WorldWideScience

Sample records for alternative transcript isoforms

  1. EASI—enrichment of alternatively spliced isoforms

    OpenAIRE

    Julian P Venables; Burn, John

    2006-01-01

    Alternative splicing produces more than one protein from the majority of genes and the rarer forms can have dominant functions. Instability of alternative transcripts can also hinder the study of regulation of gene expression by alternative splicing. To investigate the true extent of alternative splicing we have developed a simple method of enriching alternatively spliced isoforms (EASI) from PCRs using beads charged with Thermus aquaticus single-stranded DNA-binding protein (T.Aq ssb). This ...

  2. Functional diversity of human basic helix-loop-helix transcription factor TCF4 isoforms generated by alternative 5' exon usage and splicing.

    Directory of Open Access Journals (Sweden)

    Mari Sepp

    Full Text Available BACKGROUND: Transcription factor 4 (TCF4 alias ITF2, E2-2, ME2 or SEF2 is a ubiquitous class A basic helix-loop-helix protein that binds to E-box DNA sequences (CANNTG. While involved in the development and functioning of many different cell types, recent studies point to important roles for TCF4 in the nervous system. Specifically, human TCF4 gene is implicated in susceptibility to schizophrenia and TCF4 haploinsufficiency is the cause of the Pitt-Hopkins mental retardation syndrome. However, the structure, expression and coding potential of the human TCF4 gene have not been described in detail. PRINCIPAL FINDINGS: In the present study we used human tissue samples to characterize human TCF4 gene structure and TCF4 expression at mRNA and protein level. We report that although widely expressed, human TCF4 mRNA expression is particularly high in the brain. We demonstrate that usage of numerous 5' exons of the human TCF4 gene potentially yields in TCF4 protein isoforms with 18 different N-termini. In addition, the diversity of isoforms is increased by alternative splicing of several internal exons. For functional characterization of TCF4 isoforms, we overexpressed individual isoforms in cultured human cells. Our analysis revealed that subcellular distribution of TCF4 isoforms is differentially regulated: Some isoforms contain a bipartite nuclear localization signal and are exclusively nuclear, whereas distribution of other isoforms relies on heterodimerization partners. Furthermore, the ability of different TCF4 isoforms to regulate E-box controlled reporter gene transcription is varied depending on whether one or both of the two TCF4 transcription activation domains are present in the protein. Both TCF4 activation domains are able to activate transcription independently, but act synergistically in combination. CONCLUSIONS: Altogether, in this study we have described the inter-tissue variability of TCF4 expression in human and provided evidence

  3. Identification and functional analysis of porcine basic helix-loop-helix transcriptional factor 3 (TCF3) and its alternative splicing isoforms.

    Science.gov (United States)

    Yang, Fan; Wang, Ning; Liu, Yajun; Wang, Huayan

    2016-04-01

    The transcription factor 3 (TCF3) is a basic helix-loop-helix transcription factor and is essential for lymphocyte development and epithelial-mesenchymal transition. The splicing isoform, genomic organization and physiological roles of TCF3 have not been elucidated well in pig. Based on RNA-seq database, four alternative splicing isoforms were identified. Splicing isoforms TCF3(E12), TCF3(E47), and TCF3A expressed globally in porcine tissues, but TCF3B mainly expressed in spleen and endoderm derived tissues, such as pancreas and lung. The functional analysis showed that TCF3(E12), TCF3(E47), and TCF3B were translocated exclusively into nuclei, yet TCF3A was distributed in cytoplasm. The investigation of clinical specimens showed that TCF3 expression was significantly reduced in spleen tissues that were infected by classical swine fever virus (CSFV). This study is for the first time to report two novel splicing isoforms TCF3A and TCF3B, which may play an important role in lymphocyte maturation and have the correlation with CSFV evasion. PMID:27033898

  4. The expression of ELK transcription factors in adult DRG: novel isoforms, antisense transcripts and upregulation by nerve damage

    OpenAIRE

    Kerr, Niall; Pintzas, Alexander; Holmes, Fiona; Hobson, Sally-Ann; Pope, Robert; Wallace, Mark; Wasylyk, Christine; Wasylyk, Bohdan; Wynick, David

    2010-01-01

    ELK transcription factors are expressed in brain, but it is unknown whether they are expressed in the peripheral nervous system. We show by RT-PCR that the previously described Elk1, Elk3/Elk3b/Elk3c and Elk4 mRNAs are expressed in adult dorsal root ganglia (DRG), together with the novel alternatively spliced isoforms Elk1b, Elk3d and Elk4c/Elk4d/Elk4e. These isoforms are also expressed in brain, heart, kidney and testis. In contrast to Elk3 protein, the novel Elk3d isoform is cytoplasmic, fa...

  5. A unique, consistent identifier for alternatively spliced transcript variants.

    Directory of Open Access Journals (Sweden)

    Alberto Riva

    Full Text Available BACKGROUND: As research into alternative splicing reveals the fundamental importance of this phenomenon in the genome expression of higher organisms, there is an increasing need for a standardized, consistent and unique identifier for alternatively spliced isoforms. Such an identifier would be useful to eliminate ambiguities in references to gene isoforms, and would allow for the reliable comparison of isoforms from different sources (e.g., known genes vs. computational predictions. Commonly used identifiers for gene transcripts prove to be unsuitable for this purpose. METHODOLOGY: We propose an algorithm to compute an isoform signature based on the arrangement of exons and introns in a primary transcript. The isoform signature uniquely identifies a transcript structure, and can therefore be used as a key in databases of alternatively spliced isoforms, or to compare alternative splicing predictions produced by different methods. In this paper we present the algorithm to generate isoform signatures, we provide some examples of its application, and we describe a web-based resource to generate isoform signatures and use them in database searches. CONCLUSIONS: Isoform signatures are simple, so that they can be easily generated and included in publications and databases, but flexible enough to unambiguously represent all possible isoform structures, including information about coding sequence position and variable transcription start and end sites. We believe that the adoption of isoform signatures can help establish a consistent, unambiguous nomenclature for alternative splicing isoforms. The system described in this paper is freely available at http://genome.ufl.edu/genesig/, and supplementary materials can be found at http://genome.ufl.edu/genesig-files/.

  6. Epidermal growth-factor-induced transcript isoform variation drives mammary cell migration.

    Directory of Open Access Journals (Sweden)

    Wolfgang J Köstler

    Full Text Available Signal-induced transcript isoform variation (TIV includes alternative promoter usage as well as alternative splicing and alternative polyadenylation of mRNA. To assess the phenotypic relevance of signal-induced TIV, we employed exon arrays and breast epithelial cells, which migrate in response to the epidermal growth factor (EGF. We show that EGF rapidly--within one hour--induces widespread TIV in a significant fraction of the transcriptome. Importantly, TIV characterizes many genes that display no differential expression upon stimulus. In addition, similar EGF-dependent changes are shared by a panel of mammary cell lines. A functional screen, which utilized isoform-specific siRNA oligonucleotides, indicated that several isoforms play essential, non-redundant roles in EGF-induced mammary cell migration. Taken together, our findings highlight the importance of TIV in the rapid evolvement of a phenotypic response to extracellular signals.

  7. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse.

    Directory of Open Access Journals (Sweden)

    Ralph D Hector

    Full Text Available Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5 cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3'-untranslated region (UTR, which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders.

  8. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse.

    Science.gov (United States)

    Hector, Ralph D; Dando, Owen; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte; Kind, Peter C; Bailey, Mark E S; Cobb, Stuart R

    2016-01-01

    Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5) cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3'-untranslated region (UTR), which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders.

  9. Characterisation of CDKL5 Transcript Isoforms in Human and Mouse

    Science.gov (United States)

    Dando, Owen; Landsberger, Nicoletta; Kilstrup-Nielsen, Charlotte; Kind, Peter C.; Bailey, Mark E. S.; Cobb, Stuart R.

    2016-01-01

    Mutations in the X-linked Cyclin-Dependent Kinase-Like 5 gene (CDKL5) cause early onset infantile spasms and subsequent severe developmental delay in affected children. Deleterious mutations have been reported to occur throughout the CDKL5 coding region. Several studies point to a complex CDKL5 gene structure in terms of exon usage and transcript expression. Improvements in molecular diagnosis and more extensive research into the neurobiology of CDKL5 and pathophysiology of CDKL5 disorders necessitate an updated analysis of the gene. In this study, we have analysed human and mouse CDKL5 transcript patterns both bioinformatically and experimentally. We have characterised the predominant brain isoform of CDKL5, a 9.7 kb transcript comprised of 18 exons with a large 6.6 kb 3’-untranslated region (UTR), which we name hCDKL5_1. In addition we describe new exonic regions and a range of novel splice and UTR isoforms. This has enabled the description of an updated gene model in both species and a standardised nomenclature system for CDKL5 transcripts. Profiling revealed tissue- and brain development stage-specific differences in expression between transcript isoforms. These findings provide an essential backdrop for the diagnosis of CDKL5-related disorders, for investigations into the basic biology of this gene and its protein products, and for the rational design of gene-based and molecular therapies for these disorders. PMID:27315173

  10. The expression of ELK transcription factors in adult DRG: Novel isoforms, antisense transcripts and upregulation by nerve damage.

    Science.gov (United States)

    Kerr, Niall; Pintzas, Alexander; Holmes, Fiona; Hobson, Sally-Ann; Pope, Robert; Wallace, Mark; Wasylyk, Christine; Wasylyk, Bohdan; Wynick, David

    2010-06-01

    ELK transcription factors are known to be expressed in a number of regions in the nervous system. We show by RT-PCR that the previously described Elk1, Elk3/Elk3b/Elk3c and Elk4 mRNAs are expressed in adult dorsal root ganglia (DRG), together with the novel alternatively spliced isoforms Elk1b, Elk3d and Elk4c/Elk4d/Elk4e. These isoforms are also expressed in brain, heart, kidney and testis. In contrast to Elk3 protein, the novel Elk3d isoform is cytoplasmic, fails to bind ETS binding sites and yet can activate transcription by an indirect mechanism. The Elk3 and Elk4 genes are overlapped by co-expressed Pctk2 (Cdk17) and Mfsd4 genes, respectively, with the potential formation of Elk3/Pctaire2 and Elk4/Mfsd4 sense-antisense mRNA heteroduplexes. After peripheral nerve injury the Elk3 mRNA isoforms are each upregulated approximately 2.3-fold in DRG (P<0.005), whereas the natural antisense Pctaire2 isoforms show only a small increase (21%, P<0.01) and Elk1 and Elk4 mRNAs are unchanged. PMID:20304071

  11. Genomic organization and the tissue distribution of alternatively spliced isoforms of the mouse Spatial gene

    Directory of Open Access Journals (Sweden)

    Mattei Marie-Geneviève

    2004-07-01

    Full Text Available Abstract Background The stromal component of the thymic microenvironment is critical for T lymphocyte generation. Thymocyte differentiation involves a cascade of coordinated stromal genes controlling thymocyte survival, lineage commitment and selection. The "Stromal Protein Associated with Thymii And Lymph-node" (Spatial gene encodes a putative transcription factor which may be involved in T-cell development. In the testis, the Spatial gene is also expressed by round spermatids during spermatogenesis. Results The Spatial gene maps to the B3-B4 region of murine chromosome 10 corresponding to the human syntenic region 10q22.1. The mouse Spatial genomic DNA is organised into 10 exons and is alternatively spliced to generate two short isoforms (Spatial-α and -γ and two other long isoforms (Spatial-δ and -ε comprising 5 additional exons on the 3' site. Here, we report the cloning of a new short isoform, Spatial-β, which differs from other isoforms by an additional alternative exon of 69 bases. This new exon encodes an interesting proline-rich signature that could confer to the 34 kDa Spatial-β protein a particular function. By quantitative TaqMan RT-PCR, we have shown that the short isoforms are highly expressed in the thymus while the long isoforms are highly expressed in the testis. We further examined the inter-species conservation of Spatial between several mammals and identified that the protein which is rich in proline and positive amino acids, is highly conserved. Conclusions The Spatial gene generates at least five alternative spliced variants: three short isoforms (Spatial-α, -β and -γ highly expressed in the thymus and two long isoforms (Spatial-δ and -ε highly expressed in the testis. These alternative spliced variants could have a tissue specific function.

  12. Transcript Isoform Variation Associated with Cytosine Modification in Human Lymphoblastoid Cell Lines.

    Science.gov (United States)

    Zhang, Xu; Zhang, Wei

    2016-06-01

    Cytosine modification on DNA is variable among individuals, which could correlate with gene expression variation. The effect of cytosine modification on interindividual transcript isoform variation (TIV), however, remains unclear. In this study, we assessed the extent of cytosine modification-specific TIV in lymphoblastoid cell lines (LCLs) derived from unrelated individuals of European and African descent. Our study detected cytosine modification-specific TIVs for 17% of the analyzed genes at a 5% false discovery rate. Forty-five percent of the TIV-associated cytosine modifications correlated with the overall gene expression levels as well, with the corresponding CpG sites overrepresented in transcript initiation sites, transcription factor binding sites, and distinct histone modification peaks, suggesting that alternative isoform transcription underlies the TIVs. Our analysis also revealed 33% of the TIV-associated cytosine modifications that affected specific exons, with the corresponding CpG sites overrepresented in exon/intron junctions, splicing branching points, and transcript termination sites, implying that the TIVs are attributable to alternative splicing or transcription termination. Genetic and epigenetic regulation of TIV shared target preference but exerted independent effects on 61% of the common exon targets. Cytosine modification-specific TIVs detected from LCLs were differentially enriched in those detected from various tissues in The Cancer Genome Atlas, indicating their developmental dependency. Genes containing cytosine modification-specific TIVs were enriched in pathways of cancers and metabolic disorders. Our study demonstrated a prominent effect of cytosine modification variation on the transcript isoform spectrum over gross transcript abundance and revealed epigenetic contributions to diseases that were mediated through cytosine modification-specific TIV. PMID:27029734

  13. Alternative Splicing Regulates the Subcellular Localization of Divalent Metal Transporter 1 Isoforms

    OpenAIRE

    Tabuchi, Mitsuaki; Tanaka, Naotaka; Nishida-Kitayama, Junko; Ohno, Hiroshi; Kishi, Fumio

    2002-01-01

    Divalent metal transporter 1 (DMT1) is responsible for dietary-iron absorption from apical plasma membrane in the duodenum and iron acquisition from the transferrin cycle endosomes in peripheral tissues. Two isoforms of the DMT1 transcript generated by alternative splicing of the 3′ exons have been identified in mouse, rat, and human. These isoforms can be distinguished by the different C-terminal amino acid sequences and by the presence (DMT1A) or absence (DMT1B) of an iron response element ...

  14. EGFR soluble isoforms and their transcripts are expressed in meningiomas.

    Science.gov (United States)

    Guillaudeau, Angélique; Durand, Karine; Bessette, Barbara; Chaunavel, Alain; Pommepuy, Isabelle; Projetti, Fabrice; Robert, Sandrine; Caire, François; Rabinovitch-Chable, Hélène; Labrousse, François

    2012-01-01

    The EGFR (epidermal growth factor receptor) is involved in the oncogenesis of many tumors. In addition to the full-length EGFR (isoform a), normal and tumor cells produce soluble EGFR isoforms (sEGFR) that lack the intracellular domain. sEGFR isoforms b, c and d are encoded by EGFR variants 2 (v2), 3 (v3) and 4 (v4) mRNA resulting from gene alternative splicing. Accordingly, the results of EGFR protein expression analysis depend on the domain targeted by the antibodies. In meningiomas, EGFR expression investigations mainly focused on EGFR isoform a. sEGFR and EGFRvIII mutant, that encodes a constitutively active truncated receptor, have not been studied. In a 69 meningiomas series, protein expression was analyzed by immunohistochemistry using extracellular domain targeted antibody (ECD-Ab) and intracellular domain targeted antibody (ICD-Ab). EGFRv1 to v4 and EGFRvIII mRNAs were quantified by RT-PCR and EGFR amplification revealed by MLPA. Results were analyzed with respect to clinical data, tumor resection (Simpson grade), histological type, tumor grade, and patient outcome.Immunochemical staining was stronger with ECD-Ab than with ICD-Ab. Meningiomas expressed EGFRv1 to -v4 mRNAs but not EGFRvIII mutant. Intermediate or high ECD-Ab staining and high EGFRv1 to v4 mRNA levels were associated to a better progression free survival (PFS). PFS was also improved in women, when tumor resection was evaluated as Simpson 1 or 2, in grade I vs. grade II and III meningiomas and when Ki67 labeling index was lower than 10%. Our results suggest that, EGFR protein isoforms without ICD and their corresponding mRNA variants are expressed in meningiomas in addition to the whole isoform a. EGFRvIII was not expressed. High expression levels seem to be related to a better prognosis. These results indicate that the oncogenetic mechanisms involving the EGFR pathway in meningiomas could be different from other tumor types. PMID:22623992

  15. EGFR soluble isoforms and their transcripts are expressed in meningiomas.

    Directory of Open Access Journals (Sweden)

    Angélique Guillaudeau

    Full Text Available The EGFR (epidermal growth factor receptor is involved in the oncogenesis of many tumors. In addition to the full-length EGFR (isoform a, normal and tumor cells produce soluble EGFR isoforms (sEGFR that lack the intracellular domain. sEGFR isoforms b, c and d are encoded by EGFR variants 2 (v2, 3 (v3 and 4 (v4 mRNA resulting from gene alternative splicing. Accordingly, the results of EGFR protein expression analysis depend on the domain targeted by the antibodies. In meningiomas, EGFR expression investigations mainly focused on EGFR isoform a. sEGFR and EGFRvIII mutant, that encodes a constitutively active truncated receptor, have not been studied. In a 69 meningiomas series, protein expression was analyzed by immunohistochemistry using extracellular domain targeted antibody (ECD-Ab and intracellular domain targeted antibody (ICD-Ab. EGFRv1 to v4 and EGFRvIII mRNAs were quantified by RT-PCR and EGFR amplification revealed by MLPA. Results were analyzed with respect to clinical data, tumor resection (Simpson grade, histological type, tumor grade, and patient outcome.Immunochemical staining was stronger with ECD-Ab than with ICD-Ab. Meningiomas expressed EGFRv1 to -v4 mRNAs but not EGFRvIII mutant. Intermediate or high ECD-Ab staining and high EGFRv1 to v4 mRNA levels were associated to a better progression free survival (PFS. PFS was also improved in women, when tumor resection was evaluated as Simpson 1 or 2, in grade I vs. grade II and III meningiomas and when Ki67 labeling index was lower than 10%. Our results suggest that, EGFR protein isoforms without ICD and their corresponding mRNA variants are expressed in meningiomas in addition to the whole isoform a. EGFRvIII was not expressed. High expression levels seem to be related to a better prognosis. These results indicate that the oncogenetic mechanisms involving the EGFR pathway in meningiomas could be different from other tumor types.

  16. Cloning, expression and alternative splicing of the novel isoform of hTCP11 gene

    DEFF Research Database (Denmark)

    Ma, Yong-xin; Zhang, Si-zhong; Wu, Qia-qing;

    2003-01-01

    To identify a novel isoform of hTCP11 gene and investigate its expression and alternative splicing.......To identify a novel isoform of hTCP11 gene and investigate its expression and alternative splicing....

  17. Identification of novel chicken estrogen receptor-alpha messenger ribonucleic acid isoforms generated by alternative splicing and promoter usage.

    Science.gov (United States)

    Griffin, C; Flouriot, G; Sonntag-Buck, V; Nestor, P; Gannon, F

    1998-11-01

    Using the rapid amplification of complementary DNA ends (RACE) methodology we have identified three new chicken estrogen receptor-alpha (cER alpha) messenger RNA (mRNA) variants in addition to the previously described form (isoform A). Whereas one of the new variants (isoform B) presents a 5'-extremity contiguous to the 5'-end of isoform A, the two other forms (isoforms C and D) are generated by alternative splicing of upstream exons (C and D) to a common site situated 70 nucleotides upstream of the translation start site in the previously assigned exon 1 (A). The 3'-end of exon 1C has been located at position -1334 upstream of the transcription start site of the A isoform (+1). Whereas the genomic location of exon 1D is unknown, 700 bp 5' to this exon were isolated by genomic walking, and their sequence was determined. The transcription start sites of the cER alpha mRNA isoforms were defined. In transfection experiments, the regions immediately upstream of the A-D cER alpha mRNA isoforms were shown to possess cell-specific promoter activities. Three of these promoters were down-regulated in the presence of estradiol and ER alpha protein. It is concluded, therefore, that the expression of the four different cER alpha mRNA isoforms is under the control of four different promoters. Finally, RT-PCR, S1 nuclease mapping, and primer extension analysis of these different cER alpha mRNA isoforms revealed a differential pattern of expression of the cER alpha gene in chicken tissues. Together, the results suggest that alternative 5'-splicing and promoter usage may be mechanisms used to modulate the levels of expression of the chicken ER alpha gene in a tissue-specific and/or developmental stage-specific manner. PMID:9794473

  18. A novel CDX2 isoform regulates alternative splicing.

    Directory of Open Access Journals (Sweden)

    Matthew E Witek

    Full Text Available Gene expression is a dynamic and coordinated process coupling transcription with pre-mRNA processing. This regulation enables tissue-specific transcription factors to induce expression of specific transcripts that are subsequently amplified by alternative splicing allowing for increased proteome complexity and functional diversity. The intestine-specific transcription factor CDX2 regulates development and maintenance of the intestinal epithelium by inducing expression of genes characteristic of the mature enterocyte phenotype. Here, sequence analysis of CDX2 mRNA from colonic mucosa-derived tissues revealed an alternatively spliced transcript (CDX2/AS that encodes a protein with a truncated homeodomain and a novel carboxy-terminal domain enriched in serine and arginine residues (RS domain. CDX2 and CDX2/AS exhibited distinct nuclear expression patterns with minimal areas of co-localization. CDX2/AS did not activate the CDX2-dependent promoter of guanylyl cyclase C nor inhibit transcriptional activity of CDX2. Unlike CDX2, CDX2/AS co-localized with the putative splicing factors ASF/SF2 and SC35. CDX2/AS altered splicing patterns of CD44v5 and Tra2-β1 minigenes in Lovo colon cancer cells independent of CDX2 expression. These data demonstrate unique dual functions of the CDX2 gene enabling it to regulate gene expression through both transcription (CDX2 and pre-mRNA processing (CDX2/AS.

  19. Alternative Splicing Generates Different Parkin Protein Isoforms: Evidences in Human, Rat, and Mouse Brain

    Directory of Open Access Journals (Sweden)

    Soraya Scuderi

    2014-01-01

    Full Text Available Parkinson protein 2, E3 ubiquitin protein ligase (PARK2 gene mutations are the most frequent causes of autosomal recessive early onset Parkinson’s disease and juvenile Parkinson disease. Parkin deficiency has also been linked to other human pathologies, for example, sporadic Parkinson disease, Alzheimer disease, autism, and cancer. PARK2 primary transcript undergoes an extensive alternative splicing, which enhances transcriptomic diversification. To date several PARK2 splice variants have been identified; however, the expression and distribution of parkin isoforms have not been deeply investigated yet. Here, the currently known PARK2 gene transcripts and relative predicted encoded proteins in human, rat, and mouse are reviewed. By analyzing the literature, we highlight the existing data showing the presence of multiple parkin isoforms in the brain. Their expression emerges from conflicting results regarding the electrophoretic mobility of the protein, but it is also assumed from discrepant observations on the cellular and tissue distribution of parkin. Although the characterization of each predicted isoforms is complex, since they often diverge only for few amino acids, analysis of their expression patterns in the brain might account for the different pathogenetic effects linked to PARK2 gene mutations.

  20. Structures of alternatively spliced isoforms of human ketohexokinase.

    Science.gov (United States)

    Trinh, Chi H; Asipu, Aruna; Bonthron, David T; Phillips, Simon E V

    2009-03-01

    A molecular understanding of the unique aspects of dietary fructose metabolism may be the key to understanding and controlling the current epidemic of fructose-related obesity, diabetes and related adverse metabolic states in Western populations. Fructose catabolism is initiated by its phosphorylation to fructose 1-phosphate, which is performed by ketohexokinase (KHK). Here, the crystal structures of the two alternatively spliced isoforms of human ketohexokinase, hepatic KHK-C and the peripheral isoform KHK-A, and of the ternary complex of KHK-A with the substrate fructose and AMP-PNP are reported. The structure of the KHK-A ternary complex revealed an active site with both the substrate fructose and the ATP analogue in positions ready for phosphorylation following a reaction mechanism similar to that of the pfkB family of carbohydrate kinases. Hepatic KHK deficiency causes the benign disorder essential fructosuria. The effects of the disease-causing mutations (Gly40Arg and Ala43Thr) have been modelled in the context of the KHK structure.

  1. Developmentally regulated switch in alternatively spliced SNAP-25 isoforms alters facilitation of synaptic transmission.

    Science.gov (United States)

    Bark, Christina; Bellinger, Frederick P; Kaushal, Ashutosh; Mathews, James R; Partridge, L Donald; Wilson, Michael C

    2004-10-01

    Although the basic molecular components that promote regulated neurotransmitter release are well established, the contribution of these proteins as regulators of the plasticity of neurotransmission and refinement of synaptic connectivity during development is elaborated less fully. For example, during the period of synaptic growth and maturation in brain, the expression of synaptosomal protein 25 kDa (SNAP-25), a neuronal t-SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) essential for action potential-dependent neuroexocytosis, is altered through alternative splicing of pre-mRNA transcripts. We addressed the role of the two splice-variant isoforms of SNAP-25 with a targeted mouse mutation that impairs the shift from SNAP-25a to SNAP-25b. Most of these mutant mice die between 3 and 5 weeks of age, which coincides with the time when SNAP-25b expression normally reaches mature levels in brain and synapse formation is essentially completed. The altered expression of these SNAP-25 isoforms influences short-term synaptic function by affecting facilitation but not the initial probability of release. This suggests that mechanisms controlling alternative splicing between SNAP-25 isoforms contribute to a molecular switch important for survival that helps to guide the transition from immature to mature synaptic connections, as well as synapse regrowth and remodeling after neural injury.

  2. Tumorigenic properties of alternative osteopontin isoforms in mesothelioma

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Sergey V., E-mail: Sergey.Ivanov@med.nyu.edu [Thoracic Surgery Laboratory, Cardiothoracic Surgery Department, NYU Langone Medical Center, 462 First Ave., Bellevue Hospital, Room 15N20, NY 10016 (United States); Ivanova, Alla V.; Goparaju, Chandra M.V.; Chen, Yuanbin; Beck, Amanda; Pass, Harvey I. [Thoracic Surgery Laboratory, Cardiothoracic Surgery Department, NYU Langone Medical Center, 462 First Ave., Bellevue Hospital, Room 15N20, NY 10016 (United States)

    2009-05-08

    Osteopontin (SPP1) is an inflammatory cytokine that we previously characterized as a diagnostic marker in patients with asbestos-induced malignant mesothelioma (MM). While SPP1 shows both pro- and anti-tumorigenic biological effects, little is known about the molecular basis of these activities. In this study, we demonstrate that while healthy pleura possesses all three differentially spliced SPP1 isoforms (A-C), in clinical MM specimens isoform A is markedly up-regulated and predominant. To provide a clue to possible functions of the SPP1 isoforms we next performed their functional evaluation via transient expression in MM cell lines. As a result, we report that isoforms A-C demonstrate different activities in cell proliferation, wound closure, and invasion assays. These findings suggest different functions for SPP1 isoforms and underline pro-tumorigenic properties of isoforms A and B.

  3. Differences in expression, actions and cocaine regulation of two isoforms for the brain transcriptional regulator NAC1.

    Science.gov (United States)

    Korutla, L; Wang, P J; Lewis, D M; Neustadter, J H; Stromberg, M F; Mackler, S A

    2002-01-01

    BTB/POZ proteins can influence the cell cycle and contribute to oncogenesis. Many family members are present in the mammalian CNS. Previous work demonstrated elevated NAC1 mRNA levels in the rat nucleus accumbens in response to cocaine. NAC1 acts like other BTB/POZ proteins that regulate transcription but is unusual because of the absence of identifiable DNA binding domains. cDNAs were isolated encoding two NAC1 isoforms differing by only 27 amino acids (the longer isoform contains 514 amino acids). The mRNAs for both isoforms were simultaneously expressed throughout the rat brain and peripheral tissues. Semi-quantitative reverse transcription-polymerase chain reaction analysis revealed that the mRNA of the longer isoform was more abundant than the mRNA of the shorter isoform. Western blot analysis demonstrated a similar unequal distribution between the isoforms in the CNS. The longer isoform was the more abundant of the two NAC1 proteins and the ratio between them differed throughout the rat brain. The shorter isoform was not detected in most of the examined peripheral tissues, suggesting differences from the CNS in post-transcriptional processing. Both isoforms repressed transcription in H293T cells using a Gal4-luciferase reporter system. However, the shorter isoform did not repress transcription as effectively as the longer isoform. Transfection of different ratios for both isoforms, in order to replicate the relative amounts observed throughout the CNS, supported an interaction between the isoforms. The net effect on transcriptional repression was determined by the ratio of the two NAC1 isoforms. Each isoform exhibited the subnuclear localization that is characteristic of many BTB/POZ proteins. A rapid and transient increase in the level of the shorter isoform occurred in the nucleus accumbens 2 h following a single i.p. cocaine injection. We conclude that the two isoforms of NAC1 may differentially affect neuronal functions, including the regulation of

  4. Transcriptional profiles of glutathione-S-Transferase isoforms, Cyp, and AOE genes in atrazine-exposed zebrafish embryos.

    Science.gov (United States)

    Glisic, Branka; Hrubik, Jelena; Fa, Svetlana; Dopudj, Nela; Kovacevic, Radmila; Andric, Nebojsa

    2016-02-01

    Glutathione-S-transferase (GST) superfamily consists of multiple members involved in xenobiotic metabolism. Expressional pattern of the GST isoforms in adult fish has been used as a biomarker of exposure to environmental chemicals. However, GST transcriptional responses vary across organs, thus requiring a cross-tissue examination of multiple mRNAs for GST profiling in an animal after chemical exposure. Zebrafish embryos express all GST isoforms as adult fish and could therefore represent an alternative model for identification of biomarkers of exposure. To evaluate such a possibility, we studied a set of cytosolic and microsomal GST isoform-specific expression profiles in the zebrafish embryos after exposure to atrazine, a widely used herbicide. Expression of the GST isoforms was compared with that of CYP genes involved in the phase I of xenobiotic metabolism and antioxidant enzyme (AOE) genes. Using quantitative real-time PCR, we showed dynamic changes in the expressional pattern of twenty GST isoforms, cyp1a, cyp3a65, ahr2, and four AOEs in early development of zebrafish. Acute (48 and 72 h) exposure of 24 h-old embryos to atrazine, from environmentally relevant (0.005 mg/L) to high (40 mg/L) concentrations, caused a variety of transient, albeit minor changes (atrazine (5 and 40 mg/L). In summary, an analysis of the response of multiple systems in the zebrafish embryos provided a comprehensive understanding of atrazine toxicity and its potential impact on biological processes.

  5. Transcriptional profiles of glutathione-S-Transferase isoforms, Cyp, and AOE genes in atrazine-exposed zebrafish embryos.

    Science.gov (United States)

    Glisic, Branka; Hrubik, Jelena; Fa, Svetlana; Dopudj, Nela; Kovacevic, Radmila; Andric, Nebojsa

    2016-02-01

    Glutathione-S-transferase (GST) superfamily consists of multiple members involved in xenobiotic metabolism. Expressional pattern of the GST isoforms in adult fish has been used as a biomarker of exposure to environmental chemicals. However, GST transcriptional responses vary across organs, thus requiring a cross-tissue examination of multiple mRNAs for GST profiling in an animal after chemical exposure. Zebrafish embryos express all GST isoforms as adult fish and could therefore represent an alternative model for identification of biomarkers of exposure. To evaluate such a possibility, we studied a set of cytosolic and microsomal GST isoform-specific expression profiles in the zebrafish embryos after exposure to atrazine, a widely used herbicide. Expression of the GST isoforms was compared with that of CYP genes involved in the phase I of xenobiotic metabolism and antioxidant enzyme (AOE) genes. Using quantitative real-time PCR, we showed dynamic changes in the expressional pattern of twenty GST isoforms, cyp1a, cyp3a65, ahr2, and four AOEs in early development of zebrafish. Acute (48 and 72 h) exposure of 24 h-old embryos to atrazine, from environmentally relevant (0.005 mg/L) to high (40 mg/L) concentrations, caused a variety of transient, albeit minor changes (GST isoforms, ahr2 and AOE genes response. However, expression of cyp1a and cyp3a65 mRNA was markedly and consistently induced by high doses of atrazine (5 and 40 mg/L). In summary, an analysis of the response of multiple systems in the zebrafish embryos provided a comprehensive understanding of atrazine toxicity and its potential impact on biological processes. PMID:25158112

  6. Expression of Two Novel Alternatively Spliced COL2A1 Isoforms During Chondrocyte Differentiation

    OpenAIRE

    McAlinden, Audrey; Johnstone, Brian; Kollar, John; Kazmi, Najam; Hering, Thomas M.

    2007-01-01

    Alternative splicing of the type II procollagen gene (COL2A1) is developmentally-regulated during chondrogenesis. Type IIA procollagen (+ exon 2) is synthesized by chondroprogenitor cells while type IIB procollagen (- exon 2) is synthesized by differentiated chondrocytes. Here, we report expression of two additional alternatively spliced COL2A1 isoforms during chondrocyte differentiation of bone marrow derived mesenchymal stem cells (MSCs). One isoform, named IIC, contains only the first 34 n...

  7. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    International Nuclear Information System (INIS)

    Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i

  8. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    Energy Technology Data Exchange (ETDEWEB)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal; Thomsen, Bo; Larsen, Knud; Hedegaard, Jakob; Bendixen, Christian; Madsen, Lone Bruhn, E-mail: LoneB.Madsen@agrsci.dk

    2013-08-23

    Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i

  9. An alternative splicing isoform of MITA antagonizes MITA-mediated induction of type I IFNs.

    Science.gov (United States)

    Chen, Honghe; Pei, Rongjuan; Zhu, Wandi; Zeng, Rui; Wang, Yun; Wang, Yanyi; Lu, Mengji; Chen, Xinwen

    2014-02-01

    Mediator of IFN regulatory transcription factor 3 activation (MITA) is an important adaptor protein to mediate the induction of type I IFNs. In this study, we identified an alternatively spliced isoform of MITA lacking exon 7, termed MITA-related protein (MRP). MRP shares the N-terminal portion aa 1-253 with MITA but possesses a unique 30-aa sequence at the carboxyl terminal part, therefore lacking the conserved domains including TANK-binding kinase 1 (TBK1) and cyclic diguanylate binding domain. MRP is expressed in multiple tissues and distinct cell lines. Overexpression of MRP inhibited MITA-mediated activation of IFN-β promoter by sendai virus infection and cyclic diguanylate treatment but enhanced that in HSV-1 infection. Interestingly, MRP expression was reduced after Sendai virus infection but was upregulated after HSV-1 infection. Overexpression of MRP inhibited MITA-mediated induction of IFN-β via TBK1-IFN regulatory transcription factor 3 by disrupting the MITA-TBK1 interaction. However, NF-κB pathway was still activated by MRP, as MRP retained the ability to interact with inducible inhibitor of NF-κB (iκB) kinase. Thus, MRP acts as a dominant negative regulator of MITA-mediated induction of IFN production.

  10. SASD: the Synthetic Alternative Splicing Database for identifying novel isoform from proteomics

    OpenAIRE

    Zhang, Fan; Drabier, Renee

    2013-01-01

    Background Alternative splicing is an important and widespread mechanism for generating protein diversity and regulating protein expression. High-throughput identification and analysis of alternative splicing in the protein level has more advantages than in the mRNA level. The combination of alternative splicing database and tandem mass spectrometry provides a powerful technique for identification, analysis and characterization of potential novel alternative splicing protein isoforms from pro...

  11. Differential expression of two activating transcription factor 5 isoforms in papillary thyroid carcinoma

    Science.gov (United States)

    Vicari, Luisa; La Rosa, Cristina; Forte, Stefano; Calabrese, Giovanna; Colarossi, Cristina; Aiello, Eleonora; Salluzzo, Salvatore; Memeo, Lorenzo

    2016-01-01

    Background Activating transcription factor 5 (ATF5) is a member of the activating transcription/cAMP response element-binding protein family of basic leucine zipper proteins that plays an important role in cell survival, differentiation, proliferation, and apoptosis. The ATF5 gene generates two transcripts: ATF5 isoform 1 and ATF5 isoform 2. A number of studies indicate that ATF5 could be an attractive target for therapeutic intervention in several tumor types; however, so far, the role of ATF5 has not been investigated in papillary thyroid carcinoma (PTC). Methods Quantitative real-time reverse transcription polymerase chain reaction and immuno-histochemical staining were used to study ATF5 mRNA and protein expression in PTC. Results We report here that ATF5 is expressed more in PTC tissue than in normal thyroid tissue. Furthermore, this is the first study that describes the presence of both ATF5 isoforms in PTC. Conclusion These findings could provide potential applications in PTC cancer treatment.

  12. Alternative splicing of Arabidopsis IBR5 pre-mRNA generates two IBR5 isoforms with distinct and overlapping functions.

    Directory of Open Access Journals (Sweden)

    Thilanka Jayaweera

    Full Text Available The INDOLE-3-BUTYRIC ACID RESPONSE5 (IBR5 gene encodes a dual specificity phosphatase that regulates plant auxin responses. IBR5 has been predicted to generate two transcripts through alternative splicing, but alternative splicing of IBR5 has not been confirmed experimentally. The previously characterized ibr5-1 null mutant exhibits many auxin related defects such as auxin insensitive primary root growth, defective vascular development, short stature and reduced lateral root development. However, whether all these defects are caused by the lack of phosphatase activity is not clear. Here we describe two new auxin insensitive IBR5 alleles, ibr5-4, a catalytic site mutant, and ibr5-5, a splice site mutant. Characterization of these new mutants indicates that IBR5 is post-transcriptionally regulated to generate two transcripts, AT2G04550.1 and AT2G04550.3, and consequently two IBR5 isoforms, IBR5.1 and IBR5.3. The IBR5.1 isoform exhibits phosphatase catalytic activity that is required for both proper degradation of Aux/IAA proteins and auxin-induced gene expression. These two processes are independently regulated by IBR5.1. Comparison of new mutant alleles with ibr5-1 indicates that all three mutant alleles share many phenotypes. However, each allele also confers distinct defects implicating IBR5 isoform specific functions. Some of these functions are independent of IBR5.1 catalytic activity. Additionally, analysis of these new mutant alleles suggests that IBR5 may link ABP1 and SCF(TIR1/AFBs auxin signaling pathways.

  13. Profiling alternatively spliced mRNA isoforms for prostate cancer classification

    Directory of Open Access Journals (Sweden)

    Fan Jian-Bing

    2006-04-01

    Full Text Available Abstract Background Prostate cancer is one of the leading causes of cancer illness and death among men in the United States and world wide. There is an urgent need to discover good biomarkers for early clinical diagnosis and treatment. Previously, we developed an exon-junction microarray-based assay and profiled 1532 mRNA splice isoforms from 364 potential prostate cancer related genes in 38 prostate tissues. Here, we investigate the advantage of using splice isoforms, which couple transcriptional and splicing regulation, for cancer classification. Results As many as 464 splice isoforms from more than 200 genes are differentially regulated in tumors at a false discovery rate (FDR of 0.05. Remarkably, about 30% of genes have isoforms that are called significant but do not exhibit differential expression at the overall mRNA level. A support vector machine (SVM classifier trained on 128 signature isoforms can correctly predict 92% of the cases, which outperforms the classifier using overall mRNA abundance by about 5%. It is also observed that the classification performance can be improved using multivariate variable selection methods, which take correlation among variables into account. Conclusion These results demonstrate that profiling of splice isoforms is able to provide unique and important information which cannot be detected by conventional microarrays.

  14. Alternative splicing isoform of T cell factor 4K suppresses the proliferation and metastasis of non-small cell lung cancer cells.

    Science.gov (United States)

    Fan, Y C; Min, L; Chen, H; Liu, Y L

    2015-10-30

    The Wnt pathway has been implicated in the initiation, progression, and metastasis of lung cancer. T cell factor 4, a member of TCF/LEF family, acts as a transcriptional factor for Wnt pathways in lung cancer. Increasing amounts of evidence have shown that TCF-4 has multiple alternative splicing isoforms with transactivation or transrepression activity toward the Wnt pathway. Here, we found the presence of multiple TCF-4 isoforms in lung cancer cell lines and in normal bronchial epithelial cells. TCF-4K isoform expression was significantly decreased in lung cancer cells compared with normal bronchial epithelial cells and was identified as a transcriptional suppressor of the Wnt pathway in non-small cell lung carcinoma (NSCLC). Overexpression of TCF-4K significantly inhibited the proliferation and migration of NSCLC cells. Collectively, our data indicate that TCF-4K functions as a tumor suppressor in NSCLC by down-regulating the Wnt pathway.

  15. A human Polycomb isoform lacking the Pc box does not participate to PRC1 complexes but forms protein assemblies and represses transcription.

    Science.gov (United States)

    Völkel, Pamela; Le Faou, Perrine; Vandamme, Julien; Pira, Dorcas; Angrand, Pierre-Olivier

    2012-05-01

    Polycomb repression controls the expression of hundreds of genes involved in development and is mediated by essentially two classes of chromatin-associated protein complexes. The Polycomb repressive complex 2 (PRC2) trimethylates histone H3 at lysine 27, an epigenetic mark that serves as a docking site for the PRC1 protein complex. Drosophila core PRC1 is composed of four subunits: Polycomb (Pc), Posterior sex combs (Psc), Polyhomeotic (Ph) and Sex combs extra (Sce). Each of these proteins has multiple orthologs in vertebrates, thus generating an enormous scope for potential combinatorial diversity. In particular, mammalian genomes encode five Pc family members: CBX2, CBX4, CBX6, CBX7 and CBX8. To complicate matters further, distinct isoforms might arise from single genes. Here, we address the functional role of the two human CBX2 isoforms. Owing to different polyadenylation sites and alternative splicing events, the human CBX2 locus produces two transcripts: a 5-exon transcript that encodes the 532-amino acid CBX2-1 isoform that contains the conserved chromodomain and Pc box and a 4-exon transcript encoding a shorter isoform, CBX2-2, lacking the Pc box but still possessing a chromodomain. Using biochemical approaches and a novel in vivo imaging assay, we show that the short CBX2-2 isoform lacking the Pc box, does not participate in PRC1 protein complexes, but self-associates in vivo and forms complexes of high molecular weight. Furthermore, the CBX2 short isoform is still able to repress transcription, suggesting that Polycomb repression might occur in the absence of PRC1 formation. PMID:22419124

  16. Alternative Spliced Transcripts as Cancer Markers

    Directory of Open Access Journals (Sweden)

    Otavia L. Caballero

    2001-01-01

    Full Text Available Eukaryotic mRNAs are transcribed as precursors containing their intronic sequences. These are subsequently excised and the exons are spliced together to form mature mRNAs. This process can lead to transcript diversification through the phenomenon of alternative splicing. Alternative splicing can take the form of one or more skipped exons, variable position of intron splicing or intron retention. The effect of alternative splicing in expanding protein repertoire might partially underlie the apparent discrepancy between gene number and the complexity of higher eukaryotes. It is likely that more than 50% form. Many cancer-associated genes, such as CD44 and WT1 are alternatively spliced. Variation of the splicing process occurs during tumor progression and may play a major role in tumorigenesis. Furthermore, alternatively spliced transcripts may be extremely useful as cancer markers, since it appears likely that there may be striking contrasts in usage of alternatively spliced transcript variants between normal and tumor tissue than in alterations in the general levels of gene expression.

  17. Auxiliary splice factor U2AF26 and transcription factor Gfi1 cooperate directly in regulating CD45 alternative splicing.

    NARCIS (Netherlands)

    Heyd, F.; Dam, G.B. ten; Moroy, T.

    2006-01-01

    By alternative splicing, different isoforms of the transmembrane tyrosine phosphatase CD45 are generated that either enhance or limit T cell receptor signaling. We report here that CD45 alternative splicing is regulated by cooperative action of the splice factor U2AF26 and the transcription factor G

  18. Computational identification of transcriptionally co-regulated genes, validation with the four ANT isoform genes

    Directory of Open Access Journals (Sweden)

    Dupont Pierre-Yves

    2012-09-01

    Full Text Available Abstract Background The analysis of gene promoters is essential to understand the mechanisms of transcriptional regulation required under the effects of physiological processes, nutritional intake or pathologies. In higher eukaryotes, transcriptional regulation implies the recruitment of a set of regulatory proteins that bind on combinations of nucleotide motifs. We developed a computational analysis of promoter nucleotide sequences, to identify co-regulated genes by combining several programs that allowed us to build regulatory models and perform a crossed analysis on several databases. This strategy was tested on a set of four human genes encoding isoforms 1 to 4 of the mitochondrial ADP/ATP carrier ANT. Each isoform has a specific tissue expression profile linked to its role in cellular bioenergetics. Results From their promoter sequence and from the phylogenetic evolution of these ANT genes in mammals, we constructed combinations of specific regulatory elements. These models were screened using the full human genome and databases of promoter sequences from human and several other mammalian species. For each of transcriptionally regulated ANT1, 2 and 4 genes, a set of co-regulated genes was identified and their over-expression was verified in microarray databases. Conclusions Most of the identified genes encode proteins with a cellular function and specificity in agreement with those of the corresponding ANT isoform. Our in silico study shows that the tissue specific gene expression is mainly driven by promoter regulatory sequences located up to about a thousand base pairs upstream the transcription start site. Moreover, this computational strategy on the study of regulatory pathways should provide, along with transcriptomics and metabolomics, data to construct cellular metabolic networks.

  19. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    Science.gov (United States)

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  20. Characterization of the transcriptional activation domains of human TEF3-1 (transcription enhancer factor 3 isoform 1).

    Science.gov (United States)

    Qiao, Cheng; Jiang, Yajie; Deng, Cuilan; Huang, Zebo; Teng, Kaixuan; Chen, Lan; Liu, Xin

    2015-03-01

    TEF3-1 (transcription enhancer factor 3 isoform 1) is a human transcriptional factor, which has a N-terminal TEA/ATTS domain supposedly for DNA binding and C-terminal PRD and STY domains for transcriptional activation. Taking advantage of the efficient reporter design of yeast two-hybrid system, we characterized the TEF3-1 domains in activating gene expression. Previously study usually mentioned that the C-terminal domain of TEF3-1 has the transcriptional activity, however, our data shows that the peptides TEF3-11-66 and TEF3-1197-434 functioned as two independent activation domains, suggesting that N-terminal domain of TEF3-1 also has transcriptional activation capacity. Additionally, more deletions of amino acids 197-434 showed that only the peptides TEF3-1197-265 contained the minimum sequences for the C-terminal transcriptional activation domain. The protein structure is predicted to contain a helix-turn-helix structure in TEF3-11-66 and four β sheets in TEF3-1197-265. Finally, after the truncated fragments of TEF3-1 were expressed in HUVEC cells, the whole TEF3-1 and the two activation domains could increase F-actin stress fiber, cell proliferation, migration and targeted gene expression. Further analysis and characterization of the activation domains in TEF3-1 may broaden our understanding of the gene involved in angiogenesis and other pathological processes.

  1. Identification of alternatively translated Tetherin isoforms with differing antiviral and signaling activities.

    Directory of Open Access Journals (Sweden)

    Luis J Cocka

    2012-09-01

    Full Text Available Tetherin (BST-2/CD317/HM1.24 is an IFN induced transmembrane protein that restricts release of a broad range of enveloped viruses. Important features required for Tetherin activity and regulation reside within the cytoplasmic domain. Here we demonstrate that two isoforms, derived by alternative translation initiation from highly conserved methionine residues in the cytoplasmic domain, are produced in both cultured human cell lines and primary cells. These two isoforms have distinct biological properties. The short isoform (s-Tetherin, which lacks 12 residues present in the long isoform (l-Tetherin, is significantly more resistant to HIV-1 Vpu-mediated downregulation and consequently more effectively restricts HIV-1 viral budding in the presence of Vpu. s-Tetherin Vpu resistance can be accounted for by the loss of serine-threonine and tyrosine motifs present in the long isoform. By contrast, the l-Tetherin isoform was found to be an activator of nuclear factor-kappa B (NF-κB signaling whereas s-Tetherin does not activate NF-κB. Activation of NF-κB requires a tyrosine-based motif found within the cytoplasmic tail of the longer species and may entail formation of l-Tetherin homodimers since co-expression of s-Tetherin impairs the ability of the longer isoform to activate NF-κB. These results demonstrate a novel mechanism for control of Tetherin antiviral and signaling function and provide insight into Tetherin function both in the presence and absence of infection.

  2. Alternative RNA splicing of KSHV ORF57 produces two different RNA isoforms.

    Science.gov (United States)

    Majerciak, Vladimir; Zheng, Zhi-Ming

    2016-01-15

    In lytically infected B cells Kaposi sarcoma-associated herpesvirus (KSHV) ORF57 gene encodes two RNA isoforms by alternative splicing of its pre-mRNA, which contains a small, constitutive intron in its 5' half and a large, suboptimal intron in its 3's half. The RNA1 isoform encodes full-length ORF57 and is a major isoform derived from splicing of the constitutive small intron, but retaining the suboptimal large intron as the coding region. A small fraction (splicing to produce a smaller non-coding RNA2 due to lack of a translational termination codon. Both RNAs are cleaved and polyadenylated at the same cleavage site CS83636. The insertion of ORF57 RNA1 into a restriction cutting site in certain mammalian expression vectors activates splicing of the subopitmal intron and produces a truncated ORF57 protein.

  3. Protein interaction network of alternatively spliced isoforms from brain links genetic risk factors for autism.

    Science.gov (United States)

    Corominas, Roser; Yang, Xinping; Lin, Guan Ning; Kang, Shuli; Shen, Yun; Ghamsari, Lila; Broly, Martin; Rodriguez, Maria; Tam, Stanley; Trigg, Shelly A; Fan, Changyu; Yi, Song; Tasan, Murat; Lemmens, Irma; Kuang, Xingyan; Zhao, Nan; Malhotra, Dheeraj; Michaelson, Jacob J; Vacic, Vladimir; Calderwood, Michael A; Roth, Frederick P; Tavernier, Jan; Horvath, Steve; Salehi-Ashtiani, Kourosh; Korkin, Dmitry; Sebat, Jonathan; Hill, David E; Hao, Tong; Vidal, Marc; Iakoucheva, Lilia M

    2014-04-11

    Increased risk for autism spectrum disorders (ASD) is attributed to hundreds of genetic loci. The convergence of ASD variants have been investigated using various approaches, including protein interactions extracted from the published literature. However, these datasets are frequently incomplete, carry biases and are limited to interactions of a single splicing isoform, which may not be expressed in the disease-relevant tissue. Here we introduce a new interactome mapping approach by experimentally identifying interactions between brain-expressed alternatively spliced variants of ASD risk factors. The Autism Spliceform Interaction Network reveals that almost half of the detected interactions and about 30% of the newly identified interacting partners represent contribution from splicing variants, emphasizing the importance of isoform networks. Isoform interactions greatly contribute to establishing direct physical connections between proteins from the de novo autism CNVs. Our findings demonstrate the critical role of spliceform networks for translating genetic knowledge into a better understanding of human diseases.

  4. VEGF-A isoform-specific regulation of calcium ion flux, transcriptional activation and endothelial cell migration

    Directory of Open Access Journals (Sweden)

    Gareth W. Fearnley

    2015-07-01

    Full Text Available Vascular endothelial growth factor A (VEGF-A regulates many aspects of vascular physiology such as cell migration, proliferation, tubulogenesis and cell-cell interactions. Numerous isoforms of VEGF-A exist but their physiological significance is unclear. Here we evaluated two different VEGF-A isoforms and discovered differential regulation of cytosolic calcium ion flux, transcription factor localisation and endothelial cell response. Analysis of VEGF-A isoform-specific stimulation of VEGFR2-dependent signal transduction revealed differential capabilities for isoform activation of multiple signal transduction pathways. VEGF-A165 treatment promoted increased phospholipase Cγ1 phosphorylation, which was proportional to the subsequent rise in cytosolic calcium ions, in comparison to cells treated with VEGF-A121. A major consequence of this VEGF-A isoform-specific calcium ion flux in endothelial cells is differential dephosphorylation and subsequent nuclear translocation of the transcription factor NFATc2. Using reverse genetics, we discovered that NFATc2 is functionally required for VEGF-A-stimulated endothelial cell migration but not tubulogenesis. This work presents a new mechanism for understanding how VEGF-A isoforms program complex cellular outputs by converting signal transduction pathways into transcription factor redistribution to the nucleus, as well as defining a novel role for NFATc2 in regulating the endothelial cell response.

  5. Alternative NF-κB Isoforms in the Drosophila Neuromuscular Junction and Brain.

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    Full Text Available The Drosophila NF-κB protein Dorsal is expressed at the larval neuromuscular junction, where its expression appears unrelated to known Dorsal functions in embryonic patterning and innate immunity. Using confocal microscopy with domain-specific antisera, we demonstrate that larval muscle expresses only the B isoform of Dorsal, which arises by intron retention. We find that Dorsal B interacts with and stabilizes Cactus at the neuromuscular junction, but exhibits Cactus independent localization and an absence of detectable nuclear translocation. We further find that the Dorsal-related immune factor Dif encodes a B isoform, reflecting a conservation of B domains across a range of insect NF-κB proteins. Carrying out mutagenesis of the Dif locus via a site-specific recombineering approach, we demonstrate that Dif B is the major, if not sole, Dif isoform in the mushroom bodies of the larval brain. The Dorsal and Dif B isoforms thus share a specific association with nervous system tissues as well as an alternative protein structure.

  6. Identification of a novel family of laminin N-terminal alternate splice isoforms: structural and functional characterization.

    Science.gov (United States)

    Hamill, Kevin J; Langbein, Lutz; Jones, Jonathan C R; McLean, W H Irwin

    2009-12-18

    The laminins are a family of heterotrimeric basement membrane proteins that play roles in cellular adhesion, migration, and tissue morphogenesis. Through in silico analysis of the laminin-encoding genes, we identified a novel family of alternate splice isoforms derived from the 5'-end of the LAMA3 and LAMA5 genes. These isoforms resemble the netrins in that they contain a laminin N-terminal domain followed by a short stretch of laminin-type epidermal growth factor-like repeats. We suggest the terms LaNt (laminin N terminus) alpha3 and LaNt alpha5, for the predicted protein products of these mRNAs. RT-PCR confirmed the presence of these transcripts at the mRNA level. Moreover, they exhibit differential, tissue-specific, expression profiles. To confirm the existence of LaNt alpha3 protein, we generated an antibody to a unique domain within the putative polypeptide. This antibody recognizes a protein at the predicted molecular mass of 64 kDa by immunoblotting. Furthermore, immunofluorescence analyses revealed a basement membrane staining in epithelial tissue for LaNt alpha3 and LaNt alpha3 localized along the substratum-associated surface of cultured keratinocytes. We have also tested the functionality LaNt alpha3 through RNAi-mediated knockdown. Keratinocytes exhibiting specific knockdown of LaNt alpha3 displayed impaired adhesion, stress resistance, and reduced ability to close scratch wounds in vitro. PMID:19773554

  7. Alternatively spliced short and long isoforms of adaptor protein intersectin 1 form complexes in mammalian cells

    Directory of Open Access Journals (Sweden)

    Rynditch A. V.

    2012-12-01

    Full Text Available Intersectin 1 (ITSN1 is an adaptor protein involved in membrane trafficking and cell signaling. Long and short isoforms of ITSN1 (ITSN1-L and ITSN1-S are produced by alternative splicing. The aim of our study was to investigate whether ITSN1-L and ITSN1-S could interact in mammalian cells. Methods. During this study we employed immunoprecipitation and confocal microscopy. Results. We have shown that endogenous ITSN1-S co-precipitates with overexpressed ITSN1-L in PC12, 293 and 293T cells. Long and short isoforms of ITSN1 also co-localize in 293T cells. Conclusions. ITSN1-L and ITSN1-S form complexes in mammalian cells.

  8. Murine laminin alpha3A and alpha3B isoform chains are generated by usage of two promoters and alternative splicing.

    Science.gov (United States)

    Ferrigno, O; Virolle, T; Galliano, M F; Chauvin, N; Ortonne, J P; Meneguzzi, G; Aberdam, D

    1997-08-15

    We already identified two distinct laminin alpha3A and alpha3B chain isoforms which differ in their amino-terminal ends and display different tissue-specific expression patterns. In this study we have investigated whether these two different isoforms are products of the same laminin alpha3 (lama3) gene and transcribed from one or two separate promoters. Genomic clones were isolated that encompass the sequences upstream to the 5' ends of both the alpha3A and the alpha3B cDNAs. Sequence analysis of the region upstream to the alpha3A open reading frame revealed the presence of a TATA box and potential binding sites for responsive elements. By primer extension analysis, the transcription start site of the alpha3B mRNA isoform was defined. The sequences upstream to the alpha3B mRNA transcription start site do not contain a TATA box near the transcription initiation sites, but AP-1, AP-2, and Sp1 consensus binding site sequences were identified. The genomic regions located immediately upstream of the alpha3A and alpha3B transcription start sites were shown to possess promoter activities in transfection experiments. In the promoter regions, response elements for the acute phase reactant signal and NF-interleukin 6 were found, and their possible relevance in the context of inflammation and wound healing is discussed. Our results demonstrate that the lama3 gene produces the two polypeptides by alternative splicing and contains two promoters, which regulate the production of the two isoforms alpha3A and alpha3B. PMID:9252362

  9. Changes in type II procollagen isoform expression during chondrogenesis by disruption of an alternative 5’ splice site within Col2a1 exon 2

    OpenAIRE

    Hering, Thomas M.; Wirthlin, Louisa; Ravindran, Soumya; McAlinden, Audrey

    2014-01-01

    This study describes a new mechanism controlling the production of alternatively-spliced isoforms of type II procollagen (Col2a1) in vivo. During chondrogenesis, precursor chondrocytes predominantly produce isoforms containing alternatively-spliced exon 2 (type IIA and IID) while Col2a1 mRNA devoid of exon 2 (type IIB) is the major isoform produced by differentiated chondrocytes. We previously identified an additional Col2a1 isoform containing a truncated exon 2 and premature termination codo...

  10. A novel alternatively spliced isoform of the mu-opioid receptor: functional antagonism

    Directory of Open Access Journals (Sweden)

    Wentworth Sean

    2010-06-01

    Full Text Available Abstract Background Opioids are the most widely used analgesics for the treatment of clinical pain. They produce their therapeutic effects by binding to μ-opioid receptors (MORs, which are 7 transmembrane domain (7TM G-protein-coupled receptors (GPCRs, and inhibiting cellular activity. However, the analgesic efficacy of opioids is compromised by side-effects such as analgesic tolerance, dependence and opioid-induced hyperalgesia (OIH. In contrast to opioid analgesia these side effects are associated with cellular excitation. Several hypotheses have been advanced to explain these phenomena, yet the molecular mechanisms underlying tolerance and OIH remain poorly understood. Results We recently discovered a new human alternatively spliced isoform of MOR (MOR1K that is missing the N-terminal extracellular and first transmembrane domains, resulting in a 6TM GPCR variant. To characterize the pattern of cellular transduction pathways activated by this human MOR1K isoform, we conducted a series of pharmacological and molecular experiments. Results show that stimulation of MOR1K with morphine leads to excitatory cellular effects. In contrast to stimulation of MOR1, stimulation of MOR1K leads to increased Ca2+ levels as well as increased nitric oxide (NO release. Immunoprecipitation experiments further reveal that unlike MOR1, which couples to the inhibitory Gαi/o complex, MOR1K couples to the stimulatory Gαs complex. Conclusion The major MOR1 and the alternative MOR1K isoforms mediate opposite cellular effects in response to morphine, with MOR1K driving excitatory processes. These findings warrant further investigations that examine animal and human MORK1 expression and function following chronic exposure to opioids, which may identify MOR1K as a novel target for the development of new clinically effective classes of opioids that have high analgesic efficacy with diminished ability to produce tolerance, OIH, and other unwanted side-effects.

  11. TRIMe7-CypA, an alternative splicing isoform of TRIMCyp in rhesus macaque, negatively modulates TRIM5α activity

    Energy Technology Data Exchange (ETDEWEB)

    Na, Lei [Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150001 (China); Tang, Yan-Dong [Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150001 (China); Biotechnology Institute of Southern Medical University, Guangzhou 510515 (China); Liu, Jian-Dong; Yu, Chang-Qing; Sun, Liu-Ke; Lin, Yue-Zhi; Wang, Xue-Feng [Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150001 (China); Wang, Xiaojun, E-mail: xjw@hvri.ac.cn [Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150001 (China); Zhou, Jian-Hua, E-mail: jianhua_uc@126.com [Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin 150001 (China); Harbin Pharmaceutical Group Biovaccine Company, Harbin 150069 (China)

    2014-04-04

    Highlights: • TRIMe7-CypA expresses in rhesus and pig-tailed, but not long-tailed macaques. • TRIMe7-CypA does not show the restriction to a HIV-GFP report virus in vitro. • It acts as a negative modulator to TRIM5α likely by competitive inhibition. - Abstract: The existence of innate, host-specific restriction factors is a major obstacle to the development of nonhuman primate models for AIDS studies, and TRIM5α is one of the most important of these restriction factors. In recent years, a TRIM5 chimeric gene that was retrotransposed by a cyclophilin A (CypA) cDNA was identified in certain macaque species. The TRIM5α-CypA fusion protein, TRIMCyp, which was expressed in these monkeys, had lost its restriction ability toward HIV-1. We previously found that TRIMe7-CypA, an alternative splicing isoform of the TRIMCyp transcripts, was expressed in pig-tailed and rhesus macaques but absent in long-tailed macaques. In this study, the anti-HIV-1 activity of TRIMe7-CypA in the rhesus macaque (RhTRIMe7-CypA) was investigated. The over-expression of RhTRIMe7-CypA in CrFK, HeLa and HEK293T cells did not restrict the infection or replication of an HIV-1-GFP reporter virus in these cells. As a positive control, rhesus (rh)TRIM5α strongly inhibited the reporter virus. Intriguingly, the anti-HIV-1 activity of RhTRIM5α was significantly reduced in a dose-dependent manner by the co-repression of RhTRIMe7-CypA. Our data indicate that although the RhTRIMe7-CypA isoform does not appear to restrict HIV-1, it may act as a negative modulator of TRIM family proteins, presumably by competitive inhibition.

  12. TRIMe7-CypA, an alternative splicing isoform of TRIMCyp in rhesus macaque, negatively modulates TRIM5α activity

    International Nuclear Information System (INIS)

    Highlights: • TRIMe7-CypA expresses in rhesus and pig-tailed, but not long-tailed macaques. • TRIMe7-CypA does not show the restriction to a HIV-GFP report virus in vitro. • It acts as a negative modulator to TRIM5α likely by competitive inhibition. - Abstract: The existence of innate, host-specific restriction factors is a major obstacle to the development of nonhuman primate models for AIDS studies, and TRIM5α is one of the most important of these restriction factors. In recent years, a TRIM5 chimeric gene that was retrotransposed by a cyclophilin A (CypA) cDNA was identified in certain macaque species. The TRIM5α-CypA fusion protein, TRIMCyp, which was expressed in these monkeys, had lost its restriction ability toward HIV-1. We previously found that TRIMe7-CypA, an alternative splicing isoform of the TRIMCyp transcripts, was expressed in pig-tailed and rhesus macaques but absent in long-tailed macaques. In this study, the anti-HIV-1 activity of TRIMe7-CypA in the rhesus macaque (RhTRIMe7-CypA) was investigated. The over-expression of RhTRIMe7-CypA in CrFK, HeLa and HEK293T cells did not restrict the infection or replication of an HIV-1-GFP reporter virus in these cells. As a positive control, rhesus (rh)TRIM5α strongly inhibited the reporter virus. Intriguingly, the anti-HIV-1 activity of RhTRIM5α was significantly reduced in a dose-dependent manner by the co-repression of RhTRIMe7-CypA. Our data indicate that although the RhTRIMe7-CypA isoform does not appear to restrict HIV-1, it may act as a negative modulator of TRIM family proteins, presumably by competitive inhibition

  13. Hsp70 Isoforms Are Essential for the Formation of Kaposi's Sarcoma-Associated Herpesvirus Replication and Transcription Compartments.

    Directory of Open Access Journals (Sweden)

    Belinda Baquero-Pérez

    2015-11-01

    Full Text Available Kaposi's sarcoma-associated herpesvirus (KSHV is an oncogenic herpesvirus associated with various AIDS-related malignancies. Like other herpesviruses, multiple processes required for KSHV lytic replication, including viral transcription, viral DNA synthesis and capsid assembly occur in virus-induced intranuclear structures, termed replication and transcription compartments (RTCs. Here we utilised a novel methodology, combining subcellular fractionation and quantitative proteomics, to identify cellular proteins which are recruited to KSHV-induced RTCs and thus play a key role in KSHV lytic replication. We show that several isoforms of the HSP70 chaperone family, Hsc70 and iHsp70, are redistributed from the cytoplasm into the nucleus coinciding with the initial formation of KSHV-induced RTCs. We demonstrate that nuclear chaperone foci are dynamic, initially forming adjacent to newly formed KSHV RTCs, however during later time points the chaperones move within KSHV RTCs and completely co-localise with actively replicating viral DNA. The functional significance of Hsp70 isoforms recruitment into KSHV RTCs was also examined using the specific Hsp70 isoform small molecule inhibitor, VER-155008. Intriguingly, results highlight an essential role of Hsp70 isoforms in the KSHV replication cycle independent of protein stability and maturation. Notably, inhibition of Hsp70 isoforms precluded KSHV RTC formation and RNA polymerase II (RNAPII relocalisation to the viral genome leading to the abolishment of global KSHV transcription and subsequent viral protein synthesis and DNA replication. These new findings have revealed novel mechanisms that regulate KSHV lytic replication and highlight the potential of HSP70 inhibitors as novel antiviral agents.

  14. Toll-Like Receptor 9 Alternatively Spliced Isoform Negatively Regulates TLR9 Signaling in Teleost Fish

    Science.gov (United States)

    Chen, Nai-Yu; Nagarajan, Govindarajulu; Chiou, Pinwen Peter

    2015-01-01

    Toll-like receptor 9 (TLR9) recognizes and binds unmethylated CpG motifs in DNA, which are found in the genomes of bacteria and DNA viruses. In fish, Tlr9 is highly diverse, with the number of introns ranging from 0 to 4. A fish Tlr9 gene containing two introns has been reported to express two alternatively spliced isoforms, namely gTLR9A (full-length) and gTLR9B (with a truncated Cʹ-terminal signal transducing domain), whose regulation and function remain unclear. Here, we report a unique regulatory mechanism of gTLR9 signaling in orange-spotted grouper (Epinephelus coioides), whose gTlr9 sequence also contains two introns. We demonstrated that the grouper gTlr9 gene indeed has the capacity to produce two gTLR9 isoforms via alternative RNA splicing. We found that gTLR9B could function as a negative regulator to suppress gTLR9 signaling as demonstrated by the suppression of downstream gene expression. Following stimulation with CpG oligodeoxynucleotide (ODN), gTLR9A and gTLR9B were observed to translocate into endosomes and co-localize with ODN and the adaptor protein gMyD88. Both gTLR9A and gTLR9B could interact with gMyD88; however, gTLR9B could not interact with downstream IRAK4 and TRAF6. Further analysis of the expression profile of gTlr9A and gTlr9B upon immune-stimulation revealed that the two isoforms were differentially regulated in a time-dependent manner. Overall, these data suggest that fish TLR9B functions as a negative regulator, and that its temporal expression is mediated by alternative RNA splicing. This has not been observed in mammalian TLR9s and might have been acquired relatively recently in the evolution of fish. PMID:25955250

  15. Toll-Like Receptor 9 Alternatively Spliced Isoform Negatively Regulates TLR9 Signaling in Teleost Fish.

    Directory of Open Access Journals (Sweden)

    Frank Fang-Yao Lee

    Full Text Available Toll-like receptor 9 (TLR9 recognizes and binds unmethylated CpG motifs in DNA, which are found in the genomes of bacteria and DNA viruses. In fish, Tlr9 is highly diverse, with the number of introns ranging from 0 to 4. A fish Tlr9 gene containing two introns has been reported to express two alternatively spliced isoforms, namely gTLR9A (full-length and gTLR9B (with a truncated C'-terminal signal transducing domain, whose regulation and function remain unclear. Here, we report a unique regulatory mechanism of gTLR9 signaling in orange-spotted grouper (Epinephelus coioides, whose gTlr9 sequence also contains two introns. We demonstrated that the grouper gTlr9 gene indeed has the capacity to produce two gTLR9 isoforms via alternative RNA splicing. We found that gTLR9B could function as a negative regulator to suppress gTLR9 signaling as demonstrated by the suppression of downstream gene expression. Following stimulation with CpG oligodeoxynucleotide (ODN, gTLR9A and gTLR9B were observed to translocate into endosomes and co-localize with ODN and the adaptor protein gMyD88. Both gTLR9A and gTLR9B could interact with gMyD88; however, gTLR9B could not interact with downstream IRAK4 and TRAF6. Further analysis of the expression profile of gTlr9A and gTlr9B upon immune-stimulation revealed that the two isoforms were differentially regulated in a time-dependent manner. Overall, these data suggest that fish TLR9B functions as a negative regulator, and that its temporal expression is mediated by alternative RNA splicing. This has not been observed in mammalian TLR9s and might have been acquired relatively recently in the evolution of fish.

  16. HTLV-I antisense transcripts initiating in the 3'LTR are alternatively spliced and polyadenylated

    Directory of Open Access Journals (Sweden)

    Marriott Susan J

    2006-03-01

    Full Text Available Abstract Background Antisense transcription in retroviruses has been suggested for both HIV-1 and HTLV-I, although the existence and coding potential of these transcripts remain controversial. Thorough characterization is required to demonstrate the existence of these transcripts and gain insight into their role in retrovirus biology. Results This report provides the first complete characterization of an antisense retroviral transcript that encodes the previously described HTLV-I HBZ protein. In this study, we show that HBZ-encoding transcripts initiate in the 3' long terminal repeat (LTR at several positions and consist of two alternatively spliced variants (SP1 and SP2. Expression of the most abundant HBZ spliced variant (SP1 could be detected in different HTLV-I-infected cell lines and importantly in cellular clones isolated from HTLV-I-infected patients. Polyadenylation of HBZ RNA occurred at a distance of 1450 nucleotides downstream of the HBZ stop codon in close proximity of a typical polyA signal. We have also determined that translation mostly initiates from the first exon located in the 3' LTR and that the HBZ isoform produced from the SP1 spliced variant demonstrated inhibition of Tax and c-Jun-dependent transcriptional activation. Conclusion These results conclusively demonstrate the existence of antisense transcription in retroviruses, which likely plays a role in HTLV-I-associated pathogenesis through HBZ protein synthesis.

  17. Methylation of an intragenic alternative promoter regulates transcription of GARP.

    Science.gov (United States)

    Haupt, Sonja; Söntgerath, Viktoria Sophie Apollonia; Leipe, Jan; Schulze-Koops, Hendrik; Skapenko, Alla

    2016-02-01

    Alternative promoter usage has been proposed as a mechanism regulating transcriptional and translational diversity in highly elaborated systems like the immune system in humans. Here, we report that transcription of human glycoprotein A repetitions predominant (GARP) in regulatory CD4 T cells (Tregs) is tightly regulated by two alternative promoters. An intragenic promoter contains several CpGs and acts as a weak promoter that is demethylated and initiates transcription Treg-specifically. The strong up-stream promoter containing a CpG-island is, in contrast, fully demethylated throughout tissues. Transcriptional activity of the strong promoter was surprisingly down-regulated upon demethylation of the weak promoter. This demethylation-induced transcriptional attenuation regulated the magnitude of GARP expression and correlated with disease activity in rheumatoid arthritis. Treg-specific GARP transcription was initiated by synergistic interaction of forkhead box protein 3 (Foxp3) with nuclear factor of activated T cells (NFAT) and was underpinned by permissive chromatin remodeling caused by release of the H3K4 demethylase, PLU-1. Our findings describe a novel function of alternative promoters in regulating the extent of transcription. Moreover, since GARP functions as a transporter of transforming growth factor β (TGFβ), a cytokine with broad pleiotropic traits, GARP transcriptional attenuation by alternative promoters might provide a mechanism regulating peripheral TGFβ to avoid unwanted harmful effects.

  18. Two isoforms of TALDO1 generated by alternative translational initiation show differential nucleocytoplasmic distribution to regulate the global metabolic network

    Science.gov (United States)

    Moriyama, Tetsuji; Tanaka, Shu; Nakayama, Yasumune; Fukumoto, Masahiro; Tsujimura, Kenji; Yamada, Kohji; Bamba, Takeshi; Yoneda, Yoshihiro; Fukusaki, Eiichiro; Oka, Masahiro

    2016-01-01

    Transaldolase 1 (TALDO1) is a rate-limiting enzyme involved in the pentose phosphate pathway, which is traditionally thought to occur in the cytoplasm. In this study, we found that the gene TALDO1 has two translational initiation sites, generating two isoforms that differ by the presence of the first 10 N-terminal amino acids. Notably, the long and short isoforms were differentially localised to the cell nucleus and cytoplasm, respectively. Pull-down and in vitro transport assays showed that the long isoform, unlike the short one, binds to importin α and is actively transported into the nucleus in an importin α/β-dependent manner, demonstrating that the 10 N-terminal amino acids are essential for its nuclear localisation. Additionally, we found that these two isoforms can form homo- and/or hetero-dimers with different localisation dynamics. A metabolite analysis revealed that the subcellular localisation of TALDO1 is not crucial for its activity in the pentose phosphate pathway. However, the expression of these two isoforms differentially affected the levels of various metabolites, including components of the tricarboxylic acid cycle, nucleotides, and sugars. These results demonstrate that the nucleocytoplasmic distribution of TALDO1, modulated via alternative translational initiation and dimer formation, plays an important role in a wide range of metabolic networks. PMID:27703206

  19. Alternative mRNA Splicing from the Glial Fibrillary Acidic Protein (GFAP) Gene Generates Isoforms with Distinct Subcellular mRNA Localization Patterns in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune; Daugaard, Tina Fuglsang; Holm, Ida E;

    2013-01-01

    The intermediate filament network of astrocytes includes Glial fibrillary acidic protein (Gfap) as a major component. Gfap mRNA is alternatively spliced resulting in generation of different protein isoforms where Gfapa is the most predominant isoform. The Gfapd isoform is expressed in proliferating......RNA localization patterns were dependent on the different 39-exon sequences included in Gfapd and Gfapa mRNA. The presented results show that alternative Gfap mRNA splicing results in isoform-specific mRNA localization patterns with resulting different local mRNA concentration ratios which have potential...

  20. AtRTD2: A Reference Transcript Dataset for accurate quantification of alternative splicing and expression changes in Arabidopsis thaliana RNA-seq data

    KAUST Repository

    Zhang, Runxuan

    2016-05-06

    Background Alternative splicing is the major post-transcriptional mechanism by which gene expression is regulated and affects a wide range of processes and responses in most eukaryotic organisms. RNA-sequencing (RNA-seq) can generate genome-wide quantification of individual transcript isoforms to identify changes in expression and alternative splicing. RNA-seq is an essential modern tool but its ability to accurately quantify transcript isoforms depends on the diversity, completeness and quality of the transcript information. Results We have developed a new Reference Transcript Dataset for Arabidopsis (AtRTD2) for RNA-seq analysis containing over 82k non-redundant transcripts, whereby 74,194 transcripts originate from 27,667 protein-coding genes. A total of 13,524 protein-coding genes have at least one alternatively spliced transcript in AtRTD2 such that about 60% of the 22,453 protein-coding, intron-containing genes in Arabidopsis undergo alternative splicing. More than 600 putative U12 introns were identified in more than 2,000 transcripts. AtRTD2 was generated from transcript assemblies of ca. 8.5 billion pairs of reads from 285 RNA-seq data sets obtained from 129 RNA-seq libraries and merged along with the previous version, AtRTD, and Araport11 transcript assemblies. AtRTD2 increases the diversity of transcripts and through application of stringent filters represents the most extensive and accurate transcript collection for Arabidopsis to date. We have demonstrated a generally good correlation of alternative splicing ratios from RNA-seq data analysed by Salmon and experimental data from high resolution RT-PCR. However, we have observed inaccurate quantification of transcript isoforms for genes with multiple transcripts which have variation in the lengths of their UTRs. This variation is not effectively corrected in RNA-seq analysis programmes and will therefore impact RNA-seq analyses generally. To address this, we have tested different genome

  1. Alternative transcription and splicing of the human porphobilinogen deaminase gene

    International Nuclear Information System (INIS)

    Porphobilinogen deaminase is a cytosolic enzyme involved in the heme biosynthetic pathway. Two isoforms of PBGD, encoded by two mRNAs differing solely in their 5' end, are known: one is found in all cells and the other is present only in erythroid cells. The authors have previously shown that the human PBGD is encoded by a single gene and have now cloned and characterized this gene, which is split into 15 exons spread over 10 kilobases of DNA. They demonstrate that the two mRNAs arise from two overlapping transcription units. The first one (upstream) is active in all tissues and its promoter has some of the structural features of a housekeeping promoter; the second, located 3 kilobases downstream, is active only in erythroid cells and its promoter displays structural homologies with the β-globin gene promoters

  2. Expression of 14-3-3 transcript isoforms in response to ethanol exposure and their regulation by miRNAs.

    Science.gov (United States)

    Mathew, Divya Elizabeth; Larsen, Kaitlyn; Janeczek, Paulina; Lewohl, Joanne M

    2016-09-01

    The 14-3-3 proteins are a family of highly conserved molecular chaperones involved in the regulation of a number of key cellular functions including metabolism, stress response, protein trafficking, cell-cycle control, signal transduction, transcription, apoptosis and neurotransmission. 14-3-3 proteins have also been implicated in the pathophysiology of neurodegenerative disorders including Alzheimer disease and Parkinson disease. Recent studies have also shown that 14-3-3s are differentially expressed in the frontal cortex of human alcoholics suggesting a potential role in the pathophysiology of alcohol use disorders. Here we measured the expression of 14-3-3 transcripts in HEK293T cells in response to chronic ethanol treatment. Five of the seven transcripts (14-3-3β, 14-3-3γ, 14-3-3ζ, 14-3-3ε and 14-3-3θ) were significantly down-regulated following chronic exposure to ethanol for a five day period with these changes persisting even after withdrawal from ethanol treatment. One transcript, 14-3-3σ, was significantly up-regulated following chronic ethanol exposure and 14-3-3η showed no differences in expression in the same treatment model. The pattern of expression changes is similar to those seen in the frontal cortex of human alcoholics. To investigate the role of miRNAs in mediating the expression changes we measured the expression of the 14-3-3 transcripts following transfection with miR-203, miR-144 and miR-7 mimics. Although these miRNAs had predicted target sites in the 3'untranslated region of each 14-3-3 isoform, only miR-203 resulted in a down-regulation of 14-3-3θ transcript. In addition, the expression of 14-3-3γ was upregulated following transfection with miR-7 and miR-144 mimics. MiRNA regulation of these isoforms following alcohol exposure may lead to alterations in neurotransmission, the balance between cell survival and cell death, as well as changing the rewarding effects of alcohol. PMID:27370936

  3. Leveraging transcript quantification for fast computation of alternative splicing profiles.

    Science.gov (United States)

    Alamancos, Gael P; Pagès, Amadís; Trincado, Juan L; Bellora, Nicolás; Eyras, Eduardo

    2015-09-01

    Alternative splicing plays an essential role in many cellular processes and bears major relevance in the understanding of multiple diseases, including cancer. High-throughput RNA sequencing allows genome-wide analyses of splicing across multiple conditions. However, the increasing number of available data sets represents a major challenge in terms of computation time and storage requirements. We describe SUPPA, a computational tool to calculate relative inclusion values of alternative splicing events, exploiting fast transcript quantification. SUPPA accuracy is comparable and sometimes superior to standard methods using simulated as well as real RNA-sequencing data compared with experimentally validated events. We assess the variability in terms of the choice of annotation and provide evidence that using complete transcripts rather than more transcripts per gene provides better estimates. Moreover, SUPPA coupled with de novo transcript reconstruction methods does not achieve accuracies as high as using quantification of known transcripts, but remains comparable to existing methods. Finally, we show that SUPPA is more than 1000 times faster than standard methods. Coupled with fast transcript quantification, SUPPA provides inclusion values at a much higher speed than existing methods without compromising accuracy, thereby facilitating the systematic splicing analysis of large data sets with limited computational resources. The software is implemented in Python 2.7 and is available under the MIT license at https://bitbucket.org/regulatorygenomicsupf/suppa. PMID:26179515

  4. High resolution analysis of the human transcriptome: detection of extensive alternative splicing independent of transcriptional activity

    Directory of Open Access Journals (Sweden)

    Rouet Fabien

    2009-10-01

    Full Text Available Abstract Background Commercially available microarrays have been used in many settings to generate expression profiles for a variety of applications, including target selection for disease detection, classification, profiling for pharmacogenomic response to therapeutics, and potential disease staging. However, many commercially available microarray platforms fail to capture transcript diversity produced by alternative splicing, a major mechanism for driving proteomic diversity through transcript heterogeneity. Results The human Genome-Wide SpliceArray™ (GWSA, a novel microarray platform, utilizes an existing probe design concept to monitor such transcript diversity on a genome scale. The human GWSA allows the detection of alternatively spliced events within the human genome through the use of exon body and exon junction probes to provide a direct measure of each transcript, through simple calculations derived from expression data. This report focuses on the performance and validation of the array when measured against standards recently published by the Microarray Quality Control (MAQC Project. The array was shown to be highly quantitative, and displayed greater than 85% correlation with the HG-U133 Plus 2.0 array at the gene level while providing more extensive coverage of each gene. Almost 60% of splice events among genes demonstrating differential expression of greater than 3 fold also contained extensive splicing alterations. Importantly, almost 10% of splice events within the gene set displaying constant overall expression values had evidence of transcript diversity. Two examples illustrate the types of events identified: LIM domain 7 showed no differential expression at the gene level, but demonstrated deregulation of an exon skip event, while erythrocyte membrane protein band 4.1 -like 3 was differentially expressed and also displayed deregulation of a skipped exon isoform. Conclusion Significant changes were detected independent of

  5. The chaperone-like activity of α-synuclein attenuates aggregation of its alternatively spliced isoform, 112-synuclein in vitro: plausible cross-talk between isoforms in protein aggregation.

    Science.gov (United States)

    Manda, Krishna Madhuri; Yedlapudi, Deepthi; Korukonda, Srikanth; Bojja, Sreedhar; Kalivendi, Shasi V

    2014-01-01

    Abnormal oligomerization and aggregation of α-synuclein (α-syn/WT-syn) has been shown to be a precipitating factor in the pathophysiology of Parkinson's disease (PD). Earlier observations on the induced-alternative splicing of α-syn by Parkinsonism mimetics as well as identification of region specific abnormalities in the transcript levels of 112-synuclein (112-syn) in diseased subjects underscores the role of 112-syn in the pathophysiology of PD. In the present study, we sought to identify the aggregation potential of 112-syn in the presence or absence of WT-syn to predict its plausible role in protein aggregation events. Results demonstrate that unlike WT-syn, lack of 28 aa in the C-terminus results in the loss of chaperone-like activity with a concomitant gain in vulnerability to heat-induced aggregation and time-dependent fibrillation. The effects were dose and time-dependent and a significant aggregation of 112-syn was evident at as low as 45 °C following 10 min of incubation. The heat-induced aggregates were found to be ill-defined structures and weakly positive towards Thioflavin-T (ThT) staining as compared to clearly distinguishable ThT positive extended fibrils resulting upon 24 h of incubation at 37 °C. Further, the chaperone-like activity of WT-syn significantly attenuated heat-induced aggregation of 112-syn in a dose and time-dependent manner. On contrary, WT-syn synergistically enhanced fibrillation of 112-syn. Overall, the present findings highlight a plausible cross-talk between isoforms of α-syn and the relative abundance of these isoforms may dictate the nature and fate of protein aggregates.

  6. Inference of Isoforms from Short Sequence Reads

    Science.gov (United States)

    Feng, Jianxing; Li, Wei; Jiang, Tao

    Due to alternative splicing events in eukaryotic species, the identification of mRNA isoforms (or splicing variants) is a difficult problem. Traditional experimental methods for this purpose are time consuming and cost ineffective. The emerging RNA-Seq technology provides a possible effective method to address this problem. Although the advantages of RNA-Seq over traditional methods in transcriptome analysis have been confirmed by many studies, the inference of isoforms from millions of short sequence reads (e.g., Illumina/Solexa reads) has remained computationally challenging. In this work, we propose a method to calculate the expression levels of isoforms and infer isoforms from short RNA-Seq reads using exon-intron boundary, transcription start site (TSS) and poly-A site (PAS) information. We first formulate the relationship among exons, isoforms, and single-end reads as a convex quadratic program, and then use an efficient algorithm (called IsoInfer) to search for isoforms. IsoInfer can calculate the expression levels of isoforms accurately if all the isoforms are known and infer novel isoforms from scratch. Our experimental tests on known mouse isoforms with both simulated expression levels and reads demonstrate that IsoInfer is able to calculate the expression levels of isoforms with an accuracy comparable to the state-of-the-art statistical method and a 60 times faster speed. Moreover, our tests on both simulated and real reads show that it achieves a good precision and sensitivity in inferring isoforms when given accurate exon-intron boundary, TSS and PAS information, especially for isoforms whose expression levels are significantly high.

  7. Analysis of tarantula skeletal muscle protein sequences and identification of transcriptional isoforms

    Directory of Open Access Journals (Sweden)

    Yu Jun

    2009-03-01

    Full Text Available Abstract Background Tarantula has been used as a model system for studying skeletal muscle structure and function, yet data on the genes expressed in tarantula muscle are lacking. Results We constructed a cDNA library from Aphonopelma sp. (Tarantula skeletal muscle and got 2507 high-quality 5'ESTs (expressed sequence tags from randomly picked clones. EST analysis showed 305 unigenes, among which 81 had more than 2 ESTs. Twenty abundant unigenes had matches to skeletal muscle-related genes including actin, myosin, tropomyosin, troponin-I, T and C, paramyosin, muscle LIM protein, muscle protein 20, a-actinin and tandem Ig/Fn motifs (found in giant sarcomere-related proteins. Matches to myosin light chain kinase and calponin were also identified. These results support the existence of both actin-linked and myosin-linked regulation in tarantula skeletal muscle. We have predicted full-length as well as partial cDNA sequences both experimentally and computationally for myosin heavy and light chains, actin, tropomyosin, and troponin-I, T and C, and have deduced the putative peptides. A preliminary analysis of the structural and functional properties was also carried out. Sequence similarities suggested multiple isoforms of most myofibrillar proteins, supporting the generality of multiple isoforms known from previous muscle sequence studies. This may be related to a mix of muscle fiber types. Conclusion The present study serves as a basis for defining the transcriptome of tarantula skeletal muscle, for future in vitro expression of tarantula proteins, and for interpreting structural and functional observations in this model species.

  8. Alternative Splicing of Rice WRKY62 and WRKY76 Transcription Factor Genes in Pathogen Defense.

    Science.gov (United States)

    Liu, Jiqin; Chen, Xujun; Liang, Xiaoxing; Zhou, Xiangui; Yang, Fang; Liu, Jia; He, Sheng Yang; Guo, Zejian

    2016-06-01

    The WRKY family of transcription factors (TFs) functions as transcriptional activators or repressors in various signaling pathways. In this study, we discovered that OsWRKY62 and OsWRKY76, two genes of the WRKY IIa subfamily, undergo constitutive and inducible alternative splicing. The full-length OsWRKY62.1 and OsWRKY76.1 proteins formed homocomplexes and heterocomplexes, and the heterocomplex dominates in the nuclei when analyzed in Nicotiana benthamiana leaves. Transgenic overexpression of OsWRKY62.1 and OsWRKY76.1 in rice (Oryza sativa) enhanced plant susceptibility to the blast fungus Magnaporthe oryzae and the leaf blight bacterium Xanthomonas oryzae pv oryzae, whereas RNA interference and loss-of-function knockout plants exhibited elevated resistance. The dsOW62/76 and knockout lines of OsWRKY62 and OsWRKY76 also showed greatly increased expression of defense-related genes and the accumulation of phytoalexins. The ratio of full-length versus truncated transcripts changed in dsOW62/76 plants as well as in response to pathogen infection. The short alternative OsWRKY62.2 and OsWRKY76.2 isoforms could interact with each other and with full-length proteins. OsWRKY62.2 showed a reduced repressor activity in planta, and two sequence determinants required for the repressor activity were identified in the amino terminus of OsWRKY62.1. The amino termini of OsWRKY62 and OsWRKY76 splice variants also showed reduced binding to the canonical W box motif. These results not only enhance our understanding of the DNA-binding property, the repressor sequence motifs, and the negative feedback regulation of the IIa subfamily of WRKYs but also provide evidence for alternative splicing of WRKY TFs during the plant defense response. PMID:27208272

  9. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways and transcription factors

    DEFF Research Database (Denmark)

    Deshmukh, Atul S; Murgia, Marta; Nagaraja, Nagarjuna;

    2015-01-01

    spectrometric (MS) workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins...

  10. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    OpenAIRE

    A Deshmukh; Murgia, M.; Nagaraj, N; Treebak, J.; Cox, J; Mann, M

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and...

  11. Alternative Splice Transcripts for MHC Class I-like MICA Encode Novel NKG2D Ligands with Agonist or Antagonist Functions.

    Science.gov (United States)

    Gavlovsky, Pierre-Jean; Tonnerre, Pierre; Gérard, Nathalie; Nedellec, Steven; Daman, Andrew W; McFarland, Benjamin J; Charreau, Béatrice

    2016-08-01

    MHC class I chain-related proteins A and B (MICA and MICB) and UL16-binding proteins are ligands of the activating NKG2D receptor involved in cancer and immune surveillance of infection. Structurally, MICA/B proteins contain an α3 domain, whereas UL16-binding proteins do not. We identified novel alternative splice transcripts for MICA encoding five novel MICA isoforms: MICA-A, -B1, -B2, -C, and -D. Alternative splicing associates with MICA*015 and *017 and results from a point deletion (G) in the 5' splice donor site of MICA intron 4 leading to exon 3 and exon 4 skipping and/or deletions. These changes delete the α3 domain in all isoforms, and the α2 domain in the majority of isoforms (A, B1, C, and D). Endothelial and hematopoietic cells contained endogenous alternative splice transcripts and isoforms. MICA-B1, -B2, and -D bound NKG2D by surface plasmon resonance and were expressed at the cell surface. Functionally, MICA-B2 contains two extracellular domains (α1 and α2) and is a novel potent agonist ligand for NKG2D. We found that MICA-D is a new truncated form of MICA with weak affinity for NKG2D despite lacking α2 and α3 domains. MICA-D may functionally impair NKG2D activation by competing with full-length MICA or MICA-B2 for NKG2D engagement. Our study established NKG2D binding for recombinant MICA-B1 but found no function for this isoform. New truncated MICA isoforms exhibit a range of functions that may drive unexpected immune mechanisms and provide new tools for immunotherapy.

  12. Distribution analysis of profilin isoforms at transcript resolution with mRNA-seq and secondary structure in various organs of Rattus norvegicus.

    Science.gov (United States)

    Tariq, Naila; Basharat, Zarrin; Butt, Saba; Baig, Deeba Noreen

    2016-09-01

    Profilin (Pfn) is an actin binding protein, ubiquitously found in mammals and is essential for the actin polymerization in cells. In brain, it plays a pivotal role in neurogenesis and synapse formation by interacting with various proteins. Four Pfn isoforms have been identified in mammals. This study presents the identification and transcriptional expression of various Pfn isoforms (Pfn1, Pfn2, Pfn3 and Pfn4) in brain, heart, kidney, liver, and muscle and testis of Rattus norvegicus. Organs have been classified into groups based on some similarities. Group I includes brain and testis, Group II includes skeletal muscle and heart, while Group III includes kidney and liver. Pfn1 has been identified in all groups, Pfn2 and Pfn3 have been identified in group I, group III and in one organ (skeletal muscle) of group II. To the best of the authors knowledge, no report of Pfn1 and Pfn2 presence in testis, Pfn3 in brain, liver and skeletal muscle, Pfn4 in kidney and skeletal muscle exists to date. Transcriptional expression showed variations among expression level of different Pfn isoforms in various organs with respect to the control gene GADPH. We hypothesize that this could be attributed to profilin isoform specific mRNA structure and corresponding motifs, which generally contribute to similar or varied decay rates, cellular localization, post transcriptional regulation pattern and ligand binding. PMID:27185630

  13. Alternative Splicing and Differential Expression of Two Transcripts of Nicotine Adenine Dinucleotide Phosphate Oxidase B Gene from Zea mays

    Institute of Scientific and Technical Information of China (English)

    Fan Lin; Yun Zhang; Ming-Yi Jiang

    2009-01-01

    With the exception of rice, little is known about the existence of respiratory burst oxidase homolog (rboh) gene in cereals. The present study reports the cloning and analysis of a novel rboh gene, termed ZmrbohB, from maize (Zea mays L.). The full-length cDNA of ZmrbohB encodes a 942 amino acid protein containing all of the respiratory burst oxidase homolog catalytically critical motifs.Altemative splicing of ZmrbohB has generated two transcript isoforms, ZmrbohB-α and -β. Spliced transcript ZmrbohB-β retains an unspliced intron 11 that carries a premature termination codon and probably leads to nonsense-mediated mRNA decay. Expression analysis showed that two splice isoforms were differentially expressed in various tissues and at different developmental stages, and the major product was ZmrbohB-α. The transcripts of ZmrbohB-α accumulated markedly when the maize seedlings were subjected to various abiotic stimuli, such as wounding, cold (4℃), heat (40℃), UV and salinity stress. In addition, several abiotic stimuli also affected the alternative splicing pattern of ZmrbohB except wounding. These results provide new insight into roles in the expression regulation of plant rboh genes and suggest that ZmrbohB gene may play a role in response to environmental stresses.

  14. Imaging single retrovirus entry through alternative receptor isoforms and intermediates of virus-endosome fusion.

    Directory of Open Access Journals (Sweden)

    Naveen K Jha

    Full Text Available A large group of viruses rely on low pH to activate their fusion proteins that merge the viral envelope with an endosomal membrane, releasing the viral nucleocapsid. A critical barrier to understanding these events has been the lack of approaches to study virus-cell membrane fusion within acidic endosomes, the natural sites of virus nucleocapsid capsid entry into the cytosol. Here we have investigated these events using the highly tractable subgroup A avian sarcoma and leukosis virus envelope glycoprotein (EnvA-TVA receptor system. Through labeling EnvA pseudotyped viruses with a pH-sensitive fluorescent marker, we imaged their entry into mildly acidic compartments. We found that cells expressing the transmembrane receptor (TVA950 internalized the virus much faster than those expressing the GPI-anchored receptor isoform (TVA800. Surprisingly, TVA800 did not accelerate virus uptake compared to cells lacking the receptor. Subsequent steps of virus entry were visualized by incorporating a small viral content marker that was released into the cytosol as a result of fusion. EnvA-dependent fusion with TVA800-expressing cells occurred shortly after endocytosis and delivery into acidic endosomes, whereas fusion of viruses internalized through TVA950 was delayed. In the latter case, a relatively stable hemifusion-like intermediate preceded the fusion pore opening. The apparent size and stability of nascent fusion pores depended on the TVA isoforms and their expression levels, with TVA950 supporting more robust pores and a higher efficiency of infection compared to TVA800. These results demonstrate that surface receptor density and the intracellular trafficking pathway used are important determinants of efficient EnvA-mediated membrane fusion, and suggest that early fusion intermediates play a critical role in establishing low pH-dependent virus entry from within acidic endosomes.

  15. IsoformEx: isoform level gene expression estimation using weighted non-negative least squares from mRNA-Seq data

    Directory of Open Access Journals (Sweden)

    Gupta Ravi

    2011-07-01

    Full Text Available Abstract Background mRNA-Seq technology has revolutionized the field of transcriptomics for identification and quantification of gene transcripts not only at gene level but also at isoform level. Estimating the expression levels of transcript isoforms from mRNA-Seq data is a challenging problem due to the presence of constitutive exons. Results We propose a novel algorithm (IsoformEx that employs weighted non-negative least squares estimation method to estimate the expression levels of transcript isoforms. Validations based on in silico simulation of mRNA-Seq and qRT-PCR experiments with real mRNA-Seq data showed that IsoformEx could accurately estimate transcript expression levels. In comparisons with published methods, the transcript expression levels estimated by IsoformEx showed higher correlation with known transcript expression levels from simulated mRNA-Seq data, and higher agreement with qRT-PCR measurements of specific transcripts for real mRNA-Seq data. Conclusions IsoformEx is a fast and accurate algorithm to estimate transcript expression levels and gene expression levels, which takes into account short exons and alternative exons with a weighting scheme. The software is available at http://bioinformatics.wistar.upenn.edu/isoformex.

  16. Alu-miRNA interactions modulate transcript isoform diversity in stress response and reveal signatures of positive selection.

    Science.gov (United States)

    Pandey, Rajesh; Bhattacharya, Aniket; Bhardwaj, Vivek; Jha, Vineet; Mandal, Amit K; Mukerji, Mitali

    2016-01-01

    Primate-specific Alus harbor different regulatory features, including miRNA targets. In this study, we provide evidence for miRNA-mediated modulation of transcript isoform levels during heat-shock response through exaptation of Alu-miRNA sites in mature mRNA. We performed genome-wide expression profiling coupled with functional validation of miRNA target sites within exonized Alus, and analyzed conservation of these targets across primates. We observed that two miRNAs (miR-15a-3p and miR-302d-3p) elevated in stress response, target RAD1, GTSE1, NR2C1, FKBP9 and UBE2I exclusively within Alu. These genes map onto the p53 regulatory network. Ectopic overexpression of miR-15a-3p downregulates GTSE1 and RAD1 at the protein level and enhances cell survival. This Alu-mediated fine-tuning seems to be unique to humans as evident from the absence of orthologous sites in other primate lineages. We further analyzed signatures of selection on Alu-miRNA targets in the genome, using 1000 Genomes Phase-I data. We found that 198 out of 3177 Alu-exonized genes exhibit signatures of selection within Alu-miRNA sites, with 60 of them containing SNPs supported by multiple evidences (global-FST > 0.3, pair-wise-FST > 0.5, Fay-Wu's H  2.0, high ΔDAF) and implicated in p53 network. We propose that by affecting multiple genes, Alu-miRNA interactions have the potential to facilitate population-level adaptations in response to environmental challenges. PMID:27586304

  17. Tumor-specific usage of alternative transcription start sites in colorectal cancer identified by genome-wide exon array analysis

    Directory of Open Access Journals (Sweden)

    Laurila Kirsti

    2011-10-01

    Full Text Available Abstract Background Approximately half of all human genes use alternative transcription start sites (TSSs to control mRNA levels and broaden the transcriptional output in healthy tissues. Aberrant expression patterns promoting carcinogenesis, however, may arise from alternative promoter usage. Results By profiling 108 colorectal samples using exon arrays, we identified nine genes (TCF12, OSBPL1A, TRAK1, ANK3, CHEK1, UGP2, LMO7, ACSL5, and SCIN showing tumor-specific alternative TSS usage in both adenoma and cancer samples relative to normal mucosa. Analysis of independent exon array data sets corroborated these findings. Additionally, we confirmed the observed patterns for selected mRNAs using quantitative real-time reverse-transcription PCR. Interestingly, for some of the genes, the tumor-specific TSS usage was not restricted to colorectal cancer. A comprehensive survey of the nine genes in lung, bladder, liver, prostate, gastric, and brain cancer revealed significantly altered mRNA isoform ratios for CHEK1, OSBPL1A, and TCF12 in a subset of these cancer types. To identify the mechanism responsible for the shift in alternative TSS usage, we antagonized the Wnt-signaling pathway in DLD1 and Ls174T colorectal cancer cell lines, which remarkably led to a shift in the preferred TSS for both OSBPL1A and TRAK1. This indicated a regulatory role of the Wnt pathway in selecting TSS, possibly also involving TP53 and SOX9, as their transcription binding sites were enriched in the promoters of the tumor preferred isoforms together with their mRNA levels being increased in tumor samples. Finally, to evaluate the prognostic impact of the altered TSS usage, immunohistochemistry was used to show deregulation of the total protein levels of both TCF12 and OSBPL1A, corresponding to the mRNA levels observed. Furthermore, the level of nuclear TCF12 had a significant correlation to progression free survival in a cohort of 248 stage II colorectal cancer samples

  18. Novel P2 promoter-derived HNF4{alpha} isoforms with different N-terminus generated by alternate exon insertion

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jianmin, E-mail: jmhuang@partners.org [Pediatric Endocrine Unit, MassGeneral Hospital for Children and Harvard Medical School, Boston, Massachusetts, 02114-2696 (United States); Levitsky, Lynne L. [Pediatric Endocrine Unit, MassGeneral Hospital for Children and Harvard Medical School, Boston, Massachusetts, 02114-2696 (United States); Rhoads, David B., E-mail: rhoads@helix.mgh.harvard.edu [Pediatric Endocrine Unit, MassGeneral Hospital for Children and Harvard Medical School, Boston, Massachusetts, 02114-2696 (United States)

    2009-04-15

    Hepatocyte nuclear factor 4{alpha} (HNF4{alpha}) is a critical transcription factor for pancreas and liver development and functions in islet {beta} cells to maintain glucose homeostasis. Mutations in the human HNF4A gene lead to maturity onset diabetes of the young (MODY1) and polymorphisms are associated with increased risk for type 2 diabetes mellitus (T2DM). Expression of six HNF4{alpha} variants, three each from two developmentally regulated promoters, has been firmly established. We have now detected a new set of HNF4{alpha} variants designated HNF4{alpha}10-12 expressed from distal promoter P2. These variants, generated by inclusion of previously undetected exon 1E (human = 222 nt, rodent = 136 nt) following exon 1D have an altered N-terminus but identical remaining reading frame. HNF4{alpha}10-{alpha}12 are expressed in pancreatic islets (and liver) and exhibit transactivation potentials similar to the corresponding {alpha}7-{alpha}9 isoforms. DNA-binding analyses implied much higher protein levels of HNF4{alpha}10-{alpha}12 in liver than expected from the RT-PCR data. Our results provide evidence for a more complex expression pattern of HNF4{alpha} than previously appreciated. We recommend inclusion of exon 1E and nearby DNA sequences in screening for HNF4{alpha} mutations and polymorphisms in genetic analyses of MODY1 and T2DM.

  19. Ndt80 activates the meiotic ORC1 transcript isoform and SMA2 via a bi-directional middle sporulation element in Saccharomyces cerevisiae.

    Science.gov (United States)

    Xie, Bingning; Horecka, Joe; Chu, Angela; Davis, Ronald W; Becker, Emmanuelle; Primig, Michael

    2016-09-01

    The origin of replication complex subunit ORC1 is important for DNA replication. The gene is known to encode a meiotic transcript isoform (mORC1) with an extended 5'-untranslated region (5'-UTR), which was predicted to inhibit protein translation. However, the regulatory mechanism that controls the mORC1 transcript isoform is unknown and no molecular biological evidence for a role of mORC1 in negatively regulating Orc1 protein during gametogenesis is available. By interpreting RNA profiling data obtained with growing and sporulating diploid cells, mitotic haploid cells, and a starving diploid control strain, we determined that mORC1 is a middle meiotic transcript isoform. Regulatory motif predictions and genetic experiments reveal that the activator Ndt80 and its middle sporulation element (MSE) target motif are required for the full induction of mORC1 and the divergently transcribed meiotic SMA2 locus. Furthermore, we find that the MSE-binding negative regulator Sum1 represses both mORC1 and SMA2 during mitotic growth. Finally, we demonstrate that an MSE deletion strain, which cannot induce mORC1, contains abnormally high Orc1 levels during post-meiotic stages of gametogenesis. Our results reveal the regulatory mechanism that controls mORC1, highlighting a novel developmental stage-specific role for the MSE element in bi-directional mORC1/SMA2 gene activation, and correlating mORC1 induction with declining Orc1 protein levels. Because eukaryotic genes frequently encode multiple transcripts possessing 5'-UTRs of variable length, our results are likely relevant for gene expression during development and disease in higher eukaryotes. PMID:27362276

  20. ASPic-GeneID: A Lightweight Pipeline for Gene Prediction and Alternative Isoforms Detection

    Science.gov (United States)

    Alioto, Tyler; Picardi, Ernesto; Guigó, Roderic

    2013-01-01

    New genomes are being sequenced at an increasingly rapid rate, far outpacing the rate at which manual gene annotation can be performed. Automated genome annotation is thus necessitated by this growth in genome projects; however, full-fledged annotation systems are usually home-grown and customized to a particular genome. There is thus a renewed need for accurate ab initio gene prediction methods. However, it is apparent that fully ab initio methods fall short of the required level of sensitivity and specificity for a quality annotation. Evidence in the form of expressed sequences gives the single biggest improvement in accuracy when used to inform gene predictions. Here, we present a lightweight pipeline for first-pass gene prediction on newly sequenced genomes. The two main components are ASPic, a program that derives highly accurate, albeit not necessarily complete, EST-based transcript annotations from EST alignments, and GeneID, a standard gene prediction program, which we have modified to take as evidence intron annotations. The introns output by ASPic CDS predictions is given to GeneID to constrain the exon-chaining process and produce predictions consistent with the underlying EST alignments. The pipeline was successfully tested on the entire C. elegans genome and the 44 ENCODE human pilot regions. PMID:24308000

  1. Alternative splicing generates novel Fads3 transcript in mice.

    Science.gov (United States)

    Zhang, Ji Yao; Qin, Xia; Park, Hui Gyu; Kim, Ellen; Liu, Guowen; Kothapalli, Kumar S D; Brenna, J Thomas

    2016-08-01

    Fads3 is the third member of the fatty acid desaturase gene cluster; with at least eight evolutionarily conserved alternative transcripts (AT), having no clearly established function as are known for FADS2 and FADS1. Here we present identification of a novel Fads3 transcript in mice (Fads3AT9), characterize Fads3AT9 expression in mouse tissues and evaluate correlations with metabolite profiles. Total RNA obtained from mouse tissues is reverse-transcribed into cDNA and used as template for PCR reactions. Tissue fatty acids were extracted and quantified by gas chromatography. Sequencing analysis revealed complete absence of exon 2 resulting in an open reading frame of 1239 bp, encoding a putative protein of 412 aa with loss of 37 aa compared to classical Fads3 (Fads3CS). FADS3AT9 retains all the conserved regions characteristic of front end desaturase (cytochrome b5 domain and three histidine repeats). Both Fads3CS and Fads3AT9 are ubiquitously expressed in 11 mouse tissues. Fads3AT9 abundance was greater than Fads3CS in pancreas, liver, spleen, brown adipose tissue and thymus. Fads3CS expression is low in pancreas while Fads3AT9 is over ten-fold greater abundance. The eicosanoid precursor fatty acid 20:4n - 6, the immediate desaturation product of the Fads1 coded Δ5-desaturase, was highest in pancreas where Fads3CS is low. Changes in expression patterns and fatty acid profiles suggest that Fads3AT9 may play a role in the regulation and/or biosynthesis of long chain polyunsaturated fatty acids from precursors. PMID:27216536

  2. C/EBP transcription factors in human squamous cell carcinoma: selective changes in expression of isoforms correlate with the neoplastic state.

    Directory of Open Access Journals (Sweden)

    Sanjay Anand

    Full Text Available The CCAAT/Enhancer Binding Proteins (C/EBPs are a family of leucine-zipper transcription factors that regulate physiological processes such as energy metabolism, inflammation, cell cycle, and the development and differentiation of several tissues including skin. Recently, a role for C/EBPs in tumor cell proliferation and differentiation has been proposed, but the incomplete characterization in the literature of multiple translational isoforms of these proteins has made interpretation of these roles difficult. Therefore, we have carefully reexamined C/EBP isoform expression in human non-melanoma skin cancers. C/EBPα, C/EBPβ, and C/EBPδ were analyzed histologically in squamous cell carcinomas (SCC. The individual isoforms of C/EBPα and C/EBPβ were examined by immunofluorescent digital imaging, western blotting and DNA binding activity (electrophoretic mobility shift analysis. Expression of all C/EBP family proteins was decreased in SCC tumors. Suppression was greatest for C/EBPα, less for C/EBPβ, and least for C/EBPδ. Western analyses confirmed that C/EBPα p42 and p30 isoforms were decreased. For C/EBPβ, only the abundant full-length isoform (C/EBPβ-1, LAP*, 55 kD was reduced, whereas the smaller isoforms, C/EBPβ-2 (LAP, 48 kD and C/EBPβ-3 (LIP, 20 kD, which are predominantly nuclear, were significantly increased in well- and moderately-differentiated SCC (up to 14-fold for C/EBPβ-3. These elevations correlated with increases in PCNA, a marker of proliferation. Although C/EBPβ displayed increased post-translational modifications in SCC, phosphorylation of C/EBPβ-1 (Thr 235 was not altered. C/EBP-specific DNA binding activity in nuclear and whole-cell extracts of cultured cells and tumors was predominantly attributable to C/EBPβ. In summary, two short C/EBPβ isoforms, C/EBPβ-2 and C/EBPβ-3, represent strong candidate markers for epithelial skin malignancy, due to their preferential expression in carcinoma versus normal skin, and

  3. Effect of proteasome inhibitors on expression of HLA-G isoforms.

    Science.gov (United States)

    Poláková, K; Bandzuchová, E; Bystrická, M; Pancuchárová, H; Russ, G

    2006-01-01

    HLA-G primary transcript is alternatively spliced into a number of mRNAs. In addition to full length HLA-G1 protein isoform these mRNAs might also encode truncated HLA-G protein isoforms lacking one or two extracellular domains. Whereas HLA-G1 protein isoform is regularly identified, truncated HLAG protein isoforms are not detected even if all alternative spliced mRNAs are present in cells. The absence of entire domain(s) renders the truncated HLA-G protein isoforms incapable of binding peptide and beta2-microglobulin. These features of truncated HLA-G protein isoforms may result in their rapid degradation by proteasomes. Here we show that despite the presence of all alternatively spliced HLA-G transcripts in JEG-3 cells pretreated with proteasome inhibitors only a full length HLA-G1 protein isoform was regularly detected. Interestingly, immunoblot analysis showed slight increase of HLA-G1 protein in cells pretreated with proteasome inhibitors, although the expression of HLA-G1 transcript was basically not affected. Expression of HLA-G3 transcript increased in JEG-3 cells pre-incubated with LLL, however, neither HLA-G3 nor other HLA-G short protein isoform was regularly detected. In K562 transfectants proteasome inhibitor LLL greatly enhanced expression of the HLA-G1 and -G2 transcripts as well as corresponding protein isoforms. Flow cytometry analysis showed that in cells pre-treated with proteasome inhibitors cell surface expression of HLA-G1 protein decreased but the quantity of intracellularly localized HLA-G antigens increased. Altogether our results suggest that truncated HLA-G proteins isoforms are not detected in JEG-3 cells as a result of their instability and the low translation efficiency of truncated HLA-G transcripts.

  4. Characterization of the Sesbania rostrata Phytochelatin Synthase Gene: Alternative Splicing and Function of Four Isoforms

    Directory of Open Access Journals (Sweden)

    Zeng-Fu Xu

    2009-07-01

    Full Text Available Phytochelatins (PCs play an important role in detoxification of heavy metals in plants. PCs are synthesized from glutathione by phytochelatin synthase (PCS, a dipeptidyltransferase. Sesbania rostrata is a tropical legume plant that can tolerate high concentrations of Cd and Zn. In this study, the S. rostrata PCS gene (SrPCS and cDNAs were isolated and characterized. Southern blot and sequence analysis revealed that a single copy of the SrPCS gene occurs in the S. rostrata genome, and produces four different SrPCS mRNAs and proteins, SrPCS1-SrPCS4, by alternative splicing of the SrPCS pre-mRNA. The SrPCS1 and SrPCS3 proteins conferred Cd tolerance when expressed in yeast cells, whereas the SrPCS2 and SrPCS4 proteins, which lack the catalytic triad and the N-terminal domains, did not. These results suggested that SrPCS1 and SrPCS3 have potential applications in genetic engineering of plants for enhancing heavy metal tolerance and phytoremediation of contaminated soils.

  5. Cell-specific expression of TLR9 isoforms in inflammation.

    Science.gov (United States)

    McKelvey, Kelly J; Highton, John; Hessian, Paul A

    2011-02-01

    Toll-like receptors (TLRs) are key pattern recognition receptors during an immune response. With five isoforms of human TLR9 described, we hypothesised that differential expression of TLR9 isoforms in different cell types would result in variable contributions to the overall input from TLR9 during inflammation. We assessed the molecular expression of the TLR9 isoforms, TLR9-A, -C and -D. In normal peripheral blood mononuclear cells, B-lymphocytes express ∼100-fold more TLR9-A transcript than monocytes or T-lymphocytes, which predominantly express the TLR9-C transcript. Switches in isoform predominance accompany B-lymphocyte development. TLR9 protein expression in rheumatoid inflammatory lesions reflected the TLR9 isoform expression by immune cells. Herein we suggest that B-lymphocytes and plasmacytoid dendritic cells contribute the ∼3-fold higher TLR9-A transcript levels observed in inflamed synovium when compared to subcutaneous rheumatoid nodules. In contrast, macrophages and T-lymphocytes contribute the ∼4-fold higher TLR9-C transcript levels seen in nodules, compared to synovia. From protein sequence, predictions of subcellular localisation suggest TLR9-B may locate to the mitochondria, whereas TLR9-D adopts an opposing orientation in the endoplasmic reticulum. Consistent with this, structure models raise the possibility of alternative ligands for the TLR9-B and TLR9-D variants. Our results highlight differences in the expression of human TLR9 isoforms in normal and inflamed tissues, with differing contributions to inflammation.

  6. First Trimester Pregnancy Loss and the Expression of alternatively spliced NKp30 isoforms in Maternal Blood and Placental Tissue

    Directory of Open Access Journals (Sweden)

    Avishai eShemesh

    2015-06-01

    Full Text Available In this study, we aimed to investigate whether first trimester pregnancy loss is associated with differences in expression of NKp30 splice variants (isoforms in maternal peripheral blood or placental tissue. We conducted a prospective case-control study; a total of 33 women undergoing dilation and curettage due to first trimester pregnancy loss were further subdivided into groups with sporadic or recurrent pregnancy loss. The control group was comprised of women undergoing elective termination of pregnancy. The qPCR approach was employed to assess the relative expression of NKp30 isoforms as well as the total expression of NKp30 and NKp46 receptors between the selected groups. Results show that in both PBMC and placental tissue, NKp46 and NKp30 expression was mildly elevated in the pregnancy loss groups compared with the elective group. In particular, NKp46 elevation was significant. Moreover, expression analysis of NKp30 isoforms manifested a different profile between PBMC and the placenta. NKp30-a and NKp30-b isoforms in the placental tissue, but not in PBMC, showed a significant increase in the pregnancy loss groups compared with the elective group. Placental expression of NKp30 activating isoforms -a and -b in the pregnancy loss groups was negatively correlated with PLGF expression. In contrast, placental expression of these isoforms in the elective group was positively correlated with TNFα, IL-10 and VEGF-A expression. The altered expression of NKp30 activating isoforms in placental tissue from patients with pregnancy loss compared to the elective group and the different correlations with cytokine expression point to the involvement of NKp30-mediated function in pregnancy loss.

  7. Archaeal Transcription: Function of an Alternative Transcription Factor B from Pyrococcus furiosus▿

    OpenAIRE

    Micorescu, Michael; Grünberg, Sebastian; Franke, Andreas; Cramer, Patrick; Thomm, Michael; Bartlett, Michael

    2007-01-01

    The genome of the hyperthermophile archaeon Pyrococcus furiosus encodes two transcription factor B (TFB) paralogs, one of which (TFB1) was previously characterized in transcription initiation. The second TFB (TFB2) is unusual in that it lacks recognizable homology to the archaeal TFB/eukaryotic TFIIB B-finger motif. TFB2 functions poorly in promoter-dependent transcription initiation, but photochemical cross-linking experiments indicated that the orientation and occupancy of transcription com...

  8. Alternative Splicing of Type II Procollagen: IIB or not IIB?

    OpenAIRE

    McAlinden, Audrey

    2014-01-01

    Over two decades ago, two isoforms of the type II procollagen gene (COL2A1) were discovered. These isoforms, named IIA and IIB, are generated in a developmentally-regulated manner by alternative splicing of exon 2. Chondroprogenitor cells synthesize predominantly IIA isoforms (containing exon 2) while differentiated chondrocytes produce mainly IIB transcripts (devoid of exon 2). Importantly, this IIA-to-IIB alternative splicing switch occurs only during chondrogenesis. More recently, two othe...

  9. Estrogen Receptor α (ERα) and Estrogen Related Receptor α (ERRα) are both transcriptional regulators of the Runx2-I isoform.

    Science.gov (United States)

    Kammerer, Martial; Gutzwiller, Sabine; Stauffer, Daniela; Delhon, Isabelle; Seltenmeyer, Yves; Fournier, Brigitte

    2013-04-30

    Runx2 is a master regulator of bone development and has also been described as an oncogene. Estrogen Receptor α (ERα) and Estrogen Related Receptor α (ERRα), both implicated in bone metabolism and breast cancer, have been shown to share common transcriptional targets. Here, we show that ERα is a positive regulator of Runx2-I transcription. Moreover, ERRα can act as a transcriptional activator of Runx2-I in presence of peroxisome proliferator activated receptor gamma coactivator-1 alpha (PGC-1α). In contrast, ERRα behaves as a negative regulator of Runx2-I transcription in presence of PGC-1β. ERα and ERRα cross-talk via a common estrogen receptor response element on the Runx2-I promoter. In addition, estrogen regulates PGC-1β that in turn is able to modulate both ERα and ERRα transcriptional activity.

  10. Prognostic impact of alternative splicing-derived hMENA isoforms in resected, node-negative, non-small-cell lung cancer

    Science.gov (United States)

    Sperduti, Isabella; Iapicca, Pierluigi; Visca, Paolo; Alessandrini, Gabriele; Antoniani, Barbara; Pilotto, Sara; Ludovini, Vienna; Vannucci, Jacopo; Bellezza, Guido; Sidoni, Angelo; Tortora, Giampaolo; Radisky, Derek C.; Crinò, Lucio; Cognetti, Francesco; Facciolo, Francesco; Mottolese, Marcella

    2014-01-01

    Risk assessment and treatment choice remain a challenge in early non-small-cell lung cancer (NSCLC). Alternative splicing is an emerging source for diagnostic, prognostic and therapeutic tools. Here, we investigated the prognostic value of the actin cytoskeleton regulator hMENA and its isoforms, hMENA11a and hMENAΔv6, in early NSCLC. The epithelial hMENA11a isoform was expressed in NSCLC lines expressing E-CADHERIN and was alternatively expressed with hMENAΔv6. Enforced expression of hMENAΔv6 or hMENA11a increased or decreased the invasive ability of A549 cells, respectively. hMENA isoform expression was evaluated in 248 node-negative NSCLC. High pan-hMENA and low hMENA11a were the only independent predictors of shorter disease-free and cancer-specific survival, and low hMENA11a was an independent predictor of shorter overall survival, at multivariate analysis. Patients with low pan-hMENA/high hMENA11a expression fared significantly better (P≤0.0015) than any other subgroup. Such hybrid variable was incorporated with T-size and number of resected lymph nodes into a 3-class-risk stratification model, which strikingly discriminated between different risks of relapse, cancer-related death, and death. The model was externally validated in an independent dataset of 133 patients. Relative expression of hMENA splice isoforms is a powerful prognostic factor in early NSCLC, complementing clinical parameters to accurately predict individual patient risk. PMID:25373410

  11. CCAAT/enhancer binding protein β (C/EBPβ isoforms as transcriptional regulators of the pro-invasive CDH3/P-cadherin gene in human breast cancer cells.

    Directory of Open Access Journals (Sweden)

    André Albergaria

    Full Text Available P-cadherin is a cell-cell adhesion molecule codified by the CDH3 gene, which expression is highly associated with undifferentiated cells in normal adult epithelial tissues, as well as with poorly differentiated carcinomas. In breast cancer, P-cadherin is frequently overexpressed in high-grade tumours and is a well-established indicator of aggressive tumour behaviour and poor patient prognosis. However, till now, the mechanisms controlling CDH3 gene activation have been poorly explored. Since we recently described the existence of several CCAAT/Enhancer Binding Protein β (C/EBPβ transcription factor binding sites at the CDH3 promoter, the aim of this study was to assess if the distinct C/EBPβ isoforms were directly involved in the transcriptional activation of the CDH3 gene in breast cancer cells. DNA-protein interactions, mutation analysis and luciferase reporter assay studies have been performed. We demonstrated that C/EBPβ is co-expressed with P-cadherin in breast cancer cells and all the three isoforms function as transcriptional regulators of the CDH3 gene, directly interacting with specific regions of its promoter. Interestingly, this transcriptional activation was only reflected at the P-cadherin protein level concerning the LIP isoform. Taken together, our data show that CDH3 is a newly defined transcriptional target gene of C/EBPβ isoforms in breast cancer, and we also identified the binding sites that are relevant for this activation.

  12. Revised genomic structure of the human ghrelin gene and identification of novel exons, alternative splice variants and natural antisense transcripts

    Directory of Open Access Journals (Sweden)

    Herington Adrian C

    2007-08-01

    Full Text Available Abstract Background Ghrelin is a multifunctional peptide hormone expressed in a range of normal tissues and pathologies. It has been reported that the human ghrelin gene consists of five exons which span 5 kb of genomic DNA on chromosome 3 and includes a 20 bp non-coding first exon (20 bp exon 0. The availability of bioinformatic tools enabling comparative analysis and the finalisation of the human genome prompted us to re-examine the genomic structure of the ghrelin locus. Results We have demonstrated the presence of an additional novel exon (exon -1 and 5' extensions to exon 0 and 1 using comparative in silico analysis and have demonstrated their existence experimentally using RT-PCR and 5' RACE. A revised exon-intron structure demonstrates that the human ghrelin gene spans 7.2 kb and consists of six rather than five exons. Several ghrelin gene-derived splice forms were detected in a range of human tissues and cell lines. We have demonstrated ghrelin gene-derived mRNA transcripts that do not code for ghrelin, but instead may encode the C-terminal region of full-length preproghrelin (C-ghrelin, which contains the coding region for obestatin and a transcript encoding obestatin-only. Splice variants that differed in their 5' untranslated regions were also found, suggesting a role of these regions in the post-transcriptional regulation of preproghrelin translation. Finally, several natural antisense transcripts, termed ghrelinOS (ghrelin opposite strand transcripts, were demonstrated via orientation-specific RT-PCR, 5' RACE and in silico analysis of ESTs and cloned amplicons. Conclusion The sense and antisense alternative transcripts demonstrated in this study may function as non-coding regulatory RNA, or code for novel protein isoforms. This is the first demonstration of putative obestatin and C-ghrelin specific transcripts and these findings suggest that these ghrelin gene-derived peptides may also be produced independently of preproghrelin

  13. Identification of a new isoform of the human estrogen receptor-alpha (hER-α) that is encoded by distinct transcripts and that is able to repress hER-α activation function 1

    OpenAIRE

    Flouriot, Gilles; Brand, Heike; Denger, Stefanie; Metivier, Raphaël; Kos, Martin; Reid, George; Sonntag-Buck, Vera; Gannon, Frank

    2000-01-01

    A new isoform of the human estrogen receptor-alpha (hER-α) has been identified and characterized. This 46 kDa isoform (hERα46) lacks the N-terminal 173 amino acids present in the previously characterized 66 kDa isoform (hERα66). hERα46 is encoded by a new class of hER-α transcript that lacks the first coding exon (exon 1A) of the ER-α gene. We demonstrated that these Δ1A hER-α transcripts originate from the E and F hER-α promoters and are produced by the splicing of exon 1E directly to exon 2...

  14. Genome-wide analysis of alternative transcripts in human breast cancer

    Science.gov (United States)

    Wen, Ji; Toomer, Kevin H.

    2016-01-01

    Transcript variants play a critical role in diversifying gene expression. Alternative splicing is a major mechanism for generating transcript variants. A number of genes have been implicated in breast cancer pathogenesis with their aberrant expression of alternative transcripts. In this study, we performed genome-wide analyses of transcript variant expression in breast cancer. With RNA-Seq data from 105 patients, we characterized the transcriptome of breast tumors, by pairwise comparison of gene expression in the breast tumor versus matched healthy tissue from each patient. We identified 2839 genes, ~10 % of protein-coding genes in the human genome, that had differential expression of transcript variants between tumors and healthy tissues. The validity of the computational analysis was confirmed by quantitative RT-PCR assessment of transcript variant expression from four top candidate genes. The alternative transcript profiling led to classification of breast cancer into two subgroups and yielded a novel molecular signature that could be prognostic of patients’ tumor burden and survival. We uncovered nine splicing factors (FOX2, MBNL1, QKI, PTBP1, ELAVL1, HNRNPC, KHDRBS1, SFRS2, and TIAR) that were involved in aberrant splicing in breast cancer. Network analyses for the coordinative patterns of transcript variant expression identified twelve “hub” genes that differentiated the cancerous and normal transcriptomes. Dysregulated expression of alternative transcripts may reveal novel biomarkers for tumor development. It may also suggest new therapeutic targets, such as the “hub” genes identified through the network analyses of transcript variant expression, or splicing factors implicated in the formation of the tumor transcriptome. PMID:25913416

  15. Principles for RNA metabolism and alternative transcription initiation within closely spaced promoters

    DEFF Research Database (Denmark)

    Chen, Yun; Pai, Athma A; Herudek, Jan;

    2016-01-01

    Mammalian transcriptomes are complex and formed by extensive promoter activity. In addition, gene promoters are largely divergent and initiate transcription of reverse-oriented promoter upstream transcripts (PROMPTs). Although PROMPTs are commonly terminated early, influenced by polyadenylation...... sites, promoters often cluster so that the divergent activity of one might impact another. Here we found that the distance between promoters strongly correlates with the expression, stability and length of their associated PROMPTs. Adjacent promoters driving divergent mRNA transcription support PROMPT...... formation, but owing to polyadenylation site constraints, these transcripts tend to spread into the neighboring mRNA on the same strand. This mechanism to derive new alternative mRNA transcription start sites (TSSs) is also evident at closely spaced promoters supporting convergent mRNA transcription. We...

  16. Cytoplasmic male sterility of tuber mustard is associated with the alternative spliced mitochondrial T gene transcripts

    Institute of Scientific and Technical Information of China (English)

    PEI Yanxi; CHEN Zhujun; CAO Jiashu; CHEN Xuejun; LIU Xiaohui

    2004-01-01

    Two transcripts of T gene, T1170 and T1243, were obtained from the mitochondrial cDNA of tuber mustard CMS line. T1243 was a transcript with an intron unspliced, which has the basic characteristics of type Ⅱ intron. The expressions of the two transcripts were analyzed by reverse transcription PCR (RT-PCR). The results showed that, at seedling stage, the expression of T gene was mainly in the form of T1170 but decreased with the development gradually, while the expression abundance of another transcript, T1243, increased gradually. The T1243 was prevalent at the profuse flowering stage. The expression pattern was confirmed by Northern blot analysis. These results suggested that the alternative spliced mitochondrial T gene transcripts were related to CMS of tuber mustard.

  17. Isoforms of elongation factor eEF1A may be differently regulated at post-transcriptional level in breast cancer progression

    Directory of Open Access Journals (Sweden)

    Vislovukh A. A.

    2013-01-01

    Full Text Available Eukaryotic translation elongation factor 1A exists as two 98 % homologous isoforms: eEF1A1 (A1 and eEF1A2 (A2 which are tissue and development specific. Despite high homology in an open reading frame (ORF region, mRNAs coding for eEF1A1 and eEF1A2 are different in their untranslated regions (UTR, suggesting a possibility of their dissimilar post-transcriptional regulation. Aim. To analyze the existence of cis-acting motifs in the UTRs of EEF1A1/A2 mRNAs, to confirm the possibility of post-transcriptional control of eEF1A1 and eEF1A2 expression. Methods. An ensemble of bioinformatic methods was applied to predict regulatory motifs in the UTRs of EEF1A1/A2 mRNAs. Dual-luciferase reporter assay was employed to detect post-transcriptional regulation of eEF1A1/A2 expression. Results. Numerous regulatory motifs in the UTR of EEF1A1/A2 mRNAs were found bioinformatically. The experimental evidence was obtained for the existence of negative regulation of EEF1A1 and positive regulation of EEF1A2 mRNA in the model of breast cancer development. Conclusions. EEF1A1 and EEF1A2 mRNAs contain distinct motifs in the UTRs and are differently regulated in cancer suggesting the possibility of their control by different cellular signals.

  18. DBIRD complex integrates alternative mRNA splicing with RNA polymerase II transcript elongation

    DEFF Research Database (Denmark)

    Close, Pierre; East, Philip; Dirac-Svejstrup, A Barbara;

    2012-01-01

    Alternative messenger RNA splicing is the main reason that vast mammalian proteomic complexity can be achieved with a limited number of genes. Splicing is physically and functionally coupled to transcription, and is greatly affected by the rate of transcript elongation. As the nascent pre...... and help to integrate transcript elongation with mRNA splicing remain unclear. Here we characterize the human interactome of chromatin-associated mRNP particles. This led us to identify deleted in breast cancer 1 (DBC1) and ZNF326 (which we call ZNF-protein interacting with nuclear mRNPs and DBC1 (ZIRD......)) as subunits of a novel protein complex--named DBIRD--that binds directly to RNAPII. DBIRD regulates alternative splicing of a large set of exons embedded in (A + T)-rich DNA, and is present at the affected exons. RNA-interference-mediated DBIRD depletion results in region-specific decreases in transcript...

  19. Transcription regulation of AAC3 gene encoding hypoxic isoform of ADP/ATP carrier in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Two repressoric regions are present in the AAC3 promoter, termed URS1 and URS2. URS1 region is responsible for a carbon source-dependent regulation and plays a role under both, aerobic and anaerobic conditions. By deletion analysis URS1 was localized into the -322/-244 region and was found that the regulation is likely exerted by the repression by non-fermentable or non-repressing fermentable carbon sources than by the activation by repressing carbon source. By computer analysis cis sequences for two potential transcription factors, Rap1 and ERA, were identified within URS1. Rap1 binding into its consensus sequence was proved, effort to find the protein binding to the ERA cis regulatory sequences has failed. By the means of mutational analysis we revealed that the regulation pathway mediating the carbon source-dependent regulation via URS1 differs according to the presence or absence of oxygen in the growth medium. Under aerobic conditions the carbon source-dependent repression is mediated by the ERA factor and the role of Rap1 is only marginal. On the contrary, under anaerobic conditions, the repression is mediated solely by Rap1. AAC1 gene product might be involved in the regulation of the AAC3 gene, the regulation pathway has not been characterized yet. (author)

  20. Alternative-splicing in the exon-10 region of GABA(A receptor beta(2 subunit gene: relationships between novel isoforms and psychotic disorders.

    Directory of Open Access Journals (Sweden)

    Cunyou Zhao

    Full Text Available BACKGROUND: Non-coding single nucleotide polymorphisms (SNPs in GABRB2, the gene for beta(2-subunit of gamma-aminobutyric acid type A (GABA(A receptor, have been associated with schizophrenia (SCZ and quantitatively correlated to mRNA expression and alternative splicing. METHODS AND FINDINGS: Expression of the Exon 10 region of GABRB2 from minigene constructs revealed this region to be an "alternative splicing hotspot" that readily gave rise to differently spliced isoforms depending on intron sequences. This led to a search in human brain cDNA libraries, and the discovery of two novel isoforms, beta(2S1 and beta(2S2, bearing variations in the neighborhood of Exon-10. Quantitative real-time PCR analysis of postmortem brain samples showed increased beta(2S1 expression and decreased beta(2S2 expression in both SCZ and bipolar disorder (BPD compared to controls. Disease-control differences were significantly correlated with SNP rs187269 in BPD males for both beta(2S1 and beta(2S2 expressions, and significantly correlated with SNPs rs2546620 and rs187269 in SCZ males for beta(2S2 expression. Moreover, site-directed mutagenesis indicated that Thr(365, a potential phosphorylation site in Exon-10, played a key role in determining the time profile of the ATP-dependent electrophysiological current run-down. CONCLUSION: This study therefore provided experimental evidence for the importance of non-coding sequences in the Exon-10 region in GABRB2 with respect to beta(2-subunit splicing diversity and the etiologies of SCZ and BPD.

  1. Bipartite functions of the CREB co-activators selectively direct alternative splicing or transcriptional activation.

    Science.gov (United States)

    Amelio, Antonio L; Caputi, Massimo; Conkright, Michael D

    2009-09-16

    The CREB regulated transcription co-activators (CRTCs) regulate many biological processes by integrating and converting environmental inputs into transcriptional responses. Although the mechanisms by which CRTCs sense cellular signals are characterized, little is known regarding how CRTCs contribute to the regulation of cAMP inducible genes. Here we show that these dynamic regulators, unlike other co-activators, independently direct either pre-mRNA splice-site selection or transcriptional activation depending on the cell type or promoter context. Moreover, in other scenarios, the CRTC co-activators coordinately regulate transcription and splicing. Mutational analyses showed that CRTCs possess distinct functional domains responsible for regulating either pre-mRNA splicing or transcriptional activation. Interestingly, the CRTC1-MAML2 oncoprotein lacks the splicing domain and is incapable of altering splice-site selection despite robustly activating transcription. The differential usage of these distinct domains allows CRTCs to selectively mediate multiple facets of gene regulation, indicating that co-activators are not solely restricted to coordinating alternative splicing with increase in transcriptional activity.

  2. p53 regulates the transcription of its Delta133p53 isoform through specific response elements contained within the TP53 P2 internal promoter.

    Science.gov (United States)

    Marcel, V; Vijayakumar, V; Fernández-Cuesta, L; Hafsi, H; Sagne, C; Hautefeuille, A; Olivier, M; Hainaut, P

    2010-05-01

    The tumor suppressor p53 protein is activated by genotoxic stress and regulates genes involved in senescence, apoptosis and cell-cycle arrest. Nine p53 isoforms have been described that may modulate suppressive functions of the canonical p53 protein. Among them, Delta133p53 lacks the 132 proximal residues and has been shown to modulate p53-induced apoptosis and cell-cycle arrest. Delta133p53 is expressed from a specific mRNA, p53I4, driven by an alternative promoter P2 located between intron 1 and exon 5 of TP53 gene. Here, we report that the P2 promoter is regulated in a p53-dependent manner. Delta133p53 expression is increased in response to DNA damage by doxorubicin in p53 wild-type cell lines, but not in p53-mutated cells. Chromatin immunoprecipitation and luciferase assays using P2 promoter deletion constructs indicate that p53 binds functional response elements located within the P2 promoter. We also show that Delta133p53 does not bind specifically to p53 consensus DNA sequence in vitro, but competes with wild-type p53 in specific DNA-binding assays. Finally, we report that Delta133p53 counteracts p53-dependent growth suppression in clonogenic assays. These observations indicate that Delta133p53 is a novel target of p53 that may participate in a negative feedback loop controlling p53 function. PMID:20190805

  3. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level.

    OpenAIRE

    Federico Abascal; Iakes Ezkurdia; Juan Rodriguez-Rivas; Jose Manuel Rodriguez; Angela del Pozo; Jesús Vázquez; Alfonso Valencia; Tress, Michael L.

    2015-01-01

    Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a...

  4. Redefining the transcriptional regulatory dynamics of classically and alternatively activated macrophages by deepCAGE transcriptomics

    KAUST Repository

    Roy, S.

    2015-06-27

    Classically or alternatively activated macrophages (M1 and M2, respectively) play distinct and important roles for microbiocidal activity, regulation of inflammation and tissue homeostasis. Despite this, their transcriptional regulatory dynamics are poorly understood. Using promoter-level expression profiling by non-biased deepCAGE we have studied the transcriptional dynamics of classically and alternatively activated macrophages. Transcription factor (TF) binding motif activity analysis revealed four motifs, NFKB1_REL_RELA, IRF1,2, IRF7 and TBP that are commonly activated but have distinct activity dynamics in M1 and M2 activation. We observe matching changes in the expression profiles of the corresponding TFs and show that only a restricted set of TFs change expression. There is an overall drastic and transient up-regulation in M1 and a weaker and more sustainable up-regulation in M2. Novel TFs, such as Thap6, Maff, (M1) and Hivep1, Nfil3, Prdm1, (M2) among others, were suggested to be involved in the activation processes. Additionally, 52 (M1) and 67 (M2) novel differentially expressed genes and, for the first time, several differentially expressed long non-coding RNA (lncRNA) transcriptome markers were identified. In conclusion, the finding of novel motifs, TFs and protein-coding and lncRNA genes is an important step forward to fully understand the transcriptional machinery of macrophage activation.

  5. ASPicDB: a database of annotated transcript and protein variants generated by alternative splicing

    Science.gov (United States)

    Martelli, Pier L.; D’Antonio, Mattia; Bonizzoni, Paola; Castrignanò, Tiziana; D’Erchia, Anna M.; D’Onorio De Meo, Paolo; Fariselli, Piero; Finelli, Michele; Licciulli, Flavio; Mangiulli, Marina; Mignone, Flavio; Pavesi, Giulio; Picardi, Ernesto; Rizzi, Raffaella; Rossi, Ivan; Valletti, Alessio; Zauli, Andrea; Zambelli, Federico; Casadio, Rita; Pesole, Graziano

    2011-01-01

    Alternative splicing is emerging as a major mechanism for the expansion of the transcriptome and proteome diversity, particularly in human and other vertebrates. However, the proportion of alternative transcripts and proteins actually endowed with functional activity is currently highly debated. We present here a new release of ASPicDB which now provides a unique annotation resource of human protein variants generated by alternative splicing. A total of 256 939 protein variants from 17 191 multi-exon genes have been extensively annotated through state of the art machine learning tools providing information of the protein type (globular and transmembrane), localization, presence of PFAM domains, signal peptides, GPI-anchor propeptides, transmembrane and coiled-coil segments. Furthermore, full-length variants can be now specifically selected based on the annotation of CAGE-tags and polyA signal and/or polyA sites, marking transcription initiation and termination sites, respectively. The retrieval can be carried out at gene, transcript, exon, protein or splice site level allowing the selection of data sets fulfilling one or more features settled by the user. The retrieval interface also enables the selection of protein variants showing specific differences in the annotated features. ASPicDB is available at http://www.caspur.it/ASPicDB/. PMID:21051348

  6. Positive autoregulation of the transcription factor Pax6 in response to increased levels of either of its major isoforms, Pax6 or Pax6(5a, in cultured cells

    Directory of Open Access Journals (Sweden)

    Mason John O

    2006-05-01

    Full Text Available Abstract Background Pax6 is a transcription factor essential for normal development of the eyes and nervous system. It has two major isoforms, Pax6 and Pax6(5a, and the ratios between their expression levels vary within narrow limits. We tested the effects of overexpressing either one or other isoform on endogenous Pax6 expression levels in Neuro2A and NIH3T3 cells. Results We found that both isoforms caused an up-regulation of endogenous Pax6 expression in cells with (Neuro2A or without (NIH3T3 constitutive Pax6 expression. Western blots showed that cells stably transfected with constructs expressing either Pax6 or Pax6(5a contained raised levels of both Pax6 and Pax6(5a. Quantitative RT-PCR confirmed an increase in levels of Pax6(5a mRNA in cells containing Pax6-expressing constructs and an increase in levels of Pax6 mRNA in cells containing Pax6(5a-expressing constructs. The fact that the introduction of constructs expressing only one isoform increased the cellular levels of not only that isoform but also the other indicates that activation of the endogenous Pax6 locus occurred. The ratio between the levels of the two isoforms was maintained close to physiological values. The overexpression of either isoform in neuroblastoma (Neuro2A cell lines also promoted morphological change and an increase in β-III-tubulin expression, indicating an increase in neurogenesis. Conclusion Our results demonstrate that Pax6 can up-regulate production of Pax6 protein from an entire intact endogenous Pax6 locus in its genomic environment. This adds to previous studies showing that Pax6 can up-regulate reporter expression driven by isolated Pax6 regulatory elements. Furthermore, our results suggest that an important function of positive feedback might be to stabilise the relative levels of Pax6 and Pax6(5a.

  7. A coding-independent function of an alternative Ube3a transcript during neuronal development.

    Science.gov (United States)

    Valluy, Jeremy; Bicker, Silvia; Aksoy-Aksel, Ayla; Lackinger, Martin; Sumer, Simon; Fiore, Roberto; Wüst, Tatjana; Seffer, Dominik; Metge, Franziska; Dieterich, Christoph; Wöhr, Markus; Schwarting, Rainer; Schratt, Gerhard

    2015-05-01

    The E3 ubiquitin ligase Ube3a is an important regulator of activity-dependent synapse development and plasticity. Ube3a mutations cause Angelman syndrome and have been associated with autism spectrum disorders (ASD). However, the biological significance of alternative Ube3a transcripts generated in mammalian neurons remains unknown. We report here that Ube3a1 RNA, a transcript that encodes a truncated Ube3a protein lacking catalytic activity, prevents exuberant dendrite growth and promotes spine maturation in rat hippocampal neurons. Surprisingly, Ube3a1 RNA function was independent of its coding sequence but instead required a unique 3' untranslated region and an intact microRNA pathway. Ube3a1 RNA knockdown increased activity of the plasticity-regulating miR-134, suggesting that Ube3a1 RNA acts as a dendritic competing endogenous RNA. Accordingly, the dendrite-growth-promoting effect of Ube3a1 RNA knockdown in vivo is abolished in mice lacking miR-134. Taken together, our results define a noncoding function of an alternative Ube3a transcript in dendritic protein synthesis, with potential implications for Angelman syndrome and ASD. PMID:25867122

  8. The differential expression of alternatively polyadenylated transcripts is a common stress-induced response mechanism that modulates mammalian mRNA expression in a quantitative and qualitative fashion.

    Science.gov (United States)

    Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W; Kulozik, Andreas E

    2016-09-01

    Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells. PMID:27407180

  9. Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity.

    Science.gov (United States)

    Raissig, Michael T; Abrash, Emily; Bettadapur, Akhila; Vogel, John P; Bergmann, Dominique C

    2016-07-19

    Stomata, epidermal valves facilitating plant-atmosphere gas exchange, represent a powerful model for understanding cell fate and pattern in plants. Core basic helix-loop-helix (bHLH) transcription factors regulating stomatal development were identified in Arabidopsis, but this dicot's developmental pattern and stomatal morphology represent only one of many possibilities in nature. Here, using unbiased forward genetic screens, followed by analysis of reporters and engineered mutants, we show that stomatal initiation in the grass Brachypodium distachyon uses orthologs of stomatal regulators known from Arabidopsis but that the function and behavior of individual genes, the relationships among genes, and the regulation of their protein products have diverged. Our results highlight ways in which a kernel of conserved genes may be alternatively wired to produce diversity in patterning and morphology and suggest that the stomatal transcription factor module is a prime target for breeding or genome modification to improve plant productivity. PMID:27382177

  10. Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity

    Science.gov (United States)

    Raissig, Michael T.; Abrash, Emily; Bettadapur, Akhila; Bergmann, Dominique C.

    2016-01-01

    Stomata, epidermal valves facilitating plant–atmosphere gas exchange, represent a powerful model for understanding cell fate and pattern in plants. Core basic helix–loop–helix (bHLH) transcription factors regulating stomatal development were identified in Arabidopsis, but this dicot’s developmental pattern and stomatal morphology represent only one of many possibilities in nature. Here, using unbiased forward genetic screens, followed by analysis of reporters and engineered mutants, we show that stomatal initiation in the grass Brachypodium distachyon uses orthologs of stomatal regulators known from Arabidopsis but that the function and behavior of individual genes, the relationships among genes, and the regulation of their protein products have diverged. Our results highlight ways in which a kernel of conserved genes may be alternatively wired to produce diversity in patterning and morphology and suggest that the stomatal transcription factor module is a prime target for breeding or genome modification to improve plant productivity. PMID:27382177

  11. Alternative splicing of the human gene SYBL1 modulates protein domain architecture of longin VAMP7/TI-VAMP, showing both non-SNARE and synaptobrevin-like isoforms

    Directory of Open Access Journals (Sweden)

    De Franceschi Nicola

    2011-05-01

    Full Text Available Abstract Background The control of intracellular vesicle trafficking is an ideal target to weigh the role of alternative splicing in shaping genomes to make cells. Alternative splicing has been reported for several Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptors of the vesicle (v-SNAREs or of the target membrane (t-SNARES, which are crucial to intracellular membrane fusion and protein and lipid traffic in Eukaryotes. However, splicing has not yet been investigated in Longins, i.e. the most widespread v-SNAREs. Longins are essential in Eukaryotes and prototyped by VAMP7, Sec22b and Ykt6, sharing a conserved N-terminal Longin domain which regulates membrane fusion and subcellular targeting. Human VAMP7/TI-VAMP, encoded by gene SYBL1, is involved in multiple cell pathways, including control of neurite outgrowth. Results Alternative splicing of SYBL1 by exon skipping events results in the production of a number of VAMP7 isoforms. In-frame or frameshift coding sequence modifications modulate domain architecture of VAMP7 isoforms, which can lack whole domains or domain fragments and show variant or extra domains. Intriguingly, two main types of VAMP7 isoforms either share the inhibitory Longin domain and lack the fusion-promoting SNARE motif, or vice versa. Expression analysis in different tissues and cell lines, quantitative real time RT-PCR and confocal microscopy analysis of fluorescent protein-tagged isoforms demonstrate that VAMP7 variants have different tissue specificities and subcellular localizations. Moreover, design and use of isoform-specific antibodies provided preliminary evidence for the existence of splice variants at the protein level. Conclusions Previous evidence on VAMP7 suggests inhibitory functions for the Longin domain and fusion/growth promoting activity for the Δ-longin molecule. Thus, non-SNARE isoforms with Longin domain and non-longin SNARE isoforms might have somehow opposite regulatory functions

  12. SchA-p85-FAK complex dictates isoform-specific activation of Akt2 and subsequent PCBP1-mediated post-transcriptional regulation of TGFβ-mediated epithelial to mesenchymal transition in human lung cancer cell line A549.

    Science.gov (United States)

    Xue, Xinying; Wang, Xin; Liu, Yuxia; Teng, Guigen; Wang, Yong; Zang, Xuefeng; Wang, Kaifei; Zhang, Jinghui; Xu, Yali; Wang, Jianxin; Pan, Lei

    2014-08-01

    A post-transcriptional pathway by which TGF-β modulates expression of specific proteins, Disabled-2 (Dab2) and Interleukin-like EMT Inducer (ILEI), inherent to epithelial to mesenchymal transition (EMT) in murine epithelial cells through Akt2-mediated phosphorylation of poly r(C) binding protein (PCBP1), has been previously elucidated. The aims of the current study were to determine if the same mechanism is operative in the non-small cell lung cancer (NSCLC) cell line, A549, and to delineate the underlying mechanism. Steady-state transcript and protein expression levels of Dab2 and ILEI were examined in A549 cells treated with TGF-β for up to 48 h. Induction of translational de-repression in this model was quantified by polysomal fractionation followed by qRT-PCR. The underlying mechanism of isoform-specific activation of Akt2 was elucidated through a combination of co-immunoprecipitation studies. TGF-β induced EMT in A549 cells concomitant with translational upregulation of Dab2 and ILEI proteins through isoform-specific activation of Akt2 followed by phosphorylation of PCBP1 at serine-43. Our experiments further elucidated that the adaptor protein SchA is phosphorylated at tyrosine residues following TGF-β treatment, which initiated a signaling cascade resulting in the sequential recruitment of p85 subunit of PI3K and focal adhesion kinase (FAK). The SchA-FAK-p85 complex subsequently selectively recruited and activated Akt2, not Akt1. Inhibition of the p85 subunit through phosphorylated 1257 peptide completely attenuated EMT in these cells. We have defined the underlying mechanism responsible for isoform-specific recruitment and activation of Akt2, not Akt1, during TGF-β-mediated EMT in A549 cells. Inhibition of the formation of this complex thus represents an important and novel therapeutic target in metastatic lung carcinoma. PMID:24819169

  13. Unraveling complex interplay between heat shock factor 1 and 2 splicing isoforms.

    Directory of Open Access Journals (Sweden)

    Sylvain Lecomte

    Full Text Available Chaperone synthesis in response to proteotoxic stress is dependent on a family of transcription factors named heat shock factors (HSFs. The two main factors in this family, HSF1 and HSF2, are co-expressed in numerous tissues where they can interact and form heterotrimers in response to proteasome inhibition. HSF1 and HSF2 exhibit two alternative splicing isoforms, called α and β, which contribute to additional complexity in HSF transcriptional regulation, but remain poorly examined in the literature. In this work, we studied the transcriptional activity of HSF1 and HSF2 splicing isoforms transfected into immortalized Mouse Embryonic Fibroblasts (iMEFs deleted for both Hsf1 and Hsf2, under normal conditions and after proteasome inhibition. We found that HSF1α is significantly more active than the β isoform after exposure to the proteasome inhibitor MG132. Furthermore, we clearly established that, while HSF2 had no transcriptional activity by itself, short β isoform of HSF2 exerts a negative role on HSF1β-dependent transactivation. To further assess the impact of HSF2β inhibition on HSF1 activity, we developed a mathematical modelling approach which revealed that the balance between each HSF isoform in the cell regulated the strength of the transcriptional response. Moreover, we found that cellular stress such as proteasome inhibition could regulate the splicing of Hsf2 mRNA. All together, our results suggest that relative amounts of each HSF1 and HSF2 isoforms quantitatively determine the cellular level of the proteotoxic stress response.

  14. Identification of T-cell factor-4 isoforms that contribute to the malignant phenotype of hepatocellular carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsedensodnom, Orkhontuya [Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI (United States); Department of Molecular Biology Cell Biology and Biochemistry, The Warren Alpert Medical School of Brown University, Providence, RI (United States); Koga, Hironori; Rosenberg, Stephen A.; Nambotin, Sarah B.; Carroll, John J.; Wands, Jack R. [Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI (United States); Kim, Miran, E-mail: Miran_Kim@brown.edu [Liver Research Center, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI (United States)

    2011-04-15

    The Wnt/{beta}-catenin signaling pathway is frequently activated in hepatocellular carcinoma (HCC). Downstream signaling events involving the Wnt/{beta}-catenin cascade occur through T-cell factor (TCF) proteins. The human TCF-4 gene is composed of 17 exons with multiple alternative splicing sites. However, the role of different TCF-4 isoforms in the pathogenesis of HCC is unknown. The purpose of this study was to identify and characterize TCF-4 isoforms in HCC. We identified 14 novel TCF-4 isoforms from four HCC cell lines. Functional analysis following transfection and expression in HCC cells revealed distinct effects on the phenotype. The TCF-4J isoform expression produced striking features of malignant transformation characterized by high cell proliferation rate, migration and colony formation even though its transcriptional activity was low. In contrast, the TCF-4K isoform displayed low TCF transcriptional activity; cell proliferation rate and colony formation were reduced as well. Interestingly, TCF-4J and TCF-4K differed by only five amino acids (the SxxSS motif). Thus, these studies suggest that conserved splicing motifs may have a major influence on the transcriptional activity and functional properties of TCF-4 isoforms and alter the characteristics of the malignant phenotype.

  15. Extensive alternative splicing of the repressor element silencing transcription factor linked to cancer.

    Directory of Open Access Journals (Sweden)

    Guo-Lin Chen

    Full Text Available The repressor element silencing transcription factor (REST is a coordinate transcriptional and epigenetic regulator which functions as a tumor suppressor or an oncogene depending on cellular context, and a truncated splice variant REST4 has been linked to various types of cancer. We performed a comprehensive analysis of alternative splicing (AS of REST by rapid amplification of cDNA ends and PCR amplification of cDNAs from various tissues and cell lines with specific primers. We identified 8 novel alternative exons including an alternate last exon which doubles the REST gene boundary, along with numerous 5'/3' splice sites and ends in the constitutive exons. With the combination of various splicing patterns (e.g. exon skipping and alternative usage of the first and last exons that are predictive of altered REST activity, at least 45 alternatively spliced variants of coding and non-coding mRNA were expressed in a species- and cell-type/tissue-specific manner with individual differences. By examining the repertoire of REST pre-mRNA splicing in 27 patients with kidney, liver and lung cancer, we found that all patients without exception showed differential expression of various REST splice variants between paired tumor and adjacent normal tissues, with striking cell-type/tissue and individual differences. Moreover, we revealed that exon 3 skipping, which causes no frame shift but loss of a domain essential for nuclear translocation, was affected by pioglitazone, a highly selective activator of the peroxisome proliferator-activated receptor gamma (PPARγ which contributes to cell differentiation and tumorigenesis besides its metabolic actions. Accordingly, this study demonstrates an extensive AS of REST pre-mRNA which redefines REST gene boundary and structure, along with a general but differential link between REST pre-mRNA splicing and various types of cancer. These findings advance our understanding of the complex, context-dependent regulation of

  16. Differential CARM1 Isoform Expression in Subcellular Compartments and among Malignant and Benign Breast Tumors.

    Directory of Open Access Journals (Sweden)

    David Shlensky

    Full Text Available Coactivator-associated arginine methyltransferase 1 (CARM1 is a coactivator for ERα and cancer-relevant transcription factors, and can methylate diverse cellular targets including histones. CARM1 is expressed in one of two alternative splice isoforms, full-length CARM1 (CARM1FL and truncated CARM1 (CARM1ΔE15. CARM1FL and CARM1ΔE15 function differently in transcriptional regulation, protein methylation, and mediation of pre-mRNA splicing in cellular models.To investigate the functional roles and the prognosis potential of CARM1 alternative spliced isoforms in breast cancer, we used recently developed antibodies to detect differential CARM1 isoform expression in subcellular compartments and among malignant and benign breast tumors.Immunofluorescence in MDA-MB-231 and BG-1 cell lines demonstrated that CARM1ΔE15 is the dominant isoform expressed in the cytoplasm, and CARM1FL is more nuclear localized. CARM1ΔE15 was found to be more sensitive to Hsp90 inhibition than CARM1FL, indicating that the truncated isoform may be the oncogenic form. Clinical cancer samples did not have significantly higher expression of CARM1FL or CARM1ΔE15 than benign breast samples at the level of mRNA or histology. Furthermore neither CARM1FL nor CARM1ΔE15 expression correlated with breast cancer molecular subtypes, tumor size, or lymph node involvement.The analysis presented here lends new insights into the possible oncogenic role of CARM1ΔE15. This study also demonstrates no obvious association of CARM1 isoform expression and clinical correlates in breast cancer. Recent studies, however, have shown that CARM1 expression correlates with poor prognosis, indicating a need for further studies of both CARM1 isoforms in a large cohort of breast cancer specimens.

  17. Alternative transcripts and 3'UTR elements govern the incorporation of selenocysteine into selenoprotein S.

    Directory of Open Access Journals (Sweden)

    Jodi L Bubenik

    Full Text Available Selenoprotein S (SelS is a 189 amino acid trans-membrane protein that plays an important yet undefined role in the unfolded protein response. It has been proposed that SelS may function as a reductase, with the penultimate selenocysteine (Sec(188 residue participating in a selenosulfide bond with cysteine (Cys(174. Cotranslational incorporation of Sec into SelS depends on the recoding of the UGA codon, which requires a Selenocysteine Insertion Sequence (SECIS element in the 3'UTR of the transcript. Here we identify multiple mechanisms that regulate the expression of SelS. The human SelS gene encodes two transcripts (variants 1 and 2, which differ in their 3'UTR sequences due to an alternative splicing event that removes the SECIS element from the variant 1 transcript. Both transcripts are widely expressed in human cell lines, with the SECIS-containing variant 2 mRNA being more abundant. In vitro experiments demonstrate that the variant 1 3'UTR does not allow readthrough of the UGA/Sec codon. Thus, this transcript would produce a truncated protein that does not contain Sec and cannot make the selenosulfide bond. While the variant 2 3'UTR does support Sec insertion, its activity is weak. Bioinformatic analysis revealed two highly conserved stem-loop structures, one in the proximal part of the variant 2 3'UTR and the other immediately downstream of the SECIS element. The proximal stem-loop promotes Sec insertion in the native context but not when positioned far from the UGA/Sec codon in a heterologous mRNA. In contrast, the 140 nucleotides downstream of the SECIS element inhibit Sec insertion. We also show that endogenous SelS is enriched at perinuclear speckles, in addition to its known localization in the endoplasmic reticulum. Our results suggest the expression of endogenous SelS is more complex than previously appreciated, which has implications for past and future studies on the function of this protein.

  18. Eukaryotic translation initiator protein 1A isoform, CCS-3, enhances the transcriptional repression of p21CIP1 by proto-oncogene FBI-1 (Pokemon/ZBTB7A).

    Science.gov (United States)

    Choi, Won-Il; Kim, Youngsoo; Kim, Yuri; Yu, Mi-young; Park, Jungeun; Lee, Choong-Eun; Jeon, Bu-Nam; Koh, Dong-In; Hur, Man-Wook

    2009-01-01

    FBI-1, a member of the POK (POZ and Kruppel) family of transcription factors, plays a role in differentiation, oncogenesis, and adipogenesis. eEF1A is a eukaryotic translation elongation factor involved in several cellular processes including embryogenesis, oncogenic transformation, cell proliferation, and cytoskeletal organization. CCS-3, a potential cervical cancer suppressor, is an isoform of eEF1A. We found that eEF1A forms a complex with FBI-1 by co-immunoprecipitation, SDS-PAGE, and MALDI-TOF Mass analysis of the immunoprecipitate. GST fusion protein pull-downs showed that FBI-1 directly interacts with eEF1A and CCS-3 via the zinc finger and POZ-domain of FBI-1. FBI-1 co-localizes with either eEF1A or CCS-3 at the nuclear periplasm. CCS-3 enhances transcriptional repression of the p21CIP1 gene (hereafter referred to as p21) by FBI-1. The POZ-domain of FBI-1 interacts with the co-repressors, SMRT and BCoR. We found that CCS-3 also interacts with the co-repressors independently. The molecular interaction between the co-repressors and CCS-3 at the POZ-domain of FBI-1 appears to enhance FBI-1 mediated transcriptional repression. Our data suggest that CCS-3 may be important in cell differentiation, tumorigenesis, and oncogenesis by interacting with the proto-oncogene FBI-1 and transcriptional co-repressors. PMID:19471103

  19. Competition of nuclear factor-erythroid 2 factors related transcription factor isoforms, Nrf1 and Nrf2, in antioxidant enzyme induction

    Directory of Open Access Journals (Sweden)

    Nikolai L. Chepelev

    2013-01-01

    Full Text Available Although the Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2 regulated expression of multiple antioxidant and cytoprotective genes through the electrophile responsive element (EpRE is well established, interaction of Nrf2/EpRE with Nrf1, a closely-related transcription factor, is less well understood. Due to either proteolysis or alternative translation, Nrf1 has been found as proteins of varying size, p120, p95, and p65, which have been described as either activators of EpRE or competitive inhibitors of Nrf2. We investigated the effect of Nrf1 on EpRE-regulated gene expression using the catalytic and modifier subunits of glutamate cysteine ligase (GCLC and GCLM as models and explored the potential role of Nrf1 in altering their expression in aging and upon chronic exposure to airborne nano-sized particulate matter (nPM. Nrf1 knockout resulted in the increased expression of GCLC and GCLM in human bronchial epithelial (HBE1 cells. Overexpression Nrf2 in combination with either p120 or p65 diminished or failed to further increase the GCLC- and GLCM-EpRE luciferase activity. All known forms of Nrf1 protein, remained unchanged in the lungs of mice with age or in response to nPM. Our study shows that Nrf1 could inhibit EpRE activity in vitro, whereas the precise role of Nrf1 in vivo requires further investigations. We conclude that Nrf1 may not be directly responsible for the loss of Nrf2-dependent inducibility of antioxidant and cytoprotective genes observed in aged animals.

  20. Lytic infection of Lactococcus lactis by bacteriophages Tuc2009 and c2 triggers alternative transcriptional host responses.

    Science.gov (United States)

    Ainsworth, Stuart; Zomer, Aldert; Mahony, Jennifer; van Sinderen, Douwe

    2013-08-01

    Here we present an entire temporal transcriptional profile of Lactococcus lactis subsp. cremoris UC509.9 undergoing lytic infection with two distinct bacteriophages, Tuc2009 and c2. Furthermore, corresponding high-resolution whole-phage genome tiling arrays of both bacteriophages were performed throughout lytic infection. Whole-genome microarrays performed at various time points postinfection demonstrated a rather modest impact on host transcription. The majority of changes in the host transcriptome occur during late infection stages; few changes in host gene transcription occur during the immediate and early infection stages. Alterations in the L. lactis UC509.9 transcriptome during lytic infection appear to be phage specific, with relatively few differentially transcribed genes shared between cells infected with Tuc2009 and those infected with c2. Despite the apparent lack of a coordinated general phage response, three themes common to both infections were noted: alternative transcription of genes involved in catabolic flux and energy production, differential transcription of genes involved in cell wall modification, and differential transcription of genes involved in the conversion of ribonucleotides to deoxyribonucleotides. The transcriptional profiles of both bacteriophages during lytic infection generally correlated with the findings of previous studies and allowed the confirmation of previously predicted promoter sequences. In addition, the host transcriptional response to lysogenization with Tuc2009 was monitored along with tiling array analysis of Tuc2009 in the lysogenic state. Analysis identified 44 host genes with altered transcription during lysogeny, 36 of which displayed levels of transcription significantly reduced from those for uninfected cells.

  1. Alternative spliced CD1d transcripts in human bronchial epithelial cells.

    Directory of Open Access Journals (Sweden)

    Kambez Hajipouran Benam

    Full Text Available CD1d is a MHC I like molecule which presents glycolipid to natural killer T (NKT cells, a group of cells with diverse but critical immune regulatory functions in the immune system. These cells are required for optimal defence against bacterial, viral, protozoan, and fungal infections, and control of immune-pathology and autoimmune diseases. CD1d is expressed on antigen presenting cells but also found on some non-haematopoietic cells. However, it has not been observed on bronchial epithelium, a site of active host defence in the lungs. Here, we identify for the first time, CD1D mRNA variants and CD1d protein expression on human bronchial epithelial cells, describe six alternatively spliced transcripts of this gene in these cells; and show that these variants are specific to epithelial cells. These findings provide the basis for investigations into a role for CD1d in lung mucosal immunity.

  2. The FU gene and its possible protein isoforms

    Directory of Open Access Journals (Sweden)

    Nöthen Markus M

    2004-07-01

    Full Text Available Abstract Background FU is the human homologue of the Drosophila gene fused whose product fused is a positive regulator of the transcription factor Cubitus interruptus (Ci. Thus, FU may act as a regulator of the human counterparts of Ci, the GLI transcription factors. Since Ci and GLI are targets of Hedgehog signaling in development and morphogenesis, it is expected that FU plays an important role in Sonic, Desert and/or Indian Hedgehog induced cellular signaling. Results The FU gene was identified on chromosome 2q35 at 217.56 Mb and its exon-intron organization determined. The human developmental disorder Syndactyly type 1 (SD1 maps to this region on chromosome 2 and the FU coding region was sequenced using genomic DNA from an affected individual in a linked family. While no FU mutations were found, three single nucleotide polymorphisms were identified. The expression pattern of FU was thoroughly investigated and all examined tissues express FU. It is also clear that different tissues express transcripts of different sizes and some tissues express more than one transcript. By means of nested PCR of specific regions in RT/PCR generated cDNA, it was possible to verify two alternative splicing events. This also suggests the existence of at least two additional protein isoforms besides the FU protein that has previously been described. This long FU and a much shorter isoform were compared for the ability to regulate GLI1 and GLI2. None of the FU isoforms showed any effects on GLI1 induced transcription but the long form can enhance GLI2 activity. Apparently FU did not have any effect on SUFU induced inhibition of GLI. Conclusions The FU gene and its genomic structure was identified. FU is a candidate gene for SD1, but we have not identified a pathogenic mutation in the FU coding region in a family with SD1. The sequence information and expression analyses show that transcripts of different sizes are expressed and subjected to alternative splicing

  3. Alternative splicing of the maize Ac transposase transcript in transgenic sugar beet (Beta vulgaris L.).

    Science.gov (United States)

    Lisson, Ralph; Hellert, Jan; Ringleb, Malte; Machens, Fabian; Kraus, Josef; Hehl, Reinhard

    2010-09-01

    The maize Activator/Dissociation (Ac/Ds) transposable element system was introduced into sugar beet. The autonomous Ac and non-autonomous Ds element excise from the T-DNA vector and integrate at novel positions in the sugar beet genome. Ac and Ds excisions generate footprints in the donor T-DNA that support the hairpin model for transposon excision. Two complete integration events into genomic sugar beet DNA were obtained by IPCR. Integration of Ac leads to an eight bp duplication, while integration of Ds in a homologue of a sugar beet flowering locus gene did not induce a duplication. The molecular structure of the target site indicates Ds integration into a double strand break. Analyses of transposase transcription using RT-PCR revealed low amounts of alternatively spliced mRNAs. The fourth intron of the transposase was found to be partially misspliced. Four different splice products were identified. In addition, the second and third exon were found to harbour two and three novel introns, respectively. These utilize each the same splice donor but several alternative splice acceptor sites. Using the SplicePredictor online tool, one of the two introns within exon two is predicted to be efficiently spliced in maize. Most interestingly, splicing of this intron together with the four major introns of Ac would generate a transposase that lacks the DNA binding domain and two of its three nuclear localization signals, but still harbours the dimerization domain. PMID:20512402

  4. The transcription factor PU.1 promotes alternative macrophage polarization and asthmatic airway inflammation.

    Science.gov (United States)

    Qian, Feng; Deng, Jing; Lee, Yong Gyu; Zhu, Jimmy; Karpurapu, Manjula; Chung, Sangwoon; Zheng, Jun-Nian; Xiao, Lei; Park, Gye Young; Christman, John W

    2015-12-01

    The transcription factor PU.1 is involved in regulation of macrophage differentiation and maturation. However, the role of PU.1 in alternatively activated macrophage (AAM) and asthmatic inflammation has yet been investigated. Here we report that PU.1 serves as a critical regulator of AAM polarization and promotes the pathological progress of asthmatic airway inflammation. In response to the challenge of DRA (dust mite, ragweed, and Aspergillus) allergens, conditional PU.1-deficient (PU/ER(T)(+/-)) mice displayed attenuated allergic airway inflammation, including decreased alveolar eosinophil infiltration and reduced production of IgE, which were associated with decreased mucous glands and goblet cell hyperplasia. The reduced asthmatic inflammation in PU/ER(T)(+/-) mice was restored by adoptive transfer of IL-4-induced wild-type (WT) macrophages. Moreover, after treating PU/ER(T)(+/-) mice with tamoxifen to rescue PU.1 function, the allergic asthmatic inflammation was significantly restored. In vitro studies demonstrate that treatment of PU.1-deficient macrophages with IL-4 attenuated the expression of chitinase 3-like 3 (Ym-1) and resistin-like molecule alpha 1 (Fizz-1), two specific markers of AAM polarization. In addition, PU.1 expression in macrophages was inducible in response to IL-4 challenge, which was associated with phosphorylation of signal transducer and activator of transcription 6 (STAT6). Furthermore, DRA challenge in sensitized mice almost abrogated gene expression of Ym-1 and Fizz-1 in lung tissues of PU/ER(T)(+/-) mice compared with WT mice. These data, all together, indicate that PU.1 plays a critical role in AAM polarization and asthmatic inflammation.

  5. Silencing GFAP isoforms in astrocytoma cells disturbs laminin-dependent motility and cell adhesion.

    Science.gov (United States)

    Moeton, Martina; Kanski, Regina; Stassen, Oscar M J A; Sluijs, Jacqueline A; Geerts, Dirk; van Tijn, Paula; Wiche, Gerhard; van Strien, Miriam E; Hol, Elly M

    2014-07-01

    Glial fibrillary acidic protein (GFAP) is an intermediate filament protein expressed in astrocytes and neural stem cells. The GFAP gene is alternatively spliced, and expression of GFAP is highly regulated during development, on brain damage, and in neurodegenerative diseases. GFAPα is the canonical splice variant and is expressed in all GFAP-positive cells. In the human brain, the alternatively spliced transcript GFAPδ marks specialized astrocyte populations, such as subpial astrocytes and the neurogenic astrocytes in the human subventricular zone. We here show that shifting the GFAP isoform ratio in favor of GFAPδ in astrocytoma cells, by selectively silencing the canonical isoform GFAPα with short hairpin RNAs, induced a change in integrins, a decrease in plectin, and an increase in expression of the extracellular matrix component laminin. Together, this did not affect cell proliferation but resulted in a significantly decreased motility of astrocytoma cells. In contrast, a down-regulation of all GFAP isoforms led to less cell spreading, increased integrin expression, and a >100-fold difference in the adhesion of astrocytoma cells to laminin. In summary, isoform-specific silencing of GFAP revealed distinct roles of a specialized GFAP network in regulating the interaction of astrocytoma cells with the extracellular matrix through laminin.-Moeton, M., Kanski, R., Stassen, O. M. J. A., Sluijs, J. A., Geerts, D., van Tijn, P., Wiche, G., van Strien, M. E., Hol, E. M. Silencing GFAP isoforms in astrocytoma cells disturbs laminin dependent motility and cell adhesion.

  6. A short Gfi-1B isoform controls erythroid differentiation by recruiting the LSD1-corest complex through the dimethylation of its SNAG domain

    NARCIS (Netherlands)

    B. Laurent (Benoît); V. Randrianarison-Huetz (Voahangy); E. Frisan (Emilie); C. Andrieu-Soler (Charlotte); E. Soler (Eric); M. Fontenay (Michaela); I. Dusanter-Fourt (Isabelle); D. Dumenil (Dominique)

    2012-01-01

    textabstractGfi-1B is a transcriptional repressor essential for the regulation of erythropoiesis and megakaryopoiesis. Here we identify Gfi-1B p32, a Gfi-1B isoform, as essential for erythroid differentiation. Gfi-1B p32 is generated by alternative splicing and lacks the two first zinc finger domain

  7. Molecular cloning, characterization and expression of WAG-2 alternative splicing transcripts in developing spikes of Aegilops tauschii

    Indian Academy of Sciences (India)

    SHUHONG WEI

    2016-09-01

    WAG-2 is a C-class MADS-box gene, which is orthologous to AGAMOUS (AG )inArabidopsis. The AG group C-classMADS-box genes are involved in stamen and pistil identity. In this study, two WAG-2 transcripts, namely, WAG-2f and WAG-2g, were isolated and characterized from Aegilops tauschii . The open reading frames of WAG-2f and WAG-2g were 825 and 822 bp, respectively, encoding 275 and 274 amino acid residues. BLAST searches of partial WAG-2 genomic sequence againstthe draft sequence of Ae. tauschii genome database revealed the complex structure of WAG-2 gene, which consisted of seven exons and six introns. TheWAG-2f and WAG-2g cDNAs were two alternative splicing transcripts. The alternative splicing events were produced by an alternative 5 ' splice site. The expression level of WAG-2f transcript, which was extremely weak inyoung spikes of floret primordium formation stage, increased as the spikes developed. The highest expression was observed in the spikes at the anther separation stage. Low expression levels of WAG-2f were also detected at the tetrad stage. The WAG-2g transcript was expressed at all four stages of spike development but at a relatively low level. The expression pattern of thetwo transcripts was distinctly different during floral development, thereby suggesting a functional divergence.

  8. Molecular cloning, characterization and expression of WAG-2 alternative splicing transcripts in developing spikes of Aegilops tauschii.

    Science.gov (United States)

    Wei, Shuhong

    2016-09-01

    WAG-2 is a C-class MADS-box gene, which is orthologous to AGAMOUS (AG) in Arabidopsis. The AG group C-class MADS-box genes are involved in stamen and pistil identity. In this study, two WAG-2 transcripts, namely, WAG-2f and WAG- 2g, were isolated and characterized from Aegilops tauschii. The open reading frames of WAG-2f and WAG-2g were 825 and 822 bp, respectively, encoding 275 and 274 amino acid residues. BLAST searches of partial WAG-2 genomic sequence against the draft sequence of Ae. tauschii genome database revealed the complex structure of WAG-2 gene, which consisted of seven exons and six introns. The WAG-2f and WAG-2g cDNAs were two alternative splicing transcripts. The alternative splicing events were produced by an alternative 5' splice site. The expression level of WAG-2f transcript, which was extremely weak in young spikes of floret primordium formation stage, increased as the spikes developed. The highest expression was observed in the spikes at the anther separation stage. Low expression levels of WAG-2f were also detected at the tetrad stage. The WAG- 2g transcript was expressed at all four stages of spike development but at a relatively low level. The expression pattern of the two transcripts was distinctly different during floral development, thereby suggesting a functional divergence. PMID:27659328

  9. Bovine Herpes Virus 1 Major Immediate Early Transcription Unit 1 (IETU-1) Uses Alternative Promoters to Transcribe BICP0 and BICP4 Transcripts.

    Science.gov (United States)

    Pokhriyal, Mayank; Verma, O P; Ratta, Barkha; Kumar, Ajay; Saxena, Meeta; Sharma, Bhaskar

    2016-04-01

    Immediate early (IE) genes are transcribed immediately after infection in BHV1 from two different immediate early transcription units. It is reported that the immediate early transcription unit I (IE TU1) of Bovine herpesvirus 1 (BHV1) transcribes two proteins BICP0 and BICP4 from a single promoter by alternative splicing but with identical 5'UTR. We found that the transcripts of BICP0 and BICP4 have different 5'UTRs. The bioinformatics analysis shows two similar spatially arranged TATA less promoter for the two transcripts. The bioinformatics analysis also showed a similar promoter for the IE TU2 which transcribes BICP22. The data strongly suggest that BICP0 and BICP4 are transcribed from two different promoters. The transcript produced by each promoter is spliced specifically as opposed to what has been reported earlier. The BICP0 and BICP4 also show different levels of expression. The expression level of BICP4 continuously declines after attaining a peak level at 1 h, while BICP0 shows biphasic expression supporting the earlier observation that it is expressed from two different promoters. PMID:26719189

  10. ProtAnnot: an App for Integrated Genome Browser to display how alternative splicing and transcription affect proteins

    Science.gov (United States)

    Mall, Tarun; Eckstein, John; Norris, David; Vora, Hiral; Freese, Nowlan H.; Loraine, Ann E.

    2016-01-01

    Summary: One gene can produce multiple transcript variants encoding proteins with different functions. To facilitate visual analysis of transcript variants, we developed ProtAnnot, which shows protein annotations in the context of genomic sequence. ProtAnnot searches InterPro and displays profile matches (protein annotations) alongside gene models, exposing how alternative promoters, splicing and 3′ end processing add, remove, or remodel functional motifs. To draw attention to these effects, ProtAnnot color-codes exons by frame and displays a cityscape graphic summarizing exonic sequence at each position. These techniques make visual analysis of alternative transcripts faster and more convenient for biologists. Availability and implementation: ProtAnnot is a plug-in App for Integrated Genome Browser, an open source desktop genome browser available from http://www.bioviz.org. Contact: aloraine@uncc.edu PMID:27153567

  11. Conserved RNA secondary structures promote alternative splicing

    OpenAIRE

    Shepard, PJ; Hertel, KJ

    2008-01-01

    Pre-mRNA splicing is carried out by the spliceosome, which identifies exons and removes intervening introns. Alternative splicing in higher eukaryotes results in the generation of multiple protein isoforms from gene transcripts. The extensive alternative splicing observed implies a flexibility of the spliceosome to identify exons within a given pre-mRNA. To reach this flexibility, splice-site selection in higher eukaryotes has evolved to depend on multiple parameters such as splice-site stren...

  12. Novel Kidins220/ARMS Splice Isoforms: Potential Specific Regulators of Neuronal and Cardiovascular Development.

    Directory of Open Access Journals (Sweden)

    Nathalie Schmieg

    Full Text Available Kidins220/ARMS is a transmembrane protein playing a crucial role in neuronal and cardiovascular development. Kidins220/ARMS is a downstream target of neurotrophin receptors and interacts with several signalling and trafficking factors. Through computational modelling, we found two potential sites for alternative splicing of Kidins220/ARMS. The first is located between exon 24 and exon 29, while the second site replaces exon 32 by a short alternative terminal exon 33. Here we describe the conserved occurrence of several Kidins220/ARMS splice isoforms at RNA and protein levels. Kidins220/ARMS splice isoforms display spatio-temporal regulation during development with distinct patterns in different neuronal populations. Neurotrophin receptor stimulation in cortical and hippocampal neurons and neuroendocrine cells induces specific Kidins220/ARMS splice isoforms and alters the appearance kinetics of the full-length transcript. Remarkably, alternative terminal exon splicing generates Kidins220/ARMS variants with distinct cellular localisation: Kidins220/ARMS containing exon 32 is targeted to the plasma membrane and neurite tips, whereas Kidins220/ARMS without exon 33 mainly clusters the full-length protein in a perinuclear intracellular compartment in PC12 cells and primary neurons, leading to a change in neurotrophin receptor expression. Overall, this study demonstrates the existence of novel Kidins220/ARMS splice isoforms with unique properties, revealing additional complexity in the functional regulation of neurotrophin receptors, and potentially other signalling pathways involved in neuronal and cardiovascular development.

  13. Regulation of alternative splice site selection by reversible protein phosphorylation

    OpenAIRE

    Novoyatleva, Tatyana

    2007-01-01

    Splicing is the process that removes introns and joins exons from pre-mesenger RNA (pre-mRNA). It is an essential step in pre-mRNA processing that form the mature RNA. Microarray data indicates that approximately 75% of human genes produce transcripts that are alternatively spliced. Alternative splicing is one of the major mechanisms that ultimately generate high number of protein isoforms from a limited number of genes. The proper catalysis and regulation of alternative splice site selection...

  14. Effect of Exercise Intensity on Isoform-Specific Expressions of NT-PGC-1α mRNA in Mouse Skeletal Muscle

    OpenAIRE

    Xingyuan Wen; Jing Wu; Ji Suk Chang; Pengcheng Zhang; Jianzhu Wang; Yaliang Zhang; Gettys, Thomas W.; Yubin Zhang

    2014-01-01

    PGC-1α is an inducible transcriptional coactivator that regulates mitochondrial biogenesis and cellular energy metabolism in skeletal muscle. Recent studies have identified two additional PGC-1α transcripts that are derived from an alternative exon 1 (exon 1b) and induced by exercise. Given that the PGC-1α gene also produces NT-PGC-1α transcript by alternative 3′ splicing between exon 6 and exon 7, we have investigated isoform-specific expression of NT-PGC-1α mRNA in mouse skeletal muscle dur...

  15. Evaluation of alternative RNA labeling protocols for transcript profiling with Arabidopsis AGRONOMICS1 tiling arrays

    Directory of Open Access Journals (Sweden)

    Müller Marlen

    2012-06-01

    Full Text Available Abstract Microarrays are routine tools for transcript profiling, and genomic tiling arrays such as the Arabidopsis AGRONOMICS1 arrays have been found to be highly suitable for such experiments because changes in genome annotation can be easily integrated at the data analysis level. In a transcript profiling experiment, RNA labeling is a critical step, most often initiated by oligo-dT-primed reverse transcription. Although this has been found to be a robust and reliable method, very long transcripts or non-polyadenylated transcripts might be labeled inefficiently. In this study, we first provide data handling methods to analyze AGRONOMICS1 tiling microarrays based on the TAIR10 genome annotation. Second, we describe methods to easily quantify antisense transcripts on such tiling arrays. Third, we test a random-primed RNA labeling method, and find that on AGRONOMICS1 arrays this method has similar general performance as the conventional oligo-dT-primed method. In contrast to the latter, however, the former works considerably better for long transcripts and for non-polyadenylated transcripts such as found in mitochondria and plastids. We propose that researchers interested in organelle function use the random-primed method to unleash the full potential of genomic tiling arrays.

  16. Assessment of orthologous splicing isoforms in human and mouse orthologous genes

    Directory of Open Access Journals (Sweden)

    Horner David S

    2010-10-01

    Full Text Available Abstract Background Recent discoveries have highlighted the fact that alternative splicing and alternative transcripts are the rule, rather than the exception, in metazoan genes. Since multiple transcript and protein variants expressed by the same gene are, by definition, structurally distinct and need not to be functionally equivalent, the concept of gene orthology should be extended to the transcript level in order to describe evolutionary relationships between structurally similar transcript variants. In other words, the identification of true orthology relationships between gene products now should progress beyond primary sequence and "splicing orthology", consisting in ancestrally shared exon-intron structures, is required to define orthologous isoforms at transcript level. Results As a starting step in this direction, in this work we performed a large scale human- mouse gene comparison with a twofold goal: first, to assess if and to which extent traditional gene annotations such as RefSeq capture genuine splicing orthology; second, to provide a more detailed annotation and quantification of true human-mouse orthologous transcripts defined as transcripts of orthologous genes exhibiting the same splicing patterns. Conclusions We observed an identical exon/intron structure for 32% of human and mouse orthologous genes. This figure increases to 87% using less stringent criteria for gene structure similarity, thus implying that for about 13% of the human RefSeq annotated genes (and about 25% of the corresponding transcripts we could not identify any mouse transcript showing sufficient similarity to be confidently assigned as a splicing ortholog. Our data suggest that current gene and transcript data may still be rather incomplete - with several splicing variants still unknown. The observation that alternative splicing produces large numbers of alternative transcripts and proteins, some of them conserved across species and others truly species

  17. Skipping of exons by premature termination of transcription and alternative splicing within intron-5 of the sheep SCF gene: a novel splice variant.

    Directory of Open Access Journals (Sweden)

    Siva Arumugam Saravanaperumal

    Full Text Available Stem cell factor (SCF is a growth factor, essential for haemopoiesis, mast cell development and melanogenesis. In the hematopoietic microenvironment (HM, SCF is produced either as a membrane-bound (- or soluble (+ forms. Skin expression of SCF stimulates melanocyte migration, proliferation, differentiation, and survival. We report for the first time, a novel mRNA splice variant of SCF from the skin of white merino sheep via cloning and sequencing. Reverse transcriptase (RT-PCR and molecular prediction revealed two different cDNA products of SCF. Full-length cDNA libraries were enriched by the method of rapid amplification of cDNA ends (RACE-PCR. Nucleotide sequencing and molecular prediction revealed that the primary 1519 base pair (bp cDNA encodes a precursor protein of 274 amino acids (aa, commonly known as 'soluble' isoform. In contrast, the shorter (835 and/or 725 bp cDNA was found to be a 'novel' mRNA splice variant. It contains an open reading frame (ORF corresponding to a truncated protein of 181 aa (vs 245 aa with an unique C-terminus lacking the primary proteolytic segment (28 aa right after the D(175G site which is necessary to produce 'soluble' form of SCF. This alternative splice (AS variant was explained by the complete nucleotide sequencing of splice junction covering exon 5-intron (5-exon 6 (948 bp with a premature termination codon (PTC whereby exons 6 to 9/10 are skipped (Cassette Exon, CE 6-9/10. We also demonstrated that the Northern blot analysis at transcript level is mediated via an intron-5 splicing event. Our data refine the structure of SCF gene; clarify the presence (+ and/or absence (- of primary proteolytic-cleavage site specific SCF splice variants. This work provides a basis for understanding the functional role and regulation of SCF in hair follicle melanogenesis in sheep beyond what was known in mice, humans and other mammals.

  18. Regulatory mechanisms for 3'-end alternative splicing and polyadenylation of the Glial Fibrillary Acidic Protein, GFAP, transcript

    DEFF Research Database (Denmark)

    Blechingberg, Jenny; Lykke-Andersen, Søren; Jensen, Torben Heick;

    2007-01-01

    molecular mechanisms participating in alternative GFAP expression. Usage of a polyadenylation signal within the alternatively spliced exon 7a is essential to generate the GFAP kappa and GFAP kappa transcripts. The GFAP kappa mRNA is distinct from GFAP epsilon mRNA given that it also includes intron 7a....... Polyadenylation at the exon 7a site is stimulated by the upstream splice site. Moreover, exon 7a splice enhancer motifs supported both exon 7a splicing and polyadenylation. SR proteins increased the usage of the exon 7a polyadenylation signal but not the exon 7a splicing, whereas the polypyrimidine tract binding...... (PTB) protein enhanced both exon 7a polyadenylation and exon 7a splicing. Finally, increasing transcription by the VP16 trans-activator did not affect the frequency of use of the exon 7a polyadenylation signal whereas the exon 7a splicing frequency was decreased. Our data suggest a model...

  19. Identification of a novel ZIC3 isoform and mutation screening in patients with heterotaxy and congenital heart disease.

    Directory of Open Access Journals (Sweden)

    James E J Bedard

    Full Text Available Patients with heterotaxy have characteristic cardiovascular malformations, abnormal arrangement of their visceral organs, and midline patterning defects that result from abnormal left-right patterning during embryogenesis. Loss of function of the transcription factor ZIC3 causes X-linked heterotaxy and isolated congenital heart malformations and represents one of the few known monogenic causes of congenital heart disease. The birth incidence of heterotaxy-spectrum malformations is significantly higher in males, but our previous work indicated that mutations within ZIC3 did not account for the male over-representation. Therefore, cross species comparative sequence alignment was used to identify a putative novel fourth exon, and the existence of a novel alternatively spliced transcript was confirmed by amplification from murine embryonic RNA and subsequent sequencing. This transcript, termed Zic3-B, encompasses exons 1, 2, and 4 whereas Zic3-A encompasses exons 1, 2, and 3. The resulting protein isoforms are 466 and 456 amino acid residues respectively, sharing the first 407 residues. Importantly, the last two amino acids in the fifth zinc finger DNA binding domain are altered in the Zic3-B isoform, indicating a potential functional difference that was further evaluated by expression, subcellular localization, and transactivation analyses. The temporo-spatial expression pattern of Zic3-B overlaps with Zic3-A in vivo, and both isoforms are localized to the nucleus in vitro. Both isoforms can transcriptionally activate a Gli binding site reporter, but only ZIC3-A synergistically activates upon co-transfection with Gli3, suggesting that the isoforms are functionally distinct. Screening 109 familial and sporadic male heterotaxy cases did not identify pathogenic mutations in the newly identified fourth exon and larger studies are necessary to establish the importance of the novel isoform in human disease.

  20. Regulating retrotransposon activity through the use of alternative transcription start sites

    DEFF Research Database (Denmark)

    Persson, Jenna; Steglich, Babett; Smialowska, Agata;

    2016-01-01

    a new mechanism of retrotransposon regulation through transcription start site (TSS) selection by altered nucleosome occupancy. We show that Fun30 chromatin remodelers cooperate to maintain a high level of nucleosome occupancy at retrotransposon-flanking long terminal repeat (LTR) elements....... This enforces the use of a downstream TSS and the production of a truncated RNA incapable of reverse transcription and retrotransposition. However, in stressed cells, nucleosome occupancy at LTR elements is reduced, and the TSS shifts to allow for productive transcription. We propose that controlled...

  1. Cloning, Sequencing, and the Expression of the Elusive Sarcomeric TPM4α Isoform in Humans

    Science.gov (United States)

    Abbott, Lynn; Alshiekh-Nasany, Ruham; Mitschow, Charles

    2016-01-01

    In mammals, tropomyosin is encoded by four known TPM genes (TPM1, TPM2, TPM3, and TPM4) each of which can generate a number of TPM isoforms via alternative splicing and/or using alternate promoters. In humans, the sarcomeric isoform(s) of each of the TPM genes, except for the TPM4, have been known for a long time. Recently, on the basis of computational analyses of the human genome sequence, the predicted sequence of TPM4α has been posted in GenBank. We designed primer-pairs for RT-PCR and showed the expression of the transcripts of TPM4α and a novel isoform TPM4δ in human heart and skeletal muscle. qRT-PCR shows that the relative expression of TPM4α and TPM4δ is higher in human cardiac muscle. Western blot analyses using CH1 monoclonal antibodies show the absence of the expression of TPM4δ protein (~28 kDa) in human heart muscle. 2D western blot analyses with the same antibody show the expression of at least nine distinct tropomyosin molecules with a mass ~32 kD and above in adult heart. By Mass spectrometry, we determined the amino acid sequences of the extracted proteins from these spots. Spot “G” reveals the putative expression of TPM4α along with TPM1α protein in human adult heart. PMID:27703814

  2. Cloning, Sequencing, and the Expression of the Elusive Sarcomeric TPM4α Isoform in Humans

    Directory of Open Access Journals (Sweden)

    Dipak K. Dube

    2016-01-01

    Full Text Available In mammals, tropomyosin is encoded by four known TPM genes (TPM1, TPM2, TPM3, and TPM4 each of which can generate a number of TPM isoforms via alternative splicing and/or using alternate promoters. In humans, the sarcomeric isoform(s of each of the TPM genes, except for the TPM4, have been known for a long time. Recently, on the basis of computational analyses of the human genome sequence, the predicted sequence of TPM4α has been posted in GenBank. We designed primer-pairs for RT-PCR and showed the expression of the transcripts of TPM4α and a novel isoform TPM4δ in human heart and skeletal muscle. qRT-PCR shows that the relative expression of TPM4α and TPM4δ is higher in human cardiac muscle. Western blot analyses using CH1 monoclonal antibodies show the absence of the expression of TPM4δ protein (~28 kDa in human heart muscle. 2D western blot analyses with the same antibody show the expression of at least nine distinct tropomyosin molecules with a mass ~32 kD and above in adult heart. By Mass spectrometry, we determined the amino acid sequences of the extracted proteins from these spots. Spot “G” reveals the putative expression of TPM4α along with TPM1α protein in human adult heart.

  3. Expression of a novel alternative transcript of the novel retinal pigment epithelial cell gene NORPEG in human testes

    Institute of Scientific and Technical Information of China (English)

    Wa Yuan; Ying Zheng; Ran Huo; Li Lu; Xiao-Yan Huang; Lan-Lan Yin; Jian-Min Li; Zuo-Min Zhou; Jia-Hao Sha

    2005-01-01

    Aim: To identify a novel alternative transcript of the novel retinal pigment epithelial cell gene (NORPEG) expressed in the human testis. Methods: A human testis cDNA microarray was established and hybridized with cDNA probes from human fetal testes, adult testes and human spermatozoa. Differentially expressed clones were sequenced and analyzed. One of these clones was a short transcript of NORPEG which we proceeded to analyze by RT-PCR.Results: The novel short alternative transcript of NORPEG was isolated and named sNORPEG. It was 3486 bp in length and contained a 2952-bp open reading frame, encoding a 110.4-kDa protein of 983 amino acids. Amino acid sequence analysis showed that the sNORPEG protein contains six ankyrin repeats and two coiled-coil domains. It shares a high homology with the NORPEG and ankycorbin proteins in both its sequence and motifs. Blasting the human genome database localized sNORPEG to human chromosome 5p13.2-13.3. Expression profiles showed that sNORPEG was expressed in human fetal testes, adult testes and spermatozoa. Moreover, sNORPEG was found to be ubiquitously expressed in human tissues. Conclusion: sNORPEG is expressed in different developmental stages of the testis and encodes a protein that may have roles in human testis development and spermatogenesis.

  4. Isoform-specific anti-MeCP2 antibodies confirm that expression of the e1 isoform strongly predominates in the brain [v1; ref status: indexed, http://f1000r.es/1mg

    Directory of Open Access Journals (Sweden)

    Lara Kaddoum

    2013-10-01

    Full Text Available Rett syndrome is a neurological disorder caused by mutations in the MECP2 gene.  MeCP2 transcripts are alternatively spliced to generate two protein isoforms (MeCP2_e1 and MeCP2_e2 that differ at their N-termini. Whilst mRNAs for both forms are expressed ubiquitously, the one for MeCP2_e1 is more abundant than for MeCP2_e2 in the central nervous system. In transfected cells, both protein isoforms are nuclear and colocalize with densely methylated heterochromatic foci. With a view to understanding the physiological contribution of each isoform, and their respective roles in the pathogenesis of Rett syndrome, we set out to generate isoform-specific anti-MeCP2 antibodies. To this end, we immunized rabbits against the peptides corresponding to the short amino-terminal portions that are different between the two isoforms. The polyclonal antibodies thus obtained specifically detected their respective isoforms of MeCP2 in Neuro2a (N2A cells transfected to express either form. Both antisera showed comparable sensitivities when used for Western blot or immunofluorescence, and were highly specific for their respective isoform. When those antibodies were used on mouse tissues, specific signals were easily detected for Mecp2_e1, whilst Mecp2_e2 was very difficult to detect by Western blot, and even more so by immunofluorescence. Our results thus suggest that brain cells express low amounts of the Mecp2-e2 isoform. Our findings are compatible with recent reports showing that MeCP2_e2 is dispensable for healthy brain function, and that it may be involved in the regulation of neuronal apoptosis and embryonic development.

  5. Innovative Solutions for Words with Emphasis: Alternative Methods of Braille Transcription

    Science.gov (United States)

    Kamei-Hannan, Cheryl

    2009-01-01

    The author of this study proposed two alternative methods for transcribing words with emphasis into braille and compared the use of the symbols for emphasis with the current braille code. The results showed that students were faster at locating words presented in one of the alternate formats, but that there was no difference in students' accuracy…

  6. Loss of desmoplakin isoform I causes early onset cardiomyopathy and heart failure in a Naxos‐like syndrome

    Science.gov (United States)

    Uzumcu, A; Norgett, E E; Dindar, A; Uyguner, O; Nisli, K; Kayserili, H; Sahin, S E; Dupont, E; Severs, N J; Leigh, I M; Yuksel‐Apak, M; Kelsell, D P; Wollnik, B

    2006-01-01

    Background Desmosomes are cellular junctions important for intercellular adhesion and anchoring the intermediate filament (IF) cytoskeleton to the cell membrane. Desmoplakin (DSP) is the most abundant desmosomal protein with 2 isoforms produced by alternative splicing. Methods We describe a patient with a recessively inherited arrhythmogenic dilated cardiomyopathy with left and right ventricular involvement, epidermolytic palmoplantar keratoderma, and woolly hair. The patient showed a severe heart phenotype with an early onset and rapid progression to heart failure at 4 years of age. Results A homozygous nonsense mutation, R1267X, was found in exon 23 of the desmoplakin gene, which results in an isoform specific truncation of the larger DSPI isoform. The loss of most of the DSPI specific rod domain and C‐terminal area was confirmed by Western blotting and immunofluorescence. We further showed that the truncated DSPI transcript is unstable, leading to a loss of DSPI. DSPI is reported to be an obligate constituent of desmosomes and the only isoform present in cardiac tissue. To address this, we reviewed the expression of DSP isoforms in the heart. Our data suggest that DSPI is the major cardiac isoform but we also show that specific compartments of the heart have detectable DSPII expression. Conclusions This is the first description of a phenotype caused by a mutation affecting only one DSP isoform. Our findings emphasise the importance of desmoplakin and desmosomes in epidermal and cardiac function and additionally highlight the possibility that the different isoforms of desmoplakin may have distinct functional properties within the desmosome. PMID:16467215

  7. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level

    Science.gov (United States)

    Abascal, Federico; Ezkurdia, Iakes; Rodriguez-Rivas, Juan; Rodriguez, Jose Manuel; del Pozo, Angela; Vázquez, Jesús; Valencia, Alfonso; Tress, Michael L.

    2015-01-01

    Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved—all the homologous exons we identified evolved over 460 million years ago—and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles. PMID:26061177

  8. Alternatively Spliced Homologous Exons Have Ancient Origins and Are Highly Expressed at the Protein Level.

    Directory of Open Access Journals (Sweden)

    Federico Abascal

    2015-06-01

    Full Text Available Alternative splicing of messenger RNA can generate a wide variety of mature RNA transcripts, and these transcripts may produce protein isoforms with diverse cellular functions. While there is much supporting evidence for the expression of alternative transcripts, the same is not true for the alternatively spliced protein products. Large-scale mass spectroscopy experiments have identified evidence of alternative splicing at the protein level, but with conflicting results. Here we carried out a rigorous analysis of the peptide evidence from eight large-scale proteomics experiments to assess the scale of alternative splicing that is detectable by high-resolution mass spectroscopy. We find fewer splice events than would be expected: we identified peptides for almost 64% of human protein coding genes, but detected just 282 splice events. This data suggests that most genes have a single dominant isoform at the protein level. Many of the alternative isoforms that we could identify were only subtly different from the main splice isoform. Very few of the splice events identified at the protein level disrupted functional domains, in stark contrast to the two thirds of splice events annotated in the human genome that would lead to the loss or damage of functional domains. The most striking result was that more than 20% of the splice isoforms we identified were generated by substituting one homologous exon for another. This is significantly more than would be expected from the frequency of these events in the genome. These homologous exon substitution events were remarkably conserved--all the homologous exons we identified evolved over 460 million years ago--and eight of the fourteen tissue-specific splice isoforms we identified were generated from homologous exons. The combination of proteomics evidence, ancient origin and tissue-specific splicing indicates that isoforms generated from homologous exons may have important cellular roles.

  9. Estimation of alternative splicing variability in human populations

    OpenAIRE

    Gonz??lez-Porta, Mar; Calvo, Miquel; Sammeth, Michael; Guig?? Serra, Roderic

    2012-01-01

    DNA arrays have been widely used to perform transcriptome-wide analysis of gene expression, and many methods have been developed to measure gene expression variability and to compare gene expression between conditions. Because RNA-seq is also becoming increasingly popular for transcriptome characterization, the possibility exists for further quantification of individual alternative transcript isoforms, and therefore for estimating the relative ratios of alternative splice forms within a given...

  10. Noncoding transcription by alternative rna polymerases dynamically regulates an auxin-driven chromatin loop

    KAUST Repository

    Ariel, Federico D.

    2014-08-01

    The eukaryotic epigenome is shaped by the genome topology in three-dimensional space. Dynamic reversible variations in this epigenome structure directly influence the transcriptional responses to developmental cues. Here, we show that the Arabidopsis long intergenic noncoding RNA (lincRNA) APOLO is transcribed by RNA polymerases II and V in response to auxin, a phytohormone controlling numerous facets of plant development. This dual APOLO transcription regulates the formation of a chromatin loop encompassing the promoter of its neighboring gene PID, a key regulator of polar auxin transport. Altering APOLO expression affects chromatin loop formation, whereas RNA-dependent DNA methylation, active DNA demethylation, and Polycomb complexes control loop dynamics. This dynamic chromatin topology determines PID expression patterns. Hence, the dual transcription of a lincRNA influences local chromatin topology and directs dynamic auxin-controlled developmental outputs on neighboring genes. This mechanism likely underscores the adaptive success of plants in diverse environments and may be widespread in eukaryotes. © 2014 Elsevier Inc.

  11. Structural diversity and evolution of the N-terminal isoform-specific region of ecdysone receptor-A and -B1 isoforms in insects

    Directory of Open Access Journals (Sweden)

    Kubo Takeo

    2010-02-01

    Full Text Available Abstract Background The ecdysone receptor (EcR regulates various cellular responses to ecdysteroids during insect development. Insects have multiple EcR isoforms with different N-terminal A/B domains that contain the isoform-specific activation function (AF-1 region. Although distinct physiologic functions of the EcR isoforms have been characterized in higher holometabolous insects, they remain unclear in basal direct-developing insects, in which only A isoform has been identified. To examine the structural basis of the EcR isoform-specific AF-1 regions, we performed a comprehensive structural comparison of the isoform-specific region of the EcR-A and -B1 isoforms in insects. Results The EcR isoforms were newly identified in 51 species of insects and non-insect arthropods, including direct-developing ametabolous and hemimetabolous insects. The comprehensive structural comparison revealed that the isoform-specific region of each EcR isoform contained evolutionally conserved microdomain structures and insect subgroup-specific structural modifications. The A isoform-specific region generally contained four conserved microdomains, including the SUMOylation motif and the nuclear localization signal, whereas the B1 isoform-specific region contained three conserved microdomains, including an acidic activator domain-like motif. In addition, the EcR-B1 isoform of holometabolous insects had a novel microdomain at the N-terminal end. Conclusions Given that the nuclear receptor AF-1 is involved in cofactor recruitment and transcriptional regulation, the microdomain structures identified in the isoform-specific A/B domains might function as signature motifs and/or as targets for cofactor proteins that play essential roles in the EcR isoform-specific AF-1 regions. Moreover, the novel microdomain in the isoform-specific region of the holometabolous insect EcR-B1 isoform suggests that the holometabolous insect EcR-B1 acquired additional transcriptional

  12. Deciphering Transcriptome and Complex Alternative Splicing Transcripts in Mammary Gland Tissues from Cows Naturally Infected with Staphylococcus aureus Mastitis

    Science.gov (United States)

    Jiang, Qiang; Yang, Chun Hong; Zhang, Yan; Sun, Yan; Li, Rong Ling; Wang, Chang Fa; Zhong, Ji Feng; Huang, Jin Ming

    2016-01-01

    Alternative splicing (AS) contributes to the complexity of the mammalian proteome and plays an important role in diseases, including infectious diseases. The differential AS patterns of these transcript sequences between the healthy (HS3A) and mastitic (HS8A) cows naturally infected by Staphylococcus aureus were compared to understand the molecular mechanisms underlying mastitis resistance and susceptibility. In this study, using the Illumina paired-end RNA sequencing method, 1352 differentially expressed genes (DEGs) with higher than twofold changes were found in the HS3A and HS8A mammary gland tissues. Gene ontology and KEGG pathway analyses revealed that the cytokine–cytokine receptor interaction pathway is the most significantly enriched pathway. Approximately 16k annotated unigenes were respectively identified in two libraries, based on the bovine Bos taurus UMD3.1 sequence assembly and search. A total of 52.62% and 51.24% annotated unigenes were alternatively spliced in term of exon skipping, intron retention, alternative 5′ splicing and alternative 3ʹ splicing. Additionally, 1,317 AS unigenes were HS3A-specific, whereas 1,093 AS unigenes were HS8A-specific. Some immune-related genes, such as ITGB6, MYD88, ADA, ACKR1, and TNFRSF1B, and their potential relationships with mastitis were highlighted. From Chromosome 2, 4, 6, 7, 10, 13, 14, 17, and 20, 3.66% (HS3A) and 5.4% (HS8A) novel transcripts, which harbor known quantitative trait locus associated with clinical mastitis, were identified. Many DEGs in the healthy and mastitic mammary glands are involved in immune, defense, and inflammation responses. These DEGs, which exhibit diverse and specific splicing patterns and events, can endow dairy cattle with the potential complex genetic resistance against mastitis. PMID:27459697

  13. Deciphering Transcriptome and Complex Alternative Splicing Transcripts in Mammary Gland Tissues from Cows Naturally Infected with Staphylococcus aureus Mastitis.

    Science.gov (United States)

    Wang, Xiu Ge; Ju, Zhi Hua; Hou, Ming Hai; Jiang, Qiang; Yang, Chun Hong; Zhang, Yan; Sun, Yan; Li, Rong Ling; Wang, Chang Fa; Zhong, Ji Feng; Huang, Jin Ming

    2016-01-01

    Alternative splicing (AS) contributes to the complexity of the mammalian proteome and plays an important role in diseases, including infectious diseases. The differential AS patterns of these transcript sequences between the healthy (HS3A) and mastitic (HS8A) cows naturally infected by Staphylococcus aureus were compared to understand the molecular mechanisms underlying mastitis resistance and susceptibility. In this study, using the Illumina paired-end RNA sequencing method, 1352 differentially expressed genes (DEGs) with higher than twofold changes were found in the HS3A and HS8A mammary gland tissues. Gene ontology and KEGG pathway analyses revealed that the cytokine-cytokine receptor interaction pathway is the most significantly enriched pathway. Approximately 16k annotated unigenes were respectively identified in two libraries, based on the bovine Bos taurus UMD3.1 sequence assembly and search. A total of 52.62% and 51.24% annotated unigenes were alternatively spliced in term of exon skipping, intron retention, alternative 5' splicing and alternative 3' splicing. Additionally, 1,317 AS unigenes were HS3A-specific, whereas 1,093 AS unigenes were HS8A-specific. Some immune-related genes, such as ITGB6, MYD88, ADA, ACKR1, and TNFRSF1B, and their potential relationships with mastitis were highlighted. From Chromosome 2, 4, 6, 7, 10, 13, 14, 17, and 20, 3.66% (HS3A) and 5.4% (HS8A) novel transcripts, which harbor known quantitative trait locus associated with clinical mastitis, were identified. Many DEGs in the healthy and mastitic mammary glands are involved in immune, defense, and inflammation responses. These DEGs, which exhibit diverse and specific splicing patterns and events, can endow dairy cattle with the potential complex genetic resistance against mastitis. PMID:27459697

  14. Kalrn promoter usage and isoform expression respond to chronic cocaine exposure

    Directory of Open Access Journals (Sweden)

    Ma Xin-Ming

    2011-02-01

    Full Text Available Abstract Background The long-term effects of cocaine on behavior are accompanied by structural changes in excitatory glutamatergic synapses onto the medium spiny neurons of the striatum. The Kalrn gene encodes several functionally distinct isoforms; these multidomain guanine nucleotide exchange factors (GEFs contain additional domains known to interact with phosphatidylinositides as well as with a number of different proteins. Through their activation of Rho proteins and their interactions with other proteins, the different Kalirin isoforms affect cytoskeletal organization. Chronic exposure of adult male rodents to cocaine increases levels of Kalirin 7 in the striatum. When exposed chronically to cocaine, mice lacking Kalirin 7, the major adult isoform, fail to show an increase in dendritic spine density in the nucleus accumbens, show diminished place preference for cocaine, and exhibit increased locomotor activity in response to cocaine. Results The use of alternate promoters and 3'-terminal exons of the mouse Kalrn gene were investigated using real-time quantitative polymerase chain reaction. While the two most distal full-length Kalrn promoters are used equally in the prefrontal cortex, the more proximal of these promoters accounts for most of the transcripts expressed in the nucleus accumbens. The 3'-terminal exon unique to the Kalirin 7 isoform accounts for a greater percentage of the Kalrn transcripts in prefrontal cortex than in nucleus accumbens. Western blot analyses confirmed these differences. Chronic cocaine treatment increases usage of the promoter encoding the Δ-Kalirin isoforms but does not alter full-length Kalirin promoter usage. Usage of the 3'-terminal exon unique to Kalirin 7 increases following chronic cocaine exposure. Conclusions Kalrn promoter and 3'-terminal exon utilization are region-specific. In the nucleus accumbens, cocaine-mediated alterations in promoter usage and 3'-terminal exon usage favor expression of

  15. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis

    Directory of Open Access Journals (Sweden)

    Mount Stephen M

    2006-12-01

    Full Text Available Abstract Background Recently, genomic sequencing efforts were finished for Oryza sativa (cultivated rice and Arabidopsis thaliana (Arabidopsis. Additionally, these two plant species have extensive cDNA and expressed sequence tag (EST libraries. We employed the Program to Assemble Spliced Alignments (PASA to identify and analyze alternatively spliced isoforms in both species. Results A comprehensive analysis of alternative splicing was performed in rice that started with >1.1 million publicly available spliced ESTs and over 30,000 full length cDNAs in conjunction with the newly enhanced PASA software. A parallel analysis was performed with Arabidopsis to compare and ascertain potential differences between monocots and dicots. Alternative splicing is a widespread phenomenon (observed in greater than 30% of the loci with transcript support and we have described nine alternative splicing variations. While alternative splicing has the potential to create many RNA isoforms from a single locus, the majority of loci generate only two or three isoforms and transcript support indicates that these isoforms are generally not rare events. For the alternate donor (AD and acceptor (AA classes, the distance between the splice sites for the majority of events was found to be less than 50 basepairs (bp. In both species, the most frequent distance between AA is 3 bp, consistent with reports in mammalian systems. Conversely, the most frequent distance between AD is 4 bp in both plant species, as previously observed in mouse. Most alternative splicing variations are localized to the protein coding sequence and are predicted to significantly alter the coding sequence. Conclusion Alternative splicing is widespread in both rice and Arabidopsis and these species share many common features. Interestingly, alternative splicing may play a role beyond creating novel combinations of transcripts that expand the proteome. Many isoforms will presumably have negative

  16. Ultraconserved elements are associated with homeostatic control of splicing regulators by alternative splicing and nonsense-mediated decay

    OpenAIRE

    Ni, Julie Z.; Grate, Leslie; Donohue, John Paul; Preston, Christine; Nobida, Naomi; O’Brien, Georgeann; Shiue, Lily; Clark, Tyson A.; Blume, John E; Ares, Manuel

    2007-01-01

    Many alternative splicing events create RNAs with premature stop codons, suggesting that alternative splicing coupled with nonsense-mediated decay (AS-NMD) may regulate gene expression post-transcriptionally. We tested this idea in mice by blocking NMD and measuring changes in isoform representation using splicing-sensitive microarrays. We found a striking class of highly conserved stop codon-containing exons whose inclusion renders the transcript sensitive to NMD. A genomic search for additi...

  17. An alternate mechanism of abortive release marked by the formation of very long abortive transcripts.

    Science.gov (United States)

    Chander, Monica; Austin, Karyn M; Aye-Han, Nwe-Nwe; Sircar, Piya; Hsu, Lilian M

    2007-11-01

    The Esigma70-dependent N25 promoter is rate-limited at promoter escape. Here, RNA polymerase repeatedly initiates and aborts transcription, giving rise to a ladder of short RNAs 2-11 nucleotides long. Certain mutations in the initial transcribed sequence (ITS) of N25 lengthen the abortive initiation program, resulting in the release of very long abortive transcripts (VLATs) 16-19 nucleotides long. This phenomenon is completely dependent on sequences within the first 20 bases of the ITS since altering sequences downstream of +20 has no effect on their formation. VLAT formation also requires strong interactions between RNA polymerase and the promoter. Mutations that change the -35 and -10 hexamers and the intervening 17 base pair spacer away from consensus decrease the probability of aborting at positions +16 to +19. An unusual characteristic of the VLATs is their undiminished levels in the presence of GreB, which rescues abortive RNAs (

  18. Human-specific protein isoforms produced by novel splice sites in the human genome after the human-chimpanzee divergence

    Directory of Open Access Journals (Sweden)

    Kim Dong Seon

    2012-11-01

    Full Text Available Abstract Background Evolution of splice sites is a well-known phenomenon that results in transcript diversity during human evolution. Many novel splice sites are derived from repetitive elements and may not contribute to protein products. Here, we analyzed annotated human protein-coding exons and identified human-specific splice sites that arose after the human-chimpanzee divergence. Results We analyzed multiple alignments of the annotated human protein-coding exons and their respective orthologous mammalian genome sequences to identify 85 novel splice sites (50 splice acceptors and 35 donors in the human genome. The novel protein-coding exons, which are expressed either constitutively or alternatively, produce novel protein isoforms by insertion, deletion, or frameshift. We found three cases in which the human-specific isoform conferred novel molecular function in the human cells: the human-specific IMUP protein isoform induces apoptosis of the trophoblast and is implicated in pre-eclampsia; the intronization of a part of SMOX gene exon produces inactive spermine oxidase; the human-specific NUB1 isoform shows reduced interaction with ubiquitin-like proteins, possibly affecting ubiquitin pathways. Conclusions Although the generation of novel protein isoforms does not equate to adaptive evolution, we propose that these cases are useful candidates for a molecular functional study to identify proteomic changes that might bring about novel phenotypes during human evolution.

  19. A potential role of alternative splicing in the regulation of the transcriptional activity of human GLI2 in gonadal tissues

    Directory of Open Access Journals (Sweden)

    Pata Illar

    2006-03-01

    Full Text Available Abstract Background Mammalian Gli proteins are important transcription factors involved in the regulation of Sonic hedgehog signal transduction pathway. Association of Gli2 with mammalian development and human disease led us to study the structure and expression of the human GLI2. Results We show that the region encoding GLI2 repressor domain is subject to alternative splicing in the gonadal tissues and different cell lines. Two major alternatively spliced forms of GLI2 mRNA arise from skipping exon 3 (GLI2Δ3 or exons 4 and 5 (GLI2Δ4–5. Both forms contain premature translational stop codons in the GLI2 open reading frame (ORF starting from exon 2. Translation of GLI2Δ3 and GLI2Δ4–5 in vitro, initiated from downstream AUG codons, produced N-terminally truncated proteins. In Gli-dependent transactivation assay, expression of GLI2Δ3 induced activation of the reporter gene similar to that of the full-length construct (GLI2fl containing complete ORF. However, expression of the GLI2Δ4–5 resulted in about 10-fold increase in activation, suggesting that deletion of the major part of repressor domain was responsible for the enhanced activation of GLI2 protein. Conclusion Our data suggest that in addition to proteolytic processing, alternative splicing may be another important regulatory mechanism for the modulation of repressor and activator properties of GLI2 protein.

  20. The Role of MAPT Haplotype H2 and Isoform 1N/4R in Parkinsonism of Older Adults.

    Directory of Open Access Journals (Sweden)

    Guilherme T Valenca

    Full Text Available Recently, we have shown that the Parkinson's disease (PD susceptibility locus MAPT (microtubule associated protein tau is associated with parkinsonism in older adults without a clinical diagnosis of PD. In this study, we investigated the relationship between parkinsonian signs and MAPT transcripts by assessing the effect of MAPT haplotypes on alternative splicing and expression levels of the most common isoforms in two prospective clinicopathologic studies of aging.using regression analysis, controlling for age, sex, study and neuropathology, we evaluated 976 subjects with clinical, genotyping and brain pathology data for haplotype analysis. For transcript analysis, we obtained MAPT gene and isoform-level expression from the dorsolateral prefrontal cortex for 505 of these subjects.The MAPT H2 haplotype was associated with lower total MAPT expression (p = 1.2x10-14 and global parkinsonism at both study entry (p = 0.001 and proximate to death (p = 0.050. Specifically, haplotype H2 was primarily associated with bradykinesia in both assessments (p<0.001 and p = 0.008. MAPT total expression was associated with age and decreases linearly with advancing age (p<0.001. Analysing MAPT alternative splicing, the expression of 1N/4R isoform was inversely associated with global parkinsonism (p = 0.008 and bradykinesia (p = 0.008. Diminished 1N/4R isoform expression was also associated with H2 (p = 0.001.Overall, our results suggest that age and H2 are associated with higher parkinsonism score and decreased total MAPT RNA expression. Additionally, we found that H2 and parkinsonism are associated with altered expression levels of specific isoforms. These findings may contribute to the understanding of the association between MAPT locus and parkinsonism in elderly subjects and in some extent to age-related neurodegenerative diseases.

  1. Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer.

    Science.gov (United States)

    Wolff, Erika M; Byun, Hyang-Min; Han, Han F; Sharma, Shikhar; Nichols, Peter W; Siegmund, Kimberly D; Yang, Allen S; Jones, Peter A; Liang, Gangning

    2010-04-22

    It was recently shown that a large portion of the human transcriptome can originate from within repetitive elements, leading to ectopic expression of protein-coding genes. However the mechanism of transcriptional activation of repetitive elements has not been definitively elucidated. For the first time, we directly demonstrate that hypomethylation of retrotransposons can cause altered gene expression in humans. We also reveal that active LINE-1s switch from a tetranucleosome to dinucleosome structure, acquiring H2A.Z- and nucleosome-free regions upstream of TSSs, previously shown only at active single-copy genes. Hypomethylation of a specific LINE-1 promoter was also found to induce an alternate transcript of the MET oncogene in bladder tumors and across the entire urothelium of tumor-bearing bladders. These data show that, in addition to contributing to chromosomal instability, hypomethylation of LINE-1s can alter the functional transcriptome and plays a role not only in human disease but also in disease predisposition.

  2. Structural characterization of CYP144A1 – a cytochrome P450 enzyme expressed from alternative transcripts in Mycobacterium tuberculosis

    Science.gov (United States)

    Chenge, Jude; Kavanagh, Madeline E.; Driscoll, Max D.; McLean, Kirsty J.; Young, Douglas B.; Cortes, Teresa; Matak-Vinkovic, Dijana; Levy, Colin W.; Rigby, Stephen E. J.; Leys, David; Abell, Chris; Munro, Andrew W.

    2016-05-01

    Mycobacterium tuberculosis (Mtb) causes the disease tuberculosis (TB). The virulent Mtb H37Rv strain encodes 20 cytochrome P450 (CYP) enzymes, many of which are implicated in Mtb survival and pathogenicity in the human host. Bioinformatics analysis revealed that CYP144A1 is retained exclusively within the Mycobacterium genus, particularly in species causing human and animal disease. Transcriptomic annotation revealed two possible CYP144A1 start codons, leading to expression of (i) a “full-length” 434 amino acid version (CYP144A1-FLV) and (ii) a “truncated” 404 amino acid version (CYP144A1-TRV). Computational analysis predicted that the extended N-terminal region of CYP144A1-FLV is largely unstructured. CYP144A1 FLV and TRV forms were purified in heme-bound states. Mass spectrometry confirmed production of intact, His6-tagged forms of CYP144A1-FLV and -TRV, with EPR demonstrating cysteine thiolate coordination of heme iron in both cases. Hydrodynamic analysis indicated that both CYP144A1 forms are monomeric. CYP144A1-TRV was crystallized and the first structure of a CYP144 family P450 protein determined. CYP144A1-TRV has an open structure primed for substrate binding, with a large active site cavity. Our data provide the first evidence that Mtb produces two different forms of CYP144A1 from alternative transcripts, with CYP144A1-TRV generated from a leaderless transcript lacking a 5‧-untranslated region and Shine-Dalgarno ribosome binding site.

  3. Evidence for leptin receptor isoforms heteromerization at the cell surface.

    Science.gov (United States)

    Bacart, Johan; Leloire, Audrey; Levoye, Angélique; Froguel, Philippe; Jockers, Ralf; Couturier, Cyril

    2010-06-01

    Leptin mediates its metabolic effects through several leptin receptor (LEP-R) isoforms. In humans, long (LEPRb) and short (LEPRa,c,d) isoforms are generated by alternative splicing. Most of leptin's effects are believed to be mediated by the OB-Rb isoform. However, the role of short LEPR isoforms and the possible existence of heteromers between different isoforms are poorly understood. Using BRET1 and optimized co-immunoprecipitation, we observed LEPRa/b and LEPRb/c heteromers located at the plasma membrane and stabilized by leptin. Given the widespread coexpression of LEPRa and LEPRb, our results suggest that LEPRa/b heteromers may represent a major receptor species in most tissues.

  4. Ikaros isoforms:The saga continues

    Institute of Scientific and Technical Information of China (English)

    Laura; A; Perez-Casellas; Aleksandar; Savic; Sinisa; Dovat

    2011-01-01

    Through alternate splicing,the Ikaros gene produces multiple proteins.Ikaros is essential for normal hematopoiesis and possesses tumor suppressor activity.Ikaros isoforms interact to form dimers and potentially multimeric complexes.Diverse Ikaros complexes produced by the presence of different Ikaros isoforms are hypothesized to confer distinct functions.Small dominantnegative Ikaros isoforms have been shown to inhibit the tumor suppressor activity of full-length Ikaros.Here,we describe how Ikaros activity is regulated by the coordinated expression of the largest Ikaros isoforms IK-1 and IK-H.Although IK-1 is described as full-length Ikaros,IK-H is the longest Ikaros isoform.IK-H,which includes residues coded by exon 3B (60 bp that lie between exons 3 and 4),is abundant in human but not murine hematopoietic cells.Specific residues that lie within the 20 amino acids encoded by exon 3B give IK-H DNA-binding characteristics that are distinct from those of IK-1.Moreover,IK-H can potentiate or inhibit the ability of IK-1 to bind DNA.IK-H binds to the regulatory regions of genes that are upregulated by Ikaros,but not genes that are repressed by Ikaros.Although IK-1 localizes to pericentromeric heterochromatin,IK-H can be found in both pericentromeric and non-pericentromeric locations.Anti-silencing activity of gamma satellite DNA has been shown to depend on the binding of IK-H,but not other Ikaros isoforms.The unique features of IK-H,its influence on Ikaros activity,and the lack of IK-H expression in mice suggest that Ikaros function in humans may be more complex and possibly distinct from that in mice.

  5. Transcriptional Auto-Regulation of RUNX1 P1 Promoter.

    Directory of Open Access Journals (Sweden)

    Milka Martinez

    Full Text Available RUNX1 a member of the family of runt related transcription factors (RUNX, is essential for hematopoiesis. The expression of RUNX1 gene is controlled by two promoters; the distal P1 promoter and the proximal P2 promoter. Several isoforms of RUNX1 mRNA are generated through the use of both promoters and alternative splicing. These isoforms not only differs in their temporal expression pattern but also exhibit differences in tissue specificity. The RUNX1 isoforms derived from P2 are expressed in a variety of tissues, but expression of P1-derived isoform is restricted to cells of hematopoietic lineage. However, the control of hematopoietic-cell specific expression is poorly understood. Here we report regulation of P1-derived RUNX1 mRNA by RUNX1 protein. In silico analysis of P1 promoter revealed presence of two evolutionary conserved RUNX motifs, 0.6kb upstream of the transcription start site, and three RUNX motifs within 170bp of the 5'UTR. Transcriptional contribution of these RUNX motifs was studied in myeloid and T-cells. RUNX1 genomic fragment containing all sites show very low basal activity in both cell types. Mutation or deletion of RUNX motifs in the UTR enhances basal activity of the RUNX1 promoter. Chromatin immunoprecipitation revealed that RUNX1 protein is recruited to these sites. Overexpression of RUNX1 in non-hematopoietic cells results in a dose dependent activation of the RUNX1 P1 promoter. We also demonstrate that RUNX1 protein regulates transcription of endogenous RUNX1 mRNA in T-cell. Finally we show that SCL transcription factor is recruited to regions containing RUNX motifs in the promoter and the UTR and regulates activity of the RUNX1 P1 promoter in vitro. Thus, multiple lines of evidence show that RUNX1 protein regulates its own gene transcription.

  6. Two new isoforms of the human hepatoma-derived growth factor interact with components of the cytoskeleton.

    Science.gov (United States)

    Nüße, Jessica; Mirastschijski, Ursula; Waespy, Mario; Oetjen, Janina; Brandes, Nadine; Rebello, Osmond; Paroni, Federico; Kelm, Sørge; Dietz, Frank

    2016-05-01

    Hepatoma-derived growth factor (HDGF) is involved in diverse, apparently unrelated processes, such as cell proliferation, apoptosis, DNA-repair, transcriptional control, ribosome biogenesis and cell migration. Most of the interactions of HDGF with diverse molecules has been assigned to the hath region of HDGF. In this study we describe two previously unknown HDGF isoforms, HDGF-B and HDGF-C, generated via alternative splicing with structurally unrelated N-terminal regions of their hath region, which is clearly different from the well described isoform, HDGF-A. In silico modeling revealed striking differences near the PHWP motif, an essential part of the binding site for glycosaminoglycans and DNA/RNA. This observation prompted the hypothesis that these isoforms would have distinct interaction patterns with correspondingly diverse roles on cellular processes. Indeed, we discovered specific associations of HDGF-B and HDGF-C with cytoskeleton elements, such as tubulin and dynein, suggesting previously unknown functions of HDGF in retrograde transport, site directed localization and/or cytoskeleton organization. In contrast, the main isoform HDGF-A does not interact directly with the cytoskeleton, but via RNA with messenger ribonucleoprotein (mRNP) complexes. In summary, the discovery of HDGF splice variants with their discrete binding activities and subcellular distributions opened new avenues for understanding its biological function and importance. PMID:26845719

  7. p53 Family: Role of Protein Isoforms in Human Cancer

    Directory of Open Access Journals (Sweden)

    Jinxiong Wei

    2012-01-01

    Full Text Available TP53, TP63, and TP73 genes comprise the p53 family. Each gene produces protein isoforms through multiple mechanisms including extensive alternative mRNA splicing. Accumulating evidence shows that these isoforms play a critical role in the regulation of many biological processes in normal cells. Their abnormal expression contributes to tumorigenesis and has a profound effect on tumor response to curative therapy. This paper is an overview of isoform diversity in the p53 family and its role in cancer.

  8. Coding potential of the products of alternative splicing in human.

    KAUST Repository

    Leoni, Guido

    2011-01-20

    BACKGROUND: Analysis of the human genome has revealed that as much as an order of magnitude more of the genomic sequence is transcribed than accounted for by the predicted and characterized genes. A number of these transcripts are alternatively spliced forms of known protein coding genes; however, it is becoming clear that many of them do not necessarily correspond to a functional protein. RESULTS: In this study we analyze alternative splicing isoforms of human gene products that are unambiguously identified by mass spectrometry and compare their properties with those of isoforms of the same genes for which no peptide was found in publicly available mass spectrometry datasets. We analyze them in detail for the presence of uninterrupted functional domains, active sites as well as the plausibility of their predicted structure. We report how well each of these strategies and their combination can correctly identify translated isoforms and derive a lower limit for their specificity, that is, their ability to correctly identify non-translated products. CONCLUSIONS: The most effective strategy for correctly identifying translated products relies on the conservation of active sites, but it can only be applied to a small fraction of isoforms, while a reasonably high coverage, sensitivity and specificity can be achieved by analyzing the presence of non-truncated functional domains. Combining the latter with an assessment of the plausibility of the modeled structure of the isoform increases both coverage and specificity with a moderate cost in terms of sensitivity.

  9. Extraction of transcript diversity from scientific literature.

    Directory of Open Access Journals (Sweden)

    2005-06-01

    Full Text Available Transcript diversity generated by alternative splicing and associated mechanisms contributes heavily to the functional complexity of biological systems. The numerous examples of the mechanisms and functional implications of these events are scattered throughout the scientific literature. Thus, it is crucial to have a tool that can automatically extract the relevant facts and collect them in a knowledge base that can aid the interpretation of data from high-throughput methods. We have developed and applied a composite text-mining method for extracting information on transcript diversity from the entire MEDLINE database in order to create a database of genes with alternative transcripts. It contains information on tissue specificity, number of isoforms, causative mechanisms, functional implications, and experimental methods used for detection. We have mined this resource to identify 959 instances of tissue-specific splicing. Our results in combination with those from EST-based methods suggest that alternative splicing is the preferred mechanism for generating transcript diversity in the nervous system. We provide new annotations for 1,860 genes with the potential for generating transcript diversity. We assign the MeSH term "alternative splicing" to 1,536 additional abstracts in the MEDLINE database and suggest new MeSH terms for other events. We have successfully extracted information about transcript diversity and semiautomatically generated a database, LSAT, that can provide a quantitative understanding of the mechanisms behind tissue-specific gene expression. LSAT (Literature Support for Alternative Transcripts is publicly available at http://www.bork.embl.de/LSAT/.

  10. Alternative splicing generates a smaller assortment of CaV2.1 transcripts in cerebellar Purkinje cells than in the cerebellum.

    Science.gov (United States)

    Kanumilli, Srinivasan; Tringham, Elizabeth W; Payne, C Elizabeth; Dupere, Jonathan R B; Venkateswarlu, Kanamarlapudi; Usowicz, Maria M

    2006-01-12

    P/Q-type calcium channels control many calcium-driven functions in the brain. The CACNA1A gene encoding the pore-forming CaV2.1 (alpha1A) subunit of P/Q-type channels undergoes alternative splicing at multiple loci. This results in channel variants with different phenotypes. However, the combinatorial patterns of alternative splice events at two or more loci, and hence the diversity of CaV2.1 transcripts, are incompletely defined for specific brain regions and types of brain neurons. Using RT-PCR and splice variant-specific primers, we have identified multiple CaV2.1 transcript variants defined by different pairs of splice events in the cerebellum of adult rat. We have uncovered new splice variations between exons 28 and 34 (some of which predict a premature stop codon) and a new variation in exon 47 (which predicts a novel extended COOH-terminus). Single cell RT-PCR reveals that each individual cerebellar Purkinje neuron also expresses multiple alternative CaV2.1 transcripts, but the assortment is smaller than in the cerebellum. Two of these variants encode different extended COOH-termini which are not the same as those previously reported in Purkinje cells of the mouse. Our patch-clamp recordings show that calcium channel currents in the soma and dendrites of Purkinje cells are largely inhibited by a concentration of omega-agatoxin IVA selective for P-type over Q-type channels, suggesting that the different transcripts may form phenotypic variants of P-type calcium channels in Purkinje cells. These results expand the known diversity of CaV2.1 transcripts in cerebellar Purkinje cells, and propose the selective expression of distinct assortments of CaV2.1 transcripts in different brain neurons and species.

  11. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation.

    Science.gov (United States)

    Salomonis, Nathan; Schlieve, Christopher R; Pereira, Laura; Wahlquist, Christine; Colas, Alexandre; Zambon, Alexander C; Vranizan, Karen; Spindler, Matthew J; Pico, Alexander R; Cline, Melissa S; Clark, Tyson A; Williams, Alan; Blume, John E; Samal, Eva; Mercola, Mark; Merrill, Bradley J; Conklin, Bruce R

    2010-06-01

    Two major goals of regenerative medicine are to reproducibly transform adult somatic cells into a pluripotent state and to control their differentiation into specific cell fates. Progress toward these goals would be greatly helped by obtaining a complete picture of the RNA isoforms produced by these cells due to alternative splicing (AS) and alternative promoter selection (APS). To investigate the roles of AS and APS, reciprocal exon-exon junctions were interrogated on a genome-wide scale in differentiating mouse embryonic stem (ES) cells with a prototype Affymetrix microarray. Using a recently released open-source software package named AltAnalyze, we identified 144 genes for 170 putative isoform variants, the majority (67%) of which were predicted to alter protein sequence and domain composition. Verified alternative exons were largely associated with pathways of Wnt signaling and cell-cycle control, and most were conserved between mouse and human. To examine the functional impact of AS, we characterized isoforms for two genes. As predicted by AltAnalyze, we found that alternative isoforms of the gene Serca2 were targeted by distinct microRNAs (miRNA-200b, miRNA-214), suggesting a critical role for AS in cardiac development. Analysis of the Wnt transcription factor Tcf3, using selective knockdown of an ES cell-enriched and characterized isoform, revealed several distinct targets for transcriptional repression (Stmn2, Ccnd2, Atf3, Klf4, Nodal, and Jun) as well as distinct differentiation outcomes in ES cells. The findings herein illustrate a critical role for AS in the specification of ES cells with differentiation, and highlight the utility of global functional analyses of AS. PMID:20498046

  12. Complex Alternative Splicing

    OpenAIRE

    Park, Jung Woo; Graveley, Brenton R.

    2007-01-01

    Alternative splicing is a powerful means of controlling gene expression and increasing protein diversity. Most genes express a limited number of mRNA isoforms, but there are several examples of genes that use alternative splicing to generate hundreds, thousands, and even tens of thousands of isoforms. Collectively such genes are considered to undergo complex alternative splicing. The best example is the Drosophila Down syndrome cell adhesion molecule (Dscam) gene, which can generate 38,016 is...

  13. The functional modulation of epigenetic regulators by alternative splicing

    Directory of Open Access Journals (Sweden)

    Martínez-Balbás Marian

    2007-07-01

    Full Text Available Abstract Background Epigenetic regulators (histone acetyltransferases, methyltransferases, chromatin-remodelling enzymes, etc play a fundamental role in the control of gene expression by modifying the local state of chromatin. However, due to their recent discovery, little is yet known about their own regulation. This paper addresses this point, focusing on alternative splicing regulation, a mechanism already known to play an important role in other protein families, e.g. transcription factors, membrane receptors, etc. Results To this end, we compiled the data available on the presence/absence of alternative splicing for a set of 160 different epigenetic regulators, taking advantage of the relatively large amount of unexplored data on alternative splicing available in public databases. We found that 49 % (70 % in human of these genes express more than one transcript. We then studied their alternative splicing patterns, focusing on those changes affecting the enzyme's domain composition. In general, we found that these sequence changes correspond to different mechanisms, either repressing the enzyme's function (e.g. by creating dominant-negative inhibitors of the functional isoform or creating isoforms with new functions. Conclusion We conclude that alternative splicing of epigenetic regulators can be an important tool for the function modulation of these enzymes. Considering that the latter control the transcriptional state of large sets of genes, we propose that epigenetic regulation of gene expression is itself strongly regulated by alternative splicing.

  14. An alternatively spliced mRNA from the AP-2 gene encodes a negative regulator of transcriptional activation by AP-2.

    OpenAIRE

    Buettner, R; Kannan, P; Imhof, A.; Bauer, R.; Yim, S O; Glockshuber, R; Van Dyke, M W; Tainsky, M A

    1993-01-01

    AP-2 is a retinoic acid-inducible and developmentally regulated activator of transcription. We have cloned an alternative AP-2 transcript (AP-2B) from the human teratocarcinoma cell line PA-1, which encodes a protein differing in the C terminus from the previously isolated AP-2 protein (AP-2A). This protein contains the activation domain of AP-2 and part of the DNA binding domain but lacks the dimerization domain which is necessary for DNA binding. Analysis of overlapping genomic clones spann...

  15. Glial fibrillary acidic protein isoform expression in plaque related astrogliosis in Alzheimer's disease.

    Science.gov (United States)

    Kamphuis, Willem; Middeldorp, Jinte; Kooijman, Lieneke; Sluijs, Jacqueline A; Kooi, Evert-Jan; Moeton, Martina; Freriks, Michel; Mizee, Mark R; Hol, Elly M

    2014-03-01

    In Alzheimer's disease (AD), amyloid plaques are surrounded by reactive astrocytes with an increased expression of intermediate filaments including glial fibrillary acidic protein (GFAP). Different GFAP isoforms have been identified that are differentially expressed by specific subpopulations of astrocytes and that impose different properties to the intermediate filament network. We studied transcript levels and protein expression patterns of all known GFAP isoforms in human hippocampal AD tissue at different stages of the disease. Ten different transcripts for GFAP isoforms were detected at different abundancies. Transcript levels of most isoforms increased with AD progression. GFAPδ-immunopositive astrocytes were observed in subgranular zone, hilus, and stratum-lacunosum-moleculare. GFAPδ-positive cells also stained for GFAPα. In AD donors, astrocytes near plaques displayed increased staining of both GFAPα and GFAPδ. The reading-frame-shifted isoform, GFAP(+1), staining was confined to a subset of astrocytes with long processes, and their number increased in the course of AD. In conclusion, the various GFAP isoforms show differential transcript levels and are upregulated in a concerted manner in AD. The GFAP(+1) isoform defines a unique subset of astrocytes, with numbers increasing with AD progression. These data indicate the need for future exploration of underlying mechanisms concerning the functions of GFAPδ and GFAP(+1) isoforms in astrocytes and their possible role in AD pathology.

  16. Translational control of C/EBPalpha and C/EBPbeta isoform expression

    NARCIS (Netherlands)

    Calkhoven, C F; Müller, C; Leutz, A

    2000-01-01

    Transcription factors derived from CCAAT/enhancer binding protein (C/EBP)alpha and C/EBPbeta genes control differentiation and proliferation in a number of cell types. Various C/EBP isoforms arise from unique C/EBPbeta and C/EBPalpha mRNAs by differential initiation of translation. These isoforms re

  17. Differential regulation of macropinocytosis by Abi1/Hssh3bp1 isoforms.

    Directory of Open Access Journals (Sweden)

    Patrycja M Dubielecka

    Full Text Available BACKGROUND: Macropinocytosis, which is a constitutive cellular process of fluid and macromolecule uptake, is regulated by actin cytoskeleton rearrangements near the plasma membrane. Activation of Rac1, which is proposed to act upstream of the actin polymerization regulatory Wave 2 complex, has been found to correlate with enhanced macropinocytosis. One of the components of the Wave 2 complex is Abi1. Multiple, alternatively spliced isoforms of Abi1 are expressed in mammalian cells, but the functional significance of the various isoforms is unknown. PRINCIPAL FINDINGS: Here, using flow cytometric assay analysis for Alexa Fluor 647, we demonstrate that Abi1 isoforms 2 and 3 differentially regulate macropinocytosis. LNCaP cells expressing isoform 3 had increased macropinocytic uptake that correlated with enhanced cell spreading and higher Rac1 activation in comparison to cells expressing isoform 2. Isoform 2 expressing cells had decreased macropinocytic uptake, but demonstrated greater sensitivity to Rac1 activation. Moreover, more isoform 2 was localized within the cytoplasm in comparison to isoform 3, which was more associated with the plasma membrane. Activated Rac1 was found to specifically bind to a site in exon 10 of isoform 2 in vitro. Because of alternative mRNA splicing, exon 10 is absent from isoform 3, precluding similar binding of activated Rac1. Both isoforms, however, bound to inactive Rac1 through the same non-exon 10 site. Thus, Abi1 isoform 3-containing Wave 2 complex exhibited a differential binding to activated vs. inactive Rac1, whereas isoform 2-containing Wave 2 complex bound activated or inactive Rac1 comparably. CONCLUSION: Based on these observations, we postulate that Abi1 isoforms differentially regulate macropinocytosis as a consequence of their different relative affinities for activated Rac1 in Wave 2 complex. These findings also raise the possibility that isoform-specific roles occur in other Abi1 functions.

  18. Abnormalities in Alternative Splicing of Apoptotic Genes and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Zodwa Dlamini

    2015-11-01

    Full Text Available Apoptosis is required for normal heart development in the embryo, but has also been shown to be an important factor in the occurrence of heart disease. Alternative splicing of apoptotic genes is currently emerging as a diagnostic and therapeutic target for heart disease. This review addresses the involvement of abnormalities in alternative splicing of apoptotic genes in cardiac disorders including cardiomyopathy, myocardial ischemia and heart failure. Many pro-apoptotic members of the Bcl-2 family have alternatively spliced isoforms that lack important active domains. These isoforms can play a negative regulatory role by binding to and inhibiting the pro-apoptotic forms. Alternative splicing is observed to be increased in various cardiovascular diseases with the level of alternate transcripts increasing elevated in diseased hearts compared to healthy subjects. In many cases these isoforms appear to be the underlying cause of the disease, while in others they may be induced in response to cardiovascular pathologies. Regardless of this, the detection of alternate splicing events in the heart can serve as useful diagnostic or prognostic tools, while those splicing events that seem to play a causative role in cardiovascular disease make attractive future drug targets.

  19. N-Myc Differentially Regulates Expression of MXI1 Isoforms in Neuroblastoma

    Directory of Open Access Journals (Sweden)

    Michael B. Armstrong

    2013-12-01

    Full Text Available Amplification of the MYCN proto-oncogene is associated with a poor prognosis in patients with metastatic neuroblastoma (NB. MYCN encodes the N-Myc protein, a transcriptional regulator that dimerizes with the Max transcription factor, binds to E-box DNA sequences, and regulates genes involved in cell growth and apoptosis. Overexpression of N-Myc leads to transcriptional activation and an increase in NB cell proliferation. Mxi1, a member of the Myc family of transcriptional regulators, also binds to Max. However, Mxi1 is a transcriptional repressor and inhibits proliferation of NB cells, suggesting that Mxi1 functions as an N-Myc antagonist. Our laboratory previously identified Mxi1-0, an alternatively transcribed Mxi1 isoform. Mxi1-0 has properties distinct from those of Mxi1; in contrast to Mxi1, Mxi1-0 is unable to suppress c-Myc-dependent transcription. We now show that Mxi1-0 expression increases in response to MYCN overexpression in NB cells, with a positive correlation between MYCN and MXI1-0 RNA levels. We also show that N-Myc expression differentially regulates the MXI1 and MXI1-0 promoters: Increased MYCN expression suppresses MXI1 promoter activity while enhancing transcription through the MXI1-0 promoter. Finally, induction of Mxi1-0 leads to increased proliferation, whereas expression of Mxi1 inhibits cell growth, indicating differential roles for these two proteins. These data suggest that N-Myc differentially regulates the expression of MXI1 and MXI1-0 and can alter the balance between the two transcription factors. Furthermore, MXI1-0 appears to be a downstream target of MYCN-dependent signaling pathways and may contribute to N-Myc-dependent cell growth and proliferation.

  20. PGC-1 isoforms and their target genes are expressed differently in human skeletal muscle following resistance and endurance exercise.

    Science.gov (United States)

    Silvennoinen, Mika; Ahtiainen, Juha P; Hulmi, Juha J; Pekkala, Satu; Taipale, Ritva S; Nindl, Bradley C; Laine, Tanja; Häkkinen, Keijo; Selänne, Harri; Kyröläinen, Heikki; Kainulainen, Heikki

    2015-10-01

    The primary aim of the present study was to investigate the acute gene expression responses of PGC-1 isoforms and PGC-1α target genes related to mitochondrial biogenesis (cytochrome C), angiogenesis (VEGF-A), and muscle hypertrophy (myostatin), after a resistance or endurance exercise bout. In addition, the study aimed to elucidate whether the expression changes of studied transcripts were linked to phosphorylation of AMPK and MAPK p38. Nineteen physically active men were divided into resistance exercise (RE, n = 11) and endurance exercise (EE, n = 8) groups. RE group performed leg press exercise (10 × 10 RM, 50 min) and EE walked on a treadmill (~80% HRmax, 50 min). Muscle biopsies were obtained from the vastus lateralis muscle before, 30 min, and 180 min after exercise. EE and RE significantly increased the gene expression of alternative promoter originated PGC-1α exon 1b- and 1bxs'-derived isoforms, whereas the proximal promoter originated exon 1a-derived transcripts were less inducible and were upregulated only after EE. Truncated PGC-1α transcripts were upregulated both after EE and RE. Neither RE nor EE affected the expression of PGC-1β. EE upregulated the expression of cytochrome C and VEGF-A, whereas RE upregulated VEGF-A and downregulated myostatin. Both EE and RE increased the levels of p-AMPK and p-MAPK p38, but these changes were not linked to the gene expression responses of PGC-1 isoforms. The present study comprehensively assayed PGC-1 transcripts in human skeletal muscle and showed exercise mode-specific responses thus improving the understanding of early signaling events in exercise-induced muscle adaptations. PMID:26438733

  1. Analyzing phosphorylation-dependent regulation of subcellular localization and transcriptional activity of transcriptional coactivator NT-PGC-1α.

    Science.gov (United States)

    Chang, Ji Suk; Gettys, Thomas W

    2013-01-01

    Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a nuclear transcriptional coactivator that regulates the genes involved in energy metabolism. Recent evidence has been provided that alternative splicing of PPARGC1A gene produces a functional but predominantly cytosolic isoform of PGC-1α (NT-PGC-1α). We have demonstrated that transcriptional coactivation capacity of NT-PGC-1α is directly correlated with its nuclear localization in a PKA phosphorylation-dependent manner. In this chapter, we describe quantitative imaging analysis methods that are developed to measure the relative fluorescence intensity of the protein of interest in the nucleus and cytoplasm in a single cell and the frequency distribution of nuclear/cytoplasmic intensity ratios in the population of cells, respectively. This chapter also describes transient cotransfection and dual-luciferase reporter gene assay that examine the ability of coactivators to activate the transcriptional activity of transcription factors.

  2. Alternative Splicing of Toll-Like Receptor 9 Transcript in Teleost Fish Grouper Is Regulated by NF-κB Signaling via Phosphorylation of the C-Terminal Domain of the RPB1 Subunit of RNA Polymerase II

    Science.gov (United States)

    Lee, Frank Fang-Yao; Hui, Cho-Fat; Chang, Tien-Hsien; Chiou, Pinwen Peter

    2016-01-01

    Similar to its mammalian counterparts, teleost Toll-like receptor 9 (TLR9) recognizes unmethylated CpG DNA presented in the genome of bacteria or DNA viruses and initiates signaling pathway(s) for immune responses. We have previously shown that the TLR9 pathway in grouper, an economically important teleost, can be debilitated by an inhibitory gTLR9B isoform, whose production is mediated by RNA alternative splicing. However, how does grouper TLR9 (gTLR9) signaling impinge on the RNA splicing machinery to produce gTlr9B is unknown. Here we show that the gTlr9 alternative splicing is regulated through ligand-induced phosphorylation of the C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II). We first observed that ligand-activated NF- κB pathway biased the production of the gTlr9B isoform. Because NF- κB is known to recruit p-TEFb kinase, which phosphorylates the Pol II CTD at Ser2 residues, we examined p-TEFb’s role in alternative splicing. We found that promoting p-TEFb kinase activity significantly favored the production of the gTlr9B isoform, whereas inhibiting p-TEFb yielded an opposite result. We further showed that p-TEFb-mediated production of the gTlr9B isoform down-regulates its own immune responses, suggesting a self-limiting mechanism. Taken together, our data indicate a feedback mechanism of the gTLR9 signaling pathway to regulate the alternative splicing machinery, which in turn produces an inhibitor to the pathway. PMID:27658294

  3. Identification and characterization of novel NuMA isoforms

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jin, E-mail: petersdu2112@hotmail.com [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Xu, Zhe [Department of Clinical Laboratory Diagnosis, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); Core Laboratory for Clinical Medical Research, Beijing Tiantan Hospital, Capital Medical University, Beijing (China); He, Dacheng [Key Laboratory for Cell Proliferation and Regulation of the Ministry of Education, Beijing Normal University, Beijing (China); Lu, Guanting, E-mail: guantlv@126.com [Beijing DnaLead Science and Technology Co., LTD, Beijing (China)

    2014-11-21

    Highlights: • Seven NuMA isoforms generated by alternative splicing were categorized into 3 groups: long, middle and short. • Both exons 15 and 16 in long NuMA were “hotspot” for alternative splicing. • Lower expression of short NuMA was observed in cancer cells compared with nonneoplastic controls. • Distinct localization pattern of short isoforms indicated different function from that of long and middle NuMA. - Abstract: The large nuclear mitotic apparatus (NuMA) has been investigated for over 30 years with functions related to the formation and maintenance of mitotic spindle poles during mitosis. However, the existence and functions of NuMA isoforms generated by alternative splicing remains unclear. In the present work, we show that at least seven NuMA isoforms (categorized into long, middle and short groups) generated by alternative splicing from a common NuMA mRNA precursor were discovered in HeLa cells and these isoforms differ mainly at the carboxyl terminus and the coiled-coil domains. Two “hotspot” exons with molecular mass of 3366-nt and 42-nt tend to be spliced during alternative splicing in long and middle groups. Furthermore, full-length coding sequences of long and middle NuMA obtained by using fusion PCR were constructed into GFP-tagged vector to illustrate their cellular localization. Long NuMA mainly localized in the nucleus with absence from nucleoli during interphase and translocated to the spindle poles in mitosis. Middle NuMA displayed the similar cell cycle-dependent distribution pattern as long NuMA. However, expression of NuMA short isoforms revealed a distinct subcellular localization. Short NuMA were present in the cytosol during the whole cycle, without colocalization with mitotic apparatus. These results have allowed us tentatively to explore a new research direction for NuMA’s various functions.

  4. Consensus PP1 binding motifs regulate transcriptional corepression and alternative RNA splicing activities of the steroid receptor coregulators, p54nrb and PSF.

    Science.gov (United States)

    Liu, Liangliang; Xie, Ning; Rennie, Paul; Challis, John R G; Gleave, Martin; Lye, Stephen J; Dong, Xuesen

    2011-07-01

    Originally identified as essential pre-mRNA splicing factors, non-POU-domain-containing, octamer binding protein (p54nrb) and PTB-associated RNA splicing factor (PSF) are also steroid receptor corepressors. The mechanisms by which p54nrb and PSF regulate gene transcription remain unclear. Both p54nrb and PSF contain protein phosphatase 1 (PP1) consensus binding RVxF motifs, suggesting that PP1 may regulate phosphorylation status of p54nrb and PSF and thus their function in gene transcription. In this report, we demonstrated that PP1 forms a protein complex with both p54nrb and PSF. PP1 interacts directly with the RVxF motif only in p54nrb, but not in PSF. Association with PP1 results in dephosphorylation of both p54nrb and PSF in vivo and the loss of their transcriptional corepressor activities. Using the CD44 minigene as a reporter, we showed that PP1 regulates p54nrb and PSF alternative splicing activities that determine exon skipping vs. inclusion in the final mature RNA for translation. In addition, changes in transcriptional corepression and RNA splicing activities of p54nrb and PSF are correlated with alterations in protein interactions of p54nrb and PSF with transcriptional corepressors such as Sin3A and histone deacetylase 1, and RNA splicing factors such as U1A and U2AF. Furthermore, we demonstrated a novel function of the RVxF motif within PSF that enhances its corepression and RNA splicing activities independent of PP1. We conclude that the RVxF motifs play an important role in controlling the multifunctional properties of p54nrb and PSF in the regulation of gene transcription.

  5. Productive Resources in Students' Ideas about Energy: An Alternative Analysis of Watts' Original Interview Transcripts

    Science.gov (United States)

    Harrer, Benedikt W.; Flood, Virginia J.; Wittmann, Michael C.

    2013-01-01

    For over 30 years, researchers have investigated students' ideas about energy with the intent of reforming instructional practice. In this pursuit, Watts contributed an influential study with his 1983 paper "Some alternative views of energy" ["Phys. Educ." 18, 213 (1983)]. Watts' "alternative frameworks"…

  6. Alternative messenger RNA splicing of autophagic gene Beclin 1 in human B-cell acute lymphoblastic leukemia cells.

    Science.gov (United States)

    Niu, Yu-Na; Liu, Qing-Qing; Zhang, Su-Ping; Yuan, Na; Cao, Yan; Cai, Jin-Yang; Lin, Wei-Wei; Xu, Fei; Wang, Zhi-Jian; Chen, Bo; Wang, Jian-Rong

    2014-01-01

    Beclin 1 is a key factor for initiation and regulation of autophagy, which is a cellular catabolic process involved in tumorigenesis. To investigate the role of alternative splicing of Beclin1 in the regulation of autophagy in leukemia cells, Beclin1 mRNA from 6 different types of cell lines and peripheral blood mononuclear cells from 2 healthy volunteers was reversely transcribed, subcloned, and screened for alternative splicing. New transcript variants were analyzed by DNA sequencing. A transcript variant of Beclin 1 gene carrying a deletion of exon 11, which encoded a C-terminal truncation of Beclin 1 isoform, was found. The alternative isoform was assessed by bioinformatics, immunoblotting and subcellular localization. The results showed that this variable transcript is generated by alternative 3' splicing, and its translational product displayed a reduced activity in induction of autophagy by starvation, indicating that the spliced isoform might function as a dominant negative modulator of autophagy. Our findings suggest that the alternative splicing of Beclin 1 might play important roles in leukemogenesis regulated by autophagy.

  7. Lytic Infection of Lactococcus lactis by Bacteriophages Tuc2009 and c2 Triggers Alternative Transcriptional Host Responses

    NARCIS (Netherlands)

    Ainsworth, S.; Zomer, A.L.; Mahony, J.; Sinderen, D. van

    2013-01-01

    Here we present an entire temporal transcriptional profile of Lactococcus lactis subsp. cremoris UC509.9 undergoing lytic infection with two distinct bacteriophages, Tuc2009 and c2. Furthermore, corresponding high-resolution whole-phage genome tiling arrays of both bacteriophages were performed thro

  8. Control of gene expression during T cell activation: alternate regulation of mRNA transcription and mRNA stability

    Directory of Open Access Journals (Sweden)

    Gorospe Myriam

    2005-05-01

    Full Text Available Abstract Background Microarray technology has become highly valuable for identifying complex global changes in gene expression patterns. The effective correlation of observed changes in gene expression with shared transcription regulatory elements remains difficult to demonstrate convincingly. One reason for this difficulty may result from the intricate convergence of both transcriptional and mRNA turnover events which, together, directly influence steady-state mRNA levels. Results In order to investigate the relative contribution of gene transcription and changes in mRNA stability regulation to standard analyses of gene expression, we used two distinct microarray methods which individually measure nuclear gene transcription and changes in polyA mRNA gene expression. Gene expression profiles were obtained from both polyA mRNA (whole-cell and nuclear run-on (newly transcribed RNA across a time course of one hour following the activation of human Jurkat T cells with PMA plus ionomycin. Comparative analysis revealed that regulation of mRNA stability may account for as much as 50% of all measurements of changes in polyA mRNA in this system, as inferred by the absence of any corresponding regulation of nuclear gene transcription activity for these groups of genes. Genes which displayed dramatic elevations in both mRNA and nuclear run-on RNA were shown to be inhibited by Actinomycin D (ActD pre-treatment of cells while large numbers of genes regulated only through altered mRNA turnover (both up and down were ActD-resistant. Consistent patterns across the time course were observed for both transcribed and stability-regulated genes. Conclusion We propose that regulation of mRNA stability contributes significantly to the observed changes in gene expression in response to external stimuli, as measured by high throughput systems.

  9. Implementation of exon arrays: alternative splicing during T-cell proliferation as determined by whole genome analysis

    Directory of Open Access Journals (Sweden)

    Whistler Toni

    2010-09-01

    Full Text Available Abstract Background The contribution of alternative splicing and isoform expression to cellular response is emerging as an area of considerable interest, and the newly developed exon arrays allow for systematic study of these processes. We use this pilot study to report on the feasibility of exon array implementation looking to replace the 3' in vitro transcription expression arrays in our laboratory. One of the most widely studied models of cellular response is T-cell activation from exogenous stimulation. Microarray studies have contributed to our understanding of key pathways activated during T-cell stimulation. We use this system to examine whole genome transcription and alternate exon usage events that are regulated during lymphocyte proliferation in an attempt to evaluate the exon arrays. Results Peripheral blood mononuclear cells form healthy donors were activated using phytohemagglutinin, IL2 and ionomycin and harvested at 5 points over a 7 day period. Flow cytometry measured cell cycle events and the Affymetrix exon array platform was used to identify the gene expression and alternate exon usage changes. Gene expression changes were noted in a total of 2105 transcripts, and alternate exon usage identified in 472 transcript clusters. There was an overlap of 263 transcripts which showed both differential expression and alternate exon usage over time. Gene ontology enrichment analysis showed a broader range of biological changes in biological processes for the differentially expressed genes, which include cell cycle, cell division, cell proliferation, chromosome segregation, cell death, component organization and biogenesis and metabolic process ontologies. The alternate exon usage ontological enrichments are in metabolism and component organization and biogenesis. We focus on alternate exon usage changes in the transcripts of the spliceosome complex. The real-time PCR validation rates were 86% for transcript expression and 71% for

  10. Molecular cloning and pharmacology of functionally distinct isoforms of the human histamine H(3) receptor

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Goodman, M W; Burstein, E S;

    2002-01-01

    The pharmacology of histamine H(3) receptors suggests the presence of distinct receptor isoforms or subtypes. We herein describe multiple, functionally distinct, alternatively spliced isoforms of the human H(3) receptor. Combinatorial splicing at three different sites creates at least six distinc...

  11. Proteogenomic Analysis Identifies a Novel Human SHANK3 Isoform

    Directory of Open Access Journals (Sweden)

    Fahad Benthani

    2015-05-01

    Full Text Available Mutations of the SHANK3 gene have been associated with autism spectrum disorder. Individuals harboring different SHANK3 mutations display considerable heterogeneity in their cognitive impairment, likely due to the high SHANK3 transcriptional diversity. In this study, we report a novel interaction between the Mutated in colorectal cancer (MCC protein and a newly identified SHANK3 protein isoform in human colon cancer cells and mouse brain tissue. Hence, our proteogenomic analysis identifies a new human long isoform of the key synaptic protein SHANK3 that was not predicted by the human reference genome. Taken together, our findings describe a potential new role for MCC in neurons, a new human SHANK3 long isoform and, importantly, highlight the use of proteomic data towards the re-annotation of GC-rich genomic regions.

  12. Acute myeloid leukemia with the 8q22;21q22 translocation: secondary mutational events and alternative t(8;21) transcripts

    OpenAIRE

    Peterson, Luke F.; Boyapati, Anita; Ahn, Eun-Young; Biggs, Joseph R.; Okumura, Akiko Joo; Lo, Miao-Chia; Yan, Ming; Zhang, Dong-Er

    2007-01-01

    Nonrandom and somatically acquired chromosomal translocations can be identified in nearly 50% of human acute myeloid leukemias. One common chromosomal translocation in this disease is the 8q22;21q22 translocation. It involves the AML1 (RUNX1) gene on chromosome 21 and the ETO (MTG8, RUNX1T1) gene on chromosome 8 generating the AML1-ETO fusion proteins. In this review, we survey recent advances made involving secondary mutational events and alternative t(8;21) transcripts in relation to unders...

  13. Alternative Splicing Generates a Diacylglycerol Kinase α Transcript That Acts as a Dominant-Negative Modulator of Superoxide Production in Localized Aggressive Periodontitis

    Science.gov (United States)

    Batista, Eraldo L.; Kantarci, Alpdogan I.; Hasturk, Hatice; Van Dyke, Thomas E.

    2015-01-01

    Background Diacylglycerol (DAG), levels of which are tightly regulated by diacylglycerol kinases (DGKs), is a lipid mediator linked to key biologic functions. Members of the DGK family undergo alternative splicing, generating the protein diversity necessary to control different intracellular DAG pools. DGKα function is altered in polymorphonuclear neutrophils (PMNs) of patients with localized aggressive periodontitis (LAgP), suggesting a genetic basis. Here, the authors assess DGKα spliced transcripts in human LAgP neutrophils. Methods In an expression library of a patient with LAgP, PMNs were screened for different DGKα transcripts. Real-time polymerase chain reaction and in vitro expression assays were performed to assess the fate of different transcripts on protein translocation and superoxide production in human leukemia cells (HL-60) and COS-7 cells. Results A DGKα transcript that lacks exon 10 (DGKαΔ10) and generates a premature stop codon and a truncated protein was identified as being upregulated in LAgP neutrophils. In vitro assays revealed that DGKαΔ10 translocation occurred even in the absence of important regulatory motifs. Transfection of HL-60 neutrophil-like cells with the DGKαΔ10 spliced variant induced an increase in the stimulated production of su-peroxide anion replicating the phenotype of LAgP PMNs. Conclusion DGKαΔ10 can act as a dominant-negative transcript that can modulate superoxide production and provides an example of genetic regulation of the inflammatory response that may be relevant to human inflammatory diseases such as LAgP. J Periodontol 2014;85:934-943. PMID:24171497

  14. A chemokine targets the nucleus: Cxcl12-gamma isoform localizes to the nucleolus in adult mouse heart.

    Directory of Open Access Journals (Sweden)

    Raul Torres

    Full Text Available Chemokines are extracellular mediators of complex regulatory circuits involved principally in cell-to-cell communication. Most studies to date of the essential chemokine Cxcl12 (Sdf-1 have focused on the ubiquitously expressed secreted isoforms alpha and beta. Here we show that, unlike these isoforms and all other known chemokines, the alternatively transcribed gamma isoform is an intracellular protein that localizes to the nucleolus in differentiated mouse Cardiac tissue. Our results demonstrate that nucleolar transportation is encoded by a nucleolar-localization signal in the unique carboxy-terminal region of Sdf-1gamma, and is competent both in vivo and in vitro. The molecular mechanism underlying these unusual chemokine properties involves cardiac-specific transcription of an mRNA containing a unique short-leader sequence lacking the signal peptide and translation from a non-canonical CUG codon. Our results provide an example of genome economy even for essential and highly conserved genes such as Cxcl12, and suggest that chemokines can exert tissue specific functions unrelated to cell-to-cell communication.

  15. SURVIV for survival analysis of mRNA isoform variation.

    Science.gov (United States)

    Shen, Shihao; Wang, Yuanyuan; Wang, Chengyang; Wu, Ying Nian; Xing, Yi

    2016-01-01

    The rapid accumulation of clinical RNA-seq data sets has provided the opportunity to associate mRNA isoform variations to clinical outcomes. Here we report a statistical method SURVIV (Survival analysis of mRNA Isoform Variation), designed for identifying mRNA isoform variation associated with patient survival time. A unique feature and major strength of SURVIV is that it models the measurement uncertainty of mRNA isoform ratio in RNA-seq data. Simulation studies suggest that SURVIV outperforms the conventional Cox regression survival analysis, especially for data sets with modest sequencing depth. We applied SURVIV to TCGA RNA-seq data of invasive ductal carcinoma as well as five additional cancer types. Alternative splicing-based survival predictors consistently outperform gene expression-based survival predictors, and the integration of clinical, gene expression and alternative splicing profiles leads to the best survival prediction. We anticipate that SURVIV will have broad utilities for analysing diverse types of mRNA isoform variation in large-scale clinical RNA-seq projects. PMID:27279334

  16. Integrative analysis with ChIP-seq advances the limits of transcript quantification from RNA-seq.

    Science.gov (United States)

    Liu, Peng; Sanalkumar, Rajendran; Bresnick, Emery H; Keleş, Sündüz; Dewey, Colin N

    2016-08-01

    RNA-seq is currently the technology of choice for global measurement of transcript abundances in cells. Despite its successes, isoform-level quantification remains difficult because short RNA-seq reads are often compatible with multiple alternatively spliced isoforms. Existing methods rely heavily on uniquely mapping reads, which are not available for numerous isoforms that lack regions of unique sequence. To improve quantification accuracy in such difficult cases, we developed a novel computational method, prior-enhanced RSEM (pRSEM), which uses a complementary data type in addition to RNA-seq data. We found that ChIP-seq data of RNA polymerase II and histone modifications were particularly informative in this approach. In qRT-PCR validations, pRSEM was shown to be superior than competing methods in estimating relative isoform abundances within or across conditions. Data-driven simulations suggested that pRSEM has a greatly decreased false-positive rate at the expense of a small increase in false-negative rate. In aggregate, our study demonstrates that pRSEM transforms existing capacity to precisely estimate transcript abundances, especially at the isoform level.

  17. Effects of Δ40p53, an isoform of p53 lacking the N-terminus, on transactivation capacity of the tumor suppressor protein p53

    OpenAIRE

    Hafsi, Hind; Santos-Silva, Daniela; Courtois-Cox, Stéphanie; Hainaut, Pierre

    2013-01-01

    Background The p53 protein is expressed as multiple isoforms that differ in their N- and C-terminus due to alternative splicing, promoter or codon initiation usage. Δ40p53 lacks the first 39 residues containing the main transcriptional activation domain, resulting from initiation of translation at AUG +40 in fully spliced p53 mRNA or in a specific variant mRNA retaining intron 2. Overexpression of Δ40p53 antagonizes wild-type p53 in vitro. However, animal models of Δ40p53 in mouse or Zebrafis...

  18. Proteomic Analysis of Cytokeratin Isoforms Uncovers Association with Survival in Lung Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Tarek G. Gharib

    2002-01-01

    Full Text Available Cytokeratins. (CK are intermediate filaments whose expression is often altered in epithelial cancer. Systematic identification of lung adenocarcinoma proteins using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry has uncovered numerous CK isoforms. In this study, 93 lung adenocarcinomas. (64 stage I and 29 stage III and 10 uninvolved lung samples were quantitatively examined for protein expression. Fourteen of 21 isoforms of CK 7, 8, 18, 19 occurred at significantly higher levels. (P<.05 in tumors compared to uninvolved adjacent tissue. Specific isoforms of the four types of CK identified correlated with either clinical outcome or individual clinical-pathological parameters. All five of the CK7 isoforms associated with patient survival represented cleavage products. Two of five CK7 isoforms. (nos. 2165 and 2091, one of eight CK8 isoforms. (no. 439, one of three CK19 isoforms. (no. 1955 were associated with survival and significantly correlated to their mRNA levels, suggesting that transcription underlies overexpression of these CK isoforms. Our data indicate substantial heterogeneity among CK in lung adenocarcinomas resulting from posttranslational modifications, some of which correlated with patient survival and other clinical parameters. Therefore, specific isoforms of individual CK may have utility as diagnostic or predictive markers in lung adenocarcinomas.

  19. MAISTAS: a tool for automatic structural evaluation of alternative splicing products.

    KAUST Repository

    Floris, Matteo

    2011-04-15

    MOTIVATION: Analysis of the human genome revealed that the amount of transcribed sequence is an order of magnitude greater than the number of predicted and well-characterized genes. A sizeable fraction of these transcripts is related to alternatively spliced forms of known protein coding genes. Inspection of the alternatively spliced transcripts identified in the pilot phase of the ENCODE project has clearly shown that often their structure might substantially differ from that of other isoforms of the same gene, and therefore that they might perform unrelated functions, or that they might even not correspond to a functional protein. Identifying these cases is obviously relevant for the functional assignment of gene products and for the interpretation of the effect of variations in the corresponding proteins. RESULTS: Here we describe a publicly available tool that, given a gene or a protein, retrieves and analyses all its annotated isoforms, provides users with three-dimensional models of the isoform(s) of his/her interest whenever possible and automatically assesses whether homology derived structural models correspond to plausible structures. This information is clearly relevant. When the homology model of some isoforms of a gene does not seem structurally plausible, the implications are that either they assume a structure unrelated to that of the other isoforms of the same gene with presumably significant functional differences, or do not correspond to functional products. We provide indications that the second hypothesis is likely to be true for a substantial fraction of the cases. AVAILABILITY: http://maistas.bioinformatica.crs4.it/.

  20. Characterization of four hemocyanin isoforms in Litopenaeus vannamei

    Institute of Scientific and Technical Information of China (English)

    XU Jingxiang; RUAN Lingwei; LI Zhen; YU Xiaoman; LI Sedong; SHI Hong; XU Xun

    2015-01-01

    In this study, the gene encoding hemocyanin subunit L, LvHcL, was cloned from Litopenaeus vannamei and the genomic organization was characterized. This gene was diverse with many SNPs and also had at least four isoforms, while one of them (LvHcL4) only had two exons and the exon2 was missed. Transcription analysis showed that these isoforms of LvHcL were up-regulated after WSSV challenge in WSSV-resistant shrimp, while the transcriptions were decreased constantly in WSSV-susceptible shrimp. It is suggested that the hemocyanin had rich polymorphism and was involved in the antiviral response. These results could extend our previous findings and provide insights into the immune feature of hemocyanin, which would be helpful for further studies aimed at antiviral mechanism in inver-tebrate.

  1. From "junk" to gene: curriculum vitae of a primate receptor isoform gene.

    Science.gov (United States)

    Singer, Silke S; Männel, Daniela N; Hehlgans, Thomas; Brosius, Jürgen; Schmitz, Jürgen

    2004-08-20

    Exonization of Alu retroposons awakens public opinion, particularly when causing genetic diseases. However, often neglected, alternative "Alu-exons" also carry the potential to greatly enhance genetic diversity by increasing the transcriptome of primates chiefly via alternative splicing.Here, we report a 5' exon generated from one of the two alternative transcripts in human tumor necrosis factor receptor gene type 2 (p75TNFR) that contains an ancient Alu-SINE, which provides an alternative N-terminal protein-coding domain. We follow the primate evolution over the past 63 million years to reconstruct the key events that gave rise to a novel receptor isoform. The Alu integration and start codon formation occurred between 58 and 40 million years ago (MYA) in the common ancestor of anthropoid primates. Yet a functional gene product could not be generated until a novel splice site and an open reading frame were introduced between 40 and 25 MYA on the catarrhine lineage (Old World monkeys including apes).

  2. Role of p53 isoforms and aggregations in cancer.

    Science.gov (United States)

    Kim, SeJin; An, Seong Soo A

    2016-06-01

    p53 is a master regulatory protein that is involved in diverse cellular metabolic processes such as apoptosis, DNA repair, and cell cycle arrest. The protective function of p53 (in its homotetrameric form) as a tumor suppressor is lost in more than 50% of human cancers.Despite considerable experimental evidence suggesting the presence of multiple p53 states, it has been difficult to correlate the status of p53 with cancer response to treatments and clinical outcomes, which suggest the importance of complex but essential p53 regulatory pathways.Recent studies have indicated that the expression pattern of p53 isoforms may play a crucial role in regulating normal and cancer cell fates in response to diverse stresses. The human TP53 gene encodes at least 12 p53 isoforms, which are produced in normal tissue through alternative initiation of translation, usage of alternative promoters, and alternative splicing. Furthermore, some researchers have suggested that the formation of mutant p53 aggregates may be associated with cancer pathogenesis due to loss-of function (LoF), dominant-negative (DN), and gain-of function (GoF) effects.As different isoforms or the aggregation state of p53 may influence tumorigenesis, this review aims to examine the correlation of p53 isoforms and aggregation with cancer. PMID:27368003

  3. Exo70 Isoform Switching upon Epithelial-Mesenchymal Transition Mediates Cancer Cell Invasion

    Science.gov (United States)

    Lu, Hezhe; Liu, Jianglan; Liu, Shujing; Zeng, Jingwen; Ding, Deqiang; Carstens, Russ P.; Cong, Yusheng; Xu, Xiaowei; Guo, Wei

    2014-01-01

    Summary Epithelial-mesenchymal transition (EMT) is an important developmental process hijacked by cancer cells for their dissemination. Here we show that Exo70, a component of the exocyst complex, undergoes isoform switching mediated by ESRP1, a pre-mRNA splicing factor that regulates EMT. Expression of the epithelial isoform of Exo70 affects the levels of key EMT transcriptional regulators such as Snail and ZEB2, and is sufficient to drive the transition to epithelial phenotypes. Differential Exo70 isoforms expression in human tumors correlates with cancer progression, and increased expression of the epithelial isoform of Exo70 inhibits tumor metastasis in mice. At the molecular level, the mesenchymal but not the epithelial isoform of Exo70 interacts with the Arp2/3 complex and stimulates actin polymerization for tumor invasion. Our findings provide a mechanism by which the exocyst function and actin dynamics are modulated for EMT and tumor invasion. PMID:24331928

  4. Regulation of estrogen receptor (ER) isoform messenger RNA expression by different ER ligands in female rat pituitary.

    Science.gov (United States)

    Tena-Sempere, M; Navarro, V M; Mayen, A; Bellido, C; Sánchez-Criado, J E

    2004-03-01

    Net estrogen sensitivity in target tissues critically depends on the regulated expression of full-length and alternately processed estrogen receptor (ER) isoforms. However, the molecular mechanisms for the control of pituitary responsiveness to estrogen remain partially unknown. In the present communication, we report the ability of different ligands, with distinct agonistic or antagonistic properties at the ER, to modulate the expression of the transcripts encoding ERalpha and ERbeta isoforms, as well as those for the truncated ERalpha product (TERP), and the variant ERbeta2, in pituitaries from ovariectomized rats, i.e., a background devoid of endogenous estrogen. Compared with expression levels at the morning of proestrus, ovariectomy (OVX) resulted in increased pituitary expression of ERbeta and ERbeta2 mRNAs, whereas it decreased TERP-1 and -2 levels without affecting those of ERalpha. Administration of estradiol benzoate (as potent agonist for alpha and beta forms of ER) or the selective ERalpha agonist, propyl pyrazole triol, fully reversed the responses to OVX, while the ERbeta ligand, diarylpropionitrile, failed to induce any significant effect except for a partial stimulation of TERP-1 and -2 mRNA expression levels. To note, the ERbeta agonist was also ineffective in altering pituitary expression of progesterone receptor-B mRNA, i.e., a major estrogen-responsive target. In all parameters tested, tamoxifen, a selective ER modulator with mixed agonist/antagonist activity, behaved as ERalpha agonist, although the magnitude of tamoxifen effects was significantly lower than those of the ERalpha ligand, except for TERP induction. In contrast, the pure antiestrogen RU-58668 did not modify the expression of any of the targets under analysis. Overall, our results indicate that endogenous estrogen differentially regulates pituitary expression of the mRNAs encoding several ER isoforms with distinct functional properties, by a mechanism that is mostly conducted

  5. Quantification of type II procollagen splice forms using Alternative Transcript-qPCR (AT-qPCR)

    OpenAIRE

    McAlinden, Audrey; Shim, Kyu-Hwan; Wirthlin, Louisa; Ravindran, Soumya; Hering, Thomas M.

    2012-01-01

    During skeletal development, the onset of chondrogenic differentiation is marked by expression of the α1(II) procollagen Col2a1) gene. Exon 2 of Col2a1 codes for a cysteine-rich von Willebrand factor C-like domain. Chondroprogenitors express the exon 2-containing IIA and IID splice forms by utilizing adjacent 5′ splice sites separated by 3 base pairs. There is a shift to expression of the shorter, exon 2-lacking IIB splice form with further differentiation. Alternative splicing analysis of Co...

  6. Nesprins: tissue-specific expression of epsilon and other short isoforms.

    Directory of Open Access Journals (Sweden)

    Nguyen Thuy Duong

    Full Text Available Nesprin-1-giant and nesprin-2-giant regulate nuclear positioning by the interaction of their C-terminal KASH domains with nuclear membrane SUN proteins and their N-terminal calponin-homology domains with cytoskeletal actin. A number of short isoforms lacking the actin-binding domains are produced by internal promotion. We have evaluated the significance of these shorter isoforms using quantitative RT-PCR and western blotting with site-specific monoclonal antibodies. Within a complete map of nesprin isoforms, we describe two novel nesprin-2 epsilon isoforms for the first time. Epsilon isoforms are similar in size and structure to nesprin-1-alpha. Expression of nesprin isoforms was highly tissue-dependent. Nesprin-2-epsilon-1 was found in early embryonic cells, while nesprin-2-epsilon-2 was present in heart and other adult tissues, but not skeletal muscle. Some cell lines lack shorter isoforms and express only one of the two nesprin genes, suggesting that either of the giant nesprins is sufficient for basic cell functions. For the first time, localisation of endogenous nesprin away from the nuclear membrane was shown in cells where removal of the KASH domain by alternative splicing occurs. By distinguishing between degradation products and true isoforms on western blots, it was found that previously-described beta and gamma isoforms are expressed either at only low levels or with a limited tissue distribution. Two of the shortest alpha isoforms, nesprin-1-alpha-2 and nesprin-2-alpha-1, were found almost exclusively in cardiac and skeletal muscle and a highly conserved and alternatively-spliced exon, available in both nesprin genes, was always included in these tissues. These "muscle-specific" isoforms are thought to form a complex with emerin and lamin A/C at the inner nuclear membrane and mutations in all three proteins cause Emery-Dreifuss muscular dystrophy and/or inherited dilated cardiomyopathy, disorders in which only skeletal muscle and

  7. Roles of the troponin isoforms during indirect flight muscle development in Drosophila

    Indian Academy of Sciences (India)

    Salam Herojeet Singh; Prabodh Kumar; Nallur B. Ramachandra; Upendra Nongthomba

    2014-08-01

    Troponin proteins in cooperative interaction with tropomyosin are responsible for controlling the contraction of the striated muscles in response to changes in the intracellular calcium concentration. Contractility of the muscle is determined by the constituent protein isoforms, and the isoforms can switch over from one form to another depending on physiological demands and pathological conditions. In Drosophila, amajority of themyofibrillar proteins in the indirect flight muscles (IFMs) undergo post-transcriptional and post-translational isoform changes during pupal to adult metamorphosis to meet the high energy and mechanical demands of flight. Using a newly generated Gal4 strain (UH3-Gal4) which is expressed exclusively in the IFMs, during later stages of development, we have looked at the developmental and functional importance of each of the troponin subunits (troponin-I, troponin-T and troponin-C) and their isoforms. We show that all the troponin subunits are required for normal myofibril assembly and flight, except for the troponin-C isoform 1 (TnC1). Moreover, rescue experiments conducted with troponin-I embryonic isoform in the IFMs, where flies were rendered flightless, show developmental and functional differences of TnI isoforms and importance of maintaining the right isoform.

  8. MicroRNA-126-mediated control of cell fate in B-cell myeloid progenitors as a potential alternative to transcriptional factors.

    Science.gov (United States)

    Okuyama, Kazuki; Ikawa, Tomokatsu; Gentner, Bernhard; Hozumi, Katsuto; Harnprasopwat, Ratanakanit; Lu, Jun; Yamashita, Riu; Ha, Daon; Toyoshima, Takae; Chanda, Bidisha; Kawamata, Toyotaka; Yokoyama, Kazuaki; Wang, Shusheng; Ando, Kiyoshi; Lodish, Harvey F; Tojo, Arinobu; Kawamoto, Hiroshi; Kotani, Ai

    2013-08-13

    Lineage specification is thought to be largely regulated at the level of transcription, where lineage-specific transcription factors drive specific cell fates. MicroRNAs (miR), vital to many cell functions, act posttranscriptionally to decrease the expression of target mRNAs. MLL-AF4 acute lymphocytic leukemia exhibits both myeloid and B-cell surface markers, suggesting that the transformed cells are B-cell myeloid progenitor cells. Through gain- and loss-of-function experiments, we demonstrated that microRNA 126 (miR-126) drives B-cell myeloid biphenotypic leukemia differentiation toward B cells without changing expression of E2A immunoglobulin enhancer-binding factor E12/E47 (E2A), early B-cell factor 1 (EBF1), or paired box protein 5, which are critical transcription factors in B-lymphopoiesis. Similar induction of B-cell differentiation by miR-126 was observed in normal hematopoietic cells in vitro and in vivo in uncommitted murine c-Kit(+)Sca1(+)Lineage(-) cells, with insulin regulatory subunit-1 acting as a target of miR-126. Importantly, in EBF1-deficient hematopoietic progenitor cells, which fail to differentiate into B cells, miR-126 significantly up-regulated B220, and induced the expression of B-cell genes, including recombination activating genes-1/2 and CD79a/b. These data suggest that miR-126 can at least partly rescue B-cell development independently of EBF1. These experiments show that miR-126 regulates myeloid vs. B-cell fate through an alternative machinery, establishing the critical role of miRNAs in the lineage specification of multipotent mammalian cells.

  9. Distinct motifs in the intracellular domain of human CD30 differentially activate canonical and alternative transcription factor NF-κB signaling.

    Directory of Open Access Journals (Sweden)

    Sarah L Buchan

    Full Text Available The TNF-receptor superfamily member CD30 is expressed on normal and malignant lymphocytes, including anaplastic large cell lymphoma (ALCL cells. CD30 transmits multiple effects, including activation of NF-κB signaling, cell proliferation, growth arrest and apoptosis. How CD30 generates these pleiotropic effects is currently unknown. Herein we describe ALCL cells expressing truncated forms of the CD30 intracellular domain that allowed us to identify the key regions responsible for transmitting its biological effects in lymphocytes. The first region (CD30(519-537 activated both the alternative and canonical NF-κB pathways as detected by p100 and IκBα degradation, IKKβ-dependent transcription of both IκBα and the cyclin-dependent kinase inhibitor p21(WAF1/CIP1 and induction of cell cycle arrest. In contrast, the second region of CD30 (CD30(538-595 induced some aspects of canonical NF-κB activation, including transcription of IκBα, but failed to activate the alternative NF-κB pathway or drive p21(WAF1/CIP1-mediated cell-cycle arrest. Direct comparison of canonical NF-κB activation by the two motifs revealed 4-fold greater p65 nuclear translocation following CD30(519-537 engagement. These data reveal that independent regions of the CD30 cytoplasmic tail regulate the magnitude and type of NF-κB activation and additionally identify a short motif necessary for CD30-driven growth arrest signals in ALCL cells.

  10. Alternative RNA Structure-Coupled Gene Regulations in Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Feng-Chi Chen

    2014-12-01

    Full Text Available Alternative RNA structures (ARSs, or alternative transcript isoforms, are critical for regulating cellular phenotypes in humans. In addition to generating functionally diverse protein isoforms from a single gene, ARS can alter the sequence contents of 5'/3' untranslated regions (UTRs and intronic regions, thus also affecting the regulatory effects of these regions. ARS may introduce premature stop codon(s into a transcript, and render the transcript susceptible to nonsense-mediated decay, which in turn can influence the overall gene expression level. Meanwhile, ARS can regulate the presence/absence of upstream open reading frames and microRNA targeting sites in 5'UTRs and 3'UTRs, respectively, thus affecting translational efficiencies and protein expression levels. Furthermore, since ARS may alter exon-intron structures, it can influence the biogenesis of intronic microRNAs and indirectly affect the expression of the target genes of these microRNAs. The connections between ARS and multiple regulatory mechanisms underline the importance of ARS in determining cell fate. Accumulating evidence indicates that ARS-coupled regulations play important roles in tumorigenesis. Here I will review our current knowledge in this field, and discuss potential future directions.

  11. Properties of the six isoforms of p63: p53-like regulation in response to genotoxic stress and cross talk with DeltaNp73.

    Science.gov (United States)

    Petitjean, A; Ruptier, C; Tribollet, V; Hautefeuille, A; Chardon, F; Cavard, C; Puisieux, A; Hainaut, P; Caron de Fromentel, C

    2008-02-01

    TP63, a member of the TP53 gene family, encodes two groups of three isoforms (alpha, beta and gamma). The TAp63 isoforms act as transcription factors. The DeltaNp63 isoforms lack the main transcription activation domain and act as dominant-negative inhibitors of transactivation (TA) isoforms. To clarify the role of these isoforms and to better understand their functional overlap with p53, we ectopically expressed each p63 isoform in the p53-null hepatocellular carcinoma cell line Hep3B. All TA isoforms, as well as DeltaNp63alpha, had a half-life of 8 h. As expected, TA isoforms differed in their transcriptional activities toward genes regulated by p53, TAp63gamma being the most active form. In contrast, DeltaNp63 isoforms were transcriptionally inactive on genes studied and inhibited TA isoforms in a dose-dependent manner. When stably expressed in polyclonal cell populations, TAp63beta and gamma isoforms were undetectable. However, when treated with doxorubicin (DOX), p63 proteins rapidly accumulated in the cells. This stabilization was associated with an increase in phosphorylation. Strikingly, in DOX-treated polyclonal populations, increase in TAp63 levels was accompanied by overexpression of DeltaNp73. This observation suggests complex regulatory cross talks between the different isoforms of the p53 family. In conclusion, p63 exhibits several transcriptional and stress-response properties similar to those of p53, suggesting that p63 activities should be taken into consideration in approaches to improve cancer therapies based on genotoxic agents. PMID:18048390

  12. XBAT35, a Novel Arabidopsis RING E3 Ligase Exhibiting Dual Targeting of Its Splice Isoforms,Is Involved in Ethylene-Mediated Regulation of Apical Hook Curvature

    Institute of Scientific and Technical Information of China (English)

    Sofia D.Carvalho; Rita Saraiva; Teresa M.Maia; Isabel A.Abreu; Paula Duque

    2012-01-01

    The Arabidopsis XBAT35 is one of five structurally related ankyrin repeat-containing Really interesting New Gene (RING) E3 ligases involved in ubiquitin-mediated protein degradation,which plays key roles in a wide range of cellular processes.Here,we show that the XBAT35 gene undergoes alternative splicing,generating two transcripts that are constitutively expressed in all plant tissues.The two splice variants derive from an exon skipping event that excludes an in-frame segment from the XBAT35 precursor mRNA,giving rise to two protein isoforms that differ solely in the presence of a nuclear localization signal (NLS).Transient expression assays indicate that the isoform lacking the NLS localizes in the cytoplasm of plant cells,whereas the other is targeted to the nucleus,accumulating in nuclear speckles.Both isoforms are functional E3 ligases,as assessed by in vitro ubiquitination assays.Two insertion mutant alleles and RNA-interference (RNAi) silencing lines for XBAT35 display no evident phenotypes under normal growth conditions,but exhibit hypersensitivity to the ethylene precursor 1-aminocyclopropane-1-carboxylate (ACC) during apical hook exaggeration in the dark,which is rescued by an inhibitor of ethylene perception.Independent expression of each XBAT35 splice variant in the mutant background indicates that the two isoforms may differentially contribute to apical hook formation but are both functional in this ethylene-mediated response.Thus,XBAT35 defines a novel player in ethylene signaling involved in negatively regulating apical hook curvature,with alternative splicing controlling dual targeting of this E3 ubiquitin ligase to the nuclear and cytoplasmic compartments.

  13. Regulation of cell proliferation by nucleocytoplasmic dynamics of postnatal and embryonic exon-II-containing MBP isoforms

    NARCIS (Netherlands)

    Ozgen, Hande; Kahya, Nicoletta; de Jonge, Jenny C.; Smith, Graham S. T.; Harauz, George; Hoekstra, Dick; Baron, Wia

    2014-01-01

    The only known structural protein required for formation of myelin, produced by oligodendrocytes in the central nervous system, is myelin basic protein (MBP). This peripheral membrane protein has different developmentally-regulated isoforms, generated by alternative splicing. The isoforms are target

  14. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics.

    Science.gov (United States)

    Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A; Larsson, Lars; Ge, Ying

    2016-04-01

    Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases. PMID:27090236

  15. Comprehensive analysis of tropomyosin isoforms in skeletal muscles by top-down proteomics.

    Science.gov (United States)

    Jin, Yutong; Peng, Ying; Lin, Ziqing; Chen, Yi-Chen; Wei, Liming; Hacker, Timothy A; Larsson, Lars; Ge, Ying

    2016-04-01

    Mammalian skeletal muscles are heterogeneous in nature and are capable of performing various functions. Tropomyosin (Tpm) is a major component of the thin filament in skeletal muscles and plays an important role in controlling muscle contraction and relaxation. Tpm is known to consist of multiple isoforms resulting from different encoding genes and alternative splicing, along with post-translational modifications. However, a systematic characterization of Tpm isoforms in skeletal muscles is still lacking. Therefore, we employed top-down mass spectrometry (MS) to identify and characterize Tpm isoforms present in different skeletal muscles from multiple species, including swine, rat, and human. Our study revealed that Tpm1.1 and Tpm2.2 are the two major Tpm isoforms in swine and rat skeletal muscles, whereas Tpm1.1, Tpm2.2, and Tpm3.12 are present in human skeletal muscles. Tandem MS was utilized to identify the sequences of the major Tpm isoforms. Furthermore, quantitative analysis revealed muscle-type specific differences in the abundance of un-modified and modified Tpm isoforms in rat and human skeletal muscles. This study represents the first systematic investigation of Tpm isoforms in skeletal muscles, which not only demonstrates the capabilities of top-down MS for the comprehensive characterization of skeletal myofilament proteins but also provides the basis for further studies on these Tpm isoforms in muscle-related diseases.

  16. Detection of VEGF-A(xxx)b isoforms in human tissues.

    Science.gov (United States)

    Bates, David O; Mavrou, Athina; Qiu, Yan; Carter, James G; Hamdollah-Zadeh, Maryam; Barratt, Shaney; Gammons, Melissa V; Millar, Ann B; Salmon, Andrew H J; Oltean, Sebastian; Harper, Steven J

    2013-01-01

    Vascular Endothelial Growth Factor-A (VEGF-A) can be generated as multiple isoforms by alternative splicing. Two families of isoforms have been described in humans, pro-angiogenic isoforms typified by VEGF-A165a, and anti-angiogenic isoforms typified by VEGF-A165b. The practical determination of expression levels of alternative isoforms of the same gene may be complicated by experimental protocols that favour one isoform over another, and the use of specific positive and negative controls is essential for the interpretation of findings on expression of the isoforms. Here we address some of the difficulties in experimental design when investigating alternative splicing of VEGF isoforms, and discuss the use of appropriate control paradigms. We demonstrate why use of specific control experiments can prevent assumptions that VEGF-A165b is not present, when in fact it is. We reiterate, and confirm previously published experimental design protocols that demonstrate the importance of using positive controls. These include using known target sequences to show that the experimental conditions are suitable for PCR amplification of VEGF-A165b mRNA for both q-PCR and RT-PCR and to ensure that mispriming does not occur. We also provide evidence that demonstrates that detection of VEGF-A165b protein in mice needs to be tightly controlled to prevent detection of mouse IgG by a secondary antibody. We also show that human VEGF165b protein can be immunoprecipitated from cultured human cells and that immunoprecipitating VEGF-A results in protein that is detected by VEGF-A165b antibody. These findings support the conclusion that more information on the biology of VEGF-A165b isoforms is required, and confirm the importance of the experimental design in such investigations, including the use of specific positive and negative controls.

  17. Two isoforms of aquaporin 2 responsive to hypertonic stress in the bottlenose dolphin.

    Science.gov (United States)

    Suzuki, Miwa; Wakui, Hitomi; Itou, Takuya; Segawa, Takao; Inoshima, Yasuo; Maeda, Ken; Kikuchi, Kiyoshi

    2016-04-15

    This study investigated the expression of aquaporin 2 (AQP2) and its newly found alternatively spliced isoform (alternative AQP2) and the functions of these AQP2 isoforms in the cellular hyperosmotic tolerance in the bottlenose dolphin, ITALIC! Tursiops truncatus mRNA sequencing revealed that alternative AQP2 lacks the fourth exon and instead has a longer third exon that includes a part of the original third intron. The portion of the third intron, now part of the coding region of alternative AQP2, is highly conserved among many species of the order Cetacea but not among terrestrial mammals. Semi-quantitative PCR revealed that AQP2 was expressed only in the kidney, similar to terrestrial mammals. In contrast, alternative AQP2 was expressed in all organs examined, with strong expression in the kidney. In cultured renal cells, expression of both AQP2 isoforms was upregulated by the addition to the medium of NaCl but not by the addition of mannitol, indicating that the expression of both isoforms is induced by hypersalinity. Treatment with small interfering RNA for both isoforms resulted in a decrease in cell viability in hypertonic medium (500 mOsm kg(-1)) when compared with controls. These findings indicate that the expression of alternatively spliced AQP2 is ubiquitous in cetacean species, and it may be one of the molecules important for cellular osmotic tolerance throughout the body. PMID:26944501

  18. C/EBPβ Isoforms Expression in the Rat Brain during the Estrous Cycle

    Directory of Open Access Journals (Sweden)

    Valeria Hansberg-Pastor

    2015-01-01

    Full Text Available The CCAAT/enhancer-binding protein beta (C/EBPβ is a transcription factor expressed in different areas of the brain that regulates the expression of several genes involved in cell differentiation and proliferation. This protein has three isoforms (LAP1, LAP2, and LIP with different transcription activation potential. The role of female sex hormones in the expression pattern of C/EBPβ isoforms in the rat brain has not yet been described. In this study we demonstrate by western blot that the expression of the three C/EBPβ isoforms changes in different brain areas during the estrous cycle. In the cerebellum, LAP2 content diminished on diestrus and proestrus and LIP content diminished on proestrus and estrus days. In the prefrontal cortex, LIP content was higher on proestrus and estrus days. In the hippocampus, LAP isoforms presented a switch on diestrus day, since LAP1 content was the highest while that of LAP2 was the lowest. The LAP2 isoform was the most abundant one in all the three brain areas. The LAP/LIP ratio changed throughout the cycle and was tissue specific. These results suggest that C/EBPβ isoforms expression changes in a tissue-specific manner in the rat brain due to the changes in sex steroid hormone levels presented during the estrous cycle.

  19. Identification of a novel splice variant of human PD-L1 Mrna encoding an isoform-lacking Igv-like domain

    Institute of Scientific and Technical Information of China (English)

    Xian-hui HE; Li-hui XU; Yi LIU

    2005-01-01

    Aim: To investigate the expression and regulation of PD-1 ligand 1 (PD-L1) in peripheral blood mononuclear cells (PBMC). Methods: The cDNA encoding human PD-L1 precursor was cloned from the total RNA extracted from the resting and phorbol dibutyrate plus ionomycin- or phytohemagglutinin-activated PBMC, by reverse transcription polymerase chain reaction (RT-PCR), and independent clones were sequenced and analyzed. The expression and subcellular localization were examined in transiently transfected cells. The PD-L1 gene expression in different PBMC was also analyzed by RT-PCR. Results: A novel human PD-L1 splice variant was identified from the activated PBMC. It was generated by splicing out exon 2 encoding an immunoglobulin variable domain (Igv)-like domain but retaining all other exons without a frame-shift. Consequently, the putative translated protein contained all other domains including the transmembrane region except for the Igv-like domain. Furthermore, the conventional isoform was expressed on the plasma surface whereas the novel isoform showed a pattern of intmcellular membrane distribution in transiently transfected K562 cells. In addition, the expression pattern of the PD-L1 splice variant was variable in different individuals and in different cellular status. Conclusion: PD-L1 expression may be regulated at the posttranscriptional level through alternative splicing, and modulation of the PD-L1 isoform expression may influence the outcome of specific immune responses in the peripheral tissues.

  20. Dynamic expression and localization of c-MET isoforms in the developing rat pancreas.

    Science.gov (United States)

    Wu, Yulong; Cheng, Mei; Shi, Zhen; Feng, Zhenqing; Guan, Xiaohong

    2014-01-01

    Pancreata from Sprague Dawley rats of different developmental stages were studied to determine the expression and cellular localization of different c-MET isoforms in the developing rat pancreas. Pancreatic mRNA and protein expression levels of c-MET at different developmental stages from embryo to adult were detected by reverse transcription-polymerase chain reaction and by western blotting. To identify the cellular localization of c-MET protein in the developing rat pancreas, double immunofluorescent staining was performed using antibodies for cell type-specific markers and for c-MET. The expression of two isoforms of c-MET (190 kDa and 170 kDa) coincided with the development of the pancreas. The 190 kDa isoform of c-MET is expressed during embryonic stages, and its expression is replaced by the expression of the 170 kDa isoform as the pancreas develops. Only the 170 kDa isoform is expressed in the adult rat pancreas. Throughout all stages of pancreatic development, c-MET is expressed by vimentin-positive cells. In contrast, c-MET staining was stronger in rat pancreata from newborn to adult stages and overlapped with insulin-positive beta-cells. The dynamic expression and localization of different c-MET isoforms in the rat pancreas during different developmental stages indicates that distinct c-MET isoform might be involved in different aspects of pancreatic development.

  1. Two isoforms of trimming glucosidase II exist in mammalian tissues and cell lines but not in yeast and insect cells.

    Science.gov (United States)

    Ziak, M; Meier, M; Etter, K S; Roth, J

    2001-01-12

    We previously cloned glucosidase II and provided in vivo evidence for its involvement in protein folding quality control. DNA-sequencing of different clones demonstrated the existence of two isoforms of glucosidase II which differed by 66 nucleotides due to alternative splicing. The existence of two enzyme isoforms in various organs of pig and rat as well as human, bovine, rat, and mouse cell lines could be demonstrated by RT-PCR and Western blotting. Furthermore, the two isoforms of glucosidase II could be detected in embryonic and postnatal rat kidney and liver. In yeast, Saccharomyces cerevisiae, and in insects, Drosophila S2 cells, only one isoforms of the enzyme was detectable. The ubiquitous occurrence of the two glucosidase II isoforms in mammalian tissues and cell lines might be indicative of a special function of each isoform.

  2. Alterations of Lymphoid Enhancer Factor-1 Isoform Expression in Solid Tumors and Acute Leukemias

    Institute of Scientific and Technical Information of China (English)

    Wenbing WANG; Carsten M(U)LLER-TIDOW; Ping JI; Bj(o)rn STEFFEN; Ralf METZGER; Paul M. SCHNEIDER; Hartmut HALFTER; Mark SCHRADER; Wolfgang E. BERDEL; Hubert SERVE

    2005-01-01

    Two major transcripts of lymphoid enhancer factor-1 (LEF-1) have been described. The long isoform with β-catenin binding domain functions as a transcriptional enhancer factor. The short isoform derives from an intronic promoter and exhibits dominant negative activity. Recently, alterations of LEF- 1isoforms distribution have been described in colon cancer. In the current study we employed a quantitative real-time reverse transcription PCR method (TaqMan) to analyze expression of LEF-1 isoforms in a large cohort of human tumor (n=304) and tumor-free control samples (n=56). The highest expression level of LEF-1 was found in carcinoma samples whereas brain cancer samples expressed little. Expression of LEF1 was different in distinct cancer types. For example, the mRNA level of LEF-1 was lower in testicular tumor samples compared with tumor-free control samples. Besides epithelial cancers, significant LEF-1expression was also found in hematopoietic cells. In hematological malignancies, overall LEF-1 level was higher in lymphocytic leukemias compared with myeloid leukemias and normal hematopoiesis. However,acute myeloid leukemia and acute lymphocytic leukemia showed a significantly increased fraction of the oncogenic LEF-1 compared with chronic lymphocytic leukemia and chronic myeloid leukemia. Taken together,these data suggest that LEF-1 is abundantly expressed in human tumors and the ratio of the oncogenic and the dominant negative short isoform altered not only in carcinomas but also in leukemia.

  3. Supraphysiologic levels of the AML1-ETO isoform AE9a are essential for transformation.

    Science.gov (United States)

    Link, Kevin A; Lin, Shan; Shrestha, Mahesh; Bowman, Melissa; Wunderlich, Mark; Bloomfield, Clara D; Huang, Gang; Mulloy, James C

    2016-08-01

    Chromosomal translocation 8;21 is found in 40% of the FAB M2 subtype of acute myeloid leukemia (AML). The resultant in-frame fusion protein AML1-ETO (AE) acts as an initiating oncogene for leukemia development. AE immortalizes human CD34(+) cord blood cells in long-term culture. We assessed the transforming properties of the alternatively spliced AE isoform AE9a (or alternative splicing at exon 9), which is fully transforming in a murine retroviral model, in human cord blood cells. Full activity was realized only upon increased fusion protein expression. This effect was recapitulated in the AE9a murine AML model. Cotransduction of AE and AE9a resulted in a strong selective pressure for AE-expressing cells. In the context of AE, AE9a did not show selection for increased expression, affirming observations of human t(8;21) patient samples where full-length AE is the dominant protein detected. Mechanistically, AE9a showed defective transcriptional regulation of AE target genes that was partially corrected at high expression. Together, these results bring an additional perspective to our understanding of AE function and highlight the contribution of oncogene expression level in t(8;21) experimental models. PMID:27457952

  4. Altered Alpha-Synuclein, Parkin, and Synphilin Isoform Levels in Multiple System Atrophy Brains

    DEFF Research Database (Denmark)

    Brudek, Tomasz; Winge, Kristian; Bredo Rasmussen, Nadja;

    2016-01-01

    Together with Parkinson's disease (PD) and dementia with Lewy bodies (DLB), Multiple System Atrophy (MSA) is a member of a diverse group of neurodegenerative disorders termed α-synucleinopathies. Previously, it has been shown that alpha-synuclein, parkin and synphilin-1 display disease specific...... controls using isoform-specific primers and exon specific antibodies in substantia nigra, striatum, cerebellar cortex, and nucleus dentatus. These regions are severely affected by alpha-synuclein pathology and neurodegeneration. Further, we have also investigated transcript levels for parkin and synphilin...... increased levels of parkin isoforms lacking the N-terminal ubiquitin-like domain and an aggregation-prone synphiln-1A isoform that causes neuronal toxicity in MSA. In PD brains, Parkin transcript variant 3, 7 and 11 were significantly and specifically overexpressed in the striatum and cerebellar cortex...

  5. Isoform-specific upregulation of palladin in human and murine pancreas tumors.

    Directory of Open Access Journals (Sweden)

    Silvia M Goicoechea

    Full Text Available Pancreatic ductal adenocarcinoma (PDA is a lethal disease with a characteristic pattern of early metastasis, which is driving a search for biomarkers that can be used to detect the cancer at an early stage. Recently, the actin-associated protein palladin was identified as a candidate biomarker when it was shown that palladin is mutated in a rare inherited form of PDA, and overexpressed in many sporadic pancreas tumors and premalignant precursors. In this study, we analyzed the expression of palladin isoforms in murine and human PDA and explored palladin's potential use in diagnosing PDA. We performed immunohistochemistry and immunoblot analyses on patient samples and tumor-derived cells using an isoform-selective monoclonal antibody and a pan-palladin polyclonal antibody. Immunoblot and real-time quantitative reverse transcription-PCR were used to quantify palladin mRNA levels in human samples. We show that there are two major palladin isoforms expressed in pancreas: 65 and 85-90 kDa. The 65 kDa isoform is expressed in both normal and neoplastic ductal epithelial cells. The 85-90 kDa palladin isoform is highly overexpressed in tumor-associated fibroblasts (TAFs in both primary and metastatic tumors compared to normal pancreas, in samples obtained from either human patients or genetically engineered mice. In tumor-derived cultured cells, expression of palladin isoforms follows cell-type specific patterns, with the 85-90 kDa isoform in TAFs, and the 65 kDa isoform predominating in normal and neoplastic epithelial cells. These results suggest that upregulation of 85-90 kDa palladin isoform may play a role in the establishment of the TAF phenotype, and thus in the formation of a desmoplastic tumor microenvironment. Thus, palladin may have a potential use in the early diagnosis of PDA and may have much broader significance in understanding metastatic behavior.

  6. Methods for Characterization of Alternative RNA Splicing.

    Science.gov (United States)

    Harvey, Samuel E; Cheng, Chonghui

    2016-01-01

    Quantification of alternative splicing to detect the abundance of differentially spliced isoforms of a gene in total RNA can be accomplished via RT-PCR using both quantitative real-time and semi-quantitative PCR methods. These methods require careful PCR primer design to ensure specific detection of particular splice isoforms. We also describe analysis of alternative splicing using a splicing "minigene" in mammalian cell tissue culture to facilitate investigation of the regulation of alternative splicing of a particular exon of interest.

  7. Oncogenic Alternative Splicing Switches: Role in Cancer Progression and Prospects for Therapy

    Directory of Open Access Journals (Sweden)

    Serena Bonomi

    2013-01-01

    Full Text Available Alterations in the abundance or activities of alternative splicing regulators generate alternatively spliced variants that contribute to multiple aspects of tumor establishment, progression and resistance to therapeutic treatments. Notably, many cancer-associated genes are regulated through alternative splicing suggesting a significant role of this post-transcriptional regulatory mechanism in the production of oncogenes and tumor suppressors. Thus, the study of alternative splicing in cancer might provide a better understanding of the malignant transformation and identify novel pathways that are uniquely relevant to tumorigenesis. Understanding the molecular underpinnings of cancer-associated alternative splicing isoforms will not only help to explain many fundamental hallmarks of cancer, but will also offer unprecedented opportunities to improve the efficacy of anti-cancer treatments.

  8. A novel MCPH1 isoform complements the defective chromosome condensation of human MCPH1-deficient cells.

    Directory of Open Access Journals (Sweden)

    Ioannis Gavvovidis

    Full Text Available Biallelic mutations in MCPH1 cause primary microcephaly (MCPH with the cellular phenotype of defective chromosome condensation. MCPH1 encodes a multifunctional protein that notably is involved in brain development, regulation of chromosome condensation, and DNA damage response. In the present studies, we detected that MCPH1 encodes several distinct transcripts, including two major forms: full-length MCPH1 (MCPH1-FL and a second transcript lacking the six 3' exons (MCPH1Δe9-14. Both variants show comparable tissue-specific expression patterns, demonstrate nuclear localization that is mediated independently via separate NLS motifs, and are more abundant in certain fetal than adult organs. In addition, the expression of either isoform complements the chromosome condensation defect found in genetically MCPH1-deficient or MCPH1 siRNA-depleted cells, demonstrating a redundancy of both MCPH1 isoforms for the regulation of chromosome condensation. Strikingly however, both transcripts are regulated antagonistically during cell-cycle progression and there are functional differences between the isoforms with regard to the DNA damage response; MCPH1-FL localizes to phosphorylated H2AX repair foci following ionizing irradiation, while MCPH1Δe9-14 was evenly distributed in the nucleus. In summary, our results demonstrate here that MCPH1 encodes different isoforms that are differentially regulated at the transcript level and have different functions at the protein level.

  9. Evolution of a TRIM5-CypA splice isoform in old world monkeys.

    Directory of Open Access Journals (Sweden)

    Ruchi M Newman

    2008-02-01

    Full Text Available The TRIM family proteins share a conserved arrangement of three adjacent domains, an N-terminal RING domain, followed by one or two B-boxes and a coiled-coil, which constitutes the tripartite-motif for which the family is named. However, the C-termini of TRIM proteins vary, and include at least nine evolutionarily distinct, unrelated protein domains. Antiviral restriction factor TRIM5alpha has a C-terminal B30.2/SPRY domain, which is the major determinant of viral target specificity. Here, we describe the evolution of a cyclophilin-A encoding exon downstream of the TRIM5 locus of Asian macaques. Alternative splicing gives rise to chimeric transcripts encoding the TRIM motif fused to a C-terminal CypA domain (TRIM5-CypA. We detected TRIM5-CypA chimeric transcripts in primary lymphocytes from two macaque species. These were derived in part from a CypA pseudogene in the TRIM5 locus, which is distinct from the previously described CypA insertion in TRIM5 of owl monkeys. The CypA insertion is linked to a mutation in the 3' splice site upstream of exon 7, which may prevent or reduce expression of the alpha-isoform. All pig-tailed macaques (M. nemestrina screened were homozygous for the CypA insertion. In contrast, the CypA-containing allele was present in 17% (17/101 of rhesus macaques (M. mulatta. The block to HIV-1 infection in lymphocytes from animals bearing the TRIM5-CypA allele was weaker than that in cells from wild type animals. HIV-1 infectivity remained significantly lower than SIV infectivity, but was not rescued by treatment with cyclosporine A. Thus, unlike owl monkey TRIMCyp, expression of the macaque TRIM5-CypA isoform does not result in increased restriction of HIV-1. Despite its distinct evolutionary origin, Macaca TRIM5-CypA has a similar domain arrangement and shares approximately 80% amino-acid identity with the TRIMCyp protein of owl monkeys. The independent appearance of TRIM5-CypA chimeras in two primate lineages constitutes a

  10. A DNMT3B alternatively spliced exon and encoded peptide are novel biomarkers of human pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Sailesh Gopalakrishna-Pillai

    Full Text Available A major obstacle in human stem cell research is the limited number of reagents capable of distinguishing pluripotent stem cells from partially differentiated or incompletely reprogrammed derivatives. Although human embryonic stem cells (hESCs and induced pluripotent stem cells (iPSCs express numerous alternatively spliced transcripts, little attention has been directed at developing splice variant-encoded protein isoforms as reagents for stem cell research. In this study, several genes encoding proteins involved in important signaling pathways were screened to detect alternatively spliced transcripts that exhibited differential expression in pluripotent stem cells (PSCs relative to spontaneously differentiated cells (SDCs. Transcripts containing the alternatively spliced exon 10 of the de novo DNA methyltransferase gene, DNMT3B, were identified that are expressed in PSCs. To demonstrate the utility and superiority of splice variant specific reagents for stem cell research, a peptide encoded by DNMT3B exon 10 was used to generate an antibody, SG1. The SG1 antibody detects a single DNMT3B protein isoform that is expressed only in PSCs but not in SDCs. The SG1 antibody is also demonstrably superior to other antibodies at distinguishing PSCs from SDCs in mixed cultures containing both pluripotent stem cells and partially differentiated derivatives. The tightly controlled down regulation of DNMT3B exon 10 containing transcripts (and exon 10 encoded peptide upon spontaneous differentiation of PSCs suggests that this DNMT3B splice isoform is characteristic of the pluripotent state. Alternatively spliced exons, and the proteins they encode, represent a vast untapped reservoir of novel biomarkers that can be used to develop superior reagents for stem cell research and to gain further insight into mechanisms controlling stem cell pluripotency.

  11. Alternative promoter usage and mRNA splicing pathways for parathyroid hormone-related protein in normal tissues and tumours.

    OpenAIRE

    Southby, J.; O'Keeffe, L. M.; Martin, T.J.; Gillespie, M T

    1995-01-01

    The parathyroid hormone-related protein (PTHrP) gene consists of nine exons and allows the production of multiple PTHrP mRNA species via the use of three promoters and 5' and 3' alternative splicing; as a result of 3' alternative splicing one of three protein isoforms may be produced. This organisation has potential for tissue-specific splicing patterns. We examined PTHrP mRNA expression and splicing patterns in a series of tumours and normal tissues, using the sensitive reverse transcription...

  12. Alternative pre-mRNA splicing in Drosophila spliceosomal assembly factor RNP-4F during development.

    Science.gov (United States)

    Fetherson, Rebecca A; Strock, Stephen B; White, Kristen N; Vaughn, Jack C

    2006-04-26

    The 5'- and 3'-UTR regions in pre-mRNAs play a variety of roles in controlling eukaryotic gene expression, including translational modulation. Here we report the results of a systematic study of alternative splicing in rnp-4f, which encodes a Drosophila spliceosomal assembly factor. We show that most of the nine introns are constitutively spliced, but several patterns of alternative splicing are observed in two pre-mRNA regions including the 5'-UTR. Intron V is shown to be of recent evolutionary origin and is infrequently spliced, resulting in generation of an in-frame stop codon and a predicted truncated protein lacking a nuclear localization signal, so that alternative splicing regulates its subcellular localization. Intron 0, located in the 5'-UTR, is subject to three different splicing decisions in D. melanogaster. Northern analysis of poly(A+) mRNAs reveals two differently sized rnp-4f mRNA isoforms in this species. A switch in relative isoform abundance occurs during mid-embryo stages, when the larger isoform becomes more abundant. This isoform is shown to represent intron 0 unspliced mRNA, whereas the smaller transcript represents the product of alternative splicing. Comparative genomic analysis predicts that intron 0 is present in diverse Drosophila species. Intron 0 splicing results in loss of an evolutionarily conserved stem-loop constituting a potential cis-regulatory element at the 3'-splice site. A model is proposed for the role of this element both in 5'-UTR alternative splicing decisions and in RNP-4F translational modulation. Preliminary evidences in support of our model are discussed.

  13. [Perspectives of RNA interference application in the therapy of diseases associated with defects in alternative RNA splicing].

    Science.gov (United States)

    Wysokiński, Daniel; Błasiak, Janusz

    2012-09-18

    The primary transcript of an eukaryotic gene (pre-mRNA) is composed of coding regions--exons intervened by non-coding introns--which are removed in the RNA splicing process, leading to the formation of mature, intron-free mRNA. Alternative splicing of pre-mRNA is responsible for high complexity of the cellular proteome and expresses effective use of genetic information contained in genomic DNA. Alternative splicing plays important roles in the organism, including apoptosis regulation or development and plasticity of the nervous system. The main role of alternative splicing is differential, dependent on conditions and the cell type, splicing of mRNA, generating diverse transcripts from one gene, and, after the translation, different isoforms of a particular protein. Because of the high complexity of this mechanism, alternative splicing is particularly prone to errors. The perturbations resulting from mutations in the key sequences for splicing regulations are especially harmful. The pathogenesis of numerous diseases results from disturbed alternative RNA splicing, and those include cancers and neurodegenerative disorders. The treatment of these conditions is problematic due to their genetic background and currently RNA interference, which is a common mechanism of eukaryotic gene regulation, is being studied. Initial successes in the attempts of silencing the expression of faulty protein isoforms support the idea of using RNA interference in targeting disease related to disturbances in alternative splicing of RNA.

  14. Alternative splicing regulation during C. elegans development: splicing factors as regulated targets.

    Directory of Open Access Journals (Sweden)

    Sergio Barberan-Soler

    2008-02-01

    Full Text Available Alternative splicing generates protein diversity and allows for post-transcriptional gene regulation. Estimates suggest that 10% of the genes in Caenorhabditis elegans undergo alternative splicing. We constructed a splicing-sensitive microarray to detect alternative splicing for 352 cassette exons and tested for changes in alternative splicing of these genes during development. We found that the microarray data predicted that 62/352 (approximately 18% of the alternative splicing events studied show a strong change in the relative levels of the spliced isoforms (>4-fold during development. Confirmation of the microarray data by RT-PCR was obtained for 70% of randomly selected genes tested. Among the genes with the most developmentally regulated alternatively splicing was the hnRNP F/H splicing factor homolog, W02D3.11 - now named hrpf-1. For the cassette exon of hrpf-1, the inclusion isoform comprises 65% of hrpf-1 steady state messages in embryos but only 0.1% in the first larval stage. This dramatic change in the alternative splicing of an alternative splicing factor suggests a complex cascade of splicing regulation during development. We analyzed splicing in embryos from a strain with a mutation in the splicing factor sym-2, another hnRNP F/H homolog. We found that approximately half of the genes with large alternative splicing changes between the embryo and L1 stages are regulated by sym-2 in embryos. An analysis of the role of nonsense-mediated decay in regulating steady-state alternative mRNA isoforms was performed. We found that 8% of the 352 events studied have alternative isoforms whose relative steady-state levels in embryos change more than 4-fold in a nonsense-mediated decay mutant, including hrpf-1. Strikingly, 53% of these alternative splicing events that are affected by NMD in our experiment are not obvious substrates for NMD based on the presence of premature termination codons. This suggests that the targeting of splicing factors

  15. Isolation and characterization of patatin isoforms

    NARCIS (Netherlands)

    Pots, A.M.; Gruppen, H.; Hessing, M.; Boekel, M.A.J.S. van; Voragen, A.G.J.

    1999-01-01

    Patatin has, so far, been considered a homogeneous group of proteins. A comparison of the isoforms in terms of structural properties or stability has not been reported. A method to obtain various isoform fractions as well as a comparison of the physicochemical properties of these pools is presented.

  16. The polysaccharide inulin is characterized by an extensive series of periodic isoforms with varying biological actions.

    Science.gov (United States)

    Cooper, Peter D; Barclay, Thomas G; Ginic-Markovic, Milena; Petrovsky, Nikolai

    2013-10-01

    In studying the molecular basis for the potent immune activity of previously described gamma and delta inulin particles and to assist in production of inulin adjuvants under Good Manufacturing Practice, we identified five new inulin isoforms, bringing the total to seven plus the amorphous form. These isoforms comprise the step-wise inulin developmental series amorphous → alpha-1 (AI-1) → alpha-2 (AI-2) → gamma (GI) → delta (DI) → zeta (ZI) → epsilon (EI) → omega (OI) in which each higher isoform can be made either by precipitating dissolved inulin or by direct conversion from its precursor, both cases using regularly increasing temperatures. At higher temperatures, the shorter inulin polymer chains are released from the particle and so the key difference between isoforms is that each higher isoform comprises longer polymer chains than its precursor. An increasing trend of degree of polymerization is confirmed by end-group analysis using (1)H nuclear magnetic resonance spectroscopy. Inulin isoforms were characterized by the critical temperatures of abrupt phase-shifts (solubilizations or precipitations) in water suspensions. Such (aqueous) "melting" or "freezing" points are diagnostic and occur in strikingly periodic steps reflecting quantal increases in noncovalent bonding strength and increments in average polymer lengths. The (dry) melting points as measured by modulated differential scanning calorimetry similarly increase in regular steps. We conclude that the isoforms differ in repeated increments of a precisely repeating structural element. Each isoform has a different spectrum of biological activities and we show the higher inulin isoforms to be more potent alternative complement pathway activators.

  17. The C-terminal domain of the nuclear factor I-B2 isoform is glycosylated and transactivates the WAP gene in the JEG-3 cells

    International Nuclear Information System (INIS)

    The transcription factor nuclear factor I (NFI) has been shown previously both in vivo and in vitro to be involved in the cooperative regulation of whey acidic protein (WAP) gene transcription along with the glucocorticoid receptor and STAT5. In addition, one of the specific NFI isoforms, NFI-B2, was demonstrated in transient co-transfection experiments in JEG cells, which lack endogenous NFI, to be preferentially involved in the cooperative regulation of WAP gene expression. A comparison of the DNA-binding specificities of the different NFI isoforms only partially explained their differential ability to activate the WAP gene transcription. Here, we analyzed the transactivation regions of two NFI isoforms by making chimeric proteins between the NFI-A and B isoforms. Though, their DNA-binding specificities were not altered as compared to the corresponding wild-type transcription factors, the C-terminal region of the NFI-B isoform was shown to preferentially activate WAP gene transcription in cooperation with GR and STAT5 in transient co-transfection assays in JEG-3 cells. Furthermore, determination of serine and threonine-specific glycosylation (O-linked N-acetylglucosamine) of the C-terminus of the NFI-B isoform suggested that the secondary modification by O-GlcNAc might play a role in the cooperative regulation of WAP gene transcription by NFI-B2 and STAT5

  18. Cloning and Alternative Splicing Analysis of Bombyx mori Transformer-2 Gene using Silkworm EST Database

    Institute of Scientific and Technical Information of China (English)

    Bao-Long NIU; Zhi-Qi MENG; Yue-Zhi TAO; Shun-Lin LU; Hong-Biao WENG; Li-Hua HE; Wei-Feng SHEN

    2005-01-01

    We have identified Bombyx mori transformer-2 gene (Bmtra-2) cDNA by blasting the EST database of B. mori. It was expressed in the whole life of the male and female silkworm and was observed as a band of 1.3 kb by Northern blot analysis. By comparing corresponding ESTs to the Bmtra-2 DNA sequence,it was revealed that there were eight exons and seven introns, and all splice sites of exons/introns conformed to the GT/AG rule. Bmtra-2 pre-mRNA can produce multiple mRNAs encoding six distinct isoforms of BmTRA-2 protein using an alternative splicing pathway during processing. Six types of Bmtra-2 cDNA clones were identified by reverse transcription-polymerase chain reaction. All isoforms of BmTRA-2 protein contain two arginine/serine-rich domains and one RNA recognition motif, showing striking organizational similarity to Drosophila TRA-2 proteins.

  19. Deciphering Mineral Homeostasis in Barley Seed Transfer Cells at Transcriptional Level.

    Directory of Open Access Journals (Sweden)

    Behrooz Darbani

    Full Text Available In addition to the micronutrient inadequacy of staple crops for optimal human nutrition, a global downtrend in crop-quality has emerged from intensive breeding for yield. This trend will be aggravated by elevated levels of the greenhouse gas carbon dioxide. Therefore, crop biofortification is inevitable to ensure a sustainable supply of minerals to the large part of human population who is dietary dependent on staple crops. This requires a thorough understanding of plant-mineral interactions due to the complexity of mineral homeostasis. Employing RNA sequencing, we here communicate transfer cell specific effects of excess iron and zinc during grain filling in our model crop plant barley. Responding to alterations in mineral contents, we found a long range of different genes and transcripts. Among them, it is worth to highlight the auxin and ethylene signaling factors Arfs, Abcbs, Cand1, Hps4, Hac1, Ecr1, and Ctr1, diurnal fluctuation components Sdg2, Imb1, Lip1, and PhyC, retroelements, sulfur homeostasis components Amp1, Hmt3, Eil3, and Vip1, mineral trafficking components Med16, Cnnm4, Aha2, Clpc1, and Pcbps, and vacuole organization factors Ymr155W, RabG3F, Vps4, and Cbl3. Our analysis introduces new interactors and signifies a broad spectrum of regulatory levels from chromatin remodeling to intracellular protein sorting mechanisms active in the plant mineral homeostasis. The results highlight the importance of storage proteins in metal ion toxicity-resistance and chelation. Interestingly, the protein sorting and recycling factors Exoc7, Cdc1, Sec23A, and Rab11A contributed to the response as well as the polar distributors of metal-transporters ensuring the directional flow of minerals. Alternative isoform switching was found important for plant adaptation and occurred among transcripts coding for identical proteins as well as transcripts coding for protein isoforms. We also identified differences in the alternative-isoform preference between

  20. Mechanisms controlling Pax6 isoform expression in the retina have been conserved between teleosts and mammals.

    Science.gov (United States)

    Lakowski, Jörn; Majumder, Anirban; Lauderdale, James D

    2007-07-15

    The Pax6 gene plays several roles in retinal development, including control of cell proliferation, maintenance of the retinogenic potential of progenitor cells, and cell fate specification. Emerging evidence suggests that these different aspects of Pax6 gene function are mediated by different isoforms of the Pax6 protein; however, relatively little is known about the spatiotemporal expression of Pax6 isoforms in the vertebrate retina. Using bacterial artificial chromosome (BAC) technology, we modified a zebrafish Pax6a BAC such that we could distinguish paired-containing Pax6a transcripts from paired-less Pax6a transcripts. In the zebrafish, the spatial and temporal onset of expression of these transcripts suggests that the paired-less isoform is involved in the cell fate decision leading to the generation of amacrine cells; however, because of limitations associated with transient transgenic analysis, it was not feasible to establish whether this promoter was active in all amacrine cells or in a specific population of amacrine cells. By making mice transgenic for the zebrafish Pax6a BAC reporter transgene, we were able to show that paired-containing and paired-less Pax6a transcripts were differentially expressed in amacrine subpopulations. Our study also directly demonstrates the functional conservation of the regulatory mechanisms governing Pax6 transcription in teleosts and mammals.

  1. Exon organization and novel alternative splicing of Ank3 in mouse heart.

    Directory of Open Access Journals (Sweden)

    Gokay Yamankurt

    Full Text Available Ankyrin-G is an adaptor protein that links membrane proteins to the underlying cytoskeletal network. Alternative splicing of the Ank3 gene gives rise to multiple ankyrin-G isoforms in numerous tissues. To date, only one ankyrin-G isoform has been characterized in heart and transcriptional regulation of the Ank3 gene is completely unknown. In this study, we describe the first comprehensive analysis of Ank3 expression in heart. Using a PCR-based screen of cardiac mRNA transcripts, we identify two new exons and 28 alternative splice variants of the Ank3 gene. We measure the relative expression of each splice variant using quantitative real-time PCR and exon-exon boundary spanning primers that specifically amplify individual Ank3 variants. Six variants are rarely expressed (<1%, while the remaining variants display similar expression patterns in three hearts. Of the five first exons in the Ank3 gene, exon 1d is only expressed in heart and skeletal muscle as it was not detected in brain, kidney, cerebellum, and lung. Immunoblot analysis reveals multiple ankyrin-G isoforms in heart, and two ankyrin-G subpopulations are detected in adult cardiomyocytes by immunofluorescence. One population co-localizes with the voltage-gated sodium channel NaV1.5 at the intercalated disc, while the other population expresses at the Z-line. Two of the rare splice variants excise a portion of the ZU5 motif, which encodes the minimal spectrin-binding domain, and these variants lack β-spectrin binding. Together, these data demonstrate that Ank3 is subject to complex splicing regulation resulting in a diverse population of ankyrin-G isoforms in heart.

  2. Alternative splice variants of the human PD-1 gene

    DEFF Research Database (Denmark)

    Nielsen, Christian; Ohm-Laursen, Line; Barington, Torben;

    2005-01-01

    PD-1 is an immunoregulatory receptor expressed on the surface of activated T cells, B cells, and monocytes. We describe four alternatively spliced PD-1 mRNA transcripts (PD-1Deltaex2, PD-1Deltaex3, PD-1Deltaex2,3, and PD-1Deltaex2,3,4) in addition to the full length isoform. PD-1Deltaex2 and PD-1......Deltaex3 are generated by alternative splicing where exon 2 (extracellular IgV-like domain) and exon 3 (transmembrane domain) respectively are spliced out. PD-1Deltaex3 is therefore likely to encode a soluble form of PD-1. PD-1Deltaex2,3 lacks exon 2 and 3. These three variants have unaffected open...

  3. Functional studies of sodium pump isoforms

    DEFF Research Database (Denmark)

    Clausen, Michael Jakob

    unique expression profiles and specialized functional features. We use a Two Electrode Voltage Clamp setup to determine pre-steady-state and steady-state characteristics of each isoform and design chimeras to pin-point the structural elements responsible for observed differences. With this strategy we...... and glial cells express multiple isoforms of the Na+,K+-ATPase that are sorted to different specialized subcellular compartments. We are setting up a novel assay to study the details of Na+,K+-ATPase trafficking in polarized cells. With SNAP and CLIP tagged Na+,K+-ATPase isoforms we can track newly...

  4. Tau exon 10 alternative splicing and tauopathies

    OpenAIRE

    Liu Fei; Gong Cheng-Xin

    2008-01-01

    Abstract Abnormalities of microtubule-associated protein tau play a central role in neurofibrillary degeneration in several neurodegenerative disorders that collectively called tauopathies. Six isoforms of tau are expressed in adult human brain, which result from alternative splicing of pre-mRNA generated from a single tau gene. Alternative splicing of tau exon 10 results in tau isoforms containing either three or four microtubule-binding repeats (3R-tau and 4R-tau, respectively). Approximate...

  5. Shutoff of RNA polymerase II transcription by poliovirus involves 3C protease-mediated cleavage of the TATA-binding protein at an alternative site: incomplete shutoff of transcription interferes with efficient viral replication.

    Science.gov (United States)

    Kundu, Pallob; Raychaudhuri, Santanu; Tsai, Weimin; Dasgupta, Asim

    2005-08-01

    The TATA-binding protein (TBP) plays a crucial role in cellular transcription catalyzed by all three DNA-dependent RNA polymerases. Previous studies have shown that TBP is targeted by the poliovirus (PV)-encoded protease 3C(pro) to bring about shutoff of cellular RNA polymerase II-mediated transcription in PV-infected cells. The processing of the majority of viral precursor proteins by 3C(pro) involves cleavages at glutamine-glycine (Q-G) sites. We present evidence that suggests that the transcriptional inactivation of TBP by 3C(pro) involves cleavage at the glutamine 104-serine 105 (Q104-S105) site of TBP and not at the Q18-G19 site as previously thought. The TBP Q104-S105 cleavage by 3C(pro) is greatly influenced by the presence of an aliphatic amino acid at the P4 position, a hallmark of 3C(pro)-mediated proteolysis. To examine the importance of host cell transcription shutoff in the PV life cycle, stable HeLa cell lines were created that express recombinant TBP resistant to cleavage by the viral proteases, called GG rTBP. Transcription shutoff was significantly impaired and delayed in GG rTBP cells upon infection with poliovirus compared with the cells that express wild-type recombinant TBP (wt rTBP). Infection of GG rTBP cells with poliovirus resulted in small plaques, significantly reduced viral RNA synthesis, and lower viral yields compared to the wt rTBP cell line. These results suggest that a defect in transcription shutoff can lead to inefficient replication of poliovirus in cultured cells.

  6. Oncogenic Splicing Factor SRSF1 Is a Critical Transcriptional Target of MYC

    Directory of Open Access Journals (Sweden)

    Shipra Das

    2012-02-01

    Full Text Available The SR protein splicing factor SRSF1 is a potent proto-oncogene that is frequently upregulated in cancer. Here, we show that SRSF1 is a direct target of the transcription factor oncoprotein MYC. These two oncogenes are significantly coexpressed in lung carcinomas, and MYC knockdown downregulates SRSF1 expression in lung-cancer cell lines. MYC directly activates transcription of SRSF1 through two noncanonical E-boxes in its promoter. The resulting increase in SRSF1 protein is sufficient to modulate alternative splicing of a subset of transcripts. In particular, MYC induction leads to SRSF1-mediated alternative splicing of the signaling kinase MKNK2 and the transcription factor TEAD1. SRSF1 knockdown reduces MYC's oncogenic activity, decreasing proliferation and anchorage-independent growth. These results suggest a mechanism for SRSF1 upregulation in tumors with elevated MYC and identify SRSF1 as a critical MYC target that contributes to its oncogenic potential by enabling MYC to regulate the expression of specific protein isoforms through alternative splicing.

  7. The impact of tropomyosins on actin filament assembly is isoform specific.

    Science.gov (United States)

    Janco, Miro; Bonello, Teresa T; Byun, Alex; Coster, Adelle C F; Lebhar, Helene; Dedova, Irina; Gunning, Peter W; Böcking, Till

    2016-07-01

    Tropomyosin (Tpm) is an α helical coiled-coil dimer that forms a co-polymer along the actin filament. Tpm is involved in the regulation of actin's interaction with binding proteins as well as stabilization of the actin filament and its assembly kinetics. Recent studies show that multiple Tpm isoforms also define the functional properties of distinct actin filament populations within a cell. Subtle structural variations within well conserved Tpm isoforms are the key to their functional specificity. Therefore, we purified and characterized a comprehensive set of 8 Tpm isoforms (Tpm1.1, Tpm1.12, Tpm1.6, Tpm1.7, Tpm1.8, Tpm2.1, Tpm3.1, and Tpm4.2), using well-established actin co-sedimentation and pyrene fluorescence polymerization assays. We observed that the apparent affinity (Kd(app)) to filamentous actin varied in all Tpm isoforms between ∼0.1-5 μM with similar values for both, skeletal and cytoskeletal actin filaments. The data did not indicate any correlation between affinity and size of Tpm molecules, however high molecular weight (HMW) isoforms Tpm1.1, Tpm1.6, Tpm1.7 and Tpm2.1, showed ∼3-fold higher cooperativity compared to low molecular weight (LMW) isoforms Tpm1.12, Tpm1.8, Tpm3.1, and Tpm4.2. The rate of actin filament elongation in the presence of Tpm2.1 increased, while all other isoforms decreased the elongation rate by 27-85 %. Our study shows that the biochemical properties of Tpm isoforms are finely tuned and depend on sequence variations in alternatively spliced regions of Tpm molecules. PMID:27420374

  8. The impact of tropomyosins on actin filament assembly is isoform specific.

    Science.gov (United States)

    Janco, Miro; Bonello, Teresa T; Byun, Alex; Coster, Adelle C F; Lebhar, Helene; Dedova, Irina; Gunning, Peter W; Böcking, Till

    2016-07-01

    Tropomyosin (Tpm) is an α helical coiled-coil dimer that forms a co-polymer along the actin filament. Tpm is involved in the regulation of actin's interaction with binding proteins as well as stabilization of the actin filament and its assembly kinetics. Recent studies show that multiple Tpm isoforms also define the functional properties of distinct actin filament populations within a cell. Subtle structural variations within well conserved Tpm isoforms are the key to their functional specificity. Therefore, we purified and characterized a comprehensive set of 8 Tpm isoforms (Tpm1.1, Tpm1.12, Tpm1.6, Tpm1.7, Tpm1.8, Tpm2.1, Tpm3.1, and Tpm4.2), using well-established actin co-sedimentation and pyrene fluorescence polymerization assays. We observed that the apparent affinity (Kd(app)) to filamentous actin varied in all Tpm isoforms between ∼0.1-5 μM with similar values for both, skeletal and cytoskeletal actin filaments. The data did not indicate any correlation between affinity and size of Tpm molecules, however high molecular weight (HMW) isoforms Tpm1.1, Tpm1.6, Tpm1.7 and Tpm2.1, showed ∼3-fold higher cooperativity compared to low molecular weight (LMW) isoforms Tpm1.12, Tpm1.8, Tpm3.1, and Tpm4.2. The rate of actin filament elongation in the presence of Tpm2.1 increased, while all other isoforms decreased the elongation rate by 27-85 %. Our study shows that the biochemical properties of Tpm isoforms are finely tuned and depend on sequence variations in alternatively spliced regions of Tpm molecules.

  9. FSH isoform pattern in classic galactosemia

    OpenAIRE

    Gubbels, Cynthia S.; Thomas, Chris M.G.; Wodzig, Will K. W. H.; Olthaar, André J.; Jaeken, Jaak; Sweep, Fred C. G. J.; Rubio-Gozalbo, M. Estela

    2010-01-01

    Female classic galactosemia patients suffer from primary ovarian insufficiency (POI). The cause for this long-term complication is not fully understood. One of the proposed mechanisms is that hypoglycosylation of complex molecules, a known secondary phenomenon of galactosemia, leads to FSH dysfunction. An earlier study showed less acidic isoforms of FSH in serum samples of two classic galactosemia patients compared to controls, indicating hypoglycosylation. In this study, FSH isoform patterns...

  10. PKC Isoform Expression in Modeled Microgravity

    Science.gov (United States)

    Risin, Diana; Sundaresan, Alamelu; Pellis, Neal R.; Dawson, David L. (Technical Monitor)

    1999-01-01

    Our previous studies showed that modeled (MMG) and true (USA Space Shuttle Missions STS-54 and STS-56) microgravity (MG) inhibit human lymphocyte locomotion, Modeled MG also suppressed polyclonal and antigen-specific lymphocyte activation. Activation of PKC by phorbol myristate acetate (PMA) restored the microgravity-inhibited lymphocyte locomotion as well as activation by phytohaemagglutinin (PHA), whereas calcium ionophore (ionomycin) was unable to restore these functions. Based on these results we hypothesized that MG-induced changes in lymphocyte functions are caused by a fundamental defect in signal transduction mechanism. This defect may be localized either at the PKC level or upstream of PKC, most likely, at the cell membrane level. In this study we examined the expression of PKC isoforms alpha, epsilon and delta in PBMC cultured in rotating wall vessel bioreactor, developed at NASA JSC, which models microgravity by sustaining cells in continuous free fall. The assessment of the isoforms was performed by FACS analysis following cell permeabilization. A decrease in the expression of isoforms epsilon and delta, but not isoform a, was observed in PBMC cultured in microgravity conditions. These data suggest that MMG might selectively affect the expression of Ca2+ independent isoforms of PKC Molecular analysis confirm selective suppression of Ca2+ independent isoforms of PKC.

  11. Isoform Specificity of Protein Kinase Cs in Synaptic Plasticity

    Science.gov (United States)

    Sossin, Wayne S.

    2007-01-01

    Protein kinase Cs (PKCs) are implicated in many forms of synaptic plasticity. However, the specific isoform(s) of PKC that underlie(s) these events are often not known. We have used "Aplysia" as a model system in order to investigate the isoform specificity of PKC actions due to the presence of fewer isoforms and a large number of documented…

  12. Width of gene expression profile drives alternative splicing.

    Directory of Open Access Journals (Sweden)

    Daniel Wegmann

    Full Text Available Alternative splicing generates an enormous amount of functional and proteomic diversity in metazoan organisms. This process is probably central to the macromolecular and cellular complexity of higher eukaryotes. While most studies have focused on the molecular mechanism triggering and controlling alternative splicing, as well as on its incidence in different species, its maintenance and evolution within populations has been little investigated. Here, we propose to address these questions by comparing the structural characteristics as well as the functional and transcriptional profiles of genes with monomorphic or polymorphic splicing, referred to as MS and PS genes, respectively. We find that MS and PS genes differ particularly in the number of tissues and cell types where they are expressed.We find a striking deficit of PS genes on the sex chromosomes, particularly on the Y chromosome where it is shown not to be due to the observed lower breadth of expression of genes on that chromosome. The development of a simple model of evolution of cis-regulated alternative splicing leads to predictions in agreement with these observations. It further predicts the conditions for the emergence and the maintenance of cis-regulated alternative splicing, which are both favored by the tissue specific expression of splicing variants. We finally propose that the width of the gene expression profile is an essential factor for the acquisition of new transcript isoforms that could later be maintained by a new form of balancing selection.

  13. Isoformes du domaine N-terminal du suppresseur de tumeur p53 : sur l'activité transcriptionnelle de p53 et expression dans les mélanomes cutanés

    OpenAIRE

    Hafsi, Hind

    2012-01-01

    The p53 tumour suppressor protein has a highly complex pattern of regulation at transcriptional and posttranslationallevels. The discovery of p53 isoforms has added another layer of complexity to the mechanisms thatregulate p53 functions. Indeed, p53 is expressed as 12 isoforms that differ in their N- and C-terminus due toalternative splicing, promoter or codon initiation usage. So far, there is limited understanding of the patterns ofexpression and of the functions of each of these isoforms....

  14. Modeled microgravity-induced protein kinase C isoform expression in human lymphocytes

    Science.gov (United States)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    2004-01-01

    In long-term space travel, the crew is exposed to microgravity and radiation that invoke potential hazards to the immune system. T cell activation is a critical step in the immune response. Receptor-mediated signaling is inhibited in both microgravity and modeled microgravity (MMG) as reflected by diminished DNA synthesis in peripheral blood lymphocytes and their locomotion through gelled type I collagen. Direct activation of protein kinase C (PKC) bypassing cell surface events using the phorbol ester PMA rescues MMG-inhibited lymphocyte activation and locomotion, whereas the calcium ionophore ionomycin had no rescue effect. Thus calcium-independent PKC isoforms may be affected in MMG-induced locomotion inhibition and rescue. Both calcium-dependent isoforms and calcium-independent PKC isoforms were investigated to assess their expression in lymphocytes in 1 g and MMG culture. Human lymphocytes were cultured and harvested at 24, 48, 72, and 96 h, and serial samples were assessed for locomotion by using type I collagen and expression of PKC isoforms. Expression of PKC-alpha, -delta, and -epsilon was assessed by RT-PCR, flow cytometry, and immunoblotting. Results indicated that PKC isoforms delta and epsilon were downregulated by >50% at the transcriptional and translational levels in MMG-cultured lymphocytes compared with 1-g controls. Events upstream of PKC, such as phosphorylation of phospholipase Cgamma in MMG, revealed accumulation of inactive enzyme. Depressed calcium-independent PKC isoforms may be a consequence of an upstream lesion in the signal transduction pathway. The differential response among calcium-dependent and calcium-independent isoforms may actually result from MMG intrusion events earlier than PKC, but after ligand-receptor interaction.

  15. Alternative Start Codon Connects eIF5A to Mitochondria.

    Science.gov (United States)

    Pereira, Karina Danielle; Tamborlin, Letícia; Meneguello, Letícia; de Proença, André Ricardo Gomes; Almeida, Isadora Cristina de Paula Andrade; Lourenço, Rogério Ferreira; Luchessi, Augusto Ducati

    2016-12-01

    Eukaryotic translation initiation factor 5A (eIF5A), a protein containing the amino acid residue hypusine required for its activity, is involved in a number of physiological and pathological cellular processes. In humans, several EIF5A1 transcript variants encode the canonical eIF5A1 isoform B, whereas the hitherto uncharacterized variant A is expected to code for a hypothetical eIF5A1 isoform, referred to as isoform A, which has an additional N-terminal extension. Herein, we validate the existence of eIF5A1 isoform A and its production from transcript variant A. In fact, variant A was shown to encode both eIF5A1 isoforms A and B. Mutagenic assays revealed different efficiencies in the start codons present in variant A, contributing to the production of isoform B at higher levels than isoform A. Immunoblotting and mass spectrometric analyses showed that isoform A can undergo hypusination and acetylation at specific lysine residues, as observed for isoform B. Examination of the N-terminal extension suggested that it might confer mitochondrial targeting. Correspondingly, we found that isoform A, but not isoform B, co-purified with mitochondria when the proteins were overproduced. These findings suggest that eIF5A1 isoform A has a role in mitochondrial function. J. Cell. Physiol. 231: 2682-2689, 2016. © 2016 Wiley Periodicals, Inc. PMID:27414022

  16. iReckon: simultaneous isoform discovery and abundance estimation from RNA-seq data.

    Science.gov (United States)

    Mezlini, Aziz M; Smith, Eric J M; Fiume, Marc; Buske, Orion; Savich, Gleb L; Shah, Sohrab; Aparicio, Sam; Chiang, Derek Y; Goldenberg, Anna; Brudno, Michael

    2013-03-01

    High-throughput RNA sequencing (RNA-seq) promises to revolutionize our understanding of genes and their role in human disease by characterizing the RNA content of tissues and cells. The realization of this promise, however, is conditional on the development of effective computational methods for the identification and quantification of transcripts from incomplete and noisy data. In this article, we introduce iReckon, a method for simultaneous determination of the isoforms and estimation of their abundances. Our probabilistic approach incorporates multiple biological and technical phenomena, including novel isoforms, intron retention, unspliced pre-mRNA, PCR amplification biases, and multimapped reads. iReckon utilizes regularized expectation-maximization to accurately estimate the abundances of known and novel isoforms. Our results on simulated and real data demonstrate a superior ability to discover novel isoforms with a significantly reduced number of false-positive predictions, and our abundance accuracy prediction outmatches that of other state-of-the-art tools. Furthermore, we have applied iReckon to two cancer transcriptome data sets, a triple-negative breast cancer patient sample and the MCF7 breast cancer cell line, and show that iReckon is able to reconstruct the complex splicing changes that were not previously identified. QT-PCR validations of the isoforms detected in the MCF7 cell line confirmed all of iReckon's predictions and also showed strong agreement (r(2) = 0.94) with the predicted abundances. PMID:23204306

  17. Regulation of three isoforms of SOD gene by environmental stresses in citrus red mite, Panonychus citri.

    Science.gov (United States)

    Feng, Ying-Cai; Liao, Chong-Yu; Xia, Wen-Kai; Jiang, Xuan-Zhao; Shang, Feng; Yuan, Guo-Rui; Wang, Jin-Jun

    2015-09-01

    Superoxide dismutase (SOD) is a family of enzymes with multiple isoforms that possess antioxidative abilities in response to environmental stresses. Panonychus citri is one of the most important pest mites and has a global distribution. In this study, three distinct isoforms of SOD were cloned from P. citri and identified as cytoplasmic Cu-ZnSOD (PcSOD1), extracellular Cu-ZnSOD (PcSOD2), and mitochondrial MnSOD (PcSOD3). mRNA expression level analysis showed that all three isoforms were up-regulated significantly after exposure to the acaricide abamectin and to UV-B ultraviolet irradiation. In particular, PcSOD3 was up-regulated under almost all environmental stresses tested. The fold change of PcSOD3 expression was significantly higher than those of the two Cu-ZnSOD isoforms. Taken together, the results indicate that abamectin and UV-B can induce transcripts of all three SOD isoforms in P. citri. Furthermore, PcSOD3 seems to play a more important role in P. citri tolerance to oxidative stress. PMID:26063404

  18. Transcriptional regulation of the cydDC operon, encoding a heterodimeric ABC transporter required for assembly of cytochromes c and bd in Escherichia coli K-12: regulation by oxygen and alternative electron acceptors.

    Science.gov (United States)

    Cook, G M; Membrillo-Hernández, J; Poole, R K

    1997-01-01

    The expression of the cydDC operon was investigated by using a chromosomal phi(cydD-lacZ) transcriptional fusion and primer extension analysis. A single transcriptional start site was found for cydD located 68 bp upstream of the translational start site, and Northern blot analysis confirmed that cydDC is transcribed as a polycistronic message independently of the upstream gene trxB. cydDC was highly expressed under aerobic growth conditions and during anaerobic growth with alternative electron acceptors. Aerobic expression was independent of ArcA and Fnr, but induction of cydDC by nitrate and nitrite was dependent on NarL and Fnr. PMID:9335308

  19. Entropy-based model for miRNA isoform analysis.

    Directory of Open Access Journals (Sweden)

    Shengqin Wang

    Full Text Available MiRNAs have been widely studied due to their important post-transcriptional regulatory roles in gene expression. Many reports have demonstrated the evidence of miRNA isoform products (isomiRs in high-throughput small RNA sequencing data. However, the biological function involved in these molecules is still not well investigated. Here, we developed a Shannon entropy-based model to estimate isomiR expression profiles of high-throughput small RNA sequencing data extracted from miRBase webserver. By using the Kolmogorov-Smirnov statistical test (KS test, we demonstrated that the 5p and 3p miRNAs present more variants than the single arm miRNAs. We also found that the isomiR variant, except the 3' isomiR variant, is strongly correlated with Minimum Free Energy (MFE of pre-miRNA, suggesting the intrinsic feature of pre-miRNA should be one of the important factors for the miRNA regulation. The functional enrichment analysis showed that the miRNAs with high variation, particularly the 5' end variation, are enriched in a set of critical functions, supporting these molecules should not be randomly produced. Our results provide a probabilistic framework for miRNA isoforms analysis, and give functional insights into pre-miRNA processing.

  20. MECP2e1 isoform mutation affects the form and function of neurons derived from Rett syndrome patient iPS cells.

    Science.gov (United States)

    Djuric, Ugljesa; Cheung, Aaron Y L; Zhang, Wenbo; Mok, Rebecca S; Lai, Wesley; Piekna, Alina; Hendry, Jason A; Ross, P Joel; Pasceri, Peter; Kim, Dae-Sung; Salter, Michael W; Ellis, James

    2015-04-01

    MECP2 mutations cause the X-linked neurodevelopmental disorder Rett Syndrome (RTT) by consistently altering the protein encoded by the MECP2e1 alternative transcript. While mutations that simultaneously affect both MECP2e1 and MECP2e2 isoforms have been widely studied, the consequence of MECP2e1 deficiency on human neurons remains unknown. Here we report the first isoform-specific patient induced pluripotent stem cell (iPSC) model of RTT. RTTe1 patient iPS cell-derived neurons retain an inactive X-chromosome and express only the mutant allele. Single-cell mRNA analysis demonstrated they have a molecular signature of cortical neurons. Mutant neurons exhibited a decrease in soma size, reduced dendritic complexity and decreased cell capacitance, consistent with impaired neuronal maturation. The soma size phenotype was rescued cell-autonomously by MECP2e1 transduction in a level-dependent manner but not by MECP2e2 gene transfer. Importantly, MECP2e1 mutant neurons showed a dysfunction in action potential generation, voltage-gated Na(+) currents, and miniature excitatory synaptic current frequency and amplitude. We conclude that MECP2e1 mutation affects soma size, information encoding properties and synaptic connectivity in human neurons that are defective in RTT.

  1. Neurite outgrowth on a fibronectin isoform expressed during peripheral nerve regeneration is mediated by the interaction of paxillin with α4β1 integrins

    Directory of Open Access Journals (Sweden)

    Ginsberg Mark H

    2007-06-01

    Full Text Available Abstract Background The regeneration of peripheral nerve is associated with a change in the alternative splicing of the fibronectin primary gene transcript to re-express embryonic isoforms containing a binding site for α4β1 integrins that promote neurite outgrowth. Here we use PC12 cells to examine the role of the interaction between paxillin and the α4 integrin cytoplasmic domain in neurite outgrowth. Results Expression of α4 with mutations in the paxillin-binding domain reduced neurite outgrowth on recombinant embryonic fibronectin fragments relative to wild type α4. Over-expression of paxillin promoted neurite outgrowth while a mutant isoform lacking the LD4 domain implicated in the regulation of ARF and Rac GTPases was less effective. Optimal α4-mediated migration in leucocytes requires spatial regulation of α4 phosphorylation at Ser988, a post-translational modification that blocks paxillin binding to the integrin cytoplasmic domain. In keeping with this α4(S988D, which mimics phosphorylated α4, did not promote neurite outgrowth. However, α4 was not phosphorylated in the PC12 cells, and a non-phosphorylatable α4(S988A mutant promoted neurite outgrowth indistinguishably from the wild type integrin. Conclusion We establish the importance of the α4 integrin-paxillin interaction in a model of axonal regeneration and highlight differing dependence on phosphorylation of α4 for extension of neuronal growth cones and migration of non-neural cells.

  2. Two farnesoid X receptor alpha isoforms in Japanese medaka (Oryzias latipes) are differentially activated in vitro

    OpenAIRE

    Howarth, Deanna L.; Hagey, Lee R.; Law, Sheran H.W.; Ai, Ni; Krasowski, Matthew D.; Ekins, Sean; Moore, John T.; Erin M Kollitz; Hinton, David E.; Kullman, Seth W.

    2010-01-01

    The nuclear receptor farnesoid X receptor alpha (FXRα, NR1H4) is activated by bile acids in multiple species including mouse, rat, and human and in this study we have identified two isoforms of Fxrα in Japanese medaka (Oryzias latipes), a small freshwater teleost. Both isoforms share a high amino acid sequence identity to mammalian FXRα (~70% in the ligand-binding domain). Fxrα1 and Fxrα2 differ within the AF1 domain due to alternative splicing at the fourth intron-exon boundary. This process...

  3. Each Individual Isoform of the Dopamine D2 Receptor Protects from Lactotroph Hyperplasia

    OpenAIRE

    Radl, Daniela; De Mei, Claudia; Chen, Eric; Lee, Hyuna; Borrelli, Emiliana

    2013-01-01

    Dopamine acting through D2 receptors (D2Rs) controls lactotroph proliferation and prolactin (PRL) levels. Ablation of this receptor in mice results in lactotroph hyperplasia and prolactinomas in aged females. Alternative splicing of the Drd2 gene generates 2 independent isoforms, a long (D2L) and a short (D2S) isoform, which are present in all D2R-expressing cells. Here, we addressed the role of D2L and D2S on lactotroph physiology through the generation and analysis of D2S-null mice and thei...

  4. Divergent Expression and Metabolic Functions of Human Glucuronosyltransferases through Alternative Splicing.

    Science.gov (United States)

    Rouleau, Michèle; Tourancheau, Alan; Girard-Bock, Camille; Villeneuve, Lyne; Vaucher, Jonathan; Duperré, Anne-Marie; Audet-Delage, Yannick; Gilbert, Isabelle; Popa, Ion; Droit, Arnaud; Guillemette, Chantal

    2016-09-27

    Maintenance of cellular homeostasis and xenobiotic detoxification is mediated by 19 human UDP-glucuronosyltransferase enzymes (UGTs) encoded by ten genes that comprise the glucuronidation pathway. Deep RNA sequencing of major metabolic organs exposes a substantial expansion of the UGT transcriptome by alternative splicing, with variants representing 20% to 60% of canonical transcript expression. Nearly a fifth of expressed variants comprise in-frame sequences that may create distinct structural and functional features. Follow-up cell-based assays reveal biological functions for these alternative UGT proteins. Some isoforms were found to inhibit or induce inactivation of drugs and steroids in addition to perturbing global cell metabolism (energy, amino acids, nucleotides), cell adhesion, and proliferation. This work highlights the biological relevance of alternative UGT expression, which we propose increases protein diversity through the evolution of metabolic regulators from specific enzymes. PMID:27681425

  5. Isoform-Level Gene Expression Profiles of Human Y Chromosome Azoospermia Factor Genes and Their X Chromosome Paralogs in the Testicular Tissue of Non-Obstructive Azoospermia Patients.

    Science.gov (United States)

    Ahmadi Rastegar, Diba; Sharifi Tabar, Mehdi; Alikhani, Mehdi; Parsamatin, Pouria; Sahraneshin Samani, Fazel; Sabbaghian, Marjan; Sadighi Gilani, Mohammad Ali; Mohammad Ahadi, Ali; Mohseni Meybodi, Anahita; Piryaei, Abbas; Ansari-Pour, Naser; Gourabi, Hamid; Baharvand, Hossein; Salekdeh, Ghasem Hosseini

    2015-09-01

    The human Y chromosome has an inevitable role in male fertility because it contains many genes critical for spermatogenesis and the development of the male gonads. Any genetic variation or epigenetic modification affecting the expression pattern of Y chromosome genes may thus lead to male infertility. In this study, we performed isoform-level gene expression profiling of Y chromosome genes within the azoospermia factor (AZF) regions, their X chromosome counterparts, and few autosomal paralogues in testicular biopsies of 12 men with preserved spermatogenesis and 68 men with nonobstructive azoospermia (NOA) (40 Sertoli-cell-only syndrome (SCOS) and 28 premiotic maturation arrest (MA)). This was undertaken using quantitative real-time PCR (qPCR) at the transcript level and Western blotting (WB) and immunohistochemistry (IHC) at the protein level. We profiled the expression of 41 alternative transcripts encoded by 14 AZFa, AZFb, and AZFc region genes (USP9Y, DDX3Y, XKRY, HSFY1, CYORF15A, CYORF15B, KDM5D, EIF1AY, RPS4Y2, RBMY1A1, PRY, BPY2, DAZ1, and CDY1) as well as their X chromosome homologue transcripts and a few autosomal homologues. Of the 41 transcripts, 18 were significantly down-regulated in men with NOA when compared with those of men with complete spermatogenesis. In contrast, the expression of five transcripts increased significantly in NOA patients. Furthermore, to confirm the qPCR results at the protein level, we performed immunoblotting and IHC experiments (based on 24 commercial and homemade antibodies) that detected 10 AZF-encoded proteins. In addition, their localization in testis cell types and organelles was determined. Interestingly, the two missing proteins, XKRY and CYORF15A, were detected for the first time. Finally, we focused on the expression patterns of the significantly altered genes in 12 MA patients with successful sperm retrieval compared to those of 12 MA patients with failed sperm retrieval to predict the success of sperm retrieval in

  6. Antiangiogenic VEGF Isoform in Inflammatory Myopathies

    Directory of Open Access Journals (Sweden)

    Nila Volpi

    2013-01-01

    Full Text Available Objective. To investigate expression of vascular endothelial growth factor (VEGF antiangiogenic isoform A-165b on human muscle in idiopathic inflammatory myopathies (IIM and to compare distribution of angiogenic/antiangiogenic VEGFs, as isoforms shifts are described in other autoimmune disorders. Subjects and Methods. We analyzed VEGF-A165b and VEGF-A by western blot and immunohistochemistry on skeletal muscle biopsies from 21 patients affected with IIM (polymyositis, dermatomyositis, and inclusion body myositis and 6 control muscle samples. TGF-β, a prominent VEGF inductor, was analogously evaluated. Intergroup differences of western blot bands density were statistically examined. Endomysial vascularization, inflammatory score, and muscle regeneration, as pathological parameters of IIM, were quantitatively determined and their levels were confronted with VEGF expression. Results. VEGF-A165b was significantly upregulated in IIM, as well as TGF-β. VEGF-A was diffusely expressed on unaffected myofibers, whereas regenerating/atrophic myofibres strongly reacted for both VEGF-A isoforms. Most inflammatory cells and endomysial vessels expressed both isoforms. VEGF-A165b levels were in positive correlation to inflammatory score, endomysial vascularization, and TGF-β. Conclusions. Our findings indicate skeletal muscle expression of antiangiogenic VEGF-A165b and preferential upregulation in IIM, suggesting that modulation of VEGF-A isoforms may occur in myositides.

  7. Role of PRMTs in cancer: Could minor isoforms be leaving a mark?

    Institute of Scientific and Technical Information of China (English)

    R; Mitchell; Baldwin; Alan; Morettin; Jocelyn; C?té

    2014-01-01

    Protein arginine methyltransferases(PRMTs) catalyze the methylation of a variety of protein substrates, many of which have been linked to the development, progression and aggressiveness of different types of cancer. Moreover, aberrant expression of PRMTs has been observed in several cancer types. While the link between PRMTs and cancer is a relatively new area of interest, the functional implications documented thus far warrant further investigations into its therapeutic potential. However, the expression of these enzymes and the regulation of their activity in cancer are still significantly understudied. Currently there are nine main members of the PRMT family. Further, the existence of alternatively spliced isoforms for several of these family members provides an additional layer of complexity. Specifically, PRMT1, PRMT2, CARM1 and PRMT7 have been shown to have alternative isoforms and others may be currently unrealized. Our knowledge with respect to the relative expression and the specific functions of these isoforms is largely lacking and needs attention. Here we present a review of the current knowledge of theknown alternative PRMT isoforms and provide a rationale for how they may impact on cancer and represent potentially useful targets for the development of novel therapeutic strategies.

  8. Alternative splicing of sept9a and sept9b in zebrafish produces multiple mRNA transcripts expressed throughout development.

    Directory of Open Access Journals (Sweden)

    Megan L Landsverk

    Full Text Available BACKGROUND: Septins are involved in a number of cellular processes including cytokinesis and organization of the cytoskeleton. Alterations in human septin-9 (SEPT9 levels have been linked to multiple cancers, whereas mutations in SEPT9 cause the episodic neuropathy, hereditary neuralgic amyotrophy (HNA. Despite its important function in human health, the in vivo role of SEPT9 is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we utilize zebrafish to study the role of SEPT9 in early development. We show that zebrafish possess two genes, sept9a and sept9b that, like humans, express multiple transcripts. Knockdown or overexpression of sept9a transcripts results in specific developmental alterations including circulation defects and aberrant epidermal development. CONCLUSIONS/SIGNIFICANCE: Our work demonstrates that sept9 plays an important role in zebrafish development, and establishes zebrafish as a valuable model organism for the study of SEPT9.

  9. iReckon: Simultaneous isoform discovery and abundance estimation from RNA-seq data

    OpenAIRE

    Mezlini, Aziz M.; Smith, Eric J. M.; Fiume, Marc; Buske, Orion; Savich, Gleb L.; Shah, Sohrab; Aparicio, Sam; Chiang, Derek Y.; Goldenberg, Anna; Brudno, Michael

    2013-01-01

    High-throughput RNA sequencing (RNA-seq) promises to revolutionize our understanding of genes and their role in human disease by characterizing the RNA content of tissues and cells. The realization of this promise, however, is conditional on the development of effective computational methods for the identification and quantification of transcripts from incomplete and noisy data. In this article, we introduce iReckon, a method for simultaneous determination of the isoforms and estimation of th...

  10. Characterization of Alien isoforms in vertebrates : Caracterización de isoformas de Alien en vertebrados

    OpenAIRE

    Tenbaum, Stephan

    2002-01-01

    Alien protein isoforms have been described to be involved in a number of biological processes. Alienalpha is a corepressor of the thyroid hormone receptor mediating transcriptional repression in a ligand-sensitive manner. Furthermore, Alienalpha is a corepressor for the orphan receptor DAX1 and the vitamin-D3 receptor. Alienbetta/CSN2 is part of the COP9-signalosome complex that acts in protein phosphorylation, protein degradation and cell cycle regulation. The major goal of this...

  11. Two Distinct Isoforms of Matrix Metalloproteinase-2 Are Associated with Human Delayed Kidney Graft Function.

    Directory of Open Access Journals (Sweden)

    Shaynah Wanga

    Full Text Available Delayed graft function (DGF is a frequent complication of renal transplantation, particularly in the setting of transplantation of kidneys derived from deceased donors and expanded-criteria donors. DGF results from tubular epithelial cell injury and has immediate and long term consequences. These include requirement for post-transplantation dialysis, increased incidence of acute rejection, and poorer long-term outcomes. DGF represents one of the clearest clinical examples of renal acute ischemia/reperfusion injury. Experimental studies have demonstrated that ischemia/reperfusion injury induces the synthesis of the full length secreted isoform of matrix metalloproteinase-2 (FL-MMP-2, as well as an intracellular N-terminal truncated MMP-2 isoform (NTT-MMP-2 that initiates an innate immune response. We hypothesized that the two MMP-2 isoforms mediate tubular epithelial cell injury in DGF. Archival renal biopsy sections from 10 protocol biopsy controls and 41 cases with a clinical diagnosis of DGF were analyzed for the extent of tubular injury, expression of the FL-MMP-2 and NTT-MMP-2 isoforms by immunohistochemistry (IHC, in situ hybridization, and qPCR to determine isoform abundance. Differences in transcript abundance were related to tubular injury score. Markers of MMP-2-mediated injury included TUNEL staining and assessment of peritubular capillary density. There was a clear relationship between tubular epithelial cell expression of both FL-MMP-2 and NTT-MMP-2 IHC with the extent of tubular injury. The MMP-2 isoforms were detected in the same tubular segments and were present at sites of tubular injury. qPCR demonstrated highly significant increases in both the FL-MMP-2 and NTT-MMP-2 transcripts. Statistical analysis revealed highly significant associations between FL-MMP-2 and NTT-MMP-2 transcript abundance and the extent of tubular injury, with NTT-MMP-2 having the strongest association. We conclude that two distinct MMP-2 isoforms are

  12. WT1 interacts with the splicing protein RBM4 and regulates its ability to modulate alternative splicing in vivo

    International Nuclear Information System (INIS)

    Wilm's tumor protein 1 (WT1), a protein implicated in various cancers and developmental disorders, consists of two major isoforms: WT1(-KTS), a transcription factor, and WT1(+KTS), a post-transcriptional regulator that binds to RNA and can interact with splicing components. Here we show that WT1 interacts with the novel splicing regulator RBM4. Each protein was found to colocalize in nuclear speckles and to cosediment with supraspliceosomes in glycerol gradients. RBM4 conferred dose-dependent and cell-specific regulation of alternative splicing of pre-mRNAs transcribed from several reporter genes. We found that overexpressed WT1(+KTS) abrogated this effect of RBM4 on splice-site selection, whereas WT1(-KTS) did not. We conclude that the (+KTS) form of WT1 is able to inhibit the effect of RBM4 on alternative splicing

  13. Quantitative profiling of Drosophila melanogaster Dscam1 isoforms reveals no changes in splicing after bacterial exposure.

    Directory of Open Access Journals (Sweden)

    Sophie A O Armitage

    Full Text Available The hypervariable Dscam1 (Down syndrome cell adhesion molecule 1 gene can produce thousands of different ectodomain isoforms via mutually exclusive alternative splicing. Dscam1 appears to be involved in the immune response of some insects and crustaceans. It has been proposed that the diverse isoforms may be involved in the recognition of, or the defence against, diverse parasite epitopes, although evidence to support this is sparse. A prediction that can be generated from this hypothesis is that the gene expression of specific exons and/or isoforms is influenced by exposure to an immune elicitor. To test this hypothesis, we for the first time, use a long read RNA sequencing method to directly investigate the Dscam1 splicing pattern after exposing adult Drosophila melanogaster and a S2 cell line to live Escherichia coli. After bacterial exposure both models showed increased expression of immune-related genes, indicating that the immune system had been activated. However there were no changes in total Dscam1 mRNA expression. RNA sequencing further showed that there were no significant changes in individual exon expression and no changes in isoform splicing patterns in response to bacterial exposure. Therefore our studies do not support a change of D. melanogaster Dscam1 isoform diversity in response to live E. coli. Nevertheless, in future this approach could be used to identify potentially immune-related Dscam1 splicing regulation in other host species or in response to other pathogens.

  14. Alternative promoter usage of the membrane glycoprotein CD36

    Directory of Open Access Journals (Sweden)

    Whatling Carl

    2006-03-01

    Full Text Available Abstract Background CD36 is a membrane glycoprotein involved in a variety of cellular processes such as lipid transport, immune regulation, hemostasis, adhesion, angiogenesis and atherosclerosis. It is expressed in many tissues and cell types, with a tissue specific expression pattern that is a result of a complex regulation for which the molecular mechanisms are not yet fully understood. There are several alternative mRNA isoforms described for the gene. We have investigated the expression patterns of five alternative first exons of the CD36 gene in several human tissues and cell types, to better understand the molecular details behind its regulation. Results We have identified one novel alternative first exon of the CD36 gene, and confirmed the expression of four previously known alternative first exons of the gene. The alternative transcripts are all expressed in more than one human tissue and their expression patterns vary highly in skeletal muscle, heart, liver, adipose tissue, placenta, spinal cord, cerebrum and monocytes. All alternative first exons are upregulated in THP-1 macrophages in response to oxidized low density lipoproteins. The alternative promoters lack TATA-boxes and CpG islands. The upstream region of exon 1b contains several features common for house keeping gene and monocyte specific gene promoters. Conclusion Tissue-specific expression patterns of the alternative first exons of CD36 suggest that the alternative first exons of the gene are regulated individually and tissue specifically. At the same time, the fact that all first exons are upregulated in THP-1 macrophages in response to oxidized low density lipoproteins may suggest that the alternative first exons are coregulated in this cell type and environmental condition. The molecular mechanisms regulating CD36 thus appear to be unusually complex, which might reflect the multifunctional role of the gene in different tissues and cellular conditions.

  15. Effect of Exercise Intensity on Isoform-Specific Expressions of NT-PGC-1α mRNA in Mouse Skeletal Muscle

    Directory of Open Access Journals (Sweden)

    Xingyuan Wen

    2014-01-01

    Full Text Available PGC-1α is an inducible transcriptional coactivator that regulates mitochondrial biogenesis and cellular energy metabolism in skeletal muscle. Recent studies have identified two additional PGC-1α transcripts that are derived from an alternative exon 1 (exon 1b and induced by exercise. Given that the PGC-1α gene also produces NT-PGC-1α transcript by alternative 3′ splicing between exon 6 and exon 7, we have investigated isoform-specific expression of NT-PGC-1α mRNA in mouse skeletal muscle during physical exercise with different intensities. We report here that NT-PGC-1α-a mRNA expression derived from a canonical exon 1 (exon 1a is increased by high-intensity exercise and AMPK activator AICAR in mouse skeletal muscle but not altered by low- and medium-intensity exercise and β2-adrenergic receptor agonist clenbuterol. In contrast, the alternative exon 1b-driven NT-PGC-1α-b (PGC-1α4 and NT-PGC-1α-c are highly induced by low-, medium-, and high-intensity exercise, AICAR, and clenbuterol. Ectopic expression of NT-PGC-1α-a in C2C12 myotube cells upregulates myosin heavy chain (MHC I, MHC II a and Glut4, which represent oxidative fibers, and promotes the expression of mitochondrial genes (Cyc1, COX5B, and ATP5B. In line with gene expression data, citrate synthase activity was significantly increased by NT-PGC-1α-a in C2C12 myotube cells. Our results indicate the regulatory role for NT-PGC-1α-a in mitochondrial biogenesis and adaptation of skeletal muscle to endurance exercise.

  16. SIRT1 undergoes alternative splicing in a novel auto-regulatory loop with p53.

    Directory of Open Access Journals (Sweden)

    Cian J Lynch

    Full Text Available BACKGROUND: The NAD-dependent deacetylase SIRT1 is a nutrient-sensitive coordinator of stress-tolerance, multiple homeostatic processes and healthspan, while p53 is a stress-responsive transcription factor and our paramount tumour suppressor. Thus, SIRT1-mediated inhibition of p53 has been identified as a key node in the common biology of cancer, metabolism, development and ageing. However, precisely how SIRT1 integrates such diverse processes remains to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that SIRT1 is alternatively spliced in mammals, generating a novel SIRT1 isoform: SIRT1-ΔExon8. We show that SIRT1-ΔExon8 is expressed widely throughout normal human and mouse tissues, suggesting evolutionary conservation and critical function. Further studies demonstrate that the SIRT1-ΔExon8 isoform retains minimal deacetylase activity and exhibits distinct stress sensitivity, RNA/protein stability, and protein-protein interactions compared to classical SIRT1-Full-Length (SIRT1-FL. We also identify an auto-regulatory loop whereby SIRT1-ΔExon8 can regulate p53, while in reciprocal p53 can influence SIRT1 splice variation. CONCLUSIONS/SIGNIFICANCE: We characterize the first alternative isoform of SIRT1 and demonstrate its evolutionary conservation in mammalian tissues. The results also reveal a new level of inter-dependency between p53 and SIRT1, two master regulators of multiple phenomena. Thus, previously-attributed SIRT1 functions may in fact be distributed between SIRT1 isoforms, with important implications for SIRT1 functional studies and the current search for SIRT1-activating therapeutics to combat age-related decline.

  17. Titin Diversity—Alternative Splicing Gone Wild

    Directory of Open Access Journals (Sweden)

    Wei Guo

    2010-01-01

    Full Text Available Titin is an extremely large protein found in highest concentrations in heart and skeletal muscle. The single mammalian gene is expressed in multiple isoforms as a result of alternative splicing. Although titin isoform expression is controlled developmentally and in a tissue specific manner, the vast number of potential splicing pathways far exceeds those described in any other alternatively spliced gene. Over 1 million human splice pathways for a single individual can be potentially derived from the PEVK region alone. A new splicing pattern for the human cardiac N2BA isoform type has been found in which the PEVK region includes only the N2B type exons. The alterations in splicing and titin isoform expression in human heart disease provide impetus for future detailed study of the splicing mechanisms for this giant protein.

  18. The α and Δ isoforms of CREB1 are required to maintain normal pulmonary vascular resistance.

    Directory of Open Access Journals (Sweden)

    Lili Li

    Full Text Available Chronic hypoxia causes pulmonary hypertension associated with structural alterations in pulmonary vessels and sustained vasoconstriction. The transcriptional mechanisms responsible for these distinctive changes are unclear. We have previously reported that CREB1 is activated in the lung in response to alveolar hypoxia but not in other organs. To directly investigate the role of α and Δ isoforms of CREB1 in the regulation of pulmonary vascular resistance we examined the responses of mice in which these isoforms of CREB1 had been inactivated by gene mutation, leaving only the β isoform intact (CREB(αΔ mice. Here we report that expression of CREB regulated genes was altered in the lungs of CREB(αΔ mice. CREB(αΔ mice had greater pulmonary vascular resistance than wild types, both basally in normoxia and following exposure to hypoxic conditions for three weeks. There was no difference in rho kinase mediated vasoconstriction between CREB(αΔ and wild type mice. Stereological analysis of pulmonary vascular structure showed characteristic wall thickening and lumen reduction in hypoxic wild-type mice, with similar changes observed in CREB(αΔ. CREB(αΔ mice had larger lungs with reduced epithelial surface density suggesting increased pulmonary compliance. These findings show that α and Δ isoforms of CREB1 regulate homeostatic gene expression in the lung and that normal activity of these isoforms is essential to maintain low pulmonary vascular resistance in both normoxic and hypoxic conditions and to maintain the normal alveolar structure. Interventions that enhance the actions of α and Δ isoforms of CREB1 warrant further investigation in hypoxic lung diseases.

  19. Two-dimensional zymography differentiates gelatinase isoforms in stimulated microglial cells and in brain tissues of acute brain injuries.

    Science.gov (United States)

    Chen, Shanyan; Meng, Fanjun; Chen, Zhenzhou; Tomlinson, Brittany N; Wesley, Jennifer M; Sun, Grace Y; Whaley-Connell, Adam T; Sowers, James R; Cui, Jiankun; Gu, Zezong

    2015-01-01

    Excessive activation of gelatinases (MMP-2/-9) is a key cause of detrimental outcomes in neurodegenerative diseases. A single-dimension zymography has been widely used to determine gelatinase expression and activity, but this method is inadequate in resolving complex enzyme isoforms, because gelatinase expression and activity could be modified at transcriptional and posttranslational levels. In this study, we investigated gelatinase isoforms under in vitro and in vivo conditions using two-dimensional (2D) gelatin zymography electrophoresis, a protocol allowing separation of proteins based on isoelectric points (pI) and molecular weights. We observed organomercuric chemical 4-aminophenylmercuric acetate-induced activation of MMP-2 isoforms with variant pI values in the conditioned medium of human fibrosarcoma HT1080 cells. Studies with murine BV-2 microglial cells indicated a series of proform MMP-9 spots separated by variant pI values due to stimulation with lipopolysaccharide (LPS). The MMP-9 pI values were shifted after treatment with alkaline phosphatase, suggesting presence of phosphorylated isoforms due to the proinflammatory stimulation. Similar MMP-9 isoforms with variant pI values in the same molecular weight were also found in mouse brains after ischemic and traumatic brain injuries. In contrast, there was no detectable pI differentiation of MMP-9 in the brains of chronic Zucker obese rats. These results demonstrated effective use of 2D zymography to separate modified MMP isoforms with variant pI values and to detect posttranslational modifications under different pathological conditions.

  20. Point mutation in the NF2 gene of HEI-193 human schwannoma cells results in the expression of a merlin isoform with attenuated growth suppressive activity

    Energy Technology Data Exchange (ETDEWEB)

    Lepont, Pierig; Stickney, John T.; Foster, Lauren A.; Meng, Jin-Jun; Hennigan, Robert F. [Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521 (United States); Ip, Wallace [Department of Cell and Cancer Biology, Vontz Center for Molecular Studies, University of Cincinnati College of Medicine, 3125 Eden Avenue, Cincinnati, OH 45267-0521 (United States)], E-mail: wallace.ip@uc.edu

    2008-01-01

    Neurofibromatosis type 2 (NF2) is a genetic disorder characterized by the formation of bilateral schwannomas of the eighth cranial nerve. Although the protein product of the NF2 gene (merlin) is a classical tumor suppressor, the mechanism by which merlin suppresses cell proliferation is not fully understood. The availability of isolated tumor cells would facilitate a better understanding of the molecular function of merlin, but primary schwannoma cells obtained from patients grow slowly and do not yield adequate numbers for biochemical analysis. In this study, we have examined the NF2 mutation in HEI-193 cells, an immortalized cell line derived from the schwannoma of an NF2 patient. Previous work showed that the NF2 mutation in HEI-193 cells causes a splicing defect in the NF2 transcript. We have confirmed this result and further identified the resultant protein product as an isoform of merlin previously designated as isoform 3. The level of isoform 3 proteins in HEI-193 cells is comparable to the levels of merlin isoforms 1 and 2 in normal human Schwann cells and several other immortalized cell lines. In contrast to many mutant forms of merlin, isoform 3 is as resistant to proteasomal degradation as isoforms 1 and 2 and can interact with each of these isoforms in vivo. Cell proliferation assays showed that, in NF2{sup -/-} mouse embryonic fibroblasts, exogenously expressed merlin isoform 3 does exhibit growth suppressive activity although it is significantly lower than that of identically expressed merlin isoform 1. These results indicate that, although HEI-193 cells have undetectable levels of merlin isoforms 1 and 2, they are, in fact, not a merlin-null model because they express the moderately active growth suppressive merlin isoform 3.

  1. Recombinant NFAT1 (NFATp) is regulated by calcineurin in T cells and mediates transcription of several cytokine genes.

    OpenAIRE

    Luo, C.; Burgeon, E; Carew, J A; McCaffrey, P G; Badalian, T M; Lane, W S; Hogan, P G; Rao, A

    1996-01-01

    Transcription factors of the NFAT family play a key role in the transcription of cytokine genes and other genes during the immune response. We have identified two new isoforms of the transcription factor NFAT1 (previously termed NFATp) that are the predominant isoforms expressed in murine and human T cells. When expressed in Jurkat T cells, recombinant NFAT1 is regulated, as expected, by the calmodulin-dependent phosphatase calcineurin, and its function is inhibited by the immunosuppressive a...

  2. Activity of the acyl-CoA synthetase ACSL6 isoforms: role of the fatty acid Gate-domains

    Directory of Open Access Journals (Sweden)

    Siliakus Melvin

    2010-04-01

    Full Text Available Abstract Background Activation of fatty acids by acyl-CoA synthetase enzymes is required for de novo lipid synthesis, fatty acid catabolism, and remodeling of biological membranes. Human long-chain acyl-CoA synthetase member 6, ASCL6, is a form present in the plasma membrane of cells. Splicing events affecting the amino-terminus and alternative motifs near the ATP-binding site generate different isoforms of ACSL6. Results Isoforms with different fatty acid Gate-domain motifs have different activity and the form lacking this domain, isoform 3, showed no detectable activity. Enzymes truncated of the first 40 residues generate acyl-CoAs at a faster rate than the full-length protein. The gating residue, which prevents entry of the fatty acid substrate unless one molecule of ATP has already accessed the catalytic site, was identified as a tyrosine for isoform 1 and a phenylalanine for isoform 2 at position 319. All isoforms, with or without a fatty acid Gate-domain, as well as recombinant protein truncated of the N-terminus, can interact to form enzymatic complexes with identical or different isoforms. Conclusion The alternative fatty acid Gate-domain motifs are essential determinants for the activity of the human ACSL6 isoforms, which appear to act as homodimeric enzyme as well as in complex with other spliced forms. These findings provide evidence that the diversity of these enzyme species could produce the variety of acyl-CoA synthetase activities that are necessary to generate and repair the hundreds of lipid species present in membranes.

  3. New isoforms of rat Aquaporin-4

    DEFF Research Database (Denmark)

    Moe, Svein Erik; Sorbo, Jan Gunnar; Søgaard, Rikke;

    2008-01-01

    an intracellular localization when expressed in cell lines and do not transport water when expressed in Xenopus oocytes. In contrast, the largest of the new isoforms, AQP4e, which contains a novel N-terminal domain, is localized at the plasma membrane in cell lines and functions as a water transporter in Xenopus...

  4. p53 isoforms change p53 paradigm

    OpenAIRE

    Bourdon, JC

    2014-01-01

    Although p53 defines cellular responses to cancer treatment it is not clear how p53 can be used to control cell fate outcome. Data demonstrate that so-called p53 does not exist as a single protein, but is in fact a group of p53 protein isoforms whose expression can be manipulated to control the cellular response to treatment.

  5. Methods for Characterization of Alternative RNA Splicing

    Science.gov (United States)

    Harvey, Samuel E.; Cheng, Chonghui

    2016-01-01

    Quantification of alternative splicing to detect the abundance of differentially spliced isoforms of a gene in total RNA can be accomplished via RT-PCR using both quantitative real-time and semi-quantitative PCR methods. These methods require careful PCR primer design to ensure specific detection of particular splice isoforms. We also describe analysis of alternative splicing using a splicing “minigene” in mammalian cell tissue culture to facilitate investigation of the regulation of alternative splicing of a particular exon of interest. PMID:26721495

  6. Oligomeric properties and DNA binding specificities of repressor isoforms from the Streptomyces bacteriophage phiC31.

    Science.gov (United States)

    Wilson, S E; Smith, M C

    1998-05-15

    Three protein isoforms (74, 54 and 42 kDa) are expressed from repressor gene c in the Streptomyces temperate bacteriophage phiC31. Because expression of the two smaller isoforms, 54 and 42 kDa, is sufficient for superinfection immunity, the interaction between these isoforms was studied. The native 42 kDa repressor (Nat42) and an N-terminally 6x histidine-tagged 54 kDa isoform (His54) were shown by co-purification on a Ni-NTA column to interact in Streptomyces lividans . In vitro three repressor preparations, containing Nat42, His54 and the native 54 and 42 kDa isoforms expressed together (Nat54&42), were subjected to chemical crosslinking and gel filtration analysis. Homo- and hetero-tetramers were observed. Previous work showed that the smallest isoform bound to 17 bp operators containing aconservedinvertedrepeat (CIR) and that the CIRs were located at 16 loci throughout the phiC31 genome. One of the CIRs (CIR6) is believed to be critical for regulating the lytic pathway. The DNA binding activities of the three repressor preparations were studied using fragments containing CIRs (CIR3-CIR6) from the essential early region as templates for DNase I footprinting. Whereas Nat42 bound to CIR6, poorly to CIR5 but undetectably to CIR3 or CIR4, the Nat54&42 preparation could bind to all CIRs tested, albeit poorly to CIR3 and CIR4. The His54 isoform bound all CIRs tested. Isoforms expressed from the phiC31 repressor gene, like those which are expressed from many eukaryotic transcription factor genes, apparently have different binding specificities.

  7. Transcriptional and post-transcriptional control of eEF1A2 expression during myoblast diffrerentiation

    Directory of Open Access Journals (Sweden)

    Vislovukh A. A.

    2012-12-01

    Full Text Available During postnatal development, the switch of the expression from isoform A1 to the isoform A2 of eukaryotic translation elongation factor (eEF1A is observed in neuronal and muscle tissues. The switch of the expression is a vital fundamental process, as mutant mice, with the partial EEF1A2 deletion dies on the 28th day after birth. Mechanism of the inhibition of A1 and stimulation of A2 expression during the first days of postnatal development is unknown. The existence of potential miRNA binding sites in the 3’UTR of mRNAs encoding the isoforms assumes a post-transcriptional control of abovementioned phenomenon. Aim. To check the possibility of post-transcriptional regulation of the isoforms A1 and A2 expression during differentiation of the human immortalized myoblasts cell line LHCN. Methods. The level of gene expression was quantified by qPCR, the existence of post-transcriptional regulation was demonstrated with Dual-Luciferase® Reporter Assay. Results. Using immortalized human myoblasts cell line LHCN, the induction of isoform A2 of eEF1 during differentiation of myoblasts was shown. The existence of transcriptional and post-transcriptional control of the abovementioned process was confirmed. Downregulation of mir-661 and mir-744 that have binding sites in the 3’ UTR of EEF1A2 mRNA, during differentiation suggests a potential role of microRNAs in the eEF1A2 induction during myoblast differentiation. Conclusions. Induction of A2 isoform of eEF1 during differentiation of myoblasts occurs on transcriptional and post-transcriptional level.

  8. Full transcription of the chloroplast genome in photosynthetic eukaryotes.

    Science.gov (United States)

    Shi, Chao; Wang, Shuo; Xia, En-Hua; Jiang, Jian-Jun; Zeng, Fan-Chun; Gao, Li-Zhi

    2016-01-01

    Prokaryotes possess a simple genome transcription system that is different from that of eukaryotes. In chloroplasts (plastids), it is believed that the prokaryotic gene transcription features govern genome transcription. However, the polycistronic operon transcription model cannot account for all the chloroplast genome (plastome) transcription products at whole-genome level, especially regarding various RNA isoforms. By systematically analyzing transcriptomes of plastids of algae and higher plants, and cyanobacteria, we find that the entire plastome is transcribed in photosynthetic green plants, and that this pattern originated from prokaryotic cyanobacteria - ancestor of the chloroplast genomes that diverged about 1 billion years ago. We propose a multiple arrangement transcription model that multiple transcription initiations and terminations combine haphazardly to accomplish the genome transcription followed by subsequent RNA processing events, which explains the full chloroplast genome transcription phenomenon and numerous functional and/or aberrant pre-RNAs. Our findings indicate a complex prokaryotic genome regulation when processing primary transcripts. PMID:27456469

  9. Differential expression of polycytosine-binding protein isoforms in adrenal gland, locus coeruleus and midbrain.

    Science.gov (United States)

    Boschi, N M; Takeuchi, K; Sterling, C; Tank, A W

    2015-02-12

    Polycytosine-binding proteins (PCBPs) are RNA-binding proteins that participate in post-transcriptional control pathways. Among the diverse functions of these proteins is the interaction with a 27 nucleotide pyrimidine-rich domain within the 3'UTR of tyrosine hydroxylase (TH) mRNA. Mutations to this domain result in decreased stability of TH mRNA and loss of cAMP-mediated activation of TH mRNA translation. PCBPs are hypothesized to play key roles in these regulatory mechanisms. In order to further test this hypothesis, we examined the tissue distribution of PCBPs in catecholaminergic cells. Initial studies demonstrated that proteins from catecholaminergic tissues bind to TH mRNA 3'UTR sequences and these proteins have an apparent Mr of ∼ 44 kDa, which is close to the molecular sizes for PCBPs. Fluorescent immunohistochemistry and confocal microscopy was used to analyze the distribution of PCBP isoforms in TH-positive cells of the rat midbrain, locus coeruleus, and adrenal gland. Our results suggest that: (1) PCBP2 is the predominant isoform in TH-positive cells of the rat midbrain; (2) PCBP3 is the predominant isoform in TH-positive cells of the locus coeruleus; and (3) PCBP1 is the predominant isoform in the adrenal medulla. The localization of PCBP proteins to TH-positive cells in these catecholaminergic tissues is consistent with the hypothesis that PCBPs play a role in the regulation of TH expression.

  10. Alternative splicing regulated by butyrate in bovine epithelial cells.

    Directory of Open Access Journals (Sweden)

    Sitao Wu

    Full Text Available As a signaling molecule and an inhibitor of histone deacetylases (HDACs, butyrate exerts its impact on a broad range of biological processes, such as apoptosis and cell proliferation, in addition to its critical role in energy metabolism in ruminants. This study examined the effect of butyrate on alternative splicing in bovine epithelial cells using RNA-seq technology. Junction reads account for 11.28 and 12.32% of total mapped reads between the butyrate-treated (BT and control (CT groups. 201,326 potential splicing junctions detected were supported by ≥ 3 junction reads. Approximately 94% of these junctions conformed to the consensus sequence (GT/AG while ~3% were GC/AG junctions. No AT/AC junctions were observed. A total of 2,834 exon skipping events, supported by a minimum of 3 junction reads, were detected. At least 7 genes, their mRNA expression significantly affected by butyrate, also had exon skipping events differentially regulated by butyrate. Furthermore, COL5A3, which was induced 310-fold by butyrate (FDR <0.001 at the gene level, had a significantly higher number of junction reads mapped to Exon#8 (Donor and Exon#11 (Acceptor in BT. This event had the potential to result in the formation of a COL5A3 mRNA isoform with 2 of the 69 exons missing. In addition, 216 differentially expressed transcript isoforms regulated by butyrate were detected. For example, Isoform 1 of ORC1 was strongly repressed by butyrate while Isoform 2 remained unchanged. Butyrate physically binds to and inhibits all zinc-dependent HDACs except HDAC6 and HDAC10. Our results provided evidence that butyrate also regulated deacetylase activities of classical HDACs via its transcriptional control. Moreover, thirteen gene fusion events differentially affected by butyrate were identified. Our results provided a snapshot into complex transcriptome dynamics regulated by butyrate, which will facilitate our understanding of the biological effects of butyrate and other HDAC

  11. Cloning of a novel insulin-regulated ghrelin transcript in prostate cancer.

    Science.gov (United States)

    Seim, Inge; Lubik, Amy A; Lehman, Melanie L; Tomlinson, Nadine; Whiteside, Eliza J; Herington, Adrian C; Nelson, Colleen C; Chopin, Lisa K

    2013-04-01

    Ghrelin is a multifunctional hormone, with roles in stimulating appetite and regulating energy balance, insulin secretion and glucose homoeostasis. The ghrelin gene locus (GHRL) is highly complex and gives rise to a range of novel transcripts derived from alternative first exons and internally spliced exons. The wild-type transcript encodes a 117 amino acid preprohormone that is processed to yield the 28 amino acid peptide ghrelin. Here, we identified insulin-responsive transcription corresponding to cryptic exons in intron 2 of the human ghrelin gene. A transcript, termed in2c-ghrelin (intron 2-cryptic), was cloned from the testis and the LNCaP prostate cancer cell line. This transcript may encode an 83 amino acid preproghrelin isoform that codes for ghrelin, but not obestatin. It is expressed in a limited number of normal tissues and in tumours of the prostate, testis, breast and ovary. Finally, we confirmed that in2c-ghrelin transcript expression, as well as the recently described in1-ghrelin transcript, is significantly upregulated by insulin in cultured prostate cancer cells. Metabolic syndrome and hyperinsulinaemia have been associated with prostate cancer risk and progression. This may be particularly significant after androgen deprivation therapy for prostate cancer, which induces hyperinsulinaemia, and this could contribute to castrate-resistant prostate cancer growth. We have previously demonstrated that ghrelin stimulates prostate cancer cell line proliferation in vitro. This study is the first description of insulin regulation of a ghrelin transcript in cancer and should provide further impetus for studies into the expression, regulation and function of ghrelin gene products.

  12. Organization and post-transcriptional processing of focal adhesion kinase gene

    Directory of Open Access Journals (Sweden)

    Enslen Hervé

    2006-08-01

    Full Text Available Abstract Background Focal adhesion kinase (FAK is a non-receptor tyrosine kinase critical for processes ranging from embryo development to cancer progression. Although isoforms with specific molecular and functional properties have been characterized in rodents and chicken, the organization of FAK gene throughout phylogeny and its potential to generate multiple isoforms are not well understood. Here, we study the phylogeny of FAK, the organization of its gene, and its post-transcriptional processing in rodents and human. Results A single orthologue of FAK and the related PYK2 was found in non-vertebrate species. Gene duplication probably occurred in deuterostomes after the echinoderma embranchment, leading to the evolution of PYK2 with distinct properties. The amino acid sequence of FAK and PYK2 is conserved in their functional domains but not in their linker regions, with the absence of autophosphorylation site in C. elegans. Comparison of mouse and human FAK genes revealed the existence of multiple combinations of conserved and non-conserved 5'-untranslated exons in FAK transcripts suggesting a complex regulation of their expression. Four alternatively spliced coding exons (13, 14, 16, and 31, previously described in rodents, are highly conserved in vertebrates. Cis-regulatory elements known to regulate alternative splicing were found in conserved alternative exons of FAK or in the flanking introns. In contrast, other reported human variant exons were restricted to Homo sapiens, and, in some cases, other primates. Several of these non-conserved exons may correspond to transposable elements. The inclusion of conserved alternative exons was examined by RT-PCR in mouse and human brain during development. Inclusion of exons 14 and 16 peaked at the end of embryonic life, whereas inclusion of exon 13 increased steadily until adulthood. Study of various tissues showed that inclusion of these exons also occurred, independently from each other, in a

  13. Ras and TGF-β signaling enhance cancer progression by promoting the ΔNp63 transcriptional program.

    Science.gov (United States)

    Vasilaki, Eleftheria; Morikawa, Masato; Koinuma, Daizo; Mizutani, Anna; Hirano, Yudai; Ehata, Shogo; Sundqvist, Anders; Kawasaki, Natsumi; Cedervall, Jessica; Olsson, Anna-Karin; Aburatani, Hiroyuki; Moustakas, Aristidis; Miyazono, Kohei; Heldin, Carl-Henrik

    2016-01-01

    The p53 family of transcription factors includes p63, which is a master regulator of gene expression in epithelial cells. Determining whether p63 is tumor-suppressive or tumorigenic is complicated by isoform-specific and cellular context-dependent protein associations, as well as antagonism from mutant p53. ΔNp63 is an amino-terminal-truncated isoform, that is, the predominant isoform expressed in cancer cells of epithelial origin. In HaCaT keratinocytes, which have mutant p53 and ΔNp63, we found that mutant p53 antagonized ΔNp63 transcriptional activity but that activation of Ras or transforming growth factor-β (TGF-β) signaling pathways reduced the abundance of mutant p53 and strengthened target gene binding and activity of ΔNp63. Among the products of ΔNp63-induced genes was dual-specificity phosphatase 6 (DUSP6), which promoted the degradation of mutant p53, likely by dephosphorylating p53. Knocking down all forms of p63 or DUSP6 and DUSP7 (DUSP6/7) inhibited the basal or TGF-β-induced or epidermal growth factor (which activates Ras)-induced migration and invasion in cultures of p53-mutant breast cancer and squamous skin cancer cells. Alternatively, overexpressing ΔNp63 in the breast cancer cells increased their capacity to colonize various tissues upon intracardiac injection in mice, and this was inhibited by knocking down DUSP6/7 in these ΔNp63-overexpressing cells. High abundance of ΔNp63 in various tumors correlated with poor prognosis in patients, and this correlation was stronger in patients whose tumors also had a mutation in the gene encoding p53. Thus, oncogenic Ras and TGF-β signaling stimulate cancer progression through activation of the ΔNp63 transcriptional program. PMID:27555661

  14. Lsamp is implicated in the regulation of emotional and social behavior by use of alternative promoters in the brain.

    Science.gov (United States)

    Philips, Mari-Anne; Lilleväli, Kersti; Heinla, Indrek; Luuk, Hendrik; Hundahl, Christian Ansgar; Kongi, Karina; Vanaveski, Taavi; Tekko, Triin; Innos, Jürgen; Vasar, Eero

    2015-01-01

    Limbic system-associated membrane protein (LSAMP) is a neural cell adhesion molecule involved in neurite formation and outgrowth. The purpose of the present study was to characterize the distribution of alternatively transcribed Lsamp isoforms in the mouse brain and its implications on the regulation of behavior. Limbic system-associated membrane protein 1b transcript was visualized by using a mouse strain expressing beta-galactosidase under the control of Lsamp 1b promoter. The distribution of Lsamp 1a transcript and summarized expression of the Lsamp transcripts was investigated by non-radioactive in situ RNA hybridization analysis. Cross-validation was performed by using radioactive in situ hybridization with oligonucleotide probes. Quantitative RT-PCR was used to study correlations between the expression of Lsamp isoforms and behavioral parameters. The expression pattern of two promoters differs remarkably from the developmental initiation at embryonic day 12.5. Limbic system-associated membrane protein 1a promoter is active in "classic" limbic structures where the hippocampus and amygdaloid area display the highest expression. Promoter 1b is mostly active in the thalamic sensory nuclei and cortical sensory areas, but also in areas that regulate stress and arousal. Higher levels of Lsamp 1a transcript had significant correlations with all of the measures indicating higher trait anxiety in the elevated plus-maze test. Limbic system-associated membrane protein transcript levels in the hippocampus and ventral striatum correlated with behavioral parameters in the social interaction test. The data are in line with decreased anxiety and alterations in social behavior in Lsamp-deficient mice. We propose that Lsamp is involved in emotional and social operating systems by complex regulation of two alternative promoters.

  15. Locomotion in Lymphocytes is Altered by Differential PKC Isoform Expression

    Science.gov (United States)

    Sundaresan, A.; Risin, D.; Pellis, N. R.

    1999-01-01

    Lymphocyte locomotion is critical for proper elicitation of the immune response. Locomotion of immune cells via the interstitium is essential for optimal immune function during wound healing, inflammation and infection. There are conditions which alter lymphocyte locomotion and one of them is spaceflight. Lymphocyte locomotion is severely inhibited in true spaceflight (true microgravity) and in rotating wall vessel culture (modeled microgravity). When lymphocytes are activated prior to culture in modeled microgravity, locomotion is not inhibited and the levels are comparable to those of static cultured lymphocytes. When a phorbol ester (PMA) is used in modeled microgravity, lymphocyte locomotion is restored by 87%. This occurs regardless if PMA is added after culture in the rotating wall vessel or during culture. Inhibition of DNA synthesis also does not alter restoration of lymphocyte locomotion by PMA. PMA is a direct activator of (protein kinase C) PKC . When a calcium ionophore, ionomycin is used it does not possess any restorative properties towards locomotion either alone or collectively with PMA. Since PMA brings about restoration without help from calcium ionophores (ionomycin), it is infer-red that calcium independent PKC isoforms are involved. Changes were perceived in the protein levels of PKC 6 where levels of the protein were downregulated at 24,72 and 96 hours in untreated rotated cultures (modeled microgravity) compared to untreated static (1g) cultures. At 48 hours there is an increase in the levels of PKC & in the same experimental set up. Studies on transcriptional and translational patterns of calcium independent isoforms of PKC such as 8 and E are presented in this study.

  16. Estrogen receptor isoforms and progestin hormone dependence in a mouse mammary tumor model.

    Science.gov (United States)

    Actis, A M; Caruso, S P; Levin, E

    1994-09-01

    The close interaction between receptors and other transcription factors suggests that their corresponding transducing signals can trigger functional and structural changes in other related molecules. The effect of a progestinic agent, medroxyprogesterone acetate (MPA), on some of the estrogen-receptor (ER) parameters was studied in 2 murine mammary tumor sublines with different progestin hormone dependence for their respective growth. The relative binding affinity of estradiol and tamoxifen for the ER, the receptor content and the ER isoforms studied by HPLC were determined in the hormone-autonomous (HA) and the hormone-dependent (HD) tumor sublines. In the HA subline administration of MPA did not modify the tumor growth rate, whereas this was accelerated in the HD subline. The ER content was clearly increased in the HD tumor subline, but not in the HA subline, compared with the untreated controls. In contrast, the E2 and tamoxifen relative binding affinity for the ER and the isoform profiles were affected by MPA treatment in the HA, but not in the HD tumor subline. The functional change (decrease in relative binding affinity) can be attributed to the appearance of a lower-molecular-size ER isoform under the progestinic treatment. Modifications in one receptor molecule by the action of ligands corresponding to another type of receptor show the interconection between transcription factors and the necessity of broadening conventional concepts regarding hormone dependence in mammary tumorigenesis. PMID:8077051

  17. Isoforms of murine and human serum amyloid P component

    DEFF Research Database (Denmark)

    Nybo, Mads; Hackler, R; Kold, B;

    1998-01-01

    Isoelectric focusing (IEF) and immunofixation of murine serum amyloid P component (SAP), purified and in serum, showed a distinct and strain-dependent isoform pattern with up to seven bands (pI 5.1-5.7). Neuraminidase treatment caused a shift of the isoforms to more basic pI values, but did...... of isoforms of human SAP required the presence of urea and higher SAP concentrations. TEF and immunofixation of SAP monomers showed five to eight isoforms, ranging from pI 4.7-5.7. IEF of SAP in human serum resulted in a less distinct pattern and more acidic isoforms. As with murine SAP, neuraminidase...

  18. Cytokines interleukin-1beta and tumor necrosis factor-alpha regulate different transcriptional and alternative splicing networks in primary beta-cells

    DEFF Research Database (Denmark)

    Ortis, Fernanda; Naamane, Najib; Flamez, Daisy;

    2010-01-01

    OBJECTIVE: Cytokines contribute to pancreatic beta-cell death in type 1 diabetes. This effect is mediated by complex gene networks that remain to be characterized. We presently utilized array analysis to define the global expression pattern of genes, including spliced variants, modified...... of genes involved in the maintenance of beta-cell phenotype and growth/regeneration. Cytokines induced hypoxia-inducible factor-alpha, which in this context has a proapoptotic role. Cytokines also modified the expression of >20 genes involved in RNA splicing, and exon array analysis showed cytokine......-induced changes in alternative splicing of >50% of the cytokine-modified genes. CONCLUSIONS: The present study doubles the number of known genes expressed in primary beta-cells, modified or not by cytokines, and indicates the biological role for several novel cytokine-modified pathways in beta-cells. It also...

  19. Molecular characterization of human thyroid hormone receptor β isoform 4.

    Science.gov (United States)

    Moriyama, Kenji; Yamamoto, Hiroyuki; Futawaka, Kumi; Atake, Asami; Kasahara, Masato; Tagami, Tetsuya

    2016-01-01

    Thyroid hormone exerts a pleiotropic effect on development, differentiation, and metabolism through thyroid hormone receptor (TR). A novel thyroid hormone receptor β isoform (TRβ4) was cloned using PCR from a human pituitary cDNA library as a template. We report here the characterization of TRβ4 from a molecular basis. Temporal expression of TRβ4 during the fetal period is abundant in the brain and kidney, comparable with the adult pattern. Western blot analysis revealed that TRs are ubiquitination labile proteins, while TRβ1 is potentially stable. TRβ1, peroxisome proliferator-activated receptors (PPAR), and vitamin D receptor (VDR), which belong to class II transcription factors that function via the formation of heterodimeric complexes with retinoid X receptor (RXR), were suppressed by TRβ4 in a dose-dependent manner. Thus, TRβ4 exhibits ligand-independent transcriptional silencing, possibly as a substitute for dimerized RXR. In this study, TRβ1 and TRβ4 transcripts were detected in several cell lines. Quantitative RT-PCR assay showed that the expression of TRβ4 in human embryonic carcinoma cells of the testis was suppressed by sex hormone in a reciprocal manner to TRβ1. In contrast, TRβ4 was expressed under a high dose of triiodothyronine (T3) in a reciprocal manner to TRβ1. Finally, in transiently transfected NIH-3T3 cells, green fluorescence protein (GFP)-tagged TRβ4 was mostly nuclear in both the absence and the presence of T3. By mutating defined regions of both TRβs, we found that both TRβ1 and TRβ4 had altered nuclear/cytoplasmic distribution as compared with wild-type, and different to T3 and the nuclear receptor corepressor (NCoR). Thus, site-specific DNA binding is not essential for maintaining TRβs within the nucleus. PMID:26513165

  20. Computer based screening for novel inhibitors against Vibrio cholerae using NCI diversity set-II: an alternative approach by targeting transcriptional activator ToxT.

    Science.gov (United States)

    Mondal, Shakhinur Islam; Khadka, Bijendra; Akter, Arzuba; Roy, Pradip Kumar; Sultana, Razia

    2014-06-01

    Cholera is a severe diarrheal disease caused by Vibrio cholerae and remains as a major health risk in developing countries. The emergence and spread of multi-drug resistant V. cholerae strains during the past two decades is now a major problem in the treatment of cholera and have created the urgent need for the development of novel therapeutic agents. Targeting transcriptional factor is now a novel approach to tackle the development of multi-drug resistant strain. In the recent year virtual high throughput screening has emerged as a widely accepted powerful technology in the identification of novel and diverse lead. This study provides new insight to the search for new potent and selective inhibitors that still remains necessary to avoid the risk of possible resistance and reduce toxicity and side effects of currently available cholera drugs. The publications of high resolution X-ray structure of V. cholerae ToxT has open the way to the structure based virtual screening to identify new small molecular inhibitors which still remain necessary to avoid the risk of possible resistance and reduce toxicity and side effects of currently available cholera drugs. In this study we have performed structure based virtual screening approach using NCI diversity set-II to look for novel inhibitor of ToxT and proposed eight candidate compounds with high scoring function. Thus from complex scoring and binding ability it is elucidated that these compounds could be the promising inhibitors or could be developed as novel lead compounds for drug design against cholera.

  1. Expression of 1N3R-Tau isoform inhibits cell proliferation by inducing S phase arrest in N2a cells.

    Directory of Open Access Journals (Sweden)

    Li Li

    Full Text Available Tau is a microtubule-associated protein implicated in neurodegenerative tauopathies. Six tau isoforms are generated from a single gene through alternative splicing of exons 2, 3 and 10 in human brain. Differential expression of tau isoforms has been detected in different brain areas, during neurodevelopment and in neurodegenerative disorders. However, the biological significance of different tau isoforms is not clear. Here, we investigated the individual effect of six different isoforms of tau on cell proliferation and the possible mechanisms by transient expression of eGFP-labeled tau isoform plasmid in N2a cells. Our study showed the transfection efficiency was comparable between different isoforms of tau by examining GFP expression. Compared with other isoforms, we found expression of 1N3R-tau significantly inhibited cell proliferation by Cell Counting Kit-8 assay and BrdU incorporation. Flow cytometry analysis further showed expression of 1N3R-tau induced S phase arrest. Compared with the longest isoform of tau, expression of 1N3R-tau induced cyclin E translocation from the nuclei to cytoplasm, while it did not change the level of cell cycle checkpoint proteins. These data indicate that 1N3R-tau inhibits cell proliferation through inducing S phase arrest.

  2. The HER4 isoform JM-a/CYT2 relates to improved survival in bladder cancer patients but only if the estrogen receptor α is not expressed

    DEFF Research Database (Denmark)

    Munk, Mathias; Memon, Ashfaque; Poulsen, Steen S;

    2013-01-01

    Abstract Bladder cancer tumors expressing human epidermal growth factor receptor 4 (HER4) demonstrate improved patient survival. HER4 isoforms and estrogen receptor alpha (ER-α) can form chaperone complexes causing cell-proliferation. We wanted to explore if HER4 isoforms and ER-α could correlate...... to poor prognosis in bladder cancers. We developed mRNA assays for HER4 isoforms (JM-a, JM-b, CYT1, and CYT2) and for ER-α. Expression was analyzed in tumors from 85 bladder cancer patients and compared to overall survival (median follow-up of 5.1 years). ER-α was expressed in 38% (n = 32) of tumors...... but did not correlate to survival (p = 0.4698). HER4 was expressed in 42% (n = 36) and in all cases as the ER-α binding isoform JM-a. The JM-a isoform can be alternatively spliced to either a CYT1 isoform (JM-a/CYT1) or a CYT2 isoform (JM-a/CYT2). All HER4 expressing tumors expressed the JM-a/CYT2 isoform...

  3. Differential water permeability and regulation of three aquaporin 4 isoforms

    DEFF Research Database (Denmark)

    Fenton, Robert A.; Moeller, Hanne B; Zelenina, Marina;

    2010-01-01

    Aquaporin 4 (AQP4) is expressed in the perivascular glial endfeet and is an important pathway for water during formation and resolution of brain edema. In this study, we examined the functional properties and relative unit water permeability of three functional isoforms of AQP4 expressed...... in the brain (M1, M23, Mz). The M23 isoform gave rise to square arrays when expressed in Xenopus laevis oocytes. The relative unit water permeability differed significantly between the isoforms in the order of M1 > Mz > M23. None of the three isoforms were permeable to small osmolytes nor were they affected...... by changes in external K(+) concentration. Upon protein kinase C (PKC) activation, oocytes expressing the three isoforms demonstrated rapid reduction of water permeability, which correlated with AQP4 internalization. The M23 isoform was more sensitive to PKC regulation than the longer isoforms...

  4. Effects of Δ40p53, an isoform of p53 lacking the N-terminus, on transactivation capacity of the tumor suppressor protein p53

    International Nuclear Information System (INIS)

    The p53 protein is expressed as multiple isoforms that differ in their N- and C-terminus due to alternative splicing, promoter or codon initiation usage. Δ40p53 lacks the first 39 residues containing the main transcriptional activation domain, resulting from initiation of translation at AUG +40 in fully spliced p53 mRNA or in a specific variant mRNA retaining intron 2. Overexpression of Δ40p53 antagonizes wild-type p53 in vitro. However, animal models of Δ40p53 in mouse or Zebrafish have shown complex phenotypes suggestive of p53-dependent growth suppressive effects. We have co-transfected expression vectors for p53 and Δ40p53 in p53-null cell lines Saos-2 and H1299 to show that Δ40p53 forms mixed oligomers with p53 that bind to DNA and modulate the transcription of a generic p53-dependent reporter gene. In H1299 cells, co-expression of the two proteins induced a decrease in transcription with amplitude that depended upon the predicted composition of the hetero-tetramer. In Saos-2, a paradoxical effect was observed, with a small increase in activity for hetero-tetramers predicted to contain 1 or 2 monomers of Δ40p53 and a decrease at higher Δ40p53/p53 ratios. In this cell line, co-transfection of Δ40p53 prevented Hdm2-mediated degradation of p53. Δ40p53 modulates transcriptional activity by interfering with the binding of Hdm2 to hetero-tetramers containing both Δ40p53 and p53. These results provide a basis for growth suppressive effects in animal models co-expressing roughly similar levels of p53 and Δ40p53

  5. Knockout mutants as a tool to identify the subunit composition of Arabidopsis glutamine synthetase isoforms.

    Science.gov (United States)

    Dragićević, Milan; Todorović, Slađana; Bogdanović, Milica; Filipović, Biljana; Mišić, Danijela; Simonović, Ana

    2014-06-01

    Glutamine synthetase (GS) is a key enzyme in nitrogen assimilation, which catalyzes the formation of glutamine from ammonia and glutamate. Plant GS isoforms are multimeric enzymes, recently shown to be decamers. The Arabidopsis genome encodes five cytosolic (GS1) proteins labeled as GLN1;1 through GLN1;5 and one chloroplastic (GS2) isoform, GLN2;0. However, as many as 11 GS activity bands were resolved from different Arabidopsis tissues by Native PAGE and activity staining. Western analysis showed that all 11 isoforms are composed exclusively of 40 kDa GS1 subunits. Of five GS1 genes, only GLN1;1, GLN1;2 and GLN1;3 transcripts accumulated to significant levels in vegetative tissues, indicating that only subunits encoded by these three genes produce the 11-band zymogram. Even though the GS2 gene also had significant expression, the corresponding activity was not detected, probably due to inactivation. To resolve the subunit composition of 11 active GS1 isoforms, homozygous knockout mutants deficient in the expression of different GS1 genes were selected from the progeny of T-DNA insertional SALK and SAIL lines. Comparison of GS isoenzyme patterns of the selected GS1 knockout mutants indicated that all of the detected isoforms consist of varying proportions of GLN1;1, GLN1;2 and GLN1;3 subunits, and that GLN1;1 and GLN1;3, as well as GLN1;2 and GLN1;3 and possibly GLN1;1 and GLN1;2 proteins combine in all proportions to form active homo- and heterodecamers.

  6. VEGF121b and VEGF165b are weakly angiogenic isoforms of VEGF-A

    Directory of Open Access Journals (Sweden)

    Pio Ruben

    2010-12-01

    Full Text Available Abstract Background Different isoforms of VEGF-A (mainly VEGF121, VEGF165 and VEGF189 have been shown to display particular angiogenic properties in the generation of a functional tumor vasculature. Recently, a novel class of VEGF-A isoforms, designated as VEGFxxxb, generated through alternative splicing, have been described. Previous studies have suggested that these isoforms may inhibit angiogenesis. In the present work we have produced recombinant VEGF121/165b proteins in the yeast Pichia pastoris and constructed vectors to overexpress these isoforms and assess their angiogenic potential. Results Recombinant VEGF121/165b proteins generated either in yeasts or mammalian cells activated VEGFR2 and its downstream effector ERK1/2, although to a lesser extent than VEGF165. Furthermore, treatment of endothelial cells with VEGF121/165b increased cell proliferation compared to untreated cells, although such stimulation was lower than that induced by VEGF165. Moreover, in vivo angiogenesis assays confirmed angiogenesis stimulation by VEGF121/165b isoforms. A549 and PC-3 cells overexpressing VEGF121b or VEGF165b (or carrying the PCDNA3.1 empty vector, as control and xenotransplanted into nude mice showed increased tumor volume and angiogenesis compared to controls. To assess whether the VEGFxxxb isoforms are differentially expressed in tumors compared to healthy tissues, immunohistochemical analysis was conducted on a breast cancer tissue microarray. A significant increase (p xxxb and total VEGF-A protein expression in infiltrating ductal carcinomas compared to normal breasts was observed. A positive significant correlation (r = 0.404, p = 0.033 between VEGFxxxb and total VEGF-A was found. Conclusions Our results demonstrate that VEGF121/165b are not anti-angiogenic, but weakly angiogenic isoforms of VEGF-A. In addition, VEGFxxxb isoforms are up-regulated in breast cancer in comparison with non malignant breast tissues. These results are to be taken

  7. Down-regulated expression of atypical PKC-binding domain deleted asip isoforms in human hepatocellular carcinomas

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Asip is a mammalian homologue of polarity protein Par-3 of Caenorhabditis elegans and Bazooka of Drosophila melanogaster. Asip/Par-3/Bazooka are PDZ-motif containing proteins that localize asymmetrically to the cell periphery and play a pivotal role in cell polarity and asymmetric cell division. In the present study, we have cloned human asip cDNA and its splicing variants by 5'-RACE and RT-PCR using candidate human EST clones which have a high homology to rat asip cDNA. The full-length cDNA of human asip encodes a 1,353 aa protein exhibiting 88% similarity to the rat one. Human asip is a single copy gene consisting of at least 26 exons and localizing in human chromosome 10, band p11.2, with some extraordinarily long introns. All exon/intron boundary nucleotides conform to the “gt-ag” rule. Three main transcripts were detected by Northern blot analysis, and at least five variants, from alternative splicing and polyadenylation, have been identified by RT-PCR and liver cDNA library screening. Exon 17b deleted asip mRNAs expressed ubiquitously in normal human tissues, including liver, on RT-PCR analysis. However, they were absent from most human liver cancer cell lines examined. More interestingly, the expression of exon 17b deleted variants was down regulated in 52.6% (10/19) clinic specimens of human hepatocellular carcinomas (HCCs), compared with the surrounding nontumorous liver tissues from the same patients. The presence of various splicing transcripts, the variation of their distribution among different tissues and cells, and their differential expressions in human HCCs suggest that human Asip isoforms may function in different context.

  8. p53 isoform Δ113p53 is a p53 target gene that antagonizes p53 apoptotic activity via BclxL activation in zebrafish

    OpenAIRE

    Chen, Jun; Ng, Sok Meng; Chang, Changqing; Zhang, Zhenhai; Bourdon, Jean-Christophe; Lane, David P.; Peng, Jinrong

    2009-01-01

    p53 is a well-known tumor suppressor and is also involved in processes of organismal aging and developmental control. A recent exciting development in the p53 field is the discovery of various p53 isoforms. One p53 isoform is human Δ133p53 and its zebrafish counterpart Δ113p53. These N-terminal-truncated p53 isoforms are initiated from an alternative p53 promoter, but their expression regulation and physiological significance at the organismal level are not well understood. We show here that ...

  9. CD44 isoforms are heterogeneously expressed in breast cancer and correlate with tumor subtypes and cancer stem cell markers

    International Nuclear Information System (INIS)

    The CD44 cell adhesion molecule is aberrantly expressed in many breast tumors and has been implicated in the metastatic process as well as in the putative cancer stem cell (CSC) compartment. We aimed to investigate potential associations between alternatively spliced isoforms of CD44 and CSCs as well as to various breast cancer biomarkers and molecular subtypes. We used q-RT-PCR and exon-exon spanning assays to analyze the expression of four alternatively spliced CD44 isoforms as well as the total expression of CD44 in 187 breast tumors and 13 cell lines. ALDH1 protein expression was determined by IHC on TMA. Breast cancer cell lines showed a heterogeneous expression pattern of the CD44 isoforms, which shifted considerably when cells were grown as mammospheres. Tumors characterized as positive for the CD44+/CD24- phenotype by immunohistochemistry were associated to all isoforms except the CD44 standard (CD44S) isoform, which lacks all variant exons. Conversely, tumors with strong expression of the CSC marker ALDH1 had elevated expression of CD44S. A high expression of the CD44v2-v10 isoform, which retain all variant exons, was correlated to positive steroid receptor status, low proliferation and luminal A subtype. The CD44v3-v10 isoform showed similar correlations, while high expression of CD44v8-v10 was correlated to positive EGFR, negative/low HER2 status and basal-like subtype. High expression of CD44S was associated with strong HER2 staining and also a subgroup of basal-like tumors. Unsupervised hierarchical cluster analysis of CD44 isoform expression data divided tumors into four main clusters, which showed significant correlations to molecular subtypes and differences in 10-year overall survival. We demonstrate that individual CD44 isoforms can be associated to different breast cancer subtypes and clinical markers such as HER2, ER and PgR, which suggests involvement of CD44 splice variants in specific oncogenic signaling pathways. Efforts to link CD44 to CSCs

  10. The human-specific invariant chain isoform Iip35 modulates Iip33 trafficking and function.

    Science.gov (United States)

    Sand, Kine Marita Knudsen; Landsverk, Ole J B; Berg-Larsen, Axel; Bakke, Oddmund; Gregers, Tone F

    2014-10-01

    The invariant chain (Ii) is a multifunctional protein, which has an essential role in the assembly and transport of major histocompatibility complex class II (MHC II) molecules. From a single gene, Ii is synthesized as four different isoforms: Iip33, Iip35, Iip41 and Iip43. Iip35 and Iip43 are specific to humans, and are formed due to an upstream alternative translation site, resulting in an N-terminal extension of 16 amino acids. This extension harbors a strong endoplasmic reticulum (ER) retention motif. Consequently, Iip35 or Iip43 expressed alone are retained in the ER, whereas Iip33 and Iip41 rapidly traffic to the endosomal pathway. Endogenously expressed, the four isoforms form mixed heterotrimers in the ER; however, mainly due to the absence of the Iip35/p43 isoforms in mice, little is known about how they influence general Ii function. In this study, we have co-expressed Iip33 and Iip35 in human cells with and without MHC II to gain a better understanding of how Iip35 isoform influences the cellular properties of Iip33. We find that Iip35 significantly affects the properties of Iip33. In the presence of Iip35, the transport of Iip33 out of the ER is delayed, its half-life is dramatically prolonged and its ability to induce enlarged endosomes and delayed endosomal maturation is abrogated.

  11. Early transcriptional response to aminoglycoside antibiotic suggests alternate pathways leading to apoptosis of sensory hair cells in the mouse inner ear

    Directory of Open Access Journals (Sweden)

    Neil eSegil

    2015-05-01

    Full Text Available Aminoglycoside antibiotics are the drug of choice for treating many bacterial infections, but their administration results in hearing loss in nearly one fourth of the patients who receive them. Several biochemical pathways have been implicated in aminoglycoside antibiotic ototoxicity; however, little is known about how hair cells respond to aminoglycoside antibiotics at the transcriptome level. Here we have investigated the genome-wide response to the aminoglycoside antibiotic gentamicin. Using organotypic cultures of the perinatal organ of Corti, we performed RNA sequencing using cDNA libraries obtained from FACS-purified hair cells. Within 3 hours of gentamicin treatment, the messenger RNA level of more than three thousand genes in hair cells changed significantly. Bioinformatic analysis of these changes highlighted several known signal transduction pathways, including the JNK pathway and the NF-κB pathway, in addition to genes involved in the stress response, apoptosis, cell cycle control, and DNA damage repair. In contrast, only 698 genes, mainly involved in cell cycle and metabolite biosynthetic processes, were significantly affected in the non-hair cell population. The gene expression profiles of hair cells in response to gentamicin share a considerable similarity with those previously observed in gentamicin-induced nephrotoxicity. Our findings suggest that previously observed early responses to gentamicin in hair cells in specific signaling pathways are reflected in changes in gene expression. Additionally, the observed changes in gene expression of cell cycle regulatory genes indicate a disruption of the postmitotic state, which may suggest an alternative pathway regulating gentamicin-induced hair cell death. This work provides a more comprehensive view of aminoglycoside antibiotic ototoxicity, and thus contribute to identifying potential pathways or therapeutic targets to alleviate this important side effect of aminoglycoside

  12. p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration.

    Science.gov (United States)

    Turnquist, C; Horikawa, I; Foran, E; Major, E O; Vojtesek, B; Lane, D P; Lu, X; Harris, B T; Harris, C C

    2016-09-01

    Bidirectional interactions between astrocytes and neurons have physiological roles in the central nervous system and an altered state or dysfunction of such interactions may be associated with neurodegenerative diseases, such as Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS). Astrocytes exert structural, metabolic and functional effects on neurons, which can be either neurotoxic or neuroprotective. Their neurotoxic effect is mediated via the senescence-associated secretory phenotype (SASP) involving pro-inflammatory cytokines (e.g., IL-6), while their neuroprotective effect is attributed to neurotrophic growth factors (e.g., NGF). We here demonstrate that the p53 isoforms Δ133p53 and p53β are expressed in astrocytes and regulate their toxic and protective effects on neurons. Primary human astrocytes undergoing cellular senescence upon serial passaging in vitro showed diminished expression of Δ133p53 and increased p53β, which were attributed to the autophagic degradation and the SRSF3-mediated alternative RNA splicing, respectively. Early-passage astrocytes with Δ133p53 knockdown or p53β overexpression were induced to show SASP and to exert neurotoxicity in co-culture with neurons. Restored expression of Δ133p53 in near-senescent, otherwise neurotoxic astrocytes conferred them with neuroprotective activity through repression of SASP and induction of neurotrophic growth factors. Brain tissues from AD and ALS patients possessed increased numbers of senescent astrocytes and, like senescent astrocytes in vitro, showed decreased Δ133p53 and increased p53β expression, supporting that our in vitro findings recapitulate in vivo pathology of these neurodegenerative diseases. Our finding that Δ133p53 enhances the neuroprotective function of aged and senescent astrocytes suggests that the p53 isoforms and their regulatory mechanisms are potential targets for therapeutic intervention in neurodegenerative diseases. PMID:27104929

  13. Developmental expression of two Haliotis asinina hemocyanin isoforms.

    Science.gov (United States)

    Streit, Klaus; Jackson, Daniel; Degnan, Bernard M; Lieb, Bernhard

    2005-09-01

    Hemocyanins are large copper-containing respiratory proteins that play a role in oxygen transport in many molluscs. In some species only one hemocyanin isoform is present while in others two are expressed. The physiological relevance of these isoforms is unclear and the developmental and tissue-specific expression of hemocyanin genes is largely unknown. Here we show that two hemocyanin genes in the gastropod Haliotis asinina, which encode H. asinina hemocyanin (HaH1) and HaH2 isoforms, are developmentally expressed. These genes initially are expressed in a small number of mesenchyme cells at trochophore and pre-torsional veliger stages, with HaH1 expression slightly preceding HaH2. These cells largely are localized to the visceral mass, although a small number of cells are present in head and foot regions. Following metamorphosis the isoforms show overlapping as well as isoform-specific expression profiles, suggesting some degree of isoform-specific function.

  14. Androgen receptor isoforms in human and rat prostate

    Institute of Scientific and Technical Information of China (English)

    Shu-JieXIA; Gang-YaoHAO; Xiao-DaTANG

    2000-01-01

    Aim: To investigate the androgen receptor (AR) isoforms and its variability of expression in human and rat prostatic tissues. Methods: Human benign prostatic hyperplasia (BPH) and prostatic cancer tissues were obtained from patients undergoing prostatectomy, and rat ventral prostate was incised 3 days after castration. Forty-one AR-positive BPH specimens, 3 prostatic cancer specimens, and 6 rat prostates were used. After processing at 4℃, the tissues were examined by means of high resolution isoelectric focusing (IEF) technique to determine their AR isoforms. Results:From the prostatic specimens, 3 types of AR isoforms were detected with pI values at 6.5, 6.0, and 5.3. In human BPH tissues, 15/41 (36.6%) specimens showed all the three types of isoforms, while 19/41 (46.3%) showed 2 isoforms at various combinations and 7/41(17.1%), 1 isoform. For the 3 prostatic cancer specimens, one showed 3 isoforms, one, 2 isoforms, and the other failed to show any isoform. All rat prostatic tissues showed 2 isoforms at different combinations. Binding of 3H-dihydrotestosterone (DHT) to the isoforms was inhibited by the addition of 100-fold excess of DHT or testosterone, but not progesterone, oestradiol or diethylstilboestrol. Conclusion: AR isoforms are different in different patients. Although their genesis is not clear, the therapeutic implication of the present observation appears to be interesting, that may help clarifying the individual differences in the response to hormonal therapy.(Asian J Androl 2000 Dec;2:307-310)

  15. Functional characterisation of an intron retaining K+ transporter of barley reveals intron-mediated alternate splicing

    KAUST Repository

    Shahzad, K.

    2015-01-01

    Intron retention in transcripts and the presence of 5 and 3 splice sites within these introns mediate alternate splicing, which is widely observed in animals and plants. Here, functional characterisation of the K+ transporter, HvHKT2;1, with stably retained introns from barley (Hordeum vulgare) in yeast (Saccharomyces cerevisiae), and transcript profiling in yeast and transgenic tobacco (Nicotiana tabacum) is presented. Expression of intron-retaining HvHKT2;1 cDNA (HvHKT2;1-i) in trk1, trk2 yeast strain defective in K+ uptake restored growth in medium containing hygromycin in the presence of different concentrations of K+ and mediated hypersensitivity to Na+. HvHKT2;1-i produces multiple transcripts via alternate splicing of two regular introns and three exons in different compositions. HKT isoforms with retained introns and exon skipping variants were detected in relative expression analysis of (i) HvHKT2;1-i in barley under native conditions, (ii) in transgenic tobacco plants constitutively expressing HvHKT2;1-i, and (iii) in trk1, trk2 yeast expressing HvHKT2;1-i under control of an inducible promoter. Mixed proportions of three HKT transcripts: HvHKT2;1-e (first exon region), HvHKT2;1-i1 (first intron) and HvHKT2;1-i2 (second intron) were observed. The variation in transcript accumulation in response to changing K+ and Na+ concentrations was observed in both heterologous and plant systems. These findings suggest a link between intron-retaining transcripts and different splice variants to ion homeostasis, and their possible role in salt stress.

  16. In vitro and in vivo effects on neural crest stem cell differentiation by conditional activation of Runx1 short isoform and its effect on neuropathic pain behavior

    DEFF Research Database (Denmark)

    Kanaykina, Nadezda; Abelson, Klas; King, Dale;

    2010-01-01

    cord. Moreover, mice lacking Runx1 exhibit specific defects in thermal and neuropathic pain. We investigated whether conditional activation of Runx1 short isoform (Runx1a), which lacks a transcription activation domain, influences differentiation of neural crest stem cells (NCSCs) in vitro and in vivo...

  17. Transcriptional Characterization of Porcine Leptin and Leptin Receptor Genes.

    Directory of Open Access Journals (Sweden)

    Dafne Pérez-Montarelo

    Full Text Available The leptin (LEP and its receptor (LEPR regulate food intake and energy balance through hypothalamic signaling. However, the LEP-LEPR axis seems to be more complex and its expression regulation has not been well described. In pigs, LEP and LEPR genes have been widely studied due to their relevance. Previous studies reported significant effects of SNPs located in both genes on growth and fatness traits. The aim of this study was to determine the expression profiles of LEP and LEPR across hypothalamic, adipose, hepatic and muscle tissues in Iberian x Landrace backcrossed pigs and to analyze the effects of gene variants on transcript abundance. To our knowledge, non porcine LEPR isoforms have been described rather than LEPRb. A short porcine LEPR isoform (LEPRa, that encodes a protein lacking the intracellular residues responsible of signal transduction, has been identified for the first time. The LEPRb isoform was only quantifiable in hypothalamus while LEPRa appeared widely expressed across tissues, but at higher levels in liver, suggesting that both isoforms would develop different roles. The unique LEP transcript showed expression in backfat and muscle. The effects of gene variants on transcript expression revealed interesting results. The LEPRc.1987C>T polymorphism showed opposite effects on LEPRb and LEPRa hypothalamic expression. In addition, one out of the 16 polymorphisms identified in the LEPR promoter region revealed high differential expression in hepatic LEPRa. These results suggest a LEPR isoform-specific regulation at tissue level. Conversely, non-differential expression of LEP conditional on the analyzed polymorphisms could be detected, indicating that its regulation is likely affected by other mechanisms rather than gene sequence variants. The present study has allowed a transcriptional characterization of LEP and LEPR isoforms on a range of tissues. Their expression patterns seem to indicate that both molecules develop peripheral

  18. Transcriptional Characterization of Porcine Leptin and Leptin Receptor Genes.

    Science.gov (United States)

    Pérez-Montarelo, Dafne; Fernández, Almudena; Barragán, Carmen; Noguera, Jose L; Folch, Josep M; Rodríguez, M Carmen; Ovilo, Cristina; Silió, Luis; Fernández, Ana I

    2013-01-01

    The leptin (LEP) and its receptor (LEPR) regulate food intake and energy balance through hypothalamic signaling. However, the LEP-LEPR axis seems to be more complex and its expression regulation has not been well described. In pigs, LEP and LEPR genes have been widely studied due to their relevance. Previous studies reported significant effects of SNPs located in both genes on growth and fatness traits. The aim of this study was to determine the expression profiles of LEP and LEPR across hypothalamic, adipose, hepatic and muscle tissues in Iberian x Landrace backcrossed pigs and to analyze the effects of gene variants on transcript abundance. To our knowledge, non porcine LEPR isoforms have been described rather than LEPRb. A short porcine LEPR isoform (LEPRa), that encodes a protein lacking the intracellular residues responsible of signal transduction, has been identified for the first time. The LEPRb isoform was only quantifiable in hypothalamus while LEPRa appeared widely expressed across tissues, but at higher levels in liver, suggesting that both isoforms would develop different roles. The unique LEP transcript showed expression in backfat and muscle. The effects of gene variants on transcript expression revealed interesting results. The LEPRc.1987C>T polymorphism showed opposite effects on LEPRb and LEPRa hypothalamic expression. In addition, one out of the 16 polymorphisms identified in the LEPR promoter region revealed high differential expression in hepatic LEPRa. These results suggest a LEPR isoform-specific regulation at tissue level. Conversely, non-differential expression of LEP conditional on the analyzed polymorphisms could be detected, indicating that its regulation is likely affected by other mechanisms rather than gene sequence variants. The present study has allowed a transcriptional characterization of LEP and LEPR isoforms on a range of tissues. Their expression patterns seem to indicate that both molecules develop peripheral roles apart from

  19. Energy-optimised pharmacophore approach to identify potential hotspots during inhibition of Class II HDAC isoforms.

    Science.gov (United States)

    Ganai, Shabir Ahmad; Shanmugam, Karthi; Mahadevan, Vijayalakshmi

    2015-01-01

    Histone deacetylases (HDACs) are conjugated enzymes that modulate chromatin architecture by deacetylating lysine residues on the histone tails leading to transcriptional repression. Pharmacological interventions of these enzymes with small molecule inhibitors called Histone deacetylase inhibitors (HDACi) have shown enhanced acetylation of the genome and are hence emerging as potential targets at the clinic. Type-specific inhibition of Class II HDACs has shown enhanced therapeutic benefits against developmental and neurodegenerative disorders. However, the structural identity of class-specific isoforms limits the potential of their inhibitors in precise targeting of their enzymes. Diverse strategies have been implemented to recognise the features in HDAC enzymes which may help in identifying isoform specificity factors. This work attempts a computational approach that combines in silico docking and energy-optimised pharmacophore (E-pharmacophore) mapping of 18 known HDAC inhibitors and has identified structural variations that regulate their interactions against the six Class II HDAC enzymes considered for the study. This combined approach establishes that inhibitors possessing higher number of aromatic rings in different structural regions might function as potent inhibitors, while inhibitors with scarce ring structures might point to compromised potency. This would aid the rationale for chemical optimisation and design of isoform selective HDAC inhibitors with enhanced affinity and therapeutic efficiency.

  20. Circadian rhythmicity of active GSK3 isoforms modulates molecular clock gene rhythms in the suprachiasmatic nucleus.

    Science.gov (United States)

    Besing, Rachel C; Paul, Jodi R; Hablitz, Lauren M; Rogers, Courtney O; Johnson, Russell L; Young, Martin E; Gamble, Karen L

    2015-04-01

    The suprachiasmatic nucleus (SCN) drives and synchronizes daily rhythms at the cellular level via transcriptional-translational feedback loops comprising clock genes such as Bmal1 and Period (Per). Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, phosphorylates at least 5 core clock proteins and shows diurnal variation in phosphorylation state (inactivation) of the GSK3β isoform. Whether phosphorylation of the other primary isoform (GSK3α) varies across the subjective day-night cycle is unknown. The purpose of this study was to determine if the endogenous rhythm of GSK3 (α and β) phosphorylation is critical for rhythmic BMAL1 expression and normal amplitude and periodicity of the molecular clock in the SCN. Significant circadian rhythmicity of phosphorylated GSK3 (α and β) was observed in the SCN from wild-type mice housed in constant darkness for 2 weeks. Importantly, chronic activation of both GSK3 isoforms impaired rhythmicity of the GSK3 target BMAL1. Furthermore, chronic pharmacological inhibition of GSK3 with 20 µM CHIR-99021 enhanced the amplitude and shortened the period of PER2::luciferase rhythms in organotypic SCN slice cultures. These results support the model that GSK3 activity status is regulated by the circadian clock and that GSK3 feeds back to regulate the molecular clock amplitude in the SCN.

  1. Molecular cloning of the α-subunit of human prolyl 4-hydroxylase: The complete cDNA-derived amino acid sequence and evidence for alternative splicing of RNA transcripts

    International Nuclear Information System (INIS)

    Prolyl 4-hydroxylase an α2β2 tetramer, catalyzes the formation of 4-hydroxyproline in collagens by the hydroxylation of proline residues in peptide linkages. The authors report here on the isolation of cDNA clones encoding the α-subunit of the enzyme from human tumor HT-1080, placenta, and fibroblast cDNA libraries. Eight overlapping clones covering almost all of the corresponding 3,000-nucleotide mRNA, including all the coding sequences, were characterized. These clones encode a polypeptide of 517 amino acid residues and a signal peptide of 17 amino acids. Previous characterization of cDNA clones for the β-subunit of prolyl 4-hydroxylase has indicated that its C terminus has the amino acid sequence Lys-Asp-Gly-Leu, which, it has been suggested, is necessary for the retention of a polypeptide within the lumen of the endoplasmic reticulum. The α-subunit does not have this C-terminal sequence, and thus one function of the β-subunit in the prolyl 4-hydroxylase tetramer appears to be to retain the enzyme within this cell organelle. Southern blot analyses of human genomic DNA with a cDNA probe for the α-subunit suggested the presence of only one gene encoding the two types of mRNA, which appear to result from mutually exclusive alternative splicing of primary transcripts of one gene

  2. Formation of VEGF isoform-specific spatial distributions governing angiogenesis: computational analysis

    Directory of Open Access Journals (Sweden)

    Mac Gabhann Feilim

    2011-05-01

    Full Text Available Abstract Background The spatial distribution of vascular endothelial growth factor A (VEGF is an important mediator of vascular patterning. Previous experimental studies in the mouse hindbrain and retina have suggested that VEGF alternative splicing, which controls the ability of VEGF to bind to heparan sulfate proteoglycans (HSPGs in the extracellular matrix (ECM, plays a key role in controlling VEGF diffusion and gradients in tissues. Conversely, proteolysis notably by matrix metalloproteinases (MMPs, plays a critical role in pathological situations by releasing matrix-sequestered VEGF and modulating angiogenesis. However, computational models have predicted that HSPG binding alone does not affect VEGF localization or gradients at steady state. Results Using a 3D molecular-detailed reaction-diffusion model of VEGF ligand-receptor kinetics and transport, we test alternate models of VEGF transport in the extracellular environment surrounding an endothelial sprout. We show that differences in localization between VEGF isoforms, as observed experimentally in the mouse hindbrain, as well as the ability of proteases to redistribute VEGF in pathological situations, are consistent with a model where VEGF is endogenously cleared or degraded in an isoform-specific manner. We use our predictions of the VEGF distribution to quantify a tip cell's receptor binding and gradient sensing capacity. A novel prediction is that neuropilin-1, despite functioning as a coreceptor to VEGF165-VEGFR2 binding, reduces the ability of a cell to gauge the relative steepness of the VEGF distribution. Comparing our model to available in vivo vascular patterning data suggests that vascular phenotypes are most consistently predicted at short range by the soluble fraction of the VEGF distributions, or at longer range by matrix-bound VEGF detected in a filopodia-dependent manner. Conclusions Isoform-specific VEGF degradation provides a possible explanation for numerous examples

  3. In vitro and in silico studies of MDM2/MDMX isoforms predict Nutlin-3A sensitivity in well/de-differentiated liposarcomas.

    Science.gov (United States)

    Bozzi, Fabio; Conca, Elena; Laurini, Erik; Posocco, Paola; Lo Sardo, Alessandra; Jocollè, Genny; Sanfilippo, Roberta; Gronchi, Alessandro; Perrone, Federica; Tamborini, Elena; Pelosi, Giuseppe; Pierotti, Marco A; Maestro, Roberta; Pricl, Sabrina; Pilotti, Silvana

    2013-11-01

    The molecular marker of well-differentiated/de-differentiated liposarcomas is MDM2 gene amplification coupled with protein overexpression and wild-type TP53. MDMX is a recently identified MDM2 homolog and its presence in this tumor is unexplored. Our aim was to investigate the role of full-length MDM2 and MDMX proteins and their isoforms in surgical specimens of well-differentiated/de-differentiated liposarcomas in view of Nutlin-3A (a MDM2 inhibitor) treatment. Frozen and matched formalin-fixed, paraffin-embedded material from surgical specimens was examined by means of: (1) fluorescence in situ hybridization to determine MDM2 and MDMX gene copy numbers; (2) RT-PCR and densitometry to analyze alternative splicing forms of mdm2 and mdmx; (3) immunoblotting and immunohistochemistry to assess the corresponding translated proteins; and (4) in vitro and in silico assays to determine their affinity for Nutlin-3A. All these cases showed MDM2 gene amplification with an MDMX disomic pattern. In all cases, the full-length mdm2 transcript was associated with the mdm2-b transcript, with ratios ranging from 0.07 to 5.6, and both were translated into protein; mdmx and mdmx-s were co-transcripted, with ratios ranging from 0.1 to 5.6. MDMX-S was frequently more upregulated than MDMX at both transcriptional and protein level. Each case showed different amounts of mdm2, mdm2-b, mdmx, and mdmx-s transcripts and the corresponding proteins. In vitro assays showed that Nutlin-3A was ineffective against MDM2-B and was unable to disrupt the MDMX/TP53 and MSMX-S/TP53 complexes. Molecular simulations confirmed these in vitro findings by showing that MDM2 has high Nutlin-3A affinity, followed by MDMX-S, MDMX, and MDM2-B. Nutlin-3A is predicted to be a good therapeutic option for well-differentiated/de-differentiated liposarcomas. However, our findings predict heterogeneous responses depending on the relative expression of mdm2, mdm2-b, mdmx, and mdmx-s transcripts and proteins. PMID

  4. The regulation of IGF-1 gene transcription and splicing during development and aging.

    Directory of Open Access Journals (Sweden)

    Anita eOberbauer

    2013-03-01

    Full Text Available It is commonly known that the insulin-like growth factor-I gene contains six exons that can be differentially spliced to create multiple transcript variants. Further, there are two mutually exclusive leader exons each having multiple promoter sites that are variably used. The mature IGF-I protein derived from the multiplicity of transcripts does not differ suggesting a regulatory role for the various transcript isoforms. The variant forms possess different stabilities, binding partners, and activity indicating a pivotal role for the isoforms. Research has demonstrated differential expression of the IGF-I mRNA transcripts in response to steroids, growth hormone, and developmental cues. Many studies of different tissues have focused on assessing the presence, or putative action, of the transcript isoforms with little consideration of the transcriptional mechanisms that generate the variants or the translational use of the transcript isoforms. Control points for the latter include epigenetic regulation of splicing and promoter usage in response to development or injury, RNA binding proteins and miRNA effects on transcript stability, and preferential use of two leader exons by GH and other hormones. This review will detail the current knowledge of the mechanical, hormonal, and developmental stimuli regulating IGF1 promoter usage and splicing machinery used to create the variants.

  5. The Regulation of IGF-1 Gene Transcription and Splicing during Development and Aging.

    Science.gov (United States)

    Oberbauer, A M

    2013-01-01

    It is commonly known that the insulin-like growth factor-I gene contains six exons that can be differentially spliced to create multiple transcript variants. Further, there are two mutually exclusive leader exons each having multiple promoter sites that are variably used. The mature IGF-I protein derived from the multiplicity of transcripts does not differ suggesting a regulatory role for the various transcript isoforms. The variant forms possess different stabilities, binding partners, and activity indicating a pivotal role for the isoforms. Research has demonstrated differential expression of the IGF-I mRNA transcripts in response to steroids, growth hormone, and developmental cues. Many studies of different tissues have focused on assessing the presence, or putative action, of the transcript isoforms with little consideration of the transcriptional mechanisms that generate the variants or the translational use of the transcript isoforms. Control points for the latter include epigenetic regulation of splicing and promoter usage in response to development or injury, RNA binding proteins and microRNA effects on transcript stability, and preferential use of two leader exons by GH and other hormones. This review will detail the current knowledge of the mechanical, hormonal, and developmental stimuli regulating IGF-1 promoter usage and splicing machinery used to create the variants. PMID:23533068

  6. Potential Role of Activating Transcription Factor 5 during Osteogenesis

    Directory of Open Access Journals (Sweden)

    Luisa Vicari

    2016-01-01

    Full Text Available Human adipose-derived stem cells are an abundant population of stem cells readily isolated from human adipose tissue that can differentiate into connective tissue lineages including bone, cartilage, fat, and muscle. Activating transcription factor 5 is a transcription factor of the ATF/cAMP response element-binding protein (CREB family. It is transcribed in two types of mRNAs (activating transcription factor 5 isoform 1 and activating transcription factor 5 isoform 2, encoding the same single 30-kDa protein. Although it is well demonstrated that it regulates the proliferation, differentiation, and apoptosis, little is known about its potential role in osteogenic differentiation. The aim of this study was to evaluate the expression levels of the two isoforms and protein during osteogenic differentiation of human adipose-derived stem cells. Our data indicate that activating transcription factor 5 is differentially expressed reaching a peak of expression at the stage of bone mineralization. These findings suggest that activating transcription factor 5 could play an interesting regulatory role during osteogenesis, which would provide a powerful tool to study bone physiology.

  7. Runx2-I isoform contributes to fetal bone formation even in the absence of specific N-terminal amino acids.

    Directory of Open Access Journals (Sweden)

    Hideaki Okura

    Full Text Available The Runt-related transcription factor 2 (Runx2 gene encodes the transcription factor Runx2, which is the master regulator of osteoblast development; insufficiency of this protein causes disorders of bone development such as cleidocranial dysplasia. Runx2 has two isoforms, Runx2-II and Runx2-I, and production of each isoform is controlled by a unique promoter: a distal promoter (P1 and a proximal promoter (P2, respectively. Although several studies have focused on differences and similarities between the two Runx2 isoforms, their individual roles in bone formation have not yet been determined conclusively, partly because a Runx2-I-targeted mouse model is not available. In this study, we established a novel Runx2-manipulated mouse model in which the first ATG of Runx2-I was replaced with TGA (a stop codon, and a neomycin-resistant gene (neo cassette was inserted at the first intron of Runx2-I. Homozygous Runx2-Ineo/neo mice showed severely reduced expression of Runx2-I, whereas Runx2-II expression was largely retained. Runx2-Ineo/neo mice showed neonatal lethality, and in these mice, intramembranous ossification was more severely defective than endochondral ossification, presumably because of the greater involvement of Runx2-I, compared with that of Runx2-II in intramembranous ossification. Interestingly, the depletion of neo rescued the above-described phenotypes, indicating that the isoform-specific N-terminal region of Runx2-I is not functionally essential for bone development. Taken together, our results provide a novel clue leading to a better understanding of the roles of Runx2 isoforms in osteoblast development.

  8. Revealing the functions of the transketolase enzyme isoforms in Rhodopseudomonas palustris using a systems biology approach.

    Directory of Open Access Journals (Sweden)

    Chia-Wei Hu

    Full Text Available BACKGROUND: Rhodopseudomonas palustris (R. palustris is a purple non-sulfur anoxygenic phototrophic bacterium that belongs to the class of proteobacteria. It is capable of absorbing atmospheric carbon dioxide and converting it to biomass via the process of photosynthesis and the Calvin-Benson-Bassham (CBB cycle. Transketolase is a key enzyme involved in the CBB cycle. Here, we reveal the functions of transketolase isoforms I and II in R. palustris using a systems biology approach. METHODOLOGY/PRINCIPAL FINDINGS: By measuring growth ability, we found that transketolase could enhance the autotrophic growth and biomass production of R. palustris. Microarray and real-time quantitative PCR revealed that transketolase isoforms I and II were involved in different carbon metabolic pathways. In addition, immunogold staining demonstrated that the two transketolase isoforms had different spatial localizations: transketolase I was primarily associated with the intracytoplasmic membrane (ICM but transketolase II was mostly distributed in the cytoplasm. Comparative proteomic analysis and network construction of transketolase over-expression and negative control (NC strains revealed that protein folding, transcriptional regulation, amino acid transport and CBB cycle-associated carbon metabolism were enriched in the transketolase I over-expressed strain. In contrast, ATP synthesis, carbohydrate transport, glycolysis-associated carbon metabolism and CBB cycle-associated carbon metabolism were enriched in the transketolase II over-expressed strain. Furthermore, ATP synthesis assays showed a significant increase in ATP synthesis in the transketolase II over-expressed strain. A PEPCK activity assay showed that PEPCK activity was higher in transketolase over-expressed strains than in the negative control strain. CONCLUSIONS/SIGNIFICANCE: Taken together, our results indicate that the two isoforms of transketolase in R. palustris could affect photoautotrophic growth

  9. Muscle-Type Specific Autophosphorylation of CaMKII Isoforms after Paced Contractions

    Science.gov (United States)

    Eilers, Wouter; Gevers, Wouter; van Overbeek, Daniëlle; de Haan, Arnold; Jaspers, Richard T.; Hilbers, Peter A.; van Riel, Natal; Flück, Martin

    2014-01-01

    We explored to what extent isoforms of the regulator of excitation-contraction and excitation-transcription coupling, calcium/calmodulin protein kinase II (CaMKII) contribute to the specificity of myocellular calcium sensing between muscle types and whether concentration transients in its autophosphorylation can be simulated. CaMKII autophosphorylation at Thr287 was assessed in three muscle compartments of the rat after slow or fast motor unit-type stimulation and was compared against a computational model (CaMuZclE) coupling myocellular calcium dynamics with CaMKII Thr287 phosphorylation. Qualitative differences existed between fast- (gastrocnemius medialis) and slow-type muscle (soleus) for the expression pattern of CaMKII isoforms. Phospho-Thr287 content of δA CaMKII, associated with nuclear functions, demonstrated a transient and compartment-specific increase after excitation, which contrasted to the delayed autophosphorylation of the sarcoplasmic reticulum-associated βM CaMKII. In soleus muscle, excitation-induced δA CaMKII autophosphorylation demonstrated frequency dependence (P = 0.02). In the glycolytic compartment of gastrocnemius medialis, CaMKII autophosphorylation after excitation was blunted. In silico assessment emphasized the importance of mitochondrial calcium buffer capacity for excitation-induced CaMKII autophosphorylation but did not predict its isoform specificity. The findings expose that CaMKII autophosphorylation with paced contractions is regulated in an isoform and muscle type-specific fashion and highlight properties emerging for phenotype-specific regulation of CaMKII. PMID:25054156

  10. Muscle-Type Specific Autophosphorylation of CaMKII Isoforms after Paced Contractions

    Directory of Open Access Journals (Sweden)

    Wouter Eilers

    2014-01-01

    Full Text Available We explored to what extent isoforms of the regulator of excitation-contraction and excitation-transcription coupling, calcium/calmodulin protein kinase II (CaMKII contribute to the specificity of myocellular calcium sensing between muscle types and whether concentration transients in its autophosphorylation can be simulated. CaMKII autophosphorylation at Thr287 was assessed in three muscle compartments of the rat after slow or fast motor unit-type stimulation and was compared against a computational model (CaMuZclE coupling myocellular calcium dynamics with CaMKII Thr287 phosphorylation. Qualitative differences existed between fast- (gastrocnemius medialis and slow-type muscle (soleus for the expression pattern of CaMKII isoforms. Phospho-Thr287 content of δA CaMKII, associated with nuclear functions, demonstrated a transient and compartment-specific increase after excitation, which contrasted to the delayed autophosphorylation of the sarcoplasmic reticulum-associated βM CaMKII. In soleus muscle, excitation-induced δA CaMKII autophosphorylation demonstrated frequency dependence (P = 0.02. In the glycolytic compartment of gastrocnemius medialis, CaMKII autophosphorylation after excitation was blunted. In silico assessment emphasized the importance of mitochondrial calcium buffer capacity for excitation-induced CaMKII autophosphorylation but did not predict its isoform specificity. The findings expose that CaMKII autophosphorylation with paced contractions is regulated in an isoform and muscle type-specific fashion and highlight properties emerging for phenotype-specific regulation of CaMKII.

  11. Alternative Splice in Alternative Lice.

    Science.gov (United States)

    Tovar-Corona, Jaime M; Castillo-Morales, Atahualpa; Chen, Lu; Olds, Brett P; Clark, John M; Reynolds, Stuart E; Pittendrigh, Barry R; Feil, Edward J; Urrutia, Araxi O

    2015-10-01

    Genomic and transcriptomics analyses have revealed human head and body lice to be almost genetically identical; although con-specific, they nevertheless occupy distinct ecological niches and have differing feeding patterns. Most importantly, while head lice are not known to be vector competent, body lice can transmit three serious bacterial diseases; epidemictyphus, trench fever, and relapsing fever. In order to gain insights into the molecular bases for these differences, we analyzed alternative splicing (AS) using next-generation sequencing data for one strain of head lice and one strain of body lice. We identified a total of 3,598 AS events which were head or body lice specific. Exon skipping AS events were overrepresented among both head and body lice, whereas intron retention events were underrepresented in both. However, both the enrichment of exon skipping and the underrepresentation of intron retention are significantly stronger in body lice compared with head lice. Genes containing body louse-specific AS events were found to be significantly enriched for functions associated with development of the nervous system, salivary gland, trachea, and ovarian follicle cells, as well as regulation of transcription. In contrast, no functional categories were overrepresented among genes with head louse-specific AS events. Together, our results constitute the first evidence for transcript pool differences in head and body lice, providing insights into molecular adaptations that enabled human lice to adapt to clothing, and representing a powerful illustration of the pivotal role AS can play in functional adaptation. PMID:26169943

  12. Characterization and expression of two cDNA encoding 3-Hydroxy-3-methylglutaryl coenzyme A reductase isoforms in coffee (Coffea arabica L.).

    Science.gov (United States)

    Tiski, Iris; Marraccini, Pierre; Pot, David; Vieira, Luiz Gonzaga Esteves; Pereira, Luiz Filipe Protasio

    2011-10-01

    In higher plants there are two independent pathways for isoprenoid biosynthesis, located in the cytosol (mevalonic acid or MVA pathway) or in the plastids [methylerythritol phosphate (MEP) pathway]. The 3-hydroxy-3-methyglutaryl-CoA reductase (HMGR) is the first committed step in the MVA pathway. Using the information available from the Brazilian Coffee Genome Project, we found 13 ESTs that originated two isoforms, CaHMGR1 and CaHMGR2, for the enzyme HMGR of Coffea arabica. A complementary DNA encoding the isoform CaHMGR1 was cloned, and its complete nucleotide sequence determined. The full-length cDNA of CaHMGR1 was 2,242 bp containing a 1,812-bp ORF encoding 604 amino acids. Bioinformatic analyses revealed that the deduced CaHMGR1 had extensive homology with other plant HMGRs and contained two transmembrane domains and two putative HMGR binding sites and two NADP(H)-binding sites. Under normal growth conditions, transcripts of isoform CaHMRG1 were detected in fruit tissues (pulp, perisperm, and endosperm) only at the initial stages of development, flower buds and leaves. CaHMRG2 was expressed in all tissues and during all fruit development stages examined. These results suggest a constitutive expression of isoform CaHMGR2, while the isoform CaHMGR1 shows temporal and tissue-specific transcriptional activation.

  13. Existence of multiple isoforms of HS1-associated protein X-1 in murine and human tissues.

    Science.gov (United States)

    Lees, Delphine M; Hart, Ian R; Marshall, John F

    2008-06-13

    To date, the literature concerning the HS1 (haematopoietic cell-specific protein 1)-associated protein X-1 (HAX1) protein has reported considerable variation regarding its function in mammalian cells, subcellular localisation and binding partners. We show here that HAX1 comprises a family of proteins. Murine tissues express three mRNA variants, encoded by two genes on chromosomes 2 and 3. The chromosome 2 gene is intronless and would encode a protein 100% identical with that encoded by chromosome 3. In humans, alternative splice variants, encoded by the chromosome 1 gene, produce a family of transcripts composed of up to eight members. Based on the sequences published in GenBank and Ensembl, we designed specific primers and detected by PCR three mRNA species in murine tissues and eight variants in human cells. We screened a panel of 19 human cell lines as well as primary fibroblasts, oral keratinocytes and freshly isolated peripheral blood mononuclear cells. All human cells studied expressed at least six of the possible HAX1 mRNA variants. In silico analysis of the variants revealed an open reading frame in all of them, suggesting that murine and human tissues can express two and eight HAX1 proteins, respectively. Analysis of human protein lysates by Western blotting with the use of a monoclonal anti-HAX1 antibody revealed multiple bands. These bands were decreased after treatment of cells with a single small interfering RNA duplex targeting a region common to six of the variants, confirming their identity as HAX1 proteins. Comparison of the human variants with the six HAX1 homologues described to date in the chimpanzee (Pan troglodytes) and the four homologues described in macaque (Macaca mulatta) revealed very high conservation with only one amino acid substitution between human and chimpanzee homologues. Moreover, a number of additional products were amplified and sequenced, which indicated that further human isoforms are likely to exist. These findings are

  14. Mechano-Regulation of Alternative Splicing

    OpenAIRE

    Liu, Huan; Tang, Liling

    2013-01-01

    Alternative splicing contributes to the complexity of proteome by producing multiple mRNAs from a single gene. Affymetrix exon arrays and experiments in vivo or in vitro demonstrated that alternative splicing was regulated by mechanical stress. Expression of mechano-growth factor (MGF) which is the splicing isoform of insulin-like growth factor 1(IGF-1) and vascular endothelial growth factor (VEGF) splicing variants such as VEGF121, VEGF165, VEGF206, VEGF189, VEGF165 and VEGF145 are regulated...

  15. Conditional expression of CD44 isoforms in lymphoma cells: influence on hyaluronate binding and tumor growth

    International Nuclear Information System (INIS)

    CD44 describes a family of surface proteins consisting of many isoforms due to alternative splice of ten 'variant' exons. Members of this family are involved in various processes including hematopoiesis, lymphocyte activation and homing, limb development, wound healing and tumor progression. Clinically, CD44 has been shown to be a prognostic factor for several human cancers. To answer the question which isoform might be relevant for tumor progression and to gain an insight into the mechanism of its function, I established transfectants of the LB lymphoma cell line in which the expression of four CD44 isoforms, namely CD44v3-10, CD44v4-10, CD44v8-10 and CD44s, was controlled by the Tet-off promoter. In the presence of Doxycycline, the expression was repressed. Removal of Doxycycline switched on expression and the maximal CD44 amount was obtained within two days. The transfectants were characterized regarding their ability to bind to the extracellular matrix component hyaluronate (HA). Overexpression of all four CD44 isoforms conferred the ability to bind HA on LB cells. Other glycosaminoglycans (GAGs) were bound in an isotype-specific fashion. CD44v3-10, CD44v4-10 and CD44v8-10 showed high binding affinity to chondroitin A, B and C, and low affinity to heparin, heparan sulfate and keratan sulfate. CD44s could not bind to these GAGs. Among these three variants, the binding ability of CD44v3-10 was the strongest. CD44 clustering seemed to play a crucial role for HA binding. Both CD44s and CD44v8-10 formed reduction-sensitive complexes in LB cells. The complexes are homooligomers or heterooligomers composed of different isoforms. Cys286 in CD44 transmember domain was not responsible for the formation of reduction-sensitive oligomer or for the enhanced HA binding in LB cell line. Using a conditional dimerization system the requirement of CD44 oligomerization for HA binding was directly demonstrated. The induction of oligomerization increased HA binding. Finally, I

  16. Conditional expression of CD44 isoforms in lymphoma cells: influence on hyaluronate binding and tumor growth

    Energy Technology Data Exchange (ETDEWEB)

    Fu, J.

    2002-03-01

    CD44 describes a family of surface proteins consisting of many isoforms due to alternative splice of ten 'variant' exons. Members of this family are involved in various processes including hematopoiesis, lymphocyte activation and homing, limb development, wound healing and tumor progression. Clinically, CD44 has been shown to be a prognostic factor for several human cancers. To answer the question which isoform might be relevant for tumor progression and to gain an insight into the mechanism of its function, I established transfectants of the LB lymphoma cell line in which the expression of four CD44 isoforms, namely CD44v3-10, CD44v4-10, CD44v8-10 and CD44s, was controlled by the Tet-off promoter. In the presence of Doxycycline, the expression was repressed. Removal of Doxycycline switched on expression and the maximal CD44 amount was obtained within two days. The transfectants were characterized regarding their ability to bind to the extracellular matrix component hyaluronate (HA). Overexpression of all four CD44 isoforms conferred the ability to bind HA on LB cells. Other glycosaminoglycans (GAGs) were bound in an isotype-specific fashion. CD44v3-10, CD44v4-10 and CD44v8-10 showed high binding affinity to chondroitin A, B and C, and low affinity to heparin, heparan sulfate and keratan sulfate. CD44s could not bind to these GAGs. Among these three variants, the binding ability of CD44v3-10 was the strongest. CD44 clustering seemed to play a crucial role for HA binding. Both CD44s and CD44v8-10 formed reduction-sensitive complexes in LB cells. The complexes are homooligomers or heterooligomers composed of different isoforms. Cys286 in CD44 transmember domain was not responsible for the formation of reduction-sensitive oligomer or for the enhanced HA binding in LB cell line. Using a conditional dimerization system the requirement of CD44 oligomerization for HA binding was directly demonstrated. The induction of oligomerization increased HA binding

  17. Alternative splicing of interleukin-33 and type 2 inflammation in asthma.

    Science.gov (United States)

    Gordon, Erin D; Simpson, Laura J; Rios, Cydney L; Ringel, Lando; Lachowicz-Scroggins, Marrah E; Peters, Michael C; Wesolowska-Andersen, Agata; Gonzalez, Jeanmarie R; MacLeod, Hannah J; Christian, Laura S; Yuan, Shaopeng; Barry, Liam; Woodruff, Prescott G; Ansel, K Mark; Nocka, Karl; Seibold, Max A; Fahy, John V

    2016-08-01

    Type 2 inflammation occurs in a large subgroup of asthmatics, and novel cytokine-directed therapies are being developed to treat this population. In mouse models, interleukin-33 (IL-33) activates lung resident innate lymphoid type 2 cells (ILC2s) to initiate airway type 2 inflammation. In human asthma, which is chronic and difficult to model, the role of IL-33 and the target cells responsible for persistent type 2 inflammation remain undefined. Full-length IL-33 is a nuclear protein and may function as an "alarmin" during cell death, a process that is uncommon in chronic stable asthma. We demonstrate a previously unidentified mechanism of IL-33 activity that involves alternative transcript splicing, which may operate in stable asthma. In human airway epithelial cells, alternative splicing of the IL-33 transcript is consistently present, and the deletion of exons 3 and 4 (Δ exon 3,4) confers cytoplasmic localization and facilitates extracellular secretion, while retaining signaling capacity. In nonexacerbating asthmatics, the expression of Δ exon 3,4 is strongly associated with airway type 2 inflammation, whereas full-length IL-33 is not. To further define the extracellular role of IL-33 in stable asthma, we sought to determine the cellular targets of its activity. Comprehensive flow cytometry and RNA sequencing of sputum cells suggest basophils and mast cells, not ILC2s, are the cellular sources of type 2 cytokines in chronic asthma. We conclude that IL-33 isoforms activate basophils and mast cells to drive type 2 inflammation in chronic stable asthma, and novel IL-33 inhibitors will need to block all biologically active isoforms. PMID:27432971

  18. Genome-wide analysis of shoot growth-associated alternative splicing in moso bamboo.

    Science.gov (United States)

    Li, Long; Hu, Tao; Li, Xueping; Mu, Shaohua; Cheng, Zhanchao; Ge, Wei; Gao, Jian

    2016-08-01

    Alternative splicing (AS) significantly enhances transcriptome complexity and is differentially regulated in a wide variety of physiological processes in plants, including shoot growth. Presently, the functional implications and conservation of AS occurrences are not well understood in the moso bamboo genome. To analyze the global changes in AS during moso bamboo shoot growth, fast-growing shoots collected at seven different heights and culms after leaf expansion were sequenced using the Illumina HiSeq™ 2000 sequencing platform. It was found that approximately 60.74 % of all genes were alternatively spliced, with intron retention (IR) being the most frequent AS event (27.43 %). Statistical analysis demonstrated that variations of AS frequency and AS types were significantly correlated with changes in gene features and gene transcriptional level. According to the phylogenetic analysis of isoform expression data and AS frequency, the bamboo shoot growth could be divided into four different growth periods, including winter bamboo shoot (S1), early growth period (S2-S5), late growth period (S6 and S7), and mature period (CK). In addition, our data also showed that the winter bamboo shoot had the highest number of AS events. Twenty-six putative Serine/arginine-rich (SR) proteins were identified, producing a total of 109 transcripts. AS events were frequently and specifically regulated by SR splicing factors throughout shoot growth, resulting in changes to the original open reading frame (ORF) and subsequently changes to conserved domains. The AS product-isoforms showed regular expression change during the whole shoot growth period, thus influencing shoot growth. All together, these data indicate that AS events are adjusted to different growth stages, providing briefness and efficient means of gene regulation. This study will provide a very useful clue for future functional analyses. PMID:27170010

  19. Genome-wide analysis of shoot growth-associated alternative splicing in moso bamboo.

    Science.gov (United States)

    Li, Long; Hu, Tao; Li, Xueping; Mu, Shaohua; Cheng, Zhanchao; Ge, Wei; Gao, Jian

    2016-08-01

    Alternative splicing (AS) significantly enhances transcriptome complexity and is differentially regulated in a wide variety of physiological processes in plants, including shoot growth. Presently, the functional implications and conservation of AS occurrences are not well understood in the moso bamboo genome. To analyze the global changes in AS during moso bamboo shoot growth, fast-growing shoots collected at seven different heights and culms after leaf expansion were sequenced using the Illumina HiSeq™ 2000 sequencing platform. It was found that approximately 60.74 % of all genes were alternatively spliced, with intron retention (IR) being the most frequent AS event (27.43 %). Statistical analysis demonstrated that variations of AS frequency and AS types were significantly correlated with changes in gene features and gene transcriptional level. According to the phylogenetic analysis of isoform expression data and AS frequency, the bamboo shoot growth could be divided into four different growth periods, including winter bamboo shoot (S1), early growth period (S2-S5), late growth period (S6 and S7), and mature period (CK). In addition, our data also showed that the winter bamboo shoot had the highest number of AS events. Twenty-six putative Serine/arginine-rich (SR) proteins were identified, producing a total of 109 transcripts. AS events were frequently and specifically regulated by SR splicing factors throughout shoot growth, resulting in changes to the original open reading frame (ORF) and subsequently changes to conserved domains. The AS product-isoforms showed regular expression change during the whole shoot growth period, thus influencing shoot growth. All together, these data indicate that AS events are adjusted to different growth stages, providing briefness and efficient means of gene regulation. This study will provide a very useful clue for future functional analyses.

  20. Two farnesoid X receptor alpha isoforms in Japanese medaka (Oryzias latipes) are differentially activated in vitro

    International Nuclear Information System (INIS)

    The nuclear receptor farnesoid X receptor alpha (FXRα, NR1H4) is activated by bile acids in multiple species including mouse, rat, and human and in this study we have identified two isoforms of Fxrα in Japanese medaka (Oryzias latipes), a small freshwater teleost. Both isoforms share a high amino acid sequence identity to mammalian FXRα (∼70% in the ligand-binding domain). Fxrα1 and Fxrα2 differ within the AF1 domain due to alternative splicing at the fourth intron-exon boundary. This process results in Fxrα1 having an extended N-terminus compared to Fxrα2. A Gal4DBD-FxrαLBD fusion construct was activated by chenodeoxycholic, cholic, deoxycholic and lithocholic acids, and the synthetic agonist GW4064 in transient transactivation assays. Activation of the Gal4DBD-FxrαLBD fusion construct was enhanced by addition of PGC-1α, as demonstrated through titration assays. Surprisingly, when the full-length versions of the two Fxrα isoforms were compared in transient transfection assays, Fxrα2 was activated by C24 bile acids and GW4064, while Fxrα1 was not significantly activated by any of the compounds tested. Since the only significant difference between the full-length constructs was sequence in the AF1 domain, these experiments highlight a key functional region in the Fxrα AF1 domain. Furthermore, mammalian two-hybrid studies demonstrated the ability of Fxrα2, but not Fxrα1, to interact with PGC-1α and SRC-1, and supported our results from the transient transfection reporter gene activation assays. These data demonstrate that both mammalian and teleost FXR (Fxrα2 isoform) are activated by primary and secondary bile acids.

  1. Two farnesoid X receptor alpha isoforms in Japanese medaka (Oryzias latipes) are differentially activated in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Howarth, Deanna L. [Integrated Toxicology and Environmental Health Program and Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708 (United States); Hagey, Lee R. [Department of Medicine, University of California at San Diego, La Jolla, CA 92093 (United States); Law, Sheran H.W. [Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695 (United States); Ai, Ni [Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854 (United States); Krasowski, Matthew D. [Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA (United States); Ekins, Sean [Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854 (United States); Collaboration in Chemistry, Jenkintown, PA 19046 (United States); Department of Pharmaceutical Sciences, University of Maryland, Baltimore, MD 21201 (United States); Moore, John T. [GlaxoSmithKline Discovery Research, Research Triangle Park, NC 27709 (United States); Kollitz, Erin M. [Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695 (United States); Hinton, David E. [Integrated Toxicology and Environmental Health Program and Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708 (United States); Kullman, Seth W., E-mail: swkullma@ncsu.edu [Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, NC 27695 (United States)

    2010-07-01

    The nuclear receptor farnesoid X receptor alpha (FXR{alpha}, NR1H4) is activated by bile acids in multiple species including mouse, rat, and human and in this study we have identified two isoforms of Fxr{alpha} in Japanese medaka (Oryzias latipes), a small freshwater teleost. Both isoforms share a high amino acid sequence identity to mammalian FXR{alpha} ({approx}70% in the ligand-binding domain). Fxr{alpha}1 and Fxr{alpha}2 differ within the AF1 domain due to alternative splicing at the fourth intron-exon boundary. This process results in Fxr{alpha}1 having an extended N-terminus compared to Fxr{alpha}2. A Gal4DBD-Fxr{alpha}LBD fusion construct was activated by chenodeoxycholic, cholic, deoxycholic and lithocholic acids, and the synthetic agonist GW4064 in transient transactivation assays. Activation of the Gal4DBD-Fxr{alpha}LBD fusion construct was enhanced by addition of PGC-1{alpha}, as demonstrated through titration assays. Surprisingly, when the full-length versions of the two Fxr{alpha} isoforms were compared in transient transfection assays, Fxr{alpha}2 was activated by C{sub 24} bile acids and GW4064, while Fxr{alpha}1 was not significantly activated by any of the compounds tested. Since the only significant difference between the full-length constructs was sequence in the AF1 domain, these experiments highlight a key functional region in the Fxr{alpha} AF1 domain. Furthermore, mammalian two-hybrid studies demonstrated the ability of Fxr{alpha}2, but not Fxr{alpha}1, to interact with PGC-1{alpha} and SRC-1, and supported our results from the transient transfection reporter gene activation assays. These data demonstrate that both mammalian and teleost FXR (Fxr{alpha}2 isoform) are activated by primary and secondary bile acids.

  2. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    International Nuclear Information System (INIS)

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA3.1 empty vector, pcDNA3.1-VEGF111b or pcDNA3.1-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth

  3. Splice isoforms of the polyglutamine disease protein ataxin-3 exhibit similar enzymatic yet different aggregation properties.

    Directory of Open Access Journals (Sweden)

    Ginny Marie Harris

    Full Text Available Protein context clearly influences neurotoxicity in polyglutamine diseases, but the contribution of alternative splicing to this phenomenon has rarely been investigated. Ataxin-3, a deubiquitinating enzyme and the disease protein in SCA3, is alternatively spliced to encode either a C-terminal hydrophobic stretch or a third ubiquitin interacting motif (termed 2UIM and 3UIM isoforms, respectively. In light of emerging insights into ataxin-3 function, we examined the significance of this splice variation. We confirmed neural expression of several minor 5' variants and both of the known 3' ataxin-3 splice variants. Regardless of polyglutamine expansion, 3UIM ataxin-3 is the predominant isoform in brain. Although 2UIM and 3UIM ataxin-3 display similar in vitro deubiquitinating activity, 2UIM ataxin-3 is more prone to aggregate and more rapidly degraded by the proteasome. Our data demonstrate how alternative splicing of sequences distinct from the trinucleotide repeat can alter properties of the encoded polyglutamine disease protein and thereby perhaps contribute to selective neurotoxicity.

  4. The Regulation of IGF-1 Gene Transcription and Splicing during Development and Aging

    OpenAIRE

    Anita eOberbauer

    2013-01-01

    It is commonly known that the insulin-like growth factor-I gene contains six exons that can be differentially spliced to create multiple transcript variants. Further, there are two mutually exclusive leader exons each having multiple promoter sites that are variably used. The mature IGF-I protein derived from the multiplicity of transcripts does not differ suggesting a regulatory role for the various transcript isoforms. The variant forms possess different stabilities, binding partners, and a...

  5. A conserved tissue-specific homeodomain-less isoform of MEIS1 is downregulated in colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Richard C Crist

    Full Text Available Colorectal cancer is one of the most common cancers in developed nations and is the result of both environmental and genetic factors. Many of the genetic lesions observed in colorectal cancer alter expression of homeobox genes, which encode homeodomain transcription factors. The MEIS1 homeobox gene is known to be involved in several hematological malignancies and solid tumors and recent evidence suggests that expression of the MEIS1 transcript is altered in colorectal cancer. Despite this potential connection, little is known about the role of the gene in the intestines. We probed murine gastrointestinal tissue samples with an N-terminal Meis1 antibody, revealing expression of two previously described isoforms, as well as two novel Meis1 products. A 32 kD Meis1 product was expressed in the nuclei of non-epithelial cells in the stomach and colon, while a 27 kD product was expressed in the cytoplasm of epithelial cells in the proximal colon. Our data suggest that the 27 kD and 32 kD Meis1 proteins are both forms of the Meis1d protein, a homeodomain-less isoform whose transcript was previously identified in cDNA screens. Both the MEIS1D transcript and protein were expressed in human colon mucosa. Expression of the MEIS1D protein was downregulated in 83% (10/12 of primary colorectal cancer samples compared to matched normal mucosa, indicating that MEIS1D is a biomarker of colorectal tumorigenesis. The decreased expression of MEIS1D in colon tumors also suggests that this conserved homeodomain-less isoform may act as a tumor suppressor in human colorectal cancer.

  6. Differential gene expression and alternative splicing between diploid and tetraploid watermelon.

    Science.gov (United States)

    Saminathan, Thangasamy; Nimmakayala, Padma; Manohar, Sumanth; Malkaram, Sridhar; Almeida, Aldo; Cantrell, Robert; Tomason, Yan; Abburi, Lavanya; Rahman, Mohammad A; Vajja, Venkata G; Khachane, Amit; Kumar, Brajendra; Rajasimha, Harsha K; Levi, Amnon; Wehner, Todd; Reddy, Umesh K

    2015-03-01

    The exploitation of synthetic polyploids for producing seedless fruits is well known in watermelon. Tetraploid progenitors of triploid watermelon plants, compared with their diploid counterparts, exhibit wide phenotypic differences. Although many factors modulate alternative splicing (AS) in plants, the effects of autopolyploidization on AS are still unknown. In this study, we used tissues of leaf, stem, and fruit of diploid and tetraploid sweet watermelon to understand changes in gene expression and the occurrence of AS. RNA-sequencing analysis was performed along with reverse transcription quantitative PCR and rapid amplification of cDNA ends (RACE)-PCR to demonstrate changes in expression and splicing. All vegetative tissues except fruit showed an increased level of AS in the tetraploid watermelon throughout the growth period. The ploidy levels of diploids and the tetraploid were confirmed using a ploidy analyser. We identified 5362 and 1288 genes that were up- and downregulated, respectively, in tetraploid as compared with diploid plants. We further confirmed that 22 genes underwent AS events across tissues, indicating possibilities of generating different protein isoforms with altered functions of important transcription factors and transporters. Arginine biosynthesis, chlorophyllide synthesis, GDP mannose biosynthesis, trehalose biosynthesis, and starch and sucrose degradation pathways were upregulated in autotetraploids. Phloem protein 2, chloroplastic PGR5-like protein, zinc-finger protein, fructokinase-like 2, MYB transcription factor, and nodulin MtN21 showed AS in fruit tissues. These results should help in developing high-quality seedless watermelon and provide additional transcriptomic information related to other cucurbits. PMID:25520388

  7. Multiple erythroid isoforms of human long-chain acyl-CoA synthetases are produced by switch of the fatty acid gate domains

    Directory of Open Access Journals (Sweden)

    Kuypers Frans A

    2006-07-01

    Full Text Available Abstract Background The formation of acyl-CoA by the action of acyl-CoA synthetases plays a crucial role in membrane lipid turnover, including the plasma membrane of erythrocytes. In human, five Acyl-CoA Synthetase Long-chain (ACSL genes have been identified with as many as 3 different transcript variants for each. Results Acyl-CoA Synthetase Long-chain member 6 (ACSL6 is responsible for activation of long-chain fatty acids in erythrocytes. Two additional transcript variants were also isolated from brain and testis. We report the expression in reticulocytes of two new variants and of the one isolated from brain. All three represented different spliced variants of a mutually exclusive exon pair. They encode a slightly different short motif which contains a conserved structural domain, the fatty acid Gate domain. The motifs differ in the presence of either the aromatic residue phenylalanine (Phe or tyrosine (Tyr. Based on homology, two new isoforms for the closely related ACSL1 were predicted and characterized. One represented a switch of the Phe- to the Tyr-Gate domain motif, the other resulted from the exclusion of both. Swapping of this motif also appears to be common in all mammalian ACSL member 1 and 6 homologs. Conclusion We propose that a Phe to Tyr substitution or deletion of the Gate domain, is the structural reason for the conserved alternative splicing that affects these motifs. Our findings support our hypothesis that this region is structurally important to define the activity of these enzymes.

  8. Alternative security

    International Nuclear Information System (INIS)

    This book contains the following chapters: The Military and Alternative Security: New Missions for Stable Conventional Security; Technology and Alternative Security: A Cherished Myth Expires; Law and Alternative Security: Toward a Just World Peace; Politics and Alternative Security: Toward a More Democratic, Therefore More Peaceful, World; Economics and Alternative Security: Toward a Peacekeeping International Economy; Psychology and Alternative Security: Needs, Perceptions, and Misperceptions; Religion and Alternative Security: A Prophetic Vision; and Toward Post-Nuclear Global Security: An Overview

  9. Functionality of intergenic transcription: an evolutionary comparison.

    Directory of Open Access Journals (Sweden)

    Philipp Khaitovich

    2006-10-01

    Full Text Available Although a large proportion of human transcription occurs outside the boundaries of known genes, the functional significance of this transcription remains unknown. We have compared the expression patterns of known genes as well as intergenic transcripts within the ENCODE regions between humans and chimpanzees in brain, heart, testis, and lymphoblastoid cell lines. We find that intergenic transcripts show patterns of tissue-specific conservation of their expression, which are comparable to exonic transcripts of known genes. This suggests that intergenic transcripts are subject to functional constraints that restrict their rate of evolutionary change as well as putative positive selection to an extent comparable to that of classical protein-coding genes. In brain and testis, we find that part of this intergenic transcription is caused by widespread use of alternative promoters. Further, we find that about half of the expression differences between humans and chimpanzees are due to intergenic transcripts.

  10. Functionality of Intergenic Transcription: An Evolutionary Comparison

    Science.gov (United States)

    Visagie, Johann; Giger, Thomas; Joerchel, Sabrina; Petzold, Ekkehard; Green, Richard E; Lachmann, Michael; Pääbo, Svante

    2006-01-01

    Although a large proportion of human transcription occurs outside the boundaries of known genes, the functional significance of this transcription remains unknown. We have compared the expression patterns of known genes as well as intergenic transcripts within the ENCODE regions between humans and chimpanzees in brain, heart, testis, and lymphoblastoid cell lines. We find that intergenic transcripts show patterns of tissue-specific conservation of their expression, which are comparable to exonic transcripts of known genes. This suggests that intergenic transcripts are subject to functional constraints that restrict their rate of evolutionary change as well as putative positive selection to an extent comparable to that of classical protein-coding genes. In brain and testis, we find that part of this intergenic transcription is caused by widespread use of alternative promoters. Further, we find that about half of the expression differences between humans and chimpanzees are due to intergenic transcripts. PMID:17040132

  11. Synaptojanin 1: localization on coated endocytic intermediates in nerve terminals and interaction of its 170 kDa isoform with Eps15

    DEFF Research Database (Denmark)

    Haffner, C; Takei, K; Chen, H;

    1997-01-01

    that synaptojanin-170, an alternatively spliced isoform of synaptojanin 1, binds Eps15, a clathrin coat-associated protein. Binding is mediated by the COOH-terminal region of synaptojanin-170 which we show here to be poorly conserved from rat to humans, but to contain in both species three asparagine...

  12. Early detection of skeletal muscle injury by assay of creatine kinase MM isoforms in serum after acute exercise

    DEFF Research Database (Denmark)

    Apple, F. S.; Hellsten, Ylva; Clarkson, P. M.

    1988-01-01

    We could detect skeletal muscle injury early after an acute exercise bout by measuring creatine kinase (CK, EC 2.7.3.2) MM isoforms in serum. Eleven men performed 120 alternating-arm, eccentric (muscle lengthening) biceps contractions with the intensity of each contraction being 110% of maximal...... concentric strength--a form of exercise previously shown to cause significant increases of CK in serum at 24 h and muscle soreness 48 h after exercise. Total CK and CK-MM isoform activities in serum were determined before and at 0.5, 0.75, 1, 1.5, 2, and 6 h after exercise. Using thin-film agarose gels...... and a rapid isoelectric focusing technique, we separated the MM isoforms into MM3 (skeletal muscle form), MM2, and MM1 (in vivo conversion forms). The isoforms reflected the MM form released into the serum from tissue as well as the conversion of one form to another. There were no significant increases...

  13. The crystal structure of the non-liganded 14-3-3σ protein: insights into determinants of isoform specific ligand binding and dimerization

    Institute of Scientific and Technical Information of China (English)

    Anne BENZINGER; Grzegorz M. POPOWICZ; Joma K. JOY; Sudipta MAJUMDAR; Tad A. HOLAK; Heiko HERMEKING

    2005-01-01

    Seven different, but highly conserved 14-3-3 proteins are involved in diverse signaling pathways in human cells. It is unclear how the 14-3-3σ isoform, a transcriptional target of p53, exerts its inhibitory effect on the cell cycle in the presence of other 14-3-3 isoforms, which are constitutively expressed at high levels. In order to identify structural differences between the 14-3-3 isoforms, we solved the crystal structure of the human 14-3-3σ protein at a resolution of 2.8 A and compared it to the known structures of 14-3-3ζ and 14-3-3τ. The global architecture of the 14-3-3σ fold is similar to the previously determined structures of 14-3-3ζ and 14-3-3τ: two 14-3-3σ molecules form a cup-shaped dimer. Significant differences between these 14-3-3 isoforms were detected adjacent to the amphipathic groove, which mediates the binding to phosphorylated consensus motifs in 14-3-3-1igands. Another specificity determining region is localized between amino-acids 203 to 215. These differences presumably select for the interaction with specific ligands,which may explain the different biological functions of the respective 14-3-3 isoforms. Furthermore, the two 14-3-3σ molecules forming a dimer differ by the spatial position of the ninth helix, which is shifted to the inside of the ligand interaction surface, thus indicating adaptability of this part of the molecule. In addition, 5 non-conserved residues are located at the interface between two 14-3-3σ proteins forming a dimer and represent candidate determinants of homoand hetero-dimerization specificity. The structural differences among the 14-3-3 isoforms described here presumably contribute to isoform-specific interactions and functions.

  14. Immunopositivity for histone macroH2A1 isoforms marks steatosis-associated hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Francesca Rappa

    Full Text Available BACKGROUND: Hepatocellular carcinoma (HCC is one of the most common cancers worldwide. Prevention and risk reduction are important and the identification of specific biomarkers for early diagnosis of HCC represents an active field of research. Increasing evidence indicates that fat accumulation in the liver, defined as hepatosteatosis, is an independent and strong risk factor for developing an HCC. MacroH2A1, a histone protein generally associated with the repressed regions of chromosomes, is involved in hepatic lipid metabolism and is present in two alternative spliced isoforms, macroH2A1.1 and macroH2A1.2. These isoforms have been shown to predict lung and colon cancer recurrence but to our knowledge, their role in fatty-liver associated HCC has not been investigated previously. METHODS: We examined macroH2A1.1 and macroH2A1.2 protein expression levels in the liver of two murine models of fat-associated HCC, the high fat diet/diethylnistrosamine (DEN and the phosphatase and tensin homolog (PTEN liver specific knock-out (KO mouse, and in human liver samples of subjects with steatosis or HCC, using immunoblotting and immunohistochemistry. RESULTS: Protein levels for both macroH2A1 isoforms were massively upregulated in HCC, whereas macroH2A1.2 was specifically upregulated in steatosis. In addition, examination of human liver samples showed a significant difference (p<0.01 in number of positive nuclei in HCC (100% of tumor cells positive for either macroH2A1.1 or macroH2A1.2, when compared to steatosis (<2% of hepatocytes positive for either isoform. The steatotic areas flanking the tumors were highly immunopositive for macroH2A1.1 and macroH2A1.2. CONCLUSIONS: These data obtained in mice and humans suggest that both macroH2A1 isoforms may play a role in HCC pathogenesis and moreover may be considered as novel diagnostic markers for human HCC.

  15. Identification and characterization of a constitutively expressed Ctenopharyngodon idella ADAR1 splicing isoform (CiADAR1a).

    Science.gov (United States)

    Liu, Xiancheng; Huang, Keyi; Hou, Qunhao; Sun, Zhicheng; Wang, Binhua; Lin, Gang; Li, Dongming; Liu, Yong; Xu, Xiaowen; Hu, Chengyu

    2016-10-01

    As one member of ADAR family, ADAR1 (adenosine deaminase acting on RNA 1) can convert adenosine to inosine within dsRNA. There are many ADAR1 splicing isoforms in mammals, including an interferon (IFN) inducible ∼150 kD protein (ADAR1-p150) and a constitutively expressed ∼110 kD protein (ADAR1-p110). The structural diversity of ADAR1 splicing isoforms may reflect their multiple functions. ADAR1 splicing isoforms were also found in fish. In our previous study, we have cloned and identified two different grass carp ADAR1 splicing isoforms, i.e. CiADAR1 and CiADAR1-like, both of them are IFN-inducible proteins. In this paper, we identified a novel CiADAR1 splicing isoform gene (named CiADAR1a). CiADAR1a gene contains 15 exons and 14 introns. Its full-length cDNA is comprised of a 5' UTR (359 bp), a 3' UTR (229 bp) and a 2952 bp ORF encoding a polypeptide of 983 amino acids with one Z-DNA binding domain, three dsRNA binding motifs and a highly conserved hydrolytic deamination domain. CiADAR1a was constitutively expressed in Ctenopharyngodon idella kidney (CIK) cells regardless of Poly I:C stimulation by Western blot assay. In normal condition, CiADAR1a was found to be present mainly in the nucleus. After treatment with Poly I:C, it gradually shifted to cytoplasm. To further investigate the mechanism of transcriptional regulation of CiADAR1a, we cloned and identified its promoter sequence. The transcriptional start site of CiADAR1a is mapped within the truncated exon 2. CiADAR1a promoter is 1303 bp in length containing 4 IRF-Es. In the present study, we constructed pcDNA3.1 eukaryotic expression vectors with IRF1 and IRF3 and co-transfected them with pGL3-CiADAR1a promoter into CIK cells. The results showed that neither the over-expression of IRF1 or IRF3 nor Poly I:C stimulation significantly impacted CiADAR1a promoter activity in CIK cells. Together, according to the molecular and expression characteristics, subcellular localization and transcriptional

  16. Alternative energies; Energies alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, J.; Rossetti, P

    2007-07-01

    The earth took millions years to made the petroleum, the gas the coal and the uranium. Only a few centuries will be needed to exhaust these fossil fuels and some years to reach expensive prices. Will the wold continue on this way of energy compulsive consumption? The renewable energies and some citizen attitudes are sufficient to break this spiral. This book proposes to discuss these alternative energies. It shows that this attitude must be supported by the government. It takes stock on the more recent information concerning the renewable energies. it develops three main points: the electricity storage, the housing and the transports. (A.L.B.)

  17. p53 and its isoforms in cancer

    OpenAIRE

    Bourdon, J-C

    2007-01-01

    p53, p63 and p73 are members of the p53 gene family involved in development, differentiation and response to cellular stress. p53 gene is a transcription factor essential for the prevention of cancer formation. The p53 pathway is ubiquitously lost in human cancer either by p53 gene mutation (60% of cancers) or by lost of cell signalling upstream and downstream of p53 in the remaining cancers expressing WTp53 gene. As p53 pathway inactivation is a common denominator to all cancers, the underst...

  18. Data on CUX1 isoforms in idiopathic pulmonary fibrosis lung and systemic sclerosis skin tissue sections.

    Science.gov (United States)

    Ikeda, Tetsurou; Fragiadaki, Maria; Shi-Wen, Xu; Ponticos, Markella; Khan, Korsa; Denton, Christopher; Garcia, Patricia; Bou-Gharios, George; Yamakawa, Akio; Morimoto, Chikao; Abraham, David

    2016-09-01

    This data article contains complementary figures related to the research article entitled, "Transforming growth factor-β-induced CUX1 isoforms are associated with fibrosis in systemic sclerosis lung fibroblasts" (Ikeda et al. (2016) [2], http://dx.doi.org/10.1016/j.bbrep.2016.06.022), which presents that TGF-β increased CUX1 binding in the proximal promoter and enhancer of the COL1A2 and regulated COL1. Further, in the scleroderma (SSc) lung and diffuse alveolar damage lung sections, CUX1 localized within the α- smooth muscle actin (α-SMA) positive cells (Fragiadaki et al., 2011) [1], "High doses of TGF-beta potently suppress type I collagen via the transcription factor CUX1" (Ikeda et al., 2016) [2]. Here we show that CUX1 isoforms are localized within α-smooth muscle actin-positive cells in SSc skin and idiopathic pulmonary fibrosis (IPF) lung tissue sections. In particular, at the granular and prickle cell layers in the SSc skin sections, CUX1 and α-SMA are co-localized. In addition, at the fibrotic loci in the IPF lung tissue sections, CUX1 localized within the α-smooth muscle actin (α-SMA) positive cells. PMID:27583344

  19. Distinct Functions of Different scl Isoforms in Zebrafish Definitive Hematopoietic Stem Cell Initiation and Maintenance

    Science.gov (United States)

    Lan, Yahui

    2011-07-01

    The establishment of entire blood system relies on the multi-potent hematopoietic stem cells (HSCs), thus identifying the molecular mechanism in HSC generation is of importance for not only complementing the fundamental knowledge in stem cell biology, but also providing insights to the regenerative therapies. Recent researches have documented the formation of nascent HSCs through a direct transition from ventral aortic endothelium, named as endothelial hematopoietic transition (EHT) process. However, the precise genetic program engaged in this process remains largely elusive. The transcription factor scl plays pivotal and conserved roles in embryonic and adult hematopoiesis from teleosts to mammals. Our lab have previously identified a new truncated scl isoform, scl-beta, which is indispensible for the specification of HSCs in the ventral wall of dorsal aorta (VDA), the zebrafish equivalent of mammalian fetal hematopoietic organ. Here we observe that, by combining time-lapse confocal imaging of transgenic zebrafish and genetic epistasis analysis, scl-beta is expressed in a subset of ventral aortic endothelial cells and critical for their forthcoming transformation to hemogenic endothelium; in contrast, runx1 is required downstream to govern the successful egress of the hemogenic endothelial cells to become naive HSCs. In addition, the traditional known full-length scl-alpha isoform is firstly evidenced to be required for the maintenance or survival of newly formed HSCs in VDA. Collectively our data has established the genetic hierarchy controlling discrete steps in the consecutive process of HSC formation from endothelial cells and further development in VDA.

  20. The combined expression patterns of Ikaros isoforms characterize different hematological tumor subtypes.

    Directory of Open Access Journals (Sweden)

    Carlos A Orozco

    Full Text Available A variety of genetic alterations are considered hallmarks of cancer development and progression. The Ikaros gene family, encoding for key transcription factors in hematopoietic development, provides several examples as genetic defects in these genes are associated with the development of different types of leukemia. However, the complex patterns of expression of isoforms in Ikaros family genes has prevented their use as clinical markers. In this study, we propose the use of the expression profiles of the Ikaros isoforms to classify various hematological tumor diseases. We have standardized a quantitative PCR protocol to estimate the expression levels of the Ikaros gene exons. Our analysis reveals that these levels are associated with specific types of leukemia and we have found differences in the levels of expression relative to five interexonic Ikaros regions for all diseases studied. In conclusion, our method has allowed us to precisely discriminate between B-ALL, CLL and MM cases. Differences between the groups of lymphoid and myeloid pathologies were also identified in the same way.

  1. Investigating the role of class-IA PI 3-kinase isoforms in adipocyte differentiation

    International Nuclear Information System (INIS)

    PI 3-kinases, in particular class-IA, are key signalling molecules controlling many cellular processes including growth, proliferation, migration and differentiation. In this study, we have used a collection of isoform selective PI 3-kinase inhibitors to determine whether attenuation of signalling through class-IA PI 3-kinase isoforms will impact adipocyte differentiation. First, we analysed the expression profiles and found that fibroblastic pre-adipocytes express detectable levels of p110α and p110δ and that after differentiation, p110δ levels fall while p110α levels rise, together with C/EBPα and PPARγ. When using specific inhibitors during the differentiation process, we observed that neither p110β nor p110δ inhibition, had any significant effect. In contrast PIK-75, a selective p110α inhibitor completely abolished adipocyte differentiation as assessed by morphology, transcript and protein levels of adipocyte markers. These results indicate that long term treatment with p110α inhibitors could potentially have a severe impact on fat cell numbers in vivo.

  2. Distinct functional interactions between actin isoforms and nonsarcomeric myosins.

    Directory of Open Access Journals (Sweden)

    Mirco Müller

    Full Text Available Despite their near sequence identity, actin isoforms cannot completely replace each other in vivo and show marked differences in their tissue-specific and subcellular localization. Little is known about isoform-specific differences in their interactions with myosin motors and other actin-binding proteins. Mammalian cytoplasmic β- and γ-actin interact with nonsarcomeric conventional myosins such as the members of the nonmuscle myosin-2 family and myosin-7A. These interactions support a wide range of cellular processes including cytokinesis, maintenance of cell polarity, cell adhesion, migration, and mechano-electrical transduction. To elucidate differences in the ability of isoactins to bind and stimulate the enzymatic activity of individual myosin isoforms, we characterized the interactions of human skeletal muscle α-actin, cytoplasmic β-actin, and cytoplasmic γ-actin with human myosin-7A and nonmuscle myosins-2A, -2B and -2C1. In the case of nonmuscle myosins-2A and -2B, the interaction with either cytoplasmic actin isoform results in 4-fold greater stimulation of myosin ATPase activity than was observed in the presence of α-skeletal muscle actin. Nonmuscle myosin-2C1 is most potently activated by β-actin and myosin-7A by γ-actin. Our results indicate that β- and γ-actin isoforms contribute to the modulation of nonmuscle myosin-2 and myosin-7A activity and thereby to the spatial and temporal regulation of cytoskeletal dynamics. FRET-based analyses show efficient copolymerization abilities for the actin isoforms in vitro. Experiments with hybrid actin filaments show that the extent of actomyosin coupling efficiency can be regulated by the isoform composition of actin filaments.

  3. Alternative additives; Alternative additiver

    Energy Technology Data Exchange (ETDEWEB)

    2007-08-15

    In this project a number of industrial and agricultural waste products have been characterised and evaluated in terms of alkali-getter performance. The intended use is for biomass-fired power stations aiming at reducing corrosion or slagging related problems. The following products have been obtained, characterised and evaluated: 1) Brewery draff 2) Danish de-gassed manure 3) Paper sludge 4) Moulding sand 5) Spent bleaching earth 6) Anorthosite 7) Sand 8) Clay-sludge. Most of the above alternative additive candidates are deemed unsuitable due to insufficient chemical effect and/or expensive requirements for pre-treatment (such as drying and transportation). 3 products were selected for full-scale testing: de-gassed manure, spent bleaching earth and clay slugde. The full scale tests were undertaken at the biomass-fired power stations in Koege, Slagelse and Ensted. Spent bleaching earth (SBE) and clay sludge were the only tested additive candidates that had a proven ability to react with KCl, to thereby reduce Cl-concentrations in deposits, and reduce the deposit flux to superheater tubes. Their performance was shown to nearly as good as commercial additives. De-gassed manure, however, did not evaluate positively due to inhibiting effects of Ca in the manure. Furthermore, de-gassed manure has a high concentration of heavy metals, which imposes a financial burden with regard to proper disposal of the ash by-products. Clay-sludge is a wet clay slurring, and drying and transportation of this product entails substantial costs. Spent bleaching does not require much pre-treatment and is therefore the most promising alternative additive. On the other hand, bleaching earth contains residual plant oil which means that a range of legislation relating to waste combustion comes into play. Not least a waste combustion fee of 330 DKK/tonne. For all alternative (and commercial) additives disposal costs of the increase ash by-products represents a significant cost. This is

  4. Differential regulation of renal phospholipase C isoforms by catecholamines.

    Science.gov (United States)

    Yu, P Y; Asico, L D; Eisner, G M; Jose, P A

    1995-01-01

    Dopamine and D1 agonists and NE all increase phosphatidyl inositol-specific phospholipase C (PLC) activity, but whereas dopamine produces a natriuresis, NE has an antinatriuretic effect. To determine if catecholamines differentially regulate the expression of PLC isoforms, we infused fenoldopam, a D1 agonist, or pramipexole, a D1/D2 agonist, intravenously or infused fenoldopam or NE into the renal artery of anesthetized rats. After 3-4 h of infusion, when the expected natriuresis (fenoldopam or pramipexole) or antinatriuresis (NE) occurred, the kidneys were removed for analysis of PLC isoform protein expression activity. Western blot analysis revealed that in renal cortical membranes, fenoldopam and pramipexole increased expression of PLC beta 1 and decreased expression of PLC gamma 1; PLC delta was unchanged. In the cytosol, pramipexole and fenoldopam increased expression of both PLC beta 1 and PLC gamma 1. No effects were noted in the medulla. A preferential D1 antagonist, SKF 83742, which by itself had no effect, blocked the effects of pramipexole, thus confirming the involvement of the D1 receptor. In contrast, NE also increased PLC beta 1 but did not affect PLC gamma 1 protein expression in membranes. The changes in PLC isoform expression were accompanied by similar changes in PLC isoform activity. These studies demonstrate for the first time differential regulation of PLC isoforms by catecholamines. PMID:7814630

  5. Expression of CD150 in tumors of the central nervous system: identification of a novel isoform.

    Directory of Open Access Journals (Sweden)

    Olga Romanets-Korbut

    Full Text Available CD150 (IPO3/SLAM belongs to the SLAM family of receptors and serves as a major entry receptor for measles virus. CD150 is expressed on normal and malignant cells of the immune system. However, little is known about its expression outside the hematopoietic system, especially tumors of the central nervous system (CNS. Although CD150 was not found in different regions of normal brain tissues, our immunohistochemical study revealed its expression in 77.6% of human CNS tumors, including glioblastoma, anaplastic astrocytoma, diffuse astrocytoma, ependymoma, and others. CD150 was detected in the cytoplasm, but not on the cell surface of glioma cell lines, and it was colocalized with the endoplasmic reticulum and Golgi complex markers. In addition to the full length mRNA of the mCD150 splice isoform, in glioma cells we found a highly expressed novel CD150 transcript (nCD150, containing an 83 bp insert. The insert is derived from a previously unrecognized exon designated Cyt-new, which is located 510 bp downstream of the transmembrane region exon, and is a specific feature of primate SLAMF1. Both mCD150 and nCD150 cDNA variants did not contain any mutations and had the leader sequence. The nCD150 transcript was also detected in normal and malignant B lymphocytes, primary T cells, dendritic cells and macrophages; however, in glioma cells nCD150 was found to be the predominant CD150 isoform. Similarly to mCD150, cell surface expression of nCD150 allows wild type measles virus entry to the cell. Our data indicate that CD150 expression in CNS tumors can be considered a new diagnostic marker and potential target for novel therapeutic approaches.

  6. Diverging regulation of pyruvate dehydrogenase kinase isoform gene expression in cultured human muscle cells.

    Science.gov (United States)

    Abbot, Emily L; McCormack, James G; Reynet, Christine; Hassall, David G; Buchan, Kevin W; Yeaman, Stephen J

    2005-06-01

    The pyruvate dehydrogenase complex occupies a central and strategic position in muscle intermediary metabolism and is primarily regulated by phosphorylation/dephosphorylation. The identification of multiple isoforms of pyruvate dehydrogenase kinase (PDK1-4) and pyruvate dehydrogenase phosphatase (PDP1-2) has raised intriguing new possibilities for chronic pyruvate dehydrogenase complex control. Experiments to date suggest that PDK4 is the major isoenzyme responsible for changes in pyruvate dehydrogenase complex activity in response to various different metabolic conditions. Using a cultured human skeletal muscle cell model system, we found that expression of both PDK2 and PDK4 mRNA is upregulated in response to glucose deprivation and fatty acid supplementation, the effects of which are reversed by insulin treatment. In addition, insulin directly downregulates PDK2 and PDK4 mRNA transcript abundance via a phosphatidylinositol 3-kinase-dependent pathway, which may involve glycogen synthase kinase-3 but does not utilize the mammalian target of rapamycin or mitogen-activated protein kinase signalling pathways. In order to further elucidate the regulation of PDK, the role of the peroxisome proliferators-activated receptors (PPAR) was investigated using highly potent subtype selective agonists. PPARalpha and PPARdelta agonists were found to specifically upregulate PDK4 mRNA expression, whereas PPARgamma activation selectively decreased PDK2 mRNA transcript abundance. PDP1 mRNA expression was unaffected by all conditions analysed. These results suggest that in human muscle, hormonal and nutritional conditions may control PDK2 and PDK4 mRNA expression via a common signalling mechanism. In addition, PPARs appear to independently regulate specific PDK isoform transcipt levels, which are likely to impart important metabolic mediation of fuel utilization by the muscle. PMID:15955060

  7. DNMT3B7, a truncated DNMT3B isoform expressed in human tumors, disrupts embryonic development and accelerates lymphomagenesis

    Science.gov (United States)

    Shah, Mrinal Y.; Vasanthakumar, Aparna; Barnes, Natalie Y.; Figueroa, Maria E.; Kamp, Anna; Hendrick, Christopher; Ostler, Kelly R.; Davis, Elizabeth M.; Lin, Shang; Anastasi, John; Le Beau, Michelle M.; Moskowitz, Ivan; Melnick, Ari; Pytel, Peter; Godley, Lucy A.

    2010-01-01

    Epigenetic changes are among the most common alterations observed in cancer cells, yet the mechanism by which cancer cells acquire and maintain abnormal DNA methylation patterns is not understood. Cancer cells have an altered distribution of DNA methylation and express aberrant DNA methyltransferase 3B transcripts, which encode truncated proteins, some of which lack the C-terminal catalytic domain. To test if a truncated DNMT3B isoform disrupts DNA methylation in vivo, we constructed two lines of transgenic mice expressing DNMT3B7, a truncated DNMT3B isoform commonly found in cancer cells. DNMT3B7 transgenic mice exhibit altered embryonic development, including lymphopenia, craniofacial abnormalities, and cardiac defects, similar to Dnmt3b-deficient animals, but rarely develop cancer. However, when DNMT3B7 transgenic are bred with Eμ-Myc transgenic mice, which model aggressive B cell lymphoma, DNMT3B7 expression increases the frequency of mediastinal lymphomas in Eμ-Myc animals. Eμ-Myc/DNMT3B7 mediastinal lymphomas have more chromosomal rearrangements, increased global DNA methylation levels, and more locus-specific perturbations in DNA methylation patterns compared to Eμ-Myc lymphomas. These data represent the first in vivo modeling of cancer-associated DNA methylation changes and suggest that truncated DNMT3B isoforms contribute to the re-distribution of DNA methylation characterizing virtually every human tumor. PMID:20587527

  8. Analysis of tarantula skeletal muscle protein sequences and identification of transcriptional isoforms

    OpenAIRE

    Yu Jun; Zhao Fa-Qing; Sun Yongqiao; Zhu Jingui; Craig Roger; Hu Songnian

    2009-01-01

    Abstract Background Tarantula has been used as a model system for studying skeletal muscle structure and function, yet data on the genes expressed in tarantula muscle are lacking. Results We constructed a cDNA library from Aphonopelma sp. (Tarantula) skeletal muscle and got 2507 high-quality 5'ESTs (expressed sequence tags) from randomly picked clones. EST analysis showed 305 unigenes, among which 81 had more than 2 ESTs. Twenty abundant unigenes had matches to skeletal muscle-related genes i...

  9. Laminin isoforms in endothelial and perivascular basement membranes

    Science.gov (United States)

    Yousif, Lema F.; Di Russo, Jacopo; Sorokin, Lydia

    2013-01-01

    Laminins, one of the major functional components of basement membranes, are found underlying endothelium, and encasing pericytes and smooth muscle cells in the vessel wall. Depending on the type of blood vessel (capillary, venule, postcapillary venule, vein or artery) and their maturation state, both the endothelial and mural cell phenotype vary, with associated changes in laminin isoform expression. Laminins containing the α4 and α5 chains are the major isoforms found in the vessel wall, with the added contribution of laminin α2 in larger vessels. We here summarize current data on the precise localization of these laminin isoforms and their receptors in the different layers of the vessel wall, and their potential contribution to vascular homeostasis. PMID:23263631

  10. Oxygenation properties and isoform diversity of snake hemoglobins

    DEFF Research Database (Denmark)

    Storz, Jay F.; Natarajan, Chandrasekhar; Moriyama, Hideaki;

    2015-01-01

    Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer- dimer dissociation. However, standardized comparative data are lacking...... for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying - and -type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2......) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis...

  11. Transcriptional Responses of Glutathione Transferase Genes in Ruditapes philippinarum Exposed to Microcystin-LR

    Directory of Open Access Journals (Sweden)

    Bruno Reis

    2015-04-01

    Full Text Available Glutathione Transferases (GSTs are phase II detoxification enzymes known to be involved in the molecular response against microcystins (MCs induced toxicity. However, the individual role of the several GST isoforms in the MC detoxification process is still unknown. In this study, the time-dependent changes on gene expression of several GST isoforms (pi, mu, sigma 1, sigma 2 in parallel with enzymatic activity of total GST were investigated in gills and hepatopancreas of the bivalve Ruditapes philippinarum exposed to pure MC-LR (10 and 100 µg/L. No significant changes in GST enzyme activities were found on both organs. In contrast, MC-LR affected the transcriptional activities of these detoxification enzymes both in gills and hepatopancreas. GST transcriptional changes in gills promoted by MC-LR were characterized by an early (12 h induction of mu and sigma 1 transcripts. On the other hand, the GST transcriptional changes in hepatopancreas were characterized by a later induction (48 h of mu transcript, but also by an early inhibition (6 h of the four transcripts. The different transcription patterns obtained for the tested GST isoforms in this study highlight the potential divergent physiological roles played by these isoenzymes during the detoxification of MC-LR.

  12. A Review of Metallothionein Isoforms and their Role in Pathophysiology

    OpenAIRE

    Senthil kumar M; Manisenthil Kumar KT; Shyam Sunder A; Thirumoorthy N; Ganesh GNK; Chatterjee Malay

    2011-01-01

    Abstract The Metallothionein (MT) is a protein which has several interesting biological effects and has been demonstrated increase focus on the role of MT in various biological systems in the past three decades. The studies on the role of MT were limited with few areas like apoptosis and antioxidants in selected organs even fifty years after its discovery. Now acknowledge the exploration of various isoforms of MT such as MT-I, MT-II, MT-III and MT-IV and other isoforms in various biological s...

  13. Expression of Ik6 and Ik8 Isoforms and Their Association with Relapse and Death in Mexican Children with Acute Lymphoblastic Leukemia.

    Directory of Open Access Journals (Sweden)

    Adriana Reyes-León

    Full Text Available Expression of the 6 and 8 dominant-negative Ikaros isoforms in pediatric patients with acute lymphoblastic leukemia has been associated with a high risk of relapse and death; due to these isoforms disrupting the differentiation and proliferation of lymphoid cells. The aim of this study was to know the frequency of Ik6 and Ik8 in 113 Mexican ALL-children treated within the National Popular Medical Insurance Program to determine whether there was an association with relapse-free survival, event-free survival and overall survival, and to assess its usefulness in the initial stratification of patients. The expression of these isoforms was analyzed using specific primer sets and nested RT-PCR. The detected transcripts were classified according to the isoforms's sizes reported. A non-expected band of 300 bp from one patient was analyzed by sequencing. Twenty-six patients expressed Ik6 and/or Ik8 and one of them expressed a variant of Ik8 denominated Ik8-deleted. Although the presence of them was not statistically associated with lower relapse free survival (p = 0.432, event free survival (p = 0.667 or overall survival (p = 0.531, inferior overall survival was observed in patients that expressed these isoforms and showed high or standard risk by age and white blood-cell count at diagnosis. Of the 26 patients Ik6+ and/or Ik8+, 14 did not present adverse events; from them 6 were exclusively Ik6+ and/or Ik8+, and 8 were positive for the other Ikaros isoforms (Ik1, Ik2, Ik5, Ik3A, Ik4, Ik4A, Ik7. In the patients studied, the expression of Ik6 and Ik8 did not constitute an independent prognostic factor for relapse or death related to disease; therefore, they could not be used in the initial risk stratification.

  14. The two different isoforms of the RSC chromatin remodeling complex play distinct roles in DNA damage responses.

    Science.gov (United States)

    Chambers, Anna L; Brownlee, Peter M; Durley, Samuel C; Beacham, Tracey; Kent, Nicholas A; Downs, Jessica A

    2012-01-01

    The RSC chromatin remodeling complex has been implicated in contributing to DNA double-strand break (DSB) repair in a number of studies. Both survival and levels of H2A phosphorylation in response to damage are reduced in the absence of RSC. Importantly, there is evidence for two isoforms of this complex, defined by the presence of either Rsc1 or Rsc2. Here, we investigated whether the two isoforms of RSC provide distinct contributions to DNA damage responses. First, we established that the two isoforms of RSC differ in the presence of Rsc1 or Rsc2 but otherwise have the same subunit composition. We found that both rsc1 and rsc2 mutant strains have intact DNA damage-induced checkpoint activity and transcriptional induction. In addition, both strains show reduced non-homologous end joining activity and have a similar spectrum of DSB repair junctions, suggesting perhaps that the two complexes provide the same functions. However, the hypersensitivity of a rsc1 strain cannot be complemented with an extra copy of RSC2, and likewise, the hypersensitivity of the rsc2 strain remains unchanged when an additional copy of RSC1 is present, indicating that the two proteins are unable to functionally compensate for one another in DNA damage responses. Rsc1, but not Rsc2, is required for nucleosome sliding flanking a DNA DSB. Interestingly, while swapping the domains from Rsc1 into the Rsc2 protein does not compromise hypersensitivity to DNA damage suggesting they are functionally interchangeable, the BAH domain from Rsc1 confers upon Rsc2 the ability to remodel chromatin at a DNA break. These data demonstrate that, despite the similarity between Rsc1 and Rsc2, the two different isoforms of RSC provide distinct functions in DNA damage responses, and that at least part of the functional specificity is dictated by the BAH domains.

  15. Oligophrenin-1 (OPHN1, a gene involved in X-linked intellectual disability, undergoes RNA editing and alternative splicing during human brain development.

    Directory of Open Access Journals (Sweden)

    Sabina Barresi

    Full Text Available Oligophrenin-1 (OPHN1 encodes for a Rho-GTPase-activating protein, important for dendritic morphogenesis and synaptic function. Mutations in this gene have been identified in patients with X-linked intellectual disability associated with cerebellar hypoplasia. ADAR enzymes are responsible for A-to-I RNA editing, an essential post-transcriptional RNA modification contributing to transcriptome and proteome diversification. Specifically, ADAR2 activity is essential for brain development and function. Herein, we show that the OPHN1 transcript undergoes post-transcriptional modifications such as A-to-I RNA editing and alternative splicing in human brain and other tissues. We found that OPHN1 editing is detectable already at the 18th week of gestation in human brain with a boost of editing at weeks 20 to 33, concomitantly with OPHN1 expression increase and the appearance of a novel OPHN1 splicing isoform. Our results demonstrate that multiple post-transcriptional events occur on OPHN1, a gene playing an important role in brain function and development.

  16. Alternative polyadenylation and RNA-binding proteins.

    Science.gov (United States)

    Erson-Bensan, Ayse Elif

    2016-08-01

    Our understanding of the extent of microRNA-based gene regulation has expanded in an impressive pace over the past decade. Now, we are beginning to better appreciate the role of 3'-UTR (untranslated region) cis-elements which harbor not only microRNA but also RNA-binding protein (RBP) binding sites that have significant effect on the stability and translational rate of mRNAs. To add further complexity, alternative polyadenylation (APA) emerges as a widespread mechanism to regulate gene expression by producing shorter or longer mRNA isoforms that differ in the length of their 3'-UTRs or even coding sequences. Resulting shorter mRNA isoforms generally lack cis-elements where trans-acting factors bind, and hence are differentially regulated compared with the longer isoforms. This review focuses on the RBPs involved in APA regulation and their action mechanisms on APA-generated isoforms. A better understanding of the complex interactions between APA and RBPs is promising for mechanistic and clinical implications including biomarker discovery and new therapeutic approaches. PMID:27208003

  17. Mitochondrial Sulfide Detoxification Requires a Functional Isoform O-Acetylserine(thiol)lyase C in Arabidopsis thaliana

    Institute of Scientific and Technical Information of China (English)

    Consolación (A)lvarez; Irene García; Luis C.Romero; Cecilia Gotor

    2012-01-01

    In non-cyanogenic species,the main source of cyanide derives from ethylene and camalexin biosyntheses.In mitochondria,cyanide is a potent inhibitor of the cytochrome c oxidase and is metabolized bythe β-cyanoalanine synthase CYS-C1,catalyzing the conversion of cysteine and cyanide to hydrogen sulfide and β-cyanoalanine.The hydrogen sulfide released also inhibits the cytochrome c oxidase and needs to be detoxified by the O-acetylserine(thiol)lyase mitochondrial isoform,OAS-C,which catalyzes the incorporation of sulfide to O-acetylserine to produce cysteine,thus generating a cyclic pathway in the mitochondria.The loss of functional OAS-C isoforms causes phenotypic characteristics very similar to the loss of the CYS-C1 enzyme,showing defects in root hair formation.Genetic complementation with the OAS-C gene rescues the impairment of root hair elongation,restoring the wild-type phenotype.The mitochondria compromise their capacity to properly detoxify cyanide and the resulting sulfide because the latter cannot re-assimilate into cysteine in the oas-c null mutant.Consequently,we observe an accumulation of sulfide and cyanide and of the alternative oxidase,which is unable to prevent the production of reactive oxygen species probably due to the accumulation of both toxic molecules.Our results allow us to suggest that the significance of OAS-C is related to its role in the proper sulfide and cyanide detoxification in mitochondria.

  18. The role of telomeres and telomerase reverse transcriptase isoforms in pluripotency induction and maintenance.

    Science.gov (United States)

    Teichroeb, Jonathan H; Kim, Joohwan; Betts, Dean H

    2016-08-01

    Telomeres are linear guanine-rich DNA structures at the ends of chromosomes. The length of telomeric DNA is actively regulated by a number of mechanisms in highly proliferative cells such as germ cells, cancer cells, and pluripotent stem cells. Telomeric DNA is synthesized by way of the ribonucleoprotein called telomerase containing a reverse transcriptase (TERT) subunit and RNA component (TERC). TERT is highly conserved across species and ubiquitously present in their respective pluripotent cells. Recent studies have uncovered intricate associations between telomeres and the self-renewal and differentiation properties of pluripotent stem cells. Interestingly, the past decade's work indicates that the TERT subunit also has the capacity to modulate mitochondrial function, to remodel chromatin structure, and to participate in key signaling pathways such as the Wnt/β-catenin pathway. Many of these non-canonical functions do not require TERT's catalytic activity, which hints at possible functions for the extensive number of alternatively spliced TERT isoforms that are highly expressed in pluripotent stem cells. In this review, some of the established and potential routes of pluripotency induction and maintenance are highlighted from the perspectives of telomere maintenance, known TERT isoform functions and their complex regulation. PMID:26786236

  19. High-throughput proteomics detection of novel splice isoforms in human platelets.

    LENUS (Irish Health Repository)

    Power, Karen A

    2009-01-01

    Alternative splicing (AS) is an intrinsic regulatory mechanism of all metazoans. Recent findings suggest that 100% of multiexonic human genes give rise to splice isoforms. AS can be specific to tissue type, environment or developmentally regulated. Splice variants have also been implicated in various diseases including cancer. Detection of these variants will enhance our understanding of the complexity of the human genome and provide disease-specific and prognostic biomarkers. We adopted a proteomics approach to identify exon skip events - the most common form of AS. We constructed a database harboring the peptide sequences derived from all hypothetical exon skip junctions in the human genome. Searching tandem mass spectrometry (MS\\/MS) data against the database allows the detection of exon skip events, directly at the protein level. Here we describe the application of this approach to human platelets, including the mRNA-based verification of novel splice isoforms of ITGA2, NPEPPS and FH. This methodology is applicable to all new or existing MS\\/MS datasets.

  20. ApoE isoform-dependent changes in hippocampal synaptic function

    Directory of Open Access Journals (Sweden)

    Sullivan Patrick M

    2009-05-01

    Full Text Available Abstract The lipoprotein receptor system in the hippocampus is intimately involved in the modulation of synaptic transmission and plasticity. The association of specific apoE isoform expression with human neurodegenerative disorders has focused attention on the role of these apoE isoforms in lipoprotein receptor-dependent synaptic modulation. In the present study, we used the apoE2, apoE3 and apoE4 targeted replacement (TR mice along with recombinant human apoE isoforms to determine the role of apoE isoforms in hippocampus area CA1 synaptic function. While synaptic transmission is unaffected by apoE isoform, long-term potentiation (LTP is significantly enhanced in apoE4 TR mice versus apoE2 TR mice. ApoE isoform-dependent differences in LTP induction require NMDA-receptor function, and apoE isoform expression alters activation of both ERK and JNK signal transduction. Acute application of specific apoE isoforms also alters LTP induction while decreasing NMDA-receptor mediated field potentials. Furthermore, acute apoE isoform application does not have the same effects on ERK and JNK activation. These findings demonstrate specific, isoform-dependent effects of human apoE isoforms on adult hippocampus synaptic plasticity and highlight mechanistic differences between chronic apoE isoform expression and acute apoE isoform exposure.

  1. Rice PROTEIN l-ISOASPARTYL METHYLTRANSFERASE isoforms differentially accumulate during seed maturation to restrict deleterious isoAsp and reactive oxygen species accumulation and are implicated in seed vigor and longevity.

    Science.gov (United States)

    Petla, Bhanu Prakash; Kamble, Nitin Uttam; Kumar, Meenu; Verma, Pooja; Ghosh, Shraboni; Singh, Ajeet; Rao, Venkateswara; Salvi, Prafull; Kaur, Harmeet; Saxena, Saurabh Chandra; Majee, Manoj

    2016-07-01

    PROTEIN l-ISOASPARTYL O-METHYLTRANSFERASE (PIMT) is a protein-repairing enzyme involved in seed vigor and longevity. However, the regulation of PIMT isoforms during seed development and the mechanism of PIMT-mediated improvement of seed vigor and longevity are largely unknown. In this study in rice (Oryza sativa), we demonstrate the dynamics and correlation of isoaspartyl (isoAsp)-repairing demands and PIMT activity, and their implications, during seed development, germination and aging, through biochemical, molecular and genetic studies. Molecular and biochemical analyses revealed that rice possesses various biochemically active and inactive PIMT isoforms. Transcript and western blot analyses clearly showed the seed development stage and tissue-specific accumulation of active isoforms. Immunolocalization studies revealed distinct isoform expression in embryo and aleurone layers. Further analyses of transgenic lines for each OsPIMT isoform revealed a clear role in the restriction of deleterious isoAsp and age-induced reactive oxygen species (ROS) accumulation to improve seed vigor and longevity. Collectively, our data suggest that a PIMT-mediated, protein repair mechanism is initiated during seed development in rice, with each isoform playing a distinct, yet coordinated, role. Our results also raise the intriguing possibility that PIMT repairs antioxidative enzymes and proteins which restrict ROS accumulation, lipid peroxidation, etc. in seed, particularly during aging, thus contributing to seed vigor and longevity. PMID:26987457

  2. Genome-wide analysis of alternative splicing in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Thomas Julie

    2010-02-01

    Full Text Available Abstract Background Genome-wide computational analysis of alternative splicing (AS in several flowering plants has revealed that pre-mRNAs from about 30% of genes undergo AS. Chlamydomonas, a simple unicellular green alga, is part of the lineage that includes land plants. However, it diverged from land plants about one billion years ago. Hence, it serves as a good model system to study alternative splicing in early photosynthetic eukaryotes, to obtain insights into the evolution of this process in plants, and to compare splicing in simple unicellular photosynthetic and non-photosynthetic eukaryotes. We performed a global analysis of alternative splicing in Chlamydomonas reinhardtii using its recently completed genome sequence and all available ESTs and cDNAs. Results Our analysis of AS using BLAT and a modified version of the Sircah tool revealed AS of 498 transcriptional units with 611 events, representing about 3% of the total number of genes. As in land plants, intron retention is the most prevalent form of AS. Retained introns and skipped exons tend to be shorter than their counterparts in constitutively spliced genes. The splice site signals in all types of AS events are weaker than those in constitutively spliced genes. Furthermore, in alternatively spliced genes, the prevalent splice form has a stronger splice site signal than the non-prevalent form. Analysis of constitutively spliced introns revealed an over-abundance of motifs with simple repetitive elements in comparison to introns involved in intron retention. In almost all cases, AS results in a truncated ORF, leading to a coding sequence that is around 50% shorter than the prevalent splice form. Using RT-PCR we verified AS of two genes and show that they produce more isoforms than indicated by EST data. All cDNA/EST alignments and splice graphs are provided in a website at http://combi.cs.colostate.edu/as/chlamy. Conclusions The extent of AS in Chlamydomonas that we observed is much

  3. Tropomyosin-binding properties modulate competition between tropomodulin isoforms.

    Science.gov (United States)

    Colpan, Mert; Moroz, Natalia A; Gray, Kevin T; Cooper, Dillon A; Diaz, Christian A; Kostyukova, Alla S

    2016-06-15

    The formation and fine-tuning of cytoskeleton in cells are governed by proteins that influence actin filament dynamics. Tropomodulin (Tmod) regulates the length of actin filaments by capping the pointed ends in a tropomyosin (TM)-dependent manner. Tmod1, Tmod2 and Tmod3 are associated with the cytoskeleton of non-muscle cells and their expression has distinct consequences on cell morphology. To understand the molecular basis of differences in the function and localization of Tmod isoforms in a cell, we compared the actin filament-binding abilities of Tmod1, Tmod2 and Tmod3 in the presence of Tpm3.1, a non-muscle TM isoform. Tmod3 displayed preferential binding to actin filaments when competing with other isoforms. Mutating the second or both TM-binding sites of Tmod3 destroyed its preferential binding. Our findings clarify how Tmod1, Tmod2 and Tmod3 compete for binding actin filaments. Different binding mechanisms and strengths of Tmod isoforms for Tpm3.1 contribute to their divergent functional capabilities.

  4. Bacteria-Induced Dscam Isoforms of the Crustacean, Pacifastacus leniusculus.

    Directory of Open Access Journals (Sweden)

    Apiruck Watthanasurorot

    2011-06-01

    Full Text Available The Down syndrome cell adhesion molecule, also known as Dscam, is a member of the immunoglobulin super family. Dscam plays an essential function in neuronal wiring and appears to be involved in innate immune reactions in insects. The deduced amino acid sequence of Dscam in the crustacean Pacifastacus leniusculus (PlDscam, encodes 9(Ig-4(FNIII-(Ig-2(FNIII-TM and it has variable regions in the N-terminal half of Ig2 and Ig3 and the complete Ig7 and in the transmembrane domain. The cytoplasmic tail can generate multiple isoforms. PlDscam can generate more than 22,000 different unique isoforms. Bacteria and LPS injection enhanced the expression of PlDscam, but no response in expression occurred after a white spot syndrome virus (WSSV infection or injection with peptidoglycans. Furthermore, PlDscam silencing did not have any effect on the replication of the WSSV. Bacterial specific isoforms of PlDscam were shown to have a specific binding property to each tested bacteria, E. coli or S. aureus. The bacteria specific isoforms of PlDscam were shown to be associated with bacterial clearance and phagocytosis in crayfish.

  5. Identification and characterization of a novel isoform of hepatopoietin

    Institute of Scientific and Technical Information of China (English)

    Jun Lu; Wang-Xiang Xu; Yi-Qun Zhan; Xiao-Lin Cui; Wei-Min Cai; Fu-Chu He; Xiao-Ming Yang

    2002-01-01

    AIM: To isolate a novel isoform of human HPO (HPO-205)human fetal liver Marathon-reedy cDNA andcharacterize its primary biological function.METHODS: 5'-RACE (rapid amplification of cDNA 5' ends)was used to isolate a novel isoform of hHPO in this paperThe constructed pcDNAHPO-205, pcDNAHPO and pcDNA eukaryotic expression vectors were respectively transfectedby lipofectamine method and the stimulation of DNAsynthesis was observed by 3H-TdR incorporation assay.Proteins extracted from different cells were analyzed byWestern blot.RESULTS: A novel isoform of hHPO (HPO-205) encoding a205 amino acid ORF corresponding to a translatedproduction of 23 kDa was isolated and distinguished fromthe previous HPO that lacked the N-terminal 80 amino acids.The dnse-dspendent stimulation of DNA synthesis of HepG2hepatoma cells by HPO-205 demonstrated its similarbiological activity with HPO in vitro. The level of MAPK(Mitogen-activated protein kinase) phnsphorylarion byWestern blot analysis revealed that HPO-205 might have thestronger activity of stimulating hepatic cell proliferation thanthat of HPO.CONCLUSION: A novel isoform of hHPO (HPO-205) wasisolated from hepatic-derived cells. The comparison of HPO-205 and HPO will lead to a new insight into the structure andfunction of hHPO, and provide the new way of thinking todeeply elucidate the biological roles of HPO/ALR.

  6. Distinct Functions of Endophilin Isoforms in Synaptic Vesicle Endocytosis

    Directory of Open Access Journals (Sweden)

    Jifeng Zhang

    2015-01-01

    Full Text Available Endophilin isoforms perform distinct characteristics in their interactions with N-type Ca2+ channels and dynamin. However, precise functional differences for the endophilin isoforms on synaptic vesicle (SV endocytosis remain unknown. By coupling RNA interference and electrophysiological recording techniques in cultured rat hippocampal neurons, we investigated the functional differences of three isoforms of endophilin in SV endocytosis. The results showed that the amplitude of normalized evoked excitatory postsynaptic currents in endophilin1 knockdown neurons decreased significantly for both single train and multiple train stimulations. Similar results were found using endophilin2 knockdown neurons, whereas endophilin3 siRNA exhibited no change compared with control neurons. Endophilin1 and endophilin2 affected SV endocytosis, but the effect of endophilin1 and endophilin2 double knockdown was not different from that of either knockdown alone. This result suggested that endophilin1 and endophilin2 functioned together but not independently during SV endocytosis. Taken together, our results indicate that SV endocytosis is sustained by endophilin1 and endophilin2 isoforms, but not by endophilin3, in primary cultured hippocampal neurons.

  7. Isoforms of transferrin in psoriasis patients abusing alcohol

    NARCIS (Netherlands)

    P. Hoefkens (Peter); E.M. Higgins; R.J. Ward (Roberta); H.G. van Eijk (Henk)

    1997-01-01

    textabstractThe different isoforms of transferrin have been quantified by isoelectric focusing in the sera of psoriasis patients with and without a history of abusing alcohol. In both male and female psoriasis subjects abusing alcohol, there were significant increases in the 2-sial

  8. Tropomyosin-binding properties modulate competition between tropomodulin isoforms.

    Science.gov (United States)

    Colpan, Mert; Moroz, Natalia A; Gray, Kevin T; Cooper, Dillon A; Diaz, Christian A; Kostyukova, Alla S

    2016-06-15

    The formation and fine-tuning of cytoskeleton in cells are governed by proteins that influence actin filament dynamics. Tropomodulin (Tmod) regulates the length of actin filaments by capping the pointed ends in a tropomyosin (TM)-dependent manner. Tmod1, Tmod2 and Tmod3 are associated with the cytoskeleton of non-muscle cells and their expression has distinct consequences on cell morphology. To understand the molecular basis of differences in the function and localization of Tmod isoforms in a cell, we compared the actin filament-binding abilities of Tmod1, Tmod2 and Tmod3 in the presence of Tpm3.1, a non-muscle TM isoform. Tmod3 displayed preferential binding to actin filaments when competing with other isoforms. Mutating the second or both TM-binding sites of Tmod3 destroyed its preferential binding. Our findings clarify how Tmod1, Tmod2 and Tmod3 compete for binding actin filaments. Different binding mechanisms and strengths of Tmod isoforms for Tpm3.1 contribute to their divergent functional capabilities. PMID:27091317

  9. Comparative analysis indicates that alternative splicing in plants has a limited role in functional expansion of the proteome

    Directory of Open Access Journals (Sweden)

    Stiekema Willem J

    2009-04-01

    Full Text Available Abstract Background Alternative splicing (AS is a widespread phenomenon in higher eukaryotes but the extent to which it leads to functional protein isoforms and to proteome expansion at large is still a matter of debate. In contrast to animal species, for which AS has been studied extensively at the protein and functional level, protein-centered studies of AS in plant species are scarce. Here we investigate the functional impact of AS in dicot and monocot plant species using a comparative approach. Results Detailed comparison of AS events in alternative spliced orthologs from the dicot Arabidopsis thaliana and the monocot Oryza sativa (rice revealed that the vast majority of AS events in both species do not result from functional conservation. Transcript isoforms that are putative targets for the nonsense-mediated decay (NMD pathway are as likely to contain conserved AS events as isoforms that are translated into proteins. Similar results were obtained when the same comparison was performed between the two more closely related monocot species rice and Zea mays (maize. Genome-wide computational analysis of functional protein domains encoded in alternatively and constitutively spliced genes revealed that only the RNA recognition motif (RRM is overrepresented in alternatively spliced genes in all species analyzed. In contrast, three domain types were overrepresented in constitutively spliced genes. AS events were found to be less frequent within than outside predicted protein domains and no domain type was found to be enriched with AS introns. Analysis of AS events that result in the removal of complete protein domains revealed that only a small number of domain types is spliced-out in all species analyzed. Finally, in a substantial fraction of cases where a domain is completely removed, this domain appeared to be a unit of a tandem repeat. Conclusion The results from the ortholog comparisons suggest that the ability of a gene to produce more than

  10. Identification of the Alternative Promoters of the KChIP4 Subfamily

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yun DENG; Jia-Hui XIA; Fang CAI; Kun XIA; Qian PAN; Zhi-Gao LONG; Ling-Qian WU; De-Sheng LIANG; He-Ping DAI; Zhuo-Hua ZHANG

    2005-01-01

    The subfamily of voltage-dependent potassium (Kv) channel interacting protein 4 (KChIP4)is made up of the auxiliary interacting protein of voltage-dependent potassium channels. In this study, the structure of four splicing variants of the human KChIP4 gene was analyzed. Three of the four isoforms of the KChIP4 gene, KChIP4.1, KChIP4.2 and KChIP4.4, were amplified from mouse and human fetal brain tissues by reverse transcription-polymerase chain reaction and then identified. Based on the bioinformatics analysis of the genomic sequences of the gene, we cloned and characterized two promoter fragments from the KChIP4 gene. One was a 325 bp fragment upstream of the 5' end of the KChIP4.1 mRNA sequence and the other was an 818 bp fragment located immediately at the 5' end of the KChIP4.4 variant. Both of them can initiate the transcription of the reporter gene in HT1080 cells and Sprague-Dawley (SD) rat fetal brain neurons, and they contain C+G islands, except typical TATA boxes and CAAT boxes. This shows that the KChIP4 gene expression is regulated by an alternative promoter.

  11. Primate genome gain and loss: a bone dysplasia, muscular dystrophy, and bone cancer syndrome resulting from mutated retroviral-derived MTAP transcripts.

    Science.gov (United States)

    Camacho-Vanegas, Olga; Camacho, Sandra Catalina; Till, Jacob; Miranda-Lorenzo, Irene; Terzo, Esteban; Ramirez, Maria Celeste; Schramm, Vern; Cordovano, Grace; Watts, Giles; Mehta, Sarju; Kimonis, Virginia; Hoch, Benjamin; Philibert, Keith D; Raabe, Carsten A; Bishop, David F; Glucksman, Marc J; Martignetti, John A

    2012-04-01

    Diaphyseal medullary stenosis with malignant fibrous histiocytoma (DMS-MFH) is an autosomal-dominant syndrome characterized by bone dysplasia, myopathy, and bone cancer. We previously mapped the DMS-MFH tumor-suppressing-gene locus to chromosomal region 9p21-22 but failed to identify mutations in known genes in this region. We now demonstrate that DMS-MFH results from mutations in the most proximal of three previously uncharacterized terminal exons of the gene encoding methylthioadenosine phosphorylase, MTAP. Intriguingly, two of these MTAP exons arose from early and independent retroviral-integration events in primate genomes at least 40 million years ago, and since then, their genomic integration has gained a functional role. MTAP is a ubiquitously expressed homotrimeric-subunit enzyme critical to polyamine metabolism and adenine and methionine salvage pathways and was believed to be encoded as a single transcript from the eight previously described exons. Six distinct retroviral-sequence-containing MTAP isoforms, each of which can physically interact with archetype MTAP, have been identified. The disease-causing mutations occur within one of these retroviral-derived exons and result in exon skipping and dysregulated alternative splicing of all MTAP isoforms. Our results identify a gene involved in the development of bone sarcoma, provide evidence of the primate-specific evolution of certain parts of an existing gene, and demonstrate that mutations in parts of this gene can result in human disease despite its relatively recent origin.

  12. The C/EBPbeta isoform, liver-inhibitory protein (LIP), induces autophagy in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Maria M. [Department of Cancer Biology, 752 Preston Research Building, Vanderbilt University, Nashville, TN 37232 (United States); Sealy, Linda, E-mail: Linda.sealy@vanderbilt.edu [Department of Cancer Biology, 752 Preston Research Building, Vanderbilt University, Nashville, TN 37232 (United States); Department of Molecular Physiology and Biophysics, 752 Preston Research Building, Vanderbilt University, Nashville, TN 37232 (United States)

    2010-11-15

    Autophagy is a process involving the bulk degradation of cellular components in the cytoplasm via the lysosomal degradation pathway. Autophagy manifests a protective role in stressful conditions such as nutrient or growth factor depletion; however, extensive degradation of regulatory molecules or organelles essential for survival can lead to the demise of the cell, or autophagy-mediated cell death. The role of autophagy in cancer is complex with roles in both tumor suppression and tumor promotion proposed. Here we report that an isoform of the C/EBPbeta transcription factor, liver-enriched inhibitory protein (LIP), induces cell death in human breast cancer cells and stimulates autophagy. Overexpression of LIP is incompatible with cell growth and when cell cycle analysis was performed, a DNA profile of cells undergoing apoptosis was not observed. Instead, LIP expressing cells appeared to have large autophagic vesicles when examined via electron microscopy. Autophagy was further assessed in LIP expressing cells by monitoring the development of acidic vesicular organelles and conversion of LC3 from the cytoplasmic form to the membrane-bound form. Our work shows that C/EBPbeta isoform, LIP, is another member of the group of transcription factors, including E2F1 and p53, which are capable of playing a role in autophagy.

  13. Production of ACAT1 56-kDa isoform in human cells via trans-splicing involving the ampicillin resistance gene

    Institute of Scientific and Technical Information of China (English)

    Guang-Jing Hu; Jia Chen; Xiao-Nan Zhao; Jia-Jia Xu; Dong-Qing Guo; Ming Lu; Ming Zhu

    2013-01-01

    Trans-splicing,a process involving the cleavage and joining of two separate transcripts,can expand the transcriptome and proteome in eukaryotes.Chimeric RNAs generated by trans-splicing are increasingly described in literatures.The widespread presence of antibiotic resistance genes in natural environments and human intestines is becoming an important challenge for public health.Certain antibiotic resistance genes,such as ampicillin resistance gene (Amp),are frequently used in recombinant plasmids.Until now,trans-splicing involving recombinant plasmid-derived exogenous transcripts and endogenous cellular RNAs has not been reported.Acyl-CoA:cholesterol acyltransferase 1 (ACAT1) is a key enzyme involved in cellular cholesterol homeostasis.The 4.3-kb human ACAT1 chimeric mRNA can produce 50-kDa and 56-kDa isoforms with different enzymatic activities.Here,we show that human ACAT1 56-kDa isoform is produced from an mRNA species generated through the trans-splicing of an exogenous transcript encoded by the antisense strand of Ampr (asAmp) present in common Ampr-plasmids and the 4.3-kb endogenous ACAT1 chimeric mRNA,which is presumably processed through a prior event of interchromosomal trans-splicing.Strikingly,DNA fragments containing the asAmp with an upstream recombined cryptic promoter and the corresponding exogenous asAmp transcripts have been detected in human cells.Our findings shed lights on the mechanism of human ACAT1 56-kDa isoform production,reveal an exogenous-endogenous trans-splicing system,in which recombinant plasmid-derived exogenous transcripts are linked with endogenous cellular RNAs in human cells,and suggest that exogenous DNA might affect human gene expression at both DNA and RNA levels.

  14. Growth hormone isoforms in a girl with gigantism.

    Science.gov (United States)

    Ng, L L; Chasalow, F I; Escobar, O; Blethen, S L

    1999-01-01

    Several previous investigations have suggested that there may be different growth hormone isoforms in patients with acromegaly. We used three different site-specific monoclonal antibodies (MAbs) to investigate growth hormone (GH) isoforms in serum from an 8 year-old girl with a GH and prolactin secreting adenoma. The pattern of GH-immunoreactivity was dependent on the circumstances of collection. Serum obtained after oral glucose had very little cross reactivity with MAb 352 although concentrations of up to 15 micrograms/l were found with two other MAbs, 033 and 665. MAb 352 does not recognize the 20,000 dalton isoform of GH (20K) while both MAb 033 and 665 do. The same pattern of GH immunoreactivity (low MAb 352, equal and higher MAb 033 and 665) was seen in other baseline samples. In contrast, samples obtained after TRH/GnRH showed immunoreactivity patterns expected for a mixture of 22,000 dalton isoform of GH (22K) with only a small amount of 20K. GH samples obtained during sleep showed both patterns with episodic peaks with equal immunoreactivity superimposed on the basal pattern (decreased activity with MAb 352). Affinity chromatography of basal samples showed that a portion of the GH immunoreactivity was neither 22K nor 20K, although in stimulated samples, over 70% of GH was 22K or 20K GH. In conclusion, the nature of GH isoforms present in serum varies with GH concentration. These differences may contribute to the known difficulty in correlating disease activity and random GH measurements in patients with GH secreting adenomas. PMID:10392356

  15. Cancer metabolism meets systems biology: Pyruvate kinase isoform PKM2 is a metabolic master regulator

    Directory of Open Access Journals (Sweden)

    Fabian V Filipp

    2013-01-01

    Full Text Available Pyruvate kinase activity is controlled by a tightly woven regulatory network. The oncofetal isoform of pyruvate kinase (PKM2 is a master regulator of cancer metabolism. PKM2 engages in parallel, feed-forward, positive and negative feedback control contributing to cancer progression. Besides its metabolic role, non-metabolic functions of PKM2 as protein kinase and transcriptional coactivator for c-MYC and hypoxia-inducible factor 1-alpha are essential for epidermal growth factor receptor activation-induced tumorigenesis. These biochemical activities are controlled by a shift in the oligomeric state of PKM2 that includes acetylation, oxidation, phosphorylation, prolyl hydroxylation and sumoylation. Metabolically active PKM2 tetramer is allosterically regulated and responds to nutritional and stress signals. Metabolically inactive PKM2 dimer is imported into the nucleus and can function as protein kinase stimulating transcription. A systems biology approach to PKM2 at the genome, transcriptome, proteome, metabolome and fluxome level reveals how differences in biomolecular structure translate into a global rewiring of cancer metabolism. Cancer systems biology takes us beyond the Warburg effect, opening unprecedented therapeutic opportunities.

  16. Stat3 isoforms, alpha and beta, demonstrate distinct intracellular dynamics with prolonged nuclear retention of Stat3beta mapping to its unique C-terminal end.

    Science.gov (United States)

    Huang, Ying; Qiu, Jihui; Dong, Shuo; Redell, Michele S; Poli, Valeria; Mancini, Michael A; Tweardy, David J

    2007-11-30

    Two isoforms of Stat3 (signal transducer and activator of transcription 3) are expressed in cells, alpha (p92) and beta (p83), both derived from a single gene by alternative mRNA splicing. The 55-residue C-terminal transactivation domain of Stat3alpha is deleted in Stat3beta and replaced by seven unique C-terminal residues (CT7) whose function remains uncertain. We subcloned the open reading frames of Stat3alpha and Stat3beta into the C terminus of green fluorescent protein (GFP). Fluorescent microscopic analysis of HEK293T cells transiently transfected with GFP-Stat3alpha or GFP-Stat3beta revealed similar kinetics and cytokine concentration dependence of nuclear accumulation; these findings were confirmed by high throughput microscope analysis of murine embryonic fibroblasts that lacked endogenous Stat3 but stably expressed either GFP-Stat3alpha or GFP-Stat3beta. However, although time to half-maximal cytoplasmic reaccumulation after cytokine withdrawal was 15 min for GFP-Stat3alpha, it was >180 min for GFP-Stat3beta. Furthermore, although the intranuclear mobility of GFP-Stat3alpha was rapid and increased with cytokine stimulation, the intranuclear mobility of GFP-Stat3beta in unstimulated cells was slower than that of GFP-Stat3alpha in unstimulated cells and was slowed further following cytokine stimulation. Deletion of the unique CT7 domain from Stat3beta eliminated prolonged nuclear retention but did not alter its intranuclear mobility. Thus, Stat3alpha and Stat3beta have distinct intracellular dynamics, with Stat3beta exhibiting prolonged nuclear retention and reduced intranuclear mobility especially following ligand stimulation. Prolonged nuclear retention, but not reduced intranuclear mobility, mapped to the CT7 domain of Stat3beta.

  17. Molecular characterization and expression profiles of four transformer-2 isoforms in the Chinese mitten crab Eriocheir sinensis

    Science.gov (United States)

    Luo, Danli; Liu, Yuan; Hui, Min; Song, Chengwen; Liu, Hourong; Cui, Zhaoxia

    2016-09-01

    The transformer-2 (tra-2) gene plays a key role in the regulatory hierarchy of sexual differentiation in somatic tissues and in the germline of Drosophila melanogaster. In this study, sequences and expression profiles of tra-2 in the Chinese mitten crab Eriocheir sinensis were characterized. Four tra-2 isoforms, designated as Estra-2a, Estra-2b, Estra-2c and Estra-2d, were isolated. They all contained an RNA-recognition motif (RRM) and a linker region, which shared high similarity with other reported tra-2s. Sequence analysis revealed that Estra-2a, Estra-2b and Estra-2c are encoded by the same genomic locus and are generated by alternative splicing of the pre-mRNA. Compared with the other three isoforms, Estra-2d lacks the RS2 domain. Quantitative real-time PCR showed that all four isoforms were highly expressed in the fertilized egg, and in the 2-4 cell and blastula stages compared with larval stages (P≤ 0.01), suggesting their maternal origin in early embryonic developmental stages. Notably, Estra-2a was highly expressed in male somatic tissues, while Estra-2c was significantly highly expressed in the ovary. These results suggest that Estra-2c is involved in sexual differentiation of the Chinese mitten crab. Our findings provide basic information for further functional studies of the tra-2 gene/protein in this species.

  18. Cognitive deficits caused by a disease-mutation in the α3 Na(+)/K(+)-ATPase isoform.

    Science.gov (United States)

    Holm, Thomas Hellesøe; Isaksen, Toke Jost; Glerup, Simon; Heuck, Anders; Bøttger, Pernille; Füchtbauer, Ernst-Martin; Nedergaard, Steen; Nyengaard, Jens Randel; Andreasen, Mogens; Nissen, Poul; Lykke-Hartmann, Karin

    2016-01-01

    The Na(+)/K(+)-ATPases maintain Na(+) and K(+) electrochemical gradients across the plasma membrane, a prerequisite for electrical excitability and secondary transport in neurons. Autosomal dominant mutations in the human ATP1A3 gene encoding the neuron-specific Na(+)/K(+)-ATPase α3 isoform cause different neurological diseases, including rapid-onset dystonia-parkinsonism (RDP) and alternating hemiplegia of childhood (AHC) with overlapping symptoms, including hemiplegia, dystonia, ataxia, hyperactivity, epileptic seizures, and cognitive deficits. Position D801 in the α3 isoform is a mutational hotspot, with the D801N, D801E and D801V mutations causing AHC and the D801Y mutation causing RDP or mild AHC. Despite intensive research, mechanisms underlying these disorders remain largely unknown. To study the genotype-to-phenotype relationship, a heterozygous knock-in mouse harboring the D801Y mutation (α3(+/D801Y)) was generated. The α3(+/D801Y) mice displayed hyperactivity, increased sensitivity to chemically induced epileptic seizures and cognitive deficits. Interestingly, no change in the excitability of CA1 pyramidal neurons in the α3(+/D801Y) mice was observed. The cognitive deficits were rescued by administration of the benzodiazepine, clonazepam, a GABA positive allosteric modulator. Our findings reveal the functional significance of the Na(+)/K(+)-ATPase α3 isoform in the control of spatial learning and memory and suggest a link to GABA transmission. PMID:27549929

  19. Functional Comparison of 45 Naturally Occurring Isoforms of the Plasmodium falciparum Chloroquine Resistance Transporter (PfCRT).

    Science.gov (United States)

    Callaghan, Paul S; Hassett, Matthew R; Roepe, Paul D

    2015-08-18

    At least 53 distinct isoforms of Plasmodium falciparum chloroquine resistance transporter (PfCRT) protein are expressed in strains or isolates of P. falciparum malarial parasites from around the globe. These parasites exhibit a range of sensitivities to chloroquine (CQ) and other drugs. Mutant PfCRT is believed to confer cytostatic CQ resistance (CQR(CS)) by transporting CQ away from its DV target (free heme released upon hemoglobin digestion). One theory is that variable CQ transport catalyzed by these different PfCRT isoforms is responsible for the range of CQ sensitivities now found for P. falciparum. Alternatively, additional mutations in drug-selected parasites, or additional functions of PfCRT, might complement PfCRT-mediated CQ transport in conferring the range of observed resistance phenotypes. To distinguish between these possibilities, we recently optimized a convenient method for measuring PfCRT-mediated CQ transport, involving heterologous expression in Saccharomyces cerevisiae. Here, we use this method to quantify drug transport activity for 45 of 53 of the naturally occurring PfCRT isoforms. Data show that variable levels of CQR likely depend upon either additional PfCRT functions or additional genetic events, including perhaps changes that influence DV membrane potential. The data also suggest that the common K76T PfCRT mutation that is often used to distinguish a P. falciparum CQR phenotype is not, in and of itself, a fully reliable indicator of CQR status.

  20. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors

    DEFF Research Database (Denmark)

    Khan, N.; Jeffers, M.; Kumar, S.;

    2008-01-01

    ) against a panel of rhHDAC (recombinant human HDAC) isoforms. Eight rhHDACs were expressed using a baculoviral system, and a Fluor de Lystrade mark (Biomol International) HDAC assay was optimized for each purified isoform. The potency and selectivity of ten HDACs on class I isoforms (rhHDAC1, rhHDAC2, rh...

  1. Expression, purification and enzymatic characterization of the catalytic domains of human tryptophan hydroxylase isoforms

    DEFF Research Database (Denmark)

    Windahl, Michael Skovbo; Boesen, Jane; Karlsen, Pernille Efferbach;

    2009-01-01

    Tryptophan hydroxylase exists in two isoforms: Isoform 1 catalyses the first and rate-limiting step in the synthesis of serotonin in the peripheral parts of the body while isoform 2 catalyses this step in the brain. The catalytic domains of human tryptophan hydroxylase 1 and 2 have been expressed...

  2. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation

    OpenAIRE

    Salomonis, Nathan; Schlieve, Christopher R.; Pereira, Laura; Wahlquist, Christine; Colas, Alexandre; Zambon, Alexander C.; Vranizan, Karen; Spindler, Matthew J.; Alexander R Pico; Cline, Melissa S; Tyson A Clark; Williams, Alan; John E Blume; Samal, Eva; Mercola, Mark

    2010-01-01

    Two major goals of regenerative medicine are to reproducibly transform adult somatic cells into a pluripotent state and to control their differentiation into specific cell fates. Progress toward these goals would be greatly helped by obtaining a complete picture of the RNA isoforms produced by these cells due to alternative splicing (AS) and alternative promoter selection (APS). To investigate the roles of AS and APS, reciprocal exon–exon junctions were interrogated on a genome-wide scale in ...

  3. Hollywood: a comparative relational database of alternative splicing

    OpenAIRE

    Holste, Dirk; Huo, George; Tung, Vivian; Burge, Christopher B.

    2005-01-01

    RNA splicing is an essential step in gene expression, and is often variable, giving rise to multiple alternatively spliced mRNA and protein isoforms from a single gene locus. The design of effective databases to support experimental and computational investigations of alternative splicing (AS) is a significant challenge. In an effort to integrate accurate exon and splice site annotation with current knowledge about splicing regulatory elements and predicted AS events, and to link information ...

  4. One isoform of Arg/Abl2 tyrosine kinase is nuclear and the other seven cytosolic isoforms differently modulate cell morphology, motility and the cytoskeleton

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Cristina; Torsello, Barbara; Di Stefano, Vitalba; Zipeto, Maria A.; Facchetti, Rita; Bombelli, Silvia; Perego, Roberto A., E-mail: roberto.perego@unimib.it

    2013-08-01

    The non-receptor tyrosine kinase Abelson related gene (Arg/Abl2) regulates cell migration and morphogenesis by modulating the cytoskeleton. Arg promotes actin-based cell protrusions and spreading, and inhibits cell migration by attenuating stress fiber formation and contractility via activation of the RhoA inhibitor, p190RhoGAP, and by regulating focal adhesion dynamics also via CrkII phosphorylation. Eight full-length Arg isoforms with different N- and C-termini are endogenously expressed in human cells. In this paper, the eight Arg isoforms, subcloned in the pFLAG-CMV2 vector, were transfected in COS-7 cells in order to study their subcellular distribution and role in cell morphology, migration and cytoskeletal modulation. The transfected 1BSCTS Arg isoform has a nuclear distribution and phosphorylates CrkII in the nucleus, whilst the other isoforms are detected in the cytoplasm. The 1BLCTL, 1BSCTL, 1ASCTS isoforms were able to significantly decrease stress fibers, induce cell shrinkage and filopodia-like protrusions with a significant increase in p190RhoGAP phosphorylation. In contrast, 1ALCTL, 1ALCTS, 1ASCTL and 1BLCTS isoforms do not significantly decrease stress fibers and induce the formation of retraction tail-like protrusions. The 1BLCTL and 1ALCTL isoforms have different effects on cell migration and focal adhesions. All these data may open new perspectives to study the mechanisms of cell invasiveness. -Highlights: • Each of the eight Arg isoforms was transfected in COS-7 cells. • Only the 1BSCTS Arg isoform has a nuclear distribution in transfected cells. • The cytoplasmic isoforms and F-actin colocalize cortically and in cell protrusions. • Arg isoforms differently phosphorylate p190RhoGAP and CrkII. • Arg isoforms differently modulate stress fibers, cell protrusions and motility.

  5. A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy

    OpenAIRE

    Ruas, Jorge L.; White, James P.; Rao, Rajesh R.; Kleiner, Sandra; Brannan, Kevin T.; Harrison, Brooke C.; Greene, Nicholas P.; Wu, Jun; Estall, Jennifer L.; Irving, Brian A.; Lanza, Ian R.; Rasbach, Kyle A.; Okutsu, Mitsuharu; Nair, K. Sreekumaran; Yan, Zhen

    2012-01-01

    PGC-1α is a transcriptional coactivator induced by exercise that gives muscle many of the best known adaptations to endurance-type exercise, but has no effects on muscle strength or hypertrophy. We have identified a novel form of PGC-1α (PGC-1α4) that results from alternative promoter usage and splicing of the primary transcript. PGC-1α4 is highly expressed in exercised muscle but does not regulate most known PGC-1α targets such as the mitochondrial OXPHOS genes. Rather, it specifically induc...

  6. Longevity Genes Revealed by Integrative Analysis of Isoform-Specific daf-16/FoxO Mutants of Caenorhabditis elegans.

    Science.gov (United States)

    Chen, Albert Tzong-Yang; Guo, Chunfang; Itani, Omar A; Budaitis, Breane G; Williams, Travis W; Hopkins, Christopher E; McEachin, Richard C; Pande, Manjusha; Grant, Ana R; Yoshina, Sawako; Mitani, Shohei; Hu, Patrick J

    2015-10-01

    FoxO transcription factors promote longevity across taxa. How they do so is poorly understood. In the nematode Caenorhabditis elegans, the A- and F-isoforms of the FoxO transcription factor DAF-16 extend life span in the context of reduced DAF-2 insulin-like growth factor receptor (IGFR) signaling. To elucidate the mechanistic basis for DAF-16/FoxO-dependent life span extension, we performed an integrative analysis of isoform-specific daf-16/FoxO mutants. In contrast to previous studies suggesting that DAF-16F plays a more prominent role in life span control than DAF-16A, isoform-specific daf-16/FoxO mutant phenotypes and whole transcriptome profiling revealed a predominant role for DAF-16A over DAF-16F in life span control, stress resistance, and target gene regulation. Integration of these datasets enabled the prioritization of a subset of 92 DAF-16/FoxO target genes for functional interrogation. Among 29 genes tested, two DAF-16A-specific target genes significantly influenced longevity. A loss-of-function mutation in the conserved gene gst-20, which is induced by DAF-16A, reduced life span extension in the context of daf-2/IGFR RNAi without influencing longevity in animals subjected to control RNAi. Therefore, gst-20 promotes DAF-16/FoxO-dependent longevity. Conversely, a loss-of-function mutation in srr-4, a gene encoding a seven-transmembrane-domain receptor family member that is repressed by DAF-16A, extended life span in control animals, indicating that DAF-16/FoxO may extend life span at least in part by reducing srr-4 expression. Our discovery of new longevity genes underscores the efficacy of our integrative strategy while providing a general framework for identifying specific downstream gene regulatory events that contribute substantially to transcription factor functions. As FoxO transcription factors have conserved functions in promoting longevity and may be dysregulated in aging-related diseases, these findings promise to illuminate fundamental

  7. Expression of TP53 Isoforms p53β or p53γ Enhances Chemosensitivity in TP53null Cell Lines

    OpenAIRE

    Elisabeth Silden; Hjelle, Sigrun M; Line Wergeland; André Sulen; Vibeke Andresen; Jean-Christophe Bourdon; Micklem, David R; Emmet McCormack; Bjørn Tore Gjertsen

    2013-01-01

    The carboxy-terminal truncated p53 alternative spliced isoforms, p53β and p53γ, are expressed at disparate levels in cancer and are suggested to influence treatment response and therapy outcome. However, their functional role in cancer remains to be elucidated. We investigated their individual functionality in the p53(null) background of cell lines H1299 and SAOS-2 by stable retroviral transduction or transient transfection. Expression status of p53β and p53γ protein was found to correlate wi...

  8. Expression of TP53 Isoforms p53β or p53γ Enhances Chemosensitivity in TP53null Cell Lines

    OpenAIRE

    Silden, Elisabeth; Hjelle, Sigrun M; Wergeland, Line; Sulen, André; Andresen, Vibeke; Bourdon, Jean-Christophe; Micklem, David R.; McCormack, Emmet; Gjertsen, Bjørn Tore

    2013-01-01

    The carboxy-terminal truncated p53 alternative spliced isoforms, p53β and p53γ, are expressed at disparate levels in cancer and are suggested to influence treatment response and therapy outcome. However, their functional role in cancer remains to be elucidated. We investigated their individual functionality in the p53null background of cell lines H1299 and SAOS-2 by stable retroviral transduction or transient transfection. Expression status of p53β and p53γ protein was found to correlate with...

  9. Up-regulation of the proapoptotic caspase 2 splicing isoform by a candidate tumor suppressor, RBM5

    OpenAIRE

    Fushimi, Kazuo; Ray, Payal; Kar, Amar; Wang, Lei; Sutherland, Leslie C.; Jane Y Wu

    2008-01-01

    Similar to many genes involved in programmed cell death (PCD), the caspase 2 (casp-2) gene generates both proapoptotic and antiapoptotic isoforms by alternative splicing. Using a yeast RNA–protein interaction assay, we identified RBM5 (also known as LUCA-15) as a protein that binds to casp-2 pre-mRNA. In both transfected cells and in vitro splicing assay, RBM5 enhances the formation of proapoptotic Casp-2L. RBM5 binds to a U/C-rich sequence immediately upstream of the previously identified In...

  10. Nitric oxide in the bovine oviduct: influence on contractile activity and nitric oxide synthase isoforms localization.

    Science.gov (United States)

    Yilmaz, O; Całka, J; Bukowski, R; Zalecki, M; Wasowicz, K; Jaroszewski, J J; Markiewicz, W; Bulbul, A; Ucar, M

    2012-04-15

    The oviducts of 64 Holstein cows in luteal (early I, early II and late) and follicular phases were evaluated to determine the protein expression and mRNA transcription of different nitric oxide synthase isoforms (eNOS, iNOS, nNOS) as well as the effect of nitric oxide (NO) on spontaneous contractility in vitro. The expression patterns of nitric oxide synthase (NOS) isoforms in isthmus and ampulla (n = 6 for each phase) were determined by immunohistochemistry, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis. In the contractility studies, longitudinal and circular isolated strips of isthmus and ampulla (n = 10 for each phase) of oviducts located ipsilateral to the luteal structure or preovulatory follicle were treated as follows: a) L-arginine, an endogenous NO donor (10(-8) to 10(-3)m), b) N(ω)-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor (10(-5)m) and L-arginine (10(-3)m), c) methylene blue (MB), an inhibitor of soluble guanylate (10(-5)m) and L-arginine (10(-3)m) and d) sodium nitroprusside (SNP), an exogenous NO donor (10(-8) to 10(-4)m). Immunohistochemical evaluation revealed that endothelial NOS (eNOS) expression detected in epithelial layer of isthmus and ampulla was strong in early I luteal phase, moderate in follicular phase and weak in other phases. Neuronal NOS (nNOS) immunoreactivity was strong in isthmus and moderate in ampulla, and staining of nerve fibers was observed mostly in early I luteal and follicular phases. All eNOS, nNOS and inducible NOS (iNOS) isoforms were detected by RT-PCR. eNOS and iNOS proteins were evident, whereas nNOS was undetectable by Western blot analysis in the tissue examined. L-arginine applied alone or after L-NAME did not alter or increase the contractile tension of the strips in most tissues examined. However, L-arginine applied after MB increased contractile tension in the strips of ampulla and longitudinal isthmus from early I luteal phase and circular isthmus from

  11. The Caenorhabditis elegans gene mfap-1 encodes a nuclear protein that affects alternative splicing.

    Directory of Open Access Journals (Sweden)

    Long Ma

    Full Text Available RNA splicing is a major regulatory mechanism for controlling eukaryotic gene expression. By generating various splice isoforms from a single pre-mRNA, alternative splicing plays a key role in promoting the evolving complexity of metazoans. Numerous splicing factors have been identified. However, the in vivo functions of many splicing factors remain to be understood. In vivo studies are essential for understanding the molecular mechanisms of RNA splicing and the biology of numerous RNA splicing-related diseases. We previously isolated a Caenorhabditis elegans mutant defective in an essential gene from a genetic screen for suppressors of the rubberband Unc phenotype of unc-93(e1500 animals. This mutant contains missense mutations in two adjacent codons of the C. elegans microfibrillar-associated protein 1 gene mfap-1. mfap-1(n4564 n5214 suppresses the Unc phenotypes of different rubberband Unc mutants in a pattern similar to that of mutations in the splicing factor genes uaf-1 (the C. elegans U2AF large subunit gene and sfa-1 (the C. elegans SF1/BBP gene. We used the endogenous gene tos-1 as a reporter for splicing and detected increased intron 1 retention and exon 3 skipping of tos-1 transcripts in mfap-1(n4564 n5214 animals. Using a yeast two-hybrid screen, we isolated splicing factors as potential MFAP-1 interactors. Our studies indicate that C. elegans mfap-1 encodes a splicing factor that can affect alternative splicing.

  12. Apoptosis induced by a HIPK2 full-length-specific siRNA is due to off-target effects rather than prevalence of HIPK2-Δe8 isoform.

    Science.gov (United States)

    Di Rocco, Giuliana; Verdina, Alessandra; Gatti, Veronica; Virdia, Ilaria; Toietta, Gabriele; Todaro, Matilde; Stassi, Giorgio; Soddu, Silvia

    2016-01-12

    Small interfering RNAs (siRNAs) are widely used to study gene function and extensively exploited for their potential therapeutic applications. HIPK2 is an evolutionary conserved kinase that binds and phosphorylates several proteins directly or indirectly related to apoptosis. Recently, an alternatively spliced isoform skipping 81 nucleotides of exon 8 (Hipk2-Δe8) has been described. Selective depletion of Hipk2 full-length (Hipk2-FL) with a specific siRNA that spares the Hipk2-Δe8 isoform has been shown to strongly induce apoptosis, suggesting an unpredicted dominant-negative effect of Hipk2-FL over the Δe8 isoform. From this observation, we sought to take advantage and assessed the therapeutic potential of generating Hipk2 isoform unbalance in tumor-initiating cells derived from colorectal cancer patients. Strong reduction of cell viability was induced in vitro and in vivo by the originally described exon 8-specific siRNA, supporting a potential therapeutic application. However, validation analyses performed with additional exon8-specific siRNAs with different stabilities showed that all exon8-targeting siRNAs can induce comparable Hipk2 isoform unbalance but only the originally reported e8-siRNA promotes cell death. These data show that loss of viability does not depend on the prevalence of Hipk2-Δe8 isoform but it is rather due to microRNA-like off-target effects. PMID:26625198

  13. Differential regulation of renal phospholipase C isoforms by catecholamines.

    OpenAIRE

    Yu, P Y; Asico, L D; Eisner, G M; Jose, P A

    1995-01-01

    Dopamine and D1 agonists and NE all increase phosphatidyl inositol-specific phospholipase C (PLC) activity, but whereas dopamine produces a natriuresis, NE has an antinatriuretic effect. To determine if catecholamines differentially regulate the expression of PLC isoforms, we infused fenoldopam, a D1 agonist, or pramipexole, a D1/D2 agonist, intravenously or infused fenoldopam or NE into the renal artery of anesthetized rats. After 3-4 h of infusion, when the expected natriuresis (fenoldopam ...

  14. GABAB(1) receptor subunit isoforms differentially regulate stress resilience

    OpenAIRE

    O’Leary, Olivia F.; Felice, Daniela; Galimberti, Stefano; Savignac, Hélène M.; Bravo, Javier A.; Crowley, Tadhg; El Yacoubi, Malika; Vaugeois, Jean-Marie; Gassmann, Martin; Bettler, Bernhard; Dinan, Timothy G.; Cryan, John F.

    2014-01-01

    Stress can increase susceptibility to developing psychiatric disorders, including depression. Understanding the neurobiological mechanisms underlying stress resilience and susceptibility is key to identifying novel targets for the development of more effective treatments for stress-related psychiatric disorders. Here we show that specific isoforms of GABAB receptor subunits differentially regulate stress resilience. Specifically, GABAB(1a)−/− mice are more susceptible whereas GABAB(1b)−/− mic...

  15. Extraction of Transcript Diversity from Scientific Literature

    OpenAIRE

    Parantu K Shah; Jensen, Lars J.; Stéphanie Boué; Peer Bork

    2005-01-01

    Synopsis Given the functional complexity of higher eukaryotes, the relatively small number of genes in the human and other mammalian genomes came as a surprise to the scientific community. Later it was discovered that the majority of genes are subject to alternative splicing (“cutting and pasting”) or associated mechanisms that ultimately increase the diversity of transcripts that code for proteins. Studies exploring transcript diversity are currently dominated by high-throughput experiments ...

  16. Plasma membrane calcium pump (PMCA) isoform 4 is targeted to the apical membrane by the w-splice insert from PMCA2

    OpenAIRE

    Antalffy, Géza; Mauer, Amy S.; Pászty, Katalin; Hegedus, Luca; Padányi, Rita; Enyedi, Ágnes; STREHLER, EMANUEL E.

    2012-01-01

    Local Ca2+ signaling requires proper targeting of the Ca2+ signaling toolkit to specific cellular locales. Different isoforms of the plasma membrane Ca2+ pump (PMCA) are responsible for Ca2+ extrusion at the apical and basolateral membrane of polarized epithelial cells, but the mechanisms and signals for differential targeting of the PMCAs are not well understood. Recent work demonstrated that the alternatively spliced w-insert in PMCA2 directs this pump to the apical membrane. We now show th...

  17. Antagonistic functions of two stardust isoforms in Drosophila photoreceptor cells.

    Science.gov (United States)

    Bulgakova, Natalia A; Rentsch, Michaela; Knust, Elisabeth

    2010-11-15

    Membrane-associated guanylate kinases (MAGUKs) are scaffolding proteins that organize supramolecular protein complexes, thereby partitioning the plasma membrane into spatially and functionally distinct subdomains. Their modular organization is ideally suited to organize protein complexes with cell type- or stage-specific composition, or both. Often more than one MAGUK isoform is expressed by one gene in the same cell, yet very little is known about their individual in vivo functions. Here, we show that two isoforms of Drosophila stardust, Sdt-H (formerly called Sdt-B2) and Sdt-D, which differ in their N terminus, are expressed in adult photoreceptors. Both isoforms associate with Crumbs and PATJ, constituents of the conserved Crumbs-Stardust complex. However, they form distinct complexes, localized at the stalk, a restricted region of the apical plasma membrane. Strikingly, Sdt-H and Sdt-D have antagonistic functions. While Sdt-H overexpression increases stalk membrane length and prevents light-dependent retinal degeneration, Sdt-D overexpression reduces stalk length and enhances light-dependent retinal degeneration. These results suggest that a fine-tuned balance of different Crumbs complexes regulates photoreceptor homeostasis.

  18. Expression of Ik6 and Ik8 Isoforms and Their Association with Relapse and Death in Mexican Children with Acute Lymphoblastic Leukemia

    Science.gov (United States)

    Reyes-León, Adriana; Juárez-Velázquez, Rocío; Medrano-Hernández, Alma; Cuenca-Roldán, Teresa; Salas-Labadía, Consuelo; del Pilar Navarrete-Meneses, María; Rivera-Luna, Roberto; López-Hernández, Gerardo; Paredes-Aguilera, Rogelio; Pérez-Vera, Patricia

    2015-01-01

    Expression of the 6 and 8 dominant-negative Ikaros isoforms in pediatric patients with acute lymphoblastic leukemia has been associated with a high risk of relapse and death; due to these isoforms disrupting the differentiation and proliferation of lymphoid cells. The aim of this study was to know the frequency of Ik6 and Ik8 in 113 Mexican ALL-children treated within the National Popular Medical Insurance Program to determine whether there was an association with relapse-free survival, event-free survival and overall survival, and to assess its usefulness in the initial stratification of patients. The expression of these isoforms was analyzed using specific primer sets and nested RT-PCR. The detected transcripts were classified according to the isoforms’s sizes reported. A non-expected band of 300 bp from one patient was analyzed by sequencing. Twenty-six patients expressed Ik6 and/or Ik8 and one of them expressed a variant of Ik8 denominated Ik8-deleted. Although the presence of them was not statistically associated with lower relapse free survival (p = 0.432), event free survival (p = 0.667) or overall survival (p = 0.531), inferior overall survival was observed in patients that expressed these isoforms and showed high or standard risk by age and white blood-cell count at diagnosis. Of the 26 patients Ik6+ and/or Ik8+, 14 did not present adverse events; from them 6 were exclusively Ik6+ and/or Ik8+, and 8 were positive for the other Ikaros isoforms (Ik1, Ik2, Ik5, Ik3A, Ik4, Ik4A, Ik7). In the patients studied, the expression of Ik6 and Ik8 did not constitute an independent prognostic factor for relapse or death related to disease; therefore, they could not be used in the initial risk stratification. PMID:26131904

  19. Transcription variants of the prostate-specific PrLZ gene and their interaction with 14-3-3 proteins

    International Nuclear Information System (INIS)

    We have reported isolation and characterization of the prostate-specific and androgen-regulated PrLZ gene abnormally expressed in prostate cancer. PrLZ is a potential biomarker for prostate cancer and a candidate oncogene promoting cell proliferation and survival in prostate cancer cells. A full delineation of the PrLZ gene and its gene products may provide clues to the mechanisms regulating its expression and function. In this report, we identified three additional exons in the PrLZ gene and recognized five transcript variants from alternative splicing that could be detected by RT-PCR and Western blotting. Structural comparison demonstrated that the PrLZ proteins are highly conserved among species. PrLZ contains multiple potential sites for interaction with other proteins. We used mammalian two-hybrid assays to demonstrate that PrLZ isoforms interact with 14-3-3 proteins, and multiple sites in the PrLZ may be involved in the interaction. Alternative splicing may contribute to abnormally enhanced PrLZ levels in prostate cancer, and interaction with 14-3-3 proteins may be a mechanism by which PrLZ promotes cell proliferation and survival during prostate cancer development and progression. This information is a valuable addition to the investigation of the oncogenic properties of the PrLZ gene.

  20. Our evolving knowledge of the transcriptional landscape.

    Science.gov (United States)

    Hume, David A

    2008-01-01

    The development of a genome-scale approach to identification of the 5' ends of capped mRNAs (CAGE) has given new insights into many aspects of mammalian RNApolII transcription control. They include the identification of the minimal initiator motif, the different types of proximal promoter architecture, the promoters of noncoding RNAs, the transcription of retrotransposons, and the extensive impact of alternative promoters on the proteome. CAGE also offers applications as a form of expression profiling that measures promoter use, allowing more precise development of transcriptional network models.

  1. Structural evolution and tissue-specific expression of tetrapod-specific second isoform of secretory pathway Ca{sup 2+}-ATPase

    Energy Technology Data Exchange (ETDEWEB)

    Pestov, Nikolay B., E-mail: korn@mail.ibch.ru [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Dmitriev, Ruslan I.; Kostina, Maria B. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Korneenko, Tatyana V. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States); Shakhparonov, Mikhail I. [Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117871 (Russian Federation); Modyanov, Nikolai N., E-mail: nikolai.modyanov@utoledo.edu [Department of Physiology and Pharmacology, University of Toledo College of Medicine, 3000 Arlington Ave., Toledo, OH 43614 (United States)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer Full-length secretory pathway Ca-ATPase (SPCA2) cloned from rat duodenum. Black-Right-Pointing-Pointer ATP2C2 gene (encoding SPCA2) exists only in genomes of Tetrapoda. Black-Right-Pointing-Pointer Rat and pig SPCA2 are expressed in intestines, lung and some secretory glands. Black-Right-Pointing-Pointer Subcellular localization of SPCA2 may depend on tissue type. Black-Right-Pointing-Pointer In rat duodenum, SPCA2 is localized in plasma membrane-associated compartments. -- Abstract: Secretory pathway Ca-ATPases are less characterized mammalian calcium pumps than plasma membrane Ca-ATPases and sarco-endoplasmic reticulum Ca-ATPases. Here we report analysis of molecular evolution, alternative splicing, tissue-specific expression and subcellular localization of the second isoform of the secretory pathway Ca-ATPase (SPCA2), the product of the ATP2C2 gene. The primary structure of SPCA2 from rat duodenum deduced from full-length transcript contains 944 amino acid residues, and exhibits 65% sequence identity with known SPCA1. The rat SPCA2 sequence is also highly homologous to putative human protein KIAA0703, however, the latter seems to have an aberrant N-terminus originating from intron 2. The tissue-specificity of SPCA2 expression is different from ubiquitous SPCA1. Rat SPCA2 transcripts were detected predominantly in gastrointestinal tract, lung, trachea, lactating mammary gland, skin and preputial gland. In the newborn pig, the expression profile is very similar with one remarkable exception: porcine bulbourethral gland gave the strongest signal. Upon overexpression in cultured cells, SPCA2 shows an intracellular distribution with remarkable enrichment in Golgi. However, in vivo SPCA2 may be localized in compartments that differ among various tissues: it is intracellular in epidermis, but enriched in plasma membranes of the intestinal epithelium. Analysis of SPCA2 sequences from various vertebrate species argue that ATP2C2

  2. Molecular mechanical differences between isoforms of contractile actin in the presence of isoforms of smooth muscle tropomyosin.

    OpenAIRE

    Lennart Hilbert; Genevieve Bates; Roman, Horia N.; Jenna L Blumenthal; Zitouni, Nedjma B.; Apolinary Sobieszek; Mackey, Michael C.; Anne-Marie Lauzon

    2013-01-01

    The proteins involved in smooth muscle's molecular contractile mechanism - the anti-parallel motion of actin and myosin filaments driven by myosin heads interacting with actin - are found as different isoforms. While their expression levels are altered in disease states, their relevance to the mechanical interaction of myosin with actin is not sufficiently understood. Here, we analyzed in vitro actin filament propulsion by smooth muscle myosin for [Formula: see text]-actin ([Formula: see text...

  3. ATP2C1 gene mutations in Hailey-Hailey disease and possible roles of SPCA1 isoforms in membrane trafficking.

    Science.gov (United States)

    Micaroni, M; Giacchetti, G; Plebani, R; Xiao, G G; Federici, L

    2016-01-01

    ATP2C1 gene codes for the secretory pathway Ca(2+)/Mn(2+)-ATPase pump type 1 (SPCA1) localizing at the golgi apparatus. Mutations on the human ATP2C1 gene, causing decreased levels of the SPCA1 expression, have been identified as the cause of the Hailey-Hailey disease, a rare skin disorder. In the last few years, several mutations have been described, and here we summarize how they are distributed along the gene and how missense mutations affect protein expression. SPCA1 is expressed in four different isoforms through alternative splicing of the ATP2C1 gene and none of these isoforms is differentially affected by any of these mutations. However, a better understanding of the tissue specific expression of the isoforms, their localization along the secretory pathway, their specific binding partners and the role of the C-terminal tail making isoforms different from each other, will be future goals of the research in this field. PMID:27277681

  4. Alternative Treatments

    Science.gov (United States)

    ... Find your chapter: search by state Home > Alzheimer's Disease > Treatments > Alternative Treatments Overview What Is Dementia? What Is Alzheimer's? Younger/Early Onset Facts and Figures Know the 10 Signs Stages Inside the Brain: ...

  5. Gene structure for the α1 chain of a human short-chain collagen (type XIII) with alternatively spliced transcripts and translation termination codon at the 5' end of the last exon

    International Nuclear Information System (INIS)

    Two overlapping human genomic clones that encode a short-chain collagen, designated α1(XIII), were isolated by using recently described cDNA clones. Characterization of the cosmid clones that span ∼ 65,000 base pairs (bp) of the 3' end of the gene established several unusual features of this collagen gene. The last exon encodes solely the 3' untranslated region and it begins with a complete stop codon. The 10 adjacent exons vary in size from 27 to 87 bp and two of them are 54 bp. Therefore, the α1-chain gene of type XIII collagen has some features found in genes for fibrillar collagens but other features that are distinctly different. Previous analysis of overlapping cDNA clones and nuclease S1 mapping of mRNAs indicated one alternative splicing site causing a deletion of 36 bp from the mature mRNA. The present study showed that the 36 bp is contained within the gene as a single exon and also that the gene has a 45-bp -Gly-Xaa-Xaa- repeat coding exon not found in the cDNA clones previously characterized. Nuclease S1 mapping experiments indicated that this 45-bp exon is found in normal human skin fibroblast mRNAs. Accordingly, the data demonstrate that there is alternative splicing of at least two exons of the type α1(XIII)-chain gene

  6. Loss of Pnn expression results in mouse early embryonic lethality and cellular apoptosis through SRSF1-mediated alternative expression of Bcl-xS and ICAD.

    Science.gov (United States)

    Leu, Steve; Lin, Yen-Ming; Wu, Chu-Han; Ouyang, Pin

    2012-07-01

    Pinin (Pnn), a serine/arginine-rich (SR)-related protein, has been shown to play multiple roles within eukaryotic cells including cell-cell adhesion, cell migration, regulation of gene transcription, mRNA export and alternative splicing. In this study, an attempt to generate mice homozygously deficient in Pnn failed because of early embryonic lethality. To evaluate the effects of loss of Pnn expression on cell survival, RNA interference experiments were performed in MCF-7 cells. Depletion of Pnn resulted in cellular apoptosis and nuclear condensation. In addition, nuclear speckles were disrupted, and expression levels of SR proteins were diminished. RT-PCR analysis showed that alternative splicing patterns of SRSF1 as well as of apoptosis-related genes Bcl-x and ICAD were altered, and expression levels of Bim isoforms were modulated in Pnn-depleted cells. Cellular apoptosis induced by Pnn depletion was rescued by overexpression of SRSF1, which also restored generation of Bcl-xL and functionless ICAD. Pnn expression is, therefore, essential for survival of mouse embryos and the breast carcinoma cell line MCF-7. Moreover, Pnn depletion, modulated by SRSF1, determines cellular apoptosis through activation of the expression of pro-apoptotic Bcl-xS transcripts.

  7. Identification of isoform-specific dynamics in phosphorylation-dependent STAT5 dimerization by quantitative mass spectrometry and mathematical modeling.

    Science.gov (United States)

    Boehm, Martin E; Adlung, Lorenz; Schilling, Marcel; Roth, Susanne; Klingmüller, Ursula; Lehmann, Wolf D

    2014-12-01

    STAT5A and STAT5B are important transcription factors that dimerize and transduce activation signals of cytokine receptors directly to the nucleus. A typical cytokine that mediates STAT5 activation is erythropoietin (Epo). Differential functions of STAT5A and STAT5B have been reported. However, the extent to which phosphorylated STAT5A and STAT5B (pSTAT5A, pSTAT5B) form homo- or heterodimers is not understood, nor is how this might influence the signal transmission to the nucleus. To study this, we designed a concept to investigate the isoform-specific dimerization behavior of pSTAT5A and pSTAT5B that comprises isoform-specific immunoprecipitation (IP), measurement of the degree of phosphorylation, and isoform ratio determination between STAT5A and STAT5B. For the main analytical method, we employed quantitative label-free and -based mass spectrometry. For the cellular model system, we used Epo receptor (EpoR)-expressing BaF3 cells (BaF3-EpoR) stimulated with Epo. Three hypotheses of dimer formation between pSTAT5A and pSTAT5B were used to explain the analytical results by a static mathematical model: formation of (i) homodimers only, (ii) heterodimers only, and (iii) random formation of homo- and heterodimers. The best agreement between experimental data and model simulations was found for the last case. Dynamics of cytoplasmic STAT5 dimerization could be explained by distinct nuclear import rates and individual nuclear retention for homo- and heterodimers of phosphorylated STAT5. PMID:25333863

  8. Mutants, Overexpressors, and Interactors of Arabidopsis Plastocyanin Isoforms: Revised Roles of Plastocyanin in Photosynthetic Electron Flow and Thylakoid Redox State

    Institute of Scientific and Technical Information of China (English)

    Paolo Pesaresi; Michael Scharfenberg; Martin Weigel; Irene Granlund; Wolfgang P. Schr(o)der; Giovanni Finazzi; Fabrice Rappaport; Simona Masiero; Antonella Furini; Peter Jahns; Dario Leister

    2009-01-01

    Two homologous plastocyanin isoforms are encoded by the genes PETE1 and PETE2 in the nuclear genome of Arabidopsis thaliana. The PETE2 transcript is expressed at considerably higher levels and the PETE2 protein is the more abundant isoform. Null mutations in the PETE genes resulted in plants, designated pete1 and pete2, with decreased plas-tocyanin contents. However, despite reducing plastocyanin levels by over~90%, a pete2 null mutation on its own affects rates of photosynthesis and growth only slightly, whereas pete1 knockout plants, with about 60-80% of the wild-type plastocyanin level, did not show any alteration. Hence, plastocyanin concentration is not limiting for photosynthetic elec-tron flow under optimal growth conditions, perhaps implying other possible physiological roles for the protein. Indeed, plastocyanin has been proposed previously to cooperate with cytochrome C6A (Cyt C6A) in thylakoid redox reactions, but we find no evidence for a physical interaction between the two proteins, using interaction assays in yeast. We observed homodimerization of Cyt C6A in yeast interaction assays, but also Cyt C6A homodimers failed to interact with plastocyanin. Moreover, phenotypic analysis of atc6-1 pete1 and atc6-1 pete2 double mutants, each lacking Cyt C6A and one of the two plastocyanin-encoding genes, failed to reveal any genetic interaction. Overexpression of either PETE1 or PETE2 in the pete1 pete2 double knockout mutant background results in essentially wild-type photosynthetic performance, excluding the possibility that the two plastocyanin isoforms could have distinct functions in thylakoid electron flow.

  9. Allele-Selective Transcriptome Recruitment to Polysomes Primed for Translation: Protein-Coding and Noncoding RNAs, and RNA Isoforms.

    Directory of Open Access Journals (Sweden)

    Roshan Mascarenhas

    Full Text Available mRNA translation into proteins is highly regulated, but the role of mRNA isoforms, noncoding RNAs (ncRNAs, and genetic variants remains poorly understood. mRNA levels on polysomes have been shown to correlate well with expressed protein levels, pointing to polysomal loading as a critical factor. To study regulation and genetic factors of protein translation we measured levels and allelic ratios of mRNAs and ncRNAs (including microRNAs in lymphoblast cell lines (LCL and in polysomal fractions. We first used targeted assays to measure polysomal loading of mRNA alleles, confirming reported genetic effects on translation of OPRM1 and NAT1, and detecting no effect of rs1045642 (3435C>T in ABCB1 (MDR1 on polysomal loading while supporting previous results showing increased mRNA turnover of the 3435T allele. Use of high-throughput sequencing of complete transcript profiles (RNA-Seq in three LCLs revealed significant differences in polysomal loading of individual RNA classes and isoforms. Correlated polysomal distribution between protein-coding and non-coding RNAs suggests interactions between them. Allele-selective polysome recruitment revealed strong genetic influence for multiple RNAs, attributable either to differential expression of RNA isoforms or to differential loading onto polysomes, the latter defining a direct genetic effect on translation. Genes identified by different allelic RNA ratios between cytosol and polysomes were enriched with published expression quantitative trait loci (eQTLs affecting RNA functions, and associations with clinical phenotypes. Polysomal RNA-Seq combined with allelic ratio analysis provides a powerful approach to study polysomal RNA recruitment and regulatory variants affecting protein translation.

  10. Selective glucocorticoid receptor translational isoforms reveal glucocorticoid-induced apoptotic transcriptomes.

    Science.gov (United States)

    Wu, I; Shin, S C; Cao, Y; Bender, I K; Jafari, N; Feng, G; Lin, S; Cidlowski, J A; Schleimer, R P; Lu, N Z

    2013-01-01

    Induction of T-cell apoptosis contributes to the anti-inflammatory and antineoplastic benefits of glucocorticoids. The glucocorticoid receptor (GR) translational isoforms have distinct proapoptotic activities in osteosarcoma cells. Here we determined whether GR isoforms selectively induce apoptosis in Jurkat T lymphoblastic leukemia cells. Jurkat cells stably expressing individual GR isoforms were generated and treated with vehicle or dexamethasone (DEX). DEX induced apoptosis in cells expressing the GR-A, -B, or -C, but not the GR-D, isoform. cDNA microarray analyses of cells sensitive (GR-C3) and insensitive (GR-D3) to DEX revealed glucocorticoid-induced proapoptotic transcriptomes. Genes that were regulated by the proapoptotic GR-C3, but not by the GR-D3, isoform likely contributed to glucocorticoid-induced apoptosis. The identified genes include those that are directly involved in apoptosis and those that facilitate cell killing. Chromatin immunoprecipitation assays demonstrated that distinct chromatin modification abilities may underlie the distinct functions of GR isoforms. Interestingly, all GR isoforms, including the GR-D3 isoform, suppressed mitogen-stimulated cytokines. Furthermore, the GR-C isoforms were selectively upregulated in mitogen-activated primary T cells and DEX treatment induced GR-C target genes in activated T cells. Cell-specific expressions and functions of GR isoforms may help to explain the tissue- and individual-selective actions of glucocorticoids and may provide a basis for developing improved glucocorticoids. PMID:23303127

  11. Titin isoform switching is a major cardiac adaptive response in hibernating grizzly bears.

    Science.gov (United States)

    Nelson, O Lynne; Robbins, Charles T; Wu, Yiming; Granzier, Henk

    2008-07-01

    The hibernation phenomenon captures biological as well as clinical interests to understand how organs adapt. Here we studied how hibernating grizzly bears (Ursus arctos horribilis) tolerate extremely low heart rates without developing cardiac chamber dilation. We evaluated cardiac filling function in unanesthetized grizzly bears by echocardiography during the active and hibernating period. Because both collagen and titin are involved in altering diastolic function, we investigated both in the myocardium of active and hibernating grizzly bears. Heart rates were reduced from 84 beats/min in active bears to 19 beats/min in hibernating bears. Diastolic volume, stroke volume, and left ventricular ejection fraction were not different. However, left ventricular muscle mass was significantly lower (300 +/- 12 compared with 402 +/- 14 g; P = 0.003) in the hibernating bears, and as a result the diastolic volume-to-left ventricular muscle mass ratio was significantly greater. Early ventricular filling deceleration times (106.4 +/- 14 compared with 143.2 +/- 20 ms; P = 0.002) were shorter during hibernation, suggesting increased ventricular stiffness. Restrictive pulmonary venous flow patterns supported this conclusion. Collagen type I and III comparisons did not reveal differences between the two groups of bears. In contrast, the expression of titin was altered by a significant upregulation of the stiffer N2B isoform at the expense of the more compliant N2BA isoform. The mean ratio of N2BA to N2B titin was 0.73 +/- 0.07 in the active bears and decreased to 0.42 +/- 0.03 (P = 0.006) in the hibernating bears. The upregulation of stiff N2B cardiac titin is a likely explanation for the increased ventricular stiffness that was revealed by echocardiography, and we propose that it plays a role in preventing chamber dilation in hibernating grizzly bears. Thus our work identified changes in the alternative splicing of cardiac titin as a major adaptive response in hibernating grizzly

  12. Heterogeneous nuclear ribonucleoprotein K represses the production of pro-apoptotic Bcl-xS splice isoform.

    Science.gov (United States)

    Revil, Timothée; Pelletier, Jordan; Toutant, Johanne; Cloutier, Alexandre; Chabot, Benoit

    2009-08-01

    The Bcl-x pre-mRNA is alternatively spliced to produce the anti-apoptotic Bcl-x(L) and the pro-apoptotic Bcl-x(S) isoforms. By performing deletion mutagenesis on a human Bcl-x minigene, we have identified a novel exonic element that controls the use of the 5' splice site of Bcl-x(S). The proximal portion of this element acts as a repressor and is located downstream of an enhancer. Further mutational analysis provided a detailed topological map of the regulatory activities revealing a sharp transition between enhancer and repressor sequences. Portions of the enhancer can function when transplanted in another alternative splicing unit. Chromatography and immunoprecipitation assays indicate that the silencer element interacts with heterogeneous ribonucleoprotein particle (hnRNP) K, consistent with the presence of putative high affinity sites for this protein. Finally, down-regulation of hnRNP K by RNA interference enhanced splicing to Bcl-x(S), an effect seen only when the sequences bound by hnRNP K are present. Our results therefore document a clear role for hnRNP K in preventing the production of the pro-apoptotic Bcl-x(S) splice isoform.

  13. New methods as alternative or corrective measures for the pitfalls and artifacts of reverse transcription and polymerase chain reactions (RT-PCR) in cloning chimeric or antisense-accompanied RNA.

    Science.gov (United States)

    Yuan, Chengfu; Liu, Yongming; Yang, Min; Liao, D Joshua

    2013-06-01

    We established new methods for cloning cDNA ends that start with reverse transcription (RT) and soon proceed with the synthesis of the second cDNA strand, avoiding manipulations of fragile RNA. Our 3'-end cloning method does not involve poly-dT primers and polymerase chain reactions (PCR), is low in efficiency but high in fidelity and can clone those RNAs without a poly-A tail. We also established a cDNA protection assay to supersede RNA protection assay. The protected cDNA can be amplified, cloned and sequenced, enhancing sensitivity and fidelity. We report that RT product using gene-specific primer (GSP) cannot be gene- or strand-specific because RNA sample contains endogenous random primers (ERP). The gene-specificity may be improved by adding a linker sequence at the 5'-end of the GSP to prime RT and using the linker as a primer in the ensuing PCR. The strand-specificity may be improved by using strand-specific DNA oligos in our protection assay. The CDK4 mRNA and TSPAN31 mRNA are transcribed from the opposite DNA strands and overlap at their 3' ends. Using this relationship as a model, we found that the overlapped sequence might serve as a primer with its antisense as the template to create a wrong-template extension in RT or PCR. We infer that two unrelated RNAs or cDNAs overlapping at the 5'- or 3'-end might create a spurious chimera in this way, and many chimeras with a homologous sequence may be such artifacts. The ERP and overlapping antisense together set complex pitfalls, which one should be aware of.

  14. Deconstruction of O-glycosylation-GalNAc-T isoforms direct distinct subsets of the O-glycoproteome

    DEFF Research Database (Denmark)

    Schjoldager, Katrine T; Joshi, Hiren J; Kong, Yun;

    2015-01-01

    GalNAc-type O-glycosylation is found on most proteins trafficking through the secretory pathway in metazoan cells. The O-glycoproteome is regulated by up to 20 polypeptide GalNAc-Ts and the contributions and biological functions of individual GalNAc-Ts are poorly understood. Here, we used a zinc......-finger nuclease (ZFN)-directed knockout strategy to probe the contributions of the major GalNAc-Ts (GalNAc-T1 and GalNAc-T2) in liver cells and explore how the GalNAc-T repertoire quantitatively affects the O-glycoproteome. We demonstrate that the majority of the O-glycoproteome is covered by redundancy, whereas...... distinct subsets of substrates are modified by non-redundant functions of GalNAc-T1 and GalNAc-T2. The non-redundant O-glycoproteome subsets and specific transcriptional responses for each isoform are related to different cellular processes; for the GalNAc-T2 isoform, these support a role in lipid...

  15. Deconstruction of O-glycosylation--GalNAc-T isoforms direct distinct subsets of the O-glycoproteome.

    Science.gov (United States)

    Schjoldager, Katrine T; Joshi, Hiren J; Kong, Yun; Goth, Christoffer K; King, Sarah Louise; Wandall, Hans H; Bennett, Eric P; Vakhrushev, Sergey Y; Clausen, Henrik

    2015-12-01

    GalNAc-type O-glycosylation is found on most proteins trafficking through the secretory pathway in metazoan cells. The O-glycoproteome is regulated by up to 20 polypeptide GalNAc-Ts and the contributions and biological functions of individual GalNAc-Ts are poorly understood. Here, we used a zinc-finger nuclease (ZFN)-directed knockout strategy to probe the contributions of the major GalNAc-Ts (GalNAc-T1 and GalNAc-T2) in liver cells and explore how the GalNAc-T repertoire quantitatively affects the O-glycoproteome. We demonstrate that the majority of the O-glycoproteome is covered by redundancy, whereas distinct subsets of substrates are modified by non-redundant functions of GalNAc-T1 and GalNAc-T2. The non-redundant O-glycoproteome subsets and specific transcriptional responses for each isoform are related to different cellular processes; for the GalNAc-T2 isoform, these support a role in lipid metabolism. The results demonstrate that GalNAc-Ts have different non-redundant glycosylation functions, which may affect distinct cellular processes. The data serves as a comprehensive resource for unique GalNAc-T substrates. Our study provides a new view of the differential regulation of the O-glycoproteome, suggesting that the plurality of GalNAc-Ts arose to regulate distinct protein functions and cellular processes.

  16. Isoform-specific expression of the Coxsackie and adenovirus receptor (CAR in neuromuscular junction and cardiac intercalated discs

    Directory of Open Access Journals (Sweden)

    Karpati George

    2004-11-01

    Full Text Available Abstract Background The Coxsackie and adenovirus receptor (CAR has a restricted expression pattern in the adult. In skeletal muscle, although CAR is expressed in immature fibers, its transcript levels are barely detectable in mature muscle. This is in contrast to the robust expression observed in the heart. However, both heart and skeletal muscle are susceptible to infection with the Coxsackie B virus which utilizes primarily CAR for cellular internalization. The specific point of viral entry in skeletal and heart muscle remains unknown. Results Using antibodies directed against the extracellular and the cytoplasmic domains of CAR, we show CAR in normal human and mouse skeletal muscle to be a novel component of the neuromuscular junction. In cardiac muscle, CAR immunoreactivity is observed at the level of intercalated discs. We demonstrate a single isoform of CAR to be expressed exclusively at the human neuromuscular junction whereas both predominant CAR isoforms are expressed at the intercalated discs of non-diseased human heart. Conclusion The localization of CAR to these important junctional complexes suggests that CAR may play both a structural and a regulatory role in skeletal and cardiac muscle, and that these complexes may serve as a point of entry for Coxsackie B virus.

  17. PKC isoforms interact with and phosphorylate DNMT1

    Directory of Open Access Journals (Sweden)

    Pradhan Sriharsa

    2011-05-01

    Full Text Available Abstract Background DNA methyltransferase 1 (DNMT1 has been shown to be phosphorylated on multiple serine and threonine residues, based on cell type and physiological conditions. Although recent studies have suggested that protein kinase C (PKC may be involved, the individual contribution of PKC isoforms in their ability to phosphorylate DNMT1 remains unknown. The PKC family consists of at least 12 isoforms that possess distinct differences in structure, substrate requirement, expression and localization. Results Here we show that PKCα, βI, βII, δ, γ, η, ζ and μ preferentially phosphorylate the N-terminal domain of human DNMT1. No such phosphorylation of DNMT1 was observed with PKCε. Using PKCζ as a prototype model, we also found that PKC physically interacts with and phosphorylates DNMT1. In vitro phosphorylation assays conducted with recombinant fragments of DNMT1 showed that PKCζ preferentially phosphorylated the N-terminal region of DNMT1. The interaction of PKCζ with DNMT1 was confirmed by GST pull-down and co-immunoprecipitation experiments. Co-localization experiments by fluorescent microscopy further showed that endogenous PKCζ and DNMT1 were present in the same molecular complex. Endogenous PKCζ activity was also detected when DNMT1 was immunoprecipitated from HEK-293 cells. Overexpression of both PKCζ and DNMT1 in HEK-293 cells, but not of either alone, reduced the methylation status of genes distributed across the genome. Moreover, in vitro phosphorylation of DNMT1 by PKCζ reduced its methytransferase activity. Conclusions Our results indicate that phosphorylation of human DNMT1 by PKC is isoform-specific and provides the first evidence of cooperation between PKCζ and DNMT1 in the control of the DNA methylation patterns of the genome.

  18. Alternative-splicing-mediated gene expression

    Science.gov (United States)

    Wang, Qianliang; Zhou, Tianshou

    2014-01-01

    Alternative splicing (AS) is a fundamental process during gene expression and has been found to be ubiquitous in eukaryotes. However, how AS impacts gene expression levels both quantitatively and qualitatively remains to be fully explored. Here, we analyze two common models of gene expression, each incorporating a simple splice mechanism that a pre-mRNA is spliced into two mature mRNA isoforms in a probabilistic manner. In the constitutive expression case, we show that the steady-state molecular numbers of two mature mRNA isoforms follow mutually independent Poisson distributions. In the bursting expression case, we demonstrate that the tail decay of the steady-state distribution for both mature mRNA isoforms that in general are not mutually independent can be characterized by the product of mean burst size and splicing probability. In both cases, we find that AS can efficiently modulate both the variability (measured by variance) and the noise level of the total mature mRNA, and in particular, the latter is always lower than the noise level of the pre-mRNA, implying that AS always reduces the noise. These results altogether reveal that AS is a mechanism of efficiently controlling the gene expression noise.

  19. E1A activates transcription of p73 and Noxa to induce apoptosis.

    Science.gov (United States)

    Flinterman, Marcella; Guelen, Lars; Ezzati-Nik, Samira; Killick, Richard; Melino, Gerry; Tominaga, Kazuya; Mymryk, Joe S; Gäken, Joop; Tavassoli, Mahvash

    2005-02-18

    p73, a member of the p53 family of proteins, transcriptionally activates a number of genes involved in the control of cell cycle and apoptosis. Overexpression of p73 was detected in a large number of primary head and neck cancers, and in the established cell lines examined, these all contained inactivating p53 mutations. The significance of p73 overexpression in the pathogenesis of head and neck cancer is currently unclear. We have shown that the expression of adenovirus 5 E1A in a panel of head and neck cancer cell lines induces apoptosis independently of their p53 status. In this study we examined the role of p73 and its transcriptional targets in E1A-mediated induction of apoptosis. E1A expression resulted in significant activation of the TAp73 promoter but had no effect on the alternative, DeltaNp73 promoter. E1A also increased expression of endogenous TAp73 mRNA and protein. E1A mutants lacking the p300- and/or pRB-binding sites showed reduced ability to activate the TAp73 promoter. Additionally, mutations in the E2F1-binding sites in the TAp73 promoter impaired activation by E1A. Importantly, expression of the 13S isoform of E1A substantially induced the p53 apoptotic target Noxa in several p53-deficient cancer cell lines. Our results indicate that E1A activation of p73 and the p53 apoptotic target Noxa can occur in the absence of a functional p53. This activation is likely to play a key role in the mechanism of p53-independent apoptosis induced by E1A in some cancers and may provide an avenue for future cancer therapies. PMID:15572378

  20. Functional differences between L- and T-plastin isoforms

    OpenAIRE

    1994-01-01

    Fimbrins/plastins are a family of highly conserved actin-bundling proteins. They are present in all eukaryotic cells including yeast, but each isoform displays a remarkable tissue specificity. T-plastin is normally found in epithelial and mesenchymal cells while L-plastin is present in hematopoietic cells. However, L-plastin has been also found in tumor cells of non-hematopoietic origin (Lin, C.-S., R. H. Aebersold, S. B. Kent, M. Varma, and J. Leavitt. 1988. Mol. Cell. Biol. 8:4659-4668; Lin...

  1. Soluble malate dehydrogenase of Geophagus brasiliensis (Cichlidae, Perciformes: isolated isoforms and kinetics properties

    Directory of Open Access Journals (Sweden)

    Maria Regina de Aquino-Silva

    2008-01-01

    Full Text Available Kinetic properties and thermal stabilities of Geophagus brasiliensis skeletal muscle unfractionated malate dehydrogenase (MDH, EC 1.1.1.37 and its isolated isoforms were analyzed to examine a possible sMDH-B* locus duplication in a fixation process influenced by genetic drift. Two optimal pHs were detected: 7.5 for AB1 unfractionated muscle phenotype and its B1 isoform, and 8.0 for AB1B2 unfractionated muscle phenotype, A and B2 isoforms. While G. brasiliensis A isoform could be characterized as thermostable, the duplicated B isoform cannot be assumed as thermolabile. Km values for isolated B2 isoforms were 1.6 times lower than for B1. A duplication event in progress best explains the electrophoretic six-band pattern detected in G. brasiliensis, which would be caused by genetic drift.

  2. Cosmic alternatives?

    Science.gov (United States)

    Gregory, Ruth

    2009-04-01

    "Cosmologists are often in error but never in doubt." This pithy characterization by the Soviet physicist Lev Landau sums up the raison d'être of Facts and Speculations in Cosmology. Authors Jayant Narlikar and Geoffrey Burbidge are proponents of a "steady state" theory of cosmology, and they argue that the cosmological community has become fixated on a "Big Bang" dogma, suppressing alternative viewpoints. This book very much does what it says on the tin: it sets out what is known in cosmology, and puts forward the authors' point of view on an alternative to the Big Bang.

  3. Epimorphin is a novel regulator of the progesterone receptor isoform-a.

    Science.gov (United States)

    Bascom, Jamie L; Radisky, Derek C; Koh, Eileen; Fata, Jimmie E; Lo, Alvin; Mori, Hidetoshi; Roosta, Neda; Hirai, Yohei; Bissell, Mina J

    2013-09-15

    Epimorphin/syntaxin-2 is a membrane-tethered protein localized extracellularly (Epim) and intracellularly (Stx-2). The extracellular form Epim stimulates morphogenic processes in a range of tissues, including in murine mammary glands where its overexpression in luminal epithelial cells is sufficient to drive hyperplasia and neoplasia. We analyzed WAP-Epim transgenic mice to gain insight into how Epim promotes malignancy. Ectopic overexpression of Epim during postnatal mammary gland development led to early side-branching onset, precocious bud formation, and increased proliferation of mammary epithelial cells. Conversely, peptide-based inhibition of Epim function reduced side branching. Because increased side branching and hyperplasia occurs similarly in mice upon overexpression of the progesterone receptor isoform-a (Pgr-a), we investigated whether Epim exhibits these phenotypes through Pgr modulation. Epim overexpression indeed led to a steep upregulation of both total Pgr mRNA and Pgr-a protein levels. Notably, the Pgr antagonist RU486 abrogated Epim-induced ductal side branching, mammary epithelial cell proliferation, and bud formation. Evaluation of Epim signaling in a three-dimensional ex vivo culture system showed that its action was dependent on binding to its extracellular receptor, integrin-αV, and on matrix metalloproteinase 3 activity downstream of Pgr-a. These findings elucidate a hitherto unknown transcriptional regulator of Pgr-a, and shed light on how overexpression of Epim leads to malignancy. PMID:23867473

  4. Metallothionein 1 Isoform Gene Expression Induced by Cadmium in Human Peripheral Blood Lymphocytes

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To study the gene expression of metallothionein 1 (MT-1) isoforms in human peripheral blood lymphocytes (HPBLs). Methods The expression of mRNA representing the seven active MT-1 genes was determined in HPBLs by quantitative RT-PCR before and after exposure to cadmium. Results Basal expressions of MT-1X, and MT-1A in HPBLs were similar to expression of housekeeping gene. In contrast, the basal gene expressions of MT-1H, 1F, 1E, and 1G were a little transcripts in human HPBLs. No signal was detected for MT-1B. There was a sex difference (P<0.05). in basal gene expression of MT-1E. The levels of gene expression of MT-1A, 1E, 1F, 1G, 1H, and 1X increased, but the level of MT-1B did not increase after exposure to cadmium. Conclusions Gene expressions of MT-1G, MT-1H, MT-1F, and MT-1X in HPBLs can be used as a potential biomarker of cadmium exposure.

  5. Estrogen-related receptors stimulate pyruvate dehydrogenase kinase isoform 4 gene expression.

    Science.gov (United States)

    Zhang, Yi; Ma, Ke; Sadana, Prabodh; Chowdhury, Farhana; Gaillard, Stephanie; Wang, Fang; McDonnell, Donald P; Unterman, Terry G; Elam, Marshall B; Park, Edwards A

    2006-12-29

    The pyruvate dehydrogenase complex (PDC) catalyzes the conversion of pyruvate to acetyl-CoA in mitochondria and is a key regulatory enzyme in the oxidation of glucose to acetyl-CoA. Phosphorylation of PDC by the pyruvate dehydrogenase kinases (PDK2 and PDK4) inhibits PDC activity. Expression of the PDK genes is elevated in diabetes, leading to the decreased oxidation of pyruvate to acetyl-CoA. In these studies we have investigated the transcriptional regulation of the PDK4 gene by the estrogen-related receptors (ERRalpha and ERRgamma). The ERRs are orphan nuclear receptors whose physiological roles include the induction of fatty acid oxidation in heart and muscle. Previously, we found that the peroxisome proliferator-activated receptor gamma coactivator (PGC-1alpha) stimulates the expression of PDK4. Here we report that ERRalpha and ERRgamma stimulate the PDK4 gene in hepatoma cells, suggesting a novel role for ERRs in controlling pyruvate metabolism. In addition, both ERR isoforms recruit PGC-1alpha to the PDK4 promoter. Insulin, which decreases the expression of the PDK4 gene, inhibits the induction of PDK4 by ERRalpha and ERRgamma. The forkhead transcription factor (FoxO1) binds the PDK4 gene and contributes to the induction of PDK4 by ERRs and PGC-1alpha. Insulin suppresses PDK4 expression in part through the dissociation of FoxO1 and PGC-1alpha from the PDK4 promoter. Our data demonstrate a key role for the ERRs in the induction of hepatic PDK4 gene expression. PMID:17079227

  6. A powerful method for transcriptional profiling of specific cell types in eukaryotes: laser-assisted microdissection and RNA sequencing.

    Directory of Open Access Journals (Sweden)

    Marc W Schmid

    Full Text Available The acquisition of distinct cell fates is central to the development of multicellular organisms and is largely mediated by gene expression patterns specific to individual cells and tissues. A spatially and temporally resolved analysis of gene expression facilitates the elucidation of transcriptional networks linked to cellular identity and function. We present an approach that allows cell type-specific transcriptional profiling of distinct target cells, which are rare and difficult to access, with unprecedented sensitivity and resolution. We combined laser-assisted microdissection (LAM, linear amplification starting from <1 ng of total RNA, and RNA-sequencing (RNA-Seq. As a model we used the central cell of the Arabidopsis thaliana female gametophyte, one of the female gametes harbored in the reproductive organs of the flower. We estimated the number of expressed genes to be more than twice the number reported previously in a study using LAM and ATH1 microarrays, and identified several classes of genes that were systematically underrepresented in the transcriptome measured with the ATH1 microarray. Among them are many genes that are likely to be important for developmental processes and specific cellular functions. In addition, we identified several intergenic regions, which are likely to be transcribed, and describe a considerable fraction of reads mapping to introns and regions flanking annotated loci, which may represent alternative transcript isoforms. Finally, we performed a de novo assembly of the transcriptome and show that the method is suitable for studying individual cell types of organisms lacking reference sequence information, demonstrating that this approach can be applied to most eukaryotic organisms.

  7. A novel human-specific splice isoform alters the critical C-terminus of Survival Motor Neuron protein

    Science.gov (United States)

    Seo, Joonbae; Singh, Natalia N.; Ottesen, Eric W.; Lee, Brian M.; Singh, Ravindra N.

    2016-01-01

    Spinal muscular atrophy (SMA), a leading genetic disease of children and infants, is caused by mutations or deletions of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of SMN1 due to skipping of exon 7. SMN2 predominantly produces SMNΔ7, an unstable protein. Here we report exon 6B, a novel exon, generated by exonization of an intronic Alu-like sequence of SMN. We validate the expression of exon 6B-containing transcripts SMN6B and SMN6BΔ7 in human tissues and cell lines. We confirm generation of SMN6B transcripts from both SMN1 and SMN2. We detect expression of SMN6B protein using antibodies raised against a unique polypeptide encoded by exon 6B. We analyze RNA-Seq data to show that hnRNP C is a potential regulator of SMN6B expression and demonstrate that SMN6B is a substrate of nonsense-mediated decay. We show interaction of SMN6B with Gemin2, a critical SMN-interacting protein. We demonstrate that SMN6B is more stable than SMNΔ7 and localizes to both the nucleus and the cytoplasm. Our finding expands the diversity of transcripts generated from human SMN genes and reveals a novel protein isoform predicted to be stably expressed during conditions of stress. PMID:27481219

  8. The novel CXCL12gamma isoform encodes an unstructured cationic domain which regulates bioactivity and interaction with both glycosaminoglycans and CXCR4.

    Directory of Open Access Journals (Sweden)

    Cédric Laguri

    Full Text Available BACKGROUND: CXCL12alpha, a chemokine that importantly promotes the oriented cell migration and tissue homing of many cell types, regulates key homeostatic functions and pathological processes through interactions with its cognate receptor (CXCR4 and heparan sulfate (HS. The alternative splicing of the cxcl12 gene generates a recently identified isoform, CXCL12gamma, which structure/function relationships remain unexplored. The high occurrence of basic residues that characterize this isoform suggests however that it could feature specific regulation by HS. METHODOLOGY/PRINCIPAL FINDINGS: Using surface plasmon resonance and NMR spectroscopy, as well as chemically and recombinantly produced chemokines, we show here that CXCL12gamma first 68 amino acids adopt a structure closely related to the well described alpha isoform, followed by an unfolded C-terminal extension of 30 amino acids. Remarkably, 60% of these residues are either lysine or arginine, and most of them are clustered in typical HS binding sites. This provides the chemokine with the highest affinity for HP ever observed (Kd = 0.9 nM, and ensures a strong retention of the chemokine at the cell surface. This was due to the unique combination of two cooperative binding sites, one strictly required, found in the structured domain of the protein, the other one being the C-terminus which essentially functions by enhancing the half life of the complexes. Importantly, this peculiar C-terminus also regulates the balance between HS and CXCR4 binding, and consequently the biological activity of the chemokine. CONCLUSIONS/SIGNIFICANCE: Together these data describe an unusual binding process that gives rise to an unprecedented high affinity between a chemokine and HS. This shows that the gamma isoform of CXCL12, which features unique structural and functional properties, is optimized to ensure its strong retention at the cell surface. Thus, depending on the chemokine isoform to which it binds, HS

  9. Comparative genomic analysis reveals a novel mitochondrial isoform of human rTS protein and unusual phylogenetic distribution of the rTS gene

    Directory of Open Access Journals (Sweden)

    McGuire John J

    2005-09-01

    Full Text Available Abstract Background The rTS gene (ENOSF1, first identified in Homo sapiens as a gene complementary to the thymidylate synthase (TYMS mRNA, is known to encode two protein isoforms, rTSα and rTSβ. The rTSβ isoform appears to be an enzyme responsible for the synthesis of signaling molecules involved in the down-regulation of thymidylate synthase, but the exact cellular functions of rTS genes are largely unknown. Results Through comparative genomic sequence analysis, we predicted the existence of a novel protein isoform, rTS, which has a 27 residue longer N-terminus by virtue of utilizing an alternative start codon located upstream of the start codon in rTSβ. We observed that a similar extended N-terminus could be predicted in all rTS genes for which genomic sequences are available and the extended regions are conserved from bacteria to human. Therefore, we reasoned that the protein with the extended N-terminus might represent an ancestral form of the rTS protein. Sequence analysis strongly predicts a mitochondrial signal sequence in the extended N-terminal of human rTSγ, which is absent in rTSβ. We confirmed the existence of rTS in human mitochondria experimentally by demonstrating the presence of both rTSγ and rTSβ proteins in mitochondria isolated by subcellular fractionation. In addition, our comprehensive analysis of rTS orthologous sequences reveals an unusual phylogenetic distribution of this gene, which suggests the occurrence of one or more horizontal gene transfer events. Conclusion The presence of two rTS isoforms in mitochondria suggests that the rTS signaling pathway may be active within mitochondria. Our report also presents an example of identifying novel protein isoforms and for improving gene annotation through comparative genomic analysis.

  10. Induction of Chemokine Expression by Adiponectin In Vitro is Isoform-Dependent

    OpenAIRE

    Song, Huijuan; Chan, James; Rovin, Brad H.

    2009-01-01

    Adiponectin is reported to have both pro- and anti-inflammatory effects. Because adiponectin circulates in isoforms of various sizes, and some responses to adiponectin are isoform-dependent, it was postulated that the pro-inflammatory effects of adiponectin may isoform-specific. To test this, peripheral blood mononuclear cells (PBMC), microvascular endothelial cells (MVEC), and human glomerular mesangial cells (HMC) were treated with high or low molecular weight (HMW, LMW) recombinant human a...

  11. MetaDiff: differential isoform expression analysis using random-effects meta-regression

    OpenAIRE

    Jia, Cheng; Guan, Weihua; Yang, Amy; Xiao, Rui; Tang, W. H. Wilson; Moravec, Christine S.; Margulies, Kenneth B.; Cappola, Thomas P.; Li, Mingyao; Li, Chun

    2015-01-01

    Background RNA sequencing (RNA-Seq) allows an unbiased survey of the entire transcriptome in a high-throughput manner. A major application of RNA-Seq is to detect differential isoform expression across experimental conditions, which is of great biological interest due to its direct relevance to protein function and disease pathogenesis. Detection of differential isoform expression is challenging because of uncertainty in isoform expression estimation owing to ambiguous reads and variability i...

  12. Selective glucocorticoid receptor translational isoforms reveal glucocorticoid-induced apoptotic transcriptomes

    OpenAIRE

    Wu, I; Shin, S. C.; Cao, Y; Bender, I K; N Jafari; Feng, G.; Lin, S.; Cidlowski, J. A.; Schleimer, R. P.; Lu, N Z

    2013-01-01

    Induction of T-cell apoptosis contributes to the anti-inflammatory and antineoplastic benefits of glucocorticoids. The glucocorticoid receptor (GR) translational isoforms have distinct proapoptotic activities in osteosarcoma cells. Here we determined whether GR isoforms selectively induce apoptosis in Jurkat T lymphoblastic leukemia cells. Jurkat cells stably expressing individual GR isoforms were generated and treated with vehicle or dexamethasone (DEX). DEX induced apoptosis in cells expres...

  13. A naturally occurring 4-bp deletion in the intron 4 of p53 creates a spectrum of novel p53 isoforms with anti-apoptosis function

    OpenAIRE

    SHI, HUI; Tao, Ting; Huang, Delai; Ou, Zhao; Chen, Jun; Peng, Jinrong

    2014-01-01

    p53 functions as a tumor suppressor by transcriptionally regulating the expression of genes involved in controlling cell proliferation or apoptosis. p53 and its isoform Δ133p53/Δ113p53 form a negative regulation loop in that p53 activates the expression of Δ133p53/Δ113p53 while Δ133p53/Δ113p53 specifically antagonizes p53 apoptotic activity. This pathway is especially important to safeguard the process of embryogenesis because sudden activation of p53 by DNA damage signals or developmental st...

  14. Alternative splicing and trans-splicing events revealed by analysis of the Bombyx mori transcriptome

    OpenAIRE

    Shao, Wei; Zhao, Qiong-Yi; Wang, Xiu-Ye; Xu, Xin-Yan; Tang, Qing; Li, Muwang; Li, Xuan; Xu, Yong-Zhen

    2012-01-01

    Alternative splicing and trans-splicing events have not been systematically studied in the silkworm Bombyx mori. Here, the silkworm transcriptome was analyzed by RNA-seq. The authors identified 320 novel genes, modified 1140 gene models, and found thousands of alternative splicing and 58 trans-splicing events. Studies of three SR proteins show that both their alternative splicing patterns and mRNA products are conserved from insect to human, and one isoform of Srsf6 with a retained intron is ...

  15. Growing Alternatives

    DEFF Research Database (Denmark)

    Bagger-Petersen, Mai Corlin

    2014-01-01

    From 2014, Anhui Province will pilot a reform of the residential land market in China, thus integrating rural Anhui in the national housing market. In contrast, artist and activist Ou Ning has proposed the Bishan time money currency, intending to establish an alternative economic circuit in Bishan...

  16. Prostaglandin D Synthase Isoforms from Cerebrospinal Fluid Vary with Brain Pathology

    Directory of Open Access Journals (Sweden)

    Michael G. Harrington

    2006-01-01

    Full Text Available Glutathione independent prostaglandin D synthase (Swissprot P41222, PTGDS has been identified in human cerebrospinal fluid and some changes in PTGDS in relation to disease have been reported. However, little is known of the extent that PTGDS isoforms fluctuate across a large range of congenital and acquired diseases. The purpose of this study was to examine changes in PTGDS isoforms in such a population. Spinal fluid from 22 healthy study participants (normal controls with no classifiable neurological or psychiatric diagnosis was obtained and PTGDS isoforms were identified by specific immunostaining and mass spectrometry after denaturing 2D gel electrophoresis. The PTGDS isoforms in controls consisted of five charge isoforms that were always present and a small number of occasional, low abundance isoforms. A qualitative survey of 98 different people with a wide range of congenital and acquired diseases revealed striking changes. Loss of the control isoforms occurred in congenital malformations of the nervous system. Gain of additional isoforms occurred in some degenerative, most demyelinating and vasculitic diseases, as well as in Creutzfeldt-Jakob disease. A retrospective analysis of published data that quantified relative amounts of PTGDS in multiple sclerosis, schizophrenia and Parkinson’s disease compared to controls revealed significant dysregulation. It is concluded that qualitative and quantitative fluctuations of cerebrospinal fluid PTGDS isoforms reflect both major and subtle brain pathophysiology.

  17. Battles and hijacks: noncoding transcription in plants.

    Science.gov (United States)

    Ariel, Federico; Romero-Barrios, Natali; Jégu, Teddy; Benhamed, Moussa; Crespi, Martin

    2015-06-01

    Noncoding RNAs have emerged as major components of the eukaryotic transcriptome. Genome-wide analyses revealed the existence of thousands of long noncoding RNAs (lncRNAs) in several plant species. Plant lncRNAs are transcribed by the plant-specific RNA polymerases Pol IV and Pol V, leading to transcriptional gene silencing, as well as by Pol II. They are involved in a wide range of regulatory mechanisms impacting on gene expression, including chromatin remodeling, modulation of alternative splicing, fine-tuning of miRNA activity, and the control of mRNA translation or accumulation. Recently, dual noncoding transcription by alternative RNA polymerases was implicated in epigenetic and chromatin conformation dynamics. This review integrates the current knowledge on the regulatory mechanisms acting through plant noncoding transcription.

  18. Battles and hijacks: Noncoding transcription in plants

    KAUST Repository

    Ariel, Federico

    2015-06-01

    Noncoding RNAs have emerged as major components of the eukaryotic transcriptome. Genome-wide analyses revealed the existence of thousands of long noncoding RNAs (lncRNAs) in several plant species. Plant lncRNAs are transcribed by the plant-specific RNA polymerases Pol IV and Pol V, leading to transcriptional gene silencing, as well as by Pol II. They are involved in a wide range of regulatory mechanisms impacting on gene expression, including chromatin remodeling, modulation of alternative splicing, fine-tuning of miRNA activity, and the control of mRNA translation or accumulation. Recently, dual noncoding transcription by alternative RNA polymerases was implicated in epigenetic and chromatin conformation dynamics. This review integrates the current knowledge on the regulatory mechanisms acting through plant noncoding transcription. © 2015 Elsevier Ltd.

  19. A New View of Ras Isoforms in Cancers.

    Science.gov (United States)

    Nussinov, Ruth; Tsai, Chung-Jung; Chakrabarti, Mayukh; Jang, Hyunbum

    2016-01-01

    Does small GTPase K-Ras4A have a single state or two states, one resembling K-Ras4B and the other N-Ras? A recent study of K-Ras4A made the remarkable observation that even in the absence of the palmitoyl, K-Ras4A can be active at the plasma membrane. Importantly, this suggests that K-Ras4A may exist in two distinct signaling states. In state 1, K-Ras4A is only farnesylated, like K-Ras4B; in state 2, farnesylated and palmitoylated, like N-Ras. The K-Ras4A hypervariable region sequence is positively charged, in between K-Ras4B and N-Ras. Taken together, this raises the possibility that the farnesylated but nonpalmitoylated state 1, like K-Ras4B, binds calmodulin and is associated with colorectal and other adenocarcinomas like lung cancer and pancreatic ductal adenocarcinoma. On the other hand, state 2 may be associated with melanoma and other cancers where N-Ras is a major contributor, such as acute myeloid leukemia. Importantly, H-Ras has two, singly and doubly, palmitoylated states that may also serve distinct functional roles. The multiple signaling states of palmitoylated Ras isoforms question the completeness of small GTPase Ras isoform statistics in different cancer types and call for reevaluation of concepts and protocols. They may also call for reconsideration of oncogenic Ras therapeutics. PMID:26659836

  20. A Review of Metallothionein Isoforms and their Role in Pathophysiology

    Directory of Open Access Journals (Sweden)

    Senthil kumar M

    2011-05-01

    Full Text Available Abstract The Metallothionein (MT is a protein which has several interesting biological effects and has been demonstrated increase focus on the role of MT in various biological systems in the past three decades. The studies on the role of MT were limited with few areas like apoptosis and antioxidants in selected organs even fifty years after its discovery. Now acknowledge the exploration of various isoforms of MT such as MT-I, MT-II, MT-III and MT-IV and other isoforms in various biological systems. Strong evidence exists that MT modulates complex diseases and the immune system in the body but the primary function of MT still remains unknown. This review's main objective is to explore the capability to specifically manipulate MT levels in cells and in animals to provide answers regarding how MT could impact those complex disease scenarios. The experimental result mentioned in this review related among MT, zinc, cadmium, diabetic, heart disease, bone retardation, neuro toxicity, kidney dysfunction, cancer, and brain suggest novel method for exploration and contribute significantly to the growing scientist to research further in this field.

  1. Contribution of CDP/Cux, a Transcription Factor, to Cell Cycle Progression

    Institute of Scientific and Technical Information of China (English)

    Xifeng FEI; Zhenghong QIN; Zhongqin LIANG

    2007-01-01

    CCAAT-displacement protein/Cut homeobox (CDP/Cux) was initially identified as a transcriptional repressor. However, a number of studies have now suggested that CDP/Cux is a transcriptional activator as well. Stable DNA binding activity of CDP/Cux is up-regulated at the G1/S transition by two mechanisms, dephosphorylation by the Cdc25A phosphatase and proteolytic processing to generate a 110 kDa amino-truncated isoform, CDP/Cux p110. The generation of CDP/Cux p110 stimulates the expression of reporter plasmid containing the promoter sequences of some S phase-specific-genes such as DNA polymerase α gene, dihydrofolate reductase gene, carbamoyl-phosphate synthase/aspartate carbamoyltransferase/dihydroorotase gene, and cyclin A gene. However, DNA binding activity of CDP/Cux is downregulated at G2 phase through a binding of cyclin A-cyclin-dependent kinasesl (Cdkl) to CDP/Cux.Furthermore, another CDP/Cux isoform, CDP/Cux p75, has been found to be associated with breast tumors indicating this isoform is involved in the abnormal proliferation of tumor cells. The differences in DNA binding of CDP/Cux isoforms in S and G2 phases suggest important roles of CDP/Cux in cell cycle progression. In this review, we discuss the functions of CDP/Cux with a focus on its roles in cell cycle regulation and its possible potency leading to the cell cycle reentry of neurons.

  2. Different modulation of the outputs of yeast MAPK-mediated pathways by distinct stimuli and isoforms of the dual-specificity phosphatase Msg5.

    Science.gov (United States)

    Marín, María José; Flández, Marta; Bermejo, Clara; Arroyo, Javier; Martín, Humberto; Molina, María

    2009-03-01

    The activity of protein phosphatases on mitogen-activated protein kinases (MAPKS) is essential in the modulation of the final outcome of MAPK-signalling pathways. The yeast dual-specificity phosphatase (DSP) Msg5, expressed as two isoforms of different length, dephosphorylates the MAPKs of mating and cell integrity pathways, Fus3 and Slt2, respectively, but its action on the MAPK Kss1 is unclear. Here we analyse the global impact of Msg5 on the yeast transcriptome. Both Fus3- and Slt2- but not Kss1-mediated gene expression is induced in cells lacking Msg5. However, although these cells show high Slt2 phosphorylation, the Rlm1-dependent Slt2-regulated transcriptional response is weak. Therefore, mechanisms concomitant with Slt2 phosphorylation are required for a strong Rlm1 activation. The limited Slt2 activity on Rlm1 is not a specific effect on this substrate but a consequence of its low kinase activity in msg5Delta cells. Lack of Msg5 does not increase Kss1 phosphorylation although both proteins physically interact. Both Msg5 isoforms interact similarly with Slt2, whereas the long form binds Fus3 with higher affinity and consequently down-regulates it more efficiently than the short one. We propose that specific binding of DSP isoforms to distinct MAPKs provides a novel mechanism for fine tuning different pathways by the same phosphatase. PMID:19123063

  3. Peroxisome proliferator-activated receptor gamma recruits the positive transcription elongation factor b complex to activate transcription and promote adipogenesis

    DEFF Research Database (Denmark)

    Iankova, Irena; Petersen, Rasmus K; Annicotte, Jean-Sébastien;

    2006-01-01

    in adipogenesis. In this study we show that the expression of the cdk9 p55 isoform is highly regulated during 3T3-L1 adipocyte differentiation at RNA and protein levels. Furthermore, cdk9, as well as cyclin T1 and cyclin T2, shows differences in nuclear localization at distinct stages of adipogenesis...... with and phosphorylation of peroxisome proliferator-activated receptor gamma (PPARgamma), which is the master regulator of this process, on the promoter of PPARgamma target genes. PPARgamma-cdk9 interaction results in increased transcriptional activity of PPARgamma and therefore increased adipogenesis....

  4. Expression of TP53 isoforms p53β or p53γ enhances chemosensitivity in TP53(null cell lines.

    Directory of Open Access Journals (Sweden)

    Elisabeth Silden

    Full Text Available The carboxy-terminal truncated p53 alternative spliced isoforms, p53β and p53γ, are expressed at disparate levels in cancer and are suggested to influence treatment response and therapy outcome. However, their functional role in cancer remains to be elucidated. We investigated their individual functionality in the p53(null background of cell lines H1299 and SAOS-2 by stable retroviral transduction or transient transfection. Expression status of p53β and p53γ protein was found to correlate with increased response to camptothecin and doxorubicin chemotherapy. Decreased DNA synthesis and clonogenicity in p53β and p53γ congenic H1299 was accompanied by increased p21((CIP1/WAF1, Bax and Mdm2 proteins. Chemotherapy induced p53 isoform degradation, most prominent for p53γ. The proteasome inhibitor bortezomib substantially increased basal p53γ protein level, while the level of p53β protein was unaffected. Treatment with dicoumarol, a putative blocker of the proteasome-related NAD(PH quinone oxidoreductase NQO1, effectively attenuated basal p53γ protein level in spite of bortezomib treatment. Although in vitro proliferation and clonogenicity assays indicated a weak suppressive effect by p53β and p53γ expression, studies of in vivo subcutaneous H1299 tumor growth demonstrated a significantly increased growth by expression of either p53 isoforms. This study suggests that p53β and p53γ share functionality in chemosensitizing and tumor growth enhancement but comprise distinct regulation at the protein level.

  5. Expression of TP53 isoforms p53β or p53γ enhances chemosensitivity in TP53(null) cell lines.

    Science.gov (United States)

    Silden, Elisabeth; Hjelle, Sigrun M; Wergeland, Line; Sulen, André; Andresen, Vibeke; Bourdon, Jean-Christophe; Micklem, David R; McCormack, Emmet; Gjertsen, Bjørn Tore

    2013-01-01

    The carboxy-terminal truncated p53 alternative spliced isoforms, p53β and p53γ, are expressed at disparate levels in cancer and are suggested to influence treatment response and therapy outcome. However, their functional role in cancer remains to be elucidated. We investigated their individual functionality in the p53(null) background of cell lines H1299 and SAOS-2 by stable retroviral transduction or transient transfection. Expression status of p53β and p53γ protein was found to correlate with increased response to camptothecin and doxorubicin chemotherapy. Decreased DNA synthesis and clonogenicity in p53β and p53γ congenic H1299 was accompanied by increased p21((CIP1/WAF1)), Bax and Mdm2 proteins. Chemotherapy induced p53 isoform degradation, most prominent for p53γ. The proteasome inhibitor bortezomib substantially increased basal p53γ protein level, while the level of p53β protein was unaffected. Treatment with dicoumarol, a putative blocker of the proteasome-related NAD(P)H quinone oxidoreductase NQO1, effectively attenuated basal p53γ protein level in spite of bortezomib treatment. Although in vitro proliferation and clonogenicity assays indicated a weak suppressive effect by p53β and p53γ expression, studies of in vivo subcutaneous H1299 tumor growth demonstrated a significantly increased growth by expression of either p53 isoforms. This study suggests that p53β and p53γ share functionality in chemosensitizing and tumor growth enhancement but comprise distinct regulation at the protein level. PMID:23409163

  6. A Splice-Isoform of Vesicle-associated Membrane Protein-1 (VAMP-1) Contains a Mitochondrial Targeting Signal

    Science.gov (United States)

    Isenmann, Sandra; Khew-Goodall, Yeesim; Gamble, Jennifer; Vadas, Mathew; Wattenberg, Binks W.

    1998-01-01

    Screening of a library derived from primary human endothelial cells revealed a novel human isoform of vesicle-associated membrane protein-1 (VAMP-1), a protein involved in the targeting and/or fusion of transport vesicles to their target membrane. We have termed this novel isoform VAMP-1B and designated the previously described isoform VAMP-1A. VAMP-1B appears to be an alternatively spliced form of VAMP-1. A similar rat splice variant of VAMP-1 (also termed VAMP-1B) has recently been reported. Five different cultured cell lines, from different lineages, all contained VAMP-1B but little or no detectable VAMP-1A mRNA, as assessed by PCR. In contrast, brain mRNA contained VAMP-1A but no VAMP-1B. The VAMP-1B sequence encodes a protein identical to VAMP-1A except for the carboxy-terminal five amino acids. VAMP-1 is anchored in the vesicle membrane by a carboxy-terminal hydrophobic sequence. In VAMP-1A the hydrophobic anchor is followed by a single threonine, which is the carboxy-terminal amino acid. In VAMP-1B the predicted hydrophobic membrane anchor is shortened by four amino acids, and the hydrophobic sequence is immediately followed by three charged amino acids, arginine-arginine-aspartic acid. Transfection of human endothelial cells with epitope-tagged VAMP-1B demonstrated that VAMP-1B was targeted to mitochondria whereas VAMP-1A was localized to the plasma membrane and endosome-like structures. Analysis of C-terminal mutations of VAMP-1B demonstrated that mitochondrial targeting depends both on the addition of positive charge at the C terminus and a shortened hydrophobic membrane anchor. These data suggest that mitochondria may be integrated, at least at a mechanistic level, to the vesicular trafficking pathways that govern protein movement between other organelles of the cell. PMID:9658161

  7. Differential sensitivity of rat voltage-sensitive sodium channel isoforms to pyrazoline-type insecticides.

    Science.gov (United States)

    Silver, Kristopher S; Soderlund, David M

    2006-07-15

    Pyrazoline-type insecticides are potent inhibitors of insect and mammalian voltage-sensitive sodium channels. In mammals, there are nine sodium channel alpha subunit isoforms that have unique distributions and pharmacological properties, but no published data exist that compare the relative sensitivity of these different mammalian sodium channel isoforms to inhibition by pyrazoline-type insecticides. This study employed the Xenopus oocyte expression system to examine the relative sensitivity of rat Na(v)1.2a, Na(v)1.4, Na(v)1.5, and Na(v)1.8 sodium channel alpha subunit isoforms to the pyrazoline-type insecticides indoxacarb, DCJW, and RH 3421. Additionally, we assessed the effect of coexpression with the rat beta1 auxiliary subunit on the sensitivity of the Na(v)1.2a and Na(v)1.4 isoforms to these compounds. The relative sensitivity of the four sodium channel alpha subunits differed for each of the three compounds we examined. With DCJW, the order of sensitivity was Na(v)1.4 > Na(v)1.2a > Na(v)1.5 > Na(v)1.8. In contrast, the relative sensitivity of these isoforms to indoxacarb differed from that to DCJW: the Na(v)1.8 isoform was most sensitive, the Na(v)1.4 isoform was completely insensitive, and the sensitivities of the Na(v)1.5 and Na(v)1.2a isoforms were intermediate between these two extremes. Moreover, the pattern of sensitivity to RH 3421 among these four isoforms was different from that for either indoxacarb or DCJW: the Na(v)1.4 isoform was most sensitive to RH 3421, whereas the sensitivities of the remaining three isoforms were substantially less than that of the Na(v)1.4 isoform and were approximately equivalent. The only statistically significant effect of coexpression of either the Na(v)1.2a or Na(v)1.4 isoforms with the beta1 subunit was the modest reduction in the sensitivity of the Na(v)1.2a isoform to RH 3421. These results demonstrate that mammalian sodium channel isoforms differ in their sensitivities to pyrazoline-type insecticides.

  8. Expression of phosphoinositide-specific phospholipase C isoforms in native endothelial cells.

    Directory of Open Access Journals (Sweden)

    Delphine M Béziau

    Full Text Available Phospholipase C (PLC comprises a superfamily of enzymes that play a key role in a wide array of intracellular signalling pathways, including protein kinase C and intracellular calcium. Thirteen different mammalian PLC isoforms have been identified and classified into 6 families (PLC-β, γ, δ, ε, ζ and η based on their biochemical properties. Although the expression of PLC isoforms is tissue-specific, concomitant expression of different PLC has been reported, suggesting that PLC family is involved in multiple cellular functions. Despite their critical role, the PLC isoforms expressed in native endothelial cells (ECs remains undetermined. A conventional PCR approach was initially used to elucidate the mRNA expression pattern of PLC isoforms in 3 distinct murine vascular beds: mesenteric (MA, pulmonary (PA and middle cerebral arteries (MCA. mRNA encoding for most PLC isoforms was detected in MA, MCA and PA with the exception of η2 and β2 (only expressed in PA, δ4 (only expressed in MCA, η1 (expressed in all but MA and ζ (not detected in any vascular beds tested. The endothelial-specific PLC expression was then sought in freshly isolated ECs. Interestingly, the PLC expression profile appears to differ across the investigated arterial beds. While mRNA for 8 of the 13 PLC isoforms was detected in ECs from MA, two additional PLC isoforms were detected in ECs from PA and MCA. Co-expression of multiple PLC isoforms in ECs suggests an elaborate network of signalling pathways: PLC isoforms may contribute to the complexity or diversity of signalling by their selective localization in cellular microdomains. However in situ immunofluorescence revealed a homogeneous distribution for all PLC isoforms probed (β3, γ2 and δ1 in intact endothelium. Although PLC isoforms play a crucial role in endothelial signal transduction, subcellular localization alone does not appear to be sufficient to determine the role of PLC in the signalling microdomains found

  9. The implications of alternative splicing in the ENCODE protein complement

    DEFF Research Database (Denmark)

    Tress, Michael L.; Martelli, Pier Luigi; Frankish, Adam;

    2007-01-01

    Alternative premessenger RNA splicing enables genes to generate more than one gene product. Splicing events that occur within protein coding regions have the potential to alter the biological function of the expressed protein and even to create new protein functions. Alternative splicing has been...... suggested as one explanation for the discrepancy between the number of human genes and functional complexity. Here, we carry out a detailed study of the alternatively spliced gene products annotated in the ENCODE pilot project. We find that alternative splicing in human genes is more frequent than has...... commonly been suggested, and we demonstrate that many of the potential alternative gene products will have markedly different structure and function from their constitutively spliced counterparts. For the vast majority of these alternative isoforms, little evidence exists to suggest they have a role...

  10. Different phosphoinositide 3-kinase isoforms mediate carrageenan nociception and inflammation.

    Science.gov (United States)

    Pritchard, Rory A; Falk, Lovissa; Larsson, Mathilda; Leinders, Mathias; Sorkin, Linda S

    2016-01-01

    Phosphoinositide 3-kinases (PI3Ks) participate in signal transduction cascades that can directly activate and sensitize nociceptors and enhance pain transmission. They also play essential roles in chemotaxis and immune cell infiltration leading to inflammation. We wished to determine which PI3K isoforms were involved in each of these processes. Lightly anesthetized rats (isoflurane) were injected subcutaneously with carrageenan in their hind paws. This was preceded by a local injection of 1% DMSO vehicle or an isoform-specific antagonist to PI3K-α (compound 15-e), -β (TGX221), -δ (Cal-101), or -γ (AS252424). We measured changes in the mechanical pain threshold and spinal c-Fos expression (4 hours after injection) as indices of nociception. Paw volume, plasma extravasation (Evans blue, 0.3 hours after injection), and neutrophil (myeloperoxidase; 1 hour after injection) and macrophage (CD11b+; 4 hour after injection) infiltration into paw tissue were the measured inflammation endpoints. Only PI3K-γ antagonist before treatment reduced the carrageenan-induced pain behavior and spinal expression of c-Fos (P ≤ 0.01). In contrast, pretreatment with PI3K-α, -δ, and-γ antagonists reduced early indices of inflammation. Plasma extravasation PI3K-α (P ≤ 0.05), -δ (P ≤ 0.05), and -γ (P ≤ 0.01), early (0-2 hour) edema -α (P ≤ 0.05), -δ (P ≤ 0.001), and -γ (P ≤ 0.05), and neutrophil infiltration (all P ≤ 0.001) were all reduced compared to vehicle pretreatment. Later (2-4 hour), edema and macrophage infiltration (P ≤ 0.05) were reduced by only the PI3K-δ and -γ isoform antagonists, with the PI3K-δ antagonist having a greater effect on edema. PI3K-β antagonism was ineffective in all paradigms. These data indicate that pain and clinical inflammation are pharmacologically separable and may help to explain clinical conditions in which inflammation naturally wanes or goes into remission, but pain continues unabated.

  11. Alternative Polyadenylation: Another Foe in Cancer.

    Science.gov (United States)

    Erson-Bensan, Ayse Elif; Can, Tolga

    2016-06-01

    Advancements in sequencing and transcriptome analysis methods have led to seminal discoveries that have begun to unravel the complexity of cancer. These studies are paving the way toward the development of improved diagnostics, prognostic predictions, and targeted treatment options. However, it is clear that pieces of the cancer puzzle are still missing. In an effort to have a more comprehensive understanding of the development and progression of cancer, we have come to appreciate the value of the noncoding regions of our genomes, partly due to the discovery of miRNAs and their significance in gene regulation. Interestingly, the miRNA-mRNA interactions are not solely dependent on variations in miRNA levels. Instead, the majority of genes harbor multiple polyadenylation signals on their 3' UTRs (untranslated regions) that can be differentially selected on the basis of the physiologic state of cells, resulting in alternative 3' UTR isoforms. Deregulation of alternative polyadenylation (APA) has increasing interest in cancer research, because APA generates mRNA 3' UTR isoforms with potentially different stabilities, subcellular localizations, translation efficiencies, and functions. This review focuses on the link between APA and cancer and discusses the mechanisms as well as the tools available for investigating APA events in cancer. Overall, detection of deregulated APA-generated isoforms in cancer may implicate some proto-oncogene activation cases of unknown causes and may help the discovery of novel cases; thus, contributing to a better understanding of molecular mechanisms of cancer. Mol Cancer Res; 14(6); 507-17. ©2016 AACR. PMID:27075335

  12. Activation of AMPK alpha and gamma-isoform complexes in the intact ischemic rat heart

    Science.gov (United States)

    AMP-activated protein kinase (AMPK) plays a key role in modulating cellular metabolic processes. AMPK, a serine-threonine kinase, is a heterotrimeric complex of catalytic alpha-subunits and regulatory beta- and gamma-subunits with multiple isoforms. Mutations in the cardiac gamma(2)-isoform have bee...

  13. Activation of antithrombin III isoforms by heparan sulphate glycosaminoglycans and other sulphated polysaccharides.

    Science.gov (United States)

    Carlson, T H; Kolman, M R; Piepkorn, M

    1995-07-01

    Antithrombin III occurs naturally as two functionally distinct molecular species that differ in glycosylation at Asn135. Whereas the predominant, glycosylated isoform has high affinity for heparin, a quantitatively minor isoform lacking glycosylation at that site displays relatively higher affinity for both heparins and heparinoids. We characterized the ability of various sulphated polysaccharides to potentiate the rates of thrombin inhibition by the isoforms. High-molecular-weight dextran sulphate was the most effective of those studied, increasing thrombin inhibition by the higher-affinity antithrombin III isoform up to five-fold more efficiently than did heparin fractions with low-affinity for antithrombin III. In addition, dextran sulphate activated the higher-aff