WorldWideScience

Sample records for alternative hydrogen production

  1. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and

  2. Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  3. Hydrogen production by Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Chaudhuri Surabhi

    2005-12-01

    Full Text Available Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to the traditional ways of hydrogen production (chemical, photoelectrical, Cyanobacterial hydrogen production is commercially viable. This review highlights the basic biology of cynobacterial hydrogen production, strains involved, large-scale hydrogen production and its future prospects. While integrating the existing knowledge and technology, much future improvement and progress is to be done before hydrogen is accepted as a commercial primary energy source.

  4. Hydrogen production by Cyanobacteria

    OpenAIRE

    Chaudhuri Surabhi; De, Debojyoti; Dutta Debajyoti; Bhattacharya Sanjoy K

    2005-01-01

    Abstract The limited fossil fuel prompts the prospecting of various unconventional energy sources to take over the traditional fossil fuel energy source. In this respect the use of hydrogen gas is an attractive alternate source. Attributed by its numerous advantages including those of environmentally clean, efficiency and renew ability, hydrogen gas is considered to be one of the most desired alternate. Cyanobacteria are highly promising microorganism for hydrogen production. In comparison to...

  5. Photosynthetic bacteria as alternative energy sources: overview on hydrogen production research

    Energy Technology Data Exchange (ETDEWEB)

    Mitsui, A.; Ohta, Y.; Frank, J.

    1979-01-01

    Hydrogen production research towards the application of marine and non-marine species of photosynthetic bacteria is reviewed. Potential use of photosynthetic bacteria as renewable energy resources is discussed.

  6. Solar--hydrogen alternative

    Energy Technology Data Exchange (ETDEWEB)

    1977-03-25

    Solar energy promises more for ecology and a permanent abundant, clean energy source than does the development of atomic energy, with the exception of fusion. And solar methods offer a path for abundant, clean energy which seems far more easily attainable than that of fusion. Wind energy, previosuly regarded as a trivial source, could be used as a massive source of energy if aerogenerators could be located in the high-intensity wind belts of the world where the mean annual wind is more than 25 km/h. Hydrogen could be made from the electricity generated there and be transported to distant points. The availability of massive quantities of hydrogen would give a permanently clean metallurgical and chemical industry.

  7. Revisiting the solar hydrogen alternative

    Energy Technology Data Exchange (ETDEWEB)

    Tomkiewicz, M. [Brooklyn College of CUNY, NY (United States)

    1996-09-01

    Research aimed at the development of technology to advance the solar-hydrogen alternative is per definition mission oriented. The priority that society puts on such research rise and fall with the priorities that we associate with the mission. The mission that we associate with the hydrogen economy is to provide a technological option for an indefinitely sustainable energy and material economies in which society is in equilibrium with its environment. In this paper we try to examine some global aspects of the hydrogen alternative and recommend formulation of a {open_quotes}rational{close_quotes} tax and regulatory system that is based on efforts needed to restore the ecological balance. Such a system, once entered into the price structure of the alternative energy schemes, will be used as a standard to compare energy systems that in turn will serve as a base for prioritization of publicly supported research and development.

  8. Biomimetic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Krassen, Henning

    2009-05-15

    Hydrogenases catalyze the reduction of protons to molecular hydrogen with outstanding efficiency. An electrode surface which is covered with active hydrogenase molecules becomes a promising alternative to platinum for electrochemical hydrogen production. To immobilize the hydrogenase on the electrode, the gold surface was modified by heterobifunctional molecules. A thiol headgroup on one side allowed the binding to the gold surface and the formation of a self-assembled monolayer. The other side of the molecules provided a surface with a high affinity for the hydrogenase CrHydA1 from Chlamydomonas reinhardtii. With methylviologen as a soluble energy carrier, electrons were transferred from carboxy-terminated electrodes to CrHydA1 and conducted to the active site (H-cluster), where they reduce protons to molecular hydrogen. A combined approach of surface-enhanced infrared absorption spectroscopy, gas chromatography, and surface plasmon resonance allowed quantifying the hydrogen production on a molecular level. Hydrogen was produced with a rate of 85 mol H{sub 2} min{sup -1} mol{sup -1}. On a 1'- benzyl-4,4'-bipyridinum (BBP)-terminated surface, the electrons were mediated by the monolayer and no soluble electron carrier was necessary to achieve a comparable hydrogen production rate (approximately 50% of the former system). The hydrogen evolution potential was determined to be -335 mV for the BBP-bound hydrogenase and -290 mV for the hydrogenase which was immobilized on a carboxy-terminated mercaptopropionic acid SAM. Therefore, both systems significantly reduce the hydrogen production overpotential and allow electrochemical hydrogen production at an energy level which is close to the commercially applied platinum electrodes (hydrogen evolution potential of -270 mV). In order to couple hydrogen production and photosynthesis, photosystem I (PS1) from Synechocystis PCC 6803 and membrane-bound hydrogenase (MBH) from Ralstonia eutropha were bound to each other

  9. Hydrogen as alternative clean fuel: Economic analysis

    International Nuclear Information System (INIS)

    In analogy to biofuel production from biomasses, the electrolytic conversion of other renewable energies into hydrogen as an alternative clean fuel is considered. This solution allows the intermittent renewable energy sources, as photovoltaics and wind energy, to enhance their development and enlarge the role into conventional fuel market. A rough economic analysis of hydrogen production line shows the costs, added by electrolysis and storage stages, can be recovered by properly accounting for social and environmental costs due to whole cycle of conventional fuels, from production to use. So, in a perspective of attaining the economic competitiveness of renewable energy, the hydrogen, arising from intermittent renewable energy sources, will be able to compete in the energy market with conventional fuels, making sure that their substitution will occur in a significant amount and the corresponding environment

  10. Photobiological hydrogen production.

    Science.gov (United States)

    Asada, Y; Miyake, J

    1999-01-01

    The principles and recent progress in the research and development of photobiological hydrogen production are reviewed. Cyanobacteria produce hydrogen gas using nitrogenase and/or hydrogenase. Hydrogen production mediated by native hydrogenases in cyanobacteria occurs under in the dark under anaerobic conditions by degradation of intracellular glycogen. In vitro and in vivo coupling of the cyanobacterial photosynthetic system with a clostridial hydrogenase via cyanobacterial ferredoxin was demonstrated in the presence of light. Genetic transformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum was successful; the active enzyme was expressed in PCC7942. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Coculture of Rhodobacter and Clostriudium was applied for hydrogen production from glucose. A mutant strain of Rhodobacter sphaeroides RV whose light-harvesting proteins were altered was obtained by UV irradiation. Hydrogen productivity by the mutant was improved when irradiated with monochromatic light of some wavelengths. The development of photobioreactors for hydrogen production is also reviewed.

  11. Hydrogen production methods

    International Nuclear Information System (INIS)

    Old, present and new proceses for producing hydrogen are assessed critically. The emphasis throughout is placed on those processes which could be commercially viable before the turn of the century for large-scale hydrogen manufacture. Electrolysis of water is the only industrial process not dependent on fossil resources for large-scale hydrogen production and is likely to remain so for the next two or three decades. While many new processes, including those utilizing sunlight directly or indirectly, are presently not considered to be commercially viable for large-scale hydrogen production, research and development effort is needed to enhance our understanding of the nature of these processes. Water vapour electrolysis is compared with thermochemical processes: the former has the potential for displacing all other processes for producing hydrogen and oxygen from water

  12. Biological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Benemann, J.R. [Univ. of California, Berkeley, CA (United States)

    1995-11-01

    Biological hydrogen production can be accomplished by either thermochemical (gasification) conversion of woody biomass and agricultural residues or by microbiological processes that yield hydrogen gas from organic wastes or water. Biomass gasification is a well established technology; however, the synthesis gas produced, a mixture of CO and H{sub 2}, requires a shift reaction to convert the CO to H{sub 2}. Microbiological processes can carry out this reaction more efficiently than conventional catalysts, and may be more appropriate for the relatively small-scale of biomass gasification processes. Development of a microbial shift reaction may be a near-term practical application of microbial hydrogen production.

  13. Hydrogen production processes: an overview

    International Nuclear Information System (INIS)

    Hydrogen, the most abundant element in the universe, does not occur freely on our planet. However, it is predominantly present on earth in combination with oxygen as water and with carbon and other elements as fossil fuels, hydrocarbons, and biomass. Production of hydrogen from these sources is an energy intensive process. Hydrogen production processes can be broadly classified into three general categories: thermal, electrolytic, and photolytic. At present about 96 % of world's hydrogen is produced from fossil fuels using thermal processes like steam methane reforming, partial oxidation, and gasification of coal or biomass while remaining comes from electrolysis of water. Most of the hydrogen produced is primarily used in the chemical industry. More recently hydrogen is perceived as a clean, renewable energy carrier for sustainable energy supply in the future especially when issues like growing concern about global warming due to emission of green house gases and depletion of fossil fuel resources have become paramount. In association with the fuel cell technology, hydrogen appears to be a promising alternative to the fossil fuels for transport applications

  14. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.; Misra, A.; Miller, E. [Univ. of Hawaii, Honolulu, HI (United States)

    1998-08-01

    A significant component of the US DOE Hydrogen Program is the development of a practical technology for the direct production of hydrogen using a renewable source of energy. High efficiency photoelectrochemical systems to produce hydrogen directly from water using sunlight as the energy source represent one of the technologies identified by DOE to meet this mission. Reactor modeling and experiments conducted at UH provide strong evidence that direct solar-to-hydrogen conversion efficiency greater than 10% can be expected using photoelectrodes fabricated from low-cost, multijunction (MJ) amorphous silicon solar cells. Solar-to-hydrogen conversion efficiencies as high as 7.8% have been achieved using a 10.3% efficient MJ amorphous silicon solar cell. Higher efficiency can be expected with the use of higher efficiency solar cells, further improvement of the thin film oxidation and reduction catalysts, and optimization of the solar cell for hydrogen production rather than electricity production. Hydrogen and oxygen catalysts developed under this project are very stable, exhibiting no measurable degradation in KOH after over 13,000 hours of operation. Additional research is needed to fully optimize the transparent, conducting coatings which will be needed for large area integrated arrays. To date, the best protection has been afforded by wide bandgap amorphous silicon carbide films.

  15. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Misra, A. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-10-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. One promising option to meet this goal is direct photoelectrolysis in which light absorbed by semiconductor-based photoelectrodes produces electrical power internally to split water into hydrogen and oxygen. Under this program, direct solar-to-chemical conversion efficiencies as high as 7.8 % have been demonstrated using low-cost, amorphous-silicon-based photoelectrodes. Detailed loss analysis models indicate that solar-to-chemical conversion greater than 10% can be achieved with amorphous-silicon-based structures optimized for hydrogen production. In this report, the authors describe the continuing progress in the development of thin-film catalytic/protective coatings, results of outdoor testing, and efforts to develop high efficiency, stable prototype systems.

  16. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M.; Lien, S.; Weaver, P.F.

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  17. Photobiological hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Seibert, M; Lien, S; Weaver, P F

    1979-01-01

    Hydrogen production by phototrophic organisms, which has been known since the 1930's, occurs at the expense of light energy and electron-donating substrates. Three classes of organisms, namely, photosynthetic bacteria, cyanobacteria, and algae carry out this function. The primary hydrogen-producing enzyme systems, hydrogenase and nitrogenase, will be discussed along with the manner in which they couple to light-driven electron transport. In addition, the feasibility of using in vivo and in vitro photobiological hydrogen producing systems in future solar energy conversion applications will be examined.

  18. GTI's hydrogen programs: hydrogen production, storage, and applications

    Institute of Scientific and Technical Information of China (English)

    范钦柏

    2006-01-01

    The use of hydrogen as an energy carrier could help address our concerns about energy security, global climate change,and air quality. Fuel cells are an important enabling technology for the Hydrogen Future and have the potential to revolutionize theway we power our nation, offering cleaner, more-efficient alternatives to the combustion of gasoline and other fossil fuels.For over 45 years, GTI has been active in hydrogen energy research, development and demonstration. The Institute has extensive experience and on-going work in all aspects of the hydrogen energy economy including production, delivery, infrastructure,use, safety and public policy. This paper discusses the recent GTI programs in hydrogen production, hydrogen storage, and proton exchange membrane fuel cells (PEMFC) and solid oxide fuel cells (SOFC).

  19. Photoelectrochemical Hydrogen Production

    CERN Document Server

    Krol, R van de

    2012-01-01

    Photoelectrochemical Hydrogen Production describes the principles and materials challenges for the conversion of sunlight into hydrogen through water splitting at a semiconducting electrode. Readers will find an analysis of the solid state properties and materials requirements for semiconducting photo-electrodes, a detailed description of the semiconductor/electrolyte interface, in addition to the photo-electrochemical (PEC) cell. Experimental techniques to investigate both materials and PEC device performance are outlined, followed by an overview of the current state-of-the-art in PEC materia

  20. Hydrogen production unit

    Energy Technology Data Exchange (ETDEWEB)

    Podgornyy, A.N.; Droshenkin, B.A.; Khmelnitskaya, I.A.; Varshavskiy, I.L.

    1981-01-01

    The unit for hydrogen production consists of a reactor, tank for fuel, tank for water, connected to the injector, and motor. It is distinguished by the fact that in order to reduce energy outlays by purifying the hydrogen and separating it from the gas mixture, it is equipped with a hydrogen separator arranged between the reactor and the motor. The separator is made in the form of a cylindrical shell separated by semipermeable partition into a chamber for pure hydrogen connected to the motor, and a chamber of ballast gas whose outlet is connected to the pressure nozzle of the injector. The use of the semipermeable partition for water vapor and permeable for hydrogen in combination with the injector makes it possible to exclude from the equipment a water pump and outlets of electricity associated with it. In addition, it is not necessary to install a current generator to power the electric motor of this pump. The heat exchanger for heating the water is also excluded.

  1. Photovoltaic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J. [Univ. of Miami, Coral Gables, FL (United States)

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  2. Photosynthetic production of hydrogen by algae

    Energy Technology Data Exchange (ETDEWEB)

    Chang, H.

    1978-09-01

    Because hydrogen as a fuel is very attractive both in energy and ecological terms, the photosynthetic production of hydrogen by some algae is attracting considerable attention. In addition to the ordinary photosynthetic mechanisms, many algae have enzymes which can produce hydrogen: hydrogenation enzymes and nitrogen-fixation enzymes. Certain enzymes with the former begin to produce hydrogen after several hours in an anaerobic envirionment; the reason for the delay is that the hydrogen-producing enzymes must adjust to the anaerobic conditions. Eventually the production of hydrogen ceases because production of oxygen by the ordinary photosynthetic mechanism suppresses activity of the hydrogen-producing enzymes. Any use of these algae to produce hydrogen must involve alternating hydrogen production and rest. Nitrogen-fixing enzymes are found especially in the blue-green algae. These seem to produce hydrogen from organic compounds produced by the ordinary photosynthetic process. The nitrogen-fixation type of hydrogen-producing photosynthesis seems the more promising type for future exploitation.

  3. Biomimetic Production of Hydrogen

    Science.gov (United States)

    Gust, Devens

    2004-03-01

    The basic reaction for hydrogen generation is formation of molecular hydrogen from two electrons and two protons. Although there are many possible sources for the protons and electrons, and a variety of mechanisms for providing the requisite energy for hydrogen synthesis, the most abundant and readily available source of protons and electrons is water, and the most attractive source of energy for powering the process is sunlight. Not surprisingly, living systems have evolved to take advantage of these sources for materials and energy. Thus, biology provides paradigms for carrying out the reactions necessary for hydrogen production. Photosynthesis in green plants uses sunlight as the source of energy for the oxidation of water to give molecular oxygen, protons, and reduction potential. Some photosynthetic organisms are capable of using this reduction potential, in the form of the reduced redox protein ferredoxin, to reduce protons and produce molecular hydrogen via the action of an hydrogenase enzyme. A variety of other organisms metabolize the reduced carbon compounds that are ultimately the major products of photosynthesis to produce molecular hydrogen. These facts suggest that it might be possible to use light energy to make molecular hydrogen via biomimetic constructs that employ principles similar to those used by natural organisms, or perhaps with hybrid "bionic" systems that combine biomimetic materials with natural enzymes. It is now possible to construct artificial photosynthetic systems that mimic some of the major steps in the natural process.(1) Artificial antennas based on porphyrins, carotenoids and other chromophores absorb light at various wavelengths in the solar spectrum and transfer the harvested excitation energy to artificial photosynthetic reaction centers.(2) In these centers, photoinduced electron transfer uses the energy from light to move an electron from a donor to an acceptor moiety, generating a high-energy charge-separated state

  4. Photoelectrochemical hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Rocheleau, R.E.; Miller, E.; Zhang, Z. [Univ. of Hawaii, Honolulu, HI (United States)

    1995-09-01

    The large-scale production of hydrogen utilizing energy provided by a renewable source to split water is one of the most ambitious long-term goals of the U.S. Department of Energy`s Hydrogen Program. Photoelectrochemical devices-direct photoconversion systems utilizing a photovoltaic-type structure coated with water-splitting catalysts-represent a promising option to meet this goal. Direct solar-to-chemical conversion efficiencies greater than 7% and photoelectrode lifetimes of up to 30 hours in 1 molar KOH have been demonstrated in our laboratory using low-cost, amorphous-silicon-based photoelectrodes. Loss analysis models indicate that the DOE`s goal of 10% solar-to-chemical conversion can be met with amorphous-silicon-based structures optimized for hydrogen production. In this report, we describe recent progress in the development of thin-film catalytic/protective coatings, improvements in photoelectrode efficiency and stability, and designs for higher efficiency and greater stability.

  5. The Competitiveness of Alternative Hydrogen Pathways

    DEFF Research Database (Denmark)

    Hansen, Anders Chr.

    to transport services and in market competitiveness and societal competitiveness. The major societal competitive advantage of hydrogen is its convertibility to electricity and from any other source of energy. This enables a flexible use of natural gas and primary electricity as transport fuels. The major......The paper surveys the literature on the competitiveness of alternative hydrogen pathways in the transport sector. The competitiveness of the alternative systems can be differentiated in the “well-to-tank (WtT)” and “tank-to-wheel (TtW)” sections of the pathway transforming primary energy...... advantage in market competitiveness is the energy efficiency of the fuel cell. This advantage is, however, to some extent balanced by the costs associated with conversion, transport, and storage. The balance between these factors required for market competitiveness is identified....

  6. Hydrogen production processes

    International Nuclear Information System (INIS)

    The goals of this first Gedepeon workshop on hydrogen production processes are: to stimulate the information exchange about research programs and research advances in the domain of hydrogen production processes, to indicate the domains of interest of these processes and the potentialities linked with the coupling of a nuclear reactor, to establish the actions of common interest for the CEA, the CNRS, and eventually EDF, that can be funded in the framework of the Gedepeon research group. This document gathers the slides of the 17 presentations given at this workshop and dealing with: the H2 question and the international research programs (Lucchese P.); the CEA's research program (Lucchese P., Anzieu P.); processes based on the iodine/sulfur cycle: efficiency of a facility - flow-sheets, efficiencies, hard points (Borgard J.M.), R and D about the I/S cycle: Bunsen reaction (Colette S.), R and D about the I/S cycle: the HI/I2/H2O system (Doizi D.), demonstration loop/chemical engineering (Duhamet J.), materials and corrosion (Terlain A.); other processes under study: the Westinghouse cycle (Eysseric C.), other processes under study at the CEA (UT3, plasma,...) (Lemort F.), database about thermochemical cycles (Abanades S.), Zn/ZnO cycle (Broust F.), H2 production by cracking, high temperature reforming with carbon trapping (Flamant G.), membrane technology (De Lamare J.); high-temperature electrolysis: SOFC used as electrolyzers (Grastien R.); generic aspects linked with hydrogen production: technical-economical evaluation of processes (Werkoff F.), thermodynamic tools (Neveu P.), the reactor-process coupling (Aujollet P.). (J.S.)

  7. Redirection of metabolism for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Harwood, Caroline S.

    2011-11-28

    This project is to develop and apply techniques in metabolic engineering to improve the biocatalytic potential of the bacterium Rhodopseudomonas palustris for nitrogenase-catalyzed hydrogen gas production. R. palustris, is an ideal platform to develop as a biocatalyst for hydrogen gas production because it is an extremely versatile microbe that produces copious amounts of hydrogen by drawing on abundant natural resources of sunlight and biomass. Anoxygenic photosynthetic bacteria, such as R. palustris, generate hydrogen and ammonia during a process known as biological nitrogen fixation. This reaction is catalyzed by the enzyme nitrogenase and normally consumes nitrogen gas, ATP and electrons. The applied use of nitrogenase for hydrogen production is attractive because hydrogen is an obligatory product of this enzyme and is formed as the only product when nitrogen gas is not supplied. Our challenge is to understand the systems biology of R. palustris sufficiently well to be able to engineer cells to produce hydrogen continuously, as fast as possible and with as high a conversion efficiency as possible of light and electron donating substrates. For many experiments we started with a strain of R. palustris that produces hydrogen constitutively under all growth conditions. We then identified metabolic pathways and enzymes important for removal of electrons from electron-donating organic compounds and for their delivery to nitrogenase in whole R. palustris cells. For this we developed and applied improved techniques in 13C metabolic flux analysis. We identified reactions that are important for generating electrons for nitrogenase and that are yield-limiting for hydrogen production. We then increased hydrogen production by blocking alternative electron-utilizing metabolic pathways by mutagenesis. In addition we found that use of non-growing cells as biocatalysts for hydrogen gas production is an attractive option, because cells divert all resources away from growth and

  8. Hydrogen storage alternatives - a technological and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, Joakim; Hjortsberg, Ove [Volvo Teknisk Utveckling AB, Goeteborg (Sweden)

    1999-12-01

    This study reviews state-of-the-art of hydrogen storage alternatives for vehicles. We will also discuss the prospects and estimated cost for industrial production. The study is based on published literature and interviews with active researchers. Among the alternatives commercially available today, we suggest using a moderate-pressure chamber for seasonal stationary energy storage; metal hydride vessels for small stationary units; a roof of high-pressure cylinders for buses, trucks and ferries; cryogenic high-pressure vessels or methanol reformers for cars and tractors; and cryogenic moderate-pressure vessels for aeroplanes. Initial fuel dispensing systems should be designed to offer hydrogen in pressurised form for good fuel economy, but also as cryogenic liquid for occasional needs of extended driving range and as methanol for reformer-equipped vehicles. It is probable that hydrogen can be stored efficiently in adsorbents for use in recyclable hydrogen fuel containers or rechargeable hydrogen vessels operating at ambient temperature and possibly ambient pressure by year 2004, and at reasonable or even low cost by 2010. The most promising alternatives involve various forms of activated graphite nanostructures. Recommendations for further research and standardisation activities are given.

  9. Hydrogen production through biocatalyzed electrolysis

    NARCIS (Netherlands)

    Rozendal, R.A.

    2007-01-01

    cum laude graduation (with distinction) To replace fossil fuels, society is currently considering alternative clean fuels for transportation. Hydrogen could be such a fuel. In theory, large amounts of renewable hydrogen can be produced from organic contaminants in wastewater. During his PhD research

  10. Hydrogen production through biocatalyzed electrolysis

    OpenAIRE

    Rozendal, R.A.

    2007-01-01

    cum laude graduation (with distinction) To replace fossil fuels, society is currently considering alternative clean fuels for transportation. Hydrogen could be such a fuel. In theory, large amounts of renewable hydrogen can be produced from organic contaminants in wastewater. During his PhD research René Rozendal has developed a new technology for this purpose: biocatalyzed electrolysis. The innovative step of biocatalyzed electrolysis is the application of electrochemically active microorgan...

  11. Hydrogen production processes from biomass

    OpenAIRE

    Shah, Sanjay

    2015-01-01

    Global warming, climate change and energy security have been gaining more attention worldwide. Hydrogen production from biomass offers an effective solution leaving minimal environmental footprint. This thesis identifies and reviews the most potential bio-hydrogen production pathways, identifies and designs the most promising process, and then conducts a rough feasibility study to check its economic potential for commercial production after simulation (experimental part). Finally, it also tes...

  12. Hydrogen production using plasma processing

    International Nuclear Information System (INIS)

    Plasma processing is a promising method of extracting hydrogen from natural gas while avoiding the greenhouse gas (GHG) production typical of other methods such as steam methane reforming. This presentation describes a plasma discharge process based that, in a single reactor pass, can yield hydrogen concentrations of up to 50 % by volume in the product gas mixture. The process is free of GHG's, does not require catalysts and is easily scalable. Chemical and morphological analyses of the gaseous and solid products of the process by gas-chromatography/mass-spectrometry, microscopic Raman analyses and electron microscopy respectively are reviewed. The direct production of hydrogen-enriched natural gas (HENG) as a fuel for low pollution internal combustion engines and its purification to high-purity hydrogen (99.99%) from the product gas by pressure swing adsorption (PSA) purifier beds are reviewed. The presentation reviews potential commercial applications for the technology

  13. Hydrogen Production by Thermophilic Fermentation

    NARCIS (Netherlands)

    Niel, van E.W.J.; Willquist, K.; Zeidan, A.A.; Vrije, de T.; Mars, A.E.; Claassen, P.A.M.

    2012-01-01

    Of the many ways hydrogen can be produced, this chapter focuses on biological hydrogen production by thermophilic bacteria and archaea in dark fermentations. The thermophiles are held as promising candidates for a cost-effective fermentation process, because of their relatively high yields and broad

  14. Electrolytic hydrogen production

    Science.gov (United States)

    Ramani, M. P. S.

    In the role of a secondary energy carrier complementary to electricity in a postfossil-fuel era, hydrogen produced by the elecrolytic splitting of water may be obtained by a variety of methods whose technology development status is presently assessed. Nuclear heat can be converted into hydrogen either directly, via thermal splitting of water, or by means of water electrolysis, which can be of the unipolar tank type or the bipolar filter-press type. An evaluation is made of advanced electrolytic techniques involving exotic materials, as well as solid polymer electrolyte electrolysis and high-temperature water-vapor electrolysis.

  15. Hydrogen Production Technical Team Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-06-01

    The Hydrogen Production Technical Team Roadmap identifies research pathways leading to hydrogen production technologies that produce near-zero net greenhouse gas (GHG) emissions from highly efficient and diverse renewable energy sources. This roadmap focuses on initial development of the technologies, identifies their gaps and barriers, and describes activities by various U.S. Department of Energy (DOE) offices to address the key issues and challenges.

  16. Technical Analysis of Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  17. Biological hydrogen production from phytomass

    Energy Technology Data Exchange (ETDEWEB)

    Bartacek, J.; Zabranska, J. [Inst. of Chemical Technology, Prague (Czech Republic). Dept. of Water Technology and Environmental Engineering

    2004-07-01

    Renewable sources of energy have received wide attention lately. One candidate is hydrogen which has the added advantage of involving no greenhouse gases. Biological hydrogen production from wastewater or biowastes is a very attractive production technique. So far, most studies have concentrated on the use of photosynthetic bacteria. However, dark fermentation has recently become a popular topic of research as it has the advantage of not requiring light energy input, something that limits the performance of the photosynthetic method. While pure cultures have been used in most of the investigations to date, in industrial situations mixed cultures will probably be the norm because of unavoidable contamination. In this investigation the phytomass of amaranth (Amaranthus cruentus L) was used to produce hydrogen. Specific organic loading, organic loading, and pH were varied to study the effect on hydrogen production. 18 refs., 1 tab., 6 figs.

  18. Solar Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Koval, C. [Univ. of Colorado, Boulder (United States); Sutin, N. [Brookhaven National Lab., Upton, NY (United States); Turner, J. [National Renewable Energy Lab., Golden, CO (United States)

    1996-09-01

    This panel addressed different methods for the photoassisted dissociation of water into its component parts, hydrogen and oxygen. Systems considered include PV-electrolysis, photoelectrochemical cells, and transition-metal based microheterogeneous and homogeneous systems. While none of the systems for water splitting appear economically viable at the present time, the panel identified areas of basic research that could increase the overall efficiency and decrease the costs. Common to all the areas considered was the underlying belief that the water-to-hydrogen half reaction is reasonably well characterized, while the four-electron oxidation of water-to-oxygen is less well understood and represents a significant energy loss. For electrolysis, research in electrocatalysis to reduce overvoltage losses was identified as a key area for increased efficiency. Non-noble metal catalysts and less expensive components would reduce capital costs. While potentially offering higher efficiencies and lower costs, photoelectrochemical-based direct conversion systems undergo corrosion reactions and often have poor energetics for the water reaction. Research is needed to understand the factors that control the interfacial energetics and the photoinduced corrosion. Multi-photon devices were identified as promising systems for high efficiency conversion.

  19. The hydrogen production; La production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    Aujollet, P.; Goldstein, St. [CEA Cadarach, Dir. de l' Energie Nucleaire, 13 - Saint Paul lez Durance (France); Lucchese, P. [CEA Fontenay aux Roses, Dir. des Nouvelles Technologies de l' Energie, 92 (France)

    2002-07-01

    This paper gives an overview on the implementing of the hydrogen as substitution fuel in the transportation sector. It presents also the problems of this fuel storage and exploitation and describes the production modes and their safety. It also presents the main lines of the japan HTGR program. (A.L.B.)

  20. Photoelectrochemical Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian

    2013-12-23

    The objectives of this project, covering two phases and an additional extension phase, were the development of thin film-based hybrid photovoltaic (PV)/photoelectrochemical (PEC) devices for solar-powered water splitting. The hybrid device, comprising a low-cost photoactive material integrated with amorphous silicon (a-Si:H or a-Si in short)-based solar cells as a driver, should be able to produce hydrogen with a 5% solar-to-hydrogen conversion efficiency (STH) and be durable for at least 500 hours. Three thin film material classes were studied and developed under this program: silicon-based compounds, copper chalcopyrite-based compounds, and metal oxides. With the silicon-based compounds, more specifically the amorphous silicon carbide (a-SiC), we achieved a STH efficiency of 3.7% when the photoelectrode was coupled to an a-Si tandem solar cell, and a STH efficiency of 6.1% when using a crystalline Si PV driver. The hybrid PV/a-SiC device tested under a current bias of -3~4 mA/cm{sup 2}, exhibited a durability of up to ~800 hours in 0.25 M H{sub 2}SO{sub 4} electrolyte. Other than the PV driver, the most critical element affecting the photocurrent (and hence the STH efficiency) of the hybrid PV/a-SiC device was the surface energetics at the a-SiC/electrolyte interface. Without surface modification, the photocurrent of the hybrid PEC device was ~1 mA/cm{sup 2} or lower due to a surface barrier that limits the extraction of photogenerated carriers. We conducted an extensive search for suitable surface modification techniques/materials, of which the deposition of low work function metal nanoparticles was the most successful. Metal nanoparticles of ruthenium (Ru), tungsten (W) or titanium (Ti) led to an anodic shift in the onset potential. We have also been able to develop hybrid devices of various configurations in a monolithic fashion and optimized the current matching via altering the energy bandgap and thickness of each constituent cell. As a result, the short

  1. Photoelectrochemical Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jian

    2013-12-23

    The objectives of this project, covering two phases and an additional extension phase, were the development of thin film-based hybrid photovoltaic (PV)/photoelectrochemical (PEC) devices for solar-powered water splitting. The hybrid device, comprising a low-cost photoactive material integrated with amorphous silicon (a-Si:H or a-Si in short)-based solar cells as a driver, should be able to produce hydrogen with a 5% solar-to-hydrogen conversion efficiency (STH) and be durable for at least 500 hours. Three thin film material classes were studied and developed under this program: silicon-based compounds, copper chalcopyrite-based compounds, and metal oxides. With the silicon-based compounds, more specifically the amorphous silicon carbide (a-SiC), we achieved a STH efficiency of 3.7% when the photoelectrode was coupled to an a-Si tandem solar cell, and a STH efficiency of 6.1% when using a crystalline Si PV driver. The hybrid PV/a-SiC device tested under a current bias of -3~4 mA/cm{sup 2}, exhibited a durability of up to ~800 hours in 0.25 M H{sub 2}SO{sub 4} electrolyte. Other than the PV driver, the most critical element affecting the photocurrent (and hence the STH efficiency) of the hybrid PV/a-SiC device was the surface energetics at the a-SiC/electrolyte interface. Without surface modification, the photocurrent of the hybrid PEC device was ~1 mA/cm{sup 2} or lower due to a surface barrier that limits the extraction of photogenerated carriers. We conducted an extensive search for suitable surface modification techniques/materials, of which the deposition of low work function metal nanoparticles was the most successful. Metal nanoparticles of ruthenium (Ru), tungsten (W) or titanium (Ti) led to an anodic shift in the onset potential. We have also been able to develop hybrid devices of various configurations in a monolithic fashion and optimized the current matching via altering the energy bandgap and thickness of each constituent cell. As a result, the short

  2. Microbial hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.F.; Maness, P.C.; Martin, S. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-09-01

    Photosynthetic bacteria inhabit an anaerobic or microaerophilic world where H{sub 2} is produced and consumed as a shared intermediary metabolite. Within a given bacterial isolate there are as many as 4 to 6 distinct enzymes that function to evolve or consume H{sub 2}. Three of the H{sub 2}-evolving physiologies involving three different enzymes from photosynthetic bacteria have been examined in detail for commercial viability. Nitrogenase-mediated H{sub 2} production completely dissimilates many soluble organic compounds to H{sub 2} and CO{sub 2} at rates up to 131 {mu}mol H{sub 2}{sm_bullet}min{sup -1}{sm_bullet}g cdw{sup -1} and can remain active for up to 20 days. This metabolism is very energy intensive, however, which limits solar conversion efficiencies. Fermentative hydrogenase can produce H{sub 2} at rates of 440 {mu}mol{sm_bullet}min{sup -1}{sm_bullet}g cdw{sup -1} at low levels of irradiation over indefinite periods. The equilibrium for this activity is low (<0.15 atmospheres), thereby requiring gas sparging, vacuuming, or microbial scavenging to retain prolonged activity. Microbial H{sub 2} production from the CO component of synthesis or producer gases maximally reaches activities of 1.5 mmol{sm_bullet}min{sup -1}{sm_bullet}g cdw{sup -1}. Mass transport of gaseous CO into an aqueous bacterial suspension is the rate-limiting step. Increased gas pressure strongly accelerates these rates. Immobilized bacteria on solid supports at ambient pressures also show enhanced shift activity when the bulk water is drained away. Scaled-up bioreactors with 100-200 cc bed volume have been constructed and tested. The near-term goal of this portion of the project is to engineer and economically evaluate a prototype system for the biological production of H{sub 2} from biomass. The CO shift enables a positive selection technique for O{sub 2}-resistant, H{sub 2}-evolving bacterial enzymes from nature.

  3. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    International Nuclear Information System (INIS)

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  4. Improvements in Fermentative Biological Hydrogen Production Through Metabolic Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hallenbeck, P. C.; Ghosh, D.; Sabourin-Provost, G.

    2009-07-01

    Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention world-wide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels. (Author)

  5. Hydrogen Storage and Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Abhijit [Univ. of Arkansas, Little Rock, AR (United States); Biris, A. S. [Univ. of Arkansas, Little Rock, AR (United States); Mazumder, M. K. [Univ. of Arkansas, Little Rock, AR (United States); Karabacak, T. [Univ. of Arkansas, Little Rock, AR (United States); Kannarpady, Ganesh [Univ. of Arkansas, Little Rock, AR (United States); Sharma, R. [Univ. of Arkansas, Little Rock, AR (United States)

    2011-07-31

    This is the final technical report. This report is a summary of the project. The goal of our project is to improve solar-to-hydrogen generation efficiency of the PhotoElectroChemical (PEC) conversion process by developing photoanodes with high absorption efficiency in the visible region of the solar radiation spectrum and to increase photo-corrosion resistance of the electrode for generating hydrogen from water. To meet this goal, we synthesized nanostructured heterogeneous semiconducting photoanodes with a higher light absorption efficiency compared to that of TiO2 and used a corrosion protective layer of TiO2. While the advantages of photoelectrochemical (PEC) production of hydrogen have not yet been realized, the recent developments show emergence of new nanostructural designs of photoanodes and choices of materials with significant gains in photoconversion efficiency.

  6. Chemistry - Toward efficient hydrogen production at surfaces

    DEFF Research Database (Denmark)

    Nørskov, Jens Kehlet; Christensen, Claus H.

    2006-01-01

    Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy.......Calculations are providing a molecular picture of hydrogen production on catalytic surfaces and within enzymes, knowledge that may guide the design of new, more efficient catalysts for the hydrogen economy....

  7. Potential of biogenic hydrogen production for hydrogen driven remediation strategies in marine environments

    OpenAIRE

    Hosseinkhani, Baharak; Hennebel, Tom; Boon, Nico

    2014-01-01

    Fermentative production of bio-hydrogen (bio-H2) from organic residues has emerged as a promising alternative for providing the required electron source for hydrogen driven remediation strategies. Unlike the widely used production of H2 by bacteria in fresh water systems, few reports are available regarding the generation of biogenic H2 and optimisation processes in marine systems. The present research aims to optimise the capability of an indigenous marine bacterium for the production of bio...

  8. Thermochemical hydrogen production based on magnetic fusion

    International Nuclear Information System (INIS)

    Conceptual design studies have been carried out on an integrated fusion/chemical plant system using a Tandem Mirror Reactor fusion energy source to drive the General Atomic Sulfur-Iodine Water-Splitting Cycle and produce hydrogen as a future feedstock for synthetic fuels. Blanket design studies for the Tandem Mirror Reactor show that several design alternatives are available for providing heat at sufficiently high temperatures to drive the General Atomic Cycle. The concept of a Joule-boosted decomposer is introduced in one of the systems investigated to provide heat electrically for the highest temperature step in the cycle (the SO3 decomposition step), and thus lower blanket design requirements and costs. Flowsheeting and conceptual process designs have been developed for a complete fusion-driven hydrogen plant, and the information has been used to develop a plot plan for the plant and to estimate hydrogen production costs. Both public and private utility financing approaches have been used to obtain hydrogen production costs of $12-14/GJ based on July 1980 dollars

  9. Hydrogen Production in Fusion Reactors

    OpenAIRE

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H.; Motojima, O.; Okamoto, M; Ohnishi, M.; Onozuka, M.; Uenosono, C.

    1993-01-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated.

  10. Low Cost Hydrogen Production Platform

    Energy Technology Data Exchange (ETDEWEB)

    Timothy M. Aaron, Jerome T. Jankowiak

    2009-10-16

    A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was

  11. Hydrogen production processes; Procedes de production d'hydrogene

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The goals of this first Gedepeon workshop on hydrogen production processes are: to stimulate the information exchange about research programs and research advances in the domain of hydrogen production processes, to indicate the domains of interest of these processes and the potentialities linked with the coupling of a nuclear reactor, to establish the actions of common interest for the CEA, the CNRS, and eventually EDF, that can be funded in the framework of the Gedepeon research group. This document gathers the slides of the 17 presentations given at this workshop and dealing with: the H{sub 2} question and the international research programs (Lucchese P.); the CEA's research program (Lucchese P., Anzieu P.); processes based on the iodine/sulfur cycle: efficiency of a facility - flow-sheets, efficiencies, hard points (Borgard J.M.), R and D about the I/S cycle: Bunsen reaction (Colette S.), R and D about the I/S cycle: the HI/I{sub 2}/H{sub 2}O system (Doizi D.), demonstration loop/chemical engineering (Duhamet J.), materials and corrosion (Terlain A.); other processes under study: the Westinghouse cycle (Eysseric C.), other processes under study at the CEA (UT3, plasma,...) (Lemort F.), database about thermochemical cycles (Abanades S.), Zn/ZnO cycle (Broust F.), H{sub 2} production by cracking, high temperature reforming with carbon trapping (Flamant G.), membrane technology (De Lamare J.); high-temperature electrolysis: SOFC used as electrolyzers (Grastien R.); generic aspects linked with hydrogen production: technical-economical evaluation of processes (Werkoff F.), thermodynamic tools (Neveu P.), the reactor-process coupling (Aujollet P.). (J.S.)

  12. Present status of research on hydrogen energy and perspective of HTGR hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, Yoshiaki; Ogawa, Masuro; Akino, Norio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2001-03-01

    A study was performed to make a clear positioning of research and development on hydrogen production systems with a High Temperature Gas-cooled Reactor (HTGR) under currently promoting at the Japan Atomic Energy Research Institute through a grasp of the present status of hydrogen energy, focussing on its production and utilization as an energy in future. The study made clear that introduction of safe distance concept for hydrogen fire and explosion was practicable for a HTGR hydrogen production system, including hydrogen properties and need to provide regulations applying to handle hydrogen. And also generalization of hydrogen production processes showed technical issues of the HTGR system. Hydrogen with HTGR was competitive to one with fossil fired system due to evaluation of production cost. Hydrogen is expected to be used as promising fuel of fuel cell cars in future. In addition, the study indicated that there were a large amount of energy demand alternative to high efficiency power generation and fossil fuel with nuclear energy through the structure of energy demand and supply in Japan. Assuming that hydrogen with HTGR meets all demand of fuel cell cars, an estimation would show introduction of the maximum number of about 30 HTGRs with capacity of 100 MWt from 2020 to 2030. (author)

  13. Present status of research on hydrogen energy and perspective of HTGR hydrogen production system

    International Nuclear Information System (INIS)

    A study was performed to make a clear positioning of research and development on hydrogen production systems with a High Temperature Gas-cooled Reactor (HTGR) under currently promoting at the Japan Atomic Energy Research Institute through a grasp of the present status of hydrogen energy, focussing on its production and utilization as an energy in future. The study made clear that introduction of safe distance concept for hydrogen fire and explosion was practicable for a HTGR hydrogen production system, including hydrogen properties and need to provide regulations applying to handle hydrogen. And also generalization of hydrogen production processes showed technical issues of the HTGR system. Hydrogen with HTGR was competitive to one with fossil fired system due to evaluation of production cost. Hydrogen is expected to be used as promising fuel of fuel cell cars in future. In addition, the study indicated that there were a large amount of energy demand alternative to high efficiency power generation and fossil fuel with nuclear energy through the structure of energy demand and supply in Japan. Assuming that hydrogen with HTGR meets all demand of fuel cell cars, an estimation would show introduction of the maximum number of about 30 HTGRs with capacity of 100 MWt from 2020 to 2030. (author)

  14. Solar based hydrogen production systems

    CERN Document Server

    Dincer, Ibrahim

    2013-01-01

    This book provides a comprehensive analysis of various solar based hydrogen production systems. The book covers first-law (energy based) and second-law (exergy based) efficiencies and provides a comprehensive understanding of their implications. It will help minimize the widespread misuse of efficiencies among students and researchers in energy field by using an intuitive and unified approach for defining efficiencies. The book gives a clear understanding of the sustainability and environmental impact analysis of the above systems. The book will be particularly useful for a clear understanding

  15. Photobiological hydrogen production and carbon dioxide sequestration

    Science.gov (United States)

    Berberoglu, Halil

    Photobiological hydrogen production is an alternative to thermochemical and electrolytic technologies with the advantage of carbon dioxide sequestration. However, it suffers from low solar to hydrogen energy conversion efficiency due to limited light transfer, mass transfer, and nutrient medium composition. The present study aims at addressing these limitations and can be divided in three parts: (1) experimental measurements of the radiation characteristics of hydrogen producing and carbon dioxide consuming microorganisms, (2) solar radiation transfer modeling and simulation in photobioreactors, and (3) parametric experiments of photobiological hydrogen production and carbon dioxide sequestration. First, solar radiation transfer in photobioreactors containing microorganisms and bubbles was modeled using the radiative transport equation (RTE) and solved using the modified method of characteristics. The study concluded that Beer-Lambert's law gives inaccurate results and anisotropic scattering must be accounted for to predict the local irradiance inside a photobioreactor. The need for accurate measurement of the complete set of radiation characteristics of microorganisms was established. Then, experimental setup and analysis methods for measuring the complete set of radiation characteristics of microorganisms have been developed and successfully validated experimentally. A database of the radiation characteristics of representative microorganisms have been created including the cyanobacteria Anabaena variabilis, the purple non-sulfur bacteria Rhodobacter sphaeroides and the green algae Chlamydomonas reinhardtii along with its three genetically engineered strains. This enabled, for the first time, quantitative assessment of the effect of genetic engineering on the radiation characteristics of microorganisms. In addition, a parametric experimental study has been performed to model the growth, CO2 consumption, and H 2 production of Anabaena variabilis as functions of

  16. Nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    In the long term, H2 production technologies will be strongly focusing on CO2-neutral or CO2-free methods. Nuclear with its virtually no air-borne pollutants emissions appears to be an ideal option for large-scale centralized H2 production. It will be driven by major factors such as production rates of fossil fuels, political decisions on greenhouse gas emissions, energy security and independence of foreign oil uncertainties, or the economics of large-scale hydrogen production and transmission. A nuclear reactor operated in the heat and power cogeneration mode must be located in close vicinity to the consumer's site, i.e., it must have a convincing safety concept of the combined nuclear/ chemical production plant. A near-term option of nuclear hydrogen production which is readily available is conventional low temperature electrolysis using cheap off-peak electricity from present nuclear power plants. This, however, is available only if the share of nuclear in power production is large. But as fossil fuel prices will increase, the use of nuclear outside base-load becomes more attractive. Nuclear steam reforming is another important near-term option for both the industrial and the transportation sector, since principal technologies were developed, with a saving potential of some 35 % of methane feedstock. Competitiveness will benefit from increasing cost level of natural gas. The HTGR heated steam reforming process which was simulated in pilot plants both in Germany and Japan, appears to be feasible for industrial application around 2015. A CO2 emission free option is high temperature electrolysis which reduces the electricity needs up to about 30 % and could make use of high temperature heat and steam from an HTGR. With respect to thermochemical water splitting cycles, the processes which are receiving presently most attention are the sulfur-iodine, the Westinghouse hybrid, and the calcium-bromine (UT-3) cycles. Efficiencies of the S-I process are in the range of 33

  17. Maximizing hydrogen production by cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Bothe, H.; Winkelmann, S.; Boison, G. [Botanical Inst., The Univ. of Cologne, Cologne (Germany)

    2008-03-15

    When incubated anaerobically, in the light, in the presence of C{sub 2}H{sub 2} and high concentrations of H{sub 2}, both Mo-grown Anabaena variabilis and either Mo- or V-grown Anabaena azotica produce large amounts of H{sub 2} in addition to the H{sub 2} initially added. In contrast, C{sub 2}H{sub 2}-reduction is diminished under these conditions. The additional H{sub 2}-production mainly originates from nitrogenase with the V-enzyme being more effective than the Mo-protein. This enhanced H{sub 2}-production in the presence of added H{sub 2} and C{sub 2}H{sub 2} should be of interest in approaches to commercially exploit solar energy conversion by cyanobacterial photosynthesis for the generation of molecular hydrogen as a clean energy source. (orig.)

  18. Dedicated nuclear facilities for electrolytic hydrogen production

    Science.gov (United States)

    Foh, S. E.; Escher, W. J. D.; Donakowski, T. D.

    1979-01-01

    An advanced technology, fully dedicated nuclear-electrolytic hydrogen production facility is presented. This plant will produce hydrogen and oxygen only and no electrical power will be generated for off-plant use. The conceptual design was based on hydrogen production to fill a pipeline at 1000 psi and a 3000 MW nuclear base, and the base-line facility nuclear-to-shaftpower and shaftpower-to-electricity subsystems, the water treatment subsystem, electricity-to-hydrogen subsystem, hydrogen compression, efficiency, and hydrogen production cost are discussed. The final conceptual design integrates a 3000 MWth high-temperature gas-cooled reactor operating at 980 C helium reactor-out temperature, direct dc electricity generation via acyclic generators, and high-current density, high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced and pipeline hydrogen is produced at 1000 psi. Hydrogen costs were about half of the conventional nuclear electrolysis process.

  19. Heavy water. A production alternative for Venezuela

    International Nuclear Information System (INIS)

    A survey of heavy water production methods is made. Main facts about isotopic and distillation methods, reforming and coupling to a Hydrogen distillation plant are presented. A feasibility study on heavy water production in Venezuela is suggested

  20. An alternative process for hydrogenation of sunflower oil

    Directory of Open Access Journals (Sweden)

    Rosana de Cassia de Souza Schneider

    2010-12-01

    Full Text Available Classic methodologies for hydrogenation of vegetable oils have traditionally been carried out by nickel catalysts under high pressure of H2 and high temperature. An alternative method for hydrogenation of sunflower oil using limonene and palladium-on-carbon was investigated in this study. The use of limonene as a hydrogen donor solvent was proposed in order to avoid high temperature and high-pressure conditions. The catalytic transfer of hydrogenation was studied by using 0.5 to 2% of Pd as a catalyst, a limonene:oil ratio of 3:1, and reaction times from 0.5 to 2 hours. Under these conditions, high selectivities for oleic acid and low concentrations of stearic acid were obtained.

  1. Potential Application of Anaerobic Extremophiles for Hydrogen Production

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-01-01

    During substrate fermentation many anaerobes produce the hydrogen as a waste product, which often regulates the growth of the cultures as an inhibitor. In nature the hydrogen is usually removed from the ecosystem due to its physical properties or by consumption of hydrogen by secondary anaerobes, which sometimes behave as competitors for electron donors as is seen in the classical example in anaerobic microbial communities via the interaction between methanogens and sulfate- or sulfur- reducers. It was demonstrated previously on mixed cultures of anaerobes at neutral pH that bacterial hydrogen production could provide an alternative energy source. But at neutral pH the original cultures can easily be contaminated by methanogens, a most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and the cultivation of human pathogens on a global scale is very dangerous. In our laboratory, experiments with obligately alkaliphilic bacteria that excrete hydrogen as the end metabolic product were performed at different temperature regimes. Mesophilic and moderately thermophilic bacterial cultures have been studied and compared for the most effective hydrogen production. For high-mineralized media with pH 9.5-10.0 not many methanogens are known to exist. Furthermore, the development of pathogenic contaminant microorganisms is virtually impossible: carbonate-saturated solutions are used as antiseptics in medicine. Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as most safe process for global Scale industry in future. Here we present experimental data on the rates of hydrogen productivity for mesophilic, alkaliphilic, obligately anaerobic bacterium Spirocheta americana ASpG1 and moderately thermophilic, alkaliphilic, facultative anaerobe Anoxybacillus pushchinoensis K1 and

  2. Fermentative hydrogen production by diverse microflora

    International Nuclear Information System (INIS)

    'Full text': In this study of hydrogen production with activated sludge, a diverse bacterial source has been investigated and compared to microflora from anaerobic digester sludge, which is less diverse. Batch experiments were conducted at mesophilic (37 oC) and thermophilic (55 oC) temperatures. The hydrogen production yields with activated sludge at 37 oC and 55 oC were 0.25 and 0.93 mol H2/mol glucose, respectively. The maximum hydrogen production rates with activated sludge in both temperatures were 4.2 mL/h. Anaerobic digester sludge showed higher hydrogen production yields and rates at both mesophilic and thermophilic temperatures. The results of repeated batch experiments with activated sludge showed an increase in the hydrogen production during the consecutive batches. However, hydrogen production was not stable along the repeated batches. The observed instability was due to the formation of lactic acid and ethanol. (author)

  3. Hydrogen production from microbial strains

    Science.gov (United States)

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  4. Renewable hydrogen production. The role of Solar Thermal Water Splitting

    OpenAIRE

    Vicens García, Gabriel

    2011-01-01

    In a context of environmental crisis and depletion of conventional energy resources, the current energy model based on fossil fuels is obsolete and needs to be redefined and redesigned. Hydrogen economy can represent a good alternative. To get it, developing carbon-free renewable hydrogen production processes will be crucial. This Master Thesis is focused on the ones using solar thermal energy to split water. At first, world’s energy situation is analyzed to introduce the need of ...

  5. Arizona Public Service - Alternative Fuel (Hydrogen) Pilot Plant Design Report

    Energy Technology Data Exchange (ETDEWEB)

    James E. Francfort

    2003-12-01

    Hydrogen has promise to be the fuel of the future. Its use as a chemical reagent and as a rocket propellant has grown to over eight million metric tons per year in the United States. Although use of hydrogen is abundant, it has not been used extensively as a transportation fuel. To assess the viability of hydrogen as a transportation fuel and the viability of producing hydrogen using off-peak electric energy, Pinnacle West Capital Corporation (PNW) and its electric utility subsidiary, Arizona Public Service (APS) designed, constructed, and operates a hydrogen and compressed natural gas fueling station—the APS Alternative Fuel Pilot Plant. This report summarizes the design of the APS Alternative Fuel Pilot Plant and presents lessons learned from its design and construction. Electric Transportation Applications prepared this report under contract to the U.S. Department of Energy’s Advanced Vehicle Testing Activity. The Idaho National Engineering and Environmental Laboratory manages these activities for the Advanced Vehicle Testing Activity.

  6. Industry requirements for introduction of alternative energies with emphasis on hydrogen fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Delabbio, F. [Rio Tinto, Canadian Exploration Ltd., Toronto, ON (Canada); Starbuck, D. [Newmont Mining Corp., Denver, CO (United States); Akerman, A. [CVRD-Inco, Toronto, ON (Canada); Betournay, M.C. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2007-07-01

    This paper discussed issues related to the use of alternate sources of energy in underground mining applications. Hydrogen power systems were examined in relation to operational drivers, available commercial supplies, site supplies, health and safety issues, capital and operating costs, mine production, and the role of government. Hydrogen power systems are being considered for mining applications in an effort to reduce greenhouse gas (GHG) emissions and reduce cooling and ventilation requirements. This article examined a range of issues that must be addressed before alternate energy systems such as hydrogen fuel cell technology can be used in larger-scale underground mining applications. The mining industry supports the development of new technologies. However, the introduction of alternate energy technologies must proceed in steps which include proof of concept testing, the development of generic infrastructure, power systems and regulations, and whole operating system studies. 13 refs., 1 fig.

  7. Fermentative hydrogen production by diverse microflora

    Energy Technology Data Exchange (ETDEWEB)

    Baghchehsaraee, B.; Nakhla, G.; Karamanev, D.; Margaritis, A. [Western Ontario Univ., London, ON (Canada). Dept. of Chemical and Biochemical Engineering

    2009-07-01

    This paper presented the results of a study in which hydrogen was produced from activated sludge. This diverse bacterial source has been compared to microflora from anaerobic digester sludge. Batch experiments were conducted at mesophilic (37 degrees C) and thermophilic (55 degrees C) temperatures. The hydrogen production yields with activated sludge at mesophilic and thermophilic temperatures were 0.25 and 0.93 mol H{sub 2}/mol glucose, respectively. The maximum hydrogen production rates with activated sludge in both temperatures were 4.2 mL/h. Anaerobic digester sludge showed higher hydrogen production yields and rates at both mesophilic and thermophilic temperatures. Repeated batch experiments with activated sludge resulted in increased hydrogen production in consecutive batches. However, the formation of lactic acid and ethanol resulted in unstable hydrogen production in the repeated batches.

  8. Microstructured reactors for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Aartun, Ingrid

    2005-07-01

    Small scale hydrogen production by partial oxidation (POX) and oxidative steam reforming (OSR) have been studied over Rh-impregnated microchannel Fecralloy reactors and alumina foams. Trying to establish whether metallic microchannel reactors have special advantages for hydrogen production via catalytic POX or OSR with respect to activity, selectivity and stability was of special interest. The microchannel Fecralloy reactors were oxidised at 1000 deg C to form a {alpha}-Al2O3 layer in the channels in order to enhance the surface area prior to impregnation. Kr-BET measurements showed that the specific surface area after oxidation was approximately 10 times higher than the calculated geometric surface area. Approximately 1 mg Rh was deposited in the channels by impregnation with an aqueous solution of RhCl3. Annular pieces (15 mm o.d.,4 mm i.d., 14 mm length) of extruded {alpha}-Al2O3 foams were impregnated with aqueous solutions of Rh(NO3)3 to obtain 0.01, 0.05 and 0.1 wt.% loadings, as predicted by solution uptake. ICP-AES analyses showed that the actual Rh loadings probably were higher, 0.025, 0.077 and 0.169 wt.% respectively. One of the microchannel Fecralloy reactors and all Al2O3 foams were equipped with a channel to allow for temperature measurement inside the catalytic system. Temperature profiles obtained along the reactor axes show that the metallic microchannel reactor is able to minimize temperature gradients as compared to the alumina foams. At sufficiently high furnace temperature, the gas phase in front of the Rh/Al2O3/Frecralloy microchannel reactor and the 0.025 wt.% Rh/Al2O3 foams ignites. Gas phase ignition leads to lower syngas selectivity and higher selectivity to total oxidation products and hydrocarbon by-products. Before ignition of the gas phase the hydrogen selectivity is increased in OSR as compared to POX, the main contribution being the water-gas shift reaction. After gas phase ignition, increased formation of hydrocarbon by-products

  9. HTTR workshop (workshop on hydrogen production technology)

    International Nuclear Information System (INIS)

    Various research and development efforts have been performed to solve the global energy and environmental problems caused by large consumption of fossil fuels. Research activities on advanced hydrogen production technology by the use of nuclear heat from high temperature gas cooled reactors, for example, have been flourished in universities, research institutes and companies in many countries. The Department of HTTR Project and the Department of Advanced Nuclear Heat Technology of JAERI held the HTTR Workshop (Workshop on Hydrogen Production Technology) on July 5 and 6, 2004 to grasp the present status of R and D about the technology of HTGR and the nuclear hydrogen production in the world and to discuss about necessity of the nuclear hydrogen production and technical problems for the future development of the technology. More than 110 participants attended the Workshop including foreign participants from USA, France, Korea, Germany, Canada and United Kingdom. In the Workshop, the presentations were made on such topics as R and D programs for nuclear energy and hydrogen production technologies by thermo-chemical or other processes. Also, the possibility of the nuclear hydrogen production in the future society was discussed. The workshop showed that the R and D for the hydrogen production by the thermo-chemical process has been performed in many countries. The workshop affirmed that nuclear hydrogen production could be one of the competitive supplier of hydrogen in the future. The second HTTR Workshop will be held in the autumn next year. (author)

  10. Production of jet fuel from alternative source

    Energy Technology Data Exchange (ETDEWEB)

    Eller, Zoltan; Papp, Anita; Hancsok, Jenoe [Pannonia Univ., Veszprem (Hungary). MOL Dept. of Hydrocarbon and Coal Processing

    2013-06-01

    Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. This was generated by the growing of aviation. Furthermore, the quality requirements have become more aggravated for jet fuels. Nowadays reduced aromatic hydrocarbon fractions are necessary for the production of jet fuels with good burning properties, which contribute to less harmful material emission. In the recent past the properties of gasolines and diesel gas oils were continuously severed, and the properties of jet fuels will be more severe, too. Furthermore, it can become obligatory to blend alternative components into jet fuels. With the aromatic content reduction there is a possibility to produce high energy content jet fuels with the desirable properties. One of the possibilities is the blending of biocomponents from catalytic hydrogenation of triglycerides. Our aim was to study the possibilities of producing low sulphur and aromatic content jet fuels in a catalytic way. On a CoMo/Al{sub 2}O{sub 3} catalyst we studied the possibilities of quality improving of a kerosene fraction and coconut oil mixture depending on the change of the process parameters (temperature, pressure, liquid hourly space velocity, volume ratio). Based on the quality parameters of the liquid products we found that we made from the feedstock in the adequate technological conditions products which have a high smoke point (> 35 mm) and which have reduced aromatic content and high paraffin content (90%), so these are excellent jet fuels, and their stack gases damage the environment less. (orig.)

  11. Petroleum Refinery Hydrogen Production Unit: Exergy and Production Cost Evaluation

    Directory of Open Access Journals (Sweden)

    Silvio de Oliveira Júnior

    2008-12-01

    Full Text Available Some specific processes are required to obtain pure hydrogen and the most usual one is natural gas reforming, where natural gas reacts with superheated steam producing H2, CO, CO2 and H2O. This paper presents the exergy and production costs evaluation of a complete hydrogen production unit of a petroleum refinery. The hydrogen production unit analysed in this paper has to supply 550,000 Nm3 of hydrogen per day to purify diesel oil. Based on a synthesis plant of the hydrogen production unit, the exergy efficiency of each component and of the overall plant are calculated. The hydrogen production cost is determined by means of a thermoeconomic analysis in which the equality cost partition method is employed, including capital and operational costs, in order to determine the production cost of hydrogen and other products of the plant.

  12. Potential application of anaerobic extremophiles for hydrogen production

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-11-01

    In processes of the substrate fermentation most anaerobes produce molecular hydrogen as a waste end product, which often controls the culture growth as an inhibitor. Usually in nature the hydrogen is easily removed from an ecosystem, due to its physical features, and an immediate consumption by the secondary anaerobes that sometimes behave as competitors for electron donors; a classical example of this kind of substrate competition in anaerobic microbial communities is the interaction between methanogens and sulfate- or sulfur-reducers. Previously, on the mixed cultures of anaerobes at neutral pH, it was demonstrated that bacterial hydrogen production could provide a good alternative energy source. At neutral pH the original cultures could easily contaminated by methanogens, and the most unpleasant side effect of these conditions is the development of pathogenic bacteria. In both cases the rate of hydrogen production was dramatically decreased since some part of the hydrogen was transformed to methane, and furthermore, the cultivation with pathogenic contaminants on an industrial scale would create an unsafe situation. In our laboratory the experiments with obligately alkaliphilic bacteria producing hydrogen as an end metabolic product were performed at different conditions. The mesophilic, haloalkaliphilic and obligately anaerobic bacterium Spirochaeta americana ASpG1T was studied and various cultivation regimes were compared for the most effective hydrogen production. In a highly mineralized media with pH 9.5-10.0 not many known methanogens are capable of growth, and the probability of developing pathogenic contaminants is theoretically is close to zero (in medicine carbonate- saturated solutions are applied as antiseptics). Therefore the cultivation of alkaliphilic hydrogen producing bacteria could be considered as a safe and economical process for large-scale industrial bio-hydrogen production in the future. Here we present and discuss the experimental data

  13. Hydrogen production by recombinant Escherichia coli strains

    OpenAIRE

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Thomas K Wood

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increas...

  14. Hydrogen logistics: Assessment of production, conditioning, distribution, storage and refuelling

    Energy Technology Data Exchange (ETDEWEB)

    Hohlein, B.; Reijerkerk, J.

    2005-07-01

    Providing energy on a clean, safe and reliable basis, on reasonable price conditions and on acceptable economic terms, is one of the major challenges for the future. The overall path leading to a hydrogen oriented energy economy will require the solution of two complex problems, i.e. hydrogen production and hydrogen supply. In this context, it is important to analyse energy demand, emissions and the cost of supplying new energy carriers - including hydrogen as a long-term option - in terms of distribution strategies subject to global, regional as well as local requirements. Hydrogen logistics involves high cost and energy expenditure considering not only the production, conditioning, distribution and storage of hydrogen but also hydrogen management at service stations (for automobile applications) or at refuelling stations (for refuelling cartridges) - see figure. Our conference contribution offers systems analyses for various hydrogen paths up to the end consumer, evaluating the alternative options in terms of energy demand, greenhouse-gas emissions and hydrogen costs at the service stations. The assessment is based on research studies from Forschungszentrum Juelich (2003/04), Linde Gas (2002/04), National Research Council and National Academy of Engineering (2004) and E4Tech (2005). (Author)

  15. Hydrogen Production by Water Biophotolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ghirardi, Maria L.; King, Paul W.; Mulder, David W.; Eckert, Carrie; Dubini, Alexandra; Maness, Pin-Ching; Yu, Jianping

    2014-01-22

    The use of microalgae for production of hydrogen gas from water photolysis has been studied for many years, but its commercialization is still limited by multiple challenges. Most of the barriers to commercialization are attributed to the existence of biological regulatory mechanisms that, under anaerobic conditions, quench the absorbed light energy, down-regulate linear electron transfer, inactivate the H2-producing enzyme, and compete for electrons with the hydrogenase. Consequently, the conversion efficiency of absorbed photons into H2 is significantly lower than its estimated potential of 12–13 %. However, extensive research continues towards addressing these barriers by either trying to understand and circumvent intracellular regulatory mechanisms at the enzyme and metabolic level or by developing biological systems that achieve prolonged H2 production albeit under lower than 12–13 % solar conversion efficiency. This chapter describes the metabolic pathways involved in biological H2 photoproduction from water photolysis, the attributes of the two hydrogenases, [FeFe] and [NiFe], that catalyze biological H2 production, and highlights research related to addressing the barriers described above. These highlights include: (a) recent advances in improving our understanding of the O2 inactivation mechanism in different classes of hydrogenases; (b) progress made in preventing competitive pathways from diverting electrons from H2 photoproduction; and (c) new developments in bypassing the non-dissipated proton gradient from down-regulating photosynthetic electron transfer. As an example of a major success story, we mention the generation of truncated-antenna mutants in Chlamydomonas and Synechocystis that address the inherent low-light saturation of photosynthesis. In addition, we highlight the rationale and progress towards coupling biological hydrogenases to non-biological, photochemical charge-separation as a means to bypass the barriers of photobiological

  16. Nuclear energy for sustainable Hydrogen production

    International Nuclear Information System (INIS)

    There is general agreement that hydrogen as an universal energy carrier could play increasingly important role in energy future as part of a set of solutions to a variety of energy and environmental problems. Given its abundant nature, hydrogen has been an important raw material in the organic chemical industry. At recent years strong competition has emerged between nations as diverse as the U.S., Japan, Germany, China and Iceland in the race to commercialize hydrogen energy vehicles in the beginning of 21st Century. Any form of energy - fossil, renewable or nuclear - can be used to generate hydrogen. The hydrogen production by nuclear electricity is considered as a sustainable method. By our presentation we are trying to evaluate possibilities for sustainable hydrogen production by nuclear energy at near, medium and long term on EC strategic documents basis. The main EC documents enter water electrolysis by nuclear electricity as only sustainable technology for hydrogen production in early stage of hydrogen economy. In long term as sustainable method is considered the splitting of water by thermochemical technology using heat from high temperature reactors too. We consider that at medium stage of hydrogen economy it is possible to optimize the sustainable hydrogen production by high temperature and high pressure water electrolysis by using a nuclear-solar energy system. (author)

  17. Hydrogen. Production and application in industry

    Energy Technology Data Exchange (ETDEWEB)

    Dueker, A. [Sued-Chemie AG, Muenchen (Germany)

    2010-12-30

    Hydrogen is one of the most fascinating elements in Universe. Its unique properties made it to a matter that is used in a wide range of different industrial applications. Besides the chemical role of Hydrogen as a hydrogenation agent, it will play an ever more important role in the global energy house hold. This presentation focuses on the classical technologies for the production of Hydrogen based on a variety of raw materials and will show the most important applications of Hydrogen in large scale industry. (orig.)

  18. Hydrogen production from glucose in ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Assenbaum, D.W.; Taccardi, N.; Berger, M.E.M.; Boesmann, A.; Enzenberger, F.; Woelfel, R.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer chemische Reaktionstechnik

    2010-07-01

    Depletion of oil and gas reserves and growing global warming concerns have created a world-wide interest in new concepts for future sustainable energy supplies. The development of effective ways to produce hydrogen from biomass is expected to be one important contribution to such a goal [1]. Nowadays, three main processes are considered for future industrial application, namely: gasification of biomass [2], reforming in supercritical water [3] and aqueous phase reforming [4,5]. Other technologies such as enzymatic decomposition of sugars or steam reforming of bio-oils suffer from low hydrogen production rates and/or complex processing requirements and can probably not be considered for industrial applications in the closer future [6,7]. On the other hand, either the gasification of biomass, which is typically carried out at temperatures above 800 C using Ni or Fe catalysts [8,9,10,11], or the reforming in supercritical water, which is typically carried out in presence of Ru catalyst at pressures of 300bar and temperatures ranging from 500 to 700 C [12], suffer of poor energetic efficiency as a lot of energy is required to run the reactions. More recently, an alternative to the two aforementioned high temperature processes has been proposed as ''aqueous phase reforming'' (APR) by Dumesic and coworkers [13,14,15,16,17]. They achieved the reforming of polyols (such as ethylene glycol, glycerol and sorbitol) using heterogeneous catalysts at temperatures between 200 and 250 C and pressure typically between 15-50bar.The temperature level of the reaction allows generating hydrogen with low amounts of CO in a single reactor. The process typically forms 35 % of hydrogen, 40 % of CO2 and 25 % of combined alkanes. The high amount of formed alkanes originates eventually from CO hydrogenation and Fischer-Tropsch (F-T) reaction [18,19,20,21], those are thermodynamically favored in the above mentioned conditions. However, heterogeneously catalyzed APR

  19. Scenarios of hydrogen production from wind power

    Energy Technology Data Exchange (ETDEWEB)

    Klaric, Mario

    2010-09-15

    Since almost total amount of hydrogen is currently being produced from natural gas, other ways of cleaner and 'more renewable' production should be made feasible in order to make benchmarks for total 'hydrogen economy'. Hydrogen production from wind power combined with electrolysis imposes as one possible framework for new economy development. In this paper various wind-to-hydrogen scenarios were calculated. Cash flows of asset based project financing were used as decision making tool. Most important parameters were identified and strategies for further research and development and resource allocation are suggested.

  20. Hydrogen production from marine biomass by hydrothermal gasification

    International Nuclear Information System (INIS)

    Highlights: • Supercritical water gasification of Posidonia oceanica was studied. • The output was mainly composed of hydrogen, methane and carbon dioxide. • Maximum hydrogen yield was obtained with biomass loading of 0.08 (g/mL) at 600 °C. • Maximum hydrogen and methane yields were 10.37 and 6.34 mol/kg, respectively. • The results propose an alternative solution to the landfill of marine biomass. - Abstract: The hydrothermal gasification of Posidonia oceanica was investigated in a batch reactor without adding any catalysts. The experiments were carried out in the temperature range of 300–600 °C with different biomass loading ranges of 0.04–0.12 (g/mL) in the reaction time of 1 h. The product gas was composed of hydrogen, methane, carbon dioxide, carbon monoxide and a small amount of C2–C4 compounds. The results showed that the formation of gaseous products, gasification efficiency and yield distribution of produced gases were intensively affected by biomass loading and temperature. The yields of hydrogen (10.37 mol/kg) and methane (6.34 mol/kg) were attained at 600 °C using biomass loading of 0.08 (g/mL). The results are very promising in terms of deployment of the utilization of marine biomass for hydrogen and/or methane production to industrial scale applications, thereby proposing an alternative solution to the landfill of P. oceanica residues

  1. Development programme on hydrogen production in HTTR

    International Nuclear Information System (INIS)

    In Japan Atomic Energy Research Institute, a hydrogen production system is being designed to produce hydrogen by means of a steam reforming process of natural gas using nuclear heat (10MW, 905 deg. C) supplied by the High Temperature Engineering Test Reactor (HTTR). The safety principle and criteria are also being investigated in the HTTR hydrogen production system. A facility for an out-of-pile test prior to the demonstration test with the HTTR hydrogen production system is under manufacture. The out-of-pile test facility simulates key components downstream an intermediate heat exchanger of the HTTR hydrogen production system on a scale of 1 to 30. The test on safety, controllability and performance of the hydrogen production system will be started in 2001 and continued for 4 years or longer. In parallel to this, a hydrogen permeation test and a corrosion test of a catalyst tube of a steam reformer are being carried out to obtain data necessary for the design of the system. As for the HTTR hydrogen production system, a conceptual design is in progress, and check and review for the demonstration program will be made in 2000 from a financial point of view as well as technical view. Following a brief overview of the program, the design achievements including safety philosophy so far and technical issues to be resolved are to be summarized in the paper. (author)

  2. Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes

    OpenAIRE

    Julius Akinbomi; Taherzadeh, Mohammad J.

    2015-01-01

    The economic viability of employing dark fermentative hydrogen from whole fruit wastes as a green alternative to fossil fuels is limited by low hydrogen yield due to the inhibitory effect of some metabolites in the fermentation medium. In exploring means of increasing hydrogen production from fruit wastes, including orange, apple, banana, grape and melon, the present study assessed the hydrogen production potential of singly-fermented fruits as compared to the fermentation of mixed fruits. Th...

  3. Alternative transportation fuels: Infrastructure requirements and environmental impacts for ethanol and hydrogen

    Science.gov (United States)

    Wakeley, Heather L.

    Alternative fuels could replace a significant portion of the 140 billion gallons of annual US gasoline use. Considerable attention is being paid to processes and technologies for producing alternative fuels, but an enormous investment in new infrastructure will be needed to have substantial impact on the demand for petroleum. The economics of production, distribution, and use, along with environmental impacts of these fuels, will determine the success or failure of a transition away from US petroleum dependence. This dissertation evaluates infrastructure requirements for ethanol and hydrogen as alternative fuels. It begins with an economic case study for ethanol and hydrogen in Iowa. A large-scale linear optimization model is developed to estimate average transportation distances and costs for nationwide ethanol production and distribution systems. Environmental impacts of transportation in the ethanol life cycle are calculated using the Economic Input-Output Life Cycle Assessment (EIO-LCA) model. An EIO-LCA Hybrid method is developed to evaluate impacts of future fuel production technologies. This method is used to estimate emissions for hydrogen production and distribution pathways. Results from the ethanol analyses indicate that the ethanol transportation cost component is significant and is the most variable. Costs for ethanol sold in the Midwest, near primary production centers, are estimated to be comparable to or lower than gasoline costs. Along with a wide range of transportation costs, environmental impacts for ethanol range over three orders of magnitude, depending on the transport required. As a result, intensive ethanol use should be encouraged near ethanol production areas. Fossil fuels are likely to remain the primary feedstock sources for hydrogen production in the near- and mid-term. Costs and environmental impacts of hydrogen produced from natural gas and transported by pipeline are comparable to gasoline. However, capital costs are prohibitive and

  4. Improvement of anaerobic bio-hydrogen gas production from organic sludge waste

    International Nuclear Information System (INIS)

    Microbial hydrogen gas production from organic matters stands out as one of the most promising alternatives for sustainable green energy production. Based on the literature review, investigation of anaerobic bio-hydrogen gas production from organic sludge waste using a mixed culture has been very limited. The objective of this study was to assess the anaerobic bio-hydrogen gas production from organic sludge waste under various conditions. (Author)

  5. Production of Hydrogen from Underground Coal Gasification

    Science.gov (United States)

    Upadhye, Ravindra S.

    2008-10-07

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  6. Developments and constraints in fermentative hydrogen production

    NARCIS (Netherlands)

    Bartacek, J.; Zabranska, J.; Lens, P.N.L.

    2007-01-01

    Fermentative hydrogen production is a novel aspect of anaerobic digestion. The main advantage of hydrogen is that it is a clean and renewable energy source/carrier with high specific heat of combustion and no contribution to the Greenhouse effect, and can be used in many industrial applications. Thi

  7. Production of hydrogen by thermocatalytic cracking of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N.Z. [Univ. of Central Florida, Cape Canaveral, FL (United States)

    1995-09-01

    It is universally accepted that in the next few decades hydrogen production will continue to rely on fossil fuels (primarily, natural gas). On the other hand, the conventional methods of hydrogen production from natural gas (for example, steam reforming) are complex multi-step processes. These processes also result in the emission of large quantities of CO{sub 2} into the atmosphere that produce adverse ecological effects. One alternative is the one-step thermocatalytic cracking (TCC) (or decomposition) of natural gas into hydrogen and carbon. Preliminary analysis indicates that the cost of hydrogen produced by thermal decomposition of natural gas is somewhat lower than the conventional processes after by-product carbon credit is taken. In the short term, this process can be used for on-site production of hydrogen-methane mixtures in gas-filling stations and for CO{sub x}-free production of hydrogen for fuel cell driven prime movers. The experimental data on the thermocatalytic cracking of methane over various catalysts and supports in a wide range of temperatures (500-900{degrees}C) are presented in this paper. Two types of reactors were designed and built at FSEC: continuous flow and pulse fix bed catalytic reactors. The temperature dependence of the hydrogen production yield using oxide type catalysts was studied. Alumina-supported Ni- and Fe-catalysts demonstrated relatively high efficiency in the methane cracking reaction at moderate temperatures (600-800{degrees}C). Kinetic curves of hydrogen production over metal and metal oxide catalysts at different temperatures are presented in the paper. Fe-catalyst demonstrated good stability (for several hours), whereas alumina-supported Pt-catalyst rapidly lost its catalytic activity.

  8. Hydrogen production from biomass over steam gasification

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, R.; Potetz, A.; Hofbauer, H. [Vienna Univ. of Technology (Austria). Inst. of Chemical Engineering; Weber, G. [Bioenergy 2020+, Guessing (Austria)

    2010-12-30

    Renewable hydrogen is one option for a clean energy carrier in the future. There were several research programs in the past, to produce hydrogen on a renewable basis by electrolysis, direct conversion of water or by gasification of biomass. None of these options were developed to a stage, that they could be used on a commercial basis. At the moment almost all hydrogen is produced from fossil fuels and one main consumer of hydrogen are refineries. So a good option to demonstrate the production of renewable hydrogen and bring it later into the market is over refineries. The most economic option to produce renewable hydrogen at the moment is over gasification of biomass. In Austria an indirect gasification system was developed and is demonstrated in Guessing, Austria. The biomass CHP Guessing uses the allothermal steam dual fluidised bed gasifier and produces a high grade product gas, which is used at the moment for the CHP in a gas engine. As there is no nitrogen in the product gas and high hydrogen content, this gas can be also used as synthesis gas or for production of hydrogen. The main aim of this paper is to present the experimental and simulation work to convert biomass into renewable hydrogen. The product gas of the indirect gasification system is mainly hydrogen, carbon monoxide, carbon dioxide and methane. Within the ERA-Net project ''OptiBtLGas'' the reforming of methane and the CO-shift reaction was investigated to convert all hydrocarbons and carbon monoxide to hydrogen. On basis of the experimental results the mass- and energy balances of a commercial 100 MW fuel input plant was done. Here 3 different cases of complexity of the overall plant were simulated. The first case was without reforming and CO-shift, only by hydrogen separation. The second case was by including steam - reforming and afterwards separation of hydrogen. The third case includes hydrocarbon reforming, CO-shift and hydrogen separation. In all cases the off-gases (CO

  9. Fermentative hydrogen production at high sulfate concentration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chin-Chao [Environmental Resources Laboratory, Department of Landscape Architecture, Chungchou Institute of Technology, Changhwa 51022 (China); Chen, Hong-Pin; Wu, Jou-Hsien; Lin, Chiu-Yue [BioHydrogen Laboratory, Department of Water Resource Engineering, Feng Chia University, P.O. Box 25-123, Taichung 40724 (China)

    2008-03-15

    The hydraulic retention time (HRT) effects on fermentative hydrogen production from sucrose at high sulfate concentration of 3 g-SO{sub 4}{sup 2-}/l were studied using enriched mixed-microflora in a continuously fed reactor. The tested HRTs and organic loading rate ranged from 10 to 2 h and 48 to 240 g-COD/l-day, respectively, and the operating pH was 5.5. The experimental results indicate that hydrogen production could not be inhibited under high sulfate concentration and the efficiency was HRT-dependent with a short HRT of 4 h efficiently enhanced hydrogen production. At this HRT the biogas production rate and hydrogen gas content peaked with the hydrogen yield, hydrogen production rate and specific hydrogen production rate of 4.70 mol-H{sub 2}/mol-sucrose, 874 mmol-H{sub 2}/l-day and 432 mmol-H{sub 2}/g-VSS-day, respectively. These values were 50%, 80% and 300%, respectively, higher than those reported for 12 h HRT at the same sulfate concentration. The metabolite concentration fractions were butyrate 77.3%, acetate 15.6%, ethanol 4.4% and propionate 2.0% and changed to 55%, 27.3%, 11.2% and 6.5%, respectively, at HRT 2 h. Therefore, intimate HRT control is important to obtain efficient hydrogen production. Based on a biological growth comparison, pH 5.5 was considered to be the optimal value for operating a hydrogen-producing fermenter fed on sulfate-rich substrate. (author)

  10. Alternatives for hydrogen production in Brazilian regions aiming the generation of distributed electric energy; Alternativas para a producao de hidrogenio nas regioes brasileiras visando a geracao de energia eletrica distribuida

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi Junior, Paulo

    2009-07-01

    In this work possible sources of hydrogen production for the generation of electric energy in a distributed way, with the fuel cell use, had been selected and studied. Three renewable sources (biomass, photovoltaic and wind) have been studied for energy generation in Brazil. For the establishment of numerical values, the main regional agricultural cultures and the amount of biomass in various brazilian states had been evaluated, in the form of waste, capable to be used for future hydrogen production. It was also investigated and evaluated the numerical capacity of hydrogen production from wind and photovoltaic resources for each region in Brazil, considering the electrolytic process. Based on the results, it is possible to demonstrate the potentialities of Brazil for electric energy generation in a planned distributed way, with fossil fuel substitution, and consequently, decreasing the environmental impacts. (author)

  11. Production of hydrogen by superadiabatic decomposition of hydrogen sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Slimane, R.B.; Lau, F.S.; Dihu, R. [Gas Technology Inst., Des Plaines, IL (United States); Bingue, J.P.; Saveliev, A.V.; Fridman, A.A.; Kennedy, L.A. [Illinois Univ., Chicago, IL (United States)

    2002-07-01

    It is expected that hydrogen will become the fuel of choice for advanced technologies. Hydrogen is currently used as feedstock in the synthesis of ammonia and methanol, in the desulfurization and hydrocracking at oil refineries, and in the upgrading of hydrocarbon resources such as heavy oil and coal. Hydrogen sulfide (H{sub 2}S) is regarded as a mineral from which both hydrogen and sulfur can be extracted. Since there are large amounts of H{sub 2}S available worldwide, significant research has gone into the development of converting hydrogen sulfide into hydrogen through thermal decomposition. The high temperature required for the reaction, however, makes the approach impractical. This paper presents results of a study using a new approach to overcome the limitations of thermal decomposition. In this newly developed process, operation at very high temperatures is possible and economical through oxidation of part of the H{sub 2}S to provide the energy needed for the decomposition reaction. Partial oxidation is carried out in the presence of an inert, porous, high-capacity medium and the heat exchange results in flame temperatures that exceed the adiabatic flame temperature of the gas mixture. This process is less stringent than the Claus process because of the required feed gas conditioning. SO{sub 2} emissions inevitably form because part of the H{sub 2}S is oxidized to generate heat. However, SO{sub 2} is not expected to form to a significant degree. It was concluded that the product/byproduct separation schemes need to be examined further to have a better idea regarding the cost of hydrogen production from this process. 6 refs., 5 figs.

  12. Photobiological production of hydrogen using cyanobacteria

    Energy Technology Data Exchange (ETDEWEB)

    Borthakur, D.; McKinley, K.R.; Bylina, E.J. [Univ. of Hawaii, Honolulu, HI (United States)

    1995-09-01

    Cyanobacteria are capable of generating hydrogen using sunlight and water. In both Spirulina and Anabaena, there is a soluble reversible hydrogenase that is involved in hydrogen evolution under anaerobic conditions in the dark. In addition, the nitrogen-fixing cyanobacterium Anabaena produces hydrogen as a by-product of nitrogen fixation. Most of this hydrogen is recaptured by a membrane-bound uptake hydrogenase present in Anabaena cells. Experiments have continued to develop a gene transfer system in Spirulina in preparation for improved hydrogen production via genetic manipulation of the reversible hydrogenase. We have identified and characterized four restriction enzymes in Spirulina and cloned the genes for two methylases that protect their own DNA from cleavage by restriction enzymes. We have also cloned and sequenced parts of hupB and hupM genes involved in the synthesis of uptake hydrogenase in Anabaena. Successful cloning of these hup genes represents an important and necessary step in our project because this will enable us to construct Anabaena strains with enhanced hydrogen production ability by disrupting the hup genes involved in hydrogen uptake. We are also setting up a bio-reactor to determine the amount of hydrogen released by different Spirulina and Anabaena strains under different physiological conditions.

  13. Biological hydrogen production from industrial wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Peixoto, Guilherme; Pantoja Filho, Jorge Luis Rodrigues; Zaiat, Marcelo [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). School of Engineering. Dept. Hydraulics and Sanitation], Email: peixoto@sc.usp.br

    2010-07-01

    This research evaluates the potential for producing hydrogen in anaerobic reactors using industrial wastewaters (glycerol from bio diesel production, wastewater from the parboilization of rice, and vinasse from ethanol production). In a complementary experiment the soluble products formed during hydrogen production were evaluated for methane generation. The assays were performed in batch reactors with 2 liters volume, and sucrose was used as a control substrate. The acidogenic inoculum was taken from a packed-bed reactor used to produce hydrogen from a sucrose-based synthetic substrate. The methanogenic inoculum was taken from an upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Hydrogen was produced from rice parboilization wastewater (24.27 ml H{sub 2} g{sup -1} COD) vinasse (22.75 ml H{sub 2} g{sup -1} COD) and sucrose (25.60 ml H{sub 2} g{sup -1} COD), while glycerol only showed potential for methane generation. (author)

  14. Hydrogen production using ammonia borane

    Science.gov (United States)

    Hamilton, Charles W; Baker, R. Thomas; Semelsberger, Troy A; Shrestha, Roshan P

    2013-12-24

    Hydrogen ("H.sub.2") is produced when ammonia borane reacts with a catalyst complex of the formula L.sub.nM-X wherein M is a base metal such as iron, X is an anionic nitrogen- or phosphorus-based ligand or hydride, and L is a neutral ancillary ligand that is a neutral monodentate or polydentate ligand.

  15. Photo-biotechnological hydrogen production with microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Lehr, F.; Posten, C. [Inst. fuer Bio- und Lebensmitteltechnik, Univ. Karlsruhe (Germany); Renz, A.; Schaub, G. [Engler-Bunte-Inst., Univ. Karlsruhe (Germany)

    2008-07-01

    Some types of unicellular green algae have evolved the ability to use solar energy to produce hydrogen by splitting water. Compared to photosynthesis with terrestrial plants, microalgal hydrogen production exhibits higher photo conversion efficiencies, very low water demands, and no competition with agriculture for arable land use. The overall process includes microalgae growth by photosynthesis and subsequent hydrogen production. The main challenge in process development is the design of photo bioreactors with minimum energy demand for mixing and liquid handling and maximum overall efficiency. In an ongoing research project, process engineering fundamentals are presently being investigated in order to allow more accurate process design and cost estimates. (orig.)

  16. Fermentative hydrogen production by diverse microflora

    Energy Technology Data Exchange (ETDEWEB)

    Baghchehsaraee, B.; Nakhla, G.; Karamanev, D.; Margaritis, A. [Dept. of Chemical and Biochemical Engineering, Univ. of Western Ontario, London, Ontario (Canada)

    2009-07-01

    'Full text': In this study of hydrogen production with activated sludge, a diverse bacterial source has been investigated and compared to microflora from anaerobic digester sludge, which is less diverse. Batch experiments were conducted at mesophilic (37 {sup o}C) and thermophilic (55 {sup o}C) temperatures. The hydrogen production yields with activated sludge at 37 {sup o}C and 55 {sup o}C were 0.25 and 0.93 mol H{sub 2}/mol glucose, respectively. The maximum hydrogen production rates with activated sludge in both temperatures were 4.2 mL/h. Anaerobic digester sludge showed higher hydrogen production yields and rates at both mesophilic and thermophilic temperatures. The results of repeated batch experiments with activated sludge showed an increase in the hydrogen production during the consecutive batches. However, hydrogen production was not stable along the repeated batches. The observed instability was due to the formation of lactic acid and ethanol. (author)

  17. Software product lines : Organizational alternatives

    NARCIS (Netherlands)

    Bosch, J

    2001-01-01

    Software product lines enjoy increasingly wide adoption in the software industry. Most authors focus on the technical and process aspects and assume an organizational model consisting of a domain engineering unit and several application engineering units. In our cooperation with several software dev

  18. Technoeconomic analysis of renewable hydrogen production, storage, and detection systems

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.; Kadam, K. [National Renewable Energy Lab., Golden, CO (United States)

    1996-10-01

    Technical and economic feasibility studies of different degrees of completeness and detail have been performed on several projects being funded by the Department of Energy`s Hydrogen Program. Work this year focused on projects at the National Renewable Energy Laboratory, although analyses of projects at other institutions are underway or planned. Highly detailed analyses were completed on a fiber optic hydrogen leak detector and a process to produce hydrogen from biomass via pyrolysis followed by steam reforming of the pyrolysis oil. Less detailed economic assessments of solar and biologically-based hydrogen production processes have been performed and focused on the steps that need to be taken to improve the competitive position of these technologies. Sensitivity analyses were conducted on all analyses to reveal the degree to which the cost results are affected by market changes and technological advances. For hydrogen storage by carbon nanotubes, a survey of the competing storage technologies was made in order to set a baseline for cost goals. A determination of the likelihood of commercialization was made for nearly all systems examined. Hydrogen from biomass via pyrolysis and steam reforming was found to have significant economic potential if a coproduct option could be co-commercialized. Photoelectrochemical hydrogen production may have economic potential, but only if low-cost cells can be modified to split water and to avoid surface oxidation. The use of bacteria to convert the carbon monoxide in biomass syngas to hydrogen was found to be slightly more expensive than the high end of currently commercial hydrogen, although there are significant opportunities to reduce costs. Finally, the cost of installing a fiber-optic chemochromic hydrogen detection system in passenger vehicles was found to be very low and competitive with alternative sensor systems.

  19. Recent Developments in Biological Hydrogen Production Processes

    Directory of Open Access Journals (Sweden)

    DEBABRATA DAS

    2008-07-01

    Full Text Available Biohydrogen production technology can utilize renewable energy sources like biomass for the generation of hydrogen, the cleanest form of energy for the use of mankind. However, major constraints to the commercialization of these processes include lower hydrogen yields and rates of hydrogen production. To overcome these bottlenecks intensive research work has already been carried out on the advancement of these processes such as the development of genetically modified microorganisms, the improvement of the bioreactor design, molecular engineering of the key enzyme hydrogenases, the development of two stage processes, etc. The present paper explores the recent advancements that have been made till date and also presents the state of the art in molecular strategies to improve the hydrogen production.

  20. Survey of alternative feedstocks for biodiesel production

    Science.gov (United States)

    Summarized will be results obtained from the production of biodiesel from several alternative feedstocks with promising agronomic characteristics. Such feedstocks include camelina (Camelina sativa L.), coriander (Coriandrum sativum L.), field pennycress (Thlaspi arvense L.), and meadowfoam (Limnanth...

  1. Swine manure fermentation for hydrogen production.

    Science.gov (United States)

    Zhu, Jun; Li, Yecong; Wu, Xiao; Miller, Curtis; Chen, Paul; Ruan, Roger

    2009-11-01

    Biohydrogen fermentation using liquid swine manure as substrate supplemented with glucose was investigated in this project. Experiments were conducted using a semi-continuously-fed fermenter (8L in total volume and 4 L in working volume) with varying pHs from 4.7 through 5.9 under controlled temperature (35+/-1 degrees C). The hydraulic retention time (HRT) tested include 16, 20, and 24h; however, in two pH conditions (5.0 and 5.3), an additional HRT of 12h was also tried. The experimental design combining HRT and pH provided insight on the fermenter performance in terms of hydrogen generation. The results indicated that both HRT and pH had profound influences on fermentative hydrogen productivity. A rising HRT would lead to greater variation in hydrogen concentration in the offgas and the best HRT was found to be 16 h for the fermenter in this study. The best pH value in correspondence to the highest hydrogen generation was revealed to be 5.0 among all the pHs studied. There was no obvious inhibition on hydrogen production by methanogenesis when methane content in the offgas was lower than 2%. Otherwise, an inverse linear relationship between hydrogen and methane content was observed with a correlation coefficient of 0.9699. Therefore, to increase hydrogen content in the offgas, methane production has to be limited to below 2%. PMID:19157863

  2. Hydrogen production through nuclear energy, a sustainable scenario in Mexico

    International Nuclear Information System (INIS)

    The energy is a key point in the social and economic development of a country, for such motive to assure the energy supply in Mexico it is of vital importance. The hydrogen it is without a doubt some one of the alternating promising fuels before the visible one necessity to decentralize the energy production based on hydrocarbons. The versatility of their applications, it high heating power and having with the more clean fuel cycle of the energy basket with which count at the moment, they are only some examples of their development potential. However the more abundant element of the universe it is not in their elementary form in our planet, it forms molecules like in the hydrocarbons or water and it stops their use it should be extracted. At the present time different methods are known for the extraction of hydrogen, there is thermal, electric, chemical, photovoltaic among others. The election of the extraction method and the primary energy source to carry out it are decisive to judge the sustainability of the hydrogen production. The sustainable development is defined as development that covers the present necessities without committing the necessity to cover the necessities of the future generations, and in the mark of this definition four indicators of the sustainable development of the different cycles of fuel were evaluated in the hydrogen production in Mexico. These indicators take in consideration the emissions of carbon dioxide in the atmosphere (environment), the readiness of the energy resources (technology), the impacts in the floor use (social) and the production costs of the cycles (economy). In this work the processes were studied at the moment available for the generation of hydrogen, those that use coal, natural gas, hydraulic, eolic energy, biomass and nuclear, as primary energy sources. These processes were evaluated with energy references of Mexico to obtain the best alternative for hydrogen production. (Author)

  3. Visbreaking based integrated process for bitumen upgrading and hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Sosa, C.; Gonzalez, M.F.; Carbognani, L.; Perez-Zurita, M.J.; Lopez-Linares, F.; Husein, M.; Moore, G.; Pereira, P. [Calgary Univ., AB (Canada). Alberta In Situ Centre For In Situ Energy, Schulich School Of Engineering

    2006-07-01

    New and cost effective upgrading schemes for distillates production and residue disposal are needed in order to recover Alberta's vast heavy oil and bitumen reserves. On average, heavy oils and bitumen contain 50 per cent (w/w) of components remaining after vacuum distillation. A new alternative for upgrading vacuum resids was proposed. The method involves the following 3 processing steps: production of modified, nearly unstable heavy molecules by mild thermal cracking known as visbreaking; adsorption of modified heavy molecules over inexpensive, tailor-designed porous sorbents or catalysts; and, production of hydrogen by low temperature catalytic steam gasification of the adsorbed molecules. This cost effective way of producing hydrogen is based on the selective segregation of a minimal fraction of the heaviest hydrocarbon molecules, those most instable, followed by their gasification at low temperature. This paper presented results on the combined processing as well as using both a model molecule and real feedstock from the Athabasca vacuum resids for the adsorption and hydrogen production steps. The study showed that this new process can obtain high rates of hydrogen production when a kaolin based solid formulation is used as both, adsorbent and catalysts, for these heavy molecules. It was concluded that this alternative method for producing hydrogen at upgrading sites in northern Alberta has potential for both installed and future up-graders to improve the quality of synthetic crude being produced. The hydrogen produced from the gasification of these heavy compounds could be used for both refining purposes or for in-situ reservoir upgrading. 27 refs., 3 figs.

  4. Hydrogen production from agricultural waste by dark fermentation: A review

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xin Mei; Trably, Eric; Latrille, Eric; Carrere, Helene; Steyer, Jean-Philippe [INRA, UR050, Laboratoire de Biotechnologie de l' Environnement, F-11100 Narbonne (France)

    2010-10-15

    The degradation of the natural environment and the energy crisis are two vital issues for sustainable development worldwide. Hydrogen is considered as one of the most promising candidates as a substitute for fossil fuels. In this context, biological processes are considered as the most environmentally friendly alternatives for satisfying future hydrogen demands. In particular, biohydrogen production from agricultural waste is very advantageous since agri-wastes are abundant, cheap, renewable and highly biodegradable. Considering that such wastes are complex substrates and can be degraded biologically by complex microbial ecosystems, the present paper focuses on dark fermentation as a key technology for producing hydrogen from crop residues, livestock waste and food waste. In this review, recent findings on biohydrogen production from agricultural wastes by dark fermentation are reported. Key operational parameters such as pH, partial pressure, temperature and microbial actors are discussed to facilitate further research in this domain. (author)

  5. South Africa's nuclear hydrogen production development programme

    International Nuclear Information System (INIS)

    In May 2007 the South African Cabinet approved a National Hydrogen and Fuel Cell Technologies R and D and Innovation Strategy. The strategy will focus on research, development and innovation for: i) wealth creation through high value-added manufacturing and developing platinum group metals catalysis; ii) building on the existing knowledge in high temperature gas-cooled reactors (HTGR) and coal gasification Fischer-Tropsch technology, to develop local cost-competitive hydrogen production solutions; iii) to promote equity and inclusion in the economic benefits from South Africa's natural resource base. As part of the roll-out strategy, the South African Department of Science and Technology (DST) created three Competence Centres (CC), including a Hydrogen Infrastructure Competence Centre hosted by the North-West University (NWU) and the Council for Scientific and Industrial Research (CSIR). The Hydrogen Infrastructure CC is tasked with developing hydrogen production, storage, distribution as well as codes and standards programmes within the framework of the DST strategic objectives to ensure strategic national innovation over the next fifteen years. One of the focus areas of the Hydrogen Infrastructure CC will be on large scale CO2 free hydrogen production through thermochemical water-splitting using nuclear heat from a suitable heat source such as a HTGR and the subsequent use of the hydrogen in applications such as the coal-to-liquid process and the steel industry. This paper will report on the status of the programme for thermochemical water-splitting as well as the associated projects for component and technology development envisaged in the Hydrogen Infrastructure CC. The paper will further elaborate on current and future collaboration opportunities as well as expected outputs and deliverables. (authors)

  6. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen; Workshop Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. W.; McQueen, S.; Brinch, J.

    2008-07-01

    DOE sponsored the Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can inform future efforts to commercialize hydrogen vehicles. This report contains the proceedings from the workshop.

  7. Microbial consortia for hydrogen production enhancement.

    Science.gov (United States)

    Rajhi, Haifa; Díaz, Emiliano E; Rojas, Patricia; Sanz, José L

    2013-07-01

    Ten efficient hydrogen-producing strains affiliated to the Clostridium genus were used to develop consortia for hydrogen production. In order to determine their saccharolytic and proteolytic activities, glucose and meat extract were tested as fermentation substrates, and the best hydrogen-producing strains were selected. The C. roseum H5 (glucose-consuming) and C. butyricum R4 (protein-degrading) co-culture was the best hydrogen-producing co-culture. The end-fermentation products for the axenic cultures and co-cultures were analyzed. In all cases, organic acids, mainly butyrate and acetate, were produced lowering the pH and thus inhibiting further hydrogen production. In order to replace the need for reducing agents for the anaerobic growth of clostridia, a microbial consortium including Clostridium spp. and an oxygen-consuming microorganism able to form dense granules (Streptomyces sp.) was created. Increased yields of hydrogen were achieved. The effect of adding a butyrate-degrading bacteria and an acetate-consuming archaea to the consortia was also studied.

  8. Continuous hydrogen production from starch by fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Keigo; Tanisho, Shigeharu [Yokohama National Univ. (Japan)

    2010-07-01

    This study was investigated the effect of hydraulic retention time (HRT) on hydrogen production rate, hydrogen yield and the production rate of volatile fatty acid. The experiment was performed in a continuous stirred tank reactor (CSTR) with a working volume of 1 L by using a Clostridium sp. The temperature of the CSTR was regulated 37 C. The pH was controlled 6.0 by the addition of 3 M of NaOH solution. Starch was used as the carbon source with the concentration of 30 g L{sup -1}. Hydrogen production rate increased from 0.9 L-H{sub 2} L-culture{sup -1} h{sup -1} to 3.2 L-H{sub 2} L-culture{sup -1} h{sup -1} along with the decrease of HRT from 9 h to 1.5 h. Hydrogen yield decreased at low HRT. The major volatile fatty acids are acetic acid, butyric acid and lactic acid. The production rates of acetic acid and butyric acid increased along with the decrease of HRT. On the other hand, the rate of lactic acid was low at high HRT while it increased at HRT 1.5 h. The increase of the production rate of lactic acid suggested one of the reasons that hydrogen yield decreased. (orig.)

  9. Measured moisture properties for alternative insulation products

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan De Place; Hansen, Kurt Kielsgaard; Padfield, Tim

    1999-01-01

    During the past few years there has been a growing interest in using alternative insulation products in buildings. Among these products are the organic materials cellulose fibre, flax and sheep's wool as well as the inorganic perlite. The organic materials are regarded with some suspicion, because...

  10. Mixed Culture PHA Production With Alternating Feedstocks

    DEFF Research Database (Denmark)

    Oliveira, C.S.S.; Duque, A.F.; Carvalho, Gilda;

    Polyhydroxyalkanoates (PHA) are a sustainable alternative to conventional plastics that can be obtained from industrial wastes/by-products using mixed microbial cultures (MMC). MMC PHA production is commonly carried out in a 3-stage process consisting of an acidogenic stage, a PHA producing cultu...

  11. Comparison of pulp-mill-integrated hydrogen production from gasified black liquor with stand-alone production from gasified biomass

    International Nuclear Information System (INIS)

    When gasified black liquor is used for hydrogen production, significant amounts of biomass must be imported. This paper compares two alternative options for producing hydrogen from biomass: (A) pulp-mill-integrated hydrogen production from gasified back liquor; and (B) stand-alone production of hydrogen from gasified biomass. The comparison assumes that the same amount of biomass that is imported in Alternative A is supplied to a stand-alone hydrogen production plant and that the gasified black liquor in Alternative B is used in a black liquor gasification combined cycle (BLGCC) CHP unit. The comparison is based upon equal amounts of black liquor fed to the gasifier, and identical steam and power requirements for the pulp mill. The two systems are compared on the basis of total CO2 emission consequences, based upon different assumptions for the reference energy system that reflect different societal CO2 emissions reduction target levels. Ambitions targets are expected to lead to a more CO2-lean reference energy system, in which case hydrogen production from gasified black liquor (Alternative A) is best from a CO2 emissions' perspective, whereas with high CO2 emissions associated with electricity production, hydrogen from gasified biomass and electricity from gasified black liquor (Alternative B) is preferable. (author)

  12. Hydrogen production by the decomposition of water

    Science.gov (United States)

    Hollabaugh, C.M.; Bowman, M.G.

    A process is described for the production of hydrogen from water by a sulfuric acid process employing electrolysis and thermo-chemical decomposition. The water containing SO/sub 2/ is electrolyzed to produce H/sub 2/ at the cathode and to oxidize the SO/sub 2/ to form H/sub 2/SO/sub 4/ at the anode. After the H/sub 2/ has been separated, a compound of the type M/sub r/X/sub s/ is added to produce a water insoluble sulfate of M and a water insoluble oxide of the metal in the radical X. In the compound M/sub r/X/sub s/, M is at least one metal selected from the group consisting of Ba/sup 2 +/, Ca/sup 2 +/, Sr/sup 2 +/, La/sup 2 +/, and Pb/sup 2 +/; X is at least one radical selected from the group consisting of molybdate (MoO/sub 4//sup 2 -/), tungstate (WO/sub 4//sup 2 -/), and metaborate (BO/sub 2//sup 1 -/); and r and s are either 1, 2, or 3 depending upon the valence of M and X. The precipitated mixture is filtered and heated to a temperature sufficiently high to form SO/sub 3/ gas and to reform M/sub r/X/sub s/. The SO/sub 3/ is dissolved in a small amount of H/sub 2/O to produce concentrated H/sub 2/SO/sub 4/, and the M/sub r/X/sub s/ is recycled to the process. Alternatively, the SO/sub 3/ gas can be recycled to the beginning of the process to provide a continuous process for the production of H/sub 2/ in which only water need be added in a substantial amount. (BLM)

  13. Fermentative hydrogen production by diverse microflora

    Energy Technology Data Exchange (ETDEWEB)

    Baghchehsaraee, Bita; Nakhla, George; Karamanev, Dimitre; Margaritis, Argyrios [Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2010-05-15

    In this study, hydrogen production with activated sludge, a diverse bacterial source has been investigated and compared to microflora from anaerobic digester sludge, which is less diverse. Batch experiments were conducted at mesophilic (37 C) and thermophilic (55 C) temperatures. The hydrogen production yields with activated sludge at 37 C and 55 C were 0.56 and 1.32 mol H{sub 2}/mol glucose consumed, respectively. While with anaerobically digested sludge hydrogen yield was 2.18 mol H{sub 2}/mol glucose consumed at 37 C and 1.25 mol H{sub 2}/mol glucose consumed at 55 C. The results of repeated batch experiments for 615 h resulted in average yields of 1.21 {+-} 0.62 and 1.40 {+-} 0.16 mol H{sub 2}/mol glucose consumed for activated sludge and anaerobic sludge, respectively. The hydrogen production with activated sludge was not stable during the repeated batches and the fluctuation in hydrogen production was attributed to formation of lactic acid as the predominant metabolite in some batches. The presence of lactic acid bacteria in microflora was confirmed by PCR-DGGE. (author)

  14. Modeling, Simulation and Optimization of Hydrogen Production Process from Glycerol using Steam Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeongpil; Cho, Sunghyun; Kim, Tae-Ok; Shin, Dongil [Myongji University, Yongin (Korea, Republic of); Lee, Seunghwan [JNK Heaters, Seoul (Korea, Republic of); Moon, Dong Ju [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2014-12-15

    For improved sustainability of the biorefinery industry, biorefinery-byproduct glycerol is being investigated as an alternate source for hydrogen production. This research designs and optimizes a hydrogen-production process for small hydrogen stations using steam reforming of purified glycerol as the main reaction, replacing existing processes relying on steam methane reforming. Modeling, simulation and optimization using a commercial process simulator are performed for the proposed hydrogen production process from glycerol. The mixture of glycerol and steam are used for making syngas in the reforming process. Then hydrogen are produced from carbon monoxide and steam through the water-gas shift reaction. Finally, hydrogen is separated from carbon dioxide using PSA. This study shows higher yield than former U.S.. DOE and Linde studies. Economic evaluations are performed for optimal planning of constructing domestic hydrogen energy infrastructure based on the proposed glycerol-based hydrogen station.

  15. Analytical approaches to photobiological hydrogen production in unicellular green algae.

    Science.gov (United States)

    Hemschemeier, Anja; Melis, Anastasios; Happe, Thomas

    2009-01-01

    Several species of unicellular green algae, such as the model green microalga Chlamydomonas reinhardtii, can operate under either aerobic photosynthesis or anaerobic metabolism conditions. A particularly interesting metabolic condition is that of "anaerobic oxygenic photosynthesis", whereby photosynthetically generated oxygen is consumed by the cell's own respiration, causing anaerobiosis in the culture in the light, and induction of the cellular "hydrogen metabolism" process. The latter entails an alternative photosynthetic electron transport pathway, through the oxygen-sensitive FeFe-hydrogenase, leading to the light-dependent generation of molecular hydrogen in the chloroplast. The FeFe-hydrogenase is coupled to the reducing site of photosystem-I via ferredoxin and is employed as an electron-pressure valve, through which electrons are dissipated, thus permitting a sustained electron transport in the thylakoid membrane of photosynthesis. This hydrogen gas generating process in the cells offers testimony to the unique photosynthetic metabolism that can be found in many species of green microalgae. Moreover, it has attracted interest by the biotechnology and bioenergy sectors, as it promises utilization of green microalgae and the process of photosynthesis in renewable energy production. This article provides an overview of the principles of photobiological hydrogen production in microalgae and addresses in detail the process of induction and analysis of the hydrogen metabolism in the cells. Furthermore, methods are discussed by which the interaction of photosynthesis, respiration, cellular metabolism, and H(2) production in Chlamydomonas can be monitored and regulated. PMID:19291418

  16. Systematic Discrimination of Advanced Hydrogen Production Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson

    2010-07-01

    The U.S. Department of Energy, in concert with industry, is developing a high-temperature gas-cooled reactor at the Idaho National Laboratory (INL) to demonstrate high temperature heat applications to produce hydrogen and electricity or to support other industrial applications. A key part of this program is the production of hydrogen from water that would significantly reduce carbon emissions compared to current production using natural gas. In 2009 the INL led the methodical evaluation of promising advanced hydrogen production technologies in order to focus future resources on the most viable processes. This paper describes how the evaluation process was systematically planned and executed. As a result, High-Temperature Steam Electrolysis was selected as the most viable near-term technology to deploy as a part of the Next Generation Nuclear Plant Project.

  17. Use of nuclear energy for hydrogen production

    International Nuclear Information System (INIS)

    Full text: The potential of three hydrogen production processes, under development for the industrial production of hydrogen using nuclear energy, are compared and evaluated in this paper, namely: advanced electrolysis, steam reforming, and sulfur-iodine water splitting cycle. Water electrolysis and steam reforming of methane are proven and used extensively for the production of hydrogen today. The overall thermal efficiency of the electrolysis includes the efficiency of the electrical power generation and of the electrolysis itself. The electrolysis process efficiency is about 75 % and of electrical power generation is only about 30 %, the overall thermal efficiency for H2 generation being about 25 %. Steam reforming process consists of reacting methane (or natural gas) and steam in a chemical reactor at 800 - 900 deg C, with a thermal efficiency of about 70 %. In a reforming process, with heat supplied by nuclear reactor, the heat must be supplied by a secondary loop from the nuclear side and be transferred to the methane/steam mixture, via heat exchanger type reactor. The sulfur-iodine (S-I) cycle, a thermochemical water splitting, is of particular interest because it produces hydrogen efficiently with no CO2 as byproduct. If heated with a nuclear source it could prove to be an ideal environmental solution to hydrogen production. Steam reforming remains the cheapest hydrogen production method based on the latest estimates, even when implemented with nuclear reactor. The S-I cycle offers a close second and the electrolysis is the most expensive of the options for industrial H2 production. The nuclear plant could power electrolysis operations right away. Steam reforming with nuclear power is a little bit further off into the future, the first operation expected with nuclear facility is in Japan in 2008. The S-I cycle implementation is still over the horizon, it will be more than 10 years until we will see that cycle in full scale operation with a nuclear reactor

  18. Study of hydrogen production at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Raoui, M.; Belhamel [Centre de Developpement des Energies Renouvelables, BP 62 route de l observatoire Village celleste, Bouzareah Alger, (Algeria); Miri [Universite des sciences et de la technologie houari boumediene, Alger, (Algeria); Benyoucef [Universite de Tlemcen, Tlemcen, (Algeria)

    2006-07-01

    In this study, we evaluate the hydrogen production per electrolysis at high temperature. The increase in the pressure and the temperature of water are done by a solar power station, the electrolysis of water is done at high temperature 900 C 30 bars. We carry out the design of a generating station of hydrogen treating a flow rate of 1 kg/s of water vapour, then we simulate the production of this installation in various towns of Algeria. The results show the great potential energy of the cities of the Algerian south. (authors)

  19. Multi-criteria analysis on how to select solar radiation hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Badea, G.; Naghiu, G. S., E-mail: naghiu.george@gmail.com; Felseghi, R.-A.; Giurca, I., E-mail: giurca-ioan@yahoo.com [Technical University of Cluj-Napoca, Faculty of Building Services Engineering, Boulevard December 21, no. 128-130, Cluj-Napoca, 400604 (Romania); Răboacă, S. [National R& D Institute for Cryogenic and Isotopic Technologies, str. Uzinei, no. 4, Rm. Vălcea, 240050 (Romania); Aşchilean, I. [SC ACI Cluj SA, Avenue Dorobanţilor, no. 70, Cluj-Napoca, 400609 (Romania)

    2015-12-23

    The purpose of this article is to present a method of selecting hydrogen-production systems using the electric power obtained in photovoltaic systems, and as a selecting method, we suggest the use of the Advanced Multi-Criteria Analysis based on the FRISCO formula. According to the case study on how to select the solar radiation hydrogen production system, the most convenient alternative is the alternative A4, namely the technical solution involving a hydrogen production system based on the electrolysis of water vapor obtained with concentrated solar thermal systems and electrical power obtained using concentrating photovoltaic systems.

  20. Multi-criteria analysis on how to select solar radiation hydrogen production system

    International Nuclear Information System (INIS)

    The purpose of this article is to present a method of selecting hydrogen-production systems using the electric power obtained in photovoltaic systems, and as a selecting method, we suggest the use of the Advanced Multi-Criteria Analysis based on the FRISCO formula. According to the case study on how to select the solar radiation hydrogen production system, the most convenient alternative is the alternative A4, namely the technical solution involving a hydrogen production system based on the electrolysis of water vapor obtained with concentrated solar thermal systems and electrical power obtained using concentrating photovoltaic systems

  1. Production of pure hydrogen by ethanol dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Santacesaria, Elio; Carotenuto, Giuseppina; Tesser, Riccardo; Di Serio, Martino [Naples Univ. (Italy). Dipt. di Chimica

    2011-06-15

    Hydrogen production from bio-ethanol is one of the most promising renewable processes to generate electricity using fuel cells. In this work, we have studied the production of pure hydrogen as a by-product of the ethanol dehydrogenation reaction. This reaction is promoted by copper based catalysts and according to the catalyst used and the operating conditions gives place to acetaldehyde or ethyl acetate as main products. We studied in particular the performance of a commercial copper/copper chromite catalyst, supported on alumina and containing barium chromate as a promoter, which gave the best results. By operating at low pressure and temperature with short residence times, acetaldehyde is more selectively produced, while, by increasing the pressure (10-30 bars), the temperature (200-260 C) and the residence time (about 100 grams hour/mol of ethanol contact time) the selectivity is shifted to the production of ethyl acetate. However, in both cases pure hydrogen is obtained, as a by-product, which can easily be separated. Hydrogen obtained in this way is free of CO and can be directly fed to fuel cells without any inconvenience. In this work, runs performed under different operating conditions have been reported with the scope to select the best conditions. A carrier of H2 6% in N{sub 2} has been used. The studied catalyst has also shown a good thermal stability with respect to sintering phenomena, which generally occur during the dehydrogenation over other copper catalysts. Hydrogen productivities of 8-39 g{sub H2} (Kgcat){sup -1} (h){sup -1} were obtained for the explored temperature range of 200-260 C. Finally the most accredited reaction mechanism is reported and discussed on the basis of the obtained results. (orig.)

  2. Hydrogen production by fermentative consortia

    Energy Technology Data Exchange (ETDEWEB)

    Valdez-Vazquez, Idania [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Department of Marine Biotechnology, Ensenada, B.C. Mexico (Mexico); Poggi-Varaldo, Hector M. [CINVESTAV-IPN, Department of Biotechnology and Bioengineering, PO Box 14-740, Mexico D.F. 07000 (Mexico)

    2009-06-15

    In this work, H{sub 2} production by anaerobic mixed cultures was reviewed. First, the different anaerobic microbial communities that have a direct relation with the generation or consumption of H{sub 2} are discussed. Then, the different methods used to inhibit the H{sub 2}-consuming bacteria are analyzed (mainly in the methanogenesis phase) such as biokinetic control (low pH and short hydraulic retention time), heat-shock treatment and chemical inhibitors along with their advantages/disadvantages for their application on an industrial scale. After that, biochemical pathways of carbohydrate degradation to H{sub 2}, organic acids and solvents are showed. Fourth, structure, diversity and dynamics of H{sub 2}-producers communities are detailed. Later, the hydrogenase structure and activity is related with H{sub 2} production. Also, the causes for H{sub 2} production inhibition are analyzed along with strategies to avoid it. Finally, immobilized-cells systems are presented as a way to enhance H{sub 2} production. (author)

  3. Bio-hydrogen production from renewable organic wastes

    Energy Technology Data Exchange (ETDEWEB)

    Shihwu Sung

    2004-04-30

    Methane fermentation has been in practice over a century for the stabilization of high strength organic waste/wastewater. Although methanogenesis is a well established process and methane--the end-product of methanogenesis is a useful energy source; it is a low value end product with relatively less energy content (about 56 kJ energy/g CH{sub 4}). Besides, methane and its combustion by-product are powerful greenhouse gases, and responsible for global climate change. So there is a pressing need to explore alternative environmental technologies that not only stabilize the waste/wastewater but also generate benign high value end products. From this perspective, anaerobic bioconversion of organic wastes to hydrogen gas is an attractive option that achieves both goals. From energy security stand point, generation of hydrogen energy from renewable organic waste/wastewater could substitute non-renewable fossil fuels, over two-third of which is imported from politically unstable countries. Thus, biological hydrogen production from renewable organic waste through dark fermentation represents a critically important area of bioenergy production. This study evaluated both process engineering and microbial physiology of biohydrogen production.

  4. Technical Integration of Nuclear Hydrogen Production Technology

    International Nuclear Information System (INIS)

    These works focus on the development of attainment indices for nuclear hydrogen key technologies, the analysis of the hydrogen production process and the performance estimation for hydrogen production systems, and the assessment of the nuclear hydrogen production cost. For assessing the degree of attainments in comparison with the final goals of VHTR technologies in progress of researches, subdivided are the prerequisite items confirmed to the NHDD concepts. We developed and applied R and D quality management methodology to meet 'Development of Key Technologies for Nuclear Hydrogen' project. And we also distributed R and D QAM and R and D QAP to each teams and are in operation. The preconceptual flow diagrams of SI, HTSE, and HyS processes are introduced and their material and energy balances have been proposed. The hydrogen production thermal efficiencies of not only the SI process as a reference process but also the HTSE and HyS processes were also estimated. Technical feasibility assessments of SI, HTSE, and HyS processes have been carried out by using the pair-wise comparison and analytic hierarchy process, and it is revealed that the experts are considering the SI process as the most feasible process. The secondary helium pathway across the SI process is introduced. Dynamic simulation codes for the H2S04vaporizer, sulfuric acid and sulfur trioxide decomposers, and HI decomposer on the secondary helium pathway and for the primary and secondary sulfuric acid distillation columns, HIx solution distillation column, and preheater for HI vapor have been developed and integrated

  5. Reactors Save Energy, Costs for Hydrogen Production

    Science.gov (United States)

    2014-01-01

    While examining fuel-reforming technology for fuel cells onboard aircraft, Glenn Research Center partnered with Garrettsville, Ohio-based Catacel Corporation through the Glenn Alliance Technology Exchange program and a Space Act Agreement. Catacel developed a stackable structural reactor that is now employed for commercial hydrogen production and results in energy savings of about 20 percent.

  6. Hydrogen production from paper sludge hydrolysate

    NARCIS (Netherlands)

    Kádár, Z.; Vrije, de G.J.; Budde, M.A.W.; Szengyel, Z.; Reczey, K.; Claassen, P.A.M.

    2003-01-01

    The main objective of this study was to develop a system for the production of 'renewable' hydrogen. Paper sludge is a solid industrial waste yielding mainly cellulose, which can be used, after hydrolysis, as a feedstock in anaerobic fermentation by (hyper)thermophilic organisms, such as Thermotoga

  7. Electricity-mediated biological hydrogen production

    NARCIS (Netherlands)

    Geelhoed, J.S.; Hamelers, H.V.M.; Stams, A.J.M.

    2010-01-01

    Anaerobic bacteria have the ability to produce electricity from the oxidation of organic substrates. They also may use electricity to support chemical reactions that are energetically unfavorable. In the fermentation of sugars, hydrogen can be formed as one of the main products. However, a yield of

  8. Photobiological hydrogen production employing Spirulina Maxima

    Energy Technology Data Exchange (ETDEWEB)

    Ugas, A.J.; Sebastian, P.J. [CIE-UNAM, Morelos (Mexico); Duhakt, R.V.; Valencia, R.T. [IBT-UNAM, Cuernavaca, Morelos (Mexico)

    2003-07-01

    Efforts are being made to develop materials and processes for the renewable production of hydrogen. This paper described the biological production of hydrogen using microorganisms via the photosynthetic route. Several experiments were conducted to produce hydrogen from the biomass of a strain of photosynthetic Spirulina maxim. Conductimetry was used to quantify the results, along with its introduction in a proton exchange membrane (PEM) fuel cell. The current generated was then measured. Spirulina maxim was cultivated under illumination by magnetic agitation air bubbling. The biomass was concentrated by filtration with micro-porous nylon cloth. The algal biomass was quantified by dry weight and by spectrophotometry. The biomass underwent an anaerobic process in darkness, under a nitrogen flow for 30 minutes. The photosynthesis reaction and the production of the enzyme hydrogenase were induced by leaving the culture in agitation and under illumination for 30 minutes to 2 hours. Tests were conducted with and without the addition of 2 grams of sodium ditionite before the photosynthesis process and with the same incident radiation in the bioreactor, which was coupled to a PEM fuel cell. The electric current generated was measured. The results indicate that after a certain stage of cellular growth, Spirulina maxim was capable of producing hydrogen photosynthetically after a process of anaerobic darkness. The biological production of hydrogen was quantifiable by conductimetry and coupling the bioreactor to a PEM fuel cell. The sodium ditionite proved to be a strong reducing agent that inhibits the oxygen production during the photosynthesis process and allows the activation of the enzyme hydrogenase. 4 refs., 2 tabs.

  9. Alternatives to proposed replacement production reactors

    International Nuclear Information System (INIS)

    To insure adequate supplies of plutonium and tritium for defense purposes, an independent evaluation was made by Los Alamos National Laboratory of the numerous alternatives to the proposed replacement production reactors (RPR). This effort concentrated on the defense fuel cycle operation and its technical implications in identifying the principal alternatives for the 1990s. The primary options were identified as (1) existing commercial reactors, (2) existing and planned government-owned facilities (not now used for defense materials production), and (3) other RPRs (not yet proposed) such as CANDU or CANDU-type heavy-water reactors (HWR) for both plutonium and tritium production. The evaluation considered features and differences of various options that could influence choice of RPR alternatives. Barring a change in the US approach to civilian and defense fuel cycles and precluding existing commercial reactors at government-owned sites, the most significant alternatives were identified as a CANDU-type HWR at Savannah River Plant (SRP) site or the Three Mile Island commercial reactor with reprocessing capability at Barnwell Nuclear Fuel Plant and at SRP

  10. Photosynthetic hydrogen and oxygen production - Kinetic studies

    Science.gov (United States)

    Greenbaum, E.

    1982-01-01

    The simultaneous photoproduction of hydrogen and oxygen was measured in a study of the steady-state turnover times of two biological systems, by driving them into the steady state with repetitive, single-turnover flash illumination. The systems were: (1) in vitro, isolated chloroplasts, ferredoxin and hydrogenase; and (2) the anaerobically-adapted green alga Chlamydomonas reinhardtii. It is found that the turnover times for production of both oxygen and hydrogen in photosynthetic water splitting are in milliseconds, and either equal to, or less than, the turnover time for carbon dioxide reduction in intact algal cells. There is therefore mutual compatibility between hydrogen and oxygen turnover times, and partial compatibility with the excitation rate of the photosynthetic reaction centers under solar irradiation conditions.

  11. Catalytic glycerol steam reforming for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Dan, Monica, E-mail: monica.dan@itim-cj.ro; Mihet, Maria, E-mail: maria.mihet@itim-cj.ro; Lazar, Mihaela D., E-mail: diana.lazar@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293 Cluj Napoca (Romania)

    2015-12-23

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H{sub 2}. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al{sub 2}O{sub 3}. The catalyst was prepared by wet impregnation method and characterized through different methods: N{sub 2} adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H{sub 2}, CH{sub 4}, CO, CO{sub 2}. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H{sub 2}O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  12. Catalytic glycerol steam reforming for hydrogen production

    Science.gov (United States)

    Dan, Monica; Mihet, Maria; Lazar, Mihaela D.

    2015-12-01

    Hydrogen production from glycerol by steam reforming combine two major advantages: (i) using glycerol as raw material add value to this by product of bio-diesel production which is obtained in large quantities around the world and have a very limited utilization now, and (ii) by implication of water molecules in the reaction the efficiency of hydrogen generation is increased as each mol of glycerol produces 7 mol of H2. In this work we present the results obtained in the process of steam reforming of glycerol on Ni/Al2O3. The catalyst was prepared by wet impregnation method and characterized through different methods: N2 adsorption-desorption, XRD, TPR. The catalytic study was performed in a stainless steel tubular reactor at atmospheric pressure by varying the reaction conditions: steam/carbon ratio (1-9), gas flow (35 ml/min -133 ml/min), temperature (450-650°C). The gaseous fraction of the reaction products contain: H2, CH4, CO, CO2. The optimum reaction conditions as resulted from this study are: temperature 550°C, Gly:H2O ratio 9:1 and Ar flow 133 ml/min. In these conditions the glycerol conversion to gaseous products was 43% and the hydrogen yield was 30%.

  13. System comparison of hydrogen with other alternative fuels in terms of EPACT requirements

    Energy Technology Data Exchange (ETDEWEB)

    Barbir, F.; Oezay, K.; Veziroglu, T.N. [Univ. of Miami, Coral Gables, FL (United States)

    1996-10-01

    The feasibility of several alternative fuels, namely natural gas, methanol, ethanol, hydrogen and electricity, to replace 10% of gasoline by the year 2000 has been investigated. The analysis was divided in two parts: (i) analysis of vehicle technologies, and (ii) analysis of fuel production storage and distribution, from the primary energy sources to the refueling station. Only technologies that are developed to at least demonstration level were considered. The amount and type of the primary energy sources have been determined for each of the fuels being analyzed. A need for a common denominator for different types of energy has been identified.

  14. Hydrogen production experiments by the thermochemical and electrolytic hybrid hydrogen production process

    International Nuclear Information System (INIS)

    Hydrogen production demonstration experiments from water by the thermochemical and electrolytic hybrid hydrogen production process were performed. The feasibility of this hydrogen production process was demonstrated and technical problems to operate longer duration and to develop 1Nl/h-H2 production experimental apparatus were extracted. (1) Continuous and stable hydrogen and oxygen generation by the hybrid process was measured in the four full process experiments and maximum test duration was about five hours. The generation rate of hydrogen and oxygen calculated from measured current in four full process experiments were 4.03 ml/h-5.04 ml/h and 2.07 ml/h - 2.78 ml/h, respectively. The total amounts of generated hydrogen and oxygen in the four experiments were 35.00 ml and 20.99 ml. (2) Severe material corrosion was not observed for gold plated stainless steel and SO3 electrolysis cell (YSZ, Pt paste electrode) which used in sulfuric acid atmosphere at about 550 deg-C, and ionic oxygen conductivity of YSZ did not decrease in the experiments. Nevertheless, corrosion of the gold plated outlet piping of SO3 electrolysis cell was observed, and the corrosion by condensed sulfuric acid as suspected. (3) Technical problems to operate the present experimental apparatus for 100 hours and to develop test apparatus to generate 1Nl/h hydrogen, were extracted. (author)

  15. Assessment of biological Hydrogen production processes: A review

    Science.gov (United States)

    Najafpour, G. D.; Shahavi, M. H.; Neshat, S. A.

    2016-06-01

    Energy crisis created a special attention on renewable energy sources. Among these sources; hydrogen through biological processes is well-known as the most suitable and renewable energy sources. In terms of process yield, hydrogen production from various sources was evaluated. A summary of microorganisms as potential hydrogen producers discussed along with advantages and disadvantages of several bioprocesses. The pathway of photo-synthetic and dark fermentative organisms was discussed. In fact, the active enzymes involved in performance of biological processes for hydrogen generation were identified and their special functionalities were discussed. The influential factors affecting on hydrogen production were known as enzymes assisting liberation specific enzymes such as nitrogenase, hydrogenase and uptake hydrogenase. These enzymes were quite effective in reduction of proton and form active molecular hydrogen. Several types of photosynthetic systems were evaluated with intension of maximum hydrogen productivities. In addition dark fermentative and light intensities on hydrogen productions were evaluated. The hydrogen productivities of efficient hydrogen producing strains were evaluated.

  16. Alternative indicators for measuring hospital productivity.

    Science.gov (United States)

    Serway, G D; Strum, D W; Haug, W F

    1987-08-01

    This article explores the premise that the appropriateness and usefulness of typical hospital productivity measures have been affected by three changes in delivery: Organizational restructuring and other definition and data source changes that make full-time equivalent employee (FTE) measurements ambiguous. Transition to prospective payment (diagnosis-related groups). Increase in capitation (prepaid, at risk) programs. The effects of these changes on productivity management indicate the need for alternative productivity indicators. Several productivity measures that complement these changes in internal operations and the external hospital business environment are presented. These are based on an analysis of four hospitals within a multihospital system, and an illustration and interpretation of an array of measures, based on ten months of actual data, is provided. In conclusion, the recommendation is made for hospital management to collect an expanded set of productivity measures and review them in light of changing expense and revenue management schemes inherent in new payment modes. PMID:10312194

  17. Alternative indicators for measuring hospital productivity.

    Science.gov (United States)

    Serway, G D; Strum, D W; Haug, W F

    1987-08-01

    This article explores the premise that the appropriateness and usefulness of typical hospital productivity measures have been affected by three changes in delivery: Organizational restructuring and other definition and data source changes that make full-time equivalent employee (FTE) measurements ambiguous. Transition to prospective payment (diagnosis-related groups). Increase in capitation (prepaid, at risk) programs. The effects of these changes on productivity management indicate the need for alternative productivity indicators. Several productivity measures that complement these changes in internal operations and the external hospital business environment are presented. These are based on an analysis of four hospitals within a multihospital system, and an illustration and interpretation of an array of measures, based on ten months of actual data, is provided. In conclusion, the recommendation is made for hospital management to collect an expanded set of productivity measures and review them in light of changing expense and revenue management schemes inherent in new payment modes.

  18. Hydrogenated liquids and hydrogen production by non-thermal plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Arabi, K.; Aubry, O.; Khacef, A.; Cormier, J.M. [Orleans Univ., Orleans Cedex (France). Centre national de la recherche scientifique, Polytech d' Orleans, Group for Research and Studies on Mediators of Inflamation

    2010-07-01

    In recent years, hydrogen (H{sub 2}) has been considered as a fuel for electricity generation and transportation purposes. H{sub 2} is a renewable energy source that does not contribute to the greenhouse effect. This paper reported on a comparative study of syngas production from alcohol, with particular reference to the plasma steam-reforming of ethanol, methanol, ammonia and vegetable oil. The H{sub 2} yields and energetic cost in function of hydrogen sources were presented. The non thermal plasma used in this study was a laboratory scale experimental device static discharge. An arc formed between two electrodes made of graphite. The efficiency of the process was determined through chemical diagnostics. Gas chromatography and Fourier transform infrared (FTIR) techniques were used to determine concentrations of H{sub 2}, carbon monoxide, carbon dioxide and carbon as functions of flow and inlet liquid mixture concentration parameters. This paper also presented the values of H{sub 2}/CO ratio and the composition of synthesis gas according to various operating conditions. 18 refs., 2 tabs., 8 figs.

  19. Alternate economical starchy substrates for the production of 70% sorbitol

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, C.M. (Sarabhai Research Centre, Baroda (India). Industrial Enzymes Dept.); Nehete, P.N. (Sarabhai Research Centre, Baroda (India). Industrial Fermentation Div.); Shah, D.N. (GSFC Research and Development Centre, Fertilizernagar (India). Biotechnology Dept.); Shah, N.K. (Armour Chemicals Pvt. Ltd., Ankleshwar (India)); Shankar, V. (National Chemical Lab., Pune (India). Biochemistry Div.); Kothari, R.M. (Thapar Corporate Research and Development Centre, Patiala (India). Biotechnology Div.)

    1991-03-01

    In view of the soaring prices of corn and tapioca starch, use of their hydrolysate in the production of 70% sorbitol became less remunerative. Therefore, an economical alternative is explored by using hydrolysates of cereal flours, namely, rice (Oryzae sativa), wheat (Triticum aestivum), jowar (Sorghum vulgare) and bajra (Pennisetum typhoideum). A protocol is devised to (a) prepare their high DE hydrolysates, (b) purify it after saccharification, (c) monitor the chemical chracteristics of concentrated hydrolysate, as feedstock for Raney nickel catalyzed pressure hydrogenation and (d) finally prepare 70% sorbital. Merits and demerits of hydrolysates of these cereal flours are discussed in terms of operational limitations and percentage recovery, the governing factors for their industrial acceptability. Rice flour hydrolysate appears to be an alternative substrate, operationally and economically. (orig.).

  20. Photochemical Production of Hydrogen from Water

    International Nuclear Information System (INIS)

    The energy flux in sunlight is 40 000 kW per head of the world population. Theoretically much of this energy can be used to photolyze water, in presence of a sensitizer, to H2 (and 02) for a hydrogen economy. The main difficulty in a homogeneous medium is the back-reaction of the primary products. According to the 'membrane principle', the reducing and the oxidizing primary products are released on opposite sides of asymmetric membranes, and so prevented from back-reacting. In essence, this is the mechanism of the photosynthetic machinery in plants and bacteria. This therefore serves as an example in the artificial construction of suitable asymmetric, 'vectorial', membranes. Relatively small areas of photolytic collectors, e.g. in tropical deserts, could cover the energy needs of large populations through hydrogen. (author)

  1. Startech Hydrogen Production Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Startech Engineering Department

    2007-11-27

    The assigned work scope includes the modification and utilization of the Plasma Converter System, Integration of a StarCell{trademark} Multistage Ceramic Membrane System (StarCell), and testing of the integrated systems towards DOE targets for gasification and membrane separation. Testing and evaluation was performed at the Startech Engineering and Demonstration Test Center in Bristol, CT. The Objectives of the program are as follows: (1) Characterize the performance of the integrated Plasma Converter and StarCell{trademark} Systems for hydrogen production and purification from abundant and inexpensive feedstocks; (2) Compare integrated hydrogen production performance to conventional technologies and DOE benchmarks; (3) Run pressure and temperature testing to baseline StarCell's performance; and (4) Determine the effect of process contaminants on the StarCell{trademark} system.

  2. Solar-driven hydrogen production in green algae.

    Science.gov (United States)

    Burgess, Steven J; Tamburic, Bojan; Zemichael, Fessehaye; Hellgardt, Klaus; Nixon, Peter J

    2011-01-01

    The twin problems of energy security and global warming make hydrogen an attractive alternative to traditional fossil fuels with its combustion resulting only in the release of water vapor. Biological hydrogen production represents a renewable source of the gas and can be performed by a diverse range of microorganisms from strict anaerobic bacteria to eukaryotic green algae. Compared to conventional methods for generating H(2), biological systems can operate at ambient temperatures and pressures without the need for rare metals and could potentially be coupled to a variety of biotechnological processes ranging from desalination and waste water treatment to pharmaceutical production. Photobiological hydrogen production by microalgae is particularly attractive as the main inputs for the process (water and solar energy) are plentiful. This chapter focuses on recent developments in solar-driven H(2) production in green algae with emphasis on the model organism Chlamydomonas reinhardtii. We review the current methods used to achieve sustained H(2) evolution and discuss possible approaches to improve H(2) yields, including the optimization of culturing conditions, reducing light-harvesting antennae and targeting auxiliary electron transport and fermentative pathways that compete with the hydrogenase for reductant. Finally, industrial scale-up is discussed in the context of photobioreactor design and the future prospects of the field are considered within the broader context of a biorefinery concept. PMID:21807246

  3. Assessment of Alternative Hydrogen Pathways: Natural Gas and Biomass

    OpenAIRE

    Makihira, A.; Barreto, L.; Riahi, K.

    2003-01-01

    Achieving large-scale changes to develop a sustained hydrogen economy requires a large amount of planning and cooperation at national and international levels alike. ECS developed a long-term hydrogen-based scenario (B1-H2) of the global energy system to examine the future perspectives of fuel cells (Barreto et al., 2002). That earlier study, done with the collaboration and support of the Tokyo Electric Power Company (TEPCO), illustrated the key role of hydrogen towards a clean and sustainabl...

  4. Microbial electrolysis cells as innovative technology for hydrogen production

    International Nuclear Information System (INIS)

    Hydrogen production is becoming increasingly important in view of using hydrogen in fuel cells. However, most of the production of hydrogen so far comes from the combustion of fossil fuels and water electrolysis. Microbial Electrolysis Cell (MEC), also known as Bioelectrochemically Assisted Microbial Reactor, is an ecologically clean, renewable and innovative technology for hydrogen production. Microbial electrolysis cells produce hydrogen mainly from waste biomass assisted by various bacteria strains. The principle of MECs and their constructional elements are reviewed and discussed. Keywords: microbial Electrolysis Cells, hydrogen production, waste biomass purification

  5. Economics and synergies of electrolytic and thermochemical methods of environmentally benign hydrogen production

    International Nuclear Information System (INIS)

    Most of the world's hydrogen (about 97%) is currently derived from fossil fuels. For reduction of greenhouse gases, improvement of urban air quality, and energy security, among other reasons, carbon-free sources of hydrogen production are crucial to hydrogen becoming a significant energy carrier. Nuclear hydrogen production is a promising carbon-free alternative for large-scale, low-cost production of hydrogen in the future. Two nuclear technologies, applied in tandem, have a promising potential to generate hydrogen economically without leading to greenhouse gas emissions: 1) electrolysis and 2) thermochemical decomposition of water. This paper will investigate their unique complementary roles and economics of producing hydrogen, from a Canadian perspective. Together they can serve a unique potential for both de-centralized hydrogen needs in periods of low-demand electricity, and centralized base-load production from a nuclear station. Hydrogen production has a significantly higher thermal efficiency, but electrolysis can take advantage of low electricity prices during off-peak hours. By effectively linking these systems, water-based production of hydrogen can become more competitive against the predominant existing technology, SMR (steam-methane reforming). (orig.)

  6. Hydrogen Production from Methanol Using Corona Discharges

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Hydrogen production at room temperature from liquid methanol has been conductedusing corona discharge. The content of water in methanol solution has a significant effect on thisproduction. When water concentration increases from 1.0 % to 16.7 %, the methanol conversionrate changes from 0.196 to 0.284 mol/h. An important finding in this investigation is theformation of ethylene glycol as a major by-product. The yield of ethylene glycol is ranged from0.0045 to 0.0075 mol/h based on the water content.

  7. Preliminary Hydrogen Production Cost Estimation based on the HEEP

    International Nuclear Information System (INIS)

    The HEEP software is appropriate to perform economic analysis for comparative studies not only hydrogen production using nuclear or fossil fuel but also only hydrogen production or cogeneration with electricity. The HEEP software requires basic input data to calculate hydrogen production cost such as chronological data, finance data, and technical data related to nuclear power plant and hydrogen generation plant. In this paper, we present preliminary hydrogen production cost estimation based on the HEEP. In order to get more concrete and accurate cost calculations, we need to consider many parameters and input values in details including hydrogen storage cost and hydrogen transportation cost. The estimated costs presented in this paper show that hydrogen production by VHTR coupled to SI plant system could be competitive with current techniques of hydrogen production from fossil fuels if CO2 capture and sequestration is required. This favorable situation is expected to further improve as the cost of natural gas rises. Nuclear hydrogen production would allow large-scale production of hydrogen at economic prices while avoiding the release of CO2. Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy

  8. Integrated Ceramic Membrane System for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph; Lim, Hankwon; Drnevich, Raymond

    2010-08-05

    Phase I was a technoeconomic feasibility study that defined the process scheme for the integrated ceramic membrane system for hydrogen production and determined the plan for Phase II. The hydrogen production system is comprised of an oxygen transport membrane (OTM) and a hydrogen transport membrane (HTM). Two process options were evaluated: 1) Integrated OTM-HTM reactor – in this configuration, the HTM was a ceramic proton conductor operating at temperatures up to 900°C, and 2) Sequential OTM and HTM reactors – in this configuration, the HTM was assumed to be a Pd alloy operating at less than 600°C. The analysis suggested that there are no technical issues related to either system that cannot be managed. The process with the sequential reactors was found to be more efficient, less expensive, and more likely to be commercialized in a shorter time than the single reactor. Therefore, Phase II focused on the sequential reactor system, specifically, the second stage, or the HTM portion. Work on the OTM portion was conducted in a separate program. Phase IIA began in February 2003. Candidate substrate materials and alloys were identified and porous ceramic tubes were produced and coated with Pd. Much effort was made to develop porous substrates with reasonable pore sizes suitable for Pd alloy coating. The second generation of tubes showed some improvement in pore size control, but this was not enough to get a viable membrane. Further improvements were made to the porous ceramic tube manufacturing process. When a support tube was successfully coated, the membrane was tested to determine the hydrogen flux. The results from all these tests were used to update the technoeconomic analysis from Phase I to confirm that the sequential membrane reactor system can potentially be a low-cost hydrogen supply option when using an existing membrane on a larger scale. Phase IIB began in October 2004 and focused on demonstrating an integrated HTM/water gas shift (WGS) reactor to

  9. A Technical and Economic Review of Solar Hydrogen Production Technologies

    Science.gov (United States)

    Wilhelm, Erik; Fowler, Michael

    2006-01-01

    Hydrogen energy systems are being developed to replace fossil fuels-based systems for transportation and stationary application. One of the challenges facing the widespread adoption of hydrogen as an energy vector is the lack of an efficient, economical, and sustainable method of hydrogen production. In the short term, hydrogen produced from…

  10. Steam reforming of sunflower oil for hydrogen gas production

    OpenAIRE

    Dupont V.

    2007-01-01

    Methods of current hydrogen production for the petroleum refinery industry as well as future technologies under research and development in preparation for a global hydrogen-based economy are briefly reviewed. The advantages of biomass and of liquid biofuels, including vegetable oils as fuel sources in the sustainable production of hydrogen gas are then presented. The bulk of this lecture is thereafter concerned with the thermo-chemical means of hydrogen production which are suitable to the c...

  11. Importance of hydrogen fuels as sustainable alternative energy for domestic and industrial applications

    International Nuclear Information System (INIS)

    Energy demand is increasing continuously due to rapid growth in population and industrialization development. As a result greenhouse gases especially CO2 produced by the combustion of fossil fuels cause depletion of fossil fuels and deterioration of environmental conditions worldwide. The goal of global energy sustainability implies the replacement of all fossil fuels by renewable energy sources . Hydrogen fuel is one of the sustainable energy sources can be available by conversion of biomass into biological hydrogen gas and ethanol. Rate of biomass generation in domestic wastes in Iranian culture is high. Therefore there is suitable potential for hydrogen generation in rural and urban areas of Iran. On the other hand energy extraction from these fossil fuels causes pollution and diseases. Globally, hydrogen is already produced in significant quantities (around 5 billion cubic metres per annum). It is mainly used to produce ammonia for fertiliser (about 50%), for oil refining (37%), methanol production (8%) and in the chemical and metallurgical industries (4%). On the other hand, increase in emissions rates of greenhouse gases, i.e., CO2 present a threat to the world climate. Also new legislation of Iran has been approved the higher costs of conventional fuels for consuming in vehicles for reduction of greenhouse gases reduction as environmental policies. Demand is rising in all cities of Iran for cleaner fuels such as mixed fuels and natural gas, but unfortunately they are exporting to foreign countries or the required technologies are not available and economically option. Nuclear industries in Iran are also small and expanding only slowly. So importance of alternative energies as hydrogen powers are increasing daily. Presently both major consumers of domestic and industrial such as plants and manufacturers are using fossil fuels for their process that consequently contribute to the global warming and climate change. This paper reviews these options, with

  12. Resource Assessment for Hydrogen Production: Hydrogen Production Potential from Fossil and Renewable Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Penev, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-09-01

    This study examines the energy resources required to produce 4-10 million metric tonnes of domestic, low-carbon hydrogen in order to fuel approximately 20-50 million fuel cell electric vehicles. These projected energy resource requirements are compared to current consumption levels, projected 2040 business as usual consumptions levels, and projected 2040 consumption levels within a carbonconstrained future for the following energy resources: coal (assuming carbon capture and storage), natural gas, nuclear (uranium), biomass, wind (on- and offshore), and solar (photovoltaics and concentrating solar power). The analysis framework builds upon previous analysis results estimating hydrogen production potentials and drawing comparisons with economy-wide resource production projections

  13. Process and reactor design for biophotolytic hydrogen production.

    Science.gov (United States)

    Tamburic, Bojan; Dechatiwongse, Pongsathorn; Zemichael, Fessehaye W; Maitland, Geoffrey C; Hellgardt, Klaus

    2013-07-14

    The green alga Chlamydomonas reinhardtii has the ability to produce molecular hydrogen (H2), a clean and renewable fuel, through the biophotolysis of water under sulphur-deprived anaerobic conditions. The aim of this study was to advance the development of a practical and scalable biophotolytic H2 production process. Experiments were carried out using a purpose-built flat-plate photobioreactor, designed to facilitate green algal H2 production at the laboratory scale and equipped with a membrane-inlet mass spectrometry system to accurately measure H2 production rates in real time. The nutrient control method of sulphur deprivation was used to achieve spontaneous H2 production following algal growth. Sulphur dilution and sulphur feed techniques were used to extend algal lifetime in order to increase the duration of H2 production. The sulphur dilution technique proved effective at encouraging cyclic H2 production, resulting in alternating Chlamydomonas reinhardtii recovery and H2 production stages. The sulphur feed technique enabled photobioreactor operation in chemostat mode, resulting in a small improvement in H2 production duration. A conceptual design for a large-scale photobioreactor was proposed based on these experimental results. This photobioreactor has the capacity to enable continuous and economical H2 and biomass production using green algae. The success of these complementary approaches demonstrate that engineering advances can lead to improvements in the scalability and affordability of biophotolytic H2 production, giving increased confidence that H2 can fulfil its potential as a sustainable fuel of the future. PMID:23689756

  14. Production of hydrogen from municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, S.L.

    1995-11-01

    The Gasification of Municipal Solid Waste (MSW) includes gasification and the process for producing a gasificable slurry from raw MSW by using high pressures of steam. A potential energy source, MSW is a composite of organic materials such as: paper, wood, food waste, etc. There are different paper grades producing different results with low-quality paper forming better slurries than high-quality papers; making MSW a difficult feedstock for gasification. The objective of the bench-scale laboratory work has been to establish operating conditions for a hydrothermal pre-processing scheme for municipal solid waste (MSW) that produces a good slurry product that can be pumped and atomized to the gasifier for the production of hydrogen. Batch reactors are used to determine product yields as a function of hydrothermal treatment conditions. Various ratios of water-to-paper were used to find out solid product, gas product, and soluble product yields of MSW. Experimental conditions covered were temperature, time, and water to feed ratio. Temperature had the strongest effect on product yields.

  15. Hydrogen Production in the U.S. and Worldwide - 2013

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.

    2015-04-01

    This article describes the different categories of hydrogen production (captive, by-product, and merchant) and presents production data for 2013 by industry within these categories. Merchant production data is provided for the top-four industrial gas companies.

  16. Plasma processing methods for hydrogen production

    Science.gov (United States)

    Mizeraczyk, Jerzy; Jasiński, Mariusz

    2016-08-01

    In the future a transfer from the fossil fuel-based economy to hydrogen-based economy is expected. Therefore the development of systems for efficient H2 production becomes important. The several conventional methods of mass-scale (or central) H2 production (methane, natural gas and higher hydrocarbons reforming, coal gasification reforming) are well developed and their costs of H2 production are acceptable. However, due to the H2 transport and storage problems the small-scale (distributed) technologies for H2 production are demanded. However, these new technologies have to meet the requirement of producing H2 at a production cost of (1-2)/kg(H2) (or 60 g(H2)/kWh) by 2020 (the U.S. Department of Energy's target). Recently several plasma methods have been proposed for the small-scale H2 production. The most promising plasmas for this purpose seems to be those generated by gliding, plasmatron and nozzle arcs, and microwave discharges. In this paper plasma methods proposed for H2 production are briefly described and critically evaluated from the view point of H2 production efficiency. The paper is aiming at answering a question if any plasma method for the small-scale H2 production approaches such challenges as the production energy yield of 60 g(H2)/kWh, high production rate, high reliability and low investment cost. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  17. Biological hydrogen production using a membrane bioreactor.

    Science.gov (United States)

    Oh, Sang-Eun; Iyer, Prabha; Bruns, Mary Ann; Logan, Bruce E

    2004-07-01

    A cross-flow membrane was coupled to a chemostat to create an anaerobic membrane bioreactor (MBR) for biological hydrogen production. The reactor was fed glucose (10,000 mg/L) and inoculated with a soil inoculum heat-treated to kill non-spore-forming methanogens. Hydrogen gas was consistently produced at a concentration of 57-60% in the headspace under all conditions. When operated in chemostat mode (no flow through the membrane) at a hydraulic retention time (HRT) of 3.3 h, 90% of the glucose was removed, producing 2200 mg/L of cells and 500 mL/h of biogas. When operated in MBR mode, the solids retention time (SRT) was increased to SRT = 12 h producing a solids concentration in the reactor of 5800 mg/L. This SRT increased the overall glucose utilization (98%), the biogas production rate (640 mL/h), and the conversion efficiency of glucose-to-hydrogen from 22% (no MBR) to 25% (based on a maximum of 4 mol-H(2)/mol-glucose). When the SRT was increased from 5 h to 48 h, glucose utilization (99%) and biomass concentrations (8,800 +/- 600 mg/L) both increased. However, the biogas production decreased (310 +/- 40 mL/h) and the glucose-to-hydrogen conversion efficiency decreased from 37 +/- 4% to 18 +/- 3%. Sustained permeate flows through the membrane were in the range of 57 to 60 L/m(2) h for three different membrane pore sizes (0.3, 0.5, and 0.8 microm). Most (93.7% to 99.3%) of the membrane resistance was due to internal fouling and the reversible cake resistance, and not the membrane itself. Regular backpulsing was essential for maintaining permeate flux through the membrane. Analysis of DNA sequences using ribosomal intergenic spacer analysis indicated bacteria were most closely related to members of Clostridiaceae and Flexibacteraceae, including Clostridium acidisoli CAC237756 (97%), Linmingia china AF481148 (97%), and Cytophaga sp. MDA2507 AF238333 (99%). No PCR amplification of 16s rRNA genes was obtained when archaea-specific primers were used.

  18. Genome-wide transcriptional analysis suggests hydrogenase- and nitrogenase-mediated hydrogen production in Clostridium butyricum CWBI 1009

    OpenAIRE

    Calusinska, Magda; Hamilton, Christopher; Monsieurs, Pieter; Mathy, Gregory; Leys, Natalie; Franck, Fabrice; Joris, Bernard; Thonart, Philippe; Hiligsmann, Serge; Wilmotte, Annick

    2015-01-01

    Background: Molecular hydrogen, given its pollution-free combustion, has great potential to replace fossil fuels in future transportation and energy production. However, current industrial hydrogen production processes, such as steam reforming of methane, contribute significantly to the greenhouse effect. Therefore alternative methods, in particular the use of fermentative microorganisms, have attracted scientific interest in recent years. However the low overall yield obtained is...

  19. Global Assessment of Hydrogen Technologies – Tasks 3 & 4 Report Economic, Energy, and Environmental Analysis of Hydrogen Production and Delivery Options in Select Alabama Markets: Preliminary Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Gillette, Jerry; Elgowainy, Amgad; Mintz, Marianne

    2007-12-01

    This report documents a set of case studies developed to estimate the cost of producing, storing, delivering, and dispensing hydrogen for light-duty vehicles for several scenarios involving metropolitan areas in Alabama. While the majority of the scenarios focused on centralized hydrogen production and pipeline delivery, alternative delivery modes were also examined. Although Alabama was used as the case study for this analysis, the results provide insights into the unique requirements for deploying hydrogen infrastructure in smaller urban and rural environments that lie outside the DOE’s high priority hydrogen deployment regions. Hydrogen production costs were estimated for three technologies – steam-methane reforming (SMR), coal gasification, and thermochemical water-splitting using advanced nuclear reactors. In all cases examined, SMR has the lowest production cost for the demands associated with metropolitan areas in Alabama. Although other production options may be less costly for larger hydrogen markets, these were not examined within the context of the case studies.

  20. Hydrogen in the Methanol Production Process

    Science.gov (United States)

    Kralj, Anita Kovac; Glavic, Peter

    2006-01-01

    Hydrogen is a very important industrial gas in chemical processes. It is very volatile; therefore, it can escape from the process units and its mass balance is not always correct. In many industrial processes where hydrogen is reacted, kinetics are often related to hydrogen pressure. The right thermodynamic properties of hydrogen can be found for…

  1. Basic study on high temperature gas cooled reactor technology for hydrogen production

    International Nuclear Information System (INIS)

    The annual production of hydrogen in the world is about 500 billion m3. Currently hydrogen is consumed mainly in chemical industries. However hydrogen has huge potential to be consumed in transportation sector in coming decades. Assuming that 10% of fossil energy in transportation sector is substituted by hydrogen in 2020, the hydrogen in the sector will exceed current hydrogen consumption by more than 2.5 times. Currently hydrogen is mainly produced by steam reforming of natural gas. Steam reforming process is chiefest way to produce hydrogen for mass production. In the future, hydrogen has to be produced in a way to minimize CO2 emission during its production process as well as to satisfy economic competition. One of the alternatives to produce hydrogen under such criteria is using heat source of high-temperature gas-cooled reactor. The high-temperature gas-cooled reactor represents one type of the next generation of nuclear reactors for safe and reliable operation as well as for efficient and economic generation of energy

  2. Genetic Algorithm Based Production Planning for Alternative Process Production

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fa-ping; SUN Hou-fang; SHAHID I. Butt

    2009-01-01

    Production planning under flexible job shop environment is studied. A mathematic model is formulated to help improve alternative process production. This model, in which genetic algorithm is used, is expected to result in better production planning, hence towards the aim of minimizing production cost under the constraints of delivery time and other scheduling conditions. By means of this algorithm, all planning schemes which could meet all requirements of the constraints within the whole solution space are exhaustively searched so as to find the optimal one. Also, a case study is given in the end to support and validate this model. Our results show that genetic algorithm is capable of locating feasible process routes to reduce production cost for certain tasks.

  3. Biological hydrogen production from biomass by thermophilic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Claassen, P.A.M.; Mars, A.E.; Budde, M.A.W.; Lai, M.; de Vrije, T. [Wageningen UR, Agrotechnology and Food Sciences Group (AFSG), Business Unit Biobased Products, P.O. Box 17, 6700 AA Wageningen, (Netherlands); van Niel, E.W.J. [Lund University, Applied microbiology, P.O. Box 124, 221 000 Lund, (Sweden)

    2006-07-01

    To meet the reduction of the emission of CO{sub 2} imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient

  4. Biological hydrogen production from biomass by thermophilic bacteria

    International Nuclear Information System (INIS)

    To meet the reduction of the emission of CO2 imposed by the Kyoto protocol, hydrogen should be produced from renewable primary energy. Besides the indirect production of hydrogen by electrolysis using electricity from renewable resources, such as sunlight, wind and hydropower, hydrogen can be directly produced from biomass. At present, there are two strategies for the production of hydrogen from biomass: the thermochemical technology, such as gasification, and the biotechnological approach using micro-organisms. Biological hydrogen production delivers clean hydrogen with an environmental-friendly technology and is very suitable for the conversion of wet biomass in small-scale applications, thus having a high chance of becoming an economically feasible technology. Many micro-organisms are able to produce hydrogen from mono- and disaccharides, starch and (hemi)cellulose under anaerobic conditions. The anaerobic production of hydrogen is a common phenomenon, occurring during the process of anaerobic digestion. Here, hydrogen producing micro-organisms are in syn-trophy with methanogenic bacteria which consume the hydrogen as soon as it is produced. In this way, hydrogen production remains obscure and methane is the end-product. By uncoupling hydrogen production from methane production, hydrogen becomes available for recovery and exploitation. This study describes the use of extreme thermophilic bacteria, selected because of a higher hydrogen production efficiency as compared to mesophilic bacteria, for the production of hydrogen from renewable resources. As feedstock energy crops like Miscanthus and Sorghum bicolor and waste streams like domestic organic waste, paper sludge and potato steam peels were used. The feedstock was pretreated and/or enzymatically hydrolyzed prior to fermentation to make a fermentable substrate. Hydrogen production by Caldicellulosiruptor saccharolyticus, Thermotoga elfii and T. neapolitana on all substrates was observed. Nutrient requirements

  5. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    Science.gov (United States)

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-01

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  6. Decentralized and direct solar hydrogen production: Towards a hydrogen economy in MENA region

    Energy Technology Data Exchange (ETDEWEB)

    Bensebaa, Farid; Khalfallah, Mohamed; Ouchene, Majid

    2010-09-15

    Hydrogen has certainly some advantages in spite of its high cost and low efficiency when compared to other energy vectors. Solar energy is an abundant, clean and renewable source of energy, currently competing with fossil fuel for water heating without subsidy. Photo-electrochemical, thermo-chemicals and photo-biological processes for hydrogen production processes have been demonstrated. These decentralised hydrogen production processes using directly solar energy do not require expensive hydrogen infrastructure for packaging and delivery in the short and medium terms. MENA region could certainly be considered a key area for a new start to a global deployment of hydrogen economy.

  7. Hydrogen Production from Hydrogen Sulfide in IGCC Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Elias Stefanakos; Burton Krakow; Jonathan Mbah

    2007-07-31

    IGCC power plants are the cleanest coal-based power generation facilities in the world. Technical improvements are needed to help make them cost competitive. Sulfur recovery is one procedure in which improvement is possible. This project has developed and demonstrated an electrochemical process that could provide such an improvement. IGCC power plants now in operation extract the sulfur from the synthesis gas as hydrogen sulfide. In this project H{sub 2}S has been electrolyzed to yield sulfur and hydrogen (instead of sulfur and water as is the present practice). The value of the byproduct hydrogen makes this process more cost effective. The electrolysis has exploited some recent developments in solid state electrolytes. The proof of principal for the project concept has been accomplished.

  8. Nuclear Hydrogen for Peak Electricity Production and Spinning Reserve

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.

    2005-01-20

    Nuclear energy can be used to produce hydrogen. The key strategic question is this: ''What are the early markets for nuclear hydrogen?'' The answer determines (1) whether there are incentives to implement nuclear hydrogen technology today or whether the development of such a technology could be delayed by decades until a hydrogen economy has evolved, (2) the industrial partners required to develop such a technology, and (3) the technological requirements for the hydrogen production system (rate of production, steady-state or variable production, hydrogen purity, etc.). Understanding ''early'' markets for any new product is difficult because the customer may not even recognize that the product could exist. This study is an initial examination of how nuclear hydrogen could be used in two interconnected early markets: the production of electricity for peak and intermediate electrical loads and spinning reserve for the electrical grid. The study is intended to provide an initial description that can then be used to consult with potential customers (utilities, the Electric Power Research Institute, etc.) to better determine the potential real-world viability of this early market for nuclear hydrogen and provide the starting point for a more definitive assessment of the concept. If this set of applications is economically viable, it offers several unique advantages: (1) the market is approximately equivalent in size to the existing nuclear electric enterprise in the United States, (2) the entire market is within the utility industry and does not require development of an external market for hydrogen or a significant hydrogen infrastructure beyond the utility site, (3) the technology and scale match those of nuclear hydrogen production, (4) the market exists today, and (5) the market is sufficient in size to justify development of nuclear hydrogen production techniques independent of the development of any other market for hydrogen

  9. New alternatives to the Agro toxic products

    International Nuclear Information System (INIS)

    The organic agriculture has conquered a growing recognition in the last years, as a valid and viable agricultural method, sustainable from the environmental and social point of view; for this reason, in many countries of the world its capacity has been accepted of satisfying at least some of the most important objectives in the agricultural and environmental politicians, inside the current approaches of sustainability. Inside the philosophy framed in Colombia in the general law of agricultural and fishing development (law 101 of 1993), it stands out the article 66 that it settles down: the national government will stimulate sustainable productive activities that contribute to the prevention of risks, to the protection of the national agricultural production and the appropriate use of the natural resources, and it will incentive investments environmentally healthy in the Colombian agriculture the conversion, that is to say the transition of the farmers of an agriculture with high inputs, promoted together with the obsolete theory of the green revolution, to a new system of organic agriculture, it can take among three and five years, depending on the level of the farmer's traditionalism and of the aggressiveness of the promotion politicians, popularization and application of practice well-known alternatives globally as Organic Agriculture

  10. Membrane catalysis in the dehydrogenation and hydrogen production processes

    International Nuclear Information System (INIS)

    Data on the applications of membrane catalysis in the dehydrogenation of organic compounds and hydrogen production are analyzed and generalized. It is shown that the integration of membrane reactors into existing plants is necessary for production of hydrogen of high purity. The steam reforming and oxidative reforming of methane and steam reforming of light alcohols seem to be the most promising processes for hydrogen production in membrane reactors. The bibliography includes 165 references.

  11. Bio-hydrogen Production Potential from Market Waste

    OpenAIRE

    Lanna Jaitalee; Orathai Chavalparit

    2010-01-01

    This research studied bio-hydrogen production from vegetable waste from a fresh market in order to recover energy. A series of batch experiments were conducted to investigate the effects of initial volatile solids concentration on the bio-hydrogen production process. Lab bench scale anaerobic continuous stirred-tank reactors (CSTR) were used to study the effect of substrate and sludge inoculation on hydrogen production. Three different concentrations of initial total volatile solids (TVS) of ...

  12. Fermentation and Electrohydrogenic Approaches to Hydrogen Production (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Maness, P. C.; Thammannagowda, S.; Magnusson, L.; Logan, B.

    2010-06-01

    This work describes the development of a waste biomass fermentation process using cellulose-degrading bacteria for hydrogen production. This process is then integrated with an electrohydrogenesis process via the development of a microbial electrolysis cell reactor, during which fermentation waste effluent is further converted to hydrogen to increase the total output of hydrogen from biomass.

  13. Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe

    OpenAIRE

    Ana Susmozas; Diego Iribarren; Javier Dufour

    2015-01-01

    Currently, hydrogen is mainly produced through steam reforming of natural gas. However, this conventional process involves environmental and energy security concerns. This has led to the development of alternative technologies for (potentially) green hydrogen production. In this work, the environmental and energy performance of biohydrogen produced in Europe via steam reforming of glycerol and bio-oil is evaluated from a life-cycle perspective, and contrasted with that of conventional hydroge...

  14. Lectrochemical promotion of novel catalysts with alkaline conductors for hydrogen production from methanol

    OpenAIRE

    González Cobos, Jesús

    2015-01-01

    Hydrogen is a very important feedstock in the chemical industry and a promising energy carrier with main application in internal combustion engines and fuel cell technology as an alternative to the massive consumption of fossil fuels. H2 presents a high gravimetric energy density and can be considered as a clean synthetic fuel depending on the sustainability of the energy and raw material employed for its production. Hydrogen is currently obtained mainly via methane steam reforming. However, ...

  15. Solar Thermochemical Hydrogen Production Research (STCH)

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Robert [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-05-01

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meeting on October 8 and 9, 2008. This document reports the initial selection process for development investment in STCH projects, the evaluation process meant to reduce the number of projects as a means to focus resources on development of a few most-likely-to-succeed efforts, the obstacles encountered in project inventory reduction and the outcomes of the evaluation process. Summary technical status of the projects under evaluation is reported and recommendations identified to improve future project planning and selection activities.

  16. A review on hydrogen production: methods, materials and nanotechnology.

    Science.gov (United States)

    Lang, Yizhao; Arnepalli, Ranga Rao; Tiwari, Ashutosh

    2011-05-01

    In recent years hydrogen production and storage has attracted a lot of attention in both academia and industry due to its variety of applications in energy sector. Hydrogen is recognized as one of the most important components of the next generation clean energy technology. Within the whole cycle of the use of hydrogen energy, hydrogen production is considered as the key element of the upcoming hydrogen economy. Since the first production method invented for hydrogen on a smaller scale by dissolving iron in the acid vitriol in the 15th century, many improvements have been made to make the production viable and more cost effective. It is known that "nano" is playing its role in many technologies from medicine to material science and it has its say even in the production of hydrogen energy with continuous improvements in materials and methodologies. In this review we attempt to list various methods of producing hydrogen from different sources of materials followed by the description of most recent developments in the materials prospective. We explain the role of nanotechnology in making the hydrogen production technology a viable and cost effective process. The chemical reaction cycle, mechanism and configurations of various methods of hydrogen production are elaborated. PMID:21780363

  17. A New Hydrogen-Producing Strain and Its Characterization of Hydrogen Production.

    Science.gov (United States)

    Sun, Mingxing; Lv, Yongkang; Liu, Yuxiang

    2015-12-01

    A newly isolated photo non-sulfur (PNS) bacterium was identified as Rhodopseudomonas palustris PB-Z by sequencing of 16S ribosomal DNA (rDNA) genes and phylogenetic analysis. Under vigorous stirring (240 rpm), the hydrogen production performances were greatly improved: The maximum hydrogen production rate and cumulative hydrogen production increased by 188.9 ± 0.07 % and 83.0 ± 0.06 %, respectively, due to the hydrogen bubbles were immediately removed from the culture medium. The effects of different wavelength of light on hydrogen production with stirring were much different from that without stirring. The ranking on the photo-hydrogen production performance was white > yellow > green > blue > red without stirring and white > yellow > blue > red > green under stirring. The best light source for hydrogen production was tungsten filament lamp. The optimum temperature was 35 °C. The maximal hydrogen production rate and cumulative hydrogen production reached 78.7 ± 2.3 ml/l/h and 1728.1 ± 92.7 mol H2/l culture, respectively, under 35 °C, 240 rpm, and illumination of 4000 lux. Pyruvate was one of the main sources of CO2 and has a great impact on the gas composition.

  18. Methods and systems for the production of hydrogen

    Science.gov (United States)

    Oh, Chang H.; Kim, Eung S.; Sherman, Steven R.

    2012-03-13

    Methods and systems are disclosed for the production of hydrogen and the use of high-temperature heat sources in energy conversion. In one embodiment, a primary loop may include a nuclear reactor utilizing a molten salt or helium as a coolant. The nuclear reactor may provide heat energy to a power generation loop for production of electrical energy. For example, a supercritical carbon dioxide fluid may be heated by the nuclear reactor via the molten salt and then expanded in a turbine to drive a generator. An intermediate heat exchange loop may also be thermally coupled with the primary loop and provide heat energy to one or more hydrogen production facilities. A portion of the hydrogen produced by the hydrogen production facility may be diverted to a combustor to elevate the temperature of water being split into hydrogen and oxygen by the hydrogen production facility.

  19. The endogenous production of hydrogen sulphide in intrauterine tissues

    OpenAIRE

    Wang Rui; Heptinstall John; Vatish Manu; Patel Pushpa; Carson Ray J

    2009-01-01

    Abstract Background Hydrogen sulphide is a gas signalling molecule which is produced endogenously from L-cysteine via the enzymes cystathionine beta-synthase (CBS) and cystathionine gamma-lyase (CSE). The possible role of hydrogen sulphide in reproduction has not yet been fully investigated. It has been previously demonstrated that hydrogen sulphide relaxes uterine smooth muscle in vitro. The aim of the present study was to investigate the endogenous production of hydrogen sulphide in rat and...

  20. Vapor hydrogen peroxide as alternative to dry heat microbial reduction

    Science.gov (United States)

    Chung, S.; Kern, R.; Koukol, R.; Barengoltz, J.; Cash, H.

    2008-09-01

    The Jet Propulsion Laboratory (JPL), in conjunction with the NASA Planetary Protection Officer, has selected vapor phase hydrogen peroxide (VHP) sterilization process for continued development as a NASA approved sterilization technique for spacecraft subsystems and systems. The goal was to include this technique, with an appropriate specification, in NASA Procedural Requirements 8020.12 as a low-temperature complementary technique to the dry heat sterilization process. The VHP process is widely used by the medical industry to sterilize surgical instruments and biomedical devices, but high doses of VHP may degrade the performance of flight hardware, or compromise material compatibility. The goal for this study was to determine the minimum VHP process conditions for planetary protection acceptable microbial reduction levels. Experiments were conducted by the STERIS Corporation, under contract to JPL, to evaluate the effectiveness of vapor hydrogen peroxide for the inactivation of the standard spore challenge, Geobacillus stearothermophilus. VHP process parameters were determined that provide significant reductions in spore viability while allowing survival of sufficient spores for statistically significant enumeration. In addition to the obvious process parameters of interest: hydrogen peroxide concentration, number of injection cycles, and exposure duration, the investigation also considered the possible effect on lethality of environmental parameters: temperature, absolute humidity, and material substrate. This study delineated a range of test sterilizer process conditions: VHP concentration, process duration, a process temperature range for which the worst case D-value may be imposed, a process humidity range for which the worst case D-value may be imposed, and the dependence on selected spacecraft material substrates. The derivation of D-values from the lethality data permitted conservative planetary protection recommendations.

  1. An Experimental Investigation of Hydrogen Production from Biomass

    Institute of Scientific and Technical Information of China (English)

    吕鹏梅; 常杰; 付严; 王铁军; 陈勇; 祝京旭

    2003-01-01

    In gaseous products of biomass steam gasification, there exist a lot of CO, CH4 and other hydrocarbons that can be converted to hydrogen through steam reforming reactions. There exists potential hydrogen production from the raw gas of biomass steam gasification. In the present work, the characteristics of hydrogen production from biomass steam gasification were investigated in a small-scale fluidized bed. In these experiments, the gasifying agent (air) was supplied into the reactor from the bottom of the reactor and the steam was added into the reactor above biomass feeding location. The effects of reaction temperature, steam to biomass ratio, equivalence ratio (ER) and biomass particle size on hydrogen yield and hydrogen yield potential were investigated. The experimental results showed that higher reactor temperature, proper ER, proper steam to biomass ratio and smaller biomass particle size will contribute to more hydrogen and potential hydrogen yield.

  2. A strategy for enhancing fermentative hydrogen production from molasses

    Energy Technology Data Exchange (ETDEWEB)

    Chiu-Yue Lin; Chong-Yi Lin; Jou-Hsien Wu [Biohydrogen Lab, Graduate Institute of Civil and Hydraulic Engineering, Feng Chia University, P.O. Box 25-123, Taichung 407, Taiwan (China); Chin-Chao Chen [Department of Landscape Architecture, Chungchou Institute of Technology, Changhwa, Taiwan (China)

    2006-07-01

    This study investigated the enhancements of reactor performance by influent pretreatment for hydrogen production from molasses by a natural mixed culture enriched from sewage sludge. The reactor was operated at a temperature of 35{+-}1 C, a substrate molasses concentration of 40 g-COD/L and hydraulic retention times of 8-4 h. The thermal pretreatments on influent molasses was at 70 C for 10 min. Thermal pretreatment on the influent molasses markedly enhanced the hydrogen production and reactor performance stability. The pretreatment reactor exhibited marked increases in hydrogen content and hydrogen production rate by 40% and 35%, respectively, relative to the non-pretreatment reactor. The pretreatment reactor had hydrogen yield of 1 mmol-H{sub 2}/g-COD and specific hydrogen production rate of 6 mmol-H{sub 2}/g-VSS-day which efficiency is comparable to that of using synthetic wastewaters such as sucrose and glucose. (authors)

  3. A strategy for enhancing fermentative hydrogen production from molasses

    International Nuclear Information System (INIS)

    This study investigated the enhancements of reactor performance by influent pretreatment for hydrogen production from molasses by a natural mixed culture enriched from sewage sludge. The reactor was operated at a temperature of 35±1 C, a substrate molasses concentration of 40 g-COD/L and hydraulic retention times of 8-4 h. The thermal pretreatments on influent molasses was at 70 C for 10 min. Thermal pretreatment on the influent molasses markedly enhanced the hydrogen production and reactor performance stability. The pretreatment reactor exhibited marked increases in hydrogen content and hydrogen production rate by 40% and 35%, respectively, relative to the non-pretreatment reactor. The pretreatment reactor had hydrogen yield of 1 mmol-H2/g-COD and specific hydrogen production rate of 6 mmol-H2/g-VSS-day which efficiency is comparable to that of using synthetic wastewaters such as sucrose and glucose. (authors)

  4. A microBio reactor for hydrogen production.

    Energy Technology Data Exchange (ETDEWEB)

    Volponi, Joanne V.; Walker, Andrew William

    2003-12-01

    The purpose of this work was to explore the potential of developing a microfluidic reactor capable of enzymatically converting glucose and other carbohydrates to hydrogen. This aggressive project was motivated by work in enzymatic hydrogen production done by Woodward et al. at OWL. The work reported here demonstrated that hydrogen could be produced from the enzymatic oxidation of glucose. Attempts at immobilizing the enzymes resulted in reduced hydrogen production rates, probably due to buffer compatibility issues. A novel in-line sensor was also developed to monitor hydrogen production in real time at levels below 1 ppm. Finally, a theoretical design for the microfluidic reactor was developed but never produced due to the low production rates of hydrogen from the immobilized enzymes. However, this work demonstrated the potential of mimicking biological systems to create energy on the microscale.

  5. Hydrogen-donors in petroleum products

    Energy Technology Data Exchange (ETDEWEB)

    Ermann, M.; Ecker, A. [Oesterreichisches Forschungszentrum Seibersdorf GmbH, Vienna (Austria). Research Inst. for Chemistry and Technology of Petroleum Products; Diwald, O.; Knoezinger, E. [Vienna Univ. (Austria). Inst. fuer Physikalische Chemie

    1998-12-01

    The radical scavenging abilities of hydrogen-donating compounds and of petroleum products were tested toward N,N-diphenylpicrylhydrazyl (DPPH). Selected samples were examined by heating at 50 C, for 3 h with DPPH. The changes in colour of the solution and of the ESR spectra are a measurement of the radical scavenging ability. By comparison of the results obtained by UV/VIS-photometry and by ESR-spectroscopy, a clear disadvantage of the photometric method was pointed out. Despite of that, it was found out that petroleum products, depending on the boiling range, have excellent radical scavenging properties and can generally be tested as thermal stabilisers. (orig.) [Deutsch] Die radikalfangenden Eigenschaften von Wasserstoff-abgebenden Verbindungen und von Raffineriestroemen wurden mit N,N-Diphenylpicrylhydrazyl (DPPH) getestet. Ausgewaehlte Proben wurden durch Erhitzen fuer 3 h bei 50 C mit DPPH ueberprueft. Die Farbveraenderungen der Loesung und die Aenderung der ESR-Spektren sind ein Mass fuer die radikalfangenden Eigenschaften. Anhand des Vergleiches der Ergebnisse, die durch UV/VIS-Photometrie und durch ESR-Spektroskopie ermittelt wurden, wurde ein klarer Nachteil der photometrischen Bestimmungsmethode aufgezeigt. Ferner wiesen Raffineriestroeme, abhaengig von ihrem Siedebereich, ausgezeichnete radikalfangende Faehigkeiten auf und koennen im weiterem Sinne als thermische Stabilisatoren getestet und eingesetzt werden. (orig.)

  6. Production of negative hydrogen ions on metal grids

    Energy Technology Data Exchange (ETDEWEB)

    Oohara, W.; Maetani, Y.; Takeda, Takashi; Takeda, Toshiaki; Yokoyama, H.; Kawata, K. [Department of Electronic Device Engineering, Yamaguchi University, Ube 755-8611 (Japan)

    2015-03-15

    Negative hydrogen ions are produced on a nickel grid with positive-ion irradiation. In order to investigate the production mechanism, a copper grid without the chemisorption of hydrogen atoms and positive helium ions without negative ionization are used for comparison. Positive hydrogen ions reflected on the metal surface obtain two electrons from the surface and become negatively ionized. It is found that the production yield of negative ions by desorption ionization of chemisorbed hydrogen atoms seems to be small, and the production is a minor mechanism.

  7. Production economics for hydrogen, ammonia, and methanol during the 1980--2000 period

    Energy Technology Data Exchange (ETDEWEB)

    Corneil, H G; Heinzelmann, F J; Nicholson, E W.S.

    1977-04-01

    Refinery hydrogen, ammonia, and methanol, the principal industrial hydrogen products, are now manufactured mainly by catalytic steam reforming of natural gas or some alternative light-hydrocarbon feed stock. Anticipated increases in the prices of hydrocarbons are expected to exceed those for coal, thus gradually increasing the incentive to use coal gasification as a source of industrial hydrogen during the 1980 to 2000 period. Although the investment in industrial hydrogen plants will exceed those for reforming by a factor of 2 or more, coal gasification will provide lower production costs (including 20%/y before tax return) for methanol manufacture in the early 1980's and for ammonia 5 years or so later. However, high costs for transporting coal to major refining centers will make it difficult to justify coal gasification for refinery hydrogen production during the 1980 to 2000 period. By the year 2000, 40 to 50% of the U.S. industrial hydrogen requirements will be provided by coal gasification thus conserving natural gas and light hydrocarbon feed stocks equivalent to about 600,000 B/D of crude oil. Electrolytic hydrogen production costs will be reduced by improved electrolysis technology such as the solid-polymer-electrolyte process. These improved processes will reduce electrolysis plant investments by a factor of 2 or more and reduce electricity requirements by about 20%. Although the production cost, including return for electrolytic hydrogen, will continue to exceed those for reforming and coal gasification, the use of electrolytic hydrogen will be attractive for many small users when the new technology is available in the early 1980's. Electrolytic hydrogen now about 0.7% of total U.S. industrial hydrogen requirements will probably increase to about 1.2% of the total by the year 2000.

  8. EVALUATING HYDROGEN PRODUCTION IN BIOGAS REFORMING IN A MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    F. S. A. Silva

    2015-03-01

    Full Text Available Abstract Syngas and hydrogen production by methane reforming of a biogas (CH4/CO2 = 2.85 using carbon dioxide was evaluated in a fixed bed reactor with a Pd-Ag membrane in the presence of a nickel catalyst (Ni 3.31% weight/γ-Al2O3 at 773 K, 823 K, and 873 K and 1.01×105 Pa. Operation with hydrogen permeation at 873 K increased the methane conversion to approximately 83% and doubled the hydrogen yield relative to operation without hydrogen permeation. A mathematical model was formulated to predict the evolution of the effluent concentrations. Predictions based on the model showed similar evolutions for yields of hydrogen and carbon monoxide at temperatures below 823 K for operations with and without the hydrogen permeation. The hydrogen yield reached approximately 21% at 823 K and 47% at 873 K under hydrogen permeation conditions.

  9. Storage and production of hydrogen for fuel cell applications

    Science.gov (United States)

    Aiello, Rita

    The increased utilization of proton-exchange membrane (PEM) fuel cells as an alternative to internal combustion engines is expected to increase the demand for hydrogen, which is used as the energy source in these systems. The objective of this work is to develop and test new methods for the storage and production of hydrogen for fuel cells. Six ligand-stabilized hydrides were synthesized and tested as hydrogen storage media for use in portable fuel cells. These novel compounds are more stable than classical hydrides (e.g., NaBH4, LiAlH4) and react to release hydrogen less exothermically upon hydrolysis with water. Three of the compounds produced hydrogen in high yield (88 to 100 percent of the theoretical) and at significantly lower temperatures than those required for the hydrolysis of NaBH4 and LiAlH4. However, a large excess of water and acid were required to completely wet the hydride and keep the pH of the reaction medium neutral. The hydrolysis of the classical hydrides with steam can overcome these limitations. This reaction was studied in a flow reactor and the results indicate that classical hydrides can be hydrolyzed with steam in high yields at low temperatures (110 to 123°C) and in the absence of acid. Although excess steam was required, the pH of the condensed steam was neutral. Consequently, steam could be recycled back to the reactor. Production of hydrogen for large-scale transportation fuel cells is primarily achieved via the steam reforming, partial oxidation or autothermal reforming of natural gas or the steam reforming of methanol. However, in all of these processes CO is a by-product that must be subsequently removed because the Pt-based electrocatalyst used in the fuel cells is poisoned by its presence. The direct cracking of methane over a Ni/SiO2 catalyst can produce CO-free hydrogen. In addition to hydrogen, filamentous carbon is also produced. This material accumulates on the catalyst and eventually deactivates it. The Ni/SiO2 catalyst

  10. Hydrogen production from water: Recent advances in photosynthesis research

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

    1997-12-31

    The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of the algae`s hydrogen-producing capability, which is based on the following: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the potential for research advances using modern methods of molecular biology and genetic engineering to maximize hydrogen production. ORNL has shown that sustained simultaneous photoevolution of molecular hydrogen and oxygen can be performed with mutants of the green alga Chlamydomonas reinhardtii that lack a detectable level of the Photosystem I light reaction. This result is surprising in view of the standard two-light reaction model of photosynthesis and has interesting scientific and technological implications. This ORNL discovery also has potentially important implications for maximum thermodynamic conversion efficiency of light energy into chemical energy by green plant photosynthesis. Hydrogen production performed by a single light reaction, as opposed to two, implies a doubling of the theoretically maximum thermodynamic conversion efficiency from {approx}10% to {approx}20%.

  11. Timeline of bio-hydrogen production by anaerobic digestion of biomass

    Directory of Open Access Journals (Sweden)

    Bernadette E. TELEKY

    2015-12-01

    Full Text Available Anaerobic digestion of biomass is a process capable to produce biohydrogen, a clean source of alternative energy. Lignocellulosic biomass from agricultural waste is considered a renewable energy source; therefore its utilization also contributes to the reduction of water, soil and air pollution. The study consists in five consecutive experiments designed to utilize anaerobic bacterial enrichment cultures originating from the Hungarian Lake, Hévíz. Wheat straw was used as complex substrate to produce hydrogen. The timeline evolution of hydrogen production was analyzed and modelled by two functions: Logistic and Boltzmann. The results proved that hydrogen production is significant, with a maximum of 0.24 mlN/ml and the highest hydrogen production occurs between the days 4-10 of the experiment.

  12. Photoelectrochemical Hydrogen Production on α-Fe2O3 : Insights from Theory and Experiments

    NARCIS (Netherlands)

    Baltrusaitis, Jonas; Hu, Yong-Sheng; McFarland, Eric W.; Hellman, Anders

    2014-01-01

    The photoelectrochemical (PEC) decomposition of organic compounds in wastewater is investigated by using quantum chemical (DFT) methods to evaluate alternatives to water splitting for the production of renewable and sustainable hydrogen. Methanol is used as a model organic species for the theoretica

  13. Solar and Wind Technologies for Hydrogen Production Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  14. Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures

    Energy Technology Data Exchange (ETDEWEB)

    Melis, Anastasios [Univ. of California, Berkeley, CA (United States)

    2014-12-31

    The project addressed the following technical barrier from the Biological Hydrogen Production section of the Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan: Low Sunlight Utilization Efficiency in Photobiological Hydrogen Production is due to a Large Photosystem Chlorophyll Antenna Size in Photosynthetic Microorganisms (Barrier AN: Light Utilization Efficiency).

  15. Principle and perspectives of hydrogen production through biocatalyzed electrolysis

    NARCIS (Netherlands)

    Rozendal, R.A.; Hamelers, H.V.M.; Euverink, G.J.W.; Metz, S.J.; Buisman, C.J.N.

    2006-01-01

    Biocatalyzed electrolysis is a novel biological hydrogen production process with the potential to efficiently convert a wide range of dissolved organic materials in wastewaters. Even substrates formerly regarded to be unsuitable for hydrogen production due to the endothermic nature of the involved c

  16. Fermentative hydrogen production from agroindustrial lignocellulosic substrates

    Science.gov (United States)

    Reginatto, Valeria; Antônio, Regina Vasconcellos

    2015-01-01

    To achieve economically competitive biological hydrogen production, it is crucial to consider inexpensive materials such as lignocellulosic substrate residues derived from agroindustrial activities. It is possible to use (1) lignocellulosic materials without any type of pretreatment, (2) lignocellulosic materials after a pretreatment step, and (3) lignocellulosic materials hydrolysates originating from a pretreatment step followed by enzymatic hydrolysis. According to the current literature data on fermentative H2 production presented in this review, thermophilic conditions produce H2 in yields approximately 75% higher than those obtained in mesophilic conditions using untreated lignocellulosic substrates. The average H2 production from pretreated material is 3.17 ± 1.79 mmol of H2/g of substrate, which is approximately 50% higher compared with the average yield achieved using untreated materials (2.17 ± 1.84 mmol of H2/g of substrate). Biological pretreatment affords the highest average yield 4.54 ± 1.78 mmol of H2/g of substrate compared with the acid and basic pretreatment - average yields of 2.94 ± 1.85 and 2.41 ± 1.52 mmol of H2/g of substrate, respectively. The average H2 yield from hydrolysates, obtained from a pretreatment step and enzymatic hydrolysis (3.78 ± 1.92 mmol of H2/g), was lower compared with the yield of substrates pretreated by biological methods only, demonstrating that it is important to avoid the formation of inhibitors generated by chemical pretreatments. Based on this review, exploring other microorganisms and optimizing the pretreatment and hydrolysis conditions can make the use of lignocellulosic substrates a sustainable way to produce H2. PMID:26273246

  17. Fluidised bed membrane reactor for ultrapure hydrogen production via methane steam reforming: Experimental demonstration and model validation

    NARCIS (Netherlands)

    Patil, Charudatta S.; Sint Annaland, van Martin; Kuipers, J.A.M.

    2007-01-01

    Hydrogen is emerging as a future alternative for mobile and stationary energy carriers in addition to its use in chemical and petrochemical applications. A novel multifunctional reactor concept has been developed for the production of ultrapure hydrogen View the MathML source from light hydrocarbons

  18. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  19. Anti-reflective nanoporous silicon for efficient hydrogen production

    Science.gov (United States)

    Oh, Jihun; Branz, Howard M

    2014-05-20

    Exemplary embodiments are disclosed of anti-reflective nanoporous silicon for efficient hydrogen production by photoelectrolysis of water. A nanoporous black Si is disclosed as an efficient photocathode for H.sub.2 production from water splitting half-reaction.

  20. Biological production of hydrogen by dark fermentation of OFMSW and co-fermentation with slaughterhouse wastes

    Energy Technology Data Exchange (ETDEWEB)

    Moran, A.; Gomez, X.; Cuestos, M. J.

    2005-07-01

    Hydrogen is an ideal, clean and sustainable energy source for the future because of its high conversion and nonpolluting nature (Lin and Lay, 2003). There are different methods for the production of hydrogen, the traditional ones, are the production from fossil fuels. Aiming to reach a development based on sustainable principles the production of hydrogen from renewable sources is a desirable goal. Among the environmental friendly alternatives for the production of hydrogen are the biological means. Dark fermentation as it is known the process when light is not used; it is a preferable option thanks to the knowledge already collected from its homologous process, the anaerobic digestion for the production of methane. There are several studies intended to the evaluation of the production of hydrogen, many are dedicated to the use of pure cultures or the utilization of basic substrates as glucose or sucrose (Lin and Lay, 2003; Chang et al., 2002, Kim et al., 2005). This study is performed to evaluate the fermentation of a mixture of wastes for the production of hydrogen. It is used as substrate the organic fraction of municipal solid wastes (OFMSW) and a mixture of this residue with slaughterhouse waste. (Author)

  1. Partial Characteristics of Hydrogen Production by Fermentative Hydrogen-producing Bacterial Strain B49

    Institute of Scientific and Technical Information of China (English)

    Wang Xiangjing(王相晶); Ren Nanqi; Xiang Wensheng; Lin Ming; Guo Wanqian

    2003-01-01

    To investigate the characteristics of hydrogen production by a novel fermentative hydrogen-producing bacterial strain B49 (AF481148 in EMBL), batch experiments are conducted under different conditions. Hydrogen production has a correlation with cell growth and the consumption of glucose and soluble protein. The optimum pH for cell growth is 4.5±0.15. At acidic pH 4.0±0.15, the bacteria has the maximum accumulated hydrogen volume of 2382 ml/L culture and the maximum hydrogen evolution rate of 339.9 ml/L culture*h with 1% glucose. The optimum temperature for cell growth and hydrogen production is 35℃. In addition, fermentative hydrogen-producing bacterial strain B49 can generate hydrogen from the decomposition of other organic substrates such as wheat, soybean, corn, and potato. Moreover, it can also produce hydrogen from molasses wastewater and brewage wastewater, and hydrogen yields are 137.9 ml H2/g COD and 49.9 ml H2/g COD, respectively.

  2. Effect of process variables on photosynthetic algal hydrogen production.

    Science.gov (United States)

    Hahn, John J; Ghirardi, Maria L; Jacoby, William A

    2004-01-01

    Chlamydomonas reinhardtii is a green alga that can use the sun's energy to split water into O(2) and H(2). This is accomplished by means of a two-phase cycle, an aerobic growth phase followed by an anaerobic hydrogen production phase. The effects of process variables on hydrogen production are examined here. These variables include cell concentration, light intensity, and reactor design parameters that affect light transport and mixing. An optimum cell concentration and light intensity are identified, and two reactor designs are compared. The maximum hydrogen production observed in this study was 0.29 mL of hydrogen per milliliter of suspension. This was measured at atmospheric pressure during a 96 h production cycle. This corresponds to an average hydrogen production rate of 0.12 mmol/mL.h. PMID:15176910

  3. Hydrogen production by Chlamydomonas reinhardtii under light driven sulfur deprived condition

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, Krishnan; Karthik, Rajendran [Biotechnology Research Division, Department of Biotechnology, Prathyusha Institute of Technology and Management, Aranvoyalkuppam, Thiruvallur District 602025, Tamil Nadu (India); Kamala Nalini, S.P. [Department of Biotechnology, Vel Group of Educational Institutions, Avadi, Alamadhi Road, Chennai 600062, Tamil Nadu (India)

    2009-10-15

    This article explores the possibility of demonstrating sustainable photohydrogen production using Chlamydomonas reinhardtii when grown in sulfur deprived photoautotrophic condition. The hydrogen evolving capability of the algal species was monitored based on alternating light and dark period. Investigation was carried out during the day time in order to exploit the solar energy for meeting the demand of the light period. The results showed that when the reactor was operated at varying photoperiod namely 2, 3 and 4 h of alternating light and dark period, the gas generation was found to be 32 {+-} 4, 63 {+-} 7 and 52 {+-} 5 mL/h, while the corresponding hydrogen content was 47, 86 and 87% respectively. Functional components of hydrogen generation reaction centers were also analyzed, which showed that the PS(I) reaction centers were involved in hydrogen production pathway, as the light absorption by PS(I) was prerequisite for hydrogen generation under sulfur deprived photoautotrophic condition. The findings showed a higher gas yield and hydrogen content under dark period, whereas under light period the gas content was below detectable level for hydrogen due to the reversible hydrogenase reaction. (author)

  4. Technoeconomic analysis of different options for the production of hydrogen from sunlight, wind, and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Mann, M.K.; Spath, P.L.; Amos, W.A. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    To determine their technical and economic viability and to provide insight into where each technology is in its development cycle, different options to produce hydrogen from sunlight, wind, and biomass were studied. Additionally, costs for storing and transporting hydrogen were determined for different hydrogen quantities and storage times. The analysis of hydrogen from sunlight examined the selling price of hydrogen from two technologies: direct photoelectrochemical (PEC) conversion of sunlight and photovoltaic (PV)-generated electricity production followed by electrolysis. The wind analysis was based on wind-generated electricity production followed by electrolysis. In addition to the base case analyses, which assume that hydrogen is the sole product, three alternative scenarios explore the economic impact of integrating the PV- and wind-based systems with the electric utility grid. Results show that PEC hydrogen production has the potential to be economically feasible. Additionally, the economics of the PV and wind electrolysis systems are improved by interaction with the grid. The analysis of hydrogen from biomass focused on three gasification technologies. The systems are: low pressure, indirectly-heated gasification followed by steam reforming; high pressure, oxygen-blown gasification followed by steam reforming; and pyrolysis followed by partial oxidation. For each of the systems studied, the downstream process steps include shift conversion followed by hydrogen purification. Only the low pressure system produces hydrogen within the range of the current industry selling prices (typically $0.7--$2/kg, or $5--14/GJ on a HHV basis). A sensitivity analysis showed that, for the other two systems, in order to bring the hydrogen selling price down to $2/kg, negative-priced feedstocks would be required.

  5. Fermentative hydrogen production by microbial consortium

    Energy Technology Data Exchange (ETDEWEB)

    Maintinguer, Sandra I.; Fernandes, Bruna S.; Duarte, Iolanda C.S.; Saavedra, Nora Katia; Adorno, M. Angela T.; Varesche, M. Bernadete [Department of Hydraulics and Sanitation, School of Engineering of Sao Carlos, University of Sao Paulo, Av. Trabalhador Sao-carlense, 400, 13566-590 Sao Carlos-SP (Brazil)

    2008-08-15

    Heat pre-treatment of the inoculum associated to the pH control was applied to select hydrogen-producing bacteria and endospores-forming bacteria. The source of inoculum to the heat pre-treatment was from a UASB reactor used in the slaughterhouse waste treatment. The molecular biology analyses indicated that the microbial consortium presented microorganisms affiliated with Enterobacter cloacae (97% and 98%), Clostridium sp. (98%) and Clostridium acetobutyricum (96%), recognized as H{sub 2} and volatile acids' producers. The following assays were carried out in batch reactors in order to verify the efficiencies of sucrose conversion to H{sub 2} by the microbial consortium: (1) 630.0 mg sucrose/L, (2) 1184.0 mg sucrose/L, (3) 1816.0 mg sucrose/L and (4) 4128.0 mg sucrose/L. The subsequent yields were obtained as follows: 15% (1.2 mol H{sub 2}/mol sucrose), 20% (1.6 mol H{sub 2}/mol sucrose), 15% (1.2 mol H{sub 2}/mol sucrose) and 4% (0.3 mol H{sub 2}/mol sucrose), respectively. The intermediary products were acetic acid, butyric acid, methanol and ethanol in all of the anaerobic reactors. (author)

  6. Electrolytic production of hydrogen utilizing photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Daugherty, M.A.

    1996-10-01

    Hydrogen has the potential to serve as both an energy storage means and an energy carrier in renewable energy systems. When renewable energy sources such as solar or wind power are used to produce electrical power, the output can vary depending on weather conditions. By using renewable sources to produce hydrogen, a fuel which can be stored and transported, a reliable and continuously available energy supply with a predictable long-term average output is created. Electrolysis is one method of converting renewable energy into hydrogen fuel. In this experiment we examine the use of an electrolyzer based on polymer-electrolyte membrane technology to separate water into hydrogen and oxygen. The oxygen is vented to the atmosphere and the hydrogen is stored in a small pressure vessel.

  7. Hydrogen Production Cost Estimate Using Biomass Gasification: Independent Review

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-10-01

    This independent review is the conclusion arrived at from data collection, document reviews, interviews and deliberation from December 2010 through April 2011 and the technical potential of Hydrogen Production Cost Estimate Using Biomass Gasification. The Panel reviewed the current H2A case (Version 2.12, Case 01D) for hydrogen production via biomass gasification and identified four principal components of hydrogen levelized cost: CapEx; feedstock costs; project financing structure; efficiency/hydrogen yield. The panel reexamined the assumptions around these components and arrived at new estimates and approaches that better reflect the current technology and business environments.

  8. The endogenous production of hydrogen sulphide in intrauterine tissues

    Directory of Open Access Journals (Sweden)

    Wang Rui

    2009-02-01

    Full Text Available Abstract Background Hydrogen sulphide is a gas signalling molecule which is produced endogenously from L-cysteine via the enzymes cystathionine beta-synthase (CBS and cystathionine gamma-lyase (CSE. The possible role of hydrogen sulphide in reproduction has not yet been fully investigated. It has been previously demonstrated that hydrogen sulphide relaxes uterine smooth muscle in vitro. The aim of the present study was to investigate the endogenous production of hydrogen sulphide in rat and human intrauterine tissues in vitro. Methods The production of hydrogen sulphide in rat and human intrauterine tissues was measured in vitro using a standard technique. The expression of CBS and CSE was also investigated in rat and human intrauterine tissues via Western blotting. Furthermore, the effects of nitric oxide (NO and low oxygen conditions on the production rates of hydrogen sulphide were investigated. Results The order of hydrogen sulphide production rates (mean +/- SD, n = 4 for rat tissues were: liver (777 +/- 163 nM/min/g > uterus (168 +/- 100 nM/min/g > fetal membranes (22.3 +/- 15.0 nM/min/g > placenta (11.1 +/- 4.7 nM/min/g, compared to human placenta (200 +/- 102 nM/min/g. NO significantly increased hydrogen sulphide production in rat fetal membranes (P Conclusion Rat and human intrauterine tissues produce hydrogen sulphide in vitro possibly via CBS and CSE enzymes. NO increased the production of hydrogen sulphide in rat fetal membranes. The augmentation of hydrogen sulphide production in human intrauterine tissues in a low oxygen environment could have a role in pathophysiology of pregnancy.

  9. FEASIBILITY OF HYDROGEN PRODUCTION USING LASER INERTIAL FUSION AS THE PRIMARY ENERGY SOURCE

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M

    2006-11-03

    The High Average Power Laser (HAPL) program is developing technology for Laser IFE with the goal of producing electricity from the heat generated by the implosion of deuterium-tritium (DT) targets. Alternatively, the Laser IFE device could be coupled to a hydrogen generation system where the heat would be used as input to a water-splitting process to produce hydrogen and oxygen. The production of hydrogen in addition to electricity would allow fusion energy plants to address a much wider segment of energy needs, including transportation. Water-splitting processes involving direct and hybrid thermochemical cycles and high temperature electrolysis are currently being developed as means to produce hydrogen from high temperature nuclear fission reactors and solar central receivers. This paper explores the feasibility of this concept for integration with a Laser IFE plant, and it looks at potential modifications to make this approach more attractive. Of particular interest are: (1) the determination of the advantages of Laser IFE hydrogen production compared to other hydrogen production concepts, and (2) whether a facility of the size of FTF would be suitable for hydrogen production.

  10. Hydrogen production associated to the treatment of nuclear waste

    International Nuclear Information System (INIS)

    The exploitation of nuclear energy produces radioactive waste. However, many radioactive waste treatment processes can be adapted to generate hydrogen as a by-product, thereby helping to further decrease CO2 emissions through the use of hydrogen as an energy vector. Two examples are given: 1) the aggressive decontamination of metallic pieces, and 2) the electro-mediated oxidation of organic radioactive waste. Preliminary results obtained at the SCKxCEN in collaboration with the University of Liege indicate that hydrogen production can often be technically and economically combined with waste treatment, although the hydrogen production rate remains marginal with respect to large-scale water electrolysis. Further R and D work is needed in the field, but the resulting know-how would allow for an increase in the competitiveness of the electrolytic production of hydrogen in general (especially whenever membrane processes are being considered). (authors)

  11. Comparative analysis of hydrogen-producing bacteria and its immobilized cells for characteristics of hydrogen production

    Institute of Scientific and Technical Information of China (English)

    王相晶; 任南琪; 向文胜; 王爱杰; 林明; 郭婉茜

    2003-01-01

    A strain of hydrogen producing bacteria was immobilized by polyvinyl alcohol-boric acid method,with the addition of a small amount of calcium alginate. The immobilized cells were insensitive to the presence of traces of O2. Moreover, the immobilized cells increased both the evolution rate and the yield of hydrogen production. Batch experiments with a medium containing 10 g/L glucose demonstrated the yields of hydrogen production by the immobilized and free cells were 2.14 mol/mol glucose and 1.69 mol/mol glucose, respectively.In continuous cultures atmedium retention time of 2. 0 h, the yield and the evolution rate of hydrogen producmedium retention time of 6. 0 h, the yield and the evolution rate of hydrogen production by free cells were only 1.75 mol/mol glucose and 362.9ml/(L·h),respectively.

  12. Hydrogen production using high temperature nuclear reactors : A feasibility study

    OpenAIRE

    Sivertsson, Viktor

    2010-01-01

    The use of hydrogen is predicted to increase substantially in the future, both as chemical feedstock and also as energy carrier for transportation. The annual world production of hydrogen amounts to some 50 million tonnes and the majority is produced using fossil fuels like natural gas, coal and naphtha. High temperature nuclear reactors (HTRs) represent a novel way to produce hydrogen at large scale with high efficiency and less carbon footprint. The aim of this master thesis has been to eva...

  13. Cost Analysis of a Concentrator Photovoltaic Hydrogen Production System

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J. R.; McConnell, R. D.; Mosleh, M.

    2005-08-01

    The development of efficient, renewable methods of producing hydrogen are essential for the success of the hydrogen economy. Since the feedstock for electrolysis is water, there are no harmful pollutants emitted during the use of the fuel. Furthermore, it has become evident that concentrator photovoltaic (CPV) systems have a number of unique attributes that could shortcut the development process, and increase the efficiency of hydrogen production to a point where economics will then drive the commercial development to mass scale.

  14. Microbiological Hydrogen Production by Anaerobic Fermentation and Photosynthetic Process

    Energy Technology Data Exchange (ETDEWEB)

    Asada, Y.; Ohsawa, M.; Nagai, Y.; Fukatsu, M.; Ishimi, K.; Ichi-ishi, S.

    2009-07-01

    Hydrogen gas is a clean and renewable energy carrier. Microbiological hydrogen production from glucose or starch by combination used of an anaerobic fermenter and a photosynthetic bacterium, Rhodobacter spheroides RV was studied. In 1984, the co-culture of Clostridium butyricum and RV strain to convert glucose to hydrogen was demonstrated by Miyake et al. Recently, we studied anaerobic fermentation of starch by a thermophilic archaea. (Author)

  15. Hydrogen production from dimethyl ether using corona discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ji-Jun; Liu, Chang-Jun [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Yue-Ping [Department of Chemistry, Tianjin University, Tianjin 300072 (China)

    2007-01-01

    Dimethyl ether (DME), with its non-toxic character, high H/C ratio and high-energy volumetric density, is an ideal resource for hydrogen production. In this work, hydrogen production from the decomposition of DME using corona discharge has been studied. The corona discharge plasma decomposition was conducted at ambient conditions. The effects of dilution gas (argon), flow rate, frequency and waveforms on the DME decomposition were investigated. The addition of dilution gas can significantly increase the hydrogen production rate. The highest hydrogen production rate with the lowest energy consumption presents at the flow rate of 27.5Nmlmin{sup -1}. AC voltage is more favored than DC voltage for the production of hydrogen with less energy input. The optimal frequency is 2.0kHz. The hydrogen production rate is also affected by the input waveform and decreases as following: sinusoid triangular>sinusoid>ramp>square, whereas the sinusoid waveform shows the highest energy efficiency. The corona discharge decomposition of DME is leading to a simple, easy and convenient hydrogen production with no needs of catalyst and external heating. (author)

  16. Hydrogen production from glucose by anaerobes.

    Science.gov (United States)

    Ogino, Hiroyasu; Miura, Takashi; Ishimi, Kosaku; Seki, Minoru; Yoshida, Hiroyuki

    2005-01-01

    Various anaerobes were cultivated in media containing glucose. When 100 mL of thioglycollate medium containing 2.0% (w/v) glucose was used, Clostridium butyricum ATCC 859, NBRC 3315, and NBRC 13949 evolved 227-243 mL of biogas containing about 180 mL of hydrogen in 1 day. Although some strains had some resistance against oxygen, C. butyricum ATCC 859 and 860 did not have it. C. butyricum NBRC 3315 and Enterobacter aerogenes NBRC 13534 produced hydrogen in the presence of glucose or pyruvic acid, and E. aerogenes NBRC 13534 produced hydrogen by not only glucose and pyruvic acid but also dextrin, sucrose, maltose, galactose, fructose, mannose, and mannitol. When a medium containing 0.5% (w/v) yeast extract and 2.0% (w/v) glucose was used, E. aerogenes NBRC 13534 evolved more biogas and hydrogen than C. butyricum NBRC 3315 in the absence of reducing agent.

  17. Production of bioplastics and hydrogen gas by photosynthetic microorganisms

    Science.gov (United States)

    Yasuo, Asada; Masato, Miyake; Jun, Miyake

    1998-03-01

    Our efforts have been aimed at the technological basis of photosynthetic-microbial production of materials and an energy carrier. We report here accumulation of poly-(3-hydroxybutyrate) (PHB), a raw material of biodegradable plastics and for production of hydrogen gas, and a renewable energy carrier by photosynthetic microorganisms (tentatively defined as cyanobacteria plus photosynthetic bateria, in this report). A thermophilic cyanobacterium, Synechococcus sp. MA19 that accumulates PHB at more than 20% of cell dry wt under nitrogen-starved conditions was isolated and microbiologically identified. The mechanism of PHB accumulation was studied. A mesophilic Synechococcus PCC7942 was transformed with the genes encoding PHB-synthesizing enzymes from Alcaligenes eutrophus. The transformant accumulated PHB under nitrogen-starved conditions. The optimal conditions for PHB accumulation by a photosynthetic bacterium grown on acetate were studied. Hydrogen production by photosynthetic microorganisms was studied. Cyanobacteria can produce hydrogen gas by nitrogenase or hydrogenase. Hydrogen production mediated by native hydrogenase in cyanobacteria was revealed to be in the dark anaerobic degradation of intracellular glycogen. A new system for light-dependent hydrogen production was targeted. In vitro and in vivo coupling of cyanobacterial ferredoxin with a heterologous hydrogenase was shown to produce hydrogen under light conditions. A trial for genetic trasformation of Synechococcus PCC7942 with the hydrogenase gene from Clostridium pasteurianum is going on. The strong hydrogen producers among photosynthetic bacteria were isolated and characterized. Co-culture of Rhodobacter and Clostriumdium was applied to produce hydrogen from glucose. Conversely in the case of cyanobacteria, genetic regulation of photosynthetic proteins was intended to improve conversion efficiency in hydrogen production by the photosynthetic bacterium, Rhodobacter sphaeroides RV. A mutant acquired by

  18. Electrolytic production and dispensing of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.E.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1995-09-01

    The fuel cell electric vehicle (FCEV) is undoubtedly the only option that can meet both the California zero emission vehicle (ZEV) standard and the President`s goal of tripling automobile efficiency without sacrificing performance in a standard 5-passenger vehicle. The three major automobile companies are designing and developing FCEVs powered directly by hydrogen under cost-shared contracts with the Department of Energy. Once developed, these vehicles will need a reliable and inexpensive source of hydrogen. Steam reforming of natural gas would produce the least expensive hydrogen, but funding may not be sufficient initially to build both large steam reforming plants and the transportation infrastructure necessary to deliver that hydrogen to geographically scattered FCEV fleets or individual drivers. This analysis evaluates the economic feasibility of using small scale water electrolysis to provide widely dispersed but cost-effective hydrogen for early FCEV demonstrations. We estimate the cost of manufacturing a complete electrolysis system in large quantities, including compression and storage, and show that electrolytic hydrogen could be cost competitive with fully taxed gasoline, using existing residential off-peak electricity rates.

  19. Nano cobalt oxides for photocatalytic hydrogen production

    KAUST Repository

    Mangrulkar, Priti A.

    2012-07-01

    Nano structured metal oxides including TiO 2, Co 3O 4 and Fe 3O 4 have been synthesized and evaluated for their photocatalytic activity for hydrogen generation. The photocatalytic activity of nano cobalt oxide was then compared with two other nano structured metal oxides namely TiO 2 and Fe 3O 4. The synthesized nano cobalt oxide was characterized thoroughly with respect to EDX and TEM. The yield of hydrogen was observed to be 900, 2000 and 8275 mmol h -1 g -1 of photocatalyst for TiO 2, Co 3O 4 and Fe 3O 4 respectively under visible light. It was observed that the hydrogen yield in case of nano cobalt oxide was more than twice to that of TiO 2 and the hydrogen yield of nano Fe 3O 4 was nearly four times as compared to nano Co 3O 4. The influence of various operating parameters in hydrogen generation by nano cobalt oxide was then studied in detail. Copyright © 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  20. Kinetic release of hydrogen peroxide from different whitening products.

    Science.gov (United States)

    da Silva Marques, Duarte Nuno; Silveira, Joao Miguel; Marques, Joana Rita; Amaral, Joao Almeida; Guilherme, Nuno Marques; da Mata, António Duarte

    2012-01-01

    The objective of this in vitro study was to evaluate the kinetics of hydrogen peroxide (HP) release from five different bleaching products: VivaStyle® 10% fitted tray gel, VivaStyle® 30% in-office bleaching gel, VivaStyle® Paint-On Plus paint-on bleaching varnish, Opalescence PF® 10% carbamide peroxide gel and Trèswhite Supreme™ 10% HP gel. Each product was firstly titrated for its HP content by a described method. HP release kinetics was assessed by a modified spectrophotometric technique. One sample t test was performed to test for differences between the manufacturers' claimed HP concentrations and the titrated HP content in the whitening products. Analysis of variance plus Tamhane's post hoc tests and Pearson correlation analysis were used as appropriate. Values of P tested (P tested. These results are consistent with manufacturers' reduced recommended application times. The results of this study suggest that modifying the matrix composition may be a viable alternative to HP concentration increase, since this may result in faster release kinetics without exposure to high HP concentrations. PMID:22908081

  1. Monopole star products are non-alternative

    CERN Document Server

    Bojowald, Martin; Buyukcam, Umut; Strobl, Thomas

    2016-01-01

    Non-associative algebras appear in some quantum-mechanical systems, for instance if a charged particle in a distribution of magnetic monopoles is considered. Using methods of deformation quantization it is shown here, that algebras for such systems cannot be alternative, i.e. their associator cannot be completely anti-symmetric.

  2. Metabolic flux analysis of the hydrogen production potential in Synechocystis sp. PCC6803

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, E. [Departamento de Lenguajes y Ciencias de la Computacion, Campus de Teatrinos, Universidad de Malaga, 29071 Malaga (Spain); Montagud, A.; Fernandez de Cordoba, P.; Urchueguia, J.F. [Instituto Universitario de Matematica Pura y Aplicada, Universidad Politecnica de Valencia, Camino de Vera 14, 46022 Valencia (Spain)

    2009-11-15

    Hydrogen is a promising energy vector; however, finding methods to produce it from renewable sources is essential to allow its wide-scale use. In that line, biological hydrogen production, although it is considered as a possible alternative, requires substantial improvements to overcome its present low yields. In that direction, genetic manipulation probably will play a central role and from that point of view metabolic flux analysis (MFA) constitutes an important tool to guide a priori most suitable genetic modifications oriented to a hydrogen yield increase. In this work MFA has been applied to analyze hydrogen photoproduction of Synechocystis sp. PCC6803. Flux analysis was carried out based on literature data and several basic fluxes were estimated in different growing conditions of the system. From this analysis, an upper limit for hydrogen photoproduction has been determined indicating a wide margin for improvement. MFA was also used to find a feasible operating space for hydrogen production, which avoids oxygen inhibition, one of the most important limitations to make hydrogen production cost effective. In addition, a set of biotechnological strategies are proposed that would be consistent with the performed mathematical analysis. (author)

  3. Estimation of bacterial hydrogen sulfide production in vitro

    Directory of Open Access Journals (Sweden)

    Amina Basic

    2015-06-01

    Full Text Available Oral bacterial hydrogen sulfide (H2S production was estimated comparing two different colorimetric methods in microtiter plate format. High H2S production was seen for Fusobacterium spp., Treponema denticola, and Prevotella tannerae, associated with periodontal disease. The production differed between the methods indicating that H2S production may follow different pathways.

  4. Technical suitability mapping of feedstocks for biological hydrogen production

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Karaoglanoglou, L.S.; Koullas, D.P.; Bakker, R.R.; Claassen, P.A.M.; Koukios, E.G.

    2015-01-01

    The objective of this work was to map and compare the technical suitability of different raw materials for biological hydrogen production. Our model was based on hydrogen yield potential, sugar mobilization efficiency, fermentability and coproduct yield and value. The suitability of the studied r

  5. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles

    International Nuclear Information System (INIS)

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs

  6. Prospect of HTGRs for hydrogen production in Indonesia

    International Nuclear Information System (INIS)

    Hydrogen energy system is interesting to many people of the world that because of hydrogen promised to save our planet earth from destroying of burning of fossil fuels. The selected development of hydrogen production from water such as electrolysis and thermochemical cycles are evaluated. These processes are allowed to split the water at lower temperature, still in the range of HTGRs' working temperature. An overview of related studies in recent years enables the development of research to be followed, studied and evaluated are mentioned. The prospect of hydrogen market in Indonesia and economic consideration based on previous studied are also analyzed and evaluated. (author). 11 refs, 5 figs, 13 tabs

  7. Utilization of solar energy for the production of hydrogen

    Science.gov (United States)

    Steeb, H.; Kleinkauf, W.; Mehrmann, A.

    1983-09-01

    The combination of photovoltaic solar generators and electrolyzers for hydrogen production was investigated. Two different small solar-hydrogen systems are described. The coupling of photovoltaics and electrolysis; the mode of operation of a unit for power processing; and practical operation experiences are discussed. The proposed active electronic adaptation unit can improve photovoltaic electrolyse systems. Solar energy can be converted into the energy carrier hydrogen with a total yearly average efficiency of 16%. This corresponds to 23 Ncum hydrogen per sqm active solar cell surface for a yearly radiation of 1000 kWh/sqm.

  8. Hydrogen production econometric studies. [hydrogen and fossil fuels

    Science.gov (United States)

    Howell, J. R.; Bannerot, R. B.

    1975-01-01

    The current assessments of fossil fuel resources in the United States were examined, and predictions of the maximum and minimum lifetimes of recoverable resources according to these assessments are presented. In addition, current rates of production in quads/year for the fossil fuels were determined from the literature. Where possible, costs of energy, location of reserves, and remaining time before these reserves are exhausted are given. Limitations that appear to hinder complete development of each energy source are outlined.

  9. Renewable hydrogen production for fossil fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W.; Tevault, C.V. [and others

    1995-06-01

    In the fundamental biological process of photosynthesis, atmospheric carbon dioxide is reduced to carbohydrate using water as the source of electrons with simultaneous evolution of molecular oxygen: H{sub 2}O + CO{sub 2} + light {yields} O{sub 2} + (CH{sub 2}O). It is well established that two light reactions, Photosystems I and II (PSI and PSII) working in series, are required to perform oxygenic photosynthesis. Experimental data supporting the two-light reaction model are based on the quantum requirement for complete photosynthesis, spectroscopy, and direct biochemical analysis. Some algae also have the capability to evolve molecular hydrogen in a reaction energized by the light reactions of photosynthesis. This process, now known as biophotolysis, can use water as the electron donor and lead to simultaneous evolution of molecular hydrogen and oxygen. In green algae, hydrogen evolution requires prior incubation under anaerobic conditions. Atmospheric oxygen inhibits hydrogen evolution and also represses the synthesis of hydrogenase enzyme. CO{sub 2} fixation competes with proton reduction for electrons relased from the photosystems. Interest in biophotolysis arises from both the questions that it raises concerning photosynthesis and its potential practical application as a process for converting solar energy to a non-carbon-based fuel. Prior data supported the requirement for both Photosystem I and Photosystem II in spanning the energy gap necessary for biophotolysis of water to oxygen and hydrogen. In this paper we report the at PSII alone is capable of driving sustained simultaneous photoevolution of molecular hydrogen and oxygen in an anaerobically adapted PSI-deficient strain of Chlamydomonas reinhardtii, mutant B4, and that CO{sub 2} competes as an electron acceptor.

  10. Alternate feedstocks and technologies for biodiesel production

    Science.gov (United States)

    U.S. biodiesel production is presently estimated at 800 million gallons annually, and this fuel is no longer a research curiosity - it is entering the nation’s fuel infrastructure. Some estimates are that production will reach nearly twice that value in the next 10 to 12 years. This would stress a...

  11. Hydrogen Production by Homogeneous Catalysis: Alcohol Acceptorless Dehydrogenation

    DEFF Research Database (Denmark)

    Nielsen, Martin

    2015-01-01

    in hydrogen production from biomass using homogeneous catalysis. Homogeneous catalysis has the advance of generally performing transformations at much milder conditions than traditional heterogeneous catalysis, and hence it constitutes a promising tool for future applications for a sustainable energy sector...

  12. Hydrogen production by water dissociation from a nuclear reactor

    International Nuclear Information System (INIS)

    This memento presents the production of hydrogen by water decomposition, the energy needed for the electrolysis, the thermochemical cycles for a decomposition at low temperature and the possible nuclear reactors associated. (A.L.B.)

  13. Hydrogen production from fusion reactors coupled with high temperature electrolysis

    International Nuclear Information System (INIS)

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and complement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Processes which may be considered for this purpose include electrolysis, thermochemical decomposition or thermochemical-electrochemical hybrid cycles. Preliminary studies at Brookhaven indicate that high temperature electrolysis has the highest potential efficiency for production of hydrogen from fusion. Depending on design electric generation efficiencies of approximately 40 to 60 percent and hydrogen production efficiencies of approximately 50 to 70 percent are projected for fusion reactors using high temperature blankets

  14. Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose

    Energy Technology Data Exchange (ETDEWEB)

    Collet, C.; Adler, N.; Schwitzguebel, J.P.; Peringer, P. [Swiss Federal Inst. of Technology Lausanne (EPFL) (Switzerland). Lab. for Environmental Biotechnology

    2004-11-01

    In the production of acetate by Clostridium thermolacticum growing on lactose, considerable amounts of hydrogen were generated. Lactose available in large amounts from milk permeate, a waste stream of the dairy industry, appears to be a valuable substrate for cheap production of biohydrogen. In this study, continuous cultivation of C. thermolacticum was carried out in a bioreactor, under anaerobic thermophilic conditions, on minimal medium containing 10 g l{sup -1} lactose. Different dilution rates and pH were tested. C. thermolacticum growing on lactose produced acetate, ethanol and lactate in the liquid phase. For all conditions tested, hydrogen was the main product in the gas phase. Hydrogen specific production higher than 5 mmol H{sub 2} (g cell){sup -1} h{sup -1} was obtained. By operating this fermentation at high-dilution rate and alkaline pH, the hydrogen content in the gas phase was maximized. (author)

  15. Laboratory of alternative energies and hydrogen in ESPOL. Coupling needs and knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Mendieta, E. [Escuela Superior Politecnica del Litoral, Campus Gustavo Galindo, Guayaquil (Ecuador)

    2009-07-01

    The Ecuadorian problems with electricity and oil for the near future are shortly assessed in this paper. The main Ecuadorian universities contribution towards a real solution is also mentioned here. Projected Knowledge Park of ESPOL (PARCON) and its 7 integrated research centers is presented briefly. The integration of multidisciplinary research being developed in ESPOL is one foundation for this Knowledge Park. The results of previous researches like the Hydrogen project will be used to set the first stage database for future R and D initiatives. The University of Applied Science of Stralsund is one formal partner for ESPOL in Alternative Energies and Hydrogen utilization. (orig.)

  16. Fermentative hydrogen production from microalgal biomass and agricultural wastes

    OpenAIRE

    Moura, Patrícia

    2013-01-01

    Renewable, sustainable and carbon-neutral energy production is needed to deal with the challenges of the currently growing energy demand and deleterious climate changes. Hydrogen (H2) is presently seen as an ideal future energy carrier with technical, socio-economic and environmental benefits. H2 can be produced through biological conversion by photosynthesis, photo-heterotrophic and dark fermentation. The interest in biological hydrogen (bioH2) production has recently increased, as the tradi...

  17. Combined energy production and waste management in manned spacecraft utilizing on-demand hydrogen production and fuel cells

    Science.gov (United States)

    Elitzur, Shani; Rosenband, Valery; Gany, Alon

    2016-11-01

    Energy supply and waste management are among the most significant challenges in human spacecraft. Great efforts are invested in managing solid waste, recycling grey water and urine, cleaning the atmosphere, removing CO2, generating and saving energy, and making further use of components and products. This paper describes and investigates a concept for managing waste water and urine to simultaneously produce electric and heat energies as well as fresh water. It utilizes an original technique for aluminum activation to react spontaneously with water at room temperature to produce hydrogen on-site and on-demand. This reaction has further been proven to be effective also when using waste water and urine. Applying the hydrogen produced in a fuel cell, one obtains electric energy as well as fresh (drinking) water. The method was compared to the traditional energy production technology of the Space Shuttle, which is based on storing the fuel cell reactants, hydrogen and oxygen, in cryogenic tanks. It is shown that the alternative concept presented here may provide improved safety, compactness (reduction of more than one half of the volume of the hydrogen storage system), and management of waste liquids for energy generation and drinking water production. Nevertheless, it adds mass compared to the cryogenic hydrogen technology. It is concluded that the proposed method may be used as an emergency and backup power system as well as an additional hydrogen source for extended missions in human spacecraft.

  18. Production of bacterial cellulose from alternate feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  19. Production of Bacterial Cellulose from Alternate Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  20. PHOTOBIOREACTOR FOR HYDROGEN PRODUCTION FROM CATTLE MANURE

    Science.gov (United States)

    Hydrogen has been identified as an energy-efficient and pollution-free energy carrier that has the potential to replace the existing nonrenewable fossil fuels. The student team at the New Mexico State University will design a prototype of an anaerobic reactor for biohydrogen ...

  1. Genome-wide transcriptional analysis suggests hydrogenase- and nitrogenase-mediated hydrogen production in Clostridium butyricum CWBI 1009

    OpenAIRE

    Calusinska, Magdalena; Hamilton, Christopher; Monsieurs, Pieter; Mathy, Gregory; Leys, Natalie; Franck, Fabrice; Joris, Bernard; Thonart, Philippe; Hiligsmann, Serge; Wilmotte, Annick

    2015-01-01

    Background Molecular hydrogen, given its pollution-free combustion, has great potential to replace fossil fuels in future transportation and energy production. However, current industrial hydrogen production processes, such as steam reforming of methane, contribute significantly to the greenhouse effect. Therefore alternative methods, in particular the use of fermentative microorganisms, have attracted scientific interest in recent years. However the low overall yield obtained is a major chal...

  2. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  3. In vitro hydrogen production by glucose dehydrogenase and hydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    A new in vitro enzymatic pathway for the generation of molecular hydrogen from glucose has been demonstrated. The reaction is based upon the oxidation of glucose by Thermoplasma acidophilum glucose dehydrogenase with the concomitant oxidation of NADPH by Pyrococcus furiosus hydrogenase. Stoichiometric yields of hydrogen were produced from glucose with continuous cofactor recycle. This simple system may provide a method for the biological production of hydrogen from renewable sources. In addition, the other product of this reaction, gluconic acid, is a high-value commodity chemical.

  4. Selection of the process for the heavy water production using isotopic exchange amonia-hydrogen

    International Nuclear Information System (INIS)

    The utilization of the Petroleos Mexicanos ammonia plants for heavy water production by the isotopic exchange NH3-H2 process is presented, in addition a description of the other heavy water production processes was presented. In the ammonia hydrogen process exist two possible alternatives for the operation of the system, one of them is to carry out the enrichment to the same temperature, the second consists in making the enrichment at two different temperatures (dual temperature process), an analysis was made to select the best alternative. The conclusion was that the best operation is the dual temperature process, which presents higher advantages according to the thermodynamics and engineering of the process. (author)

  5. Biohydrogen and biomethane production sustained by untreated matrices and alternative application of compost waste.

    Science.gov (United States)

    Arizzi, Mariaconcetta; Morra, Simone; Pugliese, Massimo; Gullino, Maria Lodovica; Gilardi, Gianfranco; Valetti, Francesca

    2016-10-01

    Biohydrogen and biomethane production offers many advantages for environmental protection over the fossil fuels or the existing physical-chemical methods for hydrogen and methane synthesis. The aim of this study is focused on the exploitation of several samples from the composting process: (1) a mixture of waste vegetable materials ("Mix"); (2) an unmatured compost sample (ACV15); and (3) three types of green compost with different properties and soil improver quality (ACV1, ACV2 and ACV3). These samples were tested for biohydrogen and biomethane production, thus obtaining second generation biofuels and resulting in a novel possibility to manage renewable waste biomasses. The ability of these substrates as original feed during dark fermentation was assayed anaerobically in batch, in glass bottles, in order to determine the optimal operating conditions for hydrogen and/or methane production using "Mix" or ACV1, ACV2 or ACV3 green compost and a limited amount of water. Hydrogen could be produced with a fast kinetic in the range 0.02-2.45mLH2g(-1)VS, while methane was produced with a slower kinetic in the range 0.5-8mLCH4g(-1)VS. It was observed that the composition of each sample influenced significantly the gas production. It was also observed that the addition of different water amounts play a crucial role in the development of hydrogen or methane. This parameter can be used to push towards the alternative production of one or another gas. Hydrogen and methane production was detected spontaneously from these matrices, without additional sources of nutrients or any pre-treatment, suggesting that they can be used as an additional inoculum or feed into single or two-stage plants. This might allow the use of compost with low quality as soil improver for alternative and further applications. PMID:27422046

  6. Biohydrogen and biomethane production sustained by untreated matrices and alternative application of compost waste.

    Science.gov (United States)

    Arizzi, Mariaconcetta; Morra, Simone; Pugliese, Massimo; Gullino, Maria Lodovica; Gilardi, Gianfranco; Valetti, Francesca

    2016-10-01

    Biohydrogen and biomethane production offers many advantages for environmental protection over the fossil fuels or the existing physical-chemical methods for hydrogen and methane synthesis. The aim of this study is focused on the exploitation of several samples from the composting process: (1) a mixture of waste vegetable materials ("Mix"); (2) an unmatured compost sample (ACV15); and (3) three types of green compost with different properties and soil improver quality (ACV1, ACV2 and ACV3). These samples were tested for biohydrogen and biomethane production, thus obtaining second generation biofuels and resulting in a novel possibility to manage renewable waste biomasses. The ability of these substrates as original feed during dark fermentation was assayed anaerobically in batch, in glass bottles, in order to determine the optimal operating conditions for hydrogen and/or methane production using "Mix" or ACV1, ACV2 or ACV3 green compost and a limited amount of water. Hydrogen could be produced with a fast kinetic in the range 0.02-2.45mLH2g(-1)VS, while methane was produced with a slower kinetic in the range 0.5-8mLCH4g(-1)VS. It was observed that the composition of each sample influenced significantly the gas production. It was also observed that the addition of different water amounts play a crucial role in the development of hydrogen or methane. This parameter can be used to push towards the alternative production of one or another gas. Hydrogen and methane production was detected spontaneously from these matrices, without additional sources of nutrients or any pre-treatment, suggesting that they can be used as an additional inoculum or feed into single or two-stage plants. This might allow the use of compost with low quality as soil improver for alternative and further applications.

  7. New Alternatives in Seafood Restructured Products.

    Science.gov (United States)

    Moreno, Helena M; Herranz, Beatriz; Pérez-Mateos, Miriam; Sánchez-Alonso, Isabel; Borderías, Javier A

    2016-01-01

    A general overview, focusing on new trends in the different techniques used in restructured seafood product processing has been described in this work. Heat-induced gelation has been more widely studied in scientific literature than cold gelation technology. This latter technology includes the use of hydrocolloids (alginates and glucomannan) or enzymes (microbial transglutaminase) for making both raw and cooked restructured products. In restructuration processes, fortification processing with some functional ingredients is studied, giving as a result extra value to the products as well as increasing the variety of new seafood products. The process of alleviating heavy metals and organic pollutants from the raw material used has also been reviewed in the present paper. PMID:25000341

  8. Thermodynamic comparison of two processes of hydrogen production: steam methane reforming-A solar thermochemical process

    International Nuclear Information System (INIS)

    Hydrogen is mainly employed like primary product, for the synthesis of ammonia. The ammonia is synthesized by chemically combining hydrogen and nitrogen under pressure, in the presence of a catalyst. This ammonia is used, for the production of the nitrate fertilizers. Nowadays hydrogen gains more attention mainly because, it is regarded as a future significant fuel by much of experts. The widespread use of hydrogen as source of energy could help to reduce the concern concerning the safety of energy, the total change of climate and the quality of air. Hydrogen is presented then as an excellent alternate initially and as substitute thereafter. It can play a role even more significant than conventional energies. Indeed, it has the advantage of being nonpolluting and it can use the same means of transport as conventional energies. For Algeria, it proves of importance capital. It not only makes it possible to increase and diversify its energy reserves and its exports but also to provide for its energy needs which become increasingly significant. Although hydrogen can be produced starting from a large variety of resources using a range of various technologies, the natural gas is generally preferred and will remain in the near future the principal primary product for the manufacture of hydrogen. Currently the most effective means of production of hydrogen is the Steam Reforming of Natural Gas (SMR). This process is seen as a one of principal technologies for the production of hydrogen. The disadvantages of this process it's that it consumes a great quantity of primary energy and that it releases in the atmosphere the gases that contribute to the warming of the plane. Among the alternatives processes of hydrogen production one can quote solar thermochemical processes. In this study, an exergetic analysis of the process of hydrogen production based on Zn/ZnO redox reactions is presented. In the first part of this study, an exergetic analysis is made for a temperature of the

  9. Enrichment and hydrogen production by marine anaerobic hydrogen-producing microflora

    Institute of Scientific and Technical Information of China (English)

    CAI JinLing; WANG GuangCe; LI YanChuan; ZHU DaLing; PAN GuangHua

    2009-01-01

    Acid,alkali,heat-shock,KNO3 and control pretreatment methods applied to anaerobic sludge were evaluated for their ability to selectively enrich the marine hydrogen-producing mixed microflora.Seawater culture medium was used as the substrate.The hydrogen yield of pretreated microflora was higher than that of the un-pretreated control (P<0.05).Among the pretreatment methods studied,heat-shock pretreatment yielded the greatest hydrogen production,which was 14.6 times that of the control.When the effect of initial pH on hydrogen production of heat-shock pretreated samples was studied,hydrogen was produced over the entire pH range (pH 4-10).The hydrogen yield peaked at initial pH 8 (79 mL/g sucrose) and then steadily decreased as the initial pH increased.Sucrose consumption was high at neutral initial pH.During the process of hydrogen production,pH decreased gradually,which indicated that the acquired microflora consisted of acidogenic bacteria.

  10. Study on efficiency of DCP for nuclear hydrogen production

    Institute of Scientific and Technical Information of China (English)

    LIN Qian; CAO Xue-Wu; JIANG Rui-Peng; ZHANG Xu

    2005-01-01

    With many advantages, hydrogen is considered as the fuel of the future. But there is no natural resource of hydrogen and it must be produced by other kinds of energy. As for the primary energy, nuclear energy is a promising alternative. Using heat from nuclear reactor to produce hydrogen is receiving more and more concerns in recent years. This paper mainly emphasizes the study of the direct contact pyrolysis (DCP) of methane using heat from nuclear reactor. A facility was designed to investigate the efficiency of DCP process in certain conditions. The experimental results show that this process produces only hydrogen and carbon. The conversion efficiency increases with temperature and residence time, but decreases as flow rate increases. The highest efficiency of DCP obtained in this experiment is about 22%.

  11. Biological hydrogen production measured in batch anaerobic respirometers.

    Science.gov (United States)

    Logan, Bruce E; Oh, Sang-Eun; Kim, In S; Van Ginkel, Steven

    2002-06-01

    The biological production of hydrogen from the fermentation of different substrates was examined in batch tests using heat-shocked mixed cultures with two techniques: an intermittent pressure release method (Owen method) and a continuous gas release method using a bubble measurement device (respirometric method). Under otherwise identical conditions, the respirometric method resulted in the production of 43% more hydrogen gas from glucose than the Owen method. The lower conversion of glucose to hydrogen using the Owen protocol may have been produced by repression of hydrogenase activity from high partial pressures in the gastight bottles, but this could not be proven using a thermodynamic/rate inhibition analysis. In the respirometric method, total pressure in the headspace never exceeded ambient pressure, and hydrogen typically composed as much as 62% of the headspace gas. High conversion efficiencies were consistently obtained with heat-shocked soils taken at different times and those stored for up to a month. Hydrogen gas composition was consistently in the range of 60-64% for glucose-grown cultures during logarithmic growth but declined in stationary cultures. Overall, hydrogen conversion efficiencies for glucose cultures were 23% based on the assumption of a maximum of 4 mol of hydrogen/ mol of glucose. Hydrogen conversion efficiencies were similar for sucrose (23%) and somewhat lower for molasses (15%) but were much lower for lactate (0.50%) and cellulose (0.075%).

  12. Bio-hydrogen Production Potential from Market Waste

    Directory of Open Access Journals (Sweden)

    Lanna Jaitalee

    2010-07-01

    Full Text Available This research studied bio-hydrogen production from vegetable waste from a fresh market in order to recover energy. A series of batch experiments were conducted to investigate the effects of initial volatile solids concentration on the bio-hydrogen production process. Lab bench scale anaerobic continuous stirred-tank reactors (CSTR were used to study the effect of substrate and sludge inoculation on hydrogen production. Three different concentrations of initial total volatile solids (TVS of organic waste were varied from 2%, 3% and 5% respectively. The pH was controlled at 5.5 for all batches in the experiment. The results showed that bio-hydrogen production depended on feed-substrate concentration. At initial TVS content of 3%, the highest hydrogen production was achieved at a level of 0.59 L-H2/L at pH 5.5. The maximum hydrogen yield was 15.3 ml H2/g TVS or 8.5 ml H2/g COD. The composition of H2 in the biogas ranged from 28.1-30.9% and no CH4 was detected in all batch tests.

  13. Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting

    Directory of Open Access Journals (Sweden)

    Jeffrey C. S. Wu

    2012-10-01

    Full Text Available Hydrogen is the ideal fuel for the future because it is clean, energy efficient, and abundant in nature. While various technologies can be used to generate hydrogen, only some of them can be considered environmentally friendly. Recently, solar hydrogen generated via photocatalytic water splitting has attracted tremendous attention and has been extensively studied because of its great potential for low-cost and clean hydrogen production. This paper gives a comprehensive review of the development of photocatalytic water splitting for generating hydrogen, particularly under visible-light irradiation. The topics covered include an introduction of hydrogen production technologies, a review of photocatalytic water splitting over titania and non-titania based photocatalysts, a discussion of the types of photocatalytic water-splitting approaches, and a conclusion for the current challenges and future prospects of photocatalytic water splitting. Based on the literatures reported here, the development of highly stable visible–light-active photocatalytic materials, and the design of efficient, low-cost photoreactor systems are the key for the advancement of solar-hydrogen production via photocatalytic water splitting in the future.

  14. Onboard Plasmatron Hydrogen Production for Improved Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Daniel R. Cohn; Leslie Bromberg; Kamal Hadidi

    2005-12-31

    A plasmatron fuel reformer has been developed for onboard hydrogen generation for vehicular applications. These applications include hydrogen addition to spark-ignition internal combustion engines, NOx trap and diesel particulate filter (DPF) regeneration, and emissions reduction from spark ignition internal combustion engines First, a thermal plasmatron fuel reformer was developed. This plasmatron used an electric arc with relatively high power to reform fuels such as gasoline, diesel and biofuels at an oxygen to carbon ratio close to 1. The draw back of this device was that it has a high electric consumption and limited electrode lifetime due to the high temperature electric arc. A second generation plasmatron fuel reformer was developed. It used a low-current high-voltage electric discharge with a completely new electrode continuation. This design uses two cylindrical electrodes with a rotating discharge that produced low temperature volumetric cold plasma., The lifetime of the electrodes was no longer an issue and the device was tested on several fuels such as gasoline, diesel, and biofuels at different flow rates and different oxygen to carbon ratios. Hydrogen concentration and yields were measured for both the thermal and non-thermal plasmatron reformers for homogeneous (non-catalytic) and catalytic reforming of several fuels. The technology was licensed to an industrial auto part supplier (ArvinMeritor) and is being implemented for some of the applications listed above. The Plasmatron reformer has been successfully tested on a bus for NOx trap regeneration. The successful development of the plasmatron reformer and its implementation in commercial applications including transportation will bring several benefits to the nation. These benefits include the reduction of NOx emissions, improving engine efficiency and reducing the nation's oil consumption. The objective of this program has been to develop attractive applications of plasmatron fuel reformer

  15. Are we on the eve of the hydrogen era?; Alternatives Issue 7

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This issue 7 of the Areva publication, Alternatives, deals with the following topics: the Sydney 2004 World Congress for sustainable energy; the possibility of an entire economy based on the hydrogen; the technological description of a wind turbine from the rotor to the grid connection; the exploitation of the energy potential of waste waters at Ottawa in Canada; the new energy landscape of the european union. (A.L.B.)

  16. Alternatives for the Production of Forage Protein

    OpenAIRE

    Bramm, Andreas; Böhm, Herwart; Pahlow, Günter; Berk, Andreas

    2006-01-01

    The aim of the investigation is the provision of home-grown high-protein feed for cattle, pigs and poultry. Field trials with special attention to mixed cropping of lupines with spring cereals and of other legumes for grain production as well as for ensiling as whole crop were carried out in 2004 at two sites in northern Germany: At Braunschweig (conventional farming) and at Trenthorst, close to the Baltic Sea (organic farming). At Braunschweig, with blue lupine varieties grain yields between...

  17. Nonparametric Production Analysis under Alternative Price Conditions

    OpenAIRE

    Laurens Cherchye; Timo Kuosmanen; Thierry Post

    2001-01-01

    The literature on non-parametric production analysis has formulated tests for profit maximizing behavior that do not require a parametric specification of technology. Negative test results have conventionally been interpreted as inefficiency, or have been attributed to data perturbations. In this paper, we exploit the possibility that negative test results reveal violations of the underlying neoclassical assumption that prices are exogenously fixed and perfectly certain. We propose non-parame...

  18. Hydrogen production from wastewater sludge using a Clostridium strain.

    Science.gov (United States)

    Wang, C C; Chang, C W; Chu, C P; Lee, D J; Chang, B V; Liao, C S

    2003-09-01

    Limited data in literature revealed a relatively low hydrogen yield from wastewater sludge, ca. 0.16 mg/g-dried solids, using anaerobic fermentation. We demonstrated in this work a much higher hydrogen yield, around 1.1 mg-H2/g-dried solids using a clostridium strain isolated from the sludge sample. The formed hydrogen would be consumed after passing the peak value at around 30-36 h of fermentation. We examined the effects of employing five different pre-treatments on substrate sludge, but noted no appreciable enhancement in hydrogen yield as commonly expected for methane production. Since a vast amount of organic matters had been released to water after hydrogen fermentation, we externally dosed methanogenic bacteria to the fermented liquor to produce methane. The fermented liquor could produce more methane than the non-fermented sample, indicating that the dosed methanogenic bacteria readily utilized the organic matters derived from the fermentation test.

  19. Hydrogen production under salt stress conditions by a freshwater Rhodopseudomonas palustris strain.

    Science.gov (United States)

    Adessi, Alessandra; Concato, Margherita; Sanchini, Andrea; Rossi, Federico; De Philippis, Roberto

    2016-03-01

    Hydrogen represents a possible alternative energy carrier to face the growing request for energy and the shortage of fossil fuels. Photofermentation for the production of H2 constitutes a promising way for integrating the production of energy with waste treatments. Many wastes are characterized by high salinity, and polluted seawater can as well be considered as a substrate. Moreover, the application of seawater for bacterial culturing is considered cost-effective. The aims of this study were to assess the capability of the metabolically versatile freshwater Rhodopseudomonas palustris 42OL of producing hydrogen on salt-containing substrates and to investigate its salt stress response strategy, never described before. R. palustris 42OL was able to produce hydrogen in media containing up to 3 % added salt concentration and to grow in media containing up to 4.5 % salinity without the addition of exogenous osmoprotectants. While the hydrogen production performances in absence of sea salts were higher than in their presence, there was no significant difference in performances between 1 and 2 % of added sea salts. Nitrogenase expression levels indicated that the enzyme was not directly inhibited during salt stress, but a regulation of its expression may have occurred in response to salt concentration increase. During cell growth and hydrogen production in the presence of salts, trehalose was accumulated as a compatible solute; it protected the enzymatic functionality against salt stress, thus allowing hydrogen production. The possibility of producing hydrogen on salt-containing substrates widens the range of wastes that can be efficiently used in production processes. PMID:26762392

  20. Hydrogen production under salt stress conditions by a freshwater Rhodopseudomonas palustris strain.

    Science.gov (United States)

    Adessi, Alessandra; Concato, Margherita; Sanchini, Andrea; Rossi, Federico; De Philippis, Roberto

    2016-03-01

    Hydrogen represents a possible alternative energy carrier to face the growing request for energy and the shortage of fossil fuels. Photofermentation for the production of H2 constitutes a promising way for integrating the production of energy with waste treatments. Many wastes are characterized by high salinity, and polluted seawater can as well be considered as a substrate. Moreover, the application of seawater for bacterial culturing is considered cost-effective. The aims of this study were to assess the capability of the metabolically versatile freshwater Rhodopseudomonas palustris 42OL of producing hydrogen on salt-containing substrates and to investigate its salt stress response strategy, never described before. R. palustris 42OL was able to produce hydrogen in media containing up to 3 % added salt concentration and to grow in media containing up to 4.5 % salinity without the addition of exogenous osmoprotectants. While the hydrogen production performances in absence of sea salts were higher than in their presence, there was no significant difference in performances between 1 and 2 % of added sea salts. Nitrogenase expression levels indicated that the enzyme was not directly inhibited during salt stress, but a regulation of its expression may have occurred in response to salt concentration increase. During cell growth and hydrogen production in the presence of salts, trehalose was accumulated as a compatible solute; it protected the enzymatic functionality against salt stress, thus allowing hydrogen production. The possibility of producing hydrogen on salt-containing substrates widens the range of wastes that can be efficiently used in production processes.

  1. Biological Hydrogen Production Using Chloroform-treated Methanogenic Granules

    Science.gov (United States)

    Hu, Bo; Chen, Shulin

    In fermentative hydrogen production, the low-hydrogen-producing bacteria retention rate limits the suspended growth reactor productivity because of the long hydraulic retention time (HRT) required to maintain adequate bacteria population. Traditional bacteria immobilization methods such as calcium alginate entrapment have many application limitations in hydrogen fermentation, including limited duration time, bacteria leakage, cost, and so on. The use of chloroform-treated anaerobic granular sludge as immobilized hydrogen-producing bacteria in an immobilized hydrogen culture may be able to overcome the limitations of traditional immobilization methods. This paper reports the findings on the performance of fed-batch cultures and continuous cultures inoculated with chloroform-treated granules. The chloroform-treated granules were able to be reused over four fed-batch cultures, with pH adjustment. The upflow reactor packed with chloroform-treated granules was studied, and the HRT of the upflow reactor was found to be as low as 4 h without any decrease in hydrogen production yield. Initial pH and glucose concentration of the culture medium significantly influenced the performance of the reactor. The optimum initial pH of the culture medium was neutral, and the optimum glucose concentration of the culture medium was below 20 g chemical oxygen demand/L at HRT 4 h. This study also investigated the possibility of integrating immobilized hydrogen fermentation using chloroform-treated granules with immobilized methane production using untreated granular sludge. The results showed that the integrated batch cultures produced 1.01 mol hydrogen and 2 mol methane per mol glucose. Treating the methanogenic granules with chloroform and then using the treated granules as immobilized hydrogen-producing sludge demonstrated advantages over other immobilization methods because the treated granules provide hydrogen-producing bacteria with a protective niche, a long duration of an active

  2. Using short pulses to enhance the production rate of vibrationally excited hydrogen molecules in hydrogen discharge

    Institute of Scientific and Technical Information of China (English)

    Sun Ji-Zhong; Li Xian-Tao; Bai Jing; Wang De-Zhen

    2012-01-01

    Hydrogen discharges driven by the combined radio-frequency(rf)/short pulse sources are investigated using the particle-in-cell method.The simulation results show that the discharge driven additionally by the short pulse can enhance the electron density and modulate the electron energy to provide a better condition for negative hydrogen ion production than the discharge driven by the rf-only source.

  3. Protons and pleomorphs: aerobic hydrogen production in Azotobacters.

    Science.gov (United States)

    Noar, Jesse D; Bruno-Bárcena, José M

    2016-02-01

    As obligate aerobic soil organisms, the ability of Azotobacter species to fix nitrogen is unusual given that the nitrogenase complex requires a reduced cellular environment. Molecular hydrogen is an unavoidable byproduct of the reduction of dinitrogen; at least one molecule of H2 is produced for each molecule of N2 fixed. This could be considered a fault in nitrogenase efficiency, essentially a waste of energy and reducing equivalents. Wild-type Azotobacter captures this hydrogen and oxidizes it with its membrane-bound uptake hydrogenase complex. Strains lacking an active hydrogenase complex have been investigated for their hydrogen production capacities. What is the role of H2 in the energy metabolism of nitrogen-fixing Azotobacter? Is hydrogen production involved in Azotobacter species' protection from or tolerance to oxygen, or vice versa? What yields of hydrogen can be expected from hydrogen-evolving strains? Can the yield of hydrogen be controlled or increased by changing genetic, environmental, or physiological conditions? We will address these questions in the following mini-review.

  4. Production of Co, Ni, and Cu nanoparticles by hydrogen reduction

    OpenAIRE

    Forsman, Johanna

    2013-01-01

    In this thesis, production of Co, Ni, and Cu nanoparticles by hydrogen reduction of metal chlorides in gas phase was studied. Nanoparticles have unique properties not found in bulk or micron-scale materials. These enable new products or reduced use of raw materials. Metal nanoparticle production has been studied widely, but especially for coated metal particles, research of coating mechanisms and economic production methods is still needed. The method used in this thesis combines a high yield...

  5. Discovery of Photocatalysts for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    D. Brent MacQueen

    2006-10-01

    This project for DOE was designed to address these materials-related issues through a combination of high-throughput screening of semiconductor candidates and theoretical modeling of nanostructures. High-throughput screening is an effective and economical way to examine a large number of candidates and identify those worthy of further study. Unfortunately, in the course of this project, we discovered no semiconductor candidates that can meet the DOE’s stringent requirements for an economically feasible photoelectrochemical process. However, some of our results indicated that several systems may have potential if further optimized. In particular, the published theoretical modeling work indicates that core-shell nanorod structures, if properly engineered, have the potential to overcome the shortfalls of current semiconductors. Although the synthesis of the designed core-shell nanorod structures proved to be beyond the current capabilities of our laboratories, recent advances in the synthesis of core-shell nanorod structures imply that the designed structures can be synthesized. SRI is confident that once these materials are made they will validate our models and lead to economical and environmentally friendly hydrogen from sunlight and water. The high-throughput photolysis analysis module developed at SRI will also have utility in applications such as identifying catalysts for photo-assisted chemical detoxification, as well as non-photolytic applications such as hydrogen storage, which can take advantage of the ability of the analysis module to monitor pressure over time.

  6. Production of hydrogen by thermocatalytic cracking of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Muradov, N. [Florida Solar Energy Center, Cocoa, FL (United States)

    1996-10-01

    The conventional methods of hydrogen production from natural gas (for example, steam reforming and partial oxidation) are complex, multi-step processes that produce large quantities of CO{sub 2}. The main goal of this project is to develop a technologically simple process for hydrogen production from natural gas (NG) and other hydrocarbon fuels via single-step decomposition of hydrocarbons. This approach eliminates or significantly reduces CO{sub 2} emission. Carbon is a valuable by-product of this process, whereas conventional methods of hydrogen production from NG produce no useful by-products. This approach is based on the use of special catalysts that reduce the maximum temperature of the process from 1400-1500{degrees}C (thermal non-catalytic decomposition of methane) to 500-900{degrees}C. Transition metal based catalysts and various forms of carbon are among the candidate catalysts for the process. This approach can advantageously be used for the development of compact NG reformers for on-site production of hydrogen-methane blends at refueling stations and, also, for the production of hydrogen-rich gas for fuel cell applications. The author extended the search for active methane decomposition catalysts to various modifications of Ni-, Fe-, Mo- and Co-based catalysts. Variation in the operational parameters makes it possible to produce H{sub 2}-CH{sub 4} blends with a wide range of hydrogen concentrations that vary from 15 to 98% by volume. The author found that Ni-based catalysts are more effective at temperatures below 750{degrees}C, whereas Fe-based catalysts are effective at temperatures above 800{degrees}C for the production of hydrogen with purity of 95% v. or higher. The catalytic pyrolysis of liquid hydrocarbons (pentane, gasoline) over Fe-based catalyst was conducted. The author observed the production of a hydrogen-rich gas (hydrogen concentration up to 97% by volume) at a rate of approximately 1L/min.mL of hydrocarbon fuel.

  7. Evaluation of Fermentative Hydrogen Production from Single and Mixed Fruit Wastes

    Directory of Open Access Journals (Sweden)

    Julius Akinbomi

    2015-05-01

    Full Text Available The economic viability of employing dark fermentative hydrogen from whole fruit wastes as a green alternative to fossil fuels is limited by low hydrogen yield due to the inhibitory effect of some metabolites in the fermentation medium. In exploring means of increasing hydrogen production from fruit wastes, including orange, apple, banana, grape and melon, the present study assessed the hydrogen production potential of singly-fermented fruits as compared to the fermentation of mixed fruits. The fruit feedstock was subjected to varying hydraulic retention times (HRTs in a continuous fermentation process at 55 °C for 47 days. The weight distributions of the first, second and third fruit mixtures were 70%, 50% and 20% orange share, respectively, while the residual weight was shared equally by the other fruits. The results indicated that there was an improvement in cumulative hydrogen yield from all of the feedstock when the HRT was five days. Based on the results obtained, apple as a single fruit and a fruit mixture with 20% orange share have the most improved cumulative hydrogen yields of 504 (29.5% of theoretical yield and 513 mL/g volatile solid (VS (30% of theoretical yield , respectively, when compared to other fruits.

  8. Hydrogen production and storage: R & D priorities and gaps

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-05-04

    This review of priorities and gaps in hydrogen production and storage R & D has been prepared by the IEA Hydrogen Implementing Agreement in the context of the activities of the IEA Hydrogen Co-ordination Group. It includes two papers. The first is by Trygve Riis, Elisabet F. Hagen, Preben J.S. Vie and Oeystein Ulleberg. This offers an overview of the technologies for hydrogen production. The technologies discussed are reforming of natural gas; gasification of coal and biomass; and the splitting of water by water-electrolysis, photo-electrolysis, photo-biological production and high-temperature decomposition. The second paper is by Trygve Riis, Gary Sandrock, Oeystein Ulleberg and Preben J.S. Vie. The objective of this paper is to provide a brief overview of the possible hydrogen storage options available today and in the foreseeable future. Hydrogen storage can be considered for onboard vehicular, portable, stationary, bulk, and transport applications, but the main focus of this paper is on vehicular storage, namely fuel cell or ICE/electric hybrid vehicles. 7 refs., 24 figs., 14 tabs.

  9. Photosynthetic hydrogen and oxygen production by green algae

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W.

    1997-12-31

    An overview of photosynthetic hydrogen and oxygen production by green algae in the context of its potential as a renewable chemical feed stock and energy carrier is presented. Beginning with its discovery by Gaffron and Rubin in 1942, motivated by curiosity-driven laboratory research, studies were initiated in the early 1970s that focused on photosynthetic hydrogen production from an applied perspective. From a scientific and technical point of view, current research is focused on optimizing net thermodynamic conversion efficiencies represented by the Gibbs Free Energy of molecular hydrogen. The key research questions of maximizing hydrogen and oxygen production by light-activated water splitting in green algae are (1) removing the oxygen sensitivity of algal hydrogenases; (2) linearizing the light saturation curves of photosynthesis throughout the entire range of terrestrial solar irradiance--including the role of bicarbonate and carbon dioxide in optimization of photosynthetic electron transport and (3) the minimum number of light reactions that are required to split water to elemental hydrogen and oxygen. Each of these research topics is being actively addressed by the photobiological hydrogen research community.

  10. Effect of inoculum conditioning on hydrogen fermentation and pH effect on bacterial community relevant to hydrogen production.

    Science.gov (United States)

    Kawagoshi, Yasunori; Hino, Naoe; Fujimoto, Aya; Nakao, Masaharu; Fujita, Yukiko; Sugimura, Seiji; Furukawa, Kenji

    2005-11-01

    The effect of conditioning for a variety of inoculums on fermentative hydrogen production was investigated. In addition, the effects of pH condition on hydrogen fermentation and bacterial community were investigated. The effect of conditioning on hydrogen production was different depending on the inoculum types. An appreciable hydrogen production was shown with anaerobic digested sludge and lake sediment without conditioning, however, no hydrogen was produced when refuse compost and kiwi grove soil were used as inoculums without conditioning. The highest hydrogen production was obtained with heat-conditioned anaerobic digested sludge, almost the same production was also obtained with unconditioned digested sludge. The pH condition considerably affected hydrogen fermentation, hydrogen gas was efficiently produced with unconditioned anaerobic sludge when the pH was controlled at 6.0 throughout the culture period and not when only the initial pH was adjusted to 6.0 and 7.0. Hydrogen production decreased when the culture pH was only adjusted at the beginning of each batch in continuous batch culture, and additionally, bacterial community varied with the change in hydrogen production. It was suggested that Clostridium and Coprothermobacter species played important role in hydrogen fermentation, and Lactobacillus species had an adverse effect on hydrogen production.

  11. Kinetic study of biological hydrogen production by anaerobic fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, R. [Annamalai Univ., Chidambaram (India). Dept. of Chemical Engineering; Karunanithi, T. [Annamalai Univ., Tamilnadu (India). Dept. of Chemical Engineering

    2009-07-01

    This study examined the kinetics of batch biohydrogen production from glucose. Clostridium pasteurianum was used to produce biohydrogen by dark anaerobic fermentation. The initial substrate concentration, initial pH and temperature were optimized for biohydrogen production. The maximum production of hydrogen under optimum conditions was found to be 5.376 l/l. The kinetic parameters were determined for the optimized medium and conditions in the batch reactor. The by product was expressed as total acidic equivalent. This presentation discussed the logistic equation that was used to model the growth of the organism and described how the kinetic parameters were calculated. The Leudeking piret kinetic model was used to express the hydrogen production and substrate use because it combines both growth associated and non associated contributions. It was concluded the production of biohydrogen can be predicted well using the logistic model for cell growth kinetics and the logistic incorporated Leudeking Piret model for product and substrate utilization kinetics.

  12. Challenges for renewable hydrogen production from biomass

    International Nuclear Information System (INIS)

    The increasing demand for H2 for heavy oil upgrading, desulfurization and upgrading of conventional petroleum, and for production of ammonium, in addition to the projected demand for H2 as a transportation fuel and portable power, will require H2 production on a massive scale. Increased production of H2 by current technologies will consume greater amounts of conventional hydrocarbons (primarily natural gas), which in turn will generate greater greenhouse gas emissions. Production of H2 from renewable sources derived from agricultural or other waste streams offers the possibility to contribute to the production capacity with lower or no net greenhouse gas emissions (without carbon sequestration technologies), increasing the flexibility and improving the economics of distributed and semi-centralized reforming. Electrolysis, thermocatalytic, and biological production can be easily adapted to on-site decentralized production of H2, circumventing the need to establish a large and costly distribution infrastructure. Each of these H2 production technologies, however, faces technical challenges, including conversion efficiencies, feedstock type, and the need to safely integrate H2 production systems with H2 purification and storage technologies. (author)

  13. 40 CFR 415.330 - Applicability; description of the carbon monoxide and by-product hydrogen production subcategory.

    Science.gov (United States)

    2010-07-01

    ... carbon monoxide and by-product hydrogen production subcategory. 415.330 Section 415.330 Protection of... MANUFACTURING POINT SOURCE CATEGORY Carbon Monoxide and By-Product Hydrogen Production Subcategory § 415.330 Applicability; description of the carbon monoxide and by-product hydrogen production subcategory. The...

  14. EVermont Renewable Hydrogen Production and Transportation Fueling System

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, Harold T.

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable

  15. Photovoltaic hydrogen production with commercial alkaline electrolysers

    Energy Technology Data Exchange (ETDEWEB)

    Ursua, A.; Lopez, J.; Gubia, E.; Marroyo, L.; Sanchis, P. [Public Univ. of Navarra, Pamplona (Spain). Dept. of Electric and Electronic Engineering

    2010-07-01

    Renewable energy sources and Electrolysis generate the so-called green Hydrogen, a zero-emission and potentially fossil fuel independent energy source. However, the inherent variability of the renewable energy sources implies a mode of operation for which most current electrolysers have not been designed. This paper analyses the operation of a water electrolyser fed with photovoltaic (PV) generator electric profile. The system, Integrated by a 1 Nm{sup 3}/h Hydrogenics alkaline electrolyser and a 5100 W PV generator with 60 BP585 modules, is installed at the Public University of Navarra (Spain). The PV generator profile fed to the electrolyser is emulated by a custom-made apparatus designed and built by the authors of this paper. The profile is designed according to real irradiance data measured by a calibration cell. The irradiance data are converted to the electric power profile that the PV generator would have delivered in case of having been connected to the electrolyser by means of a DC/DC converter with maximum power point tracking (MPPT). Finally, from previously measured power-current electrolyser characteristic curves, the current profile to be delivered to the electrolyser is obtained and programmed to the electronic device. The electrolyser was tested for two types of days. During the first day, the irradiance was very stable, whereas during the second day, the irradiance was very variable. The experimental results show an average power consumption rate and an efficiency of 4908 Wh/Nm{sup 3} and 72.1%, on the first day, and 4842 Wh/Nm{sup 3} and 73.3% on the second day. The electrolyser performance was particularly good in spite of the high variability of the electric supply of the second day. (orig.)

  16. Media Improvement for Hydrogen Production Using C. acetobutylicum NCIMB 13357

    Directory of Open Access Journals (Sweden)

    Mohd S. Kalil

    2009-01-01

    Full Text Available Problem statement: Some component of fermentation medium showed to reduce the bacterial production of hydrogen. Approach: Reinforced clostridium medium is a selected medium for Clostridium species. Reformulation this medium regarding hydrogen production may focus on such medium composition that enhance or reduce the bacterial productivity. The optimum pH and temperature for hydrogen production were at initial pH of 7.0 and 30°C. Results: The results show that both nitrogen source and its concentration affected biomass growth as well as H2 yield. Yeast extract at concentration of 13 gL-1 was the best organic nitrogen source and resulted in hydrogen yield (YP/S of 308 mL g-1 glucose utilized with biomass concentration of 1.1 gL-1, hydrogen yield per biomass (YP/X of 280 mL g-1 L-1, biomass per substrate utilized (YX/S of 0.22 and produced hydrogen in gram per gram of glucose utilized (YH2/S of 0.0275. C/N of 70 enhanced the YP/S from 308 mL g-1 to 350 mL g-1 glucose utilized with biomass concentration of 1.22 gL-1, YP/X of 287 mL g-1 L-1, YX/S of 0.244 and (YH2/S of 0.03125. In the absence of sodium chloride and sodium acetate further enhanced YP/S from 350 mL g-1 glucose utilized to 391 mL g-1 glucose utilized with maximum hydrogen productivity of 77.5 mL L-1 h-1, whereas RCM medium gave the highest hydrogen productivity of 63.5 mL L-1h-1. Results also show that Sodium Chloride and Sodium Acetate in the medium adversely affect growth. Removal of both components from the medium enhanced the biomass concentration from 1.22-1.34 gL-1, YP/X of 254 mL g-1 L-1, YX/S of 0.268 and (YH2/S of 0.0349. Conclusion: The medium an improved containing (glucose 5 gL-1, Yeast extract gL-1, L-Cystine. HCl 1 gL-1 and Bacteriological agar 0.5 gL-1, was able to enhance the hydrogen productivity.

  17. Artificial photosynthesis for production of hydrogen peroxide and its fuel cells.

    Science.gov (United States)

    Fukuzumi, Shunichi

    2016-05-01

    The reducing power released from photosystem I (PSI) via ferredoxin enables the reduction of NADP(+) to NADPH, which is essential in the Calvin-Benson cycle to make sugars in photosynthesis. Alternatively, PSI can reduce O2 to produce hydrogen peroxide as a fuel. This article describes the artificial version of the photocatalytic production of hydrogen peroxide from water and O2 using solar energy. Hydrogen peroxide is used as a fuel in hydrogen peroxide fuel cells to make electricity. The combination of the photocatalytic H2O2 production from water and O2 using solar energy with one-compartment H2O2 fuel cells provides on-site production and usage of H2O2 as a more useful and promising solar fuel than hydrogen. This article is part of a Special Issue entitled Biodesign for Bioenergetics--The design and engineering of electronc transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  18. Effect of ozone pretreatment on hydrogen production from barley straw.

    Science.gov (United States)

    Wu, Jiangning; Ein-Mozaffari, Farhad; Upreti, Simant

    2013-09-01

    Application of ozone technology to lignocellulosic biohydrogen production was explored with a barley straw. Ozone pretreatment effectively degraded the straw lignin and increased reducing sugar yield. A simultaneous enzyme hydrolysis and dark fermentation experiment was conducted using a mixed anaerobic consortium together with saccharification enzymes. Both untreated and ozonated samples produced hydrogen. Compared to the untreated group, hydrogen produced by the groups ozonated for 15, 30, 45 and 90 min increased 99%, 133%, 166% and 94%, respectively. Some inhibitory effect on hydrogen production was observed with the samples ozonated for 90 min, and the inhibition was on the fermentative microorganisms, not the saccharification enzymes. These results demonstrate that production of biohydrogen from barley straw, a lignocellulosic biomass, can be significantly enhanced by ozone pretreatment.

  19. CO-PRODUCTION OF HYDROGEN AND ELECTRICITY USING PRESSURIZED CIRCULATING FLUIDIZED BED GASIFICATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Fan

    2006-05-30

    Foster Wheeler has completed work under a U.S. Department of Energy cooperative agreement to develop a gasification equipment module that can serve as a building block for a variety of advanced, coal-fueled plants. When linked with other equipment blocks also under development, studies have shown that Foster Wheeler's gasification module can enable an electric generating plant to operate with an efficiency exceeding 60 percent (coal higher heating value basis) while producing near zero emissions of traditional stack gas pollutants. The heart of the equipment module is a pressurized circulating fluidized bed (PCFB) that is used to gasify the coal; it can operate with either air or oxygen and produces a coal-derived syngas without the formation of corrosive slag or sticky ash that can reduce plant availabilities. Rather than fuel a gas turbine for combined cycle power generation, the syngas can alternatively be processed to produce clean fuels and or chemicals. As a result, the study described herein was conducted to determine the performance and economics of using the syngas to produce hydrogen for sale to a nearby refinery in a hydrogen-electricity co-production plant setting. The plant is fueled with Pittsburgh No. 8 coal, produces 99.95 percent pure hydrogen at a rate of 260 tons per day and generates 255 MWe of power for sale. Based on an electricity sell price of $45/MWhr, the hydrogen has a 10-year levelized production cost of $6.75 per million Btu; this price is competitive with hydrogen produced by steam methane reforming at a natural gas price of $4/MMBtu. Hence, coal-fueled, PCFB gasifier-based plants appear to be a viable means for either high efficiency power generation or co-production of hydrogen and electricity. This report describes the PCFB gasifier-based plant, presents its performance and economics, and compares it to other coal-based and natural gas based hydrogen production technologies.

  20. Enhancement of anaerobic hydrogen production by iron and nickel

    Energy Technology Data Exchange (ETDEWEB)

    Karadag, Dogan; Puhakka, Jaakko A. [Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere (Finland)

    2010-08-15

    The effects of iron and nickel on hydrogen (H{sub 2}) production were investigated in a glucose-fed anaerobic Continuous Flow Stirred Tank Reactor (ACSTR). Both iron and nickel improved the reactor performance and H{sub 2} production was enhanced by 71% with the sole iron or nickel supplementation. In all cases, H{sub 2} production yield was increased by lowering both ethanol and total metabolites production and increasing butyrate production. Furthermore, iron and nickel slightly increased biomass production while glucose degradation decreased with the supplementation of nickel. Dynamic changes in bacterial composition as analyzed by 16S rRNA gene-targeted denaturing gradient gel electrophoresis (DGGE) revealed that hydrogen was produced mainly by Clostridium butyricum strains and that nickel addition decreased the microbial diversity. (author)

  1. HYDROGEN PRODUCTION AND DELIVERY INFRASTRUCTURE AS A COMPLEX ADAPTIVE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Tolley, George S

    2010-06-29

    An agent-based model of the transition to a hydrogen transportation economy explores influences on adoption of hydrogen vehicles and fueling infrastructure. Attention is given to whether significant penetration occurs and, if so, to the length of time required for it to occur. Estimates are provided of sensitivity to numerical values of model parameters and to effects of alternative market and policy scenarios. The model is applied to the Los Angeles metropolitan area In the benchmark simulation, the prices of hydrogen and non-hydrogen vehicles are comparable. Due to fuel efficiency, hydrogen vehicles have a fuel savings advantage of 9.8 cents per mile over non-hydrogen vehicles. Hydrogen vehicles account for 60% of new vehicle sales in 20 years from the initial entry of hydrogen vehicles into show rooms, going on to 86% in 40 years and reaching still higher values after that. If the fuel savings is 20.7 cents per mile for a hydrogen vehicle, penetration reaches 86% of new car sales by the 20th year. If the fuel savings is 0.5 cents per mile, market penetration reaches only 10% by the 20th year. To turn to vehicle price difference, if a hydrogen vehicle costs $2,000 less than a non-hydrogen vehicle, new car sales penetration reaches 92% by the 20th year. If a hydrogen vehicle costs $6,500 more than a non-hydrogen vehicle, market penetration is only 6% by the 20th year. Results from other sensitivity runs are presented. Policies that could affect hydrogen vehicle adoption are investigated. A tax credit for the purchase of a hydrogen vehicle of $2,500 tax credit results in 88% penetration by the 20th year, as compared with 60% in the benchmark case. If the tax credit is $6,000, penetration is 99% by the 20th year. Under a more modest approach, the tax credit would be available only for the first 10 years. Hydrogen sales penetration then reach 69% of sales by the 20th year with the $2,500 credit and 79% with the $6,000 credit. A carbon tax of $38 per metric ton is not

  2. Enhanced-hydrogen gas production through underground gasification of lignite

    Institute of Scientific and Technical Information of China (English)

    LIU Shu-qin; WANG Yuan-yuan; ZHAO Ke; YANG Ning

    2009-01-01

    Underground coal gasification is one of the clean technologies of in-situ coal utilization. Hydrogen production from underground gasification of lignite was investigated in this study based on simulation experiments. Pyrolysis of lignite, gasification activity, oxygen-steam gasification and the effect of groundwater influx were studied. As well, the advantages of lignite for stable underground gasification were analyzed. The results indicate that lignite has a high activity for gasification. Coal pyrolysis is an important source of hydrogen emission. Under special heating conditions, hydrogen is released from coal seams at temperatures above 350 ℃ and reaches its maximum value between 725 and 825 ℃. Gas with a hydrogen concentration of 40% to 50% can be continuously obtained by oxygen-steam injection at an optimum ratio of steam to oxygen, while lignite properties will ensure stable gasification. Groundwater influx can be utilized for hydrogen preparation under certain geological conditions through pressure control. Therefore, enhanced-hydrogen gas production through underground gasification of lignite has experimentally been proved.

  3. CERAMIC MEMBRANES FOR HYDROGEN PRODUCTION FROM COAL

    Energy Technology Data Exchange (ETDEWEB)

    George R. Gavalas

    2001-11-27

    The present project is devoted to developing hydrogen permselective silica membranes supported on composite supports to achieve high flux and selectivity. The supports consist of a thin zeolite silicalite layer coated on {alpha}-Al{sub 2}O{sub 3} tubes of mean pore size 1 {micro}m. The zeolite layer is grown by reaction in a suitable silicate solution at 95 C. After two or three reaction periods a layer of silicalite crystals about 20 {micro}m thick grows inside the pores of alumina. In addition to the zeolitic pores, this layer contains voids of a few nanometer diameter that remain between the crystals or between the crystals and the pore walls. The quality of the silicalite/alumina composites was evaluated by gas permeation measurements and by nitrogen adsorption and it was found that the residual voids were below 5 nm in diameter. Three techniques were investigated for chemical vapor deposition (CVD) of the silica layer on the silicalite/alumina composite support. The first was TEOS pyrolysis at approximately one millibar partial pressure and 650 C. After 8 h reaction the fluxes of hydrogen and nitrogen at ambient temperature had declined by a factor of approximately 100 indicating sealing of defects and zeolitic pores alike. The second CVD technique investigated was SiCl{sub 4} hydrolysis at 90 C. Deposition in this case was conducted in a series of cycles, each cycle comprising two half reactions, i.e. exposure to SiCl{sub 4} followed by exposure to water vapor. The deposition was interrupted every five cycles to measure the permeation properties of the nascent membrane at 120 C. After a few cycles the membrane pores were sealed, but the silica layer was not thermally stable when the temperature was raised to 400 C. In the third technique investigated, silica deposition was carried out by SiCl{sub 4} hydrolysis at 400 C, again in a sequence of half reaction cycles. After 15 cycles the membrane pores were well sealed by a layer stable to at least 400 C.

  4. [Activity of hydrogen sulfide production enzymes in kidneys of rats].

    Science.gov (United States)

    Mel'nyk, A V; Pentiuk, O O

    2009-01-01

    An experimental research of activity and kinetic descriptions of enzymes participating in formation of hydrogen sulfide in the kidney of rats has been carried out. It was established that cystein, homocystein and thiosulphate are the basic substrates for hydrogen sulfide synthesis. The higest activity for hydrogen sulfide production belongs to thiosulfate-dithiolsulfurtransferase and cysteine aminotransferase, less activity is characteristic of cystathionine beta-synthase and cystathio-nine gamma-lyase. The highest affinity to substrate is registered for thiosulfate-dithiolsulfurtransferase and cystathionine gamma-lyase. It is discovered that the substrate inhibition is typical of all hydrogen sulfide formation enzymes, although this characteristic is the most expressed thiosulfat-dithiolsulfurtransferase. PMID:20387629

  5. Studies on membrane acid electrolysis for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marco Antonio Oliveira da; Linardi, Marcelo; Saliba-Silva, Adonis Marcelo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Celulas a Combustivel e Hidrogenio], Email: saliba@ipen.br

    2010-07-01

    Hydrogen represents great opportunity to be a substitute for fossil fuels in the future. Water as a renewable source of hydrogen is of great interest, since it is abundant and can decompose, producing only pure H{sub 2} and O{sub 2}. This decomposition of water can be accomplished by processes such as electrolysis, thermal decomposition and thermochemical cycles. The electrolysis by membrane has been proposed as a viable process for hydrogen production using thermal and electrical energy derived from nuclear energy or any renewable source like solar energy. In this work, within the context of optimization of the electrolysis process, it is intended to develop a mathematical model that can simulate and assist in parameterization of the electrolysis performed by polymer membrane electrolytic cell. The experimental process to produce hydrogen via the cell membrane, aims to optimize the amount of gas produced using renewable energy with noncarbogenic causing no harm by producing gases deleterious to the environment. (author)

  6. Use of MRF residue as alternative fuel in cement production.

    Science.gov (United States)

    Fyffe, John R; Breckel, Alex C; Townsend, Aaron K; Webber, Michael E

    2016-01-01

    that using MRF residue to produce SRF for use in cement kilns is likely an advantageous alternative to disposal of the residue in landfills. The use of SRF can offset fossil fuel use, reduce CO2 emissions, and divert energy-dense materials away from landfills. For this test-case, the use of SRF offset between 7700 and 8700 Mg of coal use, reduced CO2 emissions by at least 1.4%, and diverted over 7950 Mg of energy-dense materials away from landfills. In addition, emissions were reduced by at least 19% for SO2, while NOX emissions increased by between 16% and 24%. Changes in emissions of particulate matter, mercury, hydrogen chloride, and total-hydrocarbons were all less than plus or minus 2.2%, however these emissions were not measured at the cement kiln. Co-location of MRFs, SRF production facilities, and landfills can increase the benefits of SRF use even further by reducing transportation requirements.

  7. Use of MRF residue as alternative fuel in cement production.

    Science.gov (United States)

    Fyffe, John R; Breckel, Alex C; Townsend, Aaron K; Webber, Michael E

    2016-01-01

    that using MRF residue to produce SRF for use in cement kilns is likely an advantageous alternative to disposal of the residue in landfills. The use of SRF can offset fossil fuel use, reduce CO2 emissions, and divert energy-dense materials away from landfills. For this test-case, the use of SRF offset between 7700 and 8700 Mg of coal use, reduced CO2 emissions by at least 1.4%, and diverted over 7950 Mg of energy-dense materials away from landfills. In addition, emissions were reduced by at least 19% for SO2, while NOX emissions increased by between 16% and 24%. Changes in emissions of particulate matter, mercury, hydrogen chloride, and total-hydrocarbons were all less than plus or minus 2.2%, however these emissions were not measured at the cement kiln. Co-location of MRFs, SRF production facilities, and landfills can increase the benefits of SRF use even further by reducing transportation requirements. PMID:26187294

  8. Alternating Current Dielectrophoresis Optimization of Pt-Decorated Graphene Oxide Nanostructures for Proficient Hydrogen Gas Sensor.

    Science.gov (United States)

    Wang, Jianwei; Rathi, Servin; Singh, Budhi; Lee, Inyeal; Joh, Han-Ik; Kim, Gil-Ho

    2015-07-01

    Alternating current dielectrophoresis (DEP) is an excellent technique to assemble nanoscale materials. For efficient DEP, the optimization of the key parameters like peak-to-peak voltage, applied frequency, and processing time is required for good device. In this work, we have assembled graphene oxide (GO) nanostructures mixed with platinum (Pt) nanoparticles between the micro gap electrodes for a proficient hydrogen gas sensors. The Pt-decorated GO nanostructures were well located between a pair of prepatterned Ti/Au electrodes by controlling the DEP technique with the optimized parameters and subsequently thermally reduced before sensing. The device fabricated using the DEP technique with the optimized parameters showed relatively high sensitivity (∼10%) to 200 ppm hydrogen gas at room temperature. The results indicates that the device could be used in several industry applications, such as gas storage and leak detection. PMID:26042360

  9. Airports offer unrealized potential for alternative energy production.

    Science.gov (United States)

    DeVault, Travis L; Belant, Jerrold L; Blackwell, Bradley F; Martin, James A; Schmidt, Jason A; Wes Burger, L; Patterson, James W

    2012-03-01

    Scaling up for alternative energy such as solar, wind, and biofuel raises a number of environmental issues, notably changes in land use and adverse effects on wildlife. Airports offer one of the few land uses where reductions in wildlife abundance and habitat quality are necessary and socially acceptable, due to risk of wildlife collisions with aircraft. There are several uncertainties and limitations to establishing alternative energy production at airports, such as ensuring these facilities do not create wildlife attractants or other hazards. However, with careful planning, locating alternative energy projects at airports could help mitigate many of the challenges currently facing policy makers, developers, and conservationists.

  10. Study on hydrogen production by high temperature electrolysis of steam

    International Nuclear Information System (INIS)

    In JAERI, design and R and D works on hydrogen production process have been conducted for connecting to the HTTR under construction at the Oarai Research Establishment of JAERI as a nuclear heat utilization system. As for a hydrogen production process by high-temperature electrolysis of steam, laboratory-scale experiments were carried out with a practical electrolysis tube with 12 cells connected in series. Hydrogen was produced at a maximum density of 44 Nml/cm2h at 950degC, and know-how of operational procedures and operational experience were also accumulated. Thereafter, a planar electrolysis cell supported by a metallic plate was fabricated in order to improve hydrogen production performance and durability against thermal cycles. In the preliminary test with the planar cell, hydrogen has been produced continuously at a maximum density of 33.6 Nml/cm2h at an electrolysis temperature of 950degC. This report presents typical test results mentioned above, a review of previous studies conducted in the world and R and D items required for connecting to the HTTR. (author)

  11. New Catalyst for HER and CO2 Hydrogenation for Solar Fuel Production

    DEFF Research Database (Denmark)

    Chorkendorff, Ib

    2013-01-01

    group [7]. Hereby it is possible to achieve photoelectrochemical H2 production at +0.33 V vs. RHE using a porous, amorphous MoSx catalyst. To stabilize Si during catalyst deposition and the subsequent hydrogen evolution reaction (HER), a corrosion protective layer is shown to be indispensable. At 200m......Hydrogen is the simplest solar fuel to produce and while platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution, earth-abundant alternatives are needed for largescale use. We have shown that bio-inspired molecular clusters based on transition metal......V positive of RHE the cell produce an incident photon to current efficiency (IPCE) of 50%. This work represents a substantial reduction in H2 evolution overpotential for non-Pt Si-photocathode operated in acidic solution. Further improvement in corrosion protection using several 100 nm of TiO2 [8...

  12. DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System

    Energy Technology Data Exchange (ETDEWEB)

    Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

    2011-06-30

    The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production

  13. Designer proton-channel transgenic algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu

    2011-04-26

    A designer proton-channel transgenic alga for photobiological hydrogen production that is specifically designed for production of molecular hydrogen (H.sub.2) through photosynthetic water splitting. The designer transgenic alga includes proton-conductive channels that are expressed to produce such uncoupler proteins in an amount sufficient to increase the algal H.sub.2 productivity. In one embodiment the designer proton-channel transgene is a nucleic acid construct (300) including a PCR forward primer (302), an externally inducible promoter (304), a transit targeting sequence (306), a designer proton-channel encoding sequence (308), a transcription and translation terminator (310), and a PCR reverse primer (312). In various embodiments, the designer proton-channel transgenic algae are used with a gas-separation system (500) and a gas-products-separation and utilization system (600) for photobiological H.sub.2 production.

  14. Calculation of LUEC using HEEP Software for Nuclear Hydrogen Production Plant

    International Nuclear Information System (INIS)

    To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution by reducing the release of carbon dioxide. A Very High Temperature Reactor (VHTR) is considered as an efficient reactor to couple with the thermo-chemical Sulfur Iodine (SI) cycle to achieve the hydrogen economy. HEEP(Hydrogen Economy Evaluation Program) is one of the software tools developed by IAEA to evaluate the economy of the nuclear hydrogen production system by estimating unit hydrogen production cost. In this paper, the LUHC (Levelized Unit Hydrogen Cost) is calculated by using HEEP for nuclear hydrogen production plant, which consists of 4 modules of 600 MWth VHTR coupled with SI process. The levelized unit hydrogen production cost(LUHC) was calculated by the HEEP software

  15. Calculation of LUEC using HEEP Software for Nuclear Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jongho; Lee, Kiyoung; Kim, Minhwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution by reducing the release of carbon dioxide. A Very High Temperature Reactor (VHTR) is considered as an efficient reactor to couple with the thermo-chemical Sulfur Iodine (SI) cycle to achieve the hydrogen economy. HEEP(Hydrogen Economy Evaluation Program) is one of the software tools developed by IAEA to evaluate the economy of the nuclear hydrogen production system by estimating unit hydrogen production cost. In this paper, the LUHC (Levelized Unit Hydrogen Cost) is calculated by using HEEP for nuclear hydrogen production plant, which consists of 4 modules of 600 MWth VHTR coupled with SI process. The levelized unit hydrogen production cost(LUHC) was calculated by the HEEP software.

  16. Acceptability of genetically modified cheese presented as real product alternative

    DEFF Research Database (Denmark)

    Lähteenmäki, Liisa; Grunert, Klaus G.; Ueland, Øydis;

    2002-01-01

    European consumers, in general, have negative attitudes towards the use of gene technology in food production. The objective of this study was to examine whether taste and health benefits influence the acceptability of genetically modified (gm) products when they are presented as real product...... alternatives. Consumers in Denmark, Finland, Norway and Sweden (n=738) assessed two cheeses: one was labelled as genetically modified (preferred in an earlier product test) and the other as conventional (neutral in an ealier product test). A smaller control group received two cheeses with blind codes...

  17. Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma

    International Nuclear Information System (INIS)

    Highlights: ► Hydrogen from direct decomposition of H2S by NTP method has been developed. ► Influence of various parameters has been studied. ► H2S conversion was efficient at higher residence time and lower concentrations. ► By optimizing residence time, it is possible to achieve H2 production at 160 kJ/mol. -- Abstract: Hydrogen production by nonthermal plasma (NTP) assisted direct decomposition of hydrogen sulfide was studied in a dielectric barrier discharge (DBD) reactor operated under ambient conditions. It may be concluded that NTP is effective in direct decomposition of H2S into H2 and S. Changing ground electrode material from silver paste to either copper wire or aluminium foil only increased the energy demand, but did not show any significant improvement in conversion. Influence of various parameters like ground electrode, discharge gap, residence time and H2S concentration were studied to achieve hydrogen production under energetically feasible conditions. It has been observed that H2S conversion into H2 and S may be efficient at high residence time and low concentrations. By optimizing the reaction conditions, H2 production may be produced at 160 kJ/mol (∼1.6 eV/H2) that is less than the energy demand in steam methane reforming (354 kJ/mol H2 or 3.7 eV/H2).

  18. Experimental study of hydrogen production by direct decomposition of water

    Science.gov (United States)

    Bilgen, E.; Galindo, J.; Baykara, S. Z.

    The hydrogen production by direct decomposition of water in a solar furnace is studied. The set-up is a horizontal axis system consisting of two 1.0 kW parabolic concentrators, both powered by a single heliostat. A temperature of 3000 K is possible. The water is fed to the reactor installed at the focal space of the concentrator, and the steam is decomposed at about 2500 K. The reactor consisted of a cylindrical cavity type refractory receiver covered with a silica cupola. The steam was introduced at a known rate into the cavity and the product gases were quenched. After the condensation of steam, hydrogen and oxygen were collected in a reservoir. Results indicate that with an optimized system, it is possible to produce hydrogen at about 70 percent rate of the theoretical value at the temperature level studied.

  19. Process for the production of hydrogen/deuterium-containing gas

    International Nuclear Information System (INIS)

    A process for the production of hydrogen/deuterium-containing gas is described in which the enriched condensate obtained from the production of a hydrogen/deuterium-containing gas mixture is collected and subjected to a direct exchange of isotopes with the feedsteam admitted to the process. Such condensate can be brought into direct exchange of isotopes with the gas water vapor mixture within the process, viz. ahead of the CO conversion section. The exchange of isotopes may be performed according to the counter-current principle. If it is intended to maintain in the hydrogen/deuterium-containing gas a certain definite content of water vapor whose phase condition is superior to the condition achieved when using normal cooling water, this gas, at least 0.6 kg/m3 of gas, is subjected to an exchange of isotopes with the water fed additionally into the process

  20. Nuclear driven water decomposition plant for hydrogen production

    Science.gov (United States)

    Parker, G. H.; Brecher, L. E.; Farbman, G. H.

    1976-01-01

    The conceptual design of a hydrogen production plant using a very-high-temperature nuclear reactor (VHTR) to energize a hybrid electrolytic-thermochemical system for water decomposition has been prepared. A graphite-moderated helium-cooled VHTR is used to produce 1850 F gas for electric power generation and 1600 F process heat for the water-decomposition process which uses sulfur compounds and promises performance superior to normal water electrolysis or other published thermochemical processes. The combined cycle operates at an overall thermal efficiency in excess of 45%, and the overall economics of hydrogen production by this plant have been evaluated predicated on a consistent set of economic ground rules. The conceptual design and evaluation efforts have indicated that development of this type of nuclear-driven water-decomposition plant will permit large-scale economic generation of hydrogen in the 1990s.

  1. Sorption enhanced reaction process (SERP) for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Sircar, S.; Anand, M.; Carvill, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [and others

    1995-09-01

    Sorption Enhanced Reaction (SER) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process, the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The consequences of SER are: (1) reformation reaction at a significantly lower temperature (300-500{degrees}C) than conventional SMR (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (2) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 99+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (3) downstream hydrogen purification step is either eliminated or significantly reduced in size. The early focus of the program will be on the identification of an adsorbent/chemisorbent for CO{sub 2} and on the demonstration of the SER concept for SMR in our state-of-the-art bench scale process. In the latter stages, a pilot plant will be built to scale-up the technology and to develop engineering data. The program has just been initiated and no significant results for SMR will be reported. However, results demonstrating the basic principles and process schemes of SER technology will be presented for reverse water gas shift reaction as the model reaction. If successful, this technology will be commercialized by Air Products and Chemicals, Inc. (APCI) and used in its existing hydrogen business. APCI is the world leader in merchant hydrogen production for a wide range of industrial applications.

  2. Toward on-chip directed evolution of unicellular organisms for efficient hydrogen production

    Science.gov (United States)

    Liao, David; Howe, Caleb; Muldoon, Cecilia; Galajda, Peter; Keymer, Juan; Austin, Robert

    2008-03-01

    To provide an energy resource alternative to fossil fuels, photosynthetic organisms must increase their energy conversion efficiency. The green algae C. reinhardtii stores light energy in hydrogen gas at 0.1% efficiency, less than the 10% required to compete with established fuels. This work combines hydrogen sensing in liquid culture with micro habitat patch (MHP) chips for directing hydrogen-producing organisms to evolve improved energy conversion efficiency. A MHP chip contains 87 1 mm x 1 mm x 100 μm interconnected chambers. By measuring hydrogen output from different chambers, we will select less productive patches to annihilate. We microfabricated chips from poly(dimethylsiloxane). Color changes in fluorescence micrographs confirm that 254 nm radiation kills algae in MHPs, liberating nutrients and space for exploitation by adjacent populations. We demonstrated colorimetric detection of hydrogen gas production at a rate of 10-8 mol H2 mL-1 s-1 using tungsten film on sub-mL liquid cultures of C. reinhardtii during 2-hrs. of fermentation in darkness.

  3. Short Review: Cu Catalyst for Autothermal Reforming Methanol for Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Ho-Shing Wu

    2012-06-01

    Full Text Available Hydrogen is a promising alternative energy sources, hydrogen can be used in fuel cell applications to pro-ducing electrical energy and water as byproduct. Therefore, fuel cell is a simple application and environ-mentally friendly oriented technology. Recent years various methods have been conducted to produce hy-drogen. Those methods are derived from various sources such as methanol, ethanol, gasoline, hydrocarbons. This article presents a brief review a parameter process of that affects in autothermal reforming methanol use Cu-based catalysts for production of hydrogen. Copyright © 2012 BCREC UNDIP. All rights reserved.Received: 3rd January 2012; Revised: 23rd February 2012; Accepted: 28th February 2012[How to Cite: H.S. Wu, and D. Lesmana. (2012. Short Review: Cu Catalyst for Autothermal Reforming Methanol for Hydrogen Production. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (1: 27-42. doi:10.9767/bcrec.7.1.1284.27-42][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.1.1284.27-42 ] | View in 

  4. Hydrogen production from lignocellulosic biomass by two-step gasification method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In-Gu [Korea Institute of Energy Research (Korea, Republic of)

    2010-07-01

    Hydrogen can be produced from woody biomass by conventional gasification methods such as partial oxidation or steam gasification. Since these methods produce gas products with low content of hydrogen as well as high content of tar from gasification reactors, posttreatment processes including tar cracker and water-gas shift reaction process are usually necessary for obtaining clean hydrogen-rich gas from woody biomass. In this work, a twostep gasification method was experimentally studied as an alternative to the conventional methods. The first step of the gasification is the fast pyrolysis of biomass to obtain liquid-phase product (bio-oil) and the second step is to gasify the bio-oil to hydrogen-rich gas in supercritical water. The fast pyrolysis of woody biomass was carried out using a bench-scale fluidized-bed reactor. The gasification of bio-oil in supercritical water was performed using a continuous-flow reactor packed with catalyst. The effect of major reaction conditions such as temperature and catalyst on hydrogen yield will be discussed. (orig.)

  5. Fermentative hydrogen production from pretreated biomass: A comparative study

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.; Budde, M.A.W.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2009-01-01

    The aim of this work was to evaluate the potential of employing biomass resources from different origin as feedstocks for fermentative hydrogen production. Mild-acid pretreated and hydrolysed barley straw (BS) and corn stalk (CS), hydrolysed barley grains (BG) and corn grains (CG), and sugar beet ex

  6. Existing large steam power plant upgraded for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Galanti, L.; Franzoni, A.; Traverso, A.; Massardo, A.F. [University of Genoa, Genoa (Italy)

    2011-05-15

    This paper presents and discusses the results of a complete thermoeconomic analysis of an integrated power plant for co-production of electricity and hydrogen via pyrolysis and gasification processes fed by various coals and mixture of coal and biomass, applied to an existing large steam power plant (ENEL Brindisi power plant - 660 MWe). Two different technologies for the syngas production section are considered: pyrolysis process and direct pressurized gasification. Moreover, the proximity of a hydrogen production and purification plants to an existing steam power plant favors the inter-exchange of energy streams, mainly in the form of hot water and steam, which reduces the costs of auxiliary equipment. The high quality of the hydrogen would guarantee its usability for distributed generation and for public transport. The results were obtained using WTEMP thermoeconomic software, developed by the Thermochemical Power Group of the University of Genoa, and this project has been carried out within the framework of the FISR National project 'Integrated systems for hydrogen production and utilization in distributed power generation'.

  7. Non-thermal production of pure hydrogen from biomass : HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    HYVOLUTION is the acronym of an Integrated Project ¿Non-thermal production of pure hydrogen from biomass¿ which has been granted in the Sixth EU Framework Programme on Research, Technological Development and Demonstration, Priority 6.1.ii, Sustainable Energy Systems. The aim of HYVOLUTION: ¿Developm

  8. Renewable hydrogen production for fossil fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W.; Tevault, C.V.; Blankinship, S.L.

    1996-06-01

    In the current and prevailing concept of photosynthesis, the Z-scheme, first proposed by Hill and Bendall, PSII can split water, but is not thought to be able to perform one of PSI`s assigned functions-the reduction of ferredoxin/NADP{sup +} essential for CO{sub 2} assimilation. The Z-scheme therefore requires both PSII and PSI working in sequence for complete photosynthesis using water as the source of electrons and CO{sub 2} as the terminal electron acceptor. Despite disagreement from several investigators, the Z-scheme has become the textbook model of photosynthesis. Recently, we have demonstrated that sustained photoassimilation of CO{sub 2} and evolution of H{sub 2} and O{sub 2} in minimal medium can be achieved by the PSII light reaction without involvement of PSI in a PSI-deficient mutant of Chlamydomonas grown photoheterotrophically using an organic nutrient (acetate). In this paper, we report a more exciting discovery that PSI-deficient mutants of Chlamydomonas were capable of growing photoautotrophically with CO{sub 2} as the sole source of carbon. Since the Z-scheme requires both PSI and PSII working together in series for complete photosynthesis, it predicts that PSI-deficient mutants of green algae will not grow photoautotrophically. The discovery of photoautotrophic growth of PSI-deficient green algae without any organic nutrients, therefore, provides clear and solid evidence for the existence of a new type of photosynthesis-{open_quotes}PSII photosynthesis{close_quotes} that is an alternative to the Z-scheme. Our discovery may also provide an explanation for many {open_quotes}anomalous{close_quotes} quantum requirements that have been reported over the last 50 years, but failed to be explained by the Z-scheme.

  9. Photobiological production of hydrogen: a solar energy conversion option

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, P.; Lien, S.; Seibert, M.

    1979-01-01

    This literature survey of photobiological hydrogen production covers the period from its discovery in relatively pure cultures during the early 1930s to the present. The focus is hydrogen production by phototrophic organisms (and their components) which occurs at the expense of light energy and electron-donating substrates. The survey covers the major contributions in the area; however, in many cases, space has limited the degree of detail provided. Among the topics included is a brief historical overview of hydrogen metabolism in photosynthetic bacteria, eucaryotic algae, and cyanobacteria (blue--green algae). The primary enzyme systems, including hydrogenase and nitrogenase, are discussed along with the manner in which they are coupled to electron transport and the primary photochemistry of photosynthesis. A number of in vivo and in vitro photobiological hydrogen evolving schemes including photosynthetic bacterial, green algal, cyanobacterial, two-stage, and cell-free systems are examined in some detail. The remainder of the review discusses specific technical problem areas that currently limit the yield and duration of many of the systems and research that might lead to progress in these specific areas. The final section outlines, in broadest terms, future research directions necessary to develop practical photobiological hydrogen-producing systems. Both whole cell (near- to mid-term) and cell-free (long-term) systems should be emphasized. Photosynthetic bacteria currently show the most promise for near-term applied systems.

  10. Process development for hydrogen production with Chlamydomonas reinhardtii based on growth and product formation kinetics.

    Science.gov (United States)

    Lehr, Florian; Morweiser, Michael; Rosello Sastre, Rosa; Kruse, Olaf; Posten, Clemens

    2012-11-30

    Certain strains of microalgae are long known to produce hydrogen under anaerobic conditions. In Chlamydomonas reinhardtii the oxygen-sensitive hydrogenase enzyme recombines electrons from the chloroplast electron transport chain with protons to form molecular hydrogen directly inside the chloroplast. A sustained hydrogen production can be obtained under low sulfur conditions in C. reinhardtii, reducing the net oxygen evolution by reducing the photosystem II activity and thereby overcoming the inhibition of the hydrogenases. The development of specially adapted hydrogen production strains led to higher yields and optimized biological process preconditions. So far sustainable hydrogen production required a complete exchange of the growth medium to establish sulfur-deprived conditions after biomass growth. In this work we demonstrate the transition from the biomass growth phase to the hydrogen production phase in a single batch culture only by exact dosage of sulfur. This eliminates the elaborate and energy intensive solid-liquid separation step and establishes a process strategy to proceed further versus large scale production. This strategy has been applied to determine light dependent biomass growth and hydrogen production kinetics to assess the potential of H₂ production with C. reinhardtii as a basis for scale up and further process optimization. PMID:22750091

  11. Process development for hydrogen production with Chlamydomonas reinhardtii based on growth and product formation kinetics.

    Science.gov (United States)

    Lehr, Florian; Morweiser, Michael; Rosello Sastre, Rosa; Kruse, Olaf; Posten, Clemens

    2012-11-30

    Certain strains of microalgae are long known to produce hydrogen under anaerobic conditions. In Chlamydomonas reinhardtii the oxygen-sensitive hydrogenase enzyme recombines electrons from the chloroplast electron transport chain with protons to form molecular hydrogen directly inside the chloroplast. A sustained hydrogen production can be obtained under low sulfur conditions in C. reinhardtii, reducing the net oxygen evolution by reducing the photosystem II activity and thereby overcoming the inhibition of the hydrogenases. The development of specially adapted hydrogen production strains led to higher yields and optimized biological process preconditions. So far sustainable hydrogen production required a complete exchange of the growth medium to establish sulfur-deprived conditions after biomass growth. In this work we demonstrate the transition from the biomass growth phase to the hydrogen production phase in a single batch culture only by exact dosage of sulfur. This eliminates the elaborate and energy intensive solid-liquid separation step and establishes a process strategy to proceed further versus large scale production. This strategy has been applied to determine light dependent biomass growth and hydrogen production kinetics to assess the potential of H₂ production with C. reinhardtii as a basis for scale up and further process optimization.

  12. Wastes and by-products - alternatives for agricultural use

    International Nuclear Information System (INIS)

    Top address a growing national problem with generation of wastes and by-products, TVA has been involved for several years with developing and commercializing environmentally responsible practices for eliminating, minimizing, or utilizing various wastes/by-products. In many cases, reducing waste generation is impractical, but the wastes/by-products can be converted into other environmentally sound products. In some instances, conversion of safe, value-added agricultural products in the best or only practical alternative. TVA is currently involved with a diversity of projects converting wastes/by-products into safe, economical, and agriculturally beneficial products. Environmental improvement projects have involved poultry litter, cellulosic wastes, used battery acid, ammonium sulfate fines, lead smelting effluents, deep-welled sulfuric acid/ammonium bisulfate solutions, wood ash, waste magnesium ammonium sulfate slurry from recording tape production, and ammunition plant waste sodium nitrate/ammonium nitrate streams

  13. Wastes and by-products - alternatives for agricultural use

    Energy Technology Data Exchange (ETDEWEB)

    Boles, J.L.; Craft, D.J.; Parker, B.R.

    1994-10-01

    Top address a growing national problem with generation of wastes and by-products, TVA has been involved for several years with developing and commercializing environmentally responsible practices for eliminating, minimizing, or utilizing various wastes/by-products. In many cases, reducing waste generation is impractical, but the wastes/by-products can be converted into other environmentally sound products. In some instances, conversion of safe, value-added agricultural products in the best or only practical alternative. TVA is currently involved with a diversity of projects converting wastes/by-products into safe, economical, and agriculturally beneficial products. Environmental improvement projects have involved poultry litter, cellulosic wastes, used battery acid, ammonium sulfate fines, lead smelting effluents, deep-welled sulfuric acid/ammonium bisulfate solutions, wood ash, waste magnesium ammonium sulfate slurry from recording tape production, and ammunition plant waste sodium nitrate/ammonium nitrate streams.

  14. Hydrogen Gas Production by an Ectothiorhodospira vacuolata Strain

    OpenAIRE

    Chadwick, Laurie J.; Irgens, Roar L.

    1991-01-01

    A hydrogen gas (H2)-producing strain of Ectothiorhodospira vacuolata isolated from Soap Lake, Washington, possessed nitrogenase activity. Increasing evolution of H2 with decreasing ammonium chloride concentrations provided evidence that nitrogenase was the catalyst in gas production. Cells were grown in a mineral medium plus 0.2% acetate with sodium sulfide as an electron donor. Factors increasing H2 production included addition of reduced carbon compounds such as propionate and succinate, in...

  15. Hydrogen production from methane reforming: thermodynamic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Assis, A.J.; Hori, Carla E.; Avila Neto, Cicero; Franco, Tatiana [Federal University of Uberlandia (UFU), MG (Brazil). School of Chemical Engineering]. E-mail: adilsonjassis@gmail.com

    2008-07-01

    The main contributions of this study are to conduct a comparative thermodynamic analysis of methane reforming reactions and to asses the influence of key operational variables on chemical equilibrium using an in-house code, developed in the open-source software Scilab{sup c} INRIA-ENPC (www.scilab.org). Equilibrium compositions are calculated by two distinct methods: evaluation of equilibrium constants and Lagrange multipliers. Both methods result in systems of non-linear algebraic equations, solved numerically using the Scilab function 'fsolve'. Comparison between experimental and simulated equilibrium data, published in the literature, was used to validate the simulated results. Effects of temperature, pressure, initial H{sub 2}O/CH{sub 4} ratio (steam reforming), initial CH{sub 4}:CO{sub 2}:N{sub 2} ratio (dry reforming) and initial O{sub 2}/CH{sub 4} ratio (partial oxidation) on the reaction products were evaluated. (author)

  16. Evaluation of the efficiency of alternative enzyme production technologies

    DEFF Research Database (Denmark)

    Albæk, Mads Orla

    production of cellulases and hemi-cellulases. The aim of the thesiswas to use modeling tools to identify alternative technologies that have higher energy or raw material efficiency than the current technology. The enzyme production by T. reesei was conducted as an aerobic fed-batch fermentation. The process...... of the uncertainty and sensitivity of the model indicated the biological parameters to be responsible for most of the model uncertainty. A number of alternative fermentation technologies for enzyme production were identified in the open literature. Their mass transfer capabilities and their energy efficiencies were...... complexity of the fermentation vessel. The airlift reactor was identified as a potential high energy efficiency technology for enzyme production with excellent chances for success. Two different pilot plant configurations of the airlift reactor technology were tested in nine fermentations. The headspace...

  17. Methane and hydrogen production by human intestinal anaerobic bacteria.

    Science.gov (United States)

    McKay, L F; Holbrook, W P; Eastwood, M A

    1982-06-01

    The gas above liquid cultures of a variety of human intestinal anaerobic bacteria was sampled and analysed by headspace gas chromatography. Hydrogen production was greatest with strains of the genus Clostridium, intermediate with anaerobic cocci and least with Bacteroides sp. Very few strains produced methane although small amounts were detected with one strain of B. thetaiotaomicron, C. perfringens and C. histolyticum. There may be a relationship between these anaerobic bacteria and several gastrointestinal disorders in which there is a build up of hydrogen or methane in the intestines.

  18. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    Science.gov (United States)

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  19. Thermochemical hydrogen production studies at LLNL: a status report

    International Nuclear Information System (INIS)

    Currently, studies are underway at the Lawrence Livermore National Laboratory (LLNL) on thermochemical hydrogen production based on magnetic fusion energy (MFE) and solar central receivers as heat sources. These areas of study were described earlier at the previous IEA Annex I Hydrogen Workshop (Juelich, West Germany, September 23-25, 1981), and a brief update will be given here. Some basic research has also been underway at LLNL on the electrolysis of water from fused phosphate salts, but there are no current results in that area, and the work is being terminated

  20. Replacement of sugars to hydrogen production by Rhodobacter capsulatus using dark fermentation effluent as substrate.

    Science.gov (United States)

    Silva, Felipe Thales Moreira; Moreira, Luiza Rojas; de Souza Ferreira, Juliana; Batista, Fabiana Regina Xavier; Cardoso, Vicelma Luiz

    2016-01-01

    Hydrogen is a promising alternative for the increased global energy demand since it has high energy density and is a clean fuel. The aim of this work was to evaluate the photo-fermentation by Rhodobacter capsulatus, using the dark fermentation effluent as substrate. Different systems were tested by changing the type of sugar in the dark fermentation, investigating the influence of supplementing DFE with sugar and adding alternate and periodically lactose and glucose throughout the process. The supplementation of the DFE with sugar resulted in higher H2 productivity and the replacement of the sugars repeatedly during the photo-fermentation process was important to maintain the cell culture active. By controlling the residual amount of sugar, bacteria inhibition was avoided; lactic acid, that was toxic to the biomass, was consumed and the metabolic route of butyric acid production was predominant. Under optimum conditions, the H2 productivity reached 208.40mmolH2/Ld in 52h. PMID:26476167

  1. Studies on closed-cycle processes for hydrogen production, 1

    International Nuclear Information System (INIS)

    This report describes our studies on closed-cycle processes for hydrogen production by nuclear energy, for the period until March, 1975. Reactions of carbon dioxide were studied in our search for new processes for the thermochemical production of hydrogen. As a result, a number of new processes were constructed, studied thermodynamically and some related thermochemical experiments made preliminarily. The originated processes are composed of more than three reaction steps. By the first step, carbon monoxide is formed from the high temperature (max. 13000K) reaction between bivalent transition metal chloride and carbon dioxide. Hydrogen is formed by the second step (CO shift reaction), in which carbon monoxide reacts with steam, regenerating carbon dioxide. By the further steps, the bivalent chlorides are regenerated from oxides or higher chlorides formed in the first step. Reactions of the carbonates and chlorides were studied by the simultaneous thermogravimetry (TG) and differential thermal analysis (DTA) in the atmosphere of helium or carbon dioxide. When combined with the CO shift reaction, carbon dioxide radiolysis may be utilized to construct a closed-cycle hydrogen production process. (JPN)

  2. Microbial control of hydrogen sulfide production

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J. [Univ. of Oklahoma, Tulsa, OK (United States)] [and others

    1995-12-31

    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  3. Alkaline Ammonia Electrolysis on Electrodeposited Platinum for Controllable Hydrogen Production.

    Science.gov (United States)

    Gwak, Jieun; Choun, Myounghoon; Lee, Jaeyoung

    2016-02-19

    Ammonia is beginning to attract a great deal of attention as an alternative energy source carrier, because clean hydrogen can be produced through electrolytic processes without the emission of COx . In this study, we deposited various shapes of Pt catalysts under potentiostatic mode; the electrocatalytic oxidation behavior of ammonia using these catalysts was studied in alkaline media. The electrodeposited Pt was characterized by both qualitative and quantitative analysis. To discover the optimal structure and the effect of ammonia concentration, the bulk pH value, reaction temperature, and applied current of ammonia oxidation were investigated using potential sweep and galvanostatic methods. Finally, ammonia electrolysis was conducted using a zero-gap cell, producing highly pure hydrogen with an energy efficiency over 80 %. PMID:26530809

  4. Alkaline Ammonia Electrolysis on Electrodeposited Platinum for Controllable Hydrogen Production.

    Science.gov (United States)

    Gwak, Jieun; Choun, Myounghoon; Lee, Jaeyoung

    2016-02-19

    Ammonia is beginning to attract a great deal of attention as an alternative energy source carrier, because clean hydrogen can be produced through electrolytic processes without the emission of COx . In this study, we deposited various shapes of Pt catalysts under potentiostatic mode; the electrocatalytic oxidation behavior of ammonia using these catalysts was studied in alkaline media. The electrodeposited Pt was characterized by both qualitative and quantitative analysis. To discover the optimal structure and the effect of ammonia concentration, the bulk pH value, reaction temperature, and applied current of ammonia oxidation were investigated using potential sweep and galvanostatic methods. Finally, ammonia electrolysis was conducted using a zero-gap cell, producing highly pure hydrogen with an energy efficiency over 80 %.

  5. Hydrogen Production with Steam Reforming of Dimethyl Ether

    Institute of Scientific and Technical Information of China (English)

    Kaoru TAKEISHI; Akane ARASE

    2005-01-01

    @@ 1Introduction Steam reforming of methanol and gasoline is actively researched and developed as hydrogen supply methods for the fuel cells of vehicles and so on. However, these materials have the problems such as the infrastructure, toxicity, difficulty of the reforming, and so forth. Dimethyl ether (DME) does not contain the poisonous substances, and is expected as a clean fuel of the next generation. DME is able to take the place of light oil and LPG, and its physical properties are similar to those of LPG. There is possibility that DME infrastructures will be settled more rapidly than those of hydrogen and methanol, because LPG infrastructures existing are able to use for DME. Then, we have been studying on steam reforming of DME for the hydrogen production.

  6. Bioaugmentation of biogas production by a hydrogen-producing bacterium.

    Science.gov (United States)

    Ács, Norbert; Bagi, Zoltán; Rákhely, Gábor; Minárovics, János; Nagy, Katalin; Kovács, Kornél L

    2015-06-01

    The rate-limiting nature of the hydrogen concentration prevailing in the anaerobic digester has been recognized, but the associated alterations in the microbial community are unknown. In response to the addition of Enterobacter cloacae cells in laboratory anaerobic digesters, the level of biogas production was augmented. Terminal restriction fragment length polymorphism (T-RFLP) and real-time polymerase chain reaction (Real-Time PCR) were used to study the survival of mesophilic hydrogen-producing bacteria and the effects of their presence on the composition of the other members of the bacterial community. E. cloacae proved to maintain a stable cell number and to influence the microbial composition of the system. Bioaugmentation by a single strain added to the natural biogas-producing microbial community was demonstrated. The community underwent pronounced changes as a result of the relatively slight initial shift in the microbiological system, responding sensitively to the alterations in local hydrogen concentration.

  7. Hydrogen production employing Spirulina maxima 2342: A chemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Juantorena, A.U.; Santoyo, E.; Gamboa, S.A.; Lastres, O.D. [Centro de Investigacion en Energia, UNAM, Temixco 62580, Morelos (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia, UNAM, Temixco 62580, Morelos (Mexico); Cuerpo Academico de Energia, UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico); Sanchez-Escamilla, D. [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Bustos, A. [Centro de Ciencias Fisicas, UNAM, Ave. Universidad, Cuernavaca, Morelos (Mexico); Eapen, D. [Investigacion y Desarrollo en Agroindustria, UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    The biomass of the cyanobacteria, Spirulina maxima 2342, was autotrophically obtained in a 20 l bioreactor under illumination and air bubbling and analyzed for its photobiological hydrogen production capability. A volume of 250 ml of Spirulina sp. taken from the reactor was used as culture sample for performing the experiments. An illumination-agitation process was employed to induce the hydrogen photoproduction reaction. The hydrogen produced in this process was quantified by gas chromatography technique using Molesieve 5 A(16ft x (1)/(8)in) column and a thermal conductivity detector (with a detector temperature of 110{sup o}C and a column temperature of 60{sup o}C). The culture samples were finally observed in an electron microscope to evaluate the effect of vacuum on the Spirulina sp. cells. (author)

  8. Water electrolysis for hydrogen production in Brazilian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Saliba-Silva, Adonis Marcelo; Carvalho, Fatima M.S.; Bergamaschi, Vanderlei Sergio; Linardi, Marcelo [Instituto de Pesquisas Energeticas e Nucleares (CCCH/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Fuel Cell and Hydrogen Center], Email: saliba@ipen.br

    2009-07-01

    Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation and distributed energy sector of Brazilian economy. Fossil fuels are polluting by carbogenic emissions from their combustion, being so co-responsible for present global warming. However, no large scale, cost-effective, environmentally non-carbogenic hydrogen production process is currently available for commercialization. There are feasible possibilities to use electrolysis as one of the main sources of hydrogen, especially thinking on combination with renewable sources of energy, mainly eolic and solar. In this work some perspectives for Brazilian energy context is presented, where electrolysis combined with renewable power source and fuel cell power generation would be a good basis to improve the distributed energy supply for remote areas, where the electricity grid is not present or is deficient. (author)

  9. Dynamic Simulation and Optimization of Nuclear Hydrogen Production Systems

    Energy Technology Data Exchange (ETDEWEB)

    Paul I. Barton; Mujid S. Kaximi; Georgios Bollas; Patricio Ramirez Munoz

    2009-07-31

    This project is part of a research effort to design a hydrogen plant and its interface with a nuclear reactor. This project developed a dynamic modeling, simulation and optimization environment for nuclear hydrogen production systems. A hybrid discrete/continuous model captures both the continuous dynamics of the nuclear plant, the hydrogen plant, and their interface, along with discrete events such as major upsets. This hybrid model makes us of accurate thermodynamic sub-models for the description of phase and reaction equilibria in the thermochemical reactor. Use of the detailed thermodynamic models will allow researchers to examine the process in detail and have confidence in the accurary of the property package they use.

  10. Photoelectrochemical based direct conversion systems for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Kocha, S.; Peterson, M.; Arent, D. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-10-01

    Photon driven, direct conversion systems consist of a light absorber and a water splitting catalyst as a monolithic system; water is split directly upon illumination. This one-step process eliminates the need to generate electricity externally and subsequently feed it to an electrolyzer. These configurations require only the piping necessary for transport of hydrogen to an external storage system or gas pipeline. This work is focused on multiphoton photoelectrochemical devices for production of hydrogen directly using sunlight and water. Two types of multijunction cells, one consisting of a-Si triple junctions and the other GaInP{sub 2}/GaAs homojunctions, were studied for the photoelectrochemical decomposition of water into hydrogen and oxygen from an aqueous electrolyte solution. To catalyze the water decomposition process, the illuminated surface of the device was modified either by addition of platinum colloids or by coating with ruthenium dioxide. These colloids have been characterized by gel electrophoresis.

  11. Hydrogen production from sugar industry wastes using single-stage photofermentation.

    Science.gov (United States)

    Keskin, Tugba; Hallenbeck, Patrick C

    2012-05-01

    Beet molasses and black strap are two major waste streams of the sugar industry. They both contain high amounts of sucrose, making them suitable substrates for biological hydrogen production. Photofermentation, usually used to convert organic acids to hydrogen, has the potential capacity to effectively use a variety of feed stocks, including sugars. A comparative study on photofermentative biohydrogen production from beet molasses, black strap, and sucrose was conducted. With yields of 10.5 mol H(2)/mol sucrose for beet molasses (1g/l sugar); 8 mol H(2)/mol sucrose for black strap (1g/l sugar) and 14 mol H(2)/mol sucrose for pure sucrose, a one stage photofermentation system appears promising as an alternative to two-stage systems given the potential savings in energy input and operational costs.

  12. Hydrogen production via urea electrolysis using a gel electrolyte

    Science.gov (United States)

    King, Rebecca L.; Botte, Gerardine G.

    2011-03-01

    A technology was demonstrated for the production of hydrogen and other valuable products (nitrogen and clean water) through the electrochemical oxidation of urea in alkaline media. In addition, this process remediates toxic nitrates and prevents gaseous ammonia emissions. Improvements to urea electrolysis were made through replacement of aqueous KOH electrolyte with a poly(acrylic acid) gel electrolyte. A small volume of poly(acrylic acid) gel electrolyte was used to accomplish the electrochemical oxidation of urea improving on the previous requirement for large amounts of aqueous potassium hydroxide. The effect of gel composition was investigated by varying polymer content and KOH concentrations within the polymer matrix in order to determine which is the most advantageous for the electrochemical oxidation of urea and production of hydrogen.

  13. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels

    Energy Technology Data Exchange (ETDEWEB)

    University of Central Florida

    2004-01-30

    The main objective of this project is the development of an economically viable thermocatalytic process for production of hydrogen and carbon from natural gas or other hydrocarbon fuels with minimal environmental impact. The three major technical goals of this project are: (1) to accomplish efficient production of hydrogen and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive and durable carbon catalysts, (2) to obviate the concurrent production of CO/CO{sub 2} byproducts and drastically reduce CO{sub 2} emissions from the process, and (3) to produce valuable carbon products in order to reduce the cost of hydrogen production The important feature of the process is that the reaction is catalyzed by carbon particulates produced in the process, so no external catalyst is required (except for the start-up operation). This results in the following advantages: (1) no CO/CO{sub 2} byproducts are generated during hydrocarbon decomposition stage, (2) no expensive catalysts are used in the process, (3) several valuable forms of carbon can be produced in the process depending on the process conditions (e.g., turbostratic carbon, pyrolytic graphite, spherical carbon particles, carbon filaments etc.), and (4) CO{sub 2} emissions could be drastically reduced (compared to conventional processes).

  14. Lichen symbiosis: nature's high yielding machines for induced hydrogen production.

    Directory of Open Access Journals (Sweden)

    Aikaterini Papazi

    Full Text Available Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939 and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications.

  15. Lichen symbiosis: nature's high yielding machines for induced hydrogen production.

    Science.gov (United States)

    Papazi, Aikaterini; Kastanaki, Elizabeth; Pirintsos, Stergios; Kotzabasis, Kiriakos

    2015-01-01

    Hydrogen is a promising future energy source. Although the ability of green algae to produce hydrogen has long been recognized (since 1939) and several biotechnological applications have been attempted, the greatest obstacle, being the O2-sensitivity of the hydrogenase enzyme, has not yet been overcome. In the present contribution, 75 years after the first report on algal hydrogen production, taking advantage of a natural mechanism of oxygen balance, we demonstrate high hydrogen yields by lichens. Lichens have been selected as the ideal organisms in nature for hydrogen production, since they consist of a mycobiont and a photobiont in symbiosis. It has been hypothesized that the mycobiont's and photobiont's consumption of oxygen (increase of COX and AOX proteins of mitochondrial respiratory pathways and PTOX protein of chrolorespiration) establishes the required anoxic conditions for the activation of the phycobiont's hydrogenase in a closed system. Our results clearly supported the above hypothesis, showing that lichens have the ability to activate appropriate bioenergetic pathways depending on the specific incubation conditions. Under light conditions, they successfully use the PSII-dependent and the PSII-independent pathways (decrease of D1 protein and parallel increase of PSaA protein) to transfer electrons to hydrogenase, while under dark conditions, lichens use the PFOR enzyme and the dark fermentative pathway to supply electrons to hydrogenase. These advantages of lichen symbiosis in combination with their ability to survive in extreme environments (while in a dry state) constitute them as unique and valuable hydrogen producing natural factories and pave the way for future biotechnological applications. PMID:25826211

  16. Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yunli; Wang, Jianji; Liu, Zhen; Ren, Yunlai; Li, Guozhi [School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471039, Henan (China)

    2009-12-15

    Relatively large percentages of xylose with glucose, arabinose, mannose, galactose and rhamnose constitute the hydrolysis products of hemicellulose. In this paper, hydrogen production performance of facultative anaerobe (Enterobacter aerogenes) has been investigated from these different monomeric sugars except glucose. It was shown that the stereoisomers of mannose and galactose were more effective for hydrogen production than those of xylose and arabinose. The substrate of 5 g/l xylose resulted in a relative high level of hydrogen yield (73.8 mmol/l), hydrogen production efficiency (2.2 mol/mol) and a maximum hydrogen production rate (249 ml/l/h). The hydrogen yield, hydrogen production efficiency and the maximum hydrogen production rate reached 104 mmol/l, 2.35 mol/mol and 290 ml/l/h, respectively, on a substrate of 10 g/l galactose. The hydrogen yields and the maximum hydrogen production rates increased with an increase of mannose concentrations and reached 119 mmol/l and 518 ml/l/h on the culture of 25 g/l mannose. However, rhamnose was a relative poor carbon resource for E. aerogenes to produce hydrogen, from which the hydrogen yield and hydrogen production efficiency were about one half of that from the mannose substrate. E. aerogenes was found to be a promising strain for hydrogen production from hydrolysis products of hemicellulose. (author)

  17. Botanical alternatives to antibiotics for use in organic poultry production.

    Science.gov (United States)

    Diaz-Sanchez, Sandra; D'Souza, Doris; Biswas, Debrabrata; Hanning, Irene

    2015-06-01

    The development of antibiotic resistant pathogens has resulted from the use of sub-therapeutic concentrations of antibiotics delivered in poultry feed. Furthermore, there are a number of consumer concerns regarding the use of antibiotics in food animals including residue contamination of poultry products and antibiotic resistant bacterial pathogens. These issues have resulted in recommendations to reduce the use of antibiotics as growth promoters in livestock in the United States. Unlike conventional production, organic systems are not permitted to use antibiotics. Thus, both conventional and organic poultry production need alternative methods to improve growth and performance of poultry. Herbs, spices, and various other plant extracts are being evaluated as alternatives to antibiotics and some do have growth promoting effects, antimicrobial properties, and other health-related benefits. This review aims to provide an overview of herbs, spices, and plant extracts, currently defined as phytobiotics as potential feed additives. PMID:25743421

  18. Feasibility Study of Hydrogen Production at Existing Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Schey

    2009-07-01

    Cooperative Agreement DE-FC07-06ID14788 was executed between the U.S. Department of Energy, Electric Transportation Applications, and Idaho National Laboratory to investigate the economics of producing hydrogen by electrolysis using electricity generated by nuclear power. The work under this agreement is divided into the following four tasks: Task 1 – Produce Data and Analyses Task 2 – Economic Analysis of Large-Scale Alkaline Electrolysis Task 3 – Commercial-Scale Hydrogen Production Task 4 – Disseminate Data and Analyses. Reports exist on the prospect that utility companies may benefit from having the option to produce electricity or produce hydrogen, depending on market conditions for both. This study advances that discussion in the affirmative by providing data and suggesting further areas of study. While some reports have identified issues related to licensing hydrogen plants with nuclear plants, this study provides more specifics and could be a resource guide for further study and clarifications. At the same time, this report identifies other area of risks and uncertainties associated with hydrogen production on this scale. Suggestions for further study in some of these topics, including water availability, are included in the report. The goals and objectives of the original project description have been met. Lack of industry design for proton exchange membrane electrolysis hydrogen production facilities of this magnitude was a roadblock for a significant period. However, recent design breakthroughs have made costing this facility much more accurate. In fact, the new design information on proton exchange membrane electrolyzers scaled to the 1 kg of hydrogen per second electrolyzer reduced the model costs from $500 to $100 million. Task 1 was delayed when the original electrolyzer failed at the end of its economic life. However, additional valuable information was obtained when the new electrolyzer was installed. Products developed during this study

  19. Control, monitoring and data acquisition architecture design for clean production of hydrogen from mini-wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Villarroya, Sebastian; Cotos, Jose M. [Santiago de Compostela Univ. (Spain). Lab. of Systems; Gomez, Guillermo; Plaza, Borja [National Institute for Aerospace Technology (INTA), Torrejon de Ardoz, Madrid (Spain); Fontan, Manuel; Magdaleno, Alexander [OBEKI Innobe, Ibarra, Gipuzkoa (Spain); Vallve, Xavier; Palou, Jaume [Trama TecnoAmbiental, Barcelona (Spain)

    2010-07-01

    One of the pillars that holds up the stability and economic development of our society is the need to ensure a reliable and affordable supply of energy that meets our current energy needs. The high dependence on fossil fuels, our main source of primary energy, has many drawbacks mainly caused by greenhouse gases. It is urgent to address this unsustainable energy future through innovation, adoption of new energy alternatives and better use of existing technologies. In this context, hydrogen associated to renewable energy is probably an important part of that future. This paper presents a real demonstrator of energy generation and storage through the clean production of hydrogen from small wind energy. Thus, this demonstrator will allow the study of the technical and econonmic feasibility of hydrogen production. Wind energy will be stored as hydrogen for a later use. In this way hydrogen represents a form of no-loss energy battery. The use of small wind energy allows a more modular and scattered production even in developing countries. In this way, we avoid the transport of hydrogen and the electricity to produce it, improving system efficiency. Moreover, small wind systems require a lower initial investment in infrastructure which will facilitate the development of a separate market for hydrogen production. (orig.)

  20. Low-Cost Hydrogen Distributed Production System Development

    Energy Technology Data Exchange (ETDEWEB)

    C.E. (Sandy) Thomas, Ph.D., President; Principal Investigator, and

    2011-03-10

    H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen

  1. Radiolytic hydrogen production from process vessels in HB line - production rates compared to evolution rates and discussion of LASL reviews

    Energy Technology Data Exchange (ETDEWEB)

    Bibler, N.E.

    1992-11-12

    Hydrogen production from radiolysis of aqueous solutions can create a safety hazard since hydrogen is flammable. At times this production can be significant, especially in HB line where nitric acid solutions containing high concentrations of Pu-238, an intense alpha emitter, are processed. The hydrogen production rates from these solutions are necessary for safety analyses of these process systems. The methods and conclusions of hydrogen production rate tests are provided in this report.

  2. Thermodynamic evaluation of hydrogen production via bioethanol steam reforming

    International Nuclear Information System (INIS)

    In this article, a thermodynamic analysis for bioethanol steam reforming for hydrogen production is presented. Bioethanol is a newly proposed renewable energy carrier mainly produced from biomass fermentation. Reforming of bioethanol provides a promising method for hydrogen production from renewable resources. Steam reforming of ethanol (SRE) takes place under the action of a metal catalyst capable of breaking C-C bonds into smaller molecules. A large domain for the water/bioethanol molar ratio as well as the temperature and average pressure has been used in the present work. The interval of investigated temperature was 100-800°C, the pressure was in the range of 1-10 bar and the molar ratio was between 3-25. The variations of gaseous species concentration e.g. H2, CO, CO2, CH4 were analyzed. The concentrations of the main products (H2 and CO) at lower temperature are smaller than the ones at higher temperature due to by-products formation (methane, carbon dioxide, acetylene etc.). The concentration of H2 obtained in the process using high molar ratio (>20) is higher than the one at small molar ratio (near stoichiometric). When the pressure is increased the hydrogen concentration decreases. The results were compared with literature data for validation purposes

  3. Simultaneous hydrogen production and consumption in Anaerobic mixed culture fermentation

    Directory of Open Access Journals (Sweden)

    Carlos Dinamarca, Rune Bakke

    2012-01-01

    Full Text Available The aim of the present study is to investigate the relevance of homoacetogenic H2 consumption on the bio-hydrogen yield and products distribution in mixed culture fermentation. A hybrid anaerobic reactor was operated for 93 days with variable pH and organic loads between 8-16 g glucose/L.d for this purpose. High initial H2 yield decreased gradually to an equivalent of 0.02-0.4 mol H2/mol glucose consumed. The distribution of the dissolved organic products was influenced strongly by reactor pH, while the overall H2 yield was not. Low H2 yield is attributed mainly to homoacetogenesis at pH greater than 4.6 and to reduced products formation at pH less than 4.6. Simultaneous hydrogen production and consumption occurred and at least 22 % of the produced molecular hydrogen, mainly from butyrate fermentation, was used for the reduction of CO2 to acetate.

  4. Photoelectrochemical Hydrogen Production Using New Combinatorial Chemistry Derived Materials

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, Thomas F.; Baeck, Sung-Hyeon; Kleiman-Shwarsctein, Alan; Stucky, Galen D. (PI); McFarland, Eric W. (PI)

    2004-10-25

    Solar photoelectrochemical water-splitting has long been viewed as one of the “holy grails” of chemistry because of its potential impact as a clean, renewable method of fuel production. Several known photocatalytic semiconductors can be used; however, the fundamental mechanisms of the process remain poorly understood and no known material has the required properties for cost effective hydrogen production. In order to investigate morphological and compositional variations in metal oxides as they relate to opto-electrochemical properties, we have employed a combinatorial methodology using automated, high-throughput, electrochemical synthesis and screening together with conventional solid-state methods. This report discusses a number of novel, high-throughput instruments developed during this project for the expeditious discovery of improved materials for photoelectrochemical hydrogen production. Also described within this report are results from a variety of materials (primarily tungsten oxide, zinc oxide, molybdenum oxide, copper oxide and titanium dioxide) whose properties were modified and improved by either layering, inter-mixing, or doping with one or more transition metals. Furthermore, the morphologies of certain materials were also modified through the use of structure directing agents (SDA) during synthesis to create mesostructures (features 2-50 nm) that increased surface area and improved rates of hydrogen production.

  5. Thermodynamic evaluation of hydrogen production via bioethanol steam reforming

    Science.gov (United States)

    Tasnadi-Asztalos, Zsolt; Cormos, Ana-Maria; Imre-Lucaci, Árpád; Cormos, Cǎlin C.

    2013-11-01

    In this article, a thermodynamic analysis for bioethanol steam reforming for hydrogen production is presented. Bioethanol is a newly proposed renewable energy carrier mainly produced from biomass fermentation. Reforming of bioethanol provides a promising method for hydrogen production from renewable resources. Steam reforming of ethanol (SRE) takes place under the action of a metal catalyst capable of breaking C-C bonds into smaller molecules. A large domain for the water/bioethanol molar ratio as well as the temperature and average pressure has been used in the present work. The interval of investigated temperature was 100-800°C, the pressure was in the range of 1-10 bar and the molar ratio was between 3-25. The variations of gaseous species concentration e.g. H2, CO, CO2, CH4 were analyzed. The concentrations of the main products (H2 and CO) at lower temperature are smaller than the ones at higher temperature due to by-products formation (methane, carbon dioxide, acetylene etc.). The concentration of H2 obtained in the process using high molar ratio (>20) is higher than the one at small molar ratio (near stoichiometric). When the pressure is increased the hydrogen concentration decreases. The results were compared with literature data for validation purposes.

  6. Thermodynamic evaluation of hydrogen production via bioethanol steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Tasnadi-Asztalos, Zsolt; Cormos, Ana-Maria; Imre-Lucaci, Árpád; Cormos, Călin C. [Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Arany Janos 11, RO-400028, Cluj-Napoca (Romania)

    2013-11-13

    In this article, a thermodynamic analysis for bioethanol steam reforming for hydrogen production is presented. Bioethanol is a newly proposed renewable energy carrier mainly produced from biomass fermentation. Reforming of bioethanol provides a promising method for hydrogen production from renewable resources. Steam reforming of ethanol (SRE) takes place under the action of a metal catalyst capable of breaking C-C bonds into smaller molecules. A large domain for the water/bioethanol molar ratio as well as the temperature and average pressure has been used in the present work. The interval of investigated temperature was 100-800°C, the pressure was in the range of 1-10 bar and the molar ratio was between 3-25. The variations of gaseous species concentration e.g. H{sub 2}, CO, CO{sub 2}, CH{sub 4} were analyzed. The concentrations of the main products (H{sub 2} and CO) at lower temperature are smaller than the ones at higher temperature due to by-products formation (methane, carbon dioxide, acetylene etc.). The concentration of H2 obtained in the process using high molar ratio (>20) is higher than the one at small molar ratio (near stoichiometric). When the pressure is increased the hydrogen concentration decreases. The results were compared with literature data for validation purposes.

  7. Solar photochemical production of HBr for off-peak electrolytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H. [Solar Reactor Technologies Inc., Miami, FL (United States)

    1996-10-01

    Progress is reported on the development of a unique and innovative hydrogen production concept utilizing renewable (Solar) energy and incorporating energy storage. The concept is based on a solar-electrolytic system for production of hydrogen and oxygen. It employs water, bromine, solar energy, and supplemental electrical power. The process consumes only water, sunlight and off-peak electricity, and produces only hydrogen, oxygen, and peaking electrical power. No pollutants are emitted, and fossil fuels are not consumed. The concept is being developed by Solar Reactor Technologies, Inc., (SRT) under the auspices of a Cooperative Agreement with the U.S. Department of Energy (DOE).

  8. Physiochemical, exergetic and economical analysis of biogas reforming: hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Antonio Carlos Caetano de; Silveira, Jose Luz [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Guaratingueta, SP (Brazil)]. E-mails: caetanodesouza@yahoo.com.br; caetano@feg.unesp.br; joseluz@feg.unesp.br

    2008-07-01

    The utilization of biogas for production of hydrogen-rich syngas through thermochemical processes such as steam reforming and dry reforming is suggested in this study. Ultimately, these gases could be utilized by fuel cells to generate electricity and heat. The composition of biogas depends strongly on conditions where this gas is produced (thermodynamic conditions such as temperature and pressure where biogas' feedstocks are utilized, beyond composition of own feedstock and utilized technology for biogas processing). Physicochemical analysis was performed with objective to evaluate the composition of syngas generated through reforming process, making a special attention to the content of hydrogen in the cited syngas. The adopted biogas in this study was based on the biogas generated in a small wastewater treatment system installed in Sao Paulo State University (UNESP) at Guaratingueta. The volume of constituents was 61.8% CH{sub 4} and 34.4% CO{sub 2} after purification. Some traces of O{sub 2} and N{sub 2} were encountered. The suggested thermodynamic conditions detected in physical-chemical and exergetic analysis was in a range of 600- 900 deg C and 1 atm. This pressure was adopted since in this way, an equipment of pressurization and depressurization is not necessary, diminishing the costs of installation and utilization of energy. Basing on this temperature, the generation of hydrogen-rich biogas is devoted with low utilization of energy which in this case is necessary as heat source. The exergetic analysis has as objective to determinate the most convenient thermodynamic conditions for studied hydrogen production process. Calculations concerning rational and exergetic efficiencies were developed. Basing on this analysis, the suggested conditions were 1 atm and maximum 700 deg C. Ultimately, an economic analysis was performed to evaluate the cost of produced hydrogen depending on of imposed conditions such as cost of installation of studied reformer

  9. Simulation of a hydrogen production and purification system for a PEM fuel-cell using bioethanol as raw material

    Energy Technology Data Exchange (ETDEWEB)

    Giunta, Pablo; Amadeo, Norma; Laborde, Miguel [Facultad de Ingenieria, Universidad de Buenos Aires, Laboratorio de Procesos Cataliticos, Pabellon de Industrias, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Mosquera, Carlos [Facultad de Ingenieria, Universidad de Buenos Aires, Departamento de Fisica, 1063 Buenos Aires (Argentina)

    2007-01-10

    A process to produce 'fuel-cell grade' hydrogen from ethanol steam reforming is analyzed from a thermodynamic point of view. The hydrogen purification process consists of WGS and COPROX reactors. Equations to evaluate the efficiency of the system, including the fuel cell, are presented. A heat exchange network is proposed in order to improve the exploitation of the available power. The effect of key variables such as the reformer temperature and the ethanol/water molar feed ratio on the fuel-cell efficiency is discussed. Results show that it is feasible to carry out the energy integration of the hydrogen catalytic production and purification-PEM fuel-cell system, using ethanol as raw material. The technology of 'fuel-cell grade' hydrogen production using ethanol as raw material is a very attractive alternative to those technologies based in fossil fuels. (author)

  10. Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration

    International Nuclear Information System (INIS)

    Highlights: • A novel energy-saving H2 production process is exploited. • Heat integration technology is used to recover the wasted heat. • Heat coupling of heat exchangers is optimized in SMR and PSA sections. • Energy consumption is reduced to 39.5% that of the conventional process. - Abstract: Hydrogen has been widely researched as a promising alternative fuel. Steam methane reforming (SMR) coupled with pressure swing adsorption (PSA) is one of the most dominant processes for hydrogen production. In order to reduce the energy consumption, a novel energy saving SMR–PSA H2 production process by combining heat integration technology has been put forward. In SMR section, the waste heat of reformer and water–gas-shift (WGS) reactors is recovered to pre-heat feed gas and H2O. In the view of exergy, a compressor is used to achieve a well heat pairing of sensible and latent heat between hot and cold streams. In PSA section, the generated adsorption heat is recovered by heat pump and reused for regeneration of sorbent. In the total process, optimal heat coupling between hot and cold streams is realized. The simulation results indicated that the SMR and PSA sections in the optimized hydrogen production process can save 55.77 kJ/mol H2 and 6.01 kJ/mol H2, respectively. The total energy consumption of the novel SMR–PSA process can be reduced to 39.5% that of the conventional process

  11. Assessing the Life-Cycle Performance of Hydrogen Production via Biofuel Reforming in Europe

    Directory of Open Access Journals (Sweden)

    Ana Susmozas

    2015-06-01

    Full Text Available Currently, hydrogen is mainly produced through steam reforming of natural gas. However, this conventional process involves environmental and energy security concerns. This has led to the development of alternative technologies for (potentially green hydrogen production. In this work, the environmental and energy performance of biohydrogen produced in Europe via steam reforming of glycerol and bio-oil is evaluated from a life-cycle perspective, and contrasted with that of conventional hydrogen from steam methane reforming. Glycerol as a by-product from the production of rapeseed biodiesel and bio-oil from the fast pyrolysis of poplar biomass are considered. The processing plants are simulated in Aspen Plus® to provide inventory data for the life cycle assessment. The environmental impact potentials evaluated include abiotic depletion, global warming, ozone layer depletion, photochemical oxidant formation, land competition, acidification and eutrophication. Furthermore, the cumulative (total and non-renewable energy demand is calculated, as well as the corresponding renewability scores and life-cycle energy balances and efficiencies of the biohydrogen products. In addition to quantitative evidence of the (expected relevance of the feedstock and impact categories considered, results show that poplar-derived bio-oil could be a suitable feedstock for steam reforming, in contrast to first-generation bioglycerol.

  12. Steam Methane Reforming System for Hydrogen Production: Advanced Exergetic Analysis

    OpenAIRE

    Morosuk, Tatiana; Boyano, Alicia; Blanco-Marigorta, Ana-Maria; Tsatsaronis, George

    2012-01-01

    Steam methane reforming (SMR) is one of the most promising processes for the production of hydrogen. Therefore, the overall thermodynamic efficiency of this process is of particular importance. The thermodynamic inefficiencies in a thermal system are related to exergy destruction and exergy loss. However, a conventional exergetic analysis cannot evaluate the mutual interdependencies among the system components nor the real potential for improving the energy conversion system being considered....

  13. Advances in ethanol reforming for the production of hydrogen

    Directory of Open Access Journals (Sweden)

    Laura Guerrero

    2014-06-01

    Full Text Available Catalytic steam reforming of ethanol (SRE is a promising route for the production of renewable hydrogen (H2. This article reviews the influence of doping supported-catalysts used in SRE on the conversion of ethanol, selectivity for H2, and stability during long reaction periods. In addition, promising new technologies such as membrane reactors and electrochemical reforming for performing SRE are presented.

  14. Yttrium bismuth titanate pyrochlore mixed oxides for photocatalytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Merka, Oliver

    2012-10-18

    In this work, the sol-gel synthesis of new non-stoichiometric pyrochlore titanates and their application in photocatalytic hydrogen production is reported. Visible light response is achieved by introducing bismuth on the A site or by doping the B site by transition metal cations featuring partially filled d orbitals. This work clearly focusses on atomic scale structural changes induced by the systematical introduction of non-stoichiometry in pyrochlore mixed oxides and the resulting influence on the activity in photocatalytic hydrogen production. The materials were characterized in detail regarding their optical properties and their atomic structure. The pyrochlore structure tolerates tremendous stoichiometry variations. The non-stoichiometry in A{sub 2}O{sub 3} rich compositions is compensated by distortions in the cationic sub-lattice for the smaller Y{sup 3+} cation and by evolution of a secondary phase for the larger Bi{sup 3+} cation on the A site. For TiO{sub 2} rich compositions, the non-stoichiometry leads to a special vacancy formation in the A and optionally O' sites. It is shown that pyrochlore mixed oxides in the yttrium bismuth titanate system represent very active and promising materials for photocatalytic hydrogen production, if precisely and carefully tuned. Whereas Y{sub 2}Ti{sub 2}O{sub 7} yields stable hydrogen production rates over time, the bismuth richer compounds of YBiTi{sub 2}O{sub 7} and Bi{sub 2}Ti{sub 2}O{sub 7} are found to be not stable under irradiation. This drawback is overcome by applying a special co-catalyst system consisting of a precious metal core and a Cr{sub 2}O{sub 3} shell on the photocatalysts.

  15. Photoelectrochemical based direct conversion systems for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Khaselev, O.; Bansal, A.; Kocha, S.; Turner, J.A. [National Renewable Energy Lab., Golden, CO (United States)

    1998-08-01

    With an eye towards developing a photoelectrochemical system for hydrogen production using sunlight as the only energy input, two types of systems were studied, both involving multijunction devices. One set of cells consisted of a-Si triple junctions and the other a GaInP{sub 2}/GaAs tandem cell combination. Additional investigations were carried out on semiconductor surface modifications to move semiconductor band edges to more favorable energetic positions.

  16. Biotechnological processes for biodiesel production using alternative oils.

    Science.gov (United States)

    Azócar, Laura; Ciudad, Gustavo; Heipieper, Hermann J; Navia, Rodrigo

    2010-10-01

    As biodiesel (fatty acid methyl ester (FAME)) is mainly produced from edible vegetable oils, crop soils are used for its production, increasing deforestation and producing a fuel more expensive than diesel. The use of waste lipids such as waste frying oils, waste fats, and soapstock has been proposed as low-cost alternative feedstocks. Non-edible oils such as jatropha, pongamia, and rubber seed oil are also economically attractive. In addition, microalgae, bacteria, yeast, and fungi with 20% or higher lipid content are oleaginous microorganisms known as single cell oil and have been proposed as feedstocks for FAME production. Alternative feedstocks are characterized by their elevated acid value due to the high level of free fatty acid (FFA) content, causing undesirable saponification reactions when an alkaline catalyst is used in the transesterification reaction. The production of soap consumes the conventional catalyst, diminishing FAME production yield and simultaneously preventing the effective separation of the produced FAME from the glycerin phase. These problems could be solved using biological catalysts, such as lipases or whole-cell catalysts, avoiding soap production as the FFAs are esterified to FAME. In addition, by-product glycerol can be easily recovered, and the purification of FAME is simplified using biological catalysts.

  17. Biotechnological processes for biodiesel production using alternative oils

    Energy Technology Data Exchange (ETDEWEB)

    Azocar, Laura; Ciudad, Gustavo [La Frontera Univ., Temuco (Chile). Nucleo Cietifico Tecnologico en Biorrecursos; Heipieper, Hermann J. [Helmholtz Centre for Environmental Research-UFZ, Leipzig (Germany). Dept. of Environmental Biotechnology; Navia, Rodrigo [La Frontera Univ., Temuco (Chile). Nucleo Cietifico Tecnologico en Biorrecursos; La Frontera Univ., Temuco (Chile). Dept. de Ingenieria Quimica

    2010-10-15

    As biodiesel (fatty acid methyl ester (FAME)) is mainly produced from edible vegetable oils, crop soils are used for its production, increasing deforestation and producing a fuel more expensive than diesel. The use of waste lipids such as waste frying oils, waste fats, and soapstock has been proposed as low-cost alternative feedstocks. Non-edible oils such as jatropha, pongamia, and rubber seed oil are also economically attractive. In addition, microalgae, bacteria, yeast, and fungi with 20% or higher lipid content are oleaginous microorganisms known as single cell oil and have been proposed as feedstocks for FAME production. Alternative feedstocks are characterized by their elevated acid value due to the high level of free fatty acid (FFA) content, causing undesirable saponification reactions when an alkaline catalyst is used in the transesterification reaction. The production of soap consumes the conventional catalyst, diminishing FAME production yield and simultaneously preventing the effective separation of the produced FAME from the glycerin phase. These problems could be solved using biological catalysts, such as lipases or whole-cell catalysts, avoiding soap production as the FFAs are esterified to FAME. In addition, by-product glycerol can be easily recovered, and the purification of FAME is simplified using biological catalysts. (orig.)

  18. Bio-hydrogen production from hyacinth by anaerobic fermentation

    International Nuclear Information System (INIS)

    The bio-hydrogen production from hyacinth by anaerobic fermentation of digested sludge is studied in this paper. The compositions of bio-gases and volatile fatty acids in fermentation liquids are determined on TRACE 2000 gas chromatography. It is found that the H2 concentration in the biogas is 10%-20% and no CH4 is detected. The bio-hydrogen production from hyacinth with the initial pH value of 5.5 is higher than that with the initial pH value of 4.5. The fermentation temperature of 55 C is better than that of 35 C, while the weight ratio of hyacinth to microorganism of 1:1 is better than that of 3:7. The highest hydrogen production of 122.3 mL/g is obtained when the initial pH value of fermentation solution is 5.5, the fermentation temperature is 55 C and the weight ratio of hyacinth to microorganism is 1:1. (authors)

  19. Studies of the use of heat from high temperature nuclear sources for hydrogen production processes

    Science.gov (United States)

    Farbman, G. H.

    1976-01-01

    Future uses of hydrogen and hydrogen production processes that can meet the demand for hydrogen in the coming decades were considered. To do this, a projection was made of the market for hydrogen through the year 2000. Four hydrogen production processes were selected, from among water electrolysis, fossil based and thermochemical water decomposition systems, and evaluated, using a consistent set of ground rules, in terms of relative performance, economics, resource requirements, and technology status.

  20. Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture

    OpenAIRE

    Lai, Zhicheng; Zhu, Muzi; Yang, Xiaofeng; Wang, JuFang; Li, Shuang

    2014-01-01

    Background Hydrogen is regarded as an attractive future energy carrier for its high energy content and zero CO2 emission. Currently, the majority of hydrogen is generated from fossil fuels. However, from an environmental perspective, sustainable hydrogen production from low-cost lignocellulosic biomass should be considered. Thermophilic hydrogen production is attractive, since it can potentially convert a variety of biomass-based substrates into hydrogen at high yields. Results Sugarcane baga...

  1. Pathway of Fermentative Hydrogen Production by Sulfate-reducing Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2015-02-16

    Biofuels are a promising source of sustainable energy. Such biofuels are intermediate products of microbial metabolism of renewable substrates, in particular, plant biomass. Not only are alcohols and solvents produced in this degradative process but energy-rich hydrogen as well. Non photosynthetic microbial hydrogen generation from compounds other than sugars has not been fully explored. We propose to examine the capacity of the abundant soil anaerobes, sulfate-reducing bacteria, for hydrogen generation from organic acids. These apparently simple pathways have yet to be clearly established. Information obtained may facilitate the exploitation of other microbes not yet readily examined by molecular tools. Identification of the flexibility of the metabolic processes to channel reductant to hydrogen will be useful in consideration of practical applications. Because the tools for genetic and molecular manipulation of sulfate-reducing bacteria of the genus Desulfovibrio are developed, our efforts will focus on two strains, D. vulgaris Hildenborough and Desulfovibrio G20.Therefore total metabolism, flux through the pathways, and regulation are likely to be limiting factors which we can elucidate in the following experiments.

  2. Continuous fermentative hydrogen production in different process conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nasirian, N. [Islamic Azad Univ., Shoushtar (Iran, Islamic Republic of). Dept. of Agricultural Mechanization; Almassi, M.; Minaee, S. [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Agricultural Mechanization; Widmann, R. [Duisburg-Essen Univ., Essen (Germany). Dept. of Environmental Engineering, Waste and Water

    2010-07-01

    This paper reported on a study in which hydrogen was produced by fermentation of biomass. A continuous process using a non-sterile substrate with a readily available mixed microflora was used on heat treated digested sewage sludge from a wastewater treatment plant. Hydrogen was produced from waste sugar at a pH of 5.2 and a temperature of 37 degrees C. An experimental setup of three 5.5 L working volume continuously stirred tank reactors (CSTR) in different stirring speeds were constructed and operated at 7 different hydraulic retention times (HRTs) and different organic loading rates (OLR). Dissolved organic carbon was examined. The results showed that the stirring speed of 135 rpm had a beneficial effect on hydrogen fermentation. The best performance was obtained in 135 rpm and 8 h of HRT. The amount of gas varied with different OLRs, but could be stabilized on a high level. Methane was not detected when the HRT was less than 16 h. The study identified the reactor in which the highest specific rate of hydrogen production occurred.

  3. Solar-hydrogen energy as an alternative energy source for mobile robots and the new-age car

    Science.gov (United States)

    Sulaiman, A.; Inambao, F.; Bright, G.

    2014-07-01

    The disastrous effects of climate change as witnessed in recent violent storms, and the stark reality that fossil fuels are not going to last forever, is certain to create renewed demands for alternative energy sources. One such alternative source, namely solar energy, although unreliable because of its dependence on available sunlight, can nevertheless be utilised to generate a secondary source of energy, namely hydrogen, which can be stored and thereby provide a constant and reliable source of energy. The only draw-back with hydrogen, though, is finding efficient means for its storage. This study demonstrates how this problem can be overcome by the use of metal hydrides which offers a very compact and safe way of storing hydrogen. It also provides a case study of how solar and hydrogen energy can be combined in an energy system to provide an efficient source of energy that can be applied for modern technologies such as a mobile robot. Hydrogen energy holds out the most promise amongst the various alternative energy sources, so much so that it is proving to be the energy source of choice for automobile manufacturers in their quest for alternative fuels to power their cars of the future.

  4. Energy and economic prerequisites of commodity production of electrolytic hydrogen in Russia

    International Nuclear Information System (INIS)

    Possibilities and advisability of using available reserves of electric power for export production of liquid hydrogen were analyzed. Technical and economical indices of electrolysis production of hydrogen at Leningrad NPP and in Irkutsk power system are presented. Investment efficiency of liquefied electrolytic hydrogen production was evaluated. 12 refs., 4 tabs

  5. Thermo-Catalytic Methane Decomposition for Hydrogen Production: Effect of Palladium Promoter on Ni-based Catalysts

    OpenAIRE

    Irene Lock Sow Mei; S.S.M. Lock; Dai-Viet N. Vo; Bawadi Abdullah

    2016-01-01

    Hydrogen production from the direct thermo-catalytic decomposition of methane is a promising alternative for clean fuel production. However, thermal decomposition of methane can hardly be of any practical and empirical interest in the industry unless highly efficient and effective catalysts, in terms of both catalytic activity and operational lifetime have been developed. In this study, the effect of palladium (Pd) as a promoter onto Ni supported on alumina catalyst has been investigated by u...

  6. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more

  7. Financial Literacy, Present Bias and Alternative Mortgage Products

    OpenAIRE

    Gathergood, John; Weber, Jörg

    2015-01-01

    Choosing a mortgage is one of the most important financial decisions made by a household. Financial innovation has given rise to more complex mortgage products with back-loaded payments, known as ‘Alternative Mortgage Products’ (AMPs), or ‘Interest-Only Mortgages’. Using a specially designed question module in a representative survey of UK mortgage holders, we investigate the effect of consumer financial sophistication on the decision to choose an AMP instead of a standard repayment m...

  8. Safety considerations for continuous hydrogen production test apparatus with capacity of 50 N-litter hydrogen per hour

    International Nuclear Information System (INIS)

    Since the thermochemical hydrogen production Iodine-Sulfur process decomposes water into hydrogen and oxygen using toxic chemicals such as sulfuric acid, iodine and hydriodic acid, safety considerations are very important in its research and development. Therefore, before construction of continuous hydrogen production test apparatus with capacity of 50 N-litter hydrogen per hour, comprehensive safety considerations were carried out to examine the design and construction works of the test apparatus, and the experimental plans using the apparatus. Emphasis was given on the safety considerations on prevention of breakage of glasswares and presumable abnormalities, accidents and their countermeasures. This report summarizes the results of the considerations. (author)

  9. Safety considerations for continuous hydrogen production test apparatus with capacity of 50 N-litter hydrogen per hour

    Energy Technology Data Exchange (ETDEWEB)

    Onuki, Kaoru; Akino, Norio; Shimizu, Saburo; Nakajima, Hayato; Higashi, Shunichi; Kubo, Shinji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    2001-03-01

    Since the thermochemical hydrogen production Iodine-Sulfur process decomposes water into hydrogen and oxygen using toxic chemicals such as sulfuric acid, iodine and hydriodic acid, safety considerations are very important in its research and development. Therefore, before construction of continuous hydrogen production test apparatus with capacity of 50 N-litter hydrogen per hour, comprehensive safety considerations were carried out to examine the design and construction works of the test apparatus, and the experimental plans using the apparatus. Emphasis was given on the safety considerations on prevention of breakage of glasswares and presumable abnormalities, accidents and their countermeasures. This report summarizes the results of the considerations. (author)

  10. Hydrogen production from steam methane reforming and electrolysis as part of a near-term hydrogen infrastructure

    International Nuclear Information System (INIS)

    Building a complete hydrogen infrastructure for a transportation system based on Fuel Cells (FC) and hydrogen is a risky and expensive ordeal, especially given that it is not known with complete certainty that Fuel Cells will indeed replace the gasoline ICE. But how can we expect the diffusion of an automotive technology if there is no infrastructure to support its fuel needs? This gives rise to a chicken and egg type problem. One way to get around this problem is to produce hydrogen when and where it is needed. This solves the problems of high costs associated with expensive pipeline distribution networks, the high energy-intensities associated with liquefaction of hydrogen and the high costs of cryogenic equipment. This paper will consider the advantages and disadvantages of two such hydrogen production mechanisms, namely, onsite production of hydrogen from Electrolysis and onsite production of hydrogen from Steam Methane Reforming (SMR). Although SMR hydrogen may be more economical due to the availability and low cost of methane, under certain market and technological conditions onsite electrolytic hydrogen can be more attractive. The paper analyses the final price of delivered hydrogen based on its sensitivity to market conditions and technology developments. (author)

  11. Hydrogen Gas Production by an Ectothiorhodospira vacuolata Strain.

    Science.gov (United States)

    Chadwick, L J; Irgens, R L

    1991-02-01

    A hydrogen gas (H(2))-producing strain of Ectothiorhodospira vacuolata isolated from Soap Lake, Washington, possessed nitrogenase activity. Increasing evolution of H(2) with decreasing ammonium chloride concentrations provided evidence that nitrogenase was the catalyst in gas production. Cells were grown in a mineral medium plus 0.2% acetate with sodium sulfide as an electron donor. Factors increasing H(2) production included addition of reduced carbon compounds such as propionate and succinate, increased reducing power by increasing sodium sulfide concentrations, and increased energy charge (ATP) by increasing light intensity. PMID:16348423

  12. Hydrogen peroxide distribution, production, and decay in boreal lakes

    OpenAIRE

    Häkkinen, P J; Anesio, Alexandre Magno; Granéli, Wilhelm

    2004-01-01

    The distribution, production, and decay of hydrogen peroxide (H2O2) were studied in 10 boreal lakes of differing physical-chemical characteristics. Diurnal and vertical fluctuations in H2O2 concentration were followed in the lakes by sampling at six depths three times per day. In addition, incubations of water filtered through 0.2-mu mesh were made under artificial irradiation to study the abiotic production and decay of H2O2. H2O2 concentrations after 8 h of artificial irradiation were signi...

  13. Simultaneous hydrogen production and consumption in Anaerobic mixed culture fermentation

    OpenAIRE

    Carlos Dinamarca, Rune Bakke

    2012-01-01

    The aim of the present study is to investigate the relevance of homoacetogenic H2 consumption on the bio-hydrogen yield and products distribution in mixed culture fermentation. A hybrid anaerobic reactor was operated for 93 days with variable pH and organic loads between 8-16 g glucose/L.d for this purpose. High initial H2 yield decreased gradually to an equivalent of 0.02-0.4 mol H2/mol glucose consumed. The distribution of the dissolved organic products was influenced strongly by reactor pH...

  14. Critical Research for Cost-Effective Photoelectrochemical Production of Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Liwei [Midwest Optoelectronics, LLC, Toledo, OH (United States); Deng, Xunming [Univ. of Toledo, OH (United States); Abken, Anka [Midwest Optoelectronics, LLC, Toledo, OH (United States); Cao, Xinmin [Midwest Optoelectronics, LLC, Toledo, OH (United States); Du, Wenhui [Midwest Optoelectronics, LLC, Toledo, OH (United States); Vijh, Aarohi [Xunlight Corporation, Toledo, OH (United States); Ingler, William [Univ. of Toledo, OH (United States); Chen, Changyong [Univ. of Toledo, OH (United States); Fan, Qihua [Univ. of Toledo, OH (United States); Collins, Robert [Univ. of Toledo, OH (United States); Compaan, Alvin [Univ. of Toledo, OH (United States); Yan, Yanfa [Univ. of Toledo, OH (United States); Giolando, Dean [Univ. of Toledo, OH (United States); Turner, John [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-10-29

    The objective of this project is to develop critical technologies required for cost-effective production of hydrogen from sunlight and water using a-Si triple junction solar cell based photo-electrodes. In this project, Midwest Optoelectronics, LLC (MWOE) and its collaborating organizations utilize triple junction a-Si thin film solar cells as the core element to fabricate photoelectrochemical (PEC) cells. Triple junction a-Si/a-SiGe/a-SiGe solar cell is an ideal material for making cost-effective PEC system which uses sun light to split water and generate hydrogen. It has the following key features: 1) It has an open circuit voltage (Voc ) of ~ 2.3V and has an operating voltage around 1.6V. This is ideal for water splitting. There is no need to add a bias voltage or to inter-connect more than one solar cell. 2) It is made by depositing a-Si/a-SiGe/aSi-Ge thin films on a conducting stainless steel substrate which can serve as an electrode. When we immerse the triple junction solar cells in an electrolyte and illuminate it under sunlight, the voltage is large enough to split the water, generating oxygen at the Si solar cell side (for SS/n-i-p/sunlight structure) and hydrogen at the back, which is stainless steel side. There is no need to use a counter electrode or to make any wire connection. 3) It is being produced in large rolls of 3ft wide and up to 5000 ft long stainless steel web in a 25MW roll-to-roll production machine. Therefore it can be produced at a very low cost. After several years of research with many different kinds of material, we have developed promising transparent, conducting and corrosion resistant (TCCR) coating material; we carried out extensive research on oxygen and hydrogen generation catalysts, developed methods to make PEC electrode from production-grade a-Si solar cells; we have designed and tested various PEC module cases and carried out extensive outdoor testing; we were able to obtain a solar to hydrogen conversion efficiency (STH

  15. High-Intensity Sweeteners in Alternative Tobacco Products

    Science.gov (United States)

    Miao, Shida; Beach, Evan S.; Sommer, Toby J.; Zimmerman, Julie B.

    2016-01-01

    toxicants. This study is the first to quantify high intensity sweeteners in snus and dissolvable products. Snus and dissolvables contain the high intensity sweetener, sucralose, at levels higher than in confectionary products. The high sweetness of alternative tobacco products makes these products attractive to adolescents. Regulation of sweetener content in non-cigarette products is suggested as an efficient means to control product palatability and to reduce initiation in adolescents. PMID:27217475

  16. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    Science.gov (United States)

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. PMID:26724182

  17. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    Science.gov (United States)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  18. Continuous biohydrogen production using cheese whey: Improving the hydrogen production rate

    Energy Technology Data Exchange (ETDEWEB)

    Davila-Vazquez, Gustavo; Cota-Navarro, Ciria Berenice; Razo-Flores, Elias [Division de Ciencias Ambientales, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico); Rosales-Colunga, Luis Manuel; de Leon-Rodriguez, Antonio [Division de Biologia Molecular, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la Presa San Jose 2055, Lomas 4a seccion, C.P. 78216, San Luis Potosi, S.L.P (Mexico)

    2009-05-15

    Due to the renewed interest in finding sustainable fuels or energy carriers, biohydrogen (Bio-H{sub 2}) from biomass is a promising alternative. Fermentative Bio-H{sub 2} production was studied in a continuous stirred tank reactor (CSTR) operated during 65.6 d with cheese whey (CW) as substrate. Three hydraulic retention times (HRTs) were tested (10, 6 and 4 h) and the highest volumetric hydrogen production rate (VHPR) was attained with HRT of 6 h. Therefore, four organic loading rates (OLRs) at a fixed HRT of 6 h were tested thereafter, being: 92.4, 115.5, 138.6 and 184.4 g lactose/L/d. The highest VHPR (46.61 mmol H{sub 2}/L/h) and hydrogen molar yield (HMY) of 2.8 mol H{sub 2}/mol lactose were found at an OLR of 138.6 g lactose/L/d; a sharp fall in VHPR occurred at an OLR of 184.4 g lactose/L/d. Butyric, propionic and acetic acids were the main soluble metabolites found, with butyric-to-acetic ratios ranging from 1.0 to 2.4. Bacterial community was identified by partial sequence analysis of the 16S rRNA and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). The results showed that at HRT of 10 h and 6 h were dominated by the Clostridium genus. The VHPR attained in this study is the highest reported value for a CSTR system using CW as substrate with anaerobic sludge as inoculum and represents a 33-fold increase compared to a previous study. Thus, it was demonstrated that continuous fermentative Bio-H{sub 2} production from CW can be significantly enhanced by an appropriate selection of parameters such as HRT and OLR. Enhancements in VHPR are significant because it is a critical parameter to determine the full-scale practical application of fermentation technologies that will be used for sustainable and clean energy generation. (author)

  19. Hydrogen production for transportation fuels using nuclear energy

    International Nuclear Information System (INIS)

    We have been developing solid-oxide cells for the efficient High Temperature Electrolytic (HTE) production of hydrogen using the heat and electricity of advanced nuclear reactors. This team, which includes Ceramatec, Inc. of Salt Lake City, ANL and UNL V, has been conducting experiments at progressively larger sizes and longer durations to build on the technology developed for solid-oxide fuel cells and to investigate the technical challenges unique to electrolytic operation. By operating at temperatures of 800-850 deg. C, the cell voltage of the electrolyzer can be reduced by about 40% from the room temperature voltage and the reaction rates are much faster at the high temperatures. The planar cells are electrolyte-supported and consist of 0.150 mm- thick yttria- or scandia-stablized zirconia. The use of precious metals has been avoided in the design. The inlet to the cells is 90 v/o steam, 10 v/o hydrogen, while the outlet is about 25 v/o steam and 75 v/o hydrogen. The hydrogen in the inlet is needed to maintain reducing conditions on the nickel-cermet electrode. In addition to producing hydrogen, we have been conducting a series of experiments in which the O-2 ion-conducting electrolytes can be used for the co-electrolysis of CO2 as well as H2O. The resulting CO + 2 H2 mixture ('synthesis gas') can serve as feedstock in the Fischer Tropsch reaction for the formation of liquid fuels, such as gasoline, diesel and jet fuel and of synthetic lubricating oils. This process, which we have named Syntrolysis, is potentially a direct application of nuclear energy to the production of synthetic fuels very similar to the conventional transportation fuels we now use. We have conducted studies of the use of nuclear-generated hydrogen in the upgrading of heavy crude oil, oil sands and for coal to liquids processes. By using nuclear energy, instead of fossil fuels, for the production of the necessary hydrogen, the carbon dioxide emissions from the overall process can be greatly

  20. Peat gasification and new alternatives of electricity production

    Energy Technology Data Exchange (ETDEWEB)

    Solantaus, Y.

    1986-01-01

    Electricity, chemicals and liquid fuels can be produced from peat by gasification. If the product gas is used in a gas turbine, the efficiency of electricity production is higher in a combined gasification-gas turbine plant than in a conventional condensation power plant. If the gas is first led to chemical conversion and the unreacted gas is then burnt in a gas turbine, for example, octane boosters for liquid fuels and electricity can be produced in the same plant. Experimental knowhow of gasification and new syntheses have been critically evaluated in a work carried out at the Laboratory of Fuel Processing Technology of VTT. Concepts have been developed for processes, and then the actual techno-economic evaluations have been carried out. THe gasification-gas turbine plant may in the future offer a competitive alternative to the present energy production methods. Combined process alternatives based on gasification are fairly attractive also with regard to environmental protection. The feasibility of the production of chemicals and liquid fuel blend components is hihgly dependent on the prices of other raw materials.

  1. A novel biological hydrogen production system. Impact of organic loading

    Energy Technology Data Exchange (ETDEWEB)

    Hafez, Hisham; Nakhla, George; El Naggar, Hesham [Western Ontario Univ. (Canada)

    2010-07-01

    The patent-pending system comprises a novel biohydrogen reactor with a gravity settler for decoupling of SRT from HRT. Two biohydrogenators were operated for 220 days at 37 C, hydraulic retention time 8 h and solids retention time ranged from 1.4 to 2 days under four different glucose concentrations of 2, 8, 16, 32, 48 and 64 g/L, corresponding to organic loading rates of 6.5-206 kg COD/m{sup 3}-d, and started up using anaerobically-digested sludge from the St. Marys wastewater treatment plant (St.Mary, Ontario, Canada) as the seed. The system steadily produced hydrogen with no methane. A maximum hydrogen yield of 3.1 mol H{sub 2} /mol glucose was achieved in the system for all the organic loading rates with an average of 2.8mol H{sub 2} /mol glucose. Acetate and butyrate were the main effluent liquid products at concentrations ranging from 640-7400 mg/L and 400-4600 mg/l, respectively, with no lactate detection. Microbial community analysis using denaturing gradient gel electrophoresis (DGGE) confirmed the absence of lactate producing bacteria Lactobacillus fermentum and other non-hydrogen producing species, and the predominance of various Clostridium species. Biomass concentrations in the biohydrogenators were steady, during the runs, varying form 1500 mg/L at the OLR of 6.5 kg COD/m{sup 3}-d to 14000 mg/L at the 104 kg COD/m{sup 3}-d, thus emphasizing the potential of this novel system for sustained stable hydrogen production and prevention of biomass washout. (orig.)

  2. Production of natural antioxidants from vegetable oil deodorizer distillates: effect of catalytic hydrogenation.

    Science.gov (United States)

    Pagani, María Ayelén; Baltanás, Miguel A

    2010-02-01

    Natural tocopherols are one of the main types of antioxidants found in living creatures, but they also have other critical biological functions. The biopotency of natural (+)-alpha-tocopherol (RRR) is 36% higher than that of the synthetic racemic mixture and 300% higher than the SRR stereoisomer. Vegetable oil deodorizer distillates (DD) are an excellent source of natural tocopherols. Catalytic hydrogenation of DD preconcentrates has been suggested as a feasible route for recovery of tocopherols in high yield. However, it is important to know whether the hydrogenation operation, as applied to these tocopherol-rich mixtures, is capable of preserving the chiral (RRR) character, which is critical to its biopotency. Fortified (i.e., (+)-alpha-tocopherol enriched) sunflower oil and methyl stearate, as well as sunflower oil DD, were fully hydrogenated using commercial Ni and Pd catalysts (120-180 degrees C; 20-60 psig). Products were analyzed by chiral HPLC. Results show that the desired chiral configuration (RRR) is fully retained. Thus, the hydrogenation route can be safely considered as a valid alternative for increasing the efficiency of tocopherol recovery processes from DDs while preserving their natural characteristics.

  3. A Simple Method To Demonstrate the Enzymatic Production of Hydrogen from Sugar

    Science.gov (United States)

    Hershlag, Natalie; Hurley, Ian; Woodward, Jonathan

    1998-10-01

    There is current interest in and concern for the development of environmentally friendly bioprocesses whereby biomass and the biodegradable content of municipal wastes can be converted to useful forms of energy. For example, cellulose, a glucose polymer that is the principal component of biomass and paper waste, can be enzymatically degraded to glucose, which can subsequently be converted by fermentation or further enzymatic reaction to fuels such as ethanol or hydrogen. These products represent alternative energy sources to fossil fuels such as oil. Demonstration of the relevant reactions in high-school and undergraduate college laboratories would have value not only in illustrating environmentally friendly biotechnology for the utilization of renewable energy sources, such as cellulosic wastes, but could also be used to teach the principles of enzyme-catalyzed reactions. In the experimental protocol described here, it has been demonstrated that the common sugar glucose can be used to produce hydrogen using two enzymes, glucose dehydrogenase and hydrogenase. No sophisticated or expensive hydrogen detection equipment is required-only a redox dye, benzyl viologen, which turns purple when it is reduced. The color can be detected by a simple colorimeter. Furthermore, it is shown that the renewable resource cellulose, in its soluble derivative from carboxymethylcellulose, as well as aspen-wood waste, is also a source of hydrogen if the enzyme cellulase is included in the reaction mixture.

  4. Thermocatalytic CO{sub 2}-Free Production of Hydrogen from Hydrocarbon Fuels - Final Report for the Period August 1999 - September 2000

    Energy Technology Data Exchange (ETDEWEB)

    Nazim Muradov, Ph.D.

    2000-10-01

    The overall objective of this work is to develop a novel process for CO{sub 2}-free production of hydrogen via thermocatalytic decomposition (pyrolysis) of hydrocarbon fuels as a viable alternative to the conventional processes of methane steam reforming or partial oxidation. The objective of Phase I work was to demonstrate the technical feasibility of CO{sub 2}-free production of hydrogen and carbon from different hydrocarbons, including methane, propane and gasoline.

  5. Metabolic Engineering and Modeling of Metabolic Pathways to Improve Hydrogen Production by Photosynthetic Bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Navid, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-12-19

    Rising energy demands and the imperative to reduce carbon dioxide (CO2) emissions are driving research on biofuels development. Hydrogen gas (H2) is one of the most promising biofuels and is seen as a future energy carrier by virtue of the fact that 1) it is renewable, 2) does not evolve the “greenhouse gas” CO2 in combustion, 3) liberates large amounts of energy per unit weight in combustion (having about 3 times the energy content of gasoline), and 4) is easily converted to electricity by fuel cells. Among the various bioenergy strategies, environmental groups and others say that the concept of the direct manufacture of alternative fuels, such as H2, by photosynthetic organisms is the only biofuel alternative without significant negative criticism [1]. Biological H2 production by photosynthetic microorganisms requires the use of a simple solar reactor such as a transparent closed box, with low energy requirements, and is considered as an attractive system to develop as a biocatalyst for H2 production [2]. Various purple bacteria including Rhodopseudomonas palustris, can utilize organic substrates as electron donors to produce H2 at the expense of solar energy. Because of the elimination of energy cost used for H2O oxidation and the prevention of the production of O2 that inhibits the H2-producing enzymes, the efficiency of light energy conversion to H2 by anoxygenic photosynthetic bacteria is in principle much higher than that by green algae or cyanobacteria, and is regarded as one of the most promising cultures for biological H2 production [3]. Here implemented a simple and relatively straightforward strategy for hydrogen production by photosynthetic microorganisms using sunlight, sulfur- or iron-based inorganic substrates, and CO2 as the feedstock. Carefully selected microorganisms with bioengineered beneficial

  6. Coding potential of the products of alternative splicing in human.

    KAUST Repository

    Leoni, Guido

    2011-01-20

    BACKGROUND: Analysis of the human genome has revealed that as much as an order of magnitude more of the genomic sequence is transcribed than accounted for by the predicted and characterized genes. A number of these transcripts are alternatively spliced forms of known protein coding genes; however, it is becoming clear that many of them do not necessarily correspond to a functional protein. RESULTS: In this study we analyze alternative splicing isoforms of human gene products that are unambiguously identified by mass spectrometry and compare their properties with those of isoforms of the same genes for which no peptide was found in publicly available mass spectrometry datasets. We analyze them in detail for the presence of uninterrupted functional domains, active sites as well as the plausibility of their predicted structure. We report how well each of these strategies and their combination can correctly identify translated isoforms and derive a lower limit for their specificity, that is, their ability to correctly identify non-translated products. CONCLUSIONS: The most effective strategy for correctly identifying translated products relies on the conservation of active sites, but it can only be applied to a small fraction of isoforms, while a reasonably high coverage, sensitivity and specificity can be achieved by analyzing the presence of non-truncated functional domains. Combining the latter with an assessment of the plausibility of the modeled structure of the isoform increases both coverage and specificity with a moderate cost in terms of sensitivity.

  7. Investigation of an integrated hydrogen production system based on nuclear and renewable energy sources: Comparative evaluation of hydrogen production options with a regenerative fuel cell system

    International Nuclear Information System (INIS)

    Hydrogen has risen as a sustainable and efficient energy carrier option in reducing environmental pollution, and is seen as a potential solution for the current energy crisis. Hydrogen production via water decomposition is a potential process for direct utilization of nuclear thermal energy to increase efficiency and thereby facilitate energy savings. While many of the available renewable energy resources are limited due to their reliability, quality, quantity and density, nuclear energy has the potential to contribute a significant share of energy supply with very limited impacts to climate change. The proposed model in this study is an integrated hydrogen production system combining both nuclear and solar energy sources. This integrated system includes storage of hydrogen and its conversion to electricity by a regenerative fuel cell system when needed. There are many matured water splitting processes that can be linked with the nuclear and solar energy sources to decompose water to its constituents, among which is hydrogen. In this regard, a comparative study is carried out to evaluate an optimal and feasible hydrogen production/storage process with a regenerative fuel cell that can be linked to this integrated system. Studies conducted here on hydrogen production processes show the thermochemical water decomposition to be the better option for producing hydrogen, comparing to electrolysis, due to its high efficiencies and low costs. Energy and exergy efficiencies of various hydrogen production processes, and fuel cell systems are evaluated and compared. Also, a parametric study is conducted on these efficiencies to see the effect of various operating conditions. - Highlights: • The proposed model is an integrated hydrogen production system combining both nuclear and solar energies. • Hydrogen production and storage technologies are reviewed comprehensively to determine the most appropriate option. • A comparative analysis is implemented on several hydrogen

  8. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    Directory of Open Access Journals (Sweden)

    Nirakar Pradhan

    2015-06-01

    Full Text Available As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production.

  9. Semi Quantitative Risk Assessment of a Hydrogen Production Unit

    Directory of Open Access Journals (Sweden)

    MOHAMMADJAVAD JAFARI

    2015-10-01

    Full Text Available The safety of hydrogen generation facilities is the main concern in their process operation. This study was conducted to identify the hazards and evaluate the risks of a hydrogen generation plant. For this purpose, PrHA (Process Hazard Analysis was applied for hazard identification while LOPA (Layer of Protection Analysis was used for risk assessment. The study was conducted in the hydrogen production unit of Behshahr Industrial Complex, Iran in 2011 and 2012. In the process of risk assessment, the records of the accidents and plant flow diagrams were studied. Then, the knowledge of the experts and operators were used through brainstorming prior to the application of LOPA technique. LOPA standard template was applied using PHA-Pro6 software. The initiating events, consequences, independent protection layers and probability of failure were determined for 16 scenarios in 7 nodes. The results showed that without the application of IPLs, the risks of 2 scenarios needed immediate action, 9 scenarios required action at next opportunity and 5 scenarios were operational. The application of IPLs would significantly decrease the risks. The study concluded that LOPA has sufficient credibility for semi quantitative risk assessment of high potentially hazardous plants. 

  10. Will the nuclear production of hydrogen be socially acceptable?

    International Nuclear Information System (INIS)

    Nuclear power appears well-poised as a source of primary energy to produce the prodigious amounts of hydrogen that will very likely be needed within the new century to service our transportation sector. But if nuclear power is to grow to the proportions needed for such a task, it is important to remove the primary barrier that has impeded the full implementation of commercial nuclear power in the last century, namely, wide-scale public acceptance. In this paper we focus on the four primary impediments (safety, waste disposal, proliferation, and radiation health effects) and suggest ways that the linkage of nuclear energy to the production of hydrogen may either exasperate or mitigate these obstacles to public acceptance. We conclude that whereas such barriers will likely erode in time, the primary gains to achieving public acceptance may arise from clearly articulating the incredible benefits associated with nuclear technology as a whole. By employing modern communication techniques such as decision analyses in articulating these benefits, and doing so early on, we believe nuclear-generated hydrogen could become a popularly supported technology, thus ensuring the mobility that modern civilization has come to enjoy and demand. (author)

  11. Status of photoelectrochemical production of hydrogen and electrical energy

    Science.gov (United States)

    Byvik, C. E.; Walker, G. H.

    1976-01-01

    The efficiency for conversion of electromagnetic energy to chemical and electrical energy utilizing semiconductor single crystals as photoanodes in electrochemical cells was investigated. Efficiencies as high as 20 percent were achieved for the conversion of 330 nm radiation to chemical energy in the form of hydrogen by the photoelectrolysis of water in a SrTiO3 based cell. The SrTiO3 photoanodes were shown to be stable in 9.5 M NaOH solutions for periods up to 48 hours. Efficiencies of 9 percent were measured for the conversion of broadband visible radiation to hydrogen using n-type GaAs crystals as photoanodes. Crystals of GaAs coated with 500 nm of gold, silver, or tin for surface passivation show no significant change in efficiency. By suppressing the production of hydrogen in a CdSe-based photogalvanic cell, an efficiency of 9 percent was obtained in conversion of 633 nm light to electrical energy. A CdS-based photogalvanic cell produced a conversion efficiency of 5 percent for 500 nm radiation.

  12. Study of metabolic pathways for hydrogen production in chlamydomonas reinhardtii and transposition on a torus photo bioreactor; Etude des voies metaboliques de production d'hydrogene chez la microalgue Chlamydomonas reinhardtii et transposition en photobioreacteur

    Energy Technology Data Exchange (ETDEWEB)

    Fouchard, S

    2006-04-15

    Considering the recent increase in energy consumption. aide associated environmental risks, new trails are followed today to develop the use of clean and renewable alternative energies. In this context hydrogen seems to be a serious solution and this study, based on micro-algae photosynthetic capacities exploitation, will allow to devise a process for hydrogen production from only water and solar energy without greenhouse gas release. The sulphur deprivation protocol on TAP medium, known to lead to hydrogen production in Chlamydomonas reinhardtii species was particularly studied. At the metabolic level, two important phenomena are induced under these conditions: an over-accumulation of the intracellular starch reserves and a simultaneous alteration of the PsII activity which leads to anoxia and Fe-hydrogenase induction, an enzyme with a strong specific activity responsible for the hydrogen production. The contribution of the two electron transfer pathways implied in the hydrogen production process (PsII-dependent and PSII-independent) as well as the importance of the previously accumulated starch were highlighted here. We also investigated the potential for designing autotrophic protocols for hydrogen photoproduction. Various protocols, considered to be relevant, were then transposed on a torus photo-bioreactor, specifically developed in this study and which allows the control of culture parameters as well as the precise measurement of gas release kinetics, in order to obtain first estimates of productivity of the system. Integration of the physical; aspects of the pilot and biological aspects of the process in a model, finally opens new prospects for subject development, in particular for a reasoned optimization of hydrogen production via this double physiology/process approach. (author)

  13. Hydrogen production from high moisture content biomass in supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Antal, M.J. Jr.; Xu, X. [Univ. of Hawaii, Honolulu, HI (United States). Hawaii Natural Energy Inst.

    1998-08-01

    By mixing wood sawdust with a corn starch gel, a viscous paste can be produced that is easily delivered to a supercritical flow reactor by means of a cement pump. Mixtures of about 10 wt% wood sawdust with 3.65 wt% starch are employed in this work, which the authors estimate to cost about $0.043 per lb. Significant reductions in feed cost can be achieved by increasing the wood sawdust loading, but such an increase may require a more complex pump. When this feed is rapidly heated in a tubular flow reactor at pressures above the critical pressure of water (22 MPa), the sawdust paste vaporizes without the formation of char. A packed bed of carbon catalyst in the reactor operating at about 650 C causes the tarry vapors to react with water, producing hydrogen, carbon dioxide, and some methane with a trace of carbon monoxide. The temperature and history of the reactor`s wall influence the hydrogen-methane product equilibrium by catalyzing the methane steam reforming reaction. The water effluent from the reactor is clean. Other biomass feedstocks, such as the waste product of biodiesel production, behave similarly. Unfortunately, sewage sludge does not evidence favorable gasification characteristics and is not a promising feedstock for supercritical water gasification.

  14. Combined production and purification of hydrogen from methanol using steam iron process in fixed bed reactor

    Science.gov (United States)

    Campo, R.; Durán, P.; Plou, J.; Herguido, J.; Peña, J. A.

    2013-11-01

    A research work is being conducted to study the combined production and purification of hydrogen by means of redox processes departing from biomass fast pyrolysis oils (bio-oils). To achieve that goal, methanol has been used as featured material because it is the most representative compound of the alcoholic fraction of bio-oils. The study has been carried out in a fixed bed reactor where methanol decomposes in H2 and CO when gets in contact with a reactive solid based in an iron oxide at temperatures above 600 °C. During the first stage of the “steam-iron” process, reactive gases reduce the iron oxide to metallic iron. Afterward, in a following step, the previously reduced iron is reoxidized by steam producing a high purity hydrogen stream. Although coke deposition does exist during the reducing stage, this behaves as inert during the reoxidation process. Coke inert role has been corroborated by GC, SEM and TEM techniques, showing that carbon deposits were constituted by ordered structures (carbon nanotubes). The determination of the hydrogen production along successive cycles allowed the evaluation of the effect of temperature and alternating reactive atmospheres on the stability of the solid, as well as the optimum conditions for such purpose.

  15. Hydrogen

    Directory of Open Access Journals (Sweden)

    John O’M. Bockris

    2011-11-01

    Full Text Available The idea of a “Hydrogen Economy” is that carbon containing fuels should be replaced by hydrogen, thus eliminating air pollution and growth of CO2 in the atmosphere. However, storage of a gas, its transport and reconversion to electricity doubles the cost of H2 from the electrolyzer. Methanol made with CO2 from the atmosphere is a zero carbon fuel created from inexhaustible components from the atmosphere. Extensive work on the splitting of water by bacteria shows that if wastes are used as the origin of feed for certain bacteria, the cost for hydrogen becomes lower than any yet known. The first creation of hydrogen and electricity from light was carried out in 1976 by Ohashi et al. at Flinders University in Australia. Improvements in knowledge of the structure of the semiconductor-solution system used in a solar breakdown of water has led to the discovery of surface states which take part in giving rise to hydrogen (Khan. Photoelectrocatalysis made a ten times increase in the efficiency of the photo production of hydrogen from water. The use of two electrode cells; p and n semiconductors respectively, was first introduced by Uosaki in 1978. Most photoanodes decompose during the photoelectrolysis. To avoid this, it has been necessary to create a transparent shield between the semiconductor and its electronic properties and the solution. In this way, 8.5% at 25 °C and 9.5% at 50 °C has been reached in the photo dissociation of water (GaP and InAs by Kainthla and Barbara Zeleney in 1989. A large consortium has been funded by the US government at the California Institute of Technology under the direction of Nathan Lewis. The decomposition of water by light is the main aim of this group. Whether light will be the origin of the post fossil fuel supply of energy may be questionable, but the maximum program in this direction is likely to come from Cal. Tech.

  16. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells

    KAUST Repository

    Selembo, Priscilla A.

    2010-01-01

    Although platinum is commonly used as catalyst on the cathode in microbial electrolysis cells (MEC), non-precious metal alternatives are needed to reduce costs. Cathodes were constructed using a nickel powder (0.5-1 μm) and their performance was compared to conventional electrodes containing Pt (0.002 μm) in MECs and electrochemical tests. The MEC performance in terms of coulombic efficiency, cathodic, hydrogen and energy recoveries were similar using Ni or Pt cathodes, although the maximum hydrogen production rate (Q) was slightly lower for Ni (Q = 1.2-1.3 m3 H2/m3/d; 0.6 V applied) than Pt (1.6 m3 H2/m3/d). Nickel dissolution was minimized by replacing medium in the reactor under anoxic conditions. The stability of the Ni particles was confirmed by examining the cathodes after 12 MEC cycles using scanning electron microscopy and linear sweep voltammetry. Analysis of the anodic communities in these reactors revealed dominant populations of Geobacter sulfurreduces and Pelobacter propionicus. These results demonstrate that nickel powder can be used as a viable alternative to Pt in MECs, allowing large scale production of cathodes with similar performance to systems that use precious metal catalysts. © 2009 Professor T. Nejat Veziroglu.

  17. Hanford waste vitrification plant hydrogen generation study: Preliminary evaluation of alternatives to formic acid

    Energy Technology Data Exchange (ETDEWEB)

    King, R.B.; Bhattacharyya, N.K.; Kumar, V.

    1996-02-01

    Oxalic, glyoxylic, glycolic, malonic, pyruvic, lactic, levulinic, and citric acids as well as glycine have been evaluated as possible substitutes for formic acid in the preparation of feed for the Hanford waste vitrification plant using a non-radioactive feed stimulant UGA-12M1 containing substantial amounts of aluminum and iron oxides as well as nitrate and nitrite at 90C in the presence of hydrated rhodium trichloride. Unlike formic acid none of these carboxylic acids liberate hydrogen under these conditions and only malonic and citric acids form ammonia. Glyoxylic, glycolic, malonic, pyruvic, lactic, levulinic, and citric acids all appear to have significant reducing properties under the reaction conditions of interest as indicated by the observation of appreciable amounts of N{sub 2}O as a reduction product of,nitrite or, less likely, nitrate at 90C. Glyoxylic, pyruvic, and malonic acids all appear to be unstable towards decarboxylation at 90C in the presence of Al(OH){sub 3}. Among the carboxylic acids investigated in this study the {alpha}-hydroxycarboxylic acids glycolic and lactic acids appear to be the most interesting potential substitutes for formic acid in the feed preparation for the vitrification plant because of their failure to produce hydrogen or ammonia or to undergo decarboxylation under the reaction conditions although they exhibit some reducing properties in feed stimulant experiments.

  18. Life cycle cost analysis to examine the economical feasibility of hydrogen as an alternative fuel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji-Yong; Yoo, Moosang; Cha, Kyounghoon; Hur, Tak [Dept. of Chemical and Biological Engineering, Konkuk University, 1, Hwayang-dong, Gwangjin-gu, Seoul (Korea); Lim, Tae Won [Research and Development Division, Hyundai Motors Company and Kia Motors Corporation (Korea)

    2009-05-15

    This study uses a life cycle costing (LCC) methodology to identify when hydrogen can become economically feasible compared to the conventional fuels and which energy policy is the most effective at fostering the penetration of hydrogen in the competitive fuel market. The target hydrogen pathways in this study are H{sub 2} via natural gas steam reforming (NG SR), H{sub 2} via naphtha steam reforming (Naphtha SR), H{sub 2} via liquefied petroleum gas steam reforming (LPG SR), and H{sub 2} via water electrolysis (WE). In addition, the conventional fuels (gasoline, diesel) are also included for the comparison with the H{sub 2} pathways. The life cycle costs of the target fuels are computed and several key factors are examined to identify the economical feasibilities of the target systems: fuel cell vehicle (FCV) price, social cost of greenhouse gases (GHGs) and regulated air emissions (CO, VOC, SO{sub x}, NO{sub x}, PM), fuel efficiency of FCV, capital costs of H{sub 2} equipments at a H{sub 2} fueling station. The life cycle costs of a H{sub 2} pathway also depend on the production capacity. Although, at present, all H{sub 2} pathways are more cost efficient than the conventional fuels in the fuel utilization stage, the H{sub 2} pathways have lack competitiveness against the conventional fuels in the life cycle (well to wheel) costs due to the high price of FCV. From future scenario analyses in 2015, all H{sub 2} pathways are expected to have lower life cycle costs than the conventional fuels as a transportation fuel. It is evident that the FCV price is the most important factor for encouraging the hydrogen economy and FCVs. Unless the FCV price is below US $62,320, it is necessary for the institution to subsidize the FCV price by any amount over US $62,320 in order to inject H{sub 2} into the market of transportation fuel. The incentive or taxes on GHGs and regulated air emissions are also expected to effectively encourage the diffusion of H{sub 2} and FCV

  19. Hydrogen production from banyan leaves using an atmospheric-pressure microwave plasma reactor.

    Science.gov (United States)

    Lin, Yuan-Chung; Wu, Tzi-Yi; Jhang, Syu-Ruei; Yang, Po-Ming; Hsiao, Yi-Hsing

    2014-06-01

    Growth of the hydrogen market has motivated increased study of hydrogen production. Understanding how biomass is converted to hydrogen gas can help in evaluating opportunities for reducing the environmental impact of petroleum-based fuels. The microwave power used in the reaction is found to be proportional to the rate of production of hydrogen gas, mass of hydrogen gas produced per gram of banyan leaves consumed, and amount of hydrogen gas formed with respect to the H-atom content of banyan leaves decomposed. Increase the microwave power levels results in an increase of H2 and decrease of CO2 concentrations in the gaseous products. This finding may possibly be ascribed to the water-gas shift reaction. These results will help to expand our knowledge concerning banyan leaves and hydrogen yield on the basis of microwave-assisted pyrolysis, which will improve the design of hydrogen production technologies. PMID:24721492

  20. Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal

    NARCIS (Netherlands)

    Verhaart, M.R.A.; Bielen, A.A.M.; Oost, van der J.; Stams, A.J.M.; Kengen, S.W.M.

    2010-01-01

    Hydrogen produced from biomass by bacteria and archaea is an attractive renewable energy source. However, to make its application more feasible, microorganisms are needed with high hydrogen productivities. For several reasons, hyperthermophilic and extremely thermophilic bacteria and archaea are pro

  1. Hydrogen production from banyan leaves using an atmospheric-pressure microwave plasma reactor.

    Science.gov (United States)

    Lin, Yuan-Chung; Wu, Tzi-Yi; Jhang, Syu-Ruei; Yang, Po-Ming; Hsiao, Yi-Hsing

    2014-06-01

    Growth of the hydrogen market has motivated increased study of hydrogen production. Understanding how biomass is converted to hydrogen gas can help in evaluating opportunities for reducing the environmental impact of petroleum-based fuels. The microwave power used in the reaction is found to be proportional to the rate of production of hydrogen gas, mass of hydrogen gas produced per gram of banyan leaves consumed, and amount of hydrogen gas formed with respect to the H-atom content of banyan leaves decomposed. Increase the microwave power levels results in an increase of H2 and decrease of CO2 concentrations in the gaseous products. This finding may possibly be ascribed to the water-gas shift reaction. These results will help to expand our knowledge concerning banyan leaves and hydrogen yield on the basis of microwave-assisted pyrolysis, which will improve the design of hydrogen production technologies.

  2. Fly ash used to create alternative building product

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T.

    1995-04-01

    Autoclaved Cellular Concrete (ACC), a new, concrete-like block containing 70 percent fly ash, is proving to be a superior alternative to concrete, wood and paper products. The ACC block, currently being promoted by the Electric Power Research Institute (EPRI), could reduce both the overall cost of generating electricity from coal and the need for landfill space. The typical fly ash concrete mixture is 4 to 5 percent fly ash. {open_quotes}It doesn`t take a brain surgeon to see that these blocks are a much better outlet for fly ash than the current concrete mixture,{close_quotes} said Dean Golden, EPRI`s project manager. Golden estimates that a typical coal-fired plant can save an average of $10 per ton in landfill costs alone by converting its principal by-product to these blocks. Besides fly ash, the blocks also contain water, cement, lime and aluminum powder.

  3. [Isolation of a high hydrogen-producing mutant TB34 generated by transposon insertion and analysis of hydrogen production].

    Science.gov (United States)

    Liu, Hong-Yan; Wang, Guang-Ce; Shi, Liu-Yang; Zhu, Da-Ling

    2012-07-01

    To increase the hydrogen-producing capacity of Pantoea agglomerans BH18, isolated from mangrove sludge, we constructed a stable transposon mutagenesis library of this strain. A Tn7-based transposon was randomly inserted into the genomic DNA. Mutants were screened by kanamycin resistance and identified by amplification of the inserted transposon sequences. A mutant strain TB34 was isolated, whose hydrogen production capacity was significantly improved compared to the wild type strain. In seawater-containing medium supplemented with 10 g x L(-1) glucose and had an initial pH of 7.0, the hydrogen yield (H2/glucose) of the mutant strain was (2.04 +/- 0.04) mol x mol(-1), which was 43% higher than that of the wild type strain. The mutant TB34 showed steady hydrogen production capacity for five consecutive passages. Different carbon sources were tested in the hydrogen production by the mutant TB34 and the results showed that both the mutant strain TB34 and the wild type strain BH18 were able to produce hydrogen on sucrose, glucose and fructose. However, different from the wild type strain, the mutant strain TB34 was also able to produce hydrogen using xylose as substrate, with a hydrogen yield (H2/xylose) of (1.34 +/- 0.09) mol x mol(-1), indicating a broader substrate spectrum in the mutant.

  4. Study of metabolic pathways for hydrogen production in chlamydomonas reinhardtii and transposition on a torus photo bioreactor

    International Nuclear Information System (INIS)

    Considering the recent increase in energy consumption. aide associated environmental risks, new trails are followed today to develop the use of clean and renewable alternative energies. In this context hydrogen seems to be a serious solution and this study, based on micro-algae photosynthetic capacities exploitation, will allow to devise a process for hydrogen production from only water and solar energy without greenhouse gas release. The sulphur deprivation protocol on TAP medium, known to lead to hydrogen production in Chlamydomonas reinhardtii species was particularly studied. At the metabolic level, two important phenomena are induced under these conditions: an over-accumulation of the intracellular starch reserves and a simultaneous alteration of the PsII activity which leads to anoxia and Fe-hydrogenase induction, an enzyme with a strong specific activity responsible for the hydrogen production. The contribution of the two electron transfer pathways implied in the hydrogen production process (PsII-dependent and PSII-independent) as well as the importance of the previously accumulated starch were highlighted here. We also investigated the potential for designing autotrophic protocols for hydrogen photoproduction. Various protocols, considered to be relevant, were then transposed on a torus photo-bioreactor, specifically developed in this study and which allows the control of culture parameters as well as the precise measurement of gas release kinetics, in order to obtain first estimates of productivity of the system. Integration of the physical; aspects of the pilot and biological aspects of the process in a model, finally opens new prospects for subject development, in particular for a reasoned optimization of hydrogen production via this double physiology/process approach. (author)

  5. Renewable energy from biomass: a sustainable option? - Hydrogen production from alcohols

    Science.gov (United States)

    Balla, Zoltán; Kith, Károly; Tamás, András; Nagy, Orsolya

    2015-04-01

    Sustainable development requires us to find new energy sources instead of fossil fuels. One possibility is the hydrogen fuel cell, which uses significantly more efficient than the current combustion engines. The task of the hydrogen is clean, carbon-free renewable energy sources to choose in the future by growing degree. Hungary can play a role in the renewable energy sources of biomass as a renewable biomass annually mass of about 350 to 360 million tons. The biomass is only a very small proportion of fossil turn carbonaceous materials substitution, while we may utilize alternative energy sources as well. To the hydrogen production from biomass, the first step of the chemical transformations of chemical bonds are broken, which is always activation energy investment needs. The methanol and ethanol by fermentation from different agricultural products is relatively easy to produce, so these can be regarded as renewable energy carriers of. The ethanol can be used directly, and used in several places in the world are mixed with the petrol additive. This method is the disadvantage that the anhydrous alcohol is to be used in the combustion process in the engine more undesired by-products may be formed, and the fuel efficiency of the engine is significantly lower than the efficiency of the fuel cells. More useful to produce hydrogen from the alcohol and is used in a fuel cell electric power generation. Particularly attractive option for the so-called on-board reforming of alcohols, that happens immediately when the vehicle hydrogen production. It does not need a large tank of hydrogen, because the hydrogen produced would be directly to the fuel cell. The H2 tank limit use of its high cost, the significant loss evaporation, the rare-station network, production capacity and service background and lack of opportunity to refuel problems. These can be overcome, if the hydrogen in the vehicle is prepared. As volume even 700 bar only about half the H2 pressure gas can be stored

  6. Antibiotics in Canadian poultry productions and anticipated alternatives.

    Science.gov (United States)

    Diarra, Moussa S; Malouin, François

    2014-01-01

    The use of antibiotics in food-producing animals has significantly increased animal health by lowering mortality and the incidence of diseases. Antibiotics also have largely contributed to increase productivity of farms. However, antibiotic usage in general and relevance of non-therapeutic antibiotics (growth promoters) in feed need to be reevaluated especially because bacterial pathogens of humans and animals have developed and shared a variety of antibiotic resistance mechanisms that can easily be spread within microbial communities. In Canada, poultry production involves more than 2600 regulated chicken producers who have access to several antibiotics approved as feed additives for poultry. Feed recipes and mixtures vary greatly geographically and from one farm to another, making links between use of a specific antibiotic feed additive and production yields or selection of specific antibiotic-resistant bacteria difficult to establish. Many on-farm studies have revealed the widespread presence of antibiotic-resistant bacteria in broiler chickens. While some reports linked the presence of antibiotic-resistant organisms to the use of feed supplemented with antibiotics, no recent studies could clearly demonstrate the benefit of antimicrobial growth promoters on performance and production yields. With modern biosecurity and hygienic practices, there is a genuine concern that intensive utilization of antibiotics or use of antimicrobial growth promoters in feed might no longer be useful. Public pressure and concerns about food and environmental safety (antibiotic residues, antibiotic-resistant pathogens) have driven researchers to actively look for alternatives to antibiotics. Some of the alternatives include pre- and probiotics, organic acids and essential oils. We will describe here the properties of some bioactive molecules, like those found in cranberry, which have shown interesting polyvalent antibacterial and immuno-stimulatory activities. PMID:24987390

  7. Antibiotics in Canadian poultry productions and anticipated alternatives

    Directory of Open Access Journals (Sweden)

    Moussa Sory Diarra

    2014-06-01

    Full Text Available The use of antibiotics in food-producing animals has significantly increased animal health by lowering mortality and the incidence of diseases. Antibiotics also have largely contributed to increase productivity of farms. However, antibiotic usage in general and relevance of non-therapeutic antibiotics in feed (growth promoters need to be reevaluated especially because bacterial pathogens of humans and animals have developed and shared a variety of antibiotic resistance mechanisms that can easily spread within microbial communities. In Canada, poultry production involves more than 2,600 regulated chicken producers. There are several antibiotics approved as feed additives available for poultry farmers. Feed recipes and mixtures greatly vary geographically and from one farm to another, making links between use of a specific antibiotic feed additive and production yields or selection of specific antibiotic-resistant bacteria difficult to establish. Many on-farm studies have revealed the widespread presence of antibiotic-resistant bacteria in broiler chickens. While sporadic reports linked the presence of antibiotic-resistant organisms to the use of feed supplemented with antibiotics, no recent studies could clearly demonstrate the benefit of antimicrobial growth promoters on performance and production yields. With modern biosecurity and hygienic practices, there is a genuine concern that intensive utilization of antibiotics or use of antimicrobial growth promoters in feed might no longer be useful. Public pressure and concerns about food and environmental safety (antibiotic residues, antibiotic-resistant pathogens have driven researchers to actively look for alternatives to antibiotics. Some of the alternatives include pre- and probiotics, organic acids and essential oils. We will describe here the properties of some bioactive molecules, like those found in cranberry, which have shown interesting polyvalent antibacterial and immuno

  8. Use of alternative hydrogen energy carriers in SOFC-MGT hybrid power plants

    Energy Technology Data Exchange (ETDEWEB)

    Cocco, Daniele; Tola, Vittorio [Department of Mechanical Engineering, University of Cagliari, Piazza D' armi, 09123 Cagliari (Italy)

    2009-04-15

    SOFC-MGT hybrid power plants are a very attractive near-term option, as they achieve efficiencies of over 60% even for small power outputs (200-400 kW). The SOFC hybrid systems currently developed are fuelled with natural gas, which is reformed inside the same stack at about 800-900 C. However, the use of alternative fuels with a lower reforming temperature can improve performance of the hybrid plant. This paper is concerned with a comparative performance analysis of internally reformed SOFC-MGT power plants fuelled with methane, methanol, ethanol and DME. Since the reforming temperature of methanol and DME (250-350 C) is significantly lower than that of methane (700-900 C), the performance of externally reformed SOFC-MGT power plants using these fuels has been also evaluated. The comparative analysis has demonstrated that simply replacing methane with methanol, ethanol or DME in SOFC-MGT power plants with internal reforming slightly reduces efficiency and power output. However, using methanol and DME in externally reformed hybrid plants improves significantly efficiency (by about 4.0% points better than methane for methanol and 1.5 for DME). The study also shows that external reforming enhances efficiency on account of improved exhaust waste heat recovery and of the higher cell voltage produced by the greater hydrogen partial pressure at the anode inlet. (author)

  9. Photoelectrocatalytic hydrogen production using nanoparticulate titania and a novel Pt/carbon electrocatalyst: The concept of the "Photoelectrocatalytic Leaf"

    Science.gov (United States)

    Pop, Lucian-Cristian; Dracopoulos, Vassilios; Lianos, Panagiotis

    2015-04-01

    Photoelectrocatalytic hydrogen production was realized my means of a double electrode carrying photocatalyst and electrocatalyst, deposited side by side on an FTO electrode, acting as a "Photoelectrocatalytic Leaf". As photocatalyst we used plain commercial nanoparticulate titania and as electrocatalyst a conductive carbon film made by a commercial carbon paste enriched with a small quantity of Pt nanoparticles (0.0134 mg/cm2). This quantity of Pt is much smaller than used in other applications and it may be further optimized. Hydrogen was produced in an alkaline environment in the presence of ethanol acting as sacrificial agent. A few variants of electrode geometry were studied in order to set the basic terms for efficient hydrogen production. It was found that optimal electrode geometry necessitates a much larger area for photocatalyst coverage than electrocatalyst and that it is preferable to divide photocatalyst and electrocatalyst areas in alternating zones.

  10. Design of Ru-zeolites for hydrogen-free production of conjugated linoleic acids.

    Science.gov (United States)

    Philippaerts, An; Goossens, Steven; Vermandel, Walter; Tromp, Moniek; Turner, Stuart; Geboers, Jan; Van Tendeloo, Gustaaf; Jacobs, Pierre A; Sels, Bert F

    2011-06-20

    While conjugated vegetable oils are currently used as additives in the drying agents of oils and paints, they are also attractive molecules for making bio-plastics. Moreover, conjugated oils will soon be accepted as nutritional additives for "functional food" products. While current manufacture of conjugated vegetable oils or conjugated linoleic acids (CLAs) uses a homogeneous base as isomerisation catalyst, a heterogeneous alternative is not available today. This contribution presents the direct production of CLAs over Ru supported on different zeolites, varying in topology (ZSM-5, BETA, Y), Si/Al ratio and countercation (H(+), Na(+), Cs(+)). Ru/Cs-USY, with a Si/Al ratio of 40, was identified as the most active and selective catalyst for isomerisation of methyl linoleate (cis-9,cis-12 (C18:2)) to CLA at 165 °C. Interestingly, no hydrogen pre-treatment of the catalyst or addition of hydrogen donors is required to achieve industrially relevant isomerisation productivities, namely, 0.7 g of CLA per litre of solvent per minute. Moreover, the biologically most active CLA isomers, namely, cis-9,trans-11, trans-10,cis-12 and trans-9,trans-11, were the main products, especially at low catalyst concentrations. Ex situ physicochemical characterisation with CO chemisorption, extended X-ray absorption fine structure measurements, transmission electron microscopy analysis, and temperature-programmed oxidation reveals the presence of highly dispersed RuO(2) species in Ru/Cs-USY(40). PMID:21506286

  11. Effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Guang-Li; Ren, Nan-Qi; Wang, Ai-Jie; Guo, Wan-Qian; Xu, Ji-Fei; Liu, Bing-Feng [State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2010-12-15

    In the process of producing H{sub 2} from lignocellulosic materials, inhibitory compounds could be potentially formed during pre-treatment. This work experimentally investigated the effect of lignocellulose-derived inhibitors on growth and hydrogen production by Thermoanaerobacterium thermosaccharolyticum W16. Representative compounds presented in corn stover acid hydrolysate were added in various concentrations, individually or in various combinations and subsequently inhibitions on growth and H{sub 2} production were quantified. Acetate sodium was not inhibitory to T. thermosaccharolyticum W16, rather than it was stimulatory to the growth and H{sub 2} production. Alternatively, furfural, hydroxymethylfurfural (HMF), vanillin and syringaldehyde were potent inhibitors of growth and hydrogen production even though these compounds showed inhibitory effect depending on their concentrations. Synergistic inhibitory effects were exhibited in the introduction of combinations of inhibitors to the medium and in hydrolysate with concentrated inhibitors. Fermentation results from hydrolysates revealed that to increase the efficiency of this bioprocess from corn stover hydrolysate, the inhibitory compounds concentration must be reduced to the levels present in the raw hydrolysate. (author)

  12. Studies on closed-cycle processes for hydrogen production, 5

    International Nuclear Information System (INIS)

    Studies made in the F.Y. 1980 on the thermochemical and radiation chemical processes for hydrogen production are reported. A hopeful thermochemical process has been studied which contains nickel, iodine and sulfur (NIS process). (1) Amounts of iodine and acid could be titrated in the liquid phase of the ternary system I2-SO2-H2O for further study of this system. (2) Dehydration and decomposition equilibrium pressures of NiI2 and NiSO4 were measured by Pyrex and quartz Bourdon gages. Decomposition pressures of nickel iodide and sulfate reached 1 atm at 8070C and 8780C. (3) Kinetics of nickel sulfate dehydration and nickel iodide pyrolysis were measured and analysed. The iodide decomposition could be explained as a phase-boundary controlled contracting interface reaction. (4) Sulfur trioxide could by decomposed by Pt and Fe oxide catalysts. In addition, the effect of lowering VHTR temperature to the NIS process was analysed. And a new cycle was studied preliminarily to overcome problems with the NIS process, using methanol as a reactant. Radiolysis of carbon dioxide has been studied as a step for radiation chemical hydrogen production. In the radiolysis, roles of fast and slow back reactions were analysed, and a significant effects of water and carbon monoxide was found. (author)

  13. ENHANCED HYDROGEN ECONOMICS VIA COPRODUCTION OF FUELS AND CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, Elliot B; Bhagavatula, Abhijit; Dadyburjor, Dady; Dixit, Santhoshi; Garlapalli, Ravinder; Magean, Liviu; Mukkha, Mayuri; Olajide, Olufemi A; Stiller, Alfred H; Yurchick, Christopher L

    2011-03-31

    This Department of Energy National Energy Technology Laboratory sponsored research effort to develop environmentally cleaner projects as a spin-off of the FutureGen project, which seeks to reduce or eliminate emissions from plants that utilize coal for power or hydrogen production. New clean coal conversion processes were designed and tested for coproducing clean pitches and cokes used in the metals industry as well as a heavy crude oil. These new processes were based on direct liquefaction and pyrolysis techniques that liberate volatile liquids from coal without the need for high pressure or on-site gaseous hydrogen. As a result of the research, a commercial scale plant for the production of synthetic foundry coke has broken ground near Wise, Virginia under the auspices of Carbonite Inc. This plant will produce foundry coke by pyrolyzing a blend of steam coal feedstocks. A second plant is planned by Quantex Energy Inc (in Texas) which will use solvent extraction to coproduce a coke residue as well as crude oil. A third plant is being actively considered for Kingsport, Tennessee, pending a favorable resolution of regulatory issues.

  14. The prisoner's dilemma in the production of nuclear hydrogen

    International Nuclear Information System (INIS)

    The human beings take to daily decisions, so much at individual as social level, that affect their quality of life in more or minor measure and modify the conditions of their environment. Decisions like to use the car or the public transportation or government policies to adopt and energy development plan that includes technologies like the production of nuclear hydrogen, present a grade of global influence, not only affect or benefit at the person or government that it carries out them, but also present consequences in the individuals and resources of the environment. The hydrogen production using nuclear energy as supply of thermal energy is in itself decision matter; from investing or not in their investigation until fomenting laws and policies that impel their development and incorporation to the industrial panorama. The countries and institutes that opt to impel this technology have the possibility to obtain economic and environmental benefits in contrast with those that do not make it, these last only benefited of the first ones in the environmental aspect. High cost for the technological transfer and economic sanctions sustained in environmental arguments toward those -non cooperators- would be a possible consequence of the cooperators action in the search of a Nash balance. The Prisoner's dilemma exemplifies and increases the comprehension of this type of problems to search for better conditions in the system that improve the situation of all the participants, in this case: governments and institutions. (Author)

  15. Development and Improvement of Bioreactor for Fermentative Hydrogen Production

    Institute of Scientific and Technical Information of China (English)

    LI Yong-feng; REN Nan-qi; YANG Chuan-ping; DING Jie; LI Jian-zheng

    2006-01-01

    The paper reviewed hydrogen production biotechnology on reactor development and design aspects. Biological hydrogen-producing reactor as acid-producing phase of two-phase anaerobic organism treatment system plays an important role in the following aspects: Reactor was developed as the follow ideas: 1) CSTR-type anaerobic fermentation reactor is selected to reduce the substrate concentration in reactor and increase target product operational yield and selectivity in the reactor;2)Integration structure with mixing reaction area and deposit-separating area is selected, i.e. gas-liquid-solid phase separation unit; 3)Mixture liquid in reaction area is stirred by the stirrer to reach a turbulent state in order to reduce interfacial layer thickness and temperature gradient in a floc unit particle and increase mass transfer rate;4) H2 in the particle and liquid phase is accelerated to release to prevent accumulated H2 from bringing feedback inhibition to organism metabolism, and H2/CO2conversion to acetic acid; 5) A sector turbine agitator with hoisting capacity and mixing power is selected to facilitate sludge to flow back through a effluence seam; 6 ) Interior wall in the reaction area is equipped with vertical baffles to avoid causing swirling flow of mixture liquid owing to agitation.

  16. Combined biomass valorization and hydrogen production in a photoelectrochemical cell

    Science.gov (United States)

    Cha, Hyun Gil; Choi, Kyoung-Shin

    2015-04-01

    In a typical hydrogen-producing photoelectrochemical cell (PEC), water reduction at the cathode (producing hydrogen) is accompanied by water oxidation at the anode (producing oxygen). This anode reaction is, however, not kinetically favourable. Here we investigate the possibility of utilizing solar energy for biomass conversion by performing the oxidation of 5-hydroxymethylfurfural (HMF) into 2,5-furandicarboxylic acid (FDCA) at the anode of a PEC. HMF is a key intermediate in biomass conversion, and FDCA is an important monomer for the production of numerous polymers. Using 2,2,6,6-tetramethylpiperidine-1-oxyl as a mediator, we obtained a near-quantitative yield and 100% Faradaic efficiency at ambient conditions without the use of precious-metal catalysts. This reaction is also thermodynamically and kinetically more favourable than water oxidation. Our results suggest that solar-driven biomass conversion can be a viable anode reaction that has the potential to increase both the efficiency and the utility of PECs constructed for solar-fuel production.

  17. High temperature fast reactor for hydrogen production in Brazil

    International Nuclear Information System (INIS)

    The main nuclear reactors technology for the Generation IV, on development phase for utilization after 2030, is the fast reactor type with high temperature output to improve the efficiency of the thermo-electric conversion process and to enable applications of the generated heat in industrial process. Currently, water electrolysis and thermo chemical cycles using very high temperature are studied for large scale and long-term hydrogen production, in the future. With the possible oil scarcity and price rise, and the global warming, this application can play an important role in the changes of the world energy matrix. In this context, it is proposed a fast reactor with very high output temperature, ∼ 1000 deg C. This reactor will have a closed fuel cycle; it will be cooled by lead and loaded with nitride fuel. This reactor may be used for hydrogen, heat and electricity production in Brazil. It is discussed a development strategy of the necessary technologies and some important problems are commented. The proposed concept presents characteristics that meet the requirements of the Generation IV reactor class. (author)

  18. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products.

    Science.gov (United States)

    Alibardi, Luca; Cossu, Raffaello

    2016-01-01

    Organic waste from municipalities, food waste and agro-industrial residues are ideal feedstocks for use in biological conversion processes in biorefinery chains, representing biodegradable materials containing a series of substances belonging to the three main groups of the organic matter: carbohydrates, proteins and lipids. Biological hydrogen production by dark fermentation may assume a central role in the biorefinery concept, representing an up-front treatment for organic waste capable of hydrolysing complex organics and producing biohydrogen. This research study was aimed at evaluating the effects of carbohydrate, protein and lipid content of organic waste on hydrogen yields, volatile fatty acid production and carbon-fate. Biogas and hydrogen productions were linearly correlated to carbohydrate content of substrates while proteins and lipids failed to produce significant contributions. Chemical composition also produced effects on the final products of dark fermentation. Acetic and butyric acids were the main fermentation products, with their ratio proving to correlate with carbohydrate and protein content. The results obtained in this research study enhance the understanding of data variability on hydrogen yields from organic waste. Detailed information on waste composition and chemical characterisation are essential to clearly identify the potential performances of the dark fermentation process. PMID:26254676

  19. Effects of carbohydrate, protein and lipid content of organic waste on hydrogen production and fermentation products.

    Science.gov (United States)

    Alibardi, Luca; Cossu, Raffaello

    2016-01-01

    Organic waste from municipalities, food waste and agro-industrial residues are ideal feedstocks for use in biological conversion processes in biorefinery chains, representing biodegradable materials containing a series of substances belonging to the three main groups of the organic matter: carbohydrates, proteins and lipids. Biological hydrogen production by dark fermentation may assume a central role in the biorefinery concept, representing an up-front treatment for organic waste capable of hydrolysing complex organics and producing biohydrogen. This research study was aimed at evaluating the effects of carbohydrate, protein and lipid content of organic waste on hydrogen yields, volatile fatty acid production and carbon-fate. Biogas and hydrogen productions were linearly correlated to carbohydrate content of substrates while proteins and lipids failed to produce significant contributions. Chemical composition also produced effects on the final products of dark fermentation. Acetic and butyric acids were the main fermentation products, with their ratio proving to correlate with carbohydrate and protein content. The results obtained in this research study enhance the understanding of data variability on hydrogen yields from organic waste. Detailed information on waste composition and chemical characterisation are essential to clearly identify the potential performances of the dark fermentation process.

  20. Efficient production and economics of the clean fuel hydrogen. Paper no. IGEC-1-Keynote-Elnashaie

    Energy Technology Data Exchange (ETDEWEB)

    Elnashaie, S. [Auburn Univ., Chemical Engineering Dept., Auburn, Alabama (United States)]|[Univ. of British Columbia, Chemical and Biological Engineering Dept., Vancouver, British Columbia, (Canada)]. E-mail: nashaie@eng.auburn.edu.; nashaie@chml.ubc.ca

    2005-07-01

    This paper/plenary lecture to this green energy conference briefly discusses six main issues: 1) The future of hydrogen economy; 2) Thermo-chemistry of hydrogen production for different techniques of autothermic operation using different feedstocks; 3) Improvement of the hydrogen yield and minimization of reformer size through combining fast fluidization with hydrogen and oxygen membranes together with CO{sub 2} sequestration; 4) Efficient production of hydrogen using novel Autothermal Circulating Fluidized Bed Membrane Reformer (ACFBMR); 5) Economics of hydrogen production; and, 6) Novel gasification process for hydrogen production from biomass. It is shown that hydrogen economy is not a Myth as some people advocate, and that with well-directed research it will represent a bright future for humanity utilizing such a clean, everlasting fuel, which is also free of deadly conflicts for the control of energy sources. It is shown that autothermic production of hydrogen using novel reformers configurations and wide range of feedstocks is a very promising route towards achieving a successful hydrogen economy. A novel process for the production of hydrogen from different renewable biomass sources is presented and discussed. The process combines the principles of pyrolysis with the simultaneous use of catalyst, membranes and CO{sub 2} sequestration to produce pure hydrogen directly from the unit. Some of the novel processes presented are essential components of modern bio-refineries. (author)

  1. Hydrogen production by aqueous phase reforming of light oxygenated hydrocarbons

    Science.gov (United States)

    Shabaker, John William

    Aqueous phase reforming (APR) of renewable oxygenated hydrocarbons (e.g., methanol, ethylene glycol, glycerol, sorbitol, glucose) is a promising new technology for the catalytic production of high-purity hydrogen for fuel cells and chemical processing. Supported Pt catalysts are effective catalysts for stable and rapid H2 production at temperatures near 500 K (H 2 turnover frequencies near 10 min-1). Inexpensive Raney Ni-based catalysts have been developed using a combination of fundamental and high-throughput studies that have similar catalytic properties as Pt-based materials. Promotion of Raney Ni with Sn by controlled surface reaction of organometallic tin compounds is necessary to control formation of thermodynamically-favorable alkane byproducts. Detailed characterization by Mossbauer spectroscopy, electron microscopy, adsorption studies, and x-ray photoelectron spectroscopy (XPS/ESCA) has shown that NiSn alloys are formed during heat treatment, and may be responsible for enhanced stability and selectivity for hydrogen production. Detailed kinetic studies led to the development of a kinetic mechanism for the APR reaction on Pt and NiSn catalysts, in which the oxygenate decomposes through C--H and O--H cleavage, followed by C--C cleavage and water gas shift of the CO intermediate. The rate limiting step on Pt surfaces is the initial dehydrogenation, while C--C cleavage appears rate limiting over NiSn catalysts. Tin promotion of Raney Ni catalysts suppresses C--O bond scission reactions that lead to alkane formation without inhibiting fast C--C and C--H cleavage steps that are necessary for high rates of reforming. A window of operating temperature, pressure, and reactor residence time has been identified for use of the inexpensive NiSn catalysts as a Pt substitute. Concentrated feed stocks and aggressive pretreatments have been found to counteract catalyst deactivation by sintering in the hydrothermal APR environment and allow stable, long-term production of H

  2. Hydrogen production from wastes. State-of-the-art and development potential. Final report

    International Nuclear Information System (INIS)

    Within the framework of the search for a virtuous energy system, the energy production known as 'clean' presents major stakes as well environmental as economic and societal. Among the potentially usable energy vectors, the dihydrogen gas proves to be a serious alternative to fossil energies. The 'traditional' production processes rest on extraction of hydrocarbon fossil resources and are strongly disparaged for their environmental impacts and the dependences with international access to fossil resources. To date, in addition to hydrogen production by water electrolysis based on renewable resources, the promising sectors of hydrogen production are those of the bio-refinery applied to layers of rough biomass, waste organic, sludges, etc. They involve both thermochemical and biological conversion processes. The objective of this study is to carry out a detailed state of the art of these alternative processes allowing the conversion of biomass-type wastes and by-products, on the scale of France, Europe and World. The study thus makes it possible to identify, describe and characterize the thermal and biological processes. The operating conditions to increase hydrogen production as well as the limits of the systems are presented: temperature, pressure, pH, quality of the layers, undesirable, gear robustness, etc. A brief study of the potential layers is proposed, making it possible to outline the potential of hydrogen production; however identification of the layers known as 'of implementation' (corresponding to the layers really expected taking into account the technical and economic context and of the competition of other valorization sectors) was not performed. For the thermal processes, theoretical examples of integrated processes are presented and an economic estimate of the hydrogen resulting cost is introduced. Regarding biological processes, the study identifies and analyses projects (on a pilot-scale for the most succeeded) which

  3. Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production

    DEFF Research Database (Denmark)

    Luo, Gang; Karakashev, Dimitar Borisov; Xie, Li;

    2011-01-01

    Long-term effects of inoculum pretreatments(heat, acid, loading-shock) on hydrogen production from glucose under different temperatures (378C, 558C) and initial pH (7 and 5.5) were studied by repeated batch cultivations. Results obtained showed that it was necessary to investigate the long......-term effect of inoculum pretreatment on hydrogen production since pretreatments may just temporarily inhibit the hydrogen consuming processes. After long-term cultivation, pretreated inocula did not enhance hydrogen production compared to untreated inocula under mesophilic conditions (initial pH 7 and pH 5...... (initial pH 7), and Thermoanaerobacterium thermosaccharolyticum related organisms under thermophilic condition (initial pH 5.5). Results from this study clearly indicated that the long-term effects of inoculum pretreatments on hydrogen production, methanogenesis, homoacetogenesis and dominant bacteria were...

  4. Sorption Enhanced Reaction Process (SERP) for production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Anand, M.; Hufton, J.; Mayorga, S. [Air Products and Chemicals, Inc., Allentown, PA (United States)] [and others

    1996-10-01

    Sorption Enhanced Reaction Process (SERP) is a novel process that is being developed for the production of lower cost hydrogen by steam-methane reforming (SMR). In this process the reaction of methane with steam is carried out in the presence of an admixture of a catalyst and a selective adsorbent for carbon dioxide. The key consequences of SERP are: (i) reformation reaction is carried out at a significantly lower temperature (300-500{degrees}C) than that in a conventional SMR reactor (800-1100{degrees}C), while achieving the same conversion of methane to hydrogen, (ii) the product hydrogen is obtained at reactor pressure (200-400 psig) and at 98+% purity directly from the reactor (compared to only 70-75% H{sub 2} from conventional SMR reactor), (iii) downstream hydrogen purification step is either eliminated or significantly reduced in size. The first phase of the program has focused on the development of a sorbent for CO{sub 2} which has (a) reversible CO{sub 2} capacity >0.3 mmol/g at low partial pressures of CO{sub 2} (0.1 - 1.0 atm) in the presence of excess steam (pH{sub 2}O/pCO{sub 2}>20) at 400-500{degrees}C and (b) fast sorption-desorption kinetics for CO{sub 2}, at 400-500{degrees}C. Several families of supported sorbents have been identified that meet the target CO{sub 2} capacity. A few of these sorbents have been tested under repeated sorption/desorption cycles and extended exposure to high pressure steam at 400-500{degrees}C. One sorbent has been scaled up to larger quantities (2-3 kg) and tested in the laboratory process equipment for sorption and desorption kinetics of CO{sub 2}. The CO{sub 2}, sorption and desorption kinetics are desirably fast. This was a critical path item for the first phase of the program and now has been successfully demonstrated. A reactor has been designed that will allow nearly isothermal operation for SERP-SMR. This reactor was integrated into an overall process flow diagram for the SERP-SMR process.

  5. Kinetic analysis of hydrogen production using anaerobic bacteria in reverse micelles

    Energy Technology Data Exchange (ETDEWEB)

    Zhi, Xiaohua; Yang, Haijun; Yuan, Zhuliang; Shen, Jianquan [Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190 (China)

    2010-04-15

    The micellar formation and entrapment of bacteria cell in reverse micelles were investigated by ultraviolet spectrum (UV), fluorescence spectrum, and scanning electron microscope (SEM). The hydrogen production in reverse micelles was confirmed. The Gompertz equation was employed to evaluate the hydrogen-producing behavior in reverse micellar systems. Different systems including dioctyl sulfosuccinate sodium salt (AOT)-isooctane, sodium dodecyl sulfate (SDS)-benzene and SDS-carbon tetrachloride (CCl{sub 4}) reverse micelles were analysized. The results revealed that the maximum rate of hydrogen production (R{sub m}) was also suitable to formulate the relationship between hydrogen-producing rate and hydrogen productivity in reverse micelles. (author)

  6. Radiolytic Hydrogen Production in the South Pacific Subseafloor Basaltic Aquifer

    Science.gov (United States)

    Dzaugis, M. E.; Spivack, A. J.; Dunlea, A. G.; Murray, R. W.; D'Hondt, S.

    2015-12-01

    Hydrogen (H2) is produced in geological settings by dissociation of water due to radiation from natural radioactive decay of uranium (238U, 235U), thorium (232Th) and potassium (40K). To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we calculate radiolytic H2 production rates in basement fractures utilizing measured radionuclide concentrations in 42 basalt samples from IODP Expedition 329. The samples are from three sites with very different basement ages and a wide range of alteration types. Major and trace element concentrations vary by up to an order of magnitude from sample to sample. Comparison of our samples to each other and to previous studies of fresh East Pacific Rise basalt suggests that between-sample variation in radionuclide concentrations is primarily due to differences in initial (pre-alteration) concentrations (which can vary between eruptive events), rather than to alteration type or extent. Local maxima in radionuclide (U, Th, and K) concentrations produce 'hotspots' of radiolytic H2 production; calculated radiolytic rates differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production. Due to the low penetration distance of alpha radiation, microfractures are 'hotpots' for radiolytic H2 production. For example, radiolytic H2 production rates normalized to water volume are 170 times higher in 1μm-wide fractures than in 10cm-wide fractures.

  7. Technology status of hydrogen road vehicles. IEA technical report from the IEA Agreement of the production and utilization of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, T.A.

    1998-01-31

    The report was commissioned under the Hydrogen Implementing Agreement of the International Energy Agency (IEA) and examines the state of the art in the evolving field of hydrogen-fueled vehicles for road transport. The first phase surveys and analyzes developments since 1989, when a comprehensive review was last published. The report emphasizes the following: problems, especially backfiring, with internal combustion engines (ICEs); operational safety; hydrogen handling and on-board storage; and ongoing demonstration projects. Hydrogen vehicles are receiving much attention, especially at the research and development level. However, there has been a steady move during the past 5 years toward integral demonstrations of operable vehicles intended for public roads. Because they emit few, or no greenhouse gases, hydrogen vehicles are beginning to be taken seriously as a promising solution to the problems of urban air quality. Since the time the first draft of the report was prepared (mid-19 96), the 11th World Hydrogen Energy Conference took place in Stuttgart, Germany. This biennial conference can be regarded as a valid updating of the state of the art; therefore, the 1996 results are included in the current version. Sections of the report include: hydrogen production and distribution to urban users; on-board storage and refilling; vehicle power units and drives, and four appendices titled: 'Safety questions of hydrogen storage and use in vehicles', 'Performance of hydrogen fuel in internal production engines for road vehicles, 'Fuel cells for hydrogen vehicles', and 'Summaries of papers on hydrogen vehicles'. (refs., tabs.)

  8. Fermentative bio-hydrogen production from cellulose by cow dung compost enriched cultures

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Nan-Qi; Xu, Ji-Fei; Gao, Ling-Fang; Xin, Liang; Qiu, Jie; Su, Dong-Xia [State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090 (China)

    2010-04-15

    The performance of hydrogen production from cellulose by the cow dung compost enriched continuously in defined medium containing cellulose was investigated. In the initial experiments, batch-fermentation was carried out to observe the effects of different substrate concentration conditions on the rate of cellulose-degrading, growth of bacteria and the capability of hydrogen-producing from cellulose. The result showed that the cellulose degradation decreased from 55% at 5 g/l to 22% at 30 g/l. The maximum cumulative hydrogen production and the rate of hydrogen production first increased from 828 ml/l at 5 g/l to 1251 ml/l at 10 g/l then remained constant beyond 10 g/l. The maximum hydrogen production potential, the rate of hydrogen production and the yield of hydrogen was 1525 ml/l, 33 ml/l.h, and 272 ml/g-cellulose (2.09 mol/mol-hexose) was obtained at substrate concentration 10 g/l, the hydrogen concentration in biogas was 47-50%(v/v) and there was no methane observed. During the conversion of cellulose into hydrogen, acetate and butyrate were main liquid end-products in the metabolism of hydrogen fermentation. These results proposed that cow dung compost enriched cultures were ideal microflora for hydrogen production from cellulose. (author)

  9. Hydrogen production from methane using oxygen-permeable ceramic membranes

    Science.gov (United States)

    Faraji, Sedigheh

    Non-porous ceramic membranes with mixed ionic and electronic conductivity have received significant interest in membrane reactor systems for the conversion of methane and higher hydrocarbons to higher value products like hydrogen. However, hydrogen generation by this method has not yet been commercialized and suffers from low membrane stability, low membrane oxygen flux, high membrane fabrication costs, and high reaction temperature requirements. In this dissertation, hydrogen production from methane on two different types of ceramic membranes (dense SFC and BSCF) has been investigated. The focus of this research was on the effects of different parameters to improve hydrogen production in a membrane reactor. These parameters included operating temperature, type of catalyst, membrane material, membrane thickness, membrane preparation pH, and feed ratio. The role of the membrane in the conversion of methane and the interaction with a Pt/CeZrO2 catalyst has been studied. Pulse studies of reactants and products over physical mixtures of crushed membrane material and catalyst have clearly demonstrated that a synergy exists between the membrane and the catalyst under reaction conditions. The degree of catalyst/membrane interaction strongly impacts the conversion of methane and the catalyst performance. During thermogravimetric analysis, the onset temperature of oxygen release for BSCF was observed to be lower than that for SFC while the amount of oxygen release was significantly greater. Pulse injections of CO2 over crushed membranes at 800°C have shown more CO2 dissociation on the BSCF membrane than the SFC membrane, resulting in higher CO formation on the BSCF membrane. Similar to the CO2 pulses, when CO was injected on the samples at 800°C, CO2 production was higher on BSCF than SFC. It was found that hydrogen consumption on BSCF particles is 24 times higher than that on SFC particles. Furthermore, Raman spectroscopy and temperature programmed desorption studies of

  10. Novel one-dimensional lanthanide acrylic acid complexes: an alternative chain constructed by hydrogen bonding

    Science.gov (United States)

    Li, Hui; Hu, Chang Wen

    2004-12-01

    Novel one-dimensional (1D) chains of three lanthanide complexes La(L 1) 3(CH 3OH)]·CH 3OH (L 1=(E)-3-(2-hydroxyl-phenyl)-acrylic acid) 1, La(L 2) 3(H 2O) 2]·2.75H 2O (L 2=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) 2, and La(L 3) 3(CH 3OH) 2(H 2O)]·CH 3OH (L 3=(E)-3-(4-hydroxyl-phenyl)-acrylic acid) 3 are reported. The crystal structure data are as follows for 1: C 29H 29LaO 11, monoclinic, P2 1/ n, a=15.4289(12) Å, b=7.9585(6) Å, c=23.041(2) Å, β=99.657(2)°, Z=4, R1=0.0637, w R2=0.0919; for 2: C 27H 30.50LaO 13.75, triclinic, P-1, a=8.4719(17) Å, b=13.719(3) Å, c=14.570(3) Å, α=62.19(3)°, β=99.657(2)°, γ=78.22(3)°, Z=2, R1=0.0384, w R2=0.0820; and for 3: C 30H 35LaO 13, monoclinic, P2(1)/ c, a=9.5667(6) Å, b=24.3911(15) Å, c=14.0448(9) Å, β=109.245(2)°, Z=4, R1=0.0374, w R2=0.0630. All the three structure data were collected using graphite monochromated molybdenum Kα radiation and refined using full-matrix least-squares techniques on F 2. These structures show that four kinds of the carboxylato bridge modes are included in these chains to link the La(III) ions. It is the first time that it has been found that the intra-chain hydrogen bonding can construct an alternative chain even, when the coordination bridge mode is the same along the chain (complex 2). There are 2D and 3D hydrogen bonding in the crystal lattices of complexes 1- 3.

  11. Hydrogen production by catalytic gasification of cellulose in supercritical water

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Cellulose,one of the important components of biomass,was gasified in supercritical water to produce hydrogen-rich gas in an autoclave which was operated batch-wise under high-pressure.K2CO3 and Ca(OH)2 were selected as the catalysts (or promoters).The temperature was kept between 450℃ and 500℃ while pressure was maintained at 24-26 MPa.The reaction time was 20 min.Experimental results showed that the two catalysts had good catalytic effect and optimum amounts were observed for each catalyst.When 0.2 g K2CO3 was added,the hydrogen yield could reach 9.456 mol.kg-1 which was two times of the H2 amount produced without catalyst.When 1.6 g Ca(OH)2 was added,the H2 yield was K2CO3 as catalyst but is still 1.7 times that achieved without catalyst.Comparing with the results obtained using KaCO3 or Ca(OH)2 alone,the use of a combination of K2CO3 and Ca(OH)2 could increase the H2 yield by up to 2.5 times that without catalyst and 25% and 45% more than that obtained using K2CO3 and Ca(OH)2 alone,respectively.It was found that methane was the dominant product at relatively low temperature.When the temperature was increased,the methane reacts with water and is converted to hydrogen and carbon dioxide.

  12. Thermodynamic Investigation of Hydrogen Production by Methane Steam Reforming using Integrated Hydrogen-permselective Membrane Reactor with CO2 absorption

    International Nuclear Information System (INIS)

    The role of hydrogen as an energy carrier became more important to the future energy system. Methane steam reforming (MSR) is one of the most important chemical processes in hydrogen production. To improve the conversion of methane to hydrogen, a hydrogen-permselective membrane reactor with a carbon dioxide absorbent was proposed and investigated. The conversion at 893 K in the integrated reactor with CaO as absorbent was almost equal to that at above 1000 K in the conventional reactor. Exergy analyses indicated that the a large portion of exergy loss for hydrogen production was chemical exergy loss in the case without methane recycle, while thermal exergy loss in the case with recycle use. The exergy loss of this process using the hydrogen-permselective membrane reactor with the CaO-absorbent was estimated about 70% of that by the conventional catalytic reactor. Efficiencies of the integrated reactor process, based on the energy and exergy losses were compared with those of other hydrogen production processes. (authors)

  13. Alternative production methods to face global molybdenum-99 supply shortage.

    Science.gov (United States)

    Lyra, Maria; Charalambatou, Paraskevi; Roussou, Eirini; Fytros, Stavros; Baka, Irini

    2011-01-01

    The sleeping giant of molybdenum-99 ((99)Mo) production is grinding to a halt and the world is wondering how this happened. Fewer than 10 reactors in the world are capable of producing radio nuclides for medicine; approximately 50% of the world's supply of raw material comes from National Research Universal (NRU) reactor in Canada. Many of these reactors, like the NRU, are old and aging. No one of these reactors, and probably not even all of them in combination, can replace the production of NRU. As the healthcare industry faces an aging population and the demand for diagnostic services using (99m)Tc continues to rise, the need for a consistent, reliable supply of (99)Mo has become increasingly important, so alternative methods to produce (99)Mo or even directly (99m)Tc had to be considered to avoid a supply shortage in the coming years. This need guides to the production of (99)Mo by replacing the Highly Enriched Uranium (HEU) target in a nuclear reactor with Low Enriched Uranium (LEU) and furthermore to the use of accelerators for manufacturing (99)Mo or for directly producing (99m)Tc.

  14. Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production.

    Science.gov (United States)

    Mehanna, Maha; Kiely, Patrick D; Call, Douglas F; Logan, Bruce E

    2010-12-15

    A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m(3) H(2)/m(3) d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements.

  15. Microbial Electrodialysis Cell for Simultaneous Water Desalination and Hydrogen Gas Production

    KAUST Repository

    Mehanna, Maha

    2010-12-15

    A new approach to water desalination is to use exoelectrogenic bacteria to generate electrical power from the biodegradation of organic matter, moving charged ions from a middle chamber between two membranes in a type of microbial fuel cell called a microbial desalination cell. Desalination efficiency using this approach is limited by the voltage produced by the bacteria. Here we examine an alternative strategy based on boosting the voltage produced by the bacteria to achieve hydrogen gas evolution from the cathode using a three-chambered system we refer to as a microbial electrodialysis cell (MEDC). We examined the use of the MEDC process using two different initial NaCl concentrations of 5 g/L and 20 g/L. Conductivity in the desalination chamber was reduced by up to 68 ± 3% in a single fed-batch cycle, with electrical energy efficiencies reaching 231 ± 59%, and maximum hydrogen production rates of 0.16 ± 0.05 m3 H2/m3 d obtained at an applied voltage of 0.55 V. The advantage of this system compared to a microbial fuel cell approach is that the potentials between the electrodes can be better controlled, and the hydrogen gas that is produced can be used to recover energy to make the desalination process self-sustaining with respect to electrical power requirements. © 2010 American Chemical Society.

  16. Durability of solid oxide electrolysis cells for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Hauch, A.; Hoejgaard Jensen, S.; Dalgaard Ebbesen, S.

    2007-05-15

    In the perspective of the increasing interest in renewable energy and hydrogen economy, the reversible solid oxide cells (SOCs) is a promising technology as it has the potential of providing efficient and cost effective hydrogen production by high temperature electrolysis of steam (HTES). Furthermore development of such electrolysis cells can gain from the results obtained within the R and D of SOFCs. For solid oxide electrolysis cells (SOEC) to become interesting from a technological point of view, cells that are reproducible, high performing and long-term stable need to be developed. In this paper we address some of the perspectives of the SOEC technology i.e. issues such as a potential H2 production price as low as 0.71 US dollar/kg H{sub 2} using SOECs for HTES; is there a possible market for the electrolysers? and what R and D steps are needed for the realisation of the SOEC technology? In the experimental part we present electrolysis test results on SOCs that have been optimized for fuel cell operation but applied for HTES. The SOCs are produced on a pre-pilot scale at Risoe National Laboratory. These cells have been shown to have excellent initial electrolysis performance, but the durability of such electrolysis cells are not optimal and examples of results from SOEC tests over several hundreds of hours are given here. The long-term tests have been run at current densities of -0.5 A/cm{sup 2} and -1 A/cm{sup 2}, temperatures of 850 deg. C and 950 deg. C and p(H{sub 2}O)/p(H{sub 2}) of 0.5/0.5 and 0.9/0.1. Long-term degradation rates are shown to be up to 5 times higher for SOECs compared to similar SOFC testing. Furthermore, hydrogen and synthetic fuel production prices are calculated using the experimental results from long-term electrolysis test as input and a short outlook for the future work on SOECs will be given as well. (au)

  17. Influences of environmental and operational factors on dark fermentative hydrogen production: a review

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, Parviz [Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur (Malaysia); Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah (Iran, Islamic Republic of); Ibrahim, Shaliza; Ghafari, Shahin [Department of Civil Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur (Malaysia); Annuar, Mohamad Suffian Mohamad; Vikineswary, Sabaratnam [Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur (Malaysia); Zinatizadeh, Ali Akbar [Department of Applied Chemistry, Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Water and Wastewater Research Center (WWRC), Razi University, Kermanshah (Iran, Islamic Republic of)

    2012-11-15

    Hydrogen (H{sub 2}) is one of renewable energy sources known for its non-polluting and environmentally friendly nature, as its end combustion product is water (H{sub 2}O). The biological production of H{sub 2} is a less energy intensive alternative where processes can be operated at ambient temperature and pressure. Dark fermentation by bacterial biomass is one of multitude of approaches to produce hydrogen which is known as the cleanest renewable energy and is thus receiving increasing attention worldwide. The present study briefly reviews the biohydrogen production process with special attention on the effects of several environmental and operational factors towards the process. Factors such as organic loading rate, hydraulic retention time, temperature, and pH studied in published reports were compared and their influences are discussed in this work. This review highlights the variations in examined operating ranges for the factors as well as their reported optimum values. Divergent values observed for the environmental/operational factors merit further exploration in this field. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. New Biofuel Alternatives: Integrating Waste Management and Single Cell Oil Production

    Directory of Open Access Journals (Sweden)

    Elia Judith Martínez

    2015-04-01

    Full Text Available Concerns about greenhouse gas emissions have increased research efforts into alternatives in bio-based processes. With regard to transport fuel, bioethanol and biodiesel are still the main biofuels used. It is expected that future production of these biofuels will be based on processes using either non-food competing biomasses, or characterised by low CO2 emissions. Many microorganisms, such as microalgae, yeast, bacteria and fungi, have the ability to accumulate oils under special culture conditions. Microbial oils might become one of the potential feed-stocks for biodiesel production in the near future. The use of these oils is currently under extensive research in order to reduce production costs associated with the fermentation process, which is a crucial factor to increase economic feasibility. An important way to reduce processing costs is the use of wastes as carbon sources. The aim of the present review is to describe the main aspects related to the use of different oleaginous microorganisms for lipid production and their performance when using bio-wastes. The possibilities for combining hydrogen (H2 and lipid production are also explored in an attempt for improving the economic feasibility of the process.

  19. Challenges and opportunities for hydrogen production from microalgae.

    Science.gov (United States)

    Oey, Melanie; Sawyer, Anne Linda; Ross, Ian Lawrence; Hankamer, Ben

    2016-07-01

    The global population is predicted to increase from ~7.3 billion to over 9 billion people by 2050. Together with rising economic growth, this is forecast to result in a 50% increase in fuel demand, which will have to be met while reducing carbon dioxide (CO2 ) emissions by 50-80% to maintain social, political, energy and climate security. This tension between rising fuel demand and the requirement for rapid global decarbonization highlights the need to fast-track the coordinated development and deployment of efficient cost-effective renewable technologies for the production of CO2 neutral energy. Currently, only 20% of global energy is provided as electricity, while 80% is provided as fuel. Hydrogen (H2 ) is the most advanced CO2 -free fuel and provides a 'common' energy currency as it can be produced via a range of renewable technologies, including photovoltaic (PV), wind, wave and biological systems such as microalgae, to power the next generation of H2 fuel cells. Microalgae production systems for carbon-based fuel (oil and ethanol) are now at the demonstration scale. This review focuses on evaluating the potential of microalgal technologies for the commercial production of solar-driven H2 from water. It summarizes key global technology drivers, the potential and theoretical limits of microalgal H2 production systems, emerging strategies to engineer next-generation systems and how these fit into an evolving H2 economy. PMID:26801871

  20. Switchable photosystem-II designer algae for photobiological hydrogen production

    Science.gov (United States)

    Lee, James Weifu

    2010-01-05

    A switchable photosystem-II designer algae for photobiological hydrogen production. The designer transgenic algae includes at least two transgenes for enhanced photobiological H.sub.2 production wherein a first transgene serves as a genetic switch that can controls photosystem II (PSII) oxygen evolution and a second transgene encodes for creation of free proton channels in the algal photosynthetic membrane. In one embodiment, the algae includes a DNA construct having polymerase chain reaction forward primer (302), a inducible promoter (304), a PSII-iRNA sequence (306), a terminator (308), and a PCR reverse primer (310). In other embodiments, the PSII-iRNA sequence (306) is replaced with a CF.sub.1-iRNA sequence (312), a streptomycin-production gene (314), a targeting sequence (316) followed by a proton-channel producing gene (318), or a PSII-producing gene (320). In one embodiment, a photo-bioreactor and gas-product separation and utilization system produce photobiological H.sub.2 from the switchable PSII designer alga.

  1. Waste cooking oil as an alternate feedstock for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Chhetri, A. B.; Rafiqul Islam, M. [Civil and Resources Engineering Dalhousie University, Room D510, 1360 Barrington St., Box 1000, Halifax, N.S. B3J 2X4 (Canada); Watts, K. Ch. [Process Engineering, Dalhousie University, Halifax, NS, Box 1000, Halifax, N.S. B3J 2X4 (Canada)

    2008-07-01

    As crude oil price reach a new high, the need for developing alternate fuels has become acute. Alternate fuels should be economically attractive in order to compete with currently used fossil fuels. In this work, biodiesel (ethyl ester) was prepared from waste cooking oil collected from a local restaurant in Halifax, Nova Scotia, Canada. Ethyl alcohol with sodium hydroxide as a catalyst was used for the transesterification process. The fatty acid composition of the final biodiesel esters was determined by gas chromatography. The biodiesel was characterized by its physical and fuel properties including density, viscosity, acid value, flash point, cloud point, pour point, cetane index, water and sediment content, total and free glycerin content, diglycerides and monoglycerides, phosphorus content and sulfur content according to ASTM standards. The viscosity of the biodiesel ethyl ester was found to be 5.03 mm{sup 2}/sec at 40 {sup o}C. The viscosity of waste cooking oil measured in room temperature (at 21 {sup o}C) was 72 mm{sup 2}/sec. From the tests, the flash point was found to be 164 {sup o}C, the phosphorous content was 2 ppm, those of calcium and magnesium were 1 ppm combined, water and sediment was 0 %, sulfur content was 2 ppm, total acid number was 0.29 mg KOH/g, cetane index was 61, cloud point was -1 {sup o}C and pour point was -16 {sup o}C. Production of biodiesel from waste cooking oils for diesel substitute is particularly important because of the decreasing trend of economical oil reserves, environmental problems caused due to fossil fuel use and the high price of petroleum products in the international market. (author)

  2. Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    M. Rafiqul Islam

    2008-04-01

    Full Text Available As crude oil price reach a new high, the need for developing alternate fuels has become acute. Alternate fuels should be economically attractive in order to compete with currently used fossil fuels. In this work, biodiesel (ethyl ester was prepared from waste cooking oil collected from a local restaurant in Halifax, Nova Scotia, Canada. Ethyl alcohol with sodium hydroxide as a catalyst was used for the transesterification process. The fatty acid composition of the final biodiesel esters was determined by gas chromatography. The biodiesel was characterized by its physical and fuel properties including density, viscosity, acid value, flash point, cloud point, pour point, cetane index, water and sediment content, total and free glycerin content, diglycerides and monoglycerides, phosphorus content and sulfur content according to ASTM standards. The viscosity of the biodiesel ethyl ester was found to be 5.03 mm2/sec at 40oC. The viscosity of waste cooking oil measured in room temperature (at 21° C was 72 mm2/sec. From the tests, the flash point was found to be 164oC, the phosphorous content was 2 ppm, those of calcium and magnesium were 1 ppm combined, water and sediment was 0 %, sulfur content was 2 ppm, total acid number was 0.29 mgKOH/g, cetane index was 61, cloud point was -1oC and pour point was -16oC. Production of biodiesel from waste cooking oils for diesel substitute is particularly important because of the decreasing trend of economical oil reserves, environmental problems caused due to fossil fuel use and the high price of petroleum products in the international market.

  3. Platinum nanophase electro catalysts and composite electrodes for hydrogen production

    Science.gov (United States)

    Petrik, L. F.; Godongwana, Z. G.; Iwuoha, E. I.

    Nanophase Pt electro catalysts were prepared by impregnating a Pt salt containing solution upon a high surface area hexagonal mesoporous silica (HMS) matrix, which was then carbonized to varying degree by chemical vapour deposition of liquid petroleum gas (LPG). Thereafter the HMS Si matrix could be removed by chemical etching with NaOH to immediately form a Pt containing carbon analogue or ordered mesoporous carbon (OMC) with a porous structure similar to the parent HMS. Nanoparticles of Pt electro catalysts were thus successfully stabilized without agglomeration on both HMS and upon the porous HMS carbon analogue or OMC, which was graphitic in nature. The catalysts were electro active for the hydrogen evolution reaction and their activity compared favourable with an industry standard. Such nanophase Pt electro catalysts could be incorporated successfully in a composite electrode by sequential deposition, upon a suitable substrate and the catalysts in electrodes so formed proved to be stable and active under high-applied potential in high electrolyte environment for hydrogen production by electrolysis of water. This route to preparing a nanophase Pt OMC catalyst may be applicable to prepare active electro catalysts for polymer electrolyte fuel cells and solid polymer electrolyte electrolyzers.

  4. Hydrogen production by autothermal reforming of ethanol: pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Marin Neto, Antonio Jose; Camargo, Joao Carlos; Lopes, Daniel Gabriel; Ferreira, Paulo F.P. [Hydrogen Technology (HyTron), Campinas, SP (Brazil)], Email: antonio@hytron.com.br; Neves Junior, Newton Pimenta; Pinto, Edgar A. de Godoi Rodrigues; Silva, Ennio Peres da [Universidade Estadual de Campinas (DFA/ IFGW/UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin. Dept. de Fisica Aplicada; Furlan, Andre Luis [Universidade Estadual de Campinas (FEC/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2010-07-01

    This work provides information about the development of an integrated unit for hydrogen production by auto thermal reforming of ethanol with nominal capacity of 1 kg/h H{sub 2} 4.5 (99.995%). The unit is composed by a Fuel Processing Module (FPM), resulting from auto thermal and shift reactor integration, responsible for the thermochemical step, plus an over heater of the liquid input (EtOH and H{sub 2}O), operated recovering thermal energy from PSA blown-down (H{sub 2} Purification Module - MPH2), besides other thermal equipment which completes the integration. Using a computational routine for scaling the process and preliminary performance analysis, it was possible to optimize operating conditions, essential along unit operations design. Likewise, performance estimation of the integrated unit proceeds, which shows efficiency about 72.5% from FPM. Coupled with the PSA recovery rate, 72.7%, the unit could achieve overall energy performance of 52.7%, or 74.4% working in co-generation of hydrogen and heat. (author)

  5. Catalytic on-board hydrogen production from methanol and ammonia for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Soerijanto, H.

    2008-08-15

    unfavourable for energetic and economic reasons, it is reasonable to investigate another reaction system, which is free of carbon. At the last part of this study the catalytic production of hydrogen from ammonia cracking was investigated. Ammonia is an interesting alternative: it has a high hydrogen density, it is available and cheap. Since the Pt electrode is sensitive to reactive substances, it must be ensured, that for example no hydrazine is produced during the ammonia cracking. A new type of ammonia cracking catalyst was investigated in this study, which unlike the conventional catalyst is not based on metal. Four different zirconium oxynitrides: ss' ZrON, ss'' ZrON, Zr{sub 2}ON{sub 2} and Zr{sub 0.88}Y{sub 0.12}O{sub 1.72}N{sub 0.15} (Y{sub 2}O{sub 3} doped ZrON) were prepared by various methods and subsequently tested for their activity in ammonia cracking. A long-term study was carried out on the best catalyst and no hydrazine was detected. On the basis of the data from the accomplished investigations a reaction mechanism is proposed. The result provides a basis for the further improvement of the catalyst. (orig.)

  6. Bio-Hydrogen Production from Pineapple Waste Extract by Anaerobic Mixed Cultures

    OpenAIRE

    Chakkrit Sreela-or; Alissara Reungsang

    2013-01-01

    A statistical experimental design was employed to optimize factors that affect the production of hydrogen from the glucose contained in pineapple waste extract by anaerobic mixed cultures. Results from Plackett-Burman design indicated that substrate concentration, initial pH and FeSO 4 concentration had a statistically significant ( p ≤ 0.05) influence on the hydrogen production potential ( P s ) and the specific hydrogen production rate (SHPR). The path of steepest ascent was undertaken to...

  7. Aqueous-Phase Reforming of Renewable Polyols for Production of Hydrogen using Platinum Catalysts

    NARCIS (Netherlands)

    Boga, D.A.

    2013-01-01

    Hydrogen has the potential to fuel the energy needs of a more sustainable society. As hydrogen is not found in nature in any appreciable quantities, this energy carrier needs to be produced from a primary energy source. Biomass can serve as a source for sustainable hydrogen production. In principle,

  8. Hydrogen and methane production from household solid waste in the two-stage fermentation process

    DEFF Research Database (Denmark)

    Lui, D.; Liu, D.; Zeng, Raymond Jianxiong;

    2006-01-01

    A two-stage process combined hydrogen and methane production from household solid waste was demonstrated working successfully. The yield of 43 mL H-2/g volatile solid (VS) added was generated in the first hydrogen production stage and the methane production in the second stage was 500 mL CH4/g VS...

  9. Radiolytic Hydrogen Production in the Subseafloor Basaltic Aquifer.

    Science.gov (United States)

    Dzaugis, Mary E; Spivack, Arthur J; Dunlea, Ann G; Murray, Richard W; D'Hondt, Steven

    2016-01-01

    Hydrogen (H2) is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium ((238)U, (235)U), thorium ((232)Th) and potassium ((40)K). To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th, and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt) concentrations (which can vary between eruptive events) and post-emplacement alteration. However, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma) basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may support as

  10. Radiolytic hydrogen production in the subseafloor basaltic aquifer

    Directory of Open Access Journals (Sweden)

    Mary E Dzaugis

    2016-02-01

    Full Text Available Hydrogen (H2 is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium (238U, 235U, thorium (232Th and potassium (40K. To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt concentrations (which can vary between eruptive events and post-emplacement alteration. In our samples, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may

  11. Radiolytic Hydrogen Production in the Subseafloor Basaltic Aquifer

    Science.gov (United States)

    Dzaugis, Mary E.; Spivack, Arthur J.; Dunlea, Ann G.; Murray, Richard W.; D’Hondt, Steven

    2016-01-01

    Hydrogen (H2) is produced in geological settings by dissociation of water due to radiation from radioactive decay of naturally occurring uranium (238U, 235U), thorium (232Th) and potassium (40K). To quantify the potential significance of radiolytic H2 as an electron donor for microbes within the South Pacific subseafloor basaltic aquifer, we use radionuclide concentrations of 43 basalt samples from IODP Expedition 329 to calculate radiolytic H2 production rates in basement fractures. The samples are from three sites with very different basement ages and a wide range of alteration types. U, Th, and K concentrations vary by up to an order of magnitude from sample to sample at each site. Comparison of our samples to each other and to the results of previous studies of unaltered East Pacific Rise basalt suggests that significant variations in radionuclide concentrations are due to differences in initial (unaltered basalt) concentrations (which can vary between eruptive events) and post-emplacement alteration. However, there is no clear relationship between alteration type and calculated radiolytic yields. Local maxima in U, Th, and K produce hotspots of H2 production, causing calculated radiolytic rates to differ by up to a factor of 80 from sample to sample. Fracture width also greatly influences H2 production, where microfractures are hotspots for radiolytic H2 production. For example, H2 production rates normalized to water volume are 190 times higher in 1 μm wide fractures than in fractures that are 10 cm wide. To assess the importance of water radiolysis for microbial communities in subseafloor basaltic aquifers, we compare electron transfer rates from radiolysis to rates from iron oxidation in subseafloor basalt. Radiolysis appears likely to be a more important electron donor source than iron oxidation in old (>10 Ma) basement basalt. Radiolytic H2 production in the volume of water adjacent to a square cm of the most radioactive SPG basalt may support as many as

  12. Intermetallics as cathode materials in the electrolytic hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Stojic, D.L.; Maksic, A.D.; Kaninski, M.P.M. [Vinca Inst. of Nuclear Sciences, Belgrade (Serbia and Montenegro). Lab. of Physical Chemistry; Cekic, B.D. [Vinca Inst. of Nuclear Sciences, Belgrade (Serbia and Montenegro). Lab. of Physics; Miljanic, S.S. [Belgrade Univ. (Serbia and Montenegro). Faculty of Physical Chemistry

    2005-01-01

    The intermetallics of transition metals have been investigated as cathode materials for the production of hydrogen by electrolysis from water-KOH solutions, in an attempt to increase the electrolytic process efficiency. We found that the best effect among all investigated cathodes (Hf{sub 2}Fe, Zr-Pt, Nb-Pd(I), Pd-Ta, Nb-Pd(II), Ti-Pt) exhibits the Hf{sub 2}Fe phase. These materials were compared with conventional cathodes (Fe and Ni), often used in the alkaline electrolysis. A significant upgrade of the electrolytic efficiency using intermetallics, either in pure KOH electrolyte or in combination with ionic activators added in situ, was achieved. The effects of these cathode materials on the process efficiency were discussed in the context of transition metal features that issue from their electronic configuration. (Author)

  13. Control design for an autonomous wind based hydrogen production system

    Energy Technology Data Exchange (ETDEWEB)

    Valenciaga, F.; Evangelista, C.A. [CONICET, Laboratorio de Electronica Industrial Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC.91, C.P. 1900, La Plata (Argentina)

    2010-06-15

    This paper presents a complete control scheme to efficiently manage the operation of an autonomous wind based hydrogen production system. This system comprises a wind energy generation module based on a multipolar permanent magnet synchronous generator, a lead-acid battery bank as short term energy storage and an alkaline von Hoerner electrolyzer. The control is developed in two hierarchical levels. The higher control level or supervisor control determines the general operation strategy for the whole system according to the wind conditions and the state of charge of the battery bank. On the other hand, the lower control level includes the individual controllers that regulate the respective module operation assuming the set-points determined by the supervisor control. These last controllers are approached using second-order super-twisting sliding mode techniques. The performance of the closed-loop system is assessed through representative computer simulations. (author)

  14. Hydrogen and chemicals production by plasma reforming methane

    International Nuclear Information System (INIS)

    Low temperature plasmas have excellent potential as on board transportation reformers for fuel cells. Because of their low temperature operation, they start up and shut down rapidly, and little energy is lost in waste heat that cannot easily be recovered from high temperature processes. Their use of electricity to drive reactions certainly requires good efficiency, but may simplify on-board systems. Partial oxidation has been shown to operate effectively as has steam reforming under these conditions. Hydrogen, COx, and C2s are the primary products of plasma reforming of methane. In this paper, the major reaction pathways and the results of the partial oxidation and steam reforming of methane will be discussed. (author)

  15. Hydrogen and hydrogen isotopes handling experience in heavy water production and related industries

    Energy Technology Data Exchange (ETDEWEB)

    Aprea, J.L. [Argentine Atomic Energy Commission, Comahue Univ., Neuquen (Argentina)

    2002-07-01

    Beyond the conventional applications in the chemical, petrochemical, food and other process industries, hydrogen is also used in nuclear-related industries, where it is required as an active ingredient in large-scale processes to produce heavy water. The experience obtained during the design, construction and operation of such industrial installations, which use hydrogen, deuterium and hydrogen-containing compounds can contribute in favor of the development of safer hydrogen energy facilities. Thus, material selection, properties degradation studies and preventing technologies applied in the heavy water operations are useful tools that will help to overtake the transition towards the hydrogen civilization. (Author)

  16. Steam Methane Reforming System for Hydrogen Production: Advanced Exergetic Analysis

    Directory of Open Access Journals (Sweden)

    Tatiana Morosuk

    2012-02-01

    Full Text Available Steam methane reforming (SMR is one of the most promising processes for the production of hydrogen. Therefore, the overall thermodynamic efficiency of this process is of particular importance. The thermodynamic inefficiencies in a thermal system are related to exergy destruction and exergy loss. However, a conventional exergetic analysis cannot evaluate the mutual interdependencies among the system components nor the real potential for improving the energy conversion system being considered. One of the tools under development for the improvement of energy conversion systems from the thermodynamic viewpoint is the advanced exergetic analysis. In this paper, the avoidable part of the exergy destruction is estimated and the interactions among components of the overall system are evaluated in terms of endogenous and exogenous exergy destruction. The assumptions required for these calculations are discussed in detail, especially for those components that are typically used in chemical processes. Results of this paper suggest options for increasing the thermodynamic efficiency of hydrogen production by steam-methane reforming.

  17. The effect of temperature and light intensity on hydrogen production by Rhodobacter capsulatus

    Energy Technology Data Exchange (ETDEWEB)

    Eroglu, Inci [Middle East Technical Univ., Ankara (Turkey). Dept. of Chemical Engineering; Sevinc, Pelin [Middle East Technical Univ., Ankara (Turkey). Dept. of Biotechnology; Guenduez, Ufuk; Yucel, Meral [Middle East Technical Univ., Ankara (Turkey). Dept. of Biological Sciences

    2010-07-01

    Rhodobacter capsulatus is a purple non-sulfur photosynthetic bacterium which can produce hydrogen by photofermentation on acetate and lactate. Hydrogen productivity depends on several parameters such as medium composition, pH, light intensity and temperature. In the present study, the effects of temperature and light intensity on hydrogen production were investigated. The cell growth curve has been fitted to the logistic model and hydrogen productivity was interpreted by Modified Gompertz Equation. The maximum productivity was obtained at 30 C and light intensity of 4000 lux. (orig.)

  18. High-yield hydrogen production from starch and water by a synthetic enzymatic pathway.

    Directory of Open Access Journals (Sweden)

    Y-H Percival Zhang

    Full Text Available BACKGROUND: The future hydrogen economy offers a compelling energy vision, but there are four main obstacles: hydrogen production, storage, and distribution, as well as fuel cells. Hydrogen production from inexpensive abundant renewable biomass can produce cheaper hydrogen, decrease reliance on fossil fuels, and achieve zero net greenhouse gas emissions, but current chemical and biological means suffer from low hydrogen yields and/or severe reaction conditions. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate a synthetic enzymatic pathway consisting of 13 enzymes for producing hydrogen from starch and water. The stoichiometric reaction is C(6H(10O(5 (l+7 H(2O (l-->12 H(2 (g+6 CO(2 (g. The overall process is spontaneous and unidirectional because of a negative Gibbs free energy and separation of the gaseous products with the aqueous reactants. CONCLUSIONS: Enzymatic hydrogen production from starch and water mediated by 13 enzymes occurred at 30 degrees C as expected, and the hydrogen yields were much higher than the theoretical limit (4 H(2/glucose of anaerobic fermentations. SIGNIFICANCE: The unique features, such as mild reaction conditions (30 degrees C and atmospheric pressure, high hydrogen yields, likely low production costs ($ approximately 2/kg H(2, and a high energy-density carrier starch (14.8 H(2-based mass%, provide great potential for mobile applications. With technology improvements and integration with fuel cells, this technology also solves the challenges associated with hydrogen storage, distribution, and infrastructure in the hydrogen economy.

  19. Training for power plant personnel on hydrogen production and control

    International Nuclear Information System (INIS)

    It is the purpose of this paper to address the issue of training for power plant personnel in the area of hydrogen control. The authors experience in the training business indicates that most of the operations and engineering personnel have a very limited awareness of this phenomenon. Topics discussed in this paper include: 1) theory of hydrogen combustion kinetics; 2) incidents involving hydrogen combustion events; 3) normal operations interfacing with hydrogen; 4) accident conditions; and 5) mitigation schemes

  20. IEA Agreement on the production and utilization of hydrogen: 1999 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. (National Renewable Energy Lab, Golden, CO (US)) (ed.)

    2000-01-31

    The annual report begins with an overview of the IEA Hydrogen Agreement, including guiding principles and their strategic plan followed by the Chairman's report providing the year's highlights. Annex reports included are: the final report for Task 11, Integrated Systems; task updates for Task 12, Metal Hydrides and Carbon for Hydrogen Storage, Task 13, Design and Optimization of Integrated Systems, Task 14, Photoelectrolytic Production of Hydrogen, and Task 15, Photobiological Production of Hydrogen; and a feature article by Karsten Wurr titled 'Large-Scale Industrial Uses of Hydrogen: Final Development Report'.

  1. IEA agreement on the production and utilization of hydrogen: 2000 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Elam, Carolyn C. [National Renewable Energy Lab., Golden, CO (US)] (ed.)

    2001-12-01

    The 2000 annual report of the IEA Hydrogen Agreement contains an overview of the agreement, including its guiding principles, latest strategic plan, and a report from the Chairman, Mr. Neil P. Rossmeissl, U.S. Department of Energy. Overviews of the National Hydrogen Programs of nine member countries are given: Canada, Japan, Lithuania, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United States. Task updates are provided on the following annexes: Annex 12 - Metal Hydrides and Carbon for Hydrogen Storage, Annex 13 - Design and Optimization of Integrated Systems, Annex 14 - Photoelectrolytic Production of Hydrogen, and, Annex 15 - Photobiological Production of Hydrogen.

  2. Hydrogen production by Anabaena sp. CH1 with 2-stage process

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, C.L.; Lee, C.M. [National Chung Hsing Univ., Taiwan (China). Dept. of Environmental Engineering; Chen, P.C. [Hungkuang Univ., Taiwan (China). Dept. of Biomedical Nutrition

    2009-07-01

    While hydrogen can be produced by cyanobacteria under anoxic conditions, chlorophylls can break down and provide the nitrogen needed for cell material synthesis. The breakdown of chlorophylls is unfavorable for the long-term production of hydrogen. This study provided details of a 2-stage operation designed to prevent chlorophyll breakdown. Anabaena sp. CH1 was used in both the hydrogen production and recovery stages. Nitrogenase activity, chlorophyll concentrations, and hydrogen production rates decreased to 54 per cent after argon gases were used for a 3-day period. Growth conditions than shifted to normal conditions after 3 to 5 days. Cells recovered their nitrogenase activities, biomass, and chlorophyll concentrations within 4 days. The recovery stage then shifted to the hydrogen production stage, where hydrogen production rates were as high as previous observed rates. It was concluded that the effects of nitrogen deprivation on photosynthetic mechanisms are reversible.

  3. Evaluation of the efficiency of alternative enzyme production technologies

    Energy Technology Data Exchange (ETDEWEB)

    Albaek, M.O.

    2012-03-15

    Enzymes are used in an increasing number of industries. The application of enzymes is extending into the production of lignocellulosic ethanol in processes that economically can compete with fossil fuels. Since lignocellulosic ethanol is based on renewable resources it will have a positive impact on for example the emission of green house gasses. Cellulases and hemi-cellulases are used for enzymatic hydrolysis of pretreated lignocellulosic biomass, and fermentable sugars are released upon the enzymatic process. Even though many years of research has decreased the amount of enzyme needed in the process, the cost of enzymes is still considered a bottleneck in the economic feasibility of lignocellulose utilization. The purpose of this project was to investigate and compare different technologies for production of these enzymes. The filamentous fungus Trichoderma reesei is currently used for industrial production of cellulases and hemi-cellulases. The aim of the thesis was to use modeling tools to identify alternative technologies that have higher energy or raw material efficiency than the current technology. The enzyme production by T. reesei was conducted as an aerobic fed-batch fermentation. The process was carried out in pilot scale stirred tank reactors and based on a range of different process conditions, a process model was constructed which satisfactory described the course of fermentation. The process was governed by the rate limiting mass transfer of oxygen from the gas to the liquid phase. During fermentation, filamentous growth of the fungus lead to increased viscosity which hindered mass transfer. These mechanisms were described by a viscosity model based on the biomass concentration of the fermentation broth and a mass transfer correlation that incorporated a viscosity term. An analysis of the uncertainty and sensitivity of the model indicated the biological parameters to be responsible for most of the model uncertainty. A number of alternative

  4. Expression of the alternative oxidase mitigates beta-amyloid production and toxicity in model systems.

    Science.gov (United States)

    El-Khoury, Riyad; Kaulio, Eveliina; Lassila, Katariina A; Crowther, Damian C; Jacobs, Howard T; Rustin, Pierre

    2016-07-01

    Mitochondrial dysfunction has been widely associated with the pathology of Alzheimer's disease, but there is no consensus on whether it is a cause or consequence of disease, nor on the precise mechanism(s). We addressed these issues by testing the effects of expressing the alternative oxidase AOX from Ciona intestinalis, in different models of AD pathology. AOX can restore respiratory electron flow when the cytochrome segment of the mitochondrial respiratory chain is inhibited, supporting ATP synthesis, maintaining cellular redox homeostasis and mitigating excess superoxide production at respiratory complexes I and III. In human HEK293-derived cells, AOX expression decreased the production of beta-amyloid peptide resulting from antimycin inhibition of respiratory complex III. Because hydrogen peroxide was neither a direct product nor substrate of AOX, the ability of AOX to mimic antioxidants in this assay must be indirect. In addition, AOX expression was able to partially alleviate the short lifespan of Drosophila models neuronally expressing human beta-amyloid peptides, whilst abrogating the induction of markers of oxidative stress. Our findings support the idea of respiratory chain dysfunction and excess ROS production as both an early step and as a pathologically meaningful target in Alzheimer's disease pathogenesis, supporting the concept of a mitochondrial vicious cycle underlying the disease.

  5. Expression of the alternative oxidase mitigates beta-amyloid production and toxicity in model systems.

    Science.gov (United States)

    El-Khoury, Riyad; Kaulio, Eveliina; Lassila, Katariina A; Crowther, Damian C; Jacobs, Howard T; Rustin, Pierre

    2016-07-01

    Mitochondrial dysfunction has been widely associated with the pathology of Alzheimer's disease, but there is no consensus on whether it is a cause or consequence of disease, nor on the precise mechanism(s). We addressed these issues by testing the effects of expressing the alternative oxidase AOX from Ciona intestinalis, in different models of AD pathology. AOX can restore respiratory electron flow when the cytochrome segment of the mitochondrial respiratory chain is inhibited, supporting ATP synthesis, maintaining cellular redox homeostasis and mitigating excess superoxide production at respiratory complexes I and III. In human HEK293-derived cells, AOX expression decreased the production of beta-amyloid peptide resulting from antimycin inhibition of respiratory complex III. Because hydrogen peroxide was neither a direct product nor substrate of AOX, the ability of AOX to mimic antioxidants in this assay must be indirect. In addition, AOX expression was able to partially alleviate the short lifespan of Drosophila models neuronally expressing human beta-amyloid peptides, whilst abrogating the induction of markers of oxidative stress. Our findings support the idea of respiratory chain dysfunction and excess ROS production as both an early step and as a pathologically meaningful target in Alzheimer's disease pathogenesis, supporting the concept of a mitochondrial vicious cycle underlying the disease. PMID:27094492

  6. Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies.

    Science.gov (United States)

    Nath, K; Najafpour, M M; Voloshin, R A; Balaghi, S E; Tyystjärvi, E; Timilsina, R; Eaton-Rye, J J; Tomo, T; Nam, H G; Nishihara, H; Ramakrishna, S; Shen, J-R; Allakhverdiev, S I

    2015-12-01

    Global energy demand is increasing rapidly and due to intensive consumption of different forms of fuels, there are increasing concerns over the reduction in readily available conventional energy resources. Because of the deleterious atmospheric effects of fossil fuels and the uncertainties of future energy supplies, there is a surge of interest to find environmentally friendly alternative energy sources. Hydrogen (H2) has attracted worldwide attention as a secondary energy carrier, since it is the lightest carbon-neutral fuel rich in energy per unit mass and easy to store. Several methods and technologies have been developed for H2 production, but none of them are able to replace the traditional combustion fuel used in automobiles so far. Extensively modified and renovated methods and technologies are required to introduce H2 as an alternative efficient, clean, and cost-effective future fuel. Among several emerging renewable energy technologies, photobiological H2 production by oxygenic photosynthetic microbes such as green algae and cyanobacteria or by artificial photosynthesis has attracted significant interest. In this short review, we summarize the recent progress and challenges in H2-based energy production by means of biological and artificial photosynthesis routes. PMID:25899392

  7. Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies.

    Science.gov (United States)

    Nath, K; Najafpour, M M; Voloshin, R A; Balaghi, S E; Tyystjärvi, E; Timilsina, R; Eaton-Rye, J J; Tomo, T; Nam, H G; Nishihara, H; Ramakrishna, S; Shen, J-R; Allakhverdiev, S I

    2015-12-01

    Global energy demand is increasing rapidly and due to intensive consumption of different forms of fuels, there are increasing concerns over the reduction in readily available conventional energy resources. Because of the deleterious atmospheric effects of fossil fuels and the uncertainties of future energy supplies, there is a surge of interest to find environmentally friendly alternative energy sources. Hydrogen (H2) has attracted worldwide attention as a secondary energy carrier, since it is the lightest carbon-neutral fuel rich in energy per unit mass and easy to store. Several methods and technologies have been developed for H2 production, but none of them are able to replace the traditional combustion fuel used in automobiles so far. Extensively modified and renovated methods and technologies are required to introduce H2 as an alternative efficient, clean, and cost-effective future fuel. Among several emerging renewable energy technologies, photobiological H2 production by oxygenic photosynthetic microbes such as green algae and cyanobacteria or by artificial photosynthesis has attracted significant interest. In this short review, we summarize the recent progress and challenges in H2-based energy production by means of biological and artificial photosynthesis routes.

  8. Thioethers as markers of hydrogen sulfide production in homocystinurias.

    Science.gov (United States)

    Kožich, Viktor; Krijt, Jakub; Sokolová, Jitka; Melenovská, Petra; Ješina, Pavel; Vozdek, Roman; Majtán, Tomáš; Kraus, Jan P

    2016-07-01

    Two enzymes in the transsulfuration pathway of homocysteine -cystathionine beta-synthase (CBS) and gamma-cystathionase (CTH)-use cysteine and/or homocysteine to produce the important signaling molecule hydrogen sulfide (H2S) and simultaneously the thioethers lanthionine, cystathionine or homolanthionine. In this study we explored whether impaired flux of substrates for H2S synthesis and/or deficient enzyme activities alter production of hydrogen sulfide in patients with homocystinurias. As an indirect measure of H2S synthesis we determined by LC-MS/MS concentrations of thioethers in plasma samples from 33 patients with different types of homocystinurias, in 8 patient derived fibroblast cell lines, and as reaction products of seven purified mutant CBS enzymes. Since chaperoned recombinant mutant CBS enzymes retained capacity of H2S synthesis in vitro it can be stipulated that deficient CBS activity in vivo may impair H2S production. Indeed, in patients with classical homocystinuria we observed significantly decreased cystathionine and lanthionine concentrations in plasma (46% and 74% of median control levels, respectively) and significantly lower cystathionine in fibroblasts (8% of median control concentrations) indicating that H2S production from cysteine and homocysteine may be also impaired. In contrast, the grossly elevated plasma levels of homolanthionine in CBS deficient patients (32-times elevation compared to median of controls) clearly demonstrates a simultaneous overproduction of H2S from homocysteine by CTH. In the remethylation defects the accumulation of homocysteine and the increased flux of metabolites through the transsulfuration pathway resulted in elevation of cystathionine and homolanthionine (857% and 400% of median control values, respectively) indicating a possibility of an increased biosynthesis of H2S by both CBS and CTH. This study shows clearly disturbed thioether concentrations in homocystinurias, and modeling using these data indicates

  9. Economically Feasible Crop Production Alternatives to Peanuts in Southwestern Oklahoma

    OpenAIRE

    Devkota, Shankar; Holcomb, Rodney B.; Taylor, Merritt J.; Epplin, Francis M.

    2006-01-01

    Changes in the U.S. peanut program have resulted in drastically decreased planted acres and forced many peanut producers in the Southwest to consider alternative crops. This study examined the economic risk associated with producing peanuts and common alternatives to peanuts. Seedless watermelon is an alternative for risk preferring farmers whereas, irrigated peanut is the best choice for risk averse farmers.

  10. Hydrogenation of Tasmanian alginite: analysis of hexane-soluble products by thermal distillation-gas chromatography-mass spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Philp, R.P.; Russell, N.J.; Gilbert, T.D.

    1981-10-01

    The liquefaction of coals and oil shales has the potential to provide a valuable alternative source of liquid hydrocarbons. Characterization of the products from liquefaction studies provides information on the nature of the hydrocarbons formed from various source materials and hence on their potential usefulness as alternative source of liquid fuels. This paper reports a study of the nature of the hexane-soluble hydrocarbons derived from the hydrogenation of an alginite concentrate of Tasmanites sp. Characterization of these mixtures has been achieved by thermal distillation combined with computerized gas chromatography-mass spectrometry. With increase in the temperature of hydrogenation a decrease in the relative concentration of tricyclic diterpenoids is observed. At the same time there is an increase in the concentration of tricyclic aromatic compounds. The presence of the metal halide catalysts, zinc chloride and tin (II) chloride, reduces the temperature at which the elimination or aromatization of the diterpenoid compounds occurs. (10 refs.)

  11. [Isolation and characterization of new species hydrogen producing bacterium Ethanologenbacterium sp. strain X-1 and its capability of hydrogen production].

    Science.gov (United States)

    Xing, De-Feng; Ren, Nan-Qi; Li, Qiu-Bo

    2004-12-01

    To obtain hydrogen-producing bacterium of high efficiency, a strain X-1 of hydrogen-producing bacteria was isolated from the continuous stirred-tank reactor (CSTR) by anaerobic Hungate technique. The Comparative sequence analysis of 16S rDNA showed that homology of strain X-1 with Clostridium cellulose and Acetanaerobacterium elongatum is less than 94%. All sequence alignment of 16S-23S rDNA intergenic spacer regions (ISR) indicated displayed that consensus region is tRNA(Ala), and tRNA(Ile), variable region is not homologous. Morphological, physic-biochemical character, and comparative sequence analysis of 16S rDNA and 16S-23S rDNA ISR indicated that strain X-1 belong to new genus named Ethanologenbacterium gen. nov.. Strain X-1 is facultative anaerobe bacillus; its main fermentative products are acetic acid, ethanol, H2 and CO2. The metabolic character of strain X-1 is typical ethanol type fermentation. Its capability of hydrogen production was measured in the batch culture experiment. X-1's maximum specific hydrogen producing rate is 28.3 mmol H2/( g dry cell x h) at pH 4.0 and 36 degrees C. Result of identify and analysis of hydrogen production ability demonstrated strain X-1 belong to new genus of high hydrogen-producing bacteria.

  12. Nuclear energy for oil sands production: Providing security of energy and hydrogen supply at economic cost

    International Nuclear Information System (INIS)

    Full text: Canada has abundant oil rich deposits in Alberta that supply a large fraction of domestic and export oil supply to today's energy markets. The extraction, processing and upgrading all require energy and hydrogen, which today are almost exclusively provided by burning natural gas. However, the vast potential supplies of oil could remain largely unexploitable, limited by the accessible gas supplies. Alternate energy sources will ultimately be needed for oil sands processing. In addition, emissions of greenhouse gases, although much reduced on a per barrel basis, are increasing overall. Thus, it is desirable to provide a low cost, low carbon source of energy: nuclear energy can provide that needed source. Recent key advances in oil sands extraction technology (e.g., pre-heating of deposits using steam assisted gravity drainage, SAGD) have reduced costs per barrel of final oil product. Several studies have been carried out, jointly and separately with producers, to examine the potential benefits of CANDU energy to new extraction and processing projects. The study was prompted by a recognition that the evolution of the hydrocarbon market may open up a competitive advantage for CANDU and associated technologies, as energy supplies for SAGD based oil sands projects. The scope of the studies examines use of the latest design of Advanced CANDU Reactors (ACR) to supply steam to the oil sands, and also to produce co-generated electricity. In addition, we analyse the use of electricity to co-produce electrolytic hydrogen for use in bitumen upgrading; and the value of the synergistic by-products of electrolysis, oxygen and heavy water. The review examines technical feasibility, economics, and implementation schedule. Because of the scale of application, and the required adaptation of technology, the CANDU reactor was the main focus of the feasibility and schedule aspects. The economics review compares the CANDU-based alternative to a reference option of using natural

  13. Summary of Plutonium-238 Production Alternatives Analysis Final Report

    Energy Technology Data Exchange (ETDEWEB)

    James Werner; Wade E. Bickford; David B. Lord; Chadwick D. Barklay

    2013-03-01

    The Team implemented a two-phase evaluation process. During the first phase, a wide variety of past and new candidate facilities and processing methods were assessed against the criteria established by DOE for this assessment. Any system or system element selected for consideration as an alternative within the project to reestablish domestic production of Pu-238 must meet the following minimum criteria: Any required source material must be readily available in the United States, without requiring the development of reprocessing technologies or investments in systems to separate material from identified sources. It must be cost, schedule, and risk competitive with existing baseline technology. Any identified facilities required to support the concept must be available to the program for the entire project life cycle (notionally 35 years, unless the concept is so novel as to require a shorter duration). It must present a solution that can generate at least 1.5 Kg of Pu-238 oxide per year, for at least 35 years. It must present a low-risk, near-term solution to the National Aeronautics and Space Administration’s urgent mission need. DOE has implemented this requirement by eliminating from project consideration any alternative with key technologies at less than Technology Readiness Level 5. The Team evaluated the options meeting these criteria using a more detailed assessment of the reasonable facility variations and compared them to the preferred option, which consists of target irradiation at the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR), target fabrication and chemical separations processing at the ORNL Radiochemical Engineering Development Center, and neptunium 237 storage at the Materials and Fuels Complex at INL. This preferred option is consistent with the Records of Decision from the earlier National Environmental Policy Act (NEPA) documentation

  14. Hydrogen storage in nickel doped MCM-41

    OpenAIRE

    Dündar Tekkaya, Ezgi; Dundar Tekkaya, Ezgi; YÜRÜM, YUDA; Yurum, Yuda

    2013-01-01

    Hydrogen as an energy carrier is one of the best environmentally friendly alternatives to fossil fuel sources. The potential use of hydrogen results with increasing demand to hydrogen production and storage. Recent studies show that materials having high surface area, large pore size and high affinity to hydrogen have high hydrogen storage capacity. MCM-41 is silica based material having such properties and its hydrogen sorption properties can be improved by doping transition metals to the st...

  15. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell

    Science.gov (United States)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D.

    2012-01-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O2-reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O2, which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells. PMID:23457415

  16. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    Science.gov (United States)

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O2-reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O2, which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  17. Hydrogen peroxide as a sustainable energy carrier: Electrocatalytic production of hydrogen peroxide and the fuel cell

    International Nuclear Information System (INIS)

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O2-reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal–oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O2, which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  18. Simulation of oxygen-steam gasification with CO{sub 2} adsorption for hydrogen production from empty fruit bunch

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, M.M.; Inayat, A.; Yusup, S.; Sabil, K.M. [Universiti Teknologi Petronas, Bandar Seri Iskandar, Tronoh (Malaysia). Center of Biofuel and Biochemical, Green Technology Mission Oriented Research

    2011-07-01

    The world is facing a critical situation in which fossil fuel reservoir is depleting while the demand for energy is increasing worldwide. Scientists globally have shifted their effort towards developing alternative sustainable fuels and quite a number of technologies have been discovered. One potential alternative solution is to produce energy from hydrogen as its energy content per kilogram is three times larger than that of gasoline. The combustion of hydrogen produces water instead of greenhouse gases, along with energy, making hydrogen even more attractive as a clean fuel. Current study focuses on the process development of hydrogen production via gasification of Empty Fruit Bunch (EFB) with in-situ adsorption of CO{sub 2} based on equilibrium modeling approach. The process flowsheet simulation is performed using iCON, PETRONAS process simulation software. This work investigates the influence of the temperature within the range of 600 to 1000 C and steam/biomass ratio between 0.1 and 1.0 on the hydrogen yield and product gas composition. The importance of different reactions involved in the system is also discussed. Using the simulation, the optimal operating conditions are predicted to be at 800 C and steam/biomass ratio of 0.6. Hydrogen yield of 149g kg{sup -1} of EFB can be obtained at 1000 C. The preliminary economic potential per annum of the oxygen-steam gasification system coupled with in situ CO{sub 2} adsorption is RM 6.64 x 10{sup 6} or approximately USD 2 x 10{sup 6}.

  19. Microbiology and optimization of hydrogen fermentation and bioelectricity production

    Energy Technology Data Exchange (ETDEWEB)

    Makinen, A.

    2013-11-01

    This work investigated dark fermentative hydrogen (H{sub 2}) and bioelectricity production from carbohydrates. Meso- and thermophilic fermentative and mesophilic exoelectrogenic bacteria were enriched from different natural sources. The H{sub 2} production from different hexoses and pentoses, them main constituents of lignocellulose, was studied in batch assays. H{sub 2} production from xylose was examined in continuous stirred tank reactor (CSTR). Operational parameters for H{sub 2} production were optimized. Bioelectricity production was studied in microbial fuel cells and process parameters were optimized. Dynamics of microbial communities in H{sub 2} and bioelectricity production processes were determined. A novel thermophilic dark fermentative H{sub 2} producing bacterium, Thermovorax subterraneus, was enriched and isolated from geothermal underground mine. T. subterraneus had the optimum growth temperature of 72 deg C and the maximum H{sub 2} yield of 1.4 mol/mol glucose in batch assay. The main soluble fermentative end products of T. subterraneus were acetate and ethanol. Thermophilic dark fermentative mixed culture enriched from hot spring (Hisarlan, Turkey) had the maximum H{sub 2} yield of 1.7 mol/mol glucose. The optimal environmental parameters to maximize H{sub 2} yield were temperature 52 deg C, initial pH 6.5, 40 mg/L Fe{sup 2+}, 4.5 g/L yeast extract and glucose concentration of 4 g/L. Increasing the glucose concentration to 18 g/L increased the maximum H{sub 2} production rate to 56.2 mmol H{sub 2}/h/L. Environmental parameters had a significant effect on metabolic pathways of fermentation. Another hot spring (Hisarkoy, Turkey) enrichment culture was able to ferment different sugars to H{sub 2} favoring pentoses over hexoses. The best H{sub 2} yields in batch assays were obtained from pentoses: xylose, arabinose and ribose yielded 21, 15 and 8 % of the theoretical yield, respectively; whilst on glucose the yield was only 2 % of the theoretical

  20. The Solar Wind Charge-Exchange Production Factor for Hydrogen

    CERN Document Server

    Kuntz, K D; Collier, M R; Connor, H K; Cravens, T E; Koutroumpa, D; Porter, F S; Robertson, I P; Sibeck, D G; Snowden, S L; Thomas, N E; Wash, B M

    2015-01-01

    The production factor, or broad band averaged cross-section, for solar wind charge-exchange with hydrogen producing emission in the ROSAT 1/4 keV (R12) band is $3.8\\pm0.2\\times10^{-20}$ count degree$^{-2}$ cm$^4$. This value is derived from a comparison of the Long-Term (background) Enhancements in the ROSAT All-Sky Survey with magnetohysdrodynamic simulations of the magnetosheath. This value is 1.8 to 4.5 times higher than values derived from limited atomic data, suggesting that those values may be missing a large number of faint lines. This production factor is important for deriving the exact amount of 1/4 keV band flux that is due to the Local Hot Bubble, for planning future observations in the 1/4 keV band, and for evaluating proposals for remote sensing of the magnetosheath. The same method cannot be applied to the 3/4 keV band as that band, being composed primarily of the oxygen lines, is far more sensitive to the detailed abundances and ionization balance in the solar wind. We also show, incidentally,...

  1. Banana production systems: identification of alternative systems for more sustainable production.

    Science.gov (United States)

    Bellamy, Angelina Sanderson

    2013-04-01

    Large-scale, monoculture production systems dependent on synthetic fertilizers and pesticides, increase yields, but are costly and have deleterious impacts on human health and the environment. This research investigates variations in banana production practices in Costa Rica, to identify alternative systems that combine high productivity and profitability, with reduced reliance on agrochemicals. Farm workers were observed during daily production activities; 39 banana producers and 8 extension workers/researchers were interviewed; and a review of field experiments conducted by the National Banana Corporation between 1997 and 2002 was made. Correspondence analysis showed that there is no structured variation in large-scale banana producers' practices, but two other banana production systems were identified: a small-scale organic system and a small-scale conventional coffee-banana intercropped system. Field-scale research may reveal ways that these practices can be scaled up to achieve a productive and profitable system producing high-quality export bananas with fewer or no pesticides.

  2. On battery-less autonomous polygeneration microgrids: Investigation of the combined hybrid capacitors/hydrogen alternative

    International Nuclear Information System (INIS)

    Highlights: • A battery-less autonomous polygeneration microgrid is technically feasible. • Laboratory testing of hybrid capacitors. • Investigation of hybrid capacitors utilization along with hydrogen subsystem. - Abstract: The autonomous polygeneration microgrid topology aims to cover holistically the needs in remote areas as far as electrical power, potable water through desalination, fuel for transportation in the form of hydrogen, heating and cooling are concerned. Deep discharge lead acid batteries are mostly used in such systems, associated with specific disadvantages, both technical and environmental. This paper investigated the possibility of replacing the battery bank from a polygeneration microgrid with a hybrid capacitor bank and more intensive utilization of a hydrogen subsystem. Initially commercial hybrid capacitors were tested under laboratory conditions and based on the respective results a case study was performed. The optimized combination of hybrid capacitors and higher hydrogen usage was then investigated through simulations and compared to a polygeneration microgrid featuring deep discharge lead acid batteries. From the results it was clear that it is technically possible to exchange the battery bank with a hybrid capacitor bank and higher hydrogen utilization. From the economic point of view, the current cost of the hybrid capacitors and the hydrogen components is high which leads to higher overall cost in comparison with deep discharge lead acid batteries. Taking into account, though, the decreasing cost prospects and trends of both the hybrid capacitors and the hydrogen components it is expected that this approach will become economically competitive in a few years

  3. Bio-Inspired Molecular Catalysts for Hydrogen Oxidation and Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Ming-Hsun; Chen, Shentan; Rousseau, Roger J.; Dupuis, Michel; Bullock, R. Morris; Raugei, Simone

    2013-06-03

    Recent advances in Ni-based bio-inspired catalysts obtained in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center (EFRC) at the Pacific Northwest National Laboratory, demonstrated the possibility of cleaving H2 or generating H2 heterolytically with turnover frequencies comparable or superior to those of hydrogenase enzymes. In these catalysts the transformation between H2 and protons proceeds via an interplay between proton, hydride and electron transfer steps and involves the interaction of a dihydrogen molecule with both a Ni(II) center and with pendant amine bases incorporated in a six-membered ring, which act as proton relays. These catalytic platforms are well designed in that when protons are correctly positioned (endo) toward the Raugei-ACS-Books.docxPrinted 12/18/12 2 metal center, catalysis proceeds at very high rates. We will show that the proton removal (for H2 oxidation) and proton delivery (for H2 production) are often the rate determining steps. Furthermore, the presence of multiple protonation sites gives rise to reaction intermediates with protons not correctly positioned (exo relative to the metal center). These isomers are easily accessible kinetically and are detrimental to catalysis because of the slow isomerization processes necessary to convert them to the catalytically competent endo isomers. In this chapter we will review the major findings of our computational investigation on the role of proton relays for H2 chemistry and provide guidelines for the design of new catalysts. This research was carried out in the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy by Battelle. Computational resources were provided at W. R. Wiley Environmental Molecular Science Laboratory (EMSL), a Raugei-Bio-Inspired Molecular-Catalysts-for-Hydrogen- Oxidation-and-Hydrogen-Production

  4. The Development of Materials for the Production of Hydrogen from Bio-ethanol

    Institute of Scientific and Technical Information of China (English)

    Pilar; Ramírez; de; la; Piscina; Narcís; Homs

    2007-01-01

    1 Results There is an increased interest in the hydrogen production from renewable sources. In this context, recently, numerous studies which use ethanol for hydrogen production have appeared. Ethanol is easily handled, non-toxic, and it can be obtained from biomass. The steam-reforming of bioethanol has been shown to beeffective for hydrogen production:C2H5OH + 3 H2O  6 H2 + 2 CO2. Six moles of hydrogen can be yielded for each mole of ethanol reacted. However, depending on the catalyst used, other und...

  5. Transient analysis of a hydrogen-desalination cogeneration nuclear power plant : accident scenarios within the hydrogen production plant

    International Nuclear Information System (INIS)

    The WHEN (Water-Hydrogen-Electricity Nuclear gas-cooled reactor) system is an integrated system based on a nuclear power plant coupled with desalination and hydrogen production. The WHEN system integrates the HELP (High-Economical Low-Pressure) IS (Iodine- Sulfur) cycle for hydrogen production and the CD (Capacitive Desalination) + MED (Multi Effect Distillation) Hybrid system for desalination on top of the HTGR (High-Temperature Gas-cooled Reactor), which generates electricity. The WHEN system can enhance energy utilization by as much as 70%, and it can be flexibly designed according to various user needs. When we operate this type of cogeneration nuclear power plant, the load balance of each system is critical for the continuous operation of the entire system. A set of transient scenarios was simulated using a system analysis code (the GAMMA code), which can take into account the flow path design of hydrogen production coupling, i.e., undercooling and overcooling transients that are initiated in the hydrogen production plant. From the results of a safety analysis, we confirmed that the undercooling and overcooling transients initiated in the IS cycle do not lead any serious safety problems on the WHEN system. (author)

  6. Combined hydrogen production and storage with subsequent carbon crystallization.

    Science.gov (United States)

    Lueking, Angela D; Gutierrez, Humberto R; Fonseca, Dania A; Narayanan, Deepa L; Van Essendelft, Dirk; Jain, Puja; Clifford, Caroline E B

    2006-06-21

    We provide evidence of low-temperature hydrogen evolution and possible hydrogen trapping in an anthracite coal derivative, formed via reactive ball milling with cyclohexene. No molecular hydrogen is added to the process. Raman-active molecular hydrogen vibrations are apparent in samples at atmospheric conditions (300 K, 1 bar) for samples prepared 1 year previously and stored in ambient air. Hydrogen evolves slowly at room temperature and is accelerated upon sample heating, with a first increase in hydrogen evolution occurring at approximately 60 degrees C. Subsequent chemical modification leads to the observation of crystalline carbons, including nanocrystalline diamond surrounded by graphene ribbons, other sp2-sp3 transition regions, purely graphitic regions, and a previously unidentified crystalline carbon form surrounded by amorphous carbon. The combined evidence for hydrogen trapping and carbon crystallization suggests hydrogen-induced crystallization of the amorphous carbon materials, as metastable hydrogenated carbons formed via the high-energy milling process rearrange into more thermodynamically stable carbon forms and molecular hydrogen.

  7. Strategic partnerships final LDRD report : nanocomposite materials for efficient solar hydrogen production.

    Energy Technology Data Exchange (ETDEWEB)

    Corral, Erica L. (University of Arizona, Tucson, AZ); Miller, James Edward; Walker, Luke S. (University of Arizona, Tucson, AZ); Evans, Lindsey R.

    2012-05-01

    This 'campus executive' project sought to advance solar thermochemical technology for producing the chemical fuels. The project advanced the common interest of Sandia National Laboratories and the University of Arizona in creating a sustainable and viable alternative to fossil fuels. The focus of this effort was in developing new methods for creating unique monolithic composite structures and characterizing their performance in thermochemical production of hydrogen from water. The development and processing of the materials was undertaken in the Materials Science and Engineering Department at the University of Arizona; Sandia National Laboratories performed the thermochemical characterization. Ferrite/yttria-stabilized zirconia composite monoliths were fabricated and shown to have exceptionally high utilization of the ferrite for splitting CO{sub 2} to obtain CO (a process analogous to splitting H{sub 2}O to obtain H{sub 2}).

  8. In Situ Measurement of Local Hydrogen Production Rate by Bubble-Evolved Recording

    Directory of Open Access Journals (Sweden)

    Xiaowei Hu

    2013-01-01

    Full Text Available Hydrogen visibly bubbles during photocatalytic water splitting under illumination with above-bandgap radiation, which provides a direct measurement of local gas-evolving reaction rate. In this paper, optical microscopy of superfield depth was used for recording the hydrogen bubble growth on Cd0.5Zn0.5S photocatalyst in reaction liquid and illuminated with purple light. By analyzing change of hydrogen bubble size as a function of time, we understood that hydrogen bubble growth experienced two periods, which were inertia effect dominated period and diffusion effect dominated period, respectively. The tendency of hydrogen bubble growth was similar to that of the gas bubble in boiling, while the difference in bubble diameter and growth time magnitude was great. Meanwhile, we obtained the local hydrogen production rate on photocatalyst active site by measuring hydrogen bubble growth variation characteristics. This method makes it possible to confirm local actual hydrogen evolution rate quantitatively during photocatalytic water splitting.

  9. Microbial culture selection for bio-hydrogen production from waste ground wheat by dark fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Argun, Hidayet; Kargi, Fikret; Kapdan, Ilgi K. [Department of Environmental Engineering, Dokuz Eylul University, Buca, Izmir (Turkey)

    2009-03-15

    Hydrogen formation performances of different anaerobic bacteria were investigated in batch dark fermentation of waste wheat powder solution (WPS). Serum bottles containing wheat powder were inoculated with pure cultures of Clostridium acetobutylicum (CAB), Clostridium butyricum (CB), Enterobacter aerogenes (EA), heat-treated anaerobic sludge (ANS) and a mixture of those cultures (MIX). Cumulative hydrogen formation (CHF), hydrogen yield (HY) and specific hydrogen production rate (SHPR) were determined for every culture. The heat-treated anaerobic sludge was found to be the most effective culture with a cumulative hydrogen formation of 560 ml, hydrogen yield of 223 ml H{sub 2} g{sup -1} starch and a specific hydrogen production rate of 32.1 ml H{sub 2} g{sup -1} h{sup -1}. (author)

  10. Study of the Behavior of Titanium Alloys as the Cathode for Photovoltaic Hydrogen Production

    Directory of Open Access Journals (Sweden)

    Chien-Lung Huang

    2013-01-01

    Full Text Available CP-Ti and Ti-153 were adopted in this study to observe their electrochemical behavior in serving as the cathode for photovoltaic hydrogen production. The designed cyclic hydrogenation-solution heat treating processes were performed to increase the hydrogen uptake for both alloys. The results are as follows. (1 Both arsenic trioxide and thiourea showed hydrogenation promotive effect on CP-Ti, while thiourea was an inhibitor for Ti-153 under the applied conditions. (2 Arsenic trioxide showed hydrogenation promotive effect on both Ti-153 and CP-Ti in this study. (3 Ti-153 demonstrated superiority to CP-Ti when serves as the cathode for photovoltaic hydrogen production. The hydrogen mass payload for Ti-153 is 68 times larger than that for CP-Ti.

  11. Oxidation behaviors of Ni-base Superalloys for Nuclear Hydrogen production in Steam with and without Hydrogen Environments

    International Nuclear Information System (INIS)

    The high temperature steam electrolysis (HTSE) is one of the promising ways of the massive hydrogen production using the very high temperature gas cooled reactor (VHTR) because they has a higher efficiency below the 850 .deg. C and available to adapt the existing solid oxide fuel cell (SOFC) technologies. Intermediate heat exchanger (IHX) is important structural component which supply high temperature steam to the HTSE. Also, steam provided to the HTSE would be mixed with hydrogen in order to ensure reduction environment. Therefore, the candidate IHX materials require the high temperature oxidation resistance in steam with and without hydrogen environments. One of the candidate materials for the IHX is Ni-base superalloys such as Alloy 617 and Haynes 230 due to excellent high temperature oxidation resistance. In this study, oxidation behaviors of Ni-base superalloys were evaluated in steam with and without hydrogen environments

  12. Cost Evaluation with G4-ECONS Program for SI based Nuclear Hydrogen Production Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-ho; Lee, Ki-young; Kim, Yong-wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Contemporary hydrogen is production is primarily based on fossil fuels, which is not considered as environments friendly and economically efficient. To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution reducing the release of carbon dioxide. Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The economic assessment was performed for nuclear hydrogen production plant consisting of VHTR coupled with SI cycle. For the study, G4-ECONS developed by EMWG of GIF was appropriately modified to calculate the LUHC, assuming 36 months of plant construction time, 5 % of annual interest rate and 12.6 % of fixed charge rate. In G4-ECONS program, LUHC is calculated by the following formula; LUHC = (Annualized TCIC + Annualized O-M Cost + Annualized Fuel Cycle Cost + Annualized D-D Cost) / Annual Hydrogen Production Rate.

  13. Cost Evaluation with G4-ECONS Program for SI based Nuclear Hydrogen Production Plant

    International Nuclear Information System (INIS)

    Contemporary hydrogen is production is primarily based on fossil fuels, which is not considered as environments friendly and economically efficient. To achieve the hydrogen economy, it is very important to produce a massive amount of hydrogen in a clean, safe and efficient way. Nuclear production of hydrogen would allow massive production of hydrogen at economic prices while avoiding environments pollution reducing the release of carbon dioxide. Nuclear production of hydrogen could thus become the enabling technology for the hydrogen economy. The economic assessment was performed for nuclear hydrogen production plant consisting of VHTR coupled with SI cycle. For the study, G4-ECONS developed by EMWG of GIF was appropriately modified to calculate the LUHC, assuming 36 months of plant construction time, 5 % of annual interest rate and 12.6 % of fixed charge rate. In G4-ECONS program, LUHC is calculated by the following formula; LUHC = (Annualized TCIC + Annualized O-M Cost + Annualized Fuel Cycle Cost + Annualized D-D Cost) / Annual Hydrogen Production Rate

  14. Assembly of thermally reduced graphene oxide nanostructures by alternating current dielectrophoresis as hydrogen-gas sensors

    Science.gov (United States)

    Wang, Jianwei; Singh, Budhi; Maeng, Sunglyul; Joh, Han-Ik; Kim, Gil-Ho

    2013-08-01

    Chemo-resistive hydrogen-gas sensors based on thermally reduced graphene oxide (rGO) have been fabricated on a micro-hotplate by positive ac dielectrophoresis (DEP). The optimized DEP parameters for manipulating rGO nanostructures into Au electrodes for hydrogen sensing are: applied frequency = 1 MHz, peak-to-peak voltage = 5 V, and DEP time = 30 s. The device exhibits good sensitivity (˜6%) with fast response time (˜11 s) and recovery time (˜36 s) for 200 ppm hydrogen gas at room temperature. This result indicates that the DEP process has great potential for assembling rGO for hydrogen-gas sensor in many industrial and scientific applications.

  15. Mesophilic and thermophilic alkaline fermentation of waste activated sludge for hydrogen production: Focusing on homoacetogenesis

    DEFF Research Database (Denmark)

    Wan, Jingjing; Jing, Yuhang; Zhang, Shicheng;

    2016-01-01

    The present study compared the mesophilic and thermophilic alkaline fermentation of waste activated sludge (WAS) for hydrogen production with focus on homoacetogenesis, which mediated the consumption of H2 and CO2 for acetate production. Batch experiments showed that hydrogen yield of WAS increased...

  16. Biochemical kinetics of fermentative hydrogen production by Clostridium butyricum W5

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X. [School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005 (Australia); Monis, P.T. [Australian Water Quality Centre, SA Water, Bolivar, SA 5110 (Australia); Saint, C.P.; Jin, B. [School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, SA 5005 (Australia)]|[Australian Water Quality Centre, SA Water, Bolivar, SA 5110 (Australia)

    2009-01-15

    The fermentation process for hydrogen production has been widely reported. However, there is lack of information related to detailed kinetic studies. The aim of this work was to investigate biochemical kinetics of fermentative hydrogen production by a newly isolated strain of Clostridium butyricum W5. The research objectives were to clarify relationships between hydrogen fermentation and biochemical parameters and hydrogenases, and consequently to seek an index for hydrogen production. Time profiles of hydrogen production, cell growth, volatile fatty acid accumulation and [FeFe]hydrogenase expression level were described. The amount of hydrogen produced in a laboratory batch process was 45.45 mmol/L at 10 h and peak production rate was 7.61 mmol/l/h at 9 h. Cell growth rate peaked at 8 h. Lactic acid was a main by-product, followed by butyric acid and acetic acid. Quantification of [FeFe]hydrogenase mRNA was optimized by a real-time reverse transcriptase-PCR. Statistical analysis showed that [FeFe]hydrogenase mRNA levels peak earlier than hydrogen production rate, and cell growth has a linear positive relationship with hydrogen production. (author)

  17. Optimised photocatalytic hydrogen production using core–shell AuPd promoters with controlled shell thickness

    DEFF Research Database (Denmark)

    Jones, Wilm; Su, Ren; Wells, Peter;

    2014-01-01

    of these materials towards the reforming of alcohols for hydrogen production. The core–shell structured Au–Pd bimetallic nanoparticle supported on TiO2 has being of interest as it exhibited extremely high quantum efficiencies for hydrogen production. However, the effect of shell composition and thickness...

  18. Simultaneous cellulose conversion and hydrogen production assisted by cellulose decomposition under UV-light photocatalysis.

    Science.gov (United States)

    Zhang, Guan; Ni, Chengsheng; Huang, Xiubing; Welgamage, Aakash; Lawton, Linda A; Robertson, Peter K J; Irvine, John T S

    2016-01-28

    Photocatalytic conversion of cellulose to sugars and carbon dioxide with simultaneous production of hydrogen assisted by cellulose decomposition under UV or solar light irradiation was achieved upon immobilization of cellulose onto a TiO2 photocatalyst. This approach enables production of hydrogen from water without using valuable sacrificial agents, and provides the possibility for recovering sugars as liquid fuels.

  19. Fermentative Hydrogen Production: Influence of Application of Mesophilic and Thermophilic Bacteria on Mass and Energy Balances

    NARCIS (Netherlands)

    Foglia, D.; Wukovits, W.; Friedl, A.; Vrije, de G.J.; Claassen, P.A.M.

    2011-01-01

    Fermentation of biomass residues and second generation biomasses is a possible way to enable a sustainable production of hydrogen. The HYVOLUTION-project investigates the production of hydrogen by a 2-stage fermentation process of biomass. It consists of a dark fermentation step of sugars to produce

  20. Potential use of thermophilic dark fermentation effluents in photofermentative hydrogen production by Rhodobacter capsulatus

    NARCIS (Netherlands)

    Ozgur, E.; Afsar, N.; Vrije, de G.J.; Yucel, M.; Gunduz, U.; Claassen, P.A.M.; Eroglu, I.

    2010-01-01

    Biological hydrogen production by a sequential operation of dark and photofermentation is a promising route to produce hydrogen. The possibility of using renewable resources, like biomass and agro-industrial wastes, provides a dual effect of sustainability in biohydrogen production and simultaneous