létoublon, A.; Levallois, C.; Rale, P.; Lombez, L.; Guillemoles, J.-F.; Durand, O.

    2015-03-01

    GaAsPN semiconductors are promising material for the elaboration of high efficiencies tandem solar cells on silicon substrates. GaAsPN diluted nitride alloy is studied as the top junction material due to its perfect lattice matching with the Si substrate and its ideal bandgap energy allowing a perfect current matching with the Si bottom cell. We review our recent progress in materials development of the GaAsPN alloy and our recent studies of some of the different building blocks toward the elaboration of a PIN solar cell. A lattice matched (with a GaP(001) substrate, as a first step toward the elaboration on a Si substrate) 1μm-thick GaAsPN alloy has been grown by MBE. After a post-growth annealing step, this alloy displays a strong absorption around 1.8-1.9 eV, and efficient photoluminescence at room temperature suitable for the elaboration of the targeted solar cell top junction. Early stage GaAsPN PIN solar cells prototypes have been grown on GaP (001) substrates, with 2 different absorber thicknesses (1μm and 0.3μm). The external quantum efficiencies and the I-V curves show that carriers have been extracted from the GaAsPN alloy absorbers, with an open-circuit voltage of 1.18 V, while displaying low short circuit currents meaning that the GaAsPN structural properties needs a further optimization. A better carrier extraction has been observed with the absorber displaying the smallest thickness, which is coherent with a low carriers diffusion length in our GaAsPN compound. Considering all the pathways for improvement, the efficiency obtained under AM1.5G is however promising.

  5. Sound Absorbers

    Science.gov (United States)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  6. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooher, G.I.

    1979-01-01

    A neutron absorbing article, in flat plate form and suitable for use in a storage rack for spent fuel, includes boron carbide particles, diluent particles and a solid, irreversibly cured phenolic polymer cured to a continuous matrix binding the boron carbide and diluent particles. The total conent of boron carbide and diluent particles is a major proportion of the article and the content of cured phenolic polymer present is a minor proportion. By regulation of the ratio of boron carbide particles to diluent particles, normally within the range of 1:9 and 9:1 and preferably within the range of 1:5 to 5:1, the neutron absorbing activity of the product may be controlled, which facilitates the manufacture of articles of particular absorbing activities best suitable for specific applications

  7. Substrate and p-layer effects on polymorphous silicon solar cells

    Directory of Open Access Journals (Sweden)

    Abolmasov S.N.

    2014-07-01

    Full Text Available The influence of textured transparent conducting oxide (TCO substrate and p-layer on the performance of single-junction hydrogenated polymorphous silicon (pm-Si:H solar cells has been addressed. Comparative studies were performed using p-i-n devices with identical i/n-layers and back reflectors fabricated on textured Asahi U-type fluorine-doped SnO2, low-pressure chemical vapor deposited (LPCVD boron-doped ZnO and sputtered/etched aluminum-doped ZnO substrates. The p-layers were hydrogenated amorphous silicon carbon and microcrystalline silicon oxide. As expected, the type of TCO and p-layer both have a great influence on the initial conversion efficiency of the solar cells. However they have no effect on the defect density of the pm-Si:H absorber layer.

  8. Dataset demonstrating the modeling of a high performance Cu(In,GaSe2 absorber based thin film photovoltaic cell

    Directory of Open Access Journals (Sweden)

    Md. Asaduzzaman

    2017-04-01

    Full Text Available The physical data of the semiconductor materials used in the design of a CIGS absorber based thin film photovoltaic cell have been presented in this data article. Besides, the values of the contact parameter and operating conditions of the cell have been reported. Furthermore, by conducting the simulation with data corresponding to the device structure: soda-lime glass (SLG substrate/Mo back-contact/CIGS absorber/CdS buffer/intrinsic ZnO/Al-doped ZnO window/Al-grid front-contact, the solar cell performance parameters such as open circuit voltage (Voc, short circuit current density Jsc, fill factor (FF, efficiency (η, and collection efficiency ηc have been analyzed.

  9. Phosphotyrosine as a substrate of acid and alkaline phosphatases.

    Science.gov (United States)

    Apostoł, I; Kuciel, R; Wasylewska, E; Ostrowski, W S

    1985-01-01

    A new spectrophotometric method for following dephosphorylation of phosphotyrosine has been described. The absorption spectra of phosphotyrosine and tyrosine were plotted over the pH range from 3 to 9. The change in absorbance accompanying the conversion of phosphotyrosine to tyrosine was the greatest at 286 nm. The difference absorption coefficients were calculated for several pH values. Dephosphorylation of phosphotyrosine by acid phosphatases from human prostate gland, from wheat germ and potatoes obeys the Michaelis-Menten equation, whereas alkaline phosphatases calf intestine and E. coli are inhibited by excess of substrate.

  10. Saturable Absorption and Modulation Characteristics of Laser with Graphene Oxide Spin Coated on ITO Substrate

    Directory of Open Access Journals (Sweden)

    Xin Li

    2014-01-01

    Full Text Available The graphene oxide (GO thin film has been obtained by mixture of GO spin coated on substrate of indium tin oxide (ITO. The experiment has shown that continuous-wave laser is modulated when the graphene oxide saturable absorber (GO-SA is employed in the 1064 nm laser cavity. The shortest pulse width is 108 ns at the pump power of 5.04 W. Other output laser characteristics, such as the threshold pump power, the repetition rate, and the peak power, have also been measured. The results have demonstrated that graphene oxide is an available saturable absorber for 1064 nm passive Q-switching laser.

  11. Radiation sterilization of absorbent cotton and of absorbent gauze

    International Nuclear Information System (INIS)

    Hosobuchi, Kazunari; Oka, Mitsuru; Kaneko, Akira; Ishiwata, Hiroshi.

    1986-01-01

    The bioburden of absorbent cotton and of absorbent gauze and their physical and chemical characteristics after irradiation are investigated. The survey conducted on contaminants of 1890 cotton samples from 53 lots and 805 gauze samples from 56 lots showed maximum numbers of microbes per g of the cotton and gauze were 859 (an average of 21.4) and 777 (an average of 42.2), respectively. Isolation and microbiological and biochemical tests of representative microbes indicated that all of them, except one, were bacilli. The sterilization dose at 10 -6 of sterlity assurance level was found to be 2.0 Mrad when irradiated the spores loaded on paper strips and examined populations having graded D values from 0.10 to 0.28 Mrad. The sterilization dose would be about 1.5 Mrad if subjected the average numbers of contaminants observed in this study to irradiation. No significant differences were found between the irradiated samples and control up to 2 Mrad in tensile strength, change of color, absorbency, sedimentation rate, soluble substances, and pH of solutions used for immersion and other tests conventionally used. These results indicate that these products can be sterilized by irradiation. (author)

  12. Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate.

    Science.gov (United States)

    Israelsen, Nathan D; Wooley, Donald; Hanson, Cynthia; Vargis, Elizabeth

    2016-01-01

    Surface-enhanced Raman scattering (SERS) is a powerful light scattering technique that can be used for sensitive immunoassay development and cell labeling. A major obstacle to using SERS is the complexity of fabricating SERS probes since they require nanoscale characterization and optical uniformity. The light scattering response of SERS probes may also be modulated by the substrate used for SERS analysis. A typical SERS substrate such as quartz can be expensive. Polystyrene is a cheaper substrate option but can decrease the SERS response due to interfering Raman emission peaks and high background fluorescence. The goal of this research is to develop an optimized process for fabricating Raman-labeled nanoparticles for a SERS-based immunoassay on a polystyrene substrate. We have developed a method for fabricating SERS nanoparticle probes for use in a light scattering immunoassay on a polystyrene substrate. The light scattering profile of both spherical gold nanoparticle and gold nanorod SERS probes were characterized using Raman spectroscopy and optical absorbance spectroscopy. The effects of substrate interference and autofluorescence were reduced by selecting a Raman reporter with a strong light scattering response in a spectral region where interfering substrate emission peaks are minimized. Both spherical gold nanoparticles and gold nanorods SERS probes used in the immunoassay were detected at labeling concentrations in the low pM range. This analytical sensitivity falls within the typical dynamic range for direct labeling of cell-surface biomarkers using SERS probes. SERS nanoparticle probes were fabricated to produce a strong light scattering signal despite substrate interference. The optical extinction and inelastic light scattering of these probes was detected by optical absorbance spectroscopy and Raman spectroscopy, respectively. This immunoassay demonstrates the feasibility of analyzing strongly enhanced Raman signals on polystyrene, which is an

  13. Proton-conductive nano zeolite-PVA composite film as a new water-absorbing electrolyte for water electrolysis

    Directory of Open Access Journals (Sweden)

    M. Nishihara

    2018-03-01

    Full Text Available In this study, organic-inorganic composite electrolyte membranes are developed for a novel water-absorbing porous electrolyte water electrolysis cell. As the materials of the composite electrolyte membrane, 80 wt% of a proton-conducting nano zeolite (H-MFI as an electrolyte and 20 wt% of poly(vinyl alcohol (PVA as a cross-linkable matrix are used. The nano zeolite is prepared by a milling process. The nano zeolite-PVA composite membrane precursors are prepared by spraying onto a substrate, followed by cross-linking. The resulting nano zeolite-cross-linked PVA composite films are then evaluated for their properties such as proton conductivity as electrolyte membranes for the water-absorbing porous electrolyte water electrolysis cell. It is confirmed that conventional materials such as zeolites and PVA can be used for the water electrolysis as an electrolyte.

  14. Preparation of Active Absorbent for Flue Gas Desulfurization From Coal Bottom Ash: Effect of Absorbent Preparation Variables

    Directory of Open Access Journals (Sweden)

    Chang Chin Li, Lee Keat Teong, Subhash Bhatia and Abdul Rahman Mohamed

    2012-08-01

    Full Text Available An active absorbent for flue gas desulfurization was prepared from coal bottom ash, calcium oxide (CaO and calcium sulfate by hydro-thermal process. The absorbent was examined for its micro-structural properties. The experiments conducted were based on Design Of Experiments (DOE according to 23 factorial design. The effect of various absorbent preparation variables such as ratio of CaO to bottom ash (A, hydration temperature (B and hydration period (C towards the BET (Brunauer-Emmett-Teller specific surface area of the absorbent were studied. At a CaO to bottom ash ratio = 2, hydration temperature = 200 ?C and hydration period = 10 hrs, absorbent with a surface area of 90.1 m2/g was obtained. Based on the analysis of the factorial design, it was concluded that factor A and C as well as the interaction of factors ABC and BC are the significant factors that effect the BET surface area of the absorbent. A linear mathematical model that describes the relation between the independent variables and interaction between variables towards the BET specific surface area of the absorbent was also developed. Analysis of variance (ANOVA showed that the model was significant at 1% level.Key Words: Absorbent, Bottom Ash, Design Of Experiments, Desulfurization, Surface Area.

  15. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1983-01-01

    A neutron-absorber body for use in burnable poison rods in a nuclear reactor. The body is composed of a matrix of Al 2 O 3 containing B 4 C, the neutron absorber. Areas of high density polycrystalline Al 2 O 3 particles are predominantly encircled by pores in some of which there are B 4 C particles. This body is produced by initially spray drying a slurry of A1 2 O 3 powder to which a binder has been added. The powder of agglomerated spheres of the A1 2 O 3 with the binder are dry mixed with B 4 C powder. The mixed powder is formed into a green body by isostatic pressure and the green body is sintered. The sintered body is processed to form the neutron-absorber body. In this case the B 4 C particles are separate from the spheres resulting from the spray drying instead of being embedded in the sphere

  16. Neutron absorbers and methods of forming at least a portion of a neutron absorber

    Energy Technology Data Exchange (ETDEWEB)

    Guillen, Donna P; Porter, Douglas L; Swank, W David; Erickson, Arnold W

    2014-12-02

    Methods of forming at least a portion of a neutron absorber include combining a first material and a second material to form a compound, reducing the compound into a plurality of particles, mixing the plurality of particles with a third material, and pressing the mixture of the plurality of particles and the third material. One or more components of neutron absorbers may be formed by such methods. Neutron absorbers may include a composite material including an intermetallic compound comprising hafnium aluminide and a matrix material comprising pure aluminum.

  17. Solar cells with low cost substrates, process of making same and article of manufacture

    Science.gov (United States)

    Mitchell, K.W.

    A solar cell is disclosed having a substrate and an intermediate recrystallized film and a semiconductor material capable of absorbing light with the substrate being selected from one of a synthetic organic resin, graphite, glass and a crystalline material having a grain size less than about 1 micron/sup 2/. The intermediate recrystallized film has a grain size in the range of from about 10 microns/sup 2/ to about 10,000 microns/sup 2/ and a lattice mismatch with the semiconductor material not greater than about 4%. The semiconductor material has a grain size not less than about 10 microns/sup 2/. An anti-reflective layer and electrical contact means are provided. Also disclosed is a subcombination of substrate, intermediate recrystallized film and semiconductor material. Also, methods of formulating the solar cell and subcombination are disclosed.

  18. Radioactive iodine absorbing properties of tetrathiafulvalene

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Tomiyasu; Nakamura, Asao (Ajinomoto Co. Inc., Kawasaki, Kanagawa (Japan). Central Research Labs.); Nogawa, Norio; Oohashi, Kunio; Morikawa, Naotake

    1989-05-01

    For the purpose of searching some effective absorbents of gaseous radioactive iodine, 16 substances considered as having an affinity for iodine were investigated with regular iodine and /sup 125/I. In a preliminary survey, only tetrathiafulvalene (TTF) was found to have satisfactory absorbing properties comparable to activated charcoal. A further detailed comparison of the properties between TTF and activated charcoal led us to the conclusion that the former has more preferable properties as absorbent of radioactive iodine than the latter in all points studied. The results are summarized as follows: (1) The absorption of iodine on TTF in atmosphere was about twice as much as that on activated charcoal. Desorption of iodine from saturatedly absorbed iodine on TTF was practically negligible except trace amount of initial desorption, while that on activated charcoal was considerable (3%/50h) even in the air at room temperature. (2) Absorbed amount of iodine on activated charcoal decreased with increasing gaseous iodine concentration, air flow rate, on humidity of flowing-air. On the other hand, those factors scarcely affected that on TTF. Under an air flow rate of 1m/s, activated charcoal absorbs only 80% of iodine, while TTF absorbs more than 99%. (3) In flowing-air saturated with water vapor, iodine absorbed on activated charcoal was gradually liberated although by small amount (0.08%/100h), while that on TTF was much more stable for a long period (0.004%/100h). As a conclusion, TTF is considered to be useful as a quite effective radioactive iodine absorbent, especially in the case where protection from radioactive iodine should be serious, though it is expensive now. (author).

  19. Radioactive iodine absorbing properties of tetrathiafulvalene

    International Nuclear Information System (INIS)

    Ito, Tomiyasu; Nakamura, Asao; Nogawa, Norio; Oohashi, Kunio; Morikawa, Naotake.

    1989-01-01

    For the purpose of searching some effective absorbents of gaseous radioactive iodine, 16 substances considered as having an affinity for iodine were investigated with regular iodine and 125 I. In a preliminary survey, only tetrathiafulvalene (TTF) was found to have satisfactory absorbing properties comparable to activated charcoal. A further detailed comparison of the properties between TTF and activated charcoal led us to the conclusion that the former has more preferable properties as absorbent of radioactive iodine than the latter in all points studied. The results are summarized as follows: (1) The absorption of iodine on TTF in atmosphere was about twice as much as that on activated charcoal. Desorption of iodine from saturatedly absorbed iodine on TTF was practically negligible except trace amount of initial desorption, while that on activated charcoal was considerable (3%/50h) even in the air at room temperature. (2) Absorbed amount of iodine on activated charcoal decreased with increasing gaseous iodine concentration, air flow rate, on humidity of flowing-air. On the other hand, those factors scarcely affected that on TTF. Under an air flow rate of 1m/s, activated charcoal absorbs only 80% of iodine, while TTF absorbs more than 99%. (3) In flowing-air saturated with water vapor, iodine absorbed on activated charcoal was gradually liberated although by small amount (0.08%/100h), while that on TTF was much more stable for a long period (0.004%/100h). As a conclusion, TTF is considered to be useful as a quite effective radioactive iodine absorbent, especially in the case where protection from radioactive iodine should be serious, though it is expensive now. (author)

  20. Neutron absorbing article

    International Nuclear Information System (INIS)

    Naum, R.G.; Owens, D.P.; Dooker, G.I.

    1981-01-01

    A neutron-absorbing article suitable for use in spent fuel racks is described. It comprises boron carbide particles, diluent particles, and a phenolic polymer cured to a continuous matrix. The diluent may be silicon carbide, graphite, amorphous carbon, alumina, or silica. The combined boron carbide-diluent phase contains no more than 2 percent B 2 O 3 , and the neutron-absorbing article contains from 20 to 40 percent phenol resin. The ratio of boron carbide to diluent particles is in the range 1:9 to 9:1

  1. Mechanical shock absorber

    International Nuclear Information System (INIS)

    Vrillon, Bernard.

    1973-01-01

    The mechanical shock absorber described is made of a constant thickness plate pierced with circular holes regularly distributed in such a manner that for all the directions along which the strain is applied during the shock, the same section of the substance forming the plate is achieved. The shock absorber is made in a metal standing up to extensive deformation before breaking, selected from a group comprising mild steels and austenitic stainless steels. This apparatus is used for handling pots of fast neutron reactor fuel elements [fr

  2. Fabrication of Cu{sub 2}ZnSn(S,Se){sub 4} (CZTSSe) absorber films based on solid-phase synthesis and blade coating processes

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruixin, E-mail: mrx_601@126.com [School of Metallurgy and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Special Melting and Preparation of High-end Metal Materials, Beijing 100083 (China); Yang, Fan; Li, Shina; Zhang, Xiaoyong; Li, Xiang; Cheng, Shiyao; Liu, Zilin [School of Metallurgy and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-04-15

    Graphical abstract: - Highlights: • Pure CZTS nano-crystalline have been prepared based on solid-phase synthesis. • A simple and modified doctor blade process followed by a selenization technique was utilized to fabricate CZTSSe absorber films. • Comparative studies on the properties of CZTS and CZTSSe absorber films have been investigated. • The band gap of CZTSSe absorber films was determined to be 1.26 eV. - Abstract: CZTSSe is an important earth abundant collection of materials for the development of low cost and high efficiency thin film solar cells. This work developed a simple non-vacuum-based route to fabricate CZTSSe absorber films. This was demonstrated by first synthesizing Cu{sub 2}ZnSnS{sub 4} (CZTS) nano-crystalline based on solid-phase synthesis. Then a stable colloidal ink composed of CZTS nano-crystalline was blade coated on Mo-coated substrates followed by an annealing process under Ar atmosphere. After CZTS films formation, the films were sintered into CZTSSe absorber films by exposing them under Selenium vapor. The formation of a kesterite type CZTS was confirmed using X-ray diffraction and Raman scattering measurements. The band gap of CZTSSe absorber films was determined to be 1.26 eV, which was appropriate for use as an absorber layer in thin film solar cells. The CZTSSe absorber films showed a good photovoltatic performance, demonstrating this simple approach had great potential for CZTSSe solar cell production.

  3. Bismuth-doped Cu(In,Ga)Se2 absorber prepared by multi-layer precursor method and its solar cell

    International Nuclear Information System (INIS)

    Chantana, Jakapan; Hironiwa, Daisuke; Minemoto, Takashi; Watanabe, Taichi; Teraji, Seiki; Kawamura, Kazunori

    2015-01-01

    Bismuth (Bi)-doped Cu(In,Ga)Se 2 (CIGS) films were prepared by the so-called ''multi-layer precursor method'', obtained by depositing them onto Bi layers with various thicknesses on Mo-coated soda-lime glass (SLG) substrates. Material composition (Cu, In, Ga, and Se) profiles of the CIGS films are almost identical, whereas sodium (Na) is reduced, when Bi thickness is increased. Moreover, the incorporation of Bi into the CIGS film is enhanced with thicker Bi layer. With Bi thickness from 0 to 70 nm, the 2.4-μm-thick CIGS absorbers demonstrate the increase in CIGS grain size, carrier lifetime, and carrier concentration, thus improving their cell performances, especially open-circuit voltage (V OC ). With further increase in Bi thickness of above 70 nm, the CIGS films show the deterioration of CIGS film quality owing to the formation of Bi compounds such as Bi, BiSe, and Bi 4 Se 3 . Consequently, Bi-doped CIGS absorber with thickness of 2.4 μm, prepared with the 70-nm-thick Bi layer on Mo-coated SLG substrate, gives rise to the improvement of photovoltaic performances, especially V OC . (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. The effect of optical substrates on micro-FTIR analysis of single mammalian cells.

    Science.gov (United States)

    Wehbe, Katia; Filik, Jacob; Frogley, Mark D; Cinque, Gianfelice

    2013-02-01

    The study of individual cells with infrared (IR) microspectroscopy often requires living cells to be cultured directly onto a suitable substrate. The surface effect of the specific substrates on the cell growth-viability and associated biochemistry-as well as on the IR analysis-spectral interference and optical artifacts-is all too often ignored. Using the IR beamline, MIRIAM (Diamond Light Source, UK), we show the importance of the substrate used for IR absorption spectroscopy by analyzing two different cell lines cultured on a range of seven optical substrates in both transmission and reflection modes. First, cell viability measurements are made to determine the preferable substrates for normal cell growth. Successively, synchrotron radiation IR microspectroscopy is performed on the two cell lines to determine any genuine biochemically induced changes or optical effect in the spectra due to the different substrates. Multivariate analysis of spectral data is applied on each cell line to visualize the spectral changes. The results confirm the advantage of transmission measurements over reflection due to the absence of a strong optical standing wave artifact which amplifies the absorbance spectrum in the high wavenumber regions with respect to low wavenumbers in the mid-IR range. The transmission spectra reveal interference from a more subtle but significant optical artifact related to the reflection losses of the different substrate materials. This means that, for comparative studies of cell biochemistry by IR microspectroscopy, it is crucial that all samples are measured on the same substrate type.

  5. Shock absorber in Ignalina NPP

    International Nuclear Information System (INIS)

    Bulavas, A.; Muralis, J.

    1996-09-01

    Theoretical calculation and experimental analysis of models of shock absorber in Ignalina NPP is presented. The results obtained from the investigation with model of shock absorber coincide with the theoretical calculation. (author). 2 figs., 3 refs

  6. Liquid metal reactor absorber technology

    International Nuclear Information System (INIS)

    Pitner, A.L.

    1990-10-01

    The selection of boron carbide as the reference liquid metal reactor absorber material is supported by results presented for irradiation performance, reactivity worth compatibility, and benign failure consequences. Scram response requirements are met easily with current control rod configurations. The trend in absorber design development is toward larger sized pins with fewer pins per bundle, providing economic savings and improved hydraulic characteristics. Very long-life absorber designs appear to be attainable with the application of vented pin and sodium-bonded concepts. 3 refs., 3 figs

  7. On the definition of absorbed dose

    International Nuclear Information System (INIS)

    Grusell, Erik

    2015-01-01

    Purpose: The quantity absorbed dose is used extensively in all areas concerning the interaction of ionizing radiation with biological organisms, as well as with matter in general. The most recent and authoritative definition of absorbed dose is given by the International Commission on Radiation Units and Measurements (ICRU) in ICRU Report 85. However, that definition is incomplete. The purpose of the present work is to give a rigorous definition of absorbed dose. Methods: Absorbed dose is defined in terms of the random variable specific energy imparted. A random variable is a mathematical function, and it cannot be defined without specifying its domain of definition which is a probability space. This is not done in report 85 by the ICRU, mentioned above. Results: In the present work a definition of a suitable probability space is given, so that a rigorous definition of absorbed dose is possible. This necessarily includes the specification of the experiment which the probability space describes. In this case this is an irradiation, which is specified by the initial particles released and by the material objects which can interact with the radiation. Some consequences are discussed. Specific energy imparted is defined for a volume, and the definition of absorbed dose as a point function involves the specific energy imparted for a small mass contained in a volume surrounding the point. A possible more precise definition of this volume is suggested and discussed. Conclusions: The importance of absorbed dose motivates a proper definition, and one is given in the present work. No rigorous definition has been presented before. - Highlights: • A stringent definition of absorbed dose is given. • This requires the definition of an irradiation and a suitable probability space. • A stringent definition is important for an understanding of the concept absorbed dose

  8. Nanofabrication of SERS Substrates for Single/Few Molecules Detection

    KAUST Repository

    Melino, Gianluca

    2015-05-04

    Raman spectroscopy is among the most widely employed methods to investigate the properties of materials in several fields of study. Evolution in materials science allowed us to fabricate suitable substrates, at the nanoscale, capable to enhance the electromagnetic field of the signals coming from the samples which at this range turn out to be in most cases singles or a few molecules. This particular variation of the classical technique is called SERS (Surface Enanched Raman Spectroscopy). In this work, the enhancement of the electromagnetic field is obtained by manipulation of the optical properties of metals with respect to their size. By using electroless deposition (bottom up technique), gold and silver nanoparticles were deposited in nanostructured patterns obtained on silicon wafers by means of electron beam lithography (top down technique). Rhodamine 6G in aqueous solution at extremely low concentration (10-8 M) was absorbed on the resultant dimers and the collection of the Raman spectra demonstrated the high efficiency of the substrates.

  9. Excitation of surface waves of ultracold neutrons on absorbing trap walls as anomalous loss factor

    International Nuclear Information System (INIS)

    Bokun, R.Ch.

    2006-01-01

    One analyzed probability of excitation of surface waves of ultracold neutrons in terms of a plane model consisting of three media: vacuum, a finite depth neutron absorbing substance layer and a neutron reflecting substrate. One demonstrated the absence of the mentioned surface waves in terms of the generally accepted model of two media: vacuum contiguous to the plane surface of a substance filled half-space. One pointed out the effect of the excited surface waves of ultracold neutrons on the increase of their anomalous losses in traps [ru

  10. Burnable neutron absorbers

    International Nuclear Information System (INIS)

    Radford, K.C.; Carlson, W.G.

    1985-01-01

    This patent deals with the fabrication of pellets for neutron absorber rods. Such a pellet includes a matrix of a refractory material which may be aluminum or zirconium oxide, and a burnable poison distributed throughout the matrix. The neutron absorber material may consist of one or more elements or compounds of the metals boron, gadolinium, samarium, cadmium, europium, hafnium, dysprosium and indium. The method of fabricating pellets of these materials outlined in this patent is designed to produce pores or voids in the pellets that can be used to take up the expansion of the burnable poison and to absorb the helium gas generated. In the practice of this invention a slurry of Al 2 O 3 is produced. A hard binder is added and the slurry and binder are spray dried. This powder is mixed with dry B 4 C powder, forming a homogeneous mixture. This mixture is pressed into green tubes which are then sintered. During sintering the binder volatilizes leaving a ceramic with nearly spherical high-density regions of

  11. Nanoimprinted backside reflectors for a-Si:H thin-film solar cells: critical role of absorber front textures.

    Science.gov (United States)

    Tsao, Yao-Chung; Fisker, Christian; Pedersen, Thomas Garm

    2014-05-05

    The development of optimal backside reflectors (BSRs) is crucial for future low cost and high efficiency silicon (Si) thin-film solar cells. In this work, nanostructured polymer substrates with aluminum coatings intended as BSRs were produced by positive and negative nanoimprint lithography (NIL) techniques, and hydrogenated amorphous silicon (a-Si:H) was deposited hereon as absorbing layers. The relationship between optical properties and geometry of front textures was studied by combining experimental reflectance spectra and theoretical simulations. It was found that a significant height variation on front textures plays a critical role for light-trapping enhancement in solar cell applications. As a part of sample preparation, a transfer NIL process was developed to overcome the problem of low heat deflection temperature of polymer substrates during solar cell fabrication.

  12. Absorbed dose thresholds and absorbed dose rate limitations for studies of electron radiation effects on polyetherimides

    Science.gov (United States)

    Long, Edward R., Jr.; Long, Sheila Ann T.; Gray, Stephanie L.; Collins, William D.

    1989-01-01

    The threshold values of total absorbed dose for causing changes in tensile properties of a polyetherimide film and the limitations of the absorbed dose rate for accelerated-exposure evaluation of the effects of electron radiation in geosynchronous orbit were studied. Total absorbed doses from 1 kGy to 100 MGy and absorbed dose rates from 0.01 MGy/hr to 100 MGy/hr were investigated, where 1 Gy equals 100 rads. Total doses less than 2.5 MGy did not significantly change the tensile properties of the film whereas doses higher than 2.5 MGy significantly reduced elongation-to-failure. There was no measurable effect of the dose rate on the tensile properties for accelerated electron exposures.

  13. Behavior of Electrochemically Prepared CuInSe2 as Photovoltaic Absorber in thin Film Solar Cells

    International Nuclear Information System (INIS)

    Guillen, C; Martinez, M.A.; Dona, J. M.; Herrero, J; Gutierrez, M. T.

    2000-01-01

    Two different objectives have been pursued in the present investigation: 1) optimization of the CuInSe, preparation parameters from electrodeposited precursors, and 2) evaluation of their photovoltaic behavior by preparing and enhancing Mo/CuInSe,/CdS/TCO devices. When Cu-In-Se precursors are directly electrodeposited, the applied potential fit is essential to improve the photovoltaic performance. Suitable absorbers have been also obtained by evaporating an In layer onto electrodeposited Cu-Se precursors. In this case, the substrate temperature during evaporation determines the CuInSe, quality. Similar results have been reached by substituting typical Mo-coated glass substrates by flexible Mo foils. Different TCO tested (ZnO and ITO) have been found equivalent as front electrical contact in the devices. Solar cell performance can be improved by annealing in air at 200 degree centigree. (Author) 46 refs

  14. Black phosphorus saturable absorber for Q-switched Er:YAG laser at 1645 nm

    Science.gov (United States)

    Guo, Lei; Li, Tao; Zhang, Shuaiyi; Wang, Mingjian; Yang, Kejian; Fan, Mingqi; Zhao, Shengzhi; Li, Ming

    2018-03-01

    A Q-switched Er:YAG solid-state laser at 1645 nm based on black phosphorus (BP) saturable absorbers (SAs) was demonstrated firstly to our knowledge. The BP-SA was fabricated by drop-casting BP nanoplatelets dispersion on a YAG substrate and corresponding saturable absorption properties were characterized at 1.6 μm. By employing as-prepared BP-SAs, stable Q-switched laser operations were achieved with a pulse width of 2.8 μs and a repetition rate of 34 kHz, corresponding to the average output power of 0.33 W. The results verify that BP-SAs have great potential for pulsed 1.6 μm lasers.

  15. Preparation of CuGaSe2 absorber layers for thin film solar cells by annealing of efficiently electrodeposited Cu-Ga precursor layers from ionic liquids

    International Nuclear Information System (INIS)

    Steichen, M.; Larsen, J.; Guetay, L.; Siebentritt, S.; Dale, P.J.

    2011-01-01

    CuGaSe 2 absorber layers were prepared on molybdenum substrates by electrochemical codeposition of copper and gallium and subsequential annealing in selenium vapour. The electrodeposition was made from a deep eutectic based ionic liquid consisting of choline chloride/urea (Reline) with a plating efficiency of over 85%. The precursor film composition is controlled by the ratio of the copper to gallium fluxes under hydrodynamic conditions and by the applied deposition potential. X-ray diffraction reveals CuGa 2 alloying during the electrodeposition and CuGaSe 2 formation after annealing. Photoluminescence (PL) and photocurrent spectroscopy revealed the good opto-electronic properties of the CuGaSe 2 absorber films. The absorber layers have been converted to full devices with the best device achieving 4.0 % solar conversion efficiency.

  16. Bismuth-doped Cu(In,Ga)Se{sub 2} absorber prepared by multi-layer precursor method and its solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Chantana, Jakapan; Hironiwa, Daisuke; Minemoto, Takashi [Department of Electrical and Electronic Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Watanabe, Taichi; Teraji, Seiki; Kawamura, Kazunori [Environment and Energy Research Center, Nitto Denko Corporation, 2-8 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-06-15

    Bismuth (Bi)-doped Cu(In,Ga)Se{sub 2} (CIGS) films were prepared by the so-called ''multi-layer precursor method'', obtained by depositing them onto Bi layers with various thicknesses on Mo-coated soda-lime glass (SLG) substrates. Material composition (Cu, In, Ga, and Se) profiles of the CIGS films are almost identical, whereas sodium (Na) is reduced, when Bi thickness is increased. Moreover, the incorporation of Bi into the CIGS film is enhanced with thicker Bi layer. With Bi thickness from 0 to 70 nm, the 2.4-μm-thick CIGS absorbers demonstrate the increase in CIGS grain size, carrier lifetime, and carrier concentration, thus improving their cell performances, especially open-circuit voltage (V{sub OC}). With further increase in Bi thickness of above 70 nm, the CIGS films show the deterioration of CIGS film quality owing to the formation of Bi compounds such as Bi, BiSe, and Bi{sub 4}Se{sub 3}. Consequently, Bi-doped CIGS absorber with thickness of 2.4 μm, prepared with the 70-nm-thick Bi layer on Mo-coated SLG substrate, gives rise to the improvement of photovoltaic performances, especially V{sub OC}. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Dynamic testing of airplane shock-absorbing struts

    Science.gov (United States)

    Langer, P; Thome, W

    1932-01-01

    Measurement of perpendicular impacts of a landing gear with different shock-absorbing struts against the drum testing stand. Tests were made with pneumatic shock absorbers having various degrees of damping, liquid shock absorbers, steel-spring shock absorbers and rigid struts. Falling tests and rolling tests. Maximum impact and gradual reduction of the impacts in number and time in the falling tests. Maximum impact and number of weaker impacts in rolling tests.

  18. Colorimetric determination of DNase I activity with a DNA-methyl green substrate.

    Science.gov (United States)

    Sinicropi, D; Baker, D L; Prince, W S; Shiffer, K; Shak, S

    1994-11-01

    A simple, high throughput, and precise assay was developed for quantification of deoxyribonuclease I (DNase; IUB 3.1.21.1) activity. The method was adapted from the procedure devised by Kurnick which employs a substrate comprised of highly polymerized native DNA complexed with methyl green. Hydrolysis of the DNA produced unbound methyl green and a decrease in the absorbance of the solution at 620 nm. By adjusting the time and temperature of the reaction, the assay permits quantification of DNase activity over a wide concentration range (0.4 to 8900 ng/ml). Samples and standards were added to the substrate in microtiter plates and were incubated for 1-24 h at 25-37 degrees C to achieve the desired assay range. The DNase activity of the samples was interpolated from a standard curve generated with Pulmozyme recombinant human deoxyribonuclease I (rhDNase). Interassay precision was less than 12% CV and recovery was within 100 +/- 11%. Activity determination by the DNA-methyl green method correlated well with that determined by the widely used "hyperchromicity" method originated by Kunitz, which is based on the increase in absorbance at 260 nm upon hydrolysis of DNA. The DNA-methyl green assay was simpler and more versatile than the hyperchromicity method and was used to characterize the activity of rhDNase and DNase isolated from human urine.

  19. Liquid absorber experiments in ZED-2

    International Nuclear Information System (INIS)

    McDonnell, F.N.

    1975-07-01

    A set of liquid absorber experiments was performed in ZED-2 to provide data with which to test the adequacy of calculational methods for zone controller and refuelling studies associated with advanced reactor concepts. The absorber consisted of a full length aluminum tube, containing either i)H 2 O, ii)H 2 O + boron (2.5 mg/ml) or iii)H 2 O + boron (8.0 mg/ml). The tube was suspended vertically at interstitial or in-channel locations. A U-tube absorber was also simulated using two absorber tubes with appropriate spacers. Experiments were carried out at two different square lattice pitches, 22.86 and 27.94 cm. Measurements were made of the reactivity effects of the absorbers and, in some cases, of the detailed flux distribution near the perturbation. The results from one calculational method, the source-sink approach, were compared with the data from selected experiments. (author)

  20. A chiral microwave absorbing absorbent of Fe–CoNiP coated on spirulina

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yonggang, E-mail: xuyonggang221@163.com [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Yuan, Liming [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Zhang, Deyuan [School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191 (China)

    2015-11-15

    A chiral bio-absorbent of Fe–CoNiP coated on the spirulina was fabricated by the electroless and chemical vapor decomposition. The scanning electron microscopy (SEM) was used to evaluate the spirulina cells particle morphology. X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The permittivity and permeability was measured by a vector network analyzer in frequency 8–18 GHz, and the reflection loss (RL) was calculated. The results showed the carbonyl iron particles (CIPs) and CoNiP were bonded to the spirulina surface, the permittivity and permeability could be enlarged as Fe films coated on the particles compared with the CoNiP spirulina, it was attributed to the excellent electromagnetic property of CIPs. The chiral Fe–CoNiP composites had a better absorbing property at 8–18 GHz than the CoNiP spirulina composite, the RL was −16.26 dB at 10.48 GHz, the absorbing band was 9.5–11.5 GHz of RL less than −10 dB, which indicated the Fe–CoNiP spirulina could be an effective absorbent used in 8–18 GHz. - Highlights: • Absorbers filled with Fe–CoNiP coating on the spirulina were fabricated. • The permittivity and permeability increased as CIPs coated. • The Fe material enhanced the electromagnetic property. • The spirulina coated Fe–CoNiP was effective in 8–18 GHz.

  1. An alternative non-vacuum and low cost ESAVD method for the deposition of Cu(In,Ga)Se{sub 2} absorber layers

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mingqing; Liu, Junpeng; Choy, KwangLeong [UCL Centre for Materials Discovery, University College London (United Kingdom); Hou, Xianghui [Faculty of Engineering, University of Nottingham (United Kingdom); Gibson, Paul [IMPT Ltd, Nottingham (United Kingdom); Salem, Elhamali; Koutsogeorgis, Demosthenes; Cranton, Wayne [School of Science and Technology, Nottingham Trent University (United Kingdom)

    2015-01-01

    In this article, an environmentally friendly and non-vacuum electrostatic spray assisted vapor deposition (ESAVD) process has been developed as an alternative and low cost method to deposit CIGS absorber layers. ESAVD is a non-vacuum chemical vapor deposition based process whereby a mixture of chemical precursors is atomized to form aerosol. The aerosol is charged and directed towards a heated substrate where it would undergo decomposition and chemical reaction to deposit a stable solid film onto the substrate. A sol containing copper, indium, and gallium salts, as well as thiourea was formulated into a homogeneous chemical precursor mixture for the deposition of CIGS films. After selenization, both XRD and Raman results show the presence of the characteristic peaks of CIGSSe in the fabricated thin films. From SEM images and XRF results, it can be seen that the deposited absorbers are promising for good performance solar cells. The fabricated solar cell with a typical structure of glass/Mo/CIGSSe/CdS/i-ZnO/ITO shows efficiency of 2.82% under 100 mW cm{sup -2} AM1.5 illumination. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Absorber rod drive for nuclear reactors

    International Nuclear Information System (INIS)

    Acher, H.

    1985-01-01

    The invention concerns a further addition to the invention of DE 33 42 830 A1. The free contact of the hollow piston with the nut due to hydraulic pressure is replaced by a hydraulic or spring attachment. The pressure system required to produce the hydraulic pressure is therefore omitted, and the electrical power required for driving the pump or the mass flow is also omitted. The absorber rod slotted along its longitudinal axis is replaced by an absorber rod, in the longitudinal axis of which a hollow piston is connected together with the absorber rod. This makes the absorber rod more stable, and assembly is simplified. (orig./HP) [de

  3. Parametrization of optical properties of indium-tin-oxide thin films by spectroscopic ellipsometry: Substrate interfacial reactivity

    Science.gov (United States)

    Losurdo, M.; Giangregorio, M.; Capezzuto, P.; Bruno, G.; de Rosa, R.; Roca, F.; Summonte, C.; Plá, J.; Rizzoli, R.

    2002-01-01

    Indium-tin-oxide (ITO) films deposited by sputtering and e-gun evaporation on both transparent (Corning glass) and opaque (c-Si, c-Si/SiO2) substrates and in c-Si/a-Si:H/ITO heterostructures have been analyzed by spectroscopic ellipsometry (SE) in the range 1.5-5.0 eV. Taking the SE advantage of being applicable to absorbent substrate, ellipsometry is used to determine the spectra of the refractive index and extinction coefficient of the ITO films. The effect of the substrate surface on the ITO optical properties is focused and discussed. To this aim, a parametrized equation combining the Drude model, which considers the free-carrier response at the infrared end, and a double Lorentzian oscillator, which takes into account the interband transition contribution at the UV end, is used to model the ITO optical properties in the useful UV-visible range, whatever the substrate and deposition technique. Ellipsometric analysis is corroborated by sheet resistance measurements.

  4. Optical transmission through aerosol deposits on diffusely reflective filters: a method for measuring the absorbing component of aerosol particles

    International Nuclear Information System (INIS)

    Rosen, H.; Novakov, T.

    1983-01-01

    It is unclear why the backscattered radiation from nonabsorbing particles should not make a significant contribution to the optical attenuation measurement. This is especially true where the absorbing component represents only a very small fraction of the aerosol mass. In this Letter we present a simple theoretical model which accounts for all these observations and points out the critical role of the filter substrate as an almost perfect diffuse reflector in the technique

  5. Multiband Negative Permittivity Metamaterials and Absorbers

    Directory of Open Access Journals (Sweden)

    Yiran Tian

    2013-01-01

    Full Text Available Design and characteristics of multiband negative permittivity metamaterial and its absorber configuration are presented in this paper. The proposed multiband metamaterial is composed of a novel multibranch resonator which can possess four electric resonance frequencies. It is shown that, by controlling the length of the main branches of such resonator, the resonant frequencies and corresponding absorbing bands of metamaterial absorber can be shifted in a large frequency band.

  6. Absorber materials in CANDU PHWR's

    International Nuclear Information System (INIS)

    Price, E.G.; Boss, C.R.; Novak, W.Z.; Fong, R.W.L.

    1995-03-01

    In a CANDU reactor the fuel channels are arranged on a square lattice in a calandria filled with heavy water moderator. This arrangement allows five types of tubular neutron absorber devices to be located in a relatively benign environment of low pressure, low temperature heavy water between neighbouring rows of columns of fuel channels. This paper will describe the roles of the devices and outline the design requirements of the absorber component from a reactor physics viewpoint. Nuclear heating and activation problems associated with the different absorbers will be briefly discussed. The design and manufacture of the devices will be also discussed. The control rod absorbers and shut off materials are cadmium and stainless steel. In the tubular arrangement, the cadmium is sandwiched between stainless steel tubes. This type of device has functioned well, but there is now concern over the availability and expense of cadmium which is used in two types of CANDU control devices. There are also concerns about the toxicity of cadmium during the fabrication of the absorbers. These concerns are prompting AECL to study alternatives. To minimize design changes, pure boron-10 alloyed in stainless steel is a favoured option. Work is underway to confirm the suitability of the boron-loaded steel and identify other encapsulated absorber materials for practical application. Because the reactivity devices or their guide tubes span the calandria vessel, the long slender components must be sufficiently rigid to resist operational vibration and also be seismically stable. Some of these components are made of Zircaloy to minimize neutron absorption. Slow irradiation growth and creep can reduce the spring tension, and periodic adjustments to the springs are required. Experience with the control absorber devices has generally been good. In one instance liquid zone controllers had a problem of vibration induced fretting but a designed back-fit resolved the problem. (author). 3 refs., 1

  7. TPX/TFTR Neutral Beam energy absorbers

    International Nuclear Information System (INIS)

    Dahlgren, F.; Wright, K.; Kamperschroer, J.; Grisham, L.; Lontai, L.; Peters, C.; VonHalle, A.

    1993-01-01

    The present beam energy absorbing surfaces on the TFTR Neutral Beams such as Ion Dumps, Calorimeters, beam defining apertures, and scrapers, are simple water cooled copper plates which wee designed to absorb (via their thermal inertia) the incident beam power for two seconds with a five minute coal down interval between pulses. These components are not capable of absorbing the anticipated beam power loading for 1000 second TPX pulses and will have to be replaced with an actively cooled design. While several actively cooled energy absorbing designs were considered,, the hypervapotron elements currently being used on the JET beamlines were chosen due to their lower cooling water demands and reliable performance on JET

  8. Two-dimensional QR-coded metamaterial absorber

    Science.gov (United States)

    Sui, Sai; Ma, Hua; Wang, Jiafu; Pang, Yongqiang; Zhang, Jieqiu; Qu, Shaobo

    2016-01-01

    In this paper, the design of metamaterial absorbers is proposed based on QR coding and topology optimization. Such absorbers look like QR codes and can be recognized by decoding softwares as well as mobile phones. To verify the design, two lightweight wideband absorbers are designed, which can achieve wideband absorption above 90 % in 6.68-19.30 and 7.00-19.70 GHz, respectively. More importantly, polarization-independent absorption over 90 % can be maintained under incident angle within 55°. The QR code absorber not only can achieve wideband absorption, but also can carry information such as texts and Web sites. They are of important values in applications such identification and electromagnetic protection.

  9. Estimation of Absorbed Dose in Occlusal Radiography

    International Nuclear Information System (INIS)

    Yoo, Young Ah; Choi, Karp Shick; Lee, Sang Han

    1990-01-01

    The purpose of this study was to estimate absorbed dose of each important anatomic site of phantom (RT-210 Head and Neck Section R, Humanoid Systems Co., U.S.A.) head in occlusal radiography. X-radiation dosimetry at 12 anatomic sites in maxillary anterior topography, maxillary posterior topography, mandibular anterior cross-section, mandibular posterior cross-section, mandibular anterior topographic, mandibular posterior topographic occlusal projection was performed with calcium sulfate thermoluminescent dosimeters under 70 Kvp and 15 mA, 1/4 second (8 inch cone ) and 1 second (16 inch cone) exposure time. The results obtained were as follows: Skin surface produced highest absorbed dose ranged between 3264 mrad and 4073 mrad but there was little difference between projections. In maxillary anterior topographic occlusal radiography, eyeballs, maxillary sinuses, and pituitary gland sites produced higher absorbed doses than those of other sites. In maxillary posterior topographic occlusal radiography, exposed eyeball site and exposed maxillary sinus site produced high absorbed doses. In mandibular anterior cross-sectional occlusal radiography, all sites were produced relatively low absorbed dose except eyeball sites. In Mandibular posterior cross-sectional occlusal radiography, exposed eyeball site and exposed maxillary sinus site were produced relatively higher absorbed doses than other sites. In mandibular anterior topographic occlusal radiography, maxillary sinuses, submandibular glands, and thyroid gland sites produced high absorbed doses than other sites. In mandibular posterior topographic occlusal radiography, submandibular gland site of the exposed side produced high absorbed dose than other sites and eyeball site of the opposite side produced relatively high absorbed dose.

  10. Photoelectron antibunching and absorber theory

    International Nuclear Information System (INIS)

    Pegg, D.T.

    1980-01-01

    The recently detected photoelectron antibunching effect is considered to be evidence for the quantised electromagnetic field, i.e. for the existence of photons. Direct-action quantum absorber theory, on the other hand, has been developed on the basis that the quantised field is illusory, with quantisation being required only for atoms. In this paper it is shown that photoelectron antibunching is readily explicable in terms of absorber theory and in fact is directly attributable to the quantum nature of the emitting and detecting atoms alone. The physical nature of the reduction of the wavepacket associated with the detection process is briefly discussed in terms of absorber theory. (author)

  11. Compositionally Graded Absorber for Efficient and Stable Near-Infrared-Transparent Perovskite Solar Cells.

    Science.gov (United States)

    Fu, Fan; Pisoni, Stefano; Weiss, Thomas P; Feurer, Thomas; Wäckerlin, Aneliia; Fuchs, Peter; Nishiwaki, Shiro; Zortea, Lukas; Tiwari, Ayodhya N; Buecheler, Stephan

    2018-03-01

    Compositional grading has been widely exploited in highly efficient Cu(In,Ga)Se 2 , CdTe, GaAs, quantum dot solar cells, and this strategy has the potential to improve the performance of emerging perovskite solar cells. However, realizing and maintaining compositionally graded perovskite absorber from solution processing is challenging. Moreover, the operational stability of graded perovskite solar cells under long-term heat/light soaking has not been demonstrated. In this study, a facile partial ion-exchange approach is reported to achieve compositionally graded perovskite absorber layers. Incorporating compositional grading improves charge collection and suppresses interface recombination, enabling to fabricate near-infrared-transparent perovskite solar cells with power conversion efficiency of 16.8% in substrate configuration, and demonstrate 22.7% tandem efficiency with 3.3% absolute gain when mechanically stacked on a Cu(In,Ga)Se 2 bottom cell. Non-encapsulated graded perovskite device retains over 93% of its initial efficiency after 1000 h operation at maximum power point at 60 °C under equivalent 1 sun illumination. The results open an avenue in exploring partial ion-exchange to design graded perovskite solar cells with improved efficiency and stability.

  12. Compositionally Graded Absorber for Efficient and Stable Near‐Infrared‐Transparent Perovskite Solar Cells

    Science.gov (United States)

    Pisoni, Stefano; Weiss, Thomas P.; Feurer, Thomas; Wäckerlin, Aneliia; Fuchs, Peter; Nishiwaki, Shiro; Zortea, Lukas; Tiwari, Ayodhya N.

    2018-01-01

    Abstract Compositional grading has been widely exploited in highly efficient Cu(In,Ga)Se2, CdTe, GaAs, quantum dot solar cells, and this strategy has the potential to improve the performance of emerging perovskite solar cells. However, realizing and maintaining compositionally graded perovskite absorber from solution processing is challenging. Moreover, the operational stability of graded perovskite solar cells under long‐term heat/light soaking has not been demonstrated. In this study, a facile partial ion‐exchange approach is reported to achieve compositionally graded perovskite absorber layers. Incorporating compositional grading improves charge collection and suppresses interface recombination, enabling to fabricate near‐infrared‐transparent perovskite solar cells with power conversion efficiency of 16.8% in substrate configuration, and demonstrate 22.7% tandem efficiency with 3.3% absolute gain when mechanically stacked on a Cu(In,Ga)Se2 bottom cell. Non‐encapsulated graded perovskite device retains over 93% of its initial efficiency after 1000 h operation at maximum power point at 60 °C under equivalent 1 sun illumination. The results open an avenue in exploring partial ion‐exchange to design graded perovskite solar cells with improved efficiency and stability. PMID:29593970

  13. An omnidirectional electromagnetic absorber made of metamaterials

    International Nuclear Information System (INIS)

    Cheng Qiang; Cui Tiejun; Jiang Weixiang; Cai Bengeng

    2010-01-01

    In a recent theoretical work by Narimanov and Kildishev (2009 Appl. Phys. Lett. 95 041106) an optical omnidirectional light absorber based on metamaterials was proposed, in which theoretical analysis and numerical simulations showed that all optical waves hitting the absorber are trapped and absorbed. Here we report the first experimental demonstration of an omnidirectional electromagnetic absorber in the microwave frequency. The proposed device is composed of non-resonant and resonant metamaterial structures, which can trap and absorb electromagnetic waves coming from all directions spirally inwards without any reflections due to the local control of electromagnetic fields. It is shown that the absorption rate can reach 99 per cent in the microwave frequency. The all-directional full absorption property makes the device behave like an 'electromagnetic black body', and the wave trapping and absorbing properties simulate, to some extent, an 'electromagnetic black hole.' We expect that such a device could be used as a thermal emitting source and to harvest electromagnetic waves.

  14. Warm Absorber Diagnostics of AGN Dynamics

    Science.gov (United States)

    Kallman, Timothy

    Warm absorbers and related phenomena are observable manifestations of outflows or winds from active galactic nuclei (AGN) that have great potential value. Understanding AGN outflows is important for explaining the mass budgets of the central accreting black hole, and also for understanding feedback and the apparent co-evolution of black holes and their host galaxies. In the X-ray band warm absorbers are observed as photoelectric absorption and resonance line scattering features in the 0.5-10 keV energy band; the UV band also shows resonance line absorption. Warm absorbers are common in low luminosity AGN and they have been extensively studied observationally. They may play an important role in AGN feedback, regulating the net accretion onto the black hole and providing mechanical energy to the surroundings. However, fundamental properties of the warm absorbers are not known: What is the mechanism which drives the outflow?; what is the gas density in the flow and the geometrical distribution of the outflow?; what is the explanation for the apparent relation between warm absorbers and the surprising quasi-relativistic 'ultrafast outflows' (UFOs)? We propose a focused set of model calculations that are aimed at synthesizing observable properties of warm absorber flows and associated quantities. These will be used to explore various scenarios for warm absorber dynamics in order to answer the questions in the previous paragraph. The guiding principle will be to examine as wide a range as possible of warm absorber driving mechanisms, geometry and other properties, but with as careful consideration as possible to physical consistency. We will build on our previous work, which was a systematic campaign for testing important class of scenarios for driving the outflows. We have developed a set of tools that are unique and well suited for dynamical calculations including radiation in this context. We also have state-of-the-art tools for generating synthetic spectra, which are

  15. Preparation of super absorbent by irradiation polymerization

    International Nuclear Information System (INIS)

    Hua Fengjun; Tan Chunhong; Qian Mengping

    1995-01-01

    A kind of absorbent is prepared by gamma-rays irradiated by reversed-phase suspension polymerization. Drying particles have 1400 (g/g) absorbency in de-ionic water. Effects of reactive conditions, e.g.: dose-rate, dose, monomer concentration, degree of monomer neutralization and crosslinking agents on absorbency in de-ionic water are discussed. The cause of absorbing de-ionic water by polymer is related to its network structure and ionic equilibrium in particle. Accordingly, a suit reactive condition is chosen for preparation of hydro gel spheres

  16. Frequency Tuning of Vibration Absorber Using Topology Optimization

    Science.gov (United States)

    Harel, Swapnil Subhash

    A tuned mass absorber is a system for reducing the amplitude in one oscillator by coupling it to a second oscillator. If tuned correctly, the maximum amplitude of the first oscillator in response to a periodic driver will be lowered, and much of the vibration will be 'transferred' to the second oscillator. The tuned vibration absorber (TVA) has been utilized for vibration control purposes in many sectors of Civil/Automotive/Aerospace Engineering for many decades since its inception. Time and again we come across a situation in which a vibratory system is required to run near resonance. In the past, approaches have been made to design such auxiliary spring mass tuned absorbers for the safety of the structures. This research focuses on the development and optimization of continuously tuned mass absorbers as a substitute to the discretely tuned mass absorbers (spring- mass system). After conducting the study of structural behavior, the boundary condition and frequency to which the absorber is to be tuned are determined. The Modal analysis approach is used to determine mode shapes and frequencies. The absorber is designed and optimized using the topology optimization tool, which simultaneously designs, optimizes and tunes the absorber to the desired frequency. The tuned, optimized absorber, after post processing, is attached to the target structure. The number of the absorbers are increased to amplify bandwidth and thereby upgrade the safety of structure for a wide range of frequency. The frequency response analysis is carried out using various combinations of structure and number of absorber cell.

  17. COMPARISON OF ABSORBABLE EXTRA LONG TERM POLY HYDROXY BUTYRATE SUTURE VS NON ABSORBABLE (POLYPROPYLENE SUTURE FOR ABDOMINAL WALL CLOSURE

    Directory of Open Access Journals (Sweden)

    Mallikarjun

    2015-07-01

    Full Text Available PURPOSE: The aim of study is to compare Continuous technique with non - absorbable sutures, Interrupted technique with non - absorbable sutures and Continuous technique with slowly absorbable sutures Focusing mainly on incidence of incisional hernias, burst abdomen, wound infections, chronic wound pain, suture sinus, stitch granuloma, time for rectus closure. METHODOLOGY : Study was conducted for a period of one year on 271 randomized patients with primary elective midline laparotomy in our hospital . patients are divided into group I includes 102 patients with continuous technique using non absorbable polypropylene, group II includes 91 patients with interrupted technique using non absorbable polypropylene and group III includes 78 patients with continuous slowly absorbable polyhydroxybutyrate. RESULTS: No significant difference observed in incidence of wound infections and burst abdomen in all the 3 groups but relatively higher incidence of wound infections in noted our hospital. Incidence of stich granuloma suture sinus and chronic wound pain is more with interrupted technique than continuous technique and are more with non - absor bable suture material. CONCLUSION: Incidence of incisional hernias, suture complications like suture sinus, stitch granuloma can be more effectively reduced with slowly absorbable continuous sutures.

  18. Shock absorber

    International Nuclear Information System (INIS)

    Nemeth, J.D.

    1981-01-01

    A shock absorber for the support of piping and components in a nuclear power plant is described. It combines a high degree of stiffness under sudden shocks, e.g. seismic disturbances, with the ability to allow for thermal expansion without resistance when so required. (JIW)

  19. 21 CFR 880.5300 - Medical absorbent fiber.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical absorbent fiber. 880.5300 Section 880.5300 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Devices § 880.5300 Medical absorbent fiber. (a) Identification. A medical absorbent fiber is a device...

  20. An ultra-broadband multilayered graphene absorber

    KAUST Repository

    Amin, Muhammad; Farhat, Mohamed; Bagci, Hakan

    2013-01-01

    An ultra-broadband multilayered graphene absorber operating at terahertz (THz) frequencies is proposed. The absorber design makes use of three mechanisms: (i) The graphene layers are asymmetrically patterned to support higher order surface plasmon

  1. High-efficiency ventilated metamaterial absorber at low frequency

    Science.gov (United States)

    Wu, Xiaoxiao; Au-Yeung, Ka Yan; Li, Xin; Roberts, Robert Christopher; Tian, Jingxuan; Hu, Chuandeng; Huang, Yingzhou; Wang, Shuxia; Yang, Zhiyu; Wen, Weijia

    2018-03-01

    We demonstrate a ventilated metamaterial absorber operating at low frequency (90%) has been achieved in both simulations and experiments. This high-efficiency absorption under the ventilation condition originates from the weak coupling of two identical split tube resonators constituting the absorber, which leads to the hybridization of the degenerate eigenmodes and breaks the absorption upper limit of 50% for conventional transmissive symmetric acoustic absorbers. The absorber can also be extended to an array and work in free space. The absorber should have potential applications in acoustic engineering where both noise reduction and ventilation are required.

  2. Thermal Shielding Effects of a Damaged Shock Absorber and an Intact Shock Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Kim, K. Y.; Seo, C. S.; Seo, K. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2011-05-15

    In order to safely transport the radioactive waste arising from the hot test of an ACP(Advanced Spent Fuel Conditioning Process) a shipping package is required. Therefore, KAERI is developing a shipping package to transport the radioactive waste arising from the ACPF during a hot test. The regulatory requirements for a Type B package are specified in the Korea Most Act 2009-37, IAEA Safety Standard Series No. TS-R-1, and US 10 CFR Part. These regulatory guidelines classify the hot cell cask as a Type B package, and state that the Type B package for transporting radioactive materials should be able to withstand a test sequence consisting of a 9 m drop onto an unyielding surface, a 1 m drop onto a puncture bar, and a 30 minute fully engulfing fire. Greiner et al. investigated the thermal protection provided by shock absorbers by using the CAFE computer code. To evaluate the thermal shielding effect of the shock absorber, the thermal test was performed by using a 1/2 scale model with a shock absorber which was damaged by both a 9 m drop test and a 1 m puncture test. For the purpose of comparison, the thermal test was also carried out by using a 1/2 scale model with the intact shock absorber

  3. On (m, n)-absorbing ideals of commutative rings

    Indian Academy of Sciences (India)

    with respect to various ring theoretic constructions and study (m, n)-absorbing ideals in several commutative rings. For example, in a Bézout ring or a Boolean ring, an ideal is an (m, n)-absorbing ideal if and only if it is an n-absorbing ideal, and in an almost. Dedekind domain every (m, n)-absorbing ideal is a product of at ...

  4. Design of a nonlinear torsional vibration absorber

    Science.gov (United States)

    Tahir, Ammaar Bin

    Tuned mass dampers (TMD) utilizing linear spring mechanisms to mitigate destructive vibrations are commonly used in practice. A TMD is usually tuned for a specific resonant frequency or an operating frequency of a system. Recently, nonlinear vibration absorbers attracted attention of researchers due to some potential advantages they possess over the TMDs. The nonlinear vibration absorber, or the nonlinear energy sink (NES), has an advantage of being effective over a broad range of excitation frequencies, which makes it more suitable for systems with several resonant frequencies, or for a system with varying excitation frequency. Vibration dissipation mechanism in an NES is passive and ensures that there is no energy backflow to the primary system. In this study, an experimental setup of a rotational system has been designed for validation of the concept of nonlinear torsional vibration absorber with geometrically induced cubic stiffness nonlinearity. Dimensions of the primary system have been optimized so as to get the first natural frequency of the system to be fairly low. This was done in order to excite the dynamic system for torsional vibration response by the available motor. Experiments have been performed to obtain the modal parameters of the system. Based on the obtained modal parameters, the design optimization of the nonlinear torsional vibration absorber was carried out using an equivalent 2-DOF modal model. The optimality criterion was chosen to be maximization of energy dissipation in the nonlinear absorber attached to the equivalent 2-DOF system. The optimized design parameters of the nonlinear absorber were tested on the original 5-DOF system numerically. A comparison was made between the performance of linear and nonlinear absorbers using the numerical models. The comparison showed the superiority of the nonlinear absorber over its linear counterpart for the given set of primary system parameters as the vibration energy dissipation in the former is

  5. Performance evaluation of CFRP-rubber shock absorbers

    Science.gov (United States)

    Lamanna, Giuseppe; Sepe, Raffaele

    2014-05-01

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers' safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  6. Performance evaluation of CFRP-rubber shock absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Lamanna, Giuseppe, E-mail: giuseppe.lamanna@unina2.it; Sepe, Raffaele, E-mail: giuseppe.lamanna@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, via Roma, 29 - 81031 Aversa (Italy)

    2014-05-15

    In the present work a numerical investigation on the energy absorbing capability of dedicated structural components made of a carbon fiber reinforced polymer and an emulsion polymerised styrene butadiene rubber is reported. The shock absorbers are devices designed to absorb large amounts of energy by sacrificing their own structural integrity. Their aim is to cushion the effects of an impact phenomenon with the intent to preserve other structures from global failure or local damaging. Another important role of shock absorbers is reducing the peak of the acceleration showed during an impact phenomenon. This effect is of considerable interest in the case of vehicles to preserve passengers’ safety. Static and dynamic numerical results are compared with experimental ones in terms of mean crushing forces, energy and peak crushing. The global performance of the absorbers has been evaluated by referencing to a proposed quality index.

  7. Burnable absorber coated nuclear fuel

    International Nuclear Information System (INIS)

    Chubb, W.; Radford, K.C.; Parks, B.H.

    1984-01-01

    A nuclear fuel body which is at least partially covered by a burnable neutron absorber layer is provided with a hydrophobic overcoat generally covering the burnable absorber layer and bonded directly to it. In a method for providing a UO 2 fuel pellet with a zirconium diboride burnable poison layer, the fuel body is provided with an intermediate niobium layer. (author)

  8. Precision test method by x-ray absorbent clay

    International Nuclear Information System (INIS)

    Nakadai, Toru; Matsukawa, Hideyuki; Sekita, Jun-ichiro; Murakoshi, Atsushi.

    1982-01-01

    In X-ray penetration photography of such as welds with reinforcing metal and castings of complex shape, the X-ray absorbent clay developed to eliminate various disadvantages of the conventional absorbents was further studied for better application. The results of the usage are as follows. Because the X-ray absorbent is clay, it is flexible in form, and gives good adhesion to test objects. In the welds and castings mentioned, it is effective for reducing the scattered ray, accordingly, it results in superior images. The following matters are described: contrast in radiographs, the required conditions for X-ray absorbents in general, the properties of the absorbent (absorption coefficient, consistency, density), improvement in radiographs by means of the X-ray absorbent clay (wall thickness compensation, masking, the application together with narrow-field irradiation photography). (Mori, K.)

  9. Flexible diode of polyaniline/ITO heterojunction on PET substrate

    Science.gov (United States)

    Bera, A.; Deb, K.; Kathirvel, V.; Bera, T.; Thapa, R.; Saha, B.

    2017-10-01

    Hybrid organic-inorganic heterojunction between polyaniline and ITO film coated on flexible polyethylene terephthalate (PET) substrate has been prepared through vapor phase polymerization process. Polaron and bipolaron like defect states induced hole transport and exceptional mobility makes polyaniline a noble hole transport layer. Thus a p-n junction has been obtained between the hole transport layer of polyaniline and highly conductive n-type layer of ITO film. The synthesis process was carried out using FeCl3 as polymerizing agent in the oxidative chemical polymerization process. The prepared polyaniline has been found to be crystalline on characterization through X-ray diffraction measurement. X-ray photoelectron spectroscopic measurements were done for compositional analysis of the prepared film. The UV-vis-NIR absorbance spectra obtained for polyaniline shows the characteristics absorbance as observed for highly conductive polyaniline and confirms the occurrence of partially oxidized emeraldine form of polyaniline. The energy band gap of the polyaniline has been obtained as 2.52 eV, by analyzing the optical transmittance spectra. A rectifying behavior has been observed in the electrical J-V plot, which is of great significance in designing polymer based flexible electronic devices.

  10. Energy Absorbing Effectiveness – Different Approaches

    Directory of Open Access Journals (Sweden)

    Kotełko Maria

    2018-03-01

    Full Text Available In the paper the study of different crashworthiness indicators used to evaluate energy absorbing effectiveness of thin-walled energy absorbers is presented. Several different indicators are used to assess an effectiveness of two types of absorbing structures, namely thin-walled prismatic column with flaws and thin-walled prismatic frustum (hollow or foam filled in both cases subjected to axial compressive impact load. The indicators are calculated for different materials and different geometrical parameters. The problem of selection of the most appropriate and general indicators is discussed.

  11. Microwave absorbing property of a hybrid absorbent with carbonyl irons coating on the graphite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yonggang, E-mail: xuyonggang221@163.com [Science and Technology on Electromagnetic Scattering Laboratory, Shanghai, 200438 (China); Yan, Zhenqiang; Zhang, Deyuan [Bionic and Micro/Nano/Bio Manufacturing Technology Research Center, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China)

    2015-11-30

    Graphical abstract: The absorbing property could be enhanced as the CIPs coated on the graphite. - Highlights: • Absorbers filled with CIPs coating on the graphite was fabricated. • The permittivity and permeability increased as CIPs coated. • The CIP materials enhanced the electromagnetic property. • The graphite coated CIPs were effective in 2–18 GHz. - Abstract: The hybrid absorbent filled with carbonyl iron particles (CIPs) coating on the graphite was prepared using a chemical vapor decomposition (CVD) process. X-ray diffraction (XRD) patterns were done to analyze the particle crystal grain structure. The complex permittivity and permeability were measured using a vector network analyzer in the frequency range of 2–18 GHz. The results showed that α-Fe appeared in the super-lattice diffraction peaks in XRD graph. The composites added CIPs coating on the graphite had a higher permittivity and imaginary permeability due to the superior microwave dielectric loss and magnetic loss of the CIPs. The reflection loss (RL) result showed that composites filled with 5 vol% Fe-graphite had an excellent absorbing property in the 2–18 GHz, the minimum RL was −25.14 dB at 6 mm and −26.52 dB at 8 mm, respectively.

  12. Adjustable Shock Absorbers

    OpenAIRE

    Adamiec, Radek

    2012-01-01

    Bakalářská práce obsahuje přehled používaných tlumičů osobních automobilů, závodních automobilů a motocyklů. Jsou zde popsány systémy t lumením, konstrukce tlumičů a vidlic používaných u motocyklů. Dále je zde přehled prvků používaných u podvozků automobilů. This bachelor´s thesis contains the survey of the shock absorbers of passenger cars, racing cars and motorcycles. Are described damping systems, the design used shock absorbers and forks for motorcycles. Then there is the list of the e...

  13. Slow and Fast Light in an Electro-Absorber

    DEFF Research Database (Denmark)

    Öhman, Filip; Bermejo Ramirez, Andres; Sales, Salvador

    2006-01-01

    We demonstrate controllable and large time delay in cascaded semiconductor saturable absorbers and amplifiers. The possibility of further increasing the tuneable phase shift by utilizing field screening effects in the quantum well absorber is demonstrated.......We demonstrate controllable and large time delay in cascaded semiconductor saturable absorbers and amplifiers. The possibility of further increasing the tuneable phase shift by utilizing field screening effects in the quantum well absorber is demonstrated....

  14. Performance of an absorbing concentrating solar collectors

    International Nuclear Information System (INIS)

    Imadojemu, H.

    1990-01-01

    This paper reports on a comparison of the efficiency of an absorbing fluid parabolic trough concentrating solar collector and a traditional concentrating collector that was made. In the absorbing fluid collector, black liquid flows through a glass tube absorber while the same black liquid flows through a selective black coated copper tube absorber while the same black fluid flows through a selective black coated copper tube absorber in the traditional collector. After a careful study of the properties of available black liquids, a mixture of water and black ink was chosen as the black absorbing medium or transfer fluid. In the black liquid glass collector there is a slightly improved efficiency based on beam radiation as a result of the direct absorption process and an increase in the effective transmittance absorptance. At worst the efficiency of this collector equals that of the traditional concentrating collector when the efficiency is based on total radiation. The collector's reflecting surfaces were made of aluminum sheet, parabolic line focus and with cylindrical receivers. The ease of manufacture and reduced cost per unit energy collected, in addition to the clean and pollution free mode of energy conversion, makes it very attractive

  15. ABSORBENCY CHARACTERISTICS OF PESHTAMALS: TRADITIONAL TURKISH WOVEN CLOTHES

    Directory of Open Access Journals (Sweden)

    KESKIN Reyhan

    2014-05-01

    Full Text Available Absorbency of textiles is defined as the ability of taking in a fluid in the manner of a sponge. Absorbency is required for comfort properties in so me clothes such as sportswear and underwear clothing, for drying properties in napkins, towels and bathrobes, for health concerns in some medical textiles such as bandages, gauze and absorbent cotton, and for cleaning properties in washclothes and mops. In this study five different fabric samples (three woven 100% cotton fabrics A, B and P respectively at plain, twill, and peshtamal weaving patterns and two 100% cotton terry towels T1 and T2 were tested. The absorbency properties of the samples were evaluated according to the droplet test, sinking time test and wicking height tests (pottasium chromate test. Peshtamal samples showed better absorbency results than plain and twill weaves and lower but close results to towel samples according to the droplet test, sinking time test and wicking height tests. The absorbency properties of peshtamals showed results close to towel samples. The void content of peshtamals is higher than plain and twill samples but closer and lower than towel samples. The good absorbency results of peshtamals might be due to the void content of peshtamals which is higher than plain and twill samples but closer and lower than towel samples. Peshtamals which are good in absorbency and light in weight might be used widespreadly in daily life for their high absorbency, and on travel for weight saving purposes.

  16. Quantum size effects in Pb layers with absorbed Kondo adatoms: Determination of the exchange coupling constant

    KAUST Repository

    Schwingenschlö gl, Udo; Shelykh, I. A.

    2009-01-01

    We consider the magnetic interaction of manganese phtalocyanine (MnPc) absorbed on Pb layers that were grown on a Si substrate. We perform an ab initio calculation of the density of states and Kondo temperature as a function of the number of Pb monolayers. Comparison to experimental data [Y.-S. Fu et al., Phys. Rev. Lett. 99, 256601 (2007)] then allows us to determine the exchange coupling constant J between the spins of the adsorbed molecules and those of the Pb host. This approach gives rise to a general and reliable method for obtaining J by combining experimental and numerical results.

  17. Quantum size effects in Pb layers with absorbed Kondo adatoms: Determination of the exchange coupling constant

    KAUST Repository

    Schwingenschlögl, Udo

    2009-07-01

    We consider the magnetic interaction of manganese phtalocyanine (MnPc) absorbed on Pb layers that were grown on a Si substrate. We perform an ab initio calculation of the density of states and Kondo temperature as a function of the number of Pb monolayers. Comparison to experimental data [Y.-S. Fu et al., Phys. Rev. Lett. 99, 256601 (2007)] then allows us to determine the exchange coupling constant J between the spins of the adsorbed molecules and those of the Pb host. This approach gives rise to a general and reliable method for obtaining J by combining experimental and numerical results.

  18. Combinatorial development of Cu2SnS3 as an earth abundant photovoltaic absorber

    Science.gov (United States)

    Baranowski, Lauryn L.

    The development of high efficiency, earth abundant photovoltaic absorbers is critical if photovoltaics are to be implemented on the TW scale. Although traditional thin films absorbers such as Cu(In,Ga)Se2 and CdTe have achieved over 20% device efficiencies, the ultimately scalability of these devices may be limited by elemental scarcity and toxicity issues. To date, the most successful earth abundant thin film absorber is Cu2ZnSn(S,Se) 4, which has achieved 12.6% efficiency as of 2014. However, chemical complexity and disorder issues with this material have made the path to higher efficiency CZTSSe devices unclear. As a result, many researchers are now exploring alternative earth abundant absorber materials. In this thesis, we apply our "rapid development" methodology to the exploration of alternative photovoltaic absorbers. The rapid development (RD) methodology, consisting of exploration, research, and development stages, uses complementary theory and experiment to assess candidate materials and down-select in each stage. The overall result is that, in the time span of ~2-3 years, we are able to rapidly go from tens of possible absorber materials to 1-2 working PV device prototypes. Here, we demonstrate the RD approach as applied to the Cu-Sn-S system. We begin our investigation of the Cu-Sn-S system by evaluating the thermodynamic stability, electrical transport, electronic structure, and optical and defect properties of candidate materials using complementary theory and experiment. We find that Cu2SnS3 is the most promising absorber candidate because of its strong optical absorption, tunable doping, and wide stability range. Our other candidate compounds suffer from serious flaws that preclude them from being successful photovoltaic absorbers, including too high experimental conductivity (Cu4SnS4), or poor hole transport and low absorption coefficient (Cu4Sn7S16). Next, we investigate the doping and defect physics of Cu2SnS 3. We identify the origins of the

  19. Comments on liquid hydrogen absorbers for MICE

    International Nuclear Information System (INIS)

    Green, Michael A.

    2003-01-01

    This report describes the heat transfer problems associated with a liquid hydrogen absorber for the MICE experiment. This report describes a technique for modeling heat transfer from the outside world, to the absorber case and in its vacuum vessel, to the hydrogen and then into helium gas at 14 K. Also presented are the equation for free convection cooling of the liquid hydrogen in the absorber

  20. Influence of sulfurization temperature on Cu2ZnSnS4 absorber layer on flexible titanium substrates for thin film solar cells

    Science.gov (United States)

    Gokcen Buldu, Dilara; Cantas, Ayten; Turkoglu, Fulya; Gulsah Akca, Fatime; Meric, Ece; Ozdemir, Mehtap; Tarhan, Enver; Ozyuzer, Lutfi; Aygun, Gulnur

    2018-02-01

    In this study, the effect of sulfurization temperature on the morphology, composition and structure of Cu2ZnSnS4 (CZTS) thin films grown on titanium (Ti) substrates has been investigated. Since Ti foils are flexible, they were preferred as a substrate. As a result of their flexibility, they allow large area manufacturing and roll-to-roll processes. To understand the effects of sulfurization temperature on the CZTS formation on Ti foils, CZTS films fabricated with various sulfurization temperatures were investigated with several analyses including x-ray diffraction (XRD), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy and Raman scattering. XRD measurements showed a sharp and intense peak coming from the (112) planes of the kesterite type lattice structure (KS), which is strong evidence for good crystallinity. The surface morphologies of our thin films were investigated using SEM. Electron dispersive spectroscopy was also used for the compositional analysis of the thin films. According to these analysis, it is observed that Ti foils were suitable as substrates for the growth of CZTS thin films with desired properties and the sulfurization temperature plays a crucial role for producing good quality CZTS thin films on Ti foil substrates.

  1. Efficiency enhancement of CIGS compound solar cell fabricated using homomorphic thin Cr{sub 2}O{sub 3} diffusion barrier formed on stainless steel substrate

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Jae-Kwan; Lee, Seung-Kyu; Kim, Jin-Soo; Jeong, Kwang-Un; Ahn, Haeng-Keun; Lee, Cheul-Ro, E-mail: crlee7@jbnu.ac.kr

    2016-12-15

    Highlights: • A chromium oxide layer is formed as diffusion barrier by thermal oxidation process on STS substrate. • A Cr{sub 2}O{sub 3} layer effectively reduces impurities diffusion into the CIGS absorber layer. • The Cr{sub 2}O{sub 3} layer plays an important role in increasing the efficiency by reduction of impurity diffusion. - Abstract: It is known that the efficiency of flexible Cu(In,Ga)Se{sub 2} (CIGS) solar cells fabricated on stainless-steel (STS) substrates deteriorates due to iron (Fe) and Cr impurities diffusing into the CIGS absorber layer. To overcome this problem, a nanoscale homomorphic chromium oxide layer was formed as a diffusion barrier by thermal oxidation on the surface of STS substrates for 1 min at 600 °C in oxygen atmosphere. By TEM and grazing-incidence X-ray diffraction (GIXRD), it was confirmed that the formed oxide layer on surface of STS substrates was a Cr{sub 2}O{sub 3} layer. It was found that the formed homomorphic Cr{sub 2}O{sub 3} thin layer of about 15 nm thickness was an effective diffusion barrier to reduce impurity diffusion into the CIGS layer by secondary ion mass spectroscopy (SIMS). In contrast to the efficiency of CIGS solar cell without homomorphic Cr{sub 2}O{sub 3} diffusion layer is 8.6%, whereas with diffusion barrier it increases to 10.6% because of impurities such as Fe and Cr from the STS substrate into the CIGS layer. It reveals that the layer formed on the surface of STS substrate by thermal oxidation process plays an important role in increasing the performance of CIGS solar cells.

  2. Method of absorbance correction in a spectroscopic heating value sensor

    Science.gov (United States)

    Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John

    2013-09-17

    A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.

  3. Adaptive inertial shock-absorber

    International Nuclear Information System (INIS)

    Faraj, Rami; Holnicki-Szulc, Jan; Knap, Lech; Seńko, Jarosław

    2016-01-01

    This paper introduces and discusses a new concept of impact absorption by means of impact energy management and storage in dedicated rotating inertial discs. The effectiveness of the concept is demonstrated in a selected case-study involving spinning management, a recently developed novel impact-absorber. A specific control technique performed on this device is demonstrated to be the main source of significant improvement in the overall efficiency of impact damping process. The influence of various parameters on the performance of the shock-absorber is investigated. Design and manufacturing challenges and directions of further research are formulated. (paper)

  4. Microscopic analysis of saturable absorbers: Semiconductor saturable absorber mirrors versus graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hader, J.; Moloney, J. V. [Nonlinear Control Strategies, Inc., 3542 N. Geronimo Ave., Tucson, Arizona 85705 (United States); College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Yang, H.-J.; Scheller, M. [College of Optical Sciences, University of Arizona, Tucson, Arizona 85721 (United States); Koch, S. W. [Department of Physics and Materials Sciences Center, Philipps Universität Marburg, Renthof 5, 35032 Marburg (Germany)

    2016-02-07

    Fully microscopic many-body calculations are used to study the influence of strong sub-picosecond pulses on the carrier distributions and corresponding optical response in saturable absorbers used for mode-locking—semiconductor (quantum well) saturable absorber mirrors (SESAMs) and single layer graphene based saturable absorber mirrors (GSAMs). Unlike in GSAMs, the saturation fluence and recovery time in SESAMs show a strong spectral dependence. While the saturation fluence in the SESAM is minimal at the excitonic bandgap, the optimal recovery time and least pulse distortion due to group delay dispersion are found for excitation higher in the first subband. For excitation near the SESAM bandgap, the saturation fluence is about one tenth of that in the GSAM. At energies above the bandgap, the fluences in both systems become similar. A strong dependence of the saturation fluence on the pulse width in both systems is caused by carrier relaxation during the pulse. The recovery time in graphene is found to be about two to four times faster than that in the SESAMs. The occurrence of negative differential transmission in graphene is shown to be caused by dopant related carriers. In SESAMs, a negative differential transmission is found when exciting below the excitonic resonance where excitation induced dephasing leads to an enhancement of the absorption. Comparisons of the simulation data to the experiment show a very good quantitative agreement.

  5. Adaptive Piezoelectric Absorber for Active Vibration Control

    Directory of Open Access Journals (Sweden)

    Sven Herold

    2016-02-01

    Full Text Available Passive vibration control solutions are often limited to working reliably at one design point. Especially applied to lightweight structures, which tend to have unwanted vibration, active vibration control approaches can outperform passive solutions. To generate dynamic forces in a narrow frequency band, passive single-degree-of-freedom oscillators are frequently used as vibration absorbers and neutralizers. In order to respond to changes in system properties and/or the frequency of excitation forces, in this work, adaptive vibration compensation by a tunable piezoelectric vibration absorber is investigated. A special design containing piezoelectric stack actuators is used to cover a large tuning range for the natural frequency of the adaptive vibration absorber, while also the utilization as an active dynamic inertial mass actuator for active control concepts is possible, which can help to implement a broadband vibration control system. An analytical model is set up to derive general design rules for the system. An absorber prototype is set up and validated experimentally for both use cases of an adaptive vibration absorber and inertial mass actuator. Finally, the adaptive vibration control system is installed and tested with a basic truss structure in the laboratory, using both the possibility to adjust the properties of the absorber and active control.

  6. Absorbent material for type a radioactive materials packaging containing liquids

    International Nuclear Information System (INIS)

    Saunders, G.A.

    1989-11-01

    The application of absorbent materials to the packaging and transport of liquid radioactive materials in Type A packages has not been reported in the literature. However, a significant body of research exists on absorbent materials for personal hygiene products such as diapers. Absorption capacity is dependent on both the absorbent material and the liquid being absorbed. Theoretical principles for capillary absorption in both the horizontal and the vertical plane indicate that small contact angle between the absorbent fibre and the liquid, and a small inter-fibre pore size are important. Some fluid parameters such as viscosity affect the rate of absorption but not the final absorption capacity. There appears to be little comparability between results obtained for the same absorbent and fluid using different test procedures. Test samples of materials from several classes of potential absorbents have been evaluated in this study, and shown to have a wide range of absorbent capacities. Foams, natural fibres, artificial fibres and granular materials are all potentially useful absorbents, with capacities ranging from as little as 0.86 to as much as 40.6 grams of distilled water per gram of absorbent. Two experimental procedures for evaluating the absorbent capacity of these materials have been detailed in this report, and found suitable for evaluating granular, fibrous or foam materials. Compression of the absorbent material reduces its capacity, but parameters such as relative humidity, pH, temperature, and viscosity appear to have little significant influence on capacity. When the materials were loaded to 50% of their one-minute absorbency, subsequent loss of the absorbed liquid was generally minimal. All of the absorbent materials rapidly lost their absorbed water through evaporation within twenty-four hours in still air at 21 degrees C and 50% relative humidity

  7. In-situ determination of the effective absorbance of thin μc-Si:H layers growing on rough ZnO:Al

    Directory of Open Access Journals (Sweden)

    Meier Matthias

    2013-10-01

    Full Text Available In this study optical transmission measurements were performed in-situ during the growth of microcrystalline silicon (μc-Si:H layers by plasma enhanced chemical vapor deposition (PECVD. The stable plasma emission was used as light source. The effective absorption coefficient of the thin μc-Si:H layers which were deposited on rough transparent conductive oxide (TCO surfaces was calculated from the transient transmission signal. It was observed that by increasing the surface roughness of the TCO, the effective absorption coefficient increases which can be correlated to the increased light scattering effect and thus the enhanced light paths inside the silicon. A correlation between the in-situ determined effective absorbance of the μc-Si:H absorber layer and the short-circuit current density of μc-Si:H thin-film silicon solar cells was found. Hence, an attractive technique is demonstrated to study, on the one hand, the absorbance and the light trapping in thin films depending on the roughness of the substrate and, on the other hand, to estimate the short-circuit current density of thin-film solar cells in-situ, which makes the method interesting as a process control tool.

  8. Selective solar absorber emittance measurement at elevated temperature

    Science.gov (United States)

    Giraud, Philémon; Braillon, Julien; Raccurt, Olivier

    2017-06-01

    Durability of solar components for CSP (Concentrated Solar Power Plant) technologies is a key point to lower cost and ensure their large deployment. These technologies concentrated the solar radiation by means of mirrors on a receiver tube where it is collected as thermal energy. The absorbers are submitted to strong environmental constraints and the degradation of their optical properties (emittance and solar absorbance) have a direct impact on performance. The characterization of a material in such condition is complicated and requires advanced apparatuses, and different measurement methods exist for the determination of the two quantities of relevance regarding an absorber, which are its emittance and its solar absorbance. The objective is to develop new optical equipment for measure the emittance of this solar absorber at elevated temperature. In this paper, we present an optical bench developed for emittance measurement on absorbers is conditions of use. Results will be shown, with a discussion of some factors of influence over this measurement and how to control them.

  9. A shock absorber model for structure-borne noise analyses

    Science.gov (United States)

    Benaziz, Marouane; Nacivet, Samuel; Thouverez, Fabrice

    2015-08-01

    Shock absorbers are often responsible for undesirable structure-borne noise in cars. The early numerical prediction of this noise in the automobile development process can save time and money and yet remains a challenge for industry. In this paper, a new approach to predicting shock absorber structure-borne noise is proposed; it consists in modelling the shock absorber and including the main nonlinear phenomena responsible for discontinuities in the response. The model set forth herein features: compressible fluid behaviour, nonlinear flow rate-pressure relations, valve mechanical equations and rubber mounts. The piston, base valve and complete shock absorber model are compared with experimental results. Sensitivity of the shock absorber response is evaluated and the most important parameters are classified. The response envelope is also computed. This shock absorber model is able to accurately reproduce local nonlinear phenomena and improves our state of knowledge on potential noise sources within the shock absorber.

  10. The micro-optic photovoltaic behavior of solar cell along with microlens curved glass substrate

    International Nuclear Information System (INIS)

    Xie, Jin; Wu, Keke; Cheng, Jian; Li, Ping; Zheng, Jiahua

    2015-01-01

    Highlights: • A microlens array may be micro-ground on curved photovoltaic glass substrate. • Its micro-optical structure absorbs and scatters the inclined light to solar cell. • It increases conversion efficiency and fill factor in weak and inclined lights. • It improves electricity generation by about 4 times in scattered cloudy daylight. • It produces stronger electricity generation in cloudy day than in sunny day. - Abstract: A hybrid of microlens structure and curved surface may produce high value-added micro-optic performance. Hence, the microlens array is proposed on macro curved glass substrate of thin film solar cell. The objective is to understand how the micro-optic behavior of microlens curved array influences indoor power conversion efficiency and outdoor electricity generation. First, the absorptivities of visible light and infrared light were analyzed in connection with the curved microlens sizes; then the microlens curved glass substrate was fabricated by a Computer Numerical Control (CNC) micro-grinding with micro diamond wheel V-tip; finally, its photovoltaic properties and electricity generation were measured, respectively. It is shown that the microlens curved surface may strongly absorb and scatter light to solar cell. It increases the absorptivity of visible light against plane surface, but it decreases the one of infrared light against microlens surface. When it is applied to solar cell, it enhances the power conversion efficiency by 3.4–10.6% under oblique illumination. When it is applied to solar device, it increases the electricity generation of daylight by 119–106% against microlens surface and by 260–419% against traditional plane surface, respectively. The surprising finding is that it produces much larger electricity generation during cloudy day than during sunny day, but traditional plane surface does not so

  11. The Cooling of a Liquid Absorber using a Small Cooler

    International Nuclear Information System (INIS)

    Baynham, D.E.; Bradshaw, T.W.; Green, M.A.; Ishimoto, S.; Liggins, N.

    2005-01-01

    This report discusses the use of small cryogenic coolers for cooling the Muon Ionization Cooling Experiment (MICE) liquid cryogen absorbers. Since the absorber must be able contain liquid helium as well liquid hydrogen, the characteristics of the available 4.2 K coolers are used here. The issues associated with connecting two-stage coolers to liquid absorbers are discussed. The projected heat flows into an absorber and the cool-down of the absorbers using the cooler are presented. The warm-up of the absorber is discussed. Special hydrogen safety issues that may result from the use of a cooler on the absorbers are also discussed

  12. Design and development of radiation absorber for sighting beam line

    International Nuclear Information System (INIS)

    Sridhar, R.; Shukla, S.K.

    2005-01-01

    During the commissioning of Indus-2 , it is necessary to view the synchrotron radiation that will be emanating from the dipole exit ports. The 10 0 beam line from dipole 11 was earmarked for sighting beam line. The synchrotron radiation power density would be around 340 watts on the photon absorber inside the radiation absorber module, at the specified beam power of Indus-2. The beam striking on this photon absorber produces x-rays and Bremsstrahlung radiation. These are to be stopped and absorbed by radiation absorber. The photon absorber and the radiation absorber are integrated in a single vacuum chamber and actuated by a pneumatic cylinder connected using a bellow. Radiation absorber was needed to isolate the diagnostic components and to protect them from radiation a well as heat when they were not in use. The paper describes the design, calculation and development of the dynamic photon cum radiation absorber. The ultimate vacuum performance is also described. (author)

  13. Absorbed dose by a CMOS in radiotherapy

    International Nuclear Information System (INIS)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L. C.

    2011-10-01

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  14. Air box shock absorber for a nuclear reactor

    International Nuclear Information System (INIS)

    Pradhan, A.V.; George, J.A.

    1977-01-01

    Disclosed is an air box type shock absorber primarily for use in an ice condenser compartment of a nuclear reactor. The shock absorber includes a back plate member and sheet metal top, bottom, and front members. The front member is prefolded, and controlled clearances are provided among the members for predetermined escape of air under impact and compression. Prefolded internal sheet metal stiffeners also absorb a portion of the kinetic energy imparted to the shock absorber, and limit rebound. An external restraining rod guided by restraining straps insures that the sheet metal front member compresses inward upon impact. 6 claims, 11 figures

  15. Absorber element for fast breeder reactor

    International Nuclear Information System (INIS)

    Verset, L.

    1987-01-01

    This absorber element is characterized by a new head which avoids an accident disconnection of the mobil absorber. This head is made by a superior piece which can take shore up an adjusting ring on an adjusting bearing on the inferior piece. The intermediate piece is catched at the superior piece by a link of chain [fr

  16. Absorbed dose by a CMOS in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Valero L, C. Y.; Guzman G, K. A.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Calle Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L. C., E-mail: candy_borja@hotmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2011-10-15

    Absorbed dose by a complementary metal oxide semiconductor (CMOS) circuit as part of a pacemaker, has been estimated using Monte Carlo calculations. For a cancer patient who is a pacemaker carrier, scattered radiation could damage pacemaker CMOS circuits affecting patient's health. Absorbed dose in CMOS circuit due to scattered photons is too small and therefore is not the cause of failures in pacemakers, but neutron calculations shown an absorbed dose that could cause damage in CMOS due to neutron-hydrogen interactions. (Author)

  17. Semiconductor saturable absorbers for ultrafast terahertz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    2010-01-01

    states, due to conduction band onparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse......We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz THz frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum...

  18. Graphene and Graphene Metamaterials for Terahertz Absorbers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim

    2013-01-01

    Graphene, due to the possibility to tune its conductivity, is the promising material for a range of the terahertz (THz) applications, such as tunable reflectors, absorbers, modulators, filters and polarization converters. Subwavelength structuring of graphene in order to form metamaterials allows...... for even more control over the THz waves. In this poster presentation I will show an elegant way to describe the graphene metamaterials and the design of graphene based absorbers. I will also present our recent experimental results on the graphene absorbers characterization....

  19. Performance of a new carbon dioxide absorbent, Yabashi lime® as compared to conventional carbon dioxide absorbent during sevoflurane anesthesia in dogs.

    Science.gov (United States)

    Kondoh, Kei; Atiba, Ayman; Nagase, Kiyoshi; Ogawa, Shizuko; Miwa, Takashi; Katsumata, Teruya; Ueno, Hiroshi; Uzuka, Yuji

    2015-08-01

    In the present study, we compare a new carbon dioxide (CO2) absorbent, Yabashi lime(®) with a conventional CO2 absorbent, Sodasorb(®) as a control CO2 absorbent for Compound A (CA) and Carbon monoxide (CO) productions. Four dogs were anesthetized with sevoflurane. Each dog was anesthetized with four preparations, Yabashi lime(®) with high or low-flow rate of oxygen and control CO2 absorbent with high or low-flow rate. CA and CO concentrations in the anesthetic circuit, canister temperature and carbooxyhemoglobin (COHb) concentration in the blood were measured. Yabashi lime(®) did not produce CA. Control CO2 absorbent generated CA, and its concentration was significantly higher in low-flow rate than a high-flow rate. CO was generated only in low-flow rate groups, but there was no significance between Yabashi lime(®) groups and control CO2 absorbent groups. However, the CO concentration in the circuit could not be detected (≤5ppm), and no change was found in COHb level. Canister temperature was significantly higher in low-flow rate groups than high-flow rate groups. Furthermore, in low-flow rate groups, the lower layer of canister temperature in control CO2 absorbent group was significantly higher than Yabashi lime(®) group. CA and CO productions are thought to be related to the composition of CO2 absorbent, flow rate and canister temperature. Though CO concentration is equal, it might be safer to use Yabashi lime(®) with sevoflurane anesthesia in dogs than conventional CO2 absorbent at the point of CA production.

  20. Endogenous NO3- in the root as a source of substrate for reduction in the light

    International Nuclear Information System (INIS)

    Rufty, T.W. Jr.; Volk, R.J.; MacKown, C.T.

    1987-01-01

    An experiment was conducted to investigate the reduction of endogenous NO 3 - , which had been taken up by plants in darkness, during the course of the subsequent light period. Vegetative, nonnodulated soybean plant (Glycine max [L.]. Merrill, Ransom) were exposed to 1.0 millimolar 15 NO 3 - for 12 hours in darkness and then returned to a solution containing 1.0 millimolar 14 NO 3 - for the 12 hours chase period in the light. Another set of plants was exposed to 15 NO 3 - during the light period to allow a direct comparison of contributions of substrate from the endogenous and exogenous sources. At the end of the 15 NO 3 - exposure in the dark, 70% of the absorbed 15 NO 3 - remained unreduced, and 83% of this unreduced NO 3 - was retained in roots. The pool of endogenous 15 NO 3 - in roots was depleted at a steady rate during the initial 9 hours of light and was utilized almost exclusively in the formation of insoluble reduced-N in leaves. Unlabeled endogenous NO 3 - , which had accumulated in the root prior to the previous dark period, also was depleted in the light. When exogenous 15 NO 3 - was supplied during the light period, the rate of assimilation progressively increased, reflecting an increased rate of uptake and decreased accumulation of NO 3 - in the root tissue. The dark-absorbed endogenous NO 3 - in the root was the primary source of substrate for whole-plant NO 3 - reduction in the first 6 hours of the light period, and exogenous NO 3 - was the primary source of substrate thereafter

  1. Imperfectly geometric shapes of nanograting structures as solar absorbers with superior performance for solar cells.

    Science.gov (United States)

    Nguyen-Huu, Nghia; Cada, Michael; Pištora, Jaromír

    2014-03-10

    The expectation of perfectly geometric shapes of subwavelength grating (SWG) structures such as smoothness of sidewalls and sharp corners and nonexistence of grating defects is not realistic due to micro/nanofabrication processes. This work numerically investigates optical properties of an optimal solar absorber comprising a single-layered silicon (Si) SWG deposited on a finite Si substrate, with a careful consideration given to effects of various types of its imperfect geometry. The absorptance spectra of the solar absorber with different geometric shapes, namely, the grating with attached nanometer-sized features at the top and bottom of sidewalls and periodic defects within four and ten grating periods are investigated comprehensively. It is found that the grating with attached features at the bottom absorbs more energy than both the one at the top and the perfect grating. In addition, it is shown that the grating with defects in each fourth period exhibits the highest average absorptance (91%) compared with that of the grating having defects in each tenth period (89%), the grating with attached features (89%), and the perfect one (86%). Moreover, the results indicate that the absorptance spectrum of the imperfect structures is insensitive to angles of incidence. Furthermore, the absorptance enhancement is clearly demonstrated by computing magnetic field, energy density, and Poynting vector distributions. The results presented in this study prove that imperfect geometries of the nanograting structure display a higher absorptance than the perfect one, and provide such a practical guideline for nanofabrication capabilities necessary to be considered by structure designers.

  2. Radar absorbing properties of carbon nanotubes/polymer ...

    Indian Academy of Sciences (India)

    This research is devoted to the study of radar absorbing properties of the composites, based on the epoxy binder and ... Radar absorbing materials; carbon nanotubes; nanocomposites; reflection loss. 1. ..... So, for example, the papers of [3–5 ...

  3. SnS absorber thin films by co-evaporation: Optimization of the growth rate and influence of the annealing

    Energy Technology Data Exchange (ETDEWEB)

    Robles, Víctor, E-mail: victor.robles@ciemat.es; Trigo, Juan Francisco; Guillén, Cecilia; Herrero, José

    2015-05-01

    Tin sulfide thin films were prepared by co-evaporation on soda-lime glass substrates, for use as absorber layers. The synthesis was carried out at 350 °C substrate temperature and varying the growth rate in the 2-6 Å/s range, adjusting the deposition time in order to obtain thicknesses in the 700-1500 nm range. After evaporation, the samples were heated at 400 °C and 500 °C under various atmospheres. The evolution of the morphological, structural and optical properties has been analyzed as a function of the thickness and deposition rate, before and after annealing. For the samples grown at the lowest rate, SnS and Sn{sub 2}S{sub 3} phase mixing has been observed by X-ray diffraction. Samples with reduced thickness preferably crystallize in the SnS phase, whereas thicker layers become richer in the Sn{sub 2}S{sub 3} phase. The sulfur treatment of samples prepared at the lowest rate results in the formation of SnS{sub 2} phase. Otherwise, the samples obtained at the highest rates show single-phase SnS after heating at 400 °C in sulfur atmosphere, with gap energy values around 1.24 eV. - Highlights: • Tin sulfide thin films were deposited by co-evaporation at different growth rates. • The influence of the growth rate and post-annealing at different conditions was studied. • The SnS phase was obtained by optimizing the growth rate and the annealing process. • The SnS phase presented properties for use as absorber layer.

  4. GEOMETRICAL OPTIMIZATION OF VEHICLE SHOCK ABSORBERS WITH MR FLUID

    OpenAIRE

    ENGIN, Tahsin; PARLAK, Zekeriya; ŞAHIN, Ismail; ÇALLI, Ismail

    2016-01-01

    Magnetorheological (MR) shock absorber have received remarkable attention in the last decade due to being a potential technology to conduct semi-active control in structures and mechanical systems in order to effectively suppress vibration. To develop performance of MR shock absorbers, optimal design of the dampers should be considered. The present study deals with optimal geometrical modeling of a MR shock absorber. Optimal design of the present shock absorber was carried out by using Taguch...

  5. Synthesis, characterization and field evaluation of a new calcium-based CO2 absorbent for radial diffusive sampler

    Science.gov (United States)

    Cucciniello, Raffaele; Proto, Antonio; Alfano, Davide; Motta, Oriana

    2012-12-01

    In this paper the use of passive sampling as a powerful approach to monitor atmospheric CO2 is assessed. Suitable substrate based on calcium-aluminium oxide was synthetized according to a process which permits to control the particle size of the CaO/Al based sorbent. The study shows that hydration of substrate is an essential part of the process of CO2 absorption and subsequent conversion to carbonate. X-ray diffraction, thermogravimetric analysis, environmental scanning electron microscopic analysis were used in order to characterize the substrate and to establish the best performances both in terms of particle size and CO2 absorption capacity. Passive samplers for CO2 monitoring were prepared and then tested at laboratory level and in the atmospheric environment. Validation was performed by comparison with an infrared continuous detector. Thermogravimetric analysis results, carried out to evaluate the absorbing capability of this new passive device, were in accordance with data collected at the same time by the active continuous analyser. The diffusive sampling rate and the diffusion coefficient of CO2 respect to this new passive device were also evaluated resulting equal to 47 ± 3 ml min-1 and 0.0509 ± 0.005 cm2 s-1, respectively.

  6. Progress on the MICE Liquid Absorber Cooling and Cryogenic Distribution System

    International Nuclear Information System (INIS)

    Green, M.A.; Baynham, E.; Bradshaw, T.; Drumm, P.; Ivanyushenkov, Y.; Ishimoto, S.; Cummings, M.A.C.; Lau, W.W.; Yang, S.Q.

    2005-01-01

    This report describes the progress made on the design of the cryogenic cooling system for the liquid absorber for the international Muon Ionization Cooling Experiment (MICE). The absorber consists of a 20.7-liter vessel that contains liquid hydrogen (1.48 kg at 20.3 K) or liquid helium (2.59 kg at 4.2 K). The liquid cryogen vessel is located within the warm bore of the focusing magnet for the MICE. The purpose of the magnet is to provide a low beam beta region within the absorber. For safety reasons, the vacuum vessel for the hydrogen absorber is separated from the vacuum vessel for the superconducting magnet and the vacuum that surrounds the RF cavities or the detector. The absorber thin windows separate the liquid in the absorber from the absorber vacuum. The absorber vacuum vessel also has thin windows that separate the absorber vacuum space from adjacent vacuum spaces. Because the muon beam in MICE is of low intensity, there is no beam heating in the absorber. The absorber can use a single 4 K cooler to cool either liquid helium or liquid hydrogen within the absorber

  7. Preparation and characterization of water-absorbing composite ...

    African Journals Online (AJOL)

    The present work introduces a novel method for the formation of water absorbing composite membrane. The prepared composite is based on chitosan, carboxymethyl cellulose (CMC), and Montmorillonite. Prepared composite membrane exhibits high water absorbing and holding capacity with increasing clay content.

  8. Towards an Integrated QR Code Biosensor: Light-Driven Sample Acquisition and Bacterial Cellulose Paper Substrate.

    Science.gov (United States)

    Yuan, Mingquan; Jiang, Qisheng; Liu, Keng-Ku; Singamaneni, Srikanth; Chakrabartty, Shantanu

    2018-06-01

    This paper addresses two key challenges toward an integrated forward error-correcting biosensor based on our previously reported self-assembled quick-response (QR) code. The first challenge involves the choice of the paper substrate for printing and self-assembling the QR code. We have compared four different substrates that includes regular printing paper, Whatman filter paper, nitrocellulose membrane and lab synthesized bacterial cellulose. We report that out of the four substrates bacterial cellulose outperforms the others in terms of probe (gold nanorods) and ink retention capability. The second challenge involves remote activation of the analyte sampling and the QR code self-assembly process. In this paper, we use light as a trigger signal and a graphite layer as a light-absorbing material. The resulting change in temperature due to infrared absorption leads to a temperature gradient that then exerts a diffusive force driving the analyte toward the regions of self-assembly. The working principle has been verified in this paper using assembled biosensor prototypes where we demonstrate higher sample flow rate due to light induced thermal gradients.

  9. Absorber Alignment Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    As we pursue efforts to lower the capital and installation costs of parabolic trough solar collectors, it is essential to maintain high optical performance. While there are many optical tools available to measure the reflector slope errors of parabolic trough solar collectors, there are few tools to measure the absorber alignment. A new method is presented here to measure the absorber alignment in two dimensions to within 0.5 cm. The absorber alignment is measured using a digital camera and four photogrammetric targets. Physical contact with the receiver absorber or glass is not necessary. The alignment of the absorber is measured along its full length so that sagging of the absorber can be quantified with this technique. The resulting absorber alignment measurement provides critical information required to accurately determine the intercept factor of a collector.

  10. Substrate metabolism in isolated rat jejunal epithelium. Analysis using 14C-radioisotopes

    International Nuclear Information System (INIS)

    Mallet, R.T.

    1986-01-01

    The jejunal epithelium absorbs nutrients from the intestinal lumen and is therefore the initial site for metabolism of these compounds. The purpose of this investigation is to analyze substrate metabolism in a preparation of jejunal epithelium relatively free of other tissues. Novel radioisotopic labelling techniques allow quantitation of substrate metabolism in the TCA cycle, Embden-Meyerhof (glycolytic) pathway, and hexose monophosphate shunt. For example, ratios of 14 CO 2 production from pairs of 14 C-pyruvate, and 14 C-succinate radioisotopes (CO 2 ratios) indicate the probability of TCA cycle intermediate efflux to generate compounds other than CO 2 . With (2,3- 14 C)succinate as tracer, the ratio of 14 C in carbon 4 + 5 versus carbon 2 + 3 of citrate, the citrate labelling ratio, equals the probability of TCA intermediate flux to the acetyl CoA-derived portion of citrate versus flux to the oxaloacetate-derived portion. The principal metabolic substrates for the jejunal epithelium are glucose and glutamine. CO 2 ratios indicate that glutamine uptake and metabolism is partially Na + -independent, and is saturable, with a half-maximal rate at physiological plasma glutamine concentrations. Glucose metabolism in the jejunal epithelium proceeds almost entirely via the Embden-Meyerhof pathway. Conversion of substrates to multi-carbon products in this tissue allows partial conservation of reduced carbon for further utilization in other tissues. In summary, metabolic modeling based on 14 C labelling ratios is a potentially valuable technique for analysis of metabolic flux patterns in cell preparations

  11. Ni-Al Alloys as Alternative EUV Mask Absorber

    Directory of Open Access Journals (Sweden)

    Vu Luong

    2018-03-01

    Full Text Available Extreme ultraviolet (EUV lithography is being industrialized as the next candidate printing technique for high-volume manufacturing of scaled down integrated circuits. At mask level, the combination of EUV light at oblique incidence, absorber thickness, and non-uniform mirror reflectance through incidence angle, creates photomask-induced imaging aberrations, known as mask 3D (M3D effects. A possible mitigation for the M3D effects in the EUV binary intensity mask (BIM, is to use mask absorber materials with high extinction coefficient κ and refractive coefficient n close to unity. We propose nickel aluminide alloys as a candidate BIM absorber material, and characterize them versus a set of specifications that a novel EUV mask absorber must meet. The nickel aluminide samples have reduced crystallinity as compared to metallic nickel, and form a passivating surface oxide layer in neutral solutions. Composition and density profile are investigated to estimate the optical constants, which are then validated with EUV reflectometry. An oxidation-induced Al L2 absorption edge shift is observed, which significantly impacts the value of n at 13.5 nm wavelength and moves it closer to unity. The measured optical constants are incorporated in an accurate mask model for rigorous simulations. The M3D imaging impact of the nickel aluminide alloy mask absorbers, which predict significant M3D reduction in comparison to reference absorber materials. In this paper, we present an extensive experimental methodology flow to evaluate candidate mask absorber materials.

  12. Preparation and characterization of water-absorbing composite ...

    African Journals Online (AJOL)

    ABCO

    2012-08-16

    Aug 16, 2012 ... The present work introduces a novel method for the formation of water absorbing composite membrane. The prepared composite is based on chitosan, carboxymethyl cellulose (CMC), and. Montmorillonite. Prepared composite membrane exhibits high water absorbing and holding capacity with increasing ...

  13. Quantitative neutron radiography using neutron absorbing honeycomb

    International Nuclear Information System (INIS)

    Tamaki, Masayoshi; Oda, Masahiro; Takahashi, Kenji; Ohkubo, Kohei; Tasaka, Kanji; Tsuruno, Akira; Matsubayashi, Masahito.

    1993-01-01

    This investigation concerns quantitative neutron radiography and computed tomography by using a neutron absorbing honeycomb collimator. By setting the neutron absorbing honeycomb collimator between object and imaging system, neutrons scattered in the object were absorbed by the honeycomb material and eliminated before coming to the imaging system, but the neutrons which were transmitted the object without interaction could reach the imaging system. The image by purely transmitted neutrons gives the quantitative information. Two honeycombs were prepared with coating of boron nitride and gadolinium oxide and evaluated for the quantitative application. The relation between the neutron total cross section and the attenuation coefficient confirmed that they were in a fairly good agreement. Application to quantitative computed tomography was also successfully conducted. The new neutron radiography method using the neutron-absorbing honeycomb collimator for the elimination of the scattered neutrons improved remarkably the quantitativeness of the neutron radiography and computed tomography. (author)

  14. Methods for applying microchannels to separate methane using liquid absorbents, especially ionic liquid absorbents from a mixture comprising methane and nitrogen

    Science.gov (United States)

    Tonkovich, Anna Lee Y [Dublin, OH; Litt, Robert D [Westerville, OH; Dongming, Qiu [Dublin, OH; Silva, Laura J [Plain City, OH; Lamont, Micheal Jay [Plain City, OH; Fanelli, Maddalena [Plain City, OH; Simmons, Wayne W [Plain city, OH; Perry, Steven [Galloway, OH

    2011-10-04

    Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.

  15. Shock absorber system for nuclear reactor ice condenser compartment

    International Nuclear Information System (INIS)

    Meier, J.F.; Rudd, G.E.; Pradhan, A.V.; George, J.A.; Lippincott, H.W.; Sutherland, J.D.

    1979-01-01

    A shock absorber system was designed to absorb the energy imparted to doors in a nuclear reactor ice condenser compartment as they swing rapidly to an open position. Each shock absorber which is installed on a wall adjacent to each door is large and must absorb up to about 40,000 foot pounds of energy. The basic shock absorber component comprises foam enclosed in a synthetic fabric bag having a volume about twice the foam volume. A stainless steel knitted mesh bag of the same volume as the fabric bag, contains the fabric bag and its enclosed foam. To protect the foam and bags during construction activities at the reactor site and from the shearing action of the doors, a protective sheet metal cover is installed over the shock absorber ends and the surface to be contacted by the moving door. With the above shock absorber mounted on a wall behind each door, as the door is forcibly opened by steam pressure and air resulting from a pipe break in the reactor compartment, it swings at a high velocity into contact with the shock absorber, crushes the foam and forces it into the fabric bag excess material thus containing the foam fragmented particles, and minimizes build-up of pressure in the bag as a result of the applied compressive force

  16. Pool fire upon a balsa-filled shock absorber

    International Nuclear Information System (INIS)

    Fry, C.J.

    1990-07-01

    When performing a safety assessment of a transport flask with balsa-filled shock absorbers it is important to know how the shock absorbers, which may have the outer skin punctured by an impact, will perform in a fire. A 30 minute pool test, which satisfied all the requirements of a thermal test under the IAEA regulations, was carried out upon a small, balsa-filled shock absorber. The outer steel shell was partly cut away exposing the wood to the fire and the air. The balsa wood prevented 90% of the heat from the fire from being transferred through the shock absorber, even though the balsa was only 133 mm thick. The maximum heat flux through to the inside of the shock absorber due to the burning of the balsa wood was relatively low, 2.8 kW/m 2 , and occurred 2 to 3 hours after the end of the pool fire. (author)

  17. Single and multijunction silicon based thin film solar cells on a flexible substrate with absorber layers made by hot-wire CVD

    Science.gov (United States)

    Li, Hongbo

    2007-09-01

    With the worldwide growing concern about reliable energy supply and the environmental problems of fossil and nuclear energy production, the need for clean and sustainable energy sources is evident. Solar energy conversion, such as in photovoltaic systems, can play a major role in the urgently needed energy transition in electricity production. Solar cells based on thin film silicon and its alloys are a promising candidate that is capable of fulfilling the fast increasing demand of a reliable solar cell supply. The conventional method to deposit silicon thin films is based on plasma enhanced chemical vapour deposition (PECVD) techniques, which have the disadvantage of increasing film inhomogeneity at a high deposition rate when scaling up for the industrial production. In this thesis, we study the possibility of making high efficiency single and multijunction thin film silicon solar cells with the so-called hot-wire CVD technique, in which no strong electromagnetic field is involved in the deposition. Therefore, the up-scaling for industrial production is straightforward. We report and discuss our findings on the correlation of substrate surface rms roughness and the main output parameter of a solar cell, the open circuit voltage Voc of c-Si:H n i p cells. By considering all the possible reasons that could influence the Voc of such cells, we conclude that the near linear correlation of Voc and substrate surface rms roughness is the result the two most probable reasons: the unintentional doping through the cracks originated near the valleys of the substrate surface due to the in-diffusion of impurities, and the high density electrical defects formed by the collision of columnar silicon structures. Both of them relate to the morphology of substrate surface. Therefore, to have the best cell performance on a rough substrate surface, a good control on the substrate surface morphology is necessary. Another issue influencing the performance of c-Si:H solar cells is the

  18. A multicenter randomized controlled trial comparing absorbable barbed sutures versus conventional absorbable sutures for dermal closure in open surgical procedures.

    Science.gov (United States)

    Rubin, J Peter; Hunstad, Joseph P; Polynice, Alain; Gusenoff, Jeffrey A; Schoeller, Thomas; Dunn, Raymond; Walgenbach, Klaus J; Hansen, Juliana E

    2014-02-01

    Barbed sutures were developed to reduce operative time and improve security of wound closure. The authors compare absorbable barbed sutures (V-Loc, Covidien, Mansfield, Massachusetts) with conventional (smooth) absorbable sutures for soft tissue approximation. A prospective multicenter randomized study comparing barbed sutures with smooth sutures was undertaken between August 13, 2009, and January 31, 2010, in 241 patients undergoing abdominoplasty, mastopexy, and reduction mammaplasty. Each patient received barbed sutures on 1 side of the body, with deep dermal sutures eliminated or reduced. Smooth sutures with deep dermal and subcuticular closure were used on the other side as a control. The primary endpoint was dermal closure time. Safety was assessed through adverse event reporting through a 12-week follow-up. A total of 229 patients were ultimately treated (115 with slow-absorbing polymer and 114 with rapid-absorbing polymer). Mean dermal closure time was significantly quicker with the barbed suture compared with the smooth suture (12.0 vs 19.2 minutes; P<.001), primarily due to the need for fewer deep dermal sutures. The rapid-absorbing barbed suture showed a complication profile equivalent to the smooth suture, while the slow-absorbing barbed suture had a higher incidence of minor suture extrusion. Barbed sutures enabled faster dermal closure quicker than smooth sutures, with a comparable complication profile. 1.

  19. Identifying the perfect absorption of metamaterial absorbers

    Science.gov (United States)

    Duan, G.; Schalch, J.; Zhao, X.; Zhang, J.; Averitt, R. D.; Zhang, X.

    2018-01-01

    We present a detailed analysis of the conditions that result in unity absorption in metamaterial absorbers to guide the design and optimization of this important class of functional electromagnetic composites. Multilayer absorbers consisting of a metamaterial layer, dielectric spacer, and ground plane are specifically considered. Using interference theory, the dielectric spacer thickness and resonant frequency for unity absorption can be numerically determined from the functional dependence of the relative phase shift of the total reflection. Further, using transmission line theory in combination with interference theory we obtain analytical expressions for the unity absorption resonance frequency and corresponding spacer layer thickness in terms of the bare resonant frequency of the metamaterial layer and metallic and dielectric losses within the absorber structure. These simple expressions reveal a redshift of the unity absorption frequency with increasing loss that, in turn, necessitates an increase in the thickness of the dielectric spacer. The results of our analysis are experimentally confirmed by performing reflection-based terahertz time-domain spectroscopy on fabricated absorber structures covering a range of dielectric spacer thicknesses with careful control of the loss accomplished through water absorption in a semiporous polyimide dielectric spacer. Our findings can be widely applied to guide the design and optimization of the metamaterial absorbers and sensors.

  20. A wideband absorber for television studios

    Science.gov (United States)

    Baird, M. D. M.

    The acoustic treatment in BBC television has taken various forms to date, all of which have been relatively expensive, some of which provide inadequate absorption. An investigation has been conducted into the possibilities of producing a new type of wideband absorber which would be more economic, also taking installation time into account, than earlier designs. This Report describes the absorption coefficient measurements made on various combinations of materials, from which a wideband sound absorber has been developed. The absorber works efficiently between 50 Hz and 10 kHz, is simple and easy to construct using readily available materials, and is fire resistant. The design lends itself, if necessary, to on-site fine tuning, and savings in the region of 50 percent can be achieved in terms of cost and space with respect to previous designs.

  1. Absorbed dose in CT. Comparison by CT dose index

    International Nuclear Information System (INIS)

    Yamamoto, Kenji; Akazawa, Hiroshi; Andou, Takashi

    2002-01-01

    Few reports have discussed the absorbed dose on CT units with increased scanning capacity even with the current widespread adoption of multi-slice CT units. To compare and investigate the dose indexes among CT units, we measured the absorbed dose on CT units operating in Nagano Prefecture Japan. The measurements showed proportionality between phantom absorbed dose and the exposured mAs values in conventional scanning operation. Further, the measurements showed that the absorbed dose in the center of the phantom differed by about 2.1-fold between the highest and lowest levels on individual CT units. Within a single company, multi-slice CT units of the same company gave absorbed doses of about 1.3 to 1.5 times those of conventional single-slice CT units under the same exposured conditions of conventional scanning. When the scanning pitch was reduced in helical scanning, the absorbed dose at the center of the phantom increased. (author)

  2. Scanning electron microscopical examination of the impact of laser patterning on microscopic inhomogeneities of Cu(In,Ga)(Se,S)2 absorbers produced by rapid thermal processing

    International Nuclear Information System (INIS)

    Künecke, U.; Hölzing, A.; Jost, S.; Lechner, R.; Vogt, H.; Heiß, A.; Palm, J.; Hock, R.; Wellmann, P.

    2013-01-01

    Laser scribing of the Mo back electrode is commonly applied to define the cell structure of Cu(In,Ga)(Se,S) 2 (CIGSSe) thin film solar cells. The patterning process was performed on laboratory samples using ns and ps pulse length laser processes. After structuring, CIGSSe absorbers were processed by rapid thermal processing (RTP) of stacked elemental layer precursors. Microscopic inhomogeneities were investigated on different sample positions. For samples structured with ns pulse, the absorber morphology in the laser line vicinity is different as compared to the morphology in the unstructured cell area. Scanning electron microscopy and energy-dispersive X-ray spectroscopy show significant changes in the absorber grain size and chemical composition. Close to the laser line, the typically observed Ga accumulation on the back contact is less pronounced and more Ga is incorporated closer to the surface leading to a smaller grain size. The observed changes are attributed to partial damaging of a diffusion barrier between glass and Mo induced by the ns laser process, which allows diffusion of sodium from the glass substrate into the absorber during RTP. The enhanced Ga incorporation closer to the surface is an indication for the influence of sodium on the local phase development during RTP. The damages of the diffusion barrier can be effectively prevented by the application of a ps laser scribing process. CIGSSe absorbers processed on samples structured with ps pulse length do not show the described microscopic inhomogeneities around the laser line. - Highlights: ► Scanning electron microscopy on Cu(In,Ga)(Se,S) 2 solar cell absorbers ► Laser patterning with ns laser pulse damages the sodium diffusion barrier. ► Improved laser patterning with ps laser pulse leaves diffusion barrier intact. ► Additional sodium changes phase development during absorber formation. ► Gallium content is increased at surface and decreased at backside of absorber

  3. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  4. 21 CFR 880.6025 - Absorbent tipped applicator.

    Science.gov (United States)

    2010-04-01

    ... stick. The device is used to apply medications to, or to take specimens from, a patient. (b...) MEDICAL DEVICES GENERAL HOSPITAL AND PERSONAL USE DEVICES General Hospital and Personal Use Miscellaneous Devices § 880.6025 Absorbent tipped applicator. (a) Identification. An absorbent tipped applicator is a...

  5. Wideband aural acoustic absorbance predicts conductive hearing loss in children.

    Science.gov (United States)

    Keefe, Douglas H; Sanford, Chris A; Ellison, John C; Fitzpatrick, Denis F; Gorga, Michael P

    2012-12-01

    This study tested the hypothesis that wideband aural absorbance predicts conductive hearing loss (CHL) in children medically classified as having otitis media with effusion. Absorbance was measured in the ear canal over frequencies from 0.25 to 8 kHz at ambient pressure or as a swept tympanogram. CHL was defined using criterion air-bone gaps of 20, 25, and 30 dB at octaves from 0.25 to 4 kHz. A likelihood-ratio predictor of CHL was constructed across frequency for ambient absorbance, and across frequency and pressure for absorbance tympanometry. Performance was evaluated at individual frequencies and for any frequency at which a CHL was present. Absorbance and conventional 0.226-kHz tympanograms were measured in children of age three to eight years with CHL and with normal hearing. Absorbance was smaller at frequencies above 0.7 kHz in the CHL group than the control group. Based on the area under the receiver operating characteristic curve, wideband absorbance in ambient and tympanometric tests were significantly better predictors of CHL than tympanometric width, the best 0.226-kHz predictor. Accuracies of ambient and tympanometric wideband absorbance did not differ. Absorbance accurately predicted CHL in children and was more accurate than conventional 0.226-kHz tympanometry.

  6. Proposal concerning the absorbed dose conversion factor

    Energy Technology Data Exchange (ETDEWEB)

    Shiragai, A [National Inst. of Radiological Sciences, Chiba (Japan)

    1978-03-01

    New definitions of the absorbed dose conversion factors Csub(lambda) and Csub(E) are proposed. The absorbed dose in water is given by the product of absorbed dose conversion factor, exposure calibration factor, ionisation chamber reading, cap displacement correction factor and perturbation correction factor. At exposure calibration the material of the build-up cap must be the same as that of the chamber wall. An ionisation chamber of which the wall material is water-equivalent or air-equivalent may be used. In the latter case the wall must be thin. For these two cases absorbed dose conversion factors are introduced and it is recommended that either of the two sets should be adopted. Furthermore, if the chamber wall is neither water- nor air-equivalent, the factor by which these currently defined values should be multiplied is also given: again the wall must be thin. The ICRU definitions of Csub(lambda) and Csub(E) are inconsistent, as recently pointed out, while the definitions presented here are consistent.

  7. Power electronics substrate for direct substrate cooling

    Science.gov (United States)

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  8. The MuCool/MICE LH2 Absorber Program

    International Nuclear Information System (INIS)

    Cummings, Mary Anne

    2004-01-01

    Hydrogen absorber R and D for the MuCool Collaboration is actively pushing ahead on two parallel and complementary fronts. The continuing LH2 engineering and technical developments by the MuCool group, conducted by ICAR institutions (NIU, IIT and UIUC), the University of Mississippi and Oxford University in cooperation with Fermilab, are summarized here, including plans for the first tests of an absorber prototype from Osaka University and KEK cooled by internal convection at the newly constructed FNAL MuCool Test Area (MTA). Designs for the high-power test of another absorber prototype (employing external heat exchange) are complete and the system will be installed by summer 2004. A convection-cooled absorber design is being developed for the approved MICE cooling demonstration at Rutherford Appleton Laboratory

  9. [Study on absorbing volatile oil with mesoporous carbon].

    Science.gov (United States)

    Yan, Hong-mei; Jia, Xiao-bin; Zhang, Zhen-hai; Sun, E; Yang Nan

    2014-11-01

    Clove oil and turmeric oil were absorbed by mesoporous carbon. The absorption ratio of mesoporous carbon to volatile oil was optimized with the eugenol yield and curcumol yield as criteria Curing powder was characterized by scanning electron microscopy (SEM) and differential scanning calorietry (DSC). The effects of mesoporous carbon on dissolution in vitro and thermal stability of active components were studied. They reached high adsorption rate when the absorption ratio of mesoporous carbon to volatile oil was 1:1. When volatile oil was absorbed, dissolution rate of active components had a little improvement and their thermal stability improved after volatile oil was absorbed by the loss rate decreasing more than 50%. Absorbing herbal volatile oil with mesoporous carbon deserves further studying.

  10. Diesel NO{sub x} reduction by plasma-regenerated absorbent beds

    Science.gov (United States)

    Wallman, P.H.; Vogtlin, G.E.

    1998-02-10

    Reduction of NO{sub x} from diesel engine exhaust by use of plasma-regenerated absorbent beds is described. This involves a process for the reduction of NO{sub x} and particulates from diesel engines by first absorbing NO{sub x} onto a solid absorbent bed that simultaneously acts as a physical trap for the particulate matter, and second regenerating said solid absorbent by pulsed plasma decomposition of absorbed NO{sub x} followed by air oxidation of trapped particulate matter. The absorbent bed may utilize all metal oxides, but the capacity and the kinetics of absorption and desorption vary between different materials, and thus the composition of the absorbent bed is preferably a material which enables the combination of NO{sub x} absorption capability with catalytic activity for oxidation of hydrocarbons. Thus, naturally occurring or synthetically prepared materials may be utilized, particularly those having NO{sub x} absorption properties up to temperatures around 400 C which is in the area of diesel engine exhaust temperatures. 1 fig.

  11. Analysis of absorbing times of quantum walks

    International Nuclear Information System (INIS)

    Yamasaki, Tomohiro; Kobayashi, Hirotada; Imai, Hiroshi

    2003-01-01

    Quantum walks are expected to provide useful algorithmic tools for quantum computation. This paper introduces absorbing probability and time of quantum walks and gives both numerical simulation results and theoretical analyses on Hadamard walks on the line and symmetric walks on the hypercube from the viewpoint of absorbing probability and time

  12. Based on graphene tunable dual-band terahertz metamaterial absorber with wide-angle

    Science.gov (United States)

    Huang, Mulin; Cheng, Yongzhi; Cheng, Zhengze; Chen, Haoran; Mao, Xuesong; Gong, Rongzhou

    2018-05-01

    We present a wide-angle tunable dual-band terahertz (THz) metamaterial absorber (MMA) based on square graphene patch (SGP). This MMA is a simple periodic array, consisting of a dielectric substrate sandwiched with the SGP and a continuous metallic film. The designed MMA can achieve dual-band absorption by exciting fundamental and second higher-order resonance modes on SGP. The numerical simulations indicate that the absorption spectrum of the designed MMA is tuned from 0.85 THz to 1.01 THz, and from 2.84 THz to 3.37 THz when the chemical potential of the SGP is increasing from 0.4eV to 0.8eV. Moreover, it operates well in a wide-angle of the incident waves. The presented THz MMA based on the SGP could find some potential applications in optoelectronic related devices, such as sensor, emitter and wavelength selective radiators.

  13. Absorber Materials for Transition-Edge Sensor X-ray Microcalorimeters

    Science.gov (United States)

    Brown, Ari-David; Bandler, Simon; Brekosky, Regis; Chervenak, James; Figueroa-Feliciano, Enectali; Finkbeiner, Fred; Sadleir, Jack; Iyomoto, Naoko; Kelley, Richard; Kilbourne, Caroline; hide

    2007-01-01

    Arrays of superconducting transition-edge sensors (TES) can provide high spatial and energy resolution necessary for x-ray astronomy. High quantum efficiency and uniformity of response can be achieved with a suitable absorber material, in which absorber x-ray stopping power, heat capacity, and thermal conductivity are relevant parameters. Here we compare these parameters for bismuth and gold. We have fabricated electroplated gold, electroplated gold/electroplated bismuth, and evaporated gold/evaporated bismuth 8x8 absorber arrays and find that a correlation exists between the residual resistance ratio (RRR) and thin film microstructure. This finding indicates that we can tailor absorber material conductivity via microstructure alteration, so as to permit absorber thermalization on timescales suitable for high energy resolution x-ray microcalorimetry. We show that by incorporating absorbers possessing large grain size, including electroplated gold and electroplated gold/electroplated bismuth, into our current Mo/Au TES, devices with tunable heat capacity and energy resolution of 2.3 eV (gold) and 2.1 eV (gold/bismuth) FWHM at 6 keV have been fabricated.

  14. Substrate temperature effects on the structure and properties of ZnMnO films prepared by pulsed laser deposition

    Science.gov (United States)

    Riascos, H.; Duque, J. S.; Orozco, S.

    2017-01-01

    ZnMnO thin films were grown on silicon substrates by pulsed laser deposition (PLD). Pulsed Nd:YAG laser was operated at a wavelength of 1064 nm and 100 mJ. ZnMnO thin films were deposited at the vacuum pressure of 10-5 Torr and with substrate temperature from room temperature to 600 °C. The effects of substrate temperature on the structural and Optical properties of ZnMnO thin films have been investigated by X-ray diffraction (XRD), Raman spectroscopy and Uv-vis spectroscopy. From XRD data of the samples, it can be showed that temperature substrate does not change the orientation of ZnMnO thin films. All the films prepared have a hexagonal wurtzite structure, with a dominant (002) peak around 2θ=34.44° and grow mainly along the c-axis orientation. The substrate temperature improved the crystallinity of the deposited films. Uv-vis analysis showed that, the thin films exhibit high transmittance and low absorbance in the visible region. It was found that the energy band to 300 ° C is 3.2 eV, whereas for other temperatures the values were lower. Raman reveals the crystal quality of ZnMnO thin films.

  15. SXPS investigation of the Cd partial electrolyte treatment of CuInSe2 absorbers

    International Nuclear Information System (INIS)

    Hunger, R.; Schulmeyer, T.; Klein, A.; Jaegermann, W.; Lebedev, M.V.; Sakurai, K.; Niki, S.

    2005-01-01

    The chemical modification of polycrystalline CuInSe 2 absorber surfaces by the so-called Cd partial electrolyte (PE) treatment was studied by synchrotron X-ray photoelectron spectroscopy (SXPS). The Cd PE treatment was found to remove surface indium oxides and hydroxides and segregated sodium compounds. A hydroxide-terminated CdSe surface layer of one monolayer thickness is formed by the partial electrolyte treatment. The reaction mechanism is discussed as substrate site-controlled exchange reaction, where surface indium is removed and replaced by cadmium. Electronically, the Cd PE treated surface is inverted and exhibits a surface barrier which is by 0.2 eV higher than a comparable structure that was prepared by the vacuum deposition of one monolayer of CdS onto clean CuInSe 2

  16. Saturable Absorption and Modulation Characteristics of Laser with Graphene Oxide Spin Coated on ITO Substrate

    OpenAIRE

    Li, Xin; Zhang, Haikun; Wang, Peiji; Li, Guiqiu; Zhao, Shengzhi; Wang, Jing; Chen, Lijuan

    2014-01-01

    The graphene oxide (GO) thin film has been obtained by mixture of GO spin coated on substrate of indium tin oxide (ITO). The experiment has shown that continuous-wave laser is modulated when the graphene oxide saturable absorber (GO-SA) is employed in the 1064 nm laser cavity. The shortest pulse width is 108 ns at the pump power of 5.04 W. Other output laser characteristics, such as the threshold pump power, the repetition rate, and the peak power, have also been measured. The results have de...

  17. Airborne and total gamma absorbed dose rates at Patiala - India

    International Nuclear Information System (INIS)

    Tesfaye, Tilahun; Sahota, H.S.; Singh, K.

    1999-01-01

    The external gamma absorbed dose rate due to gamma rays originating from gamma emitting aerosols in air, is compared with the total external gamma absorbed dose rate at the Physics Department of Punjabi University, Patiala. It has been found out that the contribution, to the total external gamma absorbed dose rate, of radionuclides on particulate matter suspended in air is about 20% of the overall gamma absorbed dose rate. (author)

  18. Absorbed dose rate meter for β-ray

    International Nuclear Information System (INIS)

    Bingo, K.

    1977-01-01

    The absorbed dose of β-ray depends on the energy of β-rays and the epidermal thickness of tissue in interest. In order to measure the absorbed dose rate at the interested tissue directly, the ratio of counting rate to absorbed dose should be constant independent of β-ray energy. In this purpose, a thin plastic scintillator was used as a detector with a single channel analyzer. The pulse height distribution, obtained using the scintillator whose thickness is less than the range of β-rays, shows a peak at a particular pulse height depending on the thickness of scintillator used. This means an increase of the number of pulses at lower pulse height. The lower level of discrimination and window width of the single channel analyzer are chosen according to the epidermal thickness of the tissue. In the experiment, scintillators of 0.5, 1, 2, 3, 5 and 10 mm thick were tested. It was found that desirable pulse height distribution, to obtain a constant dose sensitivity, could be obtained using the 2 mm thick scintillator. The sensitivity of the absorbed dose rate meter is constant within +-15% for β-ray with maximum energy from 0.4 to 3.5 MeV, when the absorbed dose rate for skin (epidermal thickness 7mg/cm 2 ) is measured. In order to measure the dose rate for a hand (epithermal thickness 40mg/cm 2 ) the lower level of discrimination is changed to be higher and at the same time the window width is also changed. Combining these techniques, one can get an absorbed dose rate meter for the tissue dose of various thickness, which has the constant dose sensitivity within +-15% for β-rays with maximum energy from 0.4 to 3.5 MeV

  19. An Absorbing Look at Terry-Cloth Towels

    Science.gov (United States)

    Moyer, Richard; Everett, Susan

    2010-01-01

    This article describes a lesson where students explore the absorbency of several towels with different weaves and weights. The lesson follows the 5E learning-cycle model and incorporates engineering in the sense of product testing with a focus on the relationship between the weave of a towel and its absorbency. The National Science Education…

  20. A Wedge Absorber Experiment at MICE

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab; Mohayai, Tanaz [IIT, Chicago; Rogers, Chris [Rutherford; Snopok, Pavel [IIT, Chicago; Summers, Don [Mississippi U.

    2017-05-01

    Emittance exchange mediated by wedge absorbers is required for longitudinal ionization cooling and for final transverse emittance minimization for a muon collider. A wedge absorber within the MICE beam line could serve as a demonstration of the type of emittance exchange needed for 6-D cooling, including the configurations needed for muon colliders, as well as configurations for low-energy muon sources. Parameters for this test are explored in simulation and possible experimental configurations with simulated results are presented.

  1. Effect of residual monomer from polyacrylamide on head lettuce grown in peat substrate.

    Science.gov (United States)

    Mroczek, Ewelina; Kleiber, Tomasz; Konieczny, Piotr; Waśkiewicz, Agnieszka

    2015-01-01

    The paper investigates the migration of the acrylamide monomer (AMD) to lettuce chosen as a test plant growing in an organic medium (peat substrate). Polyacrylamide (PAM)-based flocculant added to the growing medium contained no more than 1000 mg kg(-1) of AMD. Plants were grown with varied doses of PAM preparation (0.5-3.0 mg dm(-3) of peat substrate) to compare the results with the control sample. The determination of AMD content, chlorophyll content, weight of the lettuce head, and also analysis of macro- and micro-elements in lyophilised test material was made under the same analytical conditions. The results showed that lettuce plants absorb AMD to the leaves from the peat substrate. The AMD uptake has a negative impact on the growth of lettuce. It reduces the average fresh weight of heads and destabilises the mineral composition of the plant. Therefore, concern related to the transfer risk of the residual AMD from sludge used for organic fertilisation of edible plants still remains a crucial question from a food and consumer safety point of view. To ensure consumer safety, the fate of the AMD following the application of PAM to cropland should be carefully monitored in the whole food chain.

  2. UV-absorbing compounds in subarctic herbarium bryophytes

    Energy Technology Data Exchange (ETDEWEB)

    Huttunen, S. [Botany Division, Department of Biology, P.O. Box 3000, FIN-90 014 University of Oulu (Finland)]. E-mail: satu.huttunen@oulu.fi; Lappalainen, N.M. [Botany Division, Department of Biology, P.O. Box 3000, FIN-90 014 University of Oulu (Finland); Turunen, J. [Botany Division, Department of Biology, P.O. Box 3000, FIN-90 014 University of Oulu (Finland)

    2005-01-01

    The UV-B-absorbing compounds of herbarium specimens of 10 subarctic bryophyte species collected during the years 1926-1996 and available at the Botanical Museum, University of Oulu, were studied. We studied whether herbarium specimens reflect changes in the past radiation climate through their methanol-extractable compounds. The order of gametophytes based on the average amount of total compounds (sum of A{sub 280-320nm}) per mass from the lowest to the highest was Polytrichum commune, Pleurozium schreberi, Hylocomium splendens, Sphagnum angustifolium, Dicranum scoparium, Funaria hygrometrica, Sphagnum fuscum, Sphagnum warnstorfii, Sphagnum capillifolium and Polytrichastrum alpinum, and the amount of UV-B-absorbing compounds per specific surface area correlated with the summertime daily global radiation and latitude. P. alpinum, F. hygrometrica and three Sphagnum species seem to be good indicators for further studies. The amount of UV-B-absorbing compounds revealed no significant trends from the 1920s till the 1990s, with the exception of S. capillifolium, which showed a significant decreasing trend. - UV-B-absorbing compounds in subarctic herbarium bryophytes indicate the radiation climate of the collecting site and time.

  3. UV-absorbing compounds in subarctic herbarium bryophytes

    International Nuclear Information System (INIS)

    Huttunen, S.; Lappalainen, N.M.; Turunen, J.

    2005-01-01

    The UV-B-absorbing compounds of herbarium specimens of 10 subarctic bryophyte species collected during the years 1926-1996 and available at the Botanical Museum, University of Oulu, were studied. We studied whether herbarium specimens reflect changes in the past radiation climate through their methanol-extractable compounds. The order of gametophytes based on the average amount of total compounds (sum of A 280-320nm ) per mass from the lowest to the highest was Polytrichum commune, Pleurozium schreberi, Hylocomium splendens, Sphagnum angustifolium, Dicranum scoparium, Funaria hygrometrica, Sphagnum fuscum, Sphagnum warnstorfii, Sphagnum capillifolium and Polytrichastrum alpinum, and the amount of UV-B-absorbing compounds per specific surface area correlated with the summertime daily global radiation and latitude. P. alpinum, F. hygrometrica and three Sphagnum species seem to be good indicators for further studies. The amount of UV-B-absorbing compounds revealed no significant trends from the 1920s till the 1990s, with the exception of S. capillifolium, which showed a significant decreasing trend. - UV-B-absorbing compounds in subarctic herbarium bryophytes indicate the radiation climate of the collecting site and time

  4. Direct growth and patterning of multilayer graphene onto a targeted substrate without an external carbon source.

    Science.gov (United States)

    Kang, Dongseok; Kim, Won-Jun; Lim, Jung Ah; Song, Yong-Won

    2012-07-25

    Using only a simple tube furnace, we demonstrate the synthesis of patterned graphene directly on a designed substrate without the need for an external carbon source. Carbon atoms are absorbed onto Ni evaporator sources as impurities, and incorporated into catalyst layers during the deposition. Heat treatment conditions were optimized so that the atoms diffused out along the grain boundaries to form nanocrystals at the catalyst-substrate interfaces. Graphene patterns were obtained under patterned catalysts, which restricted graphene formation to within patterned areas. The resultant multilayer graphene was characterized by Raman spectroscopy and transmission electron microscopy to verify the high crystallinity and two-dimensional nanomorphology. Finally, a metal-semiconductor diode with a catalyst-graphene contact structure were fabricated and characterized to assess the semiconducting properties of the graphene sheets with respect to the display of asymmetric current-voltage behavior.

  5. Triplet-triplet energy transfer from a UV-A absorber butylmethoxydibenzoylmethane to UV-B absorbers.

    Science.gov (United States)

    Kikuchi, Azusa; Oguchi-Fujiyama, Nozomi; Miyazawa, Kazuyuki; Yagi, Mikio

    2014-01-01

    The phosphorescence decay of a UV-A absorber, 4-tert-butyl-4'-methoxydibenzolymethane (BMDBM) has been observed following a 355 nm laser excitation in the absence and presence of UV-B absorbers, 2-ethylhexyl 4-methoxycinnamate (octyl methoxycinnamate, OMC) and octocrylene (OCR) in ethanol at 77 K. The lifetime of the lowest excited triplet (T1) state of BMDBM is significantly reduced in the presence of OMC and OCR. The observed quenching of BMDBM triplet by OMC and OCR suggests that the intermolecular triplet-triplet energy transfer occurs from BMDBM to OMC and OCR. The T1 state of OCR is nonphosphorescent or very weakly phosphorescent. However, we have shown that the energy level of the T1 state of OCR is lower than that of the enol form of BMDBM. Our methodology of energy-donor phosphorescence decay measurements can be applied to the study of the triplet-triplet energy transfer between UV absorbers even if the energy acceptor is nonphosphorescent. In addition, the delayed fluorescence of BMDBM due to triplet-triplet annihilation was observed in the BMDBM-OMC and BMDBM-OCR mixtures in ethanol at 77 K. Delayed fluorescence is one of the deactivation processes of the excited states of BMDBM under our experimental conditions. © 2013 The American Society of Photobiology.

  6. Effect of inclusions' distribution on microwave absorbing properties of composites

    International Nuclear Information System (INIS)

    Qin, Siliang; Wang, Qingguo; Qu, Zhaoming

    2013-01-01

    Effect of inclusions' spatial distributions on the permeability and permittivity of composites is studied using the generalized Maxwell-Garnett equations. The result indicates that inclusions' orientation distribution can increase the longitudinal electromagnetic parameters. For inclusions' random and orientation distribution, single and three-layer absorbers are designed and optimized using genetic algorithm. The result shows that under a given absorbing requirement, absorber with inclusions' orientation distribution is lighter and thinner than absorber with inclusions' random distribution.

  7. Actual behaviour of a ball vibration absorber

    Czech Academy of Sciences Publication Activity Database

    Pirner, Miroš

    2002-01-01

    Roč. 90, č. 8 (2002), s. 987-1005 ISSN 0167-6105 R&D Projects: GA ČR(CZ) GV103/96/K034 Institutional support: RVO:68378297 Keywords : TV towers * wind-excited vibrations * vibration absorbers * pendulum absorber Subject RIV: JM - Building Engineering Impact factor: 0.513, year: 2002 http://www.sciencedirect.com/science/article/pii/S0167610502002155#

  8. Physically absorbable reagents-collectors in elementary flotation

    Energy Technology Data Exchange (ETDEWEB)

    S.A. Kondrat' ev; I.G. Bochkarev [Russian Academy of Sciences, Novosibirsk (Russian Federation). Institute of Mining

    2007-09-15

    Based on the reviewed researches held at the Institute of Mining, Siberian Branch, Russian Academy of Sciences, the effect of physically absorbable reagents-collectors on formation of a flotation complex and its stability in turbulent pulp flows in flotation machines of basic types is considered. The basic requirements for physically absorbable reagents-collectors at different flotation stages are established.

  9. Absorber transmissivities in 57Fe Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Ballet, O.

    1985-01-01

    Some useful relations are derived for the polarization dependent optical index of 57 Fe Moessbauer absorbers. Real rotation matrices are extensively used and, besides wave-direction dependence, their properties simplify also the treatment of texture and f-anisotropy. The derivation of absorber transmissivities from the optical index is discussed with a special emphasis on line overlapping. (Auth.)

  10. Inferring absorbing organic carbon content from AERONET data

    Science.gov (United States)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called "brown carbon") and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated the amount of light-absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South America and Africa are relatively high (about 15-20 mg m-2 during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 mg m-2 during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by the global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while the opposite is true in urban areas in India and China.

  11. High-temperature laser annealing for thin film polycrystalline silicon solar cell on glass substrate

    Science.gov (United States)

    Chowdhury, A.; Schneider, J.; Dore, J.; Mermet, F.; Slaoui, A.

    2012-06-01

    Thin film polycrystalline silicon films grown on glass substrate were irradiated with an infrared continuous wave laser for defects annealing and/or dopants activation. The samples were uniformly scanned using an attachment with the laser system. Substrate temperature, scan speed and laser power were varied to find suitable laser annealing conditions. The Raman spectroscopy and Suns- V oc analysis were carried out to qualify the films quality after laser annealing. A maximum enhancement of the open circuit voltage V oc of about 100 mV is obtained after laser annealing of as-grown polysilicon structures. A strong correlation was found between the full width half maximum of the Si crystalline peak and V oc. It is interpreted as due to defects annealing as well as to dopants activation in the absorbing silicon layer. The maximum V oc reached is 485 mV after laser treatment and plasma hydrogenation, thanks to defects passivation.

  12. Energy deposition studies for the LBNE beam absorber

    International Nuclear Information System (INIS)

    Rakhno, Igor L.; Mokhov, Nikolai V.; Tropin, Igor S.

    2015-01-01

    Results of detailed Monte Carlo energy deposition studies performed for the LBNE absorber core and the surrounding shielding with the MARS15 code are described. The model of the entire facility that includes a pion-production target, focusing horns, target chase, decay channel, hadron absorber system - all with corresponding radiation shielding - was developed using the recently implemented ROOT-based geometry option in the MARS15 code. This option provides substantial flexibility and automation when developing complex geometry models. Both normal operation and accidental conditions were studied. Various design options were considered, in particular the following: (i) filling the decay pipe with air or helium; (ii) the absorber mask material and shape; (iii) the beam spoiler material and size. Results of detailed thermal calculations with the ANSYS code helped to select the most viable absorber design options. (authors)

  13. A randomised controlled trial of absorbable versus non-absorbable sutures for skin closure after open carpal tunnel release.

    LENUS (Irish Health Repository)

    Theopold, C

    2012-05-01

    We compared the aesthetic outcome of scars after closure of open carpal tunnel incisions with either absorbable 4-0 Vicryl Rapide or non-absorbable 4-0 Novafil. Patients were recruited in a randomized controlled trial and scars were scored at 6 weeks using a modified Patient and Observer Scar Assessment Scale. Scores demonstrated differences only for pain, vascularity and cross-hatching between both groups, though none of these were statistically significant. The dissolving and falling out of Vicryl Rapide was significantly more comfortable than removal of 4-0 Novafil sutures, assessed on a numerical analogue scale. There was no difference in infection rate between both study groups, supporting overall the use of Vicryl Rapide for the closure of palmar hand incisions, in light of the convenience and cost savings associated with absorbable sutures.

  14. Optimal design of MR shock absorber and application to vehicle suspension

    International Nuclear Information System (INIS)

    Nguyen, Quoc-Hung; Choi, Seung-Bok

    2009-01-01

    This paper presents an optimal design of a magnetorheological (MR) shock absorber based on finite element analysis. The MR shock absorber is constrained in a specific volume and the optimization problem identifies geometric dimensions of the shock absorber that minimize a multi-objective function. The objective function is proposed by considering the damping force, dynamic range and the inductive time constant of the shock absorber. After describing the configuration of the MR shock absorber, a quasi-static modeling of the shock absorber is performed based on the Bingham model of an MR fluid. The initial geometric dimensions of the shock absorber are then determined based on the assumption of constant magnetic flux density throughout the magnetic circuit. The objective function of the optimization problem is derived based on the solution of the initial shock absorber. An optimization procedure using a golden-section algorithm and a local quadratic fitting technique is constructed via a commercial finite element method parametric design language. Using the developed optimization tool, optimal solutions of the MR shock absorber, which is constrained in a specific cylindrical volume defined by its radius and height, are determined. Subsequently, a quarter-car suspension model with the optimized MR shock absorber is formulated and the vibration control performance of the suspension is evaluated under bump and sinusoidal road conditions

  15. Evaluation of a fully absorbable poly-4-hydroxybutyrate/absorbable barrier composite mesh in a porcine model of ventral hernia repair.

    Science.gov (United States)

    Scott, Jeffrey R; Deeken, Corey R; Martindale, Robert G; Rosen, Michael J

    2016-09-01

    The objective of this study was to evaluate the mechanical and histological properties of a fully absorbable poly-4-hydroxybutyrate/absorbable barrier composite mesh (Phasix™ ST) compared to partially absorbable (Ventralight™ ST), fully absorbable (Phasix™), and biologically derived (Strattice™) meshes in a porcine model of ventral hernia repair. Bilateral abdominal surgical defects were created in twenty-four Yucatan pigs, repaired with intraperitoneal (Phasix™ ST, Ventralight™ ST) or retromuscular (Phasix™, Strattice™) mesh, and evaluated at 12 and 24 weeks (n = 6 mesh/group/time point). Prior to implantation, Strattice™ demonstrated significantly higher (p weeks, mesh/repair strength was significantly greater than NAW (p weeks (p > 0.05). Phasix™ mesh/repair strength was significantly greater than Strattice™ (p weeks, and Ventralight™ ST mesh/repair strength was significantly greater than Phasix™ ST mesh (p weeks. At 12 and 24 weeks, Phasix™ ST and Ventralight™ ST were associated with mild inflammation and minimal-mild fibrosis/neovascularization, with no significant differences between groups. At both time points, Phasix™ was associated with minimal-mild inflammation/fibrosis and mild neovascularization. Strattice™ was associated with minimal inflammation/fibrosis, with minimal neovascularization at 12 weeks, which increased to mild by 24 weeks. Strattice™ exhibited significantly less neovascularization than Phasix™ at 12 weeks and significantly greater inflammation at 24 weeks due to remodeling. Phasix™ ST demonstrated mechanical and histological properties comparable to partially absorbable (Ventralight™ ST) and fully resorbable (Phasix™) meshes at 12 and 24 weeks in this model. Data also suggest that fully absorbable meshes with longer-term resorption profiles may provide improved mechanical and histological properties compared to biologically derived scaffolds.

  16. Are bio-absorbable stents the future of SFA treatment?

    Science.gov (United States)

    Peeters, P; Keirse, K; Verbist, J; Deloose, K; Bosiers, M

    2010-02-01

    Several limitations inherent to the implantation of a metallic device, such as the occurrence of in-stent re-stenosis, in an arterial lumen intuitively explain the interest for developing bio-absorbable stents. Two main types of bio-absorbable stents currently exist: polymer stents and metallic stents. To date, no studies with bio-absorbable stents have been conducted in the superficial femoral artery (SFA). Because of their strut thickness and lack of radial force, polymer stents are no good candidates for endovascular use. Absorbable metal stents (AMS) do have the potential to perform well for artery treatment, although current evidence from in-human coronary and infrapopliteal studies yield unsatisfactory results. Drastic technological improvements are mandatory before AMS can be considered for every day practice. Yet, it is our belief that further development of other metal and non-metal bio-absorbable stents, with or without drug-coating, may lead to the creation of the ultimate SFA stent.

  17. New Technology in Hydrogen Absorbers for Muon Cooling Channels

    CERN Document Server

    Cummings, M A C

    2005-01-01

    Ionization cooling is the only technique fast enough to cool and focus muons for neutrino factories and muon colliders, and hydrogen is the optimal material for maximum cooling and minimal multiple scattering. Liquid hydrogen absorber R&D for the Muon Collaboration has proceeded on parallel and complementary fronts. The continuing LH2 absorber engineering and technical developments by the MuCool group conducted by ICAR* institutions (NIU, IIT and UIUC), the University of Mississippi and Oxford University, in cooperation with Fermilab, will be summarized, including results from the first hydrogen absorber tests at the newly constructed FNAL Mucool Test Area (MTA). The program includes designs for the high-powered test of an absorber prototype (external heat exchange) at the MTA which are nearing completion to be installed by summer 2005, an alternative absorber design (internal heat exchange) being finalized for the approved cooling experiment (MICE) at Rutherford-Appleton Laboratory, and a novel idea for ...

  18. Absorber performance of a water/lithium-bromide absorption chiller

    International Nuclear Information System (INIS)

    Xie Guozhen; Sheng Guogang; Bansal, Pradeep Kumar; Li, Guang

    2008-01-01

    An absorber is one of the most important components of a lithium-bromide absorption chiller (LBAC) as its absorbing characteristics directly influence the performance of the whole chiller. It has been indicated that the absorbing efficiency and cooling capacity could be improved by increasing the solution concentration. In this paper, based on the mechanism of falling film absorption on horizontal tubes, the theoretical models of falling film absorption on horizontal tubes have been established. A series of programs used for computing the theoretical mathematical models, including simulation of LBAC cycle and falling film absorption, have been programmed. The models have been validated reasonably by the experimental data. The results show that the cooling capacity of the LBAC varies in parabola shape of curve with the solution concentration from 52.5% to 58.5%, and that the best coefficient of performance (COP) occurs at concentration of 57%. The investigation proposes the absorbing process of sub-steady thermodynamic equilibrium for the duality solution under increase absorbing pressure

  19. Laser beam propagation in non-linearly absorbing media

    CSIR Research Space (South Africa)

    Forbes, A

    2006-08-01

    Full Text Available Many analytical techniques exist to explore the propagation of certain laser beams in free space, or in a linearly absorbing medium. When the medium is nonlinearly absorbing the propagation must be described by an iterative process using the well...

  20. Optically Modulated Multiband Terahertz Perfect Absorber

    DEFF Research Database (Denmark)

    Seren, Huseyin R.; Keiser, George R.; Cao, Lingyue

    2014-01-01

    response of resonant metamaterials continues to be a challengingendeavor. Resonant perfect absorbers have flourished as one of the mostpromising metamaterial devices with applications ranging from power har-vesting to terahertz imaging. Here, an optically modulated resonant perfectabsorber is presented....... Utilizing photo-excited free carriers in silicon padsplaced in the capacitive gaps of split ring resonators, a dynamically modu-lated perfect absorber is designed and fabricated to operate in reflection.Large modulation depth (38% and 91%) in two absorption bands (with 97%and 92% peak absorption...

  1. Preparation and characterization of super absorbent polymer from sugarcane bagasse

    International Nuclear Information System (INIS)

    Wiwien Andriyanti; Suyanti; Ngasifudin

    2012-01-01

    Sugarcane bagasse is a source of biomass which large enough numbers and has not been fully exploited. At this time has developed a super absorbent polymer material of sugarcane bagasse that can absorb water up to several times of its own weight and keep this water. Super absorbent polymers can be used as a soil conditioner that can be used as an absorber and storage of ground water, the giver of nutrients for plants, and can improve soil properties. The purpose of this study is to make and characterization of super absorbent polymer (PCS) from sugarcane bagasse. Preparation of super absorbent polymers (PCS) has been done by grafting method using ionizing radiation from Electron Beam Engineering (MBE) 350 mA keV/10. Irradiation process carried out with a dose variation of 20, 35, and 50 kGy. Increasing doses of radiation will increase the percentage fraction of transplantation (grafting) and the fraction of water absorption ability (swelling ratio). (author)

  2. Design of broadband absorber using 2-D materials for thermo-photovoltaic cell application

    Science.gov (United States)

    Agarwal, Sajal; Prajapati, Y. K.

    2018-04-01

    Present study is done to analyze a nano absorber for thermo-photovoltaic cell application. Optical absorbance of two-dimensional materials is exploited to achieve high absorbance. It is found that few alternating layers of graphene/transition metal dichalcogenide provide high absorbance of electromagnetic wave in visible as well as near infrared region. Four transition metal dichalcogenides are considered and found that most of these provide perfect absorbance for almost full considered wavelength range i.e. 200-1000 nm. Demonstrated results confirm the extended operating region and improved absorbance of the proposed absorber in comparison to the existing absorbers made of different materials. Further, absorber performance is improved by using thin layers of gold and chromium. Simple geometry of the proposed absorber also ensures easy fabrication.

  3. Calculations in the Wheeler-Feynman absorber theory of radiation

    International Nuclear Information System (INIS)

    Balaji, K.S.

    1986-01-01

    One dimensional computer aided calculations were done to find the self consistent solutions for various absorber configurations in the context of the Wheeler-Feynman absorber theory, wherein every accelerating charge is assumed to produce a time symmetric combination of advanced and retarded fields. These calculations picked out the so called outerface solution for incomplete absorbers and showed that advanced as well as retarded signals interact with matter in the same manner as in the full retarded theory. Based on these calculations, the Partridge experiment and the Schmidt-Newman experiment were ruled out as tests of the absorber theory. An experiment designed to produce and detect advanced effects is proposed, based on more one-dimensional calculations

  4. Effect of thermal-treatment sequence on sound absorbing and mechanical properties of porous sound-absorbing/thermal-insulating composites

    Directory of Open Access Journals (Sweden)

    Huang Chen-Hung

    2016-01-01

    Full Text Available Due to recent rapid commercial and industrial development, mechanical equipment is supplemented massively in the factory and thus mechanical operation causes noise which distresses living at home. In livelihood, neighborhood, transportation equipment, jobsite construction noises impact on quality of life not only factory noise. This study aims to preparation technique and property evaluation of porous sound-absorbing/thermal-insulating composites. Hollow three-dimensional crimp PET fibers blended with low-melting PET fibers were fabricated into hollow PET/low-melting PET nonwoven after opening, blending, carding, lapping and needle-bonding process. Then, hollow PET/low-melting PET nonwovens were laminated into sound-absorbing/thermal-insulating composites by changing sequence of needle-bonding and thermal-treatment. The optimal thermal-treated sequence was found by tensile strength, tearing strength, sound-absorbing coefficient and thermal conductivity coefficient tests of porous composites.

  5. Review of Plasmonic Nanocomposite Metamaterial Absorber

    Directory of Open Access Journals (Sweden)

    Mehdi Keshavarz Hedayati

    2014-02-01

    Full Text Available Plasmonic metamaterials are artificial materials typically composed of noble metals in which the features of photonics and electronics are linked by coupling photons to conduction electrons of metal (known as surface plasmon. These rationally designed structures have spurred interest noticeably since they demonstrate some fascinating properties which are unattainable with naturally occurring materials. Complete absorption of light is one of the recent exotic properties of plasmonic metamaterials which has broadened its application area considerably. This is realized by designing a medium whose impedance matches that of free space while being opaque. If such a medium is filled with some lossy medium, the resulting structure can absorb light totally in a sharp or broad frequency range. Although several types of metamaterials perfect absorber have been demonstrated so far, in the current paper we overview (and focus on perfect absorbers based on nanocomposites where the total thickness is a few tens of nanometer and the absorption band is broad, tunable and insensitive to the angle of incidence. The nanocomposites consist of metal nanoparticles embedded in a dielectric matrix with a high filling factor close to the percolation threshold. The filling factor can be tailored by the vapor phase co-deposition of the metallic and dielectric components. In addition, novel wet chemical approaches are discussed which are bio-inspired or involve synthesis within levitating Leidenfrost drops, for instance. Moreover, theoretical considerations, optical properties, and potential application of perfect absorbers will be presented.

  6. Inferring absorbing organic carbon content from AERONET data

    Directory of Open Access Journals (Sweden)

    A. Arola

    2011-01-01

    Full Text Available Black carbon, light-absorbing organic carbon (often called "brown carbon" and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated the amount of light–absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon levels in biomass burning regions of South America and Africa are relatively high (about 15–20 mg m−2 during biomass burning season, while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30–35 mg m−2 during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by the global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while the opposite is true in urban areas in India and China.

  7. Effect of storage conditions on the weight and appearance of dried blood spot samples on various cellulose-based substrates.

    Science.gov (United States)

    Denniff, Philip; Spooner, Neil

    2010-11-01

    Before shipping and storage, dried blood spot (DBS) samples must be dried in order to protect the integrity of the spots. In this article, we examine the time required to dry blood spot samples and the effects of different environmental conditions on their integrity. Under ambient laboratory conditions, DBS samples on Whatman 903(®), FTA(®) and FTA(®) Elute substrates are dry within 90 min of spotting. An additional 5% of moisture is lost during subsequent storage with desiccant. When exposed to elevated conditions of temperature and relative humidity, the DBS samples absorb moisture. DBS samples on FTA lose this moisture on being returned to ambient conditions. DBS samples on 903 show no visible signs of deterioration when stored at elevated conditions. However, these conditions cause the DBS to diffuse through the FTA Elute substrate. Blood spots are dry within 90 min of spotting. However, the substrates examined behave differently when exposed to conditions of high relative humidity and temperature, in some cases resulting in the integrity of the substrate and DBS sample being compromised. It is recommended that these factors be investigated as part of method development and validation.

  8. LINEAR MODEL FOR NON ISOSCELES ABSORBERS.

    Energy Technology Data Exchange (ETDEWEB)

    BERG,J.S.

    2003-05-12

    Previous analyses have assumed that wedge absorbers are triangularly shaped with equal angles for the two faces. In this case, to linear order, the energy loss depends only on the position in the direction of the face tilt, and is independent of the incoming angle. One can instead construct an absorber with entrance and exit faces facing rather general directions. In this case, the energy loss can depend on both the position and the angle of the particle in question. This paper demonstrates that and computes the effect to linear order.

  9. Ferrite HOM Absorber for the RHIC ERL

    Energy Technology Data Exchange (ETDEWEB)

    Hahn,H.; Choi, E.M.; Hammons, L.

    2008-10-01

    A superconducting Energy Recovery Linac is under construction at Brookhaven National Laboratory to serve as test bed for RHIC upgrades. The damping of higher-order modes in the superconducting five-cell cavity for the Energy-Recovery linac at RHIC is performed exclusively by two ferrite absorbers. The ferrite properties have been measured in ferrite-loaded pill box cavities resulting in the permeability values given by a first-order Debye model for the tiled absorber structure and an equivalent permeability value for computer simulations with solid ring dampers. Measured and simulated results for the higher-order modes in the prototype copper cavity are discussed. First room-temperature measurements of the finished niobium cavity are presented which confirm the effective damping of higher-order modes in the ERL. by the ferrite absorbers.

  10. Pectinase production by Aspergillus niger using banana (Musa balbisiana) peel as substrate and its effect on clarification of banana juice.

    Science.gov (United States)

    Barman, Sumi; Sit, Nandan; Badwaik, Laxmikant S; Deka, Sankar C

    2015-06-01

    Optimization of substrate concentration, time of incubation and temperature for crude pectinase production from A. niger was carried out using Bhimkol banana (Musa balbisiana) peel as substrate. The crude pectinase produced was partially purified using ethanol and effectiveness of crude and partially purified pectinase was studied for banana juice clarification. The optimum substrate concentration, incubation time and temperature of incubation were 8.07 %, 65.82 h and 32.37 °C respectively, and the polygalacturonase (PG) activity achieved was 6.6 U/ml for crude pectinase. The partially purified enzyme showed more than 3 times of polygalacturonase activity as compared to the crude enzyme. The SDS-PAGE profile showed that the molecular weight of proteins present in the different pectinases varied from 34 to 42 kDa. The study further revealed that highest clarification was achieved when raw banana juice was incubated for 60 min with 2 % concentration of partially purified pectinase and the absorbance obtained was 0.10.

  11. Perpetual pavement – absorbing stress and functional maintenance

    Directory of Open Access Journals (Sweden)

    Rong Gao

    2017-03-01

    Full Text Available Perpetual Pavement combines the well documented smoothness and safety advantages of asphalt with an advanced, multi-layer paving design process, that with routine maintenance, extends the useful life of a roadway. Perpetual provides long lasting road and smoothness for the construction purposes. This study has the design key points of perpetual pavement based on the idea of life cycle, which has a new direction for the new highway construction, reconstruction and expansion. First, the structure of long life pavement design is studied to analyze the effect of stress absorbing layer. Second, researches on stress absorbing layer from the aspects of raw materials, mix proportion are implemented. Third, the design index of stress absorbing layer is determined by the shear strength test. The results show that the design idea of composite perpetual pavement can be realized by reasonable design of the stress absorbing layer and carrying out the surface functional maintenance can ensure the pavement to avoid structural damage in the operation stage.

  12. Selective wave-transmitting electromagnetic absorber through composite metasurface

    Science.gov (United States)

    Sun, Zhiwei; Zhao, Junming; Zhu, Bo; Jiang, Tian; Feng, Yijun

    2017-11-01

    Selective wave-transmitting absorbers which have one or more narrow transmission bands inside a wide absorption band are often demanded in wireless communication and radome applications for reducing the coupling between different systems, improving anti-jamming capability, and reducing antennas' radar cross section. Here we propose a feasible method that utilizing composite of two metasurfaces with different polarization dependent characteristics, one works as electromagnetic polarization rotator and the other as a wideband polarization dependent electromagnetic wave absorber. The polarization rotator produces a cross polarization output in the wave-transmitting band, while preserves the polarization of the incidence outside the band. The metasurface absorber works for certain linear polarization with a much wider absorption band covering the wave-transmitting frequency. When combining these two metasurfaces properly, the whole structure behaves as a wideband absorber with a certain frequency transmission window. The proposal may be applied in radome designs to reduce the radar cross section of antenna or improving the electromagnetic compatibility in communication devices.

  13. Gas-phase absorbents for trapping radioactive iodine and iodine compounds

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    This standard covers granular absorbents (activated carbon, mineral base, polymer, etc.) for use in air and gas treatment systems. The absorbents are used in both thin-bed absorber cells and deep-bed systems. The standard includes docuent list, technical requirements, quality assurance requirements, and preparation for delivery. Test and sampling procedures are given

  14. Absorbed energy for radiation crosslinking in stabilized PE systems

    International Nuclear Information System (INIS)

    Novakovic, Lj.; Gal, O.; Charlesby, A.

    1990-01-01

    A quantitative consideration on the absorbed energy consumption in various γ-irradiated polyethylene systems is given. On the base of the increased gel dose values for the PE systems containing antioxidant, relative to the gel doses for the pure polymers, the surplus of the absorbed energy due to the presence of the particular antioxidant is calculated. The increasing of the energy consumption in the stabilized systems depends on both the type and the content of the basic polymer. The surplus in the absorbed energy decreases with the radiation dose increasing, reflecting both the diminishing of the antioxidant concentration in the irradiating PE systems and the crosslinking level. The findings can be of interest in the estimation of the absorbed doses for the specific radiation crosslinking processes. (author)

  15. Absorbed energy for radiation crosslinking in stabilized PE systems

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, Lj; Gal, O [Institut za Nuklearne Nauke Boris Kidric, Belgrade (Yugoslavia); Charlesby, A

    1990-01-01

    A quantitative consideration on the absorbed energy consumption in various {gamma}-irradiated polyethylene systems is given. On the base of the increased gel dose values for the PE systems containing antioxidant, relative to the gel doses for the pure polymers, the surplus of the absorbed energy due to the presence of the particular antioxidant is calculated. The increasing of the energy consumption in the stabilized systems depends on both the type and the content of the basic polymer. The surplus in the absorbed energy decreases with the radiation dose increasing, reflecting both the diminishing of the antioxidant concentration in the irradiating PE systems and the crosslinking level. The findings can be of interest in the estimation of the absorbed doses for the specific radiation crosslinking processes. (author).

  16. 14 CFR 29.475 - Tires and shock absorbers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 29.475 Section 29.475 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 29.475 Tires and shock absorbers. Unless otherwise...

  17. Simulated mixed absorbers and effective atomic numbers for γ ...

    Indian Academy of Sciences (India)

    Keywords. γ-rays; γ attenuation; simulated mixed absorbers; effective atomic ... We have tried to simulate composite (mixed) absorbers ... Experimental method .... puter, Program manual, Centre for Radiation Research, National Bureau of ...

  18. Semiconductor saturable absorbers for ultrafast THz signals

    DEFF Research Database (Denmark)

    Hoffmann, Matthias C.; Turchinovich, Dmitry

    We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths.......We demonstrate saturable absorber behavior of n-type semiconductors in the THz frequency range using nonlinear THz spectroscopy. Further, we observe THz pulse shortening and increase of the group refractive index at high field strengths....

  19. Polarization insensitive metamaterial absorber based on E-shaped all-dielectric structure

    Directory of Open Access Journals (Sweden)

    Liyang Li

    2015-03-01

    Full Text Available In this paper, we designed a metamaterial absorber performed in microwave frequency band. This absorber is composed of E-shaped dielectrics which are arranged along different directions. The E-shaped all-dielectric structure is made of microwave ceramics with high permittivity and low loss. Within about 1 GHz frequency band, more than 86% absorption efficiency was observed for this metamaterial absorber. This absorber is polarization insensitive and is stable for incident angles. It is figured out that the polarization insensitive absorption is caused by the nearly located varied resonant modes which are excited by the E-shaped all-dielectric resonators with the same size but in the different direction. The E-shaped dielectric absorber contains intensive resonant points. Our research work paves a way for designing all-dielectric absorber.

  20. RackSaver neutron absorbing device development and testing

    International Nuclear Information System (INIS)

    Lambert, R.; O'Leary, P.; Roberts, P.

    1996-01-01

    Siemens Power Corporation (SPC), in cooperation with the Electric Power Research Institute (EPRI), has developed the RackSaver neutron absorbing insert. The RackSaver insert can be installed onto spent nuclear fuel assemblies to replace deteriorating Boraflex neutron absorbing material installed in some spent-fuel storage racks. This paper describes results of a development and in-pool demonstration program performed to support potential utilization of the RackSaver neutron absorbing insert by affected utilities. The program objective was to advance the RackSaver concept into a field-demonstrated product. This objective was accomplished through three phases: design, licensing and criticality evaluations, and demonstration testing

  1. Development of UV absorbing PET through Electron Irradiation

    International Nuclear Information System (INIS)

    Kim, Jung Woo; Lee, Na Eun; Lim, Hyung San; Park, Yang Jeong; Cho, Sung Oh

    2017-01-01

    Experiment to increase UV absorbance through electron beam irradiation on PET was performed. Moreover, surface hardness and roughness of each sample were observed to find the key factor increasing UV absorbance. PET sheets were irradiated with an electron beam at various fluences. The irradiated samples, as well as pristine sample, were subjected to UV-visible spectral study(UV-Vis), pencil hardness test, and scanning electron microscopy(SEM) experiment. In this study, PET samples irradiated at several conditions were analyzed through various measurements. UV absorbance-another meaning of transmittance in this study- of irradiated PET sample increased compared with pristine sample as fluence was increased in UV-Visible spectroscopy experiment.

  2. Investigations on laser transmission welding of absorber-free thermoplastics

    Science.gov (United States)

    Mamuschkin, Viktor; Olowinsky, Alexander; Britten, Simon W.; Engelmann, Christoph

    2014-03-01

    Within the plastic industry laser transmission welding ranks among the most important joining techniques and opens up new application areas continuously. So far, a big disadvantage of the process was the fact that the joining partners need different optical properties. Since thermoplastics are transparent for the radiation of conventional beam sources (800- 1100 nm) the absorbance of one of the joining partners has to be enhanced by adding an infrared absorber (IR-absorber). Until recently, welding of absorber-free parts has not been possible. New diode lasers provide a broad variety of wavelengths which allows exploiting intrinsic absorption bands of thermoplastics. The use of a proper wavelength in combination with special optics enables laser welding of two optically identical polymer parts without absorbers which can be utilized in a large number of applications primarily in the medical and food industry, where the use of absorbers usually entails costly and time-consuming authorization processes. In this paper some aspects of the process are considered as the influence of the focal position, which is crucial when both joining partners have equal optical properties. After a theoretical consideration, an evaluation is carried out based on welding trials with polycarbonate (PC). Further aspects such as gap bridging capability and the influence of thickness of the upper joining partner are investigated as well.

  3. 14 CFR 27.475 - Tires and shock absorbers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Tires and shock absorbers. 27.475 Section 27.475 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Strength Requirements Ground Loads § 27.475 Tires and shock absorbers. Unless otherwise prescribed...

  4. 21 CFR 878.4830 - Absorbable surgical gut suture.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Absorbable surgical gut suture. 878.4830 Section 878.4830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... surgical gut suture. (a) Identification. An absorbable surgical gut suture, both plain and chromic, is an...

  5. The Australian Commonwealth standard of measurement for absorbed radiation dose

    International Nuclear Information System (INIS)

    Sherlock, S.L.

    1990-06-01

    This report documents the absorbed dose standard for photon beams in the range from 1 to 25 MeV. Measurements of absorbed dose in graphite irradiated by a beam of cobalt-60 gamma rays from an Atomic Energy of Canada Limited (AECL) E1 Dorado 6 teletherapy unit are reported. The measurements were performed using a graphite calorimeter, which is the primary standard for absorbed dose. The measurements are used to calibrate a working standard ion chamber in terms of absorbed dose in graphite. Details of the methods, results and correction factors applied are given in Appendices. 13 refs., 6 tabs., 6 figs

  6. Tribology Aspect of Rubber Shock Absorbers Development

    Directory of Open Access Journals (Sweden)

    M. Banić

    2013-09-01

    Full Text Available Rubber is a very flexible material with many desirable properties Which enable its broad use in engineering practice. Rubber or rubber-metal springs are widely used as anti-vibration or anti-shock components in technical systems. Rubber-metal springs are usually realized as a bonded assembly, however especially in shock absorbers, it is possible to realize free contacts between rubber and metal parts. In previous research it authors was observed that friction between rubber and metal in such case have a significant influence on the damping characteristics of shock absorber. This paper analyzes the development process of rubber or rubber-metal shock absorbers realized free contacts between the constitutive parts, starting from the design, construction, testing and operation, with special emphasis on the development of rubber-metal springs for the buffing and draw gear of railway vehicles.

  7. Study on the millimeter-wave scale absorber based on the Salisbury screen

    Science.gov (United States)

    Yuan, Liming; Dai, Fei; Xu, Yonggang; Zhang, Yuan

    2018-03-01

    In order to solve the problem on the millimeter-wave scale absorber, the Salisbury screen absorber is employed and designed based on the RL. By optimizing parameters including the sheet resistance of the surface resistive layer, the permittivity and the thickness of the grounded dielectric layer, the RL of the Salisbury screen absorber could be identical with that of the theoretical scale absorber. An example is given to verify the effectiveness of the method, where the Salisbury screen absorber is designed by the proposed method and compared with the theoretical scale absorber. Meanwhile, plate models and tri-corner reflector (TCR) models are constructed according to the designed result and their scattering properties are simulated by FEKO. Results reveal that the deviation between the designed Salisbury screen absorber and the theoretical scale absorber falls within the tolerance of radar Cross section (RCS) measurement. The work in this paper has important theoretical and practical significance in electromagnetic measurement of large scale ratio.

  8. Comparative technical-economical analysis of solar systems with liquid absorbent

    International Nuclear Information System (INIS)

    Kaloyanov, N.; Popova, I.

    2005-01-01

    An analyses of solar water heating systems with two types liquid absorbent is presented. A system with classic collector design is used for comparison. The dependence between the value of the collectors active area and the absorbent type, collectors slope and design parameters is discussed. Two economic indexes (payback period and index of actual net value, based on the electricity price) are used for comparison of the different variants of the system. The presented results shown that: 1) the payback period can be reduced twice if the collectors with liquid absorbent are used; 2) the index of actual net value of the systems using the collectors with fluid absorbent is about four times higher than this one with classic collectors; 3) the systems using distilled water like a liquid absorbent can not fulfil the requirements for the positive economic indicators

  9. Air-Leak Effects on Ear-Canal Acoustic Absorbance

    Science.gov (United States)

    Rasetshwane, Daniel M.; Kopun, Judy G.; Gorga, Michael P.; Neely, Stephen T.

    2015-01-01

    Objective: Accurate ear-canal acoustic measurements, such as wideband acoustic admittance, absorbance, and otoacoustic emissions, require that the measurement probe be tightly sealed in the ear canal. Air leaks can compromise the validity of the measurements, interfere with calibrations, and increase variability. There are no established procedures for determining the presence of air leaks or criteria for what size leak would affect the accuracy of ear-canal acoustic measurements. The purpose of this study was to determine ways to quantify the effects of air leaks and to develop objective criteria to detect their presence. Design: Air leaks were simulated by modifying the foam tips that are used with the measurement probe through insertion of thin plastic tubing. To analyze the effect of air leaks, acoustic measurements were taken with both modified and unmodified foam tips in brass-tube cavities and human ear canals. Measurements were initially made in cavities to determine the range of critical leaks. Subsequently, data were collected in ears of 21 adults with normal hearing and normal middle-ear function. Four acoustic metrics were used for predicting the presence of air leaks and for quantifying these leaks: (1) low-frequency admittance phase (averaged over 0.1–0.2 kHz), (2) low-frequency absorbance, (3) the ratio of compliance volume to physical volume (CV/PV), and (4) the air-leak resonance frequency. The outcome variable in this analysis was the absorbance change (Δabsorbance), which was calculated in eight frequency bands. Results: The trends were similar for both the brass cavities and the ear canals. ΔAbsorbance generally increased with air-leak size and was largest for the lower frequency bands (0.1–0.2 and 0.2–0.5 kHz). Air-leak effects were observed in frequencies up to 10 kHz, but their effects above 1 kHz were unpredictable. These high-frequency air leaks were larger in brass cavities than in ear canals. Each of the four predictor variables

  10. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    Data.gov (United States)

    National Aeronautics and Space Administration — The primary goal is to build and test a rigid Lithium Chloride Absorber Radiator (LCAR) coupon based on honeycomb geometry that would be applicable for EVA and...

  11. A high absorbance material for solar collectors' applications

    International Nuclear Information System (INIS)

    Oliva, A I; Maldonado, R D; Díaz, E A; Montalvo, A I

    2013-01-01

    In this work, we proposed a low cost material to be used as an excellent absorber for solar collectors, to increase its thermal efficiency by the high capacity to absorb solar radiation. The material, known as 'smoke black' (soot) can be obtained by the incomplete combustion of organic materials, such as the oxygen-acetylene, paraffin, or candles. A comparative analysis between the optical properties (reflectance, absorbance, and emissivity) measured on three covered copper surfaces (without paint, with a commercial matte black paint, and with smoke black) shows amazing optical results for the smoke black. Reflectance values of the smoke black applied over copper surfaces improves 56 times the values obtained from commercial black paints. High values of emissivity (E=0.9988) were measured on the surface covered with smoke black by spectrophotometry in the UV-VIS range, which represents about 7% of increment as compared with the value obtained for commercial black paints (E=0.938). The proposed high absorbance material can be easily applied on any kind of surfaces at low cost.

  12. Absorbers in the Transactional Interpretation of Quantum Mechanics

    Science.gov (United States)

    Boisvert, Jean-Sébastien; Marchildon, Louis

    2013-03-01

    The transactional interpretation of quantum mechanics, following the time-symmetric formulation of electrodynamics, uses retarded and advanced solutions of the Schrödinger equation and its complex conjugate to understand quantum phenomena by means of transactions. A transaction occurs between an emitter and a specific absorber when the emitter has received advanced waves from all possible absorbers. Advanced causation always raises the specter of paradoxes, and it must be addressed carefully. In particular, different devices involving contingent absorbers or various types of interaction-free measurements have been proposed as threatening the original version of the transactional interpretation. These proposals will be analyzed by examining in each case the configuration of absorbers and, in the special case of the so-called quantum liar experiment, by carefully following the development of retarded and advanced waves through the Mach-Zehnder interferometer. We will show that there is no need to resort to the hierarchy of transactions that some have proposed, and will argue that the transactional interpretation is consistent with the block-universe picture of time.

  13. Development and testing of 140 GHz absorber coatings for the water baffle of W7-X cryopumps

    International Nuclear Information System (INIS)

    Floristan, Miriam; Mueller, Philipp; Gebhardt, Andreas; Killinger, Andreas; Gadow, Rainer; Cardella, Antonio; Li, Chuanfei; Stadler, Reinhold; Zangl, Guenter; Hirsch, Matthias; Laqua, Heinrich P.; Kasparek, Walter

    2011-01-01

    Due to the relatively high strayfield radiation (140 GHz) from the electron cyclotron radio frequency heating system to which the W7-X cryopumps are expected to be subjected, coating systems acting as an efficient absorber for 140 GHz radiation have been developed for the water-cooled baffle shield in order to reduce the thermal load on the liquid N shield and the liquid He cryopanel. Several types of oxide ceramic coatings were applied on planar copper substrates by Atmospheric Plasma Spraying. The influence of the process parameters on the coating properties and microwave absorbing capability was analysed. It was found that film thickness and microstructure of the sprayed coatings have a significant influence on microwave absorption behaviour. For Al 2 O 3 /TiO 2 coatings, absorption values over 90% were obtained for the 140 GHz probing beam. After optimisation of the coating structure for maximum microwave absorption, the coating procedure was adapted by special robot trajectories to the complex water baffle geometry. The selected spray parameters and kinematics were then used for the complete coating of four mock-ups, which have been tested in the W7-X strayfield test facility Mistral. The mock-ups showed absorption values of 75%.

  14. Development and testing of 140 GHz absorber coatings for the water baffle of W7-X cryopumps

    Energy Technology Data Exchange (ETDEWEB)

    Floristan, Miriam, E-mail: miriam.floristan@gsame.uni-stuttgart.de [Graduate School for advanced Manufacturing Engineering (GSaME), Universitaet Stuttgart (Germany); Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), Universitaet Stuttgart, Allmandring 7 b, D-70569 Stuttgart (Germany); Mueller, Philipp; Gebhardt, Andreas; Killinger, Andreas; Gadow, Rainer [Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), Universitaet Stuttgart, Allmandring 7 b, D-70569 Stuttgart (Germany); Cardella, Antonio [European Commission c/o Wendelstein 7X, Boltzmannstasse 2, D-85748 Garching (Germany); Li, Chuanfei; Stadler, Reinhold; Zangl, Guenter; Hirsch, Matthias; Laqua, Heinrich P. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Assoc., Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Kasparek, Walter [Institut fuer Plasmaforschung, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany)

    2011-10-15

    Due to the relatively high strayfield radiation (140 GHz) from the electron cyclotron radio frequency heating system to which the W7-X cryopumps are expected to be subjected, coating systems acting as an efficient absorber for 140 GHz radiation have been developed for the water-cooled baffle shield in order to reduce the thermal load on the liquid N shield and the liquid He cryopanel. Several types of oxide ceramic coatings were applied on planar copper substrates by Atmospheric Plasma Spraying. The influence of the process parameters on the coating properties and microwave absorbing capability was analysed. It was found that film thickness and microstructure of the sprayed coatings have a significant influence on microwave absorption behaviour. For Al{sub 2}O{sub 3}/TiO{sub 2} coatings, absorption values over 90% were obtained for the 140 GHz probing beam. After optimisation of the coating structure for maximum microwave absorption, the coating procedure was adapted by special robot trajectories to the complex water baffle geometry. The selected spray parameters and kinematics were then used for the complete coating of four mock-ups, which have been tested in the W7-X strayfield test facility Mistral. The mock-ups showed absorption values of 75%.

  15. Advances in absorbed dose measurement standards at the australian radiation laboratory

    International Nuclear Information System (INIS)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N.

    1996-01-01

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within ± 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry

  16. Advances in absorbed dose measurement standards at the australian radiation laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boas, J.F.; Hargrave, N.J.; Huntley, R.B.; Kotler, L.H.; Webb, D.V.; Wise, K.N. [Australian Radiation Laboratory, Yallambie, VIC (Australia)

    1996-12-31

    The applications of ionising radiation in the medical and industrial fields require both an accurate knowledge of the amount of ionising radiation absorbed by the medium in question and the capability of relating this to National and International standards. The most useful measure of the amount of radiation is the absorbed dose which is defined as the energy absorbed per unit mass. For radiotherapy, the reference medium is water, even though the measurement of the absorbed dose to water is not straightforward. Two methods are commonly used to provide calibrations in absorbed dose to water. The first is the calibration of the chamber in terms of exposure in a Cobalt-60 beam, followed by the conversion by a protocol into dose to water in this and higher energy beams. The other route is via the use of a graphite calorimeter as a primary standard device, where the conversion from absorbed dose to graphite to absorbed dose in water is performed either by theoretical means making use of cavity ionisation theory, or by experiment where the graphite calorimeter and secondary standard ionisation chamber are placed at scaled distances from the source of the radiation beam (known as the Dose-Ratio method). Extensive measurements have been made at Cobalt-60 at ARL using both the exposure and absorbed dose to graphite routes. Agreement between the ARL measurements and those based on standards maintained by ANSTO and NPL is within {+-} 0.3%. Absorbed dose measurements have also been performed at ARL with photon beams of nominal energy 16 and 19 MeV obtained from the ARL linac. The validity of the protocols at high photon energies, the validity of the methods used to convert from absorbed dose in graphite to absorbed dose in water and the validity of the indices used to specify the beams are discussed. Brief mention will also be made of the establishment of a calibration facility for neutron monitors at ARL and of progress in the development of ERP dosimetry.

  17. Efficacy and Safety of the Absorb Everolimus-Eluting Bioresorbable Scaffold for Treatment of Patients With Diabetes Mellitus: Results of the Absorb Diabetic Substudy.

    Science.gov (United States)

    Kereiakes, Dean J; Ellis, Stephen G; Kimura, Takeshi; Abizaid, Alexandre; Zhao, Weiying; Veldhof, Susan; Vu, Minh-Thien; Zhang, Zhen; Onuma, Yoshinobu; Chevalier, Bernard; Serruys, Patrick W; Stone, Gregg W

    2017-01-09

    The study sought to evaluate the efficacy and safety of the Absorb everolimus-eluting bioresorbable vascular scaffold (BVS) (Abbott Vascular, Abbott Park, Illinois) in patients with diabetes mellitus. Randomized, controlled trials have demonstrated comparable clinical outcomes following percutaneous coronary intervention with either Absorb BVS or metallic Xience everolimus-eluting stent. However, these trials lack power required to provide reliable treatment effect estimates in this high-risk population. In a pre-specified, powered analysis, patients with diabetes who received ≥1 Absorb were pooled from the ABSORB II, III, and JAPAN randomized trials and from the single arm ABSORB EXTEND registry. The study composite primary endpoint was target lesion failure (TLF) at 1 year following Absorb BVS compared with a performance goal of 12.7%. Among 754 diabetic patients included in analysis (27.3% insulin treated), the 1-year TLF rate was 8.3% (upper 1-sided 95% confidence limit: 10.1%; p = 0.0001 vs. performance goal). Scaffold thrombosis (definite or probable) was observed in 2.3% of patients. Multivariable regression identified older age, insulin treatment, and smaller pre-procedure reference vessel diameter as significant independent predictors of 1-year TLF. The Absorb diabetic substudy suggests efficacy and safety of the Absorb BVS for treatment of patients with diabetes mellitus. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  18. Phase Space Exchange in Thick Wedge Absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-01-01

    The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such “thick wedge” cases are presented, and beam phase-space transformations through such wedges are discussed.

  19. Insight into magnetorheological shock absorbers

    CERN Document Server

    Gołdasz, Janusz

    2015-01-01

    This book deals with magnetorheological fluid theory, modeling and applications of automotive magnetorheological dampers. On the theoretical side a review of MR fluid compositions and key factors affecting the characteristics of these fluids is followed by a description of existing applications in the area of vibration isolation and flow-mode shock absorbers in particular. As a majority of existing magnetorheological devices operates in a so-called flow mode a critical review is carried out in that regard. Specifically, the authors highlight common configurations of flow-mode magnetorheological shock absorbers, or so-called MR dampers that have been considered by the automotive industry for controlled chassis applications. The authors focus on single-tube dampers utilizing a piston assembly with one coil or multiple coils and at least one annular flow channel in the piston.

  20. Quantum walk with one variable absorbing boundary

    International Nuclear Information System (INIS)

    Wang, Feiran; Zhang, Pei; Wang, Yunlong; Liu, Ruifeng; Gao, Hong; Li, Fuli

    2017-01-01

    Quantum walks constitute a promising ingredient in the research on quantum algorithms; consequently, exploring different types of quantum walks is of great significance for quantum information and quantum computation. In this study, we investigate the progress of quantum walks with a variable absorbing boundary and provide an analytical solution for the escape probability (the probability of a walker that is not absorbed by the boundary). We simulate the behavior of escape probability under different conditions, including the reflection coefficient, boundary location, and initial state. Moreover, it is also meaningful to extend our research to the situation of continuous-time and high-dimensional quantum walks. - Highlights: • A novel scheme about quantum walk with variable boundary is proposed. • The analytical results of the survival probability from the absorbing boundary. • The behavior of survival probability under different boundary conditions. • The influence of different initial coin states on the survival probability.

  1. YIG based broad band microwave absorber: A perspective on synthesis methods

    Science.gov (United States)

    Sharma, Vinay; Saha, J.; Patnaik, S.; Kuanr, Bijoy K.

    2017-10-01

    The fabrication of a thin layer of microwave absorber that operates over a wide band of frequencies is still a challenging task. With recent advances in nanostructure synthesis techniques, considerable progress has been achieved in realizations of thin nanocomposite layer designed for full absorption of incident electromagnetic (EM) radiation covering S to K band frequencies. The primary objective of this investigation is to achieve best possible EM absorption with a wide bandwidth and attenuation >10 dB for a thin absorbing layer (few hundred of microns). Magnetic yttrium iron garnet (Y3Fe5O12; in short YIG) nanoparticles (NPs) were prepared by sol-gel (SG) as well as solid-state (SS) reaction methods to elucidate the effects of nanoscale finite size on the magnetic behavior of the particles and hence their microwave absorption capabilities. It is found that YIG prepared by these two methods are different in many ways. Magnetic properties investigated using vibrating sample magnetometry (VSM) exhibit that the coercivity (Hc) of solid-state NPs is much larger (72 Oe) than the sol-gel NPs (31 Oe). Microwave absorption properties were studied by ferromagnetic resonance (FMR) technique in field sweep mode at different fixed frequencies. A thin layer (∼300 μm) of YIG film was deposited using electrophoretic deposition (EPD) technique over a coplanar waveguide (CPW) transmission line made on copper coated RT/duroid® 5880 substrates. Temperature dependent magnetic properties were also investigated using VSM and FMR techniques. Microwave absorption properties were investigated at high temperatures (up to 300 °C) both for sol-gel and solid-state synthesized NPs and are related to skin depth of YIG films. It is observed that microwave absorption almost vanishes when the temperature reached the Néel temperature of YIG.

  2. Absorber rod driving into a gas-cooled nuclear reactor

    International Nuclear Information System (INIS)

    Elter, C.; Schmitt, H.; Schoening, J.

    1987-01-01

    The absorber rod consists of a hollow cylinder which has a layer of absorber material applied on its inside circumferential surface. The absorber rod is held via a guide sleeve, which is supported centrally in a hole in the side reflector. The guidance within the sleeve is provided by flanges on the hollow cylinder. The movement of the hollow cylinder is carried out hydraulically or pneumatically. A flow of cooling gas is used for cooling, which is passed through the inner central areas of the hollow cylinder and the guide sleeve. (DG) [de

  3. Convection-type LH2 absorber R and D for muon ionization cooling

    International Nuclear Information System (INIS)

    Ishimoto, S.; Bandura, L.; Black, E.L.; Boghosian, M.; Cassel, K.W.; Cummings, M.A.; Darve, C.; Dyshkant, A.; Errede, D.; Geer, S.; Haney, M.; Hedin, D.; Johnson, R.; Johnstone, C.J.; Kaplan, D.M.; Kubik, D.; Kuno, Y.; Majewski, S.; Popovic, M.; Reep, M.; Summers, D.; Suzuki, S.; Yoshimura, K.

    2003-01-01

    A feasibility study on liquid hydrogen (LH 2 ) absorbers for muon ionization cooling is reported. In muon ionization cooling, an LH 2 absorber is required to have a high cooling power greater than 100 W to cool heat deposited by muons passing through. That heat in LH 2 can be removed at either external or internal heat exchangers, which are cooled by cold helium gas. As one of the internal heat exchanger types, a convection-type absorber is proposed. In the convection-type absorber, heat is taken away by the convection of LH 2 in the absorber. The heat exchanger efficiency for the convection-type absorber is calculated. A possible design is presented

  4. Design and analysis of lumped resistor loaded metamaterial absorber with transmission band.

    Science.gov (United States)

    Chen, Xi; Li, Youquan; Fu, Yunqi; Yuan, Naichang

    2012-12-17

    A new type of multi-layer metamaterial (MM) absorber is represented in this paper, which behave as a dielectric slab in transmission band and act as an absorber in another lower band. The equivalent circuit model of each layer in this MM absorber has been established. The transmission line (TL) model is introduced to analysis the mechanism of electromagnetic wave traveling through this MM absorber. Both theoretical and experimental results indicate this MM absorber has a transmission band at 21GHz and an absorptive band from 5GHz to 13GHz. A good match of TL model results and measurement results verified the validity of TL model in analyzing and optimizing the performances of this kind of absorber.

  5. Plasmonic properties of gold nanoparticles on silicon substrates: Understanding Fano-like spectra observed in reflection

    Science.gov (United States)

    Bossard-Giannesini, Léo; Cruguel, Hervé; Lacaze, Emmanuelle; Pluchery, Olivier

    2016-09-01

    Gold nanoparticles (AuNPs) are known for their localized surface plasmon resonance (LSPR) that can be measured with UV-visible spectroscopy. AuNPs are often deposited on silicon substrates for various applications, and the LSPR is measured in reflection. In this case, optical spectra are measured by surface differential reflectance spectroscopy (SDRS) and the absorbance exhibits a negative peak. This article studies both experimentally and theoretically on the single layers of 16 nm diameter spherical gold nanoparticles (AuNPs) grafted on silicon. The morphology and surface density of AuNPs were investigated by atomic force microscopy (AFM). The plasmon response in transmission on the glass substrate and in reflection on the silicon substrate is described by an analytical model based on the Fresnel equations and the Maxwell-Garnett effective medium theory (FMG). The FMG model shows a strong dependence to the incidence angle of the light. At low incident angles, the peak appears negatively with a shallow intensity, and at angles above 30°, the usual positive shape of the plasmon is retrieved. The relevance of the FMG model is compared to the Mie theory within the dipolar approximation. We conclude that no Fano effect is responsible for this derivative shape. An easy-to-use formula is derived that agrees with our experimental data.

  6. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.

    Science.gov (United States)

    Zhou, Lin; Tan, Yingling; Ji, Dengxin; Zhu, Bin; Zhang, Pei; Xu, Jun; Gan, Qiaoqiang; Yu, Zongfu; Zhu, Jia

    2016-04-01

    The study of ideal absorbers, which can efficiently absorb light over a broad range of wavelengths, is of fundamental importance, as well as critical for many applications from solar steam generation and thermophotovoltaics to light/thermal detectors. As a result of recent advances in plasmonics, plasmonic absorbers have attracted a lot of attention. However, the performance and scalability of these absorbers, predominantly fabricated by the top-down approach, need to be further improved to enable widespread applications. We report a plasmonic absorber which can enable an average measured absorbance of ~99% across the wavelengths from 400 nm to 10 μm, the most efficient and broadband plasmonic absorber reported to date. The absorber is fabricated through self-assembly of metallic nanoparticles onto a nanoporous template by a one-step deposition process. Because of its efficient light absorption, strong field enhancement, and porous structures, which together enable not only efficient solar absorption but also significant local heating and continuous stream flow, plasmonic absorber-based solar steam generation has over 90% efficiency under solar irradiation of only 4-sun intensity (4 kW m(-2)). The pronounced light absorption effect coupled with the high-throughput self-assembly process could lead toward large-scale manufacturing of other nanophotonic structures and devices.

  7. A biomimetic absorbent for removal of trace level persistent organic pollutants from water

    International Nuclear Information System (INIS)

    Liu Huijuan; Qu Jiuhui; Dai Ruihua; Ru Jia; Wang Zijian

    2007-01-01

    A novel biomimetic absorbent containing the lipid triolein was developed for removing persistent organic pollutants (POPs) from water. The structural characteristics of the absorbent were obtained by SEM and a photoluminescence method. Under optimum preparation conditions, triolein was perfectly embedded in the cellulose acetate (CA) spheres, the absorbent was stable and no triolein leaked into the water. Dieldrin, endrin, aldrin and heptachlor epoxide were effectively removed by the CA-triolein absorbent in laboratory batch experiments. This suggests that CA-triolein absorbent may serve as a good absorbent for those selected POPs. Triolein in the absorbent significantly increased the absorption capacity, and lower residual concentrations of POPs were achieved when compared to the use of cellulose acetate absorbent. The absorption rate for lipophilic pollutants was very fast and exhibited some relationship with the octanol-water partition coefficient of the analyte. The absorption mechanism is discussed in detail. - Triolein-embedded absorbent was developed and it could remove lipophilic pollutants from water effectively

  8. Thermal expansion absorbing structure for pipeline

    International Nuclear Information System (INIS)

    Nagata, Takashi; Yamashita, Takuya.

    1995-01-01

    A thermal expansion absorbing structure for a pipeline is disposed to the end of pipelines to form a U-shaped cross section connecting a semi-circular torus shell and a short double-walled cylindrical tube. The U-shaped longitudinal cross-section is deformed in accordance with the shrinking deformation of the pipeline and absorbs thermal expansion. Namely, since the central lines of the outer and inner tubes of the double-walled cylindrical tube deform so as to incline, when the pipeline is deformed by thermal expansion, thermal expansion can be absorbed by a simple configuration thereby enabling to contribute to ensure the safety. Then, the entire length of the pipeline can greatly be shortened by applying it to the pipeline disposed in a high temperature state compared with a method of laying around a pipeline using only elbows, which has been conducted so far. Especially, when it is applied to a pipeline for an FBR-type reactor, the cost for the construction of a facility of a primary systems can greater be reduced. In addition, it can be applied to a pipeline for usual chemical plants and any other structures requiring absorption of deformation. (N.H.)

  9. Fast neutron radiation inactivation of Bacillus subtilis: Absorbed dose determination

    International Nuclear Information System (INIS)

    Song Lingli; Zheng Chun; Ai Zihui; Li Junjie; Dai Shaofeng

    2011-01-01

    In this paper, fast neutron inactivation effects of Bacillus subtilis were investigated with fission fast neutrons from CFBR-II reactor of INPC (Institute of Nuclear Physics and Chemistry) and mono-energetic neutrons from the Van de Graaff accelerator at Peking University. The method for determining the absorbed dose in the Bacillus subtilis suspension contained in test tubes is introduced. The absorbed dose, on account of its dependence on the volume and the form of confined state, was determined by combined experiments and Monte Carlo method. Using the calculation results of absorbed dose, the fast neutron inactivation effects on Bacillus subtilis were studied. The survival rates and absorbed dose curve was constructed. (authors)

  10. Low fluid level in pulse rod shock absorber

    Energy Technology Data Exchange (ETDEWEB)

    Aderhold, H. C.

    1974-07-01

    On various occasions during pulse mode operation the shim and regulating control rods would drop when the pulse rod was withdrawn. Subsequent investigation traced the problem to the pulse rod shock absorber which was found to be low in hydraulic fluid. The results of the investigation, the corrective action taken, and a method for measuring the shock absorber fluid level are presented. (author)

  11. Low fluid level in pulse rod shock absorber

    International Nuclear Information System (INIS)

    Aderhold, H.C.

    1974-01-01

    On various occasions during pulse mode operation the shim and regulating control rods would drop when the pulse rod was withdrawn. Subsequent investigation traced the problem to the pulse rod shock absorber which was found to be low in hydraulic fluid. The results of the investigation, the corrective action taken, and a method for measuring the shock absorber fluid level are presented. (author)

  12. Reflection and Refraction of Light in Absorbing Media

    Science.gov (United States)

    Katsumata, Koichi; Sasaki, Shosuke

    2018-05-01

    The results of a rigorous calculation of optical phenomena in absorbing media based on Maxwell's equations are reported. In the case of an absorbing dielectric, we assume a complex dielectric constant. We find an expression for the angle of refraction as a function of the incident angle and the real and imaginary parts of the complex dielectric constant, all of which are real. The amplitudes of the reflected and transmitted waves are calculated on the same footing. These amplitudes are shown to be complex, from which we deduce the magnitude and phase change of the reflection and transmission coefficients. The same argument applies to an absorbing magnetic material if we replace the complex dielectric constant by a complex magnetic permeability.

  13. Analysis of buffering process of control rod hydraulic absorber

    International Nuclear Information System (INIS)

    Bao Jishi; Qin Benke; Bo Hanliang

    2011-01-01

    Control Rod Hydraulic Drive Mechanism(CRHDM) is a newly invented build-in control rod drive mechanism. Hydraulic absorber is the key part of this mechanism, and is used to cushion the control rod when the rod scrams. Thus, it prevents the control rod from being deformed and damaged. In this paper dynamics program ANSYS CFX is used to calculate all kinds of flow conditions in hydraulic absorber to obtain its hydraulic characteristics. Based on the flow resistance coefficients obtained from the simulation results, fluid mass and momentum equations were developed to get the trend of pressure change in the hydraulic cylinder and the displacement of the piston rod during the buffering process of the control rod. The results obtained in this paper indicate that the hydraulic absorber meets the design requirement. The work in this paper will be helpful for the design and optimization of the control rod hydraulic absorber. (author)

  14. Recent developments of smart electromagnetic absorbers based polymer-composites at gigahertz frequencies

    International Nuclear Information System (INIS)

    Idris, Fadzidah Mohd.; Hashim, Mansor; Abbas, Zulkifly; Ismail, Ismayadi; Nazlan, Rodziah; Ibrahim, Idza Riati

    2016-01-01

    The rapid increase in electromagnetic interference has received a serious attention from researchers who responded by producing a variety of radar absorbing materials especially at high gigahertz frequencies. Ongoing investigation is being carried out in order to find the best absorbing materials which can fulfill the requirements for smart absorbing materials which are lightweight, broad bandwidth absorption, stronger absorption etc. Thus, to improve the absorbing capability, several important parameters need to be taken into consideration such as filler type, loading level, type of polymer matrix, physical thickness, grain sizes, layers and bandwidth. Therefore, this article introduces the electromagnetic wave absorption mechanisms and then reveals and reviews those parameters that enhance the absorption performance. - Highlights: • Development variety of radar absorbing materials especially at high gigahertz frequencies. • Best absorbing materials which can fulfill the requirements for smart absorbing materials which are lightweight, broad bandwidth absorption, stronger absorption etc. • Important parameters need to be taken into consideration to obtain stronger absorption and better performances.

  15. Neutron absorbing article and method for manufacture of such article

    International Nuclear Information System (INIS)

    Hortman, M.T.; Mcmurtry, C.H.; Naum, R.G.; Owens, D.P.

    1980-01-01

    A neutron absorbing article, preferably in long, thin, flat form , suitable for but not necessarily limited to use in storage racks for spent nuclear fuel at locations between volumes of such stored fuel, to absorb neutrons from said spent fuel and prevent uncontrolled nuclear reaction of the spent fuel material, is composed of finely divided boron carbide particles and a solid, irreversibly cured phenolic polymer, forming a continuous matrix about the boron carbide particles, in such proportions that at least 6% of b10 from the boron carbide content is present therein. The described articles withstand thermal cycling from repeated spent fuel insertions and removals, withstand radiation from said spent nuclear fuel over long periods of time without losing desirable neutron absorbing and physical properties, are sufficiently chemically inert to water so as to retain neutron absorbing properties if brought into contact with it, are not galvanically corrodible and are sufficiently flexible so as to withstand operational basis earthquake and safe shutdown earthquake seismic events, without loss of neutron absorbing capability and other desirable properties, when installed in storage racks for spent nuclear fuel. The disclosure also relates to a plurality of such neutron absorbing articles in a storage rack for spent nuclear fuel and to a method for the manufacture of the articles

  16. Neutron absorbed dose in a pacemaker CMOS

    International Nuclear Information System (INIS)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R.; Paredes G, L.

    2012-01-01

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10 -17 Gy per neutron emitted by the source. (Author)

  17. Neutron absorbed dose in a pacemaker CMOS

    Energy Technology Data Exchange (ETDEWEB)

    Borja H, C. G.; Guzman G, K. A.; Valero L, C.; Banuelos F, A.; Hernandez D, V. M.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Paredes G, L., E-mail: fermineutron@yahoo.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-06-15

    The neutron spectrum and the absorbed dose in a Complementary Metal Oxide Semiconductor (CMOS), has been estimated using Monte Carlo methods. Eventually a person with a pacemaker becomes an oncology patient that must be treated in a linear accelerator. Pacemaker has integrated circuits as CMOS that are sensitive to intense and pulsed radiation fields. Above 7 MV therapeutic beam is contaminated with photoneutrons that could damage the CMOS. Here, the neutron spectrum and the absorbed dose in a CMOS cell was calculated, also the spectra were calculated in two point-like detectors in the room. Neutron spectrum in the CMOS cell shows a small peak between 0.1 to 1 MeV and a larger peak in the thermal region, joined by epithermal neutrons, same features were observed in the point-like detectors. The absorbed dose in the CMOS was 1.522 x 10{sup -17} Gy per neutron emitted by the source. (Author)

  18. Aluminum alloy excellent in neutron absorbing performance

    International Nuclear Information System (INIS)

    Iida, Tetsuya; Tamamura, Tadao; Morimoto, Hiroyuki; Ouchi, Ken-ichiro.

    1987-01-01

    Purpose: To obtain structural materials made of aluminum alloys having favorable neutron absorbing performance and excellent in the performance as structural materials such as processability and strength. Constitution: Powder of Gd 2 O 3 as a gadolinium compound or metal gadolinium is uniformly mixed with the powder of aluminum or aluminum alloy. The amount of the gadolinium compound added is set to 0.1 - 30 % by weight. No sufficient neutron absorbing performance can be obtained if it is less than 0.1 % by weight, whereas the processability and mechanical property of the alloy are degraded if it exceeds 30 % by weight. Further, the grain size is set to less about 50 μm. Further, since the neutron absorbing performance varies greatly if the aluminum powder size exceeds 100 μm, the diameter is set to less than about 100 μm. These mixtures are molded in a hot press. This enables to obtain aimed structural materials. (Takahashi, M.)

  19. Integration of regenerative shock absorber into vehicle electric system

    Science.gov (United States)

    Zhang, Chongxiao; Li, Peng; Xing, Shaoxu; Kim, Junyoung; Yu, Liangyao; Zuo, Lei

    2014-03-01

    Regenerative/Energy harvesting shock absorbers have a great potential to increase fuel efficiency and provide suspension damping simultaneously. In recent years there's intensive work on this topic, but most researches focus on electricity extraction from vibration and harvesting efficiency improvement. The integration of electricity generated from regenerative shock absorbers into vehicle electric system, which is very important to realize the fuel efficiency benefit, has not been investigated. This paper is to study and demonstrate the integration of regenerative shock absorber with vehicle alternator, battery and in-vehicle electrical load together. In the presented system, the shock absorber is excited by a shaker and it converts kinetic energy into electricity. The harvested electricity flows into a DC/DC converter which realizes two functions: controlling the shock absorber's damping and regulating the output voltage. The damping is tuned by controlling shock absorber's output current, which is also the input current of DC/DC converter. By adjusting the duty cycles of switches in the converter, its input impedance together with input current can be adjusted according to dynamic damping requirements. An automotive lead-acid battery is charged by the DC/DC converter's output. To simulate the working condition of combustion engine, an AC motor is used to drive a truck alternator, which also charges the battery. Power resistors are used as battery's electrical load to simulate in-vehicle electrical devices. Experimental results show that the proposed integration strategy can effectively utilize the harvested electricity and power consumption of the AC motor is decreased accordingly. This proves the combustion engine's load reduction and fuel efficiency improvement.

  20. Analysis of solar water heater with parabolic dish concentrator and conical absorber

    Science.gov (United States)

    Rajamohan, G.; Kumar, P.; Anwar, M.; Mohanraj, T.

    2017-06-01

    This research focuses on developing novel technique for a solar water heating system. The novel solar system comprises a parabolic dish concentrator, conical absorber and water heater. In this system, the conical absorber tube directly absorbs solar radiation from the sun and the parabolic dish concentrator reflects the solar radiations towards the conical absorber tube from all directions, therefore both radiations would significantly improve the thermal collector efficiency. The working fluid water is stored at the bottom of the absorber tubes. The absorber tubes get heated and increases the temperature of the working fluid inside of the absorber tube and causes the working fluid to partially evaporate. The partially vaporized working fluid moves in the upward direction due to buoyancy effect and enters the heat exchanger. When fresh water passes through the heat exchanger, temperature of the vapour decreases through heat exchange. This leads to condensation of the vapour and forms liquid phase. The working fluid returns to the bottom of the collector absorber tube by gravity. Hence, this will continue as a cyclic process inside the system. The proposed investigation shows an improvement of collector efficiency, enhanced heat transfer and a quality water heating system.

  1. Pre-steady-state kinetics of Escherichia coli aspartate aminotransferase catalyzed reactions and thermodynamic aspects of its substrate specificity

    International Nuclear Information System (INIS)

    Kuramitsu, Seiki; Hiromi, Keitaro; Hayashi, Hideyuki; Morino, Yoshimasa; Kagamiyama, Hiroyuki

    1990-01-01

    The four half-transamination reactions [the pyridoxal form of Escherichia coli aspartate aminotransferase (AspAT) with aspartate or glutamate and the pyridoxamine form of the enzyme with oxalacetate or 2-oxoglutarate] were followed in a stopped-flow spectrometer by monitoring the absorbance change at either 333 or 358 nm. The reaction progress curves in all cases gave fits to a monophasic exponential process. Kinetic analyses of these reactions showed that each half-reaction is composed of the following three processes: (1) the rapid binding of an amino acid substrate to the pyridoxal form of the enzyme; (2) the rapid binding of the corresponding keto acid to the pyridoxamine form of the enzyme; (3) the rate-determining interconversion between the two complexes. This mechanism was supported by the findings that the equilibrium constants for half- and overall-transamination reactions and the steady-state kinetic constants agreed well with the predicted values on the basis of the above mechanism using pre-steady-state kinetic parameters. The significant primary kinetic isotope effect observed in the reaction with deuterated amino acid suggests that the withdrawal of the α-proton of the substrates is rate determining. The pyridoxal form of E. coli AspAT reacted with a variety of amino acids as substrates. The substrate specificity of the E. coli enzyme was much broader than that of pig isoenzymes, reflecting some subtle but distinct difference in microenvironment accommodating the side chain of the substrate between e. coli and mammalian AspATs

  2. Digital Alloy Absorber for Photodetectors

    Science.gov (United States)

    Hill, Cory J. (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2016-01-01

    In order to increase the spectral response range and improve the mobility of the photo-generated carriers (e.g. in an nBn photodetector), a digital alloy absorber may be employed by embedding one (or fraction thereof) to several monolayers of a semiconductor material (insert layers) periodically into a different host semiconductor material of the absorber layer. The semiconductor material of the insert layer and the host semiconductor materials may have lattice constants that are substantially mismatched. For example, this may performed by periodically embedding monolayers of InSb into an InAsSb host as the absorption region to extend the cutoff wavelength of InAsSb photodetectors, such as InAsSb based nBn devices. The described technique allows for simultaneous control of alloy composition and net strain, which are both key parameters for the photodetector operation.

  3. Design of absorber assemblies with intentional pellet-cladding mechanical interaction

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Birney, K.R.; Pitner, A.L.; Basmajian, J.A.

    1980-04-01

    A number of improvements in absorber assembly performance characteristics can be achieved through implementation of absorber cladding mechanical interaction (ACMI). Benefits include lower operating temperatures, less potential for material relocation, longer lifetime, and increased reactivity worth. Analyses indicate that substantial cladding strains may be attainable without significant risk of breach. However, actual in-reactor testing of ACMI in absorber elements will be required before design criteria can be revised to accept ACMI

  4. Transmission line model and fields analysis of metamaterial absorber in the terahertz band.

    Science.gov (United States)

    Wen, Qi-Ye; Xie, Yun-Song; Zhang, Huai-Wu; Yang, Qing-Hui; Li, Yuan-Xun; Liu, Ying-Li

    2009-10-26

    Metamaterial (MM) absorber is a novel device to provide near-unity absorption to electromagnetic wave, which is especially important in the terahertz (THz) band. However, the principal physics of MM absorber is still far from being understood. In this work, a transmission line (TL) model for MM absorber was proposed, and with this model the S-parameters, energy consumption, and the power loss density of the absorber were calculated. By this TL model, the asymmetric phenomenon of THz absorption in MM absorber is unambiguously demonstrated, and it clarifies that strong absorption of this absorber under studied is mainly related to the LC resonance of the split-ring-resonator structure. The distribution of power loss density in the absorber indicates that the electromagnetic wave is firstly concentrated into some specific locations of the absorber and then be strongly consumed. This feature as electromagnetic wave trapper renders MM absorber a potential energy converter. Based on TL model, some design strategies to widen the absorption band were also proposed for the purposes to extend its application areas.

  5. Conceptual basis for calculations of absorbed-dose distributions

    International Nuclear Information System (INIS)

    Sinclair, W.K.; Rossi, H.H.; Alsmiller, R.G.; Berger, M.J.; Kellerer, A.M.; Roesch, W.C.; Spencer, L.V.; Zaider, M.A.

    1991-01-01

    The effects of radiation on matter are initiated by processes in which atoms and molecules of the medium are ionized or excited. Over a wide range of conditions, it is an excellent approximation to assume that the average number of ionizations and excitations is proportional to the amount of energy imparted to the medium by ionizing radiation in the volume of interest. The absorbed dose, that is, the average amount of energy imparted to the medium per unit mass, is therefore of central importance for the production of radiation effects, and the calculation of absorbed-dose distributions in irradiated media is the focus of interest of the present report. It should be pointed out, however, that even though absorbed dose is useful as an index relating absorbed energy to radiation effects, it is almost never sufficient; it may have to be supplemented by other information, such as the distributions of the amounts of energy imparted to small sites, the correlation of the amounts of energy imparted to adjacent sites, and so on. Such quantities are termed stochastic quantities. Unless otherwise stated, all quantities considered in this report are non-stochastic. 266 refs., 11 figs., 2 tabs

  6. Energy Analysis of Solar Collector With perforated Absorber Plate

    Directory of Open Access Journals (Sweden)

    Ammar A. Farhan

    2017-09-01

    Full Text Available The thermal performance of three solar collectors with 3, 6 mm and without perforation absorber plate was assessed experimentally. The experimental tests were implemented in Baghdad during the January and February 2017. Five values of airflow rates range between 0.01 – 0.1 m3/s were used through the test with a constant airflow rate during the test day. The variation of the following parameters air temperature difference, useful energy, absorber plate temperature, and collector efficiency was recorded every 15 minutes. The experimental data reports that the increases the number of absorber plate perforations with a small diameter is more efficient rather than increasing the hole diameter of the absorber plate with decreasing the perforation numbers. Maximum air temperature difference throughout the solar collector with 3, 6 mm perforations and without perforations are 17, 15, and 12 oC, respectively. Also, it can be concluded that the energy gained from the solar collector with 3 mm perforation absorber plate is 28.2 % more than the energy gained from solar collector without holes per day for 0.1 m3/s airflow rate. The maximum values of the thermal performance curves are 0.67, 0.64, and 0.56 for the solar collector with 3, 6 mm, and without perforations, respectively.

  7. Parameter optimization method for longitudinal vibration absorber of ship shaft system

    Directory of Open Access Journals (Sweden)

    LIU Jinlin

    2017-05-01

    Full Text Available The longitudinal vibration of the ship shaft system is the one of the most important factors of hull stern vibration, and it can be effectively minimized by installing a longitudinal vibration absorber. In this way, the vibration and noise of ships can be brought under control. However, the parameters of longitudinal vibration absorbers have a great influence on the vibration characteristics of the shaft system. As such, a certain shafting testing platform was studied as the object on which a finite model was built, and the relationship between longitudinal stiffness and longitudinal vibration in the shaft system was analyzed in a straight alignment state. Furthermore, a longitudinal damping model of the shaft system was built in which the parameters of the vibration absorber were non-dimensionalized, the weight of the vibration absorber was set as a constant, and an optimizing algorithm was used to calculate the optimized stiffness and damping coefficient of the vibration absorber. Finally, the longitudinal vibration frequency response of the shafting testing platform before and after optimizing the parameters of the longitudinal vibration absorber were compared, and the results indicated that the longitudinal vibration of the shafting testing platform was decreased effectively, which suggests that it could provide a theoretical foundation for the parameter optimization of longitudinal vibration absorbers.

  8. Treatability study of absorbent polymer waste form for mixed waste treatment

    International Nuclear Information System (INIS)

    Herrmann, S. D.; Lehto, M. A.; Stewart, N. A.; Croft, A. D.; Kern, P. W.

    2000-01-01

    A treatability study was performed to develop and characterize an absorbent polymer waste form for application to low level (LLW) and mixed low level (MLLW) aqueous wastes at Argonne National Laboratory-West (ANL-W). In this study absorbent polymers proved effective at immobilizing aqueous liquid wastes in order to meet Land Disposal Restrictions for subsurface waste disposal. Treatment of aqueous waste with absorbent polymers provides an alternative to liquid waste solidification via high-shear mixing with clays and cements. Significant advantages of absorbent polymer use over clays and cements include ease of operations and waste volume minimization. Absorbent polymers do not require high-shear mixing as do clays and cements. Granulated absorbent polymer is poured into aqueous solutions and forms a gel which passes the paint filter test as a non-liquid. Pouring versus mixing of a solidification agent not only eliminates the need for a mixing station, but also lessens exposure to personnel and the potential for spread of contamination from treatment of radioactive wastes. Waste minimization is achieved as significantly less mass addition and volume increase is required of and results from absorbent polymer use than that of clays and cements. Operational ease and waste minimization translate into overall cost savings for LLW and MLLW treatment

  9. Method for manufacture of neutron absorbing articles

    International Nuclear Information System (INIS)

    Owens, D.

    1980-01-01

    A one-step curing method for the manufacture of a neutron absorbing article which comprises irreversibly curing, in desired article form, a form-retaining mixture of boron carbide particles, curable phenolic resin in solid state and in particula te form and a minor proportion of a liquid medium, which boils at a temperature below 200*c., at an elevated temperature so as to obtain bonding of the irreversibly cured phenolic polymer resulting to the boron carbide particles and production of the neutron absorbing article in desired form

  10. Development of Coatings for Radar Absorbing Materials at X-band

    Science.gov (United States)

    Kumar, Abhishek; Singh, Samarjit

    2018-03-01

    The present review gives a brief account on some of the technical features of radar absorbing materials (RAMs). The paper has been presented with a concentrated approach towards the material aspects for achieving enhanced radar absorption characteristics for its application as a promising candidate in stealth technology and electromagnetic interference (EMI) minimization problems. The effect of metal particles doping/dispersion in the ferrites and dielectrics has been discussed for obtaining tunable radar absorbing characteristics. A short theoretical overview on the development of absorber materials, implementation of genetic algorithm (GA) in multi-layering and frequency selective surfaces (FSSs) based multi-layer has also been presented for the development of radar absorbing coatings for achieving better absorption augmented with broadband features in order to counter the radar detection systems.

  11. Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yijun [Institute of Optoelectronic Technology, Department of Electronic Engineering, Xiamen University, Xiamen 361005 (China); Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Zhu, Jinfeng, E-mail: nanoantenna@hotmail.com [Institute of Electromagnetics and Acoustics, Department of Electronic Science, Xiamen University, Xiamen 361005 (China); Liu, Qing Huo [Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2015-01-26

    Enhancement and manipulation of light absorption in graphene is a significant issue for applications of graphene-based optoelectronic devices. In order to achieve this purpose in the visible region, we demonstrate a design of a graphene optical absorber inspired by metal-dielectric-metal metamaterial for perfect absorption of electromagnetic waves. The optical absorbance ratios of single and three atomic layer graphene are enhanced up to 37.5% and 64.8%, respectively. The graphene absorber shows polarization-dependence and tolerates a wide range of incident angles. Furthermore, the peak position and bandwidth of graphene absorption spectra are tunable in a wide wavelength range through a specific structural configuration. These results imply that graphene in combination with plasmonic perfect absorbers have a promising potential for developing advanced nanophotonic devices.

  12. An experimental study of an energy absorbing restrainer for piping systems

    International Nuclear Information System (INIS)

    Sone, A.; Suzuki, K.

    1989-01-01

    Recently, in the seismic design methodology of the piping systems in nuclear power plants, new and improved design criteria and calculation techniques which will lead to more reliable and cost saving design products have been investigated. For instance, problems for reducing the snubbers in nuclear power plants which provide high costs for their inspections and maintenances and related flexible design problems for the dynamic piping systems have been investigated. Thus, in order to replace snubbers, various types of alternative supporting devices such as dynamic absorbers, gapped support and energy absorbing support devices have been proposed. A number of energy absorbing restrainers have been designed in Japan and United-States by allowing yield to occur during strong earthquakes. Advantages and disadvantages of these restrainers were examined analytically and experimentally. In order to overcome the disadvantages, the authors introduced new absorbing material LSPZ (laminated super plastic zinc) in which SPZ is expected to have reliable ductility and also efficient energy absorbability still under the normal temperature condition. This paper is devoted to an experimental works for this updated absorbing restrainer

  13. Origami-inspired metamaterial absorbers for improving the larger-incident angle absorption

    International Nuclear Information System (INIS)

    Shen, Yang; Pang, Yongqiang; Wang, Jiafu; Ma, Hua; Pei, Zhibin; Qu, Shaobo

    2015-01-01

    When a folded resistive patch array stands up on a metallic plane, it can exhibit more outstanding absorption performance. Our theoretical investigations and simulations demonstrated that the folded resistive patch arrays can enhance the absorption bandwidth progressively with the increase of the incident angle for the oblique transverse magnetic incidence, which is contrary to the conventional resistive frequency selective surface absorber. On illumination, we achieved a 3D structure metamaterial absorber with the folded resistive patches. The proposed absorber is obtained from the inspiration of the origami, and it has broadband and lager-incident angle absorption. Both the simulations and the measurements indicate that the proposed absorber achieves the larger-incident angle absorption until 75° in the frequency band of 3.6–11.4 GHz. In addition, the absorber is extremely lightweight. The areal density of the fabricated sample is about 0.023 g cm −2 . Due to the broadband and lager-incident angle absorption, it is expected that the absorbers may find potential applications such as stealth technologies and electromagnetic interference. (paper)

  14. Design and testing of a shock absorber for a type I container

    International Nuclear Information System (INIS)

    Sappok, M.; Beine, B.; Rittscher, D.; Jais, M.

    1994-01-01

    A simple method of designing a shock absorber to protect a type B cast-iron container is developed. The results of deformation tests of the structural material (steel pipes) used for the shock absorber are presented. The accelerations and strains measured during the 9m drop tests of the container with the shock absorber are compared with the theoretical results of the calculations for the shock absorber design. ((orig.))

  15. Absorbed dose modeled for a liquid circulating around a Co-60 irradiator

    International Nuclear Information System (INIS)

    Mangussi, J.

    2013-01-01

    A model for the distribution of the absorbed dose in a volume of liquid circulating into an active tank containing a Co-60 irradiator is presented. The absorbed dose, the stir process and the liquid recirculation into the active tank are modeled. The absorbed dose for different fractions of the volume is calculated. The necessary irradiation times for the achievement of the required absorbed dose are evaluated. (author)

  16. Specification of absorbed dose for reporting a therapeutic irradiation

    International Nuclear Information System (INIS)

    Wambersie, A.; Chassagne, D.

    1981-01-01

    The problem of dose specification in external beam therapy with photons and electrons has been dealt with in ICRU Report 29 (1978). This problem arises from the fact that the absorbed dose distribution is usually not uniform in the target volume and that for the purpose of treatment reporting a nominal absorbed dose - which will be called target absorbed dose - has to be selected. When comparing the clinical results obtained between radiotherapy centres, the differences in the reported target absorbed doses which can be introduced by differences in the methods of dose specification often are much larger than the differences related to the dosimetric procedures themselves. This shows the importance of the problem. In this paper, some definitions of terms and concepts currently used in radiotherapy are first recalled: tumour volume, target volume, treatment volume, etc. These definitions have been proposed in ICRU Report 29 for photon and electron beams; they can be extended to any kind of irradiation. For external beam therapy with photons and electrons, the target absorbed dose is defined as the absorbed dose at selected point(s) (specification point(s)) having a meaningful relation to the target volume and/or the irradiation beams. Examples are discussed for typical cases. As far as interstitial and intracavitary therapy is concerned, the problem is more complex and no recommendations have so far been made by the ICRU Commission. A major difficulty arises from the sharp dose gradient as a function of the distance to the sources. The particular case of the treatment of cervix carcinoma is considered and some possible methods of specification are discussed: (1) the indication of the sources (in adequate units) and the duration of the application, (2) the absorbed doses at selected reference points (bladder, rectum, bony structures) and (3) the description of the tissue volume (height, width, thickness) encompassed by a given isodose surface (60Gy). (author)

  17. Absorbed dose determination in external beam radiotherapy. An international code of practice for dosimetry based on standards of absorbed dose to water

    International Nuclear Information System (INIS)

    2000-01-01

    The International Atomic Energy Agency published in 1987 an International Code of Practice entitled 'Absorbed Dose Determination in Photon and Electron Beams' (IAEA Technical Reports Series No. 277 (TRS-277)), recommending procedures to obtain the absorbed dose in water from measurements made with an ionization chamber in external beam radiotherapy. A second edition of TRS-277 was published in 1997 updating the dosimetry of photon beams, mainly kilovoltage X rays. Another International Code of Practice for radiotherapy dosimetry entitled 'The Use of Plane-Parallel Ionization Chambers in High Energy Electron and Photon Beams' (IAEA Technical Reports Series No. 381 (TRS-381)) was published in 1997 to further update TRS-277 and complement it with respect to the area of parallel-plate ionization chambers. Both codes have proven extremely valuable for users involved in the dosimetry of the radiation beams used in radiotherapy. In TRS-277 the calibration of the ionization chambers was based on primary standards of air kerma; this procedure was also used in TRS-381, but the new trend of calibrating ionization chambers directly in a water phantom in terms of absorbed dose to water was introduced. The development of primary standards of absorbed dose to water for high energy photon and electron beams, and improvements in radiation dosimetry concepts, offer the possibility of reducing the uncertainty in the dosimetry of radiotherapy beams. The dosimetry of kilovoltage X rays, as well as that of proton and heavy ion beams, interest in which has grown considerably in recent years, can also be based on these standards. Thus a coherent dosimetry system based on standards of absorbed dose to water is possible for practically all radiotherapy beams. Many Primary Standard Dosimetry Laboratories (PSDLs) already provide calibrations in terms of absorbed dose to water at the radiation quality of 60 Co gamma rays. Some laboratories have extended calibrations to high energy photon and

  18. Laser nanostructured Co nanocylinders-Al{sub 2}O{sub 3} cermets for enhanced & flexible solar selective absorbers applications

    Energy Technology Data Exchange (ETDEWEB)

    Karoro, A., E-mail: angela@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Western Cape (South Africa); Nuru, Z.Y.; Kotsedi, L.; Bouziane, Kh. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Western Cape (South Africa); Mothudi, B.M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Physics Dept., University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure road, Somerset West 7129, PO Box 722, Western Cape (South Africa)

    2015-08-30

    Highlights: • Co-Al{sub 2}O{sub 3} was synthesized by electrodeposition & femtosecond laser structuring. • The ultrafast laser structuring significantly increases the solar absorption. • Co-Al{sub 2}O{sub 3} exhibited 0.98 solar absorptance and 0.03 thermal emittance. - Abstract: We report on the structural and optical properties of laser surface structured Co nanocylinders-Al{sub 2}O{sub 3} cermets on flexible Aluminium substrate for enhanced solar selective absorbers applications. This new family of solar selective absorbers coating consisting of Co nanocylinders embedded into nanoporous alumina template which were produced by standard electrodeposition and thereafter submitted to femtosecond laser surface structuring. While their structural and chemical properties were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive spectrometry and atomic force microscopy, their optical characteristics were investigated by specular & diffuse reflectance. The optimized samples exhibit an elevated optical absorptance α(λ) above 98% and an emittance ε(λ) ∼0.03 in the spectral range of 200–1100 nm. This set of values was suggested to be related to several surface and volume phenomena such as light trapping, plasmon surface effect as well as angular dependence of light reflection induced by the ultrafast laser multi-scale structuring.

  19. Dynamics of Preferential Substrate Recognition in HIV-1 Protease: Redefining the Substrate Envelope

    Science.gov (United States)

    Özen, Ayşegül; Haliloğlu, Türkan; Schiffer, Celia A.

    2011-01-01

    HIV-1 protease (PR) permits viral maturation by processing the Gag and Gag-Pro-Pol polyproteins. Though HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy, the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates the consideration of drug resistance in novel drug-design strategies. Drug-resistant HIV-1 PR variants, while no longer efficiently inhibited, continue to efficiently hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we defined as the “substrate envelope”. We previously showed that resistance mutations arise where PIs protrude beyond the substrate envelope, as these regions are crucial for drug binding but not for substrate recognition. Here, we extend this model by considering the role of protein dynamics in the interaction of HIV-1 PR with its substrates. Seven molecular dynamics simulations of PR-substrate complexes were performed to estimate the conformational flexibility of substrates in their complexes. Interdependency of the substrate-protease interactions may compensate for the variations in cleavage-site sequences, and explain how a diverse set of sequences can be recognized as substrates by the same enzyme. This diversity may be essential for regulating sequential processing of substrates. We also define a dynamic substrate envelope as a more accurate representation of PR-substrate interactions. This dynamic substrate envelope, described by a probability distribution function, is a powerful tool for drug design efforts targeting ensembles of resistant HIV-1 PR variants with the aim of developing drugs that are less susceptible to resistance. PMID:21762811

  20. Laser-assisted simultaneous transfer and patterning of vertically aligned carbon nanotube arrays on polymer substrates for flexible devices.

    Science.gov (United States)

    In, Jung Bin; Lee, Daeho; Fornasiero, Francesco; Noy, Aleksandr; Grigoropoulos, Costas P

    2012-09-25

    We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications.

  1. Generalized pin factor methodology for LWR reload cores with discrete burnable absorbers

    International Nuclear Information System (INIS)

    Hah, C.J.; Hideki Matsumoto; Toshikazu Ida; Lee, C.; Chao, Y.A.

    2005-01-01

    Discrete burnable absorbers are used to suppress excess reactivity as well as peak pin power in an assembly. After the burn-out of absorption material, discrete burnable absorbers are usually removed from assembly guide tubes for the next cycle. For that case, the pin factors with discrete burnable absorbers cannot be used since the assembly configuration is physically changed. The pin factors without discrete burnable absorbers also have noticeable deviation from the actual case because they do not take into account the history effect due to the residence of discrete burnable absorbers for the previous cycle. In this paper, the generalized pin factor (GPF) method is developed to accurately predict pin powers by considering the history effect. The method uses a second-order polynomial function to approximate the history effect which builds up during the residence of burnable absorber material and employs a linear approximation to simulate the decay of the history effect after discrete burnable absorbers are removed. The verification results from Westinghouse Vantage- 5H assemblies with WABAs showed that pin power errors were significantly reduced by using the GPF. (authors)

  2. Absorbed Energy in Ship Collisions and Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    is that the absorbed energy does not depend on the arrangement of the structure, the material properties, and the damage mode.The purpose of the present paper is to establish a new simple relation between the absorbed energy and the destroyed material volume, which can be used as a design tool for analysis of ship...... collisions and grounding. The developed expressions reflect the structural arrangement, the material properties and different damage patterns.The present method is validated against a large number of existing experimental results and detailed numerical simulation results. Applications to full-sale ship...

  3. Neutron absorbers, and the production method

    International Nuclear Information System (INIS)

    Kayano, Hideo; Yajima, Seishi; Oono, Hironori.

    1979-01-01

    Purpose: To integrally sinter a metal powder and a metal network material thereby to obtain a material having a high neutron absorbing function, an excellent corrosion resistance and an excellent oxidation resistance. Method: An element having a high neutron absorbing function, such as Gd, or a compound thereof and a powder of a metal having excellent corrosion resistance, oxidation resistance and ductility, such as Fe, Cr or the like are uniformly mixed with each other. In a case where a substance having a neutron absorbing function is a hydroxide an organic complex or the like, it is formed into a gel-like substance and mixed uniformly with the metal powder, the gel-like substance being pasted, and covered on the surface of the metal powder and dried. Then, the mixture or the dry coated material is extended and the metal network material having excellent corrosion resistance, oxidation resistance and ductility is covered or interposed or between at least one layer of upper, intermediate or lower layers of said laminated material, and thereafter is subjected to cold or hot rolling, and then sintered and furthermore rolled, if necessary, the thus treated material being burned in vacuum or a non-oxidizing atmosphere. (Kamimura, M.)

  4. Calirimeter/absorber optimization for a RHIC dimuon experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aronson, S.H.; Murtagh, M.J.; Starks, M. [Brookhaven National Lab., Upton, NY (United States); Liu, X.T.; Petitt, G.A.; Zhang, Z. [Georgia State Univ., Atlanta (United States); Ewell, L.A.; Hill, J.C.; Wohn, F.K. [Iowa State Univ., Ames (United States); Costales, J.B.; Namboodiri, M.N., Sangster, T.C.; Thomas, J.H. [Lawrence Livermore National Lab., CA (United States); Gavron, A.; Waters, L. [Los Alamos National Lab., NM (United States); Kehoe, W.L.; Steadman, S.G. [Massachusetts Institute of Technology, Cambridge (United States); Awes, T.C.; Obenshain, F.E.; Saini, S.; Young, G.R. [Oak Ridge National Lab., TN (United States); Chang, J.; Fung, S.Y.; Kang, J.H. [Univ. of California, Riverside, CA (United States); Kreke, J.; He, Xiaochun, Sorensen, S.P. [Univ. of Tennessee, Knoxville (United States); Cornell, E.C.; Maguire, C.F. [Vanderbilt Univ., Nashville, TN (United States)

    1991-12-31

    The RD-10 R&D effort on calorimeter/absorber optimization for a RHIC experiment had an extended run in 1991 using the A2 test beam at the AGS. Measurements were made of the leakage of particles behind various model hadron calorimeters. Behavior of the calorimeter/absorber as a muon-identifier was studied. First comparisons of results from test measurements to calculated results using the GHEISHA code were made

  5. A reflective-backing-free metamaterial absorber with broadband response

    Directory of Open Access Journals (Sweden)

    Cuilian Xu

    2017-06-01

    Full Text Available In this paper, we propose a polarization-independent and broadband perfect infrared (IR metamaterial absorber (MA without reflective backing. The proposed absorber is a periodic meta-atom array consisting of metal-dielectric-multilayer truncated cones which can absorb 80% EM wave from 50.70 to 81.87THz, while transmit 80% EM wave from 0 to 37.71THz. With the decreasing of frequency, the transmissivity increases, which is close to 100% from 0 to 5THz. We can broaden the absorption bandwidth of the MA by cascading multi-layers truncated cones. Furthermore, the proposed IR MA promises to be one desirable stealth material for radar-IR compatibility.

  6. A neutron-absorbing porcelain enamel for coating nuclear equipment

    International Nuclear Information System (INIS)

    Iverson, D.C.

    1988-01-01

    In 1985, nuclear safety analyses showed that under upset conditions, strict administrative controls were necessary to limit access to a new processing vessel for enriched uranium service at the Savannah River Plant (SRP). In order to increase the level of nuclear safety associated with that vessel, the traditional methods of incorporating neutron absorbers (borated stainless steel, boral, cadmium foil, etc.) were reviewed, however, process conditions did not permit their use. A neutron-absorbing porcelain enamel containing large amounts of cadmium and boron was developed as a safe, cost-effective alternative to traditional neutron-absorbing methods. Several pieces of coated process equipment have been installed or are planned for installation at SRP

  7. Parotid-Absorbed Doses: A Comparison Between Spiral Tomography and Panoramic

    Directory of Open Access Journals (Sweden)

    Ehsan Hekmatian

    2016-07-01

    Full Text Available Background Jaws spiral tomography and panoramic radiography have wide applications in dentistry, and the parotid gland is one of the most sensitive organs of the head and neck. Objectives The aim of this study was to evaluate and compare the parotid-absorbed dose in spiral tomography and panoramic radiographs using a thermoluminescent dosimeter. Materials and Methods A radiation analog dosimetry phantom was placed in a Cranex Tome radiograph device, and a parotid absorbed dose was measured in both techniques. Thermoluminescent dosimeters were placed bilaterally in the parotid region (on the tube side and the opposite side. Spiral tomography dosimetry was done for the upper and lower jaws in the anterior and posterior regions. Each region contained four slices of 2 mm and four slices of 4 mm in thickness. The results were analyzed by a Wilcoxon test. Results For the tube side parotid, the average absorbed doses in spiral tomography of the anterior and posterior parts of the maxilla and mandible, with the 2 mm slice thickness, were 1.70/1.40 and 1.65/1.60 mGy, respectively. The average absorbed doses with the 4mm slices were 1.65/1.70 and 1.75/1.57 mGy, respectively. For the opposite parotid, the average absorbed dose in spiral tomography of the anterior and posterior parts of the maxilla and mandible, with the 2 mm slice thickness, were 1.40/1.30 and 1.40/1.67 mGy, respectively. The average absorbed doses with the 4mm slices were 1.50/1.66 and 1.40/1.50 mGy, respectively. The average absorbed dose of the panoramic radiograph was 1.40 mGy. Conclusions There was no statistically significant difference in the parotid absorbed dose between spiral tomography and a panoramic radiograph (P value = 0.18. The overall results of this study were similar to other studies.

  8. The measurement of the indoor absorbed dose rate in air in Beijing

    International Nuclear Information System (INIS)

    Guo Mingqiang; Pan Ziqiang; Yi Nanchang; Wei Zemin; Zhang Chao; Wang Huamin; Zhu Wencai

    1985-01-01

    This paper describes the indoor absorbed dose rate in air in Beijing. The average indoor absorbed dose rate in air is 8.29 μrad/h. The ratio of indoor to outdoor absorbed dose rate for 849 buildings is 1.51

  9. Simulated mixed absorbers and effective atomic numbers for γ ...

    Indian Academy of Sciences (India)

    The total -ray interaction crosss-sections on mixed absorbers were determined at 662 keV with a view to study the effective atomic numbers for -ray absorption under narrow beam good geometry set-up. The measurements were taken for the combination of metallic absorbers like aluminium, copper, lead and mercury ...

  10. Fabrication of selective solar absorbers using pulsed laser deposition

    CSIR Research Space (South Africa)

    Yalisi, B

    2009-06-01

    Full Text Available Selective solar absorbers are devices that have been designed to absorb as much as possible of the solar radiation which is in the wavelength range of 0.3 to 2.5 µm and to minimise thermal emittance in the wavelength range from 2.5µm to the far...

  11. Properties of InGaAs quantum dot saturable absorbers in monolithic mode-locked lasers

    DEFF Research Database (Denmark)

    Thompson, M.G.; Marinelli, C.; Chu, Y.

    Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance.......Saturable absorbers properties are characterised in monolithic mode-locked InGaAs quantum dot lasers. We analyse the impact of weak quantum confined Stark effect, fast absorber recovery time and low absorber saturation power on the mode-locking performance....

  12. Development of highly effective neutron shields and neutron absorbing materials

    International Nuclear Information System (INIS)

    Tsuda, K.; Matsuda, F.; Taniuchi, H.; Yuhara, T.; Iida, T.

    1993-01-01

    A wide range of materials, including polymers and hydrogen-occluded alloys that might be usable as the neutron shielding material were examined. And a wide range of materials, including aluminum alloys that might be usable as the neutron-absorbing material were examined. After screening, the candidate material was determined on the basis of evaluation regarding its adaptabilities as a high-performance neutron-shielding and neutron-absorbing material. This candidate material was manufactured for trial, after which material properties tests, neutron-shielding tests and neutron-absorbing tests were carried out on it. The specifications of this material were thus determined. This research has resulted in materials of good performance; a neutron-shielding material based on ethylene propylene rubber and titanium hydride, and a neutron-absorbing material based on aluminum and titanium hydride. (author)

  13. Effectiveness of KNIFC-PAN Resin in Absorbing Radiocesium in Seawater

    International Nuclear Information System (INIS)

    Nurrul Assyikeen Mohd Jaffary; Abdul Kadir Ishak; Zal Uyun Wan Mahmood; Wo, Y.M.; Norfaizal Mohamed; Mohd Tarmizi Ishak

    2016-01-01

    The effectiveness of KNiFC-PAN absorber, potassium-nickel hexacyanoferrate (II) (KNiFC) bound into modified polyacrylonitrile (PAN) have been tested for capability in absorbing radiocesium in seawater samples. The efficiency of the KNiFC-PAN were measured by the different activity of the radiocesium measured using Hyper Pure Germanium Detector (HPGe) in initial spiked seawater and eluent seawater after passed through 5 ml of KNiFC absorber. Study showed 87 % effectiveness of the KNiFC-PAN in absorbing radiocesium. Further study conducted to illustrate relation between spiked seawater and activity measured for 5 ml of KniFC passed through spiked seawater in packed column. This study suggested this relative 15L cubitainer method can be used to monitor the radiocesium in emergency situation for the fast and reliable result. (author)

  14. Substrate system for spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Men G. (Export, PA); Chernicoff, William P. (Harrisburg, PA)

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  15. Absorbed fractions for alpha particles in ellipsoidal volumes

    International Nuclear Information System (INIS)

    Amato, Ernesto; Baldari, Sergio; Italiano, Antonio

    2013-01-01

    Internal dosimetry of alpha particles is gaining attention due to the increasing applications in cancer treatment and also for the assessment of environmental contamination from radionuclides. We developed a Monte Carlo simulation in GEANT4 in order to calculate the absorbed fractions for monoenergetic alpha particles in the energy interval between 0.1 and 10 MeV, uniformly distributed in ellipsoids made of soft tissue. For each volume, we simulated a spherical shape, three oblate and three prolate ellipsoids, and one scalene shape. For each energy and for every geometrical configuration, an analytical relationship between the absorbed fraction and a ‘generalized radius’ was found; and the dependence of the fit parameters on the alpha energy is discussed and fitted by parametric functions. With the proposed formulation, the absorbed fraction for alpha particles in the energy range explored can be calculated for volumes and for ellipsoidal shapes of practical interest. This method can be applied to the evaluation of absorbed fraction from alpha-emitting radionuclides. The contribution to the deposited energy coming from electron and photon emissions can be accounted for exploiting the specific formulations previously introduced. As an example of application, the dosimetry of 213 Bi and its decay chain in ellipsoids is reported. (paper)

  16. [Absorbable coronary stents. New promising technology].

    Science.gov (United States)

    Erbel, Raimund; Böse, Dirk; Haude, Michael; Kordish, Igor; Churzidze, Sofia; Malyar, Nasser; Konorza, Thomas; Sack, Stefan

    2007-06-01

    Coronary stent implantation started in Germany 20 years ago. In the beginning, the progress was very slow and accelerated 10 years later. Meanwhile, coronary stent implantation is a standard procedure in interventional cardiology. From the beginning of permanent stent implantation, research started to provide temporary stenting of coronary arteries, first with catheter-based systems, later with stent-alone technology. Stents were produced from polymers or metal. The first polymer stent implantation failed except the Igaki-Tamai stent in Japan. Newly developed absorbable polymer stents seem to be very promising, as intravascular ultrasound (IVUS) and optical coherence tomography have demonstrated. Temporary metal stents were developed based on iron and magnesium. Currently, the iron stent is tested in peripheral arteries. The absorbable magnesium stent (Biotronik, Berlin, Germany) was tested in peripheral arteries below the knee and meanwhile in the multicenter international PROGRESS-AMS (Clinical Performance and Angiographic Results of Coronary Stenting with Absorbable Metal Stents) study. The first magnesium stent implantation was performed on July 30, 2004 after extended experimental testing in Essen. The magnesium stent behaved like a bare-metal stent with low recoil of 5-7%. The stent struts were absorbed when tested with IVUS. Stent struts were not visible by fluoroscopy or computed tomography (CT) as well as magnetic resonance imaging (MRI). That means, that the magnesium stent is invisible and therefore CT and MRI can be used for imaging of interventions. Only using micro-CT the stent struts were visible. The absorption process could be demonstrated in a patient 18 days after implantation due to suspected acute coronary syndrome, which was excluded. IVUS showed a nice open lumen. Stent struts were no longer visible, but replaced by tissue indicating the previous stent location. Coronary angiography after 4 months showed an ischemia-driven target lesion

  17. Superlattice photonic crystal as broadband solar absorber for high temperature operation.

    Science.gov (United States)

    Rinnerbauer, Veronika; Shen, Yichen; Joannopoulos, John D; Soljačić, Marin; Schäffler, Friedrich; Celanovic, Ivan

    2014-12-15

    A high performance solar absorber using a 2D tantalum superlattice photonic crystal (PhC) is proposed and its design is optimized for high-temperature energy conversion. In contrast to the simple lattice PhC, which is limited by diffraction in the short wavelength range, the superlattice PhC achieves solar absorption over broadband spectral range due to the contribution from two superposed lattices with different cavity radii. The superlattice PhC geometry is tailored to achieve maximum thermal transfer efficiency for a low concentration system of 250 suns at 1500 K reaching 85.0% solar absorptivity. In the high concentration case of 1000 suns, the superlattice PhC absorber achieves a solar absorptivity of 96.2% and a thermal transfer efficiency of 82.9% at 1500 K, amounting to an improvement of 10% and 5%, respectively, versus the simple square lattice PhC absorber. In addition, the performance of the superlattice PhC absorber is studied in a solar thermophotovoltaic system which is optimized to minimize absorber re-emission by reducing the absorber-to-emitter area ratio and using a highly reflective silver aperture.

  18. Convection-type LH{sub 2} absorber R and D for muon ionization cooling

    Energy Technology Data Exchange (ETDEWEB)

    Ishimoto, S. E-mail: shigeru.ishimoto@kek.jp; Bandura, L.; Black, E.L.; Boghosian, M.; Cassel, K.W.; Cummings, M.A.; Darve, C.; Dyshkant, A.; Errede, D.; Geer, S.; Haney, M.; Hedin, D.; Johnson, R.; Johnstone, C.J.; Kaplan, D.M.; Kubik, D.; Kuno, Y.; Majewski, S.; Popovic, M.; Reep, M.; Summers, D.; Suzuki, S.; Yoshimura, K

    2003-05-01

    A feasibility study on liquid hydrogen (LH{sub 2}) absorbers for muon ionization cooling is reported. In muon ionization cooling, an LH{sub 2} absorber is required to have a high cooling power greater than 100 W to cool heat deposited by muons passing through. That heat in LH{sub 2} can be removed at either external or internal heat exchangers, which are cooled by cold helium gas. As one of the internal heat exchanger types, a convection-type absorber is proposed. In the convection-type absorber, heat is taken away by the convection of LH{sub 2} in the absorber. The heat exchanger efficiency for the convection-type absorber is calculated. A possible design is presented.

  19. Design and measuring of a tunable hybrid metamaterial absorber for terahertz frequencies

    Science.gov (United States)

    Zhong, Min; Liu, Shui Jie; Xu, Bang Li; Wang, Jie; Huang, Hua Qing

    2018-04-01

    A tunable hybrid metamaterial absorber is designed and experimentally produced in THz band. The hybrid metamaterial absorber contains two dielectric layers: SU-8 and VO2 layers. An absorption peak reaching to 83.5% is achieved at 1.04 THz. The hybrid metamaterial absorber exhibits high absorption when the incident angle reaches to 45°. Measured results indicate that the absorption amplitude and peak frequency of the hybrid metamaterial absorber is tunable in experiments. It is due to the insulator-to-metal phase transition is achieved when the measured temperature reaches to 68 °C. Moreover, the hybrid metamaterial absorber reveals high figure of merit (FOM) value when the measured temperature reaches to 68 °C.

  20. Investigation of a Shock Absorber for Safeguard of Fuel Assemblies Failure

    International Nuclear Information System (INIS)

    Karalevicius, Renatas; Dundulis, Gintautas; Rimkevicius, Sigitas; Uspuras, Eugenijus

    2006-01-01

    The Ignalina NPP has two reactors. The Unit 1 was shut down, therefore the special equipment was designed for transportation of the fuel from Unit 1 to Unit 2. The fuel-loaded basket can drop during transportation. The special shock absorber was designed in order to avoid failure of fuel assemblies during transportation. In case of drop of fuel loaded basket, the failure of fuel assemblies can occur. This shock absorber was studied by scaled experiments at Lithuanian Energy Institute. Static and dynamic investigations of shock absorber are presented in this paper, including dependency of axial force versus axial compression. The finite element codes BRIGADE/Plus and ABAQUS/Explicit were used for analysis. Static simulation was used to optimize the dimensions of shock absorber. Dynamic analysis shows that shock absorber is capable to withstand the dynamic load for successful force suppression function in case of an accident. (authors)

  1. Electron scattering effects on absorbed dose measurements with LiF-dosemeters

    International Nuclear Information System (INIS)

    Bertilsson, G.

    1975-10-01

    The investigation deals with absorbed dose measurements with solid wall-less dosemeters. Electron scattering complicates both measurement of absorbed dose and its theoretical interpretation. The introduction of the dosemeter in a medium causes perturbations of the radiation field. This perturbation and its effect on the distribution of the absorbed dose inside the dosemeter is studied. Plane-parallel LiF-teflon dosemeters (0.005 - 0.1 g.cm -2 ) are irradiated by a photon beam ( 137 Cs) in different media. The investigation shows that corrections must be made for perturbations caused by electron scattering phenomena. Correction factors are given for use in accurate absorbed dose determinations with thermoluminescent dosemeters. (Auth.)

  2. Neutron absorbing room temperature vulcanizable silicone rubber compositions

    International Nuclear Information System (INIS)

    Zoch, H.L.

    1979-01-01

    A neutron absorbing composition is described and consists of a one-component room temperature vulcanizable silicone rubber composition or a two-component room temperature vulcanizable silicone rubber composition in which the composition contains from 25 to 300 parts by weight based on the base silanol or vinyl containing diorganopolysiloxane polymer of a boron compound or boron powder as the neutron absorbing ingredient. An especially useful boron compound in this application is boron carbide. 20 claims

  3. Process and device for exchanging neutron absorber rods

    International Nuclear Information System (INIS)

    Baero, G.; Kraus, W.; Stindt, W.

    1987-01-01

    The control element repair device contains lifting equipment for inserting the control element in the accommodation device. Due to the case position assigned to each absorber rod of a control element, after removing the carrier with the absorber rods fixed to it, the defective rods can be replaced by new ones. The accommodation device has a support to support the carrier. Turning the control element for the PWR through 180 0 is prevented. (DG) [de

  4. Characterization of highly stacked InAs quantum dot layers on InP substrate for a planar saturable absorber at 1.5 μm band

    International Nuclear Information System (INIS)

    Inoue, Jun; Akahane, Kouichi; Yamamoto, Naokatsu; Isu, Toshiro; Tsuchiya, Masahiro

    2006-01-01

    We examined the absorption saturation properties in the 1.5 μm band of novel highly stacked InAs quantum dot layers. The transmission change at vertical incidence based on the saturable absorption of the quantum dots was more than 1%. This value is as large as the reflection changes of previously reported 1-μm-band quantum dot saturable absorber with interference enhancement. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Optical architecture design for detection of absorbers embedded in visceral fat.

    Science.gov (United States)

    Francis, Robert; Florence, James; MacFarlane, Duncan

    2014-05-01

    Optically absorbing ducts embedded in scattering adipose tissue can be injured during laparoscopic surgery. Non-sequential simulations and theoretical analysis compare optical system configurations for detecting these absorbers. For absorbers in deep scattering volumes, trans-illumination is preferred instead of diffuse reflectance. For improved contrast, a scanning source with a large area detector is preferred instead of a large area source with a pixelated detector.

  6. Mechanical properties of hybrid organic-inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I perovskites for solar cell absorbers

    Directory of Open Access Journals (Sweden)

    Jing Feng

    2014-08-01

    Full Text Available The crystal structures, elastic and anisotropic properties of CH3NH3BX3 (B = Sn, Pb; X = Br, I compounds as solar cell absorber layers are investigated by the first-principles calculations. The type and strength of chemical bond B-X are found to determine the elastic properties. B-X bonds and the organic cations are therefore crucial to the functionalities of such absorbers. The bulk, shear, Young's modulus ranges from 12 to 30 GPa, 3 to 12 GPa, and 15 to 37 GPa, respectively. Moreover, the interaction among organic and inorganic ions would have negligible effect for elastic properties. The B/G and Poisson's ratio show it would have a good ductile ability for extensive deformation as a flexible/stretchable layer on the polymer substrate. The main reason is attributed to the low shear modulus of such perovskites. The anisotropic indices AU, AB AG, A1, A2, and A3 show ABX3 perovskite have very strong anisotropy derived from the elastic constants, chemical bonds, and symmetry.

  7. Carbon Nanomaterials for Optical Absorber Applications

    Directory of Open Access Journals (Sweden)

    Anupama KAUL

    2011-12-01

    Full Text Available Optical absorbers based on vertically aligned multi-walled carbon nanotubes (MWCNTs, synthesized using electric-field assisted growth, are described here that show an ultra-low reflectance, 100X lower compared to the benchmark, a diffuse metal black - Au-black - from wavelength l ~ 350 nm – 2500 nm. The reflectance of the MWCNT arrays was measured to be as low as 0.02 % at 2 mm in the infra-red (IR. Growth conditions were optimized for the realization of high-areal density arrays of MWCNTs using a plasma-based chemical vapor deposition (CVD process. Such high efficiency absorbers are particularly attractive for radiometry, as well as energy harnessing applications. Optical modeling calculations were conducted that enabled a determination of the extinction coefficient in the films.

  8. Fault Detection for Automotive Shock Absorber

    Science.gov (United States)

    Hernandez-Alcantara, Diana; Morales-Menendez, Ruben; Amezquita-Brooks, Luis

    2015-11-01

    Fault detection for automotive semi-active shock absorbers is a challenge due to the non-linear dynamics and the strong influence of the disturbances such as the road profile. First obstacle for this task, is the modeling of the fault, which has been shown to be of multiplicative nature. Many of the most widespread fault detection schemes consider additive faults. Two model-based fault algorithms for semiactive shock absorber are compared: an observer-based approach and a parameter identification approach. The performance of these schemes is validated and compared using a commercial vehicle model that was experimentally validated. Early results shows that a parameter identification approach is more accurate, whereas an observer-based approach is less sensible to parametric uncertainty.

  9. Use of Wedge Absorbers in MICE

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Summers, D. [Univ. of Mississippi, Oxford, MS (United States); Mohayai, T. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); IIT, Chicago, IL (United States); Snopok, P. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); IIT, Chicago, IL (United States); Rogers, C. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL)

    2017-03-01

    Wedge absorbers are needed to obtain longitudinal cooling in ionization cooling. They also can be used to obtain emittance exchanges between longitudinal and transverse phase space. There can be large exchanges in emittance, even with single wedges. In the present note we explore the use of wedge absorbers in the MICE experiment to obtain transverse–longitudinal emittance exchanges within present and future operational conditions. The same wedge can be used to explore “direct” and “reverse” emittance exchange dynamics, where direct indicates a configuration that reduces momentum spread and reverse is a configuration that increases momentum spread. Analytical estimated and ICOOL and G4BeamLine simulations of the exchanges at MICE parameters are presented. Large exchanges can be obtained in both reverse and direct configurations.

  10. Effects of Burnable Absorbers on PWR Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    O'Leary, P.M.; Pitts, M.L.

    2000-01-01

    Burnup credit is an ongoing issue in designing and licensing transportation and storage casks for spent nuclear fuel (SNF). To address this issue, in July 1999, the U.S. Nuclear Regulatory Commission (NRC), Spent Fuel Project Office, issued Interim Staff Guidance-8 (ISG-8), Revision 1 allowing limited burnup credit for pressurized water reactor (PWR) spent nuclear fuel (SNF) to be used in transport and storage casks. However, one of the key limitations for a licensing basis analysis as stipulated in ISG-8, Revision 1 is that ''burnup credit is restricted to intact fuel assemblies that have not used burnable absorbers''. Because many PWR fuel designs have incorporated burnable-absorber rods for more than twenty years, this restriction places an unnecessary burden on the commercial nuclear power industry. This paper summarizes the effects of in-reactor irradiation on the isotopic inventory of PWR fuels containing different types of integral burnable absorbers (BAs). The work presented is illustrative and intended to represent typical magnitudes of the reactivity effects from depleting PWR fuel with different types of burnable absorbers

  11. Parametrization of complex absorbing potentials for time-dependent quantum dynamics

    International Nuclear Information System (INIS)

    Vibok, A.; Balint-Kurti, G.G.

    1992-01-01

    Five different forms of complex absorbing potentials are examined and compared. Such potentials are needed to absorb wavepackets near the edges of grids in time-dependent quantum dynamical calculations. The extent to which the different potentials transmit or reflect an incident wavepacket is quantified, and optimal potential parameters to minimize both the reflection and transmission for each type of potential are derived. A rigorously derived scaling procedure, which permits the derivation of optimal potential parameters for use with any chosen mass or kinetic energy from those optimized for different conditions, is described. Tables are also presented which permit the immediate selection of the parameters for an absorbing potential of a particular form so as to allow a preselected (very small) degree of transmitted plus reflected probability to be attained. It is always desirable to devote a minimal region to the absorbing potential, while at the same time effectively absorbing all of the wavepacket and neither transmitting nor reflecting any of it. The tables presented here enable the use to easily select the potential parameters he will require to attain these goals. 23 refs., 7 figs., 4 tabs

  12. Study on 'Tannix' an absorbent for heavy metals including uranium

    International Nuclear Information System (INIS)

    Nakamura, Yasuo

    1997-01-01

    To treat radioactive wastes including uranium and transuranic elements such as plutonium, americium etc., development of an absorbent which can be used to absorb and isolate these elements without producing secondary wastes after treatment was attempted. And an absorbent has been successfully developed by polymerizing tannin, a natural product. It is known that tannin binds heavy metals including uranium resulting to produce their precipitates. There are some reports suggesting its absorption ability for uranium. However, tannin has not been used to isolate a heavy metal from a solution because it is soluble in water. Here, insolubilization of tannin was attempted and a manufacturing method for a gelatinized insoluble tannin named as ''Tannix'' was established. Wattle tannin extracted from Mimosa pudica produced in Africa was dissolved in an alkaline solution and gelatinized by heating after the addition of formalin. Thus obtained insoluble tannin was used after crushing and sieving. This product, ''Tannix'' was able to absorb more than 99% of uranium in the waste. And the absorbed Tannin could be degraded by incineration even at a low temperature, leaving only uranium, but not producing any secondary product. (M.N.)

  13. Study on `Tannix` an absorbent for heavy metals including uranium

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Yasuo [Mitsubishi Nuclear Fuel Co. Ltd., Tokyo (Japan)

    1997-09-01

    To treat radioactive wastes including uranium and transuranic elements such as plutonium, americium etc., development of an absorbent which can be used to absorb and isolate these elements without producing secondary wastes after treatment was attempted. And an absorbent has been successfully developed by polymerizing tannin, a natural product. It is known that tannin binds heavy metals including uranium resulting to produce their precipitates. There are some reports suggesting its absorption ability for uranium. However, tannin has not been used to isolate a heavy metal from a solution because it is soluble in water. Here, insolubilization of tannin was attempted and a manufacturing method for a gelatinized insoluble tannin named as ``Tannix`` was established. Wattle tannin extracted from Mimosa pudica produced in Africa was dissolved in an alkaline solution and gelatinized by heating after the addition of formalin. Thus obtained insoluble tannin was used after crushing and sieving. This product, ``Tannix`` was able to absorb more than 99% of uranium in the waste. And the absorbed Tannin could be degraded by incineration even at a low temperature, leaving only uranium, but not producing any secondary product. (M.N.)

  14. Resonant passive–active vibration absorber with integrated force feedback control

    International Nuclear Information System (INIS)

    Høgsberg, Jan; Brodersen, Mark L; Krenk, Steen

    2016-01-01

    A general format of a two-terminal vibration absorber is constructed by placing a passive unit in series with a hybrid unit, composed of an active actuator in parallel with a second passive element. The displacement of the active actuator is controlled by an integrated feedback control with the difference in force between the two passive elements as input. This format allows passive and active contributions to be combined arbitrarily within the hybrid unit, which results in a versatile absorber format with guaranteed closed-loop stability. This is demonstrated for resonant absorbers with inertia realized passively by a mechanical inerter or actively by the integrated force feedback. Accurate calibration formulae are presented for two particular absorber configurations and the performance is subsequently demonstrated with respect to both equal modal damping and effective response reduction. (technical note)

  15. Broadband infrared metamaterial absorber based on anodic aluminum oxide template

    Science.gov (United States)

    Yang, Jingfan; Qu, Shaobo; Ma, Hua; Wang, Jiafu; Yang, Shen; Pang, Yongqiang

    2018-05-01

    In this work, a broadband infrared metamaterial absorber is proposed based on trapezoid-shaped anodic aluminum oxide (AAO) template. Unlike traditional metamaterial absorber constructed from metal-dielectric-metal sandwich structure, our proposed absorber is composed of trapezoid-shaped AAO template with metallic nanowires inside. The infrared absorption efficiency is numerically calculated and the mechanism analysis is given in the paper. Owing to the superposition of multiple resonances produced by the nanowires with different heights, the infrared metamatrial absorber can keep high absorption efficiency during broad working wavelength band from 3.4 μm to 6.1 μm. In addition, the resonance wavelength is associated with the height of nanowires, which indicates that the resonance wavelength can be modulated flexibly through changing the heights of nanowires. This kind of design can also be adapted to other wavelength regions.

  16. A review on the performance of conventional and energy-absorbing rockbolts

    Directory of Open Access Journals (Sweden)

    Charlie C. Li

    2014-08-01

    Full Text Available This is a review paper on the performances of both conventional and energy-absorbing rockbolts manifested in laboratory tests. Characteristic parameters such as ultimate load, displacement and energy absorption are reported, in addition to load–displacement graphs for every type of rockbolt. Conventional rockbolts refer to mechanical rockbolts, fully-grouted rebars and frictional rockbolts. According to the test results, under static pull loading a mechanical rockbolt usually fails at the plate; a fully-grouted rebar bolt fails in the bolt shank at an ultimate load equal to the strength of the steel after a small amount of displacement; and a frictional rockbolt is subjected to large displacement at a low yield load. Under shear loading, all types of bolts fail in the shank. Energy-absorbing rockbolts are developed aiming to combat instability problems in burst-prone and squeezing rock conditions. They absorb deformation energy either through ploughing/slippage at predefined load levels or through stretching of the steel bolt. An energy-absorbing rockbolt can carry a high load and also accommodate significant rock displacement, and thus its energy-absorbing capacity is high. The test results show that the energy absorption of the energy-absorbing bolts is much larger than that of all conventional bolts. The dynamic load capacity is smaller than the static load capacity for the energy-absorbing bolts displacing based on ploughing/slippage while they are approximately the same for the D-Bolt that displaces based on steel stretching.

  17. Fabrication of a Cu(InGaSe2 Thin Film Photovoltaic Absorber by Rapid Thermal Annealing of CuGa/In Precursors Coated with a Se Layer

    Directory of Open Access Journals (Sweden)

    Chun-Yao Hsu

    2013-01-01

    Full Text Available Cu(InGaSe2 (CIGS thin film absorbers are prepared using sputtering and selenization processes. The CuGa/In precursors are selenized during rapid thermal annealing (RTA, by the deposition of a Se layer on them. This work investigates the effect of the Cu content in precursors on the structural and electrical properties of the absorber. Using X-ray diffraction, field emission scanning electron microscopy, Raman spectroscopy, and Hall effect measurement, it is found that the CIGS thin films produced exhibit facetted grains and a single chalcopyrite phase with a preferred orientation along the (1 1 2 plane. A Cu-poor precursor with a Cu/( ratio of 0.75 demonstrates a higher resistance, due to an increase in the grain boundary scattering and a reduced carrier lifetime. A Cu-rich precursor with a Cu/( ratio of 1.15 exhibits an inappropriate second phase ( in the absorber. However, the precursor with a Cu/( ratio of 0.95 exhibits larger grains and lower resistance, which is suitable for its application to solar cells. The deposition of this precursor on Mo-coated soda lime glass substrate and further RTA causes the formation of a MoSe2 layer at the interface of the Mo and CIGS.

  18. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking

    Directory of Open Access Journals (Sweden)

    Tyagi Sadhna

    2009-06-01

    Full Text Available Abstract Background Previously, ways to adapt docking programs that were developed for modelling inhibitor-receptor interaction have been explored. Two main issues were discussed. First, when trying to model catalysis a reaction intermediate of the substrate is expected to provide more valid information than the ground state of the substrate. Second, the incorporation of protein flexibility is essential for reliable predictions. Results Here we present a predictive and robust method to model substrate specificity and enantioselectivity of lipases and esterases that uses reaction intermediates and incorporates protein flexibility. Substrate-imprinted docking starts with covalent docking of reaction intermediates, followed by geometry optimisation of the resulting enzyme-substrate complex. After a second round of docking the same substrate into the geometry-optimised structures, productive poses are identified by geometric filter criteria and ranked by their docking scores. Substrate-imprinted docking was applied in order to model (i enantioselectivity of Candida antarctica lipase B and a W104A mutant, (ii enantioselectivity and substrate specificity of Candida rugosa lipase and Burkholderia cepacia lipase, and (iii substrate specificity of an acetyl- and a butyrylcholine esterase toward the substrates acetyl- and butyrylcholine. Conclusion The experimentally observed differences in selectivity and specificity of the enzymes were reproduced with an accuracy of 81%. The method was robust toward small differences in initial structures (different crystallisation conditions or a co-crystallised ligand, although large displacements of catalytic residues often resulted in substrate poses that did not pass the geometric filter criteria.

  19. In situ observation of carbon nanotube layer growth on microbolometers with substrates at ambient temperature

    Science.gov (United States)

    Svatoš, Vojtěch; Gablech, Imrich; Ilic, B. Robert; Pekárek, Jan; Neužil, Pavel

    2018-03-01

    Carbon nanotubes (CNTs) have near unity infrared (IR) absorption efficiency, making them extremely attractive for IR imaging devices. Since CNT growth occurs at elevated temperatures, the integration of CNTs with IR imaging devices is challenging and has not yet been achieved. Here, we show a strategy for implementing CNTs as IR absorbers using differential heating of thermally isolated microbolometer membranes in a C2H2 environment. During the process, CNTs were catalytically grown on the surface of a locally heated membrane, while the substrate was maintained at an ambient temperature. CNT growth was monitored in situ in real time using optical microscopy. During growth, we measured the intensity of light emission and the reflected light from the heated microbolometer. Our measurements of bolometer performance show that the CNT layer on the surface of the microbolometer membrane increases the IR response by a factor of (2.3 ± 0.1) (mean ± one standard deviation of the least-squares fit parameters). This work opens the door to integrating near unity IR absorption, CNT-based, IR absorbers with hybrid complementary metal-oxide-semiconductor focal plane array architectures.

  20. The MIRD method of estimating absorbed dose

    International Nuclear Information System (INIS)

    Weber, D.A.

    1991-01-01

    The estimate of absorbed radiation dose from internal emitters provides the information required to assess the radiation risk associated with the administration of radiopharmaceuticals for medical applications. The MIRD (Medical Internal Radiation Dose) system of dose calculation provides a systematic approach to combining the biologic distribution data and clearance data of radiopharmaceuticals and the physical properties of radionuclides to obtain dose estimates. This tutorial presents a review of the MIRD schema, the derivation of the equations used to calculate absorbed dose, and shows how the MIRD schema can be applied to estimate dose from radiopharmaceuticals used in nuclear medicine

  1. Optimization of Perfect Absorbers with Multilayer Structures

    Science.gov (United States)

    Li Voti, Roberto

    2018-02-01

    We study wide-angle and broadband perfect absorbers with compact multilayer structures made of a sequence of ITO and TiN layers deposited onto a silver thick layer. An optimization procedure is introduced for searching the optimal thicknesses of the layers so as to design a perfect broadband absorber from 400 nm to 750 nm, for a wide range of angles of incidence from 0{°} to 50{°}, for both polarizations and with a low emissivity in the mid-infrared. We eventually compare the performances of several optimal structures that can be very promising for solar thermal energy harvesting and collectors.

  2. Device for absorbing seismic effects on buildings

    International Nuclear Information System (INIS)

    Xercavins, Pierre; Pompei, Michel.

    1979-01-01

    Device for absorbing seismic effects. The construction or structure to be protected rests on its foundations through at least one footing formed of a stack of metal plates interlinked by layers of adhesive material, over at least a part of their extent, this material being an elastomer that can distort, characterized in that at least part of the area of some metal plates works in association with components which are able to absorb at least some of the energy resulting from friction during the relative movements of the metal plates against the distortion of the elastomer [fr

  3. Graphene Based Terahertz Absorber Designed With Effective Surface Conductivity Approach

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim

    Young field of terahertz (THz) science and technology demands new materials and devices, such as filters, modulators, polarization converters and absorbers. Graphene, a recently discovered single-atom-thick material, provides exciting properties for functional terahertz applications. Graphene...... conductivity and how to use it in optical design. We demonstrate a tunable THz perfect absorber, which consists of continuous graphene various structured graphene metamaterials above a metal mirror. Changing the Fermi level from 0 eV to 0.5 eV allows for drastic changes in absorbance from less than 0.1 to 1...

  4. Applying an overstress principle in accelerated testing of absorbing mechanisms

    Science.gov (United States)

    Tsyss, V. G.; Sergaeva, M. Yu; Sergaev, A. A.

    2018-04-01

    The relevance of using overstress test as a forced one to determine the pneumatic absorber lifespan was studied. The obtained results demonstrated that at low load overstress the relative error for the absorber lifespan evaluation is no more than 3%. This means that the test results spread has almost no effect on the lifespan evaluation, and this effect is several times less than that at high load overstress tests. Accelerated testing of absorbers with low load overstress is more acceptable since the relative error for the lifespan evaluation is negligible.

  5. Neutron physics calculation for WWER-1000 absorber element lifetime determination

    International Nuclear Information System (INIS)

    Kurakin, K.Yu.; Kushmanov, S.A.

    2009-01-01

    Absorber element with compound absorber has been operating in WWER-1000 power units since 1995. AE design meets operating organizations requirements for reliability, service life (to 10 years) and safety functions. Extension of AE service life up to 20 - 30 years by the complex of calculation and experimental work is an important problem of WWER new designs development. The paper deals with the issues related to calculation determination of main factors that influence AE service life limitation - neutron flux and fluence onto absorbing and structural materials during extended service life. (Authors)

  6. PREFACE: Cell-substrate interactions Cell-substrate interactions

    Science.gov (United States)

    Gardel, Margaret; Schwarz, Ulrich

    2010-05-01

    One of the most striking achievements of evolution is the ability to build cellular systems that are both robust and dynamic. Taken by themselves, both properties are obvious requirements: robustness reflects the fact that cells are there to survive, and dynamics is required to adapt to changing environments. However, it is by no means trivial to understand how these two requirements can be implemented simultaneously in a physical system. The long and difficult quest to build adaptive materials is testimony to the inherent difficulty of this goal. Here materials science can learn a lot from nature, because cellular systems show that robustness and dynamics can be achieved in a synergetic fashion. For example, the capabilities of tissues to repair and regenerate are still unsurpassed in the world of synthetic materials. One of the most important aspects of the way biological cells adapt to their environment is their adhesive interaction with the substrate. Numerous aspects of the physiology of metazoan cells, including survival, proliferation, differentiation and migration, require the formation of adhesions to the cell substrate, typically an extracellular matrix protein. Adhesions guide these diverse processes both by mediating force transmission from the cell to the substrate and by controlling biochemical signaling pathways. While the study of cell-substrate adhesions is a mature field in cell biology, a quantitative biophysical understanding of how the interactions of the individual molecular components give rise to the rich dynamics and mechanical behaviors observed for cell-substrate adhesions has started to emerge only over the last decade or so. The recent growth of research activities on cell-substrate interactions was strongly driven by the introduction of new physical techniques for surface engineering into traditional cell biological work with cell culture. For example, microcontact printing of adhesive patterns was used to show that cell fate depends

  7. The Development of 6061-Aluminum Windows for the MICE Liquid Absorber

    International Nuclear Information System (INIS)

    Lau, W.; Yang, S.Q.; Green, M.A.; Ishimoto, S.; Swanson, J.

    2005-01-01

    The thin windows for the Muon Ionization Cooling Experiment (MICE) liquid Absorber will be fabricated from 6061-T6-aluminum. The absorber and vacuum vessel thin windows are 300-mm in diameter and are 180 mm thick at the center. The windows are designed for an internal burst pressure of 0.68 MPa (100 psig) when warm. The MICE experiment design calls for changeable windows on the absorber, so a bolted window design was adopted. Welded windows offer some potential advantages over bolted windows when they are on the absorber itself. This report describes the bolted window and its seal. This report also describes an alternate window that is welded directly to the absorber body. The welded window design presented permits the weld to be ground off and re-welded. This report presents a thermal FEA analysis of the window seal-weld, while the window is being welded. Finally, the results of a test of a welded-window are presented

  8. A Comprehensive Review of the Techniques on Regenerative Shock Absorber Systems

    Directory of Open Access Journals (Sweden)

    Ran Zhang

    2018-05-01

    Full Text Available In this paper, the current technologies of the regenerative shock absorber systems have been categorized and evaluated. Three drive modes of the regenerative shock absorber systems, namely the direct drive mode, the indirect drive mode and hybrid drive mode are reviewed for their readiness to be implemented. The damping performances of the three different modes are listed and compared. Electrical circuit and control algorithms have also been evaluated to maximize the power output and to deliver the premium ride comfort and handling performance. Different types of parameterized road excitations have been applied to vehicle suspension systems to investigate the performance of the regenerative shock absorbers. The potential of incorporating nonlinearity into the regenerative shock absorber design analysis is discussed. The research gaps for the comparison of the different drive modes and the nonlinearity analysis of the regenerative shock absorbers are identified and, the corresponding research questions have been proposed for future work.

  9. The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Li Yuanxun; Xie Yunsong; Zhang Huaiwu; Liu Yingli; Wen Qiye; Ling Weiwei, E-mail: liyuanxun@uestc.edu.c [State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054 (China)

    2009-05-07

    We simulated the metamaterial absorbers in two propagation conditions and observed the universal phenomenon of strong non-reciprocity. It is found that this non-reciprocity cannot be well interpreted using the effective medium theory, which indicates that the designing and understanding for the metamaterial absorber based on the proposed effective medium theory could not be applicable. The reason is pointed out that the metamaterial absorber does not satisfy the homogeneous-effective limit. So we put forward a three-parameter modified effective medium theory to fully describe the metamaterial absorbers. We have also investigated the relationships of S-parameters and absorptance among the metamaterial absorbers and the two components inside. Then the power absorption distributions in these three structures are discussed in detail. It can be concluded that the absorption is derived from the ERR structure and is enhanced largely by the coupling mechanism, and the strong non-reciprocity results from the different roles which wire structure plays in both propagation conditions.

  10. The strong non-reciprocity of metamaterial absorber: characteristic, interpretation and modelling

    International Nuclear Information System (INIS)

    Li Yuanxun; Xie Yunsong; Zhang Huaiwu; Liu Yingli; Wen Qiye; Ling Weiwei

    2009-01-01

    We simulated the metamaterial absorbers in two propagation conditions and observed the universal phenomenon of strong non-reciprocity. It is found that this non-reciprocity cannot be well interpreted using the effective medium theory, which indicates that the designing and understanding for the metamaterial absorber based on the proposed effective medium theory could not be applicable. The reason is pointed out that the metamaterial absorber does not satisfy the homogeneous-effective limit. So we put forward a three-parameter modified effective medium theory to fully describe the metamaterial absorbers. We have also investigated the relationships of S-parameters and absorptance among the metamaterial absorbers and the two components inside. Then the power absorption distributions in these three structures are discussed in detail. It can be concluded that the absorption is derived from the ERR structure and is enhanced largely by the coupling mechanism, and the strong non-reciprocity results from the different roles which wire structure plays in both propagation conditions.

  11. Design of a five-band terahertz perfect metamaterial absorber using two resonators

    Science.gov (United States)

    Meng, Tianhua; Hu, Dan; Zhu, Qiaofen

    2018-05-01

    We present a polarization-insensitive five-band terahertz perfect metamaterial absorber composed of two metallic circular rings and a metallic ground film separated by a dielectric layer. The calculated results show that the absorber has five distinctive absorption bands whose peaks are greater than 99% on average. The physical origin of the absorber originates from the combination of dipolar, hexapolar, and surface plasmon resonance of the patterned metallic structure, which is different from the work mechanism of previously reported absorbers. In addition, the influence of the structural parameters on the absorption spectra is analyzed to further confirm the origin of the five-band absorption peaks. The proposed absorber has potential applications in terahertz imaging, refractive index sensing, and material detecting.

  12. Cross connecting absorber module inlets of multiple boiler units

    International Nuclear Information System (INIS)

    Cirillo, A.J.; Sperber, P.K.; Belavadi, V.N.; Mukherji, A.

    1991-01-01

    The retrofitting of scrubbers downstream of existing balanced draft boilers is often accomplished by the addition of induced draft (ID) booster fans. By creating a common plenum between the ID fans and the ID booster fans of two or more boiler-absorber trains, absorber module capacity may be shared among multiple boiler units. At Harrison Power Station, three (3) 4,900,000 lb/hour boilers (640 MWe Gross) will be linked through a common plenum. This sharing capability precludes the need to add standby module capacity, thereby saving capital dollars and keeping project critical path schedules, which typically run through absorber procurement and construction, to a minimum. Through damper placement in the ductwork cross connections, unitized boiler-absorber module operation or common plenum operation may be obtained, thus providing both operational flexibility and reliability. Additionally, open plenum operation allows the removal of an absorber unit from service, while keeping its associated boiler on line, thereby precluding 'cold starts' and maintaining overall unit availabilities. As either unitized or common plenum operation is possible with the cross connection, the furnace draft control systems of each boiler must be examined for varying load operation and trip conditions. This paper addresses the means by which to analyze such cross connection operational scenarios while maintaining compliance with furnace flame out safety guidelines, and will discuss the physical design considerations, ramifications and benefits of same, with select emphasis on what is being implemented at the Harrison Power Station

  13. Robust optimization of a tandem grating solar thermal absorber

    Science.gov (United States)

    Choi, Jongin; Kim, Mingeon; Kang, Kyeonghwan; Lee, Ikjin; Lee, Bong Jae

    2018-04-01

    Ideal solar thermal absorbers need to have a high value of the spectral absorptance in the broad solar spectrum to utilize the solar radiation effectively. Majority of recent studies about solar thermal absorbers focus on achieving nearly perfect absorption using nanostructures, whose characteristic dimension is smaller than the wavelength of sunlight. However, precise fabrication of such nanostructures is not easy in reality; that is, unavoidable errors always occur to some extent in the dimension of fabricated nanostructures, causing an undesirable deviation of the absorption performance between the designed structure and the actually fabricated one. In order to minimize the variation in the solar absorptance due to the fabrication error, the robust optimization can be performed during the design process. However, the optimization of solar thermal absorber considering all design variables often requires tremendous computational costs to find an optimum combination of design variables with the robustness as well as the high performance. To achieve this goal, we apply the robust optimization using the Kriging method and the genetic algorithm for designing a tandem grating solar absorber. By constructing a surrogate model through the Kriging method, computational cost can be substantially reduced because exact calculation of the performance for every combination of variables is not necessary. Using the surrogate model and the genetic algorithm, we successfully design an effective solar thermal absorber exhibiting a low-level of performance degradation due to the fabrication uncertainty of design variables.

  14. Heaving buoys, point absorbers and arrays.

    Science.gov (United States)

    Falnes, Johannes; Hals, Jørgen

    2012-01-28

    Absorption of wave energy may be considered as a phenomenon of interference between incident and radiated waves generated by an oscillating object; a wave-energy converter (WEC) that displaces water. If a WEC is very small in comparison with one wavelength, it is classified as a point absorber (PA); otherwise, as a 'quasi-point absorber'. The latter may be a dipole-mode radiator, for instance an immersed body oscillating in the surge mode or pitch mode, while a PA is so small that it should preferably be a source-mode radiator, for instance a heaving semi-submerged buoy. The power take-off capacity, the WEC's maximum swept volume and preferably also its full physical volume should be reasonably matched to the wave climate. To discuss this matter, two different upper bounds for absorbed power are applied in a 'Budal diagram'. It appears that, for a single WEC unit, a power capacity of only about 0.3 MW matches well to a typical offshore wave climate, and the full physical volume has, unfortunately, to be significantly larger than the swept volume, unless phase control is used. An example of a phase-controlled PA is presented. For a sizeable wave-power plant, an array consisting of hundreds, or even thousands, of mass-produced WEC units is required.

  15. Liftoff process for exfoliation of thin film photovoltaic devices and back contact formation

    Energy Technology Data Exchange (ETDEWEB)

    Haight, Richard A.; Hannon, James B.; Oida, Satoshi

    2018-04-03

    A method for forming a back contact on an absorber layer in a photovoltaic device includes forming a two dimensional material on a first substrate. An absorber layer including Cu--Zn--Sn--S(Se) (CZTSSe) is grown over the first substrate on the two dimensional material. A buffer layer is grown on the absorber layer on a side opposite the two dimensional material. The absorber layer is exfoliated from the two dimensional material to remove the first substrate from a backside of the absorber layer opposite the buffer layer. A back contact is deposited on the absorber layer.

  16. Laser-Assisted Simultaneous Transfer and Patterning of Vertically Aligned Carbon Nanotube Arrays on Polymer Substrates for Flexible Devices

    KAUST Repository

    In, Jung Bin

    2012-09-25

    We demonstrate a laser-assisted dry transfer technique for assembling patterns of vertically aligned carbon nanotube arrays on a flexible polymeric substrate. A laser beam is applied to the interface of a nanotube array and a polycarbonate sheet in contact with one another. The absorbed laser heat promotes nanotube adhesion to the polymer in the irradiated regions and enables selective pattern transfer. A combination of the thermal transfer mechanism with rapid direct writing capability of focused laser beam irradiation allows us to achieve simultaneous material transfer and direct micropatterning in a single processing step. Furthermore, we demonstrate that malleability of the nanotube arrays transferred onto a flexible substrate enables post-transfer tailoring of electric conductance by collapsing the aligned nanotubes in different directions. This work suggests that the laser-assisted transfer technique provides an efficient route to using vertically aligned nanotubes as conductive elements in flexible device applications. © 2012 American Chemical Society.

  17. Fabrication of open-top microchannel plate using deep X-ray exposure mask made with silicon on insulator substrate

    CERN Document Server

    Fujimura, T; Etoh, S I; Hattori, R; Kuroki, Y; Chang, S S

    2003-01-01

    We propose a high-aspect-ratio open-top microchannel plate structure. This type of microchannel plate has many advantages in electrophoresis. The plate was fabricated by deep X-ray lithography using synchrotron radiation (SR) light and the chemical wet etching process. A deep X-ray exposure mask was fabricated with a silicon on insulator (SOI) substrate. The patterned Si microstructure was micromachined into a thin Si membrane and a thick Au X-ray absorber was embedded in it by electroplating. A plastic material, polymethylmethacrylate (PMMA) was used for the plate substrate. For reduction of the exposure time and high-aspect-ratio fast wet development, the fabrication condition was optimized with respect to not the exposure dose but to the PMMA mean molecular weight (M.W.) changing after deep X-ray exposure as measured by gel permeation chromatography (GPC). Decrement of the PMMA M.W. and increment of the wet developer temperature accelerated the etching rate. Under optimized fabrication conditions, a microc...

  18. Absorbable and biodegradable polymers

    CERN Document Server

    Shalaby, Shalaby W

    2003-01-01

    INTRODUCTION NOTES: Absorbable/Biodegradable Polymers: Technology Evolution. DEVELOPMENT AND APPLICATIONOF NEW SYSTEMS: Segmented Copolyesters with Prolonged Strength Retention Profiles. Polyaxial Crystalline Fiber-Forming Copolyester. Polyethylene Glycol-Based Copolyesters. Cyanoacrylate-Based Systems as Tissue Adhesives. Chitosan-Based Systems. Hyaluronic Acid-Based Systems. DEVELOPMENTS IN PREPARATIVE, PROCESSING, AND EVALUATION METHODS: New Approaches to the Synthesis of Crystalline. Fiber-Forming Aliphatic Copolyesters. Advances in Morphological Development to Tailor the Performance of Me

  19. On the radiative effects of light-absorbing impurities on snowpack evolution

    Science.gov (United States)

    Dumont, M.; Tuzet, F.; Lafaysse, M.; Arnaud, L.; Picard, G.; Lejeune, Y.; Lamare, M.; Morin, S.; Voisin, D.; Di Mauro, B.

    2017-12-01

    The presence of light absorbing impurities in snow strongly decreases snow reflectance leading to an increase in the amount of solar energy absorbed by the snowpack. This effect is also known as impurities direct radiative effect. The change in the amount of energy absorbed by the snowpack modifies the temperature profile inside the snowpack and in turn snow metamorphism (impurities indirect radiative effects). In this work, we used the detailed snowpack model SURFEX/ISBA-Crocus with an explicit representation of snow light-absorbing impurities content (Tuzet et al., 2017) fed by medium-resolution ALADIN-Climate atmospheric model to represent dust and black carbon atmospheric deposition fluxes. The model is used at two sites: Col de Porte (medium elevation site in the French Alps) and Torgnon (high elevation site in the Italian Alps). The simulations are compared to in-situ observations and used to quantify the effects of light-absorbing impurities on snow melt rate and timing. The respective parts of the direct and indirect radiative effects of light-absorbing impurities in snow are also computed for the two sites, emphasizing the need to account for the interactions between snow metamorphism and LAI radiative properties, to accurately predict the effects of light-absorbing impurities in snow. Moreover, we describe how automated hyperspectral reflectance can be used to estimate effective impurities surface content in snow. Finally we demonstrate how these reflectances measurements either from in situ or satellite data can be used via an assimilation scheme to constrain snowpack ensemble simulations and better predict the snowpack state and evolution.

  20. Dual-band absorber for multispectral plasmon-enhanced infrared photodetection

    International Nuclear Information System (INIS)

    Yu, Peng; Ashalley, Eric; Wang, Zhiming; Wu, Jiang; Govorov, Alexander

    2016-01-01

    For most of the reported metamaterial absorbers, the peak absorption only occurs at one single wavelength. Here, we investigated a dual-band absorber which is based on simple gold nano-rings. Two absorption peaks can be readily achieved in 3–5 µ m and 8–14 µ m via tuning the width and radius of gold nano-rings and dielectric constant. The average maximum absorption of two bands can be as high as 95.1% (−0.22 dB). Based on the simulation results, the perfect absorber with nano-rings demonstrates great flexibility to create dual-band or triple-band absorption, and thus holds potential for further applications in thermophotovoltaics, multicolor infrared focal plane arrays, optical filters, and biological sensing applications. (paper)

  1. Development of an innovative solar absorber

    Science.gov (United States)

    Goodchild, Gavin

    Solar thermal systems have great potential to replace or reduce the dependence of conventional fossil fuel based heating technologies required for space and water heating. Specifically solar domestic hot water systems can contribute 50-75% of the annual thermal load. To date residential users have been slow to purchase and install systems, primarily due to the large monetary investment required to purchase and install a system. Recent innovations in materials design and manufacturing techniques, offer opportunities for the development of absorber plate designs that have the potential to reduce cost, increase efficiency and reduce payback periods. Consequently, this design study was conducted in conjunction with industrial partners to develop an improved absorber based on roll bond manufacturing that can be produced at reduced cost with comparable or greater thermal efficiency.

  2. Electrodeposited Ni nanowires-track etched P.E.T. composites as selective solar absorbers

    Science.gov (United States)

    Lukhwa, R.; Sone, B.; Kotsedi, L.; Madjoe, R.; Maaza, M.

    2018-05-01

    This contribution reports on the structural, optical and morphological properties of nanostructured flexible solar-thermal selective absorber composites for low temperature applications. The candidate material in the system is consisting of electrodeposited nickel nano-cylinders embedded in track-etched polyethylene terephthalate (PET) host membrane of pore sizes ranging between 0.3-0.8µm supported by conductive nickel thin film of about 0.5µm. PET were irradiated with 11MeV/u high charged xenon (Xe) ions at normal incidence. The tubular and metallic structure of the nickel nano-cylinders within the insulator polymeric host forms a typical ceramic-metal nano-composite "Cermet". The produced material was characterized by the following techniques: X-ray diffraction (XRD) for structural characterization to determine preferred crystallographic structure, and grain size of the materials; Scanning electron microscopy (SEM) to determine surface morphology, particle size, and visual imaging of distribution of structures on the surface of the substrate; Atomic force microscopy (AFM) to characterize surface roughness, surface morphology, and film thickness, and UV-Vis-NIR spectrophotometer to measure the reflectance, then to determine solar absorption

  3. A signal-substrate match in the substrate-borne component of a multimodal courtship display

    Directory of Open Access Journals (Sweden)

    Damian O. ELIAS, Andrew C. MASON, Eileen A. HEBETS

    2010-06-01

    Full Text Available The environment can impose strong limitations on the efficacy of signal transmission. In particular, for vibratory communication, the signaling environment is often extremely heterogeneous at very small scales. Nevertheless, natural selection is expected to select for signals well-suited to effective transmission. Here, we test for substrate-dependent signal efficacy in the wolf spider Schizocosa stridulans Stratton 1991. We first explore the transmission characteristics of this important signaling modality by playing recorded substrate-borne signals through three different substrates (leaf litter, pine litter, and red clay and measuring the propagated signal. We found that the substrate-borne signal of S. stridulans attenuates the least on leaf litter, the substrate upon which the species is naturally found. Next, by assessing mating success with artificially muted and non-muted males across different signaling substrates (leaf litter, pine litter, and sand, we explored the relationship between substrate-borne signaling and substrate for mating success. We found that muted males were unsuccessful in obtaining copulations regardless of substrate, while mating success was dependent on the signaling substrate for non-muted males. For non-muted males, more males copulated on leaf litter than any other substrate. Taken together, these results confirm the importance of substrate-borne signaling in S. stridulans and suggest a match between signal properties and signal efficacy – leaf litter transmits the signal most effectively and males are most successful in obtaining copulations on leaf litter [Current Zoology 56 (3: 370–378, 2010].

  4. Ground-plane-less bidirectional terahertz absorber based on omega resonators

    NARCIS (Netherlands)

    Balmakou, Alexei; Podalov, Maxim; Khakhomov, Sergei; Stavenga, Doekele; Semchenko, Igor

    2015-01-01

    We present a new ultrathin metamaterial that acts as a frequency-selective absorber of terahertz radiation. The absorber is a square array of pairs of omega-shaped micro-resonators made of high-ohmic-loss metal. The metamaterial provides significant suppression of transmitted and reflected radiation

  5. RF electromagnetic wave absorbing properties of ferrite polymer composite materials

    International Nuclear Information System (INIS)

    Dosoudil, Rastislav; Usakova, Marianna; Franek, Jaroslav; Slama, Jozef; Olah, Vladimir

    2006-01-01

    The frequency dispersion of complex initial (relative) permeability (μ * =μ ' -jμ ' ') and the electromagnetic wave absorbing properties of composite materials based on NiZn sintered ferrite and a polyvinylchloride (PVC) polymer matrix have been studied in frequency range from 1MHz to 1GHz. The complex permeability of the composites was found to increase as the ferrite content increased, and was characterized by frequency dispersion localized above 50MHz. The variation of return loss (RL) of single-layer RF absorbers using the prepared composite materials has been investigated as a function of frequency, ferrite content and the thickness of the absorbers

  6. An absorbed dose calorimeter for IMRT dosimetry

    International Nuclear Information System (INIS)

    Duane, S.; Aldehaybes, M.; Bailey, M.; Lee, N.D.; Thomas, C.G.; Palmans, H.

    2012-01-01

    A new calorimeter for dosimetry in small and complex fields has been built. The device is intended for the direct determination of absorbed dose to water in moderately small fields and in composite fields such as IMRT treatments, and as a transfer instrument calibrated against existing absorbed dose standards in conventional reference conditions. The geometry, materials and mode of operation have been chosen to minimize detector perturbations when used in a water phantom, to give a reasonably isotropic response and to minimize the effects of heat transfer when the calorimeter is used in non-reference conditions in a water phantom. The size of the core is meant to meet the needs of measurement in IMRT treatments and is comparable to the size of the air cavity in a type NE2611 ionization chamber. The calorimeter may also be used for small field dosimetry. Initial measurements in reference conditions and in an IMRT head and neck plan, collapsed to gantry angle zero, have been made to estimate the thermal characteristics of the device, and to assess its performance in use. The standard deviation (estimated repeatability) of the reference absorbed dose measurements was 0.02 Gy (0.6%). (authors)

  7. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  8. Full-flow absorbers. Every centimetre counts

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Joachim

    2012-07-01

    New absorbers with a maximised area for heat exchange with the thermal medium are significantly more efficient than the presently typical designs. Both the industry and researchers are working to revive an old idea. (orig.)

  9. Multi-Absorber Transition-Edge Sensors for X-Ray Astronomy Applications

    Science.gov (United States)

    Smith, S. J.; Adams, J. S.; Bandler, S. R.; Busch, S. E.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kelly, D. P.; hide

    2012-01-01

    We are developing multi-absorber Transition-Edge Sensors (TESs) for applications in x-ray astronomy. These position-sensitive devices consist of multiple x-ray absorbers each with a different thermal coupling to a single readout TES. Heat diffusion between the absorbers and the TES gives rise to a characteristic pulse shape corresponding to each absorber element and enables position discrimination. The development of these detectors is motivated by a desire to maximize focal plane arrays with the fewest number of readout channels. In this contribution we report on the first results from devices consisting of nine) 65 X 65 sq. microns Au x-ray absorbers) 5 microns thick. These are coupled to a single 35 X 35 sq. microns Mo/Au bilayer TES. These devices have demonstrated full-width-half-maximum (FWHM) energy resolution of 2.1 eV at 1.5 keV) 2.5 eV at 5.9 keV and 3.3 eV at 8 keV. This is coupled with position discrimination from pulse shape over the same energy range. We use a finite-element model to reproduce the measured pulse shapes and investigate the detector non-linearity with energy) which impacts on the devices position sensitivity and energy resolution.

  10. An innovative MRE absorber with double natural frequencies for wide frequency bandwidth vibration absorption

    International Nuclear Information System (INIS)

    Sun, Shuaishuai; Yang, Jian; Li, Weihua; Alici, Gursel; Deng, Huaxia; Du, Haiping; Yan, Tianhong

    2016-01-01

    A new design of adaptive tuned vibration absorber was proposed in this study for vibration reduction. The innovation of the new absorber is the adoption of the eccentric mass on the top of the multilayered magnetorheological elastomer (MRE) structure so that this proposed absorber has two vibration modes: one in the torsional direction and the other in translational direction. This property enables the absorber to expand its effective bandwidth and to be more capable of reducing the vibrations especially dealing with those vibrations with multi-frequencies. The innovative MRE absorber was designed and tested on a horizontal vibration table. The test results illustrate that the MRE absorber realized double natural frequencies, both of which are controllable. Inertia’s influence on the dynamic behavior of the absorber is also investigated in order to guide the design of the innovative MRE absorber. Additionally, the experimentally obtained natural frequencies coincide with the theoretical data, which sufficiently verifies the feasibility of this new design. The last part in terms of the vibration absorption ability also proves that both of these two natural frequencies play a great role in absorbing vibration energy. (paper)

  11. OrbusNeich fully absorbable coronary stent platform incorporating dual partitioned coatings.

    Science.gov (United States)

    Cottone, Robert J; Thatcher, G Lawrence; Parker, Sherry P; Hanks, Laurence; Kujawa, David A; Rowland, Stephen M; Costa, Marco; Schwartz, Robert S; Onuma, Yoshinobu

    2009-12-15

    The field of stent based tissue engineering continues to revolutionise modern medicine by designing novel materials to restore vascular tissue function. Accordingly, the following discussion examines a novel, absorbable, polymeric scaffold engineered in combination with dual therapeutic coating, enabling locally administered temporary scaffolding in the coronary arteries for long term vascular patency and repair. This coronary stent platform consists of an absorbable polymeric material stent structure that incorporates a dual partitioned coating, by means of pro-healing EPC (endothelial progenitor cell) capture technology allowing for rapid endothelial coverage, and an absorbable polymer matrix with sustained elution of sirolimus, a drug controlling neointimal proliferation. This paper provides a brief overview of the various innovations developed by OrbusNeich to create this fully absorbable coronary device platform.

  12. Multilayer detector for skin absorbed dose measuring

    International Nuclear Information System (INIS)

    Osanov, D.P.; Panova, V.P.; Shaks, A.I.

    1985-01-01

    A method for skin dosimetry based on utilization of multilayer detectors and permitting to estimate distribution of absorbed dose by skin depth is described. The detector represents a set of thin sensitive elements separated by tissue-equivalent absorbers. Quantitative evaluation and forecasting the degree of radiation injury of skin are determined by the formula based on determination of the probability of the fact that cells are not destroyed and they can divide further on. The given method ensures a possibility of quantitative evaluation of radiobiological effect and forecasting clinical consequences of skin irradiation by results of corresponding measurements of dose by means of the miultilayer detector

  13. Absorbable stent: focus on clinical applications and benefits

    Directory of Open Access Journals (Sweden)

    Gonzalo N

    2012-02-01

    Full Text Available Nieves Gonzalo, Carlos MacayaInterventional Cardiology, Cardiovascular Institute. Hospital Clinico San Carlos, Instituto de Investigación Sanitaria del Hospital Clinico San Carlos, Madrid, SpainAbstract: Coronary stents have improved very significantly the immediate and long-term results of percutaneous coronary interventions. However, once the vessel has healed, the scaffolding function of the stent is no longer needed, and the presence of a permanent metallic prosthesis poses important disadvantages. This has led to the idea of creating new devices that are able to provide mechanical support for a determined period and then disappear from the vessel, allowing its natural healing and avoiding the risks associated with having a permanent metallic cage, such as stent thrombosis. Absorbable stents currently appear as one of the most promising fields in interventional cardiology. The present article will review the available clinical evidence regarding these devices at present and their future perspectives.Keywords: absorbable stent, bioresorbable stent, absorb, percutaneous coronary intervention

  14. The dynamics analysis of a ferrofluid shock absorber

    International Nuclear Information System (INIS)

    Yao, Jie; Chang, Jianjun; Li, Decai; Yang, Xiaolong

    2016-01-01

    The paper presents a shock absorber using three magnets as the inertial mass. Movement of the inertial mass inside a cylindrical body filled with ferrofluid will lead to a viscous dissipation of the oscillating system energy. The influence of a dumbbell-like ferrofluid structure on the energy dissipation is considered and the magnetic restoring force is investigated by experiment and theoretical calculation. A theoretical model of the hydrodynamics and energy dissipation processes is developed, which includes the geometrical characteristics of the body, the fluid viscosity, and the external magnetic field. The theory predicts the experimental results well under some condition. The shock absorber can be used in spacecraft technology. - Highlights: • We study a ferrofluid shock absorber. • The mechanical model of the flow of the ferrofluid has been built. • The theoretical model of the energy dissipation processes is developed. • The magnetic restoring force between the body and the magnets has been measured.

  15. The dynamics analysis of a ferrofluid shock absorber

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jie; Chang, Jianjun [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Li, Decai, E-mail: dcli@bjtu.edu.cn [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Yang, Xiaolong [School of Mechanical Engineering, Guangxi University of Science and Technology, Liuzhou, Guangxi 545006 (China)

    2016-03-15

    The paper presents a shock absorber using three magnets as the inertial mass. Movement of the inertial mass inside a cylindrical body filled with ferrofluid will lead to a viscous dissipation of the oscillating system energy. The influence of a dumbbell-like ferrofluid structure on the energy dissipation is considered and the magnetic restoring force is investigated by experiment and theoretical calculation. A theoretical model of the hydrodynamics and energy dissipation processes is developed, which includes the geometrical characteristics of the body, the fluid viscosity, and the external magnetic field. The theory predicts the experimental results well under some condition. The shock absorber can be used in spacecraft technology. - Highlights: • We study a ferrofluid shock absorber. • The mechanical model of the flow of the ferrofluid has been built. • The theoretical model of the energy dissipation processes is developed. • The magnetic restoring force between the body and the magnets has been measured.

  16. A new neutron absorber material for criticality control

    International Nuclear Information System (INIS)

    Wells, Alan H.

    2007-01-01

    A new neutron absorber material based on a nickel metal matrix composite has been developed for applications such as the Transport, Aging, and Disposal (TAD) canister for the Yucca Mountain Project. This new material offers superior corrosion resistance to withstand the more demanding geochemical environments found in a 300,000 year to a million year repository. The lifetime of the TAD canister is currently limited to 10,000 years, reflecting the focus of current regulations embodied in 10 CFR 63. The use of DOE-owned nickel stocks from decommissioned enrichment facilities could reduce the cost compared to stainless steel/boron alloy. The metal matrix composite allows the inclusion of more than one neutron absorber compound, so that the exact composition may be adjusted as needed. The new neutron absorber material may also be used for supplementary criticality control of stored or transported PWR spent fuel by forming it into cylindrical pellets that can be inserted into a surrogate control rod. (authors)

  17. Overcoming bacterial contamination of fuel ethanol fermentations -- alterntives to antibiotics

    Science.gov (United States)

    Fuel ethanol fermentations are not performed under aseptic conditions and microbial contamination reduces yields and can lead to costly "stuck fermentations". Antibiotics are commonly used to combat contaminants, but these may persist in the distillers grains co-product. Among contaminants, it is kn...

  18. Contributions to the Study of Dynamic Absorbers, a Case Study

    Directory of Open Access Journals (Sweden)

    Monica Balcau

    2012-01-01

    Full Text Available Dynamic absorbers are used to reduce torsional vibrations. This paper studies the effect of a dynamic absorber attached to a mechanical system formed of three reduced masses which are acted on by one, two or three order x harmonics of a disruptive force.

  19. X-ray absorbed doses evaluation on patients under radiological studies

    International Nuclear Information System (INIS)

    Medeiros, Regina Bitelli; Daros, Kellen A.C.

    1996-01-01

    The skin absorbed doses were evaluated on patient submitted to the following x-ray exams : chest, facial sinus, lumbar spine. Thermoluminescent dosimetry was used and a variety of irradiation techniques performed. The results shown considerable differences on the absorbed dose for the various alternative technical conditions

  20. Performance of Closely Spaced Point Absorbers with Constrained Floater Motion

    DEFF Research Database (Denmark)

    De Backer, G.; Vantorre, M.; Beels, C.

    2009-01-01

    The performance of a wave energy converter array of twelve heaving point absorbers has been assessed numerically in a frequency domain model. Each point absorber is assumed to have its own linear power take-off. The impact of slamming, stroke and force restrictions on the power absorption...

  1. Testing and evaluation of absorbers for gaseous penetrative forms of radioiodine

    International Nuclear Information System (INIS)

    Kabot, M.

    1974-10-01

    A significant fraction of airborne radioiodine, encountered at times in operational areas of Ontario Hydro nuclear power generating stations, was found to be penetrative inorganic and organic species. Theorectical evaluation of iodine chemistry is presented based on analysis of operational iodine concentrations in station systems, areas and effluents under actual operating conditions. The theoretical evaluation and the operational experiments show that hypoiodous acid and organic iodides are the basic forms of airborne iodine which occur in the field and in station effluents. A method was developed for laboratory generation of HOI and its identity confirmed by use of specific absorbers. Six of the commercially available (and recently developed) absorbers were tested for HOI removal efficiency in the laboratory under conditions similar to those found in the field. Experimental equipment, methods used for the absorber testing and experimental conditions are described. Results show that charcoals have generally better initial absorption efficiency for hypoiodous acid than silver impregnated inorganic absorbers. Both technical and economical aspects of the operational use of the tested absorbers are discussed. (auth)

  2. ABSORBABLE IRON IN BREAD: PROCEDURES OF ITS AUGMENTATION

    Directory of Open Access Journals (Sweden)

    M SABZEVARY

    2001-12-01

    Full Text Available Introduction: As many as 35 percent of the world population suffer from some degree of iron deficiency anemia. According to recent reports published by WHO and ICN (International Congress of Nutrition 20-40 percent of women are suffering from iron deficiency. Iron deficiency anemia is caused by lack of intake of the necessary doses of Fe+2 called Heme. The recommended intake dose is 10-17 mg Fe + 2/day. In Iran, bread is the main source of daily iron intake. However, the iron content of bread is Fe+3 which is not absorbable. The objectives of this study is to determine the levels of absorbable iron (Fe + 2 in two common types of Iranian bread and identify the means of raising these to an adequate levels.
    Methods: Random sampling method together with the normal distribution curve was employed in testing 120 samples of flour and bread. Quantification was carried out on each sample in duplicate using spectrophotometer at 510 mu, micrometer wave length. The effect of three organic acids (lactic ascorbic and acetic acid converting of Fe+3 to Fe + 2 was investigated. Two groups of bread was tested. One group was baked in tratitional oven (Noon-e-Tanoori and the second group through the common Iranian hot rotating iron plate baking machine (Noon-e-Machini.
    Results: Our results showed that the amount of absorbable Fe+2 in breads baked in rotatory oven (Noon-e-Tanoori is 0.8 ± 0.32 mg and the amount of unabsorbable Fe+3 in dried bread is 2.34 ± 0.25 mg/100 gm while the amount of absorbable Fe + 2 baked in traditional ovens is only 0.3±0.11 mg versus of unabsorbable Fe  + 3 1.9±0.13 mg/100 gm of dried bread. Meanwhile it was found that lactic and ascorbic acids can convert Fe+3 to Fe+2. Therefore, addition of one of these two acids to bread can catalyze conversion of unabsorbable Fe+3 to absorbable Fe + 2.
    Discussion: On the average an Iranian consumes 370 gm of

  3. Feasibility study of chabazite absorber tube utilization in online absorption of released gaseous fission products and substitution of burnable absorber rods with chabazite absorber tubes in VVER-1000 reactor series

    International Nuclear Information System (INIS)

    Rahmani, Yashar

    2017-01-01

    Highlights: • Chabazite tubes are used for online removal of the released gaseous fission products. • The feasibility of using chabazite tubes instead of burnable absorber rods was studied. • A computational cycle was designed using the WIMSD5-B, CITATION-LDI2 and WERL codes. • In modeling fission gas release, the Weisman, Booth, Mason and T.S. models were used. • By this method, it is possible to increase cycle length and enhance heat transfer. - Abstract: As gaseous fission products, e.g. xenon and krypton have adverse effects such as reducing the rate of heat transfer in fuel rods and adding negative reactivity to the reactor core, the present manuscript was dedicated to development of a novel method for improving these defects. In the proposed method, chabazite absorber tubes were used for online removal of the released gaseous fission products from gaseous gap spaces. Moreover, in this research, feasibility of using chabazite absorber tubes instead of burnable absorber rods was examined. To perform the required modeling and calculations to successfully meet the mentioned objectives, a thermo-neutronic computational cycle was designed using the coupling of WIMSD5-B and CITATION-LDI2 codes in the neutronic section and the WERL code in the thermo-hydraulic calculations. In addition, in modeling the release process of gaseous fission products, the Weisman, Booth, Mason, and T.S. models were examined. It is worth mentioning that in this research, calculations and modeling procedures were based on the first cycle of Bushehr’s VVER-1000 reactor to study the feasibility of the proposed solution. The obtained results revealed that with application of the proposed method in this research, it is possible to increase cycle length, improve safety thresholds, and enhance heat transfer in the core of nuclear reactors.

  4. Kinetic energy absorbing pad

    International Nuclear Information System (INIS)

    Bricmont, R.J.; Hamilton, P.A.; Ming Long Ting, R.

    1981-01-01

    Reactors, fuel processing plants etc incorporate pipes and conduits for fluids under high pressure. Fractures, particularly adjacent to conduit elbows, produce a jet of liquid which whips the broken conduit at an extremely high velocity. An enormous impact load would be applied to any stationary object in the conduit's path. The design of cellular, corrugated metal impact pads to absorb the kinetic energy of the high velocity conduits is given. (U.K.)

  5. Characterization of selective solar absorber under high vacuum.

    Science.gov (United States)

    Russo, Roberto; Monti, Matteo; di Giamberardino, Francesco; Palmieri, Vittorio G

    2018-05-14

    Total absorption and emission coefficients of selective solar absorbers are measured under high vacuum conditions from room temperature up to stagnation temperature. The sample under investigation is illuminated under vacuum @1000W/m 2 and the sample temperature is recorded during heat up, equilibrium and cool down. During stagnation, the absorber temperature exceeds 300°C without concentration. Data analysis allows evaluating the solar absorptance and thermal emittance at different temperatures. These in turn are useful to predict evacuated solar panel performances at operating conditions.

  6. Absorber Model for CO2 Capture by Monoethanolamine

    DEFF Research Database (Denmark)

    Faramarzi, Leila; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2010-01-01

    The rate-based steady-state model proposed by Gabrielsen et al. (Gabrielsen, J.; Michelsen, M. L.; Kontogeorgis, G. M.; Stenby, E. H. AIChE J. 2006, 52, 10, 3443-3451) for the design of the CO2-2-amino-2-methylpropanol absorbers is adopted and improved for the design of the CO2-monoethanolamine......, and their impact on the model's prediction is compared. The model has been successfully applied to CO2 absorber packed columns and validated against pilot plant data with good agreement....

  7. [Bond strengths of absorbable polylactic acid root canal post with three different adhesives].

    Science.gov (United States)

    Pan, Hui; Cheng, Can; Hu, Jia; Liu, He; Sun, Zhi-hui

    2015-12-18

    To find absorbable adhesives with suitable bonding properties for the absorbable polylactic acid root canal post. To test and compare the bond strengths of absorbable polylactic acid root canal post with three different adhesives. The absorbable polylactic acid root canal posts were used to restore the extracted teeth, using 3 different adhesives: cyanoacrylates, fibrin sealant and glass ionomer cement. The teeth were prepared into slices for micro-push-out test. The bond strength was statistically analyzed using ANOVA. The specimens were examined using microscope and the failure mode was divided into four categories: cohesive failure between absorbable polylactic acid root canal posts and adhesives, cohesive failure between dentin and adhesives, failure within the adhesives and failure within the absorbable polylactic acid root canal posts. The bond strength of cyanoacrylates [(16.83 ± 6.97) MPa] and glass ionomer cement [(12.10 ± 5.09) MPa] were significantly higher than fibrin sealant [(1.17 ± 0.50) MPa], Padhesives was 25.0%, the cohesive failure between the dentin and the adhesives was 16.7%, the failure within the adhesives was 33.3%, and the failure within the absorbable polylactic acid root canal posts was 25.0%. In the group of fibrin sealant, the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives was 66.7%, the cohesive failure between the dentin and the adhesives was 22.2%, the failure within the adhesives was 11.1%. In the group of glass ionomer cement, the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives was 87.5%, the failure within the adhesives was 12.5%. The major failure mode in fibrin sealant and glass ionomer cement was the cohesive failure between the absorbable polylactic acid root canal posts and the adhesives. No major failure modes were found in the group of cyanoacrylates. The bond strength of fibrin sealant is low, which cannot meet the requirement of

  8. Absorber Model: the Halo-like model for the Lyman-α forest

    Science.gov (United States)

    Iršič, Vid; McQuinn, Matthew

    2018-04-01

    We present a semi-analytic model for the Lyman-α forest that is inspired by the Halo Model. This model is built on the absorption line decomposition of the forest. Flux correlations are decomposed into those within each absorption line (the 1-absorber term) and those between separate lines (the 2-absorber term), treating the lines as biased tracers of the underlying matter fluctuations. While the nonlinear exponential mapping between optical depth and flux requires an infinite series of moments to calculate any statistic, we show that this series can be re-summed (truncating at the desired order in the linear matter overdensity). We focus on the z=2–3 line-of-sight power spectrum. Our model finds that 1-absorber term dominates the power on all scales, with most of its contribution coming from H I columns of 1014–1015 cm‑2, while the smaller 2-absorber contribution comes from lower columns that trace overdensities of a few. The prominence of the 1-absorber correlations indicates that the line-of-sight power spectrum is shaped principally by the lines' number densities and their absorption profiles, with correlations between lines contributing to a lesser extent. We present intuitive formulae for the effective optical depth as well as the large-scale limits of 1-absorber and 2-absorber terms, which simplify to integrals over the H I column density distribution with different equivalent-width weightings. With minimalist models for the bias of absorption systems and their peculiar velocity broadening, our model predicts values for the density bias and velocity gradient bias that are consistent with those found in simulations.

  9. Effect of different absorbing materials on the performance of basin solar still under Libyan climate conditions

    International Nuclear Information System (INIS)

    Shuia, Essaied M.; El-Agouz, Elsayed A.

    2013-01-01

    This experimental study deals with a single-basin solar still using various absorbing materials with and without black painting. Different types of absorbing materials with and without black painting were used to enhance the solar still productivity through improvement in absorptivity. These materials are steel and aluminum with and without black painting and rubber. Two identical solar stills were manufactured using locally available materials. All the results were compared together to reach the best absorbing materials with and without painting that can be used for solar still. it was found that the rubber absorber has the highest water collection during daytime, followed by the black painted steel absorber, then by black painted aluminum absorber and steel without painting absorber. The average enhancement in the daily productivity was about 50% for the rubber absorber compared with the black painted aluminum absorber and about 43% for the rubber absorber compared with the black painted steel absorber.(author)

  10. Mechanic- and hydraulic shock-absorbers - layout, construction, operation experience

    International Nuclear Information System (INIS)

    Kluge, M.

    1981-01-01

    The problem lies in the protection of the flexible supported power plant components against undesired sudden movements. Various shock absorbing systems are at disposal in this case: Mechanical and hydraulic shock absorbers, whose functioning systems are shown in figures. The operation experience showed a series of deficiencies, as demonstrated on various figures. In order to avoid them, some important recommendations are given. Requirements and layout are demonstrated according to todays' state-of-the-art. The admissible stresses, resulting from the summary of various specifications for the analytical evidence will be described. Development and construction will be explained in detail by means of pictures with cross sections of original shock absorbers. Todays' construction characteristics will be summarized. The final remark includes a request for generally valid guidelines. (orig.) [de

  11. Nuclear reactor control device by vertical displacement of neutron absorber scram rods

    International Nuclear Information System (INIS)

    Defaucheux, Jacques; Pasqualini, Gilbert; Wiart, Albert; Martin, Jean.

    1981-01-01

    Nuclear reactor control system by vertical displacement of an assembly absorbing the neutrons inside a reactor core and drop of the absorbing assembly in maximum insertion position under the effect of its own weight for emergency shutdown. The absorbing assembly is secured to the bottom end of a vertical control rod, the displacement of which is actuated by an electro-magnetic device [fr

  12. Copper tin sulfide (CTS) absorber thin films obtained by co-evaporation: Influence of the ratio Cu/Sn

    Energy Technology Data Exchange (ETDEWEB)

    Robles, V., E-mail: victor.robles@ciemat.es; Trigo, J.F.; Guillén, C.; Herrero, J.

    2015-09-05

    Highlights: • Copper tin sulfide (CTS) thin films were grown by co-evaporation at different Cu/Sn atomic ratios. • Smooth Cu{sub 2}SnS{sub 3} layers with large grains are obtained at Cu/Sn ⩾ 1.5 and T ⩾ 350 °C. • At 450 °C, the cubic Cu{sub 2}SnS{sub 3} phase changes to tetragonal phase. • Cu{sub 2}SnS{sub 3} presents suitable optical and electrical properties for use as photovoltaic absorbers. - Abstract: Copper tin sulfide thin films have been grown on soda-lime glass substrates from the elemental constituents by co-evaporation. The synthesis was performed at substrate temperatures of 350 °C and 450 °C and different Cu/Sn ratios, adjusting the deposition time in order to obtain thicknesses above 1000 nm. The evolution of the morphological, structural, chemical, optical and electrical properties has been analyzed as a function of the substrate temperature and the Cu/Sn ratio. For the samples with Cu/Sn ⩽ 1, Cu{sub 2}Sn{sub 3}S{sub 7} and Cu{sub 2}SnS{sub 3} have been observed by XRD. Increasing the Cu/Sn to 1.5, the Cu{sub 2}SnS{sub 3} phase was the majority, being the formation completed at Cu/Sn ratio around 2. The increment of the substrate temperature leads to a change of cubic structure to tetragonal of the Cu{sub 2}SnS{sub 3} phase. The chemical treatment with KCN was effective to eliminate CuS excess detected in the samples with Cu/Sn > 2.2. The samples with Cu{sub 2}SnS{sub 3} structure show a band gap energy increasing from 0.9 to 1.25 eV and an electrical resistivity decreasing from 7 ∗ 10{sup −2} Ω cm to 3 ∗ 10{sup −3} Ω cm when the Cu/Sn atomic ratio increases from 1.5 to 2.2.

  13. Self-Assembled Local Artificial Substrates of GaAs on Si Substrate

    Directory of Open Access Journals (Sweden)

    Frigeri C

    2010-01-01

    Full Text Available Abstract We propose a self-assembling procedure for the fabrication of GaAs islands by Droplet Epitaxy on silicon substrate. Controlling substrate temperature and amount of supplied gallium is possible to tune the base size of the islands from 70 up to 250 nm and the density from 107 to 109 cm−2. The islands show a standard deviation of base size distribution below 10% and their shape evolves changing the aspect ratio from 0.3 to 0.5 as size increases. Due to their characteristics, these islands are suitable to be used as local artificial substrates for the integration of III–V quantum nanostructures directly on silicon substrate.

  14. Spacesuit Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Hodgson, Ed; Izenson, Mike; Chan, Weibo; Bue, Grant C.

    2012-01-01

    For decades advanced spacesuit developers have pursued a regenerable, robust nonventing system for heat rejection. Toward this end, this paper investigates linking together two previously developed technologies, namely NASA s Spacesuit Water Membrane Evaporator (SWME), and Creare s Lithium Chloride Absorber Radiator (LCAR). Heat from a liquid cooled garment is transported to SWME that provides cooling through evaporation. This water vapor is then captured by solid LiCl in the LCAR with a high enthalpy of absorption, resulting in sufficient temperature lift to reject heat to space by radiation. After the sortie, the LCAR would be heated up and dried in a regenerator to drive off and recover the absorbed evaporant. A engineering development prototype was built and tested in vacuum conditions at a sink temperature of 250 K. The LCAR was able to stably reject 75 W over a 7-hour period. A conceptual design of a full-scale radiator is proposed. Excess heat rejection above 240 W would be accomplished through venting of the evaporant. Loop closure rates were predicted for various exploration environment scenarios.

  15. Foliage nitrogen turnover: differences among nitrogen absorbed at different times by Quercus serrata saplings

    Science.gov (United States)

    Ueda, Miki U.; Mizumachi, Eri; Tokuchi, Naoko

    2011-01-01

    Background and Aims Nitrogen turnover within plants has been intensively studied to better understand nitrogen use strategies. However, differences among the nitrogen absorbed at different times are not completely understood and the fate of nitrogen absorbed during winter is largely uncharacterized. In the present study, nitrogen absorbed at different times of the year (growing season, winter and previous growing season) was traced, and the within-leaf nitrogen turnover of a temperate deciduous oak Quercus serrata was investigated. Methods The contributions of nitrogen absorbed at the three different times to leaf construction, translocation during the growing season, and the leaf-level resorption efficiency during leaf senescence were compared using 15N. Key Results Winter- and previous growing season-absorbed nitrogen significantly contributed to leaf construction, although the contribution was smaller than that of growing season-absorbed nitrogen. On the other hand, the leaf-level resorption efficiency of winter- and previous growing season-absorbed nitrogen was higher than that of growing season-absorbed nitrogen, suggesting that older nitrogen is better retained in leaves than recently absorbed nitrogen. Conclusions The results demonstrate that nitrogen turnover in leaves varies with nitrogen absorption times. These findings are important for understanding plant nitrogen use strategies and nitrogen cycles in forest ecosystems. PMID:21515608

  16. Absorber design for a Scheffler-Type Solar Concentrator

    International Nuclear Information System (INIS)

    Ruelas, José; Palomares, Juan; Pando, Gabriel

    2015-01-01

    Highlights: • Receiver and absorber design methodology based in a solar image in the focal surface. • Stirling absorber dimensions based in a solar image in the focal surface of a STSC. • Comparative study of a solar image in the focal surface from different optical model. • A Monte-Carlo ray-tracing method was used to set STSC cavity receiver aperture. - Abstract: Ray tracing software, digital close range photogrammetry and the Monte-Carlo ray-tracing method have proven to be precise and efficient measurement techniques for the assessment of the shape accuracies of solar concentrators and their components. This paper presents a new method and results for the geometric aspect of a focal image for a Scheffler-Type Solar Concentrator (STSC) using ray tracing, digital close range photogrammetry and the Monte-Carlo ray-tracing method to establish parameters that allow for the design of the most suitable absorber and receiver geometry for coupling the STSC to a Stirling engine. The results of the ray tracing software, digital close range photogrammetry and Monte-Carlo ray tracing technique in STSC are associated with a Stirling receiver. When using the method to perform simulations, we found that the most suitable solar image geometry has an elliptical shape and area of 0.0065 m 2 on average. Although this result is appropriate, the geometry of the receiver is modified to fit an absorber and cavity receiver to improve the heat transfer by radiation

  17. Sodium erosion of boron carbide from breached absorber pins

    International Nuclear Information System (INIS)

    Basmajian, J.A.; Baker, D.E.

    1981-03-01

    The purpose of the irradiation experiment was to provide an engineering demonstration of the irradiation behavior of breached boron carbide absorber pins. By building defects into the cladding of prototypic absorber pins, and performing the irradiation under typical FFTF operating conditions, a qualitative assessment of the consequences of a breach was achieved. Additionally, a direct comparison of pin behavior with that of the ex-reactor test could be made

  18. Serendipitous discovery of warm absorbers in the Seyfert 2 galaxy IRAS 18325-5926

    International Nuclear Information System (INIS)

    Zhang Shuinai; Gu Qiusheng; Peng Zhixin; Ji Li

    2011-01-01

    Warm absorption is a common phenomenon in Seyfert 1s and quasars, but is rare in Seyfert 2s. We report the detection of warm absorbers with high energy resolution in the Seyfert 2 galaxy IRAS 18325-5926 for the first time with Chandra HETGS spectra. An intrinsic absorbing line system with an outflow velocity ∼ 400 km s -1 was found, which is contributed by two warm absorbers with FWHM of 570 km s -1 and 1360 km s -1 , respectively. The two absorbers were adjacent, and moving transversely across our line of sight. We constrained the distance between the center and the absorbers to be a small value, suggesting that the absorbers may originate from the highly ionized accretion disk wind ejected five years ago. The perspective of this type 2 Seyfert provides the best situation in which to investigate the vertical part of the funnel-like outflows. Another weak absorbing line system with zero redshift was also detected, which could be due to Galactic absorption with very high temperature or an intrinsic outflow with a very high velocity ∼ 6000 km s -1 . (research papers)

  19. Role of the Absorbing Area in Chaotic Synchronization

    DEFF Research Database (Denmark)

    Maistrenko, Yu.L.; Maistrenko, V.L.; Popovich, A.

    1998-01-01

    When two identical chaotic oscillators interact, one or more intervals of coupling parameters generally exist in which the synchronized state is weakly stable, and its basin of attraction is riddled with holes that are repelled from it. The paper discusses the role of the absorbing area for the e......When two identical chaotic oscillators interact, one or more intervals of coupling parameters generally exist in which the synchronized state is weakly stable, and its basin of attraction is riddled with holes that are repelled from it. The paper discusses the role of the absorbing area...

  20. Hafnium as a prospective absorber for VVER-1000 reactors of Ukraine

    International Nuclear Information System (INIS)

    Afanas'ev, A.A.; Konotop, Yu.F.; Odejchuk, N.L.

    2000-01-01

    Nuclear-physical parameters of hafnium having in mind its use as an absorber, are considered. Technical aspects of Hf production are exposed. Use of B 4 C/Hf absorber is twice cheaper than a standard one

  1. Reducing heat loss from the energy absorber of a solar collector

    Science.gov (United States)

    Chao, Bei Tse; Rabl, Ari

    1976-01-01

    A device is provided for reducing convective heat loss in a cylindrical radiant energy collector. It includes a curved reflective wall in the shape of the arc of a circle positioned on the opposite side of the exit aperture from the reflective side walls of the collector. Radiant energy exiting the exit aperture is directed by the curved wall onto an energy absorber such that the portion of the absorber upon which the energy is directed faces downward to reduce convective heat loss from the absorber.

  2. Secure data storage by three-dimensional absorbers in highly scattering volume medium

    International Nuclear Information System (INIS)

    Matoba, Osamu; Matsuki, Shinichiro; Nitta, Kouichi

    2008-01-01

    A novel data storage in a volume medium with highly scattering coefficient is proposed for data security application. Three-dimensional absorbers are used as data. These absorbers can not be measured by interferometer when the scattering in a volume medium is strong enough. We present a method to reconstruct three-dimensional absorbers and present numerical results to show the effectiveness of the proposed data storage.

  3. The Effect of a Vibration Absorber on the Damping Properties of Alpine Skis

    Directory of Open Access Journals (Sweden)

    Stefan Schwanitz

    2018-02-01

    Full Text Available Coupled bending-torsion vibrations at the shovel are a severe problem when running an alpine ski at high velocities on hard or icy slopes. Thus, a major goal for ski manufacturers is to dampen vibrations through a proper multi-material design and/or additional absorbers. The aim of this study was to examine the effectiveness of a particular vibration absorber on a commercial slalom ski through a series of laboratory tests as well as a subjective field evaluation. Therefore, two identical pairs of ski were used and the absorber was deactivated on one pair. Laboratory tests revealed reductions of 5% to 49% of bending vibrations on skis with activated absorber. Subjective evaluation by 6 subjects suggested minor differences in the mean of the evaluated criteria turnablity, edge grip, steering behavior and stability towards a better performance of the skis with activated absorber. Subjects were able to identify the absorber mode with a success rate of 61.1%.

  4. Magnetic graphene enabled tunable microwave absorber via thermal control

    Science.gov (United States)

    Quan, L.; Qin, F. X.; Li, Y. H.; Estevez, D.; Fu, G. J.; Wang, H.; Peng, H.-X.

    2018-06-01

    By synthesizing nitrogen-doped graphene (NG) via a facile thermal annealing method, a fine control of the amount and location of doped nitrogen as well as the oxygen-containing functional groups is achieved with varying annealing temperature. The favorable magnetic properties have been achieved for N-doped rGO samples obtained at two temperatures of all NG samples, i.e., 500 °C and 900 °C with saturation magnetization of 0.63 emu g‑1 and 0.67 emu g‑1 at 2 K, respectively. This is attributed to the optimized competition of the N-doping and reduction process at 500 °C and the dominated reduction process at 900 °C. NG obtained at 300 °C affords the best overall absorbing performance: when the absorber thickness is 3.0 mm, the maximum absorption was ‑24.6 dB at 8.51 GHz, and the absorption bandwidth was 4.89 GHz (7.55–12.44 GHz) below ‑10 dB. It owes its large absorbing intensity to the good impedance match and significant dielectric loss. The broad absorption bandwidth benefits from local fluctuations of dielectric responses contributed by competing mechanisms. Despite the significant contribution from materials loss to the absorption, the one quarter-wavelength model is found to be responsible for the reflection loss peak positions. Of particular significance is that an appropriate set of electromagnetic parameters associated with reasonable reduction is readily accessible by convenient control of annealing temperature to modulate the microwave absorbing features of graphene. Thus, NG prepared by thermal annealing promises to be a highly efficient microwave absorbent.

  5. WARM GAS IN THE VIRGO CLUSTER. I. DISTRIBUTION OF Lyα ABSORBERS

    International Nuclear Information System (INIS)

    Yoon, Joo Heon; Putman, Mary E.; Bryan, Greg L.; Thom, Christopher; Chen, Hsiao-Wen

    2012-01-01

    The first systematic study of the warm gas (T = 10 4–5 K) distribution across a galaxy cluster is presented using multiple background QSOs in and around the Virgo Cluster. We detect 25 Lyα absorbers (N HI = 10 13.1–15.4 cm –2 ) in the Virgo velocity range toward 9 of 12 QSO sightlines observed with the Cosmic Origin Spectrograph, with a cluster impact parameter range of 0.36-1.65 Mpc (0.23-1.05 R vir ). Including 18 Lyα absorbers previously detected by STIS or GHRS toward 7 of 11 background QSOs in and around the Virgo Cluster, we establish a sample of 43 absorbers toward a total of 23 background probes for studying the incidence of Lyα absorbers in and around the Virgo Cluster. With these absorbers, we find (1) warm gas is predominantly in the outskirts of the cluster and avoids the X-ray-detected hot intracluster medium (ICM). Also, Lyα absorption strength increases with cluster impact parameter. (2) Lyα-absorbing warm gas traces cold H I-emitting gas in the substructures of the Virgo Cluster. (3) Including the absorbers associated with the surrounding substructures, the warm gas covering fraction (100% for N HI > 10 13.1 cm –2 ) is in agreement with cosmological simulations. We speculate that the observed warm gas is part of large-scale gas flows feeding the cluster both in the ICM and galaxies.

  6. Characterization of rich in calcium materials using X-ray selective absorbers

    International Nuclear Information System (INIS)

    Guereca, G.; Ruvalcaba, J.L.

    2004-01-01

    For Particle Induced X-ray Emission Spectroscopy (PIXE) and X-ray Fluorescence Technique (FRX), the analysis of materials rich in one or two elements may present some difficulties due to high counting rates and saturation effects in X-ray detectors. In this case, it is possible to use selective absorbers in order to reduce the intensity of the major elements with low attenuation for the X-rays of other elements of the material. Using selective absorbers, the detection limits and the sensitivity are increased. For rich Ca materials (shells, bone, teeth and stucco, for instance), the high intensity of Ca X-rays interferes with the detection of lighter and heavier elements. Cl, Ar and Ag compounds are good candidates for Ca selective absorbers, but only Ag and Ar may have a practical absorber thickness. A selective absorber for Ca X-rays using a combination of thin Ag films and a flux of Ar and He was tested at the external beam setup of the Tandem Pelletron Accelerator for PIXE measurements. The improvement on elements detection on bone and colored stucco is shown. (Author) 8 refs., 2 tabs., 8 figs

  7. Investigation of reactivity change and neutron noise due to random absorber vibrations. 2

    International Nuclear Information System (INIS)

    Barthel, R.

    1984-01-01

    Perturbations of the neutron flux due to stochastically excited vibrations of absorbers have been investigated using a one-dimensional core model with N pointlike absorbers. Taking into account the flux depressions near the absorbers, pronounced peaks in the spectral power densities of the flux fluctuations have been found at multiples of the resonance frequencies in addition to the direct imaging of the resonances of absorber vibrations. Investigation of the space dependence of the corresponding transfer functions has shown that a localization is possible by means of the double frequency effect and that the dispersion of absorber vibrations can be determined by using the triple frequency effect. The conclusions of the paper are qualitatively compared with results of noise measurements at a pressurized water reactor. (author)

  8. The precipitation synthesis of broad-spectrum UV absorber nanoceria

    International Nuclear Information System (INIS)

    Nurhasanah, Iis; Sutanto, Heri; Puspaningrum, Nurul Wahyu

    2013-01-01

    In this paper the possibility of nanoceria as broad-spectrum UV absorber was evaluated. Nanoceria were synthesized by precipitation process from cerium nitrate solution and ammonium hydroxide as precipitant agent. Isopropanol was mixed with water as solvent to prevent hard agglomeration. The structure of resulting nanoceria was characterized by x-ray diffractometer (XRD). The transparency in the visible light and efficiency of protection in UV A region were studied using ultraviolet-visible (UV - Vis) spectrophotometer. The results show that nanoceria possess good tranparency in visible light and high UV light absorption. The critical absorption wavelenght of 368 nm was obtained which is desirable for excellent broad-spectrum protection absorbers. Moreover, analysis of photodegradation nanoceria to methylene blue solution shows poor photocatalytic activity. It indicates that nanoceria suitable for used as UV absorber in personal care products

  9. Laser Beam Melting of Alumina: Effect of Absorber Additions

    Science.gov (United States)

    Moniz, Liliana; Colin, Christophe; Bartout, Jean-Dominique; Terki, Karim; Berger, Marie-Hélène

    2018-03-01

    Ceramic laser beam melting offers new manufacturing possibilities for complex refractory structures. Poor absorptivity in near infra-red wavelengths of oxide ceramics is overcome with absorber addition to ceramic powders. Absorbers affect powder bed densities and geometrical stability of melted tracks. Optimum absorber content is defined for Al2O3 by minimizing powder bed porosity, maximizing melting pool geometrical stability and limiting shrinkage. Widest stability fields are obtained with addition of 0.1 wt.% C and 0.5 wt.% β-SiC. Absorption coefficient values of Beer-Lambert law follow stability trends: they increase with C additions, whereas with β-SiC, a maximum is reached for 0.5 wt.%. Powder particle ejections are also identified. Compared to metallic materials, this ejection phenomenon can no longer be neglected when establishing a three-dimensional manufacturing strategy.

  10. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    Science.gov (United States)

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  11. On the recirculation of ammonia-lithium nitrate in adiabatic absorbers for chillers

    International Nuclear Information System (INIS)

    Ventas, R.; Lecuona, A.; Legrand, M.; Rodriguez-Hidalgo, M.C.

    2010-01-01

    This paper presents a numerical model of single-effect absorption cycles with ammonia-lithium nitrate solution as the working pair and incorporating an adiabatic absorber. It is based on UA-ΔT lm models for separate regions of plate-type heat exchangers and it assumes an approach factor to adiabatic equilibrium. The results are offered as a function of external temperatures. A loop circuit with a heat exchanger upstream the absorber produces subcooling for facilitating absorption process. The effect of the mass flow rate recirculated through the absorber is studied. Results show a diminishing return effect. The value at which the recirculation mass flow yields a reasonable performance is between 4 and 6 times the solution mass flow. With a heat transfer area 6 times smaller than with a conventional diabatic shell-and-tube type absorber, the adiabatic absorber configured with a plate heat exchanger yields a 2% smaller maximum COP and a 15-20% smaller cooling power.

  12. Optimal design of a magneto-rheological brake absorber for torsional vibration control

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B

    2012-01-01

    This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given. (paper)

  13. Performance Evaluation of the New Fork-Absorbers of RSG-GAS Control Rod

    International Nuclear Information System (INIS)

    Slamet Wiranto; Purwadi; Arif Hidayat; Agus Sanjaya

    2012-01-01

    During the operation of RSG-GAS reactor, it has been replaced 8 fork-absorber by the new absorber from PT. Batan Teknologi. After almost 5 years under utilization it is important to be evaluated to determine the physical condition and its performance, which is still in good condition and functioning according to the requirements of its operations. The evaluation has been carried out by studying and analyzing the data of the fork-absorber utilization in the the reactor core. The fork absorber data consist of visual inspection, control rod drop time measurement and control rod reactivity and safety margin measurement for each operation cycle. Through the observation up to date with the operating cycle of 79, could be concluded that the fork-absorber condition is still good, and has ability, to support the operation until ± 660 MWD/cycle, which is characterized by obtaining the value of ρ-excess is sufficient for operation, with a large safety margin. (author)

  14. Optimal design of a magneto-rheological brake absorber for torsional vibration control

    Science.gov (United States)

    Nguyen, Q. H.; Choi, S. B.

    2012-02-01

    This research presents an optimal design of a magneto-rheological (MR) brake absorber for torsional vibration control of a rotating shaft. Firstly, the configuration of an MR brake absorber for torsional vibration control of a rotating shaft system is proposed. Then, the braking torque of the MR brake is derived based on the Bingham plastic model of the MR fluid. By assuming that the behaviour of the MR brake absorber is similar to that of a dry friction torsional damper, the optimal braking torque to control the torsional vibration is determined and validated by simulation. The optimal design problem of the MR brake absorber is then developed and a procedure to solve the optimal problem is proposed. Based on the proposed optimal design procedure, the optimal design of a specific rotating shaft system is performed. Vibration control performance of the shaft system employing the optimized MR brake absorber is then investigated through simulation and discussion on the results is given.

  15. Design and testing of a shock absorber for a type 1 container

    International Nuclear Information System (INIS)

    Sappok, M.; Beine, B.; Rittscher, D.

    1993-01-01

    A shock-absorber will be required for a rad. waste 'Konrad' type 1 container made of ductile cast iron whenever it will be used as a type B container according to the IAEA-Regulations for the Safe Transport of Radioactive materials. The shock-absorber has to protect the type B container during shipping such as to withstand the accident scenarios that are covered by the IAEA-Regulation tests without substantial loss of its shielding and tightness functions. The designation as type 1 container originates from German regulations for the intermediate storage site Gorleben and the final depository Konrad-mine. These regulations call for the limits on outside dimensions of 1700 mm in length, 1600 mm in width and 1450 mm in height as well as for a limit of 20 Mg on total weight without shock-absorber. The relatively simple design method for the shock-absorber has been validated by the test results. It can be extended to other materials and designs for shock-absorbers if reliable force-displacement-diagrams are available for the structural elements from which the absorbed energy and the displacements can be calculated by integration. In order to account for the dynamic effects, the better approximation of the true duration of the impact would be helpful. The present limit of 0.5 R p0,2 on the nominal stresses should be discussed because the large number of tests on containers made of ductile cast iron that have been performed up to now have shown a substantial level of conservatism on this respect. The sharply tapered pipes on edge Kl of the shock-absorbers should be replaced by pipe bends. This will result in smaller accelerations and in an even higher level of protection of the container than effected by the tested shock-absorber

  16. Absorber rod bundle actuator in a pressurized water nuclear reactor

    International Nuclear Information System (INIS)

    Martin, J.; Peletan, R.

    1984-01-01

    The invention concerns an absorber rod bundle actuator in a pressurized water reactor with spectral shift control. The device comprises two coaxial control bars. The inner bar is integral with the absorber rod bundle; it has an enlarged zone which acts as a proton under pressure difference across an annular seal which can be radially expanded, the pressure difference allowing to the absorber rod bundles actuating on the piston. When a pressure difference is applied, the seal expands radially by a sufficient amount to make sealing contact with the zone of larger diameter in the outer bar. The invention applies more particularly to reactors with spectral shift control using bundles of fertile rods [fr

  17. Intercomparison of standards of absorbed dose between the USSR and the UK

    Science.gov (United States)

    Berlyand, V. A.; Bregadze, J. I.; Burns, J. E.; Dusautoy, A. R.; Sharpe, P. H. G.

    1991-05-01

    A comparison of national standards of absorbed dose was carried out between the All-Union Research Institute for Physical Technical and Radiotechnical Measurements (VNIIFTRI), USSR, and the National Physical Laboratotry (NPL), UK (United Kingdom). Absorbed dose to water for cobalt 60 gamma radiation was compared by means of Fricke dosimeters and ionization chambers in 1985 and 1986. The primary standards used to derive absorbed dose to water were cavity ionization chambers at NPL and a graphite calorimeter at VNIIFTRI. The ratio of absorbed dose to water, NPL to VNIIFTRI, using Fricke dosimeters was 1.008; using ionization chambers it was 1.007. This agreement is within the estimated uncertainties of the standards and measurement methods.

  18. Research on ration selection of mixed absorbent solution for membrane air-conditioning system

    International Nuclear Information System (INIS)

    Li, Xiu-Wei; Zhang, Xiao-Song; Wang, Fang; Zhao, Xiao; Zhang, Zhuo

    2015-01-01

    Highlights: • We derive models of the membrane air-conditioning system with mixed absorbents. • We make analysis on system COP, cost-effectiveness and economy. • The paper provides a new method for ideal absorbent selection. • The solutes concentration of 50% achieves the best cost-effectiveness and the economy. - Abstract: Absorption air-conditioning system is a good alternative to vapor compression system for developing low carbon society. To improve the performance of the traditional absorption system, the membrane air-conditioning system is configured and its COP can reach as high as 6. Mixed absorbents are potential for cost reduction of the membrane system while maintaining a high COP. On the purpose of finding ideal mixed absorbent groups, this paper makes analysis on COP, cost-effectiveness and economy of the membrane system with mixed LiBr–CaCl 2 absorbent solution. The models of the system have been developed for the analysis. The results show the COP is higher for the absorbent groups with lower concentration of the total solute and higher concentration ratio of LiBr. It also reveals when the total solutes concentration is about 50%, it achieves the best cost-effectiveness and the economy. The process of the analysis provides a useful method for mixed absorbents selection

  19. Wide band design on the scaled absorbing material filled with flaky CIPs

    Science.gov (United States)

    Xu, Yonggang; Yuan, Liming; Gao, Wei; Wang, Xiaobing; Liang, Zichang; Liao, Yi

    2018-02-01

    The scaled target measurement is an important method to get the target characteristic. Radar absorbing materials are widely used in the low detectable target, considering the absorbing material frequency dispersion characteristics, it makes designing and manufacturing scaled radar absorbing materials on the scaled target very difficult. This paper proposed a wide band design method on the scaled absorbing material of the thin absorption coating with added carbonyl iron particles. According to the theoretical radar cross section (RCS) of the plate, the reflection loss determined by the permittivity and permeability was chosen as the main design factor. Then, the parameters of the scaled absorbing materials were designed using the effective medium theory, and the scaled absorbing material was constructed. Finally, the full-size coating plate and scaled coating plates (under three different scale factors) were simulated; the RCSs of the coating plates were numerically calculated and measured at 4 GHz and a scale factor of 2. The results showed that the compensated RCS of the scaled coating plate was close to that of the full-size coating plate, that is, the mean deviation was less than 0.5 dB, and the design method for the scaled material was very effective.

  20. ADAPTIVE OPTICS IMAGING OF A MASSIVE GALAXY ASSOCIATED WITH A METAL-RICH ABSORBER

    International Nuclear Information System (INIS)

    Chun, Mark R.; Kulkarni, Varsha P.; Gharanfoli, Soheila; Takamiya, Marianne

    2010-01-01

    The damped and sub-damped Lyα absorption (DLA and sub-DLA) line systems in quasar spectra are believed to be produced by intervening galaxies. However, the connection of quasar absorbers to galaxies is not well-understood, since attempts to image the absorbing galaxies have often failed. While most DLAs appear to be metal poor, a population of metal-rich absorbers, mostly sub-DLAs, has been discovered in recent studies. Here we report high-resolution K-band imaging with the Keck laser guide star adaptive optics (LGSAO) system of the field of quasar SDSSJ1323-0021 in search of the galaxy producing the z = 0.72 sub-DLA absorber. With a metallicity of 2-4 times the solar level, this absorber is one of the most metal-rich systems found to date. Our data show a large bright galaxy with an angular separation of only 1.''25 from the quasar, well-resolved from the quasar at the high resolution of our data. The galaxy has a magnitude of K = 17.6-17.9, which corresponds to a luminosity of ∼3-6 L*. Morphologically, the galaxy is fitted with a model with an effective radius, enclosing half of the total light, of R e = 4 kpc and a bulge-to-total ratio of 0.4-1.0, indicating a substantial bulge stellar population. Based on the mass-metallicity relation of nearby galaxies, the absorber galaxy appears to have a stellar mass of ∼>10 11 M sun . Given the small impact parameter (9.0 kpc at the absorber redshift), this massive galaxy appears to be responsible for the metal-rich sub-DLA. The absorber galaxy is consistent with the metallicity-luminosity relation observed for nearby galaxies, but is near the upper end of metallicity. Our study marks the first application of LGSAO for the study of the structure of galaxies producing distant quasar absorbers. Finally, this study offers the first example of a massive galaxy with a substantial bulge producing a metal-rich absorber.

  1. Properties of TiO{sub 2} thin films deposited by rf reactive magnetron sputtering on biased substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nezar, Sawsen, E-mail: snezar@cdta.dz [Equipe Plasma & Applications, Division des Milieux Ionisés et Lasers, Centre de Développement des Technologies Avancées, Cité du 20 Aout 1956, Baba Hassen, Alger (Algeria); Laboratoire des phénomènes de transfert, génie chimique, Faculté de Génie des procèdes, USTHB, BP 32 El-alia, Bab Ezzouar, Alger (Algeria); Saoula, Nadia [Equipe Plasma & Applications, Division des Milieux Ionisés et Lasers, Centre de Développement des Technologies Avancées, Cité du 20 Aout 1956, Baba Hassen, Alger (Algeria); Sali, Samira [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE Algiers) (Algeria); Faiz, Mohammed; Mekki, Mogtaba [Physics Department, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Laoufi, Nadia Aïcha [Laboratoire des phénomènes de transfert, génie chimique, Faculté de Génie des procèdes, USTHB, BP 32 El-alia, Bab Ezzouar, Alger (Algeria); Tabet, Nouar [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University (HBKU), Doha (Qatar)

    2017-02-15

    Highlights: • TiO{sub 2} thin films were deposited on negatively biased substrates by rf magnetron sputtering technique. • The bias favors the formation of TiO{sub 2} crystalline phase. • The roughness of the films increases and the grain size decreases as the bias voltage is varied between (0 and −100 V). • XPS reveals the presence of adsorbed humidity of the surface and Ti{sup 4+} oxidation state in the as prepared samples. - Abstract: TiO{sub 2} thin films are of paramount importance due to their pervasive applications. In contrast to previous published works where the substrate was heated at high temperatures to obtain TiO{sub 2} crystalline phase, we show in this study that it is possible to deposit crystalline TiO{sub 2} thin films on biased and unbiased substrate at room temperature using reactive rf magnetron sputtering. The bias voltage was varied from 0 V to −100 V. The deposited films were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV–vis spectroscopy, Raman spectroscopy, X-ray Photoelectron Spectroscopy (XPS) and atomic force microscopy (AFM). The average crystallite size was estimated using x-ray diffraction. The results showed that the application of negative bias affects the surface roughness of the films and favors the formation of the rutile phase. The root mean square roughness (R{sub rms}), the average grain size and the optical band gap of the films decreased as the substrate bias voltage was varied from 0 to −100 V. The UV–visible transmittance spectra showed that the films were transparent in the visible range and absorb strongly in the UV range. This study shows that biasing the substrate could be a promising and effective alternative to deposit TiO{sub 2} crystallized thin films of engineered properties at room temperature.

  2. Experimental Study of Heat Energy Absorber with Porous Medium for Thermoelectric Conversion System

    Directory of Open Access Journals (Sweden)

    Tzer-Ming Jeng

    2013-12-01

    Full Text Available The thermoelectric conversion system usually consists of the heat absorber, the thermoelectric generator (TEG and the heat sink, while the heat absorber collects the heat to increase the temperature on the hot surface of TEG and enhances the generating electricity. This study experimentally investigated the performance of the brass-beads packed-bed heat absorber for the thermoelectric conversion system. The packed-bed heat absorber is installed in a square channel with the various flow orientation systems and the small ratio of channel width to bead diameter. The flow orientation systems included the straight flow and jet flow systems. This study showed the local and average heat transfer characteristics for various parameters. The experimental results can be the base of designs for the novel porous heat absorber of the thermoelectric conversion system.

  3. Coupler for nuclear reactor absorber rods

    International Nuclear Information System (INIS)

    Kerz, K.

    1984-01-01

    A coupler is described for absorber rods being suspended during operation of nuclear reactors which includes plurality of actuating elements being movable for individually and jointly releasing the coupler, the movement of each of the actuating elements for releasing the coupler being independently controllable

  4. Bistability By Self-Reflection In A Saturable Absorber

    Science.gov (United States)

    Roso-Franco, Luis

    1987-01-01

    Propagation of laser light through a saturable absorber is theoretically studied. Computed steady state solutions of the Maxwell equations describing the unidimensional propagation of a plane monochromatic wave without introducing the slowly-varying envelope approximation are presented showing how saturation effects can influence the absorption of the field. At a certain range of refractive index and extintion coefficients, computed solutions display a very susprising behaviour, and a self-reflected wave appears inside the absorber. This can be useful for a new kind of biestable device, similar to a standard bistable cavity but with the back mirror self-induced by the light.

  5. Absorbers for combined heating and cooling permit new concepts; Absorber zum Kuehlen und Heizen gestatten neue Konzepte

    Energy Technology Data Exchange (ETDEWEB)

    Stadelmann, M. [Verband der Schweizerischen Gasindustrie, Zurich (Switzerland)

    1998-05-01

    Direct-fuelled absorption-type refrigerators are recently being used not only for cold generation but also for heat generation with a flow temperature of 80 C. They can cool, heat, or cool and heat simultaneously, eah with a 50% share. This opens up new fields of application, either as a stand-alone system or combined with a gas engine cogeneration unit and absorber for cold generation. Two examples are presented, i.e. a hotel and a shopping mall. (orig.) [Deutsch] Direktbefeuerte Absorptionskaeltemaschinen erzeugen neuerdings nicht nur Kaelte, sondern auch Heizungswaerme mit 80 C Vorlauftemperatur. Sie koennen kuehlen, heizen oder - bis je 50% der Leistung - beides gleichzeitig. Der Teillastwirkungsgrad beim Kuehlbetrieb ist hoeher als bekannt. Das eroeffnet neue Moeglichkeiten des Einsatzes solcher Geraete, sei es allein oder zusammen mit Gasmotor-BHKW und Absorber zur Kaelteerzeugung. Zwei Beispiele - ein Hotel und ein Einkaufszentrum - werden vorgestellt. (orig.)

  6. Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments.

    Science.gov (United States)

    Wang, Juan; Smith, Christopher E; Sankar, Jagannathan; Yun, Yeoheung; Huang, Nan

    2015-03-01

    Absorbable metals have been widely tested in various in vitro settings using cells to evaluate their possible suitability as an implant material. However, there exists a gap between in vivo and in vitro test results for absorbable materials. A lot of traditional in vitro assessments for permanent materials are no longer applicable to absorbable metallic implants. A key step is to identify and test the relevant microenvironment and parameters in test systems, which should be adapted according to the specific application. New test methods are necessary to reduce the difference between in vivo and in vitro test results and provide more accurate information to better understand absorbable metallic implants. In this investigative review, we strive to summarize the latest test methods for characterizing absorbable magnesium-based stent for bioabsorption/biodegradation behavior in the mimicking vascular environments. Also, this article comprehensively discusses the direction of test standardization for absorbable stents to paint a more accurate picture of the in vivo condition around implants to determine the most important parameters and their dynamic interactions.

  7. Enhancement of acoustical performance of hollow tube sound absorber

    International Nuclear Information System (INIS)

    Putra, Azma; Khair, Fazlin Abd; Nor, Mohd Jailani Mohd

    2016-01-01

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  8. Enhancement of acoustical performance of hollow tube sound absorber

    Energy Technology Data Exchange (ETDEWEB)

    Putra, Azma, E-mail: azma.putra@utem.edu.my; Khair, Fazlin Abd, E-mail: fazlinabdkhair@student.utem.edu.my; Nor, Mohd Jailani Mohd, E-mail: jai@utem.edu.my [Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal Melaka 76100 Malaysia (Malaysia)

    2016-03-29

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  9. High-temperature absorbed dose measurements in the megagray range

    International Nuclear Information System (INIS)

    Balian, P.; Ardonceau, J.; Zuppiroli, L.

    1988-01-01

    Organic conductors of the tetraselenotetracene family have been tested as ''high-temperature'' absorbed dose dosimeters. They were heated up to 120 0 C and irradiated at this temperature with 1-MeV electrons in order to simulate, in a short time, a much longer γ-ray irradiation. The electric resistance increase of the crystal can be considered a good measurement of the absorbed dose in the range 10 6 Gy to a few 10 8 Gy and presumably one order of magnitude more. This dosimeter also permits on-line (in-situ) measurements of the absorbed dose without removing the sensor from the irradiation site. The respective advantages of organic and inorganic dosimeters at these temperature and dose ranges are also discussed. In this connection, we outline new, but negative, results concerning the possible use of silica as a high-temperature, high-dose dosimeter. (author)

  10. Automated cassette-to-cassette substrate handling system

    Science.gov (United States)

    Kraus, Joseph Arthur; Boyer, Jeremy James; Mack, Joseph; DeChellis, Michael; Koo, Michael

    2014-03-18

    An automated cassette-to-cassette substrate handling system includes a cassette storage module for storing a plurality of substrates in cassettes before and after processing. A substrate carrier storage module stores a plurality of substrate carriers. A substrate carrier loading/unloading module loads substrates from the cassette storage module onto the plurality of substrate carriers and unloads substrates from the plurality of substrate carriers to the cassette storage module. A transport mechanism transports the plurality of substrates between the cassette storage module and the plurality of substrate carriers and transports the plurality of substrate carriers between the substrate carrier loading/unloading module and a processing chamber. A vision system recognizes recesses in the plurality of substrate carriers corresponding to empty substrate positions in the substrate carrier. A processor receives data from the vision system and instructs the transport mechanism to transport substrates to positions on the substrate carrier in response to the received data.

  11. Performance evaluation of METAMIC neutron absorber in spent fuel storage rack

    Directory of Open Access Journals (Sweden)

    Kiyoung Kim

    2018-06-01

    Full Text Available High-density spent fuel (SF storage racks have been installed to increase SF pool capacity. In these SF racks, neutron absorber materials were placed between fuel assemblies allowing the storage of fuel assemblies in close proximity to one another. The purpose of the neutron absorber materials is to preclude neutronic coupling between adjacent fuel assemblies and to maintain the fuel in a subcritical storage condition. METAMIC neutron absorber has been used in high-density storage racks. But, neutron absorber materials can be subject to severe conditions including long-term exposure to gamma radiation and neutron radiation. Recently, some of them have experienced degradation, such as white spots on the surface. Under these conditions, the material must continue to serve its intended function of absorbing neutrons. For the first time in Korea, this article uses a neutron attenuation test to examine the performance of METAMIC surveillance coupons. Also, scanning electron microscope analysis was carried out to verify the white spots that were detected on the surface of METAMIC. In the neutron attenuation test, there was no significant sign of boron loss in most of the METAMIC coupons, but the coupon with white spots had relatively less B-10 content than the others. In the scanning electron microscope analysis, corrosion material was detected in all METAMIC coupons. Especially, it was confirmed that the coupon with white spots contains much more corrosion material than the others. Keywords: Blister, Criticality, METAMIC, Neutron Absorber, Neutron Attenuation Test, Scanning Electron Microscope

  12. The influence of surface modification on sound absorption coefficient of albizzia wood absorber

    Science.gov (United States)

    Diharjo, Kuncoro; Prabowo, Anditya E.; Jamasri, Suharty, Neng Sri

    2017-01-01

    The purpose of this research is to investigate the influence of surface modification to sound absorption on absorber based albizia wood and kenaf fiber. The absorber was produced using the albizia wood as main materials, and the kenaf fiber was used as acoustic fill. The albizia wood used for producing the absorber was cut in the transverse direction so that its surface had good porosity. The size of specimens had 100 mm in diameter and 40 mm in thickness. The configuration of resonator cavities was 30 mm in diameter and 20 mm in depth, and each resonator was completed with a neck hole of the resonator. The types of surface modification were the addition of screen printing ink, fabric (with and without neck hole), and vinyl-wallpaper (with and without neck hole). According to ISO 10534-2, the absorber specimens were tested using two microphones impedance tube with random noise source to get the curve of noise absorption coefficient (NAC) for each specimen. The result shows that both unmodified absorber and absorber modified with screen printing ink have the similar characteristic of NAC and they are feasible to be used as an absorber in conversation rooms. The addition of fabric and vinyl-wallpaper as cover on the absorber surface give the positive effect of the air gap, and it increases the NAC in low frequency (100-400 Hz). However, the covers decrease the NAC in high frequency (400-1,400 Hz). The holes on the fabric and wallpaper covers give the improvement of NAC.

  13. Development and qualification of reference calculation schemes for absorbers in pressured water reactor

    International Nuclear Information System (INIS)

    Blanc-Tranchant, P.

    2001-01-01

    The general field in which this work takes place is the field of the accuracy improvement of neutronic calculations, required to operate Pressurized Water Reactors (PWR) with a better precision and a lower cost. More specifically, this thesis deals with the calculation of the absorber clusters used to control these reactors. The first aim of that work was to define and validate a reference calculation route of such an absorber cluster, based on the deterministic code APOLLO2. This calculation scheme was then to be checked against experimental data. This study of the complex situation of absorber clusters required several intermediate studies, of simpler problems, such as the study of fuel rods lattices and the study of single absorber rods (B4C, AIC, Hafnium) isolated in such lattices. Each one of these different studies led to a particular reference calculation route. All these calculation routes were developed against reference continuous energy Monte-Carlo calculations, carried out with the stochastic code TRIPOLI4. They were then checked against experimental data measured during French experimental programs, undertaken within the EOLE experimental reactor, at the Nuclear Research Center of Cadarache: the MISTRAL experiments for the study of isolated absorber rods and the EPICURE experiments for the study of absorber clusters. This work led to important improvements in the calculation of isolated absorbers and absorber clusters. The reactivity worth of these clusters in particular, can now be obtained with a great accuracy: the discrepancy observed between the calculated and the experimental values is less than 2.5 %, and then slightly lower than the experimental uncertainty. (author)

  14. Evaluation of the Autoparametric Pendulum Vibration Absorber for a Duffing System

    Directory of Open Access Journals (Sweden)

    Benjamın Vazquez-Gonzalez

    2008-01-01

    Full Text Available In this work we study the frequency and dynamic response of a damped Duffing system attached to a parametrically excited pendulum vibration absorber. The multiple scales method is applied to get the autoparametric resonance conditions and the results are compared with a similar application of a pendulum absorber for a linear primary system. The approximate frequency analysis reveals that the nonlinear dynamics of the externally excited system are suppressed by the pendulum absorber and, under this condition, the primary Duffing system yields a time response almost equivalent to that obtained for a linear primary system, although the absorber frequency response is drastically modified and affected by the cubic stiffness, thus modifying the jumps defined by the fixed points. In the absorber frequency response can be appreciated a good absorption capability for certain ranges of nonlinear stiffness and the internal coupling is maintained by the existing damping between the pendulum and the primary system. Moreover, the stability of the coupled system is also affected by some extra fixed points introduced by the cubic stiffness, which is illustrated with several amplitude-force responses. Some numerical simulations of the approximate frequency responses and dynamic behavior are performed to show the steady-state and transient responses.

  15. An international intercomparison of absorbed dose measurements for radiation therapy

    International Nuclear Information System (INIS)

    Taiman Kadni; Noriah Mod Ali

    2002-01-01

    Dose intercomparison on an international basis has become an important component of quality assurance measurement i.e. to check the performance of absorbed dose measurements in radiation therapy. The absorbed dose to water measurements for radiation therapy at the SSDL, MINT have been regularly compared through international intercomparison programmes organised by the IAEA Dosimetry Laboratory, Seibersdorf, Austria such as IAEA/WHO TLD postal dose quality audits and the Intercomparison of therapy level ionisation chamber calibration factors in terms of air kerma and absorbed dose to water calibration factors. The results of these intercomparison in terms of percentage deviations for Cobalt 60 gamma radiation and megavoltage x-ray from medical linear accelerators participated by the SSDL-MINT during the year 1985-2001 are within the acceptance limit. (Author)

  16. Absorbing device for stationary arrangement in the lattice of a boiling water reactor

    International Nuclear Information System (INIS)

    Fredin, B.; Nylund, O.

    1980-01-01

    The invention refers to an absorbing device for stationary arrangement in the lattice of a BWR in a gap between two bundles of vertical fuel rods. It consists of at least one absorbing plate containing burnable absorbing material. Both lateral surfaces of this plate are directed to one surface each of the bundles mentioned above. According to the invention the absorbing material is contained in channels formed by welding together two adjacent sheet elements, at least one of which being corrugated. The welds will be made at the points where to tops of the waves touch the other sheet element. (orig.) [de

  17. A model for fuel shuffling and burnable absorbers optimization in low leakage PWRs

    International Nuclear Information System (INIS)

    Zavaljevski, N.

    1990-01-01

    A nonlinear model for the simultaneous optimization of fuel shuffling and burnable absorbers in PWRs is formulated using the depletion perturbation theory. The sensitivity coefficients are defined in a new way, using a macroscopic burnup model coupled with the explicit burnable absorbers depletion equation. Since first-order perturbation theory is limited to small changes in burnable absorber concentration, the associated control variable is continuous, with a constraint on maximal increment. Fuel shuffling is described by Boolean variables. Thus a special case of a mixed-integer quadratic programming problem is obtained, since the interaction of fuel and absorber optimization is considered. (author)

  18. Absorber rod for nuclear reactors in a pebble bed of spherical operating elements

    International Nuclear Information System (INIS)

    Reinstein, D.; Gnutzmann, H.

    1978-01-01

    The claim refers to the constructional configuration of an absorber rod, whose and penetrating into the pebble bed has an opening to reduce the fracture rate, so that the operating elements can escape into a channel within the absorber rod. To suit this to the direction of movement of the elements a part of the end of the rod is flexibly connected to the hollow absorber rod via a joint. In this way the mechanical load of the element particles is reduced and simultaneously one achieves that much lower force is required to insert the absorber rod into the pebble bed. (UA) [de

  19. Performance of a Multifunctional Space Evaporator-Absorber-Radiator (SEAR)

    Science.gov (United States)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    The Space Evaporator-Absorber-Radiator (SEAR) is a nonventing thermal control subsystem that combines a Space Water Membrane Evaporator (SWME) with a Lithium Chloride Absorber Radiator (LCAR). The LCAR is a heat pump radiator that absorbs water vapor produced in the SWME. Because of the very low water vapor pressure at equilibrium with lithium chloride solution, the LCAR can absorb water vapor at a temperature considerably higher than the SWME, enabling heat rejection sufficient for most EVA activities by thermal radiation from a relatively small area radiator. Prior SEAR prototypes used a flexible LCAR that was designed to be installed on the outer surface of a portable life support system (PLSS) backpack. This paper describes a SEAR subsystem that incorporates a very compact LCAR. The compact, multifunctional LCAR is built in the form of thin panels that can also serve as the PLSS structural shell. We designed and assembled a 2 ft² prototype LCAR based on this design and measured its performance in thermal vacuum tests when supplied with water vapor by a SWME. These tests validated our models for SEAR performance and showed that there is enough area available on the PLSS backpack shell to enable rejection of metabolic heat from the LCAR. We used results of these tests to assess future performance potential and suggest approaches for integrating the SEAR system with future space suits.

  20. Development and qualification of reference calculation schemes for absorbers in pressured water reactor; Elaboration et qualification de schemas de calcul de reference pour les absorbants dans les reacteurs a eau pressurisee

    Energy Technology Data Exchange (ETDEWEB)

    Blanc-Tranchant, P

    2001-07-01

    The general field in which this work takes place is the field of the accuracy improvement of neutronic calculations, required to operate Pressurized Water Reactors (PWR) with a better precision and a lower cost. More specifically, this thesis deals with the calculation of the absorber clusters used to control these reactors. The first aim of that work was to define and validate a reference calculation route of such an absorber cluster, based on the deterministic code APOLLO2. This calculation scheme was then to be checked against experimental data. This study of the complex situation of absorber clusters required several intermediate studies, of simpler problems, such as the study of fuel rods lattices and the study of single absorber rods (B4C, AIC, Hafnium) isolated in such lattices. Each one of these different studies led to a particular reference calculation route. All these calculation routes were developed against reference continuous energy Monte-Carlo calculations, carried out with the stochastic code TRIPOLI4. They were then checked against experimental data measured during French experimental programs, undertaken within the EOLE experimental reactor, at the Nuclear Research Center of Cadarache: the MISTRAL experiments for the study of isolated absorber rods and the EPICURE experiments for the study of absorber clusters. This work led to important improvements in the calculation of isolated absorbers and absorber clusters. The reactivity worth of these clusters in particular, can now be obtained with a great accuracy: the discrepancy observed between the calculated and the experimental values is less than 2.5 %, and then slightly lower than the experimental uncertainty. (author)

  1. Carbon nanotube substrates and catalyzed hot stamp for polishing and patterning the substrates

    Science.gov (United States)

    Wang, Yuhuang [Evanston, IL; Hauge, Robert H [Houston, TX; Schmidt, Howard K [Houston, TX; Kim, Myung Jong [Houston, TX; Kittrell, W Carter [Houston, TX

    2009-09-08

    The present invention is generally directed to catalyzed hot stamp methods for polishing and/or patterning carbon nanotube-containing substrates. In some embodiments, the substrate, as a carbon nanotube fiber end, is brought into contact with a hot stamp (typically at 200-800.degree. C.), and is kept in contact with the hot stamp until the morphology/patterns on the hot stamp have been transferred to the substrate. In some embodiments, the hot stamp is made of material comprising one or more transition metals (Fe, Ni, Co, Pt, Ag, Au, etc.), which can catalyze the etching reaction of carbon with H.sub.2, CO.sub.2, H.sub.2O, and/or O.sub.2. Such methods can (1) polish the carbon nanotube-containing substrate with a microscopically smooth finish, and/or (2) transfer pre-defined patterns from the hot stamp to the substrate. Such polished or patterned carbon nanotube substrates can find application as carbon nanotube electrodes, field emitters, and field emitter arrays for displays and electron sources.

  2. A THz plasmonics perfect absorber and Fabry-Perot cavity mechanism (Conference Presentation)

    Science.gov (United States)

    Zhou, Jiangfeng; Bhattarai, Khagendra; Silva, Sinhara; Jeon, Jiyeon; Kim, Junoh; Lee, Sang Jun; Ku, Zahyun

    2016-10-01

    The plasmonic metamaterial perfect absorber (MPA) is a recently developed branch of metamaterial which exhibits nearly unity absorption within certain frequency range.[1-6] The optically thin MPA possesses characteristic features of angular-independence, high Q-factor and strong field localization that have inspired a wide range of applications including electromagnetic wave absorption,[3, 7, 8] spatial[6] and spectral[5] modulation of light,[9] selective thermal emission,[9] thermal detecting[10] and refractive index sensing for gas[11] and liquid[12, 13] targets. In this work, we demonstrate a MPA working at terahertz (THz) regime and characterize it using an ultrafast THz time-domain spectroscopy (THz-TDS). Our study reveal an ultra-thin Fabry-Perot cavity mechanism compared to the impedance matching mechanism widely adopted in previous study [1-6]. Our results also shows higher-order resonances when the cavities length increases. These higher order modes exhibits much larger Q-factor that can benefit potential sensing and imaging applications. [1] C. M. Watts, X. L. Liu, and W. J. Padilla, "Metamaterial Electromagnetic Wave Absorbers," Advanced Materials, vol. 24, pp. 98-120, Jun 19 2012. [2] M. Hedayati, F. Faupel, and M. Elbahri, "Review of Plasmonic Nanocomposite Metamaterial Absorber," Materials, vol. 7, pp. 1221-1248, 2014. [3] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Physical Review Letters, vol. 100, p. 207402, May 23 2008. [4] H. R. Seren, G. R. Keiser, L. Cao, J. Zhang, A. C. Strikwerda, K. Fan, et al., "Optically Modulated Multiband Terahertz Perfect Absorber," Advanced Optical Materials, vol. 2, pp. 1221-1226, 2014. [5] D. Shrekenhamer, J. Montoya, S. Krishna, and W. J. Padilla, "Four-Color Metamaterial Absorber THz Spatial Light Modulator," Advanced Optical Materials, vol. 1, pp. 905-909, 2013. [6] S. Savo, D. Shrekenhamer, and W. J. Padilla, "Liquid Crystal Metamaterial Absorber Spatial

  3. A one bath chemo-enzymatic process for preparation of absorbent cotton

    Directory of Open Access Journals (Sweden)

    A.S.M. Raja

    2016-09-01

    Full Text Available Cotton is the raw material for preparation of absorbent cotton. Raw cotton has to be subjected to scouring and bleaching processes for making it absorbent by removing the naturally present wax, protein and minerals in the fibre. The scouring is done at 115 °C using alkali followed by bleaching at boiling condition using alkaline hydrogen peroxide solution. The effluent coming out of such processes contains high COD and BOD values. Due to the stringent environmental regulation and great awareness among the public about environment, worldwide attempts have been made to develop green and sustainable chemical processing of materials. Based on the above, in the present study efforts have been made to develop an eco-friendly one bath preparatory process for the production of absorbent cotton using chemo-enzymatic formulation. The result indicated that absorbent cotton produced using the developed process fulfilled the required performance properties as per pharmacopoeia in comparable with the conventional process made one.

  4. Desorption of absorbed iron in bean root and leaf tissues

    International Nuclear Information System (INIS)

    Jooste, J.H.; De Bruyn, J.A.

    1979-01-01

    The effect of different desorption media on the amount of absorbed Fe (from a solution of FeCl 3 in 0,5 mM CaCl 2 ) retained by leaf discs and excised root tips of bean plants was investigated. Attempts were also made to determine the effect of desorption on the intracellular distribution of Fe. Desorption in water or an FeCl 3 solution had no pronounced effect on the amount of absorbed Fe retained by either the leaf or root tissues. However, Na 2 -EDTA was able to desorb a considerable portion of the absorbed Fe, especially in root tissue. This applies to Fe absorbed from solutions of FeCl 3 and Fe-EDDHA. Desorption by the chelate removed Fe from practically all the different particulate fractions of both root and leaf tissues, but desorption following the longer absorption periods resulted in an increase in the Fe content of the 'soluble' fraction. The possibility that Na 2 -EDTA causes an increased permeability of cell membranes seems likely. The view that removal of Ca by the chelate causes this increase in permeability could not be confirmed [af

  5. RESEARCH ABSORBING STATES OF THE SYSTEM USING MARKOV CHAINS AND FUNDAMENTAL MATRIX

    Directory of Open Access Journals (Sweden)

    Тетяна Мефодіївна ОЛЕХ

    2016-02-01

    Full Text Available The article discusses the use Markov chains to research models that reflect the essential properties of systems, including methods of measuring the parameters of projects and assess their effectiveness. In the study carried out by its decomposition system for certain discrete state and create a diagram of transitions between these states. Specificity displays various objects Markov homogeneous chains with discrete states and discrete time determined by the method of calculation of transition probabilities. A model of success criteria for absorbing state system that is universal for all projects. A breakdown of passages to the matrix submatrices. The variation elements under matrix Q n with growth linked to the definition of important quantitative characteristics of absorbing circuits: 1 the probability of achieving the status of absorbing any given; 2 the mean number of steps needed to achieve the absorbing state; 3 the mean time that the system spends in each state to hit irreversible system in absorbing state. Built fundamental matrix that allowed calculating the different characteristics of the system. Considered fundamental matrix for supposedly modeled absorbing Markov chain, which gives the forecast for the behavior of the system in the future regardless of the absolute value of the time elapsed from the starting point. This property illustrates the fundamental matrix Markov process that characterizes it as a process without aftereffect.

  6. Effect of gamma background on the dose absorbed by human embryon and foetus

    International Nuclear Information System (INIS)

    Miloslavov, V.; Doncheva, B.

    1989-01-01

    A method is proposed for calculation of absorbed radiation dose in different stages of human foetus development under normal or increased gamma background. On the base of ICRP-data for critical organ's mass (foetus, placenta, blood, uterus) a formula is given for absorbed dose evaluation of gonads. It is concluded that increased gamma background is insignificant compared to internal irradiation from absorbed radionuclides

  7. Absorbed dose optimization in the microplanar beam radiotherapy

    International Nuclear Information System (INIS)

    Company, F.Z.; Jaric, J.; Allen, B.J.

    1996-01-01

    Full text: Recent advances in synchrotron generated X-ray beams with high fluence rate, small divergence and sharply defined microbeam margins permit investigation of the application of an array of closely spaced, parallel or converging microbeams for radiotherapy. The proposed technique takes advantage of the repair mechanism hypothesis of capillary endothelial cells between alternate microbeam zones, which regenerates the lethally irradiated capillaries. Unlike a pencil beam, more accurate dose calculation, beam width and spacing are essential to minimise radiation damage to normal tissue cells outside the target. The absorbed dose between microbeam zones should be kept below the threshold for irreversible radiation damage. Thus the peak-to-valley ratio for the dose distribution should be optimized. The absorbed dose profile depends on the energy of the incident beam and the composition and density of the medium. Using Monte Carlo computations, the radial absorbed dose of single 24 x 24 μm 2 cross-section X-ray beams of different energies in a tissue/lung/tissue phantom was investigated. The results indicated that at 100 keV, closely spaced square cross-sectional microbeams can be applied to the lung. A bundle of parallel 24 μm-wide planar microbeams spaced at 200 μm intervals provides much more irradiation coverage of tissue than is provided by a bundle of parallel, square cross-sectional microbeam, although the former is associated with much smaller Peak (maximum absorbed dose on the beam axis) -to-Valley ( minimum interbeam absorbed dose ) ratios than the latter. In this study the lateral and depth dose of single and multiple microplanar beams with beam dimensions of width 24 μm and 48 μm and height 2-20 cm with energy of 100 keV in a tissue/lung/tissue phantom are investigated. The EGS4 Monte Carlo code is used to calculate dose profiles at different depths and bundles of beams (2 x 2 cm 2 to 20 x 20 cm 2 square cross section) with a 150 μm 200 μm and

  8. Filtration: Novel Absorber Evaluation Club aims at standardized testing

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In the past few years a number of novel absorber materials, both organic and inorganic, have appeared on the market - some claiming to achieve very large decontamination factors for metal ions, including those having radioactive isotopes. Several of these materials have been tested by individual companies in the nuclear industry and some have shown promise as decontaminants for radioactive waste streams. Unfortunately, the results obtained for the treatment of a particular waste stream cannot be applied directly to the many and diverse waste streams generated throughout the nuclear industry. A unified and standardized testing programme making use of available expertise is necessary to provide a fair and meaningful comparison. In November 1988, representatives of the United Kingdom nuclear industry agreed to form the Novel Absorber Evaluation Club to assess absorber materials and to undertake the necessary work to identify the extent and rate of adsorption of radionuclides by such materials from a set of typical reference waste streams. (author)

  9. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.

    Science.gov (United States)

    Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L

    2003-05-13

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate

  10. Self Absorbed Fraction for Electrons and Beta Particles in Small Spherical Volumes

    International Nuclear Information System (INIS)

    Grosev, D.

    2003-01-01

    Absorbed fraction and target organ mass are important parameters of internal dosimetry calculations that define the geometry of the system. Standard MIRD (Medical Internal Radiation Dosimetry) formalism assumes that the absorbed fraction for non-penetrating radiations (e.g., electrons, beta particles) is 1. This may not be correct in cases where dimensions of organs/tissues are comparable with the ranges of electrons/beta particles. Such is the case for example in radiodine ablation of thyroid remnant tissue. In this work the self-absorbed fraction (source and target volumes are the same) for monoenergetic electrons and beta particles is calculated for small spherical volumes of various sizes and unit density. Absorbed fraction can be expressed as an integral of the product of two quantities: (a) Scaled beta dose point kernel (mean absorbed dose rate per activity of the point source in infinite homogenous medium), F β ; (b) special geometrical reduction factor (GRF). F β is calculated using EGS4 Monte Carlo (MC) code for transport of electrons and photons. MC source code calculates the deposition of energy inside concentric spherical shells around the isotropic point source of electrons/beta particles in infinite medium (water). Shell thickness was δr=0.02·X 90 , where X 90 represents the radius of the sphere inside which 90% of the source energy is absorbed. Number of concentric spherical shells was 100, 10000 electron histories were started in each program run, and 10 runs were repeated for statistical reason. Numerical integration of the product of F β , calculated by MC program, and GRF for sphere was done using Simpson method. Absorbed fractions were calculated for spheres with mass from 0.01-20 g (r = 0.13 - 1.68 cm). Results are given for monoenergetic electrons with kinetic energy T=0.2, 0.4, 1.0 MeV, and for three beta emitters 1 31I , 3 2P , 9 0Y . For quantitative dosimetric protocols in radioiodine ablation therapy, results for 1 31I are of

  11. Emitter and absorber assembly for multiple self-dual operation and directional transparency

    Science.gov (United States)

    Kalozoumis, P. A.; Morfonios, C. V.; Kodaxis, G.; Diakonos, F. K.; Schmelcher, P.

    2017-03-01

    We demonstrate how to systematically design wave scattering systems with simultaneous coherent perfect absorbing and lasing operation at multiple and prescribed frequencies. The approach is based on the recursive assembly of non-Hermitian emitter and absorber units into self-dual emitter-absorber trimers at different composition levels, exploiting the simple structure of the corresponding transfer matrices. In particular, lifting the restriction to parity-time-symmetric setups enables the realization of emitter and absorber action at distinct frequencies and provides flexibility with respect to the choice of realistic parameters. We further show how the same assembled scatterers can be rearranged to produce unidirectional and bidirectional transparency at the selected frequencies. With the design procedure being generically applicable to wave scattering in single-channel settings, we demonstrate it with concrete examples of photonic multilayer setups.

  12. Multifunctionality is affected by interactions between green roof plant species, substrate depth, and substrate type.

    Science.gov (United States)

    Dusza, Yann; Barot, Sébastien; Kraepiel, Yvan; Lata, Jean-Christophe; Abbadie, Luc; Raynaud, Xavier

    2017-04-01

    Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil-plant interactions induce trade-offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.

  13. Microwave Absorbent Packaging Material from Composites Chitosan-Polyvinyl Alcohol Polymer

    Directory of Open Access Journals (Sweden)

    Bambang - Riyanto

    2014-11-01

    Full Text Available Microwave absorbent packaging materials currently tend to biomaterial. Chitosan is a dielectric biomaterial with polycationic properties. The aim of this study was to analyze characteristics of microwave absorbing packaging material made from composite chitosan-polyvinyl alcohol (PVA polymer. The ability of the packaging material to absorb microwave was determined by reflection loss measurement. Formed packaging prototype resembles as a thin transparent yellowish plastic with thickness (0.11-0.22 mm and the tensile strength (106.33±2.82-143.00±2.59 kPa. SEM analysis showed homogenous structure characterized by interaction between chitosan and PVA. Optimum absorption value was obtained from chitosan concentration of 1%, with average value of reflection loss was (-31.9289±4.0094 dB.Keywords: chitosan, material packaging, microwave, reflection loss

  14. Microwave Absorbent Packaging Material from Composites Chitosan-Polyvinyl Alcohol Polymer

    Directory of Open Access Journals (Sweden)

    Bambang - Riyanto

    2015-07-01

    Full Text Available Microwave absorbent packaging materials currently tend to biomaterial. Chitosan is a dielectric biomaterial with polycationic properties. The aim of this study was to analyze characteristics of microwave absorbing packaging material made from composite chitosan-polyvinyl alcohol (PVA polymer. The ability of the packaging material to absorb microwave was determined by reflection loss measurement. Formed packaging prototype resembles as a thin transparent yellowish plastic with thickness (0.11-0.22 mm and the tensile strength (106.33±2.82-143.00±2.59 kPa. SEM analysis showed homogenous structure characterized by interaction between chitosan and PVA. Optimum absorption value was obtained from chitosan concentration of 1%, with average value of reflection loss was (-31.9289±4.0094 dB.Keywords: chitosan, material packaging, microwave, reflection loss

  15. An efficient absorbing system for spectrophotometric determination of nitrogen dioxide

    Science.gov (United States)

    Kaveeshwar, Rachana; Amlathe, Sulbha; Gupta, V. K.

    A simple and sensitive spectrophotometric method for determination of atmospheric nitrogen dioxide using o-nitroaniline as an efficient absorbing, as well as diazotizing, reagent is described. o-Nitroaniline present in the absorbing medium is diazotized by the absorbed nitrite ion to form diazonium compound. This is later coupled with 1-amino-2-naphthalene sulphonic acid (ANSA) in acidic medium to give red-violet-coloured dye,having λmax = 545 nm. The isoamyl extract of the red azo dye has λmax = 530 nm. The proposed reagents has ≈ 100% collection efficiency and the stoichiometric ratio of NO 2:NO 2- is 0.74. The other important analytical parameters have been investigated. By employing solvent extraction the sensitivity of the reaction was increased and up to 0.03 mg m -3 nitrogen dioxide could be estimated.

  16. A new laboratory-scale experimental facility for detailed aerothermal characterizations of volumetric absorbers

    Science.gov (United States)

    Gomez-Garcia, Fabrisio; Santiago, Sergio; Luque, Salvador; Romero, Manuel; Gonzalez-Aguilar, Jose

    2016-05-01

    This paper describes a new modular laboratory-scale experimental facility that was designed to conduct detailed aerothermal characterizations of volumetric absorbers for use in concentrating solar power plants. Absorbers are generally considered to be the element with the highest potential for efficiency gains in solar thermal energy systems. The configu-ration of volumetric absorbers enables concentrated solar radiation to penetrate deep into their solid structure, where it is progressively absorbed, prior to being transferred by convection to a working fluid flowing through the structure. Current design trends towards higher absorber outlet temperatures have led to the use of complex intricate geometries in novel ceramic and metallic elements to maximize the temperature deep inside the structure (thus reducing thermal emission losses at the front surface and increasing efficiency). Although numerical models simulate the conjugate heat transfer mechanisms along volumetric absorbers, they lack, in many cases, the accuracy that is required for precise aerothermal validations. The present work aims to aid this objective by the design, development, commissioning and operation of a new experimental facility which consists of a 7 kWe (1.2 kWth) high flux solar simulator, a radiation homogenizer, inlet and outlet collector modules and a working section that can accommodate volumetric absorbers up to 80 mm × 80 mm in cross-sectional area. Experimental measurements conducted in the facility include absorber solid temperature distributions along its depth, inlet and outlet air temperatures, air mass flow rate and pressure drop, incident radiative heat flux, and overall thermal efficiency. In addition, two windows allow for the direct visualization of the front and rear absorber surfaces, thus enabling full-coverage surface temperature measurements by thermal imaging cameras. This paper presents the results from the aerothermal characterization of a siliconized silicon

  17. Maintainable substrate carrier for electroplating

    Science.gov (United States)

    Chen, Chen-An [Milpitas, CA; Abas, Emmanuel Chua [Laguna, PH; Divino, Edmundo Anida [Cavite, PH; Ermita, Jake Randal G [Laguna, PH; Capulong, Jose Francisco S [Laguna, PH; Castillo, Arnold Villamor [Batangas, PH; Ma,; Xiaobing, Diana [Saratoga, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  18. Preliminary Nuclear Analysis for the HANARO Fuel Element with Burnable Absorber

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Chul Gyo; Kim, So Young; In, Won Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Burnable absorber is used for reducing reactivity swing and power peaking in high performance research reactors. Development of the HANARO fuel element with burnable absorber was started in the U-Mo fuel development program at HANARO, but detailed full core analysis was not performed because the current HANARO fuel management system is uncertain to analysis the HANARO core with burnable absorber. A sophisticated reactor physics system is required to analysis the core. The McCARD code was selected and the detailed McCARD core models, in which the basic HANARO core model was developed by one of the McCARD developers, are used in this study. The development of nuclear fuel requires a long time and correct developing direction especially by the nuclear analysis. This paper presents a preliminary nuclear analysis to promote the fuel development. Based on the developed fuel, the further nuclear analysis will improve reactor performance and safety. Basic nuclear analysis for the HANARO and the AHR were performed for getting the proper fuel elements with burnable absorber. Addition of 0.3 - 0.4% Cd to the fuel meat is promising for the current HANARO fuel element. Small addition of burnable absorber may not change any fuel characteristics of the HANARO fuel element, but various basic tests and irradiation tests at the HANARO core are required.

  19. Acoustic Properties of Absorbent Asphalts

    Science.gov (United States)

    Trematerra, Amelia; Lombardi, Ilaria

    2017-08-01

    Road traffic is one of the greater cause of noise pollution in urban centers; a prolonged exposure to this source of noise disturbs populations subjected to it. In this paper is reported a study on the absorbent coefficients of asphalt. The acoustic measurements are carried out with a impedance tube (tube of Kundt). The sample are measured in three conditions: with dry material (traditional), “wet” asphalt and “dirty” asphalt.

  20. Enhanced sensitivity to dielectric function and thickness of absorbing thin films by combining total internal reflection ellipsometry with standard ellipsometry and reflectometry

    Science.gov (United States)

    Lizana, A.; Foldyna, M.; Stchakovsky, M.; Georges, B.; Nicolas, D.; Garcia-Caurel, E.

    2013-03-01

    High sensitivity of spectroscopic ellipsometry and reflectometry for the characterization of thin films can strongly decrease when layers, typically metals, absorb a significant fraction of the light. In this paper, we propose a solution to overcome this drawback using total internal reflection ellipsometry (TIRE) and exciting a surface longitudinal wave: a plasmon-polariton. As in the attenuated total reflectance technique, TIRE exploits a minimum in the intensity of reflected transversal magnetic (TM) polarized light and enhances the sensitivity of standard methods to thicknesses of absorbing films. Samples under study were stacks of three films, ZnO : Al/Ag/ZnO : Al, deposited on glass substrates. The thickness of the silver layer varied from sample to sample. We performed measurements with a UV-visible phase-modulated ellipsometer, an IR Mueller ellipsometer and a UV-NIR reflectometer. We used the variance-covariance formalism to evaluate the sensitivity of the ellipsometric data to different parameters of the optical model. Results have shown that using TIRE doubled the sensitivity to the silver layer thickness when compared with the standard ellipsometry. Moreover, the thickness of the ZnO : Al layer below the silver layer can be reliably quantified, unlike for the fit of the standard ellipsometry data, which is limited by the absorption of the silver layer.