WorldWideScience

Sample records for alternative proposal acoustic

  1. Sustainable Energy. Alternative proposals to Mercosur

    Energy Technology Data Exchange (ETDEWEB)

    Honty, G. [Centro de Estudios Uruguayo de Tecnologias CEUTA, Montevideo (Uruguay)

    2002-08-01

    After a brief assessment of the Mercosur energy sector (Mercosur is a regional trade agreement subscribed to by Argentina, Brazil, Paraguay and Uruguay) an overview is given of proposals for a sustainable energy integration in the Mercosur: general proposals by sector, specific proposals for the larger economies (Argentina and Brazil), and means of implementation.

  2. International proposal for an acoustic classification scheme for dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2014-01-01

    European countries have introduced classification schemes. The schemes typically include four classes. Comparative studies have shown significant discrepancies between countries due to national development of schemes. The diversity is an obstacle for exchange of construction experience for different...... classes, implying also trade barriers. Thus, a harmonized classification scheme would be useful, and the European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", running 2009-2013 with members from 32 countries, including three overseas...... countries, had as one of the main objectives preparation of a proposal for a harmonized acoustic classification scheme. The proposal developed has been approved as an ISO/TC43/SC2 work item, and a working group established. This paper describes the proposal, the background and the perspectives....

  3. Acoustic rhinometry (AR): An Alternative Method to Image Nasal Airway Geometry

    DEFF Research Database (Denmark)

    Straszek, Sune; Pedersen, O.F.

      ACOUSTIC RHINOMETRY (AR): AN ALTERNATIVE METHOD TO IMAGE NASAL AIRWAY GEOMETRY.  INTRODUCTION AND BACKGROUND:  In human studies the acoustic reflection technique was first applied to describe the area-distance relationship of the lower airways, but later the acoustic reflection technique appeared...... studies in laboratory animals more reliable. To accomplish this we hope to receive new input from adjacent fields of research.  [OFP1] Det er ikke nogen piezoelektrisk mikrofon. Det er en ganske billig kondensator mikrofon. [OFP2] Jeg tror du kan nøjes med små figurer1) Indfaldende og reflekteret kurve...

  4. Cruise ship care: a proposed alternative to assisted living facilities.

    Science.gov (United States)

    Lindquist, Lee A; Golub, Robert M

    2004-11-01

    Options for elderly patients who can no longer remain independent are limited. Most choices involve assisted living facilities, 24-hour caregivers, or nursing homes. State and federal assistance for payment for individual care is limited, and seniors usually pay for most costs out of pocket. For those patients who have the means to afford assisted living centers or nursing homes, "cruise ship care" is proposed. Traveling alongside traditional tourists, groups of seniors would live on cruise ships for extended periods of time. Cruise ships are similar to assisted living centers in the amenities provided, costs per month, and many other areas. This article begins with an examination of the needs of seniors in assisted living facilities and then explores the feasibility of cruise ship care in answering those needs. Similarities between cruise ship travel and assisted living care, as well as the monetary costs of both options, are defined. A decision tree with selections for non-independent care for seniors was created including cruise ship care as an alternative. Using a Markov model over 20 years, a representative cost-effectiveness analysis was performed that showed that cruises were priced similarly to assisted living centers and were more efficacious. Proposed ways that cruise ship companies could further accommodate the needs of seniors interested in this option are also suggested. Implementation for cruise ship care on the individual basis is also presented. Ultimately, it is wished to introduce a feasible and possibly more desirable option to seniors who can no longer remain independent.

  5. Applied acoustics concepts, absorbers, and silencers for acoustical comfort and noise control alternative solutions, innovative tools, practical examples

    CERN Document Server

    Fuchs, Helmut V

    2013-01-01

    The author gives a comprehensive overview of materials and components for noise control and acoustical comfort. Sound absorbers must meet acoustical and architectural requirements, which fibrous or porous material alone can meet. Basics and applications are demonstrated, with representative examples for spatial acoustics, free-field test facilities and canal linings. Acoustic engineers and construction professionals will find some new basic concepts and tools for developments in order to improve acoustical comfort. Interference absorbers, active resonators and micro-perforated absorbers of different materials and designs complete the list of applications.

  6. Acoustic fluidization for earthquakes?

    OpenAIRE

    Sornette, D.; Sornette, A.

    2000-01-01

    Melosh [1996] has suggested that acoustic fluidization could provide an alternative to theories that are invoked as explanations for why some crustal faults appear to be weak. We show that there is a subtle but profound inconsistency in the theory that unfortunately invalidates the results. We propose possible remedies but must acknowledge that the relevance of acoustic fluidization remains an open question.

  7. The vestibular evoked response to linear, alternating, acceleration pulses without acoustic masking as a parameter of vestibular function

    NARCIS (Netherlands)

    Oei, MLYM; Segenhout, JM; Wit, HP; Albers, FWJ

    2001-01-01

    In this study, short latency vestibular evoked potentials (VsEPs) were recorded in five guinea pigs in response to alternating linear acceleration pulses with and without acoustic masking. A steel bolt was implanted in the skull and coupled to a shaker. Linear acceleration pulses (n = 400) in upward

  8. A Proposed Alternative Measure for Climate Change Potential

    Science.gov (United States)

    DeGroff, F. A.

    2015-12-01

    Background/Issue There currently exists no comprehensive metric to measure and value anthropogenic changes in carbon flux between geospheric carbon sinks. We propose that changes in carbon residence time within geospheres be used as a metric to assess anthropogenic changes in carbon flux, and the term 'carbon quality' (cq) be used to describe such changes. Carbon residence time represents the inverse of carbon flux; as carbon flux increases, the corresponding cq will decrease, and vice versa. Focusing on atmospheric carbon emissions as a measure of anthropogenic activity on the environment ignores the fungible characteristics of carbon that are crucial in both the biosphere and the worldwide economy. The ubiquitous carbon molecule enables the enormous diversity in the biosphere, as well as the widespread, strategic economic presence of carbon in the world economy. Focusing on a single form of inorganic carbon as a proxy metric for the plethora of anthropogenic activity and carbon compounds will prove inadequate, convoluted, and unmanageable. A broader, more basic metric is needed to capture the breath and scope of carbon activity. Results/Conclusions We propose a logarithmic vector scale for cq to measure anthropogenic carbon flux. The distance between vector points, e.g. the starting and ending residence times, would represent the change in cq. A base-10 logarithmic scale would allow the addition and subtraction of exponents to calculate changes in cq. As carbon moves between carbon reservoirs, the change in cq is measured as: cq = b ( log10 [mean carbon residence time] ) where b represents the carbon price coefficient for a particular country. For any country, cq measures the climate change potential for any organic carbon when converted to inorganic CO2, or to any lower residence time carbon state. The greater the carbon fees for a country, the larger the b coefficient would be, and the greater the import fees would be to achieve carbon parity on imports from

  9. 76 FR 70170 - Proposed Alternative Soils Standards for the Uravan, Colorado Uranium Mill

    Science.gov (United States)

    2011-11-10

    ... COMMISSION Proposed Alternative Soils Standards for the Uravan, Colorado Uranium Mill AGENCY: Nuclear Regulatory Commission. ACTION: Uranium milling alternative standards. SUMMARY: By letter dated October 10... Agreement States to specifically amend their Agreements to regulate uranium mill tailings (11e.(2)...

  10. On Dowell's simplification for acoustic cavity-structure interaction and consistent alternatives.

    Science.gov (United States)

    Ginsberg, Jerry H

    2010-01-01

    A widely employed description of the acoustical response in a cavity whose walls are compliant, which was first proposed by Dowell and Voss [(1962). AIAA J. 1, 476-477], uses the modes of the corresponding cavity with rigid walls as basis functions for a series representation of the pressure. It yields a velocity field that is not compatible with the movement of the boundary, and the system equations do not satisfy the principle of reciprocity. The simplified formulation is compared to consistent solutions of the coupled field equations in the time and frequency domains. In addition, this paper introduces an extension of the Ritz series method to fluid-structure coupled systems that satisfies all continuity conditions by imposing constraint equations to enforce any such conditions that are not identically satisfied by the series. A slender waveguide terminated by an oscillator is analyzed by each method. The simplified formulation is found to be very accurate for light fluid loading, except for the pressure field at frequencies below the fundamental rigid-cavity resonance, whereas the Ritz series solution is found to be extremely accurate in all cases.

  11. Acoustic Rhinometry (AR): An alternative method to image nasal airway geometry

    DEFF Research Database (Denmark)

    Straszek, Sune

    2007-01-01

    In acoustic rhinometry (AR) a soud pulse enters the nasal cavity, where it is reflected due to changes in the local impedances. From the incident and reflected sound signal we use the Ware-Aki algorithm to calculate an area-distance relationship. The method has been validated in nasal cavity models...

  12. Acoustically-active microbubbles conjugated to liposomes: characterization of a proposed drug delivery vehicle.

    Science.gov (United States)

    Kheirolomoom, Azadeh; Dayton, Paul A; Lum, Aaron F H; Little, Erika; Paoli, Eric E; Zheng, Hairong; Ferrara, Katherine W

    2007-04-23

    A new acoustically-active delivery vehicle was developed by conjugating liposomes and microbubbles, using the high affinity interaction between avidin and biotin. Binding between microbubbles and liposomes, each containing 5% DSPE-PEG2kBiotin, was highly dependent on avidin concentration and observed above an avidin concentration of 10 nM. With an optimized avidin and liposome concentration, we measured and calculated as high as 1000 to 10,000 liposomes with average diameters of 200 and 100 nm, respectively, attached to each microbubble. Replacing avidin with neutravidin resulted in 3-fold higher binding, approaching the calculated saturation level. High-speed photography of this new drug delivery vehicle demonstrated that the liposome-bearing microbubbles oscillate in response to an acoustic pulse in a manner similar to microbubble contrast agents. Additionally, microbubbles carrying liposomes could be spatially concentrated on a monolayer of PC-3 cells at the focal point of ultrasound beam. As a result of cell-vehicle contact, the liposomes fused with the cells and internalization of NBD-cholesterol occurred shortly after incubation at 37 degrees C, with internalization of NBD-cholesterol substantially enhanced in the acoustic focus.

  13. 25 CFR 30.106 - How does a tribal governing body or school board propose an alternative definition of AYP?

    Science.gov (United States)

    2010-04-01

    ... an alternative definition of AYP? 30.106 Section 30.106 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR EDUCATION ADEQUATE YEARLY PROGRESS Defining Adequate Yearly Progress Alternative Definition of Ayp § 30.106 How does a tribal governing body or school board propose an alternative...

  14. Evaluation of Acoustic Emission NDE of Composite Crew Module Service Module/Alternate Launch Abort System (CCM SM/ALAS) Test Article Failure Tests

    Science.gov (United States)

    Horne, Michael R.; Madaras, Eric I.

    2010-01-01

    Failure tests of CCM SM/ALAS (Composite Crew Module Service Module / Alternate Launch Abort System) composite panels were conducted during July 10, 2008 and July 24, 2008 at Langley Research Center. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests.

  15. A qualitative model for strategic analysis of organizations. Application and alternative proposal on a study case

    Directory of Open Access Journals (Sweden)

    Santiago Ferro Moreno

    2015-12-01

    Full Text Available The strategic analysis of organizations is based on the internal and external environments, in order to identify positive and negative variables and factors. The interrelation and timing of these strategic forces are essential to create alternative solutions that tend to achieve the organizational objectives.The normative prospective has theorical and methodological foundations to create a desired future and from it, be able to identify impelling and restraining forces that have influence on the particular problematic situation (go from the current situation to a better one in a certain time.The aim of this article is to analyze on a strategic way a real case with a normative-prospective model that considers the temporal dynamics of the factors impact and variables in time allowing to suggest alternative solutions.Semi-structured interviews were performed with all the employees of this case and structured observations and workshops with the commercial and general management.In consequence, with the results, the desired, current and improved situations were built. Additionally, forces were identified classified and appreciated and lastly solutions were suggested. With the proposed prospective method, alternative solutions could be constructed in order to settle temporary organizational objectives. No constraints were found to use the current method in other cases.Keywords: Strategic forces, Normative prospective, Problematic situations, Strategies

  16. Regional economic impacts of current and proposed management alternatives for Charles M. Russell National Wildlife Refuge

    Science.gov (United States)

    Koontz, Lynne; Sexton, Natalie; Ishizaki, Asuka; Ritten, John

    2013-01-01

    The National Wildlife Refuge System Improvement Act of 1997 requires all units of the National Wildlife Refuge System to be managed under a Comprehensive Conservation Plan (CCP). The CCP must describe the desired future conditions of a refuge and provide long-range guidance and management direction to achieve refuge purposes. Charles M. Russell (CMR) National Wildlife Refuge, located in north-central Montana, is in the process of developing a range of management goals, objectives, and strategies for the CCP. The CCP for the Refuge must contain an analysis of expected effects associated with current and proposed refuge-management strategies. For refuge CCP planning, an economic analysis provides a means of estimating how current management (No Action Alternative) and proposed management activities (Alternatives) affect the local economy. This type of analysis provides two critical pieces of information: (1) it illustrates a refuge’s contribution to the local community; and (2) it can help in determining whether economic effects are or are not a real concern in choosing among management alternatives. It is important to note that the economic value of a refuge encompasses more than just the impacts on the regional economy. Refuges also provide substantial nonmarket values (values for items not exchanged in established markets) such as maintaining endangered species, preserving wetlands, educating future generations, and adding stability to the ecosystem (Carver and Caudill, 2007). However, quantifying these types of nonmarket values is beyond the scope of this study. This report first presents a description of the local community and economy near the Refuge. Next, the methods used to conduct a regional economic impact analysis are described. An analysis of the final CCP management strategies that could affect stakeholders and residents and the local economy is then presented. The refuge management activities of economic concern in this analysis are:

  17. Comparison of alternatives to amplitude thresholding for onset detection of acoustic emission signals

    Science.gov (United States)

    Bai, F.; Gagar, D.; Foote, P.; Zhao, Y.

    2017-02-01

    Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors in an array is essential in performing localisation. Currently, this is determined using a fixed threshold which is particularly prone to errors when not set to optimal values. This paper presents three new methods for determining the onset of AE signals without the need for a predetermined threshold. The performance of the techniques is evaluated using AE signals generated during fatigue crack growth and compared to the established Akaike Information Criterion (AIC) and fixed threshold methods. It was found that the 1D location accuracy of the new methods was within the range of < 1 - 7.1 % of the monitored region compared to 2.7% for the AIC method and a range of 1.8-9.4% for the conventional Fixed Threshold method at different threshold levels.

  18. Alternative remedies for insomnia: a proposed method for personalized therapeutic trials

    Directory of Open Access Journals (Sweden)

    Romero K

    2017-03-01

    Full Text Available Kate Romero,1,2 Balaji Goparaju,1,2 Kathryn Russo,1,2 M Brandon Westover,1 Matt T Bianchi1,2 1Neurology Department, Massachusetts General Hospital, 2Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA Abstract: Insomnia is a common symptom, with chronic insomnia being diagnosed in 5–10% of adults. Although many insomnia patients use prescription therapy for insomnia, the health benefits remain uncertain and adverse risks remain a concern. While similar effectiveness and risk concerns exist for herbal remedies, many individuals turn to such alternatives to prescriptions for insomnia. Like prescription hypnotics, herbal remedies that have undergone clinical testing often show subjective sleep improvements that exceed objective measures, which may relate to interindividual heterogeneity and/or placebo effects. Response heterogeneity can undermine traditional randomized trial approaches, which in some fields has prompted a shift toward stratified trials based on genotype or phenotype, or the so-called n-of-1 method of testing placebo versus active drug in within-person alternating blocks. We reviewed six independent compendiums of herbal agents to assemble a group of over 70 reported to benefit sleep. To bridge the gap between the unfeasible expectation of formal evidence in this space and the reality of common self-medication by those with insomnia, we propose a method for guided self-testing that overcomes certain operational barriers related to inter- and intraindividual sources of phenotypic variability. Patient-chosen outcomes drive a general statistical model that allows personalized self-assessment that can augment the open-label nature of routine practice. The potential advantages of this method include flexibility to implement for other (nonherbal insomnia interventions. Keywords: insomnia, over the counter, alternative remedy, herbal, supplement

  19. Language and communication teachers’ professional development in and for diversity: An Alter-Native proposal

    Directory of Open Access Journals (Sweden)

    Dora Inés Calderón

    2016-02-01

    Full Text Available This article presents results of a curricular and didactic research study framed within the objectives of the ALTER-NATIVE project, ALFA III. Results reflect the cooperative work of Latin American and Caribbean teacher educators who were team members of the ALTER-NATIVE language and communication interest. Based on both self-reflection on one’s own teaching practices and the curricular impact on the professional development of language and communication teachers, the project proposes common guidelines for teacher educators based in Latin America and the Caribbean. The project spouses the idea of communities of practice (Wenger, 2001 aiming at constructing knowledge by consensus with the participation of teacher educators involved in the professional development of language and communication teachers. One of the results is the designing of a curricular and didactic system which referents are highlighted in this article. Particularly, the didactic and epistemological implications carried out by this (coconstruction are presented. It is argued that this is a contribution for research on language and communication pedagogy and didactics on the horizon of diversity and difference.

  20. Soil Stabilization Using Lime: Advantages, Disadvantages and Proposing a Potential Alternative

    Directory of Open Access Journals (Sweden)

    Ibtehaj Taha Jawad

    2014-07-01

    Full Text Available This study is an overview of previous studies on lime (quick and hydrated -treated soil. Lime is the oldest traditional stabilizer used for soil stabilization. The mechanism of soil-lime treatment involves cation exchange, which leads to the flocculation and agglomeration of soil particles. The high pH environment then causes a pozzolanic reaction between the free Ca+2 cations and the dissolved silica and alumina. Lime-treated soil effectively increases the strength, durability and workability of the soil. Such treatment also improves soil compressibility. A fluctuation behavior was observed on the influence of lime on soil permeability. However, the factors affecting the permeability of the soil-lime mixture should be extensively studied. Nonetheless, lime treatment has a number of inherent disadvantages, such as carbonation, sulfate attack and environment impact. Magnesium oxide/hydroxide are thus proposed as a suitable alternative stabilizer to overcome at least some of the disadvantages of using lime in soil stabilization.

  1. An alternative quantum theory for single particles and a proposed experimental test

    Institute of Scientific and Technical Information of China (English)

    LIU Quan-hui

    2007-01-01

    An alternative quantum theory for single particles bounded in the external field proposed in 1986(Huang X.Y.,Phys.Lett.A.,1986,115:310)is further developed from which the energy of the state for the single particle takes one of the eigenvalues of the quantum Hamiltonian,and the usual quantum mechanics for the particle in a stationary state holds only in the statistical sense.In light of the theory,the particle of definite energy,ground-state-energy for instance,can exhibit a novel periodic behavior.This result for the ground-state-energy state neutron in the Earth's gravitational field is experimentally testable using ultracold neutron beam passing through the same apparatus that was devised in 2002 to identify the energy quantization of neutron in the field(Nesvizhevsky V.V.,et al.,Nature,2002,415:297).

  2. The Codacs™ direct acoustic cochlear implant actuator: exploring alternative stimulation sites and their stimulation efficiency.

    Directory of Open Access Journals (Sweden)

    Martin Grossöhmichen

    Full Text Available This work assesses the efficiency of the Codacs system actuator (Cochlear Ltd., Sydney Australia in different inner ear stimulation modalities. Originally the actuator was intended for direct perilymph stimulation after stapedotomy using a piston prosthesis. A possible alternative application is the stimulation of middle ear structures or the round window (RW. Here the perilymph stimulation with a K-piston through a stapes footplate (SFP fenestration (N = 10 as well as stimulation of the stapes head (SH with a Bell prosthesis (N = 9, SFP stimulation with an Omega/Aerial prosthesis (N = 8 and reverse RW stimulation (N = 10 were performed in cadaveric human temporal bones (TBs. Codacs actuator output is expressed as equivalent sound pressure level (eq. SPL using RW and SFP displacement responses, measured by Laser Doppler velocimetry as reference. The axial actuator coupling force in stimulation of stapes and RW was adjusted to ~5 mN. The Bell prosthesis and Omega/Aerial prosthesis stimulation generated similar mean eq. SPLs (Bell: 127.5-141.8 eq. dB SPL; Omega/Aerial: 123.6-143.9 eq. dB SPL, being significantly more efficient than K-piston perilymph stimulation (108.6-131.6 eq. dB SPL and RW stimulation (108.3-128.2 eq. dB SPL. Our results demonstrate that SH, SFP and RW are adequate alternative stimulation sites for the Codacs actuator using coupling prostheses and an axial coupling force of ~5 mN. Based on the eq. SPLs, all investigated methods were adequate for in vivo hearing aid applications, provided that experimental conditions including constant coupling force will be implemented.

  3. 77 FR 4834 - Proposed Extension of Existing Information Collection; Refuge Alternatives for Underground Coal...

    Science.gov (United States)

    2012-01-31

    ... Alternatives for Underground Coal Mines AGENCY: Mine Safety and Health Administration. ACTION: Notice of... Alternatives for Underground Coal Mines DATES: Submit comments on or before April 2, 2012. ADDRESSES: Comments... Alternatives for Underground Coal Mines. OMB Number: 1219-0146. Affected Public: Business or other...

  4. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    Science.gov (United States)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  5. 75 FR 11226 - Proposed Collection; Comment Request for Tip Reporting Alternative Tip Agreement Used in the...

    Science.gov (United States)

    2010-03-10

    ... Used in the Cosmetology and Barber Industry AGENCY: Internal Revenue Service (IRS), Treasury. ACTION..., the IRS is soliciting comments concerning Tip Reporting Alternative Commitment used in the Cosmetology...: Tip Reporting Alternative Commitment Agreement used in the Cosmetology and Barber Industry. OMB...

  6. 78 FR 13402 - Proposed Collection; Comment Request for Tip Reporting Alternative Tip Agreement Used in the...

    Science.gov (United States)

    2013-02-27

    ... Used in the Cosmetology and Barber Industry AGENCY: Internal Revenue Service (IRS), Treasury. ACTION..., the IRS is soliciting comments concerning tip reporting alternative commitment used in the cosmetology...: Tip Reporting Alternative Commitment Agreement used in the Cosmetology and Barber Industry. OMB...

  7. Acoustic dose and acoustic dose-rate.

    Science.gov (United States)

    Duck, Francis

    2009-10-01

    Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.

  8. Onset-Duration Matching of Acoustic Stimuli Revisited: Conventional Arithmetic vs. Proposed Geometric Measures of Accuracy and Precision

    Science.gov (United States)

    Friedrich, Björn; Heil, Peter

    2017-01-01

    Onsets of acoustic stimuli are salient transients and are relevant in humans for the perception of music and speech. Previous studies of onset-duration discrimination and matching focused on whether onsets are perceived categorically. In this study, we address two issues. First, we revisit onset-duration matching and measure, for 79 conditions, how accurately and precisely human listeners can adjust the onset duration of a comparison stimulus to subjectively match that of a standard stimulus. Second, we explore measures for quantifying performance in this and other matching tasks. The conventional measures of accuracy and precision are defined by arithmetic descriptive statistics and the Euclidean distance function on the real numbers. We propose novel measures based on geometric descriptive statistics and the log-ratio distance function, the Euclidean distance function on the positive-real numbers. Only these properly account for the fact that the magnitude of onset durations, like the magnitudes of most physical quantities, can attain only positive real values. The conventional (arithmetic) measures possess a convexity bias that yields errors that grow with the width of the distribution of matches. This convexity bias leads to misrepresentations of the constant error and could even imply the existence of perceptual illusions where none exist. This is not so for the proposed (geometric) measures. We collected up to 68 matches from a given listener for each condition (about 34,000 matches in total) and examined inter-listener variability and the effects of onset duration, plateau duration, sound level, carrier, and restriction of the range of adjustable comparison stimuli on measures of accuracy and precision. Results obtained with the conventional measures generally agree with those reported in the literature. The variance across listeners is highly heterogeneous for the conventional measures but is homogeneous for the proposed measures. Furthermore, the proposed

  9. An alternative to the traveling-wave approach for use in two-port descriptions of acoustic bores

    Science.gov (United States)

    Ducasse, Eric

    2002-12-01

    For more than a decade, the digital waveguide model for musical instruments has been improved through the simulation of cylindrical and conical bores. But several difficulties remain, such as instabilities due to growing exponentials which appear when two conical bores are connected with decreasing taper. In this paper, an alternative overcoming these difficulties is proposed and can be extended to shapes other than cylinders, cones, and hyperbolic horns. A two-port model with more general state variables than usual traveling waves works efficiently for any shape without discontinuities in cross section. The equations for connecting separate elements at discontinuities make this two-port model appropriate for use in time domain simulation of the physical behavior of the wind instrument and its interactions with the player. The potential of this new approach is illustrated by several detailed examples.

  10. Predicting Bird and Bat Fatality Risk at Wind Farms and Proposed Wind Farm Sites Using Acoustic-Ultrasonic Recorders

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This project has three objectives: (1) evaluate the ability of dual acoustic-ultrasonic recorders to capture nocturnal calls of birds and bats at wind power sites;...

  11. W-waveform Standing Surface Acoustic Waves with Two Equilibrium Positions under Linear Phase Modulation for Patterning Microparticles into Alternate Grid Patterns

    CERN Document Server

    Lee, Junseok

    2016-01-01

    This paper presents W-waveform Standing Surface Acoustic Waves (W-SSAW), and as its application, patterning of two groups of microparticles with different sizes alternately without fixing firstly patterned particles. W-SSAW is constructed by two standing surface acoustic waves of frequencies $f$ and $2f$. Combined with linear phase modulation to translate Gor'kov potential at a constant speed, W-SSAW can selectively trap particles. The trapped particles follow the moving Gor'kov potential maintaining force equilibrium between Stokes' drag and the radiation force by W-SSAW. There exist two asymmetric equilibrium positions every period, and by the asymmetry, each group of particles is trapped at different equilibrium positions to form an alternate pattern. This technique is extended to two-dimensional alternate patterning by maintaining phase difference $90^\\circ$ between X- and Y-directional W-SSAWs. The patterning method utilizing W-SSAW is advantageous over SSAW-based patterning in that it does not require t...

  12. Advantages of Thesaurus Representation Using the Simple Knowledge Organization System (SKOS) Compared with Proposed Alternatives

    Science.gov (United States)

    Pastor-Sanchez, Juan-Antonio; Martinez Mendez, Francisco Javier; Rodriguez-Munoz, Jose Vicente

    2009-01-01

    Introduction: This paper presents an analysis of the Simple Knowledge Organization System (SKOS) compared with other alternatives for thesaurus representation in the Semantic Web. Method: Based on functional and structural changes of thesauri, provides an overview of the current context in which lexical paradigm is abandoned in favour of the…

  13. Regional economic effects of current and proposed management alternatives for Sand Lake National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report first provides a description of the local community and economy near Sand Lake NWR. An analysis of current and proposed management strategies that could...

  14. Woods with physical, mechanical and acoustic properties similar to those of Caesalpinia echinata have high potential as alternative woods for bow makers

    Directory of Open Access Journals (Sweden)

    Eduardo Luiz Longui

    2014-09-01

    Full Text Available For nearly two hundred years, Caesalpinia echinata wood has been the standard for modern bows. However, the threat of extinction and the enforcement of trade bans have required bow makers to seek alternative woods. The hypothesis tested was that woods with physical, mechanical and acoustic properties similar to those of C. echinata would have high potential as alternative woods for bows. Accordingly, were investigated Handroanthus spp., Mezilaurus itauba, Hymenaea spp., Dipteryx spp., Diplotropis spp. and Astronium lecointei. Handroanthus and Diplotropis have the greatest number of similarities with C. echinata, but only Handroanthus spp. showed significant results in actual bow manufacture, suggesting the importance of such key properties as specific gravity, speed of sound propagation and modulus of elasticity. In practice, Handroanthus and Dipteryx produced bows of quality similar to that of C. echinata.

  15. A proposal for a novel impact factor as an alternative to the JCR impact factor.

    Science.gov (United States)

    Yang, Zu-Guo; Zhang, Chun-Ting

    2013-12-03

    One disadvantage of the JCR impact factor, the most commonly used assessment tool for ranking and evaluating scientific journals, is its inability in distinguishing among different shapes of citation distribution curves, leading to unfair evaluation of journals in some cases. This paper aims to put forward an alternative impact factor (IF') that can properly reflect citation distributions. The two impact factors are linearly and positively correlated, and have roughly the same order of magnitude. Because of the ability of IF' in distinguishing among different shapes of citation distribution curves, IF' may properly reflect the academic performance of a scientific journal in a way that is different from the JCR impact factor with some unique features that reward journals with highly cited papers. Therefore, it is suggested that IF' could be used to complement the JCR impact factor.

  16. Limiting overselling in international emissions trading 1: Costs and environmental impacts of alternative proposals

    Energy Technology Data Exchange (ETDEWEB)

    Haites, E.; Missfeldt, F.

    2002-07-01

    Emission trading allows a country with an emission limitation commitment, an Annex B Party, to sell parts of its assigned amount (AAUs) to other Annex B Parties. If the seller subsequently does not have sufficient AAUs to cover its actual emissions it will be subject to the penalties for non-compliance. The revenue from the sale of AAUs may exceed the sanctions for non-compliance if these penalties are weak or difficult to enforce. Under these circumstances emission trading enables a country to benefit financially through non-compliance. Liability proposals seek to ensure that non-compliance is not rewarded, by limiting sales of AAUs to amounts surplus to the seller's compliance needs. This study develops and applies a model to assess the performance of different liability proposals. A simple model based on the Emissions Projection and Policy Analysis (EPPA) model of the Massachusetts Institute of Technology is used for the analysis. (BA)

  17. Regional economic effects of current and proposed management alternatives for Arrowwood National Wildlife Refuge

    Science.gov (United States)

    Koontz, Lynne; Lambert, Heather

    2005-01-01

    The National Wildlife Refuge System Improvement Act of 1997 requires all units of the National Wildlife Refuge System to be managed under a Comprehensive Conservation Plan (CCP). The CCP must describe the desired future conditions of a Refuge and provide long range guidance and management direction to achieve Refuge purposes. Arrowwood National Wildlife Refuge (NWR), located along the James River in east central North Dakota, is in the process of developing a range of management goals, objectives, and strategies for the CCP. The CCP for Arrowwood NWR must contain an analysis of expected effects associated with current and proposed Refuge management strategies.

  18. Regional economic effects of current and proposed management alternatives for Sand Lake National Wildlife Refuge

    Science.gov (United States)

    Koontz, Lynne; Lambert, Heather

    2005-01-01

    The National Wildlife Refuge System Improvement Act of 1997 requires all units of the National Wildlife Refuge System to be managed under a Comprehensive Conservation Plan (CCP). The CCP must describe the desired future conditions of a Refuge and provide long range guidance and management direction to achieve Refuge purposes. Sand Lake National Wildlife Refuge (NWR), located 27 miles northeast of Aberdeen, South Dakota, is in the process of developing a range of management goals, objectives, and strategies for the CCP. The CCP for Sand Lake NWR must contain an analysis of expected effects associated with current and proposed Refuge management strategies.

  19. Determination of the acoustoelastic coefficient for surface acoustic waves using dynamic acoustoelastography: an alternative to static strain.

    Science.gov (United States)

    Ellwood, R; Stratoudaki, T; Sharples, S D; Clark, M; Somekh, M G

    2014-03-01

    The third-order elastic constants of a material are believed to be sensitive to residual stress, fatigue, and creep damage. The acoustoelastic coefficient is directly related to these third-order elastic constants. Several techniques have been developed to monitor the acoustoelastic coefficient using ultrasound. In this article, two techniques to impose stress on a sample are compared, one using the classical method of applying a static strain using a bending jig and the other applying a dynamic stress due to the presence of an acoustic wave. Results on aluminum samples are compared. Both techniques are found to produce similar values for the acoustoelastic coefficient. The dynamic strain technique however has the advantages that it can be applied to large, real world components, in situ, while ensuring the measurement takes place in the nondestructive, elastic regime.

  20. Traceability of Acoustic Emission measurements for a proposed calibration method - Classification of characteristics and identification using signal analysis

    Science.gov (United States)

    Griffin, James

    2015-01-01

    When using Acoustic Emission (AE) technologies, tensile, compressive and shear stress/strain tests can provide a detector for material deformation and dislocations. In this paper improvements are made to standardise calibration techniques for AE against known metrics such as force. AE signatures were evaluated from various calibration energy sources based on the energy from the first harmonic (dominant energy band) [1,2]. The effects of AE against its calibration identity are investigated: where signals are correlated to the average energy and distance of the detected phenomena. In addition, extra tests are investigated in terms of the tensile tests and single grit tests characterising different materials. Necessary translations to the time-frequency domain were necessary when segregating salient features between different material properties. Continuing this work the obtained AE is summarised and evaluated by a Neural Network (NN) regression classification technique which identifies how far the malformation has progressed (in terms of energy/force) during material transformation. Both genetic-fuzzy clustering and tree rule based classifier techniques were used as the second and third classification techniques respectively to verify the NN output giving a weighted three classifier system. The work discussed in this paper looks at both distance and force relationships for various prolonged Acoustic Emission stresses. Later such analysis was realised with different classifier models and finally implemented into the Simulink simulations. Further investigations were made into classifier models for different material interactions in terms of force and distance which add further dimension to this work with different materials based simulation realisations. Within the statistical analysis section there are two varying prolonged stress tests which together offer the mechanical calibration system (automated solenoid and pencil break calibration system). Taking such a

  1. The influence of base rates on correlations: An evaluation of proposed alternative effect sizes with real-world data.

    Science.gov (United States)

    Babchishin, Kelly M; Helmus, Leslie-Maaike

    2016-09-01

    Correlations are the simplest and most commonly understood effect size statistic in psychology. The purpose of the current paper was to use a large sample of real-world data (109 correlations with 60,415 participants) to illustrate the base rate dependence of correlations when applied to dichotomous or ordinal data. Specifically, we examined the influence of the base rate on different effect size metrics. Correlations decreased when the dichotomous variable did not have a 50 % base rate. The higher the deviation from a 50 % base rate, the smaller the observed Pearson's point-biserial and Kendall's tau correlation coefficients. In contrast, the relationship between base rate deviations and the more commonly proposed alternatives (i.e., polychoric correlation coefficients, AUCs, Pearson/Thorndike adjusted correlations, and Cohen's d) were less remarkable, with AUCs being most robust to attenuation due to base rates. In other words, the base rate makes a marked difference in the magnitude of the correlation. As such, when using dichotomous data, the correlation may be more sensitive to base rates than is optimal for the researcher's goals. Given the magnitude of the association between the base rate and point-biserial correlations (r = -.81) and Kendall's tau (r = -.80), we recommend that AUCs, Pearson/Thorndike adjusted correlations, Cohen's d, or polychoric correlations should be considered as alternate effect size statistics in many contexts.

  2. Acoustic elliptical cylindrical cloaks

    Institute of Scientific and Technical Information of China (English)

    Ma Hua; Qu Shao-Bo; Xu Zhuo; Wang Jia-Fu

    2009-01-01

    By making a comparison between the acoustic equations and the 2-dimensional (2D) Maxwell equations, we obtain the material parameter equations (MPE) for acoustic elliptical cylindrical cloaks. Both the theoretical results and the numerical results indicate that an elliptical cylindrical cloak can realize perfect acoustic invisibility when the spatial distributions of mass density and bulk modulus are exactly configured according to the proposed equations. The present work is the meaningful exploration of designing acoustic cloaks that are neither sphere nor circular cylinder in shape, and opens up possibilities for making complex and multiplex acoustic cloaks with simple models such as spheres, circular or elliptic cylinders.

  3. Indoor acoustic gain design

    Science.gov (United States)

    Concha-Abarca, Justo Andres

    2002-11-01

    The design of sound reinforcement systems includes many variables and usually some of these variables are discussed. There are criteria to optimize the performance of the sound reinforcement systems under indoor conditions. The equivalent acoustic distance, the necessary acoustic gain, and the potential acoustic gain are parameters which must be adjusted with respect to the loudspeaker array, electric power and directionality of loudspeakers, the room acoustics conditions, the distance and distribution of the audience, and the type of the original sources. The design and installation of front of the house and monitoring systems have individual criteria. This article is about this criteria and it proposes general considerations for the indoor acoustic gain design.

  4. The Proposed Tiebreaker Rule in OECD/G20 BEPS Action 6: A Critical Examination of the Possible Motives and Means, and a Potential Alternative

    NARCIS (Netherlands)

    Sanghavi, Dhruv

    2016-01-01

    In this article, the author critically examines the proposed tiebreaker rule in the OECD’s Final Report on Action 6 of the Base Erosion and Profit Shifting (BEPS) project, and the motives behind the proposal. The author concludes by suggesting an alternative, which he argues is a more effective mean

  5. On Babies and Bathwater: A Non-ideological Alternative to the Mahner/Bunge Proposals for Relating Science and Religion in Education.

    Science.gov (United States)

    Wren-Lewis, John

    1996-01-01

    Challenges Mahner and Bunge's proposal for handling the issue of religion in a modern educational curriculum by teaching scientific treatments in terms of disciplines such as anthropology and psychology. Proposes a dialog-based alternative whereby representatives of religious, spiritual, and nonspiritual positions are invited to present and defend…

  6. Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

    2009-09-30

    This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material

  7. A proposal for an alternative quality control test procedure for inactivated vaccines against food-and-mouth disease virus.

    Science.gov (United States)

    Molin-Capeti, K C; Sepulveda, L; Terra, F; Torres-Pioli, M F; Costa-Casagrande, T; França, S C; Thomaz-Soccol, V

    2013-02-18

    Foot-and-mouth disease (FMD) control in Brazil includes a strict mandatory vaccination program with vaccines produced in certified laboratories subject to inspection by the Brazilian Ministry of Agriculture, Livestock, and Food Supply (MAPA). The FMD vaccine's potency is tested through antibodies titration against structural viral proteins in sera from cattle that have not had any exposure to food-and-mouth disease virus (FMDV), at 28 days post-vaccination. Biological product testing using large animals is expensive and unwieldy. Thus, alternative testing procedures using laboratory animals have been proposed for quality control of these products. Such biological methods for vaccine evaluation using animals from vivarium facilities can have a significant impact through reduced costs, easier handling, and shorter testing times. The present study was designed to access Balb/C mice's humoral immune responses to a FMDV experimental vaccine, the composition of which contains three virus serotypes of FMDV (O1 Campos, A24 Cruzeiro, and C3 Indaial). Balb/C mice were immunized at doses that were 5% and 10% of the vaccine volume administered in cattle. Immunized mice had their antibody titers probed at 14, 21, and 28 DPV (days post vaccination). The results obtained were compared to those previously known from cattle's immune responses to the FMDV vaccine. An adequate immune response to the vaccine was seen with 10% formulation at 21 DPV. The study results are encouraging and indicate that the mouse model can be used for quality control in experimental vaccine testing.

  8. Propose for systematization of data applied to bioclimatic architecture: acoustic, high ling and thermal; Propuesta para la sistematizacion de ecotecnicas y datos de vegetacion aplicables a la arquitectura bioclimatica desde un enfoque energetico global. Luminico. Acustico y Termico

    Energy Technology Data Exchange (ETDEWEB)

    Aguayo, G. R.

    2004-07-01

    In Environmental Design or Solar Architecture, vegetation may be used to modify the micro climate surrounding a building. However, books on this subject only state the way vegetation may be used to control thermal conditions within buildings, considering thermal energy the only one present. In buildings, there is always a simultaneous presence of three kinds of energy: thermal energy, acoustics and illumination. Therefore, this paper will propose: (1) a holistic approach to the use of vegetation in Environmental Design, using all parameters of thermal, acoustic and luminal comfort, and (2) a holistic approach to Environmental Design guidelines that use vegetation. (Author)

  9. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose.

  10. Study on sound excited by field. 1st Report. Proposal of equation of acoustic energy conservation; Ba ni yotte reikisareru oto no kenkyu. 1. Onkyo energy no hozonshiki no teian

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, A. [Hitachi, Ltd., Tokyo (Japan)

    1998-07-25

    There are many types of acoustic noise from flow fields, for example, jet noise, boundary layer noise, tone due to Karman vortex, singing flame, and Rijke tube. This paper proposes an equation of acoustic energy conservation in open systems, which explains various types of oscillating phenomena excited by fields. This equation is from perturbation of the Navier-Storkes` equation. From this analysis it became clear that the generation and dissipation of acoustic energy are caused by the following: work by pressure, viscous loss, interaction between pressure variation and heating rate variation, stable heating, and work by vortex. A simplified model is used to describe these unstable factors by wave equation. Also, a one-dimensional analysis for a duct with a large temperature gradient and a large sectional area gradient was done by the transfer matrix method. Those factors have an effect on the phase velocity. 13 refs., 2 figs.

  11. Ocean acoustic reverberation tomography.

    Science.gov (United States)

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  12. Cochlear bionic acoustic metamaterials

    Science.gov (United States)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  13. NEAR-FIELD ACOUSTIC HOLOGRAPHY FOR SEMI-FREE ACOUSTIC FIELD BASED ON WAVE SUPERPOSITION APPROACH

    Institute of Scientific and Technical Information of China (English)

    LI Weibing; CHEN Jian; YU Fei; CHEN Xinzhao

    2006-01-01

    In the semi-free acoustic field, the actual acoustic pressure at any point is composed of two parts: The direct acoustic pressure and the reflected acoustic pressure. The general acoustic holographic theories and algorithms request that there is only the direct acoustic pressure contained in the pressure at any point on the hologram surface, consequently, they cannot be used to reconstruct acoustic source and predict acoustic field directly. To take the reflected pressure into consideration, near-field acoustic holography for semi-free acoustic field based on wave superposition approach is proposed to realize the holographic reconstruction and prediction of the semi-free acoustic field, and the wave superposition approach is adopted as a holographic transform algorithm. The proposed theory and algorithm are realized and verified with a numerical example,and the drawbacks of the general theories and algorithms in the holographic reconstruction and prediction of the semi-free acoustic field are also demonstrated by this numerical example.

  14. 76 FR 61667 - Proposed Foreign-Trade Zone-West Tennessee Area Under Alternative Site Framework; Application Filed

    Science.gov (United States)

    2011-10-05

    ..., adjacent to the Memphis Customs and Border Protection (CBP) port of entry, under the alternative site... International Trade Development Corporation, Board Order 904, July 2, 1997); FTZ 262, Southaven, Mississippi... allows for the possible exemption of one magnet site from the ``sunset'' time limits that generally...

  15. Analysis of the proposed EU regulation concerning biocide products and its opportunities for alternative approaches and a toxicology for the 21st century (t4 report).

    Science.gov (United States)

    Ferrario, Daniele; Rabbit, Richard R

    2012-01-01

    On June 12, 2009, the European Commission adopted a proposal for a Regulation concerning the placement on the market and use of biocidal products, which, when it enters into force on January 1, 2013, will repeal and replace Directive 98/8/EC. The main reason for the revision of the current Directive was to promote best practices for environmental and human health protection, along with implementation of current developments in safety testing in order to create safer biocides. Moreover, the proposed Regulation aims to take into consideration the newest legislation on chemicals. This article evaluates the proposed Regulation in comparison to Directive 98/8/EC. Although the new proposal requires the sharing of vertebrate animal test data, both for product authorization and for newly developed active substances, it misses - in contrast to REACH - the opportunity to recognize the accelerating development of alternative approaches to animal testing, most recently with new momentum provided by "Toxicity Testing for the 21st Century", and to support the evolution of toxicology towards a new approach to testing. The new methods promise not only to decrease animal pain and suffering, but also to provide faster results and better prediction for human risk assessment compared to traditional methods. Unfortunately, methods mandated for human risk assessment in the proposal are still mainly based on traditional animal study extrapolation. We put forward and discuss possible alternative strategies, such as in vitro testing, integrated testing strategies, toxicokinetics, "omics", systems biology, bioinformatics, and computational modeling, all of which could be more encouraged by the proposal. Current opportunities to improve our tools for biocide risk assessment are discussed, delineating advantages, limitations, and development needs. It is suggested to open the proposed Regulation to alternative approaches that are based on human biology more than on extrapolation from animals

  16. Analogy, an Alternative Model.
 Critics to the standard model of analogical problems solving and proposals for an alternative one

    Directory of Open Access Journals (Sweden)

    Ricardo A. Minervino

    2016-02-01

    Full Text Available The authors made an extension of Hofstadter‘s criticisms against the standard approach in analogical thinking represented by the structure-mapping theory of Gentner and the multiconstraint theory of Holyoak and Thagard. Based on this extension, they proposed a non-serial model of analogical problem solving. Against the standard approach, the model postulates that: (a people detect and evaluate differences between mapped elements before the subprocess of inference generation and consider them in order to control it, and (b properties of an element that explain why the element could fill a certain role in the base problem resolution (PERs play a crucial role in these detection and evaluation operations, and also in post-inferences subprocesses. An experiment showed that: (a people detect and evaluate the relevance of differences between mapped elements before inference generation, (b that they inhibit the generation of literal inferences when they face relevant differences, and (c that they stop the subprocess when they recognize insuperable ones. The results also showed that base PERs are reactivated at different moments of analogical transfer. The data obtained are incompatible with the standard theories of analogical thinking, which treat inference generation as a syntactic mechanism and exclude contextual semantic analysis from the study of analogy. 

  17. Imaging of Acoustic Waves in Sand

    Energy Technology Data Exchange (ETDEWEB)

    Deason, Vance Albert; Telschow, Kenneth Louis; Watson, Scott Marshall

    2003-08-01

    There is considerable interest in detecting objects such as landmines shallowly buried in loose earth or sand. Various techniques involving microwave, acoustic, thermal and magnetic sensors have been used to detect such objects. Acoustic and microwave sensors have shown promise, especially if used together. In most cases, the sensor package is scanned over an area to eventually build up an image or map of anomalies. We are proposing an alternate, acoustic method that directly provides an image of acoustic waves in sand or soil, and their interaction with buried objects. The INEEL Laser Ultrasonic Camera utilizes dynamic holography within photorefractive recording materials. This permits one to image and demodulate acoustic waves on surfaces in real time, without scanning. A video image is produced where intensity is directly and linearly proportional to surface motion. Both specular and diffusely reflecting surfaces can be accomodated and surface motion as small as 0.1 nm can be quantitatively detected. This system was used to directly image acoustic surface waves in sand as well as in solid objects. Waves as frequencies of 16 kHz were generated using modified acoustic speakers. These waves were directed through sand toward partially buried objects. The sand container was not on a vibration isolation table, but sat on the lab floor. Interaction of wavefronts with buried objects showed reflection, diffraction and interference effects that could provide clues to location and characteristics of buried objects. Although results are preliminary, success in this effort suggests that this method could be applied to detection of buried landmines or other near-surface items such as pipes and tanks.

  18. Broadband fractal acoustic metamaterials for low-frequency sound attenuation

    Science.gov (United States)

    Song, Gang Yong; Cheng, Qiang; Huang, Bei; Dong, Hui Yuan; Cui, Tie Jun

    2016-09-01

    We fabricate and experimentally characterize a broadband fractal acoustic metamaterial that can serve to attenuate the low-frequency sounds at selective frequencies ranging from 225 to 1175 Hz. The proposed metamaterials are constructed by the periodic Hilbert fractal elements made of photosensitive resin via 3D printing. In analogy to electromagnetic fractal structures, it is shown that multiple resonances can also be excited in the acoustic counterpart due to their self-similar properties, which help to attenuate the acoustic energy in a wide spectrum. The confinement of sound waves in such subwavelength element is evidenced by both numerical and experimental results. The proposed metamaterial may provide possible alternative for various applications such as the noise attenuation and the anechoic materials.

  19. Communication Acoustics

    DEFF Research Database (Denmark)

    Blauert, Jens

    Communication Acoustics deals with the fundamentals of those areas of acoustics which are related to modern communication technologies. Due to the advent of digital signal processing and recording in acoustics, these areas have enjoyed an enormous upswing during the last 4 decades. The book...... the book a source of valuable information for those who want to improve or refresh their knowledge in the field of communication acoustics - and to work their way deeper into it. Due to its interdisciplinary character Communication Acoustics is bound to attract readers from many different areas, such as......: acoustics, cognitive science, speech science, and communication technology....

  20. Complementary and alternative medicine in the treatment of refugees and survivors of torture: a review and proposal for action.

    Science.gov (United States)

    Longacre, McKenna; Silver-Highfield, Ellen; Lama, Puja; Grodin, Michael

    2012-01-01

    Survivors of torture and refugee trauma often have increased needs for mental and physical healthcare. This is due in part to the complex sequelae of trauma, including chronic pain, major depressive disorder, posttraumatic stress disorder (PTSD) and somatization. This article reviews the scientific medical literature for the efficacy and feasibility of some complementary and alternative medicine (CAM) modalities including meditation, Ayurveda, pranayama/yogic breathing, massage/body-work, dance/movement, spirituality, yoga, music, Traditional Chinese Medicine and acupuncture, qigong, t'ai chi, chiropractic, homeopathy, aromatherapy and Reiki specifically with respect to survivors of torture and refugee trauma. We report that preliminary research suggests that the certain CAM modalities may prove effective as part of an integrated treatment plan for survivors of torture and refugee trauma. Further research is warranted.

  1. Battlefield Utility of Antipersonnel Landmines and Proposed Alternatives (Analysis in Support of the NATO SAS-023 APM Study)

    Energy Technology Data Exchange (ETDEWEB)

    Crandley, J F; Greenwalt, R J; Magnoli, D E; Randazzo, A S

    2002-02-05

    This study consists of work done in support of the U.S. delegation to the NATO SAS-023 Antipersonnel Landmine Study Group, supplemented by additional work done for the U.S. Office of the Secretary of Defense Antipersonnel Landmine Alternative Concept Exploration Program (Track III). It explores the battlefield utility of current antipersonnel landmines (APL) in both pure and mixed APL/antitank minefields and evaluates the value of military suggested non-materiel alternatives. The historical record is full of examples where the presence (or absence) of antipersonnel landmines made a critical difference in battle. The current generation of military thinkers and writers lack any significant combat experience employing either mixed or antipersonnel minefields, which leaves a critical gap in available expert advice for policy and decision-makers. Because of this lack of experienced-based professional military knowledge, Lawrence Livermore National Laboratory analyzed the employment of antipersonnel landmines in tactical mixed minefields and in protective antipersonnel minefields. The scientific method was employed where hypotheses were generated from the tactics and doctrine of the antipersonnel landmine era and tested in a simulation laboratory. A high-resolution, U.S. Joint Forces Command combat simulation model (the Joint Conflict and Tactical Simulation--JCATS) was used as the laboratory instrument. A realistic European scenario was obtained from a multi-national USAREUR exercise and was approved by the SAS-023 panel members. Additional scenarios were provided by U.S. CINC conferences and were based on Southwest Asia and Northeast Asia. Weapons data was obtained from the U.S. family of Joint Munitions Effectiveness Manuals. The U.S. Army Materiel Systems Analysis Agency conducted a limited verification and validation assessment of JCATS for purposes of this study.

  2. Acoustic telemetry

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — To determine movements of green turtles in the nearshore foraging areas, we deployed acoustic tags and determined their movements through active and passive acoustic...

  3. Game Bozo – genetics: a didactic proposal as an alternative to DNA replication of teaching in high school

    Directory of Open Access Journals (Sweden)

    Letícia de Oliveira Rosa

    2016-12-01

    Full Text Available Today, despite hearing much talking about the DNA molecule in newspapers, magazines, news and TV programs, it is still perceived many difficulties for the students to assimilate the concepts and understand the gene processes. Faced with this reality is that the idea of creating a playful activity arose, as a methodological tool, in order to arouse the interest of students to study scientific concepts addressed in genetics education, including those involved in the DNA replication process. The game was developed by students of Biological Sciences Degree, the IFAM (Federal Institute of Science and Technology Amazon in Molecular Genetics discipline. Which, inspired by the traditional game Bozó, created the Bozó-genetic game, which consists of playing the dice, adding the numbers present on the faces of the dice and score according to the rules of the game. A simple, low cost and efficient alternative in transmission of scientific knowledge easily and interactively, with the possibility of aid student and teacher in the teaching-learning process.

  4. Magnetostrictive Alternator

    Science.gov (United States)

    Dyson, Rodger; Bruder, Geoffrey

    2013-01-01

    This innovation replaces the linear alternator presently used in Stirling engines with a continuous-gradient, impedance-matched, oscillating magnetostrictive transducer that eliminates all moving parts via compression, maintains high efficiency, costs less to manufacture, reduces mass, and eliminates the need for a bearing system. The key components of this new technology are the use of stacked magnetostrictive materials, such as Terfenol-D, under a biased magnetic and stress-induced compression, continuous-gradient impedance-matching material, coils, force-focusing metallic structure, and supports. The acoustic energy from the engine travels through an impedancematching layer that is physically connected to the magnetostrictive mass. Compression bolts keep the structure under compressive strain, allowing for the micron-scale compression of the magnetostrictive material and eliminating the need for bearings. The relatively large millimeter displacement of the pressure side of the impedance-matching material is reduced to micron motion, and undergoes stress amplification at the magnetostrictive interface. The alternating compression and expansion of the magnetostrictive material creates an alternating magnetic field that then induces an electric current in a coil that is wound around the stack. This produces electrical power from the acoustic pressure wave and, if the resonant frequency is tuned to match the engine, can replace the linear alternator that is commonly used.

  5. An Alternative Policy Proposal for the Provinces Populated by the Malay Ethnonationality in the South of Thailand

    Directory of Open Access Journals (Sweden)

    Otto F. von Feigenblatt

    2011-01-01

    Full Text Available This article provides a public policy analysis of governance in the provinces populated by the Malay ethnonationality in the South of Thailand. Important stakeholders are identified as well as important sociopolitical environmental factors. The final sections of the paper present a proposal for a new governance structure for the Muslim South of Thailand taking into consideration the social, cultural, and economic context as well as the wellbeing and right to self-determination of the local population. This study concludes that considerable economic, political, and social opportunities for development are being lost in the South of Thailand due to misguided governance policies. --- Dieser Artikel stellt eine politische Analyse von Governance in den von der nationalen Minderheit der Malaien bewohnten Provinzen in Südthailand vor. Zunächst werden zentrale InteressensvertreterInnen und soziopolitische Faktoren identifiziert. Anschließend diskutiert der Autor einen Vorschlag für eine neue Governancestruktur, die soziale, kulturelle und wirtschaftliche Kontexte ebenso beachtet wie die Bedürfnisse und das Recht zur Selbstbestimmung der lokalen Bevölkerung. Der Beitrag konkludiert, dass beträchtliche Möglichkeiten zur wirtschaftlichen, politischen und sozialen Entwicklung aufgrund von fehlgeleiteten Politiken ausgelassen wurden.

  6. An acoustic invisible gateway

    CERN Document Server

    Zhu, Yi-Fan; Liang, Bin; Kan, Wei-Wei; Yang, Jun; Cheng, Jian-Chun

    2015-01-01

    The recently-emerged concept of "invisible gateway" with the extraordinary capability to block the waves but allow the passage of other entities has attracted great attentions due to the general interests in illusion devices. However, the possibility to realize such a fascinating phenomenon for acoustic waves has not yet been explored, which should be of paramount significance for acoustical applications but would necessarily involve experimental difficulty. Here we design and experimentally demonstrate an acoustic invisible gateway (AIG) capable of concealing a channel under the detection of sound. Instead of "restoring" a whole block of background medium by using transformation acoustics that inevitably requires complementary or restoring media with extreme parameters, we propose an inherently distinct methodology that only aims at engineering the surface impedance at the "gate" to mimic a rigid "wall" and can be conveniently implemented by decorating meta-structures behind the channel. Such a simple yet ef...

  7. Disadvantages of using the area under the receiver operating characteristic curve to assess imaging tests: A discussion and proposal for an alternative approach

    Energy Technology Data Exchange (ETDEWEB)

    Halligan, Steve [University College London, Centre for Medical Imaging, University College Hospital, London (United Kingdom); Altman, Douglas G. [University of Oxford, Centre for Statistics in Medicine, Oxford (United Kingdom); Mallett, Susan [University of Oxford, Department of Primary Care Health Sciences, Oxford (United Kingdom)

    2015-04-01

    The objectives are to describe the disadvantages of the area under the receiver operating characteristic curve (ROC AUC) to measure diagnostic test performance and to propose an alternative based on net benefit. We use a narrative review supplemented by data from a study of computer-assisted detection for CT colonography. We identified problems with ROC AUC. Confidence scoring by readers was highly non-normal, and score distribution was bimodal. Consequently, ROC curves were highly extrapolated with AUC mostly dependent on areas without patient data. AUC depended on the method used for curve fitting. ROC AUC does not account for prevalence or different misclassification costs arising from false-negative and false-positive diagnoses. Change in ROC AUC has little direct clinical meaning for clinicians. An alternative analysis based on net benefit is proposed, based on the change in sensitivity and specificity at clinically relevant thresholds. Net benefit incorporates estimates of prevalence and misclassification costs, and it is clinically interpretable since it reflects changes in correct and incorrect diagnoses when a new diagnostic test is introduced. ROC AUC is most useful in the early stages of test assessment whereas methods based on net benefit are more useful to assess radiological tests where the clinical context is known. Net benefit is more useful for assessing clinical impact. (orig.)

  8. Acoustic Neurinomas

    Directory of Open Access Journals (Sweden)

    Mohammad Faraji Rad

    2011-01-01

    Full Text Available Acoustic neuromas (AN are schwann cell-derived tumors that commonly arise from the vestibular portion of the eighth cranial nerve also known as vestibular schwannoma(VS causes unilateral hearing loss, tinnitus, vertigo and unsteadiness. In many cases, the tumor size may remain unchanged for many years following diagnosis, which is typically made by MRI. In the majority of cases the tumor is small, leaving the clinician and patient with the options of either serial scanning or active treatment by gamma knife radiosurgery (GKR or microneurosurgery. Despite the vast number of published treatment reports, comparative studies are few. The predominant clinical endpoints of AN treatment include tumor control, facial nerve function and hearing preservation. Less focus has been put on symptom relief and health-related quality of life (QOL. It is uncertain if treating a small tumor leaves the patient with a better chance of obtaining relief from future hearing loss, vertigo or tinnitus than by observing it without treatment.   In this paper we review the literature for the natural course, the treatment alternatives and the results of AN. Finally, we present our experience with a management strategy applied for more than 30 years.

  9. Acoustical Imaging

    CERN Document Server

    Litniewski, Jerzy; Kujawska, Tamara; 31st International Symposium on Acoustical Imaging

    2012-01-01

    The International Symposium on Acoustical Imaging is a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. This interdisciplinary Symposium has been taking place continuously since 1968. In the course of the years the proceedings volumes in the Acoustical Imaging Series have become a reference for cutting-edge research in the field. In 2011 the 31st International Symposium on Acoustical Imaging was held in Warsaw, Poland, April 10-13. Offering both a broad perspective on the state-of-the-art as well as  in-depth research contributions by the specialists in the field, this Volume 31 in the Series contains an excellent collection of papers in six major categories: Biological and Medical Imaging Physics and Mathematics of Acoustical Imaging Acoustic Microscopy Transducers and Arrays Nondestructive Evaluation and Industrial Applications Underwater Imaging

  10. Acoustic textiles

    CERN Document Server

    Nayak, Rajkishore

    2016-01-01

    This book highlights the manufacturing and applications of acoustic textiles in various industries. It also includes examples from different industries in which acoustic textiles can be used to absorb noise and help reduce the impact of noise at the workplace. Given the importance of noise reduction in the working environment in several industries, the book offers a valuable guide for companies, educators and researchers involved with acoustic materials.

  11. Acoustic biosensors

    OpenAIRE

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of ...

  12. Radiation acoustics

    CERN Document Server

    Lyamshev, Leonid M

    2004-01-01

    Radiation acoustics is a developing field lying at the intersection of acoustics, high-energy physics, nuclear physics, and condensed matter physics. Radiation Acoustics is among the first books to address this promising field of study, and the first to collect all of the most significant results achieved since research in this area began in earnest in the 1970s.The book begins by reviewing the data on elementary particles, absorption of penetrating radiation in a substance, and the mechanisms of acoustic radiation excitation. The next seven chapters present a theoretical treatment of thermoradiation sound generation in condensed media under the action of modulated penetrating radiation and radiation pulses. The author explores particular features of the acoustic fields of moving thermoradiation sound sources, sound excitation by single high-energy particles, and the efficiency and optimal conditions of thermoradiation sound generation. Experimental results follow the theoretical discussions, and these clearl...

  13. Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation

    Science.gov (United States)

    Miller, Steven A. E.

    2015-01-01

    An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier-Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle.

  14. Cryogenic Acoustic Suppression Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed project will explore and test the feasibility and effectiveness of using a cryogenic fluid (liquid nitrogen) to facilitate acoustic suppression in a...

  15. Alternative energies; Energies alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, J.; Rossetti, P

    2007-07-01

    The earth took millions years to made the petroleum, the gas the coal and the uranium. Only a few centuries will be needed to exhaust these fossil fuels and some years to reach expensive prices. Will the wold continue on this way of energy compulsive consumption? The renewable energies and some citizen attitudes are sufficient to break this spiral. This book proposes to discuss these alternative energies. It shows that this attitude must be supported by the government. It takes stock on the more recent information concerning the renewable energies. it develops three main points: the electricity storage, the housing and the transports. (A.L.B.)

  16. Acoustical Imaging

    CERN Document Server

    Akiyama, Iwaki

    2009-01-01

    The 29th International Symposium on Acoustical Imaging was held in Shonan Village, Kanagawa, Japan, April 15-18, 2007. This interdisciplinary Symposium has been taking place every two years since 1968 and forms a unique forum for advanced research, covering new technologies, developments, methods and theories in all areas of acoustics. In the course of the years the volumes in the Acoustical Imaging Series have developed and become well-known and appreciated reference works. Offering both a broad perspective on the state-of-the-art in the field as well as an in-depth look at its leading edge research, this Volume 29 in the Series contains again an excellent collection of seventy papers presented in nine major categories: Strain Imaging Biological and Medical Applications Acoustic Microscopy Non-Destructive Evaluation and Industrial Applications Components and Systems Geophysics and Underwater Imaging Physics and Mathematics Medical Image Analysis FDTD method and Other Numerical Simulations Audience Researcher...

  17. Battlefield acoustics

    CERN Document Server

    Damarla, Thyagaraju

    2015-01-01

    This book presents all aspects of situational awareness in a battlefield using acoustic signals. It starts by presenting the science behind understanding and interpretation of sound signals. The book then goes on to provide various signal processing techniques used in acoustics to find the direction of sound source, localize gunfire, track vehicles, and detect people. The necessary mathematical background and various classification and fusion techniques are presented. The book contains majority of the things one would need to process acoustic signals for all aspects of situational awareness in one location. The book also presents array theory, which is pivotal in finding the direction of arrival of acoustic signals. In addition, the book presents techniques to fuse the information from multiple homogeneous/heterogeneous sensors for better detection. MATLAB code is provided for majority of the real application, which is a valuable resource in not only understanding the theory but readers, can also use the code...

  18. Acoustics Research

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Fisheries acoustics data are collected from more than 200 sea-days each year aboard the FRV DELAWARE II and FRV ALBATROSS IV (decommissioned) and the FSV Henry B....

  19. Room Acoustics

    Science.gov (United States)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  20. Acoustic biosensors

    Science.gov (United States)

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  1. Droplets Acoustics

    CERN Document Server

    Dahan, Raphael; Carmon, Tal

    2015-01-01

    Contrary to their capillary resonances (Rayleigh, 1879) and their optical resonances (Ashkin, 1977), droplets acoustical resonances were rarely considered. Here we experimentally excite, for the first time, the acoustical resonances of a droplet that relies on sound instead of capillary waves. Droplets vibrations at 37 MHz rates and 100 quality factor are optically excited and interrogated at an optical threshold of 68 microWatt. Our vibrations span a spectral band that is 1000 times higher when compared with drops previously-studied capillary vibration.

  2. Measuring Acoustic Wave Transit Time in Furnace Based on Active Acoustic Source Signal

    Institute of Scientific and Technical Information of China (English)

    Zhen Luo; Feng Tian; Xiao-Ping Sun

    2007-01-01

    Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.

  3. Growing Alternatives

    DEFF Research Database (Denmark)

    Bagger-Petersen, Mai Corlin

    2014-01-01

    From 2014, Anhui Province will pilot a reform of the residential land market in China, thus integrating rural Anhui in the national housing market. In contrast, artist and activist Ou Ning has proposed the Bishan time money currency, intending to establish an alternative economic circuit in Bishan...

  4. Numerical investigation of acoustic solitons

    CERN Document Server

    Lombard, Bruno; Richoux, Olivier

    2014-01-01

    Acoustic solitons can be obtained by considering the propagation of large amplitude sound waves across a set of Helmholtz resonators. The model proposed by Sugimoto and his coauthors has been validated experimentally in previous works. Here we examine some of its theoretical properties: low-frequency regime, balance of energy, stability. We propose also numerical experiments illustrating typical features of solitary waves.

  5. Nonlinearity between acoustics and articulation in Hungarian transparent vowels

    Science.gov (United States)

    Benus, Stefan; Kirke, Karen D.; Gafos, Adamantios I.

    2001-05-01

    We present novel results from the acoustic and articulatory investigation of the production of the transparent vowels (TVs) /i/, /i:/, /e:/ in Hungarian (colon denotes length). The acoustic measurements of the front-back distinction (second formant, the difference of the first and second formants [Ladefoged, 1993]) show that the effect of adjacent back vowels on the front quality of the TVs is only weakly significant. The articulatory measurements of the same data, however, show that adjacent back vowels cause highly significant retraction of the tongue body during the production of the front TVs. The significance of this finding lies in its relevance to the relationship between phonetics and phonology. Our results demonstrate that minor phonetic differences in articulation, impossible to access by traditional theory, correlate with full-fledged phonological alternation of suffix selection in Hungarian. Traditional phonological accounts predict no effect of continuous phonetic details on discrete phonological generalizations. This is supported in our acoustic data but contrasts with our articulatory findings. In the paper we propose a dynamic model where phonological transparency is directly related to nonlinearity between acoustics and articulation [Stevens, 1989; Wood, 1979]. [Work supported by NIH.

  6. An acoustic-convective splitting-based approach for the Kapila two-phase flow model

    Science.gov (United States)

    ten Eikelder, M. F. P.; Daude, F.; Koren, B.; Tijsseling, A. S.

    2017-02-01

    In this paper we propose a new acoustic-convective splitting-based numerical scheme for the Kapila five-equation two-phase flow model. The splitting operator decouples the acoustic waves and convective waves. The resulting two submodels are alternately numerically solved to approximate the solution of the entire model. The Lagrangian form of the acoustic submodel is numerically solved using an HLLC-type Riemann solver whereas the convective part is approximated with an upwind scheme. The result is a simple method which allows for a general equation of state. Numerical computations are performed for standard two-phase shock tube problems. A comparison is made with a non-splitting approach. The results are in good agreement with reference results and exact solutions.

  7. Achieving selective interrogation and sub-wavelength resolution in thin plates with embedded metamaterial acoustic lenses

    Energy Technology Data Exchange (ETDEWEB)

    Semperlotti, F., E-mail: fsemperl@nd.edu; Zhu, H. [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2014-08-07

    In this study, we present an approach to ultrasonic beam-forming and high resolution identification of acoustic sources having critical implications for applications such as structural health monitoring. The proposed concept is based on the design of dynamically tailored structural elements via embedded acoustic metamaterial lenses. This approach provides a completely new alternative to conventional phased-array technology enabling the formation of steerable and collimated (or focused) ultrasonic beams by exploiting a single transducer. Numerical results show that the ultrasonic beam can be steered by simply tuning the frequency of the excitation. Also, the embedded lens can be designed to achieve sub-wavelength resolution to clustered acoustic sources, which is a typical scenario encountered in incipient structural damage.

  8. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    Science.gov (United States)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  9. High-sensitivity fiber optic acoustic sensors

    Science.gov (United States)

    Lu, Ping; Liu, Deming; Liao, Hao

    2016-11-01

    Due to the overwhelming advantages compared with traditional electronicsensors, fiber-optic acoustic sensors have arisen enormous interest in multiple disciplines. In this paper we present the recent research achievements of our group on fiber-optic acoustic sensors. The main point of our research is high sensitivity interferometric acoustic sensors, including Michelson, Sagnac, and Fabry-Pérot interferometers. In addition, some advanced technologies have been proposed for acoustic or acoustic pressure sensing such as single-mode/multimode fiber coupler, dual FBGs and multi-longitudinal mode fiber laser based acoustic sensors. Moreover, our attention we have also been paid on signal demodulation schemes. The intensity-based quadrature point (Q-point) demodulation, two-wavelength quadrature demodulation and symmetric 3×3 coupler methodare discussed and compared in this paper.

  10. An efficient planar inverse acoustic method based on Toeplitz matrices

    NARCIS (Netherlands)

    Wind, J.W.; Boer, de A.; Ellenbroek, M.H.M.

    2010-01-01

    This article proposes a new, fast method to solve inverse acoustic problems for planar sources. This problem is often encountered in practice and methods such as planar nearfield acoustic holography (PNAH) and statistically optimised nearfield acoustic holography (SONAH) are widely used to solve it.

  11. Topology optimization for acoustic-structure interaction problems

    DEFF Research Database (Denmark)

    Yoon, Gil Ho; Jensen, Jakob Søndergaard; Sigmund, Ole

    2006-01-01

    We propose a gradient based topology optimization algorithm for acoustic-structure (vibro-acoustic) interaction problems without an explicit interfacing boundary representation. In acoustic-structure interaction problems, the pressure field and the displacement field are governed by the Helmholtz...

  12. Focusing of Acoustic Waves through Acoustic Materials with Subwavelength Structures

    KAUST Repository

    Xiao, Bingmu

    2013-05-01

    In this thesis, wave propagation through acoustic materials with subwavelength slits structures is studied. Guided by the findings, acoustic wave focusing is achieved with a specific material design. By using a parameter retrieving method, an effective medium theory for a slab with periodic subwavelength cut-through slits is successfully derived. The theory is based on eigenfunction solutions to the acoustic wave equation. Numerical simulations are implemented by the finite-difference time-domain (FDTD) method for the two-dimensional acoustic wave equation. The theory provides the effective impedance and refractive index functions for the equivalent medium, which can reproduce the transmission and reflection spectral responses of the original structure. I analytically and numerically investigate both the validity and limitations of the theory, and the influences of material and geometry on the effective spectral responses are studied. Results show that large contrasts in impedance and density are conditions that validate the effective medium theory, and this approximation displays a better accuracy for a thick slab with narrow slits in it. Based on the effective medium theory developed, a design of a at slab with a snake shaped" subwavelength structure is proposed as a means of achieving acoustic focusing. The property of focusing is demonstrated by FDTD simulations. Good agreement is observed between the proposed structure and the equivalent lens pre- dicted by the theory, which leads to robust broadband focusing by a thin at slab.

  13. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks †

    OpenAIRE

    Qiu Wang; Hong-Ning Dai; Xuran Li; Hao Wang; Hong Xiao

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones ...

  14. Acoustic Tactile Representation of Visual Information

    Science.gov (United States)

    Silva, Pubudu Madhawa

    subjects. The results are evaluated in terms of accuracy and speed, and they demonstrate the advantages of spatial sound for guiding the scanning finger or pointer in shape perception, object localization, and layout exploration. We show that these advantages increase with the amount of detail (smaller object size) in the display. Our experimental results show that the proposed system outperforms the state of the art in shape perception, including variable friction displays. We also demonstrate that, even though they are currently available only as static overlays, raised dot patterns provide the best shape rendition in terms of both the accuracy and speed. Our experiments with layout rendering and perception demonstrate that simultaneous representation of objects, using the most effective approaches for directionality and distance rendering, approaches the optimal performance level provided by visual layout perception. Finally, experiments with the virtual cane and Venn diagram configurations demonstrate that the proposed techniques can be used effectively in simple but nontrivial real-world applications. One of the most important conclusions of our experiments is that there is a clear performance gap between experienced and inexperienced subjects, which indicates that there is a lot of room for improvement with appropriate and extensive training. By exploring a wide variety of design alternatives and focusing on different aspects of the acoustic-tactile interfaces, our results offer many valuable insights and great promise for the design of future systematic tests visually impaired and visually blocked subjects, utilizing the most effective configurations.

  15. Advanced Technology MEMS-based Acoustic Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Interdisciplinary Consulting Corporation proposes a technological advancement of current state-of-the-art acoustic energy harvester for harsh environment...

  16. Catalysis for alternative energy generation

    CERN Document Server

    2012-01-01

    Summarizes recent problems in using catalysts in alternative energy generation and proposes novel solutions  Reconsiders the role of catalysis in alternative energy generation  Contributors include catalysis and alternative energy experts from across the globe

  17. High Temperature Acoustic Noise Reduction Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is to use combustion synthesis techniques to manufacture ceramic-based acoustic liners capable of withstanding temperatures up to 2500?C....

  18. Acoustic Resonance Reaction Control Thruster (ARCTIC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate the innovative Acoustic Resonance Reaction Control Thruster (ARCTIC) to provide rapid and reliable in-space impulse...

  19. Proposal for an alternative operative method for determination of polarisation resistance for the quantitative evaluation of corrosion of reinforcing steel in concrete cooling towers

    Energy Technology Data Exchange (ETDEWEB)

    Mitzithra, M.E., E-mail: me.mitzithra@gmail.com [EDF R& D, 6 quai Watier, 78401 Chatou Cedex (France); Université de Toulouse, UPS, INSA, LMDC, 135, Avenue de Rangueil, 31077 Toulouse Cedex 4 (France); Deby, F.; Balayssac, J.P. [Université de Toulouse, UPS, INSA, LMDC, 135, Avenue de Rangueil, 31077 Toulouse Cedex 4 (France); Salin, J. [EDF R& D, 6 quai Watier, 78401 Chatou Cedex (France)

    2015-07-15

    This paper summarises the results obtained from numerical simulations of an operational measurement mode of polarisation resistance adapted for evaluating corrosion of reinforcing steel in concrete on cooling towers. A simple operational measurement mode of R{sub p} is proposed, adapted for cooling towers prone to corrosion due to carbonation. By means of numerical experimentations, calculation diagrams and semi-empirical equations are built involving the different influencing parameters: concrete cover to steel reinforcement, concrete resistivity and current intensity injected from the counter electrode. Finally, a first application of the proposed procedure for calculating the real value of R{sub p} in laboratory conditions is presented.

  20. A theoretical approach to room acoustic simulations based on a radiative transfer model

    DEFF Research Database (Denmark)

    Ruiz-Navarro, Juan-Miguel; Jacobsen, Finn; Escolano, José;

    2010-01-01

    A theoretical approach to room acoustic simulations based on a radiative transfer model is developed by adapting the classical radiative transfer theory from optics to acoustics. The proposed acoustic radiative transfer model expands classical geometrical room acoustic modeling algorithms by inco...

  1. A novel broadband waterborne acoustic absorber

    Science.gov (United States)

    Wang, Changxian; Wen, Weibin; Huang, Yixing; Chen, Mingji; Lei, Hongshuai; Fang, Daining

    2016-07-01

    In this paper, we extended the ray tracing theory in polar coordinate system, and originally proposed the Snell-Descartes law in polar coordinates. Based on these theories, a novel broadband waterborne acoustic absorber device was proposed. This device is designed with gradient-distributing materials along radius, which makes the incidence acoustic wave ray warps. The echo reduction effects of this device were investigated by finite element analysis, and the numerical results show that the reflectivity of acoustic wave for the new device is lower than that of homogenous and Alberich layers in almost all frequency 0-30 kHz at the same loss factor.

  2. Theory and modeling of cylindrical thermo-acoustic transduction

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lihong, E-mail: lhtong@ecjtu.edu.cn [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)

    2016-06-03

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.

  3. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  4. Acoustic cryocooler

    Science.gov (United States)

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  5. Acoustic telemetry.

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  6. Frequency steerable acoustic transducers

    Science.gov (United States)

    Senesi, Matteo

    Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing

  7. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    The concept of supersonic acoustic intensity was introduced some years ago for estimating the fraction of the flow of energy radiated by a source that propagates to the far field. It differs from the usual (active) intensity by excluding the near-field energy resulting from evanescent waves...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  8. Topology optimization of bounded acoustic problems using the hybrid finite element-wave based method

    DEFF Research Database (Denmark)

    Goo, Seongyeol; Wang, Semyung; Kook, Junghwan

    2017-01-01

    This paper presents an alternative topology optimization method for bounded acoustic problems that uses the hybrid finite element-wave based method (FE-WBM). The conventional method for the topology optimization of bounded acoustic problems is based on the finite element method (FEM), which...... is limited to low frequency applications due to considerable computational efforts. To this end, we propose a gradient-based topology optimization method that uses the hybrid FE-WBM whereby the entire domain of a problem is partitioned into design and non-design domains. In this respect, the FEM is used...... as a design domain of topology optimization, and the WBM is used as a non-design domain to increase computational efficiency. The adjoint variable method based on the hybrid FE-WBM is also proposed as a means of computing design sensitivities. Numerical examples are presented to demonstrate the effectiveness...

  9. Asymmetric transmission of acoustic waves in a layer thickness distribution gradient structure using metamaterials

    Science.gov (United States)

    Chen, Jung-San; Chang, I.-Ling; Huang, Wan-Ting; Chen, Lien-Wen; Huang, Guan-Hua

    2016-09-01

    This research presents an innovative asymmetric transmission design using alternate layers of water and metamaterial with complex mass density. The directional transmission behavior of acoustic waves is observed numerically inside the composite structure with gradient layer thickness distribution and the rectifying performance of the present design is evaluated. The layer thickness distributions with arithmetic and geometric gradients are considered and the effect of gradient thickness on asymmetric wave propagation is systematically investigated using finite element simulation. The numerical results indicate that the maximum pressure density and transmission through the proposed structure are significantly influenced by the wave propagation direction over a wide range of audible frequencies. Tailoring the thickness of the layered structure enables the manipulation of asymmetric wave propagation within the desired frequency range. In conclusion, the proposed design offers a new possibility for developing directional-dependent acoustic devices.

  10. Geographic variation in acoustic communication in anurans and its neuroethological implications.

    Science.gov (United States)

    Velásquez, Nelson A

    2014-01-01

    Geographic variation of traits may represent the first step for evolutionary divergence potentially leading to speciation. Signals are behavioral traits of particular interest for the study of variation at a geographic scale. The anuran acoustic communication system represents an excellent model for studies of this kind, because their vocalizations play a main role in reproduction and the extant variation in this system may determine the evolution of this group. This review is committed to studies on geographic variation of acoustic communication systems in anurans, focusing on temporal and spectral characteristics of signals, environmental constraints affecting them and sound producing and receiving organs. In addition to the review of the literature on these topics, I highlight the deficit of investigation in some areas and propose alternative directions to overcome these drawbacks. Further, I propose the four-eyed frog, Pleurodema thaul, as an excellent model system to study geographic variation using a wide spectrum of approaches.

  11. Finite element estimation of acoustical response functions in HID lamps

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Bernd; Wolff, Marcus [Department of Mechanical Engineering and Production, School of Engineering and Computer Science, Hamburg University of Applied Sciences, Berliner Tor 21, 20099 Hamburg (Germany); Hirsch, John; Antonis, Piet [Philips Lighting BV, Lightlabs, Mathildelaan 1, 5600 JM Eindhoven (Netherlands); Bhosle, Sounil [Universite de Toulouse (United States); Barrientos, Ricardo Valdivia, E-mail: bernd.baumann@haw-hamburg.d [National Nuclear Research Institute, Highway Mexico-Toluca s/n, La Marquesa, Ocoyoacac, CP 52750 (Mexico)

    2009-11-21

    High intensity discharge lamps can experience flickering and even destruction when operated at high frequency alternating current. The cause of these problems has been identified as acoustic resonances inside the lamp's arc tube. Here, a finite element approach for the calculation of the acoustic response function is described. The developed model does not include the plasma dynamics.

  12. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.

    Science.gov (United States)

    Liu, Hao-Li; Hsieh, Chao-Ming

    2009-03-01

    Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.

  13. Pulsed-Source Interferometry in Acoustic Imaging

    Science.gov (United States)

    Shcheglov, Kirill; Gutierrez, Roman; Tang, Tony K.

    2003-01-01

    A combination of pulsed-source interferometry and acoustic diffraction has been proposed for use in imaging subsurface microscopic defects and other features in such diverse objects as integrated-circuit chips, specimens of materials, and mechanical parts. A specimen to be inspected by this technique would be mounted with its bottom side in contact with an acoustic transducer driven by a continuous-wave acoustic signal at a suitable frequency, which could be as low as a megahertz or as high as a few hundred gigahertz. The top side of the specimen would be coupled to an object that would have a flat (when not vibrating) top surface and that would serve as the acoustical analog of an optical medium (in effect, an acoustical "optic").

  14. Acoustic classification of dwellings

    DEFF Research Database (Denmark)

    Berardi, Umberto; Rasmussen, Birgit

    2014-01-01

    Schemes for the classification of dwellings according to different building performances have been proposed in the last years worldwide. The general idea behind these schemes relates to the positive impact a higher label, and thus a better performance, should have. In particular, focusing on soun...... exchanging experiences about constructions fulfilling different classes, reducing trade barriers, and finally increasing the sound insulation of dwellings.......Schemes for the classification of dwellings according to different building performances have been proposed in the last years worldwide. The general idea behind these schemes relates to the positive impact a higher label, and thus a better performance, should have. In particular, focusing on sound...... insulation performance, national schemes for sound classification of dwellings have been developed in several European countries. These schemes define acoustic classes according to different levels of sound insulation. Due to the lack of coordination among countries, a significant diversity in terms...

  15. A importância do conhecimento escolar em propostas curriculares alternativas The importance of school knowledge for alternative curricular proposals

    Directory of Open Access Journals (Sweden)

    Antonio Flavio Barbosa Moreira

    2007-06-01

    Full Text Available O artigo focaliza um processo de construção curricular em uma escola da rede municipal de Belo Horizonte, no qual vigora a proposta oficial da ESCOLA PLURAL. Destaca as dificuldades vividas pelo corpo docente da escola e desenvolve o argumento de que propostas curriculares inovadoras podem criar um espaço discursivo no qual se segregam as crianças das camadas populares, reduzindo suas possibilidades de autonomia na sociedade. Com base nas concepções de política de Stephen Ball e Jenny Ozga, analisam-se os textos políticos da Escola Plural e de uma escola da rede municipal. Verificou-se a complexa relação entre documentos oficiais e experiências locais, bem como a necessidade de se afirmar a importância do conhecimento escolar no currículo. Argumenta-se que a supervalorização do aluno e de suas experiências culturais, em associação com a secundarização do conhecimento escolar, pode criar um espaço em que a criança seja confinada e jamais vista como normal.The paper focuses on a process of curriculum construction which was developed in a school from the Belo Horizonte educational system. The school is organized according to the official curricular proposal entitled PLURAL SCHOOL. It emphasizes the difficulties which were faced by the academic staff of the school and argues that innovative curricular proposals may create a space in which children from working class are segregated and have their possibilities of autonomy in society reduced. Drawing on the conceptions of politics by Stephen Ball and Jenny Ozga, the political texts, written on the level of the Plural School proposal and on the level of the school, are analyzed. The complex relations among official documents and local experiences are emphasized. The importance of school knowledge is stressed. It is argued that the overvaluation of the students and their cultural experiences and the undervaluation of school knowledge can create a space in which children are

  16. Spectral element method for elastic and acoustic waves in frequency domain

    Science.gov (United States)

    Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min; Zhuang, Mingwei; Liu, Na; Liu, Qing Huo

    2016-12-01

    Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the use of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.

  17. Responsive acoustic surfaces

    DEFF Research Database (Denmark)

    Peters, Brady; Tamke, Martin; Nielsen, Stig Anton;

    2011-01-01

    Acoustic performance is defined by the parameter of reverberation time; however, this does not capture the acoustic experience in some types of open plan spaces. As many working and learning activities now take place in open plan spaces, it is important to be able to understand and design...... for the acoustic conditions of these spaces. This paper describes an experimental research project that studied the design processes necessary to design for sound. A responsive acoustic surface was designed, fabricated and tested. This acoustic surface was designed to create specific sonic effects. The design...... was simulated using custom integrated acoustic software and also using Odeon acoustic analysis software. The research demonstrates a method for designing space- and sound-defining surfaces, defines the concept of acoustic subspace, and suggests some new parameters for defining acoustic subspaces....

  18. Springer Handbook of Acoustics

    CERN Document Server

    Rossing, Thomas D

    2007-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and others. The Springer Handbook of Acoustics is an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents spanning: animal acoustics including infrasound and ultrasound, environmental noise control, music and human speech and singing, physiological and psychological acoustics, architectural acoustics, physical and engineering acoustics, signal processing, medical acoustics, and ocean acoustics. This handbook reviews the most important areas of acoustics, with emphasis on current research. The authors of the various chapters are all experts in their fields. Each chapter is richly illustrated with figures and tables. The latest rese...

  19. Acoustic Spatiality

    Directory of Open Access Journals (Sweden)

    Brandon LaBelle

    2012-06-01

    Full Text Available Experiences of listening can be appreciated as intensely relational, bringing us into contact with surrounding events, bodies and things. Given that sound propagates and expands outwardly, as a set of oscillations from a particular source, listening carries with it a sensual intensity, whereby auditory phenomena deliver intrusive and disruptive as well as soothing and assuring experiences. The physicality characteristic of sound suggests a deeply impressionistic, locational "knowledge structure" – that is, the ways in which listening affords processes of exchange, of being in the world, and from which we extend ourselves. Sound, as physical energy reflecting and absorbing into the materiality around us, and even one's self, provides a rich platform for understanding place and emplacement. Sound is always already a trace of location.Such features of auditory experience give suggestion for what I may call an acoustical paradigm – how sound sets in motion not only the material world but also the flows of the imagination, lending to forces of signification and social structure, and figuring us in relation to each other. The relationality of sound brings us into a steady web of interferences, each of which announces the promise or problematic of being somewhere.

  20. CALCULATION OF ACOUSTIC EFFICIENCY OF PORTABLE ACOUSTIC SCREEN

    Directory of Open Access Journals (Sweden)

    Aleksandr Skvortsov

    2016-03-01

    Full Text Available The research of influence of life environment adverse factors on physical development and health of population is an actual problem of ecology. The aspects of the most actual problems of the modern world, namely environmental industrial noise pollution are considered in the article. Industrial facilities everywhere have noisy equipment. Noise is a significant factors of negative influenceon people and environment. Combined effects of noise and of other physical pollutions on people may cause amplification of their negative impact. If the noise pollution level from the object in a residential area exceeds the permissible levels (MPL, noise protection measures can be initiated. Today, the most common design decisions for noise protection are sound absorbing construction, noise screens and barriers, acousting housings, soundproff cabins. Many of them are popular, others are less known. The article deals with one of the most wide spread means of noise protection – a portable acoustic screen. The aim of the research is to determine the efficiency of portable acoustic screens. It is shown that the installation of such structures can reduce the average value of the sound level. The authors analyzed acoustic screens as device to reduce noise pollution. The authors offer a potable acoustic screen differing from the used easyness, mobility, minimum price and good sound protective properties. Effectiveness, a sound absorption coefficient and sound conductivity coefficient of a portable acoustic screen are evaluated. The descriptions of the algorithm calculations and the combination of technical solutions have practical originality. The results of the research demonstrate the advantages of the proposed solutions for reducing noise levels in the agro-industrial complex.

  1. Acoustic source for generating an acoustic beam

    Energy Technology Data Exchange (ETDEWEB)

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  2. Acoustics and Hearing

    CERN Document Server

    Damaske, Peter

    2008-01-01

    When one listens to music at home, one would like to have an acoustic impression close to that of being in the concert hall. Until recently this meant elaborate multi-channelled sound systems with 5 or more speakers. But head-related stereophony achieves the surround-sound effect in living rooms with only two loudspeakers. By virtue of their slight directivity as well as an electronic filter the limitations previously common to two-speaker systems can be overcome and this holds for any arbitrary two-channel recording. The book also investigates the question of how a wide and diffuse sound image can arise in concert halls and shows that the quality of concert halls decisively depends on diffuse sound images arising in the onset of reverberation. For this purpose a strong onset of reverberation is modified in an anechoic chamber by electroacoustic means. Acoustics and Hearing proposes ideas concerning signal processing in the auditory system that explain the measured results and the resultant sound effects plea...

  3. Atlantic Herring Acoustic Surveys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NEFSC Advanced Sampling Technologies Research Group conducts annual fisheries acoustic surveys using state-of-the-art acoustic, midwater trawling, and underwater...

  4. Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images.

    Science.gov (United States)

    Berton, Florian; Cheriet, Farida; Miron, Marie-Claude; Laporte, Catherine

    2016-05-01

    Spinal ultrasound imaging is emerging as a low-cost, radiation-free alternative to conventional X-ray imaging for the clinical follow-up of patients with scoliosis. Currently, deformity measurement relies almost entirely on manual identification of key vertebral landmarks. However, the interpretation of vertebral ultrasound images is challenging, primarily because acoustic waves are entirely reflected by bone. To alleviate this problem, we propose an algorithm to segment these images into three regions: the spinous process, its acoustic shadow and other tissues. This method consists, first, in the extraction of several image features and the selection of the most relevant ones for the discrimination of the three regions. Then, using this set of features and linear discriminant analysis, each pixel of the image is classified as belonging to one of the three regions. Finally, the image is segmented by regularizing the pixel-wise classification results to account for some geometrical properties of vertebrae. The feature set was first validated by analyzing the classification results across a learning database. The database contained 107 vertebral ultrasound images acquired with convex and linear probes. Classification rates of 84%, 92% and 91% were achieved for the spinous process, the acoustic shadow and other tissues, respectively. Dice similarity coefficients of 0.72 and 0.88 were obtained respectively for the spinous process and acoustic shadow, confirming that the proposed method accurately segments the spinous process and its acoustic shadow in vertebral ultrasound images. Furthermore, the centroid of the automatically segmented spinous process was located at an average distance of 0.38 mm from that of the manually labeled spinous process, which is on the order of image resolution. This suggests that the proposed method is a promising tool for the measurement of the Spinous Process Angle and, more generally, for assisting ultrasound-based assessment of scoliosis

  5. Design of an impedance matching acoustic bend

    OpenAIRE

    Yang, Yuzhen; Jia, Han; Lu, Wenjia; Sun, Zhaoyong; Yang, Jun

    2017-01-01

    We propose the design of an impedance matching acoustic bend in this article. The bending structure is composed of sub-wavelength unit cells with perforated plates and side pipes, whose mass density and bulk modulus can be tuned simultaneously. So the refraction index and the impedance of the acoustic bend can be modulated simultaneously to guarantee both the bending effect and the high transmission. The simulation results of sound pressure field distribution show that the bending effect of t...

  6. Unidirectional propagation of designer surface acoustic waves

    CERN Document Server

    Lu, Jiuyang; Ke, Manzhu; Liu, Zhengyou

    2014-01-01

    We propose an efficient design route to generate unidirectional propagation of the designer surface acoustic waves. The whole system consists of a periodically corrugated rigid plate combining with a pair of asymmetric narrow slits. The directionality of the structure-induced surface waves stems from the destructive interference between the evanescent waves emitted from the double slits. The theoretical prediction is validated well by simulations and experiments. Promising applications can be anticipated, such as in designing compact acoustic circuits.

  7. Acoustic Communications (ACOMMS) ATD

    Science.gov (United States)

    2016-06-14

    develop and demonstrate emerging undersea acoustic communication technologies at operationally useful ranges and data rates. The secondary objective...Technology Demonstration program (ACOMMS ATD) was to demonstrate long range and moderate data rate underwater acoustic communications between a submarine...moderate data rate acoustic communications capability for tactical use between submarines, surface combatants, unmanned undersea vehicles (UUVs), and other

  8. Tutorial on architectural acoustics

    Science.gov (United States)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  9. Sensitive acoustic vibration sensor using single-mode fiber tapers.

    Science.gov (United States)

    Li, Yi; Wang, Xiaozhen; Bao, Xiaoyi

    2011-05-01

    Optical fiber sensors are a good alternative to piezoelectric devices in electromagnetic sensitive environments. In this study, we reported a fiber acoustic sensor based on single-mode fiber (SMF) tapers. The fiber taper is used as the sensing arm in a Mach-Zehnder interferometer. Benefiting from their micrometer dimensions, fiber tapers have shown higher sensitivities to the acoustic vibrations than SMFs. Under the same conditions, the thinnest fiber taper in this report, with a diameter of 1.7 µm, shows a 20 dB improvement in the signal to noise ratio as compared to that of an SMF. This acoustic vibration sensor can detect the acoustic waves over the frequencies of 30 Hz-40 kHz, which is limited by the acoustic wave generator in experiments. We also discussed the phase changes of fiber tapers with different diameters under acoustic vibrations.

  10. Alternative additives; Alternative additiver

    Energy Technology Data Exchange (ETDEWEB)

    2007-08-15

    In this project a number of industrial and agricultural waste products have been characterised and evaluated in terms of alkali-getter performance. The intended use is for biomass-fired power stations aiming at reducing corrosion or slagging related problems. The following products have been obtained, characterised and evaluated: 1) Brewery draff 2) Danish de-gassed manure 3) Paper sludge 4) Moulding sand 5) Spent bleaching earth 6) Anorthosite 7) Sand 8) Clay-sludge. Most of the above alternative additive candidates are deemed unsuitable due to insufficient chemical effect and/or expensive requirements for pre-treatment (such as drying and transportation). 3 products were selected for full-scale testing: de-gassed manure, spent bleaching earth and clay slugde. The full scale tests were undertaken at the biomass-fired power stations in Koege, Slagelse and Ensted. Spent bleaching earth (SBE) and clay sludge were the only tested additive candidates that had a proven ability to react with KCl, to thereby reduce Cl-concentrations in deposits, and reduce the deposit flux to superheater tubes. Their performance was shown to nearly as good as commercial additives. De-gassed manure, however, did not evaluate positively due to inhibiting effects of Ca in the manure. Furthermore, de-gassed manure has a high concentration of heavy metals, which imposes a financial burden with regard to proper disposal of the ash by-products. Clay-sludge is a wet clay slurring, and drying and transportation of this product entails substantial costs. Spent bleaching does not require much pre-treatment and is therefore the most promising alternative additive. On the other hand, bleaching earth contains residual plant oil which means that a range of legislation relating to waste combustion comes into play. Not least a waste combustion fee of 330 DKK/tonne. For all alternative (and commercial) additives disposal costs of the increase ash by-products represents a significant cost. This is

  11. Synthesis of anisotropic swirling surface acoustic waves by inverse filter, towards integrated generators of acoustical vortices

    CERN Document Server

    Riaud, Antoine; Charron, Eric; Bussonnière, Adrien; Matar, Olivier Bou

    2015-01-01

    From radio-electronics signal analysis to biological samples actuation, surface acoustic waves (SAW) are involved in a multitude of modern devices. Despite this versatility, SAW transducers developed up to date only authorize the synthesis of the most simple standing or progressive waves such as plane and focused waves. In particular, acoustical integrated sources able to generate acoustical vortices (the analogue of optical vortices) are missing. In this work, we propose a flexible tool based on inverse filter technique and arrays of SAW transducers enabling the synthesis of prescribed complex wave patterns at the surface of anisotropic media. The potential of this setup is illustrated by the synthesis of a 2D analog of 3D acoustical vortices, namely "swirling surface acoustic waves". Similarly to their 3D counterpart, they appear as concentric structures of bright rings with a phase singularity in their center resulting in a central dark spot. Swirling SAW can be useful in fragile sensors whose neighborhood...

  12. Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging

    Science.gov (United States)

    Lam, Kwok Ho; Li, Ying; Li, Yang; Lim, Hae Gyun; Zhou, Qifa; Shung, Koping Kirk

    2016-11-01

    Non-contact precise manipulation of single microparticles, cells, and organisms has attracted considerable interest in biophysics and biomedical engineering. Similar to optical tweezers, acoustic tweezers have been proposed to be capable of manipulating microparticles and even cells. Although there have been concerted efforts to develop tools for non-contact manipulation, no alternative to complex, unifunctional tweezer has yet been found. Here we report a simple, low-cost, multifunctional single beam acoustic tweezer (SBAT) that is capable of manipulating an individual micrometer scale non-spherical cell at Rayleigh regime and even a single millimeter scale organism at Mie regime, and imaging tissue as well. We experimentally demonstrate that the SBAT with an ultralow f-number (f# = focal length/aperture size) could manipulate an individual red blood cell and a single 1.6 mm-diameter fertilized Zebrafish egg, respectively. Besides, in vitro rat aorta images were collected successfully at dynamic foci in which the lumen and the outer surface of the aorta could be clearly seen. With the ultralow f-number, the SBAT offers the combination of large acoustic radiation force and narrow beam width, leading to strong trapping and high-resolution imaging capabilities. These attributes enable the feasibility of using a single acoustic device to perform non-invasive multi-functions simultaneously for biomedical and biophysical applications.

  13. Sustainable Acoustic Metasurfaces for Sound Control

    Directory of Open Access Journals (Sweden)

    Paola Gori

    2016-01-01

    Full Text Available Sound attenuation with conventional acoustic materials is subject to the mass law and requires massive and bulky structures at low frequencies. A possible alternative solution is provided by the use of metamaterials, which are artificial materials properly engineered to obtain properties and characteristics that it is not possible to find in natural materials. Theory and applications of metamaterials, already consolidated in electromagnetism, can be extended to acoustics; in particular, they can be applied to improve the properties of acoustical panels. The design of acoustic metasurfaces that could effectively control transmitted sound in unconventional ways appears a significant subject to be investigated, given its wide-ranging possible applications. In this contribution, we investigate the application of a metasurface-inspired technique to achieve the acoustical insulation of an environment. The designed surface has subwavelength thickness and structuring and could be realized with cheap, lightweight and sustainable materials. We present a few examples of such structures and analyze their acoustical behavior by means of full-wave simulations.

  14. Imaging of acoustic fields using optical feedback interferometry.

    Science.gov (United States)

    Bertling, Karl; Perchoux, Julien; Taimre, Thomas; Malkin, Robert; Robert, Daniel; Rakić, Aleksandar D; Bosch, Thierry

    2014-12-01

    This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes.

  15. Materials for Bulk Acoustic Resonators and Filters

    Science.gov (United States)

    Loebl, Hans-Peter

    2003-03-01

    Highly selective solidly mounted bulk acoustic wave (BAW) band pass filters are suited for mobile and wireless systems in the GHz frequency range between 0.8 and 10 GHz. Electro-acoustic thin film BAW resonators are the building blocks these BAW filters. Piezoelectric materials used in these resonators include mainly AlN or ZnO which can be deposited by dedicated thin film sputter deposition techniques. Using these piezo-electric materials and using suited materials for the acoustic Bragg reflector, BAW resonators with high quality factors can be fabricated. The achievable filter bandwidth is approximately 4Alternatively, also ferroelectric thin films might be used to achieve higher coupling coefficient and thus filter bandwidth. BAW resonators and filters have been designed and fabricated on 6" Silicon and glass wafers. Results are presented for resonators and filters operating between 1.95 and 8 GHz. The talk will give an overview of the material aspects which are important for BAW devices. It will be shown that modeling of the resonator and filter response using 1D electro-acoustic simulation (1,2) which includes losses is essential to extract acoustic and electrical material parameters. (1) Solidly Mounted Bulk Acoustic Wave Filters for the Ghz Frequency Range, H.P. Loebl, C. Metzmacher , D.N.Peligrad , R. Mauczok , M. Klee , W. Brand , R.F. Milsom , P.Lok , F.van Straten , A. Tuinhout , J.W.Lobeek, IEEE 2002 Ultrasonics Symposium Munich, October 2002. (2) Combined Acoustic-Electromagnetic Simulation Of Thin-Film Bulk Acoustic Wave Filters, R.F. Milsom, H-P. Löbl, D.N. Peligrad, J-W. Lobeek, A. Tuinhout, R. H. ten Dolle IEEE 2002 Ultrasonics Symposium Munich, October 2002.

  16. Reconfigurable origami-inspired acoustic waveguides.

    Science.gov (United States)

    Babaee, Sahab; Overvelde, Johannes T B; Chen, Elizabeth R; Tournat, Vincent; Bertoldi, Katia

    2016-11-01

    We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems.

  17. Designing single-beam multitrapping acoustical tweezers

    CERN Document Server

    Silva, Glauber T

    2014-01-01

    The concept of a single-beam acoustical tweezer device which can simultaneously trap microparticles at different points is proposed and demonstrated through computational simulations. The device employs an ultrasound beam produced by a circular focused transducer operating at 1 MHz in water medium. The ultrasound beam exerts a radiation force that may tweeze suspended microparticles in the medium. Simulations show that the acoustical tweezer can simultaneously trap microparticles in the pre-focal zone along the beam axis, i.e. between the transducer surface and its geometric focus. As acoustical tweezers are fast becoming a key instrument in microparticle handling, the development of acoustic multitrapping concept may turn into a useful tool in engineering these devices.

  18. Reconfigurable origami-inspired acoustic waveguides

    Science.gov (United States)

    Babaee, Sahab; Overvelde, Johannes T. B.; Chen, Elizabeth R.; Tournat, Vincent; Bertoldi, Katia

    2016-01-01

    We combine numerical simulations and experiments to design a new class of reconfigurable waveguides based on three-dimensional origami-inspired metamaterials. Our strategy builds on the fact that the rigid plates and hinges forming these structures define networks of tubes that can be easily reconfigured. As such, they provide an ideal platform to actively control and redirect the propagation of sound. We design reconfigurable systems that, depending on the externally applied deformation, can act as networks of waveguides oriented along one, two, or three preferential directions. Moreover, we demonstrate that the capability of the structure to guide and radiate acoustic energy along predefined directions can be easily switched on and off, as the networks of tubes are reversibly formed and disrupted. The proposed designs expand the ability of existing acoustic metamaterials and exploit complex waveguiding to enhance control over propagation and radiation of acoustic energy, opening avenues for the design of a new class of tunable acoustic functional systems. PMID:28138527

  19. Opto-Acoustic Biosensing with Optomechanofluidic Resonators

    CERN Document Server

    Zhu, Kaiyuan; Carmon, Tal; Fan, Xudong; Bahl, Gaurav

    2014-01-01

    Opto-mechano-fluidic resonators (OMFRs) are a unique optofluidics platform that can measure the acoustic properties of fluids and bioanalytes in a fully-contained microfluidic system. By confining light in ultra-high-Q whispering gallery modes of OMFRs, optical forces such as radiation pressure and electrostriction can be used to actuate and sense structural mechanical vibrations spanning MHz to GHz frequencies. These vibrations are hybrid fluid-shell modes that entrain any bioanalyte present inside. As a result, bioanalytes can now reflect their acoustic properties on the optomechanical vibrational spectrum of the device, in addition to optical property measurements with existing optofluidics techniques. In this work, we investigate acoustic sensing capabilities of OMFRs using computational eigenfrequency analysis. We analyze the OMFR eigenfrequency sensitivity to bulk fluid-phase materials as well as nanoparticles, and propose methods to extract multiple acoustic parameters from multiple vibrational modes. ...

  20. Virtual acoustic displays

    Science.gov (United States)

    Wenzel, Elizabeth M.

    1991-01-01

    A 3D auditory display can potentially enhance information transfer by combining directional and iconic information in a quite naturalistic representation of dynamic objects in the interface. Another aspect of auditory spatial clues is that, in conjunction with other modalities, it can act as a potentiator of information in the display. For example, visual and auditory cues together can reinforce the information content of the display and provide a greater sense of presence or realism in a manner not readily achievable by either modality alone. This phenomenon will be particularly useful in telepresence applications, such as advanced teleconferencing environments, shared electronic workspaces, and monitoring telerobotic activities in remote or hazardous situations. Thus, the combination of direct spatial cues with good principles of iconic design could provide an extremely powerful and information-rich display which is also quite easy to use. An alternative approach, recently developed at ARC, generates externalized, 3D sound cues over headphones in realtime using digital signal processing. Here, the synthesis technique involves the digital generation of stimuli using Head-Related Transfer Functions (HRTF's) measured in the two ear-canals of individual subjects. Other similar approaches include an analog system developed by Loomis, et. al., (1990) and digital systems which make use of transforms derived from normative mannikins and simulations of room acoustics. Such an interface also requires the careful psychophysical evaluation of listener's ability to accurately localize the virtual or synthetic sound sources. From an applied standpoint, measurement of each potential listener's HRTF's may not be possible in practice. For experienced listeners, localization performance was only slightly degraded compared to a subject's inherent ability. Alternatively, even inexperienced listeners may be able to adapt to a particular set of HRTF's as long as they provide adequate

  1. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks †

    Science.gov (United States)

    Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones. PMID:27213379

  2. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones.

  3. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Qiu Wang

    2016-05-01

    Full Text Available The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed and different hydrophones (isotropic hydrophones and array hydrophones in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones.

  4. Vibro-acoustics

    CERN Document Server

    Nilsson, Anders

    2015-01-01

    This three-volume book gives a thorough and comprehensive presentation of vibration and acoustic theories. Different from traditional textbooks which typically deal with some aspects of either acoustic or vibration problems, it is unique of this book to combine those two correlated subjects together. Moreover, it provides fundamental analysis and mathematical descriptions for several crucial phenomena of Vibro-Acoustics which are quite useful in noise reduction, including how structures are excited, energy flows from an excitation point to a sound radiating surface, and finally how a structure radiates noise to a surrounding fluid. Many measurement results included in the text make the reading interesting and informative. Problems/questions are listed at the end of each chapter and the solutions are provided. This will help the readers to understand the topics of Vibro-Acoustics more deeply. The book should be of interest to anyone interested in sound and vibration, vehicle acoustics, ship acoustics and inter...

  5. Springer handbook of acoustics

    CERN Document Server

    2014-01-01

    Acoustics, the science of sound, has developed into a broad interdisciplinary field encompassing the academic disciplines of physics, engineering, psychology, speech, audiology, music, architecture, physiology, neuroscience, and electronics. The Springer Handbook of Acoustics is also in his 2nd edition an unparalleled modern handbook reflecting this richly interdisciplinary nature edited by one of the acknowledged masters in the field, Thomas Rossing. Researchers and students benefit from the comprehensive contents. This new edition of the Handbook features over 11 revised and expanded chapters, new illustrations, and 2 new chapters covering microphone arrays  and acoustic emission.  Updated chapters contain the latest research and applications in, e.g. sound propagation in the atmosphere, nonlinear acoustics in fluids, building and concert hall acoustics, signal processing, psychoacoustics, computer music, animal bioacousics, sound intensity, modal acoustics as well as new chapters on microphone arrays an...

  6. Shaping and Timing Gradient Pulses to Reduce MRI Acoustic Noise

    NARCIS (Netherlands)

    Segbers, Marcel; Sierra, Carlos V. Rizzo; Duifhuis, Hendrikus; Hoogduin, Johannes M.

    2010-01-01

    A method to reduce the acoustic noise generated by gradient systems in MRI has been recently proposed; such a method is based on the linear response theory. Since the physical cause of MRI acoustic noise is the time derivative of the gradient current, a common trapezoid current shape produces an aco

  7. Deep Water Ocean Acoustics

    Science.gov (United States)

    2016-04-30

    OASIS, INC. 1 Report No. QSR-14C0172-Ocean Acoustics-043016 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics...understanding of the impact of the ocean and seafloor environmental variability on deep- water (long-range) ocean acoustic propagation and to...improve our understanding. During the past few years, the physics effects studied have been three-dimensional propagation on global scales, deep water

  8. Nearfield Acoustical Holography

    Science.gov (United States)

    Hayek, Sabih I.

    Nearfield acoustical holography (NAH) is a method by which a set of acoustic pressure measurements at points located on a specific surface (called a hologram) can be used to image sources on vibrating surfaces on the acoustic field in three-dimensional space. NAH data are processed to take advantage of the evanescent wavefield to image sources that are separated less that one-eighth of a wavelength.

  9. Broadband manipulation of acoustic wavefronts by pentamode metasurface

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Ye; Wei, Qi, E-mail: weiqi@nju.edu.cn; Cheng, Ying [Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Xu, Zheng [School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China); Liu, Xiaojun, E-mail: liuxiaojun@nju.edu.cn [Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-11-30

    An acoustic metasurface with a sub-wavelength thickness can manipulate acoustic wavefronts freely by the introduction of abrupt phase variation. However, the existence of a narrow bandwidth and a low transmittance limits further applications. Here, we present a broadband and highly transparent acoustic metasurface based on a frequency-independent generalized acoustic Snell's law and pentamode metamaterials. The proposal employs a gradient velocity to redirect refracted waves and pentamode metamaterials to improve impedance matching between the metasurface and the background medium. Excellent wavefront manipulation based on the metasurface is further demonstrated by anomalous refraction, generation of non-diffracting Bessel beam, and sub-wavelength flat focusing.

  10. Dynamic Weakening by Acoustic Fluidization during Stick-Slip Motion.

    Science.gov (United States)

    Giacco, F; Saggese, L; de Arcangelis, L; Lippiello, E; Pica Ciamarra, M

    2015-09-18

    The unexpected weakness of some faults has been attributed to the emergence of acoustic waves that promote failure by reducing the confining pressure through a mechanism known as acoustic fluidization, also proposed to explain earthquake remote triggering. Here we validate this mechanism via the numerical investigation of a granular fault model system. We find that the stick-slip dynamics is affected only by perturbations applied at a characteristic frequency corresponding to oscillations normal to the fault, leading to gradual dynamical weakening as failure is approaching. Acoustic waves at the same frequency spontaneously emerge at the onset of failure in the absence of perturbations, supporting the relevance of acoustic fluidization in earthquake triggering.

  11. Controlling acoustic wave with cylindrically-symmetric gradient-index system

    Institute of Scientific and Technical Information of China (English)

    张哲; 李睿奇; 梁彬; 邹欣晔; 程建春

    2015-01-01

    We present a detailed theoretical description of wave propagation in an acoustic gradient-index system with cylindrical symmetry and demonstrate its potential numerically to control acoustic waves in different ways. The trajectory of acoustic wave within the system is derived by employing the theory of geometric acoustics, and the validity of the theoretical descriptions is verified numerically by using the finite element method simulation. The results show that by tailoring the distribution function of refractive index, the proposed system can yield tunable manipulation on acoustic waves, such as acoustic bending, trapping, and absorbing.

  12. Laboratory for Structural Acoustics

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where acoustic radiation, scattering, and surface vibration measurements of fluid-loaded and non-fluid-loaded structures are...

  13. Handbook of Engineering Acoustics

    CERN Document Server

    Möser, Michael

    2013-01-01

    This book examines the physical background of engineering acoustics, focusing on empirically obtained engineering experience as well as on measurement techniques and engineering methods for prognostics. Its goal is not only to describe the state of art of engineering acoustics but also to give practical help to engineers in order to solve acoustic problems. It deals with the origin, the transmission and the methods of the abating different kinds of air-borne and structure-borne sounds caused by various mechanisms – from traffic to machinery and flow-induced sound. In addition the modern aspects of room and building acoustics, as well as psychoacoustics and active noise control, are covered.

  14. Acoustic Technology Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — This laboratory contains an electro-magnetic worldwide data collection and field measurement capability in the area of acoustic technology. Outfitted by NASA Langley...

  15. Localized acoustic surface modes

    Science.gov (United States)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  16. Shallow Water Acoustic Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports experimental research where high-frequency acoustic scattering and surface vibration measurements of fluid-loaded and non-fluid-loaded structures...

  17. Localized Acoustic Surface Modes

    KAUST Repository

    Farhat, Mohamed

    2015-08-04

    We introduce the concept of localized acoustic surface modes (ASMs). We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  18. Acoustic Signals and Systems

    DEFF Research Database (Denmark)

    2008-01-01

    The Handbook of Signal Processing in Acoustics will compile the techniques and applications of signal processing as they are used in the many varied areas of Acoustics. The Handbook will emphasize the interdisciplinary nature of signal processing in acoustics. Each Section of the Handbook...... will present topics on signal processing which are important in a specific area of acoustics. These will be of interest to specialists in these areas because they will be presented from their technical perspective, rather than a generic engineering approach to signal processing. Non-specialists, or specialists...

  19. Superresolution through the topological shaping of sound with an acoustic vortex wave antenna

    CERN Document Server

    Guild, Matthew D; Martin, Theodore P; Rohde, Charles A; Orris, Gregory J

    2016-01-01

    In this paper, we demonstrate far-field acoustic superresolution using shaped acoustic vortices. Compared with previously proposed near-field methods of acoustic superresolution, in this work we describe how far-field superresolution can be obtained using an acoustic vortex wave antenna. This is accomplished by leveraging the recent advances in optical vortices in conjunction with the topological diversity of a leaky wave antenna design. In particular, the use of an acoustic vortex wave antenna eliminates the need for a complicated phased array consisting of multiple active elements, and enables a superresolving aperture to be achieved with a single simple acoustic source and total aperture size less than a wavelength in diameter. A theoretical formulation is presented for the design of an acoustic vortex wave antenna with arbitrary planar arrangement, and explicit expressions are developed for the radiated acoustic pressure field. This geometric versatility enables variously-shaped acoustic vortex patterns t...

  20. Acoustic Wavefront Manipulation: Impedance Inhomogeneity and Extraordinary Reflection

    CERN Document Server

    Zhao, Jiajun; Chen, Zhining; Li, Baowen

    2013-01-01

    Optical wavefront can be manipulated by interfering elementary beams with phase inhomogeneity. Therefore a surface allowing huge, abrupt and position-variant phase change would enable all possibilities of wavefront engineering. However, one may not have the luxury of efficient abrupt-phase-changing materials in acoustics. This motivates us to establish a counterpart mechanism for acoustics, in order to empower the wide spectrum of novel acoustic applications. Remarkably, the proposed impedance-governed generalized Snell's law (IGSL) of reflection is distinguished from that in optics. Via the manipulation of inhomogeneous acoustic impedance, extraordinary reflection can be tailored for unprecedented wavefront manipulation while ordinary reflection can be surprisingly switched on or off. Our results may power the acoustic-wave manipulation and engineering. We demonstrate novel acoustic applications by planar surfaces designed with IGSL.

  1. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    KAUST Repository

    Mei, Jun

    2016-09-02

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Î

  2. APPLICATION OF DOMAIN DECOMPOSITION IN ACOUSTIC AND STRUCTURAL ACOUSTIC ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Conventional element based methods for modeling acoustic problems are limited to low-frequency applications due to the huge computational efforts. For high-frequency applications, probabilistic techniques, such as statistical energy analysis (SEA), are used. For mid-frequency range, currently no adequate and mature simulation methods exist. Recently, wave based method has been developed which is based on the indirect TREFFTZ approach and has shown to be able to tackle problems in the mid-frequency range. In contrast with the element based methods, no discretization is required. A sufficient, but not necessary, condition for convergence of this method is that the acoustic problem domain is convex. Non-convex domains have to be partitioned into a number of (convex) subdomains. At the interfaces between subdomains, specific coupling conditions have to be imposed. The considered two-dimensional coupled vibro-acoustic problem illustrates the beneficial convergence rate of the proposed wave based prediction technique with high accuracy. The results show the new technique can be applied up to much higher frequencies.

  3. A NOVEL ELLIPSOIDAL ACOUSTIC INFINITE ELEMENT

    Institute of Scientific and Technical Information of China (English)

    YANG Rui-liang; WANG Hong-zhen

    2005-01-01

    A novel ellipsoidal acoustic infinite element is proposed. It is based a new pressure representation, which can describe and solve the ellipsoidal acoustic field more exactly. The shape functions of this novel acoustic infinite element are similar .to the Burnett's method, while the weight functions are defined as the product of the complex conjugates of the shaped functions and an additional weighting factor. The code of this method is cheap to generate as for 1-D element because only 1-D integral needs to be numerical. Coupling with the standard finite element, this method provides a capability for very efficiently modeling acoustic fields surrounding structures of virtually any practical shape. This novel method was deduced in brief and the conclusion was kept in detail. To test the feasibility of this novel method efficiently, in the examples the infinite elements were considered, excluding the finite elements relative. This novel ellipsoidal acoustic infinite element can deduce the analytic solution of an oscillating sphere. The example of a prolate spheroid shows that the novel infinite element is superior to the boundary element and other acoustic infinite elements. Analytical and numerical results of these examples show that this novel method is feasible.

  4. Acoustic fluidization - A new geologic process

    Science.gov (United States)

    Melosh, H. J.

    1979-01-01

    A number of geologic processes, particularly seismic faulting, impact crater slumping, and long runout landslides, require the failure of geologic materials under differential stresses much smaller than expected on the basis of conventional rock mechanics. This paper proposes that the low strengths apparent in these phenomena are due to a state of 'acoustic fluidization' induced by a transient strong acoustic wave field. The strain rates possible in such a field are evaluated, and it is shown that acoustically fluidized debris behaves as a newtonian fluid with a viscosity in the range 100,000 to 10,000,000 P for plausible conditions. Energy gains and losses in the acoustic field are discussed, and the mechanism is shown to be effective if internal dissipation in the field gives a Q approximately greater than 100. Whether such values for Q are realized is not known at present. However, acoustic fluidization provides a qualitatively correct description of the failure of rock debris under low differential stresses in the processes of faulting, crater slumping, and long runout landslides. Acoustic fluidization thus deserves serious consideration as a possible explanation of these phenomena.

  5. Controlling the acoustic streaming by pulsed ultrasounds.

    Science.gov (United States)

    Hoyos, Mauricio; Castro, Angélica

    2013-01-01

    We propose a technique based on pulsed ultrasounds for controlling, reducing to a minimum observable value the acoustic streaming in closed ultrasonic standing wave fluidic resonators. By modifying the number of pulses and the repetition time it is possible to reduce the velocity of the acoustic streaming with respect to the velocity generated by the continuous ultrasound mode of operation. The acoustic streaming is observed at the nodal plane where a suspension of 800nm latex particles was focused by primary radiation force. A mixture of 800nm and 15μm latex particles has been also used for showing that the acoustic streaming is hardly reduced while primary and secondary forces continue to operate. The parameter we call "pulse mode factor" i.e. the time of applied ultrasound divided by the duty cycle, is found to be the adequate parameter that controls the acoustic streaming. We demonstrate that pulsed ultrasound is more efficient for controlling the acoustic streaming than the variation of the amplitude of the standing waves.

  6. Acoustic Source Localization and Beamforming: Theory and Practice

    Directory of Open Access Journals (Sweden)

    Chen Joe C

    2003-01-01

    Full Text Available We consider the theoretical and practical aspects of locating acoustic sources using an array of microphones. A maximum-likelihood (ML direct localization is obtained when the sound source is near the array, while in the far-field case, we demonstrate the localization via the cross bearing from several widely separated arrays. In the case of multiple sources, an alternating projection procedure is applied to determine the ML estimate of the DOAs from the observed data. The ML estimator is shown to be effective in locating sound sources of various types, for example, vehicle, music, and even white noise. From the theoretical Cramér-Rao bound analysis, we find that better source location estimates can be obtained for high-frequency signals than low-frequency signals. In addition, large range estimation error results when the source signal is unknown, but such unknown parameter does not have much impact on angle estimation. Much experimentally measured acoustic data was used to verify the proposed algorithms.

  7. Electromechanical transducer for acoustic telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, Douglas S. (Cedar Crest, NM)

    1993-01-01

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  8. Electromechanical transducer for acoustic telemetry system

    Energy Technology Data Exchange (ETDEWEB)

    Drumheller, D.S.

    1993-06-22

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  9. Acoustic space dimensionality selection and combination using the maximum entropy principle

    OpenAIRE

    Abdel-Haleem, Yasser H.; Renals, Steve; Lawrence, Neil D.

    2004-01-01

    In this paper we propose a discriminative approach to acoustic space dimensionality selection based on maximum entropy modelling. We form a set of constraints by composing the acoustic space with the space of phone classes, and use a continuous feature formulation of maximum entropy modelling to select an optimal feature set. The suggested approach has two steps: (1) the selection of the best acoustic space that efficiently and economically represents the acoustic data and its variability;...

  10. NASA Engineering and Safety Center (NESC) Enhanced Melamine (ML) Foam Acoustic Test (NEMFAT)

    Science.gov (United States)

    McNelis, Anne M.; Hughes, William O.; McNelis, Mark E.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) funded a proposal to achieve initial basic acoustic characterization of ML (melamine) foam, which could serve as a starting point for a future, more comprehensive acoustic test program for ML foam. A project plan was developed and implemented to obtain acoustic test data for both normal and enhanced ML foam. This project became known as the NESC Enhanced Melamine Foam Acoustic Test (NEMFAT). This document contains the outcome of the NEMFAT project.

  11. Acoustic manipulation of oscillating spherical bodies: Emergence of axial negative acoustic radiation force

    Science.gov (United States)

    Rajabi, Majid; Mojahed, Alireza

    2016-11-01

    In this paper, emergence of negative axial acoustic radiation force on a rigid oscillating spherical body is investigated for acoustic manipulation purposes. The problem of plane acoustic wave scattering from an oscillating spherical body submerged in an ideal acoustic fluid medium is solved. For the case of oscillating direction collinear with the wave propagation wave number vector (desired path), it has been shown that the acoustic radiation force, as a result of nonlinear acoustic wave interaction with bodies can be expressed as a linear function of incident wave field and the oscillation properties of the oscillator (i.e., amplitude and phase of oscillation). The negative (i.e., pulling effects) and positive (i.e., pushing effects) radiation force situations are divided in oscillation complex plane with a specific frequency-dependant straight line. This characteristic line defines the radiation force cancellation state. In order to investigate the stability of the mentioned manipulation strategy, the case of misaligned oscillation of sphere with the wave propagation direction is studied. The proposed methodology may suggest a novel concept of single-beam acoustic handling techniques based on smart carriers.

  12. Subwavelength diffractive acoustics and wavefront manipulation with a reflective acoustic metasurface

    Science.gov (United States)

    Wang, Wenqi; Xie, Yangbo; Popa, Bogdan-Ioan; Cummer, Steven A.

    2016-11-01

    Acoustic metasurfaces provide useful wavefront shaping capabilities, such as beam steering, acoustic focusing, and asymmetric transmission, in a compact structure. Most acoustic metasurfaces described in the literature are transmissive devices and focus their performance on steering sound beam of the fundamental diffractive order. In addition, the range of incident angles studied is usually below the critical incidence predicted by generalized Snell's law of reflection. In this work, we comprehensively analyze the wave interaction with a generic periodic phase-modulating structure in order to predict the behavior of all diffractive orders, especially for cases beyond critical incidence. Under the guidance of the presented analysis, a broadband reflective metasurface is designed based on an expanded library of labyrinthine acoustic metamaterials. Various local and nonlocal wavefront shaping properties are experimentally demonstrated, and enhanced absorption of higher order diffractive waves is experimentally shown for the first time. The proposed methodology provides an accurate approach for predicting practical diffracted wave behaviors and opens a new perspective for the study of acoustic periodic structures. The designed metasurface extends the functionalities of acoustic metasurfaces and paves the way for the design of thin planar reflective structures for broadband acoustic wave manipulation and extraordinary absorption.

  13. Identification of Acoustic-Vibratory System by Acoustic Measurement

    Directory of Open Access Journals (Sweden)

    Takuzo Iwatsubo

    1996-01-01

    Full Text Available A new method for reducing ill-conditioning in a class of identification problems is proposed. The key point of the method is that the identified vibration of the sound source is expressed as a superposition of vibration modes. The mathematical property of the coefficient matrix, the practical error expanding ratio, and the stochastic error expanding ratio are investigated in a numerical example. The mode-superposition method is shown to be an effective tool for acoustic-vibratory inverse analysis.

  14. Thermal convection driven by acoustic field under microgravity

    OpenAIRE

    Tanabe, Mitsuaki; 田辺 光昭

    2007-01-01

    Natural convection is suppressed in space environment due to the weightlessness. Only centrifugal force is utilized currently to drive gas-phase thermal convection in space. This paper presents an alternative way to drive thermal convection. From the investigation of combustion oscillation in rocket motors, a new thermal convection had been found in stationary acoustic fields. Analyzing the phenomena, acoustic radiation force is found to be the candidate driving force. With a simplified syste...

  15. Propuesta de un Modelo Alternativo para Mejorar la Rentabilidad de los Fondos Captados por el Régimen Obligatorio de Pensiones Complementarias de Costa Rica (A proposal for an alternate model to increase the profitability of supplementary pension

    Directory of Open Access Journals (Sweden)

    Carla Marchena Segura

    2013-05-01

    Full Text Available El presente trabajo de investigación plantea unapropuesta de un modelo alternativo para mejorar larentabilidad de los fondos captados por el RégimenObligatorio de Pensiones Complementarias de CostaRica, a partir del modelo de Multifondos implementadoen Chile y Colombia, para un manejo más eficiente delas inversiones de los Fondos de Pensiones. El modelode Multifondos propuesto consiste en un conjuntode tres fondos de pensiones, los cuales se diferencianen cuanto a sus límites de inversión en renta variable.La ley y reglamentos en relación con el ROP, permitenadoptar el modelo Multifondos, ya que las modificacionesa realizar son a nivel de funcionamiento operativode la administración de las cuentas individuales y delas inversiones, para lo cual sería necesario modificarúnicamente el Reglamento. Los Multifondos puedenayudar a resolver las deficiencias del Régimen Obligatoriode Pensiones Complementarias vigente, principalmente enmateria de diversificación de los portafolios de inversión.   ABSTRACT This study proposes an alternate model to increasethe profitability of supplementary pension funds gatheredby the Costa Rican mandatory pension system based onthe multiple funds model applied in Chile and Colombia,for a better and efficient way to manage the investmentsof Pension Funds. The proposed multiple funds modelis comprised by three pension funds, differentiatedonly by their variable rate investing limits. The rulesand regulations of the Mandatory Pension System(MPS allow the adoption of a multiple funds model,as the modifications to be done for the management ofindividual accounts and investments are at the operationallevel, requiring only a modification of the regulations.Multiple funds can help clear out current deficiencies ofthe Supplementary Pension Fund Mandatory System,mainly regarding investment portfolio diversification.

  16. Manipulating acoustic wavefront by inhomogeneous impedance and steerable extraordinary reflection.

    Science.gov (United States)

    Zhao, Jiajun; Li, Baowen; Chen, Zhining; Qiu, Cheng-Wei

    2013-01-01

    We unveil the connection between the acoustic impedance along a flat surface and the reflected acoustic wavefront, in order to empower a wide wariety of novel applications in acoustic community. Our designed flat surface can generate double reflections: the ordinary reflection and the extraordinary one whose wavefront is manipulated by the proposed impedance-governed generalized Snell's law of reflection (IGSL). IGSL is based on Green's function and integral equation, instead of Fermat's principle for optical wavefront manipulation. Remarkably, via the adjustment of the designed specific acoustic impedance, extraordinary reflection can be steered for unprecedented acoustic wavefront while that ordinary reflection can be surprisingly switched on or off. The realization of the complex discontinuity of the impedance surface has been proposed using Helmholtz resonators.

  17. Acoustic ground impedance meter

    Science.gov (United States)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  18. Computational Ocean Acoustics

    CERN Document Server

    Jensen, Finn B; Porter, Michael B; Schmidt, Henrik

    2011-01-01

    Since the mid-1970s, the computer has played an increasingly pivotal role in the field of ocean acoustics. Faster and less expensive than actual ocean experiments, and capable of accommodating the full complexity of the acoustic problem, numerical models are now standard research tools in ocean laboratories. The progress made in computational ocean acoustics over the last thirty years is summed up in this authoritative and innovatively illustrated new text. Written by some of the field's pioneers, all Fellows of the Acoustical Society of America, Computational Ocean Acoustics presents the latest numerical techniques for solving the wave equation in heterogeneous fluid–solid media. The authors discuss various computational schemes in detail, emphasizing the importance of theoretical foundations that lead directly to numerical implementations for real ocean environments. To further clarify the presentation, the fundamental propagation features of the techniques are illustrated in color. Computational Ocean A...

  19. Study on suppression acoustic resonance of interaction tones from a centrifugal motor blower. Modeling of phenomenon and proposal of suppression method; Enshingata sofuki ni okeru doseiyoku kansho ni kiin suru onkyoteki iyomei gensho no hasei genri to yokuseiho. Gensho no model ka to yokusei shuho no teian

    Energy Technology Data Exchange (ETDEWEB)

    Sugimura, K.; Watanabe, M. [Hitachi, Ltd., Tokyo (Japan)

    2000-10-25

    In a centrifugal blower with diffuser vanes, the noise level may unexpectedly increase at certain numbers of revolutions. In particular, the phenomenon of acoustic resonance due to aerodynamic interaction tones between the impeller and the diffuser is a serious problem. In this paper, we develop a physical model to describe this phenomenon. The model assumes that inner flow paths both in the impeller and the diffuser behave as quasi-one-dimensional acoustic tubes. We constructed a mathematical model to predict critical numbers of revolutions at which resonance occurs, and conducted experiments to verify the model, and the results agree well with the mathematical model. We also propose an effective method for suppressing the resonance in which diffuser vanes with slits are used. Each diffuser vane has a slit located just behind the end of the facing area between neighboring vanes. The location of the slit is determined by the mathematical model. Experiments show that the method successfully reduces keen noise by as much as 8 dB. (author)

  20. On the acoustic wedge design and simulation of anechoic chamber

    Science.gov (United States)

    Jiang, Changyong; Zhang, Shangyu; Huang, Lixi

    2016-10-01

    This study proposes an alternative to the classic wedge design for anechoic chambers, which is the uniform-then-gradient, flat-wall (UGFW) structure. The working mechanisms of the proposed structure and the traditional wedge are analyzed. It is found that their absorption patterns are different. The parameters of both structures are optimized for achieving minimum absorber depth, under the condition of absorbing 99% of normal incident sound energy. It is found that, the UGFW structure achieves a smaller total depth for the cut-off frequencies ranging from 100 Hz to 250 Hz. This paper also proposes a modification for the complex source image (CSI) model for the empirical simulation of anechoic chambers, originally proposed by Bonfiglio et al. [J. Acoust. Soc. Am. 134 (1), 285-291 (2013)]. The modified CSI model considers the non-locally reactive effect of absorbers at oblique incidence, and the improvement is verified by a full, finite-element simulation of a small chamber. With the modified CSI model, the performance of both decorations with the optimized parameters in a large chamber is simulated. The simulation results are analyzed and checked against the tolerance of 1.5 dB deviation from the inverse square law, stipulated in the ISO standard 3745(2003). In terms of the total decoration depth and anechoic chamber performance, the UGFW structure is better than the classic wedge design.

  1. Passive Wireless Hydrogen Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) based hydrogen sensors for NASA application to distributed wireless hydrogen leak...

  2. Passive Wireless Hydrogen Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive orthogonal frequency coded (OFC) surface acoustic wave (SAW) based hydrogen sensors for NASA application...

  3. Adaptive Drainage Slots for Acoustic Noise Attenuation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Cornerstone Research Group, Inc. (CRG), proposes to demonstrate feasibility in the reduction of noise attributed to drainage slots in jet engine acoustic liners....

  4. Abstract wave equations with acoustic boundary conditions

    CERN Document Server

    Mugnolo, Delio

    2010-01-01

    We define an abstract setting to treat wave equations equipped with time-dependent acoustic boundary conditions on bounded domains of ${\\bf R}^n$. We prove a well-posedness result and develop a spectral theory which also allows to prove a conjecture proposed in (Gal-Goldstein-Goldstein, J. Evol. Equations 3 (2004), 623-636). Concrete problems are also discussed.

  5. Acoustic logic gates and Boolean operation based on self-collimating acoustic beams

    Science.gov (United States)

    Zhang, Ting; Cheng, Ying; Guo, Jian-zhong; Xu, Jian-yi; Liu, Xiao-jun

    2015-03-01

    The reveal of self-collimation effect in two-dimensional (2D) photonic or acoustic crystals has opened up possibilities for signal manipulation. In this paper, we have proposed acoustic logic gates based on the linear interference of self-collimated beams in 2D sonic crystals (SCs) with line-defects. The line defects on the diagonal of the 2D square SCs are actually functioning as a 3 dB splitter. By adjusting the phase difference between two input signals, the basic Boolean logic functions such as XOR, OR, AND, and NOT are achieved both theoretically and experimentally. Due to the non-diffracting property of self-collimation beams, more complex Boolean logic and algorithms such as NAND, NOR, and XNOR can be realized by cascading the basic logic gates. The achievement of acoustic logic gates and Boolean operation provides a promising approach for acoustic signal computing and manipulations.

  6. Acoustic logic gates and Boolean operation based on self-collimating acoustic beams

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ting; Xu, Jian-yi [Key Laboratory of Modern Acoustics, Department of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Cheng, Ying, E-mail: chengying@nju.edu.cn; Liu, Xiao-jun, E-mail: liuxiaojun@nju.edu.cn [Key Laboratory of Modern Acoustics, Department of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Guo, Jian-zhong [School of Physics and Information Technology, Shaanxi Normal University, Xian 710119 (China)

    2015-03-16

    The reveal of self-collimation effect in two-dimensional (2D) photonic or acoustic crystals has opened up possibilities for signal manipulation. In this paper, we have proposed acoustic logic gates based on the linear interference of self-collimated beams in 2D sonic crystals (SCs) with line-defects. The line defects on the diagonal of the 2D square SCs are actually functioning as a 3 dB splitter. By adjusting the phase difference between two input signals, the basic Boolean logic functions such as XOR, OR, AND, and NOT are achieved both theoretically and experimentally. Due to the non-diffracting property of self-collimation beams, more complex Boolean logic and algorithms such as NAND, NOR, and XNOR can be realized by cascading the basic logic gates. The achievement of acoustic logic gates and Boolean operation provides a promising approach for acoustic signal computing and manipulations.

  7. Covert underwater acoustic communications.

    Science.gov (United States)

    Ling, Jun; He, Hao; Li, Jian; Roberts, William; Stoica, Petre

    2010-11-01

    Low probability of detection (LPD) communications are conducted at a low received signal-to-noise ratio (SNR) to deter eavesdroppers to sense the presence of the transmitted signal. Successful detection at intended receiver heavily relies on the processing gain achieved by employing the direct-sequence spread-spectrum (DSSS) technique. For scenarios that lack a sufficiently low SNR to maintain LPD, another metric, referred to as low probability of interception (LPI), is of interest to protect the privacy of the transmitted information. If covert communications take place in underwater acoustic (UWA) environments, then additional challenges are present. The time-varying nature of the UWA channel prevents the employment of a long spreading waveform. Furthermore, UWA environments are frequency-selective channels with long memory, which imposes challenges to the design of the spreading waveform. In this paper, a covert UWA communication system that adopts the DSSS technique and a coherent RAKE receiver is investigated. Emphasis is placed on the design of a spreading waveform that not only accounts for the transceiver structure and frequency-selective nature of the UWA channel, but also possesses a superior LPI. The proposed techniques are evaluated using both simulated and SPACE'08 in-water experimental data.

  8. Flat acoustic lens by acoustic grating with curled slits

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Pai; Xiao, Bingmu; Wu, Ying, E-mail: ying.wu@kaust.edu.sa

    2014-10-03

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry–Perot resonance. - Highlights: • Expression of transmission coefficient of an acoustic grating with curled slits. • Non-dispersive and tunable effective medium parameters for the acoustic grating. • A flat acoustic focusing lens with gradient index by using the acoustic grating.

  9. Permafrost - An Alternative Target Material for Ultra High Energy Neutrino Detection?

    CERN Document Server

    Nahnhauer, R; Tosi, D

    2007-01-01

    The detection of cosmic neutrinos with energies above 1017 eV got growing interest during recent years. Possible target materials for in-matter arrays of ~100 km3 size under discussion are water, ice and rock salt. Here we propose to investigate permafrost as an additional alternative, covering ~20% of Earth land surface and reaching down to more than 1000 m depth at certain locations. If sufficiently large attenuation lengths for radio and acoustic signals can be demonstrated by in-situ measurements, the construction of a large hybrid array within this material may be possible in the Northern hemisphere. Properties and problems of a possible location in Siberia are discussed below. Some acoustic data are compared to laboratory measurements using "artificial" permafrost.

  10. Magneto-acoustic imaging by continuous-wave excitation.

    Science.gov (United States)

    Shunqi, Zhang; Zhou, Xiaoqing; Tao, Yin; Zhipeng, Liu

    2016-07-01

    The electrical characteristics of tissue yield valuable information for early diagnosis of pathological changes. Magneto-acoustic imaging is a functional approach for imaging of electrical conductivity. This study proposes a continuous-wave magneto-acoustic imaging method. A kHz-range continuous signal with an amplitude range of several volts is used to excite the magneto-acoustic signal and improve the signal-to-noise ratio. The magneto-acoustic signal amplitude and phase are measured to locate the acoustic source via lock-in technology. An optimisation algorithm incorporating nonlinear equations is used to reconstruct the magneto-acoustic source distribution based on the measured amplitude and phase at various frequencies. Validation simulations and experiments were performed in pork samples. The experimental and simulation results agreed well. While the excitation current was reduced to 10 mA, the acoustic signal magnitude increased up to 10(-7) Pa. Experimental reconstruction of the pork tissue showed that the image resolution reached mm levels when the excitation signal was in the kHz range. The signal-to-noise ratio of the detected magneto-acoustic signal was improved by more than 25 dB at 5 kHz when compared to classical 1 MHz pulse excitation. The results reported here will aid further research into magneto-acoustic generation mechanisms and internal tissue conductivity imaging.

  11. Predicting Acoustics in Class Rooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge; Rindel, Jens Holger

    2005-01-01

    Typical class rooms have fairly simple geometries, even so room acoustics in this type of room is difficult to predict using today's room acoustic computer modeling software. The reasons why acoustics of class rooms are harder to predict than acoustics of complicated concert halls might...

  12. Underwater Applications of Acoustical Holography

    Directory of Open Access Journals (Sweden)

    P. C. Mehta

    1984-01-01

    Full Text Available The paper describes the basic technique of acoustical holography. Requirements for recording the acoustical hologram are discussed with its ability for underwater imaging in view. Some practical systems for short-range and medium-range imaging are described. The advantages of acoustical holography over optical imaging, acoustical imaging and sonars are outlined.

  13. Acoustic mapping velocimetry

    Science.gov (United States)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  14. Acoustic superfocusing by solid phononic crystals

    Science.gov (United States)

    Zhou, Xiaoming; Assouar, M. Badreddine; Oudich, Mourad

    2014-12-01

    We propose a solid phononic crystal lens capable of acoustic superfocusing beyond the diffraction limit. The unit cell of the crystal is formed by four rigid cylinders in a hosting material with a cavity arranged in the center. Theoretical studies reveal that the solid lens produces both negative refraction to focus propagating waves and surface states to amplify evanescent waves. Numerical analyses of the superfocusing effect of the considered solid phononic lens are presented with a separated source excitation to the lens. In this case, acoustic superfocusing beyond the diffraction limit is evidenced. Compared to the fluid phononic lenses, the solid lens is more suitable for ultrasonic imaging applications.

  15. Acoustic Logging Modeling by Refined Biot's Equations

    Science.gov (United States)

    Plyushchenkov, Boris D.; Turchaninov, Victor I.

    An explicit uniform completely conservative finite difference scheme for the refined Biot's equations is proposed. This system is modified according to the modern theory of dynamic permeability and tortuosity in a fluid-saturated elastic porous media. The approximate local boundary transparency conditions are constructed. The acoustic logging device is simulated by the choice of appropriate boundary conditions on its external surface. This scheme and these conditions are satisfactory for exploring borehole acoustic problems in permeable formations in a real axial-symmetrical situation. The developed approach can be adapted for a nonsymmetric case also.

  16. Coupled vibro-acoustic model updating using frequency response functions

    Science.gov (United States)

    Nehete, D. V.; Modak, S. V.; Gupta, K.

    2016-03-01

    Interior noise in cavities of motorized vehicles is of increasing significance due to the lightweight design of these structures. Accurate coupled vibro-acoustic FE models of such cavities are required so as to allow a reliable design and analysis. It is, however, experienced that the vibro-acoustic predictions using these models do not often correlate acceptably well with the experimental measurements and hence require model updating. Both the structural and the acoustic parameters addressing the stiffness as well as the damping modeling inaccuracies need to be considered simultaneously in the model updating framework in order to obtain an accurate estimate of these parameters. It is also noted that the acoustic absorption properties are generally frequency dependent. This makes use of modal data based methods for updating vibro-acoustic FE models difficult. In view of this, the present paper proposes a method based on vibro-acoustic frequency response functions that allow updating of a coupled FE model by considering simultaneously the parameters associated with both the structural as well as the acoustic model of the cavity. The effectiveness of the proposed method is demonstrated through numerical studies on a 3D rectangular box cavity with a flexible plate. Updating parameters related to the material property, stiffness of joints between the plate and the rectangular cavity and the properties of absorbing surfaces of the acoustic cavity are considered. The robustness of the method under presence of noise is also studied.

  17. Reconstruction and prediction of multi-source acoustic field with the distributed source boundary point method based nearfield acoustic holography

    Institute of Scientific and Technical Information of China (English)

    BI; Chuanxing; CHEN; Jian; CHEN; Xinzhao

    2004-01-01

    In a multi-source acoustic field, the actual measured pressure is a scalar sum of pressures from all the sources. The pressure belonging to every source cannot be separated out with the existing techniques. Consequently, routine formulas cannot be used to reconstruct the acoustic source and predict the acoustic field directly. In this paper, a novel theoretical model of reconstruction and prediction of multi-source acoustic field in the distributed source boundary point method (DSBPM) based nearfield acoustic holography (NAH) is established. Three different methods, namely combination method with single surface measurement, combination method with multi-surface measurement and elimination method with multi-surface measurement, are proposed to realize the holographic reconstruction of sources. With these methods, the problem of reconstruction and prediction of acoustic field existing multiple coherent sources synchronously is solved effectively. Using the particular solutions constructed by the DSBPM to establish the vibro-acoustic transfer matrix, the calculation time, calculation precision and calculation stability are improved. These methods are valuable in localizing acoustic source and predicting acoustic field in engineering field.

  18. Design of Fresnel Lens-Type Multi-Trapping Acoustic Tweezers

    Directory of Open Access Journals (Sweden)

    You-Lin Tu

    2016-11-01

    Full Text Available In this paper, acoustic tweezers which use beam forming performed by a Fresnel zone plate are proposed. The performance has been demonstrated by finite element analysis, including the acoustic intensity, acoustic pressure, acoustic potential energy, gradient force, and particle distribution. The acoustic tweezers use an ultrasound beam produced by a lead zirconate titanate (PZT transducer operating at 2.4 MHz and 100 Vpeak-to-peak in a water medium. The design of the Fresnel lens (zone plate is based on air reflection, acoustic impedance matching, and the Fresnel half-wave band (FHWB theory. This acoustic Fresnel lens can produce gradient force and acoustic potential wells that allow the capture and manipulation of single particles or clusters of particles. Simulation results strongly indicate a good trapping ability, for particles under 150 µm in diameter, in the minimum energy location. This can be useful for cell or microorganism manipulation.

  19. A fundamental Lagrangian approach to transformation acoustics and spherical spacetime cloaking

    Science.gov (United States)

    Tung, Michael M.

    2012-05-01

    Transformation acoustics centers on the construction of advanced acoustic devices by combining mathematical transformation techniques with the engineering of acoustic metamaterials. We show how differential-geometric methods together with a variational principle form the basis of a powerful framework to control acoustic waves as desired. This formalism is required to leave the acoustic wave equation invariant under coordinate transformations and is shown to consist of a proposed acoustic Lagrangian function on a smooth spacetime manifold. As an immediate consequence, we can derive the general constitutive relations between the acoustic parameters (bulk modulus and mass-density tensor) of the physical and virtual spaces under consideration. We conclude with a practical application of this theory by presenting acoustic spherical cloaking with time dilation.

  20. Alimentação alternativa: análise crítica de uma proposta de intervenção nutricional Alternative foods: a critical analysis of a proposal for nutritional intervention

    Directory of Open Access Journals (Sweden)

    Jaime Amaya Farfan

    1998-01-01

    Full Text Available O Instituto Nacional de Alimentação e Nutrição (Inan está propondo o uso, em nível nacional, de fórmula de alimentação alternativa, denominada "Multimistura", à base de farelos de arroz, e/ou trigo, sementes de gergelim e abóbora, folhas de mandioca, beterraba, cenoura, verduras nativas e pó de casca de ovo, como solução para combater a fome da população carente. Embora o crítico estado nutricional da população-alvo possa fazer qualquer questionamento técnico ou ético parecer por demais filosófico, uma série de considerações nutricionais, toxicológicas e até de viabilidade prática sugerem que a posição adotada pelo Inan deveria ser revista. A solução da multimistura, talvez válida para situações transitórias de extrema pobreza, carece de universalidade para ser utilizada, independentemente de faixa etária, estado nutricional e período de duração da intervenção.The nationwide use of a "Multimixture," a formula based on alternative foods such as rice and/or wheat bran, sesame and squash seeds, cassava, beet and carrot leaves, several indigenous leafy vegetables, and ground egg shells has been proposed by the National Institute of Food and Nutrition (INAN as an official solution to fight hunger among poor Brazilians. The fragile nutritional state of the target population may make technical or ethical questions appear purely academic, yet nutritional, toxicological, and practical feasibility considerations appear to warrant a revision of the INAN proposal. While the Multimixture approach may prove valid as a temporary solution in cases of extreme poverty, it is not universally applicable for the intended use, failing to take into account the age and nutritional status of the subjects or duration of the intervention.

  1. Broad-band acoustic hyperbolic metamaterial

    CERN Document Server

    Shen, Chen; Sui, Ni; Wang, Wenqi; Cummer, Steven A; Jing, Yun

    2015-01-01

    Acoustic metamaterials (AMMs) are engineered materials, made from subwavelength structures, that exhibit useful or unusual constitutive properties. There has been intense research interest in AMMs since its first realization in 2000 by Liu et al. A number of functionalities and applications have been proposed and achieved using AMMs. Hyperbolic metamaterials are one of the most important types of metamaterials due to their extreme anisotropy and numerous possible applications, including negative refraction, backward waves, spatial filtering, and subwavelength imaging. Although the importance of acoustic hyperbolic metamaterials (AHMMs) as a tool for achieving full control of acoustic waves is substantial, the realization of a broad-band and truly hyperbolic AMM has not been reported so far. Here, we demonstrate the design and experimental characterization of a broadband AHMM that operates between 1.0 kHz and 2.5 kHz.

  2. Acoustical Quality Assessment of the Classroom Environment

    CERN Document Server

    George, Marian

    2012-01-01

    Teaching is one of the most important factors affecting any education system. Many research efforts have been conducted to facilitate the presentation modes used by instructors in classrooms as well as provide means for students to review lectures through web browsers. Other studies have been made to provide acoustical design recommendations for classrooms like room size and reverberation times. However, using acoustical features of classrooms as a way to provide education systems with feedback about the learning process was not thoroughly investigated in any of these studies. We propose a system that extracts different sound features of students and instructors, and then uses machine learning techniques to evaluate the acoustical quality of any learning environment. We infer conclusions about the students' satisfaction with the quality of lectures. Using classifiers instead of surveys and other subjective ways of measures can facilitate and speed such experiments which enables us to perform them continuously...

  3. A membrane-type acoustic metamaterial with adjustable acoustic properties

    Science.gov (United States)

    Langfeldt, F.; Riecken, J.; Gleine, W.; von Estorff, O.

    2016-07-01

    A new realization of a membrane-type acoustic metamaterial (MAM) with adjustable sound transmission properties is presented. The proposed design distinguishes itself from other realizations by a stacked arrangement of two MAMs which is inflated using pressurized air. The static pressurization leads to large nonlinear deformations and, consequently, geometrical stiffening of the MAMs which is exploited to adjust the eigenmodes and sound transmission loss of the structure. A theoretical analysis of the proposed inflatable MAM design using numerical and analytical models is performed in order to identify two important mechanisms, namely the shifting of the eigenfrequencies and modal residuals due to the pressurization, responsible for the transmission loss adjustment. Analytical formulas are provided for predicting the eigenmode shifting and normal incidence sound transmission loss of inflated single and double MAMs using the concept of effective mass. The investigations are concluded with results from a test sample measurement inside an impedance tube, which confirm the theoretical predictions.

  4. A micro-machined thin film electro-acoustic biosensor for detection of pesticide residuals

    Institute of Scientific and Technical Information of China (English)

    Jing-jing WANG; Wei-hui LIU; Da CHEN; Yan XU; Lu-yin ZHANG

    2014-01-01

    Increasing awareness concerning food safety problems has been driving the search for simple and efficient bio-chemical analytical methods. In this paper, we develop a portable electro-acoustic biosensor based on a film bulk acoustic reso-nator for the detection of pesticide residues in agricultural products. A shear mode ZnO film bulk acoustic resonator with a mi-cro-machining structure was fabricated as a mass-sensitive transducer for the real-time detection of antibody-antigen reactions in liquids. In order to obtain an ultra-low detection level, the artificial antigens were immobilized on the sensing surface of the resonator to employ a competitive format for the immunoassays. The competitive immunoreactions can be observed clearly through monitoring the frequency changes. The presence of pesticides was detected through the diminution of the frequency shift compared with the level without pesticides. The limit of detection for carbaryl (a widely used pesticide for vegetables and crops) is 2´10-10 M. The proposed device represents a potential alternative to the complex optical systems and electrochemical methods that are currently being used, and represents a significant opportunity in terms of simplicity of use and portability for on-site food safety testing.

  5. Acoustic Igniter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An acoustic igniter eliminates the need to use electrical energy to drive spark systems to initiate combustion in liquid-propellant rockets. It does not involve the...

  6. Acoustic imaging system

    Science.gov (United States)

    Kendall, J. M., Jr.

    1977-01-01

    Tool detects noise sources by scanning sound "scene" and displaying relative location of noise-producing elements in area. System consists of ellipsoidal acoustic mirror and microphone and a display device.

  7. Acoustic imaging system

    Science.gov (United States)

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  8. Acoustics Noise Test Cell

    Data.gov (United States)

    Federal Laboratory Consortium — The Acoustic Noise Test Cell at the NASA/Caltech Jet Propulsion Laboratory (JPL) is located adjacent to the large vibration system; both are located in a class 10K...

  9. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  10. Autonomous Acoustic Receiver System

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Collects underwater acoustic data and oceanographic data. Data are recorded onboard an ocean buoy and can be telemetered to a remote ship or shore station...

  11. Principles of musical acoustics

    CERN Document Server

    Hartmann, William M

    2013-01-01

    Principles of Musical Acoustics focuses on the basic principles in the science and technology of music. Musical examples and specific musical instruments demonstrate the principles. The book begins with a study of vibrations and waves, in that order. These topics constitute the basic physical properties of sound, one of two pillars supporting the science of musical acoustics. The second pillar is the human element, the physiological and psychological aspects of acoustical science. The perceptual topics include loudness, pitch, tone color, and localization of sound. With these two pillars in place, it is possible to go in a variety of directions. The book treats in turn, the topics of room acoustics, audio both analog and digital, broadcasting, and speech. It ends with chapters on the traditional musical instruments, organized by family. The mathematical level of this book assumes that the reader is familiar with elementary algebra. Trigonometric functions, logarithms and powers also appear in the book, but co...

  12. Symptoms of Acoustic Neuroma

    Science.gov (United States)

    ... Programs & Services Search ANAUSA.org Connect with us! Symptoms of Acoustic Neuroma Each heading slides to reveal more information. Early Symptoms Early Symptoms Early symptoms are easily overlooked, thus making diagnosis ...

  13. Alternative metrics

    Science.gov (United States)

    2012-11-01

    As the old 'publish or perish' adage is brought into question, additional research-impact indices, known as altmetrics, are offering new evaluation alternatives. But such metrics may need to adjust to the evolution of science publishing.

  14. Liquid lens using acoustic radiation force.

    Science.gov (United States)

    Koyama, Daisuke; Isago, Ryoichi; Nakamura, Kentaro

    2011-03-01

    A liquid lens is proposed that uses acoustic radiation force with no mechanical moving parts. It consists of a cylindrical acrylic cell filled with two immiscible liquids (degassed water and silicone oil) and a concave ultrasound transducer. The focal point of the transducer is located on the oil-water interface, which functions as a lens. The acoustic radiation force is generated when there is a difference in the acoustic energy densities of different media. An acoustic standing wave was generated in the axial direction of the lens and the variation of the shape of the oil-water interface was observed by optical coherence tomography (OCT). The lens profile can be rapidly changed by varying the acoustic radiation force from the transducer. The kinematic viscosity of silicone oil was optimized to minimize the response times of the lens. Response times of 40 and 80 ms when switching ultrasonic radiation on and off were obtained with a kinematic viscosity of 200 cSt. The path of a laser beam transmitted through the lens was calculated by ray-tracing simulations based on the experimental results obtained by OCT. The transmitted laser beam could be focused by applying an input voltage. The liquid lens could be operated as a variable-focus lens by varying the input voltage.

  15. Speaker independent acoustic-to-articulatory inversion

    Science.gov (United States)

    Ji, An

    Acoustic-to-articulatory inversion, the determination of articulatory parameters from acoustic signals, is a difficult but important problem for many speech processing applications, such as automatic speech recognition (ASR) and computer aided pronunciation training (CAPT). In recent years, several approaches have been successfully implemented for speaker dependent models with parallel acoustic and kinematic training data. However, in many practical applications inversion is needed for new speakers for whom no articulatory data is available. In order to address this problem, this dissertation introduces a novel speaker adaptation approach called Parallel Reference Speaker Weighting (PRSW), based on parallel acoustic and articulatory Hidden Markov Models (HMM). This approach uses a robust normalized articulatory space and palate referenced articulatory features combined with speaker-weighted adaptation to form an inversion mapping for new speakers that can accurately estimate articulatory trajectories. The proposed PRSW method is evaluated on the newly collected Marquette electromagnetic articulography -- Mandarin Accented English (EMA-MAE) corpus using 20 native English speakers. Cross-speaker inversion results show that given a good selection of reference speakers with consistent acoustic and articulatory patterns, the PRSW approach gives good speaker independent inversion performance even without kinematic training data.

  16. Anal acoustic reflectometry

    DEFF Research Database (Denmark)

    Mitchell, Peter J; Klarskov, Niels; Telford, Karen J;

    2011-01-01

    Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis.......Anal acoustic reflectometry is a new technique of assessing anal sphincter function. Five new variables reflecting anal canal function are measured: the opening and closing pressure, the opening and closing elastance, and hysteresis....

  17. A new acoustic lens material for large area detectors in photoacoustic breast tomography

    CERN Document Server

    Xia, Wenfeng; van Hespen, Johan C G; Steenbergen, Wiendelt; Manohar, Srirang

    2013-01-01

    Acoustic lenses made of acrylic plastic (PMMA) have been used to enlarge the acceptance angle of sensitive large surface area detectors and improve lateral resolution. However, PMMA lenses introduce image artifacts due to ultrasound internal reflections within the lenses. In this work we investigated this issue proposing a new lens material Stycast 1090SI. We characterized the acoustic properties of the proposed material in comparison with PMMA. Detector performance using negative lenses with the two materials, was tested using finite element simulation and experiment. Further the image quality of a photoacoustic tomography system was studied using k-Wave simulation and experiment. Our acoustic characterization showed that Stycast 1090SI has tissue-like acoustic impedance, high speed of sound and low acoustic attenuation. Both acoustic lenses show significant enlargement of detector acceptance angle and lateral resolution improvement. However, image artifacts induced by acoustic lenses are reduced using the p...

  18. Humanitarian mine detection by acoustic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, S.W.

    1998-03-01

    The JASON Committee at MITRE Corp. was tasked by DARPA to inquire into suitable technologies for humanitarian mine detection. Acoustic resonance was one of the very few technologies that the JASONs determined might be promising for the task, but was as yet unexplored at the time that they conducted their inquiry. The objective of this Seed Money investigation into acoustic resonance was to determine if it would be feasible to use acoustic resonance to provide an improvement to present methods for humanitarian mine detection. As detailed in this report, acoustic resonance methods do not appear to be feasible for this task. Although acoustic resonant responses are relatively easy to detect when they exist, they are very difficult to excite by the non-contact means that must be used for buried objects. Despite many different attempts, this research did not discover any practical means of using sound to excite resonant responses in objects known to have strong resonances. The shaker table experiments did see an effect that might be attributable to the resonance of the object under test, but the effect was weak, and exploited the a priori knowledge of the resonant frequency of the object under test to distinguish it from the background. If experiments that used objects known to have strong acoustic resonances produced such marginal results, this does not seem to be a practical method to detect objects with weak resonances or non-existent resonances. The results of this work contribute to the ORNL countermine initiative. ORNL is exploring several unconventional mine detection technologies, and is proposed to explore others. Since this research has discovered some major pitfalls in non-metallic mine detection, this experience will add realism to other strategies proposed for mine detection technologies. The experiment provided hands-on experience with inert plastic mines under field conditions, and gives ORNL additional insight into the problems of developing practical

  19. Aerogel as a Soft Acoustic Metamaterial for Airborne Sound

    Science.gov (United States)

    Guild, Matthew D.; García-Chocano, Victor M.; Sánchez-Dehesa, José; Martin, Theodore P.; Calvo, David C.; Orris, Gregory J.

    2016-03-01

    Soft acoustic metamaterials utilizing mesoporous structures have been proposed recently as a means for tuning the overall effective properties of the metamaterial and providing better coupling to the surrounding air. In this paper, the use of silica aerogel is examined theoretically and experimentally as part of a compact soft acoustic metamaterial structure, which enables a wide range of exotic effective macroscopic properties to be demonstrated, including negative density, density near zero, and nonresonant broadband slow-sound propagation. Experimental data are obtained on the effective density and sound speed using an air-filled acoustic impedance tube for flexural metamaterial elements, which have been investigated previously only indirectly due to the large contrast in acoustic impedance compared to that of air. Experimental results are presented for silica aerogel arranged in parallel with either one or two acoustic ports and are in very good agreement with the theoretical model.

  20. Shape-adaptable hyperlens for acoustic magnifying imaging

    Science.gov (United States)

    Zhang, Hongkuan; Zhou, Xiaoming; Hu, Gengkai

    2016-11-01

    Previous prototypes of acoustic hyperlens consist of rigid channels, which are unable to adapt in shape to the object under detection. We propose to overcome this limitation by employing soft plastic tubes that could guide acoustics with robustness against bending deformation. Based on the idea of soft-tube acoustics, acoustic magnifying hyperlens with planar input and output surfaces has been fabricated and validated experimentally. The shape-adaption capability of the soft-tube hyperlens is demonstrated by a controlled experiment, in which the magnifying super-resolution images remain stable when the lens input surface is curved. Our study suggests a feasible route toward constructing the flexible channel-structured acoustic metamaterials with the shape-adaption capability, opening then an additional degree of freedom for full control of sound.

  1. Sound reduction by metamaterial-based acoustic enclosure

    Directory of Open Access Journals (Sweden)

    Shanshan Yao

    2014-12-01

    Full Text Available In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of the source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.

  2. Acoustic vector sensor signal processing

    Institute of Scientific and Technical Information of China (English)

    SUN Guiqing; LI Qihu; ZHANG Bin

    2006-01-01

    Acoustic vector sensor simultaneously, colocately and directly measures orthogonal components of particle velocity as well as pressure at single point in acoustic field so that is possible to improve performance of traditional underwater acoustic measurement devices or detection systems and extends new ideas for solving practical underwater acoustic engineering problems. Although acoustic vector sensor history of appearing in underwater acoustic area is no long, but with huge and potential military demands, acoustic vector sensor has strong development trend in last decade, it is evolving into a one of important underwater acoustic technology. Under this background, we try to review recent progress in study on acoustic vector sensor signal processing, such as signal detection, DOA estimation, beamforming, and so on.

  3. Acoustic comfort in eating establishments

    DEFF Research Database (Denmark)

    Svensson, David; Jeong, Cheol-Ho; Brunskog, Jonas

    2014-01-01

    The subjective concept of acoustic comfort in eating establishments has been investigated in this study. The goal was to develop a predictive model for the acoustic comfort, by means of simple objective parameters, while also examining which other subjective acoustic parameters could help explain...... the feeling of acoustic comfort. Through several layers of anal ysis, acoustic comfort was found to be rather complex, and could not be explained entirely by common subjective parameters such as annoyance, intelligibility or privacy. A predictive model for the mean acoustic comfort for an eating establishment...

  4. Interactions in an acoustic world

    CERN Document Server

    Simaciu, Ion; Borsos, Zoltan; Bradac, Mariana

    2016-01-01

    The present paper aims to complete an earlier paper where the acoustic world was introduced. This is accomplished by analyzing the interactions which occur between the inhomogeneities of the acoustic medium, which are induced by the acoustic vibrations traveling in the medium. When a wave packet travels in a medium, the medium becomes inhomogeneous. The spherical wave packet behaves like an acoustic spherical lens for the acoustic plane waves. According to the principle of causality, there is an interaction between the wave and plane wave packet. In specific conditions the wave packet behaves as an acoustic black hole.

  5. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    Science.gov (United States)

    Qi, Dong-Xiang; Fan, Ren-Hao; Deng, Yu-Qiang; Peng, Ru-Wen; Wang, Mu; Jiangnan University Collaboration

    In this talk, we present our studies on broadband properties of acoustic waves through metal gratings. We have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing and new acoustic devices. References: [1] Dong-Xiang Qi, Yu-Qiang Deng, Di-Hu Xu, Ren-Hao Fan, Ru-Wen Peng, Ze-Guo Chen, Ming-Hui Lu, X. R. Huang and Mu Wang, Appl. Phys. Lett. 106, 011906 (2015); [2] Dong-Xiang Qi, Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Ming-Hui Lu, Xu Ni, Qing Hu, and Mu Wang, Applied Physics Letters 101, 061912 (2012).

  6. Nonlinear propagation and control of acoustic waves in phononic superlattices

    CERN Document Server

    Jiménez, Noé; Picó, Rubén; García-Raffi, Lluís M; Sánchez-Morcillo, Víctor J

    2015-01-01

    The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band-gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g. cubic) nonlinearities, or extremely linear media (where distortion can be cancelled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime.

  7. The acoustics of public squares/places: A comparison between results from a computer simulation program and measurements in situ

    DEFF Research Database (Denmark)

    Paini, Dario; Rindel, Jens Holger; Gade, Anders;

    2004-01-01

    or a band during, for instance, music summer festivals) and the best position for the audience. A further result could be to propose some acoustic adjustments to achieve better acoustic quality by considering the acoustic parameters which are typically used for concert halls and opera houses....

  8. Pheromone based alternative route planning

    Directory of Open Access Journals (Sweden)

    Liangbing Feng

    2016-08-01

    Full Text Available In this work, we propose an improved alternative route calculation based on alternative figures, which is suitable for practical environments. The improvement is based on the fact that the main traffic route is the road network skeleton in a city. Our approach using nodes may generate a higher possibility of overlapping. We employ a bidirectional Dijkstra algorithm to search the route. To measure the quality of an Alternative Figures (AG, three quotas are proposed. The experiment results indicate that the improved algorithm proposed in this paper is more effective than others.

  9. Analysis of Vibration and Acoustic Noise in Permanent Magnet Motors.

    Science.gov (United States)

    Hwang, Sangmoon

    . The effect of various design parameters on the output torque and torque ripple are discussed. Design parameters include winding patterns, magnetization direction, magnet arc length, number of segments in poles and magnet pole shaping. New designs of trapezoidal BEMF motors are proposed to reduce the electromagnetic torque ripple. Magnet stepping and magnet edge shaping with reduced arc length, significantly reduce torque ripple, with minimal sacrifice of the maximum output torque. Acoustic noise of electromagnetic origin is investigated using a magnetic frame which emulates a DC motor. The driving electromagnetic force is calculated using finite element analysis and the resulting vibration and acoustic noise is measured. Acoustic noise of purely electromagnetic origin was also tested with a DC brushless motor to confirm the results of the magnetic frame. The mechanism of noise generation in a DC motor is a quasi-static response of a stator not only at the fundamental frequency but also at higher harmonic frequencies of alternating switched DC, which is a current characteristic of a DC motor. Noise generation is significantly aggravated when some of those harmonics are close to the resonant frequencies of the stator. Therefore, acoustic noise is highly dependent upon the excitation current shape, as higher harmonics may match with resonant frequencies of the stator.

  10. Alternative Treatments

    Science.gov (United States)

    ... triglyceride (fat) produced by processing coconut oil or palm kernel oil. The body breaks down caprylic acid into substances called “ketone bodies.” The theory behind Axona is that the ketone bodies derived from caprylic acid may provide an alternative energy source for brain cells that have lost ...

  11. Room Acoustic Conditions of Performers in AN Old Opera House

    Science.gov (United States)

    IANNACE, GINO; IANNIELLO, CARMINE; MAFFEI, LUIGI; ROMANO, ROSARIO

    2000-04-01

    Proposed objective criteria related to the acoustic conditions for instrumentalists and singers have not received a sufficiently wide consent yet. In spite of this situation, it is the opinion of the authors that the measurement of existing criteria is useful for analysis and comparison. This paper reports the results of various acoustic measurements carried out in the Teatro di San Carlo, Naples-Italy, with the aim of obtaining objective information about its acoustics for performers. A first set of measurements was carried out when the theater was fitted for a symphonic concert and a second one when it was fitted for an opera performance.

  12. Acoustic Simulation with Dynamic Mechanisms in Virtual Reality

    Institute of Scientific and Technical Information of China (English)

    张琼; 石教英

    1998-01-01

    Although most investigators have realized the importance of acoustic simulation in sophisticated VR systems,large computational load involved in this process often contradicts the requirements of real-time interaction,which in return bring on applying the expensive hardware or VR-specific workstations to this area.In order to reduce the computational cost and try to realize the real-time acoustic simulation in software with (or even without)some low-cost hardware,this paper proposes some dynamic mechanisms which can be used as possible strategies embedded into acoustic simulation in VR.Preliminary implementation of those mechanisms has proved to be fairly effective.

  13. Giant Magnetostrictive Material Loudspeaker System Acoustic Radiation Simulation

    Institute of Scientific and Technical Information of China (English)

    WANG Rui; ZHANG Yong-fa

    2008-01-01

    An infinite panel model of giant magnetostrictive material loudspeaker system (GMMLS) is proposed by making use of finite element method(FEM). Bending wave eigenfunction is introduced to describe the acoustic radiation condition of the panel. Far-field response in different conditions is calculated by changing the mass surface density. Conclusion is obtained by analyzing the curves simulated, that panel which has larger mass surface density can hardly generate far-field acoustic radiation for lower frequency, while the panel has smaller mass surface density generates far-field acoustic radiation for lower frequency evenly and stronger.

  14. On the acoustic director interaction in the smectic A phase

    Science.gov (United States)

    Perlo, Josefina; Aguirre, Luis E.; Revelli, Jorge; Anoardo, Esteban

    2007-12-01

    A model was previously proposed for the interaction energy between an acoustic field and the local nematic director. The consistency of this model was verified through nuclear magnetic relaxation and optical experiments. The model was later extended to the smectic A phase, despite the fact that the smectic essence of the problem was never included in the interaction process. In this work we investigate details of this interaction through the inclusion of elemental features of the smectic phase. We show that the acoustic-director interaction can be enhanced if the external acoustic field matches an eigenmode of the smectic system.

  15. Acoustically induced transparency using Fano resonant periodic arrays

    KAUST Repository

    El-Amin, Mohamed

    2015-10-22

    A three-dimensional acoustic device, which supports Fano resonance and induced transparency in its response to an incident sound wave, is designed and fabricated. These effects are generated from the destructive interference of closely coupled one broad- and one narrow-band acoustic modes. The proposed design ensures excitation and interference of two spectrally close modes by locating a small pipe inside a wider and longer one. Indeed, numerical simulations and experiments demonstrate that this simple-to-fabricate structure can be used to generate Fano resonance as well as acoustically induced transparency with promising applications in sensing, cloaking, and imaging.

  16. Exploiting Acoustic Similarity of Propagating Paths for Audio Signal Separation

    Directory of Open Access Journals (Sweden)

    Yin Bin

    2003-01-01

    Full Text Available Blind signal separation can easily find its position in audio applications where mutually independent sources need to be separated from their microphone mixtures while both room acoustics and sources are unknown. However, the conventional separation algorithms can hardly be implemented in real time due to the high computational complexity. The computational load is mainly caused by either direct or indirect estimation of thousands of acoustic parameters. Aiming at the complexity reduction, in this paper, the acoustic paths are investigated through an acoustic similarity index (ASI. Then a new mixing model is proposed. With closely spaced microphones (5–10 cm apart, the model relieves the computational load of the separation algorithm by reducing the number and length of the filters to be adjusted. To cope with real situations, a blind audio signal separation algorithm (BLASS is developed on the proposed model. BLASS only uses the second-order statistics (SOS and performs efficiently in frequency domain.

  17. Broadband solid cloak for underwater acoustics

    CERN Document Server

    Chen, Yi; Liu, Xiaoning; Bi, Yafeng; Sun, Zhaoyong; Xiang, Ping; Yang, Jun; Hu, Gengkai

    2016-01-01

    Shielding an object to be undetectable is an important issue for engineering applications. Cloaking is the ultimate shielding example, routing waves around an object without mutual interaction, demonstrated as possible in principle by transformation and metamaterial techniques. Example applications have been successfully designed and validated for electromagnetic wave, thin plate flexural wave, thermal flux, and airborne sound. However, for underwater acoustics, the commonly used scheme based on meta-fluids with anisotropic density for airborne sound is unworkable since an acoustic rigid material is required with mass density three orders of magnitude higher than water. Material with such high density is impossible using even the heaviest metal, and may suffer from a narrow working frequency band even if realized with locally resonant techniques. An alternative solution was recently suggested based on solid pentamode material, which can be impedance matched with water and has anisotropic modulus. Here, we rep...

  18. A Century of Acoustic Metrology

    DEFF Research Database (Denmark)

    Rasmussen, Knud

    1998-01-01

    The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect.......The development in acoustic measurement technique over the last century is reviewed with special emphasis on the metrological aspect....

  19. Advanced Active Acoustics Lab (AAAL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Active Acoustics Lab (AAAL) is a state-of-the-art Undersea Warfare (USW) acoustic data analysis facility capable of both active and passive underwater...

  20. Acoustic detection of pneumothorax

    Science.gov (United States)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (ppneumothorax states (pPneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (pPneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  1. Practical acoustic emission testing

    CERN Document Server

    2016-01-01

    This book is intended for non-destructive testing (NDT) technicians who want to learn practical acoustic emission testing based on level 1 of ISO 9712 (Non-destructive testing – Qualification and certification of personnel) criteria. The essential aspects of ISO/DIS 18436-6 (Condition monitoring and diagnostics of machines – Requirements for training and certification of personnel, Part 6: Acoustic Emission) are explained, and readers can deepen their understanding with the help of practice exercises. This work presents the guiding principles of acoustic emission measurement, signal processing, algorithms for source location, measurement devices, applicability of testing methods, and measurement cases to support not only researchers in this field but also and especially NDT technicians.

  2. Passive broadband acoustic thermometry

    Science.gov (United States)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  3. Acoustics of courtyard theatres

    Institute of Scientific and Technical Information of China (English)

    WANG Jiqing

    2008-01-01

    The traditional Chinese theatre was often built with a courtyard. In such open-top space, the absence of a roof would mean little reverberation and non-diffused sound field.Acoustically the situation is quite different from that of any enclosed space. The refore, theclassic room acoustics, such as Sabine reverberation formula, would no longer be applicable due to the lack of sound reflections from the ceiling. As the parameter of reverberation time T30 shows the decay rate only, it would not properly characterize the prominent change in the fine structure of the echogram, particularly in case of a large reduction of reflections during the decay process. The sense of reverbrance in a courtyard space would differ noticeably from that of the equivalent 3D-T30 in an enclosed space. Based upon the characteristic analysis of the sound field in an open-top space, this paper presents a preliminary study on the acoustics of the courtyard theatres.

  4. Acoustics waves and oscillations

    CERN Document Server

    Sen, S.N.

    2013-01-01

    Parameters of acoustics presented in a logical and lucid style Physical principles discussed with mathematical formulations Importance of ultrasonic waves highlighted Dispersion of ultrasonic waves in viscous liquids explained This book presents the theory of waves and oscillations and various applications of acoustics in a logical and simple form. The physical principles have been explained with necessary mathematical formulation and supported by experimental layout wherever possible. Incorporating the classical view point all aspects of acoustic waves and oscillations have been discussed together with detailed elaboration of modern technological applications of sound. A separate chapter on ultrasonics emphasizes the importance of this branch of science in fundamental and applied research. In this edition a new chapter ''Hypersonic Velocity in Viscous Liquids as revealed from Brillouin Spectra'' has been added. The book is expected to present to its readers a comprehensive presentation of the subject matter...

  5. Study on demodulated signal distribution and acoustic pressure phase sensitivity of a self-interfered distributed acoustic sensing system

    Science.gov (United States)

    Shang, Ying; Yang, Yuan-Hong; Wang, Chen; Liu, Xiao-Hui; Wang, Chang; Peng, Gang-Ding

    2016-06-01

    We propose a demodulated signal distribution theory for a self-interfered distributed acoustic sensing system. The distribution region of Rayleigh backscattering including the acoustic sensing signal in the sensing fiber is investigated theoretically under different combinations of both the path difference and pulse width Additionally we determine the optimal solution between the path difference and pulse width to obtain the maximum phase change per unit length. We experimentally test this theory and realize a good acoustic pressure phase sensitivity of  -150 dB re rad/(μPa·m) of fiber in the frequency range from 200 Hz to 1 kHz.

  6. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    Science.gov (United States)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  7. Room Acoustical Fields

    CERN Document Server

    Mechel, Fridolin

    2013-01-01

    This book presents the theory of room acoustical fields and revises the Mirror Source Methods for practical computational use, emphasizing the wave character of acoustical fields.  The presented higher methods include the concepts of “Mirror Point Sources” and “Corner sources which allow for an excellent approximation of complex room geometries and even equipped rooms. In contrast to classical description, this book extends the theory of sound fields describing them by their complex sound pressure and the particle velocity. This approach enables accurate descriptions of interference and absorption phenomena.

  8. Acoustic black holes

    CERN Document Server

    Visser, M

    1999-01-01

    Acoustic propagation in a moving fluid provides a conceptually clean and powerful analogy for understanding black hole physics. As a teaching tool, the analogy is useful for introducing students to both General Relativity and fluid mechanics. As a research tool, the analogy helps clarify what aspects of the physics are kinematics and what aspects are dynamics. In particular, Hawking radiation is a purely kinematical effect, whereas black hole entropy is intrinsically dynamical. Finally, I discuss the fact that with present technology acoustic Hawking radiation is almost experimentally testable.

  9. Numerical analysis of acoustic impedance microscope utilizing acoustic lens transducer to examine cultured cells.

    Science.gov (United States)

    Gunawan, Agus Indra; Hozumi, Naohiro; Takahashi, Kenta; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-12-01

    A new technique is proposed for non-contact quantitative cell observation using focused ultrasonic waves. This technique interprets acoustic reflection intensity into the characteristic acoustic impedance of the biological cell. The cells are cultured on a plastic film substrate. A focused acoustic beam is transmitted through the substrate to its interface with the cell. A two-dimensional (2-D) reflection intensity profile is obtained by scanning the focal point along the interface. A reference substance is observed under the same conditions. These two reflections are compared and interpreted into the characteristic acoustic impedance of the cell based on a calibration curve that was created prior to the observation. To create the calibration curve, a numerical analysis of the sound field is performed using Fourier Transforms and is verified using several saline solutions. Because the cells are suspended by two plastic films, no contamination is introduced during the observation. In a practical observation, a sapphire lens transducer with a center frequency of 300 MHz was employed using ZnO thin film. The objects studied were co-cultured rat-derived glial (astrocyte) cells and glioma cells. The result was the clear observation of the internal structure of the cells. The acoustic impedance of the cells was spreading between 1.62 and 1.72 MNs/m(3). Cytoskeleton was indicated by high acoustic impedance. The introduction of cytochalasin-B led to a significant reduction in the acoustic impedance of the glioma cells; its effect on the glial cells was less significant. It is believed that this non-contact observation method will be useful for continuous cell inspections.

  10. [INVITED] Laser generation and detection of ultrafast shear acoustic waves in solids and liquids

    Science.gov (United States)

    Pezeril, Thomas

    2016-09-01

    The aim of this article is to provide an overview of the up-to-date findings related to ultrafast shear acoustic waves. Recent progress obtained for the laser generation and detection of picosecond shear acoustic waves in solids and liquids is reviewed. Examples in which the transverse isotropic symmetry of the sample structure is broken in order to permit shear acoustic wave generation through sudden laser heating are described in detail. Alternative photo-induced mechanisms for ultrafast shear acoustic generation in metals, semiconductors, insulators, magnetostrictive, piezoelectric and electrostrictive materials are reviewed as well. With reference to key experiments, an all-optical technique employed to probe longitudinal and shear structural dynamics in the GHz frequency range in ultra-thin liquid films is described. This technique, based on specific ultrafast shear acoustic transducers, has opened new perspectives that will be discussed for ultrafast shear acoustic probing of viscoelastic liquids at the nanometer scale.

  11. From Architectural Acoustics to Acoustical Architecture Using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2005-01-01

    Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in architectural acoustics and the emergence of room acoustic simulation programmes with considerable potential, it is now possible to subjectively analyse and evaluate acoustic...... properties prior to the actual construction of a building. With the right tools applied, acoustic design can become an integral part of the architectural design process. The aim of this paper is to investigate the field of application that an acoustic simulation programme can have during an architectural...... acoustic design process and to set up a strategy to develop future programmes. The emphasis is put on the first three out of four phases in the working process of the architect and a case study is carried out in which each phase is represented by typical results ? as exemplified with reference...

  12. Broadband acoustic properties of a murine skull.

    Science.gov (United States)

    Estrada, Héctor; Rebling, Johannes; Turner, Jake; Razansky, Daniel

    2016-03-07

    It has been well recognized that the presence of a skull imposes harsh restrictions on the use of ultrasound and optoacoustic techniques in the study, treatment and modulation of the brain function. We propose a rigorous modeling and experimental methodology for estimating the insertion loss and the elastic constants of the skull over a wide range of frequencies and incidence angles. A point-source-like excitation of ultrawideband acoustic radiation was induced via the absorption of nanosecond duration laser pulses by a 20 μm diameter microsphere. The acoustic waves transmitted through the skull are recorded by a broadband, spherically focused ultrasound transducer. A coregistered pulse-echo ultrasound scan is subsequently performed to provide accurate skull geometry to be fed into an acoustic transmission model represented in an angular spectrum domain. The modeling predictions were validated by measurements taken from a glass cover-slip and ex vivo adult mouse skulls. The flexible semi-analytical formulation of the model allows for seamless extension to other transducer geometries and diverse experimental scenarios involving broadband acoustic transmission through locally flat solid structures. It is anticipated that accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in a broad variety of applications employing transcranial detection or transmission of high frequency ultrasound.

  13. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has onl...

  14. Evoked acoustic emission

    DEFF Research Database (Denmark)

    Elberling, C; Parbo, J; Johnsen, N J;

    1985-01-01

    Stimulated acoustic emissions were recorded in response to tonal stimuli at 60 dB p.e. SPL in a small group of normal-hearing adults. Power spectral analysis reveals that the evoked activity from each ear contains energy in preferential frequency bands and the change of stimulus frequency has only...

  15. Indigenous Acoustic Detection.

    Science.gov (United States)

    1982-01-26

    considerable distances, and they act as good sensors of human presence. Though singing insects are ubiquitous in warm areas, even in the desert ( Nevo and...methodology. DTIC. CD-58-PL. Lloyd, J. E. 1981. Personnel communication. Nevo , E. and S. A. Blondheim. 1972. Acoustic isolation in the speciation of

  16. Deep Water Ocean Acoustics

    Science.gov (United States)

    2015-04-15

    sound speed profile is range-independent; since there is little expectation there will be significant mesoscale phenomenon given the lack of solar ...34 Journal of the Acoustical Society of America 93 (4), 1736-1742 (1993). 2 Chris H. Harrison and Martin Siderius, "Effective Parameters for Matched

  17. Normal mode acoustic intensity flux in Pekeris waveguide and its cross spectra signal processing

    Institute of Scientific and Technical Information of China (English)

    HUI Junying; SUN Guocang; ZHAO Anbang

    2009-01-01

    The layered media normal mode theory has been well established in the middle of the last century, but few attentions have been paid to the particle velocity field. The combined descriptions of the pressure field and particle velocity field in Pekeris waveguide, especially the vertical acoustic intensity flux are proposed in this paper. The result of the study shows that both the horizontal and the vertical acoustic intensity flux have active and reactive component because of the interference between the normal modes. When an acoustic vector sensor is placed appropriately, the reactive component of the vertical acoustic intensity flux in low frequency acoustic field can be used to tell the source's specified depth, although it can't transport energy.Then the reactive component of the vertical acoustic intensity flux is of importance for vector signal processing. The pressure and particle velocity cross spectra signal processing algorithm is proposed to distinguish the targets.

  18. Holograms for acoustics

    Science.gov (United States)

    Melde, Kai; Mark, Andrew G.; Qiu, Tian; Fischer, Peer

    2016-09-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  19. Acoustic field modulation in regenerators

    Science.gov (United States)

    Hu, J. Y.; Wang, W.; Luo, E. C.; Chen, Y. Y.

    2016-12-01

    The regenerator is a key component that transfers energy between heat and work. The conversion efficiency is significantly influenced by the acoustic field in the regenerator. Much effort has been spent to quantitatively determine this influence, but few comprehensive experimental verifications have been performed because of difficulties in modulating and measuring the acoustic field. In this paper, a method requiring two compressors is introduced and theoretically investigated that achieves acoustic field modulation in the regenerator. One compressor outputs the acoustic power for the regenerator; the other acts as a phase shifter. A RC load dissipates the acoustic power out of both the regenerator and the latter compressor. The acoustic field can be modulated by adjusting the current in the two compressors and opening the RC load. The acoustic field is measured with pressure sensors instead of flow-field imaging equipment, thereby greatly simplifying the experiment.

  20. Controlling sound with acoustic metamaterials

    DEFF Research Database (Denmark)

    Cummer, Steven A. ; Christensen, Johan; Alù, Andrea

    2016-01-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales....... The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create......-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview...

  1. Acoustic aspects of vowel harmony in French

    OpenAIRE

    2008-01-01

    International audience; This paper examines acoustic aspects of vowel harmony (VH), understood as regressive vowel-to-vowel assimilation, in two regional varieties of French in six speakers' productions of 107 disyllabic word pairs. In each word pair, the word-initial vowel (V1) was phonemically either /e/ or /o/, and the word-final stressed vowel (V2) alternated between /e-E/, /ø-oe/, /o-O/ or /i-a/. Results are consistent with the idea that VH in French entails variations in tongue height a...

  2. Periodic Partial Extinction Regime in Acoustically Coupled Fuel Droplet Combustion

    Science.gov (United States)

    Plascencia Quiroz, Miguel; Bennewitz, John; Vargas, Andres; Sim, Hyung Sub; Smith, Owen; Karagozian, Ann

    2016-11-01

    This experimental study investigates the response of burning liquid fuel droplets exposed to standing acoustic waves, extending prior studies quantifying mean and temporal flame response to moderate acoustic excitation. This investigation explores alternative fuels exposed to a range of acoustic forcing conditions (frequencies and amplitudes), with a focus on ethanol and JP-8. Three fundamental flame regimes are observed: sustained oscillatory combustion, periodic partial extinction and reignition (PPER), and full extinction. Phase-locked OH* chemiluminescence imaging and local temporal pressure measurements allow quantification of the combustion-acoustic coupling through the local Rayleigh index G. As expected, PPER produces negative G values, despite having clear flame oscillations. PPER is observed to occur at low-frequency, high amplitude excitation, where the acoustic time scales are large compared with kinetic/reaction times scales for diffusion-limited combustion processes. These quantitative differences in behavior are determined to depend on localized fluid mechanical strain created by the acoustic excitation as well as reaction kinetics. Supported by AFOSR Grant FA9550-15-1-0339.

  3. Cell Membrane Deformation Induced by a Fibronectin-Coated Polystyrene Microbead in a 200-MHz Acoustic Trap

    Science.gov (United States)

    Hwang, Jae Youn; Lee, Changyang; Lam, Kwok Ho; Kim, Hyung Ham; Lee, Jungwoo; Shung, K. Kirk

    2014-01-01

    The measurement of cell mechanics is crucial for a better understanding of cellular responses during the progression of certain diseases and for the identification of the cell’s nature. Many techniques using optical tweezers, atomic force microscopy, and micro-pipettes have been developed to probe and manipulate cells in the spatial domain. In particular, we recently proposed a two-dimensional acoustic trapping method as an alternative technique for small particle manipulation. Although the proposed method may have advantages over optical tweezers, its applications to cellular mechanics have not yet been vigorously investigated. This study represents an initial attempt to use acoustic tweezers as a tool in the field of cellular mechanics in which cancer cell membrane deformability is studied. A press-focused 193-MHz single-element lithium niobate (LiNbO3) transducer was designed and fabricated to trap a 5-µm polystyrene microbead near the ultrasound beam focus. The microbeads were coated with fibronectin, and trapped before being attached to the surface of a human breast cancer cell (MCF-7). The cell membrane was then stretched by remotely pulling a cell-attached microbead with the acoustic trap. The maximum cell membrane stretched lengths were measured to be 0.15, 0.54, and 1.41 µm at input voltages to the transducer of 6.3, 9.5, and 12.6 Vpp, respectively. The stretched length was found to increase nonlinearly as a function of the voltage input. No significant cytotoxicity was observed to result from the bead or the trapping force on the cell during or after the deformation procedure. Hence, the results convincingly demonstrated the possible application of the acoustic trapping technique as a tool for cell manipulation. PMID:24569245

  4. On The Use of A Phase Modulation Method for Decorrelation in Acoustic Feedback Cancellation

    DEFF Research Database (Denmark)

    Guo, Meng; Jensen, Søren Holdt; Jensen, Jesper

    2012-01-01

    of decorrelation. In this work, we study a subband phase modulation method, which was originally proposed for decorrelation in multichannel acoustic echo cancellation systems. We determine if this method is effective for decorrelation in acoustic feedback cancellation systems by comparing it to a structurally...... similar frequency shifting decorrelation method. We show that the phase modulation method is suitable for decorrelation in a hearing aid acoustic feedback cancellation system, although the frequency shifting method is in general slightly more effective....

  5. Instability of interfaces of gas bubbles in liquids under acoustic excitation with dual frequency.

    Science.gov (United States)

    Zhang, Yuning; Du, Xiaoze; Xian, Haizhen; Wu, Yulin

    2015-03-01

    Instability of interfaces of gas bubbles in liquids under acoustic excitation with dual frequency is theoretically investigated. The critical bubble radii dividing stable and unstable regions of bubbles under dual-frequency acoustic excitation are strongly affected by the amplitudes of dual-frequency acoustic excitation rather than the frequencies of dual-frequency excitation. The limitation of the proposed model is also discussed with demonstrating examples.

  6. Transition Delay in Hypervelocity Boundary Layers By Means of CO2/Acoustic Instability Interaction

    Science.gov (United States)

    2014-12-16

    They also concluded that injection was destabilizing and proposed that using acoustic absorption by porous material downstream of the injection...with Combined Injection and Acoustic Absorptive Coating.” Final Report on EOARD GRANT No. FA8655-12-D-0003, Moscow Institute of Physics and Technology...AFRL-OSR-VA-TR-2015-0040 TRANSITION DELAY IN HYPERVELOCITY BOUNDARY LAYERS BY MEANS OF CO2/ ACOUSTIC INSTA Joseph Shepherd CALIFORNIA INSTITUTE OF

  7. 2006 progress report on acoustic and visual monitoring for cetaceans along the outer Washington Coast

    OpenAIRE

    Oleson, Erin M.; Hildebrand, John A.; Calambokidis, John; Schorr, Greg; Falcone, Erin

    2007-01-01

    An acoustic and visual monitoring effort for cetaceans was initiated within the boundaries of the proposed expansion area for the Quinault Underwater Tracking Range in July 2004. Acoustic data collection consisted of recordings at a site on the continental shelf to the west of Cape Elizabeth and another in deep water within Quinault Canyon. An analysis plan for acoustic data is included. Results for 32 visual surveys are presented as tables and charts for pinnipeds, dolphins, porpoises, an...

  8. Detection and Classification of Whale Acoustic Signals

    Science.gov (United States)

    Xian, Yin

    This dissertation focuses on two vital challenges in relation to whale acoustic signals: detection and classification. In detection, we evaluated the influence of the uncertain ocean environment on the spectrogram-based detector, and derived the likelihood ratio of the proposed Short Time Fourier Transform detector. Experimental results showed that the proposed detector outperforms detectors based on the spectrogram. The proposed detector is more sensitive to environmental changes because it includes phase information. In classification, our focus is on finding a robust and sparse representation of whale vocalizations. Because whale vocalizations can be modeled as polynomial phase signals, we can represent the whale calls by their polynomial phase coefficients. In this dissertation, we used the Weyl transform to capture chirp rate information, and used a two dimensional feature set to represent whale vocalizations globally. Experimental results showed that our Weyl feature set outperforms chirplet coefficients and MFCC (Mel Frequency Cepstral Coefficients) when applied to our collected data. Since whale vocalizations can be represented by polynomial phase coefficients, it is plausible that the signals lie on a manifold parameterized by these coefficients. We also studied the intrinsic structure of high dimensional whale data by exploiting its geometry. Experimental results showed that nonlinear mappings such as Laplacian Eigenmap and ISOMAP outperform linear mappings such as PCA and MDS, suggesting that the whale acoustic data is nonlinear. We also explored deep learning algorithms on whale acoustic data. We built each layer as convolutions with either a PCA filter bank (PCANet) or a DCT filter bank (DCTNet). With the DCT filter bank, each layer has different a time-frequency scale representation, and from this, one can extract different physical information. Experimental results showed that our PCANet and DCTNet achieve high classification rate on the whale

  9. Acoustic metamaterials with circular sector cavities and programmable densities.

    Science.gov (United States)

    Akl, W; Elsabbagh, A; Baz, A

    2012-10-01

    Considerable interest has been devoted to the development of various classes of acoustic metamaterials that can control the propagation of acoustical wave energy throughout fluid domains. However, all the currently exerted efforts are focused on studying passive metamaterials with fixed material properties. In this paper, the emphasis is placed on the development of a class of composite one-dimensional acoustic metamaterials with effective densities that are programmed to adapt to any prescribed pattern along the metamaterial. The proposed acoustic metamaterial is composed of a periodic arrangement of cell structures, in which each cell consists of a circular sector cavity bounded by actively controlled flexible panels to provide the capability for manipulating the overall effective dynamic density. The theoretical analysis of this class of multilayered composite active acoustic metamaterials (CAAMM) is presented and the theoretical predictions are determined for a cascading array of fluid cavities coupled to flexible piezoelectric active boundaries forming the metamaterial domain with programmable dynamic density. The stiffness of the piezoelectric boundaries is electrically manipulated to control the overall density of the individual cells utilizing the strong coupling with the fluid domain and using direct acoustic pressure feedback. The interaction between the neighboring cells of the composite metamaterial is modeled using a lumped-parameter approach. Numerical examples are presented to demonstrate the performance characteristics of the proposed CAAMM and its potential for generating prescribed spatial and spectral patterns of density variation.

  10. Splitting of acoustic energy by zero index metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xinxin [School of Science, Hubei University of Technology, Wuhan 430068 (China); Department of Orthopedics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 (China); Wei, Wei [Hubei Cancer Hospital, Wuhan 430079 (China); Hu, Ni [School of Science, Hubei University of Technology, Wuhan 430068 (China); Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China); Liu, Fengming, E-mail: fmliu@mail.hbut.edu.cn [School of Science, Hubei University of Technology, Wuhan 430068 (China); Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei University of Technology, Wuhan 430068 (China)

    2015-10-02

    An acoustic power splitter is proposed by utilizing a zero index metamaterials (ZIM) junction. Two types of ZIM, single zero index metamaterials (SZIM) and double zero index metamaterials (DZIM), are considered. The acoustic wave transmission through the multiple leads junction is investigated theoretically and numerically. We show that perfect transmission can be achieved for the junction made of DZIM by tuning the widths of the output leads with respect to the input lead. It is also shown that the same effect is obtained for the junction made of SZIM by reducing the area of the junction or introducing a proper defect into the junction. A two-dimensional (2D) acoustic crystal (AC) with effective zero index is suggested to provide a practical realization for the splitting system. - Highlights: • An acoustic splitter is proposed by using a zero index metamaterials junction. • Perfect transmission can be achieved for the acoustic splitter. • The configuration of the acoustic splitter can be chosen at will.

  11. Improvement of acoustic fall detection using Kinect depth sensing.

    Science.gov (United States)

    Li, Yun; Banerjee, Tanvi; Popescu, Mihail; Skubic, Marjorie

    2013-01-01

    The latest acoustic fall detection system (acoustic FADE) has achieved encouraging results on real-world dataset. However, the acoustic FADE device is difficult to be deployed in real environment due to its large size. In addition, the estimation accuracy of sound source localization (SSL) and direction of arrival (DOA) becomes much lower in multi-interference environment, which will potentially result in the distortion of the source signal using beamforming (BF). Microsoft Kinect is used in this paper to address these issues by measuring source position using the depth sensor. We employ robust minimum variance distortionless response (MVDR) adaptive BF (ABF) to take advantage of well-estimated source position for acoustic FADE. A significant reduction of false alarms and improvement of detection rate are both achieved using the proposed fusion strategy on real-world data.

  12. An underwater acoustic data compression method based on compressed sensing

    Institute of Scientific and Technical Information of China (English)

    郭晓乐; 杨坤德; 史阳; 段睿

    2016-01-01

    The use of underwater acoustic data has rapidly expanded with the application of multichannel, large-aperture underwater detection arrays. This study presents an underwater acoustic data compression method that is based on compressed sensing. Underwater acoustic signals are transformed into the sparse domain for data storage at a receiving terminal, and the improved orthogonal matching pursuit (IOMP) algorithm is used to reconstruct the original underwater acoustic signals at a data processing terminal. When an increase in sidelobe level occasionally causes a direction of arrival estimation error, the proposed compression method can achieve a 10 times stronger compression for narrowband signals and a 5 times stronger compression for wideband signals than the orthogonal matching pursuit (OMP) algorithm. The IOMP algorithm also reduces the computing time by about 20% more than the original OMP algorithm. The simulation and experimental results are discussed.

  13. Laser Imaging of Airborne Acoustic Emission by Nonlinear Defects

    Science.gov (United States)

    Solodov, Igor; Döring, Daniel; Busse, Gerd

    2008-06-01

    Strongly nonlinear vibrations of near-surface fractured defects driven by an elastic wave radiate acoustic energy into adjacent air in a wide frequency range. The variations of pressure in the emitted airborne waves change the refractive index of air thus providing an acoustooptic interaction with a collimated laser beam. Such an air-coupled vibrometry (ACV) is proposed for detecting and imaging of acoustic radiation of nonlinear spectral components by cracked defects. The photoelastic relation in air is used to derive induced phase modulation of laser light in the heterodyne interferometer setup. The sensitivity of the scanning ACV to different spatial components of the acoustic radiation is analyzed. The animated airborne emission patterns are visualized for the higher harmonic and frequency mixing fields radiated by planar defects. The results confirm a high localization of the nonlinear acoustic emission around the defects and complicated directivity patterns appreciably different from those observed for fundamental frequencies.

  14. Acoustical experiment of yogurt fermentation process.

    Science.gov (United States)

    Ogasawara, H; Mizutani, K; Ohbuchi, T; Nakamura, T

    2006-12-22

    One of the important factors through food manufacturing is hygienic management. Thus, food manufactures prove their hygienic activities by taking certifications like a Hazard Analysis and Critical Control Point (HACCP). This concept also applies to food monitoring. Acoustical measurements have advantage for other measurement in food monitoring because they make it possible to measure with noncontact and nondestructive. We tried to monitor lactic fermentation of yogurt by a probing sensor using a pair of acoustic transducers. Temperature of the solution changes by the reaction heat of fermentation. Consequently the sound velocity propagated through the solution also changes depending on the temperature. At the same time, the solution change its phase from liquid to gel. The transducers usage in the solution indicates the change of the temperature as the change of the phase difference between two transducers. The acoustic method has advantages of nondestructive measurement that reduces contamination of food product by measuring instrument. The sensor was inserted into milk with lactic acid bacterial stain of 19 degrees C and monitored phase retardation of propagated acoustic wave and its temperature with thermocouples in the mild. The monitoring result of fermentation from milk to Caspian Sea yogurt by the acoustic transducers with the frequency of 3.7 MHz started to show gradient change in temperature caused by reaction heat of fermentation but stop the gradient change at the end although the temperature still change. The gradient change stopped its change because of phase change from liquid to gel. The present method will be able to measure indirectly by setting transducers outside of the measuring object. This noncontact sensing method will have great advantage of reduces risk of food contamination from measuring instrument because the measurement probes are set out of fermentation reactor or food containers. Our proposed method will contribute to the

  15. A mixed finite element method for acoustic wave propagation in moving fluids based on an Eulerian-Lagrangian description.

    Science.gov (United States)

    Treyssède, Fabien; Gabard, Gwénaël; Ben Tahar, Mabrouk

    2003-02-01

    A nonstandard wave equation, established by Galbrun in 1931, is used to study sound propagation in nonuniform flows. Galbrun's equation describes exactly the same physical phenomenon as the linearized Euler's equations (LEE) but is derived from an Eulerian-Lagrangian description and written only in term of the Lagrangian perturbation of the displacement. This equation has interesting properties and may be a good alternative to the LEE: only acoustic displacement is involved (even in nonhomentropic cases), it provides exact expressions of acoustic intensity and energy, and boundary conditions are easily expressed because acoustic displacement whose normal component is continuous appears explicitly. In this paper, Galbrun's equation is solved using a finite element method in the axisymmetric case. With standard finite elements, the direct displacement-based variational formulation gives some corrupted results. Instead, a mixed finite element satisfying the inf-sup condition is proposed to avoid this problem. A first set of results is compared with semianalytical solutions for a straight duct containing a sheared flow (obtained from Pridmore-Brown's equation). A second set of results concerns a more complex duct geometry with a potential flow and is compared to results obtained from a multiple-scale method (which is an adaptation for the incompressible case of Rienstra's recent work).

  16. Acoustic carpet cloak based on an ultrathin metasurface

    Science.gov (United States)

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-07-01

    An acoustic metasurface carpet cloak based on membrane-capped cavities is proposed and investigated numerically. This design has been chosen for allowing ultrathin geometries, although adapted to airborne sound frequencies in the range of 1 kHz (λ ≈30 cm), surpassing the designs reported in the literature in terms of thinness. A formulation of generalized Snell's laws is first proposed, mapping the directions of the incident and reflected waves to the metasurface phase function. This relation is then applied to achieve a prescribed wavefront reflection direction, for a given incident direction, by controlling the acoustic impedance grading along the metasurface. The carpet cloak performance of the proposed acoustic metasurface is then assessed on a triangular bump obstacle, generally considered as a baseline configuration in the literature.

  17. Flat acoustic lens by acoustic grating with curled slits

    KAUST Repository

    Peng, Pai

    2014-10-01

    We design a flat sub-wavelength lens that can focus acoustic wave. We analytically study the transmission through an acoustic grating with curled slits, which can serve as a material with tunable impedance and refractive index for acoustic waves. The effective parameters rely on the geometry of the slits and are independent of frequency. A flat acoustic focusing lens by such acoustic grating with gradient effective refractive index is designed. The focusing effect is clearly observed in simulations and well predicted by the theory. We demonstrate that despite the large impedance mismatch between the acoustic lens and the matrix, the intensity at the focal point is still high due to Fabry-Perot resonance.

  18. Manipulate acoustic waves by impedance matched acoustic metasurfaces

    Science.gov (United States)

    Wu, Ying; Mei, Jun; Aljahdali, Rasha

    We design a type of acoustic metasurface, which is composed of carefully designed slits in a rigid thin plate. The effective refractive indices of different slits are different but the impedances are kept the same as that of the host medium. Numerical simulations show that such a metasurface can redirect or reflect a normally incident wave at different frequencies, even though it is impedance matched to the host medium. We show that the underlying mechanisms can be understood by using the generalized Snell's law, and a unified analytic model based on mode-coupling theory. We demonstrate some simple realization of such acoustic metasurface with real materials. The principle is also extended to the design of planar acoustic lens which can focus acoustic waves. Manipulate acoustic waves by impedance matched acoustic metasurfaces.

  19. Alternative Energies

    Energy Technology Data Exchange (ETDEWEB)

    Planting, A.; De saint Jacob, Y.; Verwijs, H.; Belin, H.; Preesman, L.

    2009-03-15

    In two articles, one interview and one column attention is paid to alternative energies. The article 'A new light on saving energy' discusses the option to save energy by modernising lighting systems in urban areas. The column 'View from Paris' focuses on investment decisions in France with regard to renewable energy and energy savings. The article 'Europe turns a blind eye to big battery' discusses developments in batteries to store energy. The interview concerns fuel cell expert and formerly President of UTC Power Jan van Dokkum. The last article gives a brief overview of the European Energy Research Alliance (EERA) and the challenges this alliance will have to face with regard to climate change and energy security.

  20. Computational acoustic modeling of cetacean vocalizations

    Science.gov (United States)

    Gurevich, Michael Dixon

    A framework for computational acoustic modeling of hypothetical vocal production mechanisms in cetaceans is presented. As a specific example, a model of a proposed source in the larynx of odontocetes is developed. Whales and dolphins generate a broad range of vocal sounds, but the exact mechanisms they use are not conclusively understood. In the fifty years since it has become widely accepted that whales can and do make sound, how they do so has remained particularly confounding. Cetaceans' highly divergent respiratory anatomy, along with the difficulty of internal observation during vocalization have contributed to this uncertainty. A variety of acoustical, morphological, ethological and physiological evidence has led to conflicting and often disputed theories of the locations and mechanisms of cetaceans' sound sources. Computational acoustic modeling has been used to create real-time parametric models of musical instruments and the human voice. These techniques can be applied to cetacean vocalizations to help better understand the nature and function of these sounds. Extensive studies of odontocete laryngeal morphology have revealed vocal folds that are consistently similar to a known but poorly understood acoustic source, the ribbon reed. A parametric computational model of the ribbon reed is developed, based on simplified geometrical, mechanical and fluid models drawn from the human voice literature. The physical parameters of the ribbon reed model are then adapted to those of the odontocete larynx. With reasonable estimates of real physical parameters, both the ribbon reed and odontocete larynx models produce sounds that are perceptually similar to their real-world counterparts, and both respond realistically under varying control conditions. Comparisons of acoustic features of the real-world and synthetic systems show a number of consistencies. While this does not on its own prove that either model is conclusively an accurate description of the source, it

  1. Resection planning for robotic acoustic neuroma surgery

    Science.gov (United States)

    McBrayer, Kepra L.; Wanna, George B.; Dawant, Benoit M.; Balachandran, Ramya; Labadie, Robert F.; Noble, Jack H.

    2016-03-01

    Acoustic neuroma surgery is a procedure in which a benign mass is removed from the Internal Auditory Canal (IAC). Currently this surgical procedure requires manual drilling of the temporal bone followed by exposure and removal of the acoustic neuroma. This procedure is physically and mentally taxing to the surgeon. Our group is working to develop an Acoustic Neuroma Surgery Robot (ANSR) to perform the initial drilling procedure. Planning the ANSR's drilling region using pre-operative CT requires expertise and around 35 minutes' time. We propose an approach for automatically producing a resection plan for the ANSR that would avoid damage to sensitive ear structures and require minimal editing by the surgeon. We first compute an atlas-based segmentation of the mastoid section of the temporal bone, refine it based on the position of anatomical landmarks, and apply a safety margin to the result to produce the automatic resection plan. In experiments with CTs from 9 subjects, our automated process resulted in a resection plan that was verified to be safe in every case. Approximately 2 minutes were required in each case for the surgeon to verify and edit the plan to permit functional access to the IAC. We measured a mean Dice coefficient of 0.99 and surface error of 0.08 mm between the final and automatically proposed plans. These preliminary results indicate that our approach is a viable method for resection planning for the ANSR and drastically reduces the surgeon's planning effort.

  2. A synthesis pattern of acoustic field produced by phased array based on the direct weighting of the controlled acoustic pressure

    Institute of Scientific and Technical Information of China (English)

    HU Jiwen; QIAN Shengyou; DING Yajun

    2012-01-01

    To optimize the acoustic field produced by phased array effectively and quickly, the pseudo-inverse method proposed previously is simplified. An approximate weight formula of sound pressure using a method of compensation to the amplitude and phase of the controlled sound pressure was presented. A multiple-focus field patterns based on the pseudo-inverse matrix algorithm can be obtained by presetting the value of the controlled sound pressure. A phased array comprised of 16 x 16 square elements is used for numerical simulation. The results show that the acoustic energy can be effectively deposited at the desired points, and the acoustic field can be synthesized quickly using the direct weight formula of the sound pressure. This study may offer an effective way for controlling the distribution of acoustic field in ultrasound hyperthermia.

  3. A Martian acoustic anemometer.

    Science.gov (United States)

    Banfield, Don; Schindel, David W; Tarr, Steve; Dissly, Richard W

    2016-08-01

    An acoustic anemometer for use on Mars has been developed. To understand the processes that control the interaction between surface and atmosphere on Mars, not only the mean winds, but also the turbulent boundary layer, the fluxes of momentum, heat and molecular constituents between surface and atmosphere must be measured. Terrestrially this is done with acoustic anemometers, but the low density atmosphere on Mars makes it challenging to adapt such an instrument for use on Mars. This has been achieved using capacitive transducers and pulse compression, and was successfully demonstrated on a stratospheric balloon (simulating the Martian environment) and in a dedicated Mars Wind Tunnel facility. This instrument achieves a measurement accuracy of ∼5 cm/s with an update rate of >20 Hz under Martian conditions.

  4. Acoustic absorption by sunspots

    Science.gov (United States)

    Braun, D. C.; Labonte, B. J.; Duvall, T. L., Jr.

    1987-01-01

    The paper presents the initial results of a series of observations designed to probe the nature of sunspots by detecting their influence on high-degree p-mode oscillations in the surrounding photosphere. The analysis decomposes the observed oscillations into radially propagating waves described by Hankel functions in a cylindrical coordinate system centered on the sunspot. From measurements of the differences in power between waves traveling outward and inward, it is demonstrated that sunspots appear to absorb as much as 50 percent of the incoming acoustic waves. It is found that for all three sunspots observed, the amount of absorption increases linearly with horizontal wavenumber. The effect is present in p-mode oscillations with wavelengths both significantly larger and smaller than the diameter of the sunspot umbrae. Actual absorption of acoustic energy of the magnitude observed may produce measurable decreases in the power and lifetimes of high-degree p-mode oscillations during periods of high solar activity.

  5. ACOUSTIC EMISSION ANALYZER

    Directory of Open Access Journals (Sweden)

    J. J. Almeida-Pérez

    2004-12-01

    Full Text Available In this paper appears a solution for acoustic emission analysis commonly known as noise. For the accomplishmentof this work a personal computer is used, besides sensors (microphones and boards designed and built for signalconditioning. These components are part of a virtual instrument used for monitoring the acoustical emission. Themain goal of this work is to develop a virtual instrument that supplies many important data as the result of ananalysis allowing to have information in an easy and friendly way. Moreover this information is very useful forstudying and resolving several situations in planning, production and testing areas.The main characteristics of the virtual instrument are: signal analysis in time, effective power measurement inDecibels (dB, average intensity taken from the principle of paired microphones, as well as the data analysis infrequency. These characteristics are included to handle two information channels.

  6. Electromagnetic acoustic imaging.

    Science.gov (United States)

    Emerson, Jane F; Chang, David B; McNaughton, Stuart; Jeong, Jong Seob; Shung, K K; Cerwin, Stephen A

    2013-02-01

    Electromagnetic acoustic imaging (EMAI) is a new imaging technique that uses long-wavelength RF electromagnetic (EM) waves to induce ultrasound emission. Signal intensity and image contrast have been found to depend on spatially varying electrical conductivity of the medium in addition to conventional acoustic properties. The resultant conductivity- weighted ultrasound data may enhance the diagnostic performance of medical ultrasound in cancer and cardiovascular applications because of the known changes in conductivity of malignancy and blood-filled spaces. EMAI has a potential advantage over other related imaging techniques because it combines the high resolution associated with ultrasound detection with the generation of the ultrasound signals directly related to physiologically important electrical properties of the tissues. Here, we report the theoretical development of EMAI, implementation of a dual-mode EMAI/ultrasound apparatus, and successful demonstrations of EMAI in various phantoms designed to establish feasibility of the approach for eventual medical applications.

  7. Acoustic emission source modeling

    Directory of Open Access Journals (Sweden)

    Hora P.

    2010-07-01

    Full Text Available The paper deals with the acoustic emission (AE source modeling by means of FEM system COMSOL Multiphysics. The following types of sources are used: the spatially concentrated force and the double forces (dipole. The pulse excitation is studied in both cases. As a material is used steel. The computed displacements are compared with the exact analytical solution of point sources under consideration.

  8. Acoustic Characterization of Soil

    Science.gov (United States)

    2007-11-02

    ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Dept. of Electrical & Computer Enginnering Dept Natural Resources...same transduction device is used for transmit and receive, and the broad-band mechanical matching between the transduction device and the acoustic...has a direct influence over the imaging depth for a given dynamic range. Figure 10 demonstrated the influence of the roundtrip propagation loss as a

  9. Acoustic Communications for UUVs

    Science.gov (United States)

    2016-06-07

    through use of high-gain, error-control coding coupled with a modified decision feedback equalizer (DFE) which allows the gain to be exploited prior to...finished it wait for feedback from the receiver. At the host each packet is decoded and displayed if it is correct, or added to a list of bad packets if it...Systems Laboratory, Florida Alantic University, July 1998. L. Freitag el al: ‘A Bidriectional Coherent Acoustic Communications Systems for Underwater

  10. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  11. Acoustics, computers and measurements

    Science.gov (United States)

    Truchard, James J.

    2003-10-01

    The human ear has created a high standard for the requirements of acoustical measurements. The transient nature of most acoustical signals has limited the success of traditional volt meters. Professor Hixson's pioneering work in electroacoustical measurements at ARL and The University of Texas helped set the stage for modern computer-based measurements. The tremendous performance of modern PCs and extensive libraries of signal processing functions in virtual instrumentation application software has revolutionized the way acoustical measurements are made. Today's analog to digital converters have up to 24 bits of resolution with a dynamic range of over 120 dB and a single PC processor can process 112 channels of FFTs at 4 kHz in real time. Wavelet technology further extends the capabilities for analyzing transients. The tools available for measurements in speech, electroacoustics, noise, and vibration represent some of the most advanced measurement tools available. During the last 50 years, Professor Hixson has helped drive this revolution from simple oscilloscope measurements to the modern high performance computer-based measurements.

  12. Acoustically enhanced heat transport

    Science.gov (United States)

    Ang, Kar M.; Yeo, Leslie Y.; Friend, James R.; Hung, Yew Mun; Tan, Ming K.

    2016-01-01

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ˜ 106 Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξs ˜ 10-9 m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξs ˜ 10-8 m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10-8 m with 106 Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  13. Compact acoustic antenna design using labyrinthine metamaterials

    Science.gov (United States)

    Ren, Chunyu

    2015-05-01

    We present an effective design and architecture for a class of acoustic antennas in air. The work begins with a conformal transformation method that yields the preliminary design, which is constructed using an isotropic but inhomogeneous material. However, the desired material parameters have been unavailable until now. Here we show that by scaling up the refractive index and optimizing the geometry in the preliminary design, a series of square antennas can be achieved to exhibit an excellent beam-collimating effect. An important part of our strategy is that the device's thickness and material properties can be tailored easily to greatly facilitate its realization. It is also demonstrated that the proposed antenna can be made very thin and readily implemented using labyrinthine acoustic metamaterials.

  14. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  15. Latest Trends in Acoustic Sensing

    Directory of Open Access Journals (Sweden)

    Cinzia Caliendo

    2014-03-01

    Full Text Available Acoustics-based methods offer a powerful tool for sensing applications. Acoustic sensors can be applied in many fields ranging from materials characterization, structural health monitoring, acoustic imaging, defect characterization, etc., to name just a few. A proper selection of the acoustic wave frequency over a wide spectrum that extends from infrasound (<20 Hz up to ultrasound (in the GHz–band, together with a number of different propagating modes, including bulk longitudinal and shear waves, surface waves, plate modes, etc., allow acoustic tools to be successfully applied to the characterization of gaseous, solid and liquid environments. The purpose of this special issue is to provide an overview of the research trends in acoustic wave sensing through some cases that are representative of specific applications in different sensing fields.

  16. Fundamentals of Shallow Water Acoustics

    CERN Document Server

    Katsnelson, Boris; Lynch, James

    2012-01-01

    Shallow water acoustics (SWA), the study of how low and medium frequency sound propagates and scatters on the continental shelves of the world's oceans, has both technical interest and a large number of practical applications. Technically, shallow water poses an interesting medium for the study of acoustic scattering, inverse theory, and propagation physics in a complicated oceanic waveguide. Practically, shallow water acoustics has interest for geophysical exploration, marine mammal studies, and naval applications. Additionally, one notes the very interdisciplinary nature of shallow water acoustics, including acoustical physics, physical oceanography, marine geology, and marine biology. In this specialized volume, the authors, all of whom have extensive at-sea experience in U.S. and Russian research efforts, have tried to summarize the main experimental, theoretical, and computational results in shallow water acoustics, with an emphasis on providing physical insight into the topics presented.

  17. An Unconditionally Stable Method for Solving the Acoustic Wave Equation

    Directory of Open Access Journals (Sweden)

    Zhi-Kai Fu

    2015-01-01

    Full Text Available An unconditionally stable method for solving the time-domain acoustic wave equation using Associated Hermit orthogonal functions is proposed. The second-order time derivatives in acoustic wave equation are expanded by these orthogonal basis functions. By applying Galerkin temporal testing procedure, the time variable can be eliminated from the calculations. The restriction of Courant-Friedrichs-Levy (CFL condition in selecting time step for analyzing thin layer can be avoided. Numerical results show the accuracy and the efficiency of the proposed method.

  18. Upwind scheme for acoustic disturbances generated by low-speed flows

    DEFF Research Database (Denmark)

    Ekaterinaris, J.A.

    1997-01-01

    Computation of acoustic disturbances generated by unsteady, low-speed flows, such as flows including vortices and shear layers, can be obtained by a recently proposed two-step method. This method requires a hydrodynamic field solution and obtains the acoustic field from the perturbed, inviscid, c...

  19. Using Acoustic Tomography to Monitor Deep Ocean Currents in the Eastern Gulf of Mexico

    Science.gov (United States)

    2010-06-01

    Toward the improved prediction and monitoring of deep-water currents and eddies in the Gulf of Mexico , the Gulf Eddy Monitoring System group (GEMS...proposes that a network of acoustic transmitter receiver pairs be deployed in the northeastern Gulf of Mexico . Acoustic travel times are inverted to

  20. Continuous Surveillance Technique for Flow Accelerated Corrosion of Pipe Wall Using Electromagnetic Acoustic Transducer

    Science.gov (United States)

    Kojima, F.; Kosaka, D.; Umetani, K.

    2011-06-01

    In this paper, we propose a on-line monitoring technique using electromagnetic acoustic transducer (EMAT). In the series of laboratory experiments, carbon steel pipes were used and each sample was fabricated to simulate FAC. Electromagnetic acoustic resonance method (EMAR) is successfully tested for pipe wall thickness measurements. The validity and the feasibility of our method are also demonstrated through the laboratory experiments.

  1. STATISTICALLY OPTIMISED NEAR FIELD ACOUSTIC HOLOGRAPHYAND THE HELMHOLTZ EQUATION LEAST SQUARESMETHOD: A COMPARISON

    DEFF Research Database (Denmark)

    Gomes, Jesper Skovhus; Jacobsen, Finn

    Several variants of near field acoustic holography (NAH) that do not require measurement areas larger than the source have been proposed. This paper examines and compares two such methods, statistically optimised near field acoustic holography (SONAH) and the Helmholtz equation least squares method...

  2. Spacecraft Internal Acoustic Environment Modeling

    Science.gov (United States)

    Chu, S. Reynold; Allen, Chris

    2009-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles. The use of such a model will help ensure compliance with acoustic requirements. Also, this project includes modeling validation and development feedback via building physical mockups and conducting acoustic measurements to compare with the predictions.

  3. Acoustic Imaging of Combustion Noise

    Science.gov (United States)

    Ramohalli, K. N.; Seshan, P. K.

    1984-01-01

    Elliposidal acoustic mirror used to measure sound emitted at discrete points in burning turbulent jets. Mirror deemphasizes sources close to target source and excludes sources far from target. At acoustic frequency of 20 kHz, mirror resolves sound from region 1.25 cm wide. Currently used by NASA for research on jet flames. Produces clearly identifiable and measurable variation of acoustic spectral intensities along length of flame. Utilized in variety of monitoring or control systems involving flames or other reacting flows.

  4. Acoustic streaming with heat exchange

    Science.gov (United States)

    Gubaidullin, A. A.; Pyatkova, A. V.

    2016-10-01

    Acoustic streaming in a cylindrical cavity with heat exchange is numerically investigated. The cavity is filled with air. The boundaries of the cavity are maintained at constant temperature. The features of acoustic streaming manifesting with the decrease in the frequency of vibration in comparison with the resonant frequency are determined. The influence of the nonlinearity of process on acoustic streaming is shown. The nonlinearity is caused by the increase of the vibration amplitude.

  5. Broadband and stable acoustic vortex emitter with multi-arm coiling slits

    KAUST Repository

    Jiang, Xue

    2016-05-16

    We present the analytical design and experimental realization of a scheme based on multi-arm coiling slits to generate the stable acoustic vortices in a broadband. The proposed structure is able to spiral the acoustic wave spatially and generate the twisted acoustic vortices with invariant topological charge for a long propagation distance. Compared with conventional methods which require the electronic control of a bulky loudspeaker, this scheme provides an effective and compact solution to generate acoustic vortices with controllable topological charge in the broadband, which offers more initiatives in the demanding applications.

  6. Analytical model of an acoustic diode comprising a superlattice and a nonlinear medium

    Institute of Scientific and Technical Information of China (English)

    Gu Zhong-Ming; Liang Bin; Cheng Jian-Chun

    2013-01-01

    We give an analytical analysis to the acoustic propagation in an acoustic diode (AD) model formed by coupling a superlattice (SL) with a nonlinear medium.Analytical solutions of the acoustic transmission are obtained by studying the propagations in the SL and the nonlinear medium separately with the conventional transfer-matrix method and a perturbation technique.Compared with the previous numerical method,the proposed approach contributes a better physical insight into the intrinsic mechanism of acoustic rectification and helps us to predict the performance of an AD within the effective rectifying bands in a simple way.This is potentially significant for the practical design and fabrication of AD devices.

  7. A new type of artificial structure to achieve broadband omnidirectional acoustic absorption

    Directory of Open Access Journals (Sweden)

    Li-Yang Zheng

    2013-10-01

    Full Text Available We present a design for a two-dimensional omnidirectional acoustic absorber that can achieve 98.6% absorption of acoustic waves in water, forming an effective acoustic black hole. This artificial black hole consists of an absorptive core coated with layers of periodically distributed polymer cylinders embedded in water. Effective medium theory describes the response of the coating layers to the acoustic waves. The polymer parameters can be adjusted, allowing practical fabrication of the absorber. Since the proposed structure does not rely on resonances, it is applicable to broad bandwidths. The design might be extended to a variety of applications.

  8. Acoustic characteristics of bubble bursting at the surface of a high-viscosity liquid

    Institute of Scientific and Technical Information of China (English)

    Liu Xiao-Bo; Zhang Jian-Run; Li Pu

    2012-01-01

    An acoustic pressure model of bubble bursting is proposed.An experiment studying the acoustic characteristics of the bursting bubble at the surface of a high-viscosity liquid is reported.It is found that the sudden bursting of a bubble at the high-viscosity liquid surface generates N-shape wave at first,then it transforms into a jet wave.The fundamental frequency of the acoustic signal caused by the bursting bubble decreases linearly as the bubble size increases.The results of the investigation can be used to understand the acoustic characteristics of bubble bursting.

  9. A new type of artificial structure to achieve broadband omnidirectional acoustic absorption

    KAUST Repository

    Zheng, L.-Y.

    2013-10-18

    We present a design for a two-dimensional omnidirectional acoustic absorber that can achieve 98.6% absorption of acoustic waves in water, forming an effective acoustic black hole. This artificial black hole consists of an absorptive core coated with layers of periodically distributed polymer cylinders embedded in water. Effective medium theory describes the response of the coating layers to the acoustic waves. The polymer parameters can be adjusted, allowing practical fabrication of the absorber. Since the proposed structure does not rely on resonances, it is applicable to broad bandwidths. The design might be extended to a variety of applications.

  10. Combined Environment Acoustic Chamber (CEAC)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The CEAC imposes combined acoustic, thermal and mechanical loads on aerospace structures. The CEAC is employed to measure structural response and determine...

  11. Acoustic Communications Measurement Systems (ACOMMS)

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Design and develop adaptive signal processing techniques to improve underwater acoustic communications and networking. Phase coherent and incoherent signal...

  12. Nucleation, growth and acoustic properties of thin film diamond

    CERN Document Server

    Whitfield, M D

    1999-01-01

    emission spectroscopy has been used to study the influence of substrate bias on the microwave plasma during diamond nucleation. Surface acoustic wave (SAW) devices have recently emerged as promising near term applications for currently available CVD diamond however little is known about the propagation of acoustic waves in this material; a detailed study of the influence of film characteristics on acoustic propagation in free standing CVD diamond films has been undertaken using the techniques of laser ultrasonic analysis. The unusual combination of extreme properties possessed by diamond could benefit a wide range of applications. Thus far practical utilisation of this material has remained difficult and consequently limited; natural and synthetic crystals are unsuitable forms for many uses; particularly electronic applications which ideally require large area, single crystal substrates. Emerging CVD methods for the growth of thin film diamond offer a practical alternative; although nucleation on non-diamond ...

  13. Cloaking an acoustic sensor with single-negative materials

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Chen [Key Laboratory of Modern Acoustics, MOE, Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Zhu, Xue-Feng [Department of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Xu, Tao [Key Laboratory of Modern Acoustics, MOE, Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Zou, Xin-Ye, E-mail: xyzou@nju.edu.cn [Key Laboratory of Modern Acoustics, MOE, Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Liang, Bin; Cheng, Jian-Chun [Key Laboratory of Modern Acoustics, MOE, Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-07-15

    In this review, a brief introduction is given to the development of acoustic superlens cloaks that allow the cloaked object to receive signals while its presence is not sensed by the surrounding, which can be regarded as “cloaking an acoustic sensor”. Remarkably, the designed cloak consists of single-negative materials with parameters independent of the background medium or the sensor system, which is proven to be a magnifying superlens. This has facilitated significantly the design and fabrication of acoustic cloaks that generally require double-negative materials with customized parameters. Such innovative design has then been simplified further as a multi-layered structure comprising of two alternately arranged complementary media with homogeneous isotropic single-negative materials. Based on this, a scattering analyses method is developed for the numerical simulation of such multi-layered cloak structures, which may serve as an efficient approach for the investigation on such devices.

  14. A hardenability test proposal

    Energy Technology Data Exchange (ETDEWEB)

    Murthy, N.V.S.N. [Ingersoll-Rand (I) Ltd., Bangalore (India)

    1996-12-31

    A new approach for hardenability evaluation and its application to heat treatable steels will be discussed. This will include an overview and deficiencies of the current methods and discussion on the necessity for a new approach. Hardenability terminology will be expanded to avoid ambiguity and over-simplification as encountered with the current system. A new hardenability definition is proposed. Hardenability specification methods are simplified and rationalized. The new hardenability evaluation system proposed here utilizes a test specimen with varying diameter as an alternative to the cylindrical Jominy hardenability test specimen and is readily applicable to the evaluation of a wide variety of steels with different cross-section sizes.

  15. Acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor from autoregressive models

    Energy Technology Data Exchange (ETDEWEB)

    Geraldo, Issa Cherif [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Bose, Tanmoy [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Pekpe, Komi Midzodzi, E-mail: midzodzi.pekpe@univ-lille1.fr [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Cassar, Jean-Philippe [Laboratoire d’Automatique, Génie Informatique et Signal (LAGIS UMR CNRS 8219), Université Lille 1, Sciences et technologies, Avenue Paul Langevin, BP 48, 59651 Villeneuve d’Ascq CEDEX (France); Mohanty, A.R. [Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal (India); Paumel, Kévin [CEA, DEN, Nuclear Technology Department, F-13108 Saint-Paul-lez-Durance (France)

    2014-10-15

    Highlights: • The work deals with sodium boiling detection in a liquid metal fast breeder reactor. • The authors choose to use acoustic data instead of thermal data. • The method is designed to not to be disturbed by the environment noises. • A real time boiling detection methods are proposed in the paper. - Abstract: This paper deals with acoustic monitoring of sodium boiling in a liquid metal fast breeder reactor (LMFBR) based on auto regressive (AR) models which have low computational complexities. Some authors have used AR models for sodium boiling or sodium–water reaction detection. These works are based on the characterization of the difference between fault free condition and current functioning of the system. However, even in absence of faults, it is possible to observe a change in the AR models due to the change of operating mode of the LMFBR. This sets up the delicate problem of how to distinguish a change in operating mode in absence of faults and a change due to presence of faults. In this paper we propose a new approach for boiling detection based on the estimation of AR models on sliding windows. Afterwards, classification of the models into boiling or non-boiling models is made by comparing their coefficients by two statistical methods, multiple linear regression (LR) and support vectors machines (SVM). The proposed approach takes into account operating mode information in order to avoid false alarms. Experimental data include non-boiling background noise data collected from Phenix power plant (France) and provided by the CEA (Commissariat à l’Energie Atomique et aux énergies alternatives, France) and boiling condition data generated in laboratory. High boiling detection rates as well as low false alarms rates obtained on these experimental data show that the proposed method is efficient for boiling detection. Most importantly, it shows that the boiling phenomenon introduces a disturbance into the AR models that can be clearly detected.

  16. The mechanical and acoustic properties of two-dimensional pentamode metamaterials with different structural parameters

    Science.gov (United States)

    Cai, Xuan; Wang, Lei; Zhao, Zhigao; Zhao, Aiguo; Zhang, Xiangdong; Wu, Tao; Chen, Hong

    2016-09-01

    The effective mechanical and acoustic properties of two-dimensional pentamode metamaterials (PMs) with different structural parameters are investigated in this paper. It is found that with varying structural parameters, the effective bulk modulus and density remain constant as the same as those of water, while the figure of merit, i.e., the ratio of the bulk modulus to the shear modulus (B/G) gradually increases due to the decrease of the shear modulus. However, full wave simulations reveal that with the increase of B/G, the acoustic scattering becomes more and more intense, which indicates that the acoustic properties of pentamode metamaterials gradually deviate from those of water. These anomalous acoustic behaviors are proposed to arise from the existence of the bending modes in pentamode microstructures. Our results show that for pentamode metamaterials, the mechanical properties cannot be simply translated to their acoustic properties, and the structural parameters affect the mechanical and acoustic properties in much different ways.

  17. Design of acoustic beam aperture modifier using gradient-index phononic crystals.

    Science.gov (United States)

    Lin, Sz-Chin Steven; Tittmann, Bernhard R; Huang, Tony Jun

    2012-06-15

    This article reports the design concept of a novel acoustic beam aperture modifier using butt-jointed gradient-index phononic crystals (GRIN PCs) consisting of steel cylinders embedded in a homogeneous epoxy background. By gradually tuning the period of a GRIN PC, the propagating direction of acoustic waves can be continuously bent to follow a sinusoidal trajectory in the structure. The aperture of an acoustic beam can therefore be shrunk or expanded through change of the gradient refractive index profiles of the butt-jointed GRIN PCs. Our computational results elucidate the effectiveness of the proposed acoustic beam aperture modifier. Such an acoustic device can be fabricated through a simple process and will be valuable in applications, such as biomedical imaging and surgery, nondestructive evaluation, communication, and acoustic absorbers.

  18. Measurement of the resistivity of porous materials with an alternating air-flow method.

    Science.gov (United States)

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  19. Acoustic transparency and slow sound using detuned acoustic resonators

    DEFF Research Database (Denmark)

    Santillan, Arturo Orozco; Bozhevolnyi, Sergey I.

    2011-01-01

    We demonstrate that the phenomenon of acoustic transparency and slowsound propagation can be realized with detuned acoustic resonators (DAR), mimicking thereby the effect of electromagnetically induced transparency (EIT) in atomic physics. Sound propagation in a pipe with a series of side...

  20. Design of sandwich acoustic window for sonar domes

    Institute of Scientific and Technical Information of China (English)

    YU Mengsa; LI Dongsheng; GONG Li; XU Jian

    2005-01-01

    Aimed at the low noise design of sonar dome in ships, a method has been presented for calculating the sonar self noise of a simplified sonar dome consisting of sandwich acoustic window and parallel acoustic cavity, which is excited by stationary random pressure fluctuation of turbulence boundary layer, using temporal and spatial double Fourier transform and wavenumber-frequency spectrum analysis. After numerically analyzing the influence of geometrical and physical parameters of acoustic window on the sonar self noise, the design method and reasonable parameters for sandwich acoustic window are proposed. The results show that the property of low noise induced by acoustic window of sandwich is dominated by the cut-off effect of longitudinal wave and transverse wave propagating in the visco-elastic layer of sandwich as well as the mismatch effect of impedance. If the thickness, density, Young's modulus and damping factor of plates and visco-elastic layer as well as the sound speed of longitudinal wave and transverse wave in the visco-elastic layer are selected reasonably, the maximum noise reduction of sandwich acoustic window is 6.5 dB greater than that of a single glass fiber reinforced plastic plate.

  1. Mathematical Modelling and Acoustical Analysis of Classical Guitars and Their Soundboards

    Directory of Open Access Journals (Sweden)

    Meng Koon Lee

    2016-01-01

    Full Text Available Research has shown that the soundboard plays an increasingly important role compared to the sound hole, back plate, and the bridge at high frequencies. The frequency spectrum of investigation can be extended to 5 kHz. Design of bracings and their placements on the soundboard increase its structural stiffness as well as redistributing its deflection to nonbraced regions and affecting its loudness as well as its response at low and high frequencies. This paper attempts to present a review of the current state of the art in guitar research and to propose viable alternatives that will ultimately result in a louder and better sounding instrument. Current research is an attempt to increase the sound level with bracing designs and their placements, control of natural frequencies using scalloped braces, as well as improve the acoustic radiation of this instrument at higher frequencies by deliberately inducing asymmetric modes in the soundboard using the concept of “splitting board.” Various mathematical methods are available for analysing the soundboard based on the theory of thin plates. Discrete models of the instrument up to 4 degrees of freedom are also presented. Results from finite element analysis can be utilized for the evaluation of acoustic radiation.

  2. Time Reversal Acoustic Communication Using Filtered Multitone Modulation

    Directory of Open Access Journals (Sweden)

    Lin Sun

    2015-09-01

    Full Text Available The multipath spread in underwater acoustic channels is severe and, therefore, when the symbol rate of the time reversal (TR acoustic communication using single-carrier (SC modulation is high, the large intersymbol interference (ISI span caused by multipath reduces the performance of the TR process and needs to be removed using the long adaptive equalizer as the post-processor. In this paper, a TR acoustic communication method using filtered multitone (FMT modulation is proposed in order to reduce the residual ISI in the processed signal using TR. In the proposed method, FMT modulation is exploited to modulate information symbols onto separate subcarriers with high spectral containment and TR technique, as well as adaptive equalization is adopted at the receiver to suppress ISI and noise. The performance of the proposed method is assessed through simulation and real data from a trial in an experimental pool. The proposed method was compared with the TR acoustic communication using SC modulation with the same spectral efficiency. Results demonstrate that the proposed method can improve the performance of the TR process and reduce the computational complexity of adaptive equalization for post-process.

  3. Biodiversity sampling using a global acoustic approach: contrasting sites with microendemics in New Caledonia.

    Directory of Open Access Journals (Sweden)

    Amandine Gasc

    Full Text Available New Caledonia is a Pacific island with a unique biodiversity showing an extreme microendemism. Many species distributions observed on this island are extremely restricted, localized to mountains or rivers making biodiversity evaluation and conservation a difficult task. A rapid biodiversity assessment method based on acoustics was recently proposed. This method could help to document the unique spatial structure observed in New Caledonia. Here, this method was applied in an attempt to reveal differences among three mountain sites (Mandjélia, Koghis and Aoupinié with similar ecological features and species richness level, but with high beta diversity according to different microendemic assemblages. In each site, several local acoustic communities were sampled with audio recorders. An automatic acoustic sampling was run on these three sites for a period of 82 successive days. Acoustic properties of animal communities were analysed without any species identification. A frequency spectral complexity index (NP was used as an estimate of the level of acoustic activity and a frequency spectral dissimilarity index (Df assessed acoustic differences between pairs of recordings. As expected, the index NP did not reveal significant differences in the acoustic activity level between the three sites. However, the acoustic variability estimated by the index Df , could first be explained by changes in the acoustic communities along the 24-hour cycle and second by acoustic dissimilarities between the three sites. The results support the hypothesis that global acoustic analyses can detect acoustic differences between sites with similar species richness and similar ecological context, but with different species assemblages. This study also demonstrates that global acoustic methods applied at broad spatial and temporal scales could help to assess local biodiversity in the challenging context of microendemism. The method could be deployed over large areas, and

  4. Acoustic Mechanical Feedthroughs

    Science.gov (United States)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  5. Acoustic emission monitoring using a multimode optical fiber sensor

    Science.gov (United States)

    Vandenplas, Steve; Papy, Jean-Michel; Wevers, Martine; Van Huffel, Sabine

    2004-07-01

    Permanent damage in various materials and constructions often causes high-energy high-frequency acoustic waves. To detect those so called `acoustic emission (AE) events', in most cases ultrasonic transducers are embedded in the structure or attached to its surface. However, for many applications where event localization is less important, an embedded low-cost multimode optical fiber sensor configured for event counting may be a better alternative due to its corrosion resistance, immunity to electromagnetic interference and light-weight. The sensing part of this intensity-modulated sensor consists of a multimode optical fiber. The sensing principle now relies on refractive index variations, microbending and mode-mode interferences by the action of the acoustic pressure wave. A photodiode is used to monitor the intensity of the optical signal and transient signal detection techniques (filtering, frame-to-frame analysis, recursive noise estimation, power detector estimator) on the photodiode output are applied to detect the events. In this work, the acoustic emission monitoring capabilities of the multimode optical fiber sensor are demonstrated with the fiber sensor embedded in the liner of a Power Data Transmission (PDT) coil to detect damage (delamination, matrix cracking and fiber breaking) while bending the coil. With the Hankel Total Least Square (HTLS) technique, it is shown that both the acoustic emission signal and optical signal can be modeled with a sum of exponentially damped complex sinusoids with common poles.

  6. Carcinomatous meningitis appearing as acoustic neuromas. Two cases

    Energy Technology Data Exchange (ETDEWEB)

    Astner, S.T.; Nieder, C.; Grosu, A.L. [Technical Univ. of Munich (Germany). Dept. of Radiation Oncology; Stock, K. [Technical Univ. of Munich (Germany). Dept. of Internal Medicine; Gaa, J. [Technical Univ. of Munich (Germany). Dept. of Radiology

    2007-05-15

    Background: For acoustic neuromas, stereotactic radiotherapy (radiosurgery or stereotactic fractionated radiotherapy) has been established as an important alternative to microsurgery. In most cases initial symptoms are slow progression of unilateral hearing loss, tinnitus or vertigo or acute hearing loss with vertigo. MRI scan shows a contrast-enhancing tumor within the inner auditory channel. If the patient undergoes primary radiotherapy, diagnosis is usually not verified histologically. Therefore, careful evaluation of the medical history is mandatory despite a typical appearance on the MRI scan. If medical history does not match with acoustic neuroma, further diagnostics are necessary to rule out infectious disease or carcinomatous meningitis. Case Report: Two patients with hearing loss, vertigo and the diagnosis of acoustic neuromas by MRI scan were referred for radiotherapy. In both cases the symptoms progressed very rapidly, not typical of acoustic neuromas, and in both patients repeated liquor puncture finally revealed carcinomatous meningitis. One patient died during therapy; in the second patient intrathecal chemotherapy and additional radiotherapy of the skull base led to partial remission continuing for several months. Conclusion: Before primary radiotherapy of small intrameatal lesions diagnosis must be reassessed carefully. This is especially true for bilateral lesions suspicious for acoustic neuromas and rapid progression and persistence of clinical symptoms where carcinomatous meningitis has to be taken into account. (orig.)

  7. Taming Acoustic Cavitation

    CERN Document Server

    Rivas, David Fernandez; Enriquez, Oscar R; Versluis, Michel; Prosperetti, Andrea; Gardeniers, Han; Lohse, Detlef

    2012-01-01

    In this fluid dynamics video we show acoustic cavitation occurring from pits etched on a silicon surface. By immersing the surface in a liquid, gas pockets are entrapped in the pits which upon ultrasonic insonation, are observed to shed cavitation bubbles. Modulating the driving pressure it is possible to induce different behaviours based on the force balance that determines the interaction among bubbles and the silicon surface. This system can be used for several applications like sonochemical water treatment, cleaning of surfaces with deposited materials such as biofilms.

  8. Wind turbine acoustics

    Science.gov (United States)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-12-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  9. Thesis Proposal

    DEFF Research Database (Denmark)

    Sloth, Erik

    2010-01-01

    Strukturen i Thesis proposal er følgende: Først præsenteres mine konkrete empiriske forskningsprojekter som skal munde ud i afhandlingens artikler. Jeg præsenterer herefter de teoretiske overvejelser omkring oplevelsesbegrebet og forbrugerkulturteori som danner baggrund for at jeg er nået frem ti...

  10. Looking for an Alternative.

    Science.gov (United States)

    Kennedy, Jack

    1999-01-01

    Argues that high school newspapers might do well to create stronger ties with alternative weeklies. Discusses issues of niche marketing, alternative content, and alternative presentation. Notes that high school papers could learn a lot from alternative newspapers. (SR)

  11. Broadband Acoustic Cloak for Ultrasound Waves

    CERN Document Server

    Zhang, Shu; Fang, Nicholas

    2010-01-01

    Invisibility devices based on coordinate transformation have opened up a new field of considerable interest. Such a device is proposed to render the hidden object undetectable under the flow of light or sound, by guiding and controlling the wave path through an engineered space surrounding the object. We present here the first practical realization of a low-loss and broadband acoustic cloak for underwater ultrasound. This metamaterial cloak is constructed with a network of acoustic circuit elements, namely serial inductors and shunt capacitors. Our experiment clearly shows that the acoustic cloak can effectively bend the ultrasound waves around the hidden object, with reduced scattering and shadow. Due to the non-resonant nature of the building elements, this low loss (~6dB/m) cylindrical cloak exhibits excellent invisibility over a broad frequency range from 52 to 64 kHz in the measurements. The low visibility of the cloaked object for underwater ultrasound shed a light on the fundamental understanding of ma...

  12. Acoustic cloaking and mirages with flying carpets

    CERN Document Server

    Diatta, Andre; Guenneau, Sebastien; Enoch, Stefan

    2009-01-01

    Carpets under consideration here, in the context of pressure acoustic waves propagating in a compressible fluid, do not touch the ground: they levitate in mid-air (or float in mid-water), which leads to approximate cloaking for an object hidden underneath, or touching either sides of a square cylinder on, or over, the ground. The tentlike carpets attached to the sides of a square cylinder illustrate how the notion of a carpet on a wall naturally generalizes to sides of other small compact objects. We then extend the concept of flying carpets to circular cylinders. However, instead of reducing its scattering cross-section like in acoustic cloaks, we rather mimic that of another obstacle, say a square rigid cylinder. For instance, show that one can hide any type of defects under such circular carpets, and yet they still scatter waves just like a smaller cylinder on its own. Interestingly, all these carpets are described by non-singular acoustic parameters. To exemplify this important aspect, we propose a multi-...

  13. Acoustic wave-equation-based earthquake location

    Science.gov (United States)

    Tong, Ping; Yang, Dinghui; Liu, Qinya; Yang, Xu; Harris, Jerry

    2016-04-01

    We present a novel earthquake location method using acoustic wave-equation-based traveltime inversion. The linear relationship between the location perturbation (δt0, δxs) and the resulting traveltime residual δt of a particular seismic phase, represented by the traveltime sensitivity kernel K(t0, xs) with respect to the earthquake location (t0, xs), is theoretically derived based on the adjoint method. Traveltime sensitivity kernel K(t0, xs) is formulated as a convolution between the forward and adjoint wavefields, which are calculated by numerically solving two acoustic wave equations. The advantage of this newly derived traveltime kernel is that it not only takes into account the earthquake-receiver geometry but also accurately honours the complexity of the velocity model. The earthquake location is obtained by solving a regularized least-squares problem. In 3-D realistic applications, it is computationally expensive to conduct full wave simulations. Therefore, we propose a 2.5-D approach which assumes the forward and adjoint wave simulations within a 2-D vertical plane passing through the earthquake and receiver. Various synthetic examples show the accuracy of this acoustic wave-equation-based earthquake location method. The accuracy and efficiency of the 2.5-D approach for 3-D earthquake location are further verified by its application to the 2004 Big Bear earthquake in Southern California.

  14. Computational dynamics of acoustically driven microsphere systems.

    Science.gov (United States)

    Glosser, Connor; Piermarocchi, Carlo; Li, Jie; Dault, Dan; Shanker, B

    2016-01-01

    We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dynamics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach allows us to describe the interparticle interaction induced by the field as well as the dynamics of trapping in counter-propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres describing the effect of nondissipative drag forces. We show (1) that the field-induced interactions between the microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities and (2) that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation of the system, though we also observe both expansion and contraction of the cloud determined by the initial system geometry.

  15. Acoustic bandpass filters employing shaped resonators

    Science.gov (United States)

    Červenka, M.; Bednařík, M.

    2016-11-01

    This work deals with acoustic bandpass filters realized by shaped waveguide-elements inserted between two parts of an acoustic transmission line with generally different characteristic impedance. It is shown that the formation of a wide passband is connected with the eigenfrequency spectrum of the filter element which acts as an acoustic resonator and that the required filter shape substantially depends on whether the filter characteristic impedance is higher or lower than the characteristic impedance of the waveguide. It is further shown that this class of filters can be realized even without the need of different characteristic impedance. A heuristic technique is proposed to design filter shapes with required transmission properties; it is employed for optimization of low-frequency bandpass filters as well as for design of bandpass filters with wide passband surrounded by wide stopbands as it is typical for phononic crystals, however, in this case the arrangement is much simpler as it consists of only one simple-shaped homogeneous element.

  16. Acoustic correlates of Japanese pitch accent

    Science.gov (United States)

    Sugiyama, Yukiko

    2005-09-01

    Acoustic correlates of Japanese pitch accent were investigated using bimoraic/disyllabic pairs of words that are identical except for their accent patterns. For example, /hana/ ``flower'' and /hana/ ``nose'' have the same phonological shape and pitch levels (low-high) yet they differ in that ``flower'' is accented but ``nose'' is unaccented. The most notable acoustic difference between the two accent patterns is realized by the F0 of the following word when there is one. There have been debates about whether the two accent patterns are acoustically different when the following word is excluded. It has been proposed that the F0 maximum is higher, and/or the F0 movement is larger for the accented words. While previous studies used only a few pairs of words, this study tests all 20 pairs of words found by searching a computerized dictionary [Amano and Kondo (1999)] that had a relatively high word familiarity. The F0 maximum and movement were measured in the 20 pairs of words as produced by native speakers of Tokyo Japanese (males and females) in isolation and two frame sentences. Implications of their results for the nature of accent in Japanese and the perception of accent will be discussed.

  17. Acoustic Ground-Impedance Meter

    Science.gov (United States)

    Zuckerwar, A. J.

    1983-01-01

    Helmoltz resonator used in compact, portable meter measures acoustic impedance of ground or other surfaces. Earth's surface is subject of increasing acoustical investigations because of its importance in aircraft noise prediction and measurment. Meter offers several advantages. Is compact and portable and set up at any test site, irrespective of landscape features, weather or other environmental condition.

  18. Propagation of Ion Acoustic Perturbations

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  19. Acoustic Center or Time Origin?

    DEFF Research Database (Denmark)

    Staffeldt, Henrik

    1999-01-01

    The paper discusses the acoustic center in relation to measurements of loudspeaker polar data. Also, it presents the related concept time origin and discusses the deviation that appears between positions of the acoustic center found by wavefront based and time based measuring methods....

  20. Measuring Turbulence from Moored Acoustic Doppler Velocimeters. A Manual to Quantifying Inflow at Tidal Energy Sites

    Energy Technology Data Exchange (ETDEWEB)

    Kilcher, Levi [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thomson, Jim [Univ. of Washington, Seattle, WA (United States); Talbert, Joe [Univ. of Washington, Seattle, WA (United States); DeKlerk, Alex [Univ. of Washington, Seattle, WA (United States)

    2016-03-01

    This work details a methodology for measuring hub height inflow turbulence using moored acoustic Doppler velocimiters (ADVs). This approach is motivated by the shortcomings of alternatives. For example, remote velocity measurements (i.e., from acoustic Doppler profilers) lack sufficient precision for device simulation, and rigid tower-mounted measurements are very expensive and technically challenging in the tidal environment. Moorings offer a low-cost, site-adaptable and robust deployment platform, and ADVs provide the necessary precision to accurately quantify turbulence.

  1. Los mapas conceptuales hipertextuales: una nueva alternativa para la enseñanza y el aprendizaje / Hypertextual conceptual maps: a new alternative for teaching and learning. A proposal for the conversion of lineal texts to hypertextual and multilineal texts.

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Peláez Cárdenas

    2006-01-01

    Full Text Available El presente artículo presenta tres propuestas para la conversión de textos unilineales (planos a multilineales a través de la utilización de mapas conceptuales como estrategia narrativa pertinente para la enseñanza y el aprendizaje en los procesos escolares. El documento se desarrolla en cuatro momentos: el primero en el que se da cuenta del concepto de enseñanza; el segundo presenta una conceptualización acerca de la estrategia metodológica conocida como Mapa Conceptual; el tercer momento trata el concepto de hipertexto y finalmente se presentan las tres propuestas de conversión de textos unilineales a hipertextuales - multilineales. /In first place, this article presents a proposal towards a catalogue of the original concepts of cyberculture. In a second place, it presents a composition gradient of the conceptual frame of cyberculture, from the most simple, the connotation to the use and knowledge of computers; to the most complex, the configuration of the concept since the contemporary thought. Finally, this article proposes the systemic as the epistemological, methodological and theoretical frame for the construction of the complexity pole of the cyberculture concept.

  2. A tunable acoustic barrier based on periodic arrays of subwavelength slits

    Directory of Open Access Journals (Sweden)

    Constanza Rubio

    2015-05-01

    Full Text Available The most usual method to reduce undesirable enviromental noise levels during its transmission is the use of acoustic barriers. A novel type of acoustic barrier based on sound transmission through subwavelength slits is presented. This system consists of two rows of periodic repetition of vertical rigid pickets separated by a slit of subwavelength width and with a misalignment between them. Here, both the experimental and the numerical analyses are presented. The acoustic barrier proposed can be easily built and is frequency tunable. The results demonstrated that the proposed barrier can be tuned to mitigate a band noise without excesive barrier thickness. The use of this system as an environmental acoustic barrier has certain advantages with regard to the ones currently used both from the constructive and the acoustical point of view.

  3. Acoustic Absorption in Porous Materials

    Science.gov (United States)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  4. Interface nano-confined acoustic waves in polymeric surface phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Travagliati, Marco, E-mail: marco.travagliati@iit.it [Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy); NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Nardi, Damiano [JILA and Department of Physics, University of Colorado, 440 UCB, Boulder, Colorado 80309 (United States); Giannetti, Claudio; Ferrini, Gabriele; Banfi, Francesco, E-mail: francesco.banfi@unicatt.it [i-LAMP and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Via Musei 41, 25121 Brescia (Italy); Gusev, Vitalyi [LAUM, UMR-CNRS 6613, Université du Maine, av. O. Messiaen, 72085 Le Mans (France); Pingue, Pasqualantonio [NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56127 Pisa (Italy); Piazza, Vincenzo [Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa (Italy)

    2015-01-12

    The impulsive acoustic dynamics of soft polymeric surface phononic crystals is investigated here in the hypersonic frequency range by near-IR time-resolved optical diffraction. The acoustic response is analysed by means of wavelet spectral methods and finite element modeling. An unprecedented class of acoustic modes propagating within the polymer surface phononic crystal and confined within 100 nm of the nano-patterned interface is revealed. The present finding opens the path to an alternative paradigm for characterizing the mechanical properties of soft polymers at interfaces and for sensing schemes exploiting polymers as embedding materials.

  5. Shaping and timing gradient pulses to reduce MRI acoustic noise.

    Science.gov (United States)

    Segbers, Marcel; Rizzo Sierra, Carlos V; Duifhuis, Hendrikus; Hoogduin, Johannes M

    2010-08-01

    A method to reduce the acoustic noise generated by gradient systems in MRI has been recently proposed; such a method is based on the linear response theory. Since the physical cause of MRI acoustic noise is the time derivative of the gradient current, a common trapezoid current shape produces an acoustic gradient coil response mainly during the rising and falling edge. In the falling edge, the coil acoustic response presents a 180 degrees phase difference compared to the rising edge. Therefore, by varying the width of the trapezoid and keeping the ramps constant, it is possible to suppress one selected frequency and its higher harmonics. This value is matched to one of the prominent resonance frequencies of the gradient coil system. The idea of cancelling a single frequency is extended to a second frequency, using two successive trapezoid-shaped pulses presented at a selected interval. Overall sound pressure level reduction of 6 and 10 dB is found for the two trapezoid shapes and a single pulse shape, respectively. The acoustically optimized pulse shape proposed is additionally tested in a simulated echo planar imaging readout train, obtaining a sound pressure level reduction of 12 dB for the best case.

  6. Experimental determination of the dynamics of an acoustically levitated sphere

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Nicolás, E-mail: nico@fisica.edu.uy [Centro Universitario de Paysandú, Universidad de la República, Paysandú (Uruguay); Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil); Canetti, Rafael [Facultad de Ingeniería, Universidad de la República, Montevideo (Uruguay); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)

    2014-11-14

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  7. Systematic Error of Acoustic Particle Image Velocimetry and Its Correction

    Directory of Open Access Journals (Sweden)

    Mickiewicz Witold

    2014-08-01

    Full Text Available Particle Image Velocimetry is getting more and more often the method of choice not only for visualization of turbulent mass flows in fluid mechanics, but also in linear and non-linear acoustics for non-intrusive visualization of acoustic particle velocity. Particle Image Velocimetry with low sampling rate (about 15Hz can be applied to visualize the acoustic field using the acquisition synchronized to the excitation signal. Such phase-locked PIV technique is described and used in experiments presented in the paper. The main goal of research was to propose a model of PIV systematic error due to non-zero time interval between acquisitions of two images of the examined sound field seeded with tracer particles, what affects the measurement of complex acoustic signals. Usefulness of the presented model is confirmed experimentally. The correction procedure, based on the proposed model, applied to measurement data increases the accuracy of acoustic particle velocity field visualization and creates new possibilities in observation of sound fields excited with multi-tonal or band-limited noise signals.

  8. MEMS Based Acoustic Array

    Science.gov (United States)

    Sheplak, Mark (Inventor); Nishida, Toshikaza (Inventor); Humphreys, William M. (Inventor); Arnold, David P. (Inventor)

    2006-01-01

    Embodiments of the present invention described and shown in the specification aid drawings include a combination responsive to an acoustic wave that can be utilized as a dynamic pressure sensor. In one embodiment of the present invention, the combination has a substrate having a first surface and an opposite second surface, a microphone positioned on the first surface of the substrate and having an input and a first output and a second output, wherein the input receives a biased voltage, and the microphone generates an output signal responsive to the acoustic wave between the first output and the second output. The combination further has an amplifier positioned on the first surface of the substrate and having a first input and a second input and an output, wherein the first input of the amplifier is electrically coupled to the first output of the microphone and the second input of the amplifier is electrically coupled to the second output of the microphone for receiving the output sinual from the microphone. The amplifier is spaced from the microphone with a separation smaller than 0.5 mm.

  9. Acoustic data transmission method

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, A.

    1991-09-17

    This patent describes a method for transmitting time line data through a drillstring having drill pipe sections connected end-to-end by joints from a first location below the surface of the earth to a second location at or near the surface of the earth, the length and cross-sectional area of the drill pipe sections being different from the length and cross-sectional area of the joints. It comprises generating acoustic data signals having a single frequency content in at least one passband of the drillstring; transmitting the data signals through the drillstring from either the first location to the second location or from the second location to the first location during a time period prior to the onset of reflective interference caused by the data signals reflecting from along the length of the drillstring, the time period being equal to or less than the time for the data signals to travel three lengths of the drillstring; stopping the transmission of data signals at the onset of the reflective interference and allowing the acoustic signals to substantially attenuate; and detecting the data signals at the respective first or second location.

  10. Acoustical model of a Shoddy fibre absorber

    Science.gov (United States)

    Manning, John Peter

    Shoddy fibres or "Shoddies" are a mixture of post-consumer and post-industrial fibres diverted from textile waste streams and recycled into their raw fibre form. They have found widespread use as a raw material for manufacturing sound absorbers that include, but are not limited to: automotive, architectural and home appliance applications. The purpose of this project is to develop a simple acoustic model to describe the acoustic behaviour of sound absorbers composed primarily of Shoddy fibres. The model requires knowledge of the material's bulk density only. To date, these materials have not been the focus of much published research and acoustical designers must rely on models that were developed for other materials or are overly complex. For modelling purposes, an equivalent fluid approach is chosen to balance complexity and accuracy. In deriving the proposed model, several popular equivalent fluid models are selected and the required input parameters for each model identified. The models are: the model of Delaney and Bazley, two models by Miki, the model of Johnson in conjunction with the model of Champoux and Allard and the model of Johnson in conjunction with the model of Lafarge. Characterization testing is carried out on sets of Shoddy absorbers produced using three different manufacturing methods. The measured properties are open porosity, tortuosity, airflow resistivity, the viscous and thermal characteristic lengths and the static thermal permeability. Empirical relationships between model parameters and bulk density are then derived and used to populate the selected models. This yields several 'simplified' models with bulk density as the only parameter. The most accurate model is then selected by comparing each model's prediction to the results of normal incidence sound absorption tests. The model of Johnson-Lafarge populated with the empirical relations is the most accurate model over the range of frequencies considered (approx. 300 Hz - 4000 Hz

  11. Consumer-choice health plan (first of two parts). Inflation and inequity in health care today: alternatives for cost control and an analysis of proposals for national health insurance.

    Science.gov (United States)

    Enthoven, A C

    1978-03-23

    The financing system for medical costs in this country suffers from severe inflation and inequity. The tax-supported system of fee for service for doctors, third-party intermediaries and cost reimbursement for hospitals produces inflation by rewarding cost-increasing behavior and failing to provide incentives for economy. The system is inequitable because the government pays more on behalf of those who choose more costly systems of care, because tax benefits subsidize the health insurance of the well-to-do, while not helping many low-income people, and because employment health insurance does not guarantee continuity of coverage and is regressive in its financing. Analysis of previous proposals for national health insurance shows none to be capable of solving most of these problems. Direct economic regulation by government will not improve the situation. Cost controls through incentives and regulated competition in the private sector are most likely to be effective.

  12. Tunable broadband unidirectional acoustic transmission based on a waveguide with phononic crystal

    Science.gov (United States)

    Song, Ailing; Chen, Tianning; Wang, Xiaopeng; Wan, Lele

    2016-08-01

    In this paper, a tunable broadband unidirectional acoustic transmission (UAT) device composed of a bended tube and a superlattice with square columns is proposed and numerically investigated by using finite element method. The UAT is realized in the proposed UAT device within two wide frequency ranges. And the effectiveness of the UAT device is demonstrated by analyzing the sound pressure distributions when the acoustic waves are incident from different directions. The unidirectional band gaps can be effectively tuned by mechanically rotating the square columns, which is a highlight of this paper. Besides, a bidirectional acoustic isolation (BAI) device is obtained by placing two superlattices in the bended tube, in which the acoustic waves cannot propagate along any directions. The physical mechanisms of the proposed UAT device and BAI device are simply discussed. The proposed models show potential applications in some areas, such as unidirectional sonic barrier or noise insulation.

  13. PASSIVE WIRELESS MULTI-SENSOR TEMPERATURE AND PRESSURE SENSING SYSTEM USING ACOUSTIC WAVE DEVICES Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive surface acoustic wave (SAW) sensors and multi-sensor systems for NASA application to remote wireless sensing of...

  14. Passive Wireless Cryogenic Liquid Level Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the development of passive wireless surface acoustic wave (SAW) based liquid level sensors for NASA application to cryogenic liquid level...

  15. Passive Wireless Cryogenic Liquid Level Sensors Using Orthogonal Frequency Coded Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive wireless surface acoustic wave (SAW) based liquid level sensors for NASA application to cryogenic liquid...

  16. A comprehensive strategy for the analysis of acoustic compressibility and optical deformability on single cells

    DEFF Research Database (Denmark)

    Yang, Tie; Bragheri, Francesca; Nava, Giovanni

    2016-01-01

    We realized an integrated microfluidic chip that allows measuring both optical deformability and acoustic compressibility on single cells, by optical stretching and acoustophoresis experiments respectively. Additionally, we propose a measurement protocol that allows evaluating the experimental ap...

  17. Passive Wireless Multi-Sensor Temperature and Pressure Sensing System Using Acoustic Wave Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes the continued development of passive, orthogonal frequency coded (OFC) surface acoustic wave (SAW) sensors and multi-sensor systems, an...

  18. Scanning thermoelectric and acoustic emission dignostic of structural inhomogeneities of thermocouple materials

    Directory of Open Access Journals (Sweden)

    Prokhorenko V.J.

    2010-01-01

    Full Text Available New method for diagnostic of constructional and functional materials by means of thermoelectric and acoustic- emission measurements is proposed. The method allows not only to establish the defect location, but its partial temperature relaxation achieve.

  19. Fatigue testing of materials under extremal conditions by acoustic method

    NARCIS (Netherlands)

    Baranov, VM; Bibilashvili, YK; Karasevich, VA; Sarychev, GA

    2004-01-01

    Increasing fuel cycle time requires fatigue testing of the fuel clad materials for nuclear reactors. The standard high-temperature fatigue tests are complicated and tedious. Solving this task is facilitated by the proposed acoustic method, which ensures observation of the material damage dynamics, m

  20. A 24 channel acoustic/vibration test power amplifier

    Science.gov (United States)

    Barlett, F. R.

    1978-01-01

    In the present paper, the advantages and drawbacks of a multichannel amplifier operating in a vibration or acoustic facility are discussed. The configuration of the facility and the multichannel amplifier proposed is a compromise based on the particular requirements and anticipated work load in a specific case under consideration.

  1. Acoustical parameters in concert hall acoustics

    Institute of Scientific and Technical Information of China (English)

    LIU Ke; ZHOU Qijun

    2003-01-01

    Professor Beranek talked about the sound qualities of concert hall. The 58 famousconcert halls in the world were graded according to the subjective comparison from the profes-sional musicians and music lovers. Six measurable objective parameters were proposed. Theranking according to these parameters were presented.

  2. RECONSTRUCTION STABILITY OF NEARFIELD ACOUSTIC HOLOGRAPHY

    Institute of Scientific and Technical Information of China (English)

    Bi Chuanxing; Chen Xinzhao; Zhou Rong; Chen Jian

    2005-01-01

    The distributed source boundary point method (DSBPM) is used as the spatial transform algorithm for realizing nearfield acoustic holography (NAH), the sensitivity of the reconstructed solution to the measurement errors is analyzed, and the regularization method is proposed to stabilize the reconstruction process, control the influence of the measurement errors and get a better approximate solution. An oscillating sphere is investigated as a numerical example, the influence of the measurement errors on the reconstruction solution is demonstrated, and the feasibility and validity of the regularization method are validated.

  3. Acoustic imaging for temperature distribution reconstruction

    Science.gov (United States)

    Jia, Ruixi; Xiong, Qingyu; Liang, Shan

    2016-12-01

    For several industrial processes, such as burning and drying, temperature distribution is important because it can reflect the internal running state of industrial equipment and assist to develop control strategy and ensure safety in operation of industrial equipment. The principle of this technique is mainly based on the relationship between acoustic velocity and temperature. In this paper, an algorithm for temperature distribution reconstruction is considered. Compared with reconstruction results of simulation experiments with the least square algorithm and the proposed one, the latter indicates a better information reflection of temperature distribution and relatively higher reconstruction accuracy.

  4. Acoustic imaging for temperature distribution reconstruction

    Directory of Open Access Journals (Sweden)

    Ruixi Jia

    2016-12-01

    Full Text Available For several industrial processes, such as burning and drying, temperature distribution is important because it can reflect the internal running state of industrial equipment and assist to develop control strategy and ensure safety in operation of industrial equipment. The principle of this technique is mainly based on the relationship between acoustic velocity and temperature. In this paper, an algorithm for temperature distribution reconstruction is considered. Compared with reconstruction results of simulation experiments with the least square algorithm and the proposed one, the latter indicates a better information reflection of temperature distribution and relatively higher reconstruction accuracy.

  5. Surface Acoustic Wave Atomizer and Electrostatic Deposition

    Science.gov (United States)

    Yamagata, Yutaka

    A new methodology for fabricating thin film or micro patters of organic/bio material using surface acoustic wave (SAW) atomizer and electrostatic deposition is proposed and characteristics of atomization techniques are discussed in terms of drop size and atomization speed. Various types of SAW atomizer are compared with electrospray and conventional ultrasonic atomizers. It has been proved that SAW atomizers generate drops as small as electrospray and have very fast atomization speed. This technique is applied to fabrication of micro patterns of proteins. According to the result of immunoassay, the specific activity of immunoglobulin was preserved after deposition process.

  6. Acoustic sensor for remote measuring of pressure

    Directory of Open Access Journals (Sweden)

    Kataev V. F.

    2008-04-01

    Full Text Available The paper deals with sensors based on delay lines on surface acoustic waves (SAW, having a receiving-emitting and a reflective interdigital transducers (IDT. The dependence of the reflection coefficient of SAW on type and intensity of the load was studied. The authors propose a composite delay line in which the phase of the reflection coefficient depends on the pressure. Pressure leads to a shift of the reflective IDT relative to the transceiver, because they are located on different substrates. The paper also presents functional diagrams of the interrogator.

  7. Lake bed classification using acoustic data

    Science.gov (United States)

    Yin, Karen K.; Li, Xing; Bonde, John; Richards, Carl; Cholwek, Gary

    1998-01-01

    As part of our effort to identify the lake bed surficial substrates using remote sensing data, this work designs pattern classifiers by multivariate statistical methods. Probability distribution of the preprocessed acoustic signal is analyzed first. A confidence region approach is then adopted to improve the design of the existing classifier. A technique for further isolation is proposed which minimizes the expected loss from misclassification. The devices constructed are applicable for real-time lake bed categorization. A mimimax approach is suggested to treat more general cases where the a priori probability distribution of the substrate types is unknown. Comparison of the suggested methods with the traditional likelihood ratio tests is discussed.

  8. Acoustic pollution in hospital environments

    Science.gov (United States)

    Olivera, J. M.; Rocha, L. A.; Rotger, V. I.; Herrera, M. C.

    2011-12-01

    There are many different services within a hospital. This means different types of noise which can be considered as acoustic pollution. Knowing that preterm infants exposed to high amounts of noise in the NICU are at a much higher risk because of their neurologic immaturity and physiologic instability, that excessive levels of noise also affect the persons and it can also impede some studies on patients, it was proposed to evaluate the Sound Pressure Level in some services of the Instituto de Maternidad, Tucumán, Argentina. There were evaluated the Level III NICU, the laundry service, a physical space destined for a service of evoked potential and a neonatal incubator under working conditions. The measurements were performed with a type II sonometer (CENTER 322) and it was also used an incubator analyzer (FLUKE INCU) for the incubator. The average values obtained were of 63.6 dBA for the NICU, 82.5dBA for the laundry room, 52.7 dBA for the evoked potential room and 62.8 dBA in the inside of the incubator under 64 dBA in the outside. The reports were documented in compliance with the appropriate standards.

  9. Joint Acoustic and Modulation Frequency

    Directory of Open Access Journals (Sweden)

    Les Atlas

    2003-06-01

    Full Text Available There is a considerable evidence that our perception of sound uses important features which is related to underlying signal modulations. This topic has been studied extensively via perceptual experiments, yet there are few, if any, well-developed signal processing methods which capitalize on or model these effects. We begin by summarizing evidence of the importance of modulation representations from psychophysical, physiological, and other sources. The concept of a two-dimensional joint acoustic and modulation frequency representation is proposed. A simple single sinusoidal amplitude modulator of a sinusoidal carrier is then used to illustrate properties of an unconstrained and ideal joint representation. Added constraints are required to remove or reduce undesired interference terms and to provide invertibility. It is then noted that the constraints would also apply to more general and complex cases of broader modulation and carriers. Applications in single-channel speaker separation and in audio coding are used to illustrate the applicability of this joint representation. Other applications in signal analysis and filtering are suggested.

  10. Extração e caracterização de carboidratos presentes no alho (Allium sativum L.: proposta de metodologia alternativa Extraction and characterization of carbohydrates present in the garlic (Allium sativum L.: proposal of alternative methods

    Directory of Open Access Journals (Sweden)

    Nicole Dalonso

    2009-12-01

    and 1200 - 900cm-1. The technique used in this work can be applied for the inulin extraction since it aggregates value to the natural products generating alternatives from the economical point of view.

  11. Assessing the accuracy of auralizations computed using a hybrid geometrical-acoustics and wave-acoustics method

    Science.gov (United States)

    Summers, Jason E.; Takahashi, Kengo; Shimizu, Yasushi; Yamakawa, Takashi

    2001-05-01

    When based on geometrical acoustics, computational models used for auralization of auditorium sound fields are physically inaccurate at low frequencies. To increase accuracy while keeping computation tractable, hybrid methods using computational wave acoustics at low frequencies have been proposed and implemented in small enclosures such as simplified models of car cabins [Granier et al., J. Audio Eng. Soc. 44, 835-849 (1996)]. The present work extends such an approach to an actual 2400-m3 auditorium using the boundary-element method for frequencies below 100 Hz. The effect of including wave-acoustics at low frequencies is assessed by comparing the predictions of the hybrid model with those of the geometrical-acoustics model and comparing both with measurements. Conventional room-acoustical metrics are used together with new methods based on two-dimensional distance measures applied to time-frequency representations of impulse responses. Despite in situ measurements of boundary impedance, uncertainties in input parameters limit the accuracy of the computed results at low frequencies. However, aural perception ultimately defines the required accuracy of computational models. An algorithmic method for making such evaluations is proposed based on correlating listening-test results with distance measures between time-frequency representations derived from auditory models of the ear-brain system. Preliminary results are presented.

  12. Spacecraft Internal Acoustic Environment Modeling

    Science.gov (United States)

    Chu, SShao-sheng R.; Allen, Christopher S.

    2009-01-01

    Acoustic modeling can be used to identify key noise sources, determine/analyze sub-allocated requirements, keep track of the accumulation of minor noise sources, and to predict vehicle noise levels at various stages in vehicle development, first with estimates of noise sources, later with experimental data. In FY09, the physical mockup developed in FY08, with interior geometric shape similar to Orion CM (Crew Module) IML (Interior Mode Line), was used to validate SEA (Statistical Energy Analysis) acoustic model development with realistic ventilation fan sources. The sound power levels of these sources were unknown a priori, as opposed to previous studies that RSS (Reference Sound Source) with known sound power level was used. The modeling results were evaluated based on comparisons to measurements of sound pressure levels over a wide frequency range, including the frequency range where SEA gives good results. Sound intensity measurement was performed over a rectangular-shaped grid system enclosing the ventilation fan source. Sound intensities were measured at the top, front, back, right, and left surfaces of the and system. Sound intensity at the bottom surface was not measured, but sound blocking material was placed tinder the bottom surface to reflect most of the incident sound energy back to the remaining measured surfaces. Integrating measured sound intensities over measured surfaces renders estimated sound power of the source. The reverberation time T6o of the mockup interior had been modified to match reverberation levels of ISS US Lab interior for speech frequency bands, i.e., 0.5k, 1k, 2k, 4 kHz, by attaching appropriately sized Thinsulate sound absorption material to the interior wall of the mockup. Sound absorption of Thinsulate was modeled in three methods: Sabine equation with measured mockup interior reverberation time T60, layup model based on past impedance tube testing, and layup model plus air absorption correction. The evaluation/validation was

  13. Pitch and TDOA-Based Localization of Acoustic Sources with Distributed Arrays

    DEFF Research Database (Denmark)

    Hansen, Martin Weiss; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2015-01-01

    In this paper, a method for acoustic source localization using distributed microphone arrays based on time-differences of arrival (TDOAs) is presented. The TDOAs are used to estimate the location of an acoustic source using a recently proposed method, based on a 4D parameter space defined by the 3D...... location of the source, and the TDOAs. The performance of the proposed method for acoustic source localization is compared to the performance of a method based on generalized cross-correlation with phase transform (GCC-PHAT) using synthetic and speech signals with varying source position. Results show...

  14. Characteristics Analysis of Joint Acoustic Echo and Noise Suppression in Periodic Drillstring Waveguide

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2014-01-01

    Full Text Available A new method of wireless data telemetry used by oil industry uses compressional acoustic waves to transmit downhole information from the bottom hole to the surface. Unfortunately, acoustic echoes and drilling vibration noises in periodic drillstring are a major issue in transmission performance. A combined acoustic echo and noise suppression method based on wave motion characteristic in drillstring is adopted to enhance an upward-going transmitted acoustic signal. The presented scheme consists of a primary acoustic echo canceller using an array of two accelerometers for dealing with the downward-going noises and a secondary acoustic insulation structure for restraining the upward-going vibration noises. Furthermore, the secondary acoustic insulation structure exhibits a banded and dispersive spectral structure because of periodic groove configuration. By using a finite-differential algorithm for the one-dimensional propagation of longitudinal waves, acoustic receiving characteristics of transmitted signals are simulated with additive Gaussian noise in a periodic pipe structure of limited length to investigate the effects on transmission performance optimization. The results reveal that the proposed scheme can achieve a much lower error bit ratio over a specified acoustic isolation frequency range with a 30–40 dB reduction in the average noise level compared to traditional single-receiver scheme.

  15. A numerically efficient damping model for acoustic resonances in microfluidic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, P., E-mail: hahnp@ethz.ch; Dual, J. [Institute of Mechanical Systems (IMES), Department of Mechanical and Process Engineering, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich (Switzerland)

    2015-06-15

    Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results are fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.

  16. Acoustic Signal Feature Extraction of Vehicle Targets

    Institute of Scientific and Technical Information of China (English)

    蓝金辉; 马宝华; 李科杰

    2002-01-01

    Acoustic signal feature extraction is an important part of target recognition. The mechanisms for producing acoustic signals and their propagation are analyzed to extract the features of the radiated noise from different targets. Analysis of the acoustic spectra of typical vehicle targets acquired outdoors shows that the vehicles can be classified based on the acoustic spectra and amplitudes.

  17. A Hybrid Acoustic and Pronunciation Model Adaptation Approach for Non-native Speech Recognition

    Science.gov (United States)

    Oh, Yoo Rhee; Kim, Hong Kook

    In this paper, we propose a hybrid model adaptation approach in which pronunciation and acoustic models are adapted by incorporating the pronunciation and acoustic variabilities of non-native speech in order to improve the performance of non-native automatic speech recognition (ASR). Specifically, the proposed hybrid model adaptation can be performed at either the state-tying or triphone-modeling level, depending at which acoustic model adaptation is performed. In both methods, we first analyze the pronunciation variant rules of non-native speakers and then classify each rule as either a pronunciation variant or an acoustic variant. The state-tying level hybrid method then adapts pronunciation models and acoustic models by accommodating the pronunciation variants in the pronunciation dictionary and by clustering the states of triphone acoustic models using the acoustic variants, respectively. On the other hand, the triphone-modeling level hybrid method initially adapts pronunciation models in the same way as in the state-tying level hybrid method; however, for the acoustic model adaptation, the triphone acoustic models are then re-estimated based on the adapted pronunciation models and the states of the re-estimated triphone acoustic models are clustered using the acoustic variants. From the Korean-spoken English speech recognition experiments, it is shown that ASR systems employing the state-tying and triphone-modeling level adaptation methods can relatively reduce the average word error rates (WERs) by 17.1% and 22.1% for non-native speech, respectively, when compared to a baseline ASR system.

  18. Response to "Comments on 'A theoretical model of the pressure distributions arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds'" [J. Acoust. Soc. Am. 130, 389-403 (2011)].

    Science.gov (United States)

    Erath, Byron D; Peterson, Sean D; Zañartu, Matías; Wodicka, George R; Stewart, Kelley C; Plesniak, Michael W

    2013-08-01

    Hirschberg [J. Acoust. Soc. Am. 134, 9-12 (2013)] presents a commentary and criticisms of the viscous flow model presented by Erath et al. [J. Acoust. Soc. Am. 130, 389-403 (2011)] that solves for the asymmetric pressure loading on the vocal fold walls. This pressure loading arises from asymmetric flow attachment to one vocal fold wall when the glottal channel forms a divergent configuration. Hirschberg proposes an alternative model for the asymmetric loading based upon inviscid flow curvature at the glottal inlet. In this manuscript further evidence is provided in support of the model of Erath et al. and the underlying assumptions, and demonstrates that the primary criticisms presented by Hirschberg are unwarranted. The model presented by Hirschberg is compared with the model from the original paper by Erath et al., and it is shown that each model describes different and complementary aspects of divergent glottal flows.

  19. Deep sea AUV navigation using multiple acoustic beacons

    Science.gov (United States)

    Ji, Da-xiong; Song, Wei; Zhao, Hong-yu; Liu, Jian

    2016-04-01

    Navigation is a critical requirement for the operation of Autonomous Underwater Vehicles (AUVs). To estimate the vehicle position, we present an algorithm using an extended Kalman filter (EKF) to integrate dead-reckoning position with acoustic ranges from multiple beacons pre-deployed in the operating environment. Owing to high latency, variable sound speed multipath transmissions and unreliability in acoustic measurements, outlier recognition techniques are proposed as well. The navigation algorithm has been tested by the recorded data of deep sea AUV during field operations in a variety of environments. Our results show the improved performance over prior techniques based on position computation.

  20. Deep Sea AUV Navigation Using Multiple Acoustic Beacons

    Institute of Scientific and Technical Information of China (English)

    冀大雄; 宋伟; 赵宏宇; 刘健

    2016-01-01

    Navigation is a critical requirement for the operation of Autonomous Underwater Vehicles (AUVs). To estimate the vehicle position, we present an algorithm using an extended Kalman filter (EKF) to integrate dead-reckoning position with acoustic ranges from multiple beacons pre-deployed in the operating environment. Owing to high latency, variable sound speed multipath transmissions and unreliability in acoustic measurements, outlier recognition techniques are proposed as well. The navigation algorithm has been tested by the recorded data of deep sea AUV during field operations in a variety of environments. Our results show the improved performance over prior techniques based on position computation.

  1. Explicit Mapping of Acoustic Regimes For Wind Instruments

    CERN Document Server

    Missoum, Samy; Doc, Jean-Baptiste

    2014-01-01

    This paper proposes a methodology to map the various acoustic regimes of wind instruments. The maps can be generated in a multi-dimensional space consisting of design, control parameters, and initial conditions. The bound- aries of the maps are obtained explicitly in terms of the parameters using a support vector machine (SVM) classifier as well as a dedicated adaptive sam- pling scheme. The approach is demonstrated on a simplified clarinet model for which several maps are generated based on different criteria. Examples of computation of the probability of occurrence of a specific acoustic regime are also provided. In addition, the approach is demonstrated on a design optimization example for optimal intonation.

  2. Acoustic cavitation movies

    Science.gov (United States)

    Crum, Lawrence A.

    2003-04-01

    Acoustic cavitation is a phenomenon that occurs on microsecond time scales and micron length scales, yet, it has many macroscopic manifestations. Accordingly, it is often difficult, at least for the author, to form realistic physical descriptions of the specific mechanisms through which it expresses itself in our macroscopic world. For example, there are still many who believe that cavitation erosion is due to the shock wave that is emitted by bubble implosion, rather than the liquid jet created on asymmetric collapse...and they may be right. Over the years, the author has accumulated a number of movies and high-speed photographs of cavitation activity, which he uses to form his own visual references. In the time allotted, he will show a number of these movies and photographs and discuss their relevance to existing technological problems. A limited number of CDs containing the presented materials will be available to interested individuals. [Work supported in part by the NIH, USAMRMC, and the ONR.

  3. Acoustic/Magnetic Stress Sensor

    Science.gov (United States)

    Heyman, J. S.; Namkung, M.

    1986-01-01

    High-resolution sensor fast, portable, does not require permanent bonding to structure. Sensor measures nondestructively type (compressive or tensile) and magnitude of stresses and stress gradients present in class of materials. Includes precise high-resolution acoustic interferometer, sending acoustic transducer, receiving acoustic transducer, electromagnet coil and core, power supply, and magnetic-field-measuring device such as Hall probe. This measurement especially important for construction and applications where steel is widely used. Sensor useful especially for nondestructive evaluation of stress in steel members because of portability, rapid testing, and nonpermanent installation.

  4. Acoustics of friction.

    Science.gov (United States)

    Akay, Adnan

    2002-04-01

    This article presents an overview of the acoustics of friction by covering friction sounds, friction-induced vibrations and waves in solids, and descriptions of other frictional phenomena related to acoustics. Friction, resulting from the sliding contact of solids, often gives rise to diverse forms of waves and oscillations within solids which frequently lead to radiation of sound to the surrounding media. Among the many everyday examples of friction sounds, violin music and brake noise in automobiles represent the two extremes in terms of the sounds they produce and the mechanisms by which they are generated. Of the multiple examples of friction sounds in nature, insect sounds are prominent. Friction also provides a means by which energy dissipation takes place at the interface of solids. Friction damping that develops between surfaces, such as joints and connections, in some cases requires only microscopic motion to dissipate energy. Modeling of friction-induced vibrations and friction damping in mechanical systems requires an accurate description of friction for which only approximations exist. While many of the components that contribute to friction can be modeled, computational requirements become prohibitive for their contemporaneous calculation. Furthermore, quantification of friction at the atomic scale still remains elusive. At the atomic scale, friction becomes a mechanism that converts the kinetic energy associated with the relative motion of surfaces to thermal energy. However, the description of the conversion to thermal energy represented by a disordered state of oscillations of atoms in a solid is still not well understood. At the macroscopic level, friction interacts with the vibrations and waves that it causes. Such interaction sets up a feedback between the friction force and waves at the surfaces, thereby making friction and surface motion interdependent. Such interdependence forms the basis for friction-induced motion as in the case of

  5. Immodest Proposals

    DEFF Research Database (Denmark)

    Bardzell, Jeffrey; Bardzell, Shaowen; Hansen, Lone Koefoed

    2015-01-01

    This paper offers theoretical support for research through design (RtD) by arguing that to legitimize and make use of research through design as research, HCI researchers need to explore and clarify how RtD objects contribute to knowledge. One way to pursue this goal is to leverage knowledge...... fiction Menstruation Machine by Sputniko!, the paper explores how design objects coproduce knowledge, by working through complex design problem spaces in non-reductive ways, proposing new connections and distinctions, and embodying design ideas and processes across time and minds.......-producing tactics of the arts and humanities traditions of aesthetics, key among which is a communitywide and ongoing critical analysis of aesthetic objects. Along these lines, we argue that while the intentions of the object’s designer are important and annotations are a good mechanism to articulate them...

  6. On Verification of the New Criterion of Adiabaticity by Numerical Simulation of Acoustic Propagation through the Polar Front

    Institute of Scientific and Technical Information of China (English)

    WANG Y.Y.; SHANG E. C.

    2002-01-01

    To assess the adiabaticity of acoustic propagation in the ocean is very important for acoustic field calculation(forward problem) and tomographic retrieving (inverse problem). A new criterion of adiabaticity is proposed recently (Shang et al., 2001). In this paper, numerical simulation has been conducted for acoustic propagation through the Polar Front to verify the new criterion. Numerical results on the f (frequency) -m (mode number) plan demonstrate that the new criterion works very well for this extremely non-gradual ocean structure.

  7. Near-field acoustic holography analysis of modulated sound source

    Institute of Scientific and Technical Information of China (English)

    MAO Rongfu; ZHU Haichao; DU Xianghua; ZHU Haipeng

    2011-01-01

    When conventional near-field acoustic holography (NAH) technique is appliedto sound field induced by modulated signal, the modulating frequency can not be revealed by the reconstructed results. To solve the problem, a NAH analysis methodology for modulated sound source was proposed. Firstly, Hilbert transform was introduced to demodulate the signal, and then modulating component was reconstructed by NAH technique. Both numerical simulation and experiment results demonstrate that accurate reconstruction analysis can be obtained by the proposed method.

  8. [Delusional thematic alternation and cyclothymia].

    Science.gov (United States)

    Sizaret, P; Degiovanni, A; Chevrollier, J P; Gaillard, P

    1983-01-01

    The authors discuss the case of a 36 year old woman who, for several years, has been delirious and who has shown signs of an affective disorder, alternatively suffering from hypomanic and depressive episodes. What is most interesting is that she expresses erotomaniac delusions while she is elated and persecutory delusions while she is depressed. The authors propose an psychopathological explanation for her disorder.

  9. Computational dynamics of acoustically-driven microsphere systems

    CERN Document Server

    Glosser, Connor A; Dault, Daniel L; Piermarocchi, Carlo; Shanker, Balasubramaniam

    2015-01-01

    We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dynamics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach allows us to describe the inter-particle interaction induced by the field as well as the dynamics of trapping in counter-propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres describing the effect of non-dissipative drag forces. We show (1) that the field-induced interactions between the microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities, and (2) that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation ...

  10. An Acoustic Communication Technique of Nanorobot Swarms for Nanomedicine Applications.

    Science.gov (United States)

    Loscrí, Valeria; Vegni, Anna Maria

    2015-09-01

    In this contribution, we present a communication paradigm among nanodevices, based on acoustic vibrations for medical applications. We consider a swarm of nanorobots able to communicate in a distributed and decentralized fashion, propelled in a biological environment (i.e., the human brain). Each nanorobot is intended to i) recognize a cancer cell, ii) destroy it, and then iii) forward information about the presence of cancer formation to other nanorobots, through acoustic signals. The choice of acoustic waves as communication mean is related to the application context, where it is not advisable either to use indiscriminate chemical substances or electromagnetic waves. The effectiveness of the proposed approach is assessed in terms of achievement of the objective (i.e., to destroy the majority of tumor cells), and the velocity of detection and destruction of cancer cells, through a comparison with other related techniques.

  11. A linearized dispersion relation for orthorhombic pseudo-acoustic modeling

    KAUST Repository

    Song, Xiaolei

    2012-11-04

    Wavefield extrapolation in acoustic orthorhombic anisotropic media suffers from wave-mode coupling and stability limitations in the parameter range. We introduce a linearized form of the dispersion relation for acoustic orthorhombic media to model acoustic wavefields. We apply the lowrank approximation approach to handle the corresponding space-wavenumber mixed-domain operator. Numerical experiments show that the proposed wavefield extrapolator is accurate and practically free of dispersions. Further, there is no coupling of qSv and qP waves, because we use the analytical dispersion relation. No constraints on Thomsen\\'s parameters are required for stability. The linearized expression may provide useful application for parameter estimation in orthorhombic media.

  12. Achieving acoustic cloak by using compressible background flow

    Science.gov (United States)

    Zhang, Ruo-Yang; Zhao, Qing; Ge, Mo-Lin

    2016-08-01

    We propose a scheme of acoustic spherical cloaking by means of background irrotational flow in compressible fluid. The background flow forms a virtual curved spacetime and directs the sound waves to bypass the cloaked objects. To satisfy the laws of real fluid, we show that spatially distributed mass source and momentum source are necessary to supply. The propagation of sound waves in this system is studied via both geometric acoustics approximation and full wave approach. The analytic solution of sound fields is obtained for plane wave incidence. The results reveal the effect of phase retardation (or lead) in comparison with the ordinary transformation-acoustic cloak. In addition, the ability of cloaking is also evaluated for unideal background flows by analyzing the scattering cross section. Project supported by the National Natural Science Foundation of China (Grant Nos. 11475088 and 11275024) and the Fund from the Ministry of Science and Technology of China (Grant No. 2013YQ030595-3).

  13. Sparse Reconstruction for Micro Defect Detection in Acoustic Micro Imaging

    Directory of Open Access Journals (Sweden)

    Yichun Zhang

    2016-10-01

    Full Text Available Acoustic micro imaging has been proven to be sufficiently sensitive for micro defect detection. In this study, we propose a sparse reconstruction method for acoustic micro imaging. A finite element model with a micro defect is developed to emulate the physical scanning. Then we obtain the point spread function, a blur kernel for sparse reconstruction. We reconstruct deblurred images from the oversampled C-scan images based on l1-norm regularization, which can enhance the signal-to-noise ratio and improve the accuracy of micro defect detection. The method is further verified by experimental data. The results demonstrate that the sparse reconstruction is effective for micro defect detection in acoustic micro imaging.

  14. Analysis of acoustic radiation mode in time domain

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The acoustic radiation mode of plane, whose radiating operator is constructed by Rayleigh integral, is investigated in the time domain and its physical meaning is given. The relationship between the acoustic radiation modes of time domain and frequency domain is discussed. It is verified that the acoustic radiation modes are the natural property of the radiator and they can be obtained by different methods. These time domain radiation modes, whose shapes are only dependent on the geometry size and shape of the radiator, can radiate sound power independently. Especially, the first time domain radiation mode accounts for most of the sound radiation. All these simplify the calculation and control of the structure-borne sound power. Based on these observations, the sound power radiated from the vibrating plate is estimated by the time domain radiation mode for verifying the proposed method. The influence factors on the estimating accuracy in different conditions are discussed.

  15. Achieving acoustic cloak by using compressible background flow

    CERN Document Server

    Zhang, Ruo-Yang; Ge, Mo-Lin

    2016-01-01

    We propose a scheme of acoustic spherical cloaking by means of background irrotational flow in compressible fluid. The background flow forms a virtual curved spacetime and guides the sound waves bypass the cloaked objects. To satisfy the laws of real fluid, we show that spatially distributed mass source and momentum source are necessary to supply. The propagation of sound waves in this system is studied via both geometric acoustics approximation and full wave approach. The analytic solution of sound fields is obtained for plane wave incidence. The results reveal the effect of phase retardation (or lead) in comparison with the ordinary transformation-acoustic cloak. In addition, the ability of cloaking is also evaluated for unideal background flows by analyzing the scattering cross section.

  16. Numerical modelling of nonlinear full-wave acoustic propagation

    Energy Technology Data Exchange (ETDEWEB)

    Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  17. Reverberant Acoustic Test Facility (RATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...

  18. Frequency Steered Acoustic Transducer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase I project is to develop, fabricate, and characterize a novel frequency steered acoustic transducer (FSAT) for the...

  19. ADAPTIVE ELLIPSOIDAL ACOUSTIC INFINITE ELEMENT

    Institute of Scientific and Technical Information of China (English)

    Yang Ruiliang; Wang Hongzhen

    2004-01-01

    It is shown that the basis of the ellipsoidal acoustic infinite element Burnett method,the multipole expansion,cannot represent real ellipsoidal acoustic field exactly.To solve the problem,a weight of angular direction is added to the multipole expansion.The comparison of the modified method and the prime method shows that the modified method can describe and solve the ellipsoidal acoustic field more accurately than ever.A dilating sphere is used to test the new method further.Unlike other infinite element methods,varied ratio of the ellipsoidal artificial boundary instead of sphere is used.The pressure value of the artificial boundary is utilized as the initial value of the new method.Then the radiating phenomena of the ellipsoidal acoustic field can be researched using the new method.These examples show the feasibility of the adaptive method.

  20. Frequency Steered Acoustic Transducer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovation Research Phase II project is to fabricate, characterize, and verify performance of a new type of frequency steered acoustic transducer...

  1. Compact Acoustic Models for Embedded Speech Recognition

    Directory of Open Access Journals (Sweden)

    Lévy Christophe

    2009-01-01

    Full Text Available Speech recognition applications are known to require a significant amount of resources. However, embedded speech recognition only authorizes few KB of memory, few MIPS, and small amount of training data. In order to fit the resource constraints of embedded applications, an approach based on a semicontinuous HMM system using state-independent acoustic modelling is proposed. A transformation is computed and applied to the global model in order to obtain each HMM state-dependent probability density functions, authorizing to store only the transformation parameters. This approach is evaluated on two tasks: digit and voice-command recognition. A fast adaptation technique of acoustic models is also proposed. In order to significantly reduce computational costs, the adaptation is performed only on the global model (using related speaker recognition adaptation techniques with no need for state-dependent data. The whole approach results in a relative gain of more than 20% compared to a basic HMM-based system fitting the constraints.

  2. Pressure potential and stability analysis in an acoustical noncontact transportation

    Science.gov (United States)

    Li, J.; Liu, C. J.; Zhang, W. J.

    2017-01-01

    Near field acoustic traveling wave is one of the most popular principles in noncontact manipulations and transportations. The stability behavior is a key factor in the industrial applications of acoustical noncontact transportation. We present here an in-depth analysis of the transportation stability of a planar object levitated in near field acoustic traveling waves. To more accurately describe the pressure distributions on the radiation surface, a 3D nonlinear traveling wave model is presented. A closed form solution is derived based on the pressure potential to quantitatively calculate the restoring forces and moments under small disturbances. The physical explanations of the effects of fluid inertia and the effects of non-uniform pressure distributions are provided in detail. It is found that a vibration rail with tapered cross section provides more stable transportation than a rail with rectangular cross section. The present study sheds light on the issue of quantitative evaluation of stability in acoustic traveling waves and proposes three main factors that influence the stability: (a) vibration shape, (b) pressure distribution and (c) restoring force/moment. It helps to provide a better understanding of the physics behind the near field acoustic transportation and provide useful design and optimization tools for industrial applications.

  3. Acoustic scattering reduction using layers of elastic materials

    Science.gov (United States)

    Dutrion, Cécile; Simon, Frank

    2017-02-01

    Making an object invisible to acoustic waves could prove useful for military applications or measurements in confined space. Different passive methods have been proposed in recent years to avoid acoustic scattering from rigid obstacles. These techniques are exclusively based on acoustic phenomena, and use for instance multiple resonators or scatterers. This paper examines the possibility of designing an acoustic cloak using a bi-layer elastic cylindrical shell to eliminate the acoustic field scattered from a rigid cylinder hit by plane waves. This field depends on the dimensional and mechanical characteristics of the elastic layers. It is computed by a semi-analytical code modelling the vibrations of the coating under plane wave excitation. Optimization by genetic algorithm is performed to determine the characteristics of a bi-layer material minimizing the scattering. Considering an external fluid consisting of air, realistic configurations of elastic coatings emerge, composed of a thick internal orthotopic layer and a thin external isotropic layer. These coatings are shown to enable scattering reduction at a precise frequency or over a larger frequency band.

  4. Acoustically-driven microfluidic systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, A W; Benett, W J; Tarte, L R

    2000-06-23

    We have demonstrated a non-contact method of concentrating and mixing particles in a plastic microfluidic chamber employing acoustic radiation pressure. A flaw cell package has also been designed that integrates liquid sample interconnects, electrical contacts and a removable sample chamber. Experiments were performed on 1, 3, 6, and 10 {micro}m polystyrene beads. Increased antibody binding to a solid-phase substrate was observed in the presence of acoustic mixing due to improve mass transport.

  5. Biological Effects of Acoustic Cavitation

    Science.gov (United States)

    2007-11-02

    rectified diffusion. 56 III. STABLE CAVITATION A. Introduction There are manv areas associated with the biological effects of ultrasound in which the...used said as cavitation indicators. Further, if clinical ultrasound systems are found to be inducing cavitation , either stable or transient, it will...O BIOLOGICAL EFFECTS OF ACOUSTIC CAVITATION by Lawrence A. Crum -- Physical Acoustics Research Laboratory Department of Physics and Astronomy ’ CTE

  6. Autonomous Adaptive Acoustic Relay Positioning

    Science.gov (United States)

    2013-09-01

    equipment construction and repair tasks [51]. Commercial ROVs range from large, versatile work-class vehicles like Soil Machine Dynamics (SMD) QUANTUM and...range-only formation control using teams of heterogeneous vehicles with wifi and acoustic communications. Shankar and Chitre formulated the multi-armed...acoustic communication and sensing by marine robots. IEEE Journal of Oceanographic Engineering, 38:522–533, 2013. [43] S. Shankar and Chitre. Tuning

  7. Acoustic Multipurpose Cargo Transfer Bag

    Science.gov (United States)

    Baccus, Shelley

    2015-01-01

    The Logistics Reduction (LR) project within the Advanced Exploration Systems (AES) program is tasked with reducing logistical mass and repurposing logistical items. Multipurpose Cargo Transfer Bags (MCTB) are designed to be the same external volume as a regular cargo transfer bag, the common logistics carrier for the International Space Station. After use as a cargo bag, the MCTB can be unzipped and unfolded to be reused. This Acoustic MCTBs transform into acoustic blankets after the initial logistics carrying objective is complete.

  8. Acoustic Rectification in Dispersive Media

    Science.gov (United States)

    Cantrell, John H.

    2008-01-01

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  9. Study Acoustic Emissions from Composites

    Science.gov (United States)

    Walker, James; Workman,Gary

    1998-01-01

    The purpose of this work will be to develop techniques for monitoring the acoustic emissions from carbon epoxy composite structures at cryogenic temperatures. Performance of transducers at temperatures ranging from ambient to cryogenic and the characteristics of acoustic emission from composite structures will be studied and documented. This entire effort is directed towards characterization of structures used in NASA propulsion programs such as the X-33.

  10. Acoustic control in enclosures using optimally designed Helmholtz resonators

    Science.gov (United States)

    Driesch, Patricia Lynne

    A virtual design methodology is developed to minimize the noise in enclosures with optimally designed, passive, acoustic absorbers (Helmholtz resonators). A series expansion of eigen functions is used to represent the acoustic absorbers as external volume velocities, eliminating the need for a solution of large matrix eigen value problems. A determination of this type (efficient model/reevaluation approach) significantly increases the design possibilities when optimization techniques are implemented. As a benchmarking exercise, this novel methodology was experimentally validated for a narrowband acoustic assessment of two optimally designed Helmholtz resonators coupled to a 2D enclosure. The resonators were tuned to the two lowest resonance frequencies of a 30.5 by 40.6 by 2.5 cm (12 x 16 x 1 inch) cavity with the resonator volume occupying only 2% of the enclosure volume. A maximum potential energy reduction of 12.4 dB was obtained at the second resonance of the cavity. As a full-scale demonstration of the efficacy of the proposed design method, the acoustic response from 90--190 Hz of a John Deere 7000 Ten series tractor cabin was investigated. The lowest cabin mode, referred to as a "boom" mode, proposes a significant challenge to a noise control engineer since its anti-node is located near the head of the operator and often generates unacceptable sound pressure levels. Exploiting the low frequency capability of Helmholtz resonators, lumped parameter models of these resonators were coupled to the enclosure via an experimentally determined acoustic model of the tractor cabin. The virtual design methodology uses gradient optimization techniques as a post processor for the modeling and analysis of the unmodified acoustic interior to determine optimal resonator characteristics. Using two optimally designed Helmholtz resonators; potential energy was experimentally reduced by 3.4 and 10.3 dB at 117 and 167 Hz, respectively.

  11. Alternative medicine - pain relief

    Science.gov (United States)

    Alternative medicine refers to treatments that are used instead of conventional (standard) ones. If you use an alternative ... with conventional medicine or therapy, it is considered complementary therapy. There are many forms of alternative medicine. Acupuncture ...

  12. Fast scanning mode and its realization in a scanning acoustic microscope.

    Science.gov (United States)

    Ju, Bing-Feng; Bai, Xiaolong; Chen, Jian

    2012-03-01

    The scanning speed of the two-dimensional stage dominates the efficiency of mechanical scanning measurement systems. This paper focused on a detailed scanning time analysis of conventional raster and spiral scan modes and then proposed two fast alternative scanning modes. Performed on a self-developed scanning acoustic microscope (SAM), the measured images obtained by using the conventional scan mode and fast scan modes are compared. The total scanning time is reduced by 29% of the two proposed fast scan modes. It will offer a better solution for high speed scanning without sacrificing the system stability, and will not introduce additional difficulties to the configuration of scanning measurement systems. They can be easily applied to the mechanical scanning measuring systems with different driving actuators such as piezoelectric, linear motor, dc motor, and so on. The proposed fast raster and square spiral scan modes are realized in SAM, but not specially designed for it. Therefore, they have universal adaptability and can be applied to other scanning measurement systems with two-dimensional mechanical scanning stages, such as atomic force microscope or scanning tunneling microscope.

  13. Opto-acoustic cell permeation

    Energy Technology Data Exchange (ETDEWEB)

    Visuri, S R; Heredia, N

    2000-03-09

    Optically generated acoustic waves have been used to temporarily permeate biological cells. This technique may be useful for enhancing transfection of DNA into cells or enhancing the absorption of locally delivered drugs. A diode-pumped frequency-doubled Nd:YAG laser operating at kHz repetition rates was used to produce a series of acoustic pulses. An acoustic wave was formed via thermoelastic expansion by depositing laser radiation into an absorbing dye. Generated pressures were measured with a PVDF hydrophone. The acoustic waves were transmitted to cultured and plated cells. The cell media contained a selection of normally- impermeable fluorescent-labeled dextran dyes. Following treatment with the opto-acoustic technique, cellular incorporation of dyes, up to 40,000 Molecular Weight, was noted. Control cells that did not receive opto-acoustic treatment had unremarkable dye incorporation. Uptake of dye was quantified via fluorescent microscopic analysis. Trypan Blue membrane exclusion assays and fluorescent labeling assays confirmed the vitality of cells following treatment. This method of enhanced drug delivery has the potential to dramatically reduce required drug dosages and associated side effects and enable revolutionary therapies.

  14. Acoustical topology optimization for Zwicker's loudness model - Application to noise barriers

    DEFF Research Database (Denmark)

    Kook, Junghwan; Koo, Kunmo; Hyun, Jaeyub;

    2012-01-01

    Traditionally, the objective of design optimization of an acoustic system is to reduce physical acoustic properties, i.e., sound pressure and power. However, since these parameters are not sufficient to present the relation of physical sound stimulus with human perceptual judgment, physical...... acoustic properties may not represent adequate parameters for optimizing acoustic devices. In this paper, we first present a design method for acoustical topology optimization by considering human's subjective conception of sound. To consider human hearing characteristics. Zwicker's loudness is calculated...... the finite element method. The sensitivity of the main specific loudness is calculated using the adjoint variable method and the chain rule. To demonstrate the effectiveness of the proposed method, various examples of noise barriers are presented with different source and receiver locations. The results...

  15. Acoustic classification schemes in Europe – Applicability for new, existing and renovated housing

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2016-01-01

    of the international scheme for classification of dwellings under development in ISO/TC43/SC2 will be explained. One of several key characteristics of the proposal is a wide range of classes, implying applicability to a major part of the existing housing stock in Europe, thus enabling acoustic labelling like energy......The first acoustic classification schemes for dwellings were published in the 1990’es as national standards with the main purpose to introduce the possibility of specifying easily stricter acoustic criteria for new-build than the minimum requirements found in building regulations. Since then, more...... countries have introduced acoustic classification schemes, the first countries updated more times and some countries introduced acoustic classification also for other building categories. However, the classification schemes continued to focus on new buildings and have in general limited applicability...

  16. Resolution enhancement of nearfield acoustic holography by interpolation using band-limited signal restoration method

    Institute of Scientific and Technical Information of China (English)

    XU Liang; BI ChuanXing; CHEN XinZhao; CHEN Jian

    2008-01-01

    A new method based on interpolation using band-limited signal restoration method was proposed for enhancing the resolution of the nearfield acoustic holography. According to the band-limited property of the pressure on the hologram surface, a band-limited signal restoration method named Pa-poulis-Gerchberg algorithm was used to realize the interpolation of acoustic pressure. Therefore acoustic pressure data on the hologram surface were increased, the sampling interval was reduced, the information on evanescent waves which was lost because of the large sampling interval was partially recovered, and the resolution of nearfield acoustic holography image was improved. The experimental result shows that the method can enhance the resolution of the nearfield acoustic holography image efficiently.

  17. Acoustic CT system for temperature distribution measurement

    Institute of Scientific and Technical Information of China (English)

    Shinji Ohyama; Toyofumi Oga; Kazuo Oshima; Junya Takayama

    2008-01-01

    In this paper,a measurement method for crosssectional temperature distribution is addressed. A novel method based on an acoustic CT technique is proposed. Specifically,the temperature distributions are estimated using the time of flight data of several ultrasonic propagation paths. The times of the flight data contain both temperature and wind effect,and the method to select only temperature component is introduced. A filtered back projection method is applied to reconstruct the temperature distributions from the time of flight data. An experimental system was designed and fabricated to realize simultaneous temperature and wind velocity distribution measurements. Through this system,the effectiveness of the proposed measurement method is confirmed.

  18. Landweber iterative regularization for nearfield acoustic holography

    Institute of Scientific and Technical Information of China (English)

    BI Chuanxing; CHEN Xinzhao; ZHOU Rong; CHEN Jian

    2006-01-01

    On the basis of the distributed source boundary point method (DSBPM)-based nearfield acoustic holography (NAH), Landweber iterative regularization method is proposed to stabilize the NAH reconstruction process, control the influence of measurement errors on the reconstructed results and ensure the validity of the reconstructed results. And a new method, the auxiliary surface method, is proposed to determine the optimal iterative number for optimizing the regularization effect. Here, the optimal number is determined by minimizing the relative error between the calculated pressure on the auxiliary surface corresponding to each iterative number and the measured pressure. An experiment on a speaker is investigated to demonstrate the high sensitivity of the reconstructed results to measurement errors and to validate the chosen method of the optimal iterative number and the Landweber iterative regularization method for controlling the influence of measurement errors on the reconstructed results.

  19. Acoustic analyses of diadochokinesis in fluent and stuttering children

    Directory of Open Access Journals (Sweden)

    Fabiola Staróbole Juste

    2012-01-01

    Full Text Available OBJECTIVES: The purpose of the study was to acoustically compare the performance of children who do and do not stutter on diadochokinesis tasks in terms of syllable duration, syllable periods, and peak intensity. METHODS: In this case-control study, acoustical analyses were performed on 26 children who stutter and 20 agedmatched normally fluent children (both groups stratified into preschoolers and school-aged children during a diadochokinesis task: the repetition of articulatory segments through a task testing the ability to alternate movements. Speech fluency was assessed using the Fluency Profile and the Stuttering Severity Instrument. RESULTS: The children who stutter and those who do not did not significantly differ in terms of the acoustic patterns they produced in the diadochokinesis tasks. Significant differences were demonstrated between age groups independent of speech fluency. Overall, the preschoolers performed poorer. These results indicate that the observed differences are related to speech-motor age development and not to stuttering itself. CONCLUSIONS: Acoustic studies demonstrate that speech segment durations are most variable, both within and between subjects, during childhood and then gradually decrease to adult levels by the age of eleven to thirteen years. One possible explanation for the results of the present study is that children who stutter presented higher coefficients of variation to exploit the motor equivalence to achieve accurate sound production (i.e., the absence of speech disruptions.

  20. Decoherence and loss of entanglement in acoustic black holes.

    Science.gov (United States)

    Lombardo, Fernando C; Turiaci, Gustavo J

    2012-06-29

    We study the process of decoherence in acoustic black holes. We focus on the ion trap model proposed by Horstmann et al. [Phys. Rev. Lett. 104, 250403 (2010)], but the formalism is general to any experimental implementation. For that particular setup, we compute the decoherence time for the experimental parameters that they proposed. We find that a quantum to classical transition occurs during the measurement, and we propose improved parameters to avoid such a feature. We also study the entanglement between the Hawking-pair phonons for an acoustic black hole while in contact with a reservoir, through the quantum correlations, showing that they remain strongly correlated for small enough times and temperatures.

  1. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    Science.gov (United States)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  2. Acoustic Properties of Innovative Material from Date Palm Fibre

    Directory of Open Access Journals (Sweden)

    Lamyaa Abd AL-Rahman

    2012-01-01

    increased at all frequencies when the thickness of sample was increased, particularly at low frequencies less than 1200 Hz. The introduction of latex on the samples adds stiffness, so that sound can be dissipated significantly as it travels through material. Results from the experimental tests show that date palm fibre has good acoustic properties at low and high frequencies and can be used as an alternative replacement to conventional product. Increasing density of the samples, increase the AAC as well. The innovative acoustic absorption panel has a good potential because they are cheaper and lighter in comparison to asbestos and rock wool industrial materials.

  3. Acoustic detection of ultra-high energy cascades in ice

    Energy Technology Data Exchange (ETDEWEB)

    Boeser, S.

    2006-12-08

    Current underwater optical neutrino telescopes are designed to detect neutrinos from astrophysical sources with energies in the TeV range. Due to the low fluxes and small cross sections, no high energy neutrinos of extraterrestrial origin have been observed so far. Only the Cherenkov neutrino detectors on the km{sup 3} scale that are currently under construction will have the necessary volume to observe these rare interactions. For the guaranteed source of neutrinos from interactions of the ultra-high energy cosmic at EeV energies rays with the ambient cosmic microwave background, event rates of only one per year are expected in these experiments. To measure the flux and verify the predicted cross sections of these cosmogenic neutrinos, an observed volume of the order of 100 km{sup 3} will be necessary, that will not be feasible with existing detection techniques. Alternative methods are required to build a detector on these scales. One promising idea is to record the acoustic waves generated in hadronic or electromagnetic cascades following the neutrino interaction. The higher amplitudes of the sonic signal and the large expected absorption length of sound favour South Polar ice instead of sea water as a medium. The prerequisites for an estimate of the potential of such a detector are suitable acoustic sensors, a verification of the model of thermo-acoustic sound generation and a determination of the acoustic properties of the ice. In a theoretical derivation the mechanism of thermo-elastic excitation of acoustic waves was shown to be equivalent for isotropic solids and liquids. Following a detailed analysis of the existing knowledge a simulation study of a hybrid optical-radio-acoustic detector has been performed. Ultrasonic sensors dedicated to in-ice application were developed and have been used to record acoustic signals from intense proton and laser beams in water and ice. With the obtained experience, the hitherto largest array of acoustic sensors and

  4. Passive Acoustic Vessel Localization

    Science.gov (United States)

    Suwal, Pasang Sherpa

    This thesis investigates the development of a low-cost passive acoustic system for localizing moving vessels to monitor areas where human activities such as fishing, snorkeling and poaching are restricted. The system uses several off-the-shelf sensors with unsynchronized clocks where the Time Difference of Arrival (TDOA) or time delay is extracted by cross-correlation of the signal between paired sensors. The cross-correlation function uses phase correlation or Phase Transform (PHAT) which whitens the cross-spectrum in order to de-emphasize dominant frequency components. Using the locations of pairs of sensors as foci, hyperbolic equations can be defined using the time delay between them. With three or more sensors, multiple hyperbolic functions can be calculated which intersect at a unique point: the boat's location. It is also found that increasing separation distances between sensors decreased the correlation between the signals. However larger separation distances have better localization capability than with small distances. Experimental results from the Columbia and Willamette Rivers are presented to demonstrate performance.

  5. Acoustic Signal Processing

    Science.gov (United States)

    Hartmann, William M.; Candy, James V.

    Signal processing refers to the acquisition, storage, display, and generation of signals - also to the extraction of information from signals and the re-encoding of information. As such, signal processing in some form is an essential element in the practice of all aspects of acoustics. Signal processing algorithms enable acousticians to separate signals from noise, to perform automatic speech recognition, or to compress information for more efficient storage or transmission. Signal processing concepts are the building blocks used to construct models of speech and hearing. Now, in the 21st century, all signal processing is effectively digital signal processing. Widespread access to high-speed processing, massive memory, and inexpensive software make signal processing procedures of enormous sophistication and power available to anyone who wants to use them. Because advanced signal processing is now accessible to everybody, there is a need for primers that introduce basic mathematical concepts that underlie the digital algorithms. The present handbook chapter is intended to serve such a purpose.

  6. Experimental and theoretical demonstration of acoustic Bloch oscillations in porous silicon structures

    Energy Technology Data Exchange (ETDEWEB)

    Lazcano, Z.; Arriaga, J., E-mail: arriaga@ifuap.buap.mx [Instituto de Física, Benemérita Universidad Autónoma de Puebla, 18 Sur y San Claudio, Edif. 110-A, Ciudad Universitaria, 72570 Puebla (Mexico); Aliev, G. N. [Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2014-04-21

    We report the theoretical calculations and the experimental demonstration of acoustic Bloch oscillations and Wannier-Stark ladders in linear tilted multilayer structures based on porous silicon. The considered structures consist of layers with constant porosity alternated by layers with a linear gradient in the parameter η=1/v{sub L}{sup 2} along the growth direction in order to tilt the acoustic band gap. The purpose of this gradient is to mimic the tilted electronic miniband structure of a superlattice semiconductor under an external electric field. In this way, acoustic Wannier-Stark ladders of equidistant modes are formed and they were experimentally confirmed in the transmission spectrum around 1.2 GHz. Their frequency separation defines the period of the acoustic Bloch oscillations. We fabricated three different structures with the same thicknesses but different values in the η parameter to observe the effect on the period of the Bloch oscillations. We measured the acoustic transmission spectra in the frequency domain, and by using the Fourier transform, we obtained the transmission in the time domain. The transmission spectra of the fabricated samples show acoustic Bloch oscillations with periods of 27, 24, and 19 ns. The experimental results are in good agreement with the transfer matrix calculations. The observed phenomenon is the acoustic counterpart of the well known electronic Bloch oscillations.

  7. Acoustic loading effects on oscillating rod bundles

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.H.

    1980-01-01

    An analytical study of the interaction between an infinite acoustic medium and a cluster of circular rods is described. The acoustic field due to oscillating rods and the acoustic loading on the rods are first solved in a closed form. The acoustic loading is then used as a forcing function for rod responses, and the acousto-elastic couplings are solved simultaneously. Numerical examples are presented for several cases to illustrate the effects of various system parameters on the acoustic reaction force coefficients. The effect of the acoustic loading on the coupled eigenfrequencies are discussed.

  8. Reflective echo tomographic imaging using acoustic beams

    Energy Technology Data Exchange (ETDEWEB)

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  9. Modelling of acoustic transmission through perforated layer

    Directory of Open Access Journals (Sweden)

    Lukeš V.

    2007-10-01

    Full Text Available The paper deals with modeling the acoustic transmission through a perforated interface plane separating two halfspaces occupied by the acoustic medium. We considered the two-scale homogenization limit of the standard acoustic problem imposed in the layer with the perforated periodic structure embedded inside. The homogenized transmission conditions govern the interface discontinuity of the acoustic pressure associated with the two halfspaces and the magnitude of the fictitious transversal acoustic velocity. By numerical examples we illustrate this novel approach of modeling the acoustic impedance of perforated interfaces.

  10. Acoustic Emission Measurement with Fiber Bragg Gratings for Structure Health Monitoring

    Science.gov (United States)

    Banks, Curtis E.; Walker, James L.; Russell, Sam; Roth, Don; Mabry, Nehemiah; Wilson, Melissa

    2010-01-01

    Structural Health monitoring (SHM) is a way of detecting and assessing damage to large scale structures. Sensors used in SHM for aerospace structures provide real time data on new and propagating damage. One type of sensor that is typically used is an acoustic emission (AE) sensor that detects the acoustic emissions given off from a material cracking or breaking. The use of fiber Bragg grating (FBG) sensors to provide acoustic emission data for damage detection is studied. In this research, FBG sensors are used to detect acoustic emissions of a material during a tensile test. FBG sensors were placed as a strain sensor (oriented parallel to applied force) and as an AE sensor (oriented perpendicular to applied force). A traditional AE transducer was used to collect AE data to compare with the FBG data. Preliminary results show that AE with FBGs can be a viable alternative to traditional AE sensors.

  11. Study of focusing characteristics of ultrasound for designing acoustic lens in ultrasonic moxibustion device

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Jae Hyun; Song, Sung Jin; Kim, Hak Joon [School of Mechanical Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Kim, Ki Bok [Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of)

    2015-04-15

    Traditional moxibustion therapy can cause severe pain and leave scarring burns at the moxibustion site as it relies on the practitioner's subjective and qualitative treatment. Recently, ultrasound therapy has received attention as an alternative to moxibustion therapy owing to its objectiveness and quantitative nature. However, in order to convert ultrasound energy into heat energy, there is a need to precisely understand the ultrasound-focusing characteristics of the acoustic lens. Therefore, in this study, an FEM simulation was performed for acoustic lenses with different geometries a concave lens and zone lens as the geometry critically influences ultrasound focusing. The acoustic pressure field, amplitude, and focal point were also calculated. Furthermore, the performance of the fabricated acoustic lens was verified by a sound pressure measurement experiment.

  12. Pharmacokinetic profile of dodecanedioic acid, a proposed alternative fuel substrate.

    Science.gov (United States)

    Mingrone, G; Greco, A V; De Gaetano, A; Tataranni, A; Raguso, C; Castagneto, M

    1994-01-01

    Dodecanedioic acid (C12), a saturated, aliphatic dicarboxylic acid with 12 carbon atoms, was given as an intravenous bolus (800 mumol/kg of body weight [kgBW]) in male Wistar rats to study its pharmacokinetic profile. Because total plasma C12, which results from the sum of both free and albumin binding fractions, was measured by high-performance liquid chromatography, an in vitro experimental session was carried out to determine the binding curve of C12 in rat plasma. These data were then used to calculate the plasma C12 free fraction in in vivo experiments. The best fit obtained for the experimental data of albumin binding was obtained with the equation of reversible, saturable binding to one, two, or three classes of noninteracting equivalent sites. Only a single binding site was clearly identified with a dissociation constant of 147 mumol/L and a maximal predicted binding of 1.57 mol/mol albumin. The urinary excretion of C12 was 3.90 +/- 1.62% of the administered dose. The pharmacokinetic analysis was performed by one-compartment model with linear transfer to the tissues, taking into account simultaneously both plasma concentration and urine excretion data. The apparent volume of distribution of C12 was 0.248 +/- 0.035 L/kgBW, the apparent first order rate constant to the tissues was 0.0535 +/- 0.0123 min-1 and that from plasma to urine was 0.00206 +/- 0.00051 min-1. The C12 plasma half-life was 12.47 minutes. Renal clearance was 0.00051 L/kgBW per minute, whereas the systemic clearance was 0.0138 L/kgBW per minute. Because the renal clearance was much less than the rat inulin clearance reported in literature, the presence of C12 passive back-diffusion was hypothesized.

  13. Multi-carrier Communications over Time-varying Acoustic Channels

    Science.gov (United States)

    Aval, Yashar M.

    Acoustic communication is an enabling technology for many autonomous undersea systems, such as those used for ocean monitoring, offshore oil and gas industry, aquaculture, or port security. There are three main challenges in achieving reliable high-rate underwater communication: the bandwidth of acoustic channels is extremely limited, the propagation delays are long, and the Doppler distortions are more pronounced than those found in wireless radio channels. In this dissertation we focus on assessing the fundamental limitations of acoustic communication, and designing efficient signal processing methods that cam overcome these limitations. We address the fundamental question of acoustic channel capacity (achievable rate) for single-input-multi-output (SIMO) acoustic channels using a per-path Rician fading model, and focusing on two scenarios: narrowband channels where the channel statistics can be approximated as frequency- independent, and wideband channels where the nominal path loss is frequency-dependent. In each scenario, we compare several candidate power allocation techniques, and show that assigning uniform power across all frequencies for the first scenario, and assigning uniform power across a selected frequency-band for the second scenario, are the best practical choices in most cases, because the long propagation delay renders the feedback information outdated for power allocation based on the estimated channel response. We quantify our results using the channel information extracted form the 2010 Mobile Acoustic Communications Experiment (MACE'10). Next, we focus on achieving reliable high-rate communication over underwater acoustic channels. Specifically, we investigate orthogonal frequency division multiplexing (OFDM) as the state-of-the-art technique for dealing with frequency-selective multipath channels, and propose a class of methods that compensate for the time-variation of the underwater acoustic channel. These methods are based on multiple

  14. All About Alternatives

    Science.gov (United States)

    Barr, Robert D.; And Others

    1972-01-01

    A primer on alternative schools. Described are existing programs in different areas, philosophy of the alternative schools, funding, student behavior, community relations, accountability, State regulations, management, and the environment of the alternative school. A list of sources of additional information on alternative schools is included.…

  15. Sonification of acoustic emission data

    Science.gov (United States)

    Raith, Manuel; Große, Christian

    2014-05-01

    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  16. Acoustic constituents of prosodic typology

    Science.gov (United States)

    Komatsu, Masahiko

    Different languages sound different, and considerable part of it derives from the typological difference of prosody. Although such difference is often referred to as lexical accent types (stress accent, pitch accent, and tone; e.g. English, Japanese, and Chinese respectively) and rhythm types (stress-, syllable-, and mora-timed rhythms; e.g. English, Spanish, and Japanese respectively), it is unclear whether these types are determined in terms of acoustic properties, The thesis intends to provide a potential basis for the description of prosody in terms of acoustics. It argues for the hypothesis that the source component of the source-filter model (acoustic features) approximately corresponds to prosody (linguistic features) through several experimental-phonetic studies. The study consists of four parts. (1) Preliminary experiment: Perceptual language identification tests were performed using English and Japanese speech samples whose frequency spectral information (i.e. non-source component) is heavily reduced. The results indicated that humans can discriminate languages with such signals. (2) Discussion on the linguistic information that the source component contains: This part constitutes the foundation of the argument of the thesis. Perception tests of consonants with the source signal indicated that the source component carries the information on broad categories of phonemes that contributes to the creation of rhythm. (3) Acoustic analysis: The speech samples of Chinese, English, Japanese, and Spanish, differing in prosodic types, were analyzed. These languages showed difference in acoustic characteristics of the source component. (4) Perceptual experiment: A language identification test for the above four languages was performed using the source signal with its acoustic features parameterized. It revealed that humans can discriminate prosodic types solely with the source features and that the discrimination is easier as acoustic information increases. The

  17. Experimental study of acoustic damping induced by gas-liquid scheme injectors in a combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hak Soon; Sohn, Chae Hoon [Chosun University, Gwangju (Korea, Republic of)

    2007-01-15

    In a liquid rocket engine, acoustic damping induced by gas-liquid scheme injectors is studied experimentally for combustion stability by adopting linear acoustic test. In the previous work, it has been found that gas-liquid scheme injector can play a significant role in acoustic damping or absorption when it is tuned finely. Based on this finding, acoustic-damping characteristics of multi-injectors are intensively investigated. From the experimental data, it is found that acoustic oscillations are almost damped out by multi-injectors when they have the tuning length proposed in the previous study. The length corresponds to a half wavelength of the first longitudinal overtone mode traveling inside the injector with the acoustic frequency intended for damping in the chamber. But, new injector-coupled acoustic modes show up in the chamber with the injectors of the tuning length although the target mode is nearly damped out. And, appreciable frequency shift is always observed except for the case of the worst tuned injector. Accordingly, it is proposed that the tuning length is adjusted to have the shorter length than a half wavelength when these phenomena are considered

  18. Structural-acoustic coupling characteristics of honeycomb sandwich plate based on parameter sensitivity analysis

    Institute of Scientific and Technical Information of China (English)

    王盛春; 沈卫东; 徐嘉锋; 李赟

    2014-01-01

    The structural-acoustic coupling model for isotropic thin elastic plate was extended to honeycomb sandwich plate (HSP) by applying Green function method. Then an equivalent circuit model of the weakly-strongly coupled system was proposed. Based on that, the estimation formulae of the coupled eigenfrequency were derived. The accuracy of the theoretical predictions was checked against experimental data, with good agreement achieved. Finally, the effects of HSP design parameters on the system coupling degree, the acoustic cavity eigenfrequency, and sound pressure response were analyzed. The results show that mechanical and acoustical characteristics of HSP can be improved by increasing the thickness of face sheet and reducing the mass density of material.

  19. Biomass from Paddy Waste Fibers as Sustainable Acoustic Material

    Directory of Open Access Journals (Sweden)

    A. Putra

    2013-01-01

    Full Text Available Utilization of biomass for green products is still progressing in the effort to provide alternative clean technology. This paper presents the utilization of natural waste fibers from paddy as acoustic material. Samples of sound absorbing material from paddy waste fibers were fabricated. The effect of the fiber density, that is, the fiber weight and the sample thickness, and also the air gap on the sound absorption coefficient is investigated through experiment. The paddy fibers are found to have good acoustic performance with normal incidence absorption coefficient greater than 0.5 from 1 kHz and can reach the average value of 0.8 above 2.5 kHz. This result is comparable against that of the commercial synthetic glass wool. Attachment of a single layer of polyester fabric is shown to further increase the absorption coefficient.

  20. Recent developments of film bulk acoustic resonators

    Science.gov (United States)

    Gao, Junning; Liu, Guorong; Li, Jie; Li, Guoqiang

    2016-06-01

    Film bulk acoustic wave resonator (FBAR) experienced skyrocketing development in the past 15 years, owing to the explosive development of mobile communication. It stands out in acoustic filters mainly because of high quality factor, which enables low insertion loss and sharp roll off. Except for the massive application in wireless communication, FBARs are also promising sensors because of the high sensitivity and readily integration ability to miniaturize circuits. On the ground of summarizing FBAR’s application in wireless communication as filters and in sensors including electronic nose, bio field, and pressure sensing, this paper review the main challenges of each application faced. The number of filters installed in the mobile phone has being grown explosively, which leads to overcrowded bands and put harsh requirements on component size and power consumption control for each unit. Data flow and rate are becoming increasingly demanding as well. This paper discusses three promising technical strategies addressing these issues. Among which coupled resonator filter is given intense attention because it is able to vigorously reduce the filter size by stacking two or more resonators together, and it is a great technique to increase data flow and rate. Temperature compensation methods are discussed considering their vital influence on frequency stability. Finally, materials improvement and novel materials exploration for band width modulation, tunable band acquisition, and quality factor improvement are discussed. The authors appeal attention of the academic society to bring AlN epitaxial thin film into the FBAR fabrication and have proposed a configuration to implement this idea.

  1. Acoustic Droplet Vaporization in Biology and Medicine

    Directory of Open Access Journals (Sweden)

    Chung-Yin Lin

    2013-01-01

    Full Text Available This paper reviews the literature regarding the use of acoustic droplet vaporization (ADV in clinical applications of imaging, embolic therapy, and therapeutic delivery. ADV is a physical process in which the pressure waves of ultrasound induce a phase transition that causes superheated liquid nanodroplets to form gas bubbles. The bubbles provide ultrasonic imaging contrast and other functions. ADV of perfluoropentane was used extensively in imaging for preclinical trials in the 1990s, but its use declined rapidly with the advent of other imaging agents. In the last decade, ADV was proposed and explored for embolic occlusion therapy, drug delivery, aberration correction, and high intensity focused ultrasound (HIFU sensitization. Vessel occlusion via ADV has been explored in rodents and dogs and may be approaching clinical use. ADV for drug delivery is still in preclinical stages with initial applications to treat tumors in mice. Other techniques are still in preclinical studies but have potential for clinical use in specialty applications. Overall, ADV has a bright future in clinical application because the small size of nanodroplets greatly reduces the rate of clearance compared to larger contrast agent bubbles and yet provides the advantages of ultrasonographic contrast, acoustic cavitation, and nontoxicity of conventional perfluorocarbon contrast agent bubbles.

  2. Simplified Scheduling for Underwater Acoustic Networks

    Directory of Open Access Journals (Sweden)

    Wouter van Kleunen

    2013-01-01

    Full Text Available The acoustic propagation speed under water poses significant challenges to the design of underwater sensor networks and their medium access control protocols. Similar to the air, scheduling transmissions under water has significant impact on throughput, energy consumption, and reliability. In this paper we present an extended set of simplified scheduling constraints which allows easy scheduling of underwater acoustic communication. We also present two algorithms for scheduling communications, i.e. a centralized scheduling approach and a distributed scheduling approach. The centralized approach achieves the highest throughput while the distributed approach aims to minimize the computation and communication overhead. We further show how the centralized scheduling approach can be extended with transmission dependencies to reduce the end-to-end delay of packets. We evaluate the performance of the centralized and distributed scheduling approaches using simulation. The centralized approach outperforms the distributed approach in terms of throughput, however we also show the distributed approach has significant benefits in terms of communication and computational overhead required to setup the schedule. We propose a novel way of estimating the performance of scheduling approaches using the ratio of modulation time and propagation delay. We show the performance is largely dictated by this ratio, although the number of links to be scheduled also has a minor impact on the performance.

  3. On Architectural Acoustics Design using Computer Simulation

    DEFF Research Database (Denmark)

    Schmidt, Anne Marie Due; Kirkegaard, Poul Henning

    2004-01-01

    is to investigate the field of application an acoustic simulation program can have during an architectural acoustics design process. A case study is carried out in order to represent the iterative working process of an architect. The working process is divided into five phases and represented by typical results......The acoustical quality of a given building, or space within the building, is highly dependent on the architectural design. Architectural acoustics design has in the past been based on simple design rules. However, with a growing complexity in the architectural acoustic and the emergence of potent...... room acoustic simulation programs it is now possible to subjectively analyze and evaluate acoustic properties prior to the actual construction of a facility. With the right tools applied, the acoustic design can become an integrated part of the architectural design process. The aim of the present paper...

  4. Acoustic remote sensing of ocean flows

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.

    Acoustic techniques have become powerful tools for measurement of ocean circulation mainly because of the ability of acoustic signals to travel long distances in water, and the inherently non-invasive nature of measurement. The satellite remote...

  5. Golden Gate and Pt. Reyes Acoustic Detections

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains detections of acoustic tagged fish from two general locations: Golden Gate (east and west line) and Pt. Reyes. Several Vemco 69khz acoustic...

  6. Acoustic network event classification using swarm optimization

    Science.gov (United States)

    Burman, Jerry

    2013-05-01

    Classifying acoustic signals detected by distributed sensor networks is a difficult problem due to the wide variations that can occur in the transmission of terrestrial, subterranean, seismic and aerial events. An acoustic event classifier was developed that uses particle swarm optimization to perform a flexible time correlation of a sensed acoustic signature to reference data. In order to mitigate the effects from interference such as multipath, the classifier fuses signatures from multiple sensors to form a composite sensed acoustic signature and then automatically matches the composite signature with reference data. The approach can classify all types of acoustic events but is particularly well suited to explosive events such as gun shots, mortar blasts and improvised explosive devices that produce an acoustic signature having a shock wave component that is aperiodic and non-linear. The classifier was applied to field data and yielded excellent results in terms of reconstructing degraded acoustic signatures from multiple sensors and in classifying disparate acoustic events.

  7. Acoustic Model Adaptation for Indonesian Language Utterance Training System

    Directory of Open Access Journals (Sweden)

    Linda Indrayanti

    2010-01-01

    Full Text Available Problem statement: In order to build an utterance training system for Indonesian language, a speech recognition system designed for Indonesian is necessary. However, the system hardly works well due to the pronunciation variants of non-native utterances may lead to substitution/deletion error. This research investigated the pronunciation variant and proposes acoustic model adaptation to improve performance of the system. Approach: The proposed acoustic model adaptation worked in three steps: to analyze pronunciation variant with knowledge-based and data-derived methods; to align knowledge-based and data-derived results in order to list frequently mispronounced phones with their variants; to perform a state-clustering procedure with the list obtained from the second step. Further, three Speaker Adaptation (SA techniques were used in combination with the acoustic model adaptation and they are compared each other. In order to evaluate and tune the adaptation techniques, perceptual-based evaluation by three human raters is performed to obtain the "true"recognition results. Results: The proposed method achieved an average gain in Hit + Rejection (the percentage of correctly accepted and correctly rejected utterances by the system as the human raters do of 2.9 points and 2 points for native and non-native subjects, respectively, when compared with the system without adaptation. Average gains of 12.7 and 6.2 points for native and non-native students in Hit + Rejection were obtained by combining SA to the acoustic model adaptation. Conclusion/Recommendations: Performance evaluation of the adapted system demonstrated that the proposed acoustic model adaptation can improve Hit even though there is a slight increase of False Alarm (FA, the percentage of incorrectly accepted utterances by the system of which the human raters reject. The performance of the proposed acoustic model adaptation depends strongly on the effectiveness of state-clustering procedure

  8. Acoustic Localization with Infrasonic Signals

    Science.gov (United States)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  9. Classroom acoustics: Three pilot studies

    Science.gov (United States)

    Smaldino, Joseph J.

    2005-04-01

    This paper summarizes three related pilot projects designed to focus on the possible effects of classroom acoustics on fine auditory discrimination as it relates to language acquisition, especially English as a second language. The first study investigated the influence of improving the signal-to-noise ratio on the differentiation of English phonemes. The results showed better differentiation with better signal-to-noise ratio. The second studied speech perception in noise by young adults for whom English was a second language. The outcome indicated that the second language learners required a better signal-to-noise ratio to perform equally to the native language participants. The last study surveyed the acoustic conditions of preschool and day care classrooms, wherein first and second language learning occurs. The survey suggested an unfavorable acoustic environment for language learning.

  10. Acoustic Communication for Medical Nanorobots

    CERN Document Server

    Hogg, Tad

    2012-01-01

    Communication among microscopic robots (nanorobots) can coordinate their activities for biomedical tasks. The feasibility of in vivo ultrasonic communication is evaluated for micron-size robots broadcasting into various types of tissues. Frequencies between 10MHz and 300MHz give the best tradeoff between efficient acoustic generation and attenuation for communication over distances of about 100 microns. Based on these results, we find power available from ambient oxygen and glucose in the bloodstream can readily support communication rates up to 10,000 bits/second between micron-sized robots. We discuss techniques, such as directional acoustic beams, that can increase this rate. The acoustic pressure fields enabling this communication are unlikely to damage nearby tissue, and short bursts at considerably higher power could be of therapeutic use.

  11. Acoustic multivariate condition monitoring - AMCM

    Energy Technology Data Exchange (ETDEWEB)

    Rosenhave, P.E. [Vestfold College, Maritime Dept., Toensberg (Norway)

    1997-12-31

    In Norway, Vestfold College, Maritime Department presents new opportunities for non-invasive, on- or off-line acoustic monitoring of rotating machinery such as off-shore pumps and diesel engines. New developments within acoustic sensor technology coupled with chemometric data analysis of complex signals now allow condition monitoring of hitherto unavailable flexibility and diagnostic specificity. Chemometrics paired with existing knowledge yields a new and powerful tool for condition monitoring. By the use of multivariate techniques and acoustics it is possible to quantify wear and tear as well as predict the performance of working components in complex machinery. This presentation describes the AMCM method and one result of a feasibility study conducted onboard the LPG/C `Norgas Mariner` owned by Norwegian Gas Carriers as (NGC), Oslo. (orig.) 6 refs.

  12. Integration of optical and acoustic sensors for D underwater scene reconstruction.

    OpenAIRE

    Hurtós, N.; Cufí Solè, Xavier; Salvi, J.

    2010-01-01

    Combination of optical and acoustic sensors to overcome the shortcomings presented by optical systems in underwater 3D acquisition is an emerging field of research. In this work, an opti-acoustic system composed by a single camera and a multibeam sonar is proposed, providing a simulation environment to validate its potential use in 3D reconstruction. Since extrinsic calibration is a prerequisite for this kind of feature-level sensor fusion, an effective approach to address the ...

  13. Anomalous sound propagation due to the horizontal variation of seabed acoustic properties

    Institute of Scientific and Technical Information of China (English)

    LI Zhenglin; ZHANG Renhe; PENG Zhaohui; LI Xilu

    2004-01-01

    The sound propagation in shallow water is greatly influenced by the acoustic properties of seabed. An anomalous transmission loss was observed in an experiment, and a range dependent bottom model with horizontal variation of seabed acoustic property is proposed and could be well used to explain the anomalous phenomena. It is shown that the horizontal variation of bottom properties has a great effect on underwater sound propagation, and it should be given much attention in sound propagation and geoacoustic inversion problems.

  14. Quasinormal modes, Superradiance and Area Spectrum for 2+1 Acoustic Black Holes

    CERN Document Server

    Lepe, S; Lepe, Samuel; Saavedra, Joel

    2005-01-01

    We present an exact expression for the quasinormal modes of acoustic disturbances in a rotating 2+1 dimensional sonic black hole (draining bathtub fluid flow) in the low frequency limit and evaluate the adiabatic invariant proposed by Kunstatter. We also compute,via Bohr-Sommerfeld quantization rule the equivalent area spectrum for this acoustic black hole, and we compute the superradiance phenomena for pure spinning 2+1 black holes.

  15. Characterization by acoustic emission and electrochemical impedance spectroscopy of the cathodic disbonding of Zn coating

    Energy Technology Data Exchange (ETDEWEB)

    Amami, Souhail [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)], E-mail: souhail.amami@utc.fr; Lemaitre, Christian; Laksimi, Abdelouahed; Benmedakhene, Salim [Universite de Technologie de Compiegne, Departement de Genie Mecanique, Laboratoire Roberval, UMR 6066 du CNRS, B.P. 20529, 60206 Compiegne Cedex (France)

    2010-05-15

    Galvanized steel has been tested in a synthetic sea water solution under different cathodic overprotection conditions. The generated hydrogen flux caused the damage of the metal-zinc interface and led to a progressive coating detachment. Scanning electron microscopy, electrochemical impedance spectroscopy and acoustic emission technique were used to characterize the damage chronology under different cathodic potentials. A damage mechanism was proposed and the acoustic signature related to the coating degradation was statistically identified using clustering techniques.

  16. Particle analysis in an acoustic cytometer

    Energy Technology Data Exchange (ETDEWEB)

    Kaduchak, Gregory; Ward, Michael D

    2012-09-18

    The present invention is a method and apparatus for acoustically manipulating one or more particles. Acoustically manipulated particles may be separated by size. The particles may be flowed in a flow stream and acoustic radiation pressure, which may be radial, may be applied to the flow stream. This application of acoustic radiation pressure may separate the particles. In one embodiment, the particles may be separated by size, and as a further example, the larger particles may be transported to a central axis.

  17. Absorption boundary conditions for geomertical acoustics

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2012-01-01

    Defining accurate acoustical boundary conditions is of crucial importance for room acoustic simulations. In predicting sound fields using phased geometrical acoustics methods, the absorption coefficients or surface impedances of the boundary surfaces can be used, but no guideline has been developed...... solutions. Two rectangular rooms with uniform and non-uniform absorption distributions are tested. It is concluded that the impedance and random incidence absorption boundary conditions produce reasonable results with some exceptions at low frequencies for acoustically soft materials....

  18. Acoustic behaviors of unsaturated soils

    Science.gov (United States)

    Lu, Z.

    2011-12-01

    Soils are unconsolidated granular materials, consisting of solid particles, water and air. Their mechanical and dynamic behaviors are determined by the discrete nature of the media as well as external and inter-particle forces. For unsaturated soils, two factors significantly affect soils acoustic/seismic responses: external pressure and internal water potential/matric suction. In triaxial cell tests, unsaturated soils were subjected to predefined stress paths to undergo stages of normal consolidation, unload-reload cycles, and failure. The stress deformation curve and stress-P-wave velocity were measured and compared. The study revealed that soil's dynamic response to external pressure are similar to those of the load-deformation behaviors and demonstrated that acoustic velocity can be used to monitor the state of stress of soils. In a long term field soil survey, the P-wave velocities were found to be correlated with water potential as expressed as a power-law relationship. The above phenomena can be understood by using the Terzaghi' s the principle of effective stress. The measured results were in good agreement with Brutsaert theory. The effective stress concept can also be applied to explain the observations in a soil pipe flow study in which soil internal erosion processes were monitored and interpreted by the temporal evolution of the P-wave velocity. In addition to above linear acoustic behaviors, soils, like other earth materials, exhibit astonishing non-classical nonlinear behaviors such as end-point memory, hysteresis, strain -dependent shear modulus, resonant frequency shift, and phase shift, harmonics generation, etc. A nonlinear acoustic study of a soil as a function of water content showed that the nonlinear acoustic parameter are much sensitive to the variations of soil water content than that of the acoustic velocity.

  19. CT findings of acoustic neuroma

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Do Choul; Lee, Jae Mun; Shinn, Kyung Sub; Bahk, Yong Whee [Catholic Univ., Seoul (Korea, Republic of)

    1987-10-15

    Computed Tomography (CT) is very accurate in evaluating the location, size, shape and extension of acoustic neuroma. We analysed CT findings of 23 acoustic neuromas seen at Department of Radiology, Kangnam St. Mary's Hospital, Catholic University Medical College during the period of from January 1981 to June 1987. 1. Five (22%) were men and 18 (78%) were women with the high incidence occurring in the 4th and 5th decades. 2. Twenty two cases were diagnosed satisfactorily by CT examinations which included axial, coronal and reconstruction images. One with the smallest dimension of 8 mm in diameter could not be detected by the conventional CT scan. But is could be seen after metrizamide cisternography. mean size of the tumor masses was estimated 3.6 cm in diameter. 3. The shape of the tumor was oval in 50%, round in 27% and lobulated in 23%. The masses were presented as hypodense in 50%, isodense in 32% and hyperdense in 18%. All tumors were extended from the internal acoustic and toward the cerebellopontine angle. The internal acoustic canal was widened in 77%. Hydrocephalus was associated in 45%. Widening of cerebellopontine angle cistern was noted in 50%. 4. After contrast infusion the tumors were enhanced markedly in 45%, moderately in 32% and mildly in 23%. The enhanced pattern was homogeneous in 41%, mixed in 41% and rim in 18%. The margin of the tumors was sharply defined in 82%. The tumors were attached to the petrous bone with acute angle in 73%. Cystic change within the tumor was found in 27%. The peritumoral edema was noted in 45%. In conclusion, CT is of most effective modalities to evaluate size, shape, extent and internal architecture of acoustic neuroma as well as relationship with adjacent anatomic structures including the internal acoustic canal.

  20. Acoustically-Induced Electrical Signals

    Science.gov (United States)

    Brown, S. R.

    2014-12-01

    We have observed electrical signals excited by and moving along with an acoustic pulse propagating in a sandstone sample. Using resonance we are now studying the characteristics of this acousto-electric signal and determining its origin and the controlling physical parameters. Four rock samples with a range of porosities, permeabilities, and mineralogies were chosen: Berea, Boise, and Colton sandstones and Austin Chalk. Pore water salinity was varied from deionized water to sea water. Ag-AgCl electrodes were attached to the sample and were interfaced to a 4-wire electrical resistivity system. Under computer control, the acoustic signals were excited and the electrical response was recorded. We see strong acoustically-induced electrical signals in all samples, with the magnitude of the effect for each rock getting stronger as we move from the 1st to the 3rd harmonics in resonance. Given a particular fluid salinity, each rock has its own distinct sensitivity in the induced electrical effect. For example at the 2nd harmonic, Berea Sandstone produces the largest electrical signal per acoustic power input even though Austin Chalk and Boise Sandstone tend to resonate with much larger amplitudes at the same harmonic. Two effects are potentially responsible for this acoustically-induced electrical response: one the co-seismic seismo-electric effect and the other a strain-induced resistivity change known as the acousto-electric effect. We have designed experimental tests to separate these mechanisms. The tests show that the seismo-electric effect is dominant in our studies. We note that these experiments are in a fluid viscosity dominated seismo-electric regime, leading to a simple interpretation of the signals where the electric potential developed is proportional to the local acceleration of the rock. Toward a test of this theory we have measured the local time-varying acoustic strain in our samples using a laser vibrometer.

  1. Functionally graded piezoelectric materials for modal transducers for exciting bulk and surface acoustic waves.

    Science.gov (United States)

    Yang, Jiashi; Jin, Zhihe; Li, Jiangyu

    2008-07-01

    We show that functionally graded piezoelectric materials can be used to make modal actuators through theoretical analyses of the excitation of extensional motion in an elastic rod and Rayleigh surface waves over an elastic half-plane. The results suggest alternatives with certain advantages for the excitation of bulk and surface acoustic waves.

  2. Acoustic Test Characterization of Melamine Foam for Usage in NASA's Payload Fairing Acoustic Attenuation Systems

    Science.gov (United States)

    Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.

    2014-01-01

    The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.

  3. Physical foundations of technical acoustics

    CERN Document Server

    Malecki, I

    1969-01-01

    Physical Foundations of Technical Acoustics discusses theoretical foundations of acoustical engineering. It is not so much a technical compendium as a systematic statement of physical laws so conceived that technologists might find in it all the information they need to become acquainted with the physical meaning and mathematical expression of phenomena they encounter in their work. To facilitate the acquirement of notions, which lie beyond a layman's grasp, the plan of narration adopted consists in beginning with the simplest idealized cases and then gradually moving on to the truest possibl

  4. Oscillating nonlinear acoustic shock waves

    DEFF Research Database (Denmark)

    Gaididei, Yuri; Rasmussen, Anders Rønne; Christiansen, Peter Leth

    2016-01-01

    We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show that at resona......We investigate oscillating shock waves in a tube using a higher order weakly nonlinear acoustic model. The model includes thermoviscous effects and is non isentropic. The oscillating shock waves are generated at one end of the tube by a sinusoidal driver. Numerical simulations show...

  5. Characterization of an acoustic actuation mechanism for robotic propulsion in low Reynolds number environments

    Science.gov (United States)

    House, Christopher; Armstrong, Jenelle; Burkhardt, John; Firebaugh, Samara

    2014-06-01

    With the end goal of medical applications such as non-invasive surgery and targeted drug delivery, an acoustically driven resonant structure is proposed for microrobotic propulsion. At the proposed scale, the low Reynolds number environment requires non-reciprocal motion from the robotic structure for propulsion; thus, a "flapper" with multiple, flexible joints, has been designed to produce excitation modes that involve the necessary flagella-like bending for non-reciprocal motion. The key design aspect of the flapper structure involves a very thin joint that allows bending in one (vertical) direction, but not the opposing direction. This allows for the second mass and joint to bend in a manner similar to a dolphin's "kick" at the bottom of their stroke, resulting in forward thrust. A 130 mm x 50 mm x 0.2 mm prototype of a swimming robot that utilizes the flapper was fabricated out of acrylic using a laser cutter. The robot was tested in water and in a water-glycerine solution designed to mimic microscale fluid conditions. The robot exhibited forward propulsion when excited by an underwater speaker at its resonance mode, with velocities up to 2.5 mm/s. The robot also displayed frequency selectivity, leading to the possibility of exploring a steering mechanism with alternatively tuned flappers. Additional tests were conducted with a robot at a reduced size scale.

  6. Location of an acoustic window in dolphins.

    Science.gov (United States)

    Popov, V V; Supin, A Y

    1990-01-15

    Auditory brainstem responses (ABR) to sound clicks from sources in different positions were recorded in dolphins Inia geoffrensis. The position of the acoustic window was determined by measurement of acoustic delays. The acoustic window was found to lie close to the auditory meatus and the bulla rather than on the lower jaw.

  7. Predicting and auralizing acoustics in classrooms

    DEFF Research Database (Denmark)

    Christensen, Claus Lynge

    2005-01-01

    Although classrooms have fairly simple geometries, this type of room is known to cause problems when trying to predict their acoustics using room acoustics computer modeling. Some typical features from a room acoustics point of view are: Parallel walls, low ceilings (the rooms are flat), uneven...

  8. Outdoor Acoustics as a General Discipline

    DEFF Research Database (Denmark)

    Rasmussen, Karsten Bo

    1999-01-01

    A tutorial paper exploring the characteristics of sound outdoors. Outdoor acoustics is contrasted to room acoustics. A number of important aspects of outdoor acoustics are exemplified and theoretical approaches are outlined. These are influence of ground impedance, influence of weather, screening...

  9. Aero-acoustic Computations of Wind Turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Michelsen, Jess; Sørensen, Jens Nørkær

    2002-01-01

    A numerical algorithm for acoustic noise generation is extended to 3D flows. The approach involves two parts comprising a viscous incompressible flow part and an inviscid acoustic part. In order to simulate noise generated from a wind turbine, the incompressible and acoustic equations are written...

  10. Active vibration and noise control by hybrid active acoustic panels

    Energy Technology Data Exchange (ETDEWEB)

    Stoebener, U.; Gaul, L. [Stuttgart Univ. (Germany). Inst. A fuer Mechanik

    2001-07-01

    In the present paper a hybrid passive and active treatment for vibration and noise reduction of plate type structures is proposed. The treatment is manufactured as sandwich structure and is called hybrid active acoustic panel. The passive component is used to reduce the vibration and sound radiation for high frequencies whereas the active part of the system is designed for the low frequency range. By selecting the thickness of the passive damping layer a certain frequency limit is defined, which divides the high and low frequency range. The actuator and sensor layout of the active component is evaluated by using the mode shapes of the low frequency range. According to the evaluated layout a hybrid active acoustic panel is manufactured and experimentally tested. The experimental results validate the proposed concept. (orig.)

  11. Experimental investigation of cryogenic flame dynamics under transverse acoustic modulations

    Science.gov (United States)

    Méry, Yoann; Hakim, Layal; Scouflaire, Philippe; Vingert, Lucien; Ducruix, Sébastien; Candel, Sébastien

    2013-01-01

    of oxygen. At higher amplitudes the core size is diminished and the flame pattern is considerably more compact. It is also shown that the flames are periodically displaced by the acoustic field and an alternate pattern of liquid oxygen appears in the chamber. An oscillation of the oxygen distribution in the transverse direction of the chamber is observed.

  12. Novel acoustic features for speech emotion recognition

    Institute of Scientific and Technical Information of China (English)

    ROH Yong-Wan; KIM Dong-Ju; LEE Woo-Seok; HONG Kwang-Seok

    2009-01-01

    This paper focuses on acoustic features that effectively improve the recognition of emotion in human speech. The novel features in this paper are based on spectral-based entropy parameters such as fast Fourier transform (FFT) spectral entropy, delta FFT spectral entropy, Mel-frequency filter bank (MFB)spectral entropy, and Delta MFB spectral entropy. Spectral-based entropy features are simple. They reflect frequency characteristic and changing characteristic in frequency of speech. We implement an emotion rejection module using the probability distribution of recognized-scores and rejected-scores.This reduces the false recognition rate to improve overall performance. Recognized-scores and rejected-scores refer to probabilities of recognized and rejected emotion recognition results, respectively.These scores are first obtained from a pattern recognition procedure. The pattern recognition phase uses the Gaussian mixture model (GMM). We classify the four emotional states as anger, sadness,happiness and neutrality. The proposed method is evaluated using 45 sentences in each emotion for 30 subjects, 15 males and 15 females. Experimental results show that the proposed method is superior to the existing emotion recognition methods based on GMM using energy, Zero Crossing Rate (ZCR),linear prediction coefficient (LPC), and pitch parameters. We demonstrate the effectiveness of the proposed approach. One of the proposed features, combined MFB and delta MFB spectral entropy improves performance approximately 10% compared to the existing feature parameters for speech emotion recognition methods. We demonstrate a 4% performance improvement in the applied emotion rejection with low confidence score.

  13. Sound attenuation using microelectromechanical systems fabricated acoustic metamaterials

    Science.gov (United States)

    Yunker, William N.; Stevens, Colin B.; Flowers, George T.; Dean, Robert N.

    2013-01-01

    Unlike traditional rotational gyroscopes, microelectromechanical systems (MEMS) gyroscopes use a vibrating proof mass rather than a rotational mass to sense changes in angular rate. They are also smaller and less expensive than traditional gyroscopes. MEMS gyroscopes are known to be susceptible to the effects of acoustic noise, in particular high frequency and high power acoustic noise. Most notably, this has been proven true in aerospace applications where the noise can reach levels in excess of 120 dB and the noise frequency can exceed 20 kHz. The typical resonant frequency for the proof mass of a MEMS gyroscope is between 3 and 20 kHz. High power, high frequency acoustic noise can disrupt the output signal of the gyroscope to the point that the output becomes unreliable. In recent years, considerable research has focused on the fascinating properties found in metamaterials. A metamaterial is an artificially fabricated device or structure that is engineered to produce desired material responses that can either mimic known behaviors or produce responses that do not occur naturally in materials found in nature. Acoustic metamaterials, in particular, have shown great promise in the field of sound attenuation. This paper proposes a method to mitigate the performance degradation of the MEMS gyroscope in the presence of high power, high frequency acoustic noise by using a new acoustic metamaterial in the form of a two-dimensional array of micromachined Helmholtz resonators. The Helmholtz resonators are fabricated in a silicon wafer using standard MEMS manufacturing techniques and are designed to attenuate sound at the resonant frequency of the gyroscope proof mass. The resonator arrays were diced from the silicon wafer in one inch squares and assembled into a box open on one end in a manner to attenuate sound on all sides of the gyroscope, and to seal the gyroscope inside the box. The resulting acoustic metamaterial device was evaluated in an acoustic chamber and was

  14. Acoustic Source Localization via Subspace Based Method Using Small Aperture MEMS Arrays

    Directory of Open Access Journals (Sweden)

    Xin Zhang

    2014-01-01

    Full Text Available Small aperture microphone arrays provide many advantages for portable devices and hearing aid equipment. In this paper, a subspace based localization method is proposed for acoustic source using small aperture arrays. The effects of array aperture on localization are analyzed by using array response (array manifold. Besides array aperture, the frequency of acoustic source and the variance of signal power are simulated to demonstrate how to optimize localization performance, which is carried out by introducing frequency error with the proposed method. The proposed method for 5 mm array aperture is validated by simulations and experiments with MEMS microphone arrays. Different types of acoustic sources can be localized with the highest precision of 6 degrees even in the presence of wind noise and other noises. Furthermore, the proposed method reduces the computational complexity compared with other methods.

  15. Passive Acoustic Thermometry Using Low-Frequency Deep Water Noise

    Science.gov (United States)

    2015-09-30

    help develop a totally passive means for monitoring the ocean environment using only ambient noise. A potential scenario benefiting from the proposed...Passive structural health monitoring of a high-speed naval ship from ambient vibrations. J. Acoust. Soc. Am. 129, 2991-2999, (2011). 13b. R. Snieder...thermometry using Cross-correlation processing of deep water ambient noise. OBJECTIVE Our previous research effort has demonstrated that coherent

  16. A sidelobe suppression method with experiment for underwater acoustic imaging

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,a sidelobe suppression method using nonuniformly spaced array with aperture apodization processing is proposed for underwater acoustic imaging in near field,which is studied both in theory and experiment.The focused beamforming based on spherical wave propagation theory is used in the method.Firstly,the nonuniform array with low sidelobe is designed for suppressing the sidelobe of one-way beam pattern by spacing perturbation.Then, applying the aperture apodization technique to underwater ac...

  17. Reduced-Order Models for Acoustic Response Prediction

    Science.gov (United States)

    2011-07-01

    allowed to vibrate, decaying freely. Temporal frequencies and amplitudes are estimated using a variant of a method proposed by Agneni and Balis Crema [44...less than 0.06" may require the coupled ROM for accurate predictions. The phenomena can be explained as follows: The acoustic modes of the coupled...free vibration identification via the Hilbert transform. J. of Sound and Vibration, 1997, 208(3), 475-489. 44. Agneni, A. and Balis Crema, L

  18. Performance Evaluation of Acoustic Underwater Data Broadcasting Exploiting the Bandwidth-Distance Relationship

    Directory of Open Access Journals (Sweden)

    P. Nicopolitidis

    2011-01-01

    Full Text Available Despite being a fundamental networking primitive, data broadcasting has so far received little attention in the context of underwater networks. This paper proposes an adaptive push system for data broadcasting in underwater acoustic wireless networks with locality of client demands. The proposed system exploits the characteristic relationship between the bandwidth of an underwater acoustic link and the transmitter-receiver distance in order to improve performance in environments with locality of client demands. Simulation results show superior performance of the proposed approach in the underwater environment compared to existing systems.

  19. Acoustic Emission from Breaking a Bamboo Chopstick

    Science.gov (United States)

    Tsai, Sun-Ting; Wang, Li-Min; Huang, Panpan; Yang, Zhengning; Chang, Chin-De; Hong, Tzay-Ming

    2016-01-01

    The acoustic emission from breaking a bamboo chopstick or a bundle of spaghetti is found to exhibit similar behavior as the famous seismic laws of Gutenberg and Richter, Omori, and Båth. By the use of a force-sensing detector, we establish a positive correlation between the statistics of sound intensity and the magnitude of a tremor. We also manage to derive these laws analytically without invoking the concept of a phase transition, self-organized criticality, or fractal. Our model is deterministic and relies on the existence of a structured cross section, either fibrous or layered. This success at explaining the power-law behavior supports the proposal that geometry is sometimes more important than mechanics.

  20. Audio coding in wireless acoustic sensor networks

    DEFF Research Database (Denmark)

    Zahedi, Adel; Østergaard, Jan; Jensen, Søren Holdt;

    2015-01-01

    use of the correlation between the sources available at the nodes, we consider the possibility of combining the measurement and the received messages into one single message at each node instead of forwarding the received messages and separate encoding of the measurement. Moreover, to exploit...... the correlation between the messages received by a node and the node's measurement of the source, we propose to use the measurement as side information and thereby form a distributed source coding (DSC) problem. Assuming that the sources are Gaussian, we then derive the rate-distortion function (RDF......In this paper, we consider the problem of source coding for a wireless acoustic sensor network where each node in the network makes its own noisy measurement of the sound field, and communicates with other nodes in the network by sending and receiving encoded versions of the measurements. To make...

  1. Proposed Radiation Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Davey, C. S.

    2004-07-01

    Current scientific evidence is that radiation at low levels is not harmful, but beneficial. This is borne out by both radiobiology and epidemiology. The ICRP 26 recommended limits of 50 mSv and 5 mSv per annum are comparable with the average natural background levels in Iran and Norway, respectively, and levels five times higher than that quoted for Iran are to be found in some populated parts of this world. The new limits proposed for ionising radiation are generated by comparison to existing recommended limits for essential minerals. There is a range of acceptable exposures to radiation, just as there is for minerals. The replacement for the ICRP 60 recommendations (20 mSv and 1 mSv for radiation workers and public respectively) should be higher limits of 200 mSv and 50 mSv. There should also be minimum recommended annual levels of 10 mSv, for both radiation workers and the public. The consequences of not proposing this change are continuing huge negative impacts to society. In cancer therapy, even the older guidelines caused unnecessary expense and delays. The cost to Canada is astronomical, when one considers the effect of the existing limits on the use of nuclear power, and the resulting use of hydrocarbons and the consequent increase in acid rain, etc. Of course, the same thing can be said of the entire world limited funds are diverted from areas where they would be better applied, and alternative solutions to societal needs are implemented, solutions which increase pollution and cause injury and death. It is time to reverse the current, expensive trend into misapplied ALARA, based on the paranoia about all things nuclear, which has developed since the linear no-threshold hypothesis was first proposed.propose the transition to a realistic and balanced approach to ionising radiation. (Author)

  2. Consumer Health: Alternative Therapy

    Science.gov (United States)

    Healthy Lifestyle Consumer health What's considered an alternative therapy is a moving target. Get the facts about what CAM means and ... Original article: http://www.mayoclinic.org/healthy-lifestyle/consumer-health/in-depth/alternative-medicine/art-20045267 . Mayo ...

  3. Synthetic aperture acoustic imaging of canonical targets with a 2-15 kHz linear FM chirp

    Science.gov (United States)

    Vignola, Joseph F.; Judge, John A.; Good, Chelsea E.; Bishop, Steven S.; Gugino, Peter M.; Soumekh, Mehrdad

    2011-06-01

    Synthetic aperture image reconstruction applied to outdoor acoustic recordings is presented. Acoustic imaging is an alternate method having several military relevant advantages such as being immune to RF jamming, superior spatial resolution, capable of standoff side and forward-looking scanning, and relatively low cost, weight and size when compared to 0.5 - 3 GHz ground penetrating radar technologies. Synthetic aperture acoustic imaging is similar to synthetic aperture radar, but more akin to synthetic aperture sonar technologies owing to the nature of longitudinal or compressive wave propagation in the surrounding acoustic medium. The system's transceiver is a quasi mono-static microphone and audio speaker pair mounted on a rail 5meters in length. Received data sampling rate is 80 kHz with a 2- 15 kHz Linear Frequency Modulated (LFM) chirp, with a pulse repetition frequency (PRF) of 10 Hz and an inter-pulse period (IPP) of 50 milliseconds. Targets are positioned within the acoustic scene at slant range of two to ten meters on grass, dirt or gravel surfaces, and with and without intervening metallic chain link fencing. Acoustic image reconstruction results in means for literal interpretation and quantifiable analyses. A rudimentary technique characterizes acoustic scatter at the ground surfaces. Targets within the acoustic scene are first digitally spotlighted and further processed, providing frequency and aspect angle dependent signature information.

  4. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration.

    Science.gov (United States)

    Saldaña, María; Llorens, Carlos D; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with "pancake" directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter.

  5. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration

    Science.gov (United States)

    Saldaña, María; Llorens, Carlos D.; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with “pancake” directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter. PMID:27490547

  6. Nonlinear Acoustics at the Air-Water Free Surface

    Science.gov (United States)

    Pree, Seth; Naranjo, Brian; Putterman, Seth

    2016-11-01

    According to linear acoustics, airborne sound incident on a water surface transmits only a tenth of a percent of its energy. This difficulty of transmitting energy across the water surface limits the feasibility of standoff ultrasound imaging. We propose to overcome this long standing problem by developing new methods of coupling into the medium at standoff. In particular, we believe that the acoustic nonlinearity of both the air and the medium may yield a range of effects in the vicinity of the surface permitting an efficient transmission of ultrasound from the air into the medium. The recent commercial availability of parametric speakers that deliver modulated 100kHz ultrasound at 135dB to nonlinearly generate music at 95dB provides an interesting platform with which to revisit the transmission of sound across acoustic impedance mismatches. We show results of experimental studies of the behavior of the air-water free surface when subjected to large amplitude acoustic pressures from the air. This work was supported by the ARO STIR program.

  7. Acoustic Type-II Weyl Nodes from Stacking Dimerized Chains

    Science.gov (United States)

    Yang, Zhaoju; Zhang, Baile

    2016-11-01

    Lorentz-violating type-II Weyl fermions, which were missed in Weyl's prediction of nowadays classified type-I Weyl fermions in quantum field theory, have recently been proposed in condensed matter systems. The semimetals hosting type-II Weyl fermions offer a rare platform for realizing many exotic physical phenomena that are different from type-I Weyl systems. Here we construct the acoustic version of a type-II Weyl Hamiltonian by stacking one-dimensional dimerized chains of acoustic resonators. This acoustic type-II Weyl system exhibits distinct features in a finite density of states and unique transport properties of Fermi-arc-like surface states. In a certain momentum space direction, the velocity of these surface states is determined by the tilting direction of the type-II Weyl nodes rather than the chirality dictated by the Chern number. Our study also provides an approach of constructing acoustic topological phases at different dimensions with the same building blocks.

  8. Acoustic Sensor Network for Relative Positioning of Nodes

    Directory of Open Access Journals (Sweden)

    José Manuel Villadangos

    2009-10-01

    Full Text Available In this work, an acoustic sensor network for a relative localization system is analyzed by reporting the accuracy achieved in the position estimation. The proposed system has been designed for those applications where objects are not restricted to a particular environment and thus one cannot depend on any external infrastructure to compute their positions. The objects are capable of computing spatial relations among themselves using only acoustic emissions as a ranging mechanism. The object positions are computed by a multidimensional scaling (MDS technique and, afterwards, a least-square algorithm, based on the Levenberg-Marquardt algorithm (LMA, is applied to refine results. Regarding the position estimation, all the parameters involved in the computation of the temporary relations with the proposed ranging mechanism have been considered. The obtained results show that a fine-grained localization can be achieved considering a Gaussian distribution error in the proposed ranging mechanism. Furthermore, since acoustic sensors require a line-of-sight to properly work, the system has been tested by modeling the lost of this line-of-sight as a non-Gaussian error. A suitable position estimation has been achieved even if it is considered a bias of up to 25 of the line-of-sight measurements among a set of nodes.

  9. 4th Pacific Rim Underwater Acoustics Conference

    CERN Document Server

    Xu, Wen; Cheng, Qianliu; Zhao, Hangfang

    2016-01-01

    These proceedings are a collection of 16 selected scientific papers and reviews by distinguished international experts that were presented at the 4th Pacific Rim Underwater Acoustics Conference (PRUAC), held in Hangzhou, China in October 2013. The topics discussed at the conference include internal wave observation and prediction; environmental uncertainty and coupling to sound propagation; environmental noise and ocean dynamics; dynamic modeling in acoustic fields; acoustic tomography and ocean parameter estimation; time reversal and matched field processing; underwater acoustic localization and communication as well as measurement instrumentations and platforms. These proceedings provide insights into the latest developments in underwater acoustics, promoting the exchange of ideas for the benefit of future research.

  10. Longitudinal bulk acoustic mass sensor

    DEFF Research Database (Denmark)

    Hales, Jan Harry; Teva, Jordi; Boisen, Anja

    2009-01-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10(-15) g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise i...

  11. Acoustics SIMOPS: managing the unnecessary

    Energy Technology Data Exchange (ETDEWEB)

    Hanton, Samuel John [Nautronix Marine Technology Solutions, Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Time is money, and offshore operations are expensive. The desire therefore, is to increase efficiency through the condensing of schedules. This inevitably leads to SIMOPS of some degree, and this paper discusses SIMOPS along with, more specifically, the challenges they provide to acoustic positioning. (author)

  12. Topology optimization for acoustic problems

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard

    2006-01-01

    In this paper a method to control acoustic properties in a room with topology optimization is presented. It is shown how the squared sound pressure amplitude in a certain part of a room can be minimized by distribution of material in a design domain along the ceiling in 2D and 3D. Nice 0-1 design...

  13. Acoustic Microscopy at Cryogenic Temperatures.

    Science.gov (United States)

    1982-01-01

    intensities are used, and quantitatitvely acount for the onset of nonlinear excess attenuation. Aooeuuaiol For DTIC TAB Unaranounc ed Just if icat to By...to acoustic power is a reasonable value and can be acounted for by assuming a one-way transducer conversion loss of 5 dB, a lens illumination loss of

  14. APL - North Pacific Acoustic Laboratory

    Science.gov (United States)

    2011-09-01

    the roles of internal waves, ocean spice, internal tides, fronts and eddies in causing fluctuations in acoustic receptions. 5. To improve basin-scale...Farmer, R. Gentry, T. Gross, A. Hawkins, F.~Li, K. Metcalf , J.H. Miller, D. Moretti, C. Rodrigo, and T. Shinke, (2011). “An International Quiet

  15. Acoustic Climb to Cruise Test

    Science.gov (United States)

    1991-01-01

    Flight test film footage of three different aircraft testing the acoustical noise levels during take-off, climb, maneuvers, and touch and go landings are described. These sound tests were conducted on two fighter aircraft and one cargo aircraft. Results from mobile test vehicle are shown.

  16. Acoustic Absorption Characteristics of People.

    Science.gov (United States)

    Kingsbury, H. F.; Wallace, W. J.

    1968-01-01

    The acoustic absorption characteristics of informally dressed college students in typical classroom seating are shown to differ substantially from data for formally dressed audiences in upholstered seating. Absorption data, expressed as sabins per person or absorption coefficient per square foot, shows that there is considerable variation between…

  17. Fundamentals of Acoustic Backscatter Imagery

    Science.gov (United States)

    2011-09-20

    41 6.12 Geocoding ...47 7.6 Errors in Geocoding .............................................................................................................. 47...h = z - R cos6 (39a) and x = rt sin6. (39b) 6.12 Geocoding Acoustic backscatter imagery data are collected by recording the across-track signals

  18. Acoustic Liner for Turbomachinery Applications

    Science.gov (United States)

    Huff, Dennis L.; Sutliff, Daniel L.; Jones, Michael G.; Hebsur, Mohan G.

    2010-01-01

    The purpose of this innovation is to reduce aircraft noise in the communities surrounding airports by significantly attenuating the noise generated by the turbomachinery, and enhancing safety by providing a containment barrier for a blade failure. Acoustic liners are used in today's turbofan engines to reduce noise. The amount of noise reduction from an acoustic liner is a function of the treatment area, the liner design, and the material properties, and limited by the constraints of the nacelle or casement design. It is desirable to increase the effective area of the acoustic treatment to increase noise suppression. Modern turbofan engines use wide-chord rotor blades, which means there is considerable treatment area available over the rotor tip. Turbofan engines require containment over the rotors for protection from blade failure. Traditional methods use a material wrap such as Kevlar integrated with rub strips and sometimes metal layers (sandwiches). It is possible to substitute the soft rub-strip material with an open-cell metallic foam that provides noise-reduction benefits and a sacrificial material in the first layer of the containment system. An open-cell foam was evaluated that behaves like a bulk acoustic liner, serves as a tip rub strip, and can be integrated with a rotor containment system. Foams can be integrated with the fan-containment system to provide sufficient safety margins and increased noise attenuation. The major innovation is the integration of the foam with the containment.

  19. MTCI acoustic agglomeration particulate control

    Energy Technology Data Exchange (ETDEWEB)

    Chandran, R.R.; Mansour, M.N. [Manufacturing and Technology Conversion International, Inc., Columbia, MD (United States); Scaroni, A.W.; Koopmann, G.H. [Pennsylvania State Univ., University Park, PA (United States); Loth, J.L. [West Virginia Univ., Morgantown, WV (United States)

    1994-10-01

    The overall objective of this project is to demonstrate pulse combination induced acoustic enhancement of coal ash agglomeration and sulfur capture at conditions typical of direct coal-fired turbines and PFBC hot gas cleanup. MTCI has developed an advanced compact pulse combustor island for direct coal-firing in combustion gas turbines. This combustor island comprises a coal-fired pulse combustor, a combined ash agglomeration and sulfur capture chamber (CAASCC), and a hot cyclone. In the MTCI proprietary approach, the pulse combustion-induced high intensity sound waves improve sulfur capture efficiency and ash agglomeration. The resulting agglomerates allow the use of commercial cyclones and achieve very high particulate collection efficiency. In the MTCI proprietary approach, sorbent particles are injected into a gas stream subjected to an intense acoustic field. The acoustic field serves to improve sulfur capture efficiency by enhancing both gas film and intra-particle mass transfer rates. In addition, the sorbent particles act as dynamic filter foci, providing a high density of stagnant agglomerating centers for trapping the finer entrained (in the oscillating flow field) fly ash fractions. A team has been formed with MTCI as the prime contractor and Penn State University and West Virginia University as subcontractors to MTCI. MTCI is focusing on hardware development and system demonstration, PSU is investigating and modeling acoustic agglomeration and sulfur capture, and WVU is studying aerovalve fluid dynamics. Results are presented from all three studies.

  20. Satellite and acoustic tracking device

    KAUST Repository

    Berumen, Michael L.

    2014-02-20

    The present invention relates a method and device for tracking movements of marine animals or objects in large bodies of water and across significant distances. The method and device can track an acoustic transmitter attached to an animal or object beneath the ocean surface by employing an unmanned surface vessel equipped with a hydrophone array and GPS receiver.