WorldWideScience

Sample records for alternatively spliced variant

  1. Alternative splice variants of the human PD-1 gene

    DEFF Research Database (Denmark)

    Nielsen, Christian; Ohm-Laursen, Line; Barington, Torben;

    2005-01-01

    PD-1 is an immunoregulatory receptor expressed on the surface of activated T cells, B cells, and monocytes. We describe four alternatively spliced PD-1 mRNA transcripts (PD-1Deltaex2, PD-1Deltaex3, PD-1Deltaex2,3, and PD-1Deltaex2,3,4) in addition to the full length isoform. PD-1Deltaex2 and PD-1......Deltaex3 are generated by alternative splicing where exon 2 (extracellular IgV-like domain) and exon 3 (transmembrane domain) respectively are spliced out. PD-1Deltaex3 is therefore likely to encode a soluble form of PD-1. PD-1Deltaex2,3 lacks exon 2 and 3. These three variants have unaffected open...

  2. A Unique, Consistent Identifier for Alternatively Spliced Transcript Variants

    OpenAIRE

    Riva, Alberto; Pesole, Graziano

    2009-01-01

    Background As research into alternative splicing reveals the fundamental importance of this phenomenon in the genome expression of higher organisms, there is an increasing need for a standardized, consistent and unique identifier for alternatively spliced isoforms. Such an identifier would be useful to eliminate ambiguities in references to gene isoforms, and would allow for the reliable comparison of isoforms from different sources (e.g., known genes vs. computational predictions). Commonly ...

  3. A unique, consistent identifier for alternatively spliced transcript variants.

    Directory of Open Access Journals (Sweden)

    Alberto Riva

    Full Text Available BACKGROUND: As research into alternative splicing reveals the fundamental importance of this phenomenon in the genome expression of higher organisms, there is an increasing need for a standardized, consistent and unique identifier for alternatively spliced isoforms. Such an identifier would be useful to eliminate ambiguities in references to gene isoforms, and would allow for the reliable comparison of isoforms from different sources (e.g., known genes vs. computational predictions. Commonly used identifiers for gene transcripts prove to be unsuitable for this purpose. METHODOLOGY: We propose an algorithm to compute an isoform signature based on the arrangement of exons and introns in a primary transcript. The isoform signature uniquely identifies a transcript structure, and can therefore be used as a key in databases of alternatively spliced isoforms, or to compare alternative splicing predictions produced by different methods. In this paper we present the algorithm to generate isoform signatures, we provide some examples of its application, and we describe a web-based resource to generate isoform signatures and use them in database searches. CONCLUSIONS: Isoform signatures are simple, so that they can be easily generated and included in publications and databases, but flexible enough to unambiguously represent all possible isoform structures, including information about coding sequence position and variable transcription start and end sites. We believe that the adoption of isoform signatures can help establish a consistent, unambiguous nomenclature for alternative splicing isoforms. The system described in this paper is freely available at http://genome.ufl.edu/genesig/, and supplementary materials can be found at http://genome.ufl.edu/genesig-files/.

  4. Novel Alternative Splice Variants of Mouse Cdk5rap2.

    Directory of Open Access Journals (Sweden)

    Nadine Kraemer

    Full Text Available Autosomal recessive primary microcephaly (MCPH is a rare neurodevelopmental disorder characterized by a pronounced reduction of brain volume and intellectual disability. A current model for the microcephaly phenotype invokes a stem cell proliferation and differentiation defect, which has moved the disease into the spotlight of stem cell biology and neurodevelopmental science. Homozygous mutations of the Cyclin-dependent kinase-5 regulatory subunit-associated protein 2 gene CDK5RAP2 are one genetic cause of MCPH. To further characterize the pathomechanism underlying MCPH, we generated a conditional Cdk5rap2 LoxP/hCMV Cre mutant mouse. Further analysis, initiated on account of a lack of a microcephaly phenotype in these mutant mice, revealed the presence of previously unknown splice variants of the Cdk5rap2 gene that are at least in part accountable for the lack of microcephaly in the mice.

  5. Alternative splicing modulated by genetic variants demonstrates accelerated evolution regulated by highly conserved proteins.

    Science.gov (United States)

    Hsiao, Yun-Hua Esther; Bahn, Jae Hoon; Lin, Xianzhi; Chan, Tak-Ming; Wang, Rena; Xiao, Xinshu

    2016-04-01

    Identification of functional genetic variants and elucidation of their regulatory mechanisms represent significant challenges of the post-genomic era. A poorly understood topic is the involvement of genetic variants in mediating post-transcriptional RNA processing, including alternative splicing. Thus far, little is known about the genomic, evolutionary, and regulatory features of genetically modulated alternative splicing (GMAS). Here, we systematically identified intronic tag variants for genetic modulation of alternative splicing using RNA-seq data specific to cellular compartments. Combined with our previous method that identifies exonic tags for GMAS, this study yielded 622 GMAS exons. We observed that GMAS events are highly cell type independent, indicating that splicing-altering genetic variants could have widespread function across cell types. Interestingly, GMAS genes, exons, and single-nucleotide variants (SNVs) all demonstrated positive selection or accelerated evolution in primates. We predicted that GMAS SNVs often alter binding of splicing factors, with SRSF1 affecting the most GMAS events and demonstrating global allelic binding bias. However, in contrast to their GMAS targets, the predicted splicing factors are more conserved than expected, suggesting thatcis-regulatory variation is the major driving force of splicing evolution. Moreover, GMAS-related splicing factors had stronger consensus motifs than expected, consistent with their susceptibility to SNV disruption. Intriguingly, GMAS SNVs in general do not alter the strongest consensus position of the splicing factor motif, except the more than 100 GMAS SNVs in linkage disequilibrium with polymorphisms reported by genome-wide association studies. Our study reports many GMAS events and enables a better understanding of the evolutionary and regulatory features of this phenomenon. PMID:26888265

  6. An Alternate Splicing Variant of the Human Telomerase Catalytic Subunit Inhibits Telomerase Activity

    Directory of Open Access Journals (Sweden)

    Xiaoming Yi

    2000-09-01

    Full Text Available Telomerase, a cellular reverse transcriptase, adds telomeric repeats to chromosome ends. In normal human somatic cells, telomerase is repressed and telomeres progressively shorten, leading to proliferative senescence. Introduction of the telomerase (hTERT cDNA is sufficient to produce telomerase activity and immortalize normal human cells, suggesting that the repression of telomerase activity is transcriptional. The telomerase transcript has been shown to have at least six alternate splicing sites (four insertion sites and two deletion sites, and variants containing both or either of the deletion sites are present during development and in a panel of cancer cell lines we surveyed. One deletion (β site and all four insertions cause premature translation terminations, whereas the other deletion (α site is 36 by and lies within reverse transcriptase (RT motif A, suggesting that this deletion variant may be a candidate as a dominant-negative inhibitor of telomerase. We have cloned three alternately spliced hTERT variants that contain the α,β or both α and,β deletion sites. These alternate splicing variants along with empty vector and wild-type hTERT were introduced into normal human fibroblasts and several telomerase-positive immortal and tumor cell lines. Expression of the α site deletion variant (hTERT α− construct was confirmed by Western blotting. We found that none of the three alternate splicing variants reconstitutes telomerase activity in fibroblasts. However, hTERT α− inhibits telomerase activities in telomerase-positive cells, causes telomere shortening and eventually cell death. This alternately spliced dominant-negative variant may be important in understanding telomerase regulation during development, differentiation and in cancer progression.

  7. Human Aldehyde Dehydrogenase Genes: Alternatively-Spliced Transcriptional Variants and Their Suggested Nomenclature

    Science.gov (United States)

    Black, William J.; Stagos, Dimitrios; Marchitti, Satori A.; Nebert, Daniel W.; Tipton, Keith F.; Bairoch, Amos; Vasiliou, Vasilis

    2011-01-01

    OBJECTIVE The human aldehyde dehydrogenase (ALDH) gene superfamily consists of 19 genes encoding enzymes critical for NAD(P)+-dependent oxidation of endogenous and exogenous aldehydes, including drugs and environmental toxicants. Mutations in ALDH genes are the molecular basis of several disease states (e.g. Sjögren-Larsson syndrome, pyridoxine-dependent seizures, and type II hyperprolinemia) and may contribute to the etiology of complex diseases such as cancer and Alzheimer’s disease. The aim of this nomenclature update was to identify splice transcriptional variants principally for the human ALDH genes. METHODS Data-mining methods were used to retrieve all human ALDH sequences. Alternatively-spliced transcriptional variants were determined based upon: a) criteria for sequence integrity and genomic alignment; b) evidence of multiple independent cDNA sequences corresponding to a variant sequence; and c) if available, empirical evidence of variants from the literature. RESULTS AND CONCLUSION Alternatively-spliced transcriptional variants and their encoded proteins exist for most of the human ALDH genes; however, their function and significance remain to be established. When compared with the human genome, rat and mouse include an additional gene, Aldh1a7, in the ALDH1A subfamily. In order to avoid confusion when identifying splice variants in various genomes, nomenclature guidelines for the naming of such alternative transcriptional variants and proteins are recommended herein. In addition, a web database (www.aldh.org) has been developed to provide up-to-date information and nomenclature guidelines for the ALDH superfamily. PMID:19823103

  8. ASPicDB: a database of annotated transcript and protein variants generated by alternative splicing

    Science.gov (United States)

    Martelli, Pier L.; D’Antonio, Mattia; Bonizzoni, Paola; Castrignanò, Tiziana; D’Erchia, Anna M.; D’Onorio De Meo, Paolo; Fariselli, Piero; Finelli, Michele; Licciulli, Flavio; Mangiulli, Marina; Mignone, Flavio; Pavesi, Giulio; Picardi, Ernesto; Rizzi, Raffaella; Rossi, Ivan; Valletti, Alessio; Zauli, Andrea; Zambelli, Federico; Casadio, Rita; Pesole, Graziano

    2011-01-01

    Alternative splicing is emerging as a major mechanism for the expansion of the transcriptome and proteome diversity, particularly in human and other vertebrates. However, the proportion of alternative transcripts and proteins actually endowed with functional activity is currently highly debated. We present here a new release of ASPicDB which now provides a unique annotation resource of human protein variants generated by alternative splicing. A total of 256 939 protein variants from 17 191 multi-exon genes have been extensively annotated through state of the art machine learning tools providing information of the protein type (globular and transmembrane), localization, presence of PFAM domains, signal peptides, GPI-anchor propeptides, transmembrane and coiled-coil segments. Furthermore, full-length variants can be now specifically selected based on the annotation of CAGE-tags and polyA signal and/or polyA sites, marking transcription initiation and termination sites, respectively. The retrieval can be carried out at gene, transcript, exon, protein or splice site level allowing the selection of data sets fulfilling one or more features settled by the user. The retrieval interface also enables the selection of protein variants showing specific differences in the annotated features. ASPicDB is available at http://www.caspur.it/ASPicDB/. PMID:21051348

  9. Heat Stress Upregulates the Expression of TLR4 and Its Alternative Splicing Variant in Bama Miniature Pigs

    Institute of Scientific and Technical Information of China (English)

    JU Xiang-hong; XU Han-jin; YONG Yan-hong; AN Li-long; XU Ying-mei; JIAO Pei-rong; LIAO Ming

    2014-01-01

    Alternative splicing is a cellular mechanism in eukaryotes that results in considerable diversity of gene products. It plays an important role in several diseases and cellular signal regulation. Heat stress is a major factor that induces immunosuppression in pigs. Little is known about the correlation between alternative splicing and heat stress in pigs. Therefore, this study aimed to clone, sequence and quantify the alternative splicing variant of toll-like receptor 4 (TLR4) in Bama miniature pigs (Sus scrofa domestica) following exposure to heat stress. The results showed that the second exon of TLR4 was spliced and 167 bp shorter in the alternative splicing variant, and the protein was putatively identiifed as a type of truncated membrane protein consisting of extramembrane, transmembrane and intramembrane regions lacking a signal peptide. Further, it was not a non-classical secretory protein. Five potential reference genes were screened for their potential as reliable standards to quantify the expression of TLR4 alternative spliced variants by real-time quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). The stability of these reference genes was ranked using the geNorm and NormFinder programs, and ribosomal protein L4 (RPL4) and TATA box-binding protein (TBP) were found to be the two genes showing the most stable expression in the in vitro cultured peripheral blood mononuclear cells (PBMCs) during heat shock. The mRNA level of the TLR4 gene (both classical and spliced) in stressed pigs increased signiifcantly (P<0.05). Further, the expression levels of the alternative spliced variant of TLR4 (TLR4-ASV) showed a 2-3 folds increase in heat-stressed PBMCs as compared to control pigs. The results of the present study suggested that heat shock might modulate the host immune response by regulating the expressions of TLR4 and its alternative splicing variant.

  10. Alternative splicing variants of human Fbx4 disturb cyclin D1 proteolysis in human cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Xiufeng; Zhang, Ting; Wang, Jie; Li, Meng; Zhang, Xiaolei; Tu, Jing [Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Sun, Shiqin [College of Pharmacy, Harbin Medical University-Daqing, Daqing, Heilongjiang 163319 (China); Chen, Xiangmei, E-mail: xm_chen6176@bjmu.edu.cn [Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China); Lu, Fengmin [Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191 (China)

    2014-04-25

    Highlights: • The expression of Fbx4 was significantly lower in HCC tissues. • Novel splicing variants of Fbx4 were identified. • These novel variants are much more abundant in human cancer tissues and cells. • The novel Fbx4 isoforms could promote cell proliferation and migration in vitro. • These isoforms showed less capability for cyclin D1 binding and degradation. - Abstract: Fbx4 is a specific substrate recognition component of SCF ubiquitin ligases that catalyzes the ubiquitination and subsequent degradation of cyclin D1 and Trx1. Two isoforms of human Fbx4 protein, the full length Fbx4α and the C-terminal truncated Fbx4β have been identified, but their functions remain elusive. In this study, we demonstrated that the mRNA level of Fbx4 was significantly lower in hepatocellular carcinoma tissues than that in the corresponding non-tumor tissues. More importantly, we identified three novel splicing variants of Fbx4: Fbx4γ (missing 168–245nt of exon1), Fbx4δ (missing exon6) and a N-terminal reading frame shift variant (missing exon2). Using cloning sequencing and RT-PCR, we demonstrated these novel splice variants are much more abundant in human cancer tissues and cell lines than that in normal tissues. When expressed in Sk-Hep1 and NIH3T3 cell lines, Fbx4β, Fbx4γ and Fbx4δ could promote cell proliferation and migration in vitro. Concordantly, these isoforms could disrupt cyclin D1 degradation and therefore increase cyclin D1 expression. Moreover, unlike the full-length isoform Fbx4α that mainly exists in cytoplasm, Fbx4β, Fbx4γ, and Fbx4δ locate in both cytoplasm and nucleus. Since cyclin D1 degradation takes place in cytoplasm, the nuclear distribution of these Fbx4 isoforms may not be involved in the down-regulation of cytoplasmic cyclin D1. These results define the impact of alternative splicing on Fbx4 function, and suggest that the attenuated cyclin D1 degradation by these novel Fbx4 isoforms provides a new insight for aberrant

  11. Alternative splicing variants of human Fbx4 disturb cyclin D1 proteolysis in human cancer.

    Science.gov (United States)

    Chu, Xiufeng; Zhang, Ting; Wang, Jie; Li, Meng; Zhang, Xiaolei; Tu, Jing; Sun, Shiqin; Chen, Xiangmei; Lu, Fengmin

    2014-04-25

    Fbx4 is a specific substrate recognition component of SCF ubiquitin ligases that catalyzes the ubiquitination and subsequent degradation of cyclin D1 and Trx1. Two isoforms of human Fbx4 protein, the full length Fbx4α and the C-terminal truncated Fbx4β have been identified, but their functions remain elusive. In this study, we demonstrated that the mRNA level of Fbx4 was significantly lower in hepatocellular carcinoma tissues than that in the corresponding non-tumor tissues. More importantly, we identified three novel splicing variants of Fbx4: Fbx4γ (missing 168-245 nt of exon1), Fbx4δ (missing exon6) and a N-terminal reading frame shift variant (missing exon2). Using cloning sequencing and RT-PCR, we demonstrated these novel splice variants are much more abundant in human cancer tissues and cell lines than that in normal tissues. When expressed in Sk-Hep1 and NIH3T3 cell lines, Fbx4β, Fbx4γ and Fbx4δ could promote cell proliferation and migration in vitro. Concordantly, these isoforms could disrupt cyclin D1 degradation and therefore increase cyclin D1 expression. Moreover, unlike the full-length isoform Fbx4α that mainly exists in cytoplasm, Fbx4β, Fbx4γ, and Fbx4δ locate in both cytoplasm and nucleus. Since cyclin D1 degradation takes place in cytoplasm, the nuclear distribution of these Fbx4 isoforms may not be involved in the down-regulation of cytoplasmic cyclin D1. These results define the impact of alternative splicing on Fbx4 function, and suggest that the attenuated cyclin D1 degradation by these novel Fbx4 isoforms provides a new insight for aberrant cyclin D1 expression in human cancers. PMID:24704453

  12. The consensus sequence of FAMLF alternative splice variants is overexpressed in undifferentiated hematopoietic cells

    Directory of Open Access Journals (Sweden)

    W.L. Chen

    2015-07-01

    Full Text Available The familial acute myeloid leukemia related factor gene (FAMLF was previously identified from a familial AML subtractive cDNA library and shown to undergo alternative splicing. This study used real-time quantitative PCR to investigate the expression of the FAMLF alternative-splicing transcript consensus sequence (FAMLF-CS in peripheral blood mononuclear cells (PBMCs from 119 patients with de novo acute leukemia (AL and 104 healthy controls, as well as in CD34+ cells from 12 AL patients and 10 healthy donors. A 429-bp fragment from a novel splicing variant of FAMLF was obtained, and a 363-bp consensus sequence was targeted to quantify total FAMLF expression. Kruskal-Wallis, Nemenyi, Spearman's correlation, and Mann-Whitney U-tests were used to analyze the data. FAMLF-CS expression in PBMCs from AL patients and CD34+ cells from AL patients and controls was significantly higher than in control PBMCs (P<0.0001. Moreover, FAMLF-CS expression in PBMCs from the AML group was positively correlated with red blood cell count (rs =0.317, P=0.006, hemoglobin levels (rs =0.210, P=0.049, and percentage of peripheral blood blasts (rs =0.256, P=0.027, but inversely correlated with hemoglobin levels in the control group (rs =–0.391, P<0.0001. AML patients with high CD34+ expression showed significantly higher FAMLF-CS expression than those with low CD34+ expression (P=0.041. Our results showed that FAMLF is highly expressed in both normal and malignant immature hematopoietic cells, but that expression is lower in normal mature PBMCs.

  13. Early diagnostic value of survivin and its alternative splice variants in breast cancer

    International Nuclear Information System (INIS)

    The inhibitor of apoptosis (IAP) protein Survivin and its splice variants are differentially expressed in breast cancer tissues. Our previous work showed Survivin is released from tumor cells via small membrane-bound vesicles called exosomes. We, therefore, hypothesize that analysis of serum exosomal Survivin and its splice variants may provide a novel biomarker for early diagnosis of breast cancer. We collected sera from forty breast cancer patients and ten control patients who were disease free for 5 years after treatment. In addition, twenty-three paired breast cancer tumor tissues from those same 40 patients were analyzed for splice variants. Serum levels of Survivin were analyzed using ELISA and exosomes were isolated from this serum using the commercially available ExoQuick kit, with subsequent Western blots and immunohistochemistry performed. Survivin levels were significantly higher in all the breast cancer samples compared to controls (p < 0.05) with exosome amounts significantly higher in cancer patient sera compared to controls (p < 0.01). While Survivin and Survivin-∆Ex3 splice variant expression and localization was identical in serum exosomes, differential expression of Survivin-2B protein existed in the exosomes. Similarly, Survivin and Survivin-∆Ex3 proteins were the predominant forms detected in all of the breast cancer tissues evaluated in this study, whereas a more variable expression of Survivin-2B level was found at different cancer stages. In this study we show for the first time that like Survivin, the Survivin splice variants are also exosomally packaged in the breast cancer patients’ sera, mimicking the survivin splice variant pattern that we also report in breast cancer tissues. Differential expression of exosomal-Survivin, particularly Survivin-2B, may serve as a diagnostic and/or prognostic marker, a “liquid biopsy” if you will, in early breast cancer patients. Furthermore, a more thorough understanding of the role of this

  14. Kinetic and structural characterization of an alternatively spliced variant of human mitochondrial 5'(3')-deoxyribonucleotidase

    Czech Academy of Sciences Publication Activity Database

    Pachl, Petr; Fábry, Milan; Veverka, Václav; Brynda, Jiří; Řezáčová, Pavlína

    2015-01-01

    Roč. 30, č. 1 (2015), 63-68. ISSN 1475-6366 R&D Projects: GA ČR GA203/09/0820; GA MŠk(CZ) LK11205 Institutional support: RVO:61388963 ; RVO:68378050 Keywords : 5'(3')-deoxyribonucleotidase * alternative splicing * crystal structure * hydrolase * mitochondria Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.332, year: 2014

  15. Two Human ACAT2 mRNA Variants Produced by Alternative Splicing and Coding for Novel Isoenzymes

    Institute of Scientific and Technical Information of China (English)

    Xiao-Min YAO; Bo-Liang LI; Can-Hua WANG; Bao-Liang SONG; Xin-Ying YANG; Zhen-Zhen WANG; Wei QI; Zhi-Xin LIN; Catherine C. Y. CHANG; Ta-Yuan CHANG

    2005-01-01

    Acyl coenzyme A:cholesterol acyltransferase 2 (ACAT2) plays an important role in cholesterol absorption. Human ACAT2 is highly expressed in small intestine and fetal liver, but its expression is greatly diminished in adult liver. The full-length human ACAT2 mRNA encodes a protein, designated ACAT2a, with 522 amino acids. We have previously reported the organization of the human ACAT2 gene and the differentiation-dependent promoter activity in intestinal Caco-2 cells. In the current work, two human ACAT2 mRNA variants produced by alternative splicing are cloned and predicted to encode two novel ACAT2 isoforms,named ACAT2b and ACAT2c, with 502 and 379 amino acids, respectively. These mRNA variants differ from ACAT2a mRNA by lack of the exon 4 (ACAT2b mRNA) and exons 4-5 plus 8-9-10 (ACAT2c mRNA).Significantly, comparable amounts of the alternatively spliced ACAT2 mRNA variants were detected by RTPCR, and Western blot analysis confirmed the presence of their corresponding proteins in human liver and intestine cells. Furthermore, phosphorylation and enzymatic activity analyses demonstrated that the novel isoenzymes ACAT2b and ACAT2c lacked the phosphorylatable site SLLD, and their enzymatic activities reduced to 25%-35% of that of ACAT2a. These evidences indicate that alternative splicing produces two human ACAT2 mRNA variants that encode the novel ACAT2 isoenzymes. Our findings might help to understand the regulation of the ACAT2 gene expression under certain physiological and pathological conditions.

  16. Complex Alternative Splicing

    OpenAIRE

    Park, Jung Woo; Graveley, Brenton R.

    2007-01-01

    Alternative splicing is a powerful means of controlling gene expression and increasing protein diversity. Most genes express a limited number of mRNA isoforms, but there are several examples of genes that use alternative splicing to generate hundreds, thousands, and even tens of thousands of isoforms. Collectively such genes are considered to undergo complex alternative splicing. The best example is the Drosophila Down syndrome cell adhesion molecule (Dscam) gene, which can generate 38,016 is...

  17. Mechano-Regulation of Alternative Splicing

    OpenAIRE

    Liu, Huan; Tang, Liling

    2013-01-01

    Alternative splicing contributes to the complexity of proteome by producing multiple mRNAs from a single gene. Affymetrix exon arrays and experiments in vivo or in vitro demonstrated that alternative splicing was regulated by mechanical stress. Expression of mechano-growth factor (MGF) which is the splicing isoform of insulin-like growth factor 1(IGF-1) and vascular endothelial growth factor (VEGF) splicing variants such as VEGF121, VEGF165, VEGF206, VEGF189, VEGF165 and VEGF145 are regulated...

  18. Alternative splicing of DENND1A, a PCOS candidate gene, generates variant 2.

    Science.gov (United States)

    Tee, Meng Kian; Speek, Mart; Legeza, Balázs; Modi, Bhavi; Teves, Maria Eugenia; McAllister, Janette M; Strauss, Jerome F; Miller, Walter L

    2016-10-15

    Polycystic ovary syndrome (PCOS) is a common endocrinopathy characterized by hyperandrogenism and metabolic disorders. The excess androgens may be of both ovarian and adrenal origin. PCOS has a strong genetic component, and genome-wide association studies have identified several candidate genes, notably DENND1A, which encodes connecdenn 1, involved in trafficking of endosomes. DENND1A encodes two principal variants, V1 (1009 amino acids) and V2 (559 amino acids). The androgen-producing ovarian theca cells of PCOS women over-express V2. Knockdown of V2 in these cells reduces androgen production, and overexpression of V2 in normal theca cells confers upon them a PCOS phenotype of increased androgen synthesis. We report that human adrenal NCI-H295A cells express V1 and V2 mRNA and that the V2 isoform is produced by exonization of sequences in intron 20, which generates a unique exon 20A, encoding the C-terminus of V2. As in human theca cells from normal women, forced expression of V2 in NCI-H295A cells resulted in increased abundance of CYP17A1 and CYP11A1 mRNAs. We also found genetic variation in the intronic region 330 bp upstream from exon 20A, which could have the potential to drive the selective expression of V2. There was no clear association with these variants with PCOS when we analyzed genomc DNA from normal women and women with PCOS. Using minigene expression vectors in NCI-H295A cells, this variable region did not consistently favor splicing of the V2 transcript. These findings suggest increased V2 expression in PCOS theca cells is not the result of genomic sequence variation in intron 20. PMID:27297658

  19. Evidence that talin alternative splice variants from Ciona intestinalis have different roles in cell adhesion

    Directory of Open Access Journals (Sweden)

    McCann Richard O

    2006-12-01

    Full Text Available Abstract Background Talins are large, modular cytoskeletal proteins found in animals and amoebozoans such as Dictyostelium discoideum. Since the identification of a second talin gene in vertebrates, it has become increasingly clear that vertebrate Talin1 and Talin2 have non-redundant roles as essential links between integrins and the actin cytoskeleton in distinct plasma membrane-associated adhesion complexes. The conserved C-terminal I/LWEQ module is important for talin function. This structural element mediates the interaction of talins with F-actin. The I/LWEQ module also targets mammalian Talin1 to focal adhesion complexes, which are dynamic multicomponent assemblies required for cell adhesion and cell motility. Although Talin1 is essential for focal adhesion function, Talin2 is not targeted to focal adhesions. The nonvertebrate chordate Ciona intestinalis has only one talin gene, but alternative splicing of the talin mRNA produces two proteins with different C-terminal I/LWEQ modules. Thus, C. intestinalis contains two talins, Talin-a and Talin-b, with potentially different activities, despite having only one talin gene. Results We show here that, based on their distribution in cDNA libraries, Talin-a and Talin-b are differentially expressed during C. intestinalis development. The I/LWEQ modules of the two proteins also have different affinities for F-actin. Consistent with the hypothesis that Talin-a and Talin-b have different roles in cell adhesion, the distinct I/LWEQ modules of Talin-a and Talin-b possess different subcellular targeting determinants. The I/LWEQ module of Talin-a is targeted to focal adhesions, where it most likely serves as the link between integrin and the actin cytoskeleton. The Talin-b I/LWEQ module is not targeted to focal adhesions, but instead preferentially labels F-actin stress fibers. These different properties of C. intestinalis the Talin-a and Talin-b I/LWEQ modules mimic the differences between mammalian

  20. An amino-terminal variant of the central cannabinoid receptor resulting from alternative splicing.

    Science.gov (United States)

    Shire, D; Carillon, C; Kaghad, M; Calandra, B; Rinaldi-Carmona, M; Le Fur, G; Caput, D; Ferrara, P

    1995-02-24

    The cDNA sequences encoding the central cannabinoid receptor, CB1, are known for two species, rat and human. However, little information concerning the flanking, noncoding regions is presently available. We have isolated two overlapping clones from a human lung cDNA library with CB1 cDNA inserts. One of these, cann7, contains a short stretch of the CB1 coding region and 4 kilobase pairs (kb) of the 3'-untranslated region (UTR), including two polyadenylation signals. The other, cann6, is identical to cann7 upstream from the first polyadenylation signal, and in addition, it contains the whole coding region and extends for 1.8 kb into the 5'-UTR. Comparison of cann6 with the published sequence (Gérard, C. M., Mollereau, C., Vassart, G., and Parmentier, M. (1991) Biochem. J. 279, 129-134) shows the coding regions to be identical, but reveals important differences in the flanking regions. Notably, the cann6 sequence appears to be that of an immature transcript, containing 1.8 kb of an intronic sequence in the 5'-UTR. In addition, polymerase chain reaction amplification of the CB1 coding region in the IM-9 cell line cDNA resulted in two fragments, one containing the whole CB1 coding region and the second lacking a 167-base pair intron within the sequence encoding the amino-terminal tail of the receptor. This alternatively spliced form would translate to an NH2-terminal modified isoform (CB1A) of the receptor, shorter than CB1 by 61 amino acids. In addition, the first 28 amino acids of the putative truncated receptor are completely different from those of CB1, containing more hydrophobic residues. Rat CB1 mRNA is similarly alternatively spliced. A study of the distribution of the human CB1 and CB1A mRNAs by reverse transcription-polymerase chain reaction analysis showed the presence of both CB1 and CB1A throughout the brain and in all the peripheral tissues examined, with CB1A being present in amounts of up to 20% of CB1. PMID:7876112

  1. Structural and Functional Characterization of Two Alternative Splicing Variants of Mouse Endothelial Cell-Specific Chemotaxis Regulator (ECSCR

    Directory of Open Access Journals (Sweden)

    Yongchang Chang

    2012-04-01

    Full Text Available Endothelial cells (ECs that line the lumen of blood vessels are important players in blood vessel formation, and EC migration is a key component of the angiogenic process. Thus, identification of genes that are specifically or preferentially expressed in vascular ECs and in-depth understanding of their biological functions may lead to discovery of new therapeutic targets. We have previously reported molecular characterization of human endothelial cell-specific molecule 2 (ECSM2/endothelial cell-specific chemotaxis regulator (ECSCR. In the present study, we cloned two mouse full-length cDNAs by RT-PCR, which encode two putative ECSCR isoform precursors with considerable homology to the human ECSCR. Nucleotide sequence and exon-intron junction analyses suggested that they are alternative splicing variants (ECSCR isoform-1 and -2, differing from each other in the first and second exons. Quantitative RT-PCR results revealed that isoform-2 is the predominant form, which was most abundant in heart, lung, and muscles, and moderately abundant in uterus and testis. In contrast, the expression of isoform-1 seemed to be more enriched in testis. To further explore their potential cellular functions, we expressed GFP- and FLAG-tagged ECSCR isoforms, respectively, in an ECSCR deficient cell line (HEK293. Interestingly, the actual sizes of either ECSCR-GFP or -FLAG fusion proteins detected by immunoblotting are much larger than their predicted sizes, suggesting that both isoforms are glycoproteins. Fluorescence microscopy revealed that both ECSCR isoforms are localized at the cell surface, which is consistent with the structural prediction. Finally, we performed cell migration assays using mouse endothelial MS1 cells overexpressing GFP alone, isoform-1-GFP, and isoform-2-GFP, respectively. Our results showed that both isoforms significantly inhibited vascular epidermal growth factor (VEGF-induced cell migration. Taken together, we have provided several lines

  2. SpliceProt: a protein sequence repository of predicted human splice variants.

    Science.gov (United States)

    Tavares, Raphael; de Miranda Scherer, Nicole; Pauletti, Bianca Alves; Araújo, Elói; Folador, Edson Luiz; Espindola, Gabriel; Ferreira, Carlos Gil; Paes Leme, Adriana Franco; de Oliveira, Paulo Sergio Lopes; Passetti, Fabio

    2014-02-01

    The mechanism of alternative splicing in the transcriptome may increase the proteome diversity in eukaryotes. In proteomics, several studies aim to use protein sequence repositories to annotate MS experiments or to detect differentially expressed proteins. However, the available protein sequence repositories are not designed to fully detect protein isoforms derived from mRNA splice variants. To foster knowledge for the field, here we introduce SpliceProt, a new protein sequence repository of transcriptome experimental data used to investigate for putative splice variants in human proteomes. Current version of SpliceProt contains 159 719 non-redundant putative polypeptide sequences. The assessment of the potential of SpliceProt in detecting new protein isoforms resulting from alternative splicing was performed by using publicly available proteomics data. We detected 173 peptides hypothetically derived from splice variants, which 54 of them are not present in UniprotKB/TrEMBL sequence repository. In comparison to other protein sequence repositories, SpliceProt contains a greater number of unique peptides and is able to detect more splice variants. Therefore, SpliceProt provides a solution for the annotation of proteomics experiments regarding splice isofoms. The repository files containing the translated sequences of the predicted splice variants and a visualization tool are freely available at http://lbbc.inca.gov.br/spliceprot. PMID:24273012

  3. ASDB: database of alternatively spliced genes

    OpenAIRE

    Dralyuk, I; Brudno, M.; Gelfand, M S; Zorn, M.; Dubchak, I.

    2000-01-01

    Version 2.1 of ASDB (Alternative Splicing Data Base) contains 1922 protein and 2486 DNA sequences. The protein entries from SWISS-PROT are joined into clusters corresponding to alternatively spliced variants of one gene. The DNA division consists of complete genes with alternative splicing mentioned or annotated in GenBank. The search engine allows one to search over SWISS-PROT and GenBank fields and then follow the links to all variants. The database can be assessed at the URL http://cbcg.ne...

  4. Alternative splicing and muscular dystrophy

    OpenAIRE

    Pistoni, Mariaelena; Ghigna, Claudia; Gabellini, Davide

    2010-01-01

    Alternative splicing of pre-mRNAs is a major contributor to proteomic diversity and to the control of gene expression in higher eukaryotic cells. For this reasons, alternative splicing is tightly regulated in different tissues and developmental stages and its disruption can lead to a wide range of human disorders. The aim of this review is to focus on the relevance of alternative splicing for muscle function and muscle disease. We begin by giving a brief overview of alternative splicing, musc...

  5. Alternative splice variant of the thiazide-sensitive NaCl cotransporter

    DEFF Research Database (Denmark)

    Tutakhel, Omar A Z; Jeleń, Sabina; Valdez-Flores, Marco;

    2016-01-01

    in comparison to NCC3. Mimicking a constitutively active phosphorylation site at residue 811 (S811D) in NCC1 further augmented Na(+) transport, while a non-phosphorylatable variant (S811A) of NCC1 prevented this enhanced response. Analysis of human urinary exosomes demonstrated that water loading in human...... subjects significantly reduces the abundance of NCC1/2 in urinary exosomes. The present study highlights that previously underrepresented NCC1/2 is a fully functional thiazide-sensitive NaCl-transporting protein. Being significantly expressed in the kidney it may constitute a unique route of renal Na...

  6. Differential detection of alternatively spliced variants of Ciz1 in normal and cancer cells using a custom exon-junction microarray

    International Nuclear Information System (INIS)

    Ciz1 promotes initiation of mammalian DNA replication and is present within nuclear matrix associated DNA replication factories. Depletion of Ciz1 from normal and cancer cells restrains entry to S phase and inhibits cell proliferation. Several alternative splicing events with putative functional consequences have been identified and reported, but many more variants are predicted to exist based on publicly available mRNAs and expressed sequence tags. Here we report the development and validation of a custom exon and exon-junction microarray focused on the human CIZ1 gene, capable of reproducible detection of differential splice-variant expression. Using a pair of paediatric cancer cell lines and a pool of eight normal lines as reference, the array identified expected and novel CIZ1 splicing events. One novel variant (delta 8-12) that encodes a predicted protein lacking key functional sites, was validated by quantitative RT-PCR and found to be over-represented in a range of other cancer cell lines, and over half of a panel of primary lung tumours. Expression of CIZ1 delta 8-12 appears to be restricted to cancer cells, and may therefore be a useful novel biomarker

  7. The neurogenetics of alternative splicing

    OpenAIRE

    Vuong, CK; Black, DL; S. Zheng

    2016-01-01

    Alternative precursor-mRNA splicing is a key mechanism for regulating gene expression in mammals and is controlled by specialized RNA-binding proteins. The misregulation of splicing is implicated in multiple neurological disorders. We describe recent mouse genetic studies of alternative splicing that reveal its critical role in both neuronal development and the function of mature neurons. We discuss the challenges in understanding the extensive genetic programmes controlled by proteins that r...

  8. Constitutive homo- and hetero-oligomerization of TbetaRII-B, an alternatively spliced variant of the mouse TGF-beta type II receptor

    DEFF Research Database (Denmark)

    Krishnaveni, Manda S; Hansen, Jakob Lerche; Seeger, Werner;

    2006-01-01

    , but the oligomerization pattern and dynamics of TbetaRII splice variants in live cells has not been demonstrated thus far. Using co-immunoprecipitation and bioluminescence resonance energy transfer (BRET), we demonstrate that the mouse TbetaRII receptor splice variant TbetaRII-B is capable of forming ligand...

  9. Alternative Splice in Alternative Lice.

    Science.gov (United States)

    Tovar-Corona, Jaime M; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P; Clark, John M; Reynolds, Stuart E; Pittendrigh, Barry R; Feil, Edward J; Urrutia, Araxi O

    2015-10-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation. PMID:26169943

  10. Tafazzin splice variants and mutations in Barth syndrome.

    Science.gov (United States)

    Kirwin, Susan M; Manolakos, Athena; Barnett, Sarah Swain; Gonzalez, Iris L

    2014-01-01

    Barth syndrome is caused by mutations in the TAZ (tafazzin) gene on human chromosome Xq28. The human tafazzin gene produces four major mRNA splice variants; two of which have been shown to be functional (TAZ lacking exon 5 and full-length) in complementation studies with yeast and Drosophila. This study characterizes the multiple alternative splice variants of TAZ mRNA and their proportions in blood samples from a cohort of individuals with Barth syndrome (BTHS). Because it has been reported that collection and processing methods can affect the expression of various genes, we tested and chose a stabilizing medium for collecting, shipping and processing of the blood samples of these individuals. In both healthy controls and in BTHS individuals, we found a greater variety of alternatively spliced forms than previously described, with a sizeable proportion of minor splice variants besides the four dominant isoforms. Individuals with certain exonic and intronic splice mutations produce additional mutant mRNAs that could be translated into two or more proteins with different amino acid substitutions in a single individual. A fraction of the minor splice variants is predicted to be non-productive. PMID:24342716

  11. Intronic Alus influence alternative splicing.

    Directory of Open Access Journals (Sweden)

    Galit Lev-Maor

    Full Text Available Examination of the human transcriptome reveals higher levels of RNA editing than in any other organism tested to date. This is indicative of extensive double-stranded RNA (dsRNA formation within the human transcriptome. Most of the editing sites are located in the primate-specific retrotransposed element called Alu. A large fraction of Alus are found in intronic sequences, implying extensive Alu-Alu dsRNA formation in mRNA precursors. Yet, the effect of these intronic Alus on splicing of the flanking exons is largely unknown. Here, we show that more Alus flank alternatively spliced exons than constitutively spliced ones; this is especially notable for those exons that have changed their mode of splicing from constitutive to alternative during human evolution. This implies that Alu insertions may change the mode of splicing of the flanking exons. Indeed, we demonstrate experimentally that two Alu elements that were inserted into an intron in opposite orientation undergo base-pairing, as evident by RNA editing, and affect the splicing patterns of a downstream exon, shifting it from constitutive to alternative. Our results indicate the importance of intronic Alus in influencing the splicing of flanking exons, further emphasizing the role of Alus in shaping of the human transcriptome.

  12. Inhibitory Effect of CT120B, an Alternative Splice Variant of CT120A,on Lung Cancer Cell Growth

    Institute of Scientific and Technical Information of China (English)

    Dong-Ning PAN; Jin-Jun LI; Lin WEI; Ming YAO; Da-Fang WAN; Jian-Ren GU

    2005-01-01

    The expression product of ct120a, a novel gene isolated from human chromosome 17p13.3in our laboratory, was predicted to have seven transmembrane domains and could cause malignant transformation of mouse NIH3T3 cells. There existed an mRNA splicing variant of ct120a, namely ct120b,which had a 96-nucleotide deletion and produced an in-frame loss of 32 amino acids from codon 136 to codon 167 of CT120A. The CT120B protein was predicted to have six transmembrane domains. In this study, we observed that the green fluorescent protein-tagged CT120B was localized on plasma membrane and in cytoplasm in SPC-A-1 cells. The expression of CT120B/A in normal lung tissue and in lung cancer cells was also examined. Results showed that the stable CT120B overexpression in SPC-A-1 cells resulted in a reduction of cell growth rate, and inhibited tumorigenecity and anchorage-independent growth in nude mice. The functions of CT120A and CT120B for cell growth appeared antagonistic. We suggested that the delayed G1/S phase transition might contribute to the inhibitory activities of CT120B on cell growth and that the deleted 32 amino acids missing in CT120B might be essential for the oncogenetic activities of CT120A.

  13. Three new alternative splicing variants of human cytochrome P450 2D6 mRNA in human extratumoral liver tissue

    Institute of Scientific and Technical Information of China (English)

    Jian Zhuge; Ying-Nian Yu

    2004-01-01

    AIM: To identify the new alternative splicing variants of human CYP2D6 in human extratumoral liver tissue with RT-PCR and sequencing.METHODS: Full length of human CYP2D6 cDNAs was amplificated by reverse transcription-polymerase chain reaction (RT-PCR) from a human extratumoral liver tissue and cloned into pGEM-T vector. The cDNA was sequenced.Exons from 1 to 4 of human CYP2D6 cDNAs were also amplificated by RT-PCR from extratumoral liver tissues of17 human hepatocellular carcinomas. Some RT-PCR products were sequenced. Exons 1 to 4 of CYP2D6 gene were amplified by PCR from extratumoral liver tissue DNA.Two PCR products from extratumoral liver tissues expressing skipped mRNA were partially sequenced.RESULTS: One of the CYP2D6cDNAs had 470 nucleotides from 79 to 548 (3' portion of exons 1 to 5' portion of exon 4),and was skipped. Exons 1 to 4 of CYP2D6 cDNA were assayed with RT-PCR in 17 extratumoral liver tissues. Both wild type and skipped mRNAs were expressed in 4 samples,only wild type mRNA was expressed in 5 samples, and only skipped mRNA was expressed in 8 samples. Two more variants were identified by sequencing the RT-PCR products of exons 1 to 4 of CYP2D6cDNA. The second variant skipped 411 nucleotides from 175 to 585. This variant was identified in 4 different liver tissues by sequencing the RT-PCR products. We sequenced partially 2 of the PCR products amplified of CYP2D6 exon 1 to exon 4 from extratumoral liver tissue genomic DNA that only expressed skipped mRNA by RT-PCR. No point mutations around exon 1, intron 1, and exon 4, and no deletion in CYP2D6gene were detected. The third variant was the skipped exon 3, and 153 bp was lost.CONCLUSION: Three new alternative splicing variants of CYP2D6 mRNA have been identified. They may not be caused by gene mutation and may lose CYP2D6 activity and act as a down-regulator of CYP2D6.

  14. SpliceMiner: a high-throughput database implementation of the NCBI Evidence Viewer for microarray splice variant analysis

    Directory of Open Access Journals (Sweden)

    Liu Hongfang

    2007-03-01

    Full Text Available Abstract Background There are many fewer genes in the human genome than there are expressed transcripts. Alternative splicing is the reason. Alternatively spliced transcripts are often specific to tissue type, developmental stage, environmental condition, or disease state. Accurate analysis of microarray expression data and design of new arrays for alternative splicing require assessment of probes at the sequence and exon levels. Description SpliceMiner is a web interface for querying Evidence Viewer Database (EVDB. EVDB is a comprehensive, non-redundant compendium of splice variant data for human genes. We constructed EVDB as a queryable implementation of the NCBI Evidence Viewer (EV. EVDB is based on data obtained from NCBI Entrez Gene and EV. The automated EVDB build process uses only complete coding sequences, which may or may not include partial or complete 5' and 3' UTRs, and filters redundant splice variants. Unlike EV, which supports only one-at-a-time queries, SpliceMiner supports high-throughput batch queries and provides results in an easily parsable format. SpliceMiner maps probes to splice variants, effectively delineating the variants identified by a probe. Conclusion EVDB can be queried by gene symbol, genomic coordinates, or probe sequence via a user-friendly web-based tool we call SpliceMiner (http://discover.nci.nih.gov/spliceminer. The EVDB/SpliceMiner combination provides an interface with human splice variant information and, going beyond the very valuable NCBI Evidence Viewer, supports fluent, high-throughput analysis. Integration of EVDB information into microarray analysis and design pipelines has the potential to improve the analysis and bioinformatic interpretation of gene expression data, for both batch and interactive processing. For example, whenever a gene expression value is recognized as important or appears anomalous in a microarray experiment, the interactive mode of SpliceMiner can be used quickly and easily to

  15. Splicing variants of porcine synphilin-1

    DEFF Research Database (Denmark)

    Larsen, Knud Erik; Madsen, Lone Bruhn; Farajzadeh, Leila;

    2015-01-01

    (90%) and to mouse (84%) synphilin-1. Three shorter transcript variants of the synphilin-1 gene were identified, all lacking one or more exons. SNCAIP transcripts were detected in most examined organs and tissues and the highest expression was found in brain tissues and lung. Conserved splicing......RNA was investigated by RNAseq. The presented work reports the molecular cloning and characterization of the porcine (Sus scrofa) synphilin-1 cDNA (SNCAIP) and three splice variants hereof. The porcine SNCAIP cDNA codes for a protein (synphilin-1) of 919 amino acids which shows a high similarity to human...... variants and a novel splice form of synhilin-1 were found in this study. All synphilin-1 isoforms encoded by the identified transcript variants lack functional domains important for protein degradation....

  16. Cross-kingdom patterns of alternative splicing and splice recognition

    OpenAIRE

    Pearson, Matthew D.; McGuire, Abigail M; Neafsey, Daniel Edward; Galagan, James E.

    2007-01-01

    Background: Variations in transcript splicing can reveal how eukaryotes recognize intronic splice sites. Retained introns (RIs) commonly appear when the intron definition (ID) mechanism of splice site recognition inconsistently identifies intron-exon boundaries, and cassette exons (CEs) are often caused by variable recognition of splice junctions by the exon definition (ED) mechanism. We have performed a comprehensive survey of alternative splicing across 42 eukaryotes to gain ins...

  17. Alternative Splicing Programs in Prostate Cancer

    OpenAIRE

    Claudio Sette

    2013-01-01

    Prostate cancer (PCa) remains one of the most frequent causes of death for cancer in the male population. Although the initial antiandrogenic therapies are efficacious, PCa often evolves into a hormone-resistant, incurable disease. The genetic and phenotypic heterogeneity of this type of cancer renders its diagnosis and cure particularly challenging. Mounting evidence indicates that alternative splicing, the process that allows production of multiple mRNA variants from each gene, contributes ...

  18. Phosphorylation-Mediated Regulation of Alternative Splicing in Cancer

    OpenAIRE

    Chiara Naro; Claudio Sette

    2013-01-01

    Alternative splicing (AS) is one of the key processes involved in the regulation of gene expression in eukaryotic cells. AS catalyzes the removal of intronic sequences and the joining of selected exons, thus ensuring the correct processing of the primary transcript into the mature mRNA. The combinatorial nature of AS allows a great expansion of the genome coding potential, as multiple splice-variants encoding for different proteins may arise from a single gene. Splicing is mediated by a large...

  19. A reliable method for quantification of splice variants using RT-qPCR

    OpenAIRE

    Camacho Londoño, Julia; Philipp, Stephan E.

    2016-01-01

    Background The majority of protein isoforms arise from alternative splicing of the encoding primary RNA transcripts. To understand the significance of single splicing events, reliable techniques are needed to determine their incidence. However, existing methods are labour-intensive, error-prone or of limited use. Results Here, we present an improved method to determine the relative incidence of transcripts that arise from alternative splicing at a single site. Splice variants were quantified ...

  20. Two new splice variants in porcine PPARGC1A

    Directory of Open Access Journals (Sweden)

    Peelman Luc J

    2008-12-01

    Full Text Available Abstract Background Peroxisome proliferator-activated receptor γ coactivator 1α (PPARGC1A is a coactivator with a vital and central role in fat and energy metabolism. It is considered to be a candidate gene for meat quality in pigs and is involved in the development of obesity and diabetes in humans. How its many functions are regulated, is however still largely unclear. Therefore a transcription profile of PPARGC1A in 32 tissues and 4 embryonic developmental stages in the pig was constructed by screening its cDNA for possible splice variants with exon-spanning primers. Findings This led to the discovery of 2 new splice variants in the pig, which were subsequently also detected in human tissues. In these variants, exon 8 was either completely or partly (the last 66 bp were conserved spliced out, potentially coding for a much shorter protein of respectively 337 and 359 amino acids (aa, of which the first 291 aa would be the same compared to the complete protein (796 aa. Conclusion Considering the functional domains of the PPARGC1A protein, it is very likely these splice variants considerably affect the function of the protein and alternative splicing could be one of the mechanisms by which the diverse functions of PPARGC1A are regulated.

  1. EASI—enrichment of alternatively spliced isoforms

    OpenAIRE

    Julian P Venables; Burn, John

    2006-01-01

    Alternative splicing produces more than one protein from the majority of genes and the rarer forms can have dominant functions. Instability of alternative transcripts can also hinder the study of regulation of gene expression by alternative splicing. To investigate the true extent of alternative splicing we have developed a simple method of enriching alternatively spliced isoforms (EASI) from PCRs using beads charged with Thermus aquaticus single-stranded DNA-binding protein (T.Aq ssb). This ...

  2. Conserved RNA secondary structures promote alternative splicing

    OpenAIRE

    Shepard, PJ; Hertel, KJ

    2008-01-01

    Pre-mRNA splicing is carried out by the spliceosome, which identifies exons and removes intervening introns. Alternative splicing in higher eukaryotes results in the generation of multiple protein isoforms from gene transcripts. The extensive alternative splicing observed implies a flexibility of the spliceosome to identify exons within a given pre-mRNA. To reach this flexibility, splice-site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice-site stren...

  3. Evolution of alternative splicing after gene duplication

    OpenAIRE

    Su, Zhixi; Wang, Jianmin; Yu, Jun; Huang, Xiaoqiu; Gu, Xun

    2006-01-01

    Alternative splicing and gene duplication are two major sources of proteomic function diversity. Here, we study the evolutionary trend of alternative splicing after gene duplication by analyzing the alternative splicing differences between duplicate genes. We observed that duplicate genes have fewer alternative splice (AS) forms than single-copy genes, and that a negative correlation exists between the mean number of AS forms and the gene family size. Interestingly, we found that the loss of ...

  4. ASD: a bioinformatics resource on alternative splicing

    OpenAIRE

    Stamm, Stefan; Riethoven, Jean-Jack; Le Texier, Vincent; Gopalakrishnan, Chellappa; Kumanduri, Vasudev; Tang, Yesheng; Barbosa-Morais, Nuno L.; Thanaraj, Thangavel Alphonse

    2005-01-01

    Alternative splicing is an important regulatory mechanism of mammalian gene expression. The alternative splicing database (ASD) consortium is systematically collecting and annotating data on alternative splicing. We present the continuation and upgrade of the ASD [T. A. Thanaraj, S. Stamm, F. Clark, J. J. Riethoven, V. Le Texier, J. Muilu (2004) Nucleic Acids Res. 32, D64–D69] that consists of computationally and manually generated data. Its largest parts are AltSplice, a value-added database...

  5. COMMUNICATION: Alternative splicing and genomic stability

    Science.gov (United States)

    Cahill, Kevin

    2004-06-01

    Alternative splicing allows an organism to make different proteins in different cells at different times, all from the same gene. In a cell that uses alternative splicing, the total length of all the exons is much shorter than in a cell that encodes the same set of proteins without alternative splicing. This economical use of exons makes genes more stable during reproduction and development because a genome with a shorter exon length is more resistant to harmful mutations. Genomic stability may be the reason why higher vertebrates splice alternatively. For a broad class of alternatively spliced genes, a formula is given for the increase in their stability.

  6. A study of alternative splicing in the pig

    Directory of Open Access Journals (Sweden)

    Jørgensen Claus B

    2010-05-01

    Full Text Available Abstract Background Since at least half of the genes in mammalian genomes are subjected to alternative splicing, alternative pre-mRNA splicing plays an important contribution to the complexity of the mammalian proteome. Expressed sequence tags (ESTs provide evidence of a great number of possible alternative isoforms. With the EST resource for the domestic pig now containing more than one million porcine ESTs, it is possible to identify alternative splice forms of the individual transcripts in this species from the EST data with some confidence. Results The pig EST data generated by the Sino-Danish Pig Genome project has been assembled with publicly available ESTs and made available in the PigEST database. Using the Distiller package 2,515 EST clusters with candidate alternative isoforms were identified in the EST data with high confidence. In agreement with general observations in human and mouse, we find putative splice variants in about 30% of the contigs with more than 50 ESTs. Based on the criteria that a minimum of two EST sequences confirmed each splice event, a list of 100 genes with the most distinct tissue-specific alternative splice events was generated from the list of candidates. To confirm the tissue specificity of the splice events, 10 genes with functional annotation were randomly selected from which 16 individual splice events were chosen for experimental verification by quantitative PCR (qPCR. Six genes were shown to have tissue specific alternatively spliced transcripts with expression patterns matching those of the EST data. The remaining four genes had tissue-restricted expression of alternative spliced transcripts. Five out of the 16 splice events that were experimentally verified were found to be putative pig specific. Conclusions In accordance with human and rodent studies we estimate that approximately 30% of the porcine genes undergo alternative splicing. We found a good correlation between EST predicted tissue

  7. Splicing variants of porcine synphilin-1

    Directory of Open Access Journals (Sweden)

    Knud Larsen

    2015-09-01

    Full Text Available Parkinson's disease (PD, idiopathic and familial, is characterized by degradation of dopaminergic neurons and the presence of Lewy bodies (LB in the substantia nigra. LBs contain aggregated proteins of which α-synuclein is the major component. The protein synphilin-1 interacts and colocalizes with α-synuclein in LBs. The aim of this study was to isolate and characterize porcine synphilin-1 and isoforms hereof with the future perspective to use the pig as a model for Parkinson's disease. The porcine SNCAIP cDNA was cloned by reverse transcriptase PCR. The spatial expression of SNCAIP mRNA was investigated by RNAseq. The presented work reports the molecular cloning and characterization of the porcine (Sus scrofa synphilin-1 cDNA (SNCAIP and three splice variants hereof. The porcine SNCAIP cDNA codes for a protein (synphilin-1 of 919 amino acids which shows a high similarity to human (90% and to mouse (84% synphilin-1. Three shorter transcript variants of the synphilin-1 gene were identified, all lacking one or more exons. SNCAIP transcripts were detected in most examined organs and tissues and the highest expression was found in brain tissues and lung. Conserved splicing variants and a novel splice form of synhilin-1 were found in this study. All synphilin-1 isoforms encoded by the identified transcript variants lack functional domains important for protein degradation.

  8. Oncogenic Alternative Splicing Switches: Role in Cancer Progression and Prospects for Therapy

    OpenAIRE

    Serena Bonomi; Stefania Gallo; Morena Catillo; Daniela Pignataro; Giuseppe Biamonti; Claudia Ghigna

    2013-01-01

    Alterations in the abundance or activities of alternative splicing regulators generate alternatively spliced variants that contribute to multiple aspects of tumor establishment, progression and resistance to therapeutic treatments. Notably, many cancer-associated genes are regulated through alternative splicing suggesting a significant role of this post-transcriptional regulatory mechanism in the production of oncogenes and tumor suppressors. Thus, the study of alternative splicing in cancer ...

  9. The epithelial splicing factors ESRP1 and ESRP2 positively and negatively regulate diverse types of alternative splicing events

    OpenAIRE

    Warzecha, Claude C.; Shen, Shihao; Xing, Yi; Carstens, Russ P.

    2009-01-01

    Cell-type and tissue-specific alternative splicing events are regulated by combinatorial control involving both abundant RNA binding proteins as well as those with more discrete expression and specialized functions. Epithelial Splicing Regulatory Proteins 1 and 2 (ESRP1 and ESRP2) are recently discovered epithelial-specific RNA binding proteins that promote splicing of the epithelial variant of the FGFR2, ENAH, CD44 and CTNND1 transcripts. To catalogue a larger set of splicing events under th...

  10. Classifying MLH1 and MSH2 variants using bioinformatic prediction, splicing assays, segregation, and tumor characteristics.

    Science.gov (United States)

    Arnold, Sven; Buchanan, Daniel D; Barker, Melissa; Jaskowski, Lesley; Walsh, Michael D; Birney, Genevieve; Woods, Michael O; Hopper, John L; Jenkins, Mark A; Brown, Melissa A; Tavtigian, Sean V; Goldgar, David E; Young, Joanne P; Spurdle, Amanda B

    2009-05-01

    Reliable methods for predicting functional consequences of variants in disease genes would be beneficial in the clinical setting. This study was undertaken to predict, and confirm in vitro, splicing aberrations associated with mismatch repair (MMR) variants identified in familial colon cancer patients. Six programs were used to predict the effect of 13 MLH1 and 6 MSH2 gene variants on pre-mRNA splicing. mRNA from cycloheximide-treated lymphoblastoid cell lines of variant carriers was screened for splicing aberrations. Tumors of variant carriers were tested for microsatellite instability and MMR protein expression. Variant segregation in families was assessed using Bayes factor causality analysis. Amino acid alterations were examined for evolutionary conservation and physicochemical properties. Splicing aberrations were detected for 10 variants, including a frameshift as a minor cDNA product, and altered ratio of known alternate splice products. Loss of splice sites was well predicted by splice-site prediction programs SpliceSiteFinder (90%) and NNSPLICE (90%), but consequence of splice site loss was less accurately predicted. No aberrations correlated with ESE predictions for the nine exonic variants studied. Seven of eight missense variants had normal splicing (88%), but only one was a substitution considered neutral from evolutionary/physicochemical analysis. Combined with information from tumor and segregation analysis, and literature review, 16 of 19 variants were considered clinically relevant. Bioinformatic tools for prediction of splicing aberrations need improvement before use without supporting studies to assess variant pathogenicity. Classification of mismatch repair gene variants is assisted by a comprehensive approach that includes in vitro, tumor pathology, clinical, and evolutionary conservation data. PMID:19267393

  11. Designing oligo libraries taking alternative splicing into account

    Science.gov (United States)

    Shoshan, Avi; Grebinskiy, Vladimir; Magen, Avner; Scolnicov, Ariel; Fink, Eyal; Lehavi, David; Wasserman, Alon

    2001-06-01

    We have designed sequences for DNA microarrays and oligo libraries, taking alternative splicing into account. Alternative splicing is a common phenomenon, occurring in more than 25% of the human genes. In many cases, different splice variants have different functions, are expressed in different tissues or may indicate different stages of disease. When designing sequences for DNA microarrays or oligo libraries, it is very important to take into account the sequence information of all the mRNA transcripts. Therefore, when a gene has more than one transcript (as a result of alternative splicing, alternative promoter sites or alternative poly-adenylation sites), it is very important to take all of them into account in the design. We have used the LEADS transcriptome prediction system to cluster and assemble the human sequences in GenBank and design optimal oligonucleotides for all the human genes with a known mRNA sequence based on the LEADS predictions.

  12. Alternative splicing of human and mouse NPFF2 receptor genes: Implications to receptor expression.

    Science.gov (United States)

    Ankö, Minna-Liisa; Ostergård, Maria; Lintunen, Minnamaija; Panula, Pertti

    2006-12-22

    Alternative splicing has an important role in the tissue-specific regulation of gene expression. Here we report that similar to the human NPFF2 receptor, the mouse NPFF2 receptor is alternatively spliced. In human the presence of three alternatively spliced receptor variants were verified, whereas two NPFF2 receptor variants were identified in mouse. The alternative splicing affected the 5' untranslated region of the mouse receptor and the variants in mouse were differently distributed. The mouse NPFF system may also have species-specific features since the NPFF2 receptor mRNA expression differs from that reported for rat. PMID:17157836

  13. Evolutionary conservation of alternative splicing in chicken

    OpenAIRE

    Katyal, S.; Gao, Z.; Liu, R.-Z.; R Godbout

    2007-01-01

    Alternative splicing represents a source of great diversity for regulating protein expression and function. It has been estimated that one-third to two-thirds of mammalian genes are alternatively spliced. With the sequencing of the chicken genome and analysis of transcripts expressed in chicken tissues, we are now in a position to address evolutionary conservation of alternative splicing events in chicken and mammals. Here, we compare chicken and mammalian transcript sequences of 41 alternati...

  14. The Alternative Splicing Gallery (ASG): bridging the gap between genome and transcriptome

    OpenAIRE

    Leipzig, Jeremy; Pevzner, Pavel; Heber, Steffen

    2004-01-01

    Alternative splicing essentially increases the diversity of the transcriptome and has important implications for physiology, development and the genesis of diseases. Conventionally, alternative splicing is investigated in a case-by-case fashion, but this becomes cumbersome and error prone if genes show a huge abundance of different splice variants. We use a different approach and integrate all transcripts derived from a gene into a single splicing graph. Each transcript corresponds to a path ...

  15. Titin Diversity—Alternative Splicing Gone Wild

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2010-01-01

    Full Text Available Titin is an extremely large protein found in highest concentrations in heart and skeletal muscle. The single mammalian gene is expressed in multiple isoforms as a result of alternative splicing. Although titin isoform expression is controlled developmentally and in a tissue specific manner, the vast number of potential splicing pathways far exceeds those described in any other alternatively spliced gene. Over 1 million human splice pathways for a single individual can be potentially derived from the PEVK region alone. A new splicing pattern for the human cardiac N2BA isoform type has been found in which the PEVK region includes only the N2B type exons. The alterations in splicing and titin isoform expression in human heart disease provide impetus for future detailed study of the splicing mechanisms for this giant protein.

  16. Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing.

    Science.gov (United States)

    Yang, Xinping; Coulombe-Huntington, Jasmin; Kang, Shuli; Sheynkman, Gloria M; Hao, Tong; Richardson, Aaron; Sun, Song; Yang, Fan; Shen, Yun A; Murray, Ryan R; Spirohn, Kerstin; Begg, Bridget E; Duran-Frigola, Miquel; MacWilliams, Andrew; Pevzner, Samuel J; Zhong, Quan; Trigg, Shelly A; Tam, Stanley; Ghamsari, Lila; Sahni, Nidhi; Yi, Song; Rodriguez, Maria D; Balcha, Dawit; Tan, Guihong; Costanzo, Michael; Andrews, Brenda; Boone, Charles; Zhou, Xianghong J; Salehi-Ashtiani, Kourosh; Charloteaux, Benoit; Chen, Alyce A; Calderwood, Michael A; Aloy, Patrick; Roth, Frederick P; Hill, David E; Iakoucheva, Lilia M; Xia, Yu; Vidal, Marc

    2016-02-11

    While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative "isoforms" are functionally divergent (i.e., "functional alloforms"). PMID:26871637

  17. Alternative Splicing Regulation During C. elegans Development: Splicing Factors as Regulated Targets

    OpenAIRE

    Sergio Barberan-Soler; Zahler, Alan M.

    2008-01-01

    Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (approximately 18%) of the alternative splicing events studi...

  18. Width of gene expression profile drives alternative splicing.

    Directory of Open Access Journals (Sweden)

    Daniel Wegmann

    Full Text Available Alternative splicing generates an enormous amount of functional and proteomic diversity in metazoan organisms. This process is probably central to the macromolecular and cellular complexity of higher eukaryotes. While most studies have focused on the molecular mechanism triggering and controlling alternative splicing, as well as on its incidence in different species, its maintenance and evolution within populations has been little investigated. Here, we propose to address these questions by comparing the structural characteristics as well as the functional and transcriptional profiles of genes with monomorphic or polymorphic splicing, referred to as MS and PS genes, respectively. We find that MS and PS genes differ particularly in the number of tissues and cell types where they are expressed.We find a striking deficit of PS genes on the sex chromosomes, particularly on the Y chromosome where it is shown not to be due to the observed lower breadth of expression of genes on that chromosome. The development of a simple model of evolution of cis-regulated alternative splicing leads to predictions in agreement with these observations. It further predicts the conditions for the emergence and the maintenance of cis-regulated alternative splicing, which are both favored by the tissue specific expression of splicing variants. We finally propose that the width of the gene expression profile is an essential factor for the acquisition of new transcript isoforms that could later be maintained by a new form of balancing selection.

  19. Comprehensive splicing graph analysis of alternative splicing patterns in chicken, compared to human and mouse

    Directory of Open Access Journals (Sweden)

    Ranganathan Shoba

    2009-07-01

    Full Text Available Abstract Background Alternative transcript diversity manifests itself as a prime cause of complexity in higher eukaryotes. Recently, transcript diversity studies have suggested that 60–80% of human genes are alternatively spliced. We have used a splicing pattern approach for the bioinformatics analysis of Alternative Splicing (AS in chicken, human and mouse. Exons involved in splicing are subdivided into distinct and variant exons, based on the prevalence of the exons across the transcripts. Four possible permutations of these two different groups of exons were categorised as class I (distinct-variant, class II (distinct-variant, class III (variant-distinct and class IV (variant-variant. This classification quantifies the variation in transcript diversity in the three species. Results In all, 3901 chicken AS genes have been compared with 16,715 human and 16,491 mouse AS genes, with 23% of chicken genes being alternatively spliced, compared to 68% in humans and 57% in mice. To minimize any gene structure bias in the input data, comparative genome analysis has been carried out on the orthologous subset of AS genes for the three species. Gene-level analysis suggested that chicken genes show fewer AS events compared to human and mouse. An event-level analysis showed that the percentage of AS events in chicken is similar to that of human, which implies that a smaller number of chicken genes show greater transcript diversity. Overall, chicken genes were found to have fewer transcripts per gene and shorter introns than human and mouse genes. Conclusion In chicken, the majority of genes generate only two or three isoforms, compared to almost eight in human and six in mouse. We observed that intron definition is expressed strongly when compared to exon definition for chicken genome, based on 3% intron retention in chicken, compared to 2% in human and mouse. Splicing patterns with variant exons account for 33% of AS chicken orthologous genes compared to

  20. Tau exon 10 alternative splicing and tauopathies

    OpenAIRE

    Liu Fei; Gong Cheng-Xin

    2008-01-01

    Abstract Abnormalities of microtubule-associated protein tau play a central role in neurofibrillary degeneration in several neurodegenerative disorders that collectively called tauopathies. Six isoforms of tau are expressed in adult human brain, which result from alternative splicing of pre-mRNA generated from a single tau gene. Alternative splicing of tau exon 10 results in tau isoforms containing either three or four microtubule-binding repeats (3R-tau and 4R-tau, respectively). Approximate...

  1. Alcoholism and Alternative Splicing of Candidate Genes

    OpenAIRE

    Toshikazu Sasabe; Shoichi Ishiura

    2010-01-01

    Gene expression studies have shown that expression patterns of several genes have changed during the development of alcoholism. Gene expression is regulated not only at the level of transcription but also through alternative splicing of pre-mRNA. In this review, we discuss some of the evidence suggesting that alternative splicing of candidate genes such as DRD2 (encoding dopamine D2 receptor) may form the basis of the mechanisms underlying the pathophysiology of alcoholism. These reports sugg...

  2. Novel splicing variant of the human orphan nuclear receptor Nurr1 gene

    Institute of Scientific and Technical Information of China (English)

    徐评议; 乐卫东

    2004-01-01

    Background Nurr1 is a member of the nuclear receptor superfamily of transcription factors. The objective of the present study was to identify novel splicing variants of the gene in neuronal and non-neuronal tissues and determine their functions. Methods Reverse transcription-polymerase chain reaction (RT-PCR) analysis was used to screen for Nurr1 splice variants in the adult human central nervous system (CNS) and in other tissues such as lymphocytes, and liver, muscle, and kidney cells. Functional assays of the variants were performed by measuring Nurr1 response element (NuRE) transcriptional activity in vitro. Results In this study, the authors identified a novel splicing variant of Nurr1 within exon 5, found in multiple adult human tissues, including lymphocytes, and liver, muscle, and kidney cells, but not in the brain or spinal cord. Sequencing analysis showed the variant has a 75 bp deletion between nucleotides 1402 and 1476. A functional assay of the Nurr1-c splicing variant, performed by measuring NuRE transcriptional activity in vitro, detected a 39% lower level of luciferase (LUC) activity (P<0.05).Conclusion A novel splicing variant of Nurr1 exists in human non-neuronal tissues and functional assays suggest that the variant may act as an alternate transcription regulator.

  3. Alternative mRNA Splicing: Control by Combination

    OpenAIRE

    Mabon, Stephen A; Tom Misteli

    2005-01-01

    Alternative splicing in mammalian cells has been suggested to be largely controlled by combinatorial binding of basal splicing factors to pre-mRNA templates. This model predicts that distinct sets of pre-mRNA splicing factors are associated with alternatively spliced transcripts. However, no experimental evidence for differential recruitment of splicing factors to transcripts with distinct splicing fates is available. Here we have used quantitative single-cell imaging to test this key predict...

  4. Alternative splicing and trans-splicing events revealed by analysis of the Bombyx mori transcriptome

    OpenAIRE

    Shao, Wei; Zhao, Qiong-Yi; Wang, Xiu-Ye; Xu, Xin-Yan; Tang, Qing; Li, Muwang; Li, Xuan; Xu, Yong-Zhen

    2012-01-01

    Alternative splicing and trans-splicing events have not been systematically studied in the silkworm Bombyx mori. Here, the silkworm transcriptome was analyzed by RNA-seq. The authors identified 320 novel genes, modified 1140 gene models, and found thousands of alternative splicing and 58 trans-splicing events. Studies of three SR proteins show that both their alternative splicing patterns and mRNA products are conserved from insect to human, and one isoform of Srsf6 with a retained intron is ...

  5. Resolving deconvolution ambiguity in gene alternative splicing

    Directory of Open Access Journals (Sweden)

    Hubbell Earl

    2009-08-01

    Full Text Available Abstract Background For many gene structures it is impossible to resolve intensity data uniquely to establish abundances of splice variants. This was empirically noted by Wang et al. in which it was called a "degeneracy problem". The ambiguity results from an ill-posed problem where additional information is needed in order to obtain an unique answer in splice variant deconvolution. Results In this paper, we analyze the situations under which the problem occurs and perform a rigorous mathematical study which gives necessary and sufficient conditions on how many and what type of constraints are needed to resolve all ambiguity. This analysis is generally applicable to matrix models of splice variants. We explore the proposal that probe sequence information may provide sufficient additional constraints to resolve real-world instances. However, probe behavior cannot be predicted with sufficient accuracy by any existing probe sequence model, and so we present a Bayesian framework for estimating variant abundances by incorporating the prediction uncertainty from the micro-model of probe responsiveness into the macro-model of probe intensities. Conclusion The matrix analysis of constraints provides a tool for detecting real-world instances in which additional constraints may be necessary to resolve splice variants. While purely mathematical constraints can be stated without error, real-world constraints may themselves be poorly resolved. Our Bayesian framework provides a generic solution to the problem of uniquely estimating transcript abundances given additional constraints that themselves may be uncertain, such as regression fit to probe sequence models. We demonstrate the efficacy of it by extensive simulations as well as various biological data.

  6. Alternative Splicing and Expression Profile Analysis of Expressed Sequence Tags in Domestic Pig

    Institute of Scientific and Technical Information of China (English)

    Liang Zhang; Lin Tao; Lin Ye; Ling He; Yuan-Zhong Zhu; Yue-Dong Zhu; Yan Zhou

    2007-01-01

    Domestic pig (Sus scrofa domestica) is one of the most important mammals to humans. Alternative splicing is a cellular mechanism in eukaryotes that greatly increases the diversity of gene products. Expression sequence tags (ESTs) have been widely used for gene discovery, expression profile analysis, and alternative splicing detection. In this study, a total of 712,905 ESTs extracted from 101 different nonnormalized EST libraries of the domestic pig were analyzed. These EST libraries cover the nervous system, digestive system, immune system, and meat production related tissues from embryo, newborn, and adult pigs, making contributions to the analysis of alternative splicing variants as well as expression profiles in various stages of tissues. A modified approach was designed to cluster and assemble large EST datasets, aiming to detect alternative splicing together with EST abundance of each splicing variant. Much efforts were made to classify alternative splicing into different types and apply different filters to each type to get more reliable results. Finally, a total of 1,223 genes with average 2.8 splicing variants were detected among 16,540 unique genes. The overview of expression profiles would change when we take alternative splicing into account.

  7. Differential HFE Gene Expression is Regulated by Alternative Splicing in Human Tissues

    OpenAIRE

    Martins, Rute; Silva, Bruno; Proença, Daniela; Faustino, Paula

    2011-01-01

    Background - The pathophysiology of HFE-derived Hereditary Hemochromatosis and the function of HFE protein in iron homeostasis remain uncertain. Also, the role of alternative splicing in HFE gene expression regulation and the possible function of the corresponding protein isoforms are still unknown. The aim of this study was to gain insights into the physiological significance of these alternative HFE variants. Methodology/Principal Findings - Alternatively spliced HFE transcripts in dive...

  8. Hollywood: a comparative relational database of alternative splicing

    OpenAIRE

    Holste, Dirk; Huo, George; Tung, Vivian; Burge, Christopher B.

    2005-01-01

    RNA splicing is an essential step in gene expression, and is often variable, giving rise to multiple alternatively spliced mRNA and protein isoforms from a single gene locus. The design of effective databases to support experimental and computational investigations of alternative splicing (AS) is a significant challenge. In an effort to integrate accurate exon and splice site annotation with current knowledge about splicing regulatory elements and predicted AS events, and to link information ...

  9. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing

    Directory of Open Access Journals (Sweden)

    Penny David

    2007-10-01

    Full Text Available Abstract Background Alternative splicing has been reported in various eukaryotic groups including plants, apicomplexans, diatoms, amoebae, animals and fungi. However, whether widespread alternative splicing has evolved independently in the different eukaryotic groups or was inherited from their last common ancestor, and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional classes, cellular locations, intron/exon structures and evolutionary origins. Results For each species, we find that genes from most functional categories are alternatively spliced. Ancient genes (shared between animals, fungi and plants show high levels of alternative splicing. Genes with products expressed in the nucleus or plasma membrane are generally more alternatively spliced while those expressed in extracellular location show less alternative splicing. We find a clear correspondence between incidence of alternative splicing and intron number per gene both within and between genomes. In general, we find several similarities in patterns of alternative splicing across these diverse eukaryotes. Conclusion Along with previous studies indicating intron-rich genes with weak intron boundary consensus and complex spliceosomes in ancestral organisms, our results suggest that at least a simple form of alternative splicing may already have been present in the unicellular ancestor of plants, fungi and animals. A role for alternative splicing in the evolution of multicellularity then would largely have arisen by co-opting the preexisting process.

  10. Alternative splicing of DNA damage response genes and gastrointestinal cancers

    OpenAIRE

    Rahmutulla, Bahityar; Matsushita, Kazuyuki; Nomura, Fumio

    2014-01-01

    Alternative splicing, which is a common phenomenon in mammalian genomes, is a fundamental process of gene regulation and contributes to great protein diversity. Alternative splicing events not only occur in the normal gene regulation process but are also closely related to certain diseases including cancer. In this review, we briefly demonstrate the concept of alternative splicing and DNA damage and describe the association of alternative splicing and cancer pathogenesis, focusing on the pote...

  11. Human selenophosphate synthetase 1 has five splice variants with unique interactions, subcellular localizations and expression patterns

    International Nuclear Information System (INIS)

    Selenophosphate synthetase 1 (SPS1) is an essential cellular gene in higher eukaryotes. Five alternative splice variants of human SPS1 (major type, ΔE2, ΔE8, +E9, +E9a) were identified wherein +E9 and +E9a make the same protein. The major type was localized in both the nuclear and plasma membranes, and the others in the cytoplasm. All variants form homodimers, and in addition, the major type forms a heterodimer with ΔE2, and ΔE8 with +E9. The level of expression of each splice variant was different in various cell lines. The expression of each alternative splice variant was regulated during the cell cycle. The levels of the major type and ΔE8 were gradually increased until G2/M phase and then gradually decreased. ΔE2 expression peaked at mid-S phase and then gradually decreased. However, +E9/+E9a expression decreased gradually after cell cycle arrest. The possible involvement of SPS1 splice variants in cell cycle regulation is discussed.

  12. Control of Alternative Splicing by Signal-dependent Degradation of Splicing-regulatory Proteins*S⃞

    OpenAIRE

    Katzenberger, Rebeccah J.; Marengo, Matthew S.; Wassarman, David A.

    2009-01-01

    Alternative pre-mRNA splicing is a major gene expression regulatory mechanism in metazoan organisms. Proteins that bind pre-mRNA elements and control assembly of splicing complexes regulate utilization of pre-mRNA alternative splice sites. To understand how signaling pathways impact this mechanism, an RNA interference screen in Drosophila S2 cells was used to identify proteins that regulate TAF1 (TBP-associated factor 1) alternative splicing in response to activation o...

  13. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob Lewin; Penny, David;

    2007-01-01

    , and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional...... classes, cellular locations, intron/exon structures and evolutionary origins. RESULTS: For each species, we find that genes from most functional categories are alternatively spliced. Ancient genes (shared between animals, fungi and plants) show high levels of alternative splicing. Genes with products...... expressed in the nucleus or plasma membrane are generally more alternatively spliced while those expressed in extracellular location show less alternative splicing. We find a clear correspondence between incidence of alternative splicing and intron number per gene both within and between genomes. In general...

  14. Exon array analysis of head and neck cancers identifies a hypoxia related splice variant of LAMA3 associated with a poor prognosis.

    OpenAIRE

    Moller-Levet, Carla S.; Guy N J Betts; Harris, Adrian L; Homer, Jarrod J.; West, Catharine M. L.; Miller, Crispin J.

    2009-01-01

    The identification of alternatively spliced transcript variants specific to particular biological processes in tumours should increase our understanding of cancer. Hypoxia is an important factor in cancer biology, and associated splice variants may present new markers to help with planning treatment. A method was developed to analyse alternative splicing in exon array data, using probeset multiplicity to identify genes with changes in expression across their loci, and a combination of the spl...

  15. SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data.

    Science.gov (United States)

    Sun, Xiaoyong; Zuo, Fenghua; Ru, Yuanbin; Guo, Jiqiang; Yan, Xiaoyan; Sablok, Gaurav

    2015-04-01

    Alternative splicing plays a key role in the regulation of the central dogma. Four major types of alternative splicing have been classified as intron retention, exon skipping, alternative 5 splice sites or alternative donor sites, and alternative 3 splice sites or alternative acceptor sites. A few algorithms have been developed to detect splice junctions from RNA-Seq reads. However, there are few tools targeting at the major alternative splicing types at the exon/intron level. This type of analysis may reveal subtle, yet important events of alternative splicing, and thus help gain deeper understanding of the mechanism of alternative splicing. This paper describes a user-friendly R package, extracting, annotating and analyzing alternative splicing types for sequence alignment files from RNA-Seq. SplicingTypesAnno can: (1) provide annotation for major alternative splicing at exon/intron level. By comparing the annotation from GTF/GFF file, it identifies the novel alternative splicing sites; (2) offer a convenient two-level analysis: genome-scale annotation for users with high performance computing environment, and gene-scale annotation for users with personal computers; (3) generate a user-friendly web report and additional BED files for IGV visualization. SplicingTypesAnno is a user-friendly R package for extracting, annotating and analyzing alternative splicing types at exon/intron level for sequence alignment files from RNA-Seq. It is publically available at https://sourceforge.net/projects/splicingtypes/files/ or http://genome.sdau.edu.cn/research/software/SplicingTypesAnno.html. PMID:25720307

  16. Regulation of alternative splice site selection by reversible protein phosphorylation

    OpenAIRE

    Novoyatleva, Tatyana

    2007-01-01

    Splicing is the process that removes introns and joins exons from pre-mesenger RNA (pre-mRNA). It is an essential step in pre-mRNA processing that form the mature RNA. Microarray data indicates that approximately 75% of human genes produce transcripts that are alternatively spliced. Alternative splicing is one of the major mechanisms that ultimately generate high number of protein isoforms from a limited number of genes. The proper catalysis and regulation of alternative splice site selection...

  17. RNA structure and the mechanisms of alternative splicing

    OpenAIRE

    McManus, C. Joel; Graveley, Brenton R.

    2011-01-01

    Alternative splicing is a widespread means of increasing protein diversity and regulating gene expression in eukaryotes. Much progress has been made in understanding the proteins involved in regulating alternative splicing, the sequences they bind to, and how these interactions lead to changes in splicing patterns. However, several recent studies have identified other players involved in regulating alternative splicing. A major theme emerging from these studies is that RNA secondary structure...

  18. Regulation of Splicing Factors by Alternative Splicing and NMD Is Conserved between Kingdoms Yet Evolutionarily Flexible

    OpenAIRE

    Liana F Lareau; Brenner, Steven E.

    2015-01-01

    Ultraconserved elements, unusually long regions of perfect sequence identity, are found in genes encoding numerous RNA-binding proteins including arginine-serine rich (SR) splicing factors. Expression of these genes is regulated via alternative splicing of the ultraconserved regions to yield mRNAs that are degraded by nonsense-mediated mRNA decay (NMD), a process termed unproductive splicing (Lareau et al. 2007; Ni et al. 2007). As all human SR genes are affected by alternative splicing and N...

  19. Alternative-splicing-mediated gene expression

    Science.gov (United States)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  20. Alternatively spliced neuronal nitric oxide synthase mediates penile erection

    OpenAIRE

    Hurt, K. Joseph; Sezen, Sena F.; Champion, Hunter C.; Crone, Julie K.; Palese, Michael A.; Huang, Paul L; Sawa, Akira; Luo, Xiaojiang; Musicki, Biljana; Snyder, Solomon H.; Burnett, Arthur L.

    2006-01-01

    A key role for nitric oxide (NO) in penile erection is well established, but the relative roles of the neuronal NO synthase (nNOS) versus endothelial forms of NOS are not clear. nNOS- and endothelial NOS-deficient mice maintain erectile function and reproductive capacity, questioning the importance of NO. Alternatively, residual NO produced by shorter transcripts in the nNOS−/− animals might suffice for normal physiologic function. We show that the β splice variant of nNOS elicits normal erec...

  1. Splicing analysis of 14 BRCA1 missense variants classifies nine variants as pathogenic

    DEFF Research Database (Denmark)

    Ahlborn, Lise B; Dandanell, Mette; Steffensen, Ane Y;

    2015-01-01

    needed to classify whether these uncertain variants are pathogenic or benign. In this study, we investigated 14 BRCA1 variants by in silico splicing analysis and mini-gene splicing assay. All 14 alterations were missense variants located within the BRCT domain of BRCA1 and had previously been examined by...... functional analysis at the protein level. Results from a validated mini-gene splicing assay indicated that nine BRCA1 variants resulted in splicing aberrations leading to truncated transcripts and thus can be considered pathogenic (c.4987A>T/p.Met1663Leu, c.4988T>A/p.Met1663Lys, c.5072C>T/p.Thr1691Ile, c...... have no or an uncertain effect on the protein level, whereas one variant (c.5072C>T/p.Thr1691Ile) were shown to have a strong effect on the protein level as well. In conclusion, our study emphasizes that in silico splicing prediction and mini-gene splicing analysis are important for the classification...

  2. Quantitative imaging of single mRNA splice variants in living cells

    Science.gov (United States)

    Lee, Kyuwan; Cui, Yi; Lee, Luke P.; Irudayaraj, Joseph

    2014-06-01

    Alternative messenger RNA (mRNA) splicing is a fundamental process of gene regulation, and errors in RNA splicing are known to be associated with a variety of different diseases. However, there is currently a lack of quantitative technologies for monitoring mRNA splice variants in cells. Here, we show that a combination of plasmonic dimer probes and hyperspectral imaging can be used to detect and quantify mRNA splice variants in living cells. The probes are made from gold nanoparticles functionalized with oligonucleotides and can hybridize to specific mRNA sequences, forming nanoparticle dimers that exhibit distinct spectral shifts due to plasmonic coupling. With this approach, we show that the spatial and temporal distribution of three selected splice variants of the breast cancer susceptibility gene, BRCA1, can be monitored at single-copy resolution by measuring the hybridization dynamics of the nanoplasmonic dimers. Our study provides insights into RNA and its transport in living cells, which could improve our understanding of cellular protein complexes, pharmacogenomics, genetic diagnosis and gene therapies.

  3. Evolution of alternative splicing in primate brain transcriptomes

    OpenAIRE

    Lin, Lan; Shen, Shihao; Jiang, Peng; Sato, Seiko; Davidson, Beverly L.; Xing, Yi

    2010-01-01

    Alternative splicing is a predominant form of gene regulation in higher eukaryotes. The evolution of alternative splicing provides an important mechanism for the acquisition of novel gene functions. In this work, we carried out a genome-wide phylogenetic survey of lineage-specific splicing patterns in the primate brain, via high-density exon junction array profiling of brain transcriptomes of humans, chimpanzees and rhesus macaques. We identified 509 genes showing splicing differences among t...

  4. Alternative splicing regulation during C. elegans development: splicing factors as regulated targets.

    Directory of Open Access Journals (Sweden)

    Sergio Barberan-Soler

    2008-02-01

    Full Text Available Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (approximately 18% of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 - now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors

  5. Expression of Human CAR Splicing Variants in BAC-Transgenic Mice

    OpenAIRE

    Zhang, Yu-Kun Jennifer; LU, Hong; Klaassen, Curtis D.

    2012-01-01

    The nuclear receptor constitutive androstane receptor (CAR) is a key regulator for drug metabolism in liver. Human CAR (hCAR) transcripts are subjected to alternative splicing. Some hCAR splicing variants (SVs) have been shown to encode functional proteins by reporter assays. However, in vivo research on the activity of these hCAR SVs has been impeded by the absence of a valid model. This study engineered an hCAR-BAC-transgenic (hCAR-TG) mouse model by integrating the 8.5-kbp hCAR gene as wel...

  6. A Novel Splicing Variant of Mouse Interleukin (IL)-24 Antagonizes IL-24-induced Apoptosis*S⃞

    OpenAIRE

    Sahoo, Anupama; Jung, Yun Min; Kwon, Ho-Keun; Yi, Hwa-Jung; Lee, Suho; Chang, Sunghoe; Park, Zee-Yong; Hwang, Ki-Chul; Im, Sin-Hyeog

    2008-01-01

    Alternative splicing of mRNA enables functionally diverse protein isoforms to be expressed from a single gene, allowing transcriptome diversification. Interleukin (IL)-24/MDA-7 is a member of the IL-10 gene family, and FISP (IL-4-induced secreted protein), its murine homologue, is selectively expressed and secreted by T helper 2 lymphocytes. A novel splice variant of mouse IL-24/FISP, designated FISP-sp, lacks 29 nucleotides from the 5′-end of exon 4 of FISP. The level...

  7. Discovery of Novel Splice Variants and Regulatory Mechanisms for Microsomal Triglyceride Transfer Protein in Human Tissues.

    Science.gov (United States)

    Suzuki, Takashi; Swift, Larry L

    2016-01-01

    Microsomal triglyceride transfer protein (MTP) is a unique lipid transfer protein essential for the assembly of triglyceride-rich lipoproteins by the liver and intestine. Previous studies in mice identified a splice variant of MTP with an alternate first exon. Splice variants of human MTP have not been reported. Using PCR approaches we have identified two splice variants in human tissues, which we have named MTP-B and MTP-C. MTP-B has a unique first exon (Ex1B) located 10.5 kb upstream of the first exon (Ex1A) for canonical MTP (MTP-A); MTP-C contains both first exons for MTP-A and MTP-B. MTP-B was found in a number of tissues, whereas MTP-C was prominent in brain and testis. MTP-B does not encode a protein; MTP-C encodes the same protein encoded by MTP-A, although MTP-C translation is strongly inhibited by regulatory elements within its 5'-UTR. Using luciferase assays, we demonstrate that the promoter region upstream of exon 1B is quite adequate to drive expression of MTP. We conclude that alternate splicing plays a key role in regulating cellular MTP levels by introducing distinct promoter regions and unique 5'-UTRs, which contain elements that alter translation efficiency, enabling the cell to optimize MTP activity. PMID:27256115

  8. SpliceMiner: a high-throughput database implementation of the NCBI Evidence Viewer for microarray splice variant analysis

    OpenAIRE

    Liu Hongfang; Ryan Michael C; Kahn Ari B; Zeeberg Barry R; Jamison D Curtis; Weinstein John N

    2007-01-01

    Abstract Background There are many fewer genes in the human genome than there are expressed transcripts. Alternative splicing is the reason. Alternatively spliced transcripts are often specific to tissue type, developmental stage, environmental condition, or disease state. Accurate analysis of microarray expression data and design of new arrays for alternative splicing require assessment of probes at the sequence and exon levels. Description SpliceMiner is a web interface for querying Evidenc...

  9. The implications of alternative splicing in the ENCODE protein complement

    DEFF Research Database (Denmark)

    Tress, Michael L.; Martelli, Pier Luigi; Frankish, Adam;

    2007-01-01

    Alternative premessenger RNA splicing enables genes to generate more than one gene product. Splicing events that occur within protein coding regions have the potential to alter the biological function of the expressed protein and even to create new protein functions. Alternative splicing has been...... suggested as one explanation for the discrepancy between the number of human genes and functional complexity. Here, we carry out a detailed study of the alternatively spliced gene products annotated in the ENCODE pilot project. We find that alternative splicing in human genes is more frequent than has...... commonly been suggested, and we demonstrate that many of the potential alternative gene products will have markedly different structure and function from their constitutively spliced counterparts. For the vast majority of these alternative isoforms, little evidence exists to suggest they have a role as...

  10. APPRIS: annotation of principal and alternative splice isoforms.

    Science.gov (United States)

    Rodriguez, Jose Manuel; Maietta, Paolo; Ezkurdia, Iakes; Pietrelli, Alessandro; Wesselink, Jan-Jaap; Lopez, Gonzalo; Valencia, Alfonso; Tress, Michael L

    2013-01-01

    Here, we present APPRIS (http://appris.bioinfo.cnio.es), a database that houses annotations of human splice isoforms. APPRIS has been designed to provide value to manual annotations of the human genome by adding reliable protein structural and functional data and information from cross-species conservation. The visual representation of the annotations provided by APPRIS for each gene allows annotators and researchers alike to easily identify functional changes brought about by splicing events. In addition to collecting, integrating and analyzing reliable predictions of the effect of splicing events, APPRIS also selects a single reference sequence for each gene, here termed the principal isoform, based on the annotations of structure, function and conservation for each transcript. APPRIS identifies a principal isoform for 85% of the protein-coding genes in the GENCODE 7 release for ENSEMBL. Analysis of the APPRIS data shows that at least 70% of the alternative (non-principal) variants would lose important functional or structural information relative to the principal isoform. PMID:23161672

  11. Distinct subcellular localization of alternative splicing variants of EFA6D, a guanine nucleotide exchange factor for Arf6, in the mouse brain.

    Science.gov (United States)

    Fukaya, Masahiro; Ohta, Shingo; Hara, Yoshinobu; Tamaki, Hideaki; Sakagami, Hiroyuki

    2016-09-01

    EFA6D (guanine nucleotide exchange factor for ADP-ribosylation factor 6 [Arf6]D) is also known as EFA6R, Psd3, and HCA67. It is the fourth member of the EFA6 family with guanine nucleotide exchange activity for Arf6, a small guanosine triphosphatase (GTPase) that regulates endosomal trafficking and actin cytoskeleton remodeling. We propose a classification and nomenclature of 10 EFA6D variants deposited in the GenBank database as EFA6D1a, 1b, 1c, 1d, 1s, 2a, 2b, 2c, 2d, and 2s based on the combination of N-terminal and C-terminal insertions. Polymerase chain reaction analysis showed the expression of all EFA6D variants except for variants a and d in the adult mouse brain. Immunoblotting analysis with novel variant-specific antibodies showed the endogenous expression of EFA6D1b, EFA6D1c, and EFA6D1s at the protein level, with the highest expression being EFA6D1s, in the brain. Immunoblotting analysis of forebrain subcellular fractions showed the distinct subcellular distribution of EFA6D1b/c and EFA6D1s. The immunohistochemical analysis revealed distinct but overlapping immunoreactive patterns between EFA6D1b/c and EFA6D1s in the mouse brain. In immunoelectron microscopic analyses of the hippocampal CA3 region, EFA6D1b/c was present predominantly in the mossy fiber axons of dentate granule cells, whereas EFA6D1s was present abundantly in the cell bodies, dendritic shafts, and spines of hippocampal pyramidal cells. These results provide the first anatomical evidence suggesting the functional diversity of EFA6D variants, particularly EFA6D1b/c and EFA6D1s, in neurons. J. Comp. Neurol. 524:2531-2552, 2016. © 2016 Wiley Periodicals, Inc. PMID:27241101

  12. Expression of a novel splicing variant of Pcp2 in closely related laboratory rodents.

    Science.gov (United States)

    Przybyła, M A; Nowacka-Chmielewska, M M; Barski, J J

    2016-01-01

    Purkinje cell protein-2 (PCP2), also known as L7, is a member of the GoLoco protein family with highly cell-specific expression, being restricted to cerebellar Purkinje cells and retinal bipolar neurons in various species. However, its function in these tissues is unknown. Previous studies have suggested that PCP2 is a guanine nucleotide dissociation inhibitor, or a guanine nucleotide exchange factor. The Pcp2 gene is known to have many splice variants in both cerebellar Purkinje cells and retinal bipolar neurons. Here, we tested the hypothesis that a novel Pcp2 splice variant is conserved in closely related laboratory rodents (mice, rats, and hamsters). After analyzing alternative splicing of this gene in the Purkinje cells and retinas of these rodent species, we confirmed the presence of the novel longer transcript in mice. However, assessment of Pcp2 transcripts using polymerase chain reaction amplification of complementary DNA revealed this long splice variant containing the additional exon 3B to be absent from rats and hamsters. Thus, the novel Pcp2 transcript is particular to mouse cerebellar Purkinje cells and retinal bipolar neurons. It is likely to have arisen in this species, as a result of spontaneous mutation or de novo rearrangements. This gene presumably serves a very specific and, as yet, unknown function in the eyes and/or Purkinje cells of mice. PMID:27525924

  13. Characterization of a novel splicing variant in the RAPTOR gene

    International Nuclear Information System (INIS)

    The mammalian target of rapamycin (mTOR) plays an essential role in the regulation of cell growth, proliferation and apoptosis. Raptor, the regulatory associated protein of mTOR, is an important member in this signaling pathway. In the present report, we identified and characterized a novel splicing variant of this gene, RAPTORv2, in which exons 14-17, 474 bp in total, are omitted from the mRNA. This deletion does not change the open reading frame, but causes a nearly complete absence of HEAT repeats, which were shown to be involved in the binding of mTOR substrates. Real time PCR performed on 48 different human tissues demonstrated the ubiquitous presence of this splice variant. Quantification of mRNA levels in lymphoblastoid cell lines (LCL) from 56 unrelated HapMap individuals revealed that the expression of this splicing form is quite variable. One synonymous SNP, rs2289759 in exon 14, was predicted by ESEfinder to cause a significant gain/loss of SRp55 and/or SF2/ASF binding sites, and thus potentially influence splicing. This prediction was confirmed by linear regression analysis between the ratio of RAPTORv2 to total RAPTOR mRNA levels and the SNP genotype in the above 56 individuals (r = 0.281 and P = 0.036). Moreover, the functional evaluation indicated that this splicing isoform is expected to retain the ability to bind mTOR, but is unlikely to bind mTOR substrates, hence affecting signal transduction and further cell proliferation

  14. Regulation of Alternative Splicing in Vivo by Overexpression of Antagonistic Splicing Factors

    Science.gov (United States)

    Caceres, Javier F.; Stamm, Stefan; Helfman, David M.; Krainer, Adrian R.

    1994-09-01

    The opposing effects of SF2/ASF and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 influence alternative splicing in vitro. SF2/ASF or hnRNP A1 complementary DNAs were transiently overexpressed in HeLa cells, and the effect on alternative splicing of several cotransfected reporter genes was measured. Increased expression of SF2/ASF activated proximal 5' splice sites, promoted inclusion of a neuron-specific exon, and prevented abnormal exon skipping. Increased expression of hnRNP A1 activated distal 5' splice sites. Therefore, variations in the intracellular levels of antagonistic splicing factors influence different modes of alternative splicing in vivo and may be a natural mechanism for tissue-specific or developmental regulation of gene expression.

  15. Alternative Splicing of the Pituitary Adenylate Cyclase-Activating Polypeptide Receptor PAC1: Mechanisms of Fine Tuning of Brain Activity

    Directory of Open Access Journals (Sweden)

    GilLevkowitz

    2013-05-01

    Full Text Available Alternative splicing of the precursor mRNA encoding for the neuropeptide receptor PAC1/ADCYAP1R1 generates multiple protein products that exhibit pleiotropic activities. Recent studies in mammals and zebrafish have implicated some of these splice isoforms in control of both cellular and body homeostasis. Here, we review the regulation of PAC1 splice variants and their underlying signal transduction and physiological processes in the nervous system.

  16. Alternative Splicing and Its Impact as a Cancer Diagnostic Marker

    OpenAIRE

    Kim, Yun-Ji; Kim, Heui-Soo

    2012-01-01

    Most genes are processed by alternative splicing for gene expression, resulting in the complexity of the transcriptome in eukaryotes. It allows a limited number of genes to encode various proteins with intricate functions. Alternative splicing is regulated by genetic mutations in cis-regulatory factors and epigenetic events. Furthermore, splicing events occur differently according to cell type, developmental stage, and various diseases, including cancer. Genome instability and flexible proteo...

  17. The BRCA1 alternative splicing variant delta14-15 with an in-frame deletion of part of the regulatory serine-containing domain (SCD) impairs the DNA repair capacity in MCF-7 cells

    Czech Academy of Sciences Publication Activity Database

    Ševčík, J.; Falk, Martin; Kleiblová, P.; Lhota, F.; Štefančíková, L.; Janatová, M.; Weiterová, Lenka; Lukášová, Emilie; Kozubek, Stanislav; Pohlreich, P.; Kleibl, Z.

    2012-01-01

    Roč. 24, č. 5 (2012), s. 1023-1030. ISSN 0898-6568 R&D Projects: GA AV ČR(CZ) IAA500040802 Institutional research plan: CEZ:AV0Z50040702 Keywords : BRCA1 * alternative splicing * DNA repair Subject RIV: BO - Biophysics Impact factor: 4.304, year: 2012

  18. A study of alternative splicing in the pig

    DEFF Research Database (Denmark)

    Hillig, Ann-Britt Nygaard; Cirera Salicio, Susanna; Gilchrist, Michael J.;

    2010-01-01

    BACKGROUND: Since at least half of the genes in mammalian genomes are subjected to alternative splicing, alternative pre-mRNA splicing plays an important contribution to the complexity of the mammalian proteome. Expressed sequence tags (ESTs) provide evidence of a great number of possible alterna...

  19. Quantitative regulation of alternative splicing in evolution and development

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob L; Roy, Scott W;

    2009-01-01

    Alternative splicing (AS) is a widespread mechanism with an important role in increasing transcriptome and proteome diversity by generating multiple different products from the same gene. Evolutionary studies of AS have focused primarily on the conservation of alternatively spliced sequences or of...... additional layer in complex gene regulatory networks and in the emergence of genetic novelties....

  20. Evolution of alternative splicing regulation: changes in predicted exonic splicing regulators are not associated with changes in alternative splicing levels in primates

    OpenAIRE

    Manuel Irimia; Jakob Lewin Rukov; Scott William Roy

    2009-01-01

    Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans) factors that bind to different sequence (cis) elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex ‘splicing code’. Many cis-elements have been identifie...

  1. Copy number variations in alternative splicing gene networks impact lifespan.

    Directory of Open Access Journals (Sweden)

    Joseph T Glessner

    Full Text Available Longevity has a strong genetic component evidenced by family-based studies. Lipoprotein metabolism, FOXO proteins, and insulin/IGF-1 signaling pathways in model systems have shown polygenic variations predisposing to shorter lifespan. To test the hypothesis that rare variants could influence lifespan, we compared the rates of CNVs in healthy children (0-18 years of age with individuals 67 years or older. CNVs at a significantly higher frequency in the pediatric cohort were considered risk variants impacting lifespan, while those enriched in the geriatric cohort were considered longevity protective variants. We performed a whole-genome CNV analysis on 7,313 children and 2,701 adults of European ancestry genotyped with 302,108 SNP probes. Positive findings were evaluated in an independent cohort of 2,079 pediatric and 4,692 geriatric subjects. We detected 8 deletions and 10 duplications that were enriched in the pediatric group (P=3.33×10(-8-1.6×10(-2 unadjusted, while only one duplication was enriched in the geriatric cohort (P=6.3×10(-4. Population stratification correction resulted in 5 deletions and 3 duplications remaining significant (P=5.16×10(-5-4.26×10(-2 in the replication cohort. Three deletions and four duplications were significant combined (combined P=3.7×10(-4-3.9×10(-2. All associated loci were experimentally validated using qPCR. Evaluation of these genes for pathway enrichment demonstrated ~50% are involved in alternative splicing (P=0.0077 Benjamini and Hochberg corrected. We conclude that genetic variations disrupting RNA splicing could have long-term biological effects impacting lifespan.

  2. The alternative splice variant of protein tyrosine kinase 6 negatively regulates growth and enhances PTK6-mediated inhibition of β-catenin.

    Directory of Open Access Journals (Sweden)

    Patrick M Brauer

    Full Text Available Protein tyrosine kinase 6 (PTK6, also called breast tumor kinase (BRK, is expressed in epithelial cells of various tissues including the prostate. Previously it was shown that PTK6 is localized to epithelial cell nuclei in normal prostate, but becomes cytoplasmic in human prostate tumors. PTK6 is also primarily cytoplasmic in the PC3 prostate adenocarcinoma cell line. Sequencing revealed expression of wild type full-length PTK6 transcripts in addition to an alternative transcript lacking exon 2 in PC3 cells. The alternative transcript encodes a 134 amino acid protein, referred to here as ALT-PTK6, which shares the first 77 amino acid residues including the SH3 domain with full length PTK6. RT-PCR was used to show that ALT-PTK6 is coexpressed with full length PTK6 in established human prostate and colon cell lines, as well as in primary cell lines derived from human prostate tissue and tumors. Although interaction between full-length PTK6 and ALT-PTK6 was not detected, ALT-PTK6 associates with the known PTK6 substrates Sam68 and β-catenin in GST pull-down assays. Coexpression of PTK6 and ALT-PTK6 led to suppression of PTK6 activity and reduced association of PTK6 with tyrosine phosphorylated proteins. While ALT-PTK6 alone did not influence β-catenin/TCF transcriptional activity in a luciferase reporter assay, it enhanced PTK6-mediated inhibition of β-catenin/TCF transcription by promoting PTK6 nuclear functions. Ectopic expression of ALT-PTK6 led to reduced expression of the β-catenin/TCF targets Cyclin D1 and c-Myc in PC3 cells. Expression of tetracycline-inducible ALT-PTK6 blocked the proliferation and colony formation of PC3 cells. Our findings suggest that ALT-PTK6 is able to negatively regulate growth and modulate PTK6 activity, protein-protein associations and/or subcellular localization. Fully understanding functions of ALT-PTK6 and its impact on PTK6 signaling will be critical for development of therapeutic strategies that target PTK6

  3. Expression of TRAIL-splice variants in gastric carcinomas: identification of TRAIL-γ as a prognostic marker

    International Nuclear Information System (INIS)

    TNF-related apoptosis inducing ligand (TRAIL) belongs to the TNF-superfamily that induces apoptotic cell death in a wide range of neoplastic cells in vivo as well as in vitro. We identified two alternative TRAIL-splice variants, i.e. TRAIL-β and TRAIL-γ that are characterized by the loss of their proapoptotic properties. Herein, we investigated the expression and the prognostic values of the TRAIL-splice variants in gastric carcinomas. Real time PCR for amplification of the TRAIL-splice variants was performed in tumour tissue specimens and corresponding normal tissues of 41 consecutive patients with gastric carcinoma. Differences on mRNA-expression levels of the TRAIL-isoforms were compared to histo-pathological variables and correlated with survival data. All three TRAIL-splice variants could be detected in both non-malignant and malignant tissues, irrespective of their histological staging, grading or tumour types. However, TRAIL-β exhibited a higher expression in normal gastric tissue. The proapoptotic TRAIL-α expression was increased in gastric carcinomas when compared to TRAIL-β and TRAIL-γ. In addition, overexpression of TRAIL-γ was associated with a significant higher survival rate. This is the first study that investigated the expression of TRAIL-splice variants in gastric carcinoma tissue samples. Thus, we provide first data that indicate a prognostic value for TRAIL-γ overexpression in this tumour entity

  4. Genome-wide analysis of alternative splicing in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Thomas Julie

    2010-02-01

    Full Text Available Abstract Background Genome-wide computational analysis of alternative splicing (AS in several flowering plants has revealed that pre-mRNAs from about 30% of genes undergo AS. Chlamydomonas, a simple unicellular green alga, is part of the lineage that includes land plants. However, it diverged from land plants about one billion years ago. Hence, it serves as a good model system to study alternative splicing in early photosynthetic eukaryotes, to obtain insights into the evolution of this process in plants, and to compare splicing in simple unicellular photosynthetic and non-photosynthetic eukaryotes. We performed a global analysis of alternative splicing in Chlamydomonas reinhardtii using its recently completed genome sequence and all available ESTs and cDNAs. Results Our analysis of AS using BLAT and a modified version of the Sircah tool revealed AS of 498 transcriptional units with 611 events, representing about 3% of the total number of genes. As in land plants, intron retention is the most prevalent form of AS. Retained introns and skipped exons tend to be shorter than their counterparts in constitutively spliced genes. The splice site signals in all types of AS events are weaker than those in constitutively spliced genes. Furthermore, in alternatively spliced genes, the prevalent splice form has a stronger splice site signal than the non-prevalent form. Analysis of constitutively spliced introns revealed an over-abundance of motifs with simple repetitive elements in comparison to introns involved in intron retention. In almost all cases, AS results in a truncated ORF, leading to a coding sequence that is around 50% shorter than the prevalent splice form. Using RT-PCR we verified AS of two genes and show that they produce more isoforms than indicated by EST data. All cDNA/EST alignments and splice graphs are provided in a website at http://combi.cs.colostate.edu/as/chlamy. Conclusions The extent of AS in Chlamydomonas that we observed is much

  5. Cancer-associated splicing variant of tumor suppressor AIMP2/p38: pathological implication in tumorigenesis.

    Directory of Open Access Journals (Sweden)

    Jin Woo Choi

    2011-03-01

    Full Text Available Although ARS-interacting multifunctional protein 2 (AIMP2, also named as MSC p38 was first found as a component for a macromolecular tRNA synthetase complex, it was recently discovered to dissociate from the complex and work as a potent tumor suppressor. Upon DNA damage, AIMP2 promotes apoptosis through the protective interaction with p53. However, it was not demonstrated whether AIMP2 was indeed pathologically linked to human cancer. In this work, we found that a splicing variant of AIMP2 lacking exon 2 (AIMP2-DX2 is highly expressed by alternative splicing in human lung cancer cells and patient's tissues. AIMP2-DX2 compromised pro-apoptotic activity of normal AIMP2 through the competitive binding to p53. The cells with higher level of AIMP2-DX2 showed higher propensity to form anchorage-independent colonies and increased resistance to cell death. Mice constitutively expressing this variant showed increased susceptibility to carcinogen-induced lung tumorigenesis. The expression ratio of AIMP2-DX2 to normal AIMP2 was increased according to lung cancer stage and showed a positive correlation with the survival of patients. Thus, this work identified an oncogenic splicing variant of a tumor suppressor, AIMP2/p38, and suggests its potential for anti-cancer target.

  6. Exon organization and novel alternative splicing of Ank3 in mouse heart.

    Directory of Open Access Journals (Sweden)

    Gokay Yamankurt

    Full Text Available Ankyrin-G is an adaptor protein that links membrane proteins to the underlying cytoskeletal network. Alternative splicing of the Ank3 gene gives rise to multiple ankyrin-G isoforms in numerous tissues. To date, only one ankyrin-G isoform has been characterized in heart and transcriptional regulation of the Ank3 gene is completely unknown. In this study, we describe the first comprehensive analysis of Ank3 expression in heart. Using a PCR-based screen of cardiac mRNA transcripts, we identify two new exons and 28 alternative splice variants of the Ank3 gene. We measure the relative expression of each splice variant using quantitative real-time PCR and exon-exon boundary spanning primers that specifically amplify individual Ank3 variants. Six variants are rarely expressed (<1%, while the remaining variants display similar expression patterns in three hearts. Of the five first exons in the Ank3 gene, exon 1d is only expressed in heart and skeletal muscle as it was not detected in brain, kidney, cerebellum, and lung. Immunoblot analysis reveals multiple ankyrin-G isoforms in heart, and two ankyrin-G subpopulations are detected in adult cardiomyocytes by immunofluorescence. One population co-localizes with the voltage-gated sodium channel NaV1.5 at the intercalated disc, while the other population expresses at the Z-line. Two of the rare splice variants excise a portion of the ZU5 motif, which encodes the minimal spectrin-binding domain, and these variants lack β-spectrin binding. Together, these data demonstrate that Ank3 is subject to complex splicing regulation resulting in a diverse population of ankyrin-G isoforms in heart.

  7. Synaptic Effects of Munc18-1 Alternative Splicing in Excitatory Hippocampal Neurons.

    Directory of Open Access Journals (Sweden)

    Marieke Meijer

    Full Text Available The munc18-1 gene encodes two splice-variants that vary at the C-terminus of the protein and are expressed at different levels in different regions of the adult mammalian brain. Here, we investigated the expression pattern of these splice variants within the brainstem and tested whether they are functionally different. Munc18-1a is expressed in specific nuclei of the brainstem including the LRN, VII and SOC, while Munc18-1b expression is relatively low/absent in these regions. Furthermore, Munc18-1a is the major splice variant in the Calyx of Held. Synaptic transmission was analyzed in autaptic hippocampal munc18-1 KO neurons re-expressing either Munc18-1a or Munc18-1b. The two splice variants supported synaptic transmission to a similar extent, but Munc18-1b was slightly more potent in sustaining synchronous release during high frequency stimulation. Our data suggest that alternative splicing of Munc18-1 support synaptic transmission to a similar extent, but could modulate presynaptic short-term plasticity.

  8. Synaptic Effects of Munc18-1 Alternative Splicing in Excitatory Hippocampal Neurons.

    Science.gov (United States)

    Meijer, Marieke; Cijsouw, Tony; Toonen, Ruud F; Verhage, Matthijs

    2015-01-01

    The munc18-1 gene encodes two splice-variants that vary at the C-terminus of the protein and are expressed at different levels in different regions of the adult mammalian brain. Here, we investigated the expression pattern of these splice variants within the brainstem and tested whether they are functionally different. Munc18-1a is expressed in specific nuclei of the brainstem including the LRN, VII and SOC, while Munc18-1b expression is relatively low/absent in these regions. Furthermore, Munc18-1a is the major splice variant in the Calyx of Held. Synaptic transmission was analyzed in autaptic hippocampal munc18-1 KO neurons re-expressing either Munc18-1a or Munc18-1b. The two splice variants supported synaptic transmission to a similar extent, but Munc18-1b was slightly more potent in sustaining synchronous release during high frequency stimulation. Our data suggest that alternative splicing of Munc18-1 support synaptic transmission to a similar extent, but could modulate presynaptic short-term plasticity. PMID:26407320

  9. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); Redal, María Ana [Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires (Argentina); Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Muñoz, Manuel J., E-mail: mmunoz@fbmc.fcen.uba.ar [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  10. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    International Nuclear Information System (INIS)

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer

  11. Identification of alternatively spliced TIMP-1 mRNA in cancer cell lines and colon cancer tissue

    DEFF Research Database (Denmark)

    Usher, Pernille Autzen; Sieuwerts, A.M.; Bartels, Annette;

    2007-01-01

    TIMP-1 is a promising new candidate as a prognostic marker in colorectal and breast cancer. We now describe the discovery of two alternatively spliced variants of TIMP-1 mRNA. The two variants lacking exon 2 (del-2) and 5 (del-5), respectively, were identified in human cancer cell lines by RT......-PCR. The del-2 variant was, furthermore, detected in extracts from 12 colorectal cancer tissue samples. By western blotting additional bands of lower molecular mass than full-length TIMP-1 were identified in tumor tissue, but not in plasma samples obtained from cancer patients. The two splice variants of...

  12. Exon Expression and Alternatively Spliced Genes in Tourette Syndrome

    NARCIS (Netherlands)

    Tian, Yingfang; Liao, Isaac H.; Zhan, Xinhua; Gunther, Joan R.; Ander, Bradley P.; Liu, Dazhi; Lit, Lisa; Jickling, Glen C.; Corbett, Blythe A.; Bos-Veneman, Netty G. P.; Hoekstra, Pieter J.; Sharp, Frank R.

    2011-01-01

    Tourette Syndrome (TS) is diagnosed based upon clinical criteria including motor and vocal tics. We hypothesized that differences in exon expression and splicing might be useful for pathophysiology and diagnosis. To demonstrate exon expression and alternatively spliced gene differences in blood of i

  13. Classifying MLH1 and MSH2 variants using bioinformatic prediction, splicing assays, segregation and tumor characteristics

    OpenAIRE

    Arnold, Sven; Buchanan, Daniel D.; Barker, Melissa; Jaskowski, Lesley; Walsh, Michael D.; Birney, Genevieve; Woods, Michael O.; Hopper, John L.; Jenkins, Mark A; Brown, Melissa A.; Sean V Tavtigian; Goldgar, David E.; Young, Joanne P; Spurdle, Amanda B.

    2009-01-01

    Reliable methods for predicting functional consequences of variants in disease genes would be beneficial in the clinical setting. This study was undertaken to predict, and confirm in vitro, splicing aberrations associated with mismatch repair (MMR) variants identified in familial colon cancer patients. Six programs were used to predict the effect of 13 MLH1 and 6 MSH2 gene variants on pre-mRNA splicing. mRNA from cycloheximide-treated lymphoblastoid cell lines of variant carriers was screened...

  14. Mediation of buprenorphine analgesia by a combination of traditional and truncated mu opioid receptor splice variants.

    Science.gov (United States)

    Grinnell, Steven G; Ansonoff, Michael; Marrone, Gina F; Lu, Zhigang; Narayan, Ankita; Xu, Jin; Rossi, Grace; Majumdar, Susruta; Pan, Ying-Xian; Bassoni, Daniel L; Pintar, John; Pasternak, Gavril W

    2016-10-01

    Buprenorphine has long been classified as a mu analgesic, although its high affinity for other opioid receptor classes and the orphanin FQ/nociceptin ORL1 receptor may contribute to its other actions. The current studies confirmed a mu mechanism for buprenorphine analgesia, implicating several subsets of mu receptor splice variants. Buprenorphine analgesia depended on the expression of both exon 1-associated traditional full length 7 transmembrane (7TM) and exon 11-associated truncated 6 transmembrane (6TM) MOR-1 variants. In genetic models, disruption of delta, kappa1 or ORL1 receptors had no impact on buprenorphine analgesia, while loss of the traditional 7TM MOR-1 variants in an exon 1 knockout (KO) mouse markedly lowered buprenorphine analgesia. Loss of the truncated 6TM variants in an exon 11 KO mouse totally eliminated buprenorphine analgesia. In distinction to analgesia, the inhibition of gastrointestinal transit and stimulation of locomotor activity were independent of truncated 6TM variants. Restoring expression of a 6TM variant with a lentivirus rescued buprenorphine analgesia in an exon 11 KO mouse that still expressed the 7TM variants. Despite a potent and robust stimulation of (35) S-GTPγS binding in MOR-1 expressing CHO cells, buprenorphine failed to recruit β-arrestin-2 binding at doses as high as 10 µM. Buprenorphine was an antagonist in DOR-1 expressing cells and an inverse agonist in KOR-1 cells. Buprenorphine analgesia is complex and requires multiple mu receptor splice variant classes but other actions may involve alternative receptors. PMID:27223691

  15. Genome-wide survey of Alternative Splicing in Sorghum Bicolor.

    Science.gov (United States)

    Panahi, Bahman; Abbaszadeh, Bahram; Taghizadeghan, Mehdi; Ebrahimie, Esmaeil

    2014-07-01

    Sorghum bicolor is a member of grass family which is an attractive model plant for genome study due to interesting genome features like low genome size. In this research, we performed comprehensive investigation of Alternative Splicing and ontology aspects of genes those have undergone these events in sorghum bicolor. We used homology based alignments between gene rich transcripts, represented by tentative consensus (TC) transcript sequences, and genomic scaffolds to deduce the structure of genes and identify alternatively spliced transcripts in sorghum. Using homology mapping of assembled expressed sequence tags with genomics data, we identified 2,137 Alternative Splicing events in S. bicolor. Our study showed that complex events and intron retention are the main types of Alternative Splicing events in S. bicolor and highlights the prevalence of splicing site recognition for definition of introns in this plant. Annotations of the alternatively spliced genes revealed that they represent diverse biological process and molecular functions, suggesting a fundamental role for Alternative Splicing in affecting the development and physiology of S. bicolor. PMID:25049459

  16. Functional roles of alternative splicing factors in human disease.

    Science.gov (United States)

    Cieply, Benjamin; Carstens, Russ P

    2015-01-01

    Alternative splicing (AS) is an important mechanism used to generate greater transcriptomic and proteomic diversity from a finite genome. Nearly all human gene transcripts are alternatively spliced and can produce protein isoforms with divergent and even antagonistic properties that impact cell functions. Many AS events are tightly regulated in a cell-type or tissue-specific manner, and at different developmental stages. AS is regulated by RNA-binding proteins, including cell- or tissue-specific splicing factors. In the past few years, technological advances have defined genome-wide programs of AS regulated by increasing numbers of splicing factors. These splicing regulatory networks (SRNs) consist of transcripts that encode proteins that function in coordinated and related processes that impact the development and phenotypes of different cell types. As such, it is increasingly recognized that disruption of normal programs of splicing regulated by different splicing factors can lead to human diseases. We will summarize examples of diseases in which altered expression or function of splicing regulatory proteins has been implicated in human disease pathophysiology. As the role of AS continues to be unveiled in human disease and disease risk, it is hoped that further investigations into the functions of numerous splicing factors and their regulated targets will enable the development of novel therapies that are directed at specific AS events as well as the biological pathways they impact. PMID:25630614

  17. Spliced leader trapping reveals widespread alternative splicing patterns in the highly dynamic transcriptome of Trypanosoma brucei.

    Directory of Open Access Journals (Sweden)

    Daniel Nilsson

    Full Text Available Trans-splicing of leader sequences onto the 5'ends of mRNAs is a widespread phenomenon in protozoa, nematodes and some chordates. Using parallel sequencing we have developed a method to simultaneously map 5'splice sites and analyze the corresponding gene expression profile, that we term spliced leader trapping (SLT. The method can be applied to any organism with a sequenced genome and trans-splicing of a conserved leader sequence. We analyzed the expression profiles and splicing patterns of bloodstream and insect forms of the parasite Trypanosoma brucei. We detected the 5' splice sites of 85% of the annotated protein-coding genes and, contrary to previous reports, found up to 40% of transcripts to be differentially expressed. Furthermore, we discovered more than 2500 alternative splicing events, many of which appear to be stage-regulated. Based on our findings we hypothesize that alternatively spliced transcripts present a new means of regulating gene expression and could potentially contribute to protein diversity in the parasite. The entire dataset can be accessed online at TriTrypDB or through: http://splicer.unibe.ch/.

  18. Exon array analysis of head and neck cancers identifies a hypoxia related splice variant of LAMA3 associated with a poor prognosis.

    Science.gov (United States)

    Moller-Levet, Carla S; Betts, Guy N J; Harris, Adrian L; Homer, Jarrod J; West, Catharine M L; Miller, Crispin J

    2009-11-01

    The identification of alternatively spliced transcript variants specific to particular biological processes in tumours should increase our understanding of cancer. Hypoxia is an important factor in cancer biology, and associated splice variants may present new markers to help with planning treatment. A method was developed to analyse alternative splicing in exon array data, using probeset multiplicity to identify genes with changes in expression across their loci, and a combination of the splicing index and a new metric based on the variation of reliability weighted fold changes to detect changes in the splicing patterns. The approach was validated on a cancer/normal sample dataset in which alternative splicing events had been confirmed using RT-PCR. We then analysed ten head and neck squamous cell carcinomas using exon arrays and identified differentially expressed splice variants in five samples with high versus five with low levels of hypoxia-associated genes. The analysis identified a splice variant of LAMA3 (Laminin alpha 3), LAMA3-A, known to be involved in tumour cell invasion and progression. The full-length transcript of the gene (LAMA3-B) did not appear to be hypoxia-associated. The results were confirmed using qualitative RT-PCR. In a series of 59 prospectively collected head and neck tumours, expression of LAMA3-A had prognostic significance whereas LAMA3-B did not. This work illustrates the potential for alternatively spliced transcripts to act as biomarkers of disease prognosis with improved specificity for particular tissues or conditions over assays which do not discriminate between splice variants. PMID:19936049

  19. Exon array analysis of head and neck cancers identifies a hypoxia related splice variant of LAMA3 associated with a poor prognosis.

    Directory of Open Access Journals (Sweden)

    Carla S Moller-Levet

    2009-11-01

    Full Text Available The identification of alternatively spliced transcript variants specific to particular biological processes in tumours should increase our understanding of cancer. Hypoxia is an important factor in cancer biology, and associated splice variants may present new markers to help with planning treatment. A method was developed to analyse alternative splicing in exon array data, using probeset multiplicity to identify genes with changes in expression across their loci, and a combination of the splicing index and a new metric based on the variation of reliability weighted fold changes to detect changes in the splicing patterns. The approach was validated on a cancer/normal sample dataset in which alternative splicing events had been confirmed using RT-PCR. We then analysed ten head and neck squamous cell carcinomas using exon arrays and identified differentially expressed splice variants in five samples with high versus five with low levels of hypoxia-associated genes. The analysis identified a splice variant of LAMA3 (Laminin alpha 3, LAMA3-A, known to be involved in tumour cell invasion and progression. The full-length transcript of the gene (LAMA3-B did not appear to be hypoxia-associated. The results were confirmed using qualitative RT-PCR. In a series of 59 prospectively collected head and neck tumours, expression of LAMA3-A had prognostic significance whereas LAMA3-B did not. This work illustrates the potential for alternatively spliced transcripts to act as biomarkers of disease prognosis with improved specificity for particular tissues or conditions over assays which do not discriminate between splice variants.

  20. LRRTM3 Regulates Excitatory Synapse Development through Alternative Splicing and Neurexin Binding

    Directory of Open Access Journals (Sweden)

    Ji Won Um

    2016-02-01

    Full Text Available The four members of the LRRTM family (LRRTM1-4 are postsynaptic adhesion molecules essential for excitatory synapse development. They have also been implicated in neuropsychiatric diseases. Here, we focus on LRRTM3, showing that two distinct LRRTM3 variants generated by alternative splicing regulate LRRTM3 interaction with PSD-95, but not its excitatory synapse-promoting activity. Overexpression of either LRRTM3 variant increased excitatory synapse density in dentate gyrus (DG granule neurons, whereas LRRTM3 knockdown decreased it. LRRTM3 also controlled activity-regulated AMPA receptor surface expression in an alternative splicing-dependent manner. Furthermore, Lrrtm3-knockout mice displayed specific alterations in excitatory synapse density, excitatory synaptic transmission and excitability in DG granule neurons but not in CA1 pyramidal neurons. Lastly, LRRTM3 required only specific splice variants of presynaptic neurexins for their synaptogenic activity. Collectively, our data highlight alternative splicing and differential presynaptic ligand utilization in the regulation of LRRTMs, revealing key regulatory mechanisms for excitatory synapse development.

  1. Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases

    OpenAIRE

    Zodwa Dlamini; Tshidino, Shonisani C.; Rodney Hull

    2015-01-01

    Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 f...

  2. Alternative Splicing of Type II Procollagen: IIB or not IIB?

    OpenAIRE

    McAlinden, Audrey

    2014-01-01

    Over two decades ago, two isoforms of the type II procollagen gene (COL2A1) were discovered. These isoforms, named IIA and IIB, are generated in a developmentally-regulated manner by alternative splicing of exon 2. Chondroprogenitor cells synthesize predominantly IIA isoforms (containing exon 2) while differentiated chondrocytes produce mainly IIB transcripts (devoid of exon 2). Importantly, this IIA-to-IIB alternative splicing switch occurs only during chondrogenesis. More recently, two othe...

  3. Functional roles of alternative splicing factors in human disease

    OpenAIRE

    Cieply, Benjamin; Carstens, Russ P.

    2015-01-01

    Alternative splicing (AS) is an important mechanism used to generate greater transcriptomic and proteomic diversity from a finite genome. Nearly all human gene transcripts are alternatively spliced and can produce protein isoforms with divergent and even antagonistic properties that impact cell functions. Many AS events are tightly regulated in a cell-type or tissue-specific manner, and at different developmental stages. AS is regulated by RNA-binding proteins, including cell- or tissue-speci...

  4. Interrogation of alternative splicing events in duplicated genes during evolution

    OpenAIRE

    Chen Ting-Wen; Wu Timothy H; Ng Wailap V; Lin Wen-Chang

    2011-01-01

    Abstract Background Gene duplication provides resources for developing novel genes and new functions while retaining the original functions. In addition, alternative splicing could increase the complexity of expression at the transcriptome and proteome level without increasing the number of gene copy in the genome. Duplication and alternative splicing are thought to work together to provide the diverse functions or expression patterns for eukaryotes. Previously, it was believed that duplicati...

  5. Alternative splicing of SMPD1 in human sepsis.

    Directory of Open Access Journals (Sweden)

    Marcel Kramer

    Full Text Available Acid sphingomyelinase (ASM or sphingomyelin phosphodiesterase, SMPD activity engages a critical role for regulation of immune response and development of organ failure in critically ill patients. Beside genetic variation in the human gene encoding ASM (SMPD1, alternative splicing of the mRNA is involved in regulation of enzymatic activity. Here we show that the patterns of alternatively spliced SMPD1 transcripts are significantly different in patients with systemic inflammatory response syndrome and severe sepsis/septic shock compared to control subjects allowing discrimination of respective disease entity. The different splicing patterns might contribute to the better understanding of the pathophysiology of human sepsis.

  6. Expression microarray analysis reveals alternative splicing of LAMA3 and DST genes in head and neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Ryan Li

    Full Text Available Prior studies have demonstrated tumor-specific alternative splicing events in various solid tumor types. The role of alternative splicing in the development and progression of head and neck squamous cell carcinoma (HNSCC is unclear. Our study queried exon-level expression to implicate splice variants in HNSCC tumors.We performed a comparative genome-wide analysis of 44 HNSCC tumors and 25 uvulopalatopharyngoplasty (UPPP tissue samples at an exon expression level. In our comparison we ranked genes based upon a novel score-the Maximum-Minimum Exon Score (MMES--designed to predict the likelihood of an alternative splicing event occurring. We validated predicted alternative splicing events using quantitative RT-PCR on an independent cohort.After MMES scoring of 17,422 genes, the top 900 genes with the highest scores underwent additional manual inspection of expression patterns in a graphical analysis. The genes LAMA3, DST, VEGFC, SDHA, RASIP1, and TP63 were selected for further validation studies because of a high frequency of alternative splicing suggested in our graphical analysis, and literature review showing their biological relevance and known splicing patterns. We confirmed TP63 as having dominant expression of the short DeltaNp63 isoform in HNSCC tumor samples, consistent with prior reports. Two of the six genes (LAMA3 and DST validated by quantitative RT-PCR for tumor-specific alternative splicing events (Student's t test, P<0.001.Alternative splicing events of oncologically relevant proteins occur in HNSCC. The number of genes expressing tumor-specific splice variants needs further elucidation, as does the functional significance of selective isoform expression.

  7. Genome-Wide Functional Annotation of Human Protein-Coding Splice Variants Using Multiple Instance Learning.

    Science.gov (United States)

    Panwar, Bharat; Menon, Rajasree; Eksi, Ridvan; Li, Hong-Dong; Omenn, Gilbert S; Guan, Yuanfang

    2016-06-01

    The vast majority of human multiexon genes undergo alternative splicing and produce a variety of splice variant transcripts and proteins, which can perform different functions. These protein-coding splice variants (PCSVs) greatly increase the functional diversity of proteins. Most functional annotation algorithms have been developed at the gene level; the lack of isoform-level gold standards is an important intellectual limitation for currently available machine learning algorithms. The accumulation of a large amount of RNA-seq data in the public domain greatly increases our ability to examine the functional annotation of genes at isoform level. In the present study, we used a multiple instance learning (MIL)-based approach for predicting the function of PCSVs. We used transcript-level expression values and gene-level functional associations from the Gene Ontology database. A support vector machine (SVM)-based 5-fold cross-validation technique was applied. Comparatively, genes with multiple PCSVs performed better than single PCSV genes, and performance also improved when more examples were available to train the models. We demonstrated our predictions using literature evidence of ADAM15, LMNA/C, and DMXL2 genes. All predictions have been implemented in a web resource called "IsoFunc", which is freely available for the global scientific community through http://guanlab.ccmb.med.umich.edu/isofunc . PMID:27142340

  8. The functional modulation of epigenetic regulators by alternative splicing

    Directory of Open Access Journals (Sweden)

    Martínez-Balbás Marian

    2007-07-01

    Full Text Available Abstract Background Epigenetic regulators (histone acetyltransferases, methyltransferases, chromatin-remodelling enzymes, etc play a fundamental role in the control of gene expression by modifying the local state of chromatin. However, due to their recent discovery, little is yet known about their own regulation. This paper addresses this point, focusing on alternative splicing regulation, a mechanism already known to play an important role in other protein families, e.g. transcription factors, membrane receptors, etc. Results To this end, we compiled the data available on the presence/absence of alternative splicing for a set of 160 different epigenetic regulators, taking advantage of the relatively large amount of unexplored data on alternative splicing available in public databases. We found that 49 % (70 % in human of these genes express more than one transcript. We then studied their alternative splicing patterns, focusing on those changes affecting the enzyme's domain composition. In general, we found that these sequence changes correspond to different mechanisms, either repressing the enzyme's function (e.g. by creating dominant-negative inhibitors of the functional isoform or creating isoforms with new functions. Conclusion We conclude that alternative splicing of epigenetic regulators can be an important tool for the function modulation of these enzymes. Considering that the latter control the transcriptional state of large sets of genes, we propose that epigenetic regulation of gene expression is itself strongly regulated by alternative splicing.

  9. Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Zodwa Dlamini

    2015-11-01

    Full Text Available Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 family have alternatively spliced isoforms that lack important active domains. These isoforms can play a negative regulatory role by binding to and inhibiting the pro-apoptotic forms. Alternative splicing is observed to be increased in various cardiovascular diseases with the level of alternate transcripts increasing elevated in diseased hearts compared to healthy subjects. In many cases these isoforms appear to be the underlying cause of the disease, while in others they may be induced in response to cardiovascular pathologies. Regardless of this, the detection of alternate splicing events in the heart can serve as useful diagnostic or prognostic tools, while those splicing events that seem to play a causative role in cardiovascular disease make attractive future drug targets.

  10. Expression of cyclooxygenase-2 mRNA alternative splice variant in human cervical carcinoma tissues%人宫颈癌组织环加氧酶2mRNA剪接异构体的表达

    Institute of Scientific and Technical Information of China (English)

    龚霞; 万敬员; 叶笃筠; 吴萍; 张力; 周歧新

    2005-01-01

    BACKGROUND:Cervical cancer is one of the most frequent malignancies in women worldwide, and its occurrence and development is closely related to cyclooxygenase-2 (COX-2).OBJECTIVE: To examine the expression of COX-2 alternative splicing variants in human cervical carcinoma tissue and understand its possible implications.DESIGN: Non-randomized controlled experiment.SETTING: Key Laboratory of Biochemistry and Molecular Pharmacology,Department of Obstetrics and Gynecology, First Affiliated Hospital,Chongqing Medical University.PARTICIPANTS: Carcinoma tissue and normal tissue were obtained from 13 cervical carcinoma patients admitted during March 2002 to April 2002in the Department of Obstetrics and Gynecology, First Affiliated Hospital,Chongqing Medical University.METHODS: A pair of specific primers were designed for reverse transcription-polymerase chain reaction (RT-PCR) to obtain the mRNA of COX-2 in human cervical carcinoma tissues. The resultant band on electrophoresis was cloned, sequenced and analyzed.MAIN OUTCOME MEASURES: ① Agarose gel electrophoresis result of the PCR product of carcinoma and normal tissues; ② Sequencing result of the electrophoresis band from carcinoma and normal tissues.RESULTS: No COX-2 band (252 bp) was found in electrophoresis for normal tissues, while 2 bands appeared for cervical carcinoma tissues, including a new electrophoresis band of 534bp besides the COX-2 band. Cloning and sequencing revealed that this new band contained not only exons 7and 8 of COX-2 gene but also a reserved intron of 282 bp intron between exons 7 and 8. Analysis of the predicted amino acid sequence indicated that an in-frame stop codon occurred in the 48-50 bp of the intron retained in the mRNA.CONCLUSION: The presence of COX-2 alternative splicing mRNA variant (Genbank accession number:BU493602)is confirmed in human cervical carcinoma tissue, which codes for a protein possibly smaller than COX-2.%背景:宫颈癌是女性最常见的恶性肿瘤之一,

  11. Auxiliary splice factor U2AF26 and transcription factor Gfi1 cooperate directly in regulating CD45 alternative splicing.

    NARCIS (Netherlands)

    Heyd, F.; Dam, G.B. ten; Moroy, T.

    2006-01-01

    By alternative splicing, different isoforms of the transmembrane tyrosine phosphatase CD45 are generated that either enhance or limit T cell receptor signaling. We report here that CD45 alternative splicing is regulated by cooperative action of the splice factor U2AF26 and the transcription factor G

  12. Alternative splicing of MALT1 controls signalling and activation of CD4+ T cells

    OpenAIRE

    Meininger, Isabel; Griesbach, Richard A.; Hu, Desheng; Gehring, Torben; Seeholzer, Thomas; Bertossi, Arianna; Kranich, Jan; Oeckinghaus, Andrea; Eitelhuber, Andrea C; Greczmiel, Ute; Gewies, Andreas; Schmidt-Supprian, Marc; Ruland, Jürgen; Brocker, Thomas; Heissmeyer, Vigo

    2016-01-01

    MALT1 channels proximal T-cell receptor (TCR) signalling to downstream signalling pathways. With MALT1A and MALT1B two conserved splice variants exist and we demonstrate here that MALT1 alternative splicing supports optimal T-cell activation. Inclusion of exon7 in MALT1A facilitates the recruitment of TRAF6, which augments MALT1 scaffolding function, but not protease activity. Naive CD4+ T cells express almost exclusively MALT1B and MALT1A expression is induced by TCR stimulation. We identify...

  13. Genomic organization of mouse orexin receptors: characterization of two novel tissue-specific splice variants.

    Science.gov (United States)

    Chen, Jing; Randeva, Harpal S

    2004-11-01

    In humans and rat, orexins orchestrate divergent actions through their G protein-coupled receptors, orexin-1 (OX1R) and orexin-2 (OX2R). Orexins also play an important physiological role in mouse, but the receptors through which they function are not characterized. To characterize the physiological role(s) of orexins in the mouse, we cloned and characterized the mouse orexin receptor(s), mOX1R and mOX2R, using rapid amplification of cDNA (mouse brain) ends, RT-PCR, and gene structure analysis. The mOX1R cDNA encodes a 416-amino acid (aa) receptor. We have identified two alternative C terminus splice variants of the mOX2R; mOX2 alpha R (443 aa) and mOX2 beta R (460 aa). Binding studies in human embryonic kidney 293 cells transfected with mOX1R, mOX2 alpha R, and the mOX2 beta R revealed specific, saturable sites for both orexin-A and -B. Activation of these receptors by orexins induced inositol triphosphate (IP(3)) turnover. However, human embryonic kidney 293 cells transfected with mOXRs demonstrated no cAMP response to either orexin-A or orexin-B challenge, although forskolin and GTP gamma S revealed a dose-dependent increase in cAMP. Although, orexin-A and -B showed no difference in binding characteristics between the splice variants; interestingly, orexin-B led to an increase in IP(3) production at all concentrations in the mOX2 beta R variant. Orexin-A, however, showed no difference in IP(3) production between the two variants. Additionally, in the mouse, we demonstrate that these splice variants are distributed in a tissue-specific manner, where OX2 alpha R mRNA was undetectable in skeletal muscle and kidney. Moreover, food deprivation led to a greater increase in hypothalamic mOX2 beta R gene expression, compared with both mOX1R and mOX2 alpha R. This potentially implicates a fundamental physiological role for these splice variants. PMID:15256537

  14. Alternative splicing of Caspase 9 is modulated by the PI3K/Akt pathway via phosphorylation of SRp30a

    OpenAIRE

    Shultz, Jacqueline C.; Rachel W Goehe; Wijesinghe, D. Shanaka; Murudkar, Charuta; Hawkins, Amy J.; Shay, Jerry W.; Minna, John D.; Chalfant, Charles E.

    2010-01-01

    Increasing evidence points to the functional importance of alternative splice variations in cancer pathophysiology. Two splice variants are derived from the CASP9 gene via the inclusion (Casp9a) or exclusion (Casp9b) of a four exon cassette. Here we show that alternative splicing of Casp9 is dysregulated in non-small cell lung cancers (NSCLC) regardless of their pathological classification. Based on these findings we hypothesized that survival pathways activated by oncogenic mutation regulate...

  15. Genetic Variation of Pre-mRNA Alternative Splicing in Human Populations

    OpenAIRE

    Lu, Zhi-xiang; Jiang, Peng; Xing, Yi

    2011-01-01

    The precise splicing outcome of a transcribed gene is controlled by complex interactions between cis regulatory splicing signals and trans-acting regulators. In higher eukaryotes, alternative splicing is a prevalent mechanism for generating transcriptome and proteome diversity. Alternative splicing can modulate gene function, affect organismal phenotype and cause disease. Common genetic variation that affects splicing regulation can lead to differences in alternative splicing between human in...

  16. Evolution of alternative splicing regulation: changes in predicted exonic splicing regulators are not associated with changes in alternative splicing levels in primates.

    Directory of Open Access Journals (Sweden)

    Manuel Irimia

    Full Text Available Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans factors that bind to different sequence (cis elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex 'splicing code'. Many cis-elements have been identified, and their effects on exon inclusion levels demonstrated in reporter systems. However, the impact of interspecific differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level. Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs on exon inclusion levels in human and chimpanzee. For this purpose, we compiled and studied comprehensive datasets of predicted ESRs, identified by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs and changes in alternative splicing levels. This observation holds across different ESR exon positions, exon lengths, and 5' splice site strengths. We suggest that this lack of association is mainly due to the great importance of context for ESR functionality: many ESR-like motifs in primates may have little or no effect on splicing, and thus interspecific changes at short-time scales may primarily occur in these effectively neutral ESRs. These results underscore the difficulties of using current computational ESR prediction algorithms to identify truly functionally important motifs, and provide a cautionary tale for studies of the effect of SNPs on splicing in human disease.

  17. Evolution of alternative splicing regulation: changes in predicted exonic splicing regulators are not associated with changes in alternative splicing levels in primates.

    Science.gov (United States)

    Irimia, Manuel; Rukov, Jakob Lewin; Roy, Scott William

    2009-01-01

    Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans) factors that bind to different sequence (cis) elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex 'splicing code'. Many cis-elements have been identified, and their effects on exon inclusion levels demonstrated in reporter systems. However, the impact of interspecific differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level. Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs) on exon inclusion levels in human and chimpanzee. For this purpose, we compiled and studied comprehensive datasets of predicted ESRs, identified by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs and changes in alternative splicing levels. This observation holds across different ESR exon positions, exon lengths, and 5' splice site strengths. We suggest that this lack of association is mainly due to the great importance of context for ESR functionality: many ESR-like motifs in primates may have little or no effect on splicing, and thus interspecific changes at short-time scales may primarily occur in these effectively neutral ESRs. These results underscore the difficulties of using current computational ESR prediction algorithms to identify truly functionally important motifs, and provide a cautionary tale for studies of the effect of SNPs on splicing in human disease. PMID:19495418

  18. Unproductive alternative splicing and nonsense mRNAs: A widespread phenomenon among plant circadian clock genes

    Directory of Open Access Journals (Sweden)

    Filichkin Sergei A

    2012-07-01

    Full Text Available Abstract Background Recent mapping of eukaryotic transcriptomes and spliceomes using massively parallel RNA sequencing (RNA-seq has revealed that the extent of alternative splicing has been considerably underestimated. Evidence also suggests that many pre-mRNAs undergo unproductive alternative splicing resulting in incorporation of in-frame premature termination codons (PTCs. The destinies and potential functions of the PTC-harboring mRNAs remain poorly understood. Unproductive alternative splicing in circadian clock genes presents a special case study because the daily oscillations of protein expression levels require rapid and steep adjustments in mRNA levels. Results We conducted a systematic survey of alternative splicing of plant circadian clock genes using RNA-seq and found that many Arabidopsis thaliana circadian clock-associated genes are alternatively spliced. Results were confirmed using reverse transcription polymerase chain reaction (RT-PCR, quantitative RT-PCR (qRT-PCR, and/or Sanger sequencing. Intron retention events were frequently observed in mRNAs of the CCA1/LHY-like subfamily of MYB transcription factors. In contrast, the REVEILLE2 (RVE2 transcript was alternatively spliced via inclusion of a "poison cassette exon" (PCE. The PCE type events introducing in-frame PTCs are conserved in some mammalian and plant serine/arginine-rich splicing factors. For some circadian genes such as CCA1 the ratio of the productive isoform (i.e., a representative splice variant encoding the full-length protein to its PTC counterpart shifted sharply under specific environmental stress conditions. Conclusions Our results demonstrate that unproductive alternative splicing is a widespread phenomenon among plant circadian clock genes that frequently generates mRNA isoforms harboring in-frame PTCs. Because LHY and CCA1 are core components of the plant central circadian oscillator, the conservation of alternatively spliced variants between CCA1 and LHY

  19. Enhanced expression of Rubisco activase splicing variants differentially affects Rubisco activity during low temperature treatment in Lolium perenne.

    Science.gov (United States)

    Jurczyk, Barbara; Pociecha, Ewa; Grzesiak, Maciej; Kalita, Katarzyna; Rapacz, Marcin

    2016-07-01

    Alternative splicing of the Rubisco activase gene was shown to be a point for optimization of photosynthetic carbon assimilation. It can be expected to be a stress-regulated event that depends on plant freezing tolerance. The aim of the study was to examine the relationships among Rubisco activity, the expression of two Rubisco activase splicing variants and photoacclimation to low temperature. The experiment was performed on two Lolium perenne genotypes with contrasting levels of freezing tolerance. The study investigated the effect of pre-hardening (15°C) and cold acclimation (4°C) on net photosynthesis, photosystem II photochemical activity, Rubisco activity and the expression of two splicing variants of the Rubisco activase gene. The results showed an induction of Rubisco activity at both 15°C and 4°C only in a highly freezing-tolerant genotype. The enhanced Rubisco activity after pre-hardening corresponded to increased expression of the splicing variant representing the large isoform, while the increase in Rubisco activity during cold acclimation was due to the activation of both transcript variants. These boosts in Rubisco activity also corresponded to an activation of non-photochemical mechanism of photoacclimation induced at low temperature exclusively in the highly freezing-tolerant genotype. In conclusion, enhanced expression of Rubisco activase splicing variants caused an increase in Rubisco activity during pre-hardening and cold acclimation in the more freezing-tolerant Lolium perenne genotype. The induction of the transcript variant representing the large isoform may be an important element of increasing the carbon assimilation rate supporting the photochemical mechanism of photosynthetic acclimation to cold. PMID:27152456

  20. Isolation and characterization of novel RECK tumor suppressor gene splice variants

    Science.gov (United States)

    Trombetta-Lima, Marina; Winnischofer, Sheila Maria Brochado; Demasi, Marcos Angelo Almeida; Filho, Renato Astorino; Carreira, Ana Claudia Oliveira; Wei, Beiyang; de Assis Ribas, Thais; Konig, Michelle Silberspitz; Bowman-Colin, Christian; Oba-Shinjo, Sueli Mieko; Marie, Suely Kazue Nagahashi; Stetler-Stevenson, William; Sogayar, Mari Cleide

    2015-01-01

    Glioblastoma multiforme is the most common and lethal of the central nervous system glial-derived tumors. RECK suppresses tumor invasion by negatively regulating at least three members of the matrix metalloproteinase family: MMP-9, MMP-2, and MT1-MMP. A positive correlation has been observed between the abundance of RECK expression in tumor samples and a more favorable prognosis for patients with several types of tumors. In the present study, novel alternatively spliced variants of the RECK gene: RECK-B and RECK-I were isolated by RT-PCR and sequenced. The expression levels and profiles of these alternative RECK transcripts, as well as canonical RECK were determined in tissue samples of malignant astrocytomas of different grades and in a normal tissue RNA panel by qRT-PCR. Our results show that higher canonical RECK expression, accompanied by a higher canonical to alternative transcript expression ratio, positively correlates with higher overall survival rate after chemotherapeutic treatment of GBM patients. U87MG and T98G cells over-expressing the RECK-B alternative variant display higher anchorage-independent clonal growth and do not display modulation of, respectively, MMP-2 and MMP-9 expression. Our findings suggest that RECK transcript variants might have opposite roles in GBM biology and the ratio of their expression levels may be informative for the prognostic outcome of GBM patients. PMID:26431549

  1. Alternative splicing tends to avoid partial removals of protein-protein interaction sites

    OpenAIRE

    Colantoni, Alessio; Bianchi, Valerio; Gherardini, Pier Federico; Scalia Tomba, Gianpaolo; Ausiello, Gabriele; Helmer-Citterich, Manuela; Ferrè, Fabrizio

    2013-01-01

    Background Anecdotal evidence of the involvement of alternative splicing (AS) in the regulation of protein-protein interactions has been reported by several studies. AS events have been shown to significantly occur in regions where a protein interaction domain or a short linear motif is present. Several AS variants show partial or complete loss of interface residues, suggesting that AS can play a major role in the interaction regulation by selectively targeting the protein binding sites. In t...

  2. Identification and characterization of naturally occurring splice variants of SAMHD1

    Directory of Open Access Journals (Sweden)

    Welbourn Sarah

    2012-10-01

    Full Text Available Abstract Background Sterile Alpha Motif and HD domain-containing protein 1 (SAMHD1 is a recently identified host factor that restricts HIV-1 replication in dendritic and myeloid cells. SAMHD1 is a dNTPase that presumably reduces the cellular dNTP levels to levels too low for retroviral reverse transcription to occur. However, HIV-2 and SIV encoded Vpx counteracts the antiviral effects of SAMHD1 by targeting the protein for proteasomal degradation. SAMHD1 is encoded by a multiply spliced mRNA and consists of 16 coding exons. Results Here, we identified two naturally occurring splice variants lacking exons 8–9 and 14, respectively. Like wildtype SAMHD1, both splice variants localize primarily to the nucleus, interact with Vpx, and retain some sensitivity to Vpx-dependent degradation. However, the splice variants differ from full-length SAMHD1 in their metabolic stability and catalytic activity. While full-length SAMHD1 is metabolically stable in uninfected cells, both splice variants were inherently metabolically unstable and were rapidly degraded even in the absence of Vpx. Vpx strongly increased the rate of degradation of full-length SAMHD1 and further accelerated the degradation of the splice variants. However, the effect of Vpx on the splice variants was more modest due to the inherent instability of these proteins. Analysis of dNTPase activity indicates that neither splice variant is catalytically active. Conclusions The identification of SAMHD1 splice variants exposes a potential regulatory mechanism that could enable the cell to control its dNTPase activity on a post-transcriptional level.

  3. Alternative splicing of the human IgA Fc receptor CD89 in neutrophils and eosinophils.

    Science.gov (United States)

    Pleass, R J; Andrews, P D; Kerr, M A; Woof, J M

    1996-09-15

    Receptors for the Fc portion of IgA (Fc alpha R) trigger important immunological elimination processes against IgA-coated targets. Investigation of human Fc alpha R (CD89) transcripts in neutrophils, eosinophils and a monocyte-like cell line, THP-1, with the use of reverse transcriptase PCR, Northern blotting and RNase protection analysis, has provided evidence in these cell types for at least two distinct transcripts generated by alternative splicing. The cDNAs derived from the two major transcripts of both neutrophils and eosinophils have been cloned and sequenced. For both cell types, the larger clone represents the previously described full-length receptor, whereas the second, shorter, splice variant lacks the entire second, membrane-proximal, Ig-like domain. Stable CHO-K1 transfectants have been obtained for both full-length and truncated variant neutrophil receptors. Whereas the full-length receptor is recognized by a panel of five anti-Fc alpha R monoclonal antibodies (mAbs), the shorter variant is bound weakly by only two of the antibodies, suggesting that the epitopes recognized by the majority of the mAbs lie at least in part in the second Ig-like domain of Fc alpha R. Both full-length and splice variant forms of the receptor bind secretory IgA, but the weak binding to serum IgA seen with the full-length receptor is not evident with the shorter variant. Alternative splicing might therefore serve as a means of diversifying Fc alpha R structure and function. PMID:8836118

  4. Identification of new alternative splice events in the TCIRG1 gene in different human tissues

    International Nuclear Information System (INIS)

    Two transcript variants (TV) of the T cell immune regulator gene 1 (TCIRG1) have already been characterized. TV1 encodes a subunit of the osteoclast vacuolar proton pump and TV2 encodes a T cell inhibitory receptor. Based on the search in dbEST, we validated by RT-PCR six new alternative splice events in TCIRG1 in most of the 28 human tissues studied. In addition, we observed that transcripts using the TV1 transcription start site and two splice forms previously described in a patient with infantile malignant osteopetrosis are also expressed in various tissues of healthy individuals. Studies of these nine splice forms in cytoplasmic RNA of peripheral blood mononuclear cells showed that at least six of them could be efficiently exported from the nucleus. Since various products with nearly ubiquitous tissue distribution are generated from TCIRG1, this gene may be involved in other processes besides immune response and bone resorption

  5. Expression of thyroid stimulating hormone β splice variant in thyroid of mouse with autoimmune thyroiditis

    Institute of Scientific and Technical Information of China (English)

    袁继红

    2014-01-01

    Objective To investigate the expression of marrowderived thyroid stimulating hormoneβ(TSHβ)splice variant in thyroid of mouse with autoimmune thyroiditis induced by thyroglobulin(Tg)immunization,and to analyze whether TSHβsplice variant participated in the pathological process of autoimmune thyroiditis.Methods Using random number table,forty-eight mice(24 females and 24 males)of 7 to 8 weeks old with body mass 20 to25 g were randomly divided into 4 groups(12 females

  6. Intragenic alternative splicing coordination is essential for Caenorhabditis elegans slo-1 gene function

    OpenAIRE

    Glauser, Dominique A; Johnson, Brandon E.; Aldrich, Richard W; Goodman, Miriam B.

    2012-01-01

    Alternative splicing is critical for diversifying eukaryotic proteomes, but the rules governing and coordinating splicing events among multiple alternate splice sites within individual genes are not well understood. We developed a quantitative PCR-based strategy to quantify the expression of the 12 transcripts encoded by the Caenorhabditis elegans slo-1 gene, containing three alternate splice sites. Using conditional probability-based models, we show that splicing events are coordinated acros...

  7. Epstein-Barr Virus SM Protein Functions as an Alternative Splicing Factor ▿

    OpenAIRE

    Verma, Dinesh; Swaminathan, Sankar

    2008-01-01

    Alternative splicing of RNA increases the coding potential of the genome and allows for additional regulatory control over gene expression. The full extent of alternative splicing remains to be defined but is likely to significantly expand the size of the human transcriptome. There are several examples of mammalian viruses regulating viral splicing or inhibiting cellular splicing in order to facilitate viral replication. Here, we describe a viral protein that induces alternative splicing of a...

  8. The conserved splicing factor SUA controls alternative splicing of the developmental regulator ABI3 in Arabidopsis.

    NARCIS (Netherlands)

    Sugliani, M.; Brambilla, V.; Clerkx, E.J.M.; Koornneef, M.; Soppe, W.J.J.

    2010-01-01

    ABSCISIC ACID INSENSITIVE3 (ABI3) is a major regulator of seed maturation in Arabidopsis thaliana. We detected two ABI3 transcripts, ABI3- and ABI3-ß, which encode full-length and truncated proteins, respectively. Alternative splicing of ABI3 is developmentally regulated, and the ABI3-ß transcript a

  9. Evolution of alternative splicing regulation: changes in predicted exonic splicing regulators are not associated with changes in alternative splicing levels in primates

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob Lewin; Roy, Scott William

    2009-01-01

    interspecific differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level. Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs) on exon inclusion levels in human and chimpanzee. For this purpose, we...... compiled and studied comprehensive datasets of predicted ESRs, identified by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs and...... or no effect on splicing, and thus interspecific changes at short-time scales may primarily occur in these effectively neutral ESRs. These results underscore the difficulties of using current computational ESR prediction algorithms to identify truly functionally important motifs, and provide a...

  10. Widespread evolutionary conservation of alternatively spliced exons in caenorhabditis

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob L; Penny, David;

    2007-01-01

    Alternative splicing (AS) contributes to increased transcriptome and proteome diversity in various eukaryotic lineages. Previous studies showed low levels of conservation of alternatively spliced (cassette) exons within mammals and within dipterans. We report a strikingly different pattern in...... patterns of splicing. The functionality of the vast majority of cassette exons is underscored by various other features. We suggest that differences in conservation between lineages reflect differences in levels of functionality and further suggest that these differences are due to differences in intron...... length and the strength of consensus boundaries across lineages. Finally, we demonstrate an inverse relationship between AS and gene duplication, suggesting that the latter may be primarily responsible for the emergence of new functional transcripts in nematodes. Udgivelsesdato: 2008-Feb...

  11. The Caenorhabditis elegans Gene mfap-1 Encodes a Nuclear Protein That Affects Alternative Splicing

    OpenAIRE

    Long Ma; Xiaoyang Gao; Jintao Luo; Liange Huang; Yanling Teng; H Robert Horvitz

    2012-01-01

    RNA splicing is a major regulatory mechanism for controlling eukaryotic gene expression. By generating various splice isoforms from a single pre-mRNA, alternative splicing plays a key role in promoting the evolving complexity of metazoans. Numerous splicing factors have been identified. However, the in vivo functions of many splicing factors remain to be understood. In vivo studies are essential for understanding the molecular mechanisms of RNA splicing and the biology of numerous RNA splicin...

  12. Genetic variations regulate alternative splicing in the 5' untranslated regions of the mouse glioma-associated oncogene 1, Gli1

    Directory of Open Access Journals (Sweden)

    Zaphiropoulos Peter G

    2010-04-01

    Full Text Available Abstract Background Alternative splicing is one of the key mechanisms that generate biological diversity. Even though alternative splicing also occurs in the 5' and 3' untranslated regions (UTRs of mRNAs, the understanding of the significance and the regulation of these variations is rather limited. Results We investigated 5' UTR mRNA variants of the mouse Gli1 oncogene, which is the terminal transcriptional effector of the Hedgehog (HH signaling pathway. In addition to identifying novel transcription start sites, we demonstrated that the expression ratio of the Gli1 splice variants in the 5' UTR is regulated by the genotype of the mouse strain analyzed. The GT allele, which contains the consensus intronic dinucleotides at the 5' splice site of intron 1B, favors exon 1B inclusion, while the GC allele, having a weaker 5' splice site sequence, promotes exon 1B skipping. Moreover, the alternative Gli1 5' UTRs had an impact on translational capacity, with the shorter and the exon 1B-skipped mRNA variants being most effective. Conclusions Our findings implicate novel, genome-based mechanisms as regulators of the terminal events in the mouse HH signaling cascade.

  13. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay

    OpenAIRE

    Ni, Julie Z.; Grate, Leslie; Donohue, John Paul; Preston, Christine; Nobida, Naomi; O’Brien, Georgeann; Shiue, Lily; Clark, Tyson A.; Blume, John E; Ares, Manuel

    2007-01-01

    Many alternative splicing events create RNAs with premature stop codons, suggesting that alternative splicing coupled with nonsense-mediated decay (AS-NMD) may regulate gene expression post-transcriptionally. We tested this idea in mice by blocking NMD and measuring changes in isoform representation using splicing-sensitive microarrays. We found a striking class of highly conserved stop codon-containing exons whose inclusion renders the transcript sensitive to NMD. A genomic search for additi...

  14. Intrasplicing coordinates alternative first exons with alternative splicing in the protein 4.1R gene

    Energy Technology Data Exchange (ETDEWEB)

    Conboy, John G.; Parra, Marilyn K.; Tan, Jeff S.; Mohandas, Narla; Conboy, John G.

    2008-11-07

    In the protein 4.1R gene, alternative first exons splice differentially to alternative 3' splice sites far downstream in exon 2'/2 (E2'/2). We describe a novel intrasplicing mechanism by which exon 1A (E1A) splices exclusively to the distal E2'/2 acceptor via two nested splicing reactions regulated by novel properties of exon 1B (E1B). E1B behaves as an exon in the first step, using its consensus 5' donor to splice to the proximal E2'/2 acceptor. A long region of downstream intron is excised, juxtaposing E1B with E2'/2 to generate a new composite acceptor containing the E1B branchpoint/pyrimidine tract and E2 distal 3' AG-dinucleotide. Next, the upstream E1A splices over E1B to this distal acceptor, excising the remaining intron plus E1B and E2' to form mature E1A/E2 product. We mapped branch points for both intrasplicing reactions and demonstrated that mutation of the E1B 5' splice site or branchpoint abrogates intrasplicing. In the 4.1R gene, intrasplicing ultimately determines N-terminal protein structure and function. More generally, intrasplicing represents a new mechanism whereby alternative promoters can be coordinated with downstream alternative splicing.

  15. Cloning, expression and alternative splicing of the novel isoform of hTCP11 gene

    DEFF Research Database (Denmark)

    Ma, Yong-xin; Zhang, Si-zhong; Wu, Qia-qing;

    2003-01-01

    To identify a novel isoform of hTCP11 gene and investigate its expression and alternative splicing.......To identify a novel isoform of hTCP11 gene and investigate its expression and alternative splicing....

  16. The Cancer Exome Generated by Alternative mRNA Splicing Dilutes Predicted HLA Class I Epitope Density

    DEFF Research Database (Denmark)

    Stranzl, Thomas; Larsen, Mette Voldby; Lund, Ole;

    2012-01-01

    is frequently observed in various types of cancer. Down-regulation of genes related to HLA class I antigen processing has been observed in several cancer types, leading to fewer HLA class I antigens on the cell surface. Here, we use a peptidome wide analysis of predicted alternative splice forms, based...... on a publicly available database, to show that peptides over-represented in cancer splice variants comprise significantly fewer predicted HLA class I epitopes compared to peptides from normal transcripts. Peptides over-represented in cancer transcripts are in the case of the three most common HLA class I......Several studies have shown that cancers actively regulate alternative splicing. Altered splicing mechanisms in cancer lead to cancer-specific transcripts different from the pool of transcripts occurring only in healthy tissue. At the same time, altered presentation of HLA class I epitopes...

  17. Alternative splicing regulates the expression of G9A and SUV39H2 methyltransferases, and dramatically changes SUV39H2 functions

    OpenAIRE

    Mauger, Oriane; Klinck, Roscoe; Chabot, Benoit; Muchardt, Christian; Allemand, Eric; Batsche, Eric

    2015-01-01

    International audience Alternative splicing is the main source of proteome diversity. Here, we have investigated how alternative splicing affects the function of two human histone methyltransferases (HMTase): G9A and SUV39H2. We show that exon 10 in G9A and exon 3 in SUV39H2 are alternatively included in a variety of tissues and cell lines, as well as in a different species. The production of these variants is likely tightly regulated because both constitutive and alternative splicing fact...

  18. Estimation of alternative splicing variability in human populations

    OpenAIRE

    Gonz??lez-Porta, Mar; Calvo, Miquel; Sammeth, Michael; Guig?? Serra, Roderic

    2012-01-01

    DNA arrays have been widely used to perform transcriptome-wide analysis of gene expression, and many methods have been developed to measure gene expression variability and to compare gene expression between conditions. Because RNA-seq is also becoming increasingly popular for transcriptome characterization, the possibility exists for further quantification of individual alternative transcript isoforms, and therefore for estimating the relative ratios of alternative splice forms within a given...

  19. SASD: the Synthetic Alternative Splicing Database for identifying novel isoform from proteomics

    OpenAIRE

    Zhang, Fan; Drabier, Renee

    2013-01-01

    Background Alternative splicing is an important and widespread mechanism for generating protein diversity and regulating protein expression. High-throughput identification and analysis of alternative splicing in the protein level has more advantages than in the mRNA level. The combination of alternative splicing database and tandem mass spectrometry provides a powerful technique for identification, analysis and characterization of potential novel alternative splicing protein isoforms from pro...

  20. Increased dosage of Dyrk1A alters alternative splicing factor (ASF)-regulated alternative splicing of tau in Down syndrome.

    Science.gov (United States)

    Shi, Jianhua; Zhang, Tianyi; Zhou, Chunlei; Chohan, Muhammad Omar; Gu, Xiaosong; Wegiel, Jerzy; Zhou, Jianhua; Hwang, Yu-Wen; Iqbal, Khalid; Grundke-Iqbal, Inge; Gong, Cheng-Xin; Liu, Fei

    2008-10-17

    Two groups of tau, 3R- and 4R-tau, are generated by alternative splicing of tau exon 10. Normal adult human brain expresses equal levels of them. Disruption of the physiological balance is a common feature of several tauopathies. Very early in their life, individuals with Down syndrome (DS) develop Alzheimer-type tau pathology, the molecular basis for which is not fully understood. Here, we demonstrate that Dyrk1A, a kinase encoded by a gene in the DS critical region, phosphorylates alternative splicing factor (ASF) at Ser-227, Ser-234, and Ser-238, driving it into nuclear speckles and preventing it from facilitating tau exon 10 inclusion. The increased dosage of Dyrk1A in DS brain due to trisomy of chromosome 21 correlates to an increase in 3R-tau level, which on abnormal hyperphosphorylation and aggregation of tau results in neurofibrillary degeneration. Imbalance of 3R- and 4R-tau in DS brain by Dyrk1A-induced dysregulation of alternative splicing factor-mediated alternative splicing of tau exon 10 represents a novel mechanism of neurofibrillary degeneration and may help explain early onset tauopathy in individuals with DS. PMID:18658135

  1. Identification of a splice-site mutation in the human growth hormone-variant gene.

    OpenAIRE

    MacLeod, J.N.; Liebhaber, S A; MacGillivray, M H; Cooke, N E

    1991-01-01

    The human growth-hormone-variant (hGH-V) gene normally expresses two alternatively spliced forms of mRNA--hGH-V and hGH-V2--in the placenta. hGH-V2 mRNA differs from hGH-V rDNA by the retention of intron 4 and represents approximately 15% of transcripts at term. In a survey of hGH-V gene expression in 20 placentas of gestational age 8-40 wk, we detected a single placenta that contained, in addition to the two normal hGH-V mRNA species, a set of two slightly larger hGH-V mRNAs. Sequence analys...

  2. Functional characterization of BRCA1 gene variants by mini-gene splicing assay

    DEFF Research Database (Denmark)

    Steffensen, Ane Y; Dandanell, Mette; Jønson, Lars;

    2014-01-01

    are pathogenic or benign. Here we validate a mini-gene splicing assay by comparing the results of 24 variants with previously published data from RT-PCR analysis on RNA from blood samples/lymphoblastoid cell lines. The analysis showed an overall concordance of 100%. In addition, we investigated 13...... BRCA1 variants of unknown clinical significance or putative variants affecting splicing by in silico analysis and mini-gene splicing assay. Both the in silico analysis and mini-gene splicing assay classified six BRCA1 variants as pathogenic (c.80+1G>A, c.132C>T (p.=), c.213-1G>A, c.670+1delG, c.4185+1G......Mutational screening of the breast cancer susceptibility gene BRCA1 leads to the identification of numerous pathogenic variants such as frameshift and nonsense variants, as well as large genomic rearrangements. The screening moreover identifies a large number of variants, for example, missense...

  3. Osteopontin and splice variant expression level in human malignant glioma: Radiobiologic effects and prognosis after radiotherapy

    International Nuclear Information System (INIS)

    Background and purpose: We investigated the role of the hypoxia-associated secreted glycoprotein osteopontin (OPN) in the response of malignant glioma to radiotherapy by characterizing OPN and its splice variants in vitro and in patient material. Material and methods: The effect of siRNA knockdown of OPN splice variants on cellular and radiobiologic behavior was analyzed in U251MG cells using OpnS siRNA (inhibition of all OPN splice variants) and OpnAC siRNA (knockdown only of OPNa and OPNc). OPN and splice variant mRNA levels were quantified in archival material of 41 glioblastoma tumor samples. Plasma OPN was prospectively measured in 33 malignant glioma patients. Results: Inhibition of OPNa and OPNc (OpnAC) reduced clonogenic survival in U251MG cells but did not affect proliferation, migration or apoptosis. Knockdown of all OPN splice variants (OpnS) resulted in an even stronger inhibition of clonogenic survival, while cell proliferation and migration were reduced and rate of apoptosis was increased. Additional irradiation had additive effects with both siRNAs. Plasma OPN increased continuously in malignant glioma patients and was associated with poor survival. Conclusions: OPNb is partially able to compensate the effects of OPNa and OPNc knockdown in U251MG cells. High OPN plasma levels at the end of radiotherapy are associated with poor survival

  4. Leveraging transcript quantification for fast computation of alternative splicing profiles.

    Science.gov (United States)

    Alamancos, Gael P; Pagès, Amadís; Trincado, Juan L; Bellora, Nicolás; Eyras, Eduardo

    2015-09-01

    Alternative splicing plays an essential role in many cellular processes and bears major relevance in the understanding of multiple diseases, including cancer. High-throughput RNA sequencing allows genome-wide analyses of splicing across multiple conditions. However, the increasing number of available data sets represents a major challenge in terms of computation time and storage requirements. We describe SUPPA, a computational tool to calculate relative inclusion values of alternative splicing events, exploiting fast transcript quantification. SUPPA accuracy is comparable and sometimes superior to standard methods using simulated as well as real RNA-sequencing data compared with experimentally validated events. We assess the variability in terms of the choice of annotation and provide evidence that using complete transcripts rather than more transcripts per gene provides better estimates. Moreover, SUPPA coupled with de novo transcript reconstruction methods does not achieve accuracies as high as using quantification of known transcripts, but remains comparable to existing methods. Finally, we show that SUPPA is more than 1000 times faster than standard methods. Coupled with fast transcript quantification, SUPPA provides inclusion values at a much higher speed than existing methods without compromising accuracy, thereby facilitating the systematic splicing analysis of large data sets with limited computational resources. The software is implemented in Python 2.7 and is available under the MIT license at https://bitbucket.org/regulatorygenomicsupf/suppa. PMID:26179515

  5. Splicing Express: a software suite for alternative splicing analysis using next-generation sequencing data

    OpenAIRE

    Kroll, Jose E.; Kim, JiHoon; Ohno-Machado, Lucila; de Souza, Sandro J.

    2015-01-01

    Motivation. Alternative splicing events (ASEs) are prevalent in the transcriptome of eukaryotic species and are known to influence many biological phenomena. The identification and quantification of these events are crucial for a better understanding of biological processes. Next-generation DNA sequencing technologies have allowed deep characterization of transcriptomes and made it possible to address these issues. ASEs analysis, however, represents a challenging task especially when many dif...

  6. Aging and Loss of Circulating 17β-Estradiol Alters the Alternative Splicing of ERβ in the Female Rat Brain.

    Science.gov (United States)

    Shults, Cody L; Pinceti, Elena; Rao, Yathindar S; Pak, Toni R

    2015-11-01

    Loss of circulating 17β-estradiol (E2) that occurs during menopause can have detrimental effects on cognitive function. The efficacy of hormone replacement therapy declines as women become farther removed from the menopausal transition, yet the molecular mechanisms underlying this age-related switch in E2 efficacy are unknown. We hypothesized that aging and varying lengths of E2 deprivation alters the ratio of alternatively spliced estrogen receptor (ER)β isoforms in the brain of female rats. Further, we tested whether changes in global transcriptional activity and splicing kinetics regulate the alternative splicing of ERβ. Our results revealed brain region-specific changes in ERβ alternative splicing in both aging and E2-deprivation paradigms and showed that ERβ could mediate E2-induced alternative splicing. Global transcriptional activity, as measured by phosphorylated RNA polymerase II, was also regulated by age and E2 in specific brain regions. Finally, we show that inhibition of topoisomerase I resulted in increased ERβ2 splice variant expression. PMID:26295370

  7. Survivin 2α: a novel Survivin splice variant expressed in human malignancies

    Directory of Open Access Journals (Sweden)

    Honsey Laura E

    2005-03-01

    Full Text Available Abstract Background Survivin and its alternative splice forms are involved in critical cellular processes, including cell division and programmed cell death. Survivin is expressed in the majority of human cancers, but minimally in differentiated normal tissues. Expression levels correlate with tumor aggressiveness and resistance to therapy. Results In the present study, we identify and characterize a novel survivin isoform that we designate survivin 2α. Structurally, the transcript consists of 2 exons: exon 1 and exon 2, as well as a 3' 197 bp region of intron 2. Acquisition of a new in-frame stop codon within intron 2 results in an open reading frame of 225 nucleotides, predicting a truncated 74 amino acid protein. Survivin 2α is expressed at high levels in several malignant cell lines and primary tumors. Functional assays show that survivin 2α attenuates the anti-apoptotic activity of survivin. Subcellular localization and immunoprecipitation of survivin 2α suggests a physical interaction with survivin. Conclusion We characterized a novel survivin splice variant that we designated survivin 2α. We hypothesize that survivin 2α can alter the anti-apoptotic functions of survivin in malignant cells. Thus survivin 2α may be useful as a therapeutic tool in sensitizing chemoresistant tumor cells to chemotherapy.

  8. Alternative splicing of RyR1 alters the efficacy of skeletal EC coupling

    Science.gov (United States)

    Kimura, Takashi; Lueck, John D.; Harvey, Peta J.; Pace, Suzy M.; Ikemoto, Noriaki; Casarotto, Marco G.; Dirksen, Robert T.; Dulhunty, Angela F.

    2009-01-01

    Summary Alternative splicing of ASI residues (Ala3481-Gln3485) in the skeletal muscle ryanodine receptor (RyR1) is developmentally regulated: the residues are present in adult ASI(+)RyR1, but absent in the juvenile ASI(-)RyR1 which is over-expressed in adult myotonic dystrophy type 1 (DM1). Although this splicing switch may influence RyR1 function in developing muscle and DM1, little is known about the properties of the splice variants. We examined excitation-contraction (EC) coupling and the structure and interactions of the ASI domain (Thr3471-Gly3500) in the splice variants. Depolarisation-dependent Ca2+ release was enhanced by >50% in myotubes expressing ASI(-)RyR1 compared with ASI(+)RyR1, although DHPR L-type currents and SR Ca2+ content were unaltered, while ASI(-)RyR1 channel function was actually depressed. The effect on EC coupling did not depend on changes in ASI domain secondary structure. Probing RyR1 function with peptides possessing the ASI domain sequence indicated that the domain contributes to an inhibitory module in RyR1. The action of the peptide depended on a sequence of basic residues and their alignment in an α-helix adjacent to the ASI splice site. This is the first evidence that the ASI residues contribute to an inhibitory module in RyR1 that influences EC coupling. Implications for development and DM1 are discussed. PMID:19131108

  9. Alternatively Spliced Methionine Synthase in SH-SY5Y Neuroblastoma Cells: Cobalamin and GSH Dependence and Inhibitory Effects of Neurotoxic Metals and Thimerosal

    OpenAIRE

    Mostafa Waly; Verna-Ann Power-Charnitsky; Nathaniel Hodgson; Alok Sharma; Tapan Audhya; Yiting Zhang; Richard Deth

    2016-01-01

    The folate and cobalamin (Cbl-) dependent enzyme methionine synthase (MS) is highly sensitive to oxidation and its activity affects all methylation reactions. Recent studies have revealed alternative splicing of MS mRNA in human brain and patient-derived fibroblasts. Here we show that MS mRNA in SH-SY5Y human neuroblastoma cells is alternatively spliced, resulting in three primary protein species, thus providing a useful model to examine cofactor dependence of these variant enzymes. MS activi...

  10. Alternative Splicing of G9a Regulates Neuronal Differentiation

    OpenAIRE

    Ana Fiszbein; Luciana E. Giono; Ana Quaglino; Bruno G. Berardino; Lorena Sigaut; Catalina von Bilderling; Ignacio E. Schor; Juliana H. Enriqué Steinberg; Mario Rossi; Lía I. Pietrasanta; Julio J. Caramelo; Anabella Srebrow; Alberto R. Kornblihtt

    2016-01-01

    Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10) through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as i...

  11. A General Definition and Nomenclature for Alternative Splicing Events

    OpenAIRE

    Guigó Serra, Roderic; Sammeth, Michael; Foissac, Sylvain

    2008-01-01

    Understanding the molecular mechanisms responsible for the regulation of the transcriptome present in eukaryotic cells is one of the most challenging tasks in the postgenomic era. In this regard, alternative splicing (AS) is a key phenomenon contributing to the production of different mature transcripts from the same primary RNA sequence. As a plethora of different transcript forms is available in databases, a first step to uncover the biology that drives AS is to identify the dif...

  12. Prognostic impact of mRNA levels of osteopontin splice variants in soft tissue sarcoma patients

    International Nuclear Information System (INIS)

    It is well known that osteopontin (OPN) plays an important role in tumor progression and that a high OPN expression level in several tumor entities correlates with poor prognosis in cancer patients. However, little is known about the prognostic relevance of the OPN mRNA splice variants. We analyzed the mRNA expression levels of different OPN splice variants in tumor tissue of 124 soft tissue sarcoma (STS) patients. Quantitative real-time PCR (qRT-PCR) was used to analyze the mRNA expression level of three OPN splice variants (OPN-a, -b and -c). The multivariate Cox's proportional hazard regression model revealed that high mRNA expression levels of OPN splice variants are significantly associated with poor prognosis in STS patients (n = 124). Women (n = 68) with high mRNA expression levels of OPN-a and OPN-b have an especially elevated risk of tumor-related death (OPN-a: RR = 3.0, P = 0.01, CI = 1.3-6.8; OPN-b: RR = 3.4, P = 0.01, CI = 1.4-8.2). In particular, we found that high mRNA expression levels of OPN-b and OPN-c correlated with a high risk of tumor-related death in STS patients that received radiotherapy (n = 52; OPN-b: RR = 10.3, P < 0.01, CI = 2.0-53.7; OPN-c: RR = 11.4, P < 0.01, CI = 2.2-59.3). Our study shows that elevated mRNA expression levels of OPN splice variants are negative prognostic and predictive markers for STS patients. Further studies are needed to clarify the impact of the OPN splice variants on prognosis

  13. Involvement of Alternative Splicing in Barley Seed Germination.

    Directory of Open Access Journals (Sweden)

    Qisen Zhang

    Full Text Available Seed germination activates many new biological processes including DNA, membrane and mitochondrial repairs and requires active protein synthesis and sufficient energy supply. Alternative splicing (AS regulates many cellular processes including cell differentiation and environmental adaptations. However, limited information is available on the regulation of seed germination at post-transcriptional levels. We have conducted RNA-sequencing experiments to dissect AS events in barley seed germination. We identified between 552 and 669 common AS transcripts in germinating barley embryos from four barley varieties (Hordeum vulgare L. Bass, Baudin, Harrington and Stirling. Alternative 3' splicing (34%-45%, intron retention (32%-34% and alternative 5' splicing (16%-21% were three major AS events in germinating embryos. The AS transcripts were predominantly mapped onto ribosome, RNA transport machineries, spliceosome, plant hormone signal transduction, glycolysis, sugar and carbon metabolism pathways. Transcripts of these genes were also very abundant in the early stage of seed germination. Correlation analysis of gene expression showed that AS hormone responsive transcripts could also be co-expressed with genes responsible for protein biosynthesis and sugar metabolisms. Our RNA-sequencing data revealed that AS could play important roles in barley seed germination.

  14. Alternative Splicing of G9a Regulates Neuronal Differentiation.

    Science.gov (United States)

    Fiszbein, Ana; Giono, Luciana E; Quaglino, Ana; Berardino, Bruno G; Sigaut, Lorena; von Bilderling, Catalina; Schor, Ignacio E; Steinberg, Juliana H Enriqué; Rossi, Mario; Pietrasanta, Lía I; Caramelo, Julio J; Srebrow, Anabella; Kornblihtt, Alberto R

    2016-03-29

    Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10) through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10(+) isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation. PMID:26997278

  15. Alternative Splicing of G9a Regulates Neuronal Differentiation

    Directory of Open Access Journals (Sweden)

    Ana Fiszbein

    2016-03-01

    Full Text Available Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10 through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10+ isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation.

  16. Regulation of alternative splicing of Bcl-x by IL-6, GM-CSF and TPA

    Institute of Scientific and Technical Information of China (English)

    Chang You LI; Jia You CHU; Jian Kun YU; Xiao Qin HUANG; Xiao Juan LIU; Li SHI; Yan Chun CHE; Jiu Yong XIE

    2004-01-01

    The splicing of many alternative exons in the precursor messenger RNA (pre-mRNA) is regulated by extracellular factors but the underlying molecular bases remain unclear. Here we report the differential regulation of Bcl-x pre-mRNA splicing by extracellular factors and their distinctrequirements for pre-mRNA elements. In K562 leukemia cells, treatment with interleukin-6 (IL-6) or granulocyte-macrophage colony stimulating factor (GM-CSF) reduced the proportion of the Bcl-xL variant mRNA while treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) had no effect. In U251 glioma cells, however, TPA efficientlyincreased the Bcl-xL level. These regulations were also seen for a transfected splicing reporter mini-gene. Further analyses of deletion mutants indicate that nucleotides 1-176 of the downstream intron are required for the IL-6 effect, whereas additional nucleotides 177-284 are essential for the GM-CSF effect. As for the TPA effect, only nucleotides 1-76 are required in the downstream intron. Thus, IL-6, GM-CSF and TPA differentially regulate Bcl-x splicing and require specific intronic pre-mRNA sequences for their respective effects.

  17. Functional characterisation of an intron retaining K+ transporter of barley reveals intron-mediated alternate splicing

    KAUST Repository

    Shahzad, K.

    2015-01-01

    Intron retention in transcripts and the presence of 5 and 3 splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K+ transporter, HvHKT2;1, with stably retained introns from barley (Hordeum vulgare) in yeast (Saccharomyces cerevisiae), and transcript profiling in yeast and transgenic tobacco (Nicotiana tabacum) is presented. Expression of intron-retaining HvHKT2;1 cDNA (HvHKT2;1-i) in trk1, trk2 yeast strain defective in K+ uptake restored growth in medium containing hygromycin in the presence of different concentrations of K+ and mediated hypersensitivity to Na+. HvHKT2;1-i produces multiple transcripts via alternate splicing of two regular introns and three exons in different compositions. HKT isoforms with retained introns and exon skipping variants were detected in relative expression analysis of (i) HvHKT2;1-i in barley under native conditions, (ii) in transgenic tobacco plants constitutively expressing HvHKT2;1-i, and (iii) in trk1, trk2 yeast expressing HvHKT2;1-i under control of an inducible promoter. Mixed proportions of three HKT transcripts: HvHKT2;1-e (first exon region), HvHKT2;1-i1 (first intron) and HvHKT2;1-i2 (second intron) were observed. The variation in transcript accumulation in response to changing K+ and Na+ concentrations was observed in both heterologous and plant systems. These findings suggest a link between intron-retaining transcripts and different splice variants to ion homeostasis, and their possible role in salt stress.

  18. Splice variant-specific stabilization of JNKs by IB1/JIP1.

    Science.gov (United States)

    Yang, Jiang-Yan; Moulin, Nathalie; van Bemmelen, Miguel X; Dubuis, Gilles; Tawadros, Thomas; Haefliger, Jacques-Antoine; Waeber, Gérard; Widmann, Christian

    2007-10-01

    Islet-Brain 1 (IB1) (also called JNK-interacting protein 1; JIP1) is a scaffold protein that tethers components of the JNK mitogen-activated protein kinase pathway inducing a modulation of the activity and the target specificity of the JNK kinases. Dysfunctions in IB1 have been associated with diseases such as early type II diabetes. To gain more insight in the functions of IB1, its ability to modulate the expression levels of the various JNK proteins was assessed. Each of the three JNK genes gives rise to several splice variants encoding short or long proteins. The expression levels of the short JNK proteins, but not of the long variants, were systematically higher in rat tissues and in transformed cell lines expressing high IB1 levels compared to tissues and cells with no or low IB1 expression. HEK293 cells bearing a tetracycline-inducible IB1 construct showed a specific increase of the short JNK endogenous splice variants in the presence of tetracycline. The augmented expression level of the short JNK splice variants induced by IB1 resulted from an increased stability towards degradation. Modulation of the stability of specific JNK splice variants represents therefore a newly identified mechanism used by IB1 to regulate the JNK MAPK pathway. PMID:17669625

  19. Effect of BRCA2 sequence variants predicted to disrupt exonic splice enhancers on BRCA2 transcripts

    Directory of Open Access Journals (Sweden)

    Brewster Brooke L

    2010-05-01

    Full Text Available Abstract Background Genetic screening of breast cancer patients and their families have identified a number of variants of unknown clinical significance in the breast cancer susceptibility genes, BRCA1 and BRCA2. Evaluation of such unclassified variants may be assisted by web-based bioinformatic prediction tools, although accurate prediction of aberrant splicing by unclassified variants affecting exonic splice enhancers (ESEs remains a challenge. Methods This study used a combination of RT-PCR analysis and splicing reporter minigene assays to assess five unclassified variants in the BRCA2 gene that we had previously predicted to disrupt an ESE using bioinformatic approaches. Results Analysis of BRCA2 c.8308 G > A (p.Ala2770Thr by mRNA analysis, and BRCA2 c.8962A > G (p.Ser2988Gly, BRCA2 c.8972G > A (p.Arg2991His, BRCA2 c.9172A > G (p.Ser3058Gly, and BRCA2 c.9213G > T (p.Glu3071Asp by a minigene assay, revealed no evidence for aberrant splicing. Conclusions These results illustrate the need for improved methods for predicting functional ESEs and the potential consequences of sequence variants contained therein.

  20. A general definition and nomenclature for alternative splicing events.

    Directory of Open Access Journals (Sweden)

    Michael Sammeth

    Full Text Available Understanding the molecular mechanisms responsible for the regulation of the transcriptome present in eukaryotic cells is one of the most challenging tasks in the postgenomic era. In this regard, alternative splicing (AS is a key phenomenon contributing to the production of different mature transcripts from the same primary RNA sequence. As a plethora of different transcript forms is available in databases, a first step to uncover the biology that drives AS is to identify the different types of reflected splicing variation. In this work, we present a general definition of the AS event along with a notation system that involves the relative positions of the splice sites. This nomenclature univocally and dynamically assigns a specific "AS code" to every possible pattern of splicing variation. On the basis of this definition and the corresponding codes, we have developed a computational tool (AStalavista that automatically characterizes the complete landscape of AS events in a given transcript annotation of a genome, thus providing a platform to investigate the transcriptome diversity across genes, chromosomes, and species. Our analysis reveals that a substantial part--in human more than a quarter-of the observed splicing variations are ignored in common classification pipelines. We have used AStalavista to investigate and to compare the AS landscape of different reference annotation sets in human and in other metazoan species and found that proportions of AS events change substantially depending on the annotation protocol, species-specific attributes, and coding constraints acting on the transcripts. The AStalavista system therefore provides a general framework to conduct specific studies investigating the occurrence, impact, and regulation of AS.

  1. CTCF:from insulators to alternative splicing regulation

    Institute of Scientific and Technical Information of China (English)

    Alberto R Kornblihtt

    2012-01-01

    The zinc-finger DNA-binding protein CTCF has been known for being a constituent of insulators.A recent paper in Nature reports an unforeseen intragenic role for CTCF that links DNA methylation with alternative splicing.By binding to its target DNA site placed within an alternative exon,CTCF creates a roadblock to transcriptional elongation that favors inclusion of the exon into mature mRNA.DNA methylation prevents CTCF binding,which releases pol Ⅱ transient blockage and promotes exon exclusion.

  2. Expression of Cyclooxygenase-2 mRNA and Identification of Its Splice Variant in Human Myometrium Obtained from Women in Labor

    Institute of Scientific and Technical Information of China (English)

    HUANG Yinping; WAN Jingyuan; YE Duyun; WU Ping; HUANG Yanjun; ZHANG Li; ZHOU Xiaoyan; HUANG Yunfeng; YUAN Ping; ZHANG Daijuan

    2005-01-01

    In order to investigate the expression of cyclooxygenase-2 (COX-2) in human lower segments of myometrium obtained from women in labor and those not in labor and identify the splicing variant of COX-2, reverse transcriptase-polymerase chain reaction (RT-PCR) was used to detect the expression of COX-2. The primers were designed and synthesized according to the sequence of rat COX-2 splice variant which was discovered firstly by us. Then the splicing variant of COX-2 in human myometrium from woman in labor was identified, cloned into vector and sequenced. The results showed that the expression of COX-2 mRNA was lower in human myometrium obtained from women who were not in labor than that in labor women and a new band of COX-2 was obtained in myometrium from labor woman. The fragment included an unspliced intron, which pitched between exons 7 and 8. It was suggested that COX-2 gene was not only expressed highly in human myometrium from woman in labor, but also produced splicing variant by alternative splicing.

  3. Genomic organization and the tissue distribution of alternatively spliced isoforms of the mouse Spatial gene

    Directory of Open Access Journals (Sweden)

    Mattei Marie-Geneviève

    2004-07-01

    Full Text Available Abstract Background The stromal component of the thymic microenvironment is critical for T lymphocyte generation. Thymocyte differentiation involves a cascade of coordinated stromal genes controlling thymocyte survival, lineage commitment and selection. The "Stromal Protein Associated with Thymii And Lymph-node" (Spatial gene encodes a putative transcription factor which may be involved in T-cell development. In the testis, the Spatial gene is also expressed by round spermatids during spermatogenesis. Results The Spatial gene maps to the B3-B4 region of murine chromosome 10 corresponding to the human syntenic region 10q22.1. The mouse Spatial genomic DNA is organised into 10 exons and is alternatively spliced to generate two short isoforms (Spatial-α and -γ and two other long isoforms (Spatial-δ and -ε comprising 5 additional exons on the 3' site. Here, we report the cloning of a new short isoform, Spatial-β, which differs from other isoforms by an additional alternative exon of 69 bases. This new exon encodes an interesting proline-rich signature that could confer to the 34 kDa Spatial-β protein a particular function. By quantitative TaqMan RT-PCR, we have shown that the short isoforms are highly expressed in the thymus while the long isoforms are highly expressed in the testis. We further examined the inter-species conservation of Spatial between several mammals and identified that the protein which is rich in proline and positive amino acids, is highly conserved. Conclusions The Spatial gene generates at least five alternative spliced variants: three short isoforms (Spatial-α, -β and -γ highly expressed in the thymus and two long isoforms (Spatial-δ and -ε highly expressed in the testis. These alternative spliced variants could have a tissue specific function.

  4. WT1 interacts with the splicing protein RBM4 and regulates its ability to modulate alternative splicing in vivo

    International Nuclear Information System (INIS)

    Wilm's tumor protein 1 (WT1), a protein implicated in various cancers and developmental disorders, consists of two major isoforms: WT1(-KTS), a transcription factor, and WT1(+KTS), a post-transcriptional regulator that binds to RNA and can interact with splicing components. Here we show that WT1 interacts with the novel splicing regulator RBM4. Each protein was found to colocalize in nuclear speckles and to cosediment with supraspliceosomes in glycerol gradients. RBM4 conferred dose-dependent and cell-specific regulation of alternative splicing of pre-mRNAs transcribed from several reporter genes. We found that overexpressed WT1(+KTS) abrogated this effect of RBM4 on splice-site selection, whereas WT1(-KTS) did not. We conclude that the (+KTS) form of WT1 is able to inhibit the effect of RBM4 on alternative splicing

  5. DETERMINATION OF LEVEL EXPRESSION OF mRNA SPLICING VARIANTS FOR DR3 IN BLOOD CELLS IN INFECTIOUS MONONUCLEOSIS

    Directory of Open Access Journals (Sweden)

    V. D. Cvetkova

    2016-01-01

    Full Text Available The DR3 «death receptor» plays an important role in the initiation of apoptosis, proliferation, or inflammation. This receptor is shown to be involved in various diseases, including infectious conditions. Different variants of mRNA DR3 are formed as a result of alternative splicing. These variant transcripts encode membrane and soluble forms of the receptor which have different functions. Features of their expression and contribution of individual DR3 variants to the immune pathogenesis of infectious mononucleosis (IM are poorely understood.The purpose of this work was to develop, validate and test the techniques of DR3 gene expression assays, as well as to evaluate the DR3 mRNA splice variants by means of real-time RT-PCR and RT-PCR in the IM patients.The original version of real-time RT-PCR allowed to determine relative amounts of DR3 mRNA, DR3 membrane variants (LARD1a + LARD8, and ratios of mRNAs encoding membrane and soluble forms of the receptor. The technique proved to be specific and sensitive (a semi-quantitative detection limit = 34-35 cycles when tested in healthy volunteers and patients with acute infectious mononucleosis (AIM. Lower expression levels were shown for two alternative membrane variants of DR3 mRNA (LARD1b and DR3beta thus regarding these isoforms as minor fractions. The relative levels of total DR3 mRNA expression were decreased in patients with AIM, as compared to healthy volunteers, whereas mRNA expression of membrane receptor variants did not differ between IM and controls.To determine a qualitative contribution of either LARD1a and LARD8 variants into the expression of membrane forms of DR3, a two-step «nested» version of RT-PCR has been developed. It was shown that, in majority of control and IM samples, both main LARD1a, and alternative LARD8 membrane forms are contributing to mRNA expression of membrane DR3 variants.The presented methods for evaluation of expression and occurrence of DR3 mRNA variants allow

  6. No statistical support for correlation between the positions of protein interaction sites and alternatively spliced regions

    Directory of Open Access Journals (Sweden)

    Gelfand Mikhail S

    2004-04-01

    Full Text Available Abstract Background Alternative splicing is an efficient mechanism for increasing the variety of functions fulfilled by proteins in a living cell. It has been previously demonstrated that alternatively spliced regions often comprise functionally important and conserved sequence motifs. The objective of this work was to test the hypothesis that alternative splicing is correlated with contact regions of protein-protein interactions. Results Protein sequence spans involved in contacts with an interaction partner were delineated from atomic structures of transient interaction complexes and juxtaposed with the location of alternatively spliced regions detected by comparative genome analysis and spliced alignment. The total of 42 alternatively spliced isoforms were identified in 21 amino acid chains involved in biomolecular interactions. Using this limited dataset and a variety of sophisticated counting procedures we were not able to establish a statistically significant correlation between the positions of protein interaction sites and alternatively spliced regions. Conclusions This finding contradicts a naïve hypothesis that alternatively spliced regions would correlate with points of contact. One possible explanation for that could be that all alternative splicing events change the spatial structure of the interacting domain to a sufficient degree to preclude interaction. This is indirectly supported by the observed lack of difference in the behaviour of relatively short regions affected by alternative splicing and cases when large portions of proteins are removed. More structural data on complexes of interacting proteins, including structures of alternative isoforms, are needed to test this conjecture.

  7. CD44 alternative splicing in gastric cancer cells is regulated by culture dimensionality and matrix stiffness.

    Science.gov (United States)

    Branco da Cunha, Cristiana; Klumpers, Darinka D; Koshy, Sandeep T; Weaver, James C; Chaudhuri, Ovijit; Seruca, Raquel; Carneiro, Fátima; Granja, Pedro L; Mooney, David J

    2016-08-01

    Two-dimensional (2D) cultures often fail to mimic key architectural and physical features of the tumor microenvironment. Advances in biomaterial engineering allow the design of three-dimensional (3D) cultures within hydrogels that mimic important tumor-like features, unraveling cancer cell behaviors that would not have been observed in traditional 2D plastic surfaces. This study determined how 3D cultures impact CD44 alternative splicing in gastric cancer (GC) cells. In 3D cultures, GC cells lost expression of the standard CD44 isoform (CD44s), while gaining CD44 variant 6 (CD44v6) expression. This splicing switch was reversible, accelerated by nutrient shortage and delayed at lower initial cell densities, suggesting an environmental stress-induced response. It was further shown to be dependent on the hydrogel matrix mechanical properties and accompanied by the upregulation of genes involved in epithelial-mesenchymal transition (EMT), metabolism and angiogenesis. The 3D cultures reported here revealed the same CD44 alternative splicing pattern previously observed in human premalignant and malignant gastric lesions. These findings indicate that fundamental features of 3D cultures - such as soluble factors diffusion and mechanical cues - influence CD44 expression in GC cells. Moreover, this study provides a new model system to study CD44 dysfunction, whose role in cancer has been in the spotlight for decades. PMID:27187279

  8. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level.

    OpenAIRE

    Federico Abascal; Iakes Ezkurdia; Juan Rodriguez-Rivas; Jose Manuel Rodriguez; Angela del Pozo; Jesús Vázquez; Alfonso Valencia; Tress, Michael L.

    2015-01-01

    Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a...

  9. Alternative splicing modulates Kv channel clustering through a molecular ball and chain mechanism

    Science.gov (United States)

    Zandany, Nitzan; Marciano, Shir; Magidovich, Elhanan; Frimerman, Teddy; Yehezkel, Rinat; Shem-Ad, Tzilhav; Lewin, Limor; Abdu, Uri; Orr, Irit; Yifrach, Ofer

    2015-03-01

    Ion channel clustering at the post-synaptic density serves a fundamental role in action potential generation and transmission. Here, we show that interaction between the Shaker Kv channel and the PSD-95 scaffold protein underlying channel clustering is modulated by the length of the intrinsically disordered C terminal channel tail. We further show that this tail functions as an entropic clock that times PSD-95 binding. We thus propose a ‘ball and chain’ mechanism to explain Kv channel binding to scaffold proteins, analogous to the mechanism describing channel fast inactivation. The physiological relevance of this mechanism is demonstrated in that alternative splicing of the Shaker channel gene to produce variants of distinct tail lengths resulted in differential channel cell surface expression levels and clustering metrics that correlate with differences in affinity of the variants for PSD-95. We suggest that modulating channel clustering by specific spatial-temporal spliced variant targeting serves a fundamental role in nervous system development and tuning.

  10. Distinct expression and ligand-binding profiles of two constitutively active GPR17 splice variants

    DEFF Research Database (Denmark)

    Benned-Jensen, Tau; Rosenkilde, M M

    2010-01-01

    In humans and non-human primates, the 7TM receptor GPR17 exists in two isoforms differing only by the length of the N-terminus. Of these, only the short isoform has previously been characterized. Hence, we investigated gene expression and ligand-binding profiles of both splice variants and furthe...

  11. Characterization of BRCA1 and BRCA2 splicing variants: a collaborative report by ENIGMA consortium members.

    Science.gov (United States)

    Thomassen, Mads; Blanco, Ana; Montagna, Marco; Hansen, Thomas V O; Pedersen, Inge S; Gutiérrez-Enríquez, Sara; Menéndez, Mireia; Fachal, Laura; Santamariña, Marta; Steffensen, Ane Y; Jønson, Lars; Agata, Simona; Whiley, Phillip; Tognazzo, Silvia; Tornero, Eva; Jensen, Uffe B; Balmaña, Judith; Kruse, Torben A; Goldgar, David E; Lázaro, Conxi; Diez, Orland; Spurdle, Amanda B; Vega, Ana

    2012-04-01

    Mutations in BRCA1 and BRCA2 predispose carriers to early onset breast and ovarian cancer. A common problem in clinical genetic testing is interpretation of variants with unknown clinical significance. The Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium was initiated to evaluate and implement strategies to characterize the clinical significance of BRCA1 and BRCA2 variants. As an initial project of the ENIGMA Splicing Working Group, we report splicing and multifactorial likelihood analysis of 25 BRCA1 and BRCA2 variants from seven different laboratories. Splicing analysis was performed by reverse transcriptase PCR or mini gene assay, and sequencing to identify aberrant transcripts. The findings were compared to bioinformatic predictions using four programs. The posterior probability of pathogenicity was estimated using multifactorial likelihood analysis, including co-occurrence with a deleterious mutation, segregation and/or report of family history. Abnormal splicing patterns expected to lead to a non-functional protein were observed for 7 variants (BRCA1 c.441+2T>A, c.4184_4185+2del, c.4357+1G>A, c.4987-2A>G, c.5074G>C, BRCA2 c.316+5G>A, and c.8754+3G>C). Combined interpretation of splicing and multifactorial analysis classified an initiation codon variant (BRCA2 c.3G>A) as likely pathogenic, uncertain clinical significance for 7 variants, and indicated low clinical significance or unlikely pathogenicity for another 10 variants. Bioinformatic tools predicted disruption of consensus donor or acceptor sites with high sensitivity, but cryptic site usage was predicted with low specificity, supporting the value of RNA-based assays. The findings also provide further evidence that clinical RNA-based assays should be extended from analysis of invariant dinucleotides to routinely include all variants located within the donor and acceptor consensus splicing sites. Importantly, this study demonstrates the added value of

  12. Alternative splicing at C terminus of Ca(V)1.4 calcium channel modulates calcium-dependent inactivation, activation potential, and current density.

    Science.gov (United States)

    Tan, Gregory Ming Yeong; Yu, Dejie; Wang, Juejin; Soong, Tuck Wah

    2012-01-01

    The Ca(V)1.4 voltage-gated calcium channel is predominantly expressed in the retina, and mutations to this channel have been associated with human congenital stationary night blindness type-2. The L-type Ca(V)1.4 channel displays distinct properties such as absence of calcium-dependent inactivation (CDI) and slow voltage-dependent inactivation (VDI) due to the presence of an autoinhibitory domain (inhibitor of CDI) in the distal C terminus. We hypothesized that native Ca(V)1.4 is subjected to extensive alternative splicing, much like the other voltage-gated calcium channels, and employed the transcript scanning method to identify alternatively spliced exons within the Ca(V)1.4 transcripts isolated from the human retina. In total, we identified 19 alternative splice variations, of which 16 variations have not been previously reported. Characterization of the C terminus alternatively spliced exons using whole-cell patch clamp electrophysiology revealed a splice variant that exhibits robust CDI. This splice variant arose from the splicing of a novel alternate exon (43*) that can be found in 13.6% of the full-length transcripts screened. Inclusion of exon 43* inserts a stop codon that truncates half the C terminus. The Ca(V)1.4 43* channel exhibited robust CDI, a larger current density, a hyperpolarized shift in activation potential by ∼10 mV, and a slower VDI. Through deletional experiments, we showed that the inhibitor of CDI was responsible for modulating channel activation and VDI, in addition to CDI. Calcium currents in the photoreceptors were observed to exhibit CDI and are more negatively activated as compared with currents elicited from heterologously expressed full-length Ca(V)1.4. Naturally occurring alternative splice variants may in part contribute to the properties of the native Ca(V)1.4 channels. PMID:22069316

  13. Expression and Splice Variant Analysis of Human TCF4 Transcription Factor in Esophageal Cancer

    OpenAIRE

    He, Gang; Guan, Xingying; Chen, Xuedan; Wang, Yan; Luo, Chao; Zhang, Bo

    2015-01-01

    Objective: The human T cell transcription factor-4 (TCF4) interacts functionally with β-catenin in the Wnt signaling pathway, whose deregulation is involved in the tumorigenesis of various types of cancers. Recent studies showed that TCF4 mRNAs were subject to alternative splicing, which was proposed to be important in regulating transactivational properties of the corresponding protein isoforms. Here we investigated the splicing isoforms and the roles of TCF4 in human esophageal squamous cel...

  14. Smooth muscle alternative splicing induced in fibroblasts by heterologous expression of a regulatory gene.

    OpenAIRE

    G. C. Roberts; Gooding, C; Smith, C W

    1996-01-01

    Alternative splicing is a common mechanism for regulating gene expression in different cell types. In order to understand this important process, the trans-acting factors that enforce the choice of particular splicing pathways in different environments must be identified. We have used the rat alpha-tropomyosin gene as a model system of tissue-specific alternative splicing. Exon 3 of alpha-tropomyosin is specifically inhibited in smooth muscle cells allowing the alternative inclusion of exon 2...

  15. Splice variants of perlucin from Haliotis laevigata modulate the crystallisation of CaCO3.

    Science.gov (United States)

    Dodenhof, Tanja; Dietz, Frank; Franken, Sebastian; Grunwald, Ingo; Kelm, Sørge

    2014-01-01

    Perlucin is one of the proteins of the organic matrix of nacre (mother of pearl) playing an important role in biomineralisation. This nacreous layer can be predominately found in the mollusc lineages and is most intensively studied as a compound of the shell of the marine Australian abalone Haliotis laevigata. A more detailed analysis of Perlucin will elucidate some of the still unknown processes in the complex interplay of the organic/inorganic compounds involved in the formation of nacre as a very interesting composite material not only from a life science-based point of view. Within this study we discovered three unknown Perlucin splice variants of the Australian abalone H. laevigata. The amplified cDNAs vary from 562 to 815 base pairs and the resulting translation products differ predominantly in the absence or presence of a varying number of a 10 mer peptide C-terminal repeat. The splice variants could further be confirmed by matrix-assisted laser desorption ionisation time of flight mass spectrometry (MALDI-ToF MS) analysis as endogenous Perlucin, purified from decalcified abalone shell. Interestingly, we observed that the different variants expressed as maltose-binding protein (MBP) fusion proteins in E. coli showed strong differences in their influence on precipitating CaCO3 and that these differences might be due to a splice variant-specific formation of large protein aggregates influenced by the number of the 10 mer peptide repeats. Our results are evidence for a more complex situation with respect to Perlucin functional regulation by demonstrating that Perlucin splice variants modulate the crystallisation of calcium carbonate. The identification of differentially behaving Perlucin variants may open a completely new perspective for the field of nacre biomineralisation. PMID:24824517

  16. Splice variants of perlucin from Haliotis laevigata modulate the crystallisation of CaCO3.

    Directory of Open Access Journals (Sweden)

    Tanja Dodenhof

    Full Text Available Perlucin is one of the proteins of the organic matrix of nacre (mother of pearl playing an important role in biomineralisation. This nacreous layer can be predominately found in the mollusc lineages and is most intensively studied as a compound of the shell of the marine Australian abalone Haliotis laevigata. A more detailed analysis of Perlucin will elucidate some of the still unknown processes in the complex interplay of the organic/inorganic compounds involved in the formation of nacre as a very interesting composite material not only from a life science-based point of view. Within this study we discovered three unknown Perlucin splice variants of the Australian abalone H. laevigata. The amplified cDNAs vary from 562 to 815 base pairs and the resulting translation products differ predominantly in the absence or presence of a varying number of a 10 mer peptide C-terminal repeat. The splice variants could further be confirmed by matrix-assisted laser desorption ionisation time of flight mass spectrometry (MALDI-ToF MS analysis as endogenous Perlucin, purified from decalcified abalone shell. Interestingly, we observed that the different variants expressed as maltose-binding protein (MBP fusion proteins in E. coli showed strong differences in their influence on precipitating CaCO3 and that these differences might be due to a splice variant-specific formation of large protein aggregates influenced by the number of the 10 mer peptide repeats. Our results are evidence for a more complex situation with respect to Perlucin functional regulation by demonstrating that Perlucin splice variants modulate the crystallisation of calcium carbonate. The identification of differentially behaving Perlucin variants may open a completely new perspective for the field of nacre biomineralisation.

  17. Characterization of BRCA1 and BRCA2 splicing variants: a collaborative report by ENIGMA consortium members

    DEFF Research Database (Denmark)

    Thomassen, Mads; Blanco, Ana; Montagna, Marco;

    2012-01-01

    laboratories. Splicing analysis was performed by reverse transcriptase PCR or mini gene assay, and sequencing to identify aberrant transcripts. The findings were compared to bioinformatic predictions using four programs. The posterior probability of pathogenicity was estimated using multifactorial likelihood...... was initiated to evaluate and implement strategies to characterize the clinical significance of BRCA1 and BRCA2 variants. As an initial project of the ENIGMA Splicing Working Group, we report splicing and multifactorial likelihood analysis of 25 BRCA1 and BRCA2 variants from seven different...... analysis, including co-occurrence with a deleterious mutation, segregation and/or report of family history. Abnormal splicing patterns expected to lead to a non-functional protein were observed for 7 variants (BRCA1 c.441+2T>A, c.4184_4185+2del, c.4357+1G>A, c.4987-2A>G, c.5074G>C, BRCA2 c.316+5G>A, and c...

  18. Analysis of Maxi-K alpha subunit splice variants in human myometrium

    Directory of Open Access Journals (Sweden)

    Morrison John J

    2004-09-01

    Full Text Available Abstract Background Large-conductance, calcium-activated potassium (Maxi-K channels are implicated in the modulation of human uterine contractions and myometrial Ca2+ homeostasis. However, the regulatory mechanism(s governing the expression of Maxi-K channels with decreased calcium sensitivity at parturition are unclear. The objectives of this study were to investigate mRNA expression of the Maxi-K alpha subunit, and that of its splice variants, in human non-pregnant and pregnant myometrium, prior to and after labour onset, to determine whether altered expression of these splice variants is associated with decreased calcium sensitivity observed at labour onset. Methods Myometrial biopsies were obtained at hysterectomy (non-pregnant, NP, and at Caesarean section, at elective (pregnant not-in-labour, PNL and intrapartum (pregnant in-labour, PL procedures. RNA was extracted from all biopsies and quantitative real-time RT-PCR was used to investigate for possible differential expression of the Maxi-K alpha subunit, and that of its splice variants, between these functionally-distinct myometrial tissue sets. Results RT-PCR analysis identified the presence of a 132 bp and an 87 bp spliced exon of the Maxi-K alpha subunit in all three myometrial tissue sets. Quantitative real-time PCR indicated a decrease in the expression of the Maxi-K alpha subunit with labour onset. While there was no change in the proportion of Maxi-K alpha subunits expressing the 87 bp spliced exon, the proportion of alpha subunits expressing the 132 bp spliced exon was significantly increased with labour onset, compared to both non-pregnant and pregnant not-in-labour tissues. An increased proportion of 132 bp exon-containing alpha subunit variants with labour onset is of interest, as channels expressing this spliced exon have decreased calcium and voltage sensitivities. Conclusions Our findings suggest that decreased Maxi-K alpha subunit mRNA expression in human myometrium at

  19. Coding potential of the products of alternative splicing in human.

    KAUST Repository

    Leoni, Guido

    2011-01-20

    BACKGROUND: Analysis of the human genome has revealed that as much as an order of magnitude more of the genomic sequence is transcribed than accounted for by the predicted and characterized genes. A number of these transcripts are alternatively spliced forms of known protein coding genes; however, it is becoming clear that many of them do not necessarily correspond to a functional protein. RESULTS: In this study we analyze alternative splicing isoforms of human gene products that are unambiguously identified by mass spectrometry and compare their properties with those of isoforms of the same genes for which no peptide was found in publicly available mass spectrometry datasets. We analyze them in detail for the presence of uninterrupted functional domains, active sites as well as the plausibility of their predicted structure. We report how well each of these strategies and their combination can correctly identify translated isoforms and derive a lower limit for their specificity, that is, their ability to correctly identify non-translated products. CONCLUSIONS: The most effective strategy for correctly identifying translated products relies on the conservation of active sites, but it can only be applied to a small fraction of isoforms, while a reasonably high coverage, sensitivity and specificity can be achieved by analyzing the presence of non-truncated functional domains. Combining the latter with an assessment of the plausibility of the modeled structure of the isoform increases both coverage and specificity with a moderate cost in terms of sensitivity.

  20. Glucocorticoid receptor beta splice variant expression in patients with high and low activity of systemic lupus erythematosus.

    Directory of Open Access Journals (Sweden)

    Pawel P Jagodzinski

    2008-01-01

    Full Text Available The glucocorticoid receptor (GR occurs mainly in two alternative splice variants encoding GRalpha and GRbeta. The GRbeta variant does not contain a GC binding domain and cannot mediate anti-inflammatory GC effects. Peripheral blood mononuclear cells (PBMCs were isolated from venous whole blood of twelve patients with SLE. Ten of the SLE patients exhibited low disease activity while two patients displayed highly active stage of the disease. The quantitative analysis of GRalpha and GRbeta transcripts in PBMC was performed by reverse transcription and real-time quantitative PCR SYBR Green I system. The protein level of GRalpha and GRbeta isoforms in PBMCs was determined by western blotting analysis. We found that the two SLE patients with high disease activity exhibited significantly elevated GRbeta transcript levels and corresponding protein levels in PBMCs. These preliminary findings suggest that increased expression of GRbeta isoform may be associated with relatively more severe clinical presentation of SLE syndrome.

  1. Alternative splicing of the tuberous sclerosis 2 (TSC2) gene in human and mouse tissues

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lin; Sterner, C.; Maheshwar, M.M. [and others

    1995-06-10

    The recently isolated gene for tuberous sclerosis 2 (TSC2) encodes a 5.5.kb transcript that is widely expressed. The TSC2 gene product, named tuberin, is a 1784-amino-acid protein that shows a small stretch of homology to the GTPase activating protein rap1GAP. We have detected a novel variant of the TSC2 mRNA lacking 129 nucleotides, predicting an in-frame deletion of 43 amino acids spanning codons 946-988 of tuberin. This 129-bp deletion precisely corresponds to exon 25 of the TSC2 gene suggesting that alternative splicing leads to production of two forms of transcripts designated isoforms 1 and 2. Further molecular analysis revealed a third isoform exhibiting a deletion of 44 amino acids spanning codons 946-989 of tuberin. Amino acid 989 is a Ser residue encoded by the first codon of exon 26. The two isoforms also exist in newborn and adult mouse tissues, reinforcing the potential functional importance of these alternatively spliced products. These alternative isoforms should have implications for efforts aimed at identifying mutations in TSC patients. The distinct polypeptides encoded by the TSC2 gene may have different targets as well as functions involved in the regulation of cell growth. 26 refs., 4 figs.

  2. Pax258 and Pax6 alternative splicing events in basal chordates and vertebrates: a focus on paired box domain

    Directory of Open Access Journals (Sweden)

    Peter eFabian

    2015-07-01

    Full Text Available Paired box transcription factors play important role in development and tissue morphogenesis. The number of Pax homologs varies among species studied so far, due to genome and gene duplications that have affected PAX family to a great extent. Based on sequence similarity and functional domains, four Pax classes have been identified in chordates, namely Pax1/9, Pax2/5/8, Pax3/7 and Pax4/6. Numerous splicing events have been reported mainly for Pax2/5/8 and Pax6 genes. Of significant interest are those events that lead to Pax proteins with presumed novel properties, such as altered DNA-binding or transcriptional activity. In the current study, a thorough analysis of Pax2/5/8 splicing events from cephalochordate and vertebrates was performed. We focused more on Pax2/5/8 and Pax6 splicing events in which the paired domain is involved. Three new splicing events were identified in Oryzias latipes, one of which seems to be conserved in Acanthomorphata. Using representatives from deuterostome and protostome phyla, a comparative analysis of the Pax6 exon-intron structure of the paired domain was performed, during an attempt to estimate the time of appearance of the Pax6(5a mRNA isoform. As shown in our analysis, this splicing event is absent in basal chordates and is characteristic of Gnathostomata. Moreover, expression pattern of alternative spliced variants was compared between basal chordates and fish species. In summary, our data indicate expansion of alternative mRNA variants in paired box region of Pax2/5/8 and Pax6 genes during the course of vertebrate evolution.

  3. Investigation of the dominant positive effect of porcine farnesoid X receptor (FXR) splice variant 1.

    Science.gov (United States)

    Gray, Matthew A; James Squires, E

    2015-04-10

    Pigs are well recognized as a model for humans in research studies due to similarities in metabolism and physiology between the two species. The potential for pigs to model humans in studying metabolic diseases is highly dependent on similarities in hepatic metabolism between the two species, including similarities in the farnesoid X receptor (FXR; NR1H4) which regulate bile acid homeostasis. During initial cloning of porcine FXR (pFXR), an alternative splice variant (pFXR-SV1) was isolated which contained a four amino acid (MYTG) insert that exerted a dominant positive effect on the wild type receptor (pFXR-WT). The current study investigated the role of this insert in the dominant positive effect. Individual point mutations were made to the first three amino acids of the MYTG insert. Mutations of the methionine (M) or threonine (T) to alanine (A) reduced the dominant positive effect, while mutation of the tyrosine (Y) to either A or phenylalanine (F) completely abolished the dominant positive effect. Treatment with the tyrosine phosphatase inhibitor sodium orthovanadate (Na3VO4) increased the dominant positive effect of pFXR-SV1 by about 30%. These results suggest that the dominant positive effect may be dependent on the phosphorylation status of the tyrosine in the MYTG insert. The human variant hFXRα+ has the same MYTG insert as pFXR-SV1, but did not cause a dominant positive effect on hFXR-WT and significantly reduced the activity of hFXR-WT. Thus, although the MYTG insert is conserved in both human and pig, the effects of this insert are different in the two species. PMID:25623328

  4. Multiple splice variants within the bovine silver homologue (SILV gene affecting coat color in cattle indicate a function additional to fibril formation in melanophores

    Directory of Open Access Journals (Sweden)

    Weikard Rosemarie

    2007-09-01

    Full Text Available Abstract Background The silver homologue(SILV gene plays a major role in melanosome development. SILV is a target for studies concerning melanoma diagnostics and therapy in humans as well as on skin and coat color pigmentation in many species ranging from zebra fish to mammals. However, the precise functional cellular mechanisms, in which SILV is involved, are still not completely understood. While there are many studies addressing SILV function upon a eumelaneic pigment background, there is a substantial lack of information regarding the further relevance of SILV, e.g. for phaeomelanosome development. Results In contrast to previous results in other species reporting SILV expression exclusively in pigmented tissues, our experiments provide evidence that the bovine SILV gene is expressed in a variety of tissues independent of pigmentation. Our data show that the bovine SILV gene generates an unexpectedly large number of different transcripts occurring in skin as well as in non-pigmented tissues, e.g. liver or mammary gland. The alternative splice sites are generated by internal splicing and primarily remove complete exons. Alternative splicing predominantly affects the repeat domain of the protein, which has a functional key role in fibril formation during eumelanosome development. Conclusion The expression of the bovine SILV gene independent of pigmentation suggests SILV functions exceeding melanosome development in cattle. This hypothesis is further supported by transcript variants lacking functional key elements of the SILV protein relevant for eumelanosome development. Thus, the bovine SILV gene can serve as a model for the investigation of the putative additional functions of SILV. Furthermore, the splice variants of the bovine SILV gene represent a comprehensive natural model to refine the knowledge about functional domains in the SILV protein. Our study exemplifies that the extent of alternative splicing is presumably much higher than

  5. Evaluation of a 5-tier scheme proposed for classification of sequence variants using bioinformatic and splicing assay data

    DEFF Research Database (Denmark)

    Walker, Logan C; Whiley, Phillip J; Houdayer, Claude;

    2013-01-01

    Splicing assays are commonly undertaken in the clinical setting to assess the clinical relevance of sequence variants in disease predisposition genes. A 5-tier classification system incorporating both bioinformatic and splicing assay information was previously proposed as a method to provide...

  6. Characterization of subcellular localization and stability of a splice variant of G alphai2

    Directory of Open Access Journals (Sweden)

    Wedegaertner Philip B

    2002-05-01

    Full Text Available Abstract Background Alternative mRNA splicing of αi2, a heterotrimeric G protein α subunit, has been shown to produce an additional protein, termed sαi2. In the sαi2 splice variant, 35 novel amino acids replace the normal C-terminal 24 amino acids of αi2. Whereas αi2 is found predominantly at cellular plasma membranes, sαi2 has been localized to intracellular Golgi membranes, and the unique 35 amino acids of sαi2 have been suggested to constitute a specific targeting signal. Results This paper proposes and examines an alternative hypothesis: disruption of the normal C-terminus of αi2 produces an unstable protein that fails to localize to plasma membranes. sαi2 is poorly expressed upon transfection of cultured cells; however, radiolabeling indicated that αi2 and sαi2 undergo myristoylation, a co-translational modification, equally well suggesting that protein stability rather than translation is affected. Indeed, pulse-chase analysis indicates that sαi2 is more rapidly degraded compared to αi2. Co-expression of βγ rescues PM localization and increases expression of sαi2. In addition, αi2A327S, a mutant previously shown to be unstable and defective in guanine-nucleotide binding, and αi2(1–331, in which the C-terminal 24 amino acids of αi2 are deleted, show a similar pattern of subcellular localization as sαi2 (i.e., intracellular membranes rather than plasma membranes. Finally, sαi2 displays a propensity to localize to potential aggresome-like structures. Conclusions Thus, instead of the novel C-terminus of sαi2 functioning as a specific Golgi targeting signal, the results presented here indicate that the disruption of the normal C-terminus of αi2 causes mislocalization and rapid degradation of sαi2.

  7. An EMT-driven alternative splicing program occurs in human breast cancer and modulates cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Irina M Shapiro

    2011-08-01

    Full Text Available Epithelial-mesenchymal transition (EMT, a mechanism important for embryonic development, plays a critical role during malignant transformation. While much is known about transcriptional regulation of EMT, alternative splicing of several genes has also been correlated with EMT progression, but the extent of splicing changes and their contributions to the morphological conversion accompanying EMT have not been investigated comprehensively. Using an established cell culture model and RNA-Seq analyses, we determined an alternative splicing signature for EMT. Genes encoding key drivers of EMT-dependent changes in cell phenotype, such as actin cytoskeleton remodeling, regulation of cell-cell junction formation, and regulation of cell migration, were enriched among EMT-associated alternatively splicing events. Our analysis suggested that most EMT-associated alternative splicing events are regulated by one or more members of the RBFOX, MBNL, CELF, hnRNP, or ESRP classes of splicing factors. The EMT alternative splicing signature was confirmed in human breast cancer cell lines, which could be classified into basal and luminal subtypes based exclusively on their EMT-associated splicing pattern. Expression of EMT-associated alternative mRNA transcripts was also observed in primary breast cancer samples, indicating that EMT-dependent splicing changes occur commonly in human tumors. The functional significance of EMT-associated alternative splicing was tested by expression of the epithelial-specific splicing factor ESRP1 or by depletion of RBFOX2 in mesenchymal cells, both of which elicited significant changes in cell morphology and motility towards an epithelial phenotype, suggesting that splicing regulation alone can drive critical aspects of EMT-associated phenotypic changes. The molecular description obtained here may aid in the development of new diagnostic and prognostic markers for analysis of breast cancer progression.

  8. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis

    Directory of Open Access Journals (Sweden)

    Mount Stephen M

    2006-12-01

    Full Text Available Abstract Background Recently, genomic sequencing efforts were finished for Oryza sativa (cultivated rice and Arabidopsis thaliana (Arabidopsis. Additionally, these two plant species have extensive cDNA and expressed sequence tag (EST libraries. We employed the Program to Assemble Spliced Alignments (PASA to identify and analyze alternatively spliced isoforms in both species. Results A comprehensive analysis of alternative splicing was performed in rice that started with >1.1 million publicly available spliced ESTs and over 30,000 full length cDNAs in conjunction with the newly enhanced PASA software. A parallel analysis was performed with Arabidopsis to compare and ascertain potential differences between monocots and dicots. Alternative splicing is a widespread phenomenon (observed in greater than 30% of the loci with transcript support and we have described nine alternative splicing variations. While alternative splicing has the potential to create many RNA isoforms from a single locus, the majority of loci generate only two or three isoforms and transcript support indicates that these isoforms are generally not rare events. For the alternate donor (AD and acceptor (AA classes, the distance between the splice sites for the majority of events was found to be less than 50 basepairs (bp. In both species, the most frequent distance between AA is 3 bp, consistent with reports in mammalian systems. Conversely, the most frequent distance between AD is 4 bp in both plant species, as previously observed in mouse. Most alternative splicing variations are localized to the protein coding sequence and are predicted to significantly alter the coding sequence. Conclusion Alternative splicing is widespread in both rice and Arabidopsis and these species share many common features. Interestingly, alternative splicing may play a role beyond creating novel combinations of transcripts that expand the proteome. Many isoforms will presumably have negative

  9. Investigation of tissue-specific human orthologous alternative splice events in pig

    DEFF Research Database (Denmark)

    Hillig, Ann-Britt Nygaard; Jørgensen, Claus Bøttcher; Salicio, Susanna Cirera;

    2010-01-01

    Alternative splicing of pre-mRNA can contribute to differences between tissues or cells either by regulating gene expression or creating proteins with various functions encoded by one gene. The number of investigated alternative splice events in pig has so far been limited. In this study we have ...

  10. Alternative splicing in colon, bladder, and prostate cancer identified by exon-array analysis

    DEFF Research Database (Denmark)

    Thorsen, Kasper; Sørensen, Karina D.; Brems-Eskildsen, Anne Sofie;

    2008-01-01

    Alternative splicing enhances proteome diversity and modulates cancer-associated proteins. To identify tissue- and tumor-specific alternative splicing, we used the GeneChip Human Exon 1.0 ST Array to measure whole-genome exon expression in 102 normal and cancer tissue samples of different stages ...

  11. Dynamic regulation of alternative splicing and chromatin structure in Drosophila gonads revealed by RNA-seq

    OpenAIRE

    Gan, Qiang; Chepelev, Iouri; Wei, Gang; Tarayrah, Lama; Cui, Kairong; Zhao, Keji; Chen, Xin

    2010-01-01

    Both transcription and post-transcriptional processes, such as alternative splicing, play crucial roles in controlling developmental programs in metazoans. Recently emerged RNA-seq method has brought our understandings of eukaryotic transcriptomes to a new level, because it can resolve both gene expression level and alternative splicing events simultaneously.

  12. FULL-GENOME ANALYSIS OF ALTERNATIVE SPLICING IN MOUSE LIVER AFTER HEPATOTOXICANT EXPOSURE

    Science.gov (United States)

    Alternative splicing plays a role in determining gene function and protein diversity. We have employed whole genome exon profiling using Affymetrix Mouse Exon 1.0 ST arrays to understand the significance of alternative splicing on a genome-wide scale in response to multiple toxic...

  13. Genome-wide analysis of SRSF10-regulated alternative splicing by deep sequencing of chicken transcriptome

    Directory of Open Access Journals (Sweden)

    Xuexia Zhou

    2014-12-01

    Full Text Available Splicing factor SRSF10 is known to function as a sequence-specific splicing activator that is capable of regulating alternative splicing both in vitro and in vivo. We recently used an RNA-seq approach coupled with bioinformatics analysis to identify the extensive splicing network regulated by SRSF10 in chicken cells. We found that SRSF10 promoted both exon inclusion and exclusion. Functionally, many of the SRSF10-verified alternative exons are linked to pathways of response to external stimulus. Here we describe in detail the experimental design, bioinformatics analysis and GO/pathway enrichment analysis of SRSF10-regulated genes to correspond with our data in the Gene Expression Omnibus with accession number GSE53354. Our data thus provide a resource for studying regulation of alternative splicing in vivo that underlines biological functions of splicing regulatory proteins in cells.

  14. Genetic analysis of complement C1s deficiency associated with systemic lupus erythematosus highlights alternative splicing of normal C1s gene

    DEFF Research Database (Denmark)

    Armano, MT; Ferriani, VP; Florido, MP;

    2008-01-01

    ' fibroblasts when analyzed by confocal microscopy. We show that all four siblings are homozygous for a mutation at position 938 in exon 6 of the C1s cDNA that creates a premature stop codon. Our investigations led us to reveal the presence of previously uncharacterized splice variants of C1s mRNA transcripts...... in normal human cells. These variants are derived from the skipping of exon 3 and from the use of an alternative 3' splice site within intron 1 which increases the size of exon 2 by 87 nucleotides....

  15. A splice variant of PGRP-LC required for expression of antimicrobial peptides in Anopheles gambiae

    Institute of Scientific and Technical Information of China (English)

    HUI LIN; LINGMIN ZHANG; CORALIA LUNA; NGO T.HOA; LIANGBIAO ZHENG

    2007-01-01

    Members of the peptidoglycan recognition protein (PGRP) family play essential roles in different manifestations of immune responses in insects. PGRP-LC, one of seven members of this family in the malaria vector Anopheles gambiae produced several spliced variants. Here we show that PGRP-LC, and not other members of the PGRP family nor the six members of the Gram-negative binding protein families, is required for the expression of antimicrobial peptide genes (such as CEC1 and GAM1) under the control of the Imd-Rel2 pathway in an A. gambiae cell line, 4a3A. PGRP-LC produces many splice variants that can be classified into three sub-groups (LC1, LC2 and LC3), based on the carboxyl terminal sequences. RNA interference against one LC1 sub-group resulted in dramatic reduction of CEC1 and GAM1. Over-expression of LC1 a and to a lesser extent LC3a (a member of the LC1 and LC3 sub-group, respectively) in the 4a3A cell line enhances the expression of CEC1 and GAM1. These results demonstrate that the LC1-subgroup splice variants are essential for the expression of CEC1 and GAM1 in A. gambiae cell line.

  16. An extended nomenclature for mammalian V-ATPase subunit genes and splice variants.

    Directory of Open Access Journals (Sweden)

    Kevin C Miranda

    Full Text Available The vacuolar-type H(+-ATPase (V-ATPase is a multisubunit proton pump that is involved in both intra- and extracellular acidification processes throughout the body. Multiple homologs and splice variants of V-ATPase subunits are thought to explain its varied spatial and temporal expression pattern in different cell types. Recently subunit nomenclature was standardized with a total of 22 subunit variants identified. However this standardization did not accommodate the existence of splice variants and is therefore incomplete. Thus, we propose here an extension of subunit nomenclature along with a literature and sequence database scan for additional V-ATPase subunits. An additional 17 variants were pulled from a literature search while 4 uncharacterized potential subunit variants were found in sequence databases. These findings have been integrated with the current V-ATPase knowledge base to create a new V-ATPase subunit catalogue. It is envisioned this catalogue will form a new platform on which future studies into tissue- and organelle-specific V-ATPase expression, localization and function can be based.

  17. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level.

    Science.gov (United States)

    Abascal, Federico; Ezkurdia, Iakes; Rodriguez-Rivas, Juan; Rodriguez, Jose Manuel; del Pozo, Angela; Vázquez, Jesús; Valencia, Alfonso; Tress, Michael L

    2015-06-01

    Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved--all the homologous exons we identified evolved over 460 million years ago--and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles. PMID:26061177

  18. Expression of novel isoforms of carnitine palmitoyltransferase I (CPT-1) generated by alternative splicing of the CPT-ibeta gene.

    Science.gov (United States)

    Yu, G S; Lu, Y C; Gulick, T

    1998-01-01

    Carnitine palmitoyltransferase I (CPT-I) catalyses the rate-determining step in mitochondrial fatty acid beta-oxidation. The enzyme has two cognate structural genes that are preferentially expressed in liver (alpha) or fat and muscle (beta). We hypothesized the existence of additional isoforms in heart to account for unique kinetic characteristics of enzyme activity in this tissue. Hybridization and PCR screening of a human cardiac cDNA library revealed the expression of two novel CPT-I isoforms generated by alternative splicing of the CPT-Ibeta transcript, in addition to the beta and alpha cDNA species previously described. Ribonuclease protection and reverse transcriptase-mediated PCR assays confirmed the presence of mRNA species of each splicing variant in heart, skeletal muscle and liver, with differing relative concentrations in the tissues. The novel splicing variants omit exons or utilize a cryptic splice donor site within an exon. Deduced polypeptide sequences of the novel enzymes include omissions in the region of putative membrane-spanning and malonyl-CoA regulatory domains compared with the previously described CPT-Is, implying that the encoded enzymes will exhibit unique features with respect to outer mitochondrial membrane topology and response to physiological and pharmacological inhibitors. PMID:9693124

  19. Identification of alternatively spliced Dab1 and Fyn isoforms in pig

    Directory of Open Access Journals (Sweden)

    Yuan Jihong

    2011-02-01

    Full Text Available Abstract Background Disabled-1 (Dab1 is an adaptor protein that is essential for the intracellular transduction of Reelin signaling, which regulates the migration and differentiation of postmitotic neurons during brain development in vertebrates. Dab1 function depends on its tyrosine phosphorylation by Src family kinases, especially Fyn. Results We have isolated alternatively spliced forms of porcine Dab1 from brain (sDab1 and liver (sDab1-Li and Fyn from brain (sFyn-B and spleen (sFyn-T. Radiation hybrid mapping localized porcine Dab1 (sDab1 and Fyn (sFyn to chromosomes 6q31-35 and 1p13, respectively. Real-time quantitative RT-PCR (qRT-PCR demonstrated that different isoforms of Dab1 and Fyn have tissue-specific expression patterns, and sDab1 and sFyn-B display similar temporal expression characteristics in the developing porcine cerebral cortex and cerebellum. Both sDab1 isoforms function as nucleocytoplasmic shuttling proteins. It was further shown that sFyn phosphorylates sDab1 at tyrosyl residues (Tyr 185, 198/200 and 232, whereas sDab1-Li was phosphorylated at Tyr 185 and Tyr 197 (corresponding to Y232 in sDab1 in vitro. Conclusions Alternative splicing generates natural sDab1-Li that only carries Y185 and Y197 (corresponding to Y232 in sDab1 sites, which can be phosphorylated by Fyn in vitro. sDab1-Li is an isoform that is highly expressed in peripheral organs. Both isoforms are suggested to be nucleocytoplasmic shuttling proteins. Our results imply that the short splice form sDab1-Li might regulate cellular responses to different cell signals by acting as a dominant negative form against the full length sDab1 variant and that both isoforms might serve different signaling functions in different tissues.

  20. Arrhythmogenic Biophysical Phenotype for SCN5A Mutation S1787N Depends upon Splice Variant Background and Intracellular Acidosis.

    Directory of Open Access Journals (Sweden)

    Rou-Mu Hu

    Full Text Available SCN5A is a susceptibility gene for type 3 long QT syndrome, Brugada syndrome, and sudden infant death syndrome. INa dysfunction from mutated SCN5A can depend upon the splice variant background in which it is expressed and also upon environmental factors such as acidosis. S1787N was reported previously as a LQT3-associated mutation and has also been observed in 1 of 295 healthy white controls. Here, we determined the in vitro biophysical phenotype of SCN5A-S1787N in an effort to further assess its possible pathogenicity.We engineered S1787N in the two most common alternatively spliced SCN5A isoforms, the major isoform lacking a glutamine at position 1077 (Q1077del and the minor isoform containing Q1077, and expressed these two engineered constructs in HEK293 cells for electrophysiological study. Macroscopic voltage-gated INa was measured 24 hours after transfection with standard whole-cell patch clamp techniques. We applied intracellular solutions with pH7.4 or pH6.7. S1787N in the Q1077 background had WT-like INa including peak INa density, activation and inactivation parameters, and late INa amplitude in both pH 7.4 and pH 6.7. However, with S1787N in the Q1077del background, the percentages of INa late/peak were increased by 2.1 fold in pH 7.4 and by 2.9 fold in pH 6.7 when compared to WT.The LQT3-like biophysical phenotype for S1787N depends on both the SCN5A splice variant and on the intracellular pH. These findings provide further evidence that the splice variant and environmental factors affect the molecular phenotype of cardiac SCN5A-encoded sodium channel (Nav1.5, has implications for the clinical phenotype, and may provide insight into acidosis-induced arrhythmia mechanisms.

  1. Contribution of bioinformatics predictions and functional splicing assays to the interpretation of unclassified variants of the BRCA genes

    Science.gov (United States)

    Théry, Jean Christophe; Krieger, Sophie; Gaildrat, Pascaline; Révillion, Françoise; Buisine, Marie-Pierre; Killian, Audrey; Duponchel, Christiane; Rousselin, Antoine; Vaur, Dominique; Peyrat, Jean-Philippe; Berthet, Pascaline; Frébourg, Thierry; Martins, Alexandra; Hardouin, Agnès; Tosi, Mario

    2011-01-01

    A large fraction of sequence variants of unknown significance (VUS) of the breast and ovarian cancer susceptibility genes BRCA1 and BRCA2 may induce splicing defects. We analyzed 53 VUSs of BRCA1 or BRCA2, detected in consecutive molecular screenings, by using five splicing prediction programs, and we classified them into two groups according to the strength of the predictions. In parallel, we tested them by using functional splicing assays. A total of 10 VUSs were predicted by two or more programs to induce a significant reduction of splice site strength or activation of cryptic splice sites or generation of new splice sites. Minigene-based splicing assays confirmed four of these predictions. Five additional VUSs, all at internal exon positions, were not predicted to induce alterations of splice sites, but revealed variable levels of exon skipping, most likely induced by the modification of exonic splicing regulatory elements. We provide new data in favor of the pathogenic nature of the variants BRCA1 c.212+3A>G and BRCA1 c.5194−12G>A, which induced aberrant out-of-frame mRNA forms. Moreover, the novel variant BRCA2 c.7977−7C>G induced in frame inclusion of 6 nt from the 3′ end of intron 17. The novel variants BRCA2 c.520C>T and BRCA2 c.7992T>A induced incomplete skipping of exons 7 and 18, respectively. This work highlights the contribution of splicing minigene assays to the assessment of pathogenicity, not only when patient RNA is not available, but also as a tool to improve the accuracy of bioinformatics predictions. PMID:21673748

  2. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines.

    Science.gov (United States)

    Toki, Yasumichi; Sasaki, Katsunori; Tanaka, Hiroki; Yamamoto, Masayo; Hatayama, Mayumi; Ito, Satoshi; Ikuta, Katsuya; Shindo, Motohiro; Hasebe, Takumu; Nakajima, Shunsuke; Sawada, Koji; Fujiya, Mikihiro; Torimoto, Yoshihiro; Ohtake, Takaaki; Kohgo, Yutaka

    2016-08-01

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncated peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. PMID:27264950

  3. Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C.

    OpenAIRE

    Durand, G M; Gregor, P.; X. Zheng; Bennett, M V; Uhl, G. R.; Zukin, R S

    1992-01-01

    Molecular cloning identified complementary DNA species, from a rat ventral midbrain library, encoding apparent splice variants of the N-methyl-D-aspartate (NMDA) receptor NMDAR1 (which we now term NR1a). Sequencing revealed that one variant, NR1b, differs from NR1a by the presence of a 21-amino acid insert near the amino end of the N-terminal domain and by an alternate C-terminal domain in which the last 75 amino acids are replaced by an unrelated sequence of 22 amino acids. NR1b is virtually...

  4. Moringa oleifera Gold Nanoparticles Modulate Oncogenes, Tumor Suppressor Genes, and Caspase-9 Splice Variants in A549 Cells.

    Science.gov (United States)

    Tiloke, Charlette; Phulukdaree, Alisa; Anand, Krishnan; Gengan, Robert M; Chuturgoon, Anil A

    2016-10-01

    Gold nanoparticles (AuNP's) facilitate cancer cell recognition and can be manufactured by green synthesis using nutrient rich medicinal plants such as Moringa oleifera (MO). Targeting dysregulated oncogenes and tumor suppressor genes is crucial for cancer therapeutics. We investigated the antiproliferative effects of AuNP synthesized from MO aqueous leaf extracts (MLAuNP ) in A549 lung and SNO oesophageal cancer cells. A one-pot green synthesis technique was used to synthesise MLAuNP . A549, SNO cancer cells and normal peripheral blood mononuclear cells (PBMCs) were exposed to MLAuNP and CAuNP to evaluate cytotoxicity (MTT assay); apoptosis was measured by phosphatidylserine (PS) externalization, mitochondrial depolarization (ΔΨm) (flow cytometry), caspase-3/7, -9 activity, and ATP levels (luminometry). The mRNA expression of c-myc, p53, Skp2, Fbw7α, and caspase-9 splice variants was determined using qPCR, while relative protein expression of c-myc, p53, SRp30a, Bax, Bcl-2, Smac/DIABLO, Hsp70, and PARP-1 were determined by Western blotting. MLAuNP and CAuNP were not cytotoxic to PBMCs, whilst its pro-apoptotic properties were confirmed in A549 and SNO cells. MLAuNP significantly increased caspase activity in SNO cells while MLAuNP significantly increased PS externalization, ΔΨm, caspase-9, caspase-3/7 activities, and decreased ATP levels in A549 cells. Also, p53 mRNA and protein levels, SRp30a (P = 0.428), Bax, Smac/DIABLO and PARP-1 24 kDa fragment levels were significantly increased. Conversely, MLAuNP significantly decreased Bcl-2, Hsp70, Skp2, Fbw7α, c-myc mRNA, and protein levels and activated alternate splicing with caspase-9a splice variant being significantly increased. MLAuNP possesses antiproliferative properties and induced apoptosis in A549 cells by activating alternate splicing of caspase-9. J. Cell. Biochem. 117: 2302-2314, 2016. © 2016 Wiley Periodicals, Inc. PMID:26923760

  5. HP1 Is Involved in Regulating the Global Impact of DNA Methylation on Alternative Splicing

    Directory of Open Access Journals (Sweden)

    Ahuvi Yearim

    2015-02-01

    Full Text Available The global impact of DNA methylation on alternative splicing is largely unknown. Using a genome-wide approach in wild-type and methylation-deficient embryonic stem cells, we found that DNA methylation can either enhance or silence exon recognition and affects the splicing of more than 20% of alternative exons. These exons are characterized by distinct genetic and epigenetic signatures. Alternative splicing regulation of a subset of these exons can be explained by heterochromatin protein 1 (HP1, which silences or enhances exon recognition in a position-dependent manner. We constructed an experimental system using site-specific targeting of a methylated/unmethylated gene and demonstrate a direct causal relationship between DNA methylation and alternative splicing. HP1 regulates this gene’s alternative splicing in a methylation-dependent manner by recruiting splicing factors to its methylated form. Our results demonstrate DNA methylation’s significant global influence on mRNA splicing and identify a specific mechanism of splicing regulation mediated by HP1.

  6. Alternative Splicing Generates Different Parkin Protein Isoforms: Evidences in Human, Rat, and Mouse Brain

    Directory of Open Access Journals (Sweden)

    Soraya Scuderi

    2014-01-01

    Full Text Available Parkinson protein 2, E3 ubiquitin protein ligase (PARK2 gene mutations are the most frequent causes of autosomal recessive early onset Parkinson’s disease and juvenile Parkinson disease. Parkin deficiency has also been linked to other human pathologies, for example, sporadic Parkinson disease, Alzheimer disease, autism, and cancer. PARK2 primary transcript undergoes an extensive alternative splicing, which enhances transcriptomic diversification. To date several PARK2 splice variants have been identified; however, the expression and distribution of parkin isoforms have not been deeply investigated yet. Here, the currently known PARK2 gene transcripts and relative predicted encoded proteins in human, rat, and mouse are reviewed. By analyzing the literature, we highlight the existing data showing the presence of multiple parkin isoforms in the brain. Their expression emerges from conflicting results regarding the electrophoretic mobility of the protein, but it is also assumed from discrepant observations on the cellular and tissue distribution of parkin. Although the characterization of each predicted isoforms is complex, since they often diverge only for few amino acids, analysis of their expression patterns in the brain might account for the different pathogenetic effects linked to PARK2 gene mutations.

  7. Conserved Expression of the Glutamate NMDA Receptor 1 Subunit Splice Variants during the Development of the Siberian Hamster Suprachiasmatic Nucleus

    Science.gov (United States)

    Duffield, Giles E.; Mikkelsen, Jens D.; Ebling, Francis J. P.

    2012-01-01

    Glutamate neurotransmission and the N-methyl-D-aspartate receptor (NMDAR) are central to photic signaling to the master circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). NMDARs also play important roles in brain development including visual input circuits. The functional NMDAR is comprised of multiple subunits, but each requiring the NR1 subunit for normal activity. The NR1 can be alternatively spliced to produce isoforms that confer different functional properties on the NMDAR. The SCN undergoes extensive developmental changes during postnatal life, including synaptogenesis and acquisition of photic signaling. These changes are especially important in the highly photoperiodic Siberian hamster, in which development of sensitivity to photic cues within the SCN could impact early physiological programming. In this study we examined the expression of NR1 isoforms in the hamster at different developmental ages. Gene expression in the forebrain was quantified by in situ hybridization using oligonucleotide probes specific to alternatively spliced regions of the NR1 heteronuclear mRNA, including examination of anterior hypothalamus, piriform cortex, caudate-putamen, thalamus and hippocampus. Gene expression analysis within the SCN revealed the absence of the N1 cassette, the presence of the C2 cassette alone and the combined absence of C1 and C2 cassettes, indicating that the dominant splice variants are NR1-2a and NR1-4a. Whilst we observe changes at different developmental ages in levels of NR1 isoform probe hybridization in various forebrain structures, we find no significant changes within the SCN. This suggests that a switch in NR1 isoform does not underlie or is not produced by developmental changes within the hamster SCN. Consistency of the NR1 isoforms would ensure that the response of the SCN cells to photic signals remains stable throughout life, an important aspect of the function of the SCN as a responder to environmental changes

  8. Conserved expression of the glutamate NMDA receptor 1 subunit splice variants during the development of the Siberian hamster suprachiasmatic nucleus.

    Directory of Open Access Journals (Sweden)

    Giles E Duffield

    Full Text Available Glutamate neurotransmission and the N-methyl-D-aspartate receptor (NMDAR are central to photic signaling to the master circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN. NMDARs also play important roles in brain development including visual input circuits. The functional NMDAR is comprised of multiple subunits, but each requiring the NR1 subunit for normal activity. The NR1 can be alternatively spliced to produce isoforms that confer different functional properties on the NMDAR. The SCN undergoes extensive developmental changes during postnatal life, including synaptogenesis and acquisition of photic signaling. These changes are especially important in the highly photoperiodic Siberian hamster, in which development of sensitivity to photic cues within the SCN could impact early physiological programming. In this study we examined the expression of NR1 isoforms in the hamster at different developmental ages. Gene expression in the forebrain was quantified by in situ hybridization using oligonucleotide probes specific to alternatively spliced regions of the NR1 heteronuclear mRNA, including examination of anterior hypothalamus, piriform cortex, caudate-putamen, thalamus and hippocampus. Gene expression analysis within the SCN revealed the absence of the N1 cassette, the presence of the C2 cassette alone and the combined absence of C1 and C2 cassettes, indicating that the dominant splice variants are NR1-2a and NR1-4a. Whilst we observe changes at different developmental ages in levels of NR1 isoform probe hybridization in various forebrain structures, we find no significant changes within the SCN. This suggests that a switch in NR1 isoform does not underlie or is not produced by developmental changes within the hamster SCN. Consistency of the NR1 isoforms would ensure that the response of the SCN cells to photic signals remains stable throughout life, an important aspect of the function of the SCN as a responder to

  9. Hypoxia inducible factor 1α gene (HIF-1α splice variants: potential prognostic biomarkers in breast cancer

    Directory of Open Access Journals (Sweden)

    Bonnier Pascal

    2010-07-01

    Full Text Available Abstract Background Hypoxia-inducible factor 1 (HIF-1 is a master transcriptional regulator of genes regulating oxygen homeostasis. The HIF-1 protein is composed of two HIF-1α and HIF-1β/aryl hydrocarbon receptor nuclear translocator (ARNT subunits. The prognostic relevance of HIF-1α protein overexpression has been shown in breast cancer. The impact of HIF-1α alternative splice variant expression on breast cancer prognosis in terms of metastasis risk is not well known. Methods Using real-time quantitative reverse transcription PCR assays, we measured mRNA concentrations of total HIF-1α and 4 variants in breast tissue specimens in a series of 29 normal tissues or benign lesions (normal/benign and 53 primary carcinomas. In breast cancers HIF-1α splice variant levels were compared to clinicopathological parameters including tumour microvessel density and metastasis-free survival. Results HIF-1α isoforms containing a three base pairs TAG insertion between exon 1 and exon 2 (designated HIF-1αTAG and HIF-1α736 mRNAs were found expressed at higher levels in oestrogen receptor (OR-negative carcinomas compared to normal/benign tissues (P = 0.009 and P = 0.004 respectively. In breast carcinoma specimens, lymph node status was significantly associated with HIF-1αTAG mRNA levels (P = 0.037. Significant statistical association was found between tumour grade and HIF-1αTAG (P = 0.048, and total HIF-1α (P = 0.048 mRNA levels. HIF-1αTAG mRNA levels were also inversely correlated with both oestrogen and progesterone receptor status (P = 0.005 and P = 0.033 respectively. Univariate analysis showed that high HIF-1αTAG mRNA levels correlated with shortened metastasis free survival (P = 0.01. Conclusions Our results show for the first time that mRNA expression of a HIF-1αTAG splice variant reflects a stage of breast cancer progression and is associated with a worse prognosis. See commentary: http://www.biomedcentral.com/1741-7015/8/45

  10. The evolutionary fate of alternatively spliced homologous exons after gene duplication.

    Science.gov (United States)

    Abascal, Federico; Tress, Michael L; Valencia, Alfonso

    2015-06-01

    Alternative splicing and gene duplication are the two main processes responsible for expanding protein functional diversity. Although gene duplication can generate new genes and alternative splicing can introduce variation through alternative gene products, the interplay between the two processes is complex and poorly understood. Here, we have carried out a study of the evolution of alternatively spliced exons after gene duplication to better understand the interaction between the two processes. We created a manually curated set of 97 human genes with mutually exclusively spliced homologous exons and analyzed the evolution of these exons across five distantly related vertebrates (lamprey, spotted gar, zebrafish, fugu, and coelacanth). Most of these exons had an ancient origin (more than 400 Ma). We found examples supporting two extreme evolutionary models for the behaviour of homologous axons after gene duplication. We observed 11 events in which gene duplication was accompanied by splice isoform separation, that is, each paralog specifically conserved just one distinct ancestral homologous exon. At other extreme, we identified genes in which the homologous exons were always conserved within paralogs, suggesting that the alternative splicing event cannot easily be separated from the function in these genes. That many homologous exons fall in between these two extremes highlights the diversity of biological systems and suggests that the subtle balance between alternative splicing and gene duplication is adjusted to the specific cellular context of each gene. PMID:25931610

  11. Ancient nature of alternative splicing and functions of introns

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Kemin; Salamov, Asaf; Kuo, Alan; Aerts, Andrea; Grigoriev, Igor

    2011-03-21

    Using four genomes: Chamydomonas reinhardtii, Agaricus bisporus, Aspergillus carbonarius, and Sporotricum thermophile with EST coverage of 2.9x, 8.9x, 29.5x, and 46.3x respectively, we identified 11 alternative splicing (AS) types that were dominated by intron retention (RI; biased toward short introns) and found 15, 35, 52, and 63percent AS of multiexon genes respectively. Genes with AS were more ancient, and number of AS correlated with number of exons, expression level, and maximum intron length of the gene. Introns with tendency to be retained had either stop codons or length of 3n+1 or 3n+2 presumably triggering nonsense-mediated mRNA decay (NMD), but introns retained in major isoforms (0.2-6percent of all introns) were biased toward 3n length and stop codon free. Stopless introns were biased toward phase 0, but 3n introns favored phase 1 that introduced more flexible and hydrophilic amino acids on both ends of introns which would be less disruptive to protein structure. We proposed a model in which minor RI intron could evolve into major RI that could facilitate intron loss through exonization.

  12. Identification of a novel splice variant of human PD-L1 Mrna encoding an isoform-lacking Igv-like domain

    Institute of Scientific and Technical Information of China (English)

    Xian-hui HE; Li-hui XU; Yi LIU

    2005-01-01

    Aim: To investigate the expression and regulation of PD-1 ligand 1 (PD-L1) in peripheral blood mononuclear cells (PBMC). Methods: The cDNA encoding human PD-L1 precursor was cloned from the total RNA extracted from the resting and phorbol dibutyrate plus ionomycin- or phytohemagglutinin-activated PBMC, by reverse transcription polymerase chain reaction (RT-PCR), and independent clones were sequenced and analyzed. The expression and subcellular localization were examined in transiently transfected cells. The PD-L1 gene expression in different PBMC was also analyzed by RT-PCR. Results: A novel human PD-L1 splice variant was identified from the activated PBMC. It was generated by splicing out exon 2 encoding an immunoglobulin variable domain (Igv)-like domain but retaining all other exons without a frame-shift. Consequently, the putative translated protein contained all other domains including the transmembrane region except for the Igv-like domain. Furthermore, the conventional isoform was expressed on the plasma surface whereas the novel isoform showed a pattern of intmcellular membrane distribution in transiently transfected K562 cells. In addition, the expression pattern of the PD-L1 splice variant was variable in different individuals and in different cellular status. Conclusion: PD-L1 expression may be regulated at the posttranscriptional level through alternative splicing, and modulation of the PD-L1 isoform expression may influence the outcome of specific immune responses in the peripheral tissues.

  13. Alternative splicing of exon 17 and a missense mutation in exon 20 of the insulin receptor gene in two brothers with a novel syndrome of insulin resistance (congenital fiber-type disproportion myopathy)

    DEFF Research Database (Denmark)

    Vorwerk, P; Christoffersen, C T; Müller, J;

    1999-01-01

    compound heterozygotes for mutations in the IR gene. The maternal allele was alternatively spliced in exon 17 due to a point mutation in the -1 donor splice site of the exon. The abnormal skipping of exon 17 shifts the amino acid reading frame and leads to a truncated IR, missing the entire tyrosine kinase...... domain. In the correct spliced variant, the point mutation is silent and results in a normally translated IR. The paternal allele carries a missense mutation in the tyrosine kinase domain. All three cDNA variants were present in the lymphocytes of the patients. Purified IR from 293 cells overexpressing...

  14. Alternative splicing regulated by butyrate in bovine epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sitao Wu

    Full Text Available As a signaling molecule and an inhibitor of histone deacetylases (HDACs, butyrate exerts its impact on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. This study examined the effect of butyrate on alternative splicing in bovine epithelial cells using RNA-seq technology. Junction reads account for 11.28 and 12.32% of total mapped reads between the butyrate-treated (BT and control (CT groups. 201,326 potential splicing junctions detected were supported by ≥ 3 junction reads. Approximately 94% of these junctions conformed to the consensus sequence (GT/AG while ~3% were GC/AG junctions. No AT/AC junctions were observed. A total of 2,834 exon skipping events, supported by a minimum of 3 junction reads, were detected. At least 7 genes, their mRNA expression significantly affected by butyrate, also had exon skipping events differentially regulated by butyrate. Furthermore, COL5A3, which was induced 310-fold by butyrate (FDR <0.001 at the gene level, had a significantly higher number of junction reads mapped to Exon#8 (Donor and Exon#11 (Acceptor in BT. This event had the potential to result in the formation of a COL5A3 mRNA isoform with 2 of the 69 exons missing. In addition, 216 differentially expressed transcript isoforms regulated by butyrate were detected. For example, Isoform 1 of ORC1 was strongly repressed by butyrate while Isoform 2 remained unchanged. Butyrate physically binds to and inhibits all zinc-dependent HDACs except HDAC6 and HDAC10. Our results provided evidence that butyrate also regulated deacetylase activities of classical HDACs via its transcriptional control. Moreover, thirteen gene fusion events differentially affected by butyrate were identified. Our results provided a snapshot into complex transcriptome dynamics regulated by butyrate, which will facilitate our understanding of the biological effects of butyrate and other HDAC

  15. Interpretation, stratification and evidence for sequence variants affecting mRNA splicing in complete human genome sequences.

    Science.gov (United States)

    Shirley, Ben C; Mucaki, Eliseos J; Whitehead, Tyson; Costea, Paul I; Akan, Pelin; Rogan, Peter K

    2013-04-01

    Information theory-based methods have been shown to be sensitive and specific for predicting and quantifying the effects of non-coding mutations in Mendelian diseases. We present the Shannon pipeline software for genome-scale mutation analysis and provide evidence that the software predicts variants affecting mRNA splicing. Individual information contents (in bits) of reference and variant splice sites are compared and significant differences are annotated and prioritized. The software has been implemented for CLC-Bio Genomics platform. Annotation indicates the context of novel mutations as well as common and rare SNPs with splicing effects. Potential natural and cryptic mRNA splicing variants are identified, and null mutations are distinguished from leaky mutations. Mutations and rare SNPs were predicted in genomes of three cancer cell lines (U2OS, U251 and A431), which were supported by expression analyses. After filtering, tractable numbers of potentially deleterious variants are predicted by the software, suitable for further laboratory investigation. In these cell lines, novel functional variants comprised 6-17 inactivating mutations, 1-5 leaky mutations and 6-13 cryptic splicing mutations. Predicted effects were validated by RNA-seq analysis of the three aforementioned cancer cell lines, and expression microarray analysis of SNPs in HapMap cell lines. PMID:23499923

  16. Expression of a Splice Variant of CYP26B1 in Betel Quid-Related Oral Cancer

    Directory of Open Access Journals (Sweden)

    Ping-Ho Chen

    2014-01-01

    Full Text Available Betel quid (BQ is a psychostimulant, an addictive substance, and a group 1 carcinogen that exhibits the potential to induce adverse health effects. Approximately, 600 million users chew a variety of BQ. Areca nut (AN is a necessary ingredient in BQ products. Arecoline is the primary alkaloid in the AN and can be metabolized through the cytochrome P450 (CYP superfamily by inducing reactive oxygen species (ROS production. Full-length CYP26B1 is related to the development of oral pharyngeal cancers. We investigated whether a splice variant of CYP26B1 is associated with the occurrence of ROS related oral and pharyngeal cancer. Cytotoxicity assays were used to measure the effects of arecoline on cell viability in a dose-dependent manner. In vitro and in vivo studies were conducted to evaluate the expression of the CYP26B1 splice variant. The CYP26B1 splice variant exhibited lower expression than did full-length CYP26B1 in the human gingival fibroblast-1 and Ca9-22 cell models. Increased expression of the CYP26B1 splice variant was observed in human oral cancer tissue compared with adjacent normal tissue, and increased expression was observed in patients at a late tumor stage. Our results suggested that the CYP26B1 splice variant is associated with the occurrence of BQ-related oral cancer.

  17. Genetic variations and alternative splicing. The Glioma associated oncogene 1, GLI1.

    Directory of Open Access Journals (Sweden)

    Peter eZaphiropoulos

    2012-07-01

    Full Text Available Alternative splicing is a post-transcriptional regulatory process that is attaining stronger recognition as a modulator of gene expression. Alternative splicing occurs when the primary RNA transcript is differentially processed into more than one mature RNAs. This is the result of a variable definition/inclusion of the exons, the sequences that are excised from the primary RNA to form the mature RNAs. Consequently, RNA expression can generate a collection of differentially spliced RNAs, which may distinctly influence subsequent biological events, such as protein synthesis or other biomolecular interactions. Still the mechanisms that control exon definition and exon inclusion are not fully clarified. This mini-review highlights advances in this field as well as the impact of single nucleotide polymorphisms in affecting splicing decisions. The Glioma associated oncogene 1, GLI1, is taken as an example in addressing the role of nucleotide substitutions for splicing regulation.

  18. ProtAnnot: an App for Integrated Genome Browser to display how alternative splicing and transcription affect proteins

    Science.gov (United States)

    Mall, Tarun; Eckstein, John; Norris, David; Vora, Hiral; Freese, Nowlan H.; Loraine, Ann E.

    2016-01-01

    Summary: One gene can produce multiple transcript variants encoding proteins with different functions. To facilitate visual analysis of transcript variants, we developed ProtAnnot, which shows protein annotations in the context of genomic sequence. ProtAnnot searches InterPro and displays profile matches (protein annotations) alongside gene models, exposing how alternative promoters, splicing and 3′ end processing add, remove, or remodel functional motifs. To draw attention to these effects, ProtAnnot color-codes exons by frame and displays a cityscape graphic summarizing exonic sequence at each position. These techniques make visual analysis of alternative transcripts faster and more convenient for biologists. Availability and implementation: ProtAnnot is a plug-in App for Integrated Genome Browser, an open source desktop genome browser available from http://www.bioviz.org. Contact: aloraine@uncc.edu PMID:27153567

  19. A splice variant of RILP induces lysosomal clustering independent of dynein recruitment

    International Nuclear Information System (INIS)

    The small GTPase Rab7 controls fusion and transport of late endocytic compartments. A critical mediator is the Rab7 effector RILP that recruits the minus-end dynein-dynactin motor complex to these compartments. We identified a natural occurring splice variant of RILP (RILPsv) lacking only 27 amino acids encoded by exon VII. Both variants bind Rab7, prolong its GTP-bound state, and induce clustering of late endocytic compartments. However, RILPsv does not recruit the dynein-dynactin complex, implicating exon VII in motor recruitment. Clustering might still occur via dimerization, since both RILP and RILPsv are able to form hetero- and homo-dimers. Moreover, both effectors compete for Rab7 binding but with different outcome for dynein-dynactin recruitment and transport. Hence, RILPsv provides an extra dimension to the control of vesicle fusion and transport by the small GTPase Rab7

  20. Expression of Two Novel Alternatively Spliced COL2A1 Isoforms During Chondrocyte Differentiation

    OpenAIRE

    McAlinden, Audrey; Johnstone, Brian; Kollar, John; Kazmi, Najam; Hering, Thomas M.

    2007-01-01

    Alternative splicing of the type II procollagen gene (COL2A1) is developmentally-regulated during chondrogenesis. Type IIA procollagen (+ exon 2) is synthesized by chondroprogenitor cells while type IIB procollagen (- exon 2) is synthesized by differentiated chondrocytes. Here, we report expression of two additional alternatively spliced COL2A1 isoforms during chondrocyte differentiation of bone marrow derived mesenchymal stem cells (MSCs). One isoform, named IIC, contains only the first 34 n...

  1. Transcriptome Bioinformatical Analysis of Vertebrate Stages of Schistosoma japonicum Reveals Alternative Splicing Events

    OpenAIRE

    Xinye Wang; Xindong Xu; Xingyu Lu; Yuanbin Zhang; Weiqing Pan

    2015-01-01

    Alternative splicing is a molecular process that contributes greatly to the diversification of proteome and to gene functions. Understanding the mechanisms of stage-specific alternative splicing can provide a better understanding of the development of eukaryotes and the functions of different genes. Schistosoma japonicum is an infectious blood-dwelling trematode with a complex lifecycle that causes the tropical disease schistosomiasis. In this study, we analyzed the transcriptome of Schistoso...

  2. Contribution of bioinformatics predictions and functional splicing assays to the interpretation of unclassified variants of the BRCA genes

    OpenAIRE

    Théry, Jean Christophe; Krieger, Sophie,; Gaildrat, Pascaline; Révillion, Françoise; Buisine, Marie-Pierre; Killian, Audrey; Duponchel, Christiane; Rousselin, Antoine; Vaur, Dominique; Peyrat, Jean-Philippe; Berthet, Pascaline; Frébourg, Thierry; Martins, Alexandra; Hardouin, Agnès; Tosi, Mario

    2011-01-01

    A large fraction of sequence variants of unknown significance (VUS) of the breast and ovarian cancer susceptibility genes BRCA1 and BRCA2 may induce splicing defects. We analyzed 53 VUSs of BRCA1 or BRCA2, detected in consecutive molecular screenings, by using five splicing prediction programs, and we classified them into two groups according to the strength of the predictions. In parallel, we tested them by using functional splicing assays. A total of 10 VUSs were predicted by two or more pr...

  3. The polypyrimidine tract binding protein regulates desaturase alternative splicing and PUFA composition

    OpenAIRE

    Reardon, Holly T; Park, Woo Jung; Zhang, Jimmy; Lawrence, Peter; Kothapalli, Kumar S. D.; Brenna, J. Thomas

    2011-01-01

    The Δ6 desaturase, encoded by FADS2, plays a crucial role in omega-3 and omega-6 fatty acid synthesis. These fatty acids are essential components of the central nervous system, and they act as precursors for eicosanoid signaling molecules and as direct modulators of gene expression. The polypyrimidine tract binding protein (PTB or hnRNP I) is a splicing factor that regulates alternative pre-mRNA splicing. Here, PTB is shown to bind an exonic splicing silencer element and repress alternative s...

  4. Effects of eccentric cycling exercise on IGF-I splice variant expression in the muscles of young and elderly people

    DEFF Research Database (Denmark)

    Hameed, M.; Toft, A.D.; Harridge, S.D.;

    2008-01-01

    Recovery from micro damage resulting from intensive exercise has been shown to take longer in older muscles. To investigate the factors that may contribute to muscle repair, we have studied the expression of two splice variants of the insulin-like growth factor-I (IGF-I) gene. IGF-IEa and mechano....... No difference was observed between the baseline levels of the two splice variants between the two subject groups. Eccentric cycling exercise resulted in a significant increase in the mean MGF mRNA in both young and old subjects but did not alter IGF-IEa mRNA levels in either age group. As reported...... previously (Toft et al., 2002), the levels of serum creatine kinase and myoglobin, markers of muscle damage, were increased significantly from baseline and to 5 days after exercise in both young and old subjects. This supports previous research in suggesting that the MGF splice variant is sensitive to muscle...

  5. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease

    International Nuclear Information System (INIS)

    Highlights: → Novel role for poliovirus 2A protease as splicing modulator. → Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. → Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2Apro modulating the alternative splicing of pre-mRNAs. Expression of 2Apro potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2Apro abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2Apro, leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2Apro on splicing is to selectively block the second catalytic step.

  6. Alternative splicing, a new target to block cellular gene expression by poliovirus 2A protease

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Enrique, E-mail: ealvarez@cbm.uam.es [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Nicolas Cabrera, 1 Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Castello, Alfredo; Carrasco, Luis; Izquierdo, Jose M. [Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Nicolas Cabrera, 1 Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2011-10-14

    Highlights: {yields} Novel role for poliovirus 2A protease as splicing modulator. {yields} Poliovirus 2A protease inhibits the alternative splicing of pre-mRNAs. {yields} Poliovirus 2A protease blocks the second catalytic step of splicing. -- Abstract: Viruses have developed multiple strategies to interfere with the gene expression of host cells at different stages to ensure their own survival. Here we report a new role for poliovirus 2A{sup pro} modulating the alternative splicing of pre-mRNAs. Expression of 2A{sup pro} potently inhibits splicing of reporter genes in HeLa cells. Low amounts of 2A{sup pro} abrogate Fas exon 6 skipping, whereas higher levels of protease fully abolish Fas and FGFR2 splicing. In vitro splicing of MINX mRNA using nuclear extracts is also strongly inhibited by 2A{sup pro}, leading to accumulation of the first exon and the lariat product containing the unspliced second exon. These findings reveal that the mechanism of action of 2A{sup pro} on splicing is to selectively block the second catalytic step.

  7. Discovery of naturally occurring splice variants of the rat histamine H3 receptor that act as dominant-negative isoforms.

    Science.gov (United States)

    Bakker, Remko A; Lozada, Adrian Flores; van Marle, André; Shenton, Fiona C; Drutel, Guillaume; Karlstedt, Kaj; Hoffmann, Marcel; Lintunen, Minnamaija; Yamamoto, Yumiko; van Rijn, Richard M; Chazot, Paul L; Panula, Pertti; Leurs, Rob

    2006-04-01

    We described previously the cDNA cloning of three functional rat histamine H3 receptor (rH3R) isoforms as well as the differential brain expression patterns of their corresponding mRNAs and signaling properties of the resulting rH3A, rH3B, and rH3C receptor isoforms (Mol Pharmacol 59:1-8). In the current report, we describe the cDNA cloning, mRNA localization in the rat central nervous system, and pharmacological characterization of three additional rH3R splice variants (rH3D, rH3E, and rH3F) that differ from the previously published isoforms in that they result from an additional alternative-splicing event. These new H3R isoforms lack the seventh transmembrane (TM) helix and contain an alternative, putatively extracellular, C terminus (6TM-rH3 isoforms). After heterologous expression in COS-7 cells, radioligand binding or functional responses upon the application of various H3R ligands could not be detected for the 6TM-rH3 isoforms. In contrast to the rH3A receptor (rH3AR), detection of the rH3D isoform using hemagglutinin antibodies revealed that the rH3D isoform remains mainly intracellular. The expression of the rH3D-F splice variants, however, modulates the cell surface expression-levels and subsequent functional responses of the 7TM H3R isoforms. Coexpression of the rH3AR and the rH3D isoforms resulted in the intracellular retention of the rH3AR and reduced rH3AR functionality. Finally, we show that in rat brain, the H3R mRNA expression levels are modulated upon treatment with the convulsant pentylenetetrazole, suggesting that the rH3R isoforms described herein thus represent a novel physiological mechanism for controlling the activity of the histaminergic system. PMID:16415177

  8. Discovery of a mammalian splice variant of myostatin that stimulates myogenesis.

    Directory of Open Access Journals (Sweden)

    Ferenc Jeanplong

    Full Text Available Myostatin plays a fundamental role in regulating the size of skeletal muscles. To date, only a single myostatin gene and no splice variants have been identified in mammals. Here we describe the splicing of a cryptic intron that removes the coding sequence for the receptor binding moiety of sheep myostatin. The deduced polypeptide sequence of the myostatin splice variant (MSV contains a 256 amino acid N-terminal domain, which is common to myostatin, and a unique C-terminus of 65 amino acids. Western immunoblotting demonstrated that MSV mRNA is translated into protein, which is present in skeletal muscles. To determine the biological role of MSV, we developed an MSV over-expressing C2C12 myoblast line and showed that it proliferated faster than that of the control line in association with an increased abundance of the CDK2/Cyclin E complex in the nucleus. Recombinant protein made for the novel C-terminus of MSV also stimulated myoblast proliferation and bound to myostatin with high affinity as determined by surface plasmon resonance assay. Therefore, we postulated that MSV functions as a binding protein and antagonist of myostatin. Consistent with our postulate, myostatin protein was co-immunoprecipitated from skeletal muscle extracts with an MSV-specific antibody. MSV over-expression in C2C12 myoblasts blocked myostatin-induced Smad2/3-dependent signaling, thereby confirming that MSV antagonizes the canonical myostatin pathway. Furthermore, MSV over-expression increased the abundance of MyoD, Myogenin and MRF4 proteins (P<0.05, which indicates that MSV stimulates myogenesis through the induction of myogenic regulatory factors. To help elucidate a possible role in vivo, we observed that MSV protein was more abundant during early post-natal muscle development, while myostatin remained unchanged, which suggests that MSV may promote the growth of skeletal muscles. We conclude that MSV represents a unique example of intra-genic regulation in which a

  9. Expression analyses of splice variants of zebrafish cyclin-dependent kinase-like 5 and its substrate, amphiphysin 1.

    Science.gov (United States)

    Katayama, Syouichi; Senga, Yukako; Oi, Ami; Miki, Yosuke; Sugiyama, Yasunori; Sueyoshi, Noriyuki; Kameshita, Isamu

    2016-05-25

    Mammalian cyclin-dependent kinase-like 5 (CDKL5) is a Ser/Thr protein kinase mainly expressed in the central nervous system and believed to be involved in neuronal functions. However, the functions of CDKL5 in fishes have not been investigated. Therefore, in this study, we cloned and characterized zebrafish CDKL5 (zCDKL5) and its substrate, amphiphysin 1 (zAmph1). Two alternative splice variants of zCDKL5, zCDKL5-Long (zCDKL5-L) and zCDKL5-Short (zCDKL5-S), and three splice variants of zAmph1, zAmph1a, zAmph1b and zAmph1c, were cloned from a zebrafish cDNA library. Using zAmph1a point mutants, we identified Ser-285 and Ser-293 as phosphorylation sites of zAmph1a by CDKL5. Transiently expressed zCDKL5-L and zCDKL5-S colocalized with zAmph1a in the cytoplasm of 293T cells. RT-PCR analysis revealed that zCDKL5-L was first observed 12hours post-fertilization (hpf) and increased thereafter, while zCDKL5-S appeared just after fertilization. zAmph1a was detected in all embryogenic stages and zAmph1b appeared from 12hpf, but the expression of zAmph1c was not observed in our experiments. In adult fish, zCDKL5-L was mainly expressed in the brain, but zCDKL5-S showed ubiquitous expression. zAmph1a was observed most abundantly in the eyes, whereas zAmph1b was predominantly expressed in the brain. zAmph1c was scarcely detected. These results suggest that phosphorylation of Amph1 by CDKL5 may be a common feature throughout animal species. PMID:26927518

  10. High qualitative and quantitative conservation of alternative splicing in Caenorhabditis elegans and Caenorhabditis briggsae

    DEFF Research Database (Denmark)

    Rukov, Jakob Lewin; Irimia, Manuel; Mørk, Søren;

    2007-01-01

    Alternative splicing (AS) is an important contributor to proteome diversity and is regarded as an explanatory factor for the relatively low number of human genes compared with less complex animals. To assess the evolutionary conservation of AS and its developmental regulation, we have investigated...... the qualitative and quantitative expression of 21 orthologous alternative splice events through the development of 2 nematode species separated by 85-110 Myr of evolutionary time. We demonstrate that most of these alternative splice events present in Caenorhabditis elegans are conserved in...... the regulatory mechanisms controlling AS are to a large extent conserved during the evolution of Caenorhabditis. This strong conservation indicates that both major and minor splice forms have important functional roles and that the relative quantities in which they are expressed are crucial. Our...

  11. Modification of Alternative Splicing of Bcl-x Pre-mRNA in Bladder Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhaohui; XING Shi'an; CHENG Ping; ZENG Fuqing; LU Gongcheng

    2006-01-01

    To modify the splicing pattern of Bcl-x and compare the effect of this approach with that of the antisense gene therapy in BIU-87 cell line of bladder cancer, by using 5'-Bcl-x AS to target downstream alternative 5'-Bcl-x splice site to shift splicing from Bcl-xL to Bcl-xS and 3'-Bcl-x AS antisense to the 3'-splice site of exon Ⅲ in Bcl-x pre- mRNA to down regulation of Bcl-xL expression,the inhibitory effects on cancer cells by modification of alternative splicing and antisense gene therapy were observed and compared by microscopy, MTT Assay, RT-PCR, FACS, Westhern bloting and clone formation. The growth of cells BIU-87 was inhibited in a dose- and time-dependent manner. Its inhibitory effect began 12 h after the exposure, reaching a maximum value after 72h. The number of cells decreased in S phase and the number increased in G1 phase. The ability to form foci was reduced and the antisense gene therapy was approximately half as efficient as modification of alternative splicing in inducing apoptosis. It is concluded that modification of splicing pattern of Bcl-x pre-mRNA in bladder cancer cell BIU-87 is better than antisense gene therapy in terms of tumor inhibition.

  12. Molecular characterization of MHC class II in the Australian invasive cane toad reveals multiple splice variants.

    Science.gov (United States)

    Lillie, Mette; Cui, Jian; Shine, Richard; Belov, Katherine

    2016-07-01

    The cane toad has gained notoriety for its invasion across the Australian landscape, with significant impacts on the native Australian fauna. The invasion has accelerated over time, with invading cane toads adapted for highly dispersive traits. This, however, has come at the cost of the immune system, with lower investment in some immune functions. To investigate the cane toad's immunogenetics, we characterized four major histocompatibility complex (MHC) class IIA and three MHC class IIB loci. Preliminary observations suggest very low allelic diversity at all loci. We also observed various splice isoforms. One isoform seen at one class IIA and two class IIB loci was missing exon 2, which is essential to peptide binding and presentation. The other isoform, observed at a class IIA locus, is likely to be a soluble MHC product. These results may suggest a significant role of alternative splicing of MHC loci in the Australian cane toad. PMID:27233954

  13. Identification of a third region of cell-specific alternative splicing in human fibronectin mRNA

    International Nuclear Information System (INIS)

    The authors describe here a third region of variability in human fibronectin (FN) due to alternative RNA splicing. Two other positions of alternative splicing have been reported previously (ED and IIICS). The third region involves a 273-nucleotide exon encoding exactly one 91-amino acid repeat of type III homology, located between the DNA- and the cell-binding domains of FN, which is either included in or excluded from FN mRNA. The two mRNA variants arising by an exon-skipping mechanism are present in cells known to synthesize the cellular form of FN. However, liver cells, which are the source of plasma FN, produce only messengers without the extra type III sequence. Therefore, the region described here resembles, both structurally and functionally, the previously described ED (for extra domain) region, located toward the C terminus of the molecule between the cell- and heparin- (hep 2) binding domains. The authors conclude that both the extra type III repeat (names EDII) and ED represent sequences restricted to cellular FN. Combination of all the possible patterns of splicing in the three regions described to date may generate up to 20 distinct FN polypeptides from a single gene

  14. Adding In Silico Assessment of Potential Splice Aberration to the Integrated Evaluation of BRCA Gene Unclassified Variants.

    Science.gov (United States)

    Vallée, Maxime P; Di Sera, Tonya L; Nix, David A; Paquette, Andrew M; Parsons, Michael T; Bell, Russel; Hoffman, Andrea; Hogervorst, Frans B L; Goldgar, David E; Spurdle, Amanda B; Tavtigian, Sean V

    2016-07-01

    Clinical mutation screening of the cancer susceptibility genes BRCA1 and BRCA2 generates many unclassified variants (UVs). Most of these UVs are either rare missense substitutions or nucleotide substitutions near the splice junctions of the protein coding exons. Previously, we developed a quantitative method for evaluation of BRCA gene UVs-the "integrated evaluation"-that combines a sequence analysis-based prior probability of pathogenicity with patient and/or tumor observational data to arrive at a posterior probability of pathogenicity. One limitation of the sequence analysis-based prior has been that it evaluates UVs from the perspective of missense substitution severity but not probability to disrupt normal mRNA splicing. Here, we calibrated output from the splice-site fitness program MaxEntScan to generate spliceogenicity-based prior probabilities of pathogenicity for BRCA gene variants; these range from 0.97 for variants with high probability to damage a donor or acceptor to 0.02 for exonic variants that do not impact a splice junction and are unlikely to create a de novo donor. We created a database http://priors.hci.utah.edu/PRIORS/ that provides the combined missense substitution severity and spliceogenicity-based probability of pathogenicity for BRCA gene single-nucleotide substitutions. We also updated the BRCA gene Ex-UV LOVD, available at http://hci-exlovd.hci.utah.edu, with 77 re-evaluable variants. PMID:26913838

  15. PGC1α -1 Nucleosome Position and Splice Variant Expression and Cardiovascular Disease Risk in Overweight and Obese Individuals.

    Science.gov (United States)

    Henagan, Tara M; Stewart, Laura K; Forney, Laura A; Sparks, Lauren M; Johannsen, Neil; Church, Timothy S

    2014-01-01

    PGC1α, a transcriptional coactivator, interacts with PPARs and others to regulate skeletal muscle metabolism. PGC1α undergoes splicing to produce several mRNA variants, with the NTPGC1α variant having a similar biological function to the full length PGC1α (FLPGC1α). CVD is associated with obesity and T2D and a lower percentage of type 1 oxidative fibers and impaired mitochondrial function in skeletal muscle, characteristics determined by PGC1α expression. PGC1α expression is epigenetically regulated in skeletal muscle to determine mitochondrial adaptations, and epigenetic modifications may regulate mRNA splicing. We report in this paper that skeletal muscle PGC1α  -1 nucleosome (-1N) position is associated with splice variant NTPGC1α but not FLPGC1α expression. Division of participants based on the -1N position revealed that those individuals with a -1N phased further upstream from the transcriptional start site (UP) expressed lower levels of NTPGC1α than those with the -1N more proximal to TSS (DN). UP showed an increase in body fat percentage and serum total and LDL cholesterol. These findings suggest that the -1N may be a potential epigenetic regulator of NTPGC1α splice variant expression, and -1N position and NTPGC1α variant expression in skeletal muscle are linked to CVD risk. This trial is registered with clinicaltrials.gov, identifier NCT00458133. PMID:25614734

  16. PGC1α −1 Nucleosome Position and Splice Variant Expression and Cardiovascular Disease Risk in Overweight and Obese Individuals

    Directory of Open Access Journals (Sweden)

    Tara M. Henagan

    2014-01-01

    Full Text Available PGC1α, a transcriptional coactivator, interacts with PPARs and others to regulate skeletal muscle metabolism. PGC1α undergoes splicing to produce several mRNA variants, with the NTPGC1α variant having a similar biological function to the full length PGC1α (FLPGC1α. CVD is associated with obesity and T2D and a lower percentage of type 1 oxidative fibers and impaired mitochondrial function in skeletal muscle, characteristics determined by PGC1α expression. PGC1α expression is epigenetically regulated in skeletal muscle to determine mitochondrial adaptations, and epigenetic modifications may regulate mRNA splicing. We report in this paper that skeletal muscle PGC1α  −1 nucleosome (−1N position is associated with splice variant NTPGC1α but not FLPGC1α expression. Division of participants based on the −1N position revealed that those individuals with a −1N phased further upstream from the transcriptional start site (UP expressed lower levels of NTPGC1α than those with the −1N more proximal to TSS (DN. UP showed an increase in body fat percentage and serum total and LDL cholesterol. These findings suggest that the −1N may be a potential epigenetic regulator of NTPGC1α splice variant expression, and −1N position and NTPGC1α variant expression in skeletal muscle are linked to CVD risk. This trial is registered with clinicaltrials.gov, identifier NCT00458133.

  17. cis-Acting and trans-acting modulation of equine infectious anemia virus alternative RNA splicing

    International Nuclear Information System (INIS)

    Equine infectious anemia virus (EIAV), a lentivirus distantly related to HIV-1, encodes regulatory proteins, EIAV Tat (ETat) and Rev (ERev), from a four-exon mRNA. Exon 3 of the tat/rev mRNA contains a 30-nucleotide purine-rich element (PRE) which binds both ERev and SF2/ASF, a member of the SR family of RNA splicing factors. To better understand the role of this element in the regulation of EIAV pre-mRNA splicing, we quantified the effects of mutation or deletion of the PRE on exon 3 splicing in vitro and on alternative splicing in vivo. We also determined the branch point elements upstream of exons 3 and 4. In vitro splicing of exon 3 to exon 4 was not affected by mutation of the PRE, and addition of purified SR proteins enhanced splicing independently of the PRE. In vitro splicing of exon 2 to exon 3 was dependent on the PRE; under conditions of excess SR proteins, either the PRE or the 5' splice site of exon 3 was sufficient to activate splicing. We applied isoform-specific primers in real-time RT-PCR reactions to quantitatively analyze alternative splicing in cells transfected with rev-minus EIAV provirus constructs. In the context of provirus with wild-type exon 3, greater than 80% of the viral mRNAs were multiply spliced, and of these, less than 1% excluded exon 3. Deletion of the PRE resulted in a decrease in the relative amount of multiply spliced mRNA to about 40% of the total and approximately 39% of the viral mRNA excluded exon 3. Ectopic expression of ERev caused a decrease in the relative amount of multiply spliced mRNA to approximately 50% of the total and increased mRNAs that excluded exon 3 to about 4%. Over-expression of SF2/ASF in cells transfected with wild-type provirus constructs inhibited splicing but did not significantly alter exon 3 skipping

  18. 肿瘤基因信使RNA可变剪接及其应用%Alternative splicing of tumor associated genes messenger RNA and application

    Institute of Scientific and Technical Information of China (English)

    张鑫桐; 岳文涛

    2014-01-01

    可变剪接作为基因的一种修饰方式,是真核细胞表达调控过程的重要因素。它使同一蛋白质编码基因能够产生多种转录本,极大地扩展了遗传信息的应用。在人类肿瘤细胞中前体信使RN A的可变剪接扮演着重要角色,一些重要基因通过可变剪接产生不同于正常细胞中的剪接异构体。这些肿瘤特异性剪接异构体的存在导致了肿瘤的发生、发展。深入探索肿瘤相关基因的可变剪接对肿瘤的诊断、治疗具有重要意义。%As a way of gene modification,alternative splicing is an important factor of eukaryotic gene expression and regulation.It makes various transcripts from one protein-coding gene,and greatly extends the genetic information.Alternative splicing of pre-messenger RNA plays an important role in tumor cells.By alter-native splicing,some important genes can generate splicing variants different from those in normal cells.The existence of tumor-specific splicing variants leads to the occurrence and progression of tumor.Therefore,explo-ration on the alternative splicing of tumor-associated genes may be of great significance in tumor diagnosis and treatment.

  19. Exon-centric regulation of pyruvate kinase M alternative splicing via mutually exclusive exons

    Institute of Scientific and Technical Information of China (English)

    Zhenxun Wang; Deblina Chatterjee; Hyun Yong Jeon; Martin Akerman; Matthew G. Vander Heiden; Lewis C. Cantley; Adrian R. Krainer

    2012-01-01

    Alternative splicing of the pyruvate kinase M gene (PK-M) can generate the M2 isoform and promote aerobic glycolysis and tumor growth.However,the cancer-specific alternative splicing regulation of PK-M is not completely understood.Here,we demonstrate that PK-M is regulated by reciprocal affects on the mutually exclusive exons 9 and 10,such that exon 9 is repressed and exon 10 is activated in cancer cells.Strikingly,exonic,rather than intronic,cis-elements are key determinants ef PK-M splicing isoform ratios.Using a systematic sub-exonic duplication approach,we identify a potent exonlc splicing enhancer in exon 10,which differs from its homologous counterpart in exon 9 by only two nucleotides.We identify SRSF3 as one of the cognate factors,and show that this serine/arginine-rich protein activates exon 10 and mediates changes in glucose metabolism.These findings provide mechanistic insights into the complex regulation of alternative splicing of a key regulator of the Warburg effect,and also have implications for other genes with a similar pattern of alternative splicing.

  20. Alternative splicing of the maize Ac transposase transcript in transgenic sugar beet (Beta vulgaris L.).

    Science.gov (United States)

    Lisson, Ralph; Hellert, Jan; Ringleb, Malte; Machens, Fabian; Kraus, Josef; Hehl, Reinhard

    2010-09-01

    The maize Activator/Dissociation (Ac/Ds) transposable element system was introduced into sugar beet. The autonomous Ac and non-autonomous Ds element excise from the T-DNA vector and integrate at novel positions in the sugar beet genome. Ac and Ds excisions generate footprints in the donor T-DNA that support the hairpin model for transposon excision. Two complete integration events into genomic sugar beet DNA were obtained by IPCR. Integration of Ac leads to an eight bp duplication, while integration of Ds in a homologue of a sugar beet flowering locus gene did not induce a duplication. The molecular structure of the target site indicates Ds integration into a double strand break. Analyses of transposase transcription using RT-PCR revealed low amounts of alternatively spliced mRNAs. The fourth intron of the transposase was found to be partially misspliced. Four different splice products were identified. In addition, the second and third exon were found to harbour two and three novel introns, respectively. These utilize each the same splice donor but several alternative splice acceptor sites. Using the SplicePredictor online tool, one of the two introns within exon two is predicted to be efficiently spliced in maize. Most interestingly, splicing of this intron together with the four major introns of Ac would generate a transposase that lacks the DNA binding domain and two of its three nuclear localization signals, but still harbours the dimerization domain. PMID:20512402

  1. DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation

    DEFF Research Database (Denmark)

    Close, Pierre; East, Philip; Dirac-Svejstrup, A Barbara;

    2012-01-01

    Alternative messenger RNA splicing is the main reason that vast mammalian proteomic complexity can be achieved with a limited number of genes. Splicing is physically and functionally coupled to transcription, and is greatly affected by the rate of transcript elongation. As the nascent pre...... and help to integrate transcript elongation with mRNA splicing remain unclear. Here we characterize the human interactome of chromatin-associated mRNP particles. This led us to identify deleted in breast cancer 1 (DBC1) and ZNF326 (which we call ZNF-protein interacting with nuclear mRNPs and DBC1...... (ZIRD)) as subunits of a novel protein complex--named DBIRD--that binds directly to RNAPII. DBIRD regulates alternative splicing of a large set of exons embedded in (A + T)-rich DNA, and is present at the affected exons. RNA-interference-mediated DBIRD depletion results in region-specific decreases in...

  2. Genome-wide analysis of light-regulated alternative splicing mediated by photoreceptors in Physcomitrella patens

    OpenAIRE

    Wu, Hshin-Ping; Su, Yi-shin; Chen, Hsiu-Chen; Chen, Yu-Rong; Wu, Chia-Chen; Lin, Wen-Dar; Tu, Shih-Long

    2014-01-01

    Background Light is one of the most important factors regulating plant growth and development. Light-sensing photoreceptors tightly regulate gene expression to control photomorphogenic responses. Although many levels of gene expression are modulated by photoreceptors, regulation at the mRNA splicing step remains unclear. Results We performed high-throughput mRNA sequencing to analyze light-responsive changes in alternative splicing in the moss Physcomitrella patens, and found that a large num...

  3. Comparative analysis of serine/arginine-rich proteins across 27 eukaryotes: insights into sub-family classification and extent of alternative splicing.

    Directory of Open Access Journals (Sweden)

    Dale N Richardson

    Full Text Available Alternative splicing (AS of pre-mRNA is a fundamental molecular process that generates diversity in the transcriptome and proteome of eukaryotic organisms. SR proteins, a family of splicing regulators with one or two RNA recognition motifs (RRMs at the N-terminus and an arg/ser-rich domain at the C-terminus, function in both constitutive and alternative splicing. We identified SR proteins in 27 eukaryotic species, which include plants, animals, fungi and "basal" eukaryotes that lie outside of these lineages. Using RNA recognition motifs (RRMs as a phylogenetic marker, we classified 272 SR genes into robust sub-families. The SR gene family can be split into five major groupings, which can be further separated into 11 distinct sub-families. Most flowering plants have double or nearly double the number of SR genes found in vertebrates. The majority of plant SR genes are under purifying selection. Moreover, in all paralogous SR genes in Arabidopsis, rice, soybean and maize, one of the two paralogs is preferentially expressed throughout plant development. We also assessed the extent of AS in SR genes based on a splice graph approach (http://combi.cs.colostate.edu/as/gmap_SRgenes. AS of SR genes is a widespread phenomenon throughout multiple lineages, with alternative 3' or 5' splicing events being the most prominent type of event. However, plant-enriched sub-families have 57%-88% of their SR genes experiencing some type of AS compared to the 40%-54% seen in other sub-families. The SR gene family is pervasive throughout multiple eukaryotic lineages, conserved in sequence and domain organization, but differs in gene number across lineages with an abundance of SR genes in flowering plants. The higher number of alternatively spliced SR genes in plants emphasizes the importance of AS in generating splice variants in these organisms.

  4. Expression of insulin receptor spliced variants and their functional correlates in muscle from patients with non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Hansen, Torben; Bjørbaek, C; Vestergaard, H;

    1993-01-01

    Due to alternative splicing of exon 11 of the receptor gene, the human insulin receptor exists in two forms, that have distinct tissue-specific expression and are functionally different. Needle biopsies obtained from vastus lateralis muscle from 20 patients with noninsulin-dependent diabetes...... mellitus (NIDDM) and 20 normal control subjects were analyzed for the relative expression of insulin receptor mRNA variants in a novel assay using fluorescence-labeled primers and subsequent analysis on an automated DNA sequencer. In subgroups of patients and control subjects, insulin binding and tyrosine...

  5. A Splice Region Variant in LDLR Lowers Non-high Density Lipoprotein Cholesterol and Protects against Coronary Artery Disease

    DEFF Research Database (Denmark)

    Gretarsdottir, Solveig; Helgason, Hannes; Helgadottir, Anna;

    2015-01-01

    .7 × 10⁻⁸ and rs17248748-T, OR = 0.92 and Padj = 0.022). The LDLR splice region variant, rs72658867-A, located at position +5 in intron 14 (NM_000527:c.2140+5G>A), causes retention of intron 14 during transcription and is expected to produce a truncated LDL receptor lacking domains essential for function...

  6. Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Miki L.; Clark, Tyson A.; Gee, Sherry L.; Kang, Jeong-Ah; Schweitzer, Anthony C.; Wickrema, Amittha; Conboy, John G.

    2009-02-03

    Differentiating erythroid cells execute a unique gene expression program that insures synthesis of the appropriate proteome at each stage of maturation. Standard expression microarrays provide important insight into erythroid gene expression but cannot detect qualitative changes in transcript structure, mediated by RNA processing, that alter structure and function of encoded proteins. We analyzed stage-specific changes in the late erythroid transcriptome via use of high-resolution microarrays that detect altered expression of individual exons. Ten differentiation-associated changes in erythroblast splicing patterns were identified, including the previously known activation of protein 4.1R exon 16 splicing. Six new alternative splicing switches involving enhanced inclusion of internal cassette exons were discovered, as well as 3 changes in use of alternative first exons. All of these erythroid stage-specific splicing events represent activated inclusion of authentic annotated exons, suggesting they represent an active regulatory process rather than a general loss of splicing fidelity. The observation that 3 of the regulated transcripts encode RNA binding proteins (SNRP70, HNRPLL, MBNL2) may indicate significant changes in the RNA processing machinery of late erythroblasts. Together, these results support the existence of a regulated alternative pre-mRNA splicing program that is critical for late erythroid differentiation.

  7. Semi-supervised Learning Predicts Approximately One Third of the Alternative Splicing Isoforms as Functional Proteins

    Directory of Open Access Journals (Sweden)

    Yanqi Hao

    2015-07-01

    Full Text Available Alternative splicing acts on transcripts from almost all human multi-exon genes. Notwithstanding its ubiquity, fundamental ramifications of splicing on protein expression remain unresolved. The number and identity of spliced transcripts that form stably folded proteins remain the sources of considerable debate, due largely to low coverage of experimental methods and the resulting absence of negative data. We circumvent this issue by developing a semi-supervised learning algorithm, positive unlabeled learning for splicing elucidation (PULSE; http://www.kimlab.org/software/pulse, which uses 48 features spanning various categories. We validated its accuracy on sets of bona fide protein isoforms and directly on mass spectrometry (MS spectra for an overall AU-ROC of 0.85. We predict that around 32% of “exon skipping” alternative splicing events produce stable proteins, suggesting that the process engenders a significant number of previously uncharacterized proteins. We also provide insights into the distribution of positive isoforms in various functional classes and into the structural effects of alternative splicing.

  8. Evaluation of a 5-tier scheme proposed for classification of sequence variants using bioinformatic and splicing assay data: inter-reviewer variability and promotion of minimum reporting guidelines.

    Science.gov (United States)

    Walker, Logan C; Whiley, Phillip J; Houdayer, Claude; Hansen, Thomas V O; Vega, Ana; Santamarina, Marta; Blanco, Ana; Fachal, Laura; Southey, Melissa C; Lafferty, Alan; Colombo, Mara; De Vecchi, Giovanna; Radice, Paolo; Spurdle, Amanda B

    2013-10-01

    Splicing assays are commonly undertaken in the clinical setting to assess the clinical relevance of sequence variants in disease predisposition genes. A 5-tier classification system incorporating both bioinformatic and splicing assay information was previously proposed as a method to provide consistent clinical classification of such variants. Members of the ENIGMA Consortium Splicing Working Group undertook a study to assess the applicability of the scheme to published assay results, and the consistency of classifications across multiple reviewers. Splicing assay data were identified for 235 BRCA1 and 176 BRCA2 unique variants, from 77 publications. At least six independent reviewers from research and/or clinical settings comprehensively examined splicing assay methods and data reported for 22 variant assays of 21 variants in four publications, and classified the variants using the 5-tier classification scheme. Inconsistencies in variant classification occurred between reviewers for 17 of the variant assays. These could be attributed to a combination of ambiguity in presentation of the classification criteria, differences in interpretation of the data provided, nonstandardized reporting of results, and the lack of quantitative data for the aberrant transcripts. We propose suggestions for minimum reporting guidelines for splicing assays, and improvements to the 5-tier splicing classification system to allow future evaluation of its performance as a clinical tool. PMID:23893897

  9. S6K1 Alternative Splicing Modulates Its Oncogenic Activity and Regulates mTORC1

    Directory of Open Access Journals (Sweden)

    Vered Ben-Hur

    2013-01-01

    Full Text Available Ribosomal S6 kinase 1 (S6K1 is a major mTOR downstream signaling molecule that regulates cell size and translation efficiency. Here, we report that short isoforms of S6K1 are overproduced in breast cancer cell lines and tumors. Overexpression of S6K1 short isoforms induces transformation of human breast epithelial cells. The long S6K1 variant (Iso-1 induced opposite effects. It inhibits Ras-induced transformation and tumor formation, while its knockdown or knockout induces transformation, suggesting that Iso-1 has a tumor-suppressor activity. Furthermore, we found that S6K1 short isoforms bind and activate mTORC1, elevating 4E-BP1 phosphorylation, cap-dependent translation, and Mcl-1 protein levels. Both a phosphorylation-defective 4E-BP1 mutant and the mTORC1 inhibitor rapamycin partially blocked the oncogenic effects of S6K1 short isoforms, suggesting that these are mediated by mTORC1 and 4E-BP1. Thus, alternative splicing of S6K1 acts as a molecular switch in breast cancer cells, elevating oncogenic isoforms that activate mTORC1.

  10. Calcium-insensitive splice variants of mammalian E1 subunit of 2-oxoglutarate dehydrogenase complex with tissue-specific patterns of expression.

    Science.gov (United States)

    Denton, Richard M; Pullen, Timothy J; Armstrong, Craig T; Heesom, Kate J; Rutter, Guy A

    2016-05-01

    The 2-oxoglutarate dehydrogenase (OGDH) complex is an important control point in vertebrate mitochondrial oxidative metabolism, including in the citrate cycle and catabolism of alternative fuels including glutamine. It is subject to allosteric regulation by NADH and the ATP/ADP ratio, and by Ca(2+) through binding to the E1 subunit. The latter involves a unique Ca(2+)-binding site which includes D(114)ADLD (site 1). Here, we describe three splice variants of E1 in which either the exon expressing this site is replaced with another exon (loss of site 1, LS1) or an additional exon is expressed leading to the insertion of 15 amino acids just downstream of site 1 (Insert), or both changes occur together (LS1/Insert). We show that all three variants are essentially Ca(2+)-insensitive. Comparison of massive parallel sequence (RNA-Seq) databases demonstrates predominant expression of the Ca(2+)-sensitive archetype form in heart and skeletal muscle, but substantial expression of the Ca(2+)-insensitive variants in brain, pancreatic islets and other tissues. Detailed proteomic and activity studies comparing OGDH complexes from rat heart and brain confirmed the substantial difference in expression between these tissues. The evolution of OGDH variants was explored using bioinformatics, and this indicated that Ca(2+)-sensitivity arose with the emergence of chordates. In all species examined, this was associated with the co-emergence of Ca(2+)-insensitive variants suggesting a retained requirement for the latter in some settings. Tissue-specific expression of OGDH splice variants may thus provide a mechanism that tunes the control of the enzyme to the specialized metabolic and signalling needs of individual cell types. PMID:26936970

  11. Computational Analysis of an Evolutionarily Conserved VertebrateMuscle Alternative Splicing Program

    Energy Technology Data Exchange (ETDEWEB)

    Das, Debopriya; Clark, Tyson A.; Schweitzer, Anthony; Marr,Henry; Yamamoto, Miki L.; Parra, Marilyn K.; Arribere, Josh; Minovitsky,Simon; Dubchak, Inna; Blume, John E.; Conboy, John G.

    2006-06-15

    A novel exon microarray format that probes gene expression with single exon resolution was employed to elucidate critical features of a vertebrate muscle alternative splicing program. A dataset of 56 microarray-defined, muscle-enriched exons and their flanking introns were examined computationally in order to investigate coordination of the muscle splicing program. Candidate intron regulatory motifs were required to meet several stringent criteria: significant over-representation near muscle-enriched exons, correlation with muscle expression, and phylogenetic conservation among genomes of several vertebrate orders. Three classes of regulatory motifs were identified in the proximal downstream intron, within 200nt of the target exons: UGCAUG, a specific binding site for Fox-1 related splicing factors; ACUAAC, a novel branchpoint-like element; and UG-/UGC-rich elements characteristic of binding sites for CELF splicing factors. UGCAUG was remarkably enriched, being present in nearly one-half of all cases. These studies suggest that Fox and CELF splicing factors play a major role in enforcing the muscle-specific alternative splicing program, facilitating expression of a set of unique isoforms of cytoskeletal proteins that are critical to muscle cell differentiation. Supplementary materials: There are four supplementary tables and one supplementary figure. The tables provide additional detailed information concerning the muscle-enriched datasets, and about over-represented oligonucleotide sequences in the flanking introns. The supplementary figure shows RT-PCR data confirming the muscle-enriched expression of exons predicted from the microarray analysis.

  12. Cytokines interleukin-1beta and tumor necrosis factor-alpha regulate different transcriptional and alternative splicing networks in primary beta-cells

    DEFF Research Database (Denmark)

    Ortis, Fernanda; Naamane, Najib; Flamez, Daisy;

    2010-01-01

    OBJECTIVE: Cytokines contribute to pancreatic beta-cell death in type 1 diabetes. This effect is mediated by complex gene networks that remain to be characterized. We presently utilized array analysis to define the global expression pattern of genes, including spliced variants, modified by the...... expression of genes involved in the maintenance of beta-cell phenotype and growth/regeneration. Cytokines induced hypoxia-inducible factor-alpha, which in this context has a proapoptotic role. Cytokines also modified the expression of >20 genes involved in RNA splicing, and exon array analysis showed...... cytokine-induced changes in alternative splicing of >50% of the cytokine-modified genes. CONCLUSIONS: The present study doubles the number of known genes expressed in primary beta-cells, modified or not by cytokines, and indicates the biological role for several novel cytokine-modified pathways in beta...

  13. Alternative splicing of a group II intron in a surface layer protein gene in Clostridium tetani.

    Science.gov (United States)

    McNeil, Bonnie A; Simon, Dawn M; Zimmerly, Steven

    2014-02-01

    Group II introns are ribozymes and retroelements found in bacteria, and are thought to have been the ancestors of nuclear pre-mRNA introns. Whereas nuclear introns undergo prolific alternative splicing in some species, group II introns are not known to carry out equivalent reactions. Here we report a group II intron in the human pathogen Clostridium tetani, which undergoes four alternative splicing reactions in vivo. Together with unspliced transcript, five mRNAs are produced, each encoding a distinct surface layer protein isoform. Correct fusion of exon reading frames requires a shifted 5' splice site located 8 nt upstream of the canonical boundary motif. The shifted junction is accomplished by an altered IBS1-EBS1 pairing between the intron and 5' exon. Growth of C. tetani under a variety of conditions did not result in large changes in alternative splicing levels, raising the possibility that alternative splicing is constitutive. This work demonstrates a novel type of gene organization and regulation in bacteria, and provides an additional parallel between group II and nuclear pre-mRNA introns. PMID:24214997

  14. Fine-scale variation and genetic determinants of alternative splicing across individuals.

    Directory of Open Access Journals (Sweden)

    Jasmin Coulombe-Huntington

    2009-12-01

    Full Text Available Recently, thanks to the increasing throughput of new technologies, we have begun to explore the full extent of alternative pre-mRNA splicing (AS in the human transcriptome. This is unveiling a vast layer of complexity in isoform-level expression differences between individuals. We used previously published splicing sensitive microarray data from lymphoblastoid cell lines to conduct an in-depth analysis on splicing efficiency of known and predicted exons. By combining publicly available AS annotation with a novel algorithm designed to search for AS, we show that many real AS events can be detected within the usually unexploited, speculative majority of the array and at significance levels much below standard multiple-testing thresholds, demonstrating that the extent of cis-regulated differential splicing between individuals is potentially far greater than previously reported. Specifically, many genes show subtle but significant genetically controlled differences in splice-site usage. PCR validation shows that 42 out of 58 (72% candidate gene regions undergo detectable AS, amounting to the largest scale validation of isoform eQTLs to date. Targeted sequencing revealed a likely causative SNP in most validated cases. In all 17 incidences where a SNP affected a splice-site region, in silico splice-site strength modeling correctly predicted the direction of the micro-array and PCR results. In 13 other cases, we identified likely causative SNPs disrupting predicted splicing enhancers. Using Fst and REHH analysis, we uncovered significant evidence that 2 putative causative SNPs have undergone recent positive selection. We verified the effect of five SNPs using in vivo minigene assays. This study shows that splicing differences between individuals, including quantitative differences in isoform ratios, are frequent in human populations and that causative SNPs can be identified using in silico predictions. Several cases affected disease-relevant genes and

  15. Functional Characterization of NIPBL Physiological Splice Variants and Eight Splicing Mutations in Patients with Cornelia de Lange Syndrome

    Directory of Open Access Journals (Sweden)

    María E. Teresa-Rodrigo

    2014-06-01

    Full Text Available Cornelia de Lange syndrome (CdLS is a congenital developmental disorder characterized by distinctive craniofacial features, growth retardation, cognitive impairment, limb defects, hirsutism, and multisystem involvement. Mutations in five genes encoding structural components (SMC1A, SMC3, RAD21 or functionally associated factors (NIPBL, HDAC8 of the cohesin complex have been found in patients with CdLS. In about 60% of the patients, mutations in NIPBL could be identified. Interestingly, 17% of them are predicted to change normal splicing, however, detailed molecular investigations are often missing. Here, we report the first systematic study of the physiological splicing of the NIPBL gene, that would reveal the identification of four new splicing isoforms ΔE10, ΔE12, ΔE33,34, and B’. Furthermore, we have investigated nine mutations affecting splice-sites in the NIPBL gene identified in twelve CdLS patients. All mutations have been examined on the DNA and RNA level, as well as by in silico analyses. Although patients with mutations affecting NIPBL splicing show a broad clinical variability, the more severe phenotypes seem to be associated with aberrant transcripts resulting in a shift of the reading frame.

  16. Regulation of tissue-specific alternative splicing: exon-specific cis-elements govern the splicing of leukocyte common antigen pre-mRNA.

    OpenAIRE

    Streuli, M; Saito, H

    1989-01-01

    Tissue-specific alternative splicing is an important mechanism for controlling gene expression. Exons 4, 5 and 6 of the human leukocyte common antigen (LCA) gene are included in B cell mRNA but excluded from thymocyte mRNA by differential splicing. In order to study this tissue-specific alternative splicing, we constructed mini-genes that contain only a few of the LCA exons and the SV40 promoter. Mouse B cells and thymocytes were transfected with these mini-gene constructs and the structures ...

  17. Uncovering the role of p53 splice variants in human malignancy: a clinical perspective

    Directory of Open Access Journals (Sweden)

    Surget S

    2013-12-01

    Full Text Available Sylvanie Surget,1,2 Marie P Khoury,1,2 Jean-Christophe Bourdon1,21Dundee Cancer Centre, 2Jacqui Wood Cancer Centre, Ninewells Hospital, University of Dundee, Dundee, UKAbstract: Thirty-five years of research on p53 gave rise to more than 68,000 articles and reviews, but did not allow the uncovering of all the mysteries that this major tumor suppressor holds. How p53 handles the different signals to decide the appropriate cell fate in response to a stress and its implication in tumorigenesis and cancer progression remains unclear. Nevertheless, the uncovering of p53 isoforms has opened new perspectives in the cancer research field. Indeed, the human TP53 gene encodes not only one but at least twelve p53 protein isoforms, which are produced in normal tissues through alternative initiation of translation, usage of alternative promoters, and alternative splicing. In recent years, it became obvious that the different p53 isoforms play an important role in regulating cell fate in response to different stresses in normal cells by differentially regulating gene expression. In cancer cells, abnormal expression of p53 isoforms contributes actively to cancer formation and progression, regardless of TP53 mutation status. They can also be associated with response to treatment, depending on the cell context. The determination of p53 isoform expression and p53 mutation status helps to define different subtypes within a particular cancer type, which would have different responses to treatment. Thus, the understanding of the regulation of p53 isoform expression and their biological activities in relation to the cellular context would constitute an important step toward the improvement of the diagnostic, prognostic, and predictive values of p53 in cancer treatment. This review aims to summarize the involvement of p53 isoforms in cancer and to highlight novel potential therapeutic targets.Keywords: p53, isoforms, p63, p73, alternative splicing, cancer

  18. Regulatory mechanisms for 3'-end alternative splicing and polyadenylation of the Glial Fibrillary Acidic Protein, GFAP, transcript

    DEFF Research Database (Denmark)

    Blechingberg, Jenny; Lykke-Andersen, Søren; Jensen, Torben Heick;

    2007-01-01

    molecular mechanisms participating in alternative GFAP expression. Usage of a polyadenylation signal within the alternatively spliced exon 7a is essential to generate the GFAP kappa and GFAP kappa transcripts. The GFAP kappa mRNA is distinct from GFAP epsilon mRNA given that it also includes intron 7a....... Polyadenylation at the exon 7a site is stimulated by the upstream splice site. Moreover, exon 7a splice enhancer motifs supported both exon 7a splicing and polyadenylation. SR proteins increased the usage of the exon 7a polyadenylation signal but not the exon 7a splicing, whereas the polypyrimidine tract binding...... (PTB) protein enhanced both exon 7a polyadenylation and exon 7a splicing. Finally, increasing transcription by the VP16 trans-activator did not affect the frequency of use of the exon 7a polyadenylation signal whereas the exon 7a splicing frequency was decreased. Our data suggest a model with the...

  19. A novel alternatively spliced isoform of the mu-opioid receptor: functional antagonism

    Directory of Open Access Journals (Sweden)

    Wentworth Sean

    2010-06-01

    Full Text Available Abstract Background Opioids are the most widely used analgesics for the treatment of clinical pain. They produce their therapeutic effects by binding to μ-opioid receptors (MORs, which are 7 transmembrane domain (7TM G-protein-coupled receptors (GPCRs, and inhibiting cellular activity. However, the analgesic efficacy of opioids is compromised by side-effects such as analgesic tolerance, dependence and opioid-induced hyperalgesia (OIH. In contrast to opioid analgesia these side effects are associated with cellular excitation. Several hypotheses have been advanced to explain these phenomena, yet the molecular mechanisms underlying tolerance and OIH remain poorly understood. Results We recently discovered a new human alternatively spliced isoform of MOR (MOR1K that is missing the N-terminal extracellular and first transmembrane domains, resulting in a 6TM GPCR variant. To characterize the pattern of cellular transduction pathways activated by this human MOR1K isoform, we conducted a series of pharmacological and molecular experiments. Results show that stimulation of MOR1K with morphine leads to excitatory cellular effects. In contrast to stimulation of MOR1, stimulation of MOR1K leads to increased Ca2+ levels as well as increased nitric oxide (NO release. Immunoprecipitation experiments further reveal that unlike MOR1, which couples to the inhibitory Gαi/o complex, MOR1K couples to the stimulatory Gαs complex. Conclusion The major MOR1 and the alternative MOR1K isoforms mediate opposite cellular effects in response to morphine, with MOR1K driving excitatory processes. These findings warrant further investigations that examine animal and human MORK1 expression and function following chronic exposure to opioids, which may identify MOR1K as a novel target for the development of new clinically effective classes of opioids that have high analgesic efficacy with diminished ability to produce tolerance, OIH, and other unwanted side-effects.

  20. Robust detection of alternative splicing in a population of single cells.

    Science.gov (United States)

    Welch, Joshua D; Hu, Yin; Prins, Jan F

    2016-05-01

    Single cell RNA-seq experiments provide valuable insight into cellular heterogeneity but suffer from low coverage, 3' bias and technical noise. These unique properties of single cell RNA-seq data make study of alternative splicing difficult, and thus most single cell studies have restricted analysis of transcriptome variation to the gene level. To address these limitations, we developed SingleSplice, which uses a statistical model to detect genes whose isoform usage shows biological variation significantly exceeding technical noise in a population of single cells. Importantly, SingleSplice is tailored to the unique demands of single cell analysis, detecting isoform usage differences without attempting to infer expression levels for full-length transcripts. Using data from spike-in transcripts, we found that our approach detects variation in isoform usage among single cells with high sensitivity and specificity. We also applied SingleSplice to data from mouse embryonic stem cells and discovered a set of genes that show significant biological variation in isoform usage across the set of cells. A subset of these isoform differences are linked to cell cycle stage, suggesting a novel connection between alternative splicing and the cell cycle. PMID:26740580

  1. A functional alternative splicing mutation in AIRE gene causes autoimmune polyendocrine syndrome type 1.

    Directory of Open Access Journals (Sweden)

    Junyu Zhang

    Full Text Available Autoimmune polyendocrine syndrome type 1 (APS-1 is a rare autosomal recessive disease defined by the presence of two of the three conditions: mucocutaneous candidiasis, hypoparathyroidism, and Addison's disease. Loss-of-function mutations of the autoimmune regulator (AIRE gene have been linked to APS-1. Here we report mutational analysis and functional characterization of an AIRE mutation in a consanguineous Chinese family with APS-1. All exons of the AIRE gene and adjacent exon-intron sequences were amplified by PCR and subsequently sequenced. We identified a homozygous missense AIRE mutation c.463G>A (p.Gly155Ser in two siblings with different clinical features of APS-1. In silico splice-site prediction and minigene analysis were carried out to study the potential pathological consequence. Minigene splicing analysis and subsequent cDNA sequencing revealed that the AIRE mutation potentially compromised the recognition of the splice donor of intron 3, causing alternative pre-mRNA splicing by intron 3 retention. Furthermore, the aberrant AIRE transcript was identified in a heterozygous carrier of the c.463G>A mutation. The aberrant intron 3-retaining transcript generated a truncated protein (p.G155fsX203 containing the first 154 AIRE amino acids and followed by 48 aberrant amino acids. Therefore, our study represents the first functional characterization of the alternatively spliced AIRE mutation that may explain the pathogenetic role in APS-1.

  2. CRE promoter sites modulate alternative splicing via p300-mediated histone acetylation

    Czech Academy of Sciences Publication Activity Database

    Dušková, E.; Hnilicová, Jarmila; Staněk, D.

    2014-01-01

    Roč. 11, č. 7 (2014), s. 1-10. ISSN 1547-6286 R&D Projects: GA ČR(CZ) GBP305/12/G034 Grant ostatní: Charles University Prague(CZ) 274111 Institutional support: RVO:61388971 Keywords : alternative splicing * fibronectin * p300 Subject RIV: EE - Microbiology, Virology Impact factor: 4.974, year: 2014

  3. CRE promoter sites modulate alternative splicing via p300-mediated histone acetylation

    Czech Academy of Sciences Publication Activity Database

    Dušková, Eva; Hnilicová, Jarmila; Staněk, David

    2014-01-01

    Roč. 11, č. 7 (2014), s. 865-874. ISSN 1547-6286 R&D Projects: GA ČR(CZ) GBP305/12/G034 Institutional support: RVO:68378050 Keywords : alternative splicing * fibronectin * p300 * histone acetylation * promoter Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.974, year: 2014

  4. Alternative promoter usage and mRNA splicing pathways for parathyroid hormone-related protein in normal tissues and tumours.

    OpenAIRE

    Southby, J.; O'Keeffe, L. M.; Martin, T.J.; Gillespie, M T

    1995-01-01

    The parathyroid hormone-related protein (PTHrP) gene consists of nine exons and allows the production of multiple PTHrP mRNA species via the use of three promoters and 5' and 3' alternative splicing; as a result of 3' alternative splicing one of three protein isoforms may be produced. This organisation has potential for tissue-specific splicing patterns. We examined PTHrP mRNA expression and splicing patterns in a series of tumours and normal tissues, using the sensitive reverse transcription...

  5. SPA: a probabilistic algorithm for spliced alignment.

    OpenAIRE

    Erik van Nimwegen; Nicodeme Paul; Robert Sheridan; Mihaela Zavolan

    2006-01-01

    Recent large-scale cDNA sequencing efforts show that elaborate patterns of splice variation are responsible for much of the proteome diversity in higher eukaryotes. To obtain an accurate account of the repertoire of splice variants, and to gain insight into the mechanisms of alternative splicing, it is essential that cDNAs are very accurately mapped to their respective genomes. Currently available algorithms for cDNA-to-genome alignment do not reach the necessary level of accuracy because the...

  6. Missense splice variant (g.20746A>G, p.Ile183Val) of interferon gamma receptor 1 (IFNGR1) coincidental with mycobacterial osteomyelitis - a screen of osteoarticular lesions.

    Science.gov (United States)

    Bińczak-Kuleta, Agnieszka; Szwed, Aleksander; Walter, Mark R; Kołban, Maciej; Ciechanowicz, Andrzej; Clark, Jeremy S C

    2016-08-01

    Previously, dominant partial interferon-gamma receptor 1 (IFN-g-R1) susceptibility to environmental mycobacteria was found with IFNGR1 deletions or premature stop. Our aim was to search for IFNGR1 variants in patients with mycobacterial osteoarticular lesions. Biopsies from the patients were examined for acid-fast bacilli, inflammatory cell infiltration, and mycobacterial niacin. Mycobacterial rRNA was analyzed using a target-amplified rRNA probe test. Peripheral-blood-leukocyte genomic DNA was isolated from 19 patients using the QIAamp DNA Mini Kit, and all IFNGR1 exons were sequenced using an ABIPRISM 3130 device. After the discovery of an exon 5 variant, a Polish newborn population sample (n = 100) was assayed for the discovered variant. Splice sites and putative amino acid interactions were analyzed. All patients tested were positive for mycobacteria; one was heterozygous for the IFNGR1 exon 5 single-nucleotide-missense substitution (g.20746A>G, p.Ile183Val). No other variant was found. The splice analysis indicated the creation of an exonic splicing silencer, and alternatively, molecular graphics indicated that the p.Ile183Val might alter beta-strand packing (loss of van der Waals contacts; Val183/Pro205), possibly altering the IFN-g-R1/IFN-g-R2 interaction. The probability of non-deleterious variant was estimated as genes affecting Type 1 T-helper-cell-mediated immunity. PMID:27483180

  7. Splicing variant of AIMP2 as an effective target against chemoresistant ovarian cancer

    Institute of Scientific and Technical Information of China (English)

    Jin Woo Choi; Jeong-Won Lee; Jun Ki Kim; Hye-Kyung Jeon; Jung-Joo Choi; Dae Gyu Kim; Byoung-Gie Kim

    2012-01-01

    Chemoresistance is a main cause for the failure of cancer management and intensive investigation is on-going to control chemoresistant (CR) cancers.Although NF-κB has been suggested as one of the potential targets to alleviate chemoresistance of epithelial ovarian cancer (EOC),direct targeting of NF-κB may result in an unexpected effect due to the complex regulatory network via NF-κB.Here we show that AIMP2-DX2,a splicing variant of tumor suppressor AIMP2,can be a therapeutic target to control CR EOC.AIMP2-DX2 was often highly expressed in CR EOC both in vitro and in vivo.AIMP2-DX2 compromised the tumor necrosis factor alpha-dependent pro-apoptotic activity of AIMP2 via the competitive inhibition of AIMP2 binding to TRAF2 that plays a pivotal role in the regulation of NF-κB.The direct delivery of siRNA against AIMP2-DX2 into abdominal metastatic tumors of ovarian cancer using a microneedle converged on microendoscopy significantly suppressed the growth rate of tumors.The treated cancer tissues showed an enhanced apoptosis and the decreased TRAF2 level.Thus,we suggest that the downregulation of AIMP2-DX2 can be a potent adjuvant therapeutic approach for CR EOC that resulted from an aberrant activity of NF-κB.

  8. An imaging agent to detect androgen receptor and its active splice variants in prostate cancer

    Science.gov (United States)

    Imamura, Yusuke; Tien, Amy H.; Pan, Jinhe; Leung, Jacky K.; Banuelos, Carmen A.; Jian, Kunzhong; Wang, Jun; Mawji, Nasrin R.; Fernandez, Javier Garcia; Lin, Kuo-Shyan; Andersen, Raymond J.; Sadar, Marianne D.

    2016-01-01

    Constitutively active splice variants of androgen receptor (AR-Vs) lacking ligand-binding domain (LBD) are a mechanism of resistance to androgen receptor LBD–targeted (AR LBD–targeted) therapies for metastatic castration-resistant prostate cancer (CRPC). There is a strong unmet clinical need to identify prostate cancer patients with AR-V–positive lesions to determine whether they will benefit from further AR LBD–targeting therapies or should receive taxanes or investigational drugs like EPI-506 or galeterone. Both EPI-506 (NCT02606123) and galeterone (NCT02438007) are in clinical trials and are proposed to have efficacy against lesions that are positive for AR-Vs. AR activation function-1 (AF-1) is common to the N-terminal domains of full-length AR and AR-Vs. Here, we provide proof of concept for developing imaging compounds that directly bind AR AF-1 to detect both AR-Vs and full-length AR. 123I-EPI-002 had specific binding to AR AF-1, which enabled direct visualization of CRPC xenografts that express full-length AR and AR-Vs. Our findings highlight the potential of 123I-EPI-002 as an imaging agent for the detection of full-length AR and AR-Vs in CRPC.

  9. Molecular characterization of a CpTRIM35-like protein and its splice variants from whitespotted bamboo shark (Chiloscyllium plagiosum)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinshang, E-mail: sanmaosound@163.com; Zhao, Heng, E-mail: hengzhao2000@gmail.com; Chen, Yeyu, E-mail: cyyleaf@126.com; Luo, Huiying, E-mail: luohuiying@caas.cn; Yao, Bin, E-mail: binyao@caas.cn

    2014-10-24

    Highlights: • A TRIM gene and three splice variants were firstly cloned from elasmobranch fish. • The genes were constitutively expressed with high levels in spleen and kidney. • The gene products were distributed in cytoplasm alone or cytoplasm and nucleus. • As E3 ubiquitin ligases, the proteins differed in immune responses to challenges. - Abstract: The tripartite motif (TRIM) proteins play important roles in a broad range of biological processes, including apoptosis, cell proliferation and innate immunity response. In this study, a TRIM gene and its three splice variants were cloned from an elasmobranch fish—whitespotted bamboo shark (Chiloscyllium plagiosum Bennett). Phylogenetic analysis indicated that the gene was closely related to TRIM35 homologs, thus termed CpTRIM35-like. Deduced CpTRIM35 has a RBCC-PRY/SPRY structure typical of TRIM proteins, and its splice variants (CpTRIM35-1–3) have different truncations at the C-terminus. The gene products were constitutively expressed in adult sharks with the highest levels in spleen and kidney. The different subcellular locations, upregulation upon LPS and poly I:C stimulation, and significant E3 ubiquitin ligase activities suggested their different roles in immune responses as an E3 ubiquitin ligase. This is the first TRIM protein ever characterized in elasmobranch fish.

  10. Molecular characterization of a CpTRIM35-like protein and its splice variants from whitespotted bamboo shark (Chiloscyllium plagiosum)

    International Nuclear Information System (INIS)

    Highlights: • A TRIM gene and three splice variants were firstly cloned from elasmobranch fish. • The genes were constitutively expressed with high levels in spleen and kidney. • The gene products were distributed in cytoplasm alone or cytoplasm and nucleus. • As E3 ubiquitin ligases, the proteins differed in immune responses to challenges. - Abstract: The tripartite motif (TRIM) proteins play important roles in a broad range of biological processes, including apoptosis, cell proliferation and innate immunity response. In this study, a TRIM gene and its three splice variants were cloned from an elasmobranch fish—whitespotted bamboo shark (Chiloscyllium plagiosum Bennett). Phylogenetic analysis indicated that the gene was closely related to TRIM35 homologs, thus termed CpTRIM35-like. Deduced CpTRIM35 has a RBCC-PRY/SPRY structure typical of TRIM proteins, and its splice variants (CpTRIM35-1–3) have different truncations at the C-terminus. The gene products were constitutively expressed in adult sharks with the highest levels in spleen and kidney. The different subcellular locations, upregulation upon LPS and poly I:C stimulation, and significant E3 ubiquitin ligase activities suggested their different roles in immune responses as an E3 ubiquitin ligase. This is the first TRIM protein ever characterized in elasmobranch fish

  11. Tissue specific expression of the splice variants of the mouse vacuolar proton-translocating ATPase a4 subunit

    International Nuclear Information System (INIS)

    We have identified splicing variants of the mouse a4 subunit which have the same open reading frame but have a different 5'-noncoding sequence. Further determination of the 5'-upstream region of the a4 gene in mouse indicated the presence of two first exons (exon 1a and exon 1b) which include the 5'-noncoding sequence of each variant. The mRNAs of both splicing variants (a4-I and a4-II) show a similar expression pattern in mouse kidney by in situ hybridization. However, tissue and developmental expression patterns of the variants are different. In addition to strong expression in kidney, a4-I expression was detected in heart, lung, skeletal muscle, and testis, whereas a4-II is expressed in lung, liver, and testis. During development, a4-I was expressed beginning with the early embryonic stage, but a4-II mRNA was detected from day17. These results suggest that each a4 variant has both a tissue and developmental stage specific function

  12. CIR, a corepressor of CBF1, binds to PAP-1 and effects alternative splicing

    International Nuclear Information System (INIS)

    We have reported that PAP-1, a product of a causative gene for autosomal retinitis pigmentosa, plays a role in splicing. In this study, CIR, a protein originally identified as a CBF1-interacting protein and reported to act as a transcriptional corepressor, was identified as a PAP-1 binding protein and its function as a splicing factor was investigated. In addition to a basic lysine and acidic serine-rich (BA) domain and a zinc knuckle-like motif, CIR has an arginine/serine dipeptide repeat (RS) domain in its C terminal region. The RS domain has been reported to be present in the superfamily of SR proteins, which are involved in splicing reactions. We generated CIR mutants with deletions of each BA and RS domain and studied their subcellular localizations and interactions with PAP-1 and other SR proteins, including SC35, SF2/ASF, and U2AF35. CIR was found to interact with U2AF35 through the BA domain, with SC35 and SF2/ASF through the RS domain, and with PAP-1 outside the BA domain in vivo and in vitro. CIR was found to be colocalized with SC35 and PAP-1 in nuclear speckles. Then the effect of CIR on splicing was investigated using the E1a minigene as a reporter in HeLa cells. Ectopic expression of CIR with the E1a minigene changed the ratio of spliced isoforms of E1a that were produced by alternative selection of 5'-splice sites. These results indicate that CIR is a member of the family of SR-related proteins and that CIR plays a role in splicing regulation

  13. Regulation of the Ras-MAPK and PI3K-mTOR Signalling Pathways by Alternative Splicing in Cancer

    Directory of Open Access Journals (Sweden)

    Zahava Siegfried

    2013-01-01

    Full Text Available Alternative splicing is a fundamental step in regulation of gene expression of many tumor suppressors and oncogenes in cancer. Signalling through the Ras-MAPK and PI3K-mTOR pathways is misregulated and hyperactivated in most types of cancer. However, the regulation of the Ras-MAPK and PI3K-mTOR signalling pathways by alternative splicing is less well established. Recent studies have shown the contribution of alternative splicing regulation of these signalling pathways which can lead to cellular transformation, cancer development, and tumor maintenance. This review will discuss findings in the literature which describe new modes of regulation of components of the Ras-MAPK and PI3K-mTOR signalling pathways by alternative splicing. We will also describe the mechanisms by which signals from extracellular stimuli can be communicated to the splicing machinery and to specific RNA-binding proteins that ultimately control exon definition events.

  14. Identification of novel chicken estrogen receptor-alpha messenger ribonucleic acid isoforms generated by alternative splicing and promoter usage.

    Science.gov (United States)

    Griffin, C; Flouriot, G; Sonntag-Buck, V; Nestor, P; Gannon, F

    1998-11-01

    Using the rapid amplification of complementary DNA ends (RACE) methodology we have identified three new chicken estrogen receptor-alpha (cER alpha) messenger RNA (mRNA) variants in addition to the previously described form (isoform A). Whereas one of the new variants (isoform B) presents a 5'-extremity contiguous to the 5'-end of isoform A, the two other forms (isoforms C and D) are generated by alternative splicing of upstream exons (C and D) to a common site situated 70 nucleotides upstream of the translation start site in the previously assigned exon 1 (A). The 3'-end of exon 1C has been located at position -1334 upstream of the transcription start site of the A isoform (+1). Whereas the genomic location of exon 1D is unknown, 700 bp 5' to this exon were isolated by genomic walking, and their sequence was determined. The transcription start sites of the cER alpha mRNA isoforms were defined. In transfection experiments, the regions immediately upstream of the A-D cER alpha mRNA isoforms were shown to possess cell-specific promoter activities. Three of these promoters were down-regulated in the presence of estradiol and ER alpha protein. It is concluded, therefore, that the expression of the four different cER alpha mRNA isoforms is under the control of four different promoters. Finally, RT-PCR, S1 nuclease mapping, and primer extension analysis of these different cER alpha mRNA isoforms revealed a differential pattern of expression of the cER alpha gene in chicken tissues. Together, the results suggest that alternative 5'-splicing and promoter usage may be mechanisms used to modulate the levels of expression of the chicken ER alpha gene in a tissue-specific and/or developmental stage-specific manner. PMID:9794473

  15. Microbial and Natural Metabolites That Inhibit Splicing: A Powerful Alternative for Cancer Treatment.

    Science.gov (United States)

    Martínez-Montiel, Nancy; Rosas-Murrieta, Nora Hilda; Martínez-Montiel, Mónica; Gaspariano-Cholula, Mayra Patricia; Martínez-Contreras, Rebeca D

    2016-01-01

    In eukaryotes, genes are frequently interrupted with noncoding sequences named introns. Alternative splicing is a nuclear mechanism by which these introns are removed and flanking coding regions named exons are joined together to generate a message that will be translated in the cytoplasm. This mechanism is catalyzed by a complex machinery known as the spliceosome, which is conformed by more than 300 proteins and ribonucleoproteins that activate and regulate the precision of gene expression when assembled. It has been proposed that several genetic diseases are related to defects in the splicing process, including cancer. For this reason, natural products that show the ability to regulate splicing have attracted enormous attention due to its potential use for cancer treatment. Some microbial metabolites have shown the ability to inhibit gene splicing and the molecular mechanism responsible for this inhibition is being studied for future applications. Here, we summarize the main types of natural products that have been characterized as splicing inhibitors, the recent advances regarding molecular and cellular effects related to these molecules, and the applications reported so far in cancer therapeutics. PMID:27610372

  16. Novel RNA structural features of an alternatively splicing group II intron from Clostridium tetani.

    Science.gov (United States)

    McNeil, Bonnie A; Zimmerly, Steven

    2014-06-01

    Group II introns are ribozymes in bacterial and organellar genomes that function as self-splicing introns and as retroelements. Previously, we reported that the group II intron C.te.I1 of Clostridium tetani alternatively splices in vivo to produce five distinct coding mRNAs. Accurate fusion of upstream and downstream reading frames requires a shifted 5' splice site located 8 nt upstream of the usual 5' GUGYG motif. This site is specified by the ribozyme through an altered intron/exon-binding site 1 (IBS1-EBS1) pairing. Here we use mutagenesis and self-splicing assays to investigate in more detail the significance of the structural features of the C.te.I1 ribozyme. The shifted 5' splice site is shown to be affected by structures in addition to IBS1-EBS1, and unlike other group II introns, C.te.I1 appears to require a spacer between IBS1 and the GUGYG motif. In addition, the mechanism of 3' exon recognition is modified from the ancestral IIB mechanism to a IIA-like mechanism that appears to be longer than the typical single base-pair interaction and may extend up to 4 bp. The novel ribozyme properties that have evolved for C.te.I1 illustrate the plasticity of group II introns in adapting new structural and catalytic properties that can be utilized to affect gene expression. PMID:24751650

  17. Identification and characterization of NAGNAG alternative splicing in the moss Physcomitrella patens

    Directory of Open Access Journals (Sweden)

    Bolte Kathrin

    2010-04-01

    Full Text Available Abstract Background Alternative splicing (AS involving tandem acceptors that are separated by three nucleotides (NAGNAG is an evolutionarily widespread class of AS, which is well studied in Homo sapiens (human and Mus musculus (mouse. It has also been shown to be common in the model seed plants Arabidopsis thaliana and Oryza sativa (rice. In one of the first studies involving sequence-based prediction of AS in plants, we performed a genome-wide identification and characterization of NAGNAG AS in the model plant Physcomitrella patens, a moss. Results Using Sanger data, we found 295 alternatively used NAGNAG acceptors in P. patens. Using 31 features and training and test datasets of constitutive and alternative NAGNAGs, we trained a classifier to predict the splicing outcome at NAGNAG tandem splice sites (alternative splicing, constitutive at the first acceptor, or constitutive at the second acceptor. Our classifier achieved a balanced specificity and sensitivity of ≥ 89%. Subsequently, a classifier trained exclusively on data well supported by transcript evidence was used to make genome-wide predictions of NAGNAG splicing outcomes. By generation of more transcript evidence from a next-generation sequencing platform (Roche 454, we found additional evidence for NAGNAG AS, with altogether 664 alternative NAGNAGs being detected in P. patens using all currently available transcript evidence. The 454 data also enabled us to validate the predictions of the classifier, with 64% (80/125 of the well-supported cases of AS being predicted correctly. Conclusion NAGNAG AS is just as common in the moss P. patens as it is in the seed plants A. thaliana and O. sativa (but not conserved on the level of orthologous introns, and can be predicted with high accuracy. The most informative features are the nucleotides in the NAGNAG and in its immediate vicinity, along with the splice sites scores, as found earlier for NAGNAG AS in animals. Our results suggest that the

  18. A secreted form of the human lymphocyte cell surface molecule CD8 arises from alternative splicing

    International Nuclear Information System (INIS)

    The human lymphocyte differentiation antigen CD8 is encoded by a single gene that gives rise to a 33- to 34-kDa glycoprotein expressed on the cell surface as a dimer and in higher molecular mass forms. The authors demonstrate that the mRNA is alternatively spliced so that an exon encoding a transmembrane domain is deleted. This gives rise to a 30-kDa molecule that is secreted and exists primarily as a monomer. mRNA corresponding to both forms is present in peripheral blood lymphocytes, Con A-activated peripheral blood lymphocytes, and three CD8+ T-cell lines, with the membrane form being the major species. However, differences in the ratio of mRNA for membrane CD8 and secreted CD8 exist. In addition, the splicing pattern observed differs from the pattern found for the mouse CD8 gene. This mRNA is also alternatively spliced, but an exon encoding a cytoplasmic region is deleted, giving rise to a cell surface molecule that differs in its cytoplasmic tail from the protein encoded by the longer mRNA. Neither protein is secreted. This is one of the first examples of a different splicing pattern between two homologous mouse and human genes giving rise to very different proteins. This represents one mechanism of generating diversity during speciation

  19. A Splice Region Variant in LDLR Lowers Non-high Density Lipoprotein Cholesterol and Protects against Coronary Artery Disease.

    Directory of Open Access Journals (Sweden)

    Solveig Gretarsdottir

    2015-09-01

    Full Text Available Through high coverage whole-genome sequencing and imputation of the identified variants into a large fraction of the Icelandic population, we found four independent signals in the low density lipoprotein receptor gene (LDLR that associate with levels of non-high density lipoprotein cholesterol (non-HDL-C and coronary artery disease (CAD. Two signals are novel with respect to association with non-HDL-C and are represented by non-coding low frequency variants (between 2-4% frequency, the splice region variant rs72658867-A in intron 14 and rs17248748-T in intron one. These two novel associations were replicated in three additional populations. Both variants lower non-HDL-C levels (rs72658867-A, non-HDL-C effect = -0.44 mmol/l, Padj = 1.1 × 10⁻⁸⁰ and rs17248748-T, non-HDL-C effect = -0.13 mmol/l, Padj = 1.3 × 10⁻¹² and confer protection against CAD (rs72658867-A, OR = 0.76 and Padj = 2.7 × 10⁻⁸ and rs17248748-T, OR = 0.92 and Padj = 0.022. The LDLR splice region variant, rs72658867-A, located at position +5 in intron 14 (NM_000527:c.2140+5G>A, causes retention of intron 14 during transcription and is expected to produce a truncated LDL receptor lacking domains essential for function of the receptor. About half of the transcripts generated from chromosomes carrying rs72658867-A are characterized by this retention of the intron. The same variant also increases LDLR mRNA expression, however, the wild type transcripts do not exceed levels in non-carriers. This demonstrates that sequence variants that disrupt the LDL receptor can lower non-HDL-C and protect against CAD.

  20. Quantification of type II procollagen splice forms using Alternative Transcript-qPCR (AT-qPCR)

    OpenAIRE

    McAlinden, Audrey; Shim, Kyu-Hwan; Wirthlin, Louisa; Ravindran, Soumya; Hering, Thomas M.

    2012-01-01

    During skeletal development, the onset of chondrogenic differentiation is marked by expression of the α1(II) procollagen Col2a1) gene. Exon 2 of Col2a1 codes for a cysteine-rich von Willebrand factor C-like domain. Chondroprogenitors express the exon 2-containing IIA and IID splice forms by utilizing adjacent 5′ splice sites separated by 3 base pairs. There is a shift to expression of the shorter, exon 2-lacking IIB splice form with further differentiation. Alternative splicing analysis of Co...

  1. Cloning and Characterization of Spliced Variants of the Porcine G Protein Coupled Receptor 120

    Directory of Open Access Journals (Sweden)

    Tongxing Song

    2015-01-01

    Full Text Available The polyunsaturated fatty acids (PUFAs receptor GPR120 exerts a significant impact on systemic nutrient homeostasis in human and rodents. However, the porcine GPR120 (pGPR120 has not been well characterized. In the current study, we found that pGPR120 had 3 spliced variants. Transcript 1 encoded 362-amino acids (aa wild type pGPR120-WT, which shared 88% homology with human short form GPR120. Transcript 1 was the mainly expressed transcript of pGPR120. It was expressed predominantly in ileum, jejunum, duodenum, spleen, and adipose. Transcript 3 (coding 320-aa isoform was detected in spleen, while the transcript 2 (coding 310-aa isoform was only slightly expressed in spleen. A selective agonist for human GPR120 (TUG-891 and PUFAs activated SRE-luc and NFAT-luc reporter in HEK293T cells transfected with construct for pGPR120-WT but not pGPR120-V2. However, 320-aa isoform was not a dominant negative isoform. The extracellular signal-regulated kinase 1/2 (ERK1/2 phosphorylation levels in cells transfected with construct for pGPR120-WT were well activated by PUFAs, especially n-3 PUFA. These results showed that although pGPR120 had 3 transcripts, transcript 1 which encoded pGPR120-WT was the mainly expressed transcript. TUG-891 and PUFAs, especially n-3 PUFA, well activated pGPR120-WT. The current study contributed to dissecting the molecular regulation mechanisms of n-3 PUFA in pigs.

  2. IDENTIFICATION AND HORMONE INDUCTION OF PUTATIVE CHITIN SYNTHASE GENES AND SPLICE VARIANTS IN Leptinotarsa decemlineata (SAY).

    Science.gov (United States)

    Shi, Ji-Feng; Mu, Li-Li; Guo, Wen-Chao; Li, Guo-Qing

    2016-08-01

    Chitin synthase (ChS) plays a critical role in chitin synthesis and excretion. In this study, two ChS genes (LdChSA and LdChSB) were identified in Leptinotarsa decemlineata. LdChSA contains two splicing variants, LdChSAa and LdChSAb. Within the first, second, and third larval instars, the mRNA levels of LdChSAa, LdChSAb, and LdChSB coincide with the peaks of circulating 20-hydroxyecdysone (20E) and juvenile hormone (JH). In vitro culture of midguts and an in vivo bioassay revealed that 20E and an ecdysteroid agonist halofenozide stimulated the expression of the three LdChSs. Conversely, a reduction of 20E by RNA interference (RNAi) of an ecdysteroidogenesis gene LdSHD repressed the expression of these LdChSs, and ingestion of halofenozide by LdSHD RNAi larvae rescued the repression. Moreover, disruption of 20E signaling by RNAi of LdEcR, LdE75, LdHR3, and LdFTZ-F1 reduced the expression levels of these genes. Similarly, in vitro culture and an in vivo bioassay showed that exogenous JH and a JH analog methoprene activated the expression of the three LdChSs, whereas a decrease in JH by RNAi of a JH biosynthesis gene LdJHAMT downregulated these LdChSs. It seems that JH upregulates LdChSs at the early stage of each instar, whereas a 20E pulse triggers the transcription of LdChSs during molting in L. decemlineata. PMID:27030662

  3. The exosome controls alternative splicing by mediating the gene expression and assembly of the spliceosome complex

    OpenAIRE

    Lin Zhang; Yufeng Wan; Guobin Huang; Dongni Wang; Xinyang Yu; Guocun Huang; Jinhu Guo

    2015-01-01

    The exosome is a complex with exoribonuclease activity that regulates RNA surveillance and turnover. The exosome also plays a role in regulating the degradation of precursor mRNAs to maintain the expression of splicing variants. In Neurospora, the silencing of rrp44, which encodes the catalytic subunit of the exosome, changed the expression of a set of spliceosomal snRNA, snRNP genes and SR protein related genes. The knockdown of rrp44 also affected the assembly of the spliceosome. RNA-seq an...

  4. The complete local genotype-phenotype landscape for the alternative splicing of a human exon.

    Science.gov (United States)

    Julien, Philippe; Miñana, Belén; Baeza-Centurion, Pablo; Valcárcel, Juan; Lehner, Ben

    2016-01-01

    The properties of genotype-phenotype landscapes are crucial for understanding evolution but are not characterized for most traits. Here, we present a >95% complete local landscape for a defined molecular function-the alternative splicing of a human exon (FAS/CD95 exon 6, involved in the control of apoptosis). The landscape provides important mechanistic insights, revealing that regulatory information is dispersed throughout nearly every nucleotide in an exon, that the exon is more robust to the effects of mutations than its immediate neighbours in genotype space, and that high mutation sensitivity (evolvability) will drive the rapid divergence of alternative splicing between species unless it is constrained by selection. Moreover, the extensive epistasis in the landscape predicts that exonic regulatory sequences may diverge between species even when exon inclusion levels are functionally important and conserved by selection. PMID:27161764

  5. The complete local genotype–phenotype landscape for the alternative splicing of a human exon

    Science.gov (United States)

    Julien, Philippe; Miñana, Belén; Baeza-Centurion, Pablo; Valcárcel, Juan; Lehner, Ben

    2016-01-01

    The properties of genotype–phenotype landscapes are crucial for understanding evolution but are not characterized for most traits. Here, we present a >95% complete local landscape for a defined molecular function—the alternative splicing of a human exon (FAS/CD95 exon 6, involved in the control of apoptosis). The landscape provides important mechanistic insights, revealing that regulatory information is dispersed throughout nearly every nucleotide in an exon, that the exon is more robust to the effects of mutations than its immediate neighbours in genotype space, and that high mutation sensitivity (evolvability) will drive the rapid divergence of alternative splicing between species unless it is constrained by selection. Moreover, the extensive epistasis in the landscape predicts that exonic regulatory sequences may diverge between species even when exon inclusion levels are functionally important and conserved by selection. PMID:27161764

  6. A new splice variant of the major subunit of human asialoglycoprotein receptor encodes a secreted form in hepatocytes.

    Directory of Open Access Journals (Sweden)

    Jia Liu

    Full Text Available BACKGROUND: The human asialoglycoprotein receptor (ASGPR is composed of two polypeptides, designated H1 and H2. While variants of H2 have been known for decades, the existence of H1 variants has never been reported. PRINCIPAL FINDINGS: We identified two splice variants of ASGPR H1 transcripts, designated H1a and H1b, in human liver tissues and hepatoma cells. Molecular cloning of ASGPR H1 variants revealed that they differ by a 117 nucleotide segment corresponding to exon 2 in the ASGPR genomic sequence. Thus, ASGPR variant H1b transcript encodes a protein lacking the transmembrane domain. Using an H1b-specific antibody, H1b protein and a functional soluble ASGPR (sASGPR composed of H1b and H2 in human sera and in hepatoma cell culture supernatant were identified. The expression of ASGPR H1a and H1b in Hela cells demonstrated the different cellular loctions of H1a and H1b proteins at cellular membranes and in intracellular compartments, respectively. In vitro binding assays using fluorescence-labeled sASGPR or the substract ASOR revealed that the presence of sASGPR reduced the binding of ASOR to cells. However, ASOR itself was able to enhance the binding of sASGPR to cells expressing membrane-bound ASGPR. Further, H1b expression is reduced in liver tissues from patients with viral hepatitis. CONCLUSIONS: We conclude that two naturally occurring ASGPR H1 splice variants are produced in human hepatocytes. A hetero-oligomeric complex sASGPR consists of the secreted form of H1 and H2 and may bind to free substrates in circulation and carry them to liver tissue for uptake by ASGPR-expressing hepatocytes.

  7. Novel Splice Variants of Bovine Interleukin-1 Receptor-Associated Kinase 2(IRAK2)

    Institute of Scientific and Technical Information of China (English)

    WANG Xing-ping; LUOREN Zhuo-ma; XU Shang-zhong; GAO Xue; LI Jun-ya; REN Hong-yan; CHEN Jin-bao

    2009-01-01

    Interleukin-1 receptor-associated kinases(IRAKs)are important signaling elements of the toll-like receptors family,which play a role in innate immune responses by coordinating host defense mechanisms.Presently different isoforms of human and murine IRAK2 molecules are cloned,but there is no report on the sequences and structure of bovine IRAK2 gene.In this study,we cloned the bovine IRAK2 gene by RT-PCR and RACE and discovered that there exist two alternative splicing of bovine IRAK2 genes,IRAK2a and IRAK2b(GenBank accession no.EU528620 and EU528621).IRAK2a gene is 2148 bp coding 622 aa,which contains a death domain(aa 14-94)and a kinase domain(aa 205-440),but IRAK2b lacks 147 bp of exon 3 corresponding to IRAK2a,and codes 386 aa which contains only partly kinase domain.

  8. Role of six single nucleotide polymorphisms, risk factors in coronary disease, in OLR1 alternative splicing

    OpenAIRE

    Tejedor Vaquero, Juan Ram??n, 1984-; Tilgner, Hagen; Iannone, Camilla; Guig?? Serra, Roderic; Valc??rcel, J. (Juan)

    2015-01-01

    The OLR1 gene encodes the oxidized low-density lipoprotein receptor (LOX-1), which is responsible for the cellular uptake of oxidized LDL (Ox-LDL), foam cell formation in atheroma plaques and atherosclerotic plaque rupture. Alternative splicing (AS) of OLR1 exon 5 generates two protein isoforms with antagonistic functions in Ox-LDL uptake. Previous work identified six single nucleotide polymorphisms (SNPs) in linkage disequilibrium that influence the inclusion levels of OLR1 exon 5 and correl...

  9. IL-1β promotes Th17 differentiation by inducing alternative splicing of FOXP3

    OpenAIRE

    Mailer, Reiner K. W.; Anne-Laure Joly; Sang Liu; Szabolcs Elias; Jesper Tegner; John Andersson

    2015-01-01

    CD4+FOXP3+ regulatory T (Treg) cells are essential for maintaining immunological self-tolerance. Treg cell development and function depend on the transcription factor FOXP3, which is present in several distinct isoforms due to alternative splicing. Despite the importance of FOXP3 in the proper maintenance of Treg cells, the regulation and functional consequences of FOXP3 isoform expression remains poorly understood. Here, we show that in human Treg cells IL-1β promotes excision of FOXP3 exon ...

  10. Alternative Splicing of Neuronal Differentiation Factor TRF2 Regulated by HNRNPH1/H2

    Directory of Open Access Journals (Sweden)

    Ioannis Grammatikakis

    2016-05-01

    Full Text Available During neuronal differentiation, use of an alternative splice site on the rat telomere repeat-binding factor 2 (TRF2 mRNA generates a short TRF2 protein isoform (TRF2-S capable of derepressing neuronal genes. However, the RNA-binding proteins (RBPs controlling this splicing event are unknown. Here, using affinity pull-down analysis, we identified heterogeneous nuclear ribonucleoproteins H1 and H2(HNRNPH as RBPs specifically capable of interacting with the spliced RNA segment (exon 7 of Trf2 pre-mRNA. HNRNPH proteins prevent the production of the short isoform of Trf2 mRNA, as HNRNPH silencing selectively elevates TRF2-S levels. Accordingly, HNRNPH levels decline while TRF2-S levels increase during neuronal differentiation. In addition, CRISPR/Cas9-mediated deletion of hnRNPH2 selectively accelerates the NGF-triggered differentiation of rat pheochromocytoma cells into neurons. In sum, HNRNPH is a splicing regulator of Trf2 pre-mRNA that prevents the expression of TRF2-S, a factor implicated in neuronal differentiation.

  11. Alternative Splicing of Neuronal Differentiation Factor TRF2 Regulated by HNRNPH1/H2.

    Science.gov (United States)

    Grammatikakis, Ioannis; Zhang, Peisu; Panda, Amaresh C; Kim, Jiyoung; Maudsley, Stuart; Abdelmohsen, Kotb; Yang, Xiaoling; Martindale, Jennifer L; Motiño, Omar; Hutchison, Emmette R; Mattson, Mark P; Gorospe, Myriam

    2016-05-01

    During neuronal differentiation, use of an alternative splice site on the rat telomere repeat-binding factor 2 (TRF2) mRNA generates a short TRF2 protein isoform (TRF2-S) capable of derepressing neuronal genes. However, the RNA-binding proteins (RBPs) controlling this splicing event are unknown. Here, using affinity pull-down analysis, we identified heterogeneous nuclear ribonucleoproteins H1 and H2(HNRNPH) as RBPs specifically capable of interacting with the spliced RNA segment (exon 7) of Trf2 pre-mRNA. HNRNPH proteins prevent the production of the short isoform of Trf2 mRNA, as HNRNPH silencing selectively elevates TRF2-S levels. Accordingly, HNRNPH levels decline while TRF2-S levels increase during neuronal differentiation. In addition, CRISPR/Cas9-mediated deletion of hnRNPH2 selectively accelerates the NGF-triggered differentiation of rat pheochromocytoma cells into neurons. In sum, HNRNPH is a splicing regulator of Trf2 pre-mRNA that prevents the expression of TRF2-S, a factor implicated in neuronal differentiation. PMID:27117401

  12. Quantification of hTERT Splice Variants in Melanoma by SYBR Green Real-time Polymerase Chain Reaction Indicates a Negative Regulatory Role for the β Deletion Variant

    Directory of Open Access Journals (Sweden)

    Lisa F. Lincz

    2008-10-01

    Full Text Available Telomerase activity is primarily determined by transcriptional regulation of the catalytic subunit, human telomerase reverse transcriptase (hTERT. Several mRNA splice variants for hTERT have been identified, but it is not clear if telomerase activity is determined by the absolute or relative levels of full-length (functional and variant hTERT transcripts. We have developed an SYBR green-based reverse transcription-quantitative polymerase chain reaction assay for the enumeration of the four common hTERT mRNA variants and correlated these with telomerase activity and telomere length in 24 human melanoma cell lines. All except five of the lines expressed four hTERT transcripts, with an overall significant level of co-occurrence between absolute mRNA levels of full-length α+/β+ hTERT and the three splice variants α-/β+, α+/β-, and α-/β-. On average, α+/β+ made up the majority (48.1% of transcripts, followed by α+/β- (44.6%, α-/β- (4.4%, and α-/β+ (2.9%. Telomerase activity ranged from 1 to 247 relative telomerase activity and correlated most strongly with the absolute amount of α+/β+ (R = 0.791, P = .000004 and the relative amount of α+/β- (R = -0.465, P = .022. This study shows that telomerase activity in melanoma cells is best determined by the absolute expression of full-length hTERT mRNA and indicates a role for the hTERT β deletion variant in the negative regulation of enzyme activity.

  13. Loss of Endocan tumorigenic properties after alternative splicing of exon 2

    Directory of Open Access Journals (Sweden)

    Scherpereel Arnaud

    2008-01-01

    Full Text Available Abstract Background Endocan was originally described as a dermatan sulfate proteoglycan found freely circulating in the blood. Endocan expression confers tumorigenic properties to epithelial cell lines or accelerate the growth of already tumorigenic cells. This molecule is the product of a single gene composed of 3 exons. Previous data showed that endocan mRNA is subject to alternative splicing with possible generation of two protein products. In the present study we identified, and functionally characterized, the alternative spliced product of the endocan gene: the exon 2-deleted endocan, called endocanΔ2. Methods Stable, endocanΔ2-overexpressing cell lines were generated to investigate the biological activities of this new alternatively spliced product of endocan gene. Tumorigenesis was studied by inoculating endocan and endocanΔ2 expressing cell lines subcutaneously in SCID mice. Biochemical properties of endocan and endocanΔ2 were studied after production of recombinant proteins in various cell lines of human and murine origin. Results Our results showed that the exon 2 deletion impairs synthesis of the glycan chain, known to be involved in the pro-tumoral effect of endocan. EndocanΔ2 did not promote tumor formation by 293 cells implanted in the skin of severe combined immunodeficient (SCID mice. Conclusion Our results emphasize the key role of the polypeptide sequence encoded by the exon 2 of endocan gene in tumorigenesis, and suggest that this sequence could be a target for future therapies against cancer.

  14. Polarizing the Neuron through Sustained Co-expression of Alternatively Spliced Isoforms.

    Science.gov (United States)

    Yap, Karen; Xiao, Yixin; Friedman, Brad A; Je, H Shawn; Makeyev, Eugene V

    2016-05-10

    Alternative splicing (AS) is an important source of proteome diversity in eukaryotes. However, how this affects protein repertoires at a single-cell level remains an open question. Here, we show that many 3'-terminal exons are persistently co-expressed with their alternatives in mammalian neurons. In an important example of this scenario, cell polarity gene Cdc42, a combination of polypyrimidine tract-binding, protein-dependent, and constitutive splicing mechanisms ensures a halfway switch from the general (E7) to the neuron-specific (E6) alternative 3'-terminal exon during neuronal differentiation. Perturbing the nearly equimolar E6/E7 ratio in neurons results in defects in both axonal and dendritic compartments and suggests that Cdc42E7 is involved in axonogenesis, whereas Cdc42E6 is required for normal development of dendritic spines. Thus, co-expression of a precise blend of functionally distinct splice isoforms rather than a complete switch from one isoform to another underlies proper structural and functional polarization of neurons. PMID:27134173

  15. Changes in Alternative Splicing in Apis Mellifera Bees Fed Apis Cerana Royal Jelly

    Directory of Open Access Journals (Sweden)

    Shi Yuan Yuan

    2014-12-01

    Full Text Available The Western honey bee (Apis mellifera is a social insect characterized by caste differentiation in which the queen bee and worker bees display marked differences in morphology, behavior, reproduction, and longevity despite their identical genomes. The main causative factor in caste differentiation is the food fed to queen larvae, termed royal jelly (RJ. Alternative splicing (AS is an important RNA-mediated post-transcriptional process in eukaryotes. Here we report AS changes in A. mellifera after being fed either A. mellifera RJ or A. cerana RJ. The results demonstrated that the RJ type affected 4 types of AS in adult A. mellifera: exon skipping, intron retention, alternative 5’ splice sites, and alternative 3’splice sites. After feeding with A. cerana RJ, AS occurred in many genes in adult A. mellifera that encode proteins involved in development, growth, the tricarboxylic acid cycle, and substance metabolism. This study provides the first evidence that heterospecific RJ can influence the AS of many genes related to honey bee development and growth.

  16. Loss of Endocan tumorigenic properties after alternative splicing of exon 2

    International Nuclear Information System (INIS)

    Endocan was originally described as a dermatan sulfate proteoglycan found freely circulating in the blood. Endocan expression confers tumorigenic properties to epithelial cell lines or accelerate the growth of already tumorigenic cells. This molecule is the product of a single gene composed of 3 exons. Previous data showed that endocan mRNA is subject to alternative splicing with possible generation of two protein products. In the present study we identified, and functionally characterized, the alternative spliced product of the endocan gene: the exon 2-deleted endocan, called endocanΔ2. Stable, endocanΔ2-overexpressing cell lines were generated to investigate the biological activities of this new alternatively spliced product of endocan gene. Tumorigenesis was studied by inoculating endocan and endocanΔ2 expressing cell lines subcutaneously in SCID mice. Biochemical properties of endocan and endocanΔ2 were studied after production of recombinant proteins in various cell lines of human and murine origin. Our results showed that the exon 2 deletion impairs synthesis of the glycan chain, known to be involved in the pro-tumoral effect of endocan. EndocanΔ2 did not promote tumor formation by 293 cells implanted in the skin of severe combined immunodeficient (SCID) mice. Our results emphasize the key role of the polypeptide sequence encoded by the exon 2 of endocan gene in tumorigenesis, and suggest that this sequence could be a target for future therapies against cancer

  17. SRSF1 (SRp30a) regulates the alternative splicing of caspase 9 via a novel intronic splicing enhancer affecting the chemotherapeutic sensitivity of non-small cell lung cancer cells

    OpenAIRE

    Shultz, Jacqueline C.; Rachel W Goehe; Murudkar, Charuta S.; Wijesinghe, Dayanjan S.; Mayton, Eric K.; Massiello, Autumn; Hawkins, Amy J.; Mukerjee, Prabhat; Pinkerman, Ryan L.; Park, Margaret A; Chalfant, Charles E.

    2011-01-01

    Increasing evidence points to the functional importance of alternative splice variations in cancer pathophysiology with the alternative pre-mRNA processing of caspase 9 as one example. In this study, we delve into the underlying molecular mechanisms that regulate the alternative splicing of caspase 9. Specifically, the pre-mRNA sequence of caspase 9 was analyzed for RNA cis-elements known to interact with SRSF1, a required enhancer for caspase 9 RNA splicing. This analysis revealed thirteen p...

  18. Alternatively Spliced Methionine Synthase in SH-SY5Y Neuroblastoma Cells: Cobalamin and GSH Dependence and Inhibitory Effects of Neurotoxic Metals and Thimerosal.

    Science.gov (United States)

    Waly, Mostafa; Power-Charnitsky, Verna-Ann; Hodgson, Nathaniel; Sharma, Alok; Audhya, Tapan; Zhang, Yiting; Deth, Richard

    2016-01-01

    The folate and cobalamin (Cbl-) dependent enzyme methionine synthase (MS) is highly sensitive to oxidation and its activity affects all methylation reactions. Recent studies have revealed alternative splicing of MS mRNA in human brain and patient-derived fibroblasts. Here we show that MS mRNA in SH-SY5Y human neuroblastoma cells is alternatively spliced, resulting in three primary protein species, thus providing a useful model to examine cofactor dependence of these variant enzymes. MS activity was dependent upon methylcobalamin (MeCbl) or the combination of hydroxocobalamin (OHCbl) and S-adenosylmethionine (SAM). OHCbl-based activity was eliminated by depletion of the antioxidant glutathione (GSH) but could be rescued by provision of either glutathionylcobalamin (GSCbl) or MeCbl. Pretreatment of cells with lead, arsenic, aluminum, mercury, or the ethylmercury-containing preservative thimerosal lowered GSH levels and inhibited MS activity in association with decreased uptake of cysteine, which is rate-limiting for GSH synthesis. Thimerosal treatment decreased cellular levels of GSCbl and MeCbl. These findings indicate that the alternatively spliced form of MS expressed in SH-SY5Y human neuronal cells is sensitive to inhibition by thimerosal and neurotoxic metals, and lower GSH levels contribute to their inhibitory action. PMID:26989453

  19. Alternatively Spliced Methionine Synthase in SH-SY5Y Neuroblastoma Cells: Cobalamin and GSH Dependence and Inhibitory Effects of Neurotoxic Metals and Thimerosal

    Directory of Open Access Journals (Sweden)

    Mostafa Waly

    2016-01-01

    Full Text Available The folate and cobalamin (Cbl- dependent enzyme methionine synthase (MS is highly sensitive to oxidation and its activity affects all methylation reactions. Recent studies have revealed alternative splicing of MS mRNA in human brain and patient-derived fibroblasts. Here we show that MS mRNA in SH-SY5Y human neuroblastoma cells is alternatively spliced, resulting in three primary protein species, thus providing a useful model to examine cofactor dependence of these variant enzymes. MS activity was dependent upon methylcobalamin (MeCbl or the combination of hydroxocobalamin (OHCbl and S-adenosylmethionine (SAM. OHCbl-based activity was eliminated by depletion of the antioxidant glutathione (GSH but could be rescued by provision of either glutathionylcobalamin (GSCbl or MeCbl. Pretreatment of cells with lead, arsenic, aluminum, mercury, or the ethylmercury-containing preservative thimerosal lowered GSH levels and inhibited MS activity in association with decreased uptake of cysteine, which is rate-limiting for GSH synthesis. Thimerosal treatment decreased cellular levels of GSCbl and MeCbl. These findings indicate that the alternatively spliced form of MS expressed in SH-SY5Y human neuronal cells is sensitive to inhibition by thimerosal and neurotoxic metals, and lower GSH levels contribute to their inhibitory action.

  20. Wild-type alternatively spliced p53: binding to DNA and interaction with the major p53 protein in vitro and in cells.

    OpenAIRE

    Wu, Y.; Liu, Y; Lee, L.(Department of Physics, Yale University, New Haven, CT, USA); Miner, Z; Kulesz-Martin, M

    1994-01-01

    A p53 variant protein (p53as) generated from alternatively spliced p53 RNA is expressed in normal and malignant mouse cells and tissues, and p53as antigen activity is preferentially associated with the G2 phase of the cell cycle, suggesting that p53as and p53 protein may have distinct properties. Using p53as and p53 proteins translated in vitro, we now provide evidence that p53as protein has efficient sequence-specific DNA-binding ability. DNA binding by p53 protein is inefficient in comparis...

  1. Venomics of the Australian eastern brown snake (Pseudonaja textilis): Detection of new venom proteins and splicing variants.

    Science.gov (United States)

    Viala, Vincent Louis; Hildebrand, Diana; Trusch, Maria; Fucase, Tamara Mieco; Sciani, Juliana Mozer; Pimenta, Daniel Carvalho; Arni, Raghuvir K; Schlüter, Hartmut; Betzel, Christian; Mirtschin, Peter; Dunstan, Nathan; Spencer, Patrick Jack

    2015-12-01

    The eastern brown snake is the predominant cause of snakebites in mainland Australia. Its venom induces defibrination coagulopathy, renal failure and microangiopathic hemolytic anemia. Cardiovascular collapse has been described as an early cause of death in patients, but, so far, the mechanisms involved have not been fully identified. In the present work, we analysed the venome of Pseudonaja textilis by combining high throughput proteomics and transcriptomics, aiming to further characterize the components of this venom. The combination of these techniques in the analysis and identification of toxins, venom proteins and putative toxins allowed the sequence description and the identification of the following: prothrombinase coagulation factors, neurotoxic textilotoxin phospholipase A2 (PLA2) subunits and "acidic PLA2", three-finger toxins (3FTx) and the Kunitz-type protease inhibitor textilinin, venom metalloproteinase, C-type lectins, cysteine rich secretory proteins, calreticulin, dipeptidase 2, as well as evidences of Heloderma lizard peptides. Deep data-mining analysis revealed the secretion of a new transcript variant of venom coagulation factor 5a and the existence of a splicing variant of PLA2 modifying the UTR and signal peptide from a same mature protein. The transcriptome revealed the diversity of transcripts and mutations, and also indicates that splicing variants can be an important source of toxin variation. PMID:26079951

  2. Alternative Splicing of Arabidopsis IBR5 Pre-mRNA Generates Two IBR5 Isoforms with Distinct and Overlapping Functions

    OpenAIRE

    Jayaweera, Thilanka; Siriwardana, Chamindika; Dharmasiri, Sunethra; Quint, Marcel; Gray, William M.; Dharmasiri, Nihal

    2014-01-01

    The INDOLE-3-BUTYRIC ACID RESPONSE5 (IBR5) gene encodes a dual specificity phosphatase that regulates plant auxin responses. IBR5 has been predicted to generate two transcripts through alternative splicing, but alternative splicing of IBR5 has not been confirmed experimentally. The previously characterized ibr5-1 null mutant exhibits many auxin related defects such as auxin insensitive primary root growth, defective vascular development, short stature and reduced lateral root development. How...

  3. Alternative splicing generates novel Fads3 transcript in mice.

    Science.gov (United States)

    Zhang, Ji Yao; Qin, Xia; Park, Hui Gyu; Kim, Ellen; Liu, Guowen; Kothapalli, Kumar S D; Brenna, J Thomas

    2016-08-01

    Fads3 is the third member of the fatty acid desaturase gene cluster; with at least eight evolutionarily conserved alternative transcripts (AT), having no clearly established function as are known for FADS2 and FADS1. Here we present identification of a novel Fads3 transcript in mice (Fads3AT9), characterize Fads3AT9 expression in mouse tissues and evaluate correlations with metabolite profiles. Total RNA obtained from mouse tissues is reverse-transcribed into cDNA and used as template for PCR reactions. Tissue fatty acids were extracted and quantified by gas chromatography. Sequencing analysis revealed complete absence of exon 2 resulting in an open reading frame of 1239 bp, encoding a putative protein of 412 aa with loss of 37 aa compared to classical Fads3 (Fads3CS). FADS3AT9 retains all the conserved regions characteristic of front end desaturase (cytochrome b5 domain and three histidine repeats). Both Fads3CS and Fads3AT9 are ubiquitously expressed in 11 mouse tissues. Fads3AT9 abundance was greater than Fads3CS in pancreas, liver, spleen, brown adipose tissue and thymus. Fads3CS expression is low in pancreas while Fads3AT9 is over ten-fold greater abundance. The eicosanoid precursor fatty acid 20:4n - 6, the immediate desaturation product of the Fads1 coded Δ5-desaturase, was highest in pancreas where Fads3CS is low. Changes in expression patterns and fatty acid profiles suggest that Fads3AT9 may play a role in the regulation and/or biosynthesis of long chain polyunsaturated fatty acids from precursors. PMID:27216536

  4. CLA-1 and its splicing variant CLA-2 mediate bacterial adhesion and cytosolic bacterial invasion in mammalian cells

    OpenAIRE

    Vishnyakova, Tatyana G.; Kurlander, Roger; Bocharov, Alexander V.; Baranova, Irina N.; CHEN, ZHIGANG; Abu-Asab, Mones S.; Tsokos, Maria; Malide, Daniela; Basso, Federica; Remaley, Alan; Csako, Gyorgy; Eggerman, Thomas L.; Patterson, Amy P.

    2006-01-01

    CD36 and LIMPII analog 1, CLA-1, and its splicing variant, CLA-2 (SR-BI and SR-BII in rodents), are human high density lipoprotein receptors with an identical extracellular domain which binds a spectrum of ligands including bacterial cell wall components. In this study, CLA-1- and CLA-2-stably transfected HeLa and HEK293 cells demonstrated several-fold increases in the uptake of various bacteria over mock-transfected cells. All bacteria tested, including both Gram-negatives (Escherichia coli ...

  5. Genes of nuclear encoded mitochondrial proteins: evidence for a variant of the 3' splice-site consensus sequence.

    OpenAIRE

    Juretić, N; Jaussi, R; Mattes, U; Christen, P

    1987-01-01

    The introns of animal nuclear genes and of viral genes encoding protein possess at their 3' splice-site the consensus sequence (CT)11NTCAG (Mount, S.M. (1982) Nucl. Acids Res. 10, 459-472; Green, M.R. (1986) Ann. Rev. Genet. 20, 671-708). However, the total 39 introns of the 5 imported mitochondrial proteins of higher eucaryotes whose gene structure has been determined to date show a predominance of 44% for base T at position -4. Apparently, a variant consensus sequence, i.e. (CT)11TTCAG, cha...

  6. The Survivin −31 Snp in Human Colorectal Cancer Correlates with Survivin Splice Variant Expression and Improved Overall Survival

    Directory of Open Access Journals (Sweden)

    Anna G. Antonacopoulou

    2010-01-01

    Full Text Available Background: Survivin is involved in the regulation of cell division and survival, two key processes in cancer. The majority of studies on survivin in colorectal cancer (CRC have focused on protein expression and less is known about the expression of survivin splicing variants or survivin gene polymorphisms in CRC. In the present study, the mRNA levels of the five known isoforms of survivin as well as survivin protein were assessed in matched normal and neoplastic colorectal tissue. Moreover, the 9386C/T and −31G/C polymorphisms were investigated.

  7. Novel Fatty Acid Desaturase 3 (FADS3) Transcripts Generated By Alternative Splicing

    OpenAIRE

    Park, Woo Jung; Kothapalli, Kumar SD; Reardon, Holly T; Kim, Luke Y.; Brenna, J. Thomas

    2009-01-01

    Fatty acid desaturase 1 and 2 (FADS1 and FADS2) code for the key desaturase enzymes involved in the biosynthesis of long chain polyunsaturated fatty acids in mammals. FADS3 shares close sequence homology to FADS1 and FADS2 but the function of its gene product remains unknown. Alternative transcripts (AT) generated by alternative splicing (AS) are increasingly recognized as an important mechanism enabling a single gene to code for multiple gene products. We report the first AT of a FADS gene, ...

  8. A novel BRD4-NUT fusion in an undifferentiated sinonasal tumor highlights alternative splicing as a contributing oncogenic factor in NUT midline carcinoma.

    Science.gov (United States)

    Stirnweiss, A; McCarthy, K; Oommen, J; Crook, M L; Hardy, K; Kees, U R; Wilton, S D; Anazodo, A; Beesley, A H

    2015-01-01

    NUT midline carcinoma (NMC) is a fatal cancer that arises in various tissues along the upper midline of the body. The defining molecular feature of NMC is a chromosomal translocation that joins (in the majority of cases) the nuclear testis gene NUT (NUTM1) to the bromodomain protein family member 4 (BRD4) and thereby creating a fusion oncogene that disrupts cellular differentiation and drives the disease. In this study, we report the case of an adolescent NMC patient presenting with severe facial pain, proptosis and visual impairment due to a mass arising from the ethmoid sinus that invaded the right orbit and frontal lobe. Treatment involved radical resection, including exenteration of the affected eye with the view to consolidate treatment with radiation therapy; however, the patient experienced rapid tumor progression and passed away 79 days post resection. Molecular analysis of the tumor tissue identified a novel in-frame BRD4-NUT transcript, with BRD4 exon 15 fused to the last 124 nucleotides of NUT exon 2 (BRD4-NUT ex15:ex2Δnt1-585). The partial deletion of NUT exon 2 was attributed to a mid-exonic genomic breakpoint and the subsequent activation of a cryptic splice site further downstream within the exon. Inhibition of the canonical 3' acceptor splice site of NUT intron 1 in cell lines expressing the most common NMC fusion transcripts (PER-403, BRD4-NUT ex11:ex2; PER-624, BRD4-NUT ex15:ex2) induced alternative splicing from the same cryptic splice site as identified in the patient. Detection of low levels of an in-frame BRD4-NUT ex11:ex2Δnt1-585 transcript in PER-403 confirmed endogenous splicing from this alternative exon 2 splice site. Although further studies are necessary to assess the clinical relevance of the increasing number of variant fusions described in NMC, the findings presented in this case identify alternative splicing as a mechanism that contributes to this pathogenic complexity. PMID:26551281

  9. Tuning of alternative splicing--switch from proto-oncogene to tumor suppressor.

    Science.gov (United States)

    Shchelkunova, Aleksandra; Ermolinsky, Boris; Boyle, Meghan; Mendez, Ivan; Lehker, Michael; Martirosyan, Karen S; Kazansky, Alexander V

    2013-01-01

    STAT5B, a specific member of the STAT family, is intimately associated with prostate tumor progression. While the full form of STAT5B is thought to promote tumor progression, a naturally occurring truncated isoform acts as a tumor suppressor. We previously demonstrated that truncated STAT5 is generated by insertion of an alternatively spliced exon and results in the introduction of an early termination codon. Present approaches targeting STAT proteins based on inhibition of functional domains of STAT's, such as DNA-binding, cooperative binding (protein-protein interaction), dimerization and phosphorylation will halt the action of the entire gene, both the proto-oncogenic and tumor suppressor functions of Stat5B. In this report we develop a new approach aimed at inhibiting the expression of full-length STAT5B (a proto-oncogene) while simultaneously enhancing the expression of STAT5∆B (a tumor suppressor). We have demonstrated the feasibility of using steric-blocking splice-switching oligonucleotides (SSOs) with a complimentary sequence to the targeted exon-intron boundary to enhance alternative intron/exon retention (up to 10%). The functional effect of the intron/exon proportional tuning was validated by cell proliferation and clonogenic assays. The new scheme applies specific steric-blocking splice-switching oligonucleotides and opens an opportunity for anti-tumor treatment as well as for the alteration of functional abilities of other STAT proteins. PMID:23289016

  10. Tuning of Alternative Splicing - Switch From Proto-Oncogene to Tumor Suppressor

    Directory of Open Access Journals (Sweden)

    Aleksandra Shchelkunova, Boris Ermolinsky, Meghan Boyle, Ivan Mendez, Michael Lehker, Karen S. Martirosyan, Alexander V. Kazansky

    2013-01-01

    Full Text Available STAT5B, a specific member of the STAT family, is intimately associated with prostate tumor progression. While the full form of STAT5B is thought to promote tumor progression, a naturally occurring truncated isoform acts as a tumor suppressor. We previously demonstrated that truncated STAT5 is generated by insertion of an alternatively spliced exon and results in the introduction of an early termination codon. Present approaches targeting STAT proteins based on inhibition of functional domains of STAT's, such as DNA-binding, cooperative binding (protein-protein interaction, dimerization and phosphorylation will halt the action of the entire gene, both the proto-oncogenic and tumor suppressor functions of Stat5B.In this report we develop a new approach aimed at inhibiting the expression of full-length STAT5B (a proto-oncogene while simultaneously enhancing the expression of STAT5∆B (a tumor suppressor. We have demonstrated the feasibility of using steric-blocking splice-switching oligonucleotides (SSOs with a complimentary sequence to the targeted exon-intron boundary to enhance alternative intron/exon retention (up to 10%. The functional effect of the intron/exon proportional tuning was validated by cell proliferation and clonogenic assays. The new scheme applies specific steric-blocking splice-switching oligonucleotides and opens an opportunity for anti-tumor treatment as well as for the alteration of functional abilities of other STAT proteins.

  11. Tuning of Alternative Splicing - Switch From Proto-Oncogene to Tumor Suppressor

    Science.gov (United States)

    Shchelkunova, Aleksandra; Ermolinsky, Boris; Boyle, Meghan; Mendez, Ivan; Lehker, Michael; Martirosyan, Karen S.; Kazansky, Alexander V.

    2013-01-01

    STAT5B, a specific member of the STAT family, is intimately associated with prostate tumor progression. While the full form of STAT5B is thought to promote tumor progression, a naturally occurring truncated isoform acts as a tumor suppressor. We previously demonstrated that truncated STAT5 is generated by insertion of an alternatively spliced exon and results in the introduction of an early termination codon. Present approaches targeting STAT proteins based on inhibition of functional domains of STAT's, such as DNA-binding, cooperative binding (protein-protein interaction), dimerization and phosphorylation will halt the action of the entire gene, both the proto-oncogenic and tumor suppressor functions of Stat5B. In this report we develop a new approach aimed at inhibiting the expression of full-length STAT5B (a proto-oncogene) while simultaneously enhancing the expression of STAT5∆B (a tumor suppressor). We have demonstrated the feasibility of using steric-blocking splice-switching oligonucleotides (SSOs) with a complimentary sequence to the targeted exon-intron boundary to enhance alternative intron/exon retention (up to 10%). The functional effect of the intron/exon proportional tuning was validated by cell proliferation and clonogenic assays. The new scheme applies specific steric-blocking splice-switching oligonucleotides and opens an opportunity for anti-tumor treatment as well as for the alteration of functional abilities of other STAT proteins. PMID:23289016

  12. fruitless alternative splicing and sex behaviour in insects: an ancient and unforgettable love story?

    Indian Academy of Sciences (India)

    Marco Salvemini; Catello Polito; Giuseppe Saccone

    2010-09-01

    Courtship behaviours are common features of animal species that reproduce sexually. Typically, males are involved in courting females. Insects display an astonishing variety of courtship strategies primarily based on innate stereotyped responses to various external stimuli. In Drosophila melanogaster, male courtship requires proteins encoded by the fruitless (fru) gene that are produced in different sex-specific isoforms via alternative splicing. Drosophila mutant flies with loss-of-function alleles of the fru gene exhibit blocked male courtship behaviour. However, various individual steps in the courtship ritual are disrupted in fly strains carrying different fru alleles. These findings suggest that fru is required for specific steps in courtship. In distantly related insect species, various fru paralogues were isolated, which shows conservation of sex-specific alternative splicing and protein expression in neural tissues and suggests an evolutionary functional conservation of fru in the control of male-specificcourtship behaviour. In this review, we report the seminal findings regarding the fru gene, its splicing regulation and evolution in insects.

  13. Cloning and Alternative Splicing Analysis of Bombyx mori Transformer-2 Gene using Silkworm EST Database

    Institute of Scientific and Technical Information of China (English)

    Bao-Long NIU; Zhi-Qi MENG; Yue-Zhi TAO; Shun-Lin LU; Hong-Biao WENG; Li-Hua HE; Wei-Feng SHEN

    2005-01-01

    We have identified Bombyx mori transformer-2 gene (Bmtra-2) cDNA by blasting the EST database of B. mori. It was expressed in the whole life of the male and female silkworm and was observed as a band of 1.3 kb by Northern blot analysis. By comparing corresponding ESTs to the Bmtra-2 DNA sequence,it was revealed that there were eight exons and seven introns, and all splice sites of exons/introns conformed to the GT/AG rule. Bmtra-2 pre-mRNA can produce multiple mRNAs encoding six distinct isoforms of BmTRA-2 protein using an alternative splicing pathway during processing. Six types of Bmtra-2 cDNA clones were identified by reverse transcription-polymerase chain reaction. All isoforms of BmTRA-2 protein contain two arginine/serine-rich domains and one RNA recognition motif, showing striking organizational similarity to Drosophila TRA-2 proteins.

  14. Conserved Expression of the Glutamate NMDA Receptor 1 Subunit Splice Variants during the Development of the Siberian Hamster Suprachiasmatic Nucleus

    OpenAIRE

    Duffield, Giles E.; Jens D Mikkelsen; Ebling, Francis J. P.

    2012-01-01

    Glutamate neurotransmission and the N-methyl-D-aspartate receptor (NMDAR) are central to photic signaling to the master circadian pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). NMDARs also play important roles in brain development including visual input circuits. The functional NMDAR is comprised of multiple subunits, but each requiring the NR1 subunit for normal activity. The NR1 can be alternatively spliced to produce isoforms that confer different functional propertie...

  15. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene.

    Science.gov (United States)

    Li, YanHua; Li, AiHua; Yang, Z Q

    2016-09-01

    Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the most significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were

  16. Unique synteny and alternate splicing of the chitin synthases in closely related heliothine moths.

    Science.gov (United States)

    Shirk, Paul D; Perera, Omaththage P; Shelby, Kent S; Furlong, Richard B; LoVullo, Eric D; Popham, Holly J R

    2015-12-10

    Chitin is an extracellular biopolymer that contributes to the cuticular structural matrix in arthropods. As a consequence of its rigid structure, the chitinous cuticle must be shed and replaced to accommodate growth. Two chitin synthase genes that encode for chitin synthase A (ChSA), which produces cuticular exoskeleton, and chitin synthase B (ChSB), which produces peritrophic membrane, were characterized in the genomes of two heliothine moths: the corn earworm/cotton bollworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) and the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). In both moths, the two genes were arranged in tandem with the same orientation on the same strand with ChSB located 5' of ChSA. Sequence comparisons showed that the coding sequences were highly conserved with homologues from other species but that the tandem juxtaposed genomic arrangement of the two genes was unique in these insects. The mechanism that has led to this arrangement is unclear but is most likely a recent recombinational event. Transcript mapping of HzChSB and HzChSA in H. zea demonstrated that both transcripts were differentially spliced in various tissues and larval stages. The identification of the HzChSB-E12b alternate spliced transcript is the first report of alternate splicing for the ChSB group. The importance of this splice form is not clear because the protein produced would lack any enzymatic activity but retain the membrane insertion motifs. As for other insects, these genes provide an important target for potential control through RNAi but also provide a subject for broad scale genomic recombinational events. PMID:26253161

  17. A splice site variant in the bovine RNF11 gene compromises growth and regulation of the inflammatory response.

    Directory of Open Access Journals (Sweden)

    Arnaud Sartelet

    Full Text Available We report association mapping of a locus on bovine chromosome 3 that underlies a Mendelian form of stunted growth in Belgian Blue Cattle (BBC. By resequencing positional candidates, we identify the causative c124-2A>G splice variant in intron 1 of the RNF11 gene, for which all affected animals are homozygous. We make the remarkable observation that 26% of healthy Belgian Blue animals carry the corresponding variant. We demonstrate in a prospective study design that approximately one third of homozygous mutants die prematurely with major inflammatory lesions, hence explaining the rarity of growth-stunted animals despite the high frequency of carriers. We provide preliminary evidence that heterozygous advantage for an as of yet unidentified phenotype may have caused a selective sweep accounting for the high frequency of the RNF11 c124-2A>G mutation in Belgian Blue Cattle.

  18. Cloning and identification of NS5ATP2 gene and its spliced variant transactivated by hepatitis C virus non-structural protein 5A

    Institute of Scientific and Technical Information of China (English)

    Qian Yang; Jun Cheng; Yan Liu; Yuan Hong; Jian-Jun Wang; Shu-Lin Zhang

    2004-01-01

    AIM: To clone, identify and study new NS5ATP2 gene and its spliced variant transactivated by hepatitis C virus nonstructural protein 5A.METHODS: On the basis of subtractive cDNA library of genes transactivated by NS5A protein of hepatitis C virus, the coding sequence of new gene and its spliced variant were obtained by bioinformatics method. Polymerase chain reaction (PCR)was conducted to amplify NS5ATP2 gene.RESUJLTS: The coding sequence of a new gene and its spliced variant were cloned and identified successfully.CONCLUSION: A new gene has been recognized as the new target transactivated by HCV NS5A protein. These results brought some new clues for studying the biological functions of new genes and pathogenesis of the viral proteins.

  19. Seemingly neutral polymorphic variants may confer immunity to splicing-inactivating mutations

    DEFF Research Database (Denmark)

    Nielsen, Karsten Bork; Sørensen, Suzette; Cartegni, Luca;

    2007-01-01

    assays to show that a missense mutation in exon 5 of the medium-chain acyl-CoA dehydrogenase (MCAD) gene primarily causes exon skipping by inactivating a crucial exonic splicing enhancer (ESE), thus leading to loss of a functional protein and to MCAD deficiency. This ESE functions by antagonizing a....... Our findings illustrate a mechanism for dramatic context-dependent effects of single-nucleotide polymorphisms on gene-expression regulation and show that it is essential that potential deleterious effects of mutations on splicing be evaluated in the context of the relevant haplotype.......The idea that point mutations in exons may affect splicing is intriguing and adds an additional layer of complexity when evaluating their possible effects. Even in the best-studied examples, the molecular mechanisms are not fully understood. Here, we use patient cells, model minigenes, and in vitro...

  20. Specific CLK inhibitors from a novel chemotype for regulation of alternative splicing

    DEFF Research Database (Denmark)

    Fedorov, Oleg; Huber, Kilian; Eisenreich, Andreas;

    2011-01-01

    , a potent and highly specific inhibitor of the CDC2-like kinase isoforms 1 and 4 (CLK1/CLK4). Cocrystal structures of KH-CB19 with CLK1 and CLK3 revealed a non-ATP mimetic binding mode, conformational changes in helix aC and the phosphate binding loop and halogen bonding to the kinase hinge region. KH-CB19......There is a growing recognition of the importance of protein kinases in the control of alternative splicing. To define the underlying regulatory mechanisms, highly selective inhibitors are needed. Here, we report the discovery and characterization of the dichloroindolyl enaminonitrile KH-CB19...

  1. Alternative Splicing Regulates the Subcellular Localization of Divalent Metal Transporter 1 Isoforms

    OpenAIRE

    Tabuchi, Mitsuaki; Tanaka, Naotaka; Nishida-Kitayama, Junko; Ohno, Hiroshi; Kishi, Fumio

    2002-01-01

    Divalent metal transporter 1 (DMT1) is responsible for dietary-iron absorption from apical plasma membrane in the duodenum and iron acquisition from the transferrin cycle endosomes in peripheral tissues. Two isoforms of the DMT1 transcript generated by alternative splicing of the 3′ exons have been identified in mouse, rat, and human. These isoforms can be distinguished by the different C-terminal amino acid sequences and by the presence (DMT1A) or absence (DMT1B) of an iron response element ...

  2. Phylogenetic Analysis of Gene Structure and Alternative Splicing in α-Actinins

    OpenAIRE

    Lek, Monkol; MacArthur, Daniel G.; Yang, Nan; North, Kathryn N.

    2009-01-01

    The α-actinins are an important family of actin-binding proteins with the ability to cross-link actin filaments when in dimer form. Members of the α-actinin family share a domain topology composed of highly conserved actin-binding and EF-hand domains separated by a rod domain composed of spectrin-like repeats. Functional diversity within this family has arisen through exon duplication and the formation of alternate splice isoforms as well as gene duplications during the evolution of vertebrat...

  3. Stress-induced alternative gene splicing in mind-body medicine.

    Science.gov (United States)

    Rossi, Ernest Lawrence

    2004-01-01

    Recent research documents how psychosocial stress can alter the expression of the acetylcholinesterase gene to generate at least 3 alternative proteins that are implicated in a wide variety of normal mind-body functions, as well as pathologies. These range from early embryological development, plasticity of the brain in adulthood, post-traumatic stress disorder (PTSD), and stress-associated dysfunctions of the central nervous, endocrine, and immune systems, to age-related neuropathologies. Such stress-induced alternative gene splicing is proposed here as a major mind-body pathway of psychosocial genomics-the modulation of gene expression by creative psychological, social, and cultural processes. We explore the types of research that are now needed to investigate how stress-induced alternative splicing of the acetylcholinesterase gene may play a pivotal role in the deep psychobiology of psychotherapy, meditation, spiritual rituals, and the experiencing of positive humanistic values that have been associated with mind-body medicine, such as compassion, beneficence, serenity, forgiveness, and gratitude. PMID:15356952

  4. Two alternatively spliced isoforms of the Arabidopsis SR45 protein have distinct roles during normal plant development.

    Science.gov (United States)

    Zhang, Xiao-Ning; Mount, Stephen M

    2009-07-01

    The serine-arginine-rich (SR) proteins constitute a conserved family of pre-mRNA splicing factors. In Arabidopsis (Arabidopsis thaliana), they are encoded by 19 genes, most of which are themselves alternatively spliced. In the case of SR45, the use of alternative 3' splice sites 21 nucleotides apart generates two alternatively spliced isoforms. Isoform 1 (SR45.1) has an insertion relative to isoform 2 (SR45.2) that replaces a single arginine with eight amino acids (TSPQRKTG). The biological implications of SR45 alternative splicing have been unclear. A previously described loss-of-function mutant affecting both isoforms, sr45-1, shows several developmental defects, including defects in petal development and root growth. We found that the SR45 promoter is highly active in regions with actively growing and dividing cells. We also tested the ability of each SR45 isoform to complement the sr45-1 mutant by overexpression of isoform-specific green fluorescent protein (GFP) fusion proteins. As expected, transgenic plants overexpressing either isoform displayed both nuclear speckles and GFP fluorescence throughout the nucleoplasm. We found that SR45.1-GFP complements the flower petal phenotype, but not the root growth phenotype. Conversely, SR45.2-GFP complements root growth but not floral morphology. Mutation of a predicted phosphorylation site within the alternatively spliced segment, SR45.1-S219A-GFP, does not affect complementation. However, a double mutation affecting both serine-219 and the adjacent threonine-218 (SR45.1-T218A + S219A-GFP) behaves like isoform 2, complementing the root but not the floral phenotype. In conclusion, our study provides evidence that the two alternatively spliced isoforms of SR45 have distinct biological functions. PMID:19403727

  5. The human DENN gene: genomic organization, alternative splicing, and localization to chromosome 11p11.21-p11.22.

    Science.gov (United States)

    Chow, V T; Lim, K M; Lim, D

    1998-08-01

    We have previously isolated and sequenced the cDNA of a novel gene, DENN, that exhibits differential mRNA expression in normal and neoplastic cells. The open reading frame of 4761 nucleotides encodes a putative hydrophilic protein of 1587 amino acids with a calculated molecular mass of 176,431 Da. Within DENN cDNA lies an alternative exon segment of 129 nucleotides encoding 43 amino acids, which may be excluded from some transcripts by alternative splicing. The serine- and leucine-rich DENN protein possesses a RGD cellular adhesion motif and a leucine-zipper-like motif associated with protein dimerization, and shows partial homology to the receptor binding domain of tumor necrosis factor alpha. DENN is virtually identical to MADD, a human MAP kinase-activating death domain protein that interacts with type I tumor necrosis factor receptor. DENN displays significant homology to Rab3 GEP, a rat GDP/GTP exchange protein specific for Rab3 small G proteins implicated in intracellular vesicle trafficking. DENN also exhibits strong similarity to Caenorhabditis elegans AEX-3, which interacts with Rab3 to regulate synaptic vesicle release. Composed of 15 exons (ranging in size from 73 to 1230 bp) and 14 introns (varying from about 170 bp to 5.3 kb), the DENN gene is estimated to span at least 28 kb. The alternative splicing event was traced to an alternative 5' donor site involving exon 7. DENN was mapped to chromosome region 11p11.21-p11.22 by FISH. Using polyclonal antibodies against a synthetic peptide, Western blotting of MOLT-4 T-lymphoblastic leukemic cell proteins and immunoblotting of subcellular fractions of MOLT-4 cells and PLC/PRF/5 liver cancer cells yielded data corroborating the alternative splicing mechanism that generates two variant isoforms of the DENN protein that display differential expression in cells of different lineages. PMID:9796103

  6. PMD patient mutations reveal a long-distance intronic interaction that regulates PLP1/DM20 alternative splicing

    OpenAIRE

    Taube, Jennifer R.; Sperle, Karen; Banser, Linda; Seeman, Pavel; Cavan, Barbra Charina V.; Garbern, James Y.; Hobson, Grace M.

    2014-01-01

    Alternative splicing of the proteolipid protein 1 gene (PLP1) produces two forms, PLP1 and DM20, due to alternative use of 5′ splice sites with the same acceptor site in intron 3. The PLP1 form predominates in central nervous system RNA. Mutations that reduce the ratio of PLP1 to DM20, whether mutant or normal protein is formed, result in the X-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD). We investigated the ability of sequences throughout PLP1 intron 3 to regulate alternative sp...

  7. Structural and functional analyses of Barth syndrome-causing mutations and alternative splicing in the tafazzin acyltransferase domain

    Directory of Open Access Journals (Sweden)

    Atsushi Hijikata

    2015-06-01

    Full Text Available Tafazzin is a mitochondrial phospholipid transacylase, and its mutations cause Barth syndrome (BTHS. Human tafazzin gene produces four distinct alternatively spliced transcripts. To understand the molecular mechanisms of tafazzin deficiency, we performed an atomic resolution analysis of the influence of the BTHS mutations and of alternative splicing on the structure and function of tafazzin. From the three-dimensional (3D homology modeling of tafazzin, we identified candidate amino acid residues that contribute to cardiolipin binding and to mitochondrial membrane associations that facilitate acyl-transfer reactions. Primate specific exon 5, which is alternatively spliced, is predicted to correspond to an intrinsically unstructured region in the protein. We proposed that this region should change the substrate-binding affinity and/or contribute to primate-specific molecular interactions. Exon 7, another alternatively spliced exon, encodes a region forming a part of the putative substrate-binding cleft, suggesting that the gene products lacking exon 7 will lose their substrate-binding ability. We demonstrate a clear localization of the BTHS mutations at residues responsible for membrane association, substrate binding, and the conformational stability of tafazzin. These findings provide new insights into the function of defective tafazzin and the pathogenesis of BTHS at the level of protein 3D structure and the evolution of alternatively spliced exons in primates.

  8. Structural and functional analyses of Barth syndrome-causing mutations and alternative splicing in the tafazzin acyltransferase domain.

    Science.gov (United States)

    Hijikata, Atsushi; Yura, Kei; Ohara, Osamu; Go, Mitiko

    2015-06-01

    Tafazzin is a mitochondrial phospholipid transacylase, and its mutations cause Barth syndrome (BTHS). Human tafazzin gene produces four distinct alternatively spliced transcripts. To understand the molecular mechanisms of tafazzin deficiency, we performed an atomic resolution analysis of the influence of the BTHS mutations and of alternative splicing on the structure and function of tafazzin. From the three-dimensional (3D) homology modeling of tafazzin, we identified candidate amino acid residues that contribute to cardiolipin binding and to mitochondrial membrane associations that facilitate acyl-transfer reactions. Primate specific exon 5, which is alternatively spliced, is predicted to correspond to an intrinsically unstructured region in the protein. We proposed that this region should change the substrate-binding affinity and/or contribute to primate-specific molecular interactions. Exon 7, another alternatively spliced exon, encodes a region forming a part of the putative substrate-binding cleft, suggesting that the gene products lacking exon 7 will lose their substrate-binding ability. We demonstrate a clear localization of the BTHS mutations at residues responsible for membrane association, substrate binding, and the conformational stability of tafazzin. These findings provide new insights into the function of defective tafazzin and the pathogenesis of BTHS at the level of protein 3D structure and the evolution of alternatively spliced exons in primates. PMID:25941633

  9. Genome-wide analysis of shoot growth-associated alternative splicing in moso bamboo.

    Science.gov (United States)

    Li, Long; Hu, Tao; Li, Xueping; Mu, Shaohua; Cheng, Zhanchao; Ge, Wei; Gao, Jian

    2016-08-01

    Alternative splicing (AS) significantly enhances transcriptome complexity and is differentially regulated in a wide variety of physiological processes in plants, including shoot growth. Presently, the functional implications and conservation of AS occurrences are not well understood in the moso bamboo genome. To analyze the global changes in AS during moso bamboo shoot growth, fast-growing shoots collected at seven different heights and culms after leaf expansion were sequenced using the Illumina HiSeq™ 2000 sequencing platform. It was found that approximately 60.74 % of all genes were alternatively spliced, with intron retention (IR) being the most frequent AS event (27.43 %). Statistical analysis demonstrated that variations of AS frequency and AS types were significantly correlated with changes in gene features and gene transcriptional level. According to the phylogenetic analysis of isoform expression data and AS frequency, the bamboo shoot growth could be divided into four different growth periods, including winter bamboo shoot (S1), early growth period (S2-S5), late growth period (S6 and S7), and mature period (CK). In addition, our data also showed that the winter bamboo shoot had the highest number of AS events. Twenty-six putative Serine/arginine-rich (SR) proteins were identified, producing a total of 109 transcripts. AS events were frequently and specifically regulated by SR splicing factors throughout shoot growth, resulting in changes to the original open reading frame (ORF) and subsequently changes to conserved domains. The AS product-isoforms showed regular expression change during the whole shoot growth period, thus influencing shoot growth. All together, these data indicate that AS events are adjusted to different growth stages, providing briefness and efficient means of gene regulation. This study will provide a very useful clue for future functional analyses. PMID:27170010

  10. Splicing Programs and Cancer

    OpenAIRE

    Sophie Germann; Lise Gratadou; Martin Dutertre; Didier Auboeuf

    2012-01-01

    Numerous studies report splicing alterations in a multitude of cancers by using gene-by-gene analysis. However, understanding of the role of alternative splicing in cancer is now reaching a new level, thanks to the use of novel technologies allowing the analysis of splicing at a large-scale level. Genome-wide analyses of alternative splicing...

  11. Functional diversification of sea urchin ABCC1 (MRP1) by alternative splicing.

    Science.gov (United States)

    Gökirmak, Tufan; Campanale, Joseph P; Reitzel, Adam M; Shipp, Lauren E; Moy, Gary W; Hamdoun, Amro

    2016-06-01

    The multidrug resistance protein (MRP) family encodes a diverse repertoire of ATP-binding cassette (ABC) transporters with multiple roles in development, disease, and homeostasis. Understanding MRP evolution is central to unraveling their roles in these diverse processes. Sea urchins occupy an important phylogenetic position for understanding the evolution of vertebrate proteins and have been an important invertebrate model system for study of ABC transporters. We used phylogenetic analyses to examine the evolution of MRP transporters and functional approaches to identify functional forms of sea urchin MRP1 (also known as SpABCC1). SpABCC1, the only MRP homolog in sea urchins, is co-orthologous to human MRP1, MRP3, and MRP6 (ABCC1, ABCC3, and ABCC6) transporters. However, efflux assays revealed that alternative splicing of exon 22, a region critical for substrate interactions, could diversify functions of sea urchin MRP1. Phylogenetic comparisons also indicate that while MRP1, MRP3, and MRP6 transporters potentially arose from a single transporter in basal deuterostomes, alternative splicing appears to have been the major mode of functional diversification in invertebrates, while duplication may have served a more important role in vertebrates. These results provide a deeper understanding of the evolutionary origins of MRP transporters and the potential mechanisms used to diversify their functions in different groups of animals. PMID:27053522

  12. Computational analysis of translational readthrough proteins in Drosophila and yeast reveals parallels to alternative splicing.

    Science.gov (United States)

    Pancsa, Rita; Macossay-Castillo, Mauricio; Kosol, Simone; Tompa, Peter

    2016-01-01

    In translational readthrough (TR) the ribosome continues extending the nascent protein beyond the first in-frame termination codon. Due to the lack of dedicated analyses of eukaryotic TR cases, the associated functional-evolutionary advantages are still unclear. Here, based on a variety of computational methods, we describe the structural and functional properties of previously proposed D. melanogaster and S. cerevisiae TR proteins and extensions. We found that in D. melanogaster TR affects long proteins in mainly regulatory roles. Their TR-extensions are structurally disordered and rich in binding motifs, which, together with their cell-type- and developmental stage-dependent inclusion, suggest that similarly to alternatively spliced exons they rewire cellular interaction networks in a temporally and spatially controlled manner. In contrast, yeast TR proteins are rather short and fulfil mainly housekeeping functions, like translation. Yeast extensions usually lack disorder and linear motifs, which precludes elucidating their functional relevance with sufficient confidence. Therefore we propose that by being much more restricted and by lacking clear functional hallmarks in yeast as opposed to fruit fly, TR shows remarkable parallels with alternative splicing. Additionally, the lack of conservation of TR extensions among orthologous TR proteins suggests that TR-mediated functions may be generally specific to lower taxonomic levels. PMID:27561673

  13. Divergent functions through alternative splicing: the Drosophila CRMP gene in pyrimidine metabolism, brain, and behavior.

    Science.gov (United States)

    Morris, Deanna H; Dubnau, Josh; Park, Jae H; Rawls, John M

    2012-08-01

    DHP and CRMP proteins comprise a family of structurally similar proteins that perform divergent functions, DHP in pyrimidine catabolism in most organisms and CRMP in neuronal dynamics in animals. In vertebrates, one DHP and five CRMP proteins are products of six genes; however, Drosophila melanogaster has a single CRMP gene that encodes one DHP and one CRMP protein through tissue-specific, alternative splicing of a pair of paralogous exons. The proteins derived from the fly gene are identical over 90% of their lengths, suggesting that unique, novel functions of these proteins derive from the segment corresponding to the paralogous exons. Functional homologies of the Drosophila and mammalian CRMP proteins are revealed by several types of evidence. Loss-of-function CRMP mutation modifies both Ras and Rac misexpression phenotypes during fly eye development in a manner that is consistent with the roles of CRMP in Ras and Rac signaling pathways in mammalian neurons. In both mice and flies, CRMP mutation impairs learning and memory. CRMP mutant flies are defective in circadian activity rhythm. Thus, DHP and CRMP proteins are derived by different processes in flies (tissue-specific, alternative splicing of paralogous exons of a single gene) and vertebrates (tissue-specific expression of different genes), indicating that diverse genetic mechanisms have mediated the evolution of this protein family in animals. PMID:22649077

  14. Brief Report: Alternative Splicing of Extra Domain A (EIIIA) of Fibronectin Plays a Tissue-Specific Role in Hematopoietic Homeostasis.

    Science.gov (United States)

    Malara, Alessandro; Gruppi, Cristian; Celesti, Giuseppe; Romano, Bina; Laghi, Luigi; De Marco, Luigi; Muro, Andrés F; Balduini, Alessandra

    2016-08-01

    Fibronectin (FN) is a major extracellular matrix protein implicated in cell adhesion and differentiation in the bone marrow (BM) environment. Alternative splicing of FN gene results in the generation of protein variants containing an additional EIIIA domain that sustains cell proliferation or differentiation during physiological or pathological tissue remodeling. To date its expression and role in adult hematopoiesis has not been explored. In our research, we demonstrate that during physiological hematopoiesis a small fraction of BM derived FN contains the EIIIA domain and that mice constitutively including (EIIIA(+/+) ) or excluding (EIIIA(-/-) ) the EIIIA exon present comparable levels of hematopoietic stem cells, myeloid and lymphoid progenitors within BM. Moreover, only minor alterations were detected in blood parameters and in hematopoietic frequencies of BM granulocytes/monocytes and B cells. As opposed to other tissues, unique compensatory mechanisms, such as increased FN accumulation and variable expression of the EIIIA receptors, Toll like receptor-4 and alpha9 integrin subunit, characterized the BM of these mice. Our data demonstrate that FN is a fundamental component of the hematopoietic tissue and that the EIIIA exon may play a key role in modulating hematopiesis in conditions of BM stress or diseases. Stem Cells 2016;34:2263-2268. PMID:27090359

  15. Immunohistochemical characterization of the out-of frame splice variants GFAP Delta164/Deltaexon 6 in focal lesions associated with chronic epilepsy

    NARCIS (Netherlands)

    K. Boer; J. Middeldorp; W.G.M. Spliet; F. Razavi; P.C. van Rijen; J.C. Baayen; E.M. Hol; E.M.A. Aronica

    2010-01-01

    GFAP Delta164/Deltaexon 6 are two out-of frame splice variants of GFAP. The aim of this study was to investigate the distribution of GFAP Delta164/Deltaexon 6 expressing cells, in focal lesions associated with chronic intractable epilepsy, in light of the increasing interest in the role of specific

  16. Loss of Pnn expression attenuates expression levels of SR family splicing factors and modulates alternative pre-mRNA splicing in vivo

    International Nuclear Information System (INIS)

    SR and SR-related proteins have been implicated as trans-acting factors that play an important role in splice selection and are involved at specific stages of spliceosome formation. A well-established property of SR protein splicing factors is their ability to influence selection of alternative splice sites in a concentration-dependent manner. Identification of molecules that regulate SR family protein expression is therefore of vital importance in RNA biology. Here we report that depletion of Pnn expression, a SR-related protein with functions involved in pre-mRNA splicing and mRNA export, induces reduced expression of a subset of cellular proteins, especially that of SR family proteins, including SC35, SRm300, SRp55, and SRp40, but not that of other nuclear proteins, such as p53, Mdm2, and ki67. Knocking down Pnn expression was achieved in vitro by siRNA transfection. Expression levels of SR and SR-related proteins in Pnn-depleted cells as compared to those in control cells were evaluated by immunofluorescent staining and Western blot with specific antibodies. In addition, we also demonstrate that loss of Pnn expression could modulate splice site selection of model reporter gene in vivo. Our finding is significant in terms of regulation of SR protein cellular concentration because it reveals that Pnn may play a general role in the control of the cellular amount of family SR proteins through down-regulation of its own expression, thereby providing us with a better understanding of the cellular mechanism by which Pnn fulfills its biological function

  17. Evaluation of soluble CD44 splice variant v5 in the diagnosis and follow-up in breast cancer patients.

    Science.gov (United States)

    Kittl, E M; Ruckser, R; Selleny, S; Samek, V; Hofmann, J; Huber, K; Reiner, A; Ogris, E; Hinterberger, W; Bauer, K

    1997-01-01

    Aberrant expression of CD44 splice variants has been detected on a variety of human tumor cells. Overexpression of specific isoforms has been shown to be associated with metastasis and poor prognosis in breast cancer. We evaluated the possible utility of soluble CD44 splice variant v5 (sCD44v5) as a circulating, tumor-associated marker in breast cancer patients. Serum levels of sCD44v5 were determined in 147 healthy volunteers, in 53 patients with nonmalignant breast disease, in 85 patients with breast cancer at presentation, in 13 patients with recurrence and in 73 patients with active metastatic disease. Statistically, the levels at presentation in stages I-IV, in benign disease, and in a female control group were not significantly different. First longitudinal studies over 1-2 years in the follow-up of 28 patients who have remained tumor-free showed considerable between-patient variation while the intrapatient levels remained within relatively narrow limits. In patients with active metastatic disease, elevated levels of sCD44v5 (> 58 ng.ml-1) were detected in 50% of the cases with marked elevation in only 26%. In these cases, sCD44v5 correlated with the extent of metastatic disease and fell during clinical response to cytoreductive therapy. In comparison with CA15-3 in the patients' follow-up serum levels of sCD44v5 proved to be much less sensitive concerning lead time, percentage of raised serum levels at the time of recurrence and in metastatic disease. The value of sCD44v5 determinations in breast cancer patients was further limited by the poor diagnostic specificity of this marker due to elevated levels in smokers and chronic inflammatory disease. PMID:9523162

  18. Genome-wide analysis of alternative splicing of pre-mRNA under salt stress in Arabidopsis

    KAUST Repository

    Ding, Feng

    2014-06-04

    Background: Alternative splicing (AS) of precursor mRNA (pre-mRNA) is an important gene regulation process that potentially regulates many physiological processes in plants, including the response to abiotic stresses such as salt stress.Results: To analyze global changes in AS under salt stress, we obtained high-coverage (~200 times) RNA sequencing data from Arabidopsis thaliana seedlings that were treated with different concentrations of NaCl. We detected that ~49% of all intron-containing genes were alternatively spliced under salt stress, 10% of which experienced significant differential alternative splicing (DAS). Furthermore, AS increased significantly under salt stress compared with under unstressed conditions. We demonstrated that most DAS genes were not differentially regulated by salt stress, suggesting that AS may represent an independent layer of gene regulation in response to stress. Our analysis of functional categories suggested that DAS genes were associated with specific functional pathways, such as the pathways for the responses to stresses and RNA splicing. We revealed that serine/arginine-rich (SR) splicing factors were frequently and specifically regulated in AS under salt stresses, suggesting a complex loop in AS regulation for stress adaptation. We also showed that alternative splicing site selection (SS) occurred most frequently at 4 nucleotides upstream or downstream of the dominant sites and that exon skipping tended to link with alternative SS.Conclusions: Our study provided a comprehensive view of AS under salt stress and revealed novel insights into the potential roles of AS in plant response to salt stress. 2014 Ding et al.; licensee BioMed Central Ltd.

  19. Alternative Splicing of CHEK2 and Codeletion with NF2 Promote Chromosomal Instability in Meningioma

    Directory of Open Access Journals (Sweden)

    Hong Wei Yang

    2012-01-01

    Full Text Available Mutations of the NF2 gene on chromosome 22q are thought to initiate tumorigenesis in nearly 50% of meningiomas, and 22q deletion is the earliest and most frequent large-scale chromosomal abnormality observed in these tumors. In aggressive meningiomas, 22q deletions are generally accompanied by the presence of large-scale segmental abnormalities involving other chromosomes, but the reasons for this association are unknown. We find that large-scale chromosomal alterations accumulate during meningioma progression primarily in tumors harboring 22q deletions, suggesting 22q-associated chromosomal instability. Here we show frequent codeletion of the DNA repair and tumor suppressor gene, CHEK2, in combination with NF2 on chromosome 22q in a majority of aggressive meningiomas. In addition, tumor-specific splicing of CHEK2 in meningioma leads to decreased functional Chk2 protein expression. We show that enforced Chk2 knockdown in meningioma cells decreases DNA repair. Furthermore, Chk2 depletion increases centrosome amplification, thereby promoting chromosomal instability. Taken together, these data indicate that alternative splicing and frequent codeletion of CHEK2 and NF2 contribute to the genomic instability and associated development of aggressive biologic behavior in meningiomas.

  20. Differential gene expression and alternative splicing between diploid and tetraploid watermelon.

    Science.gov (United States)

    Saminathan, Thangasamy; Nimmakayala, Padma; Manohar, Sumanth; Malkaram, Sridhar; Almeida, Aldo; Cantrell, Robert; Tomason, Yan; Abburi, Lavanya; Rahman, Mohammad A; Vajja, Venkata G; Khachane, Amit; Kumar, Brajendra; Rajasimha, Harsha K; Levi, Amnon; Wehner, Todd; Reddy, Umesh K

    2015-03-01

    The exploitation of synthetic polyploids for producing seedless fruits is well known in watermelon. Tetraploid progenitors of triploid watermelon plants, compared with their diploid counterparts, exhibit wide phenotypic differences. Although many factors modulate alternative splicing (AS) in plants, the effects of autopolyploidization on AS are still unknown. In this study, we used tissues of leaf, stem, and fruit of diploid and tetraploid sweet watermelon to understand changes in gene expression and the occurrence of AS. RNA-sequencing analysis was performed along with reverse transcription quantitative PCR and rapid amplification of cDNA ends (RACE)-PCR to demonstrate changes in expression and splicing. All vegetative tissues except fruit showed an increased level of AS in the tetraploid watermelon throughout the growth period. The ploidy levels of diploids and the tetraploid were confirmed using a ploidy analyser. We identified 5362 and 1288 genes that were up- and downregulated, respectively, in tetraploid as compared with diploid plants. We further confirmed that 22 genes underwent AS events across tissues, indicating possibilities of generating different protein isoforms with altered functions of important transcription factors and transporters. Arginine biosynthesis, chlorophyllide synthesis, GDP mannose biosynthesis, trehalose biosynthesis, and starch and sucrose degradation pathways were upregulated in autotetraploids. Phloem protein 2, chloroplastic PGR5-like protein, zinc-finger protein, fructokinase-like 2, MYB transcription factor, and nodulin MtN21 showed AS in fruit tissues. These results should help in developing high-quality seedless watermelon and provide additional transcriptomic information related to other cucurbits. PMID:25520388

  1. Targeted alternative splicing of TAF4: a new strategy for cell reprogramming.

    Science.gov (United States)

    Kazantseva, Jekaterina; Sadam, Helle; Neuman, Toomas; Palm, Kaia

    2016-01-01

    Reprogramming of somatic cells has become a versatile tool for biomedical research and for regenerative medicine. In the current study, we show that manipulating alternative splicing (AS) is a highly potent strategy to produce cells for therapeutic applications. We demonstrate that silencing of hTAF4-TAFH activity of TAF4 converts human facial dermal fibroblasts to melanocyte-like (iMel) cells. iMel cells produce melanin and express microphthalmia-associated transcription factor (MITF) and its target genes at levels comparable to normal melanocytes. Reprogramming of melanoma cells by manipulation with hTAF4-TAFH activity upon TAFH RNAi enforces cell differentiation towards chondrogenic pathway, whereas ectoptic expression of TAF4 results in enhanced multipotency and neural crest-like features in melanoma cells. In both cell states, iMels and cancer cells, hTAF4-TAFH activity controls migration by supporting E- to N-cadherin switches. From our data, we conclude that targeted splicing of hTAF4-TAFH coordinates AS of other TFIID subunits, underscoring the role of TAF4 in synchronised changes of Pol II complex composition essential for efficient cellular reprogramming. Taken together, targeted AS of TAF4 provides a unique strategy for generation of iMels and recapitulating stages of melanoma progression. PMID:27499390

  2. Glycolysis controls the induction of human regulatory T cells by modulating the expression of FOXP3 exon 2 splicing variants.

    Science.gov (United States)

    De Rosa, Veronica; Galgani, Mario; Porcellini, Antonio; Colamatteo, Alessandra; Santopaolo, Marianna; Zuchegna, Candida; Romano, Antonella; De Simone, Salvatore; Procaccini, Claudio; La Rocca, Claudia; Carrieri, Pietro Biagio; Maniscalco, Giorgia Teresa; Salvetti, Marco; Buscarinu, Maria Chiara; Franzese, Adriana; Mozzillo, Enza; La Cava, Antonio; Matarese, Giuseppe

    2015-11-01

    Human regulatory T cells (T(reg) cells) that develop from conventional T cells (T(conv) cells) following suboptimal stimulation via the T cell antigen receptor (TCR) (induced T(reg) cells (iT(reg) cells)) express the transcription factor Foxp3, are suppressive, and display an active proliferative and metabolic state. Here we found that the induction and suppressive function of iT(reg) cells tightly depended on glycolysis, which controlled Foxp3 splicing variants containing exon 2 (Foxp3-E2) through the glycolytic enzyme enolase-1. The Foxp3-E2-related suppressive activity of iT(reg) cells was altered in human autoimmune diseases, including multiple sclerosis and type 1 diabetes, and was associated with impaired glycolysis and signaling via interleukin 2. This link between glycolysis and Foxp3-E2 variants via enolase-1 shows a previously unknown mechanism for controlling the induction and function of T(reg) cells in health and in autoimmunity. PMID:26414764

  3. Differential regulation of iPLA2beta splice variants by in vitro ischemia in C2C12 myotubes

    DEFF Research Database (Denmark)

    Poulsen, K. A.; Kolko, M.; Lambert, I. H.

    2006-01-01

    In this study we investigated the activity, expression and regulation of iPLA2 during ischemia in mouse C2C12 myotubes. Here, we show that in vitro ischemia, i.e. oxygen deprivation and glucose starvation, induces an iPLA2 activity that is totally reversed by siRNA knock down of iPLA2£], indicating...... preferential activation of iPLA2£]. The activity of the native iPLA2£] tetramer has in humans been proposed to be negatively regulated by interactions with catalytic inactive splice variants of the full-length protein. These variants, characterized by the presence exon 9a, have however not been identified in...... transcript would be a C-terminally truncated î50 kDa protein lacking the catalytic site. qPCR indicated that, while the total iPLA2£] mRNA level in C2C12 myotubes increased weakly within 1-2 hours of in vitro ischemia, the transcript containing the mouse exon 9a was rapidly down regulated. In addition...

  4. Cytoplasmic male sterility of tuber mustard is associated with the alternative spliced mitochondrial T gene transcripts

    Institute of Scientific and Technical Information of China (English)

    PEI Yanxi; CHEN Zhujun; CAO Jiashu; CHEN Xuejun; LIU Xiaohui

    2004-01-01

    Two transcripts of T gene, T1170 and T1243, were obtained from the mitochondrial cDNA of tuber mustard CMS line. T1243 was a transcript with an intron unspliced, which has the basic characteristics of type Ⅱ intron. The expressions of the two transcripts were analyzed by reverse transcription PCR (RT-PCR). The results showed that, at seedling stage, the expression of T gene was mainly in the form of T1170 but decreased with the development gradually, while the expression abundance of another transcript, T1243, increased gradually. The T1243 was prevalent at the profuse flowering stage. The expression pattern was confirmed by Northern blot analysis. These results suggested that the alternative spliced mitochondrial T gene transcripts were related to CMS of tuber mustard.

  5. Alternative splicing of interleukin-33 and type 2 inflammation in asthma.

    Science.gov (United States)

    Gordon, Erin D; Simpson, Laura J; Rios, Cydney L; Ringel, Lando; Lachowicz-Scroggins, Marrah E; Peters, Michael C; Wesolowska-Andersen, Agata; Gonzalez, Jeanmarie R; MacLeod, Hannah J; Christian, Laura S; Yuan, Shaopeng; Barry, Liam; Woodruff, Prescott G; Ansel, K Mark; Nocka, Karl; Seibold, Max A; Fahy, John V

    2016-08-01

    Type 2 inflammation occurs in a large subgroup of asthmatics, and novel cytokine-directed therapies are being developed to treat this population. In mouse models, interleukin-33 (IL-33) activates lung resident innate lymphoid type 2 cells (ILC2s) to initiate airway type 2 inflammation. In human asthma, which is chronic and difficult to model, the role of IL-33 and the target cells responsible for persistent type 2 inflammation remain undefined. Full-length IL-33 is a nuclear protein and may function as an "alarmin" during cell death, a process that is uncommon in chronic stable asthma. We demonstrate a previously unidentified mechanism of IL-33 activity that involves alternative transcript splicing, which may operate in stable asthma. In human airway epithelial cells, alternative splicing of the IL-33 transcript is consistently present, and the deletion of exons 3 and 4 (Δ exon 3,4) confers cytoplasmic localization and facilitates extracellular secretion, while retaining signaling capacity. In nonexacerbating asthmatics, the expression of Δ exon 3,4 is strongly associated with airway type 2 inflammation, whereas full-length IL-33 is not. To further define the extracellular role of IL-33 in stable asthma, we sought to determine the cellular targets of its activity. Comprehensive flow cytometry and RNA sequencing of sputum cells suggest basophils and mast cells, not ILC2s, are the cellular sources of type 2 cytokines in chronic asthma. We conclude that IL-33 isoforms activate basophils and mast cells to drive type 2 inflammation in chronic stable asthma, and novel IL-33 inhibitors will need to block all biologically active isoforms. PMID:27432971

  6. MAISTAS: a tool for automatic structural evaluation of alternative splicing products.

    KAUST Repository

    Floris, Matteo

    2011-04-15

    MOTIVATION: Analysis of the human genome revealed that the amount of transcribed sequence is an order of magnitude greater than the number of predicted and well-characterized genes. A sizeable fraction of these transcripts is related to alternatively spliced forms of known protein coding genes. Inspection of the alternatively spliced transcripts identified in the pilot phase of the ENCODE project has clearly shown that often their structure might substantially differ from that of other isoforms of the same gene, and therefore that they might perform unrelated functions, or that they might even not correspond to a functional protein. Identifying these cases is obviously relevant for the functional assignment of gene products and for the interpretation of the effect of variations in the corresponding proteins. RESULTS: Here we describe a publicly available tool that, given a gene or a protein, retrieves and analyses all its annotated isoforms, provides users with three-dimensional models of the isoform(s) of his/her interest whenever possible and automatically assesses whether homology derived structural models correspond to plausible structures. This information is clearly relevant. When the homology model of some isoforms of a gene does not seem structurally plausible, the implications are that either they assume a structure unrelated to that of the other isoforms of the same gene with presumably significant functional differences, or do not correspond to functional products. We provide indications that the second hypothesis is likely to be true for a substantial fraction of the cases. AVAILABILITY: http://maistas.bioinformatica.crs4.it/.

  7. Molecular characterization, alternative splicing and expression analysis of ACSF2 and its correlation with egg-laying performance in geese.

    Science.gov (United States)

    Yu, S; Wei, W; Xia, M; Jiang, Z; He, D; Li, Z; Han, H; Chu, W; Liu, H; Chen, J

    2016-08-01

    ACSF2 (encoded by acyl-CoA synthetase family member 2) belongs to the acyl-CoA synthetase (ACS) family, activating fatty acids by forming a thioester bond with CoA. In our previous study, a SNP residing in the intron of ACSF2 was identified to be linked to goose egg-laying performance. But the structure of goose ACSF2 as well as its role in reproduction remains unknown. In this study, we cloned and characterized ACSF2 in Yangzhou geese. A total of four alternative splice variants, designated as ACSF2-1, ACSF2-2, ACSF2-3 and ACSF2-4 respectively, were identified in the ovary. The coding regions of the four variants are 1770, 1692, 1599 and 1917 bp in length, respectively encoding 589, 563, 532 and 638 amino acids with conserved AMP-binding sites. All ACSF2 variants were widely expressed in 11 tested tissues in geese, except that the ACSF2-2 transcript was not detected in hypothalamus, pituitary gland and granulosa cells. Subcellular localization revealed that ACSF2 is a mitochondrial matrix protein. ACSF2 mRNA level was compared between high egg production (HEP; n = 8) and low egg production (LEP; n = 10) groups and showed a lower (P < 0.05) mRNA level in the HEP group. Further experiments indicated that overexpressing ACSF2 resulted in a significant increase of caspase-3 mRNA levels and that ACSF2 knockdown triggered a decrease in the caspase-3 mRNA level in granulosa cells. Similarly, the lower caspase-3 mRNA levels were identified in ovaries of the HEP group with lower ACSF2 mRNA levels. The research showed that the ACSF2 mRNA levels had a positive correlation with caspase-3 mRNA levels in vivo (R = 0.86, P < 0.01). Our results suggest that lower ACSF2 expression promotes the laying performance of goose possibly by inhibiting granulosa cell apoptosis and facilitating follicular development. PMID:27062512

  8. THE GRK4 SUBFAMILY OF G PROTEIN-COUPLED RECEPTOR KINASES: ALTERNATIVE SPLICING, GENE ORGANIZATION, AND SEQUENCE CONSERVATION

    Science.gov (United States)

    The GRK4 subfamily of G protein-coupled receptor kinases. Alternative splicing, gene organization, and sequence conservation.Premont RT, Macrae AD, Aparicio SA, Kendall HE, Welch JE, Lefkowitz RJ.Department of Medicine, Howard Hughes Medical Institute, Duke Univer...

  9. Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response.

    Science.gov (United States)

    Marcel, V; Fernandes, K; Terrier, O; Lane, D P; Bourdon, J-C

    2014-09-01

    In addition to the tumor suppressor p53 protein, also termed p53α, the TP53 gene produces p53β and p53γ through alternative splicing of exons 9β and 9γ located within TP53 intron 9. Here we report that both TG003, a specific inhibitor of Cdc2-like kinases (Clk) that regulates the alternative splicing pre-mRNA pathway, and knockdown of SFRS1 increase expression of endogenous p53β and p53γ at mRNA and protein levels. Development of a TP53 intron 9 minigene shows that TG003 treatment and knockdown of SFRS1 promote inclusion of TP53 exons 9β/9γ. In a series of 85 primary breast tumors, a significant association was observed between expression of SFRS1 and α variant, supporting our experimental data. Using siRNA specifically targeting exons 9β/9γ, we demonstrate that cell growth can be driven by modulating p53β and p53γ expression in an opposite manner, depending on the cellular context. In MCF7 cells, p53β and p53γ promote apoptosis, thus inhibiting cell growth. By transient transfection, we show that p53β enhanced p53α transcriptional activity on the p21 and Bax promoters, while p53γ increased p53α transcriptional activity on the Bax promoter only. Moreover, p53β and p53γ co-immunoprecipitate with p53α only in the presence of p53-responsive promoter. Interestingly, although p53β and p53γ promote apoptosis in MCF7 cells, p53β and p53γ maintain cell growth in response to TG003 in a p53α-dependent manner. The dual activities of p53β and p53γ isoforms observed in non-treated and TG003-treated cells may result from the impact of TG003 on both expression and activities of p53 isoforms. Overall, our data suggest that p53β and p53γ regulate cellular response to modulation of alternative splicing pre-mRNA pathway by a small drug inhibitor. The development of novel drugs targeting alternative splicing process could be used as a novel therapeutic approach in human cancers. PMID:24926616

  10. Requirement of a novel splicing variant of human histone deacetylase 6 for TGF-β1-mediated gene activation

    International Nuclear Information System (INIS)

    Histone deacetylase 6 (HDAC6) belongs to the family of class IIb HDACs and predominantly deacetylates non-histone proteins in the cytoplasm via the C-terminal deacetylase domain of its two tandem deacetylase domains. HDAC6 modulates fundamental cellular processes via deacetylation of α-tubulin, cortactin, molecular chaperones, and other peptides. Our previous study indicates that HDAC6 mediates TGF-β1-induced epithelial-mesenchymal transition (EMT) in A549 cells. In the current study, we identify a novel splicing variant of human HDAC6, hHDAC6p114. The hHDAC6p114 mRNA arises from incomplete splicing and encodes a truncated isoform of the hHDAC6p114 protein of 114 kDa when compared to the major isoform hHDAC6p131. The hHDAC6p114 protein lacks the first 152 amino acids from N-terminus in the hHDAC6p131 protein, which harbors a nuclear export signal peptide and 76 amino acids of the N-terminal deacetylase domain. hHDAC6p114 is intact in its deacetylase activity against α-tubulin. The expression hHDAC6p114 is elevated in a MCF-7 derivative that exhibits an EMT-like phenotype. Moreover, hHDAC6p114 is required for TGF-β1-activated gene expression associated with EMT in A549 cells. Taken together, our results implicate that expression and function of hHDAC6p114 is differentially regulated when compared to hHDAC6p131.

  11. Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants.

    Directory of Open Access Journals (Sweden)

    Lasse Folkersen

    Full Text Available BACKGROUND: Several genome-wide association studies have recently linked a group of single nucleotide polymorphisms in the 9p21 region with cardiovascular disease. The molecular mechanisms of this link are not fully understood. We investigated five different expression microarray datasets in order to determine if the genotype had effect on expression of any gene transcript in aorta, mammary artery, carotid plaque and lymphoblastoid cells. METHODOLOGY/PRINCIPAL FINDINGS: After multiple testing correction, no genes were found to have relation to the rs2891168 risk genotype, either on a genome-wide scale or on a regional (8 MB scale. The neighbouring ANRIL gene was found to have eight novel transcript variants not previously known from literature and these varied by tissue type. We therefore performed a detailed probe-level analysis and found small stretches of significant relation to genotype but no consistent associations. In all investigated tissues we found an inverse correlation between ANRIL and the MTAP gene and a positive correlation between ANRIL and CDKN2A and CDKN2B. CONCLUSIONS/SIGNIFICANCE: Investigation of relation of the risk genotype to gene expression is complicated by the transcript complexity of the locus. With our investigation of a range of relevant tissue we wish to underscore the need for careful attention to the complexity of the alternative splicing issues in the region and its implications to the design of future gene expression studies.

  12. A hypoxia-inducible factor (HIF)-3α splicing variant, HIF-3α4 impairs angiogenesis in hypervascular malignant meningiomas with epigenetically silenced HIF-3α4

    International Nuclear Information System (INIS)

    Highlights: ► HIF-3α4 is silenced by DNA methylation in meningiomas. ► Induction of HIF-3α4 impaired angiogenesis in meningiomas. ► Induction of HIF-3α4 impaired proliferation and oxygen-dependent metabolism. -- Abstract: Hypoxia inducible factor is a dominant regulator of adaptive cellular responses to hypoxia and controls the expression of a large number of genes regulating angiogenesis as well as metabolism, cell survival, apoptosis, and other cellular functions in an oxygen level-dependent manner. When a neoplasm is able to induce angiogenesis, tumor progression occurs more rapidly because of the nutrients provided by the neovasculature. Meningioma is one of the most hypervascular brain tumors, making anti-angiogenic therapy an attractive novel therapy for these tumors. HIF-3α has been conventionally regarded as a dominant-negative regulator of HIF-1α, and although alternative HIF-3α splicing variants are extensively reported, their specific functions have not yet been determined. In this study, we found that the transcription of HIF-3α4 was silenced by the promoter DNA methylation in meningiomas, and inducible HIF-3α4 impaired angiogenesis, proliferation, and metabolism/oxidation in hypervascular meningiomas. Thus, HIF-3α4 could be a potential molecular target in meningiomas

  13. Alternative splicing generates a novel FADS2 alternative transcript in baboons

    OpenAIRE

    Park, Woo Jung; Reardon, Holly T; Tyburczy, Cynthia; Kothapalli, Kumar SD; Brenna, J. Thomas

    2009-01-01

    The mammalian fatty acid desaturase 2 (FADS2) gene codes for catalytic activity considered to be the rate limited step in long chain polyunsaturated fatty acid (LCPUFA) synthesis. FADS2 catalyzes 6-desaturation in at least five substrates and 8-desaturation in at least two substrates. However, the molecular mechanisms that regulate FADS2-mediated desaturation remain ill-defined. We report here characterization of an alternative transcript (AT1) of primate FADS2 and compare its expression to t...

  14. Alternative splicing of the AGAMOUS orthologous gene in double flower of Magnolia stellata (Magnoliaceae).

    Science.gov (United States)

    Zhang, Bo; Liu, Zhi-Xiong; Ma, Jiang; Song, Yi; Chen, Fa-Ju

    2015-12-01

    Magnolia stellata is a woody ornamental shrub with more petaloid tepals than related plants from family Magnoliaceae. Recent studies revealed that expression changes in an AGAMOUS (AG) orthologous gene could resulted in double flowers with increased numbers of petals. We isolated three transcripts encoding different isoforms of a single AG orthologous gene, MastAG, mastag_2 and mastag_3, from M. stellata. Sequence alignments and Southern blot analyses suggested that MastAG was a single-copy gene in M. stellata genomes, and that mastag_2 and mastag_3 were abnormally spliced isoforms of MastAG. An 144bp exon skipping in MastAG results in the truncated mastag_2 protein lacking the completely I domain and 18 aa of the K1 subdomain, whereas an 165bp exon skipping of MastAG produces a truncated mastag_3 protein lacking 6 aa of the K3 subdomain and the completely C terminal region. Expression analyses showed that three alternative splicing (AS) isoforms expressed only in developing stamens and carpels. Functional analyses revealed that MastAG could mimic the endogenous AG to specify carpel identity, but failed to regulate stamen development in an Arabidopsis ag-1 mutant. Moreover, the key domain or subdomain deletions represented by mastag_2 and mastag_3 resulted in loss of C-function. However, ectopic expression of mastag_2 in Arabidopsis produced flowers with sepals converted into carpeloid organs, but without petals and stamens, whereas ectopic expression of mastag_3 in Arabidopsis could mimic the flower phenotype of the ag mutant and produced double flowers with homeotic transformation of stamens into petals and carpels into another ag flower. Our results also suggest that mastag_3 holds some potential for biotechnical engineering to create multi-petal phenotypes in commercial ornamental cultivars. PMID:26706078

  15. Molecular analysis of human argininosuccinate lyase: Mutant characterization and alternative splicing of the coding region

    International Nuclear Information System (INIS)

    Argininosuccinic acid lyase (ASAL) deficiency is a clinically heterogeneous autosomal recessive urea cycle disorder. The authors previously established by complementation analysis that 29 ASAL-deficient patients have heterogeneous mutations in a single gene. To prove that the ASAL structural gene is the affected locus, they sequenced polymerase chain reaction-amplified ASAL cDNA of a representative mutant from the single complementation group. Fibroblast strain 944 from a late-onset patient who was the product of a consanguineous mating, had only a single base-pair change in the coding region, a C-283→ T transition at a CpG dinucleotide in exon 3. This substitution converts Arg-95 to Cys (R95C), occurs in a stretch of 13 residues that is identical in yeast and human ASAL, and was present in both of the patient's alleles but not in 14 other mutant or 10 normal alleles. They observed that amplified cDNA from mutant 944 and normal cells (liver, keratinocytes, lymphoblasts, and fibroblasts) contained, in addition to the expected 5' 513-base-pair band, a prominent 318-base-pair ASAL band formed by the splicing of exon 2 from the transcript. The short transcript maintains the ASAL reading frame but removes Lys-51, a residue that may be essential for catalysis, since it binds the argininosuccinate substrate. They conclude (i) that the identification of the R95C mutation in strain 944 demonstrates that virtually all ASAL deficiency results from defects in the ASAL structural gene and (ii) that minor alternative splicing of the coding region occurs at the ASAL locus

  16. Expression of a splicing variant in the 5'-UTR of the human ERCC1 gene is not cancer related.

    Science.gov (United States)

    Winter, Andrew G; Dorgan, Clare; Melton, David W

    2005-03-17

    Cisplatin is the most commonly used chemotherapeutic agent in the treatment of ovarian cancer. One of the mechanisms of resistance of ovarian tumours to cisplatin is increased nucleotide excision repair activity, in particular increased levels of the endonuclease ERCC1. Since 30-40% of ovarian cancers develop resistance to cisplatin after treatment and these tumours are usually incurable, ERCC1 expression is potentially useful as a predictive marker for the effectiveness of cisplatin-based chemotherapy. Using RT-PCR and Northern blotting, we have examined the expression of a 42 bp differentially spliced sequence in exon 1 of the human ERCC1 gene, loss of which has previously been reported to be correlated with higher levels of ERCC1 mRNA in ovarian cancer cell lines. We report here that this alternate transcript is ubiquitous in human tissues and cancer cell lines, is absent in mouse and thus does not appear to be cancer related. PMID:15688021

  17. Gene expression analyses implicate an alternative splicing program in regulating contractile gene expression and serum response factor activity in mice.

    Directory of Open Access Journals (Sweden)

    Twishasri Dasgupta

    Full Text Available Members of the CUG-BP, Elav-like family (CELF regulate alternative splicing in the heart. In MHC-CELFΔ transgenic mice, CELF splicing activity is inhibited postnatally in heart muscle via expression of a nuclear dominant negative CELF protein under an α-myosin heavy chain promoter. MHC-CELFΔ mice develop dilated cardiomyopathy characterized by alternative splicing defects, enlarged hearts, and severe contractile dysfunction. In this study, gene expression profiles in the hearts of wild type, high- and low-expressing lines of MHC-CELFΔ mice were compared using microarrays. Gene ontology and pathway analyses identified contraction and calcium signaling as the most affected processes. Network analysis revealed that the serum response factor (SRF network is highly affected. Downstream targets of SRF were up-regulated in MHC-CELFΔ mice compared to the wild type, suggesting an increase in SRF activity. Although SRF levels remained unchanged, known inhibitors of SRF activity were down-regulated. Conversely, we found that these inhibitors are up-regulated and downstream SRF targets are down-regulated in the hearts of MCKCUG-BP1 mice, which mildly over-express CELF1 in heart and skeletal muscle. This suggests that changes in SRF activity are a consequence of changes in CELF-mediated regulation rather than a secondary result of compensatory pathways in heart failure. In MHC-CELFΔ males, where the phenotype is only partially penetrant, both alternative splicing changes and down-regulation of inhibitors of SRF correlate with the development of cardiomyopathy. Together, these results strongly support a role for CELF-mediated alternative splicing in the regulation of contractile gene expression, achieved in part through modulating the activity of SRF, a key cardiac transcription factor.

  18. A genome wide analysis of alternative splicing events during the osteogenic differentiation of human cartilage endplate-derived stem cells.

    Science.gov (United States)

    Shang, Jin; Wang, Honggang; Fan, Xin; Shangguan, Lei; Liu, Huan

    2016-08-01

    Low back pain is a prevalent disease, which leads to suffering and disabilities in a vast number of individuals. Degenerative disc diseases are usually the underlying causes of low back pain. However, the pathogenesis of degenerative disc diseases is highly complex and difficult to determine. Current therapies for degenerative disc diseases are various. In particular, cell-based therapies have proven to be effective and promising. Our research group has previously isolated and identified the cartilage endplate‑derived stem cells. In addition, alternative splicing is a sophisticated regulatory mechanism, which greatly increases cellular complexity and phenotypic diversity of eukaryotic organisms. The present study continued to investigate alternative splicing events in osteogenic differentiation of cartilage endplate‑derived stem cells. An Affymetrix Human Transcriptome Array 2.0 was used to detect splicing changes between the control and differentiated samples. Additionally, molecular function and pathway analysis were also performed. Following rigorous bioinformatics analysis of the data, 3,802 alternatively spliced genes were identified, and 10 of these were selected for validation by reverse transcription‑polymerase chain reaction. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway analysis also revealed numerous enriched GO terms and signaling pathways. To the best of our knowledge, the present study is the first to investigate alternative splicing mechanisms in osteogenic differentiation of stem cells on a genome‑wide scale. The illumination of molecular mechanisms of stem cell osteogenic differentiation may assist the development novel bioengineered methods to treat degenerative disc diseases. PMID:27278552

  19. Circadian and developmental regulation of N-methyl-d-aspartate-receptor 1 mRNA splice variants and N-methyl-d-aspartate-receptor 3 subunit expression within the rat suprachiasmatic nucleus

    DEFF Research Database (Denmark)

    Bendová, Z; Sumová, A; Mikkelsen, Jens D.

    2009-01-01

    ontogenesis, expression of two of the NMDAR1 subunit splice variants, as well as the NMDAR3A and 3B subunits, exhibits developmental loss around the time of eye opening. Moreover, we demonstrate the spatial and developmental characteristics of the expression of the truncated splice form of NMDAR1 subunit NR1...

  20. Increased expression of CD44 in hypertrophied ligamentum flavum and relevance of splice variants CD44v5 and CD44v6

    OpenAIRE

    Lakemeier, Stefan; Schmid, Raphael; Foltz, Lisa; Rohlfs, Jochen; Fuchs-Winkelmann, Susanne; Efe, Turgay; Foelsch, Christian; Jürgen R.J. Paletta

    2011-01-01

    Background The most common spinal disorder in the elderly is lumbar spinal stenosis (LSS), which results in part from ligamentum flavum (LF) hypertrophy. Although prior histologic and immunochemical studies have been performed in this area, the pathophysiology of loss of elasticity and hypertrophy is not completely understood. The purpose of this immunohistological study is to elucidate the role of CD44 and its splice variants CD44v5 and CD44v6 in the hypertrophied LF ...

  1. NOVEL SPLICED VARIANTS OF IONOTROPIC GLUTAMATE RECEPTOR GLUR6 IN NORMAL HUMAN FIBROBLAST AND BRAIN CELLS ARE TRANSCRIBED BY TISSUE SPECIFIC PROMOTERS

    OpenAIRE

    Zhawar, Vikramjit K.; Kaur, Gurpreet; deRiel, Jon K.; Kaur, G. Pal; Raj P Kandpal; Athwal, Raghbir S.

    2010-01-01

    The members of the ionotropic glutamate receptor family, namely, a-amino-3-hydroxy-S-methyl-4-isoxazole propionate (AMPA), kainate, and N-methyl-D-aspartate (NMDA) receptors, are important mediators of the rapid synaptic transmission in the central nervous system. We have investigated the splicing pattern and expression of the kainate receptor subunit GluR6 in human fibroblast cell lines and brain tissue. We demonstrate the expression of GluR6A variant specifically in brain, and four variants...

  2. Expression analysis of a novel pyridoxal kinase messenger RNA splice variant, PKL, in oil rape suffering abiotic stress and phytohormones.

    Science.gov (United States)

    Yu, Shunwu; Luo, Lijun

    2008-12-01

    Pyridoxal kinase is key enzyme for the biosynthesis of pyridoxal 5'-phosphate, the biologically active form of vitamin B6, in the salvage pathway. A pyridoxal kinase gene, BnPKL (GenBank accession No. DQ463962), was isolated from oilseed rape (Brassica napus L.) following water stress through rapid amplification of complementary DNA (cDNA) ends. The results showed that the gene had two splice variants: PKL and PKL2. PKL, the long cDNA, encodes a 334 amino acid protein with a complete ATP-binding site, pyridoxal kinase-binding site and dimer interface site of a pyridoxal kinase, while PKL2, the short cDNA, lacked a partial domain. Southern blot showed that there were two copies in Brassica napus. The expression of BnPKL cDNA could rescue the mutant phenotype of Escherichia coli defective in pyridoxal kinase. Real-time reverse transcription-polymerase chain reaction revealed that the relative abundance of two transcripts are modulated by development and environmental stresses. Abscisic acid and NaCl were inclined to decrease PKL expression, but H2O2 and cold temperatures induced the PKL expression. In addition, the PKL expression could be transiently induced by jasmonate acid at an early stage, abscisic acid, salicylic acid and jasmonate acid enhanced the PKL expression in roots. Our results demonstrated that BnPKL was a pyridoxal kinase involved in responses to biotic and abiotic stresses. PMID:19089298

  3. Cloning and characterization of human RTVP-1b, a novel splice variant of RTVP-1 in glioma cells

    International Nuclear Information System (INIS)

    Here, we report the cloning and characterization of RTVP-1b, a novel splice variant of human RTVP-1, which was isolated from the U87 glioma cell line. Sequence analysis revealed that RTVP-1b contains an additional 71 base exon between exons 2 and 3 that is missing in RTVP-1, leading to a frame-shift and a different putative protein. The deduced protein was 237 amino acids in length, sharing the N-terminal 141 amino acids with RTVP-1. RT-PCR analysis demonstrated that RTVP-1b was expressed in a wide range of tissues and that its expression was different from that of RTVP-1. In contrast, RTVP-1 and RTVP-1b showed similar patterns of expression in astrocytic tumors; highly expressed in glioblastomas as compared to normal brains, low-grade astrocytomas and anaplastic oligodendrogliomas. Overexpression of RTVP-1b increased glioma cell proliferation but did not affect cell migration. Our results suggest that RTVP-1b represents a potential prognostic marker and therapeutic target in gliomas

  4. Expression analysis of a novel pyridoxal kinase messenger RNA splice variant, PKL, in oil rape suffering abiotic stress and phytohormones

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Pyridoxal kinase is key enzyme for the biosynthesis of pyridoxal 5'-phosphate, the biologically active form of vitamin B6, in the salvage pathway. A pyridoxal kinase gene, BnPKL (GenBank accession No. DQ463962), was isolated from oilseed rape (Brassica napus L.) following water stress through rapid amplification of complementary DNA (cDNA) ends. The results showed that the gene had two splice variants: PKL and PKL2. PKL, the long cDNA, encodes a 334 amino acid protein with a complete ATP-binding site, pyridoxai kinase-binding site and dimer interface site of a pyridoxal kinase, while PKL2, the short cDNA, lacked a partial domain. Southern blot showed that there were two copies in Brassica napus. The expression of BnPKL cDNA could rescue the mutant phenotype of Escherichia coil defective in pyridoxai kinase. Real-time reverse transcription-polymerase chain reaction revealed that the relative abundance of two transcripts are modulated by development and environmental stresses.Abscisic acid and NaCI were inclined to decrease PKL expression, but HO and cold temperatures induced the PKL expression. In addition, the PKL expression could be transiently induced by jasmonate acid at an early stage, abscisic acid, salicylic acid and jasmonate acid enhanced the PKL expression in roots. Our results demonstrated that BnPKL was a pyridoxal kinase involved in responses to biotic and abiotic stresses.

  5. TSGΔ154-1054 splice variant increases TSG101 oncogenicity by inhibiting its E3-ligase-mediated proteasomal degradation

    Science.gov (United States)

    Weng, Pei-Lun; Yeh, Te-Huei

    2016-01-01

    Tumor susceptibility gene 101 (TSG101) elicits an array of cellular functions, including promoting cytokinesis, cell cycle progression and proliferation, as well as facilitating endosomal trafficking and viral budding. TSG101 protein is highly and aberrantly expressed in various human cancers. Specifically, a TSG101 splicing variant missing nucleotides 154 to 1054 (TSGΔ154-1054), which is linked to progressive tumor-stage and metastasis, has puzzled investigators for more than a decade. TSG101-associated E3 ligase (Tal)- and MDM2-mediated proteasomal degradation are the two major routes for posttranslational regulation of the total amount of TSG101. We reveal that overabundance of TSG101 results from TSGΔ154-1054 stabilizing the TSG101 protein by competitively binding to Tal, but not MDM2, thereby perturbing the Tal interaction with TSG101 and impeding subsequent polyubiquitination and proteasomal degradation of TSG101. TSGΔ154-1054 therefore specifically enhances TSG101-stimulated cell proliferation, clonogenicity, and tumor growth in nude mice. This finding shows the functional significance of TSGΔ154-1054 in preventing the ubiquitin-proteasome proteolysis of TSG101, which increases tumor malignancy and hints at its potential as a therapeutic target in cancer treatment. PMID:26811492

  6. HIV-1 infection induces changes in expression of cellular splicing factors that regulate alternative viral splicing and virus production in macrophages

    Directory of Open Access Journals (Sweden)

    Purcell Damian FJ

    2008-02-01

    Full Text Available Abstract Background Macrophages are important targets and long-lived reservoirs of HIV-1, which are not cleared of infection by currently available treatments. In the primary monocyte-derived macrophage model of infection, replication is initially productive followed by a decline in virion output over ensuing weeks, coincident with a decrease in the levels of the essential viral transactivator protein Tat. We investigated two possible mechanisms in macrophages for regulation of viral replication, which appears to be primarily regulated at the level of tat mRNA: 1 differential mRNA stability, used by cells and some viruses for the rapid regulation of gene expression and 2 control of HIV-1 alternative splicing, which is essential for optimal viral replication. Results Following termination of transcription at increasing times after infection in macrophages, we found that tat mRNA did indeed decay more rapidly than rev or nef mRNA, but with similar kinetics throughout infection. In addition, tat mRNA decayed at least as rapidly in peripheral blood lymphocytes. Expression of cellular splicing factors in uninfected and infected macrophage cultures from the same donor showed an inverse pattern over time between enhancing factors (members of the SR family of RNA binding proteins and inhibitory factors (members of the hnRNP family. While levels of the SR protein SC35 were greatly up-regulated in the first week or two after infection, hnRNPs of the A/B and H groups were down-regulated. Around the peak of virus production in each culture, SC35 expression declined to levels in uninfected cells or lower, while the hnRNPs increased to control levels or above. We also found evidence for increased cytoplasmic expression of SC35 following long-term infection. Conclusion While no evidence of differential regulation of tat mRNA decay was found in macrophages following HIV-1 infection, changes in the balance of cellular splicing factors which regulate alternative

  7. Co-option of the piRNA pathway for germline-specific alternative splicing of C. elegans TOR.

    Science.gov (United States)

    Barberán-Soler, Sergio; Fontrodona, Laura; Ribó, Anna; Lamm, Ayelet T; Iannone, Camilla; Cerón, Julián; Lehner, Ben; Valcárcel, Juan

    2014-09-25

    Many eukaryotic genes contain embedded antisense transcripts and repetitive sequences of unknown function. We report that male germline-specific expression of an antisense transcript contained in an intron of C. elegans Target of Rapamycin (TOR, let-363) is associated with (1) accumulation of endo-small interfering RNAs (siRNAs) against an embedded Helitron transposon and (2) activation of an alternative 3' splice site of TOR. The germline-specific Argonaute proteins PRG-1 and CSR-1, which participate in self/nonself RNA recognition, antagonistically regulate the generation of these endo-siRNAs, TOR mRNA levels, and 3' splice-site selection. Supply of exogenous double-stranded RNA against the region of sense/antisense overlap reverses changes in TOR expression and splicing and suppresses the progressive multigenerational sterility phenotype of prg-1 mutants. We propose that recognition of a "nonself" intronic transposon by endo-siRNAs/the piRNA system provides physiological regulation of expression and alternative splicing of a host gene that, in turn, contributes to the maintenance of germline function across generations. PMID:25220461

  8. Actions of agonists, fipronil and ivermectin on the predominant in vivo splice and edit variant (RDLbd, I/V of the Drosophila GABA receptor expressed in Xenopus laevis oocytes.

    Directory of Open Access Journals (Sweden)

    Kristin Lees

    Full Text Available Ionotropic GABA receptors are the targets for several classes of insecticides. One of the most widely-studied insect GABA receptors is RDL (resistance to dieldrin, originally isolated from Drosophila melanogaster. RDL undergoes alternative splicing and RNA editing, which influence the potency of GABA. Most work has focussed on minority isoforms. Here, we report the first characterisation of the predominant native splice variant and RNA edit, combining functional characterisation with molecular modelling of the agonist-binding region. The relative order of agonist potency is GABA> muscimol> TACA> β-alanine. The I/V edit does not alter the potency of GABA compared to RDLbd. Docking calculations suggest that these agonists bind and activate RDLbdI/V through a similar binding mode. TACA and β-alanine are predicted to bind with lower affinity than GABA, potentially explaining their lower potency, whereas the lower potency of muscimol and isoguvacine cannot be explained structurally from the docking calculations. The A301S (resistance to dieldrin mutation reduced the potency of antagonists picrotoxin, fipronil and pyrafluprole but the I/V edit had no measurable effect. Ivermectin suppressed responses to GABA of RDLbdI/V, RDLbd and RDLbdI/VA301S. The dieldrin resistant variant also showed reduced sensitivity to Ivermectin. This study of a highly abundant insect GABA receptor isoform will help the design of new insecticides.

  9. Actions of agonists, fipronil and ivermectin on the predominant in vivo splice and edit variant (RDLbd, I/V) of the Drosophila GABA receptor expressed in Xenopus laevis oocytes.

    Science.gov (United States)

    Lees, Kristin; Musgaard, Maria; Suwanmanee, Siros; Buckingham, Steven David; Biggin, Philip; Sattelle, David

    2014-01-01

    Ionotropic GABA receptors are the targets for several classes of insecticides. One of the most widely-studied insect GABA receptors is RDL (resistance to dieldrin), originally isolated from Drosophila melanogaster. RDL undergoes alternative splicing and RNA editing, which influence the potency of GABA. Most work has focussed on minority isoforms. Here, we report the first characterisation of the predominant native splice variant and RNA edit, combining functional characterisation with molecular modelling of the agonist-binding region. The relative order of agonist potency is GABA> muscimol> TACA> β-alanine. The I/V edit does not alter the potency of GABA compared to RDLbd. Docking calculations suggest that these agonists bind and activate RDLbdI/V through a similar binding mode. TACA and β-alanine are predicted to bind with lower affinity than GABA, potentially explaining their lower potency, whereas the lower potency of muscimol and isoguvacine cannot be explained structurally from the docking calculations. The A301S (resistance to dieldrin) mutation reduced the potency of antagonists picrotoxin, fipronil and pyrafluprole but the I/V edit had no measurable effect. Ivermectin suppressed responses to GABA of RDLbdI/V, RDLbd and RDLbdI/VA301S. The dieldrin resistant variant also showed reduced sensitivity to Ivermectin. This study of a highly abundant insect GABA receptor isoform will help the design of new insecticides. PMID:24823815

  10. Assessing the impact of alternative splicing on the diversity and evolution of the proteome in plants

    NARCIS (Netherlands)

    Severing, E.I.

    2011-01-01

    Splicing is one of the key processing steps during the maturation of a gene’s primary transcript into the mRNA molecule used as a template for protein production. Splicing involves the removal of segments called introns and re-joining of the remaining segments called exons. It is by now well e

  11. Identification of a chemical inhibitor for nuclear speckle formation: Implications for the function of nuclear speckles in regulation of alternative pre-mRNA splicing

    International Nuclear Information System (INIS)

    Highlights: • We identified tubercidin as a compound inducing aberrant formation of the speckles. • Tubercidin causes delocalization of poly (A)+RNAs from nuclear speckles. • Tubercidin induces dispersion of splicing factors from nuclear speckles. • Tubercidin affects alternative pre-mRNA splicing. • Nuclear speckles play a role in regulation of alternative pre-mRNA splicing. - Abstract: Nuclear speckles are subnuclear structures enriched with RNA processing factors and poly (A)+ RNAs comprising mRNAs and poly (A)+ non-coding RNAs (ncRNAs). Nuclear speckles are thought to be involved in post-transcriptional regulation of gene expression, such as pre-mRNA splicing. By screening 3585 culture extracts of actinomycetes with in situ hybridization using an oligo dT probe, we identified tubercidin, an analogue of adenosine, as an inhibitor of speckle formation, which induces the delocalization of poly (A)+ RNA and dispersion of splicing factor SRSF1/SF2 from nuclear speckles in HeLa cells. Treatment with tubercidin also decreased steady-state MALAT1 long ncRNA, thought to be involved in the retention of SRSF1/SF2 in nuclear speckles. In addition, we found that tubercidin treatment promoted exon skipping in the alternative splicing of Clk1 pre-mRNA. These results suggest that nuclear speckles play a role in modulating the concentration of splicing factors in the nucleoplasm to regulate alternative pre-mRNA splicing

  12. Identification of a chemical inhibitor for nuclear speckle formation: Implications for the function of nuclear speckles in regulation of alternative pre-mRNA splicing

    Energy Technology Data Exchange (ETDEWEB)

    Kurogi, Yutaro; Matsuo, Yota; Mihara, Yuki; Yagi, Hiroaki; Shigaki-Miyamoto, Kaya; Toyota, Syukichi; Azuma, Yuko [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto 860-8555 (Japan); Igarashi, Masayuki [Laboratory of Disease Biology, Institute of Microbial Chemistry, Shinagawa-ku, Tokyo 141-0021 (Japan); Tani, Tokio, E-mail: ttani@sci.kumamoto-u.ac.jp [Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Kumamoto 860-8555 (Japan)

    2014-03-28

    Highlights: • We identified tubercidin as a compound inducing aberrant formation of the speckles. • Tubercidin causes delocalization of poly (A){sup +}RNAs from nuclear speckles. • Tubercidin induces dispersion of splicing factors from nuclear speckles. • Tubercidin affects alternative pre-mRNA splicing. • Nuclear speckles play a role in regulation of alternative pre-mRNA splicing. - Abstract: Nuclear speckles are subnuclear structures enriched with RNA processing factors and poly (A){sup +} RNAs comprising mRNAs and poly (A){sup +} non-coding RNAs (ncRNAs). Nuclear speckles are thought to be involved in post-transcriptional regulation of gene expression, such as pre-mRNA splicing. By screening 3585 culture extracts of actinomycetes with in situ hybridization using an oligo dT probe, we identified tubercidin, an analogue of adenosine, as an inhibitor of speckle formation, which induces the delocalization of poly (A){sup +} RNA and dispersion of splicing factor SRSF1/SF2 from nuclear speckles in HeLa cells. Treatment with tubercidin also decreased steady-state MALAT1 long ncRNA, thought to be involved in the retention of SRSF1/SF2 in nuclear speckles. In addition, we found that tubercidin treatment promoted exon skipping in the alternative splicing of Clk1 pre-mRNA. These results suggest that nuclear speckles play a role in modulating the concentration of splicing factors in the nucleoplasm to regulate alternative pre-mRNA splicing.

  13. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    International Nuclear Information System (INIS)

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer

  14. Molecular cloning and functional characterization of a mouse gene upregulated by lipopolysaccharide treatment reveals alternative splicing

    International Nuclear Information System (INIS)

    Treatment of mouse cells with lipopolysaccharide (LPS) potently initiates an inflammatory response, but the underlying mechanisms are unclear. We therefore sought to characterize cDNA sequences of a new mouse LPS-responsive gene, and to evaluate the effects of MLrg. Full-length cDNAs were obtained from LPS-treated NIH3T3 cells. We report that the MLrg gene produces two alternative splice products (GenBank Accession Nos. (DQ316984) and (DQ320011)), respectively, encoding MLrgW and MLrgS polypeptides. Both proteins contain zinc finger and leucine zipper domains and are thus potential regulators of transcription. Expression of MLrgW and MLrgS were robustly upregulated following LPS treatment, and the proteins were localized predominantly in the nuclear membrane and cytoplasm. In stable transfectants over-expressing MLrgW the proportion of cells in G1 phase was significantly reduced, while in cells over-expressing MLrgS the proportion of cells in G2 was significantly increased; both proteins are thus potential regulators of cell cycle progression. Upregulation of MLrgW and MLrgS may be an important component of the LPS inflammatory pathway and of the host response to infection with GNB.

  15. Alarin but not its alternative-splicing form, GALP (Galanin-like peptide) has antimicrobial activity

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Akihiro, E-mail: a-wada@nagasaki-u.ac.jp [Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523 (Japan); Wong, Pooi-Fong [Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Hojo, Hironobu [Department of Applied Biochemistry, Institute of Glycoscience, Tokai University, Kanagawa 2591292 (Japan); Hasegawa, Makoto [Department of Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga 5260829 (Japan); Ichinose, Akitoyo [Electron Microscopy Shop Central Laboratory, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523 (Japan); Llanes, Rafael [Institute Pedro Kouri, Havana (Cuba); Kubo, Yoshinao [Division of Cytokine Signaling, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 8528523 (Japan); Senba, Masachika [Department of Pathology, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523 (Japan); Ichinose, Yoshio [Kenya Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki 8528523 (Japan)

    2013-05-03

    Highlights: • Alarin inhibits the growth of E. coli but not S. aureus. • Alarin’s potency is comparable to LL-37 in inhibiting the growth of E. coli. • Alarin can cause bacterial membrane blebbing. • Alalin does not induce hemolysis on erythrocytes. -- Abstract: Alarin is an alternative-splicing form of GALP (galanin-like peptide). It shares only 5 conserved amino acids at the N-terminal region with GALP which is involved in a diverse range of normal brain functions. This study seeks to investigate whether alarin has additional functions due to its differences from GALP. Here, we have shown using a radial diffusion assay that alarin but not GALP inhibited the growth of Escherichia coli (strain ML-35). The conserved N-terminal region, however, remained essential for the antimicrobial activity of alarin as truncated peptides showed reduced killing effect. Moreover, alarin inhibited the growth of E. coli in a similar potency as human cathelicidin LL-37, a well-studied antimicrobial peptide. Electron microscopy further showed that alarin induced bacterial membrane blebbing but unlike LL-37, it did not cause hemolysis of erythrocytes. In addition, alarin is only active against the gram-negative bacteria, E. coli but not the gram-positive bacteria, Staphylococcus aureus. Thus, these data suggest that alarin has potentials as an antimicrobial and should be considered for the development in human therapeutics.

  16. Exploring Codon Usage Patterns of Alternatively Spliced Genes in Human Chromosome 1

    Institute of Scientific and Technical Information of China (English)

    马飞; 庄永龙; 黄颖; 李衍达

    2004-01-01

    In this study, 414 whole protein-coding sequences (238 004 codons) of alternatively spliced genes of human chromosome 1 have been employed to explore the patterns of codon usage bias among genes. Overall codon usage data analysis indicates that G- and C-ending codons are predominant in the genes. The base usage in all three codon positions suggests a selection-mutation balance. Multivariate statistical analysis reveals that the codon usage variation has a strong positive correlation with the expressivities of the genes (r=0.5790, P<0.0001). All 27 codons identified as optimal are G- and C-ending codons.Correlation analysis shows a strong negative correlation between the gene length and codon adaptation index value (r=-0.2252, P<0.0001), and a significantly positive correlation between the gene length and Nc values (r=0.1876, P<0.0001). These results suggest that the comparatively shorter genes in the genes have higher codon usage bias to maximize translational efficiency, and selection may also contribute to the reduction of highly expressed proteins.

  17. Alternatively Spliced EDA Domain of Fibronectin Is a Target for Pharmacodelivery Applications in Inflammatory Bowel Disease.

    Science.gov (United States)

    Bootz, Franziska; Schmid, Anja Sophie; Neri, Dario

    2015-08-01

    The antibody-based pharmacodelivery of cytokines to sites of disease has been extensively studied for various indications but not for the treatment of inflammatory bowel diseases. Here, we report that the alternatively spliced EDA domain of fibronectin, a marker of angiogenesis and of tissue remodeling, is expressed in the dextran sodium sulfate mouse model of colitis and in patients with inflammatory bowel conditions, while being virtually undetectable in most normal adult tissues. Radiolabeled preparations of the F8 antibody, specific to the EDA domain of fibronectin, were shown to selectively localize to sites of inflammation in mice with colitis, as revealed by autoradiographic analysis. Fusion proteins of the F8 antibody with various murine payloads (interleukin-4, the p40 subunit of interleukin-12, interleukin-13) were administered to mice with colitis. IL12p40-F8 mediated an anti-inflammatory activity, which was comparable with the one of cyclosporine, whereas F8-IL4 did not inhibit colitis and F8-IL13 worsened the inflammatory conditions. PMID:25993691

  18. Cloning a cDNA encoding an alternatively spliced protein of BRCA2-associated factor 35.

    Science.gov (United States)

    Wang, Chiang; McCarty, Ida M; Balazs, Louisa; Li, Yi; Steiner, Mitchell S

    2002-07-01

    Inheritance of mutations in the breast cancer susceptibility gene, BRCA2, predisposes humans to breast and ovarian cancers. Inherited mutations in the BRCA2 gene are also known to cause susceptibility to prostate cancer. BRCA2 protein exists in a large multi-protein complex from which a novel structural DNA binding protein BRCA2-associated factor 35 (BRAF35) has been isolated. We have cloned a novel cDNA encoding an alternatively spliced protein of BRAF35, designated as BRAF25. BRAF25 transcript is present in various human cells. We have precisely mapped the BRAF25 cDNA sequence to the genomic chromosome 19 sequence. Analysis of the predicted sequence of BRAF25 identified a protein of 215 amino acids. BRAF25 contains a truncated high mobility group domain, a kinesin-like coiled-coil domain and multiple Src homology 2 (SH2) motifs. Western blot analysis using antibodies specific for BRAF25 revealed the presence of BRAF25 in human prostate cancer cells. PMID:12083779

  19. A Splice Variant of ASC Regulates IL-1β Release and Aggregates Differently from Intact ASC

    Directory of Open Access Journals (Sweden)

    Kazuhiko Matsushita

    2009-01-01

    Full Text Available The apoptosis-associated speck-like protein containing a caspase recruit domain (ASC is involved in apoptosis and innate immunity and is a major adaptor molecule responsible for procaspase-1 activation. ASC mRNA is encoded by three exons: exons 1 and 3 encode a pyrin domain (PYD and caspase recruit domain (CARD, respectively, and exon 2 encodes a proline and glycine-rich (PGR domain. Here, we identified a variant ASC protein (vASC lacking the PGR domain that was smaller than full length ASC (fASC derived from fully transcribed mRNA and searched for differences in biochemical and biological nature. Both fASC and vASC were found to activate procaspase-1 to a similar degree, but the efficiency of IL-1β excretion was significantly higher for vASC. There was also a marked structural difference observed in the fibrous aggregates formed by fASC and vASC. These results suggest that although the PGR domain is dispensable for procaspase-1 activation, it plays an important role in the regulation of the molecular structure and activity of ASC.

  20. Misregulation of Alternative Splicing in a Mouse Model of Rett Syndrome.

    Science.gov (United States)

    Li, Ronghui; Dong, Qiping; Yuan, Xinni; Zeng, Xin; Gao, Yu; Chiao, Cassandra; Li, Hongda; Zhao, Xinyu; Keles, Sunduz; Wang, Zefeng; Chang, Qiang

    2016-06-01

    Mutations in the human MECP2 gene cause Rett syndrome (RTT), a severe neurodevelopmental disorder that predominantly affects girls. Despite decades of work, the molecular function of MeCP2 is not fully understood. Here we report a systematic identification of MeCP2-interacting proteins in the mouse brain. In addition to transcription regulators, we found that MeCP2 physically interacts with several modulators of RNA splicing, including LEDGF and DHX9. These interactions are disrupted by RTT causing mutations, suggesting that they may play a role in RTT pathogenesis. Consistent with the idea, deep RNA sequencing revealed misregulation of hundreds of splicing events in the cortex of Mecp2 knockout mice. To reveal the functional consequence of altered RNA splicing due to the loss of MeCP2, we focused on the regulation of the splicing of the flip/flop exon of Gria2 and other AMPAR genes. We found a significant splicing shift in the flip/flop exon toward the flop inclusion, leading to a faster decay in the AMPAR gated current and altered synaptic transmission. In summary, our study identified direct physical interaction between MeCP2 and splicing factors, a novel MeCP2 target gene, and established functional connection between a specific RNA splicing change and synaptic phenotypes in RTT mice. These results not only help our understanding of the molecular function of MeCP2, but also reveal potential drug targets for future therapies. PMID:27352031

  1. Misregulation of Alternative Splicing in a Mouse Model of Rett Syndrome.

    Directory of Open Access Journals (Sweden)

    Ronghui Li

    2016-06-01

    Full Text Available Mutations in the human MECP2 gene cause Rett syndrome (RTT, a severe neurodevelopmental disorder that predominantly affects girls. Despite decades of work, the molecular function of MeCP2 is not fully understood. Here we report a systematic identification of MeCP2-interacting proteins in the mouse brain. In addition to transcription regulators, we found that MeCP2 physically interacts with several modulators of RNA splicing, including LEDGF and DHX9. These interactions are disrupted by RTT causing mutations, suggesting that they may play a role in RTT pathogenesis. Consistent with the idea, deep RNA sequencing revealed misregulation of hundreds of splicing events in the cortex of Mecp2 knockout mice. To reveal the functional consequence of altered RNA splicing due to the loss of MeCP2, we focused on the regulation of the splicing of the flip/flop exon of Gria2 and other AMPAR genes. We found a significant splicing shift in the flip/flop exon toward the flop inclusion, leading to a faster decay in the AMPAR gated current and altered synaptic transmission. In summary, our study identified direct physical interaction between MeCP2 and splicing factors, a novel MeCP2 target gene, and established functional connection between a specific RNA splicing change and synaptic phenotypes in RTT mice. These results not only help our understanding of the molecular function of MeCP2, but also reveal potential drug targets for future therapies.

  2. Structure of the human laminin {gamma}2 chain gene (LAMC2): Alternative splicing with different tissue distribution of two transcripts

    Energy Technology Data Exchange (ETDEWEB)

    Airenne, T.; Haakana, H.; Kallunki, T. [Univ. of Oulu (Finland)] [and others

    1996-02-15

    This article discusses the exon-intron structure and tissue distribution of the laminin {gamma}2 chain (LAMC2) gene, which is mutated in some cases of junctional epidermolysis bullosa. The article also discusses the transcription and splicing of this gene, which result in alternative uses of the last two exons of the gene. The different tissue distributions of the transcripts indicate different functions for the gene in vivo. 36 refs., 8 figs., 3 tabs.

  3. Functional Cross-Talking between Differentially Expressed and Alternatively Spliced Genes in Human Liver Cancer Cells Treated with Berberine

    OpenAIRE

    Zhen Sheng; Yi Sun; Ruixin Zhu; Na Jiao; Kailin Tang; Zhiwei Cao; Chao Ma

    2015-01-01

    Berberine has been identified with anti-proliferative effects on various cancer cells. Many researchers have been trying to elucidate the anti-cancer mechanisms of berberine based on differentially expressed genes. However, differentially alternative splicing genes induced by berberine might also contribute to its pharmacological actions and have not been reported yet. Moreover, the potential functional cross-talking between the two sets of genes deserves further exploration. In this study, R...

  4. Alternative Splicing and Differential Expression of Two Transcripts of Nicotine Adenine Dinucleotide Phosphate Oxidase B Gene from Zea mays

    Institute of Scientific and Technical Information of China (English)

    Fan Lin; Yun Zhang; Ming-Yi Jiang

    2009-01-01

    With the exception of rice, little is known about the existence of respiratory burst oxidase homolog (rboh) gene in cereals. The present study reports the cloning and analysis of a novel rboh gene, termed ZmrbohB, from maize (Zea mays L.). The full-length cDNA of ZmrbohB encodes a 942 amino acid protein containing all of the respiratory burst oxidase homolog catalytically critical motifs.Altemative splicing of ZmrbohB has generated two transcript isoforms, ZmrbohB-α and -β. Spliced transcript ZmrbohB-β retains an unspliced intron 11 that carries a premature termination codon and probably leads to nonsense-mediated mRNA decay. Expression analysis showed that two splice isoforms were differentially expressed in various tissues and at different developmental stages, and the major product was ZmrbohB-α. The transcripts of ZmrbohB-α accumulated markedly when the maize seedlings were subjected to various abiotic stimuli, such as wounding, cold (4℃), heat (40℃), UV and salinity stress. In addition, several abiotic stimuli also affected the alternative splicing pattern of ZmrbohB except wounding. These results provide new insight into roles in the expression regulation of plant rboh genes and suggest that ZmrbohB gene may play a role in response to environmental stresses.

  5. Cloning and expression of a zebrafish SCN1B ortholog and identification of a species-specific splice variant

    Directory of Open Access Journals (Sweden)

    Slat Emily A

    2007-07-01

    Full Text Available Abstract Background Voltage-gated Na+ channel β1 (Scn1b subunits are multi-functional proteins that play roles in current modulation, channel cell surface expression, cell adhesion, cell migration, and neurite outgrowth. We have shown previously that β1 modulates electrical excitability in vivo using a mouse model. Scn1b null mice exhibit spontaneous seizures and ataxia, slowed action potential conduction, decreased numbers of nodes of Ranvier in myelinated axons, alterations in nodal architecture, and differences in Na+ channel α subunit localization. The early death of these mice at postnatal day 19, however, make them a challenging model system to study. As a first step toward development of an alternative model to investigate the physiological roles of β1 subunits in vivo we cloned two β1-like subunit cDNAs from D. rerio. Results Two β1-like subunit mRNAs from zebrafish, scn1ba_tv1 and scn1ba_tv2, arise from alternative splicing of scn1ba. The deduced amino acid sequences of Scn1ba_tv1 and Scn1ba_tv2 are identical except for their C-terminal domains. The C-terminus of Scn1ba_tv1 contains a tyrosine residue similar to that found to be critical for ankyrin association and Na+ channel modulation in mammalian β1. In contrast, Scn1ba_tv2 contains a unique, species-specific C-terminal domain that does not contain a tyrosine. Immunohistochemical analysis shows that, while the expression patterns of Scn1ba_tv1 and Scn1ba_tv2 overlap in some areas of the brain, retina, spinal cord, and skeletal muscle, only Scn1ba_tv1 is expressed in optic nerve where its staining pattern suggests nodal expression. Both scn1ba splice forms modulate Na+ currents expressed by zebrafish scn8aa, resulting in shifts in channel gating mode, increased current amplitude, negative shifts in the voltage dependence of current activation and inactivation, and increases in the rate of recovery from inactivation, similar to the function of mammalian β1 subunits. In

  6. A variant of Runx2 that differs from the bone isoform in its splicing is expressed in spermatogenic cells

    Science.gov (United States)

    Grynberg, Marcin; Kaneko, Yoshiyuki; Fujita, Jun; Satake, Masanobu

    2016-01-01

    as well as in round spermatids. Bioinformatic analyses suggested that the testicular Runx2 is a histone-like protein. Discussion. A variant of Runx2 that differs from the bone isoform in its splicing is expressed in pachytene spermatocytes and round spermatids in testes, and encodes a histone-like, nuclear protein of 106 aa residues. Considering its nuclear localization and differentiation stage-dependent expression, Runx2 may function as a chromatin-remodeling factor during spermatogenesis. We thus conclude that a single Runx2 gene can encode two different types of nuclear proteins, a previously defined transcription factor in bone and cartilage and a short testicular variant that lacks a Runt domain. PMID:27069802

  7. Changes in type II procollagen isoform expression during chondrogenesis by disruption of an alternative 5’ splice site within Col2a1 exon 2

    OpenAIRE

    Hering, Thomas M.; Wirthlin, Louisa; Ravindran, Soumya; McAlinden, Audrey

    2014-01-01

    This study describes a new mechanism controlling the production of alternatively-spliced isoforms of type II procollagen (Col2a1) in vivo. During chondrogenesis, precursor chondrocytes predominantly produce isoforms containing alternatively-spliced exon 2 (type IIA and IID) while Col2a1 mRNA devoid of exon 2 (type IIB) is the major isoform produced by differentiated chondrocytes. We previously identified an additional Col2a1 isoform containing a truncated exon 2 and premature termination codo...

  8. Expression analysis of an evolutionarily conserved alternative splicing factor, Sfrs10, in age-related macular degeneration.

    Directory of Open Access Journals (Sweden)

    Devi Krishna Priya Karunakaran

    Full Text Available Age-related macular degeneration (AMD is the most common cause of blindness in the elderly population. Hypoxic stress created in the micro-environment of the photoreceptors is thought to be the underlying cause that results in the pathophysiology of AMD. However, association of AMD with alternative splicing mediated gene regulation is not well explored. Alternative Splicing is one of the primary mechanisms in humans by which fewer protein coding genes are able to generate a vast proteome. Here, we investigated the expression of a known stress response gene and an alternative splicing factor called Serine-Arginine rich splicing factor 10 (Sfrs10. Sfrs10 is a member of the serine-arginine (SR rich protein family and is 100% identical at the amino acid level in most mammals. Immunoblot analysis on retinal extracts from mouse, rat, and chicken showed a single immunoreactive band. Further, immunohistochemistry on adult mouse, rat and chicken retinae showed pan-retinal expression. However, SFRS10 was not detected in normal human retina but was observed as distinct nuclear speckles in AMD retinae. This is in agreement with previous reports that show Sfrs10 to be a stress response gene, which is upregulated under hypoxia. The difference in the expression of Sfrs10 between humans and lower mammals and the upregulation of SFRS10 in AMD is further reflected in the divergence of the promoter sequence between these species. Finally, SFRS10+ speckles were independent of the SC35+ SR protein speckles or the HSF1+ stress granules. In all, our data suggests that SFRS10 is upregulated and forms distinct stress-induced speckles and might be involved in AS of stress response genes in AMD.

  9. Identification of an Alternative Splicing Product of the Otx2 Gene Expressed in the Neural Retina and Retinal Pigmented Epithelial Cells

    Science.gov (United States)

    Kole, Christo; Berdugo, Naomi; Da Silva, Corinne; Aït-Ali, Najate; Millet-Puel, Géraldine; Pagan, Delphine; Blond, Frédéric; Poidevin, Laetitia; Ripp, Raymond; Fontaine, Valérie; Wincker, Patrick; Zack, Donald J.; Sahel, José-Alain; Poch, Olivier; Léveillard, Thierry

    2016-01-01

    To investigate the complexity of alternative splicing in the retina, we sequenced and analyzed a total of 115,706 clones from normalized cDNA libraries from mouse neural retina (66,217) and rat retinal pigmented epithelium (49,489). Based upon clustering the cDNAs and mapping them with their respective genomes, the estimated numbers of genes were 9,134 for the mouse neural retina and 12,050 for the rat retinal pigmented epithelium libraries. This unique collection of retinal of messenger RNAs is maintained and accessible through a web-base server to the whole community of retinal biologists for further functional characterization. The analysis revealed 3,248 and 3,202 alternative splice events for mouse neural retina and rat retinal pigmented epithelium, respectively. We focused on transcription factors involved in vision. Among the six candidates suitable for functional analysis, we selected Otx2S, a novel variant of the Otx2 gene with a deletion within the homeodomain sequence. Otx2S is expressed in both the neural retina and retinal pigmented epithelium, and encodes a protein that is targeted to the nucleus. OTX2S exerts transdominant activity on the tyrosinase promoter when tested in the physiological environment of primary RPE cells. By overexpressing OTX2S in primary RPE cells using an adeno associated viral vector, we identified 10 genes whose expression is positively regulated by OTX2S. We find that OTX2S is able to bind to the chromatin at the promoter of the retinal dehydrogenase 10 (RDH10) gene. PMID:26985665

  10. Identification of Coilin Mutants in a Screen for Enhanced Expression of an Alternatively Spliced GFP Reporter Gene in Arabidopsis thaliana

    Science.gov (United States)

    Kanno, Tatsuo; Lin, Wen-Dar; Fu, Jason L.; Wu, Ming-Tsung; Yang, Ho-Wen; Lin, Shih-Shun; Matzke, Antonius J. M.; Matzke, Marjori

    2016-01-01

    Coilin is a marker protein for subnuclear organelles known as Cajal bodies, which are sites of various RNA metabolic processes including the biogenesis of spliceosomal small nuclear ribonucleoprotein particles. Through self-associations and interactions with other proteins and RNA, coilin provides a structural scaffold for Cajal body formation. However, despite a conspicuous presence in Cajal bodies, most coilin is dispersed in the nucleoplasm and expressed in cell types that lack these organelles. The molecular function of coilin, particularly of the substantial nucleoplasmic fraction, remains uncertain. We identified coilin loss-of-function mutations in a genetic screen for mutants showing either reduced or enhanced expression of an alternatively spliced GFP reporter gene in Arabidopsis thaliana. The coilin mutants feature enhanced GFP fluorescence and diminished Cajal bodies compared with wild-type plants. The amount of GFP protein is several-fold higher in the coilin mutants owing to elevated GFP transcript levels and more efficient splicing to produce a translatable GFP mRNA. Genome-wide RNA-sequencing data from two distinct coilin mutants revealed a small, shared subset of differentially expressed genes, many encoding stress-related proteins, and, unexpectedly, a trend toward increased splicing efficiency. These results suggest that coilin attenuates splicing and modulates transcription of a select group of genes. The transcriptional and splicing changes observed in coilin mutants are not accompanied by gross phenotypic abnormalities or dramatically altered stress responses, supporting a role for coilin in fine tuning gene expression. Our GFP reporter gene provides a sensitive monitor of coilin activity that will facilitate further investigations into the functions of this enigmatic protein. PMID:27317682

  11. Population genetics of duplicated alternatively spliced exons of the Dscam gene in Daphnia and Drosophila.

    Directory of Open Access Journals (Sweden)

    Daniela Brites

    Full Text Available In insects and crustaceans, the Down syndrome cell adhesion molecule (Dscam occurs in many different isoforms. These are produced by mutually exclusive alternative splicing of dozens of tandem duplicated exons coding for parts or whole immunoglobulin (Ig domains of the Dscam protein. This diversity plays a role in the development of the nervous system and also in the immune system. Structural analysis of the protein suggested candidate epitopes where binding to pathogens could occur. These epitopes are coded by regions of the duplicated exons and are therefore diverse within individuals. Here we apply molecular population genetics and molecular evolution analyses using Daphnia magna and several Drosophila species to investigate the potential role of natural selection in the divergence between orthologs of these duplicated exons among species, as well as between paralogous exons within species. We found no evidence for a role of positive selection in the divergence of these paralogous exons. However, the power of this test was low, and the fact that no signs of gene conversion between paralogous exons were found suggests that paralog diversity may nonetheless be maintained by selection. The analysis of orthologous exons in Drosophila and in Daphnia revealed an excess of non-synonymous polymorphisms in the epitopes putatively involved in pathogen binding. This may be a sign of balancing selection. Indeed, in Dr. melanogaster the same derived non-synonymous alleles segregate in several populations around the world. Yet other hallmarks of balancing selection were not found. Hence, we cannot rule out that the excess of non-synonymous polymorphisms is caused by segregating slightly deleterious alleles, thus potentially indicating reduced selective constraints in the putative pathogen binding epitopes of Dscam.

  12. Multiphasic and Dynamic Changes in Alternative Splicing during Induction of Pluripotency Are Coordinated by Numerous RNA-Binding Proteins

    Directory of Open Access Journals (Sweden)

    Benjamin Cieply

    2016-04-01

    Full Text Available Alternative splicing (AS plays a critical role in cell fate transitions, development, and disease. Recent studies have shown that AS also influences pluripotency and somatic cell reprogramming. We profiled transcriptome-wide AS changes that occur during reprogramming of fibroblasts to pluripotency. This analysis revealed distinct phases of AS, including a splicing program that is unique to transgene-independent induced pluripotent stem cells (iPSCs. Changes in the expression of AS factors Zcchc24, Esrp1, Mbnl1/2, and Rbm47 were demonstrated to contribute to phase-specific AS. RNA-binding motif enrichment analysis near alternatively spliced exons provided further insight into the combinatorial regulation of AS during reprogramming by different RNA-binding proteins. Ectopic expression of Esrp1 enhanced reprogramming, in part by modulating the AS of the epithelial specific transcription factor Grhl1. These data represent a comprehensive temporal analysis of the dynamic regulation of AS during the acquisition of pluripotency.

  13. PrimerSeq:Design and Visualization of RT-PCR Primers for Alternative Splicing Using RNA-seq Data

    Institute of Scientific and Technical Information of China (English)

    Collin Tokheim; Juw Won Park; Yi Xing

    2014-01-01

    The vast majority of multi-exon genes in higher eukaryotes are alternatively spliced and changes in alternative splicing (AS) can impact gene function or cause disease. High-throughput RNA sequencing (RNA-seq) has become a powerful technology for transcriptome-wide analysis of AS, but RT-PCR still remains the gold-standard approach for quantifying and validating exon splicing levels. We have developed PrimerSeq, a user-friendly software for systematic design and visualization of RT-PCR primers using RNA-seq data. PrimerSeq incorporates user-provided tran-scriptome profiles (i.e., RNA-seq data) in the design process, and is particularly useful for large-scale quantitative analysis of AS events discovered from RNA-seq experiments. PrimerSeq features a graphical user interface (GUI) that displays the RNA-seq data juxtaposed with the expected RT-PCR results. To enable primer design and visualization on user-provided RNA-seq data and transcript annotations, we have developed PrimerSeq as a stand-alone software that runs on local computers. PrimerSeq is freely available for Windows and Mac OS X along with source code at http://primerseq.sourceforge.net/. With the growing popularity of RNA-seq for transcriptome stud-ies, we expect PrimerSeq to help bridge the gap between high-throughput RNA-seq discovery of AS events and molecular analysis of candidate events by RT-PCR.

  14. Expression of Tetrahymena snRNA gene variants including a U1 gene with mutations in the 5' splice site recognition sequence

    DEFF Research Database (Denmark)

    Eugen-Olsen, J; Hagemeister, J J; Hellung-Larsen, P

    1997-01-01

    The expression of U1, U2 and U5 snRNA gene variants has been studied under different physiological states of Tetrahymena. Variants of all three snRNA genes are expressed. Among the snRNAs detected is U1-3, a variant with 66 mutations compared to the normal U1 snRNA. Three of these mutations affec...... the 5' splice site recognition sequence. The U1-3 snRNA is present in a few hundred copies per cell. The expression of Tetrahymena snRNA genes is independent of the physiological state of the cell.......The expression of U1, U2 and U5 snRNA gene variants has been studied under different physiological states of Tetrahymena. Variants of all three snRNA genes are expressed. Among the snRNAs detected is U1-3, a variant with 66 mutations compared to the normal U1 snRNA. Three of these mutations affect...

  15. Protein kinase clk/STY is differentially regulated during erythroleukemia cell differentiation: a bias toward the skipped splice variant characterizes postcommitment stages

    Institute of Scientific and Technical Information of China (English)

    Ana GARC(I)A-SACRIST(A)N; María J.FERN(A)NDEZ-NESTOSA; Pablo HERN(A)NDEZ; Jorge B.SCHVARTZMAN; Dora B.KRIMER

    2005-01-01

    Clk/STY is a LAMMER protein kinase capable to phosphorylate serine/arginine-rich (SR) proteins that modulate premRNA splicing.Clk/STY alternative splicing generates transcripts encoding a full-length kinase and a truncated catalytically inactive protein.Here we showed that clk/STY,as well as other members of the family (e.g.clk2,clk3 and clk4),are up-regulated during HMBA-induced erythroleukemia cell differentiation.mRNAs coding for the full-length and the truncated forms were responsible for the overall increased expression.In clk/STY,however,a switch was observed for the ratio of the two alternative spliced products.In undifferentiated cells the full-length transcript was more abundant whereas the transcript encoding for the truncated form predominated at latter stages of differentiation.Surprisingly,overexpression of clk/STY did not alter the splicing switch upon differentiation in MEL cells.These results suggest that clk/STY might contribute to control erythroid differentiation by a mechanism that implicates a balance between these two isoforms.

  16. Identification of the thiamin pyrophosphokinase gene in rainbow trout: characteristic structure and expression of seven splice variants in tissues and cell lines and during embryo development

    Science.gov (United States)

    Yuge, Shinya; Richter, Catherine A.; Wright-Osment, Maureen K.; Nicks, Diane; Saloka, Stephanie K.; Tillitt, Donald E.; Li, Weiming

    2012-01-01

    Thiamin pyrophosphokinase (TPK) converts thiamin to its active form, thiamin diphosphate. In humans, TPK expression is down-regulated in some thiamin deficiency related syndrome, and enhanced during pregnancy. Rainbow trout are also vulnerable to thiamin deficiency in wild life and are useful models for thiamin metabolism research. We identified the tpk gene transcript including seven splice variants in the rainbow trout. Almost all cell lines and tissues examined showed co-expression of several tpk splice variants including a potentially major one at both mRNA and protein levels. However, relative to other tissues, the longest variant mRNA expression was predominant in the ovary and abundant in embryos. During embryogenesis, total tpk transcripts increased abruptly in early development, and decreased to about half of the peak shortly after hatching. In rainbow trout, the tpk transcript complex is ubiquitously expressed for all tissues and cells examined, and its increase in expression could be important in the early-middle embryonic stages. Moreover, decimated tpk expression in a hepatoma cell line relative to hepatic and gonadal cell lines appears to be consistent with previously reported down-regulation of thiamin metabolism in cancer.

  17. ASC-J9 Suppresses Castration-Resistant Prostate Cancer Growth through Degradation of Full-length and Splice Variant Androgen Receptors

    Directory of Open Access Journals (Sweden)

    Shinichi Yamashita

    2012-01-01

    Full Text Available Early studies suggested androgen receptor (AR splice variants might contribute to the progression of prostate cancer (PCa into castration resistance. However, the therapeutic strategy to target these AR splice variants still remains unresolved. Through tissue survey of tumors from the same patients before and after castration resistance, we found that the expression of AR3, a major AR splice variant that lacks the AR ligand-binding domain, was substantially increased after castration resistance development. The currently used antiandrogen, Casodex, showed little growth suppression in CWR22Rv1 cells. Importantly, we found that AR degradation enhancer ASC-J9 could degrade both full-length (fAR and AR3 in CWR22Rv1 cells as well as in C4-2 and C81 cells with addition of AR3. The consequences of such degradation of both fAR and AR3 might then result in the inhibition of AR transcriptional activity and cell growth in vitro. More importantly, suppression of AR3 specifically by short-hairpin AR3 or degradation of AR3 by ASC-J9 resulted in suppression of AR transcriptional activity and cell growth in CWR22Rv1-fARKD (fAR knockdown cells in which DHT failed to induce, suggesting the importance of targeting AR3. Finally, we demonstrated the in vivo therapeutic effects of ASC-J9 by showing the inhibition of PCa growth using the xenografted model of CWR22Rv1 cells orthotopically implanted into castrated nude mice with undetectable serum testosterone. These results suggested that targeting both fAR- and AR3-mediated PCa growth by ASC-J9 may represent the novel therapeutic approach to suppress castration-resistant PCa. Successful clinical trials targeting both fAR and AR3 may help us to battle castration-resistant PCa in the future.

  18. Multiple Sodium Channel Variants in the Mosquito Culex quinquefasciatus

    Directory of Open Access Journals (Sweden)

    Lin He, Ting Li, Lee Zhang, Nannan Liu

    2012-01-01

    Full Text Available Voltage-gated sodium channels are the target sites of both DDT and pyrethroid insecticides. The importance of alternative splicing as a key mechanism governing the structural and functional diversity of sodium channels and the resulting development of insecticide and acaricide resistance is widely recognized, as shown by the extensive research on characterizing alternative splicing and variants of sodium channels in medically and agriculturally important insect species. Here we present the first comparative study of multiple variants of the sodium channel transcripts in the mosquito Culex quinquefasciatus. The variants were classified into two categories, CxNa-L and CxNa-S based on their distinguishing sequence sizes of ~6.5 kb and ~4.0 kb, respectively, and generated via major extensive alternative splicing with minor small deletions/ insertions in susceptible S-Lab, low resistant HAmCqG0, and highly resistant HAmCqG8 Culex strains. Four alternative Cx-Na-L splice variants were identified, including three full length variants with three optional exons (2, 5, and 21i and one with in-frame-stop codons. Large, multi-exon-alternative splices were identified in the CxNa-S category. All CxNa-S splicing variants in the S-Lab and HAmCqG0 strains contained in-frame stop codons, suggesting that any resulting proteins would be truncated. The ~1000 to ~3000-fold lower expression of these splice variants with stop codons compared with the CxNa-L splicing variants may support the lower importance of these variants in S-Lab and HAmCqG0. Interestingly, two alternative splicing variants of CxNa-S in HAmCqG8 included entire ORFs but lacked exons 5 to18 and these two variants had much higher expression levels in HAmCqG8 than in S-Lab and HAmCqG0. These results provide a functional basis for further characterizing how alternative splicing of a voltage-gated sodium channel contributes to diversity in neuronal signaling in mosquitoes in response to pyrethroids, and

  19. The expression of the pituitary growth hormone-releasing hormone receptor and its splice variants in normal and neoplastic human tissues

    OpenAIRE

    Havt, Alexandre; Andrew V. Schally; Varga József L.; Toller Gábor L.; Horváth Judit E. (New Orleans); Szepesházi Károly; Köster, Frank; Kovitz, Kevin; Groot, Kate; Zarándi Márta; Kanashiro, Celia A.; Halmos Gábor (1962-) (gyógyszerész, receptorfarmakológus, experimentális onkológus)

    2005-01-01

    Various attempts to detect human pituitary growth hormone-releasing hormone receptor (pGHRH-R) in neoplastic extrapituitary tissues have thus far failed. Recently, four splice variants (SVs) of GHRH-R have been described, of which SV1 has the highest structural homology to pGHRH-R and likely plays a role in tumor growth. The aim of this study was to reinvestigate whether human tumors and normal human extrapituitary tissues express the pGHRH-R and to corroborate our previous findings on its SV...

  20. Contrasting changes in DRD1 and DRD2 splice variant expression in schizophrenia and affective disorders, and associations with SNPs in postmortem brain

    DEFF Research Database (Denmark)

    Kaalund, S S; Newburn, E N; Ye, Tuo;

    2014-01-01

    working memory that relies on normal dorsolateral prefrontal cortex (DLPFC) function. To better understand the association of dopamine receptors with SCZ, we studied the expression of three DRD2 splice variants and the DRD1 transcript in DLPFC, hippocampus and caudate nucleus in a large cohort of subjects......Dopamine 2 receptor (DRD2) is of major interest to the pathophysiology of schizophrenia (SCZ) both as a target for antipsychotic drug action as well as a SCZ-associated risk gene. The dopamine 1 receptor (DRD1) is thought to mediate some of the cognitive deficits in SCZ, including impairment of...

  1. Human CRF2 α and β splice variants: pharmacological characterization using radioligand binding and a luciferase gene expression assay

    International Nuclear Information System (INIS)

    Corticotropin releasing factor (CRF) receptors belong to the super-family of G protein-coupled receptors. These receptors are classified into two subtypes (CRF1 and CRF2). Both receptors are positively coupled to adenylyl cyclase but they have a distinct pharmacology and distribution in brain. Two isoforms belonging to the CRF2 subtype receptors, CRF2α and CRF2β, have been identified in rat and man. The neuropeptides CRF and urocortin mediate their actions through this CRF G protein-coupled receptor family. In this report, we describe the pharmacological characterization of the recently identified hCRF2β receptor. We have used radioligand binding with [125I]-tyr0-sauvagine and a gene expression assay in which the firefly luciferase gene expression is under the control of cAMP responsive elements. Association kinetics of [125I]-tyr0-sauvagine binding to the hCRF2β receptor were monophasic while dissociation kinetics were biphasic, in agreement with the kinetics results obtained with the hCRF2α receptor. Saturation binding analysis revealed two affinity states in HEK 293 cells with binding parameters in accord with those determined kinetically and with parameters obtained with the hCRF2α receptor. A non-hydrolysable GTP analog, Gpp(NH)p, reduced the high affinity binding of [125I]-tyr0-sauvagine to both hCRF2 receptor isoforms in a similar manner. The rank order of potency of CRF agonist peptides in competition experiments was identical for both hCRF2α-helical CRF(9-41)oCRF). Similarly, agonist potency was similar for the two isoforms when studied using the luciferase gene reporter system. The peptide antagonist α-helical CRF(9-41) exhibited a non-competitive antagonism of urocortin-stimulated luciferase expression with both hCRF2 receptor isoforms. Taken together, these results indicate that the pharmacological profiles of the CRF2 splice variants are identical. This indicates that the region of the N-terminus that varies between the receptors is probably

  2. Alternative splicing mechanisms orchestrating post-transcriptional gene expression: intron retention and the intron-rich genome of apicomplexan parasites.

    Science.gov (United States)

    Lunghi, Matteo; Spano, Furio; Magini, Alessandro; Emiliani, Carla; Carruthers, Vern B; Di Cristina, Manlio

    2016-02-01

    Apicomplexan parasites including Toxoplasma gondii and Plasmodium species have complex life cycles that include multiple hosts and differentiation through several morphologically distinct stages requiring marked changes in gene expression. This review highlights emerging evidence implicating regulation of mRNA splicing as a mechanism to prime these parasites for rapid gene expression upon differentiation. We summarize the most important insights in alternative splicing including its role in regulating gene expression by decreasing mRNA abundance via 'Regulated Unproductive Splicing and Translation'. As a related but less well-understood mechanism, we discuss also our recent work suggesting a role for intron retention for precluding translation of stage specific isoforms of T. gondii glycolytic enzymes. We additionally provide new evidence that intron retention might be a widespread mechanism during parasite differentiation. Supporting this notion, recent genome-wide analysis of Toxoplasma and Plasmodium suggests intron retention is more pervasive than heretofore thought. These findings parallel recent emergence of intron retention being more prevalent in mammals than previously believed, thereby adding to the established roles in plants, fungi and unicellular eukaryotes. Deeper mechanistic studies of intron retention will provide important insight into its role in regulating gene expression in apicomplexan parasites and more general in eukaryotic organisms. PMID:26194054

  3. Alternative splicing produces transcripts encoding two forms of the alpha subunit of GTP-binding protein Go.

    OpenAIRE

    Strathmann, M; Wilkie, T M; Simon, M I

    1990-01-01

    The alpha subunit of the guanine nucleotide-binding protein Go ("o" for other) is believed to mediate signal transduction between a variety of receptors and effectors. cDNA clones encoding two forms of Go alpha subunit were isolated from a mouse brain library. These two forms, which we call GoA alpha and GoB alpha, appear to be the products of alternative splicing. GoA alpha differs from GoB alpha over the C-terminal third of the deduced protein sequence. Both forms are predicted to be substr...

  4. The snoRNAs MBII-52 and MBII-85 are processed into smaller RNAs and regulate alternative splicing

    OpenAIRE

    Khanna, Amit

    2010-01-01

    Recent results from deep-sequencing and tiling array studies indicated the existence of a large number of short, metabolically stable, non-coding RNAs. Some of these short RNAs are derived from known RNA classes like snoRNA or tRNAs. There are intriguing similarities between short non-coding nuclear RNAs and oligonucleotides used to change alternative splicing events, usually targeting a disease-relevant RNA. The loss of HBII-52 and HBII-85 related C/D box small nucleolar RNA (snoRNA) express...

  5. Alternative splicing of Bim and Erk-mediated BimEL phosphorylation are dispensable for hematopoietic homeostasis in vivo

    OpenAIRE

    Clybouw, C; Merino, D.; Nebl, T; Masson, F.; Robati, M; O'Reilly, L; Hübner, A.; Davis, R. J.; Strasser, A; Bouillet, P

    2012-01-01

    The pro-apoptotic BH3-only protein Bim has a major role in hematopoietic homeostasis, particularly in the lymphocyte compartment, where it strongly affects immune function. The three major Bim isoforms (BimEL, BimL and BimS) are generated by alternative splicing. BimEL, the most abundant isoform, contains a unique sequence that has been reported to be the target of phosphorylation by several MAP kinases. In particular, Erk1/2 has been shown to interact with BimEL through the DEF2 domain of Bi...

  6. Splicing regulators: targets and drugs

    OpenAIRE

    Yeo, Gene Wei-Ming

    2005-01-01

    Silencing of splicing regulators by RNA interference, combined with splicing-specific microarrays, has revealed a complex network of distinct alternative splicing events in Drosophila, while a high-throughput screen of more than 6,000 compounds has identified drugs that interfere specifically and directly with one class of splicing regulators in human cells.

  7. Synaptic signaling and aberrant RNA splicing in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Ryan M Smith

    2011-01-01

    Full Text Available Interactions between presynaptic and postsynaptic cellular adhesion molecules drive synapse maturation during development. These trans-synaptic interactions are regulated by alternative splicing of cellular adhesion molecule RNAs, which ultimately determines neurotransmitter phenotype. The diverse assortment of RNAs produced by alternative splicing generates countless protein isoforms necessary for guiding specialized cell-to-cell connectivity. Failure to generate the appropriate synaptic adhesion proteins is associated with disrupted glutamatergic and gamma-aminobutyric acid signaling, resulting in loss of activity-dependent neuronal plasticity, and risk for developmental disorders, including autism. While the majority of genetic mutations currently linked to autism are rare variants that change the protein coding sequence of synaptic candidate genes, regulatory polymorphisms affecting constitutive and alternative splicing have emerged as risk factors in numerous other diseases, accounting for an estimated 40-60% of general disease risk. Here, we review the relationship between aberrant RNA splicing of synapse-related genes and autism spectrum disorders.

  8. Characterization of a mutation and an alternative splicing of UDP-galactose transporter in MDCK-RCAr cell line.

    Science.gov (United States)

    Olczak, Mariusz; Guillen, Eduardo

    2006-01-01

    The UDP-galactose (UDP-Gal) transporter present in the Golgi apparatus is a member of a transporter family comprising hydrophobic proteins with multiple transmembrane domains. Co-immunoprecipitation experiments showed that the full-length UDP-Gal transporter protein forms oligomeric structures in the MDCK cell. A ricin-resistant mutant of the MDCK cell line (MDCK-RCA(r)) is deficient in galactose linked to macromolecules because of a lower UDP-Gal transport rate into the Golgi apparatus. We cloned this mutated protein and found that it contains a stop codon close to the 5' terminus of its open reading frame. We also detected a shorter splicing variant of the UDP-Gal transporter which contains a 183-nt in-frame deletion in both the wild-type and the mutant mRNA. We showed that the protein, when overexpressed, is localized in the Golgi apparatus and could partially correct the phenotype of the MDCK-RCA(r) and CHO-Lec8 mutant cell lines. The level of mRNA of the UDP-Gal transporter is much lower (25-30 copies per cell) than those of the CMP-sialic acid transporter (100 copies per cell), UDP-N-acetylglucosamine transporter (80 copies per cell), and GDP-fucose transporter (65 copies per cell). The transcript level of the shorter splicing variant of the UDP-Gal transporter is extremely rare in wild-type MDCK cells (a few copies per cell), but it is significantly increased in the mutant, RCA-resistant cells. PMID:16434112

  9. Fox-2 Splicing Factor Binds to a Conserved Intron Motif to PromoteInclusion of Protein 4.1R Alternative Exon 16

    Energy Technology Data Exchange (ETDEWEB)

    Ponthier, Julie L.; Schluepen, Christina; Chen, Weiguo; Lersch,Robert A.; Gee, Sherry L.; Hou, Victor C.; Lo, Annie J.; Short, Sarah A.; Chasis, Joel A.; Winkelmann, John C.; Conboy, John G.

    2006-03-01

    Activation of protein 4.1R exon 16 (E16) inclusion during erythropoiesis represents a physiologically important splicing switch that increases 4.1R affinity for spectrin and actin. Previous studies showed that negative regulation of E16 splicing is mediated by the binding of hnRNP A/B proteins to silencer elements in the exon and that downregulation of hnRNP A/B proteins in erythroblasts leads to activation of E16 inclusion. This paper demonstrates that positive regulation of E16 splicing can be mediated by Fox-2 or Fox-1, two closely related splicing factors that possess identical RNA recognition motifs. SELEX experiments with human Fox-1 revealed highly selective binding to the hexamer UGCAUG. Both Fox-1 and Fox-2 were able to bind the conserved UGCAUG elements in the proximal intron downstream of E16, and both could activate E16 splicing in HeLa cell co-transfection assays in a UGCAUG-dependent manner. Conversely, knockdown of Fox-2 expression, achieved with two different siRNA sequences resulted in decreased E16 splicing. Moreover, immunoblot experiments demonstrate mouse erythroblasts express Fox-2, but not Fox-1. These findings suggest that Fox-2 is a physiological activator of E16 splicing in differentiating erythroid cells in vivo. Recent experiments show that UGCAUG is present in the proximal intron sequence of many tissue-specific alternative exons, and we propose that the Fox family of splicing enhancers plays an important role in alternative splicing switches during differentiation in metazoan organisms.

  10. Alternatively spliced hBRF variants function at different RNA polymerase III promoters

    OpenAIRE

    McCulloch, Vicki; Hardin, Peter; Peng, Wenchen; Ruppert, J. Michael; Lobo-Ruppert, Susan M.

    2000-01-01

    In yeast, a single form of TFIIIB is required for transcription of all RNA polymerase III (pol III) genes. It consists of three subunits: the TATA box-binding protein (TBP), a TFIIB-related factor, BRF, and B′′. Human TFIIIB is not as well defined and human pol III promoters differ in their requirements for this activity. A human homolog of yeast BRF was shown to be required for transcription at the gene-internal 5S and VA1 promoters. Whether or not it was also involved in transcription from ...

  11. Endothelial adhesion of synchronized gastric tumor cells changes during cell cycle transit and correlates with the expression level of CD44 splice variants

    Institute of Scientific and Technical Information of China (English)

    Anton Oertl; Jens Castein; Tobias Engl; Wolf-Dietrich Beecken; Dietger Jonas; Richard Melamed; Roman A. Blaheta

    2005-01-01

    AIM: To study adhesion capacity and CD44 expression of human gastric adenocarcinoma MKN45 cells at different stages of a first cell cycle.METHODS: MKN45 cells were synchronized by aphidicolin and assayed for adhesion to an endothelial cell (HUVEC)monolayer. Surface expression of CD44 and CD44 splice variants on MKN45 cells was evaluated by flow cytometry.Functional relevance of CD44 adhesion receptors was investigated by blocking studies using anti CD44 monoclonal antibodies or by hyaluronan digestion.RESULTS: Adhesion of MKN45 to HUVEC was increased during G2/M transit, after which adhesion returned to baseline levels with cell cycle completion. In parallel, CD44splice variants CD44v4, CD44v5, and CD44v7 were all upregulated on MKN45 during cell cycle progression with a maximum effect in G2/M. The function of CD44 surface receptors was assessed with specific receptor blocking monodonal antibodies or removal of hyaluronan by digestion with hyaluronidase. Both strategies inhibited tumor cell adhesion to HUVEC by nearly 50%, which indicates that MKN45-HUVEC-interaction is CD44 dependent.CONCLUSION: CD44 expression level is linked to the cell cycle in gastrointestinal tumor cells, which in turn leads to cell cyde dependent alterations of their adhesion behaviour to endothelium.

  12. Review of bioinformatics data analysis in alternative splicing%可变剪接的生物信息数据分析综述

    Institute of Scientific and Technical Information of China (English)

    章天骄

    2012-01-01

    前体mRNA的可变剪接是扩大真核生物蛋白质组多样性的重要基因调控机制.可变剪接的错误调节可以引起多种人类疾病.由于高通量技术的发展,生物信息学成为可变剪接研究的主要手段.本文总结了可变剪接在生物信息学领域的研究方法,同时也分析并预测了可变剪接的发展方向.%Alternative pre - mRNA splicing is an important gene regulation mechanism for expanding proteomic diversity in higher eukaryotes. The misregulation of alternative splicing underlies many human diseases. With the development of high - throughput technology, bioinformatics becomes to the main method in study of alternative splicing. This article summarizes the bioinformatics methods in alternative splicing research, as well as analyzes and predicts the direction of alternative splicing.

  13. Exon Array Analysis using re-defined probe sets results in reliable identification of alternatively spliced genes in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Gröne Jörn

    2010-11-01

    Full Text Available Abstract Background Treatment of non-small cell lung cancer with novel targeted therapies is a major unmet clinical need. Alternative splicing is a mechanism which generates diverse protein products and is of functional relevance in cancer. Results In this study, a genome-wide analysis of the alteration of splicing patterns between lung cancer and normal lung tissue was performed. We generated an exon array data set derived from matched pairs of lung cancer and normal lung tissue including both the adenocarcinoma and the squamous cell carcinoma subtypes. An enhanced workflow was developed to reliably detect differential splicing in an exon array data set. In total, 330 genes were found to be differentially spliced in non-small cell lung cancer compared to normal lung tissue. Microarray findings were validated with independent laboratory methods for CLSTN1, FN1, KIAA1217, MYO18A, NCOR2, NUMB, SLK, SYNE2, TPM1, (in total, 10 events and ADD3, which was analysed in depth. We achieved a high validation rate of 69%. Evidence was found that the activity of FOX2, the splicing factor shown to cause cancer-specific splicing patterns in breast and ovarian cancer, is not altered at the transcript level in several cancer types including lung cancer. Conclusions This study demonstrates how alternatively spliced genes can reliably be identified in a cancer data set. Our findings underline that key processes of cancer progression in NSCLC are affected by alternative splicing, which can be exploited in the search for novel targeted therapies.

  14. Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing

    OpenAIRE

    Li, Sanshu; Breaker, Ronald R.

    2013-01-01

    Thiamin pyrophosphate (TPP) riboswitches are found in organisms from all three domains of life. Examples in bacteria commonly repress gene expression by terminating transcription or by blocking ribosome binding, whereas most eukaryotic TPP riboswitches are predicted to regulate gene expression by modulating RNA splicing. Given the widespread distribution of eukaryotic TPP riboswitches and the diversity of their locations in precursor messenger RNAs (pre-mRNAs), we sought to examine the mechan...

  15. Targeted modulation of alternative splicing by TALE-directed chromatin editing

    Czech Academy of Sciences Publication Activity Database

    Bieberstein, Nicole; Staněk, David

    2015-01-01

    Roč. 282, SI (2015), s. 210-210. ISSN 1742-464X. [40th Congress of the Federation-of-European-Biochemical-Societies (FEBS) - The Biochemical Basis of Life. 04.07.2015-09.07.2015, Berlín] R&D Projects: GA ČR(CZ) GBP305/12/G034 Institutional support: RVO:68378050 Keywords : histone methylation * pre-mRNA splicing * TALEN Subject RIV: EB - Genetics ; Molecular Biology

  16. Development of quantitative RT-PCR assays for wild-type urokinase receptor (uPAR-wt) and its splice variant uPAR-del5

    International Nuclear Information System (INIS)

    The receptor for the serine protease urokinase-type plasminogen activator, uPAR (CD 87), plays an important role in tumor cell invasion and metastasis of solid malignant tumors. uPAR is a highly glycosylated, glycan lipid-anchored membrane protein, consisting of three homologous domains. Each individual domain is encoded by two exons: DI by exons 2+3, DII by exons 4+5, and DIII by exons 6+7. Beside the wild-type (wt) uPAR mRNA, two splice variants either lacking exon 5 (uPAR-del5) or both exons 4 and 5 (uPARdel4/ 5) have been described. Previously, we studied expression of the mRNA variant uPAR-del4/5 and uPAR mRNA encompassing exons 2, 3, and 4 (i.e. uPAR-wt plus uPAR-del5) applying real-time RT-PCR assays for quantification of the mRNA concentration. In the present paper, we established two additional specific, robust and highly sensitive RT-PCR assays, based on the LightCycler technology, to specifically quantify either uPAR-wt or its splice variant, uPARdel5. Expression of uPAR-wt and uPAR-del5 was analyzed in different human malignant cell lines (ovarian cancer cell lines OVMZ-6 and OVMZ-10; breast cancer cell lines MDA-MB 231, MDA-MB 231 BAG, MDA-MB 435, and aMCF-7; brain tumor cell line LN 18) as well as in a set of 174 breast cancer tissue samples. uPAR-del5 mRNA was found to be expressed very frequently at a rather low level (typically less than 1% of uPAR-wt mRNA). In tumor tissue from breast cancer patients, a statistically significant correlation between uPAR-del5 and uPAR-wt mRNA (r = 0.779; P < 0.001) was observed. There was no association between the expression level of either mRNA and clinical parameters such as nodal status, tumor size and grade. In estrogen receptor negative tumors, a significantly higher uPAR-del5 expression was found (P 0.023). The two developed quantitative RT-PCR assays described here may aid further analysis of the function and clinical relevance of uPAR-wt and one of its splice variants, uPAR-del5, in malignant tumors

  17. Functional Cross-Talking between Differentially Expressed and Alternatively Spliced Genes in Human Liver Cancer Cells Treated with Berberine.

    Directory of Open Access Journals (Sweden)

    Zhen Sheng

    Full Text Available Berberine has been identified with anti-proliferative effects on various cancer cells. Many researchers have been trying to elucidate the anti-cancer mechanisms of berberine based on differentially expressed genes. However, differentially alternative splicing genes induced by berberine might also contribute to its pharmacological actions and have not been reported yet. Moreover, the potential functional cross-talking between the two sets of genes deserves further exploration. In this study, RNA-seq technology was used to detect the differentially expressed genes and differentially alternative spliced genes in BEL-7402 cancer cells induced by berberine. Functional enrichment analysis indicated that these genes were mainly enriched in the p53 and cell cycle signalling pathway. In addition, it was statistically proven that the two sets of genes were locally co-enriched along chromosomes, closely connected to each other based on protein-protein interaction and functionally similar on Gene Ontology tree. These results suggested that the two sets of genes regulated by berberine might be functionally cross-talked and jointly contribute to its cell cycle arresting effect. It has provided new clues for further researches on the pharmacological mechanisms of berberine as well as the other botanical drugs.

  18. PCBP-1 regulates alternative splicing of the CD44 gene and inhibits invasion in human hepatoma cell line HepG2 cells

    Directory of Open Access Journals (Sweden)

    Ge Changhui

    2010-04-01

    Full Text Available Abstract Background PCBP1 (or alpha CP1 or hnRNP E1, a member of the PCBP family, is widely expressed in many human tissues and involved in regulation of transcription, transportation process, and function of RNA molecules. However, the role of PCBP1 in CD44 variants splicing still remains elusive. Results We found that enforced PCBP1 expression inhibited CD44 variants expression including v3, v5, v6, v8, and v10 in HepG2 cells, and knockdown of endogenous PCBP1 induced these variants splicing. Invasion assay suggested that PCBP1 played a negative role in tumor invasion and re-expression of v6 partly reversed the inhibition effect by PCBP1. A correlation of PCBP1 down-regulation and v6 up-regulation was detected in primary HCC tissues. Conclusions We first characterized PCBP1 as a negative regulator of CD44 variants splicing in HepG2 cells, and loss of PCBP1 in human hepatic tumor contributes to the formation of a metastatic phenotype.

  19. Conserved functional antagonism of CELF and MBNL proteins controls stem cell-specific alternative splicing in planarians.

    Science.gov (United States)

    Solana, Jordi; Irimia, Manuel; Ayoub, Salah; Orejuela, Marta Rodriguez; Zywitza, Vera; Jens, Marvin; Tapial, Javier; Ray, Debashish; Morris, Quaid; Hughes, Timothy R; Blencowe, Benjamin J; Rajewsky, Nikolaus

    2016-01-01

    In contrast to transcriptional regulation, the function of alternative splicing (AS) in stem cells is poorly understood. In mammals, MBNL proteins negatively regulate an exon program specific of embryonic stem cells; however, little is known about the in vivo significance of this regulation. We studied AS in a powerful in vivo model for stem cell biology, the planarian Schmidtea mediterranea. We discover a conserved AS program comprising hundreds of alternative exons, microexons and introns that is differentially regulated in planarian stem cells, and comprehensively identify its regulators. We show that functional antagonism between CELF and MBNL factors directly controls stem cell-specific AS in planarians, placing the origin of this regulatory mechanism at the base of Bilaterians. Knockdown of CELF or MBNL factors lead to abnormal regenerative capacities by affecting self-renewal and differentiation sets of genes, respectively. These results highlight the importance of AS interactions in stem cell regulation across metazoans. PMID:27502555

  20. The Choice of Alternative 5' Splice Sites in Influenza Virus M1 mRNA is Regulated by the Viral Polymerase Complex

    Science.gov (United States)

    Shih, Shin-Ru; Nemeroff, Martin E.; Krug, Robert M.

    1995-07-01

    The influenza virus M1 mRNA has two alternative 5' splice sites: a distal 5' splice site producing mRNA_3 that has the coding potential for 9 amino acids and a proximal 5' splice site producing M2 mRNA encoding the essential M2 ion-channel protein. Only mRNA_3 was made in uninfected cells transfected with DNA expressing M1 mRNA. Similarly, using nuclear extracts from uninfected cells, in vitro splicing of M1 mRNA yielded only mRNA_3. Only when the mRNA_3 5' splice site was inactivated by mutation was M2 mRNA made in uninfected cells and in uninfected cell extracts. In influenza virus-infected cells, M2 mRNA was made, but only after a delay, suggesting that newly synthesized viral gene product(s) were needed to activate the M2 5' splice site. We present strong evidence that these gene products are the complex of the three polymerase proteins, the same complex that functions in the transcription and replication of the viral genome. Gel shift experiments showed that the viral polymerase complex bound to the 5' end of the viral M1 mRNA in a sequence-specific and cap-dependent manner. During in vitro splicing catalyzed by uninfected cell extracts, the binding of the viral polymerase complex blocked the mRNA_3 5' splice site, resulting in the switch to the M2 mRNA 5' splice site and the production of M2 mRNA.

  1. spliceR

    DEFF Research Database (Denmark)

    Vitting-Seerup, Kristoffer; Porse, Bo Torben; Sandelin, Albin;

    2014-01-01

    RNA-seq data is currently underutilized, in part because it is difficult to predict the functional impact of alternate transcription events. Recent software improvements in full-length transcript deconvolution prompted us to develop spliceR, an R package for classification of alternative splicing...

  2. Disruption of the developmentally-regulated Col2a1 pre-mRNA alternative splicing switch in a transgenic knock-in mouse model

    OpenAIRE

    Lewis, Renate; Ravindran, Soumya; Wirthlin, Louisa; Traeger, Geoffrey; Fernandes, Russell J.; McAlinden, Audrey

    2012-01-01

    The present study describes the generation of a knock-in mouse model to address the role of type II procollagen (Col2a1) alternative splicing in skeletal development and maintenance. Alternative splicing of Col2a1 precursor mRNA is a developmentally-regulated event that only occurs in chondrogenic tissue. Normally, chondroprogenitor cells synthesize predominantly exon 2-containing mRNA isoforms (type IIA and IID) while Col2a1 mRNA devoid of exon 2 (type IIB) is the major isoform produced by d...

  3. Modulation of p53β and p53γ expression by regulating the alternative splicing of TP53 gene modifies cellular response

    OpenAIRE

    Marcel, V; Fernandes, K; Terrier, O; LANE, D. P.; Bourdon, J-C

    2014-01-01

    In addition to the tumor suppressor p53 protein, also termed p53α, the TP53 gene produces p53β and p53γ through alternative splicing of exons 9β and 9γ located within TP53 intron 9. Here we report that both TG003, a specific inhibitor of Cdc2-like kinases (Clk) that regulates the alternative splicing pre-mRNA pathway, and knockdown of SFRS1 increase expression of endogenous p53β and p53γ at mRNA and protein levels. Development of a TP53 intron 9 minigene shows that TG003 treatment and knockdo...

  4. Alternative mRNA Splicing from the Glial Fibrillary Acidic Protein (GFAP) Gene Generates Isoforms with Distinct Subcellular mRNA Localization Patterns in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune; Daugaard, Tina Fuglsang; Holm, Ida E;

    2013-01-01

    The intermediate filament network of astrocytes includes Glial fibrillary acidic protein (Gfap) as a major component. Gfap mRNA is alternatively spliced resulting in generation of different protein isoforms where Gfapa is the most predominant isoform. The Gfapd isoform is expressed in proliferating...... mRNA localization patterns were dependent on the different 39-exon sequences included in Gfapd and Gfapa mRNA. The presented results show that alternative Gfap mRNA splicing results in isoform-specific mRNA localization patterns with resulting different local mRNA concentration ratios which have...

  5. Truncated G protein-coupled mu opioid receptor MOR-1 splice variants are targets for highly potent opioid analgesics lacking side effects.

    Science.gov (United States)

    Majumdar, Susruta; Grinnell, Steven; Le Rouzic, Valerie; Burgman, Maxim; Polikar, Lisa; Ansonoff, Michael; Pintar, John; Pan, Ying-Xian; Pasternak, Gavril W

    2011-12-01

    Pain remains a pervasive problem throughout medicine, transcending all specialty boundaries. Despite the extraordinary insights into pain and its mechanisms over the past few decades, few advances have been made with analgesics. Most pain remains treated by opiates, which have significant side effects that limit their utility. We now describe a potent opiate analgesic lacking the traditional side effects associated with classical opiates, including respiratory depression, significant constipation, physical dependence, and, perhaps most important, reinforcing behavior, demonstrating that it is possible to dissociate side effects from analgesia. Evidence indicates that this agent acts through a truncated, six-transmembrane variant of the G protein-coupled mu opioid receptor MOR-1. Although truncated splice variants have been reported for a number of G protein-coupled receptors, their functional relevance has been unclear. Our evidence now suggests that truncated variants can be physiologically important through heterodimerization, even when inactive alone, and can comprise new therapeutic targets, as illustrated by our unique opioid analgesics with a vastly improved pharmacological profile. PMID:22106286

  6. Multiple Sodium Channel Variants in the Mosquito Culex quinquefasciatus

    OpenAIRE

    He, Lin; Li, Ting; Zhang, Lee; Liu, Nannan

    2012-01-01

    Voltage-gated sodium channels are the target sites of both DDT and pyrethroid insecticides. The importance of alternative splicing as a key mechanism governing the structural and functional diversity of sodium channels and the resulting development of insecticide and acaricide resistance is widely recognized, as shown by the extensive research on characterizing alternative splicing and variants of sodium channels in medically and agriculturally important insect species. Here we present the fi...

  7. Implementation of exon arrays: alternative splicing during T-cell proliferation as determined by whole genome analysis

    Directory of Open Access Journals (Sweden)

    Whistler Toni

    2010-09-01

    Full Text Available Abstract Background The contribution of alternative splicing and isoform expression to cellular response is emerging as an area of considerable interest, and the newly developed exon arrays allow for systematic study of these processes. We use this pilot study to report on the feasibility of exon array implementation looking to replace the 3' in vitro transcription expression arrays in our laboratory. One of the most widely studied models of cellular response is T-cell activation from exogenous stimulation. Microarray studies have contributed to our understanding of key pathways activated during T-cell stimulation. We use this system to examine whole genome transcription and alternate exon usage events that are regulated during lymphocyte proliferation in an attempt to evaluate the exon arrays. Results Peripheral blood mononuclear cells form healthy donors were activated using phytohemagglutinin, IL2 and ionomycin and harvested at 5 points over a 7 day period. Flow cytometry measured cell cycle events and the Affymetrix exon array platform was used to identify the gene expression and alternate exon usage changes. Gene expression changes were noted in a total of 2105 transcripts, and alternate exon usage identified in 472 transcript clusters. There was an overlap of 263 transcripts which showed both differential expression and alternate exon usage over time. Gene ontology enrichment analysis showed a broader range of biological changes in biological processes for the differentially expressed genes, which include cell cycle, cell division, cell proliferation, chromosome segregation, cell death, component organization and biogenesis and metabolic process ontologies. The alternate exon usage ontological enrichments are in metabolism and component organization and biogenesis. We focus on alternate exon usage changes in the transcripts of the spliceosome complex. The real-time PCR validation rates were 86% for transcript expression and 71% for

  8. HE4 Transcription- and Splice Variants-Specific Expression in Endometrial Cancer and Correlation with Patient Survival

    Directory of Open Access Journals (Sweden)

    Shi-Wen Jiang

    2013-11-01

    Full Text Available We investigated the HE4 variant-specific expression patterns in various normal tissues as well as in normal and malignant endometrial tissues. The relationships between mRNA variants and age, body weight, or survival are analyzed. ICAT-labeled normal and endometrial cancer (EC tissues were analyzed with multidimensional liquid chromatography followed by tandem mass spectrometry. Levels of HE4 mRNA variants were measured by real-time PCR. Mean mRNA levels were compared among 16 normal endometrial samples, 14 grade 1 and 14 grade 3 endometrioid EC, 15 papillary serous EC, and 14 normal human tissue samples. The relationship between levels of HE4 variants and EC patient characteristics was analyzed with the use of Pearson correlation test. We found that, although all five HE4 mRNA variants are detectable in normal tissue samples, their expression is highly tissue-specific, with epididymis, trachea, breast and endometrium containing the highest levels. HE4-V0, -V1, and -V3 are the most abundant variants in both normal and malignant tissues. All variants are significantly increased in both endometrioid and papillary serous EC, with higher levels observed in grade 3 endometrioid EC. In the EC group, HE4-V1, -V3, and -V4 levels inversely correlate with EC patient survival, whereas HE4-V0 levels positively correlate with age. HE4 variants exhibit tissue-specific expression, suggesting that each variant may exert distinct functions in normal and malignant cells. HE4 levels appear to correlate with EC patient survival in a variant-specific manner. When using HE4 as a biomarker for EC management, the effects of age should be considered.

  9. Identifying a Neuromedin U Receptor 2 Splice Variant and Determining Its Roles in the Regulation of Signaling and Tumorigenesis In Vitro

    OpenAIRE

    Ting-Yu Lin; Wei-Lin Huang; Wei-Yu Lee; Ching-Wei Luo

    2015-01-01

    Neuromedin U (NMU) activates two G protein-coupled receptors, NMUR1 and NMUR2; this signaling not only controls many physiological responses but also promotes tumorigenesis in diverse tissues. We recently identified a novel truncated NMUR2 derived by alternative splicing, namely NMUR2S, from human ovarian cancer cDNA. Sequence analysis, cell surface ELISA and immunocytochemical staining using 293T cells indicated that NMUR2S can be expressed well on the cell surface as a six-transmembrane pro...

  10. Impairment of alternative splice sites defining a novel gammaretroviral exon within gag modifies the oncogenic properties of Akv murine leukemia virus

    DEFF Research Database (Denmark)

    Sørensen, Annette Balle; Lund, Anders H; Kunder, Sandra;

    2007-01-01

    BACKGROUND: Mutations of an alternative splice donor site located within the gag region has previously been shown to broaden the pathogenic potential of the T-lymphomagenic gammaretrovirus Moloney murine leukemia virus, while the equivalent mutations in the erythroleukemia inducing Friend murine...... leukemia virus seem to have no influence on the disease-inducing potential of this virus. In the present study we investigate the splice pattern as well as the possible effects of mutating the alternative splice sites on the oncogenic properties of the B-lymphomagenic Akv murine leukemia virus. RESULTS: By...... examination of the tumors showed that the introduced synonymous gag mutations have a significant influence on the phenotype of the induced tumors, changing the distribution of the different types as well as generating tumors of additional specificities such as de novo diffuse large B cell lymphoma (DLBCL) and...

  11. Progress on research of the alternative splicing of human cytochrome P450 pre-mRNA%人细胞色素P450前mRNA的可变剪接研究进展

    Institute of Scientific and Technical Information of China (English)

    诸葛坚; 余应年

    2005-01-01

    Human genes typically contain multiple introns, and in many cases the exons can be joined more than one way to generate multiple rnRNAs, encoding distinct protein isoforms. This process is called alternative splicing. The article summarized the human cytochrome P450 pre-mRNA alternative splicing and their regulatory mechanism and impacts on biological functions.

  12. Identification of a truncated splice variant of IL-18 receptor alpha in the human and rat, with evidence of wider evolutionary conservation

    Directory of Open Access Journals (Sweden)

    Chris S. Booker

    2014-09-01

    Full Text Available Interleukin-18 (IL-18 is a pro-inflammatory cytokine which stimulates activation of the nuclear factor kappa beta (NF-κB pathway via interaction with the IL-18 receptor. The receptor itself is formed from a dimer of two subunits, with the ligand-binding IL-18Rα subunit being encoded by the IL18R1 gene. A splice variant of murine IL18r1, which has been previously described, is formed by transcription of an unspliced intron (forming a ‘type II’ IL18r1 transcript and is predicted to encode a receptor with a truncated intracellular domain lacking the capacity to generate downstream signalling. In order to examine the relevance of this finding to human IL-18 function, we assessed the presence of a homologous transcript by reverse transcription-polymerase chain reaction (RT-PCR in the human and rat as another common laboratory animal. We present evidence for type II IL18R1 transcripts in both species. While the mouse and rat transcripts are predicted to encode a truncated receptor with a novel 5 amino acid C-terminal domain, the human sequence is predicted to encode a truncated protein with a novel 22 amino acid sequence bearing resemblance to the ‘Box 1’ motif of the Toll/interleukin-1 receptor (TIR domain, in a similar fashion to the inhibitory interleukin-1 receptor 2. Given that transcripts from these three species are all formed by inclusion of homologous unspliced intronic regions, an analysis of homologous introns across a wider array of 33 species with available IL18R1 gene records was performed, which suggests similar transcripts may encode truncated type II IL-18Rα subunits in other species. This splice variant may represent a conserved evolutionary mechanism for regulating IL-18 activity.

  13. 5 ' splice site mutations in tau associated with the inherited dementia FTDP-17 affect a stem-loop structure that regulates alternative splicing of exon 10

    OpenAIRE

    Grover, A.; Houlden, H; Baker, M.; Adamson, J.; J. Lewis; Prihar, G.; Pickering-Brown, S.; Duff, K; Hutton, M.

    1999-01-01

    Missense and splice site mutations in the microtubule-associated protein tau gene were recently found associated with fronto-temporal dementia and parkinsonism linked to chromosome 17 (Poorkaj et al. (1998) Ann. Neurol. 43, 815-825; Hutton et al. (1998) Nature 393, 702-705; Spillantini et al. (1998) Proc. Natl Acad Sci. U.S.A 95, 7737-7741). The mutations in the 5' splice site of exon 10 were shown to increase the ratio of tau mRNAs containing exon 10 and thus the proportion of Tau protein is...

  14. Allelic variation, alternative splicing and expression analysis of Psy1 gene in Hordeum chilense Roem. et Schult.

    Directory of Open Access Journals (Sweden)

    Cristina Rodríguez-Suárez

    Full Text Available BACKGROUND: The wild barley Hordeum chilense Roem. et Schult. is a valuable source of genes for increasing carotenoid content in wheat. Tritordeums, the amphiploids derived from durum or common wheat and H. chilense, systematically show higher values of yellow pigment colour and carotenoid content than durum wheat. Phytoene synthase 1 gene (Psy1 is considered a key step limiting the carotenoid biosynthesis, and the correlation of Psy1 transcripts accumulation and endosperm carotenoid content has been demonstrated in the main grass species. METHODOLOGY/PRINCIPAL FINDINGS: We analyze the variability of Psy1 alleles in three lines of H. chilense (H1, H7 and H16 representing the three ecotypes described in this species. Moreover, we analyze Psy1 expression in leaves and in two seed developing stages of H1 and H7, showing mRNA accumulation patterns similar to those of wheat. Finally, we identify thirty-six different transcripts forms originated by alternative splicing of the 5' UTR and/or exons 1 to 5 of Psy1 gene. Transcripts function is tested in a heterologous complementation assay, revealing that from the sixteen different predicted proteins only four types (those of 432, 370, 364 and 271 amino acids, are functional in the bacterial system. CONCLUSIONS/SIGNIFICANCE: The large number of transcripts originated by alternative splicing of Psy1, and the coexistence of functional and non functional forms, suggest a fine regulation of PSY activity in H. chilense. This work is the first analysis of H. chilense Psy1 gene and the results reported here are the bases for its potential use in carotenoid enhancement in durum wheat.

  15. The transcriptome of Utricularia vulgaris, a rootless plant with minimalist genome, reveals extreme alternative splicing and only moderate sequence similarity with Utricularia gibba

    Czech Academy of Sciences Publication Activity Database

    Bárta, J.; Stone, James D.; Pech, J.; Sirová, D.; Adamec, Lubomír; Campbell, M. A.; Štorchová, H.

    2015-01-01

    Roč. 15, MAR 7 (2015), s. 1-14, no. 78. ISSN 1471-2229 R&D Projects: GA ČR(CZ) GAP504/11/0783 Institutional support: RVO:67985939 Keywords : transcriptome * root-associated genes * alternative splicing Subject RIV: EF - Botanics Impact factor: 3.813, year: 2014

  16. The transcriptome of Utricularia vulgaris, a rootless plant with minimalist genome, reveals extreme alternative splicing and only moderate sequence similarity with Utricularia gibba

    Czech Academy of Sciences Publication Activity Database

    Bárta, J.; Stone, James D.; Pech, J.; Sirová, D.; Adamec, L.; Campbell, M. A.; Štorchová, Helena

    2015-01-01

    Roč. 15, MAR 7 2015 (2015). ISSN 1471-2229 R&D Projects: GA ČR(CZ) GAP504/11/0783 Institutional support: RVO:61389030 Keywords : Transcriptome * Root-associated genes * Alternative splicing Subject RIV: EF - Botanics Impact factor: 3.813, year: 2014

  17. Integrating many co-splicing networks to reconstruct splicing regulatory modules

    OpenAIRE

    Dai Chao; Li Wenyuan; Liu Juan; Zhou Xianghong

    2012-01-01

    Abstract Background Alternative splicing is a ubiquitous gene regulatory mechanism that dramatically increases the complexity of the proteome. However, the mechanism for regulating alternative splicing is poorly understood, and study of coordinated splicing regulation has been limited to individual cases. To study genome-wide splicing regulation, we integrate many human RNA-seq datasets to identify splicing module, which we define as a set of cassette exons co-regulated by the same splicing f...

  18. Spliced leader trans-splicing in the nematode Trichinella spiralis uses highly polymorphic, noncanonical spliced leaders

    OpenAIRE

    Pettitt, Jonathan; Müller, Berndt; Stansfield, Ian; Connolly, Bernadette

    2008-01-01

    The trans-splicing of short spliced leader (SL) RNAs onto the 5′ ends of mRNAs occurs in a diverse range of taxa. In nematodes, all species so far characterized utilize a characteristic, conserved spliced leader, SL1, as well as variants that are employed in the resolution of operons. Here we report the identification of spliced leader trans-splicing in the basal nematode Trichinella spiralis, and show that this nematode does not possess a canonical SL1, but rather has at least 15 distinct sp...

  19. Alternative splicing: an important mechanism for myometrial gene regulation that can be manipulated to target specific genes associated with preterm labour

    Directory of Open Access Journals (Sweden)

    Tyson-Capper Alison

    2007-06-01

    Full Text Available Abstract Considerable effort has been expended in attempting to distinguish genes that contribute to initiating the onset of term and preterm labour (PTL from those that change in expression as a consequence of the progression of labour. The ability to define more clearly the genes involved in triggering labour contractions should lead to the development of new effective and safer strategies to prevent preterm birth. There is ample evidence to suggest that specific genes are co-ordinately regulated within the upper and lower regions of the myometrium prior to and during parturition and many of these genes are regulated by alternative pre-mRNA splicing. This mini-review highlights that expression of a range of different splicing factors, with defined roles in pre-mRNA splicing, is both temporally and spatially regulated within the uterine smooth muscle during pregnancy and labour. Moreover, several of these splicing factors play key roles in controlling the differential expression of specific regulatory proteins involved in uterine signalling and uterine quiescence. In addition, antisense morpholino oligonucleotide manipulation of pre-mRNA splicing may have potential in defining and targeting uterine pro-labour genes and thus contribute to the development of new therapeutic approaches to prevent PTL.

  20. A Splice Region Variant in LDLR Lowers Non-high Density Lipoprotein Cholesterol and Protects against Coronary Artery Disease

    NARCIS (Netherlands)

    Gretarsdottir, S.; Helgason, H.; Helgadottir, A.; Sigurdsson, A.; Thorleifsson, G.; Magnusdottir, A.; Oddsson, A.; Steinthorsdottir, V.; Rafnar, T.; Graaf, J. de; Daneshpour, M.S.; Hedayati, M.; Azizi, F.; Grarup, N.; Jorgensen, T.; Vestergaard, H.; Hansen, T.; Eyjolfsson, G.; Sigurdardottir, O.; Olafsson, I.; Kiemeney, B.; Pedersen, O.; Sulem, P.; Thorgeirsson, G.; Gudbjartsson, D.F.; Holm, H.; Thorsteinsdottir, U.; Stefansson, K.

    2015-01-01

    Through high coverage whole-genome sequencing and imputation of the identified variants into a large fraction of the Icelandic population, we found four independent signals in the low density lipoprotein receptor gene (LDLR) that associate with levels of non-high density lipoprotein cholesterol (non

  1. Poliovirus 2A Protease Triggers a Selective Nucleo-Cytoplasmic Redistribution of Splicing Factors to Regulate Alternative Pre-mRNA Splicing

    OpenAIRE

    Enrique Álvarez; Alfredo Castelló; Luis Carrasco; Izquierdo, José M.

    2013-01-01

    Poliovirus protease 2A (2A(pro)) obstructs host gene expression by reprogramming transcriptional and post-transcriptional regulatory events during infection. Here we demonstrate that expression of 2A(pro) induces a selective nucleo-cytoplasm translocation of several important RNA binding proteins and splicing factors. Subcellular fractionation studies, together with immunofluorescence microscopy revealed an asymmetric distribution of HuR and TIA1/TIAR in 2A(pro) expressing cells, which modula...

  2. Conserved functional antagonism of CELF and MBNL proteins controls stem cell-specific alternative splicing in planarians

    Science.gov (United States)

    Solana, Jordi; Irimia, Manuel; Ayoub, Salah; Orejuela, Marta Rodriguez; Zywitza, Vera; Jens, Marvin; Tapial, Javier; Ray, Debashish; Morris, Quaid; Hughes, Timothy R; Blencowe, Benjamin J; Rajewsky, Nikolaus

    2016-01-01

    In contrast to transcriptional regulation, the function of alternative splicing (AS) in stem cells is poorly understood. In mammals, MBNL proteins negatively regulate an exon program specific of embryonic stem cells; however, little is known about the in vivo significance of this regulation. We studied AS in a powerful in vivo model for stem cell biology, the planarian Schmidtea mediterranea. We discover a conserved AS program comprising hundreds of alternative exons, microexons and introns that is differentially regulated in planarian stem cells, and comprehensively identify its regulators. We show that functional antagonism between CELF and MBNL factors directly controls stem cell-specific AS in planarians, placing the origin of this regulatory mechanism at the base of Bilaterians. Knockdown of CELF or MBNL factors lead to abnormal regenerative capacities by affecting self-renewal and differentiation sets of genes, respectively. These results highlight the importance of AS interactions in stem cell regulation across metazoans. DOI: http://dx.doi.org/10.7554/eLife.16797.001 PMID:27502555

  3. Alternative splicing of human elastin mRNA indicated by sequence analysis of cloned genomic and complementary DNA

    International Nuclear Information System (INIS)

    Poly(A)+ RNA, isolated from a single 7-mo fetal human aorta, was used to synthesize cDNA by the RNase H method, and the cDNA was inserted into λgt10. Recombinant phage containing elastin sequences were identified by hybridization with cloned, exon-containing fragments of the human elastin gene. Three clones containing inserts of 3.3, 2.7, and 2.3 kilobases were selected for further analysis. Three overlapping clones containing 17.8 kilobases of the human elastin gene were also isolated from genomic libraries. Complete sequence analysis of the six clones demonstrated that: (i) the cDNA encompassed the entire translated portion of the mRNA encoding 786 amino acids, including several unusual hydrophilic amino acid sequences not previously identified in porcine tropoelastin, (ii) exons encoding either hydrophobic or crosslinking domains in the protein alternated in the gene, and (iii) a great abundance of Alu repetitive sequences occurred throughout the introns. The data also indicated substantial alternative splicing of the mRNA. These results suggest the potential for significant variation in the precise molecular structure of the elastic fiber in the human population

  4. Upstream ORF affects MYCN translation depending on exon 1b alternative splicing

    International Nuclear Information System (INIS)

    The MYCN gene is transcribed into two major mRNAs: one full-length (MYCN) and one exon 1b-spliced (MYCNΔ1b) mRNA. But nothing is known about their respective ability to translate the MYCN protein. Plasmids were prepared to enable translation from the upstream (uORF) and major ORF of the two MYCN transcripts. Translation was studied after transfection in neuroblastoma SH-EP cell line. Impact of the upstream AUG on translation was evaluated after directed mutagenesis. Functional study with the two MYCN mRNAs was conducted by a cell viability assay. Existence of a new protein encoded by the MYCNΔ1b uORF was explored by designing a rabbit polyclonal antibody against a specific epitope of this protein. Both are translated, but higher levels of protein were seen with MYCNΔ1b mRNA. An upstream ORF was shown to have positive cis-regulatory activity on translation from MYCN but not from MYCNΔ1b mRNA. In transfected SH-EP neuroblastoma cells, high MYCN dosage obtained with MYCNΔ1b mRNA translation induces an antiapoptotic effect after serum deprivation that was not observed with low MYCN expression obtained with MYCN mRNA. Here, we showed that MYCNOT: MYCN Overlap Transcript, a new protein of unknown function is translated from the upstream AUG of MYCNΔ1b mRNA. Existence of upstream ORF in MYCN transcripts leads to a new level of MYCN regulation. The resulting MYCN dosage has a weak but significant anti-apoptotic activity after intrinsic apoptosis induction

  5. Upstream ORF affects MYCN translation depending on exon 1b alternative splicing

    Directory of Open Access Journals (Sweden)

    Tutrone Giovani

    2009-12-01

    Full Text Available Abstract Background The MYCN gene is transcribed into two major mRNAs: one full-length (MYCN and one exon 1b-spliced (MYCNΔ1b mRNA. But nothing is known about their respective ability to translate the MYCN protein. Methods Plasmids were prepared to enable translation from the upstream (uORF and major ORF of the two MYCN transcripts. Translation was studied after transfection in neuroblastoma SH-EP cell line. Impact of the upstream AUG on translation was evaluated after directed mutagenesis. Functional study with the two MYCN mRNAs was conducted by a cell viability assay. Existence of a new protein encoded by the MYCNΔ1b uORF was explored by designing a rabbit polyclonal antibody against a specific epitope of this protein. Results Both are translated, but higher levels of protein were seen with MYCNΔ1b mRNA. An upstream ORF was shown to have positive cis-regulatory activity on translation from MYCN but not from MYCNΔ1b mRNA. In transfected SH-EP neuroblastoma cells, high MYCN dosage obtained with MYCNΔ1b mRNA translation induces an antiapoptotic effect after serum deprivation that was not observed with low MYCN expression obtained with MYCN mRNA. Here, we showed that MYCNOT: MYCN Overlap Transcript, a new protein of unknown function is translated from the upstream AUG of MYCNΔ1b mRNA. Conclusions Existence of upstream ORF in MYCN transcripts leads to a new level of MYCN regulation. The resulting MYCN dosage has a weak but significant anti-apoptotic activity after intrinsic apoptosis induction.

  6. Nanoplasmonic probes of RNA folding and assembly during pre-mRNA splicing

    Science.gov (United States)

    Nguyen, Anh H.; Lee, Jong Uk; Sim, Sang Jun

    2016-02-01

    RNA splicing plays important roles in transcriptome and proteome diversity. Herein, we describe the use of a nanoplasmonic system that unveils RNA folding and assembly during pre-mRNA splicing wherein the quantification of mRNA splice variants is not taken into account. With a couple of SERS-probes and plasmonic probes binding at the boundary sites of exon-2/intron-2 and intron-2/exon-3 of the pre-mature RNA of the β-globin gene, the splicing process brings the probes into the plasmonic bands. For plasmonic probes, a plasmon shift increase of ~29 nm, corresponding to intron removal and exon-2 and exon-3 connection to form the mRNA molecule, is measured by plasmonic coupling. The increased scattering intensity and surface-enhanced Raman scattering (SERS) fingerprinting reveal the clear dynamics of pre-mRNA splicing. Moreover, a time-resolved experiment of individual RNA molecules exhibited a successful splicing and an inhibited splicing event by 33 μM biflavonoid isoginkgetin, a general inhibitor of RNA splicing. The results suggest that the RNA splicing is successfully monitored with the nanoplasmonic system. Thus, this platform can be useful for studying RNA nanotechnology, biomolecular folding, alternative splicing, and maturation of microRNA.

  7. AtRTD2: A Reference Transcript Dataset for accurate quantification of alternative splicing and expression changes in Arabidopsis thaliana RNA-seq data

    KAUST Repository

    Zhang, Runxuan

    2016-05-06

    Background Alternative splicing is the major post-transcriptional mechanism by which gene expression is regulated and affects a wide range of processes and responses in most eukaryotic organisms. RNA-sequencing (RNA-seq) can generate genome-wide quantification of individual transcript isoforms to identify changes in expression and alternative splicing. RNA-seq is an essential modern tool but its ability to accurately quantify transcript isoforms depends on the diversity, completeness and quality of the transcript information. Results We have developed a new Reference Transcript Dataset for Arabidopsis (AtRTD2) for RNA-seq analysis containing over 82k non-redundant transcripts, whereby 74,194 transcripts originate from 27,667 protein-coding genes. A total of 13,524 protein-coding genes have at least one alternatively spliced transcript in AtRTD2 such that about 60% of the 22,453 protein-coding, intron-containing genes in Arabidopsis undergo alternative splicing. More than 600 putative U12 introns were identified in more than 2,000 transcripts. AtRTD2 was generated from transcript assemblies of ca. 8.5 billion pairs of reads from 285 RNA-seq data sets obtained from 129 RNA-seq libraries and merged along with the previous version, AtRTD, and Araport11 transcript assemblies. AtRTD2 increases the diversity of transcripts and through application of stringent filters represents the most extensive and accurate transcript collection for Arabidopsis to date. We have demonstrated a generally good correlation of alternative splicing ratios from RNA-seq data analysed by Salmon and experimental data from high resolution RT-PCR. However, we have observed inaccurate quantification of transcript isoforms for genes with multiple transcripts which have variation in the lengths of their UTRs. This variation is not effectively corrected in RNA-seq analysis programmes and will therefore impact RNA-seq analyses generally. To address this, we have tested different genome

  8. PXR (NR1I2): splice variants in human tissues, including brain, and identification of neurosteroids and nicotine as PXR activators

    International Nuclear Information System (INIS)

    To gain insight on the expression of pregnane X receptor (PXR), we analyzed PXR.1 and PXR alternatively spliced transcripts in a panel of 36 human tissues. PXR.1 was expressed in many more tissues than previously determined, including human bone marrow and select regions of the human brain. In each of these tissues, we observed alternative splicing of various exons of PXR that generated multiple distinct PXR isoforms. The most abundant PXR alternative mRNA transcripts lacked 111 nucleotides, deleting 37 amino acids from the PXR LBD (PXR.2), or lacked 123 nt, deleting 41 amino acids from the PXR LBD (PXR.3). CYP3A4, a gene transcriptionally regulated by PXR, showed incomplete overlap with PXR in its tissue distribution. Quantitation of PXR mRNAs in human liver demonstrated that PXR.2 and PXR.3 represented 6.7% and 0.32% of total PXR mRNA transcripts. Brain expression of PXR prompted analysis of whether some brain acting chemicals were PXR ligands. The neurosteroids allopregnanolone and pregnanolone activated PXR and induced transcription of a CYP3A4-luciferase reporter. Nicotine, the psychoactive and addictive chemical in cigarettes, and a known inducer of brain CYP2B6, was an efficacious activator of PXR and inducer of CYP3A4 transcription. Because nicotine activation of PXR will enhance metabolism of nicotine to the non-psychoactive cotinine, these results provide one molecular mechanism for the development of tolerance to nicotine. Moreover, the identification of PXR in many human tissues, such as brain, and activation by tissue specific ligands (such as neurosteroids) suggests additional biological roles for this receptor in these tissues

  9. Alternative splicing produces transcripts coding for alpha and beta chains of a hetero-dimeric phosphagen kinase.

    Science.gov (United States)

    Ellington, W Ross; Yamashita, Daisuke; Suzuki, Tomohiko

    2004-06-01

    Glycocyamine kinase (GK) catalyzes the reversible phosphorylation of glycocyamine (guanidinoacetate), a reaction central to cellular energy homeostasis in certain animals. GK is a member of the phosphagen kinase enzyme family and appears to have evolved from creatine kinase (CK) early in the evolution of multi-cellular animals. Prior work has shown that GK from the polychaete Neanthes (Nereis) diversicolor exits as a hetero-dimer in vivo and that the two polypeptide chains (termed alpha and beta) are coded for by unique transcripts. In the present study, we demonstrate that the GK from a congener Nereis virens is also hetero-dimeric and is coded for by alpha and beta transcripts, which are virtually identical to the corresponding forms in N. diversicolor. The GK gene from N. diversicolor was amplified by PCR. Sequencing of the PCR products showed that the alpha and beta chains are the result of alternative splicing of the GK primary mRNA transcript. These results also strongly suggest that this gene underwent an early tandem exon duplication event. Full-length cDNAs for N. virens GKalpha and GKbeta were individually ligated into expression vectors and the resulting constructs used to transform Escherichia coli expression hosts. Regardless of expression conditions, minimal GK activity was observed in both GKalpha and GKbeta constructs. Inclusion bodies for both were harvested, unfolded in urea and alpha chains, beta chains and mixtures of alpha and beta chains were refolded by sequential dialysis. Only modest amounts of GK activity were observed when alpha and beta were refolded individually. In contrast, when refolded the alpha and beta mixture yielded highly active hetero-dimers, as validated by size exclusion chromatography, electrophoresis and mass spectrometry, with a specific activity comparable to that of natural GK. The above evidence suggests that there is a preference for hetero-dimer formation in the GKs from these two polychaetes. The evolution of the

  10. Co-option of the piRNA Pathway for Germline-Specific Alternative Splicing of C. elegans TOR

    Directory of Open Access Journals (Sweden)

    Sergio Barberán-Soler

    2014-09-01

    Full Text Available Many eukaryotic genes contain embedded antisense transcripts and repetitive sequences of unknown function. We report that male germline-specific expression of an antisense transcript contained in an intron of C. elegans Target of Rapamycin (TOR, let-363 is associated with (1 accumulation of endo-small interfering RNAs (siRNAs against an embedded Helitron transposon and (2 activation of an alternative 3′ splice site of TOR. The germline-specific Argonaute proteins PRG-1 and CSR-1, which participate in self/nonself RNA recognition, antagonistically regulate the generation of these endo-siRNAs, TOR mRNA levels, and 3′ splice-site selection. Supply of exogenous double-stranded RNA against the region of sense/antisense overlap reverses changes in TOR expression and splicing and suppresses the progressive multigenerational sterility phenotype of prg-1 mutants. We propose that recognition of a “nonself” intronic transposon by endo-siRNAs/the piRNA system provides physiological regulation of expression and alternative splicing of a host gene that, in turn, contributes to the maintenance of germline function across generations.

  11. First Trimester Pregnancy Loss and the Expression of alternatively spliced NKp30 isoforms in Maternal Blood and Placental Tissue

    Directory of Open Access Journals (Sweden)

    Avishai eShemesh

    2015-06-01

    Full Text Available In this study, we aimed to investigate whether first trimester pregnancy loss is associated with differences in expression of NKp30 splice variants (isoforms in maternal peripheral blood or placental tissue. We conducted a prospective case-control study; a total of 33 women undergoing dilation and curettage due to first trimester pregnancy loss were further subdivided into groups with sporadic or recurrent pregnancy loss. The control group was comprised of women undergoing elective termination of pregnancy. The qPCR approach was employed to assess the relative expression of NKp30 isoforms as well as the total expression of NKp30 and NKp46 receptors between the selected groups. Results show that in both PBMC and placental tissue, NKp46 and NKp30 expression was mildly elevated in the pregnancy loss groups compared with the elective group. In particular, NKp46 elevation was significant. Moreover, expression analysis of NKp30 isoforms manifested a different profile between PBMC and the placenta. NKp30-a and NKp30-b isoforms in the placental tissue, but not in PBMC, showed a significant increase in the pregnancy loss groups compared with the elective group. Placental expression of NKp30 activating isoforms -a and -b in the pregnancy loss groups was negatively correlated with PLGF expression. In contrast, placental expression of these isoforms in the elective group was positively correlated with TNFα, IL-10 and VEGF-A expression. The altered expression of NKp30 activating isoforms in placental tissue from patients with pregnancy loss compared to the elective group and the different correlations with cytokine expression point to the involvement of NKp30-mediated function in pregnancy loss.

  12. Molecular characterization and tissue distribution of aryl hydrocarbon receptor nuclear translocator isoforms, ARNT1 and ARNT2, and identification of novel splice variants in common cormorant (Phalacrocorax carbo).

    Science.gov (United States)

    Lee, Jin-Seon; Kim, Eun-Young; Iwata, Hisato; Tanabe, Shinsuke

    2007-04-01

    arise from their splicing process were also identified and their hepatic expression profiles were determined. These results indicate that ccARNT1, ccARNT2 and their splice variants may more intricately regulate the AHR/ARNT signaling pathway and consequently may be responsible for the species diversity of toxic effects and susceptibility to PHAHs. PMID:17337252

  13. Inverse splicing of a group II intron.

    OpenAIRE

    Jarrell, K A

    1993-01-01

    I describe the self-splicing of an RNA that consists of exon sequences flanked by group II intron sequences. I find that this RNA undergoes accurate splicing in vitro, yielding an excised exon circle. This splicing reaction involves the joining of the 5' splice site at the end of an exon to the 3' splice site at the beginning of the same exon; thus, I term it inverse splicing. Inverse splicing provides a potential mechanism for exon scrambling, for exon deletion in alternative splicing pathwa...

  14. Subcellular RNA profiling links splicing and nuclear DICER1 to alternative cleavage and polyadenylation

    OpenAIRE

    Furger, AM; Neve, J; Burger, K; Patel, R.; Gullerova, M; Li, W.; Hoque, M.; Tian, B.

    2015-01-01

    Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we employed a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected t...

  15. Identification of a novel family of laminin N-terminal alternate splice isoforms: structural and functional characterization.

    Science.gov (United States)

    Hamill, Kevin J; Langbein, Lutz; Jones, Jonathan C R; McLean, W H Irwin

    2009-12-18

    The laminins are a family of heterotrimeric basement membrane proteins that play roles in cellular adhesion, migration, and tissue morphogenesis. Through in silico analysis of the laminin-encoding genes, we identified a novel family of alternate splice isoforms derived from the 5'-end of the LAMA3 and LAMA5 genes. These isoforms resemble the netrins in that they contain a laminin N-terminal domain followed by a short stretch of laminin-type epidermal growth factor-like repeats. We suggest the terms LaNt (laminin N terminus) alpha3 and LaNt alpha5, for the predicted protein products of these mRNAs. RT-PCR confirmed the presence of these transcripts at the mRNA level. Moreover, they exhibit differential, tissue-specific, expression profiles. To confirm the existence of LaNt alpha3 protein, we generated an antibody to a unique domain within the putative polypeptide. This antibody recognizes a protein at the predicted molecular mass of 64 kDa by immunoblotting. Furthermore, immunofluorescence analyses revealed a basement membrane staining in epithelial tissue for LaNt alpha3 and LaNt alpha3 localized along the substratum-associated surface of cultured keratinocytes. We have also tested the functionality LaNt alpha3 through RNAi-mediated knockdown. Keratinocytes exhibiting specific knockdown of LaNt alpha3 displayed impaired adhesion, stress resistance, and reduced ability to close scratch wounds in vitro. PMID:19773554

  16. Nematogalectin, a nematocyst protein with GlyXY and galectin domains, demonstrates nematocyte-specific alternative splicing in Hydra

    Science.gov (United States)

    Hwang, Jung Shan; Takaku, Yasuharu; Momose, Tsuyoshi; Adamczyk, Patrizia; Özbek, Suat; Ikeo, Kazuho; Khalturin, Konstantin; Hemmrich, Georg; Bosch, Thomas C. G.; Holstein, Thomas W.; David, Charles N.; Gojobori, Takashi

    2010-01-01

    Taxonomically restricted genes or lineage-specific genes contribute to morphological diversification in metazoans and provide unique functions for particular taxa in adapting to specific environments. To understand how such genes arise and participate in morphological evolution, we have investigated a gene called nematogalectin in Hydra, which has a structural role in the formation of nematocysts, stinging organelles that are unique to the phylum Cnidaria. Nematogalectin is a 28-kDa protein with an N-terminal GlyXY domain (glycine followed by two hydrophobic amino acids), which can form a collagen triple helix, followed by a galactose-binding lectin domain. Alternative splicing of the nematogalectin transcript allows the gene to encode two proteins, nematogalectin A and nematogalectin B. We demonstrate that expression of nematogalectin A and B is mutually exclusive in different nematocyst types: Desmonemes express nematogalectin B, whereas stenoteles and isorhizas express nematogalectin B early in differentiation, followed by nematogalectin A. Like Hydra, the marine hydrozoan Clytia also has two nematogalectin transcripts, which are expressed in different nematocyte types. By comparison, anthozoans have only one nematogalectin gene. Gene phylogeny indicates that tandem duplication of nematogalectin B exons gave rise to nematogalectin A before the divergence of Anthozoa and Medusozoa and that nematogalectin A was subsequently lost in Anthozoa. The emergence of nematogalectin A may have played a role in the morphological diversification of nematocysts in the medusozoan lineage. PMID:20937891

  17. Assessment of orthologous splicing isoforms in human and mouse orthologous genes

    Directory of Open Access Journals (Sweden)

    Horner David S

    2010-10-01

    Full Text Available Abstract Background Recent discoveries have highlighted the fact that alternative splicing and alternative transcripts are the rule, rather than the exception, in metazoan genes. Since multiple transcript and protein variants expressed by the same gene are, by definition, structurally distinct and need not to be functionally equivalent, the concept of gene orthology should be extended to the transcript level in order to describe evolutionary relationships between structurally similar transcript variants. In other words, the identification of true orthology relationships between gene products now should progress beyond primary sequence and "splicing orthology", consisting in ancestrally shared exon-intron structures, is required to define orthologous isoforms at transcript level. Results As a starting step in this direction, in this work we performed a large scale human- mouse gene comparison with a twofold goal: first, to assess if and to which extent traditional gene annotations such as RefSeq capture genuine splicing orthology; second, to provide a more detailed annotation and quantification of true human-mouse orthologous transcripts defined as transcripts of orthologous genes exhibiting the same splicing patterns. Conclusions We observed an identical exon/intron structure for 32% of human and mouse orthologous genes. This figure increases to 87% using less stringent criteria for gene structure similarity, thus implying that for about 13% of the human RefSeq annotated genes (and about 25% of the corresponding transcripts we could not identify any mouse transcript showing sufficient similarity to be confidently assigned as a splicing ortholog. Our data suggest that current gene and transcript data may still be rather incomplete - with several splicing variants still unknown. The observation that alternative splicing produces large numbers of alternative transcripts and proteins, some of them conserved across species and others truly species

  18. A naturally occurring Lgr4 splice variant encodes a soluble antagonist useful for demonstrating the gonadal roles of Lgr4 in mammals.

    Directory of Open Access Journals (Sweden)

    Pei-Jen Hsu

    Full Text Available Leucine-rich repeat containing G protein-coupled receptor 4 (LGR4 promotes the Wnt signaling through interaction with R-spondins or norrin. Using PCR amplification from rat ovarian cDNAs, we identified a naturally occurring Lgr4 splice variant encoding only the ectodomain of Lgr4, which was named Lgr4-ED. Lgr4-ED can be detected as a secreted protein in the extracts from rodent and bovine postnatal gonads, suggesting conservation of Lgr4-ED in mammals. Recombinant Lgr4-ED purified from the conditioned media of transfected 293T cells was found to dose-dependently inhibit the LGR4-mediated Wnt signaling induced by RSPO2 or norrin, suggesting that it is capable of ligand absorption and could have a potential role as an antagonist. Intraperitoneal injection of purified recombinant Lgr4-ED into newborn mice was found to significantly decrease the testicular expression of estrogen receptor alpha and aquaporin 1, which is similar to the phenotype found in Lgr4-null mice. Administration of recombinant Lgr4-ED to superovulated female rats can also decrease the expression of estrogen receptor alpha, aquaporin 1, LH receptor and other key steroidogenic genes as well as bring about the suppression of progesterone production. Thus, these findings suggest that endogenously expressed Lgr4-ED may act as an antagonist molecule and help to fine-tune the R-spondin/norrin-mediated Lgr4-Wnt signaling during gonadal development.

  19. Differential expression of P-type ATPases in intestinal epithelial cells: Identification of putative new atp1a1 splice-variant

    International Nuclear Information System (INIS)

    P-type ATPases are membrane proteins that couple ATP hydrolysis with cation transport across the membrane. Ten different subtypes have been described. In mammalia, 15 genes of P-type ATPases from subtypes II-A, II-B and II-C, that transport low-atomic-weight cations (Ca2+, Na+, K+ and H+), have been reported. They include reticulum and plasma-membrane Ca2+-ATPases, Na+/K+-ATPase and H+/K+-ATPases. Enterocytes and colonocytes show functional differences, which seem to be partially due to the differential expression of P-type ATPases. These enzymes have 9 structural motifs, being the phosphorylation (E) and the Mg2+ATP-binding (H) motifs the most preserved. These structural characteristics permitted developing a Multiplex-Nested-PCR (MN-PCR) for the simultaneous identification of different P-type ATPases. Thus, using MN-PCR, seven different cDNAs were cloned from enterocytes and colonocytes, including SERCA3, SERCA2, Na+/K+-ATPase α1-isoform, H+/K+-ATPase α2-isoform, PMCA1, PMCA4 and a cDNA-fragment that seems to be a new cassette-type splice-variant of the atp1a1 gen. PMCA4 in enterocytes and H+/K+-ATPase α2-isoform in colonocytes were differentially expressed. This cell-specific expression pattern is related with the distinctive enterocyte and colonocyte functions.

  20. Synthesis and evaluation of aryl-naloxamide opiate analgesics targeting truncated exon 11-associated mu opioid receptor (MOR-1) splice variants

    Science.gov (United States)

    Majumdar, Susruta; Subrath, Joan; Le Rouzic, Valerie; Polikar, Lisa; Burgman, Maxim; Nagakura, Kuni; Ocampo, Julie; Haselton, Nathan; Pasternak, Anna R.; Grinnell, Steven; Pan, Ying-Xian; Pasternak, Gavril W.

    2012-01-01

    3-Iodobenzoylnaltrexamide 1 (IBNtxA) is a potent analgesic acting through a novel receptor target that lack many side-effects of traditional opiates composed, in part, of exon 11-associated truncated six transmembrane domain MOR-1 (6TM/E11) splice variants. To better understand the SAR of this drug target, a number of 4,5-epoxymorphinan analogs were synthesized. Results show the importance of a free 3-phenolic group, a phenyl ring at the 6 position, an iodine at the 3′ or 4′ position of the phenyl ring and an N-allyl or c-propylmethyl group to maintain high 6TM/E11 affinity and activity. 3-Iodobenzoylnaloxamide 15 (IBNalA) with a N-allyl group displayed lower delta opioid receptor affinity than its naltrexamine analog, was 10-fold more potent an analgesic than morphine, elicited no respiratory depression or physical dependence and only limited inhibition of gastrointestinal transit. Thus, the aryl-naloxamide scaffold can generate a potent analgesic acting through the 6TM/E11 sites with advantageous side-effect profile and greater selectivity. PMID:22734622

  1. Synthesis and evaluation of aryl-naloxamide opiate analgesics targeting truncated exon 11-associated μ opioid receptor (MOR-1) splice variants.

    Science.gov (United States)

    Majumdar, Susruta; Subrath, Joan; Le Rouzic, Valerie; Polikar, Lisa; Burgman, Maxim; Nagakura, Kuni; Ocampo, Julie; Haselton, Nathan; Pasternak, Anna R; Grinnell, Steven; Pan, Ying-Xian; Pasternak, Gavril W

    2012-07-26

    3-Iodobenzoylnaltrexamide 1 (IBNtxA) is a potent analgesic acting through a novel receptor target that lack many side-effects of traditional opiates composed, in part, of exon 11-associated truncated six transmembrane domain MOR-1 (6TM/E11) splice variants. To better understand the SAR of this drug target, a number of 4,5-epoxymorphinan analogues were synthesized. Results show the importance of a free 3-phenolic group, a phenyl ring at the 6 position, an iodine at the 3'or 4' position of the phenyl ring, and an N-allyl or c-propylmethyl group to maintain high 6TM/E11 affinity and activity. 3-Iodobenzoylnaloxamide 15 (IBNalA) with a N-allyl group displayed lower δ opioid receptor affinity than its naltrexamine analogue, was 10-fold more potent an analgesic than morphine, elicited no respiratory depression or physical dependence, and only limited inhibition of gastrointestinal transit. Thus, the aryl-naloxamide scaffold can generate a potent analgesic acting through the 6TM/E11 sites with advantageous side-effect profile and greater selectivity. PMID:22734622

  2. GPR39 splice variants versus antisense gene LYPD1: expression and regulation in gastrointestinal tract, endocrine pancreas, liver, and white adipose tissue

    DEFF Research Database (Denmark)

    Egerod, Kristoffer L; Holst, Birgitte; Petersen, Pia S;

    2007-01-01

    G protein-coupled receptor 39 (GPR39) is a constitutively active, orphan member of the ghrelin receptor family that is activated by zinc ions. GPR39 is here described to be expressed in a full-length, biologically active seven-transmembrane form, GPR39-1a, as well as in a truncated splice variant...... five-transmembrane form, GPR39-1b. The 3' exon of the GPR39 gene overlaps with an antisense gene called LYPD1 (Ly-6/PLAUR domain containing 1). Quantitative RT-PCR analysis demonstrated that GPR39-1a is expressed selectively throughout the gastrointestinal tract, including the liver and pancreas as...... well as in the kidney and adipose tissue, whereas the truncated GPR39-1b form has a more broad expression pattern, including the central nervous system but with highest expression in the stomach and small intestine. In contrast, the LYPD1 antisense gene is highly expressed throughout the central...

  3. Organization and alternate splice products of the gene encoding nuclear inhibitor of protein phosphatase-1 (NIPP-1).

    Science.gov (United States)

    Van Eynde, A; Pérez-Callejón, E; Schoenmakers, E; Jacquemin, M; Stalmans, W; Bollen, M

    1999-04-01

    Nuclear inhibitor of protein phosphatase-1 (NIPP-1) is one of two major regulatory subunits of protein phosphatase-1 in mammalian nuclei. We report here the cloning and structural characterization of the human NIPP-1 genes, designated PPP1R8P and PPP1R8 in human gene nomenclature. PPP1R8P (1.2 kb) is a processed pseudogene and was localized by in situ hybridization to chromosome 1p33-32. PPP1R8 is an authentic NIPP-1 gene and was localized to chromosome 1p35. PPP1R8 (25.2 kb) is composed of seven exons and encodes four different transcripts, as determined from cDNA library screening, reverse transcriptase-PCR (RT-PCR) and/or EST (expressed sequence tag) database search analysis. NIPP-1alpha mRNA represents the major transcript in human tissues and various cell lines, and encodes a polypeptide of 351 residues that only differs from the previously cloned calf thymus NIPP-1 by a single residue. The other transcripts, termed NIPP-1beta, gamma and delta, are generated by alternative 5'-splice site usage, by exon skipping and/or by alternative polyadenylation. The NIPP-1beta/delta and NIPP-1gamma mRNAs are expected to encode fragments of NIPP-1alpha that differ from the latter by the absence of the first 142 and 224 residues, respectively. NIPP-1gamma corresponds to 'activator of RNA decay-1' (Ard-1) which, unlike NIPP-1alpha, displays in vitro and endoribonuclease activity and lacks an RVXF consensus motif for interaction with protein phosphatase-1. While the NIPP-1alpha/beta/delta-transcripts were found to be present in various human tissues, the NIPP-1gamma transcript could only be detected in human transformed B-lymphocytes. PMID:10103062

  4. BAP1 missense mutation c.2054 A>T (p.E685V completely disrupts normal splicing through creation of a novel 5' splice site in a human mesothelioma cell line.

    Directory of Open Access Journals (Sweden)

    Arianne Morrison

    Full Text Available BAP1 is a tumor suppressor gene that is lost or deleted in diverse cancers, including uveal mela¬noma, malignant pleural mesothelioma (MPM, clear cell renal carcinoma, and cholangiocarcinoma. Recently, BAP1 germline mutations have been reported in families with combinations of these same cancers. A particular challenge for mutation screening is the classification of non-truncating BAP1 sequence variants because it is not known whether these subtle changes can affect the protein function sufficiently to predispose to cancer development. Here we report mRNA splicing analysis on a homozygous substitution mutation, BAP1 c. 2054 A&T (p.Glu685Val, identified in an MPM cell line derived from a mesothelioma patient. The mutation occurred at the 3rd nucleotide from the 3' end of exon 16. RT-PCR, cloning and subsequent sequencing revealed several aberrant splicing products not observed in the controls: 1 a 4 bp deletion at the end of exon 16 in all clones derived from the major splicing product. The BAP1 c. 2054 A&T mutation introduced a new 5' splice site (GU, which resulted in the deletion of 4 base pairs and presumably protein truncation; 2 a variety of alternative splicing products that led to retention of different introns: introns 14-16; introns 15-16; intron 14 and intron 16; 3 partial intron 14 and 15 retentions caused by activation of alternative 3' splice acceptor sites (AG in the introns. Taken together, we were unable to detect any correctly spliced mRNA transcripts in this cell line. These results suggest that aberrant splicing caused by this mutation is quite efficient as it completely abolishes normal splicing through creation of a novel 5' splice site and activation of cryptic splice sites. These data support the conclusion that BAP1 c.2054 A&T (p.E685V variant is a pathogenic mutation and contributes to MPM through disruption of normal splicing.

  5. The function and developmental expression of alternatively spliced isoforms of amphioxus and Xenopus laevis Pax2/5/8 genes: revealing divergence at the invertebrate to vertebrate transition

    Czech Academy of Sciences Publication Activity Database

    Short, S.; Kozmik, Zbyněk; Holland, L. Z.

    2012-01-01

    Roč. 318, č. 7 (2012), s. 555-571. ISSN 1552-5007 R&D Projects: GA ČR GAP305/10/2141; GA MŠk LH12047 Grant ostatní: NSF(US) MCB 06-20019 Institutional research plan: CEZ:AV0Z50520514 Keywords : Pax2/5/8 * alternative splicing * eye development * amphioxus * Xenopus laevis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.123, year: 2012

  6. Identification of two GTP-independent alternatively spliced forms of tissue transglutaminase in human leukocytes, vascular smooth muscle, and endothelial cells

    OpenAIRE

    Lai, Thung-S.; Liu, Yusha; Li, Weidong; Greenberg, Charles S.

    2007-01-01

    Tissue transglutaminase (tTG) is a multifunctional enzyme with transglutaminase crosslinking (TGase), GTP binding, and hydrolysis activities that play a role in many different disorders. We identified, characterized, and investigated the function and stability of two alternatively spliced forms of tTG using biochemical, cellular, and molecular biological approaches. Using a human aortic vascular smooth muscle cells (VSMC) cDNA library, we identified two cDNAs encoding C-terminal truncated for...

  7. Alternative branch points are selected during splicing of a yeast pre-mRNA in mammalian and yeast extracts.

    OpenAIRE

    Ruskin, B; Pikielny, C W; Rosbash, M; Green, M R

    1986-01-01

    Pre-mRNA splicing in yeast and higher eukaryotes proceeds by similar pathways, in which a probable splicing intermediate and the excised intron are in a lariat configuration. To compare the pre-mRNA splicing mechanisms in yeast and higher eukaryotes, we have analyzed the RNA products resulting from in vitro processing of a yeast intron-containing pre-mRNA in HeLa cell and yeast extracts. In yeast, the RNA branch (2'-5' phosphodiester bond) of the RNA lariat forms at the third adenosine of the...

  8. Identification and functional analysis of porcine basic helix-loop-helix transcriptional factor 3 (TCF3) and its alternative splicing isoforms.

    Science.gov (United States)

    Yang, Fan; Wang, Ning; Liu, Yajun; Wang, Huayan

    2016-04-01

    The transcription factor 3 (TCF3) is a basic helix-loop-helix transcription factor and is essential for lymphocyte development and epithelial-mesenchymal transition. The splicing isoform, genomic organization and physiological roles of TCF3 have not been elucidated well in pig. Based on RNA-seq database, four alternative splicing isoforms were identified. Splicing isoforms TCF3(E12), TCF3(E47), and TCF3A expressed globally in porcine tissues, but TCF3B mainly expressed in spleen and endoderm derived tissues, such as pancreas and lung. The functional analysis showed that TCF3(E12), TCF3(E47), and TCF3B were translocated exclusively into nuclei, yet TCF3A was distributed in cytoplasm. The investigation of clinical specimens showed that TCF3 expression was significantly reduced in spleen tissues that were infected by classical swine fever virus (CSFV). This study is for the first time to report two novel splicing isoforms TCF3A and TCF3B, which may play an important role in lymphocyte maturation and have the correlation with CSFV evasion. PMID:27033898

  9. Expression of an IKKgamma splice variant determines IRF3 and canonical NF-kappaB pathway utilization in ssRNA virus infection.

    Directory of Open Access Journals (Sweden)

    Ping Liu

    Full Text Available UNLABELLED: Single stranded RNA (ssRNA virus infection activates the retinoic acid inducible gene I (RIG-I- mitochondrial antiviral signaling (MAVS complex, a complex that coordinates the host innate immune response via the NF-kappaB and IRF3 pathways. Recent work has shown that the IkappaB kinase (IKKgamma scaffolding protein is the final common adapter protein required by RIG-I.MAVS to activate divergent rate-limiting kinases downstream controlling the NF-kappaB and IRF3 pathways. Previously we discovered a ubiquitous IKKgamma splice-variant, IKKgammaDelta, that exhibits distinct signaling properties. METHODOLOGY/PRINCIPAL FINDINGS: We examined the regulation and function of IKKgamma splice forms in response to ssRNA virus infection, a condition that preferentially induces full length IKKgamma-WT mRNA expression. In IKKgammaDelta-expressing cells, we found increased viral translation and cytopathic effect compared to those expressing full length IKKgamma-WT. IKKgammaDelta fails to support viral-induced IRF3 activation in response to ssRNA infections; consequently type I IFN production and the induction of anti-viral interferon stimulated genes (ISGs are significantly attenuated. By contrast, ectopic RIG-I.MAVS or TNFalpha-induced canonical NF-kappaB activation is preserved in IKKgammaDelta expressing cells. Increasing relative levels of IKKgamma-WT to IKKgammaDelta (while keeping total IKKgamma constant results in increased type I IFN expression. Conversely, overexpressing IKKgammaDelta (in a background of constant IKKgamma-WT expression shows IKKgammaDelta functions as a dominant-negative IRF3 signaling inhibitor. IKKgammaDelta binds both IKK-alpha and beta, but not TANK and IKKepsilon, indicating that exon 5 encodes an essential TANK binding domain. Finally, IKKgammaDelta displaces IKKgammaWT from MAVS explaining its domainant negative effect. CONCLUSIONS/SIGNIFICANCE: Relative endogenous IKKgammaDelta expression affects cellular selection

  10. Metabotropic glutamate receptor 1 splice variants mGluR1a and mGluR1b combine in mGluR1a/b dimers in vivo

    Czech Academy of Sciences Publication Activity Database

    Techlovská, Šárka; Chambers, Jayne Nicole; Dvořáková, Michaela; Petralia, R.S.; Wang, Y.X.; Hájková, Alena; Franková, Daniela; Prezeau, L.; Blahoš, Jaroslav

    2014-01-01

    Roč. 86, November (2014), s. 329-326. ISSN 0028-3908 R&D Projects: GA ČR GAP303/12/2408 Institutional support: RVO:68378050 Keywords : Glutamate receptors * GPCR * alternative splicing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.106, year: 2014

  11. SAW: A Method to Identify Splicing Events from RNA-Seq Data Based on Splicing Fingerprints

    OpenAIRE

    Kang Ning; Damian Fermin

    2010-01-01

    Splicing event identification is one of the most important issues in the comprehensive analysis of transcription profile. Recent development of next-generation sequencing technology has generated an extensive profile of alternative splicing. However, while many of these splicing events are between exons that are relatively close on genome sequences, reads generated by RNA-Seq are not limited to alternative splicing between close exons but occur in virtually all splicing events. In this work, ...

  12. TRIMe7-CypA, an alternative splicing isoform of TRIMCyp in rhesus macaque, negatively modulates TRIM5α activity

    Energy Technology Data Exchange (ETDEWEB)

    Na, Lei [Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150001 (China); Tang, Yan-Dong [Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150001 (China); Biotechnology Institute of Southern Medical University, Guangzhou 510515 (China); Liu, Jian-Dong; Yu, Chang-Qing; Sun, Liu-Ke; Lin, Yue-Zhi; Wang, Xue-Feng [Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150001 (China); Wang, Xiaojun, E-mail: xjw@hvri.ac.cn [Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150001 (China); Zhou, Jian-Hua, E-mail: jianhua_uc@126.com [Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150001 (China); Harbin Pharmaceutical Group Biovaccine Company, Harbin 150069 (China)

    2014-04-04

    Highlights: • TRIMe7-CypA expresses in rhesus and pig-tailed, but not long-tailed macaques. • TRIMe7-CypA does not show the restriction to a HIV-GFP report virus in vitro. • It acts as a negative modulator to TRIM5α likely by competitive inhibition. - Abstract: The existence of innate, host-specific restriction factors is a major obstacle to the development of nonhuman primate models for AIDS studies, and TRIM5α is one of the most important of these restriction factors. In recent years, a TRIM5 chimeric gene that was retrotransposed by a cyclophilin A (CypA) cDNA was identified in certain macaque species. The TRIM5α-CypA fusion protein, TRIMCyp, which was expressed in these monkeys, had lost its restriction ability toward HIV-1. We previously found that TRIMe7-CypA, an alternative splicing isoform of the TRIMCyp transcripts, was expressed in pig-tailed and rhesus macaques but absent in long-tailed macaques. In this study, the anti-HIV-1 activity of TRIMe7-CypA in the rhesus macaque (RhTRIMe7-CypA) was investigated. The over-expression of RhTRIMe7-CypA in CrFK, HeLa and HEK293T cells did not restrict the infection or replication of an HIV-1-GFP reporter virus in these cells. As a positive control, rhesus (rh)TRIM5α strongly inhibited the reporter virus. Intriguingly, the anti-HIV-1 activity of RhTRIM5α was significantly reduced in a dose-dependent manner by the co-repression of RhTRIMe7-CypA. Our data indicate that although the RhTRIMe7-CypA isoform does not appear to restrict HIV-1, it may act as a negative modulator of TRIM family proteins, presumably by competitive inhibition.

  13. TRIMe7-CypA, an alternative splicing isoform of TRIMCyp in rhesus macaque, negatively modulates TRIM5α activity

    International Nuclear Information System (INIS)

    Highlights: • TRIMe7-CypA expresses in rhesus and pig-tailed, but not long-tailed macaques. • TRIMe7-CypA does not show the restriction to a HIV-GFP report virus in vitro. • It acts as a negative modulator to TRIM5α likely by competitive inhibition. - Abstract: The existence of innate, host-specific restriction factors is a major obstacle to the development of nonhuman primate models for AIDS studies, and TRIM5α is one of the most important of these restriction factors. In recent years, a TRIM5 chimeric gene that was retrotransposed by a cyclophilin A (CypA) cDNA was identified in certain macaque species. The TRIM5α-CypA fusion protein, TRIMCyp, which was expressed in these monkeys, had lost its restriction ability toward HIV-1. We previously found that TRIMe7-CypA, an alternative splicing isoform of the TRIMCyp transcripts, was expressed in pig-tailed and rhesus macaques but absent in long-tailed macaques. In this study, the anti-HIV-1 activity of TRIMe7-CypA in the rhesus macaque (RhTRIMe7-CypA) was investigated. The over-expression of RhTRIMe7-CypA in CrFK, HeLa and HEK293T cells did not restrict the infection or replication of an HIV-1-GFP reporter virus in these cells. As a positive control, rhesus (rh)TRIM5α strongly inhibited the reporter virus. Intriguingly, the anti-HIV-1 activity of RhTRIM5α was significantly reduced in a dose-dependent manner by the co-repression of RhTRIMe7-CypA. Our data indicate that although the RhTRIMe7-CypA isoform does not appear to restrict HIV-1, it may act as a negative modulator of TRIM family proteins, presumably by competitive inhibition

  14. Alternatively Spliced Tissue Factor Promotes Plaque Angiogenesis Through the Activation of HIF-1α and VEGF Signaling

    Science.gov (United States)

    Giannarelli, Chiara; Alique, Matilde; Rodriguez, David T.; Yang, Dong Kwon; Jeong, Dongtak; Calcagno, Claudia; Hutter, Randolph; Millon, Antoine; Kovacic, Jason C.; Weber, Thomas; Faries, Peter L.; Soff, Gerald A.; Fayad, Zahi A.; Hajjar, Roger J.; Fuster, Valentin; Badimon, Juan J.

    2014-01-01

    Background Alternatively Spliced Tissue Factor (asTF) is a novel isoform of full-length Tissue Factor (fl-TF) that exhibits angiogenic activity. Although asTF has been detected in human plaques, it is unknown whether its expression in atherosclerosis causes increased neovascularization and an advanced plaque phenotype. Methods and Results Carotid (n=10) and coronary specimens (n=8), from patients with stable or unstable angina, were classified as complicated or uncomplicated based on plaque morphology. Analysis of asTF expression and cell type –specific expression revealed a strong expression and co-localization of asTF with macrophages and neovessels within complicated, but not un-complicated, human plaques. Our results showed that the angiogenic activity of asTF is mediated via HIF-1α up-regulation through integrins and activation of phosphatidylinositol-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) pathways. HIF-1α up-regulation by asTF also was associated with increased VEGF expression in primary human endothelial cells, and VEGF-Trap significantly reduced the angiogenic effect of asTF in vivo. Furthermore, asTF gene transfer significantly increased neointima formation and neovascularization following carotid wire injury in ApoE−/− mice. Conclusions The results of this study provide strong evidence that asTF promotes neointima formation and angiogenesis in an experimental model of accelerated atherosclerosis. Herein, we demonstrate that the angiogenic effect of asTF is mediated via the activation of the HIF-1/VEGF signaling. This mechanism may be relevant to neovascularization, progression and associated complications of human atherosclerosis as suggested by the increased expression of asTF in complicated vs. uncomplicated human carotid and coronary plaques. PMID:25116956

  15. Dissecting an alternative splicing analysis workflow for GeneChip® Exon 1.0 ST Affymetrix arrays

    Directory of Open Access Journals (Sweden)

    Calogero Raffaele A

    2008-11-01

    Full Text Available Abstract Background A new microarray platform (GeneChip® Exon 1.0 ST has recently been developed by Affymetrix http://www.affymetrix.com. This microarray platform changes the conventional view of transcript analysis since it allows the evaluation of the expression level of a transcript by querying each exon component. The Exon 1.0 ST platform does however raise some issues regarding the approaches to be used in identifying genome-wide alternative splicing events (ASEs. In this study an exon-level data analysis workflow is dissected in order to detect limit and strength of each step, thus modifying the overall workflow and thereby optimizing the detection of ASEs. Results This study was carried out using a semi-synthetic exon-skipping benchmark experiment embedding a total of 268 exon skipping events. Our results point out that summarization methods (RMA, PLIER do not affect the efficacy of statistical tools in detecting ASEs. However, data pre-filtering is mandatory if the detected number of false ASEs are to be reduced. MiDAS and Rank Product methods efficiently detect true ASEs but they suffer from the lack of multiple test error correction. The intersection of MiDAS and Rank Product results efficiently moderates the detection of false ASEs. Conclusion To optimize the detection of ASEs we propose the following workflow: i data pre-filtering, ii statistical selection of ASEs using both MiDAS and Rank Product, iii intersection of results derived from the two statistical analyses in order to moderate family-wise errors (FWER.

  16. Engineering splicing factors with designed specificities

    OpenAIRE

    Wang, Yang; Cheong, Cheom-Gil; Hall, Traci M Tanaka; Wang, Zefeng

    2009-01-01

    Alternative splicing is generally regulated by trans-acting factors that specifically bind pre-mRNA to activate or inhibit the splicing reaction. This regulation is critical for normal gene expression, and dysregulation of splicing is closely associated with human diseases. Here we engineer artificial splicing factors by combining sequence-specific RNA-binding domains of human Pumilio1 with functional domains that regulate splicing. We applied these factors to modulate different types of alte...

  17. Alternative splicing and co-option of transposable elements: the case of TMPO/LAP2α and ZNF451 in mammals.

    Science.gov (United States)

    Abascal, Federico; Tress, Michael L; Valencia, Alfonso

    2015-07-15

    Transposable elements constitute a large fraction of vertebrate genomes and, during evolution, may be co-opted for new functions. Exonization of transposable elements inserted within or close to host genes is one possible way to generate new genes, and alternative splicing of the new exons may represent an intermediate step in this process. The genes TMPO and ZNF451 are present in all vertebrate lineages. Although they are not evolutionarily related, mammalian TMPO and ZNF451 do have something in common-they both code for splice isoforms that contain LAP2alpha domains. We found that these LAP2alpha domains have sequence similarity to repetitive sequences in non-mammalian genomes, which are in turn related to the first ORF from a DIRS1-like retrotransposon. This retrotransposon domestication happened separately and resulted in proteins that combine retrotransposon and host protein domains. The alternative splicing of the retrotransposed sequence allowed the production of both the new and the untouched original isoforms, which may have contributed to the success of the colonization process. The LAP2alpha-specific isoform of TMPO (LAP2α) has been co-opted for important roles in the cell, whereas the ZNF451 LAP2alpha isoform is evolving under strong purifying selection but remains uncharacterized. PMID:25735770

  18. The Alternatively Spliced Form “b” of the Epithelial Sodium Channel α Subunit (α ENaC: Any Prior Evidence of its Existence?

    Directory of Open Access Journals (Sweden)

    Marlene F. Shehata

    2010-08-01

    Full Text Available The epithelial sodium channel (ENaC is critical in maintaining sodium balance across aldosterone-responsive epithelia. ENaC is a combined channel formed of three subunits (αβγ with α ENaC subunit being the most critical for channel functionality. In a previous report, we have demonstrated the existence and mRNA expression levels of four alternatively spliced forms of the α ENaC subunit denoted by -a, -b, -c and -d in kidney cortex of Dahl S and R rats. Of the four alternatively spliced forms presently identified, α ENaC-b is considered the most interesting for the following reasons: Aside from being a salt-sensitive transcript, α ENaC-b mRNA expression is ∼32 fold higher than α ENaC wildtype in kidney cortex of Dahl rats. Additionally, the splice site used to generate α ENaC-b is conserved across species. Finally, α ENaC-b mRNA expression is significantly higher in salt-resistant Dahl R rats versus salt-sensitive Dahl S rats. As such, this commentary aims to highlight some of the previously published research articles that described the existence of an additional protein band on α ENaC western blots that could account for α ENaC-b in other rat species.

  19. The dietary isothiocyanate sulforaphane modulates gene expression and alternative gene splicing in a PTEN null preclinical murine model of prostate cancer

    Directory of Open Access Journals (Sweden)

    Ball Richard Y

    2010-07-01

    Full Text Available Abstract Background Dietary or therapeutic interventions to counteract the loss of PTEN expression could contribute to the prevention of prostate carcinogenesis or reduce the rate of cancer progression. In this study, we investigate the interaction between sulforaphane, a dietary isothiocyanate derived from broccoli, PTEN expression and gene expression in pre malignant prostate tissue. Results We initially describe heterogeneity in expression of PTEN in non-malignant prostate tissue of men deemed to be at risk of prostate cancer. We subsequently use the mouse prostate-specific PTEN deletion model, to show that sulforaphane suppresses transcriptional changes induced by PTEN deletion and induces additional changes in gene expression associated with cell cycle arrest and apoptosis in PTEN null tissue, but has no effect on transcription in wild type tissue. Comparative analyses of changes in gene expression in mouse and human prostate tissue indicate that similar changes can be induced in humans with a broccoli-rich diet. Global analyses of exon expression demonstrated that sulforaphane interacts with PTEN deletion to modulate alternative gene splicing, illustrated through a more detailed analysis of DMBT1 splicing. Conclusion To our knowledge, this is the first report of how diet may perturb changes in transcription induced by PTEN deletion, and the effects of diet on global patterns of alternative gene splicing. The study exemplifies the complex interaction between diet, genotype and gene expression, and the multiple modes of action of small bioactive dietary components.

  20. Identification of a putative Crf splice variant and generation of recombinant antibodies for the specific detection of Aspergillus fumigatus.

    Directory of Open Access Journals (Sweden)

    Mark Schütte

    Full Text Available BACKGROUND: Aspergillus fumigatus is a common airborne fungal pathogen for humans. It frequently causes an invasive aspergillosis (IA in immunocompromised patients with poor prognosis. Potent antifungal drugs are very expensive and cause serious adverse effects. Their correct application requires an early and specific diagnosis of IA, which is still not properly achievable. This work aims to a specific detection of A. fumigatus by immunofluorescence and the generation of recombinant antibodies for the detection of A. fumigatus by ELISA. RESULTS: The A. fumigatus antigen Crf2 was isolated from a human patient with proven IA. It is a novel variant of a group of surface proteins (Crf1, Asp f9, Asp f16 which belong to the glycosylhydrolase family. Single chain fragment variables (scFvs were obtained by phage display from a human naive antibody gene library and an immune antibody gene library generated from a macaque immunized with recombinant Crf2. Two different selection strategies were performed and shown to influence the selection of scFvs recognizing the Crf2 antigen in its native conformation. Using these antibodies, Crf2 was localized in growing hyphae of A. fumigatus but not in spores. In addition, the antibodies allowed differentiation between A. fumigatus and related Aspergillus species or Candida albicans by immunofluorescence microscopy. The scFv antibody clones were further characterized for their affinity, the nature of their epitope, their serum stability and their detection limit of Crf2 in human serum. CONCLUSION: Crf2 and the corresponding recombinant antibodies offer a novel approach for the early diagnostics of IA caused by A. fumigatus.