WorldWideScience

Sample records for alternative high-performance material-based

  1. Alternative High-Performance Ceramic Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Sundaram, S. K. [Alfred Univ., NY (United States)

    2017-02-01

    This final report (M5NU-12-NY-AU # 0202-0410) summarizes the results of the project titled “Alternative High-Performance Ceramic Waste Forms,” funded in FY12 by the Nuclear Energy University Program (NEUP Project # 12-3809) being led by Alfred University in collaboration with Savannah River National Laboratory (SRNL). The overall focus of the project is to advance fundamental understanding of crystalline ceramic waste forms and to demonstrate their viability as alternative waste forms to borosilicate glasses. We processed single- and multiphase hollandite waste forms based on simulated waste streams compositions provided by SRNL based on the advanced fuel cycle initiative (AFCI) aqueous separation process developed in the Fuel Cycle Research and Development (FCR&D). For multiphase simulated waste forms, oxide and carbonate precursors were mixed together via ball milling with deionized water using zirconia media in a polyethylene jar for 2 h. The slurry was dried overnight and then separated from the media. The blended powders were then subjected to melting or spark plasma sintering (SPS) processes. Microstructural evolution and phase assemblages of these samples were studied using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion analysis of x-rays (EDAX), wavelength dispersive spectrometry (WDS), transmission electron spectroscopy (TEM), selective area x-ray diffraction (SAXD), and electron backscatter diffraction (EBSD). These results showed that the processing methods have significant effect on the microstructure and thus the performance of these waste forms. The Ce substitution into zirconolite and pyrochlore materials was investigated using a combination of experimental (in situ XRD and x-ray absorption near edge structure (XANES)) and modeling techniques to study these single phases independently. In zirconolite materials, a transition from the 2M to the 4M polymorph was observed with increasing Ce content. The resulting

  2. Baotou Rare Earth Became the World’s Biggest High Performance Magnetic Material Base

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>The High Performance Magnetic Material Phase II Project,an industry upgrading project implemented by Inner Mongolia Baotou Iron&Steel Rare Earth(Group)Hi-tech Co.,Ltd,recently basically finished equipment commissioning,signifying that the enterprise had developed the production capacity of15000 t/a Nd-Fe-B strip casting alloy and 5000t/a Nd-Fe-B magnet,thus becoming the world’s

  3. Alternative High Performance Polymers for Ablative Thermal Protection Systems

    Science.gov (United States)

    Boghozian, Tane; Stackpoole, Mairead; Gonzales, Greg

    2015-01-01

    Ablative thermal protection systems are commonly used as protection from the intense heat during re-entry of a space vehicle and have been used successfully on many missions including Stardust and Mars Science Laboratory both of which used PICA - a phenolic based ablator. Historically, phenolic resin has served as the ablative polymer for many TPS systems. However, it has limitations in both processing and properties such as char yield, glass transition temperature and char stability. Therefore alternative high performance polymers are being considered including cyanate ester resin, polyimide, and polybenzoxazine. Thermal and mechanical properties of these resin systems were characterized and compared with phenolic resin.

  4. High-performance Sonitopia (Sonic Utopia): Hyper intelligent Material-based Architectural Systems for Acoustic Energy Harvesting

    Science.gov (United States)

    Heidari, F.; Mahdavinejad, M.

    2017-08-01

    The rate of energy consumption in all over the world, based on reliable statistics of international institutions such as the International Energy Agency (IEA) shows significant increase in energy demand in recent years. Periodical recorded data shows a continuous increasing trend in energy consumption especially in developed countries as well as recently emerged developing economies such as China and India. While air pollution and water contamination as results of high consumption of fossil energy resources might be consider as menace to civic ideals such as livability, conviviality and people-oriented cities. In other hand, automobile dependency, cars oriented design and other noisy activities in urban spaces consider as threats to urban life. Thus contemporary urban design and planning concentrates on rethinking about ecology of sound, reorganizing the soundscape of neighborhoods, redesigning the sonic order of urban space. It seems that contemporary architecture and planning trends through soundscape mapping look for sonitopia (Sonic + Utopia) This paper is to propose some interactive hyper intelligent material-based architectural systems for acoustic energy harvesting. The proposed architectural design system may be result in high-performance architecture and planning strategies for future cities. The ultimate aim of research is to develop a comprehensive system for acoustic energy harvesting which cover the aim of noise reduction as well as being in harmony with architectural design. The research methodology is based on a literature review as well as experimental and quasi-experimental strategies according the paradigm of designedly ways of doing and knowing. While architectural design has solution-focused essence in problem-solving process, the proposed systems had better be hyper intelligent rather than predefined procedures. Therefore, the steps of the inference mechanism of the research include: 1- understanding sonic energy and noise potentials as energy

  5. A theoretical prediction of super high-performance thermoelectric materials based on MoS2/WS2 hybrid nanoribbons.

    Science.gov (United States)

    Zhang, Zhongwei; Xie, Yuee; Peng, Qing; Chen, Yuanping

    2016-02-17

    Modern society is hungry for electrical power. To improve the efficiency of energy harvesting from heat, extensive efforts seek high-performance thermoelectric materials that possess large differences between electronic and thermal conductance. Here we report a super high-performance material of consisting of MoS2/WS2 hybrid nanoribbons discovered from a theoretical investigation using nonequilibrium Green's function methods combined with first-principles calculations and molecular dynamics simulations. The hybrid nanoribbons show higher efficiency of energy conversion than the MoS2 and WS2 nanoribbons due to the fact that the MoS2/WS2 interface reduces lattice thermal conductivity more than the electron transport. By tuning the number of the MoS2/WS2 interfaces, a figure of merit ZT as high as 5.5 is achieved at a temperature of 600 K. Our results imply that the MoS2/WS2 hybrid nanoribbons have promising applications in thermal energy harvesting.

  6. Thermally reversible thermoset materials based on the chemical modification of alternating aliphatic polyketones

    NARCIS (Netherlands)

    Araya Hermosilla, Rodrigo Andrés

    2016-01-01

    This thesis focused on the synthesis and characterization of different kinds of reversible thermosets and thermoset nanocomposite materials by using alternating aliphatic polyketone (PK) as raw material. Fundamental knowledge was generated regarding the molecular design of new polymers via chemical

  7. Thermally reversible thermoset materials based on the chemical modification of alternating aliphatic polyketones

    OpenAIRE

    Araya Hermosilla, Rodrigo Andrés

    2016-01-01

    This thesis focused on the synthesis and characterization of different kinds of reversible thermosets and thermoset nanocomposite materials by using alternating aliphatic polyketone (PK) as raw material. Fundamental knowledge was generated regarding the molecular design of new polymers via chemical modification of PK with aliphatic and aromatic amine compounds. The resulting thermally reversible thermoset systems were investigated to outline the benefits for the synergistic cooperation betwee...

  8. Environmental acceptability of high-performance alternatives for depleted uranium penetrators

    Energy Technology Data Exchange (ETDEWEB)

    Kerley, C.R.; Easterly, C.E.; Eckerman, K.F. [and others

    1996-08-01

    The Army`s environmental strategy for investigating material substitution and management is to measure system environmental gains/losses in all phases of the material management life cycle from cradle to grave. This study is the first in a series of new investigations, applying material life cycle concepts, to evaluate whether there are environmental benefits from increasing the use of tungsten as an alternative to depleted uranium (DU) in Kinetic Energy Penetrators (KEPs). Current military armor penetrators use DU and tungsten as base materials. Although DU alloys have provided the highest performance of any high-density alloy deployed against enemy heavy armor, its low-level radioactivity poses a number of environmental risks. These risks include exposures to the military and civilian population from inhalation, ingestion, and injection of particles. Depleted uranium is well known to be chemically toxic (kidney toxicity), and workplace exposure levels are based on its renal toxicity. Waste materials containing DU fragments are classified as low-level radioactive waste and are regulated by the Nuclear Regulatory Commission. These characteristics of DU do not preclude its use in KEPs. However, long-term management challenges associated with KEP deployment and improved public perceptions about environmental risks from military activities might be well served by a serious effort to identify, develop, and substitute alternative materials that meet performance objectives and involve fewer environmental risks. Tungsten, a leading candidate base material for KEPS, is potentially such a material because it is not radioactive. Tungsten is less well studied, however, with respect to health impacts and other environmental risks. The present study is designed to contribute to the understanding of the environmental behavior of tungsten by synthesizing available information that is relevant to its potential use as a penetrator.

  9. Acetonitrile shortage: use of isopropanol as an alternative elution system for ultra/high performance liquid chromatography†

    Science.gov (United States)

    Desai, Ankur M.; Andreae, Mark; Mullen, Douglas G.; Holl, Mark M. Banaszak; Baker, James R.

    2010-01-01

    Acetonitrile is a choice of solvent for almost all chromatographic separations. In recent years, researchers around the globe have faced an acetonitrile shortage that affected routine analytical operations. Researchers have tried to counter this shortage by applying many innovative solutions, including using ultra performance liquid chromatography (UPLC) columns that are shorter and smaller in diameter than traditional high performance liquid chromatography (HPLC) columns, thus significantly decreasing the volume of eluent required. Although utilizing UPLC in place of HPLC can alleviate the solvent demand to some extent, acetonitrile is generally thought of as the solvent of choice due to its versatility. In the following communication, we describe an alternative eluent system that uses isopropanol in place of acetonitrile as an organic modifier for routine chromatographic separations. We report here the development of an isopropanol based UPLC protocol for G5 PAMAM dendrimer based conjugates that was transferred to semi-preparative applications. PMID:21572563

  10. Urinary myoglobin quantification by high-performance liquid chromatography: An alternative measurement for exercise-induced muscle damage.

    Science.gov (United States)

    Lindsay, Angus; Carr, Sam; Draper, Nick; Gieseg, Steven P

    2015-12-15

    This study investigated a means of quantifying urinary myoglobin using a novel reverse-phase high-performance liquid chromatography (RP-HPLC) method that is an alternative measure of exercise-induced muscle damage. It also investigated the effect of storage and alkalization on urinary myoglobin stability issues. An RP-HPLC method was validated by precision and repeatability experiments. Myoglobin stability was determined through spiked urine samples stored at various temperatures over an 8-week period using alkalization and dilution in a pH 7.0 buffer. The method was validated with urine collected from mixed martial arts fighters during a competition and training session. The method produced linearity from 5 to 1000 μg/ml (R(2) = 0.997), intra- and inter-assay coefficients of variation from 0.32 to 2.94%, and a lower detection limit of 0.2 μg/ml in the final dilution and 2 μg/ml in the original urine sample. Recovery ranged from 96.4 to 102.5%, myoglobin remained stable at 4 °C when diluted in a pH 7.0 buffer after 20 h, and a significant increase (P mixed martial arts contest and training session. Storage length and conditions had significant effects (P < 0.05) on stability. The method's simplicity and noninvasive nature means it can be used as an alternative muscle damage assay following exercise and trauma. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Low friction slip-rolling contacts. Influences of alternative steels, high performance thin film coatings and lubricants

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, Christian

    2013-02-01

    Due to the growing environmental awareness worldwide, containment provisions for CO{sub 2} emissions in mobility systems and increasing performance requirements the demands on mechanical systems and their materials continuously rise. These high demands require the implementation of new technical approaches, for example of light-weight strategies in automotive powertrains, and directly raise questions about the suitability of the most promising technical solution. Two basic parameters, the surface hardness of the tooth flanks and the core fatigue strength of the tooth root, illustrate exemplarily increasing demands on material grades used for gear wheels in automotive powertrains. In addition to light-weight strategies, a reduction in friction and an increase of the fatigue lifetime are two other major development directions to strive the mentioned targets. It is clear that any kind of solution must show an equal application profile, preferably an improvement, compared to the state-of-the-art solutions. For tribological systems, the following paths may offer lower friction and higher load carrying capabilities: 1. Alternative base oils and additives (such as esters, polyglycols), 2. Thin film coatings (e.g. DLC) and/or 3. Novel steel metallurgies. In previous investigations on the slip-rolling resistance of thin film coatings (a-C, ta-C, Zr(C,N)) the substrates were mainly made of the bearing steels 100Cr6H and Cronidur 30. Applying contact pressures of up to P{sub 0max} = 2.9 GPa (F{sub N} = 2,000 N), the samples were tested up to 10 million load cycles in endurance tests. The aim of the present work is to broaden the research by varying the input parameters. Newly developed engine oil mixtures, high performance thin film coatings and alternative steel solutions are intensively investigated in highly stressed slip-rolling contacts at lubricant temperatures of 120 C. Specifically, in using new steel metallurgies, i.e. the high toughness and high strength steels V300

  12. An Alternating 5,5-Dimethylcyclopentadiene-based Copolymer prepared at Room Temperature for High Performance Organic Thin Film Transistors

    KAUST Repository

    Fei, Zhuping

    2017-06-05

    We report that the inclusion of non-aromatic 5,5-dimethylcyclopentadiene monomer into a conjugated backbone is an attractive strategy to high performance semiconducting polymers. The use of this monomer enables a room temperature Suzuki copolymerization with a diketopyrrolopyrrole comono-mer to afford a highly soluble, high molecular weight material. The resulting low band gap polymer exhibits excellent photo and thermal stability, and despite a large π-π stacking distance of 4.26 Å, it demonstrates excellent performance in thin-film transistor devices.

  13. High-performance alternating current field-induced chromatic-stable white polymer electroluminescent devices employing a down-conversion layer

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yingdong; Chen, Yonghua; Smith, Gregory M. [Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University, Winston-Salem, NC 27105 (United States); Sun, Hengda; Yang, Dezhi [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Nie, Wanyi; Li, Yuan; Huang, Wenxiao [Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University, Winston-Salem, NC 27105 (United States); Ma, Dongge [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Carroll, David L., E-mail: carroldl@wfu.edu [Center for Nanotechnology and Molecular Materials, Department of Physics, Wake Forest University, Winston-Salem, NC 27105 (United States)

    2015-05-15

    In this work, a high-performance alternating current (AC) filed-induced chromatic-stable white polymer electroluminescence (WFIPEL) device was fabricated by combining a fluorophor Poly(9,9-dioctylfluorene) (PFO)-based blue device with a yellow down-conversion layer (YAG:Ce). A maximum luminance of this down-conversion FIPEL device achieves 3230 cd m{sup −2}, which is 1.41 times higher than the device without the down-conversion layer. A maximum current efficiency and power efficiency of the down-conversion WFIPEL device reach 19.7 cd A{sup −1} at 3050 cd m{sup −2} and 5.37 lm W{sup −1} at 2310 cd m{sup −2} respectively. To the best of our knowledge, the power efficiency is one of the highest reports for the WFIPEL up to now. Moreover, Commison Internationale de L’Eclairage (CIE) coordinates of (0.28, 0.30) is obtained by adjusting the thickness of the down-conversion layer to 30 μm and it is kept stable over the entire AC-driven voltage range. We believe that this AC-driven, down-conversion, WFIPEL device may offer an easy way towards future flat and flexible lighting sources. - Highlights: • A high-performance AC filed-induced chromatic-stable white polymer electroluminescence (WFIPEL) device was fabricated. • A maximum luminance, current efficiency, and power efficiency achieves 3230 cd m{sup −2}, 19.7 cd A{sup −1}, and 5.37 lm W{sup −1}, respectively. • The power efficiency is one of the highest reports for the WFIPEL up to now. • The EL spectrum kept very stable over the entire AC-driven voltage range.

  14. High Performance Thin Layer Chromatography.

    Science.gov (United States)

    Costanzo, Samuel J.

    1984-01-01

    Clarifies where in the scheme of modern chromatography high performance thin layer chromatography (TLC) fits and why in some situations it is a viable alternative to gas and high performance liquid chromatography. New TLC plates, sample applications, plate development, and instrumental techniques are considered. (JN)

  15. High Performance Thin Layer Chromatography.

    Science.gov (United States)

    Costanzo, Samuel J.

    1984-01-01

    Clarifies where in the scheme of modern chromatography high performance thin layer chromatography (TLC) fits and why in some situations it is a viable alternative to gas and high performance liquid chromatography. New TLC plates, sample applications, plate development, and instrumental techniques are considered. (JN)

  16. A rationally designed composite of alternating strata of Si nanoparticles and graphene: a high-performance lithium-ion battery anode.

    Science.gov (United States)

    Sun, Fu; Huang, Kai; Qi, Xiang; Gao, Tian; Liu, Yuping; Zou, Xianghua; Wei, Xiaolin; Zhong, Jianxin

    2013-09-21

    We have successfully fabricated a free-standing Si-re-G (reduced graphene) alternating stratum structure composite through a repeated process of filtering liquid exfoliated graphene oxide and uniformly dispersed Si solution, followed by the reduction of graphene oxide. The as-prepared free-standing flexible alternating stratum structure composite was directly evaluated as the anode for rechargeable lithium half-cells without adding any polymer binder, conductive additives or using current collectors. The half cells based on this new alternating structure composite exhibit an unexpected capacity of 1500 mA h g(-1) after 100 cycles at 1.35 A g(-1). Our rationally proposed strategy has incorporated the long cycle life of carbon and the high lithium-storage capacity of Si into one entity using the feasible and scalable vacuum filtration technique, rendering this new protocol as a readily applicable means of addressing the practical application challenges associated with the next generation of rechargeable lithium-ion batteries.

  17. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur....... Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  18. High performance homes

    DEFF Research Database (Denmark)

    Beim, Anne; Vibæk, Kasper Sánchez

    2014-01-01

    Can prefabrication contribute to the development of high performance homes? To answer this question, this chapter defines high performance in more broadly inclusive terms, acknowledging the technical, architectural, social and economic conditions under which energy consumption and production occur....... Consideration of all these factors is a precondition for a truly integrated practice and as this chapter demonstrates, innovative project delivery methods founded on the manufacturing of prefabricated buildings contribute to the production of high performance homes that are cost effective to construct, energy...

  19. High Performance Marine Vessels

    CERN Document Server

    Yun, Liang

    2012-01-01

    High Performance Marine Vessels (HPMVs) range from the Fast Ferries to the latest high speed Navy Craft, including competition power boats and hydroplanes, hydrofoils, hovercraft, catamarans and other multi-hull craft. High Performance Marine Vessels covers the main concepts of HPMVs and discusses historical background, design features, services that have been successful and not so successful, and some sample data of the range of HPMVs to date. Included is a comparison of all HPMVs craft and the differences between them and descriptions of performance (hydrodynamics and aerodynamics). Readers will find a comprehensive overview of the design, development and building of HPMVs. In summary, this book: Focuses on technology at the aero-marine interface Covers the full range of high performance marine vessel concepts Explains the historical development of various HPMVs Discusses ferries, racing and pleasure craft, as well as utility and military missions High Performance Marine Vessels is an ideal book for student...

  20. Danish High Performance Concretes

    DEFF Research Database (Denmark)

    Nielsen, M. P.; Christoffersen, J.; Frederiksen, J.

    1994-01-01

    In this paper the main results obtained in the research program High Performance Concretes in the 90's are presented. This program was financed by the Danish government and was carried out in cooperation between The Technical University of Denmark, several private companies, and Aalborg University...

  1. High performance systems

    Energy Technology Data Exchange (ETDEWEB)

    Vigil, M.B. [comp.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  2. High Performance Concrete

    OpenAIRE

    Traian Oneţ

    2009-01-01

    The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  3. High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Traian Oneţ

    2009-01-01

    Full Text Available The paper presents the last studies and researches accomplished in Cluj-Napoca related to high performance concrete, high strength concrete and self compacting concrete. The purpose of this paper is to raid upon the advantages and inconveniences when a particular concrete type is used. Two concrete recipes are presented, namely for the concrete used in rigid pavement for roads and another one for self-compacting concrete.

  4. High Performance Liquid Chromatography

    Science.gov (United States)

    Talcott, Stephen

    High performance liquid chromatography (HPLC) has many applications in food chemistry. Food components that have been analyzed with HPLC include organic acids, vitamins, amino acids, sugars, nitrosamines, certain pesticides, metabolites, fatty acids, aflatoxins, pigments, and certain food additives. Unlike gas chromatography, it is not necessary for the compound being analyzed to be volatile. It is necessary, however, for the compounds to have some solubility in the mobile phase. It is important that the solubilized samples for injection be free from all particulate matter, so centrifugation and filtration are common procedures. Also, solid-phase extraction is used commonly in sample preparation to remove interfering compounds from the sample matrix prior to HPLC analysis.

  5. Clojure high performance programming

    CERN Document Server

    Kumar, Shantanu

    2013-01-01

    This is a short, practical guide that will teach you everything you need to know to start writing high performance Clojure code.This book is ideal for intermediate Clojure developers who are looking to get a good grip on how to achieve optimum performance. You should already have some experience with Clojure and it would help if you already know a little bit of Java. Knowledge of performance analysis and engineering is not required. For hands-on practice, you should have access to Clojure REPL with Leiningen.

  6. High performance AC drives

    CERN Document Server

    Ahmad, Mukhtar

    2010-01-01

    This book presents a comprehensive view of high performance ac drives. It may be considered as both a text book for graduate students and as an up-to-date monograph. It may also be used by R & D professionals involved in the improvement of performance of drives in the industries. The book will also be beneficial to the researchers pursuing work on multiphase drives as well as sensorless and direct torque control of electric drives since up-to date references in these topics are provided. It will also provide few examples of modeling, analysis and control of electric drives using MATLAB/SIMULIN

  7. Alternative solvent-based methyl benzoate vortex-assisted dispersive liquid-liquid microextraction for the high-performance liquid chromatographic determination of benzimidazole fungicides in environmental water samples.

    Science.gov (United States)

    Santaladchaiyakit, Yanawath; Srijaranai, Supalax

    2014-11-01

    Vortex-assisted dispersive liquid-liquid microextraction using methyl benzoate as an alternative extraction solvent for extracting and preconcentrating three benzimidazole fungicides (i.e., carbendazim, thiabendazole, and fluberidazole) in environmental water samples before high-performance liquid chromatographic analysis has been developed. The selected microextraction conditions were 250 μL of methyl benzoate containing 300 μL of ethanol, 1.0% w/v sodium acetate, and vortex agitation speed of 2100 rpm for 30 s. Under optimum conditions, preconcentration factors were 14.5-39.0 for the target fungicides. Limits of detection were obtained in the range of 0.01-0.05 μg/L. The proposed method was then applied to surface water samples and the recovery evaluations at three spiked concentration levels of 5, 30, and 50 μg/L were obtained in the range of 77.4-110.9% with the relative standard deviation water samples.

  8. High Performance RAIT

    Institute of Scientific and Technical Information of China (English)

    JamesHughes; CharlesMilligan; 等

    2001-01-01

    The ability to move 10s of TeraBytes in reasonable amounts of time are critical to many of the High Energy Physics applications.This paper examines the issues of high performance,high reliability tape storage systems,and presents the results of a 2-year ASCI Path Forward program to be able to reliably move 1GB/s to an archive that can last 20 years.This paper will cover the requirements.approach,hardware,application software,interface descriptions,performance,measured reliability and predicted reliability.This paper will also touch on future directions for this research.The current research allows systems to sustain 80MB/s of uncompressable data per Fibre Channel interface which is striped out to 8 or more drives.This looks to the application as a single tape drive from both mout and data transfer perspectives .Striping 12 RAIT systems together will provide nearly 1GB/s to tape.The reliability is provided by a method of adding parity tapes to the data stripes.For example,adding 2 parity tapes to an 8-stripe group will allow any 2 of the 10 tapes to be lost or damaged without loss of information.The reliability of RAIT with 8 stripes and 2 parities exceeds that of mirrored tapes while RAIT uses 10 tapes instead of the 16 tapes that a mirror would require.The results of this paper is to be abloe to understand the applicability of RAIT and to be able to understand when it may be useful in High Energy Physics applications.

  9. High-performance sports medicine

    National Research Council Canada - National Science Library

    Speed, Cathy

    2013-01-01

    High performance sports medicine involves the medical care of athletes, who are extraordinary individuals and who are exposed to intensive physical and psychological stresses during training and competition...

  10. High Performance Space Pump Project

    Data.gov (United States)

    National Aeronautics and Space Administration — PDT is proposing a High Performance Space Pump based upon an innovative design using several technologies. The design will use a two-stage impeller, high temperature...

  11. RavenDB high performance

    CERN Document Server

    Ritchie, Brian

    2013-01-01

    RavenDB High Performance is comprehensive yet concise tutorial that developers can use to.This book is for developers & software architects who are designing systems in order to achieve high performance right from the start. A basic understanding of RavenDB is recommended, but not required. While the book focuses on advanced topics, it does not assume that the reader has a great deal of prior knowledge of working with RavenDB.

  12. INL High Performance Building Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Jennifer D. Morton

    2010-02-01

    High performance buildings, also known as sustainable buildings and green buildings, are resource efficient structures that minimize the impact on the environment by using less energy and water, reduce solid waste and pollutants, and limit the depletion of natural resources while also providing a thermally and visually comfortable working environment that increases productivity for building occupants. As Idaho National Laboratory (INL) becomes the nation’s premier nuclear energy research laboratory, the physical infrastructure will be established to help accomplish this mission. This infrastructure, particularly the buildings, should incorporate high performance sustainable design features in order to be environmentally responsible and reflect an image of progressiveness and innovation to the public and prospective employees. Additionally, INL is a large consumer of energy that contributes to both carbon emissions and resource inefficiency. In the current climate of rising energy prices and political pressure for carbon reduction, this guide will help new construction project teams to design facilities that are sustainable and reduce energy costs, thereby reducing carbon emissions. With these concerns in mind, the recommendations described in the INL High Performance Building Strategy (previously called the INL Green Building Strategy) are intended to form the INL foundation for high performance building standards. This revised strategy incorporates the latest federal and DOE orders (Executive Order [EO] 13514, “Federal Leadership in Environmental, Energy, and Economic Performance” [2009], EO 13423, “Strengthening Federal Environmental, Energy, and Transportation Management” [2007], and DOE Order 430.2B, “Departmental Energy, Renewable Energy, and Transportation Management” [2008]), the latest guidelines, trends, and observations in high performance building construction, and the latest changes to the Leadership in Energy and Environmental Design

  13. Monitoring SLAC High Performance UNIX Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lettsome, Annette K.; /Bethune-Cookman Coll. /SLAC

    2005-12-15

    Knowledge of the effectiveness and efficiency of computers is important when working with high performance systems. The monitoring of such systems is advantageous in order to foresee possible misfortunes or system failures. Ganglia is a software system designed for high performance computing systems to retrieve specific monitoring information. An alternative storage facility for Ganglia's collected data is needed since its default storage system, the round-robin database (RRD), struggles with data integrity. The creation of a script-driven MySQL database solves this dilemma. This paper describes the process took in the creation and implementation of the MySQL database for use by Ganglia. Comparisons between data storage by both databases are made using gnuplot and Ganglia's real-time graphical user interface.

  14. High-Performance Ball Bearing

    Science.gov (United States)

    Bursey, Roger W., Jr.; Haluck, David A.; Olinger, John B.; Owen, Samuel S.; Poole, William E.

    1995-01-01

    High-performance bearing features strong, lightweight, self-lubricating cage with self-lubricating liners in ball apertures. Designed to operate at high speed (tens of thousands of revolutions per minute) in cryogenic environment like liquid-oxygen or liquid-hydrogen turbopump. Includes inner race, outer race, and cage keeping bearing balls equally spaced.

  15. High-Performance Polymeric Materials.

    Science.gov (United States)

    1987-12-07

    interactions, Chain packing, Polybenzobisoxazoles Electrical conductivity Polybenzobisthiazoles Ceramic particles Chain flexibility Elastomer reinforcement...structures for the polybenzobisoxazole (PBO) and polybenzobisthiazole (PBT) chains originally synthesized and much studied because of their utility as...high-performance fibers and films. For cts-PBO, trans-PBO. and trans-PBT chains in their coplanar conformations, the band gaps in the axial direction

  16. High performance rolling element bearing

    Science.gov (United States)

    Bursey, Jr., Roger W. (Inventor); Olinger, Jr., John B. (Inventor); Owen, Samuel S. (Inventor); Poole, William E. (Inventor); Haluck, David A. (Inventor)

    1993-01-01

    A high performance rolling element bearing (5) which is particularly suitable for use in a cryogenically cooled environment, comprises a composite cage (45) formed from glass fibers disposed in a solid lubricant matrix of a fluorocarbon polymer. The cage includes inserts (50) formed from a mixture of a soft metal and a solid lubricant such as a fluorocarbon polymer.

  17. High-Performance Ball Bearing

    Science.gov (United States)

    Bursey, Roger W., Jr.; Haluck, David A.; Olinger, John B.; Owen, Samuel S.; Poole, William E.

    1995-01-01

    High-performance bearing features strong, lightweight, self-lubricating cage with self-lubricating liners in ball apertures. Designed to operate at high speed (tens of thousands of revolutions per minute) in cryogenic environment like liquid-oxygen or liquid-hydrogen turbopump. Includes inner race, outer race, and cage keeping bearing balls equally spaced.

  18. High-Performance Operating Systems

    DEFF Research Database (Denmark)

    Sharp, Robin

    1999-01-01

    Notes prepared for the DTU course 49421 "High Performance Operating Systems". The notes deal with quantitative and qualitative techniques for use in the design and evaluation of operating systems in computer systems for which performance is an important parameter, such as real-time applications......, communication systems and multimedia systems....

  19. High Performance Bulk Thermoelectric Materials

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Zhifeng [Boston College, Chestnut Hill, MA (United States)

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  20. High-Performance Data Converters

    DEFF Research Database (Denmark)

    Steensgaard-Madsen, Jesper

    Novel techniques for multi-bit oversampled data conversion are described. State-of-the-art oversampled data converters are analyzed, leading to the conclusion that their performance is limited mainly by low-resolution signal representation. To increase the resolution, high-performance, high...

  1. High-Performance Operating Systems

    DEFF Research Database (Denmark)

    Sharp, Robin

    1999-01-01

    Notes prepared for the DTU course 49421 "High Performance Operating Systems". The notes deal with quantitative and qualitative techniques for use in the design and evaluation of operating systems in computer systems for which performance is an important parameter, such as real-time applications......, communication systems and multimedia systems....

  2. BEDOPS: high-performance genomic feature operations.

    Science.gov (United States)

    Neph, Shane; Kuehn, M Scott; Reynolds, Alex P; Haugen, Eric; Thurman, Robert E; Johnson, Audra K; Rynes, Eric; Maurano, Matthew T; Vierstra, Jeff; Thomas, Sean; Sandstrom, Richard; Humbert, Richard; Stamatoyannopoulos, John A

    2012-07-15

    The large and growing number of genome-wide datasets highlights the need for high-performance feature analysis and data comparison methods, in addition to efficient data storage and retrieval techniques. We introduce BEDOPS, a software suite for common genomic analysis tasks which offers improved flexibility, scalability and execution time characteristics over previously published packages. The suite includes a utility to compress large inputs into a lossless format that can provide greater space savings and faster data extractions than alternatives. http://code.google.com/p/bedops/ includes binaries, source and documentation.

  3. 16S-23S Internal Transcribed Spacer Region PCR and Sequencer-Based Capillary Gel Electrophoresis has Potential as an Alternative to High Performance Liquid Chromatography for Identification of Slowly Growing Nontuberculous Mycobacteria

    Science.gov (United States)

    Subedi, Shradha; Kong, Fanrong; Jelfs, Peter; Gray, Timothy J.; Xiao, Meng; Sintchenko, Vitali; Chen, Sharon C-A

    2016-01-01

    Accurate identification of slowly growing nontuberculous mycobacteria (SG-NTM) of clinical significance remains problematic. This study evaluated a novel method of SG-NTM identification by amplification of the mycobacterial 16S-23S rRNA internal transcribed spacer (ITS) region followed by resolution of amplified fragments by sequencer-based capillary gel electrophoresis (SCGE). Fourteen American Type Culture Collection (ATCC) strains and 103 clinical/environmental isolates (total n = 24 species) of SG-NTM were included. Identification was compared with that achieved by high performance liquid chromatography (HPLC), in-house PCR and 16S/ITS sequencing. Isolates of all species yielded a SCGE profile comprising a single fragment length (or peak) except for M. scrofulaceum (two peaks). SCGE peaks of ATCC strains were distinct except for peak overlap between Mycobacterium kansasii and M. marinum. Of clinical/environmental strains, unique peaks were seen for 7/17 (41%) species (M. haemophilum, M. kubicae, M. lentiflavum, M. terrae, M. kansasii, M. asiaticum and M. triplex); 3/17 (18%) species were identified by HPLC. There were five SCGE fragment length types (I–V) each of M. avium, M. intracellulare and M. gordonae. Overlap of fragment lengths was seen between M. marinum and M. ulcerans; for M. gordonae SCGE type III and M. paragordonae; M. avium SCGE types III and IV, and M. intracellulare SCGE type I; M. chimaera, M. parascrofulaceum and M. intracellulare SCGE types III and IV; M. branderi and M. avium type V; and M. vulneris and M. intracellulare type V. The ITS-SCGE method was able to provide the first line rapid and reproducible species identification/screening of SG-NTM and was more discriminatory than HPLC. PMID:27749897

  4. 16S-23S Internal Transcribed Spacer Region PCR and Sequencer-Based Capillary Gel Electrophoresis has Potential as an Alternative to High Performance Liquid Chromatography for Identification of Slowly Growing Nontuberculous Mycobacteria.

    Science.gov (United States)

    Subedi, Shradha; Kong, Fanrong; Jelfs, Peter; Gray, Timothy J; Xiao, Meng; Sintchenko, Vitali; Chen, Sharon C-A

    2016-01-01

    Accurate identification of slowly growing nontuberculous mycobacteria (SG-NTM) of clinical significance remains problematic. This study evaluated a novel method of SG-NTM identification by amplification of the mycobacterial 16S-23S rRNA internal transcribed spacer (ITS) region followed by resolution of amplified fragments by sequencer-based capillary gel electrophoresis (SCGE). Fourteen American Type Culture Collection (ATCC) strains and 103 clinical/environmental isolates (total n = 24 species) of SG-NTM were included. Identification was compared with that achieved by high performance liquid chromatography (HPLC), in-house PCR and 16S/ITS sequencing. Isolates of all species yielded a SCGE profile comprising a single fragment length (or peak) except for M. scrofulaceum (two peaks). SCGE peaks of ATCC strains were distinct except for peak overlap between Mycobacterium kansasii and M. marinum. Of clinical/environmental strains, unique peaks were seen for 7/17 (41%) species (M. haemophilum, M. kubicae, M. lentiflavum, M. terrae, M. kansasii, M. asiaticum and M. triplex); 3/17 (18%) species were identified by HPLC. There were five SCGE fragment length types (I-V) each of M. avium, M. intracellulare and M. gordonae. Overlap of fragment lengths was seen between M. marinum and M. ulcerans; for M. gordonae SCGE type III and M. paragordonae; M. avium SCGE types III and IV, and M. intracellulare SCGE type I; M. chimaera, M. parascrofulaceum and M. intracellulare SCGE types III and IV; M. branderi and M. avium type V; and M. vulneris and M. intracellulare type V. The ITS-SCGE method was able to provide the first line rapid and reproducible species identification/screening of SG-NTM and was more discriminatory than HPLC.

  5. High performance in software development

    CERN Document Server

    CERN. Geneva; Haapio, Petri; Liukkonen, Juha-Matti

    2015-01-01

    What are the ingredients of high-performing software? Software development, especially for large high-performance systems, is one the most complex tasks mankind has ever tried. Technological change leads to huge opportunities but challenges our old ways of working. Processing large data sets, possibly in real time or with other tight computational constraints, requires an efficient solution architecture. Efficiency requirements span from the distributed storage and large-scale organization of computation and data onto the lowest level of processor and data bus behavior. Integrating performance behavior over these levels is especially important when the computation is resource-bounded, as it is in numerics: physical simulation, machine learning, estimation of statistical models, etc. For example, memory locality and utilization of vector processing are essential for harnessing the computing power of modern processor architectures due to the deep memory hierarchies of modern general-purpose computers. As a r...

  6. High performance scalable image coding

    Institute of Scientific and Technical Information of China (English)

    Gan Tao; He Yanmin; Zhu Weile

    2007-01-01

    A high performance scalable image coding algorithm is proposed. The salient features of this algorithm are the ways to form and locate the significant clusters. Thanks to the list structure, the new coding algorithm achieves fine fractional bit-plane coding with negligible additional complexity. Experiments show that it performs comparably or better than the state-of-the-art coders. Furthermore, the flexible codec supports both quality and resolution scalability, which is very attractive in many network applications.

  7. Neo4j high performance

    CERN Document Server

    Raj, Sonal

    2015-01-01

    If you are a professional or enthusiast who has a basic understanding of graphs or has basic knowledge of Neo4j operations, this is the book for you. Although it is targeted at an advanced user base, this book can be used by beginners as it touches upon the basics. So, if you are passionate about taming complex data with the help of graphs and building high performance applications, you will be able to get valuable insights from this book.

  8. High Performance Tools And Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Collette, M R; Corey, I R; Johnson, J R

    2005-01-24

    This goal of this project was to evaluate the capability and limits of current scientific simulation development tools and technologies with specific focus on their suitability for use with the next generation of scientific parallel applications and High Performance Computing (HPC) platforms. The opinions expressed in this document are those of the authors, and reflect the authors' current understanding and functionality of the many tools investigated. As a deliverable for this effort, we are presenting this report describing our findings along with an associated spreadsheet outlining current capabilities and characteristics of leading and emerging tools in the high performance computing arena. This first chapter summarizes our findings (which are detailed in the other chapters) and presents our conclusions, remarks, and anticipations for the future. In the second chapter, we detail how various teams in our local high performance community utilize HPC tools and technologies, and mention some common concerns they have about them. In the third chapter, we review the platforms currently or potentially available to utilize these tools and technologies on to help in software development. Subsequent chapters attempt to provide an exhaustive overview of the available parallel software development tools and technologies, including their strong and weak points and future concerns. We categorize them as debuggers, memory checkers, performance analysis tools, communication libraries, data visualization programs, and other parallel development aides. The last chapter contains our closing information. Included with this paper at the end is a table of the discussed development tools and their operational environment.

  9. FUNDAMENTALS OF HIGH PERFORMANCE ORGANIZATIONS.

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Gili Massi

    2013-06-01

    Full Text Available The objective of this article is to verify whether organizations’ high performance rests on their culture, which adjusts their cultural values, strategy, and external environment. A strong organizational culture has been reported as determinant of organizations’ performance. These studies approach the influence of values guiding and adjusting the organization’s strategic actions regarding its external environment. The bibliographic research showed that there are other variables impacting of organizations’ performance and it was concluded that the objective of this study was partially achieved.

  10. High Performance Perovskite Solar Cells.

    Science.gov (United States)

    Tong, Xin; Lin, Feng; Wu, Jiang; Wang, Zhiming M

    2016-05-01

    Perovskite solar cells fabricated from organometal halide light harvesters have captured significant attention due to their tremendously low device costs as well as unprecedented rapid progress on power conversion efficiency (PCE). A certified PCE of 20.1% was achieved in late 2014 following the first study of long-term stable all-solid-state perovskite solar cell with a PCE of 9.7% in 2012, showing their promising potential towards future cost-effective and high performance solar cells. Here, notable achievements of primary device configuration involving perovskite layer, hole-transporting materials (HTMs) and electron-transporting materials (ETMs) are reviewed. Numerous strategies for enhancing photovoltaic parameters of perovskite solar cells, including morphology and crystallization control of perovskite layer, HTMs design and ETMs modifications are discussed in detail. In addition, perovskite solar cells outside of HTMs and ETMs are mentioned as well, providing guidelines for further simplification of device processing and hence cost reduction.

  11. Toward high performance graphene fibers.

    Science.gov (United States)

    Chen, Li; He, Yuling; Chai, Songgang; Qiang, Hong; Chen, Feng; Fu, Qiang

    2013-07-07

    Two-dimensional graphene and graphene-based materials have attracted tremendous interest, hence much attention has been drawn to exploring and applying their exceptional characteristics and properties. Integration of graphene sheets into macroscopic fibers is a very important way for their application and has received increasing interest. In this study, neat and macroscopic graphene fibers were continuously spun from graphene oxide (GO) suspensions followed by chemical reduction. By varying wet-spinning conditions, a series of graphene fibers were prepared, then, the structural features, mechanical and electrical performances of the fibers were investigated. We found the orientation of graphene sheets, the interaction between inter-fiber graphene sheets and the defects in the fibers have a pronounced effect on the properties of the fibers. Graphene fibers with excellent mechanical and electrical properties will yield great advances in high-tech applications. These findings provide guidance for the future production of high performance graphene fibers.

  12. High Performance Proactive Digital Forensics

    Science.gov (United States)

    Alharbi, Soltan; Moa, Belaid; Weber-Jahnke, Jens; Traore, Issa

    2012-10-01

    With the increase in the number of digital crimes and in their sophistication, High Performance Computing (HPC) is becoming a must in Digital Forensics (DF). According to the FBI annual report, the size of data processed during the 2010 fiscal year reached 3,086 TB (compared to 2,334 TB in 2009) and the number of agencies that requested Regional Computer Forensics Laboratory assistance increasing from 689 in 2009 to 722 in 2010. Since most investigation tools are both I/O and CPU bound, the next-generation DF tools are required to be distributed and offer HPC capabilities. The need for HPC is even more evident in investigating crimes on clouds or when proactive DF analysis and on-site investigation, requiring semi-real time processing, are performed. Although overcoming the performance challenge is a major goal in DF, as far as we know, there is almost no research on HPC-DF except for few papers. As such, in this work, we extend our work on the need of a proactive system and present a high performance automated proactive digital forensic system. The most expensive phase of the system, namely proactive analysis and detection, uses a parallel extension of the iterative z algorithm. It also implements new parallel information-based outlier detection algorithms to proactively and forensically handle suspicious activities. To analyse a large number of targets and events and continuously do so (to capture the dynamics of the system), we rely on a multi-resolution approach to explore the digital forensic space. Data set from the Honeynet Forensic Challenge in 2001 is used to evaluate the system from DF and HPC perspectives.

  13. The Pursuit of High Performance

    Directory of Open Access Journals (Sweden)

    Roger Hanson

    2010-11-01

    Full Text Available A common focal point of conversation when judges from different countries meet is how their respective legal processes are different. Certainly true distinctions exist among the range of legal systems extant in the world. Civil law, common law, religious law, customary law, Sharia, and their combinations exhibit real and substantial alternatives in how, why and when court business is conducted. Yet, underneath this variation, there are striking similarities.By Roger Hanson, Brian Ostrom and Matthew Kleiman

  14. A Linux Workstation for High Performance Graphics

    Science.gov (United States)

    Geist, Robert; Westall, James

    2000-01-01

    The primary goal of this effort was to provide a low-cost method of obtaining high-performance 3-D graphics using an industry standard library (OpenGL) on PC class computers. Previously, users interested in doing substantial visualization or graphical manipulation were constrained to using specialized, custom hardware most often found in computers from Silicon Graphics (SGI). We provided an alternative to expensive SGI hardware by taking advantage of third-party, 3-D graphics accelerators that have now become available at very affordable prices. To make use of this hardware our goal was to provide a free, redistributable, and fully-compatible OpenGL work-alike library so that existing bodies of code could simply be recompiled. for PC class machines running a free version of Unix. This should allow substantial cost savings while greatly expanding the population of people with access to a serious graphics development and viewing environment. This should offer a means for NASA to provide a spectrum of graphics performance to its scientists, supplying high-end specialized SGI hardware for high-performance visualization while fulfilling the requirements of medium and lower performance applications with generic, off-the-shelf components and still maintaining compatibility between the two.

  15. High performance solar Stirling system

    Science.gov (United States)

    Stearns, J. W.; Haglund, R.

    1981-01-01

    A full-scale Dish-Stirling system experiment, at a power level of 25 kWe, has been tested during 1981 on the Test Bed Concentrator No. 2 at the Parabolic Dish Test Site, Edwards, CA. Test components, designed and developed primarily by industrial contractors for the Department of Energy, include an advanced Stirling engine driving an induction alternator, a directly-coupled solar receiver with a natural gas combustor for hybrid operation and a breadboard control system based on a programmable controller and standard utility substation components. The experiment demonstrated practicality of the solar Stirling application and high system performance into a utility grid. This paper describes the design and its functions, and the test results obtained.

  16. High performance solar Stirling system

    Science.gov (United States)

    Stearns, J. W.; Haglund, R.

    1981-12-01

    A full-scale Dish-Stirling system experiment, at a power level of 25 kWe, has been tested during 1981 on the Test Bed Concentrator No. 2 at the Parabolic Dish Test Site, Edwards, CA. Test components, designed and developed primarily by industrial contractors for the Department of Energy, include an advanced Stirling engine driving an induction alternator, a directly-coupled solar receiver with a natural gas combustor for hybrid operation and a breadboard control system based on a programmable controller and standard utility substation components. The experiment demonstrated practicality of the solar Stirling application and high system performance into a utility grid. This paper describes the design and its functions, and the test results obtained.

  17. High performance MEAs. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-15

    The aim of the present project is through modeling, material and process development to obtain significantly better MEA performance and to attain the technology necessary to fabricate stable catalyst materials thereby providing a viable alternative to current industry standard. This project primarily focused on the development and characterization of novel catalyst materials for the use in high temperature (HT) and low temperature (LT) proton-exchange membrane fuel cells (PEMFC). New catalysts are needed in order to improve fuel cell performance and reduce the cost of fuel cell systems. Additional tasks were the development of new, durable sealing materials to be used in PEMFC as well as the computational modeling of heat and mass transfer processes, predominantly in LT PEMFC, in order to improve fundamental understanding of the multi-phase flow issues and liquid water management in fuel cells. An improved fundamental understanding of these processes will lead to improved fuel cell performance and hence will also result in a reduced catalyst loading to achieve the same performance. The consortium have obtained significant research results and progress for new catalyst materials and substrates with promising enhanced performance and fabrication of the materials using novel methods. However, the new materials and synthesis methods explored are still in the early research and development phase. The project has contributed to improved MEA performance using less precious metal and has been demonstrated for both LT-PEM, DMFC and HT-PEM applications. New novel approach and progress of the modelling activities has been extremely satisfactory with numerous conference and journal publications along with two potential inventions concerning the catalyst layer. (LN)

  18. Carpet Aids Learning in High Performance Schools

    Science.gov (United States)

    Hurd, Frank

    2009-01-01

    The Healthy and High Performance Schools Act of 2002 has set specific federal guidelines for school design, and developed a federal/state partnership program to assist local districts in their school planning. According to the Collaborative for High Performance Schools (CHPS), high-performance schools are, among other things, healthy, comfortable,…

  19. Attaining High Performance Communications A Vertical Approach

    CERN Document Server

    Gavrilovska, Ada

    2009-01-01

    Technological Advances and Problems of High Performance Communications. An ecosystem of solutions along a stack of technology layers. Cohesively collecting state-of-the-art contributions from leading researchers in industry, national laboratories, and academia, Attaining High Performance Communications: A Vertical Approach discusses various issues pertaining to high performance communications in a particular layer of a vertical stack. It explores efficient interconnection hardware, the architectural aspects of network adapters and their integration with processor cores, the design of scalable

  20. High Performance Spaceflight Computing (HPSC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In 2012, the NASA Game Changing Development Program (GCDP), residing in the NASA Space Technology Mission Directorate (STMD), commissioned a High Performance...

  1. High performance carbon nanocomposites for ultracapacitors

    Science.gov (United States)

    Lu, Wen

    2012-10-02

    The present invention relates to composite electrodes for electrochemical devices, particularly to carbon nanotube composite electrodes for high performance electrochemical devices, such as ultracapacitors.

  2. China's High Performance Computer Standard Commission Established

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ China's High Performance Computer Standard Commission was established on March 28, 2007, under the guidance of the Science and Technology Bureau of the Ministry of Information Industry. It will prepare relevant professional standards on high performance computers to break through the monopoly in the field by foreign manufacturers and vendors.

  3. Scheduling in high performance buffered crossbar switches

    NARCIS (Netherlands)

    Mhamdi, L.

    2007-01-01

    High performance routers are the basic building blocks of the Internet. Most high performance routers built today use crossbars and a centralized scheduler. Due to their high scheduling complexity, crossbar-based routers are not scalable and cannot keep pace with the explosive growth of the Internet

  4. High Performance Work Systems and Firm Performance.

    Science.gov (United States)

    Kling, Jeffrey

    1995-01-01

    A review of 17 studies of high-performance work systems concludes that benefits of employee involvement, skill training, and other high-performance work practices tend to be greater when new methods are adopted as part of a consistent whole. (Author)

  5. Neutron shielding material based on colemanite and epoxy resin.

    Science.gov (United States)

    Okuno, Koichi

    2005-01-01

    In recent years, there has been a need for compact shielding design such as self-shielding of a PET cyclotron or upgradation of radiation machinery in existing facilities. In these cases, high performance shielding materials are needed. Concrete or polyethylene have been used for a neutron shield. However, for compact shielding, they fall short in terms of performance or durability. Therefore, a new type of neutron shielding material based on epoxy resin and colemanite has been developed. Slab attenuation experiments up to 40 cm for the new shielding material were carried out using a 252Cf neutron source. Measurement was carried out using a REM-counter, and compared with calculation. The results show that the shielding performance is better than concrete and polyethylene mixed with 10 wt% boron oxide. From the result, we confirmed that the performance of the new material is suitable for practical use.

  6. High Performance Grinding and Advanced Cutting Tools

    CERN Document Server

    Jackson, Mark J

    2013-01-01

    High Performance Grinding and Advanced Cutting Tools discusses the fundamentals and advances in high performance grinding processes, and provides a complete overview of newly-developing areas in the field. Topics covered are grinding tool formulation and structure, grinding wheel design and conditioning and applications using high performance grinding wheels. Also included are heat treatment strategies for grinding tools, using grinding tools for high speed applications, laser-based and diamond dressing techniques, high-efficiency deep grinding, VIPER grinding, and new grinding wheels.

  7. Strategy Guideline: High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  8. New nonlinear optical materials based on ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J P [Department of Physics, Fudan University, Shanghai 200433 (China); Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Yu, K W [Department of Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)

    2006-01-01

    We exploit theoretically a new class of magneto-controlled nonlinear optical material based on ferrofluids in which ferromagnetic nanoparticles are coated with a nonmagnetic metallic nonlinear shell. Such an optical material can have anisotropic nonlinear optical properties and a giant enhancement of nonlinearity, as well as an attractive figure of merit.

  9. HIGH PERFORMANCE CERIA BASED OXYGEN MEMBRANE

    DEFF Research Database (Denmark)

    2014-01-01

    The invention describes a new class of highly stable mixed conducting materials based on acceptor doped cerium oxide (CeO2-8 ) in which the limiting electronic conductivity is significantly enhanced by co-doping with a second element or co- dopant, such as Nb, W and Zn, so that cerium and the co...

  10. High Performance Methane Thrust Chamber (HPMTC) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a High-Performance Methane Thrust Chamber (HPMRE) to meet the demands of advanced chemical propulsion systems for deep-space mission...

  11. High performance heat pump absorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.; Longo, G.; Rossetto, L.

    1988-10-01

    Absorption heat pumps can provide high performances when operating in suitable cycles with multiple effects. This report describes some multistage cycles and evaluates the coefficient of performance realistically obtainable both in winter and summer working conditions.

  12. Analog circuit design designing high performance amplifiers

    CERN Document Server

    Feucht, Dennis

    2010-01-01

    The third volume Designing High Performance Amplifiers applies the concepts from the first two volumes. It is an advanced treatment of amplifier design/analysis emphasizing both wideband and precision amplification.

  13. Radiation Hard High Performance Optoelectronic Devices Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-performance, radiation-hard, widely-tunable integrated laser/modulator chip and large-area avalanche photodetectors (APDs) are key components of optical...

  14. High performance work practices, innovation and performance

    DEFF Research Database (Denmark)

    Jørgensen, Frances; Newton, Cameron; Johnston, Kim

    2013-01-01

    Research spanning nearly 20 years has provided considerable empirical evidence for relationships between High Performance Work Practices (HPWPs) and various measures of performance including increased productivity, improved customer service, and reduced turnover. What stands out from...

  15. High-performance computing using FPGAs

    CERN Document Server

    Benkrid, Khaled

    2013-01-01

    This book is concerned with the emerging field of High Performance Reconfigurable Computing (HPRC), which aims to harness the high performance and relative low power of reconfigurable hardware–in the form Field Programmable Gate Arrays (FPGAs)–in High Performance Computing (HPC) applications. It presents the latest developments in this field from applications, architecture, and tools and methodologies points of view. We hope that this work will form a reference for existing researchers in the field, and entice new researchers and developers to join the HPRC community.  The book includes:  Thirteen application chapters which present the most important application areas tackled by high performance reconfigurable computers, namely: financial computing, bioinformatics and computational biology, data search and processing, stencil computation e.g. computational fluid dynamics and seismic modeling, cryptanalysis, astronomical N-body simulation, and circuit simulation.     Seven architecture chapters which...

  16. Architecture Analysis of High Performance Capacitors (POSTPRINT)

    Science.gov (United States)

    2009-07-01

    includes the measurement of heat dissipated from a recently developed fluorenyl polyester (FPE) capacitor under an AC excitation. II. Capacitor ...AFRL-RZ-WP-TP-2010-2100 ARCHITECTURE ANALYSIS OF HIGH PERFORMANCE CAPACITORS (POSTPRINT) Hiroyuki Kosai and Tyler Bixel UES, Inc...2009 4. TITLE AND SUBTITLE ARCHITECTURE ANALYSIS OF HIGH PERFORMANCE CAPACITORS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c

  17. Introduction to High Performance Scientific Computing

    OpenAIRE

    2016-01-01

    The field of high performance scientific computing lies at the crossroads of a number of disciplines and skill sets, and correspondingly, for someone to be successful at using high performance computing in science requires at least elementary knowledge of and skills in all these areas. Computations stem from an application context, so some acquaintance with physics and engineering sciences is desirable. Then, problems in these application areas are typically translated into linear algebraic, ...

  18. Strip Casting of High Performance Structural Alloys

    Institute of Scientific and Technical Information of China (English)

    S S Park; J G Lee; Nack J Kim

    2004-01-01

    There exists a great need for the development of high performance alloys due to increasing demands for energy conservation and environmental protection. Application of strip casting shows a strong potential for the improvement of properties of existing alloys and also for the development of novel alloy systems with superior properties. The present paper reviews our Center's activities in the development of high performance alloys by strip casting. Examples include (1) Al alloys, (2) wrought Mg alloys, and (3) bulk metallic glass (BMG) alloys.

  19. Toward high performance in Powder Metallurgy

    Directory of Open Access Journals (Sweden)

    Torralba, José M.

    2014-06-01

    Full Text Available Powder Metallurgy (PM is technology well known for mass production of parts at low cost but usually with worse mechanical properties than same parts obtained by alternative routes. But using this technology, high performance materials can be obtained, depending of the processing route and the type and amount of porosity. In this paper, a brief review of the capabilities of powder technology is made with the objective of attaining the highest level of mechanical and physical properties. For this purpose, different strategies over the processing can be chosen: to act over the density/porosity level and properties of the pores, to act over strengthening mechanisms apart from the density of the material (the alloying system, the microstructure, the grain size,.., to improve the sintering activity by different routes and to use techniques that avoid the grain growth during sintering.La Pulvimetalurgia es una tecnología bien conocida por su faceta de producir piezas de forma masiva a bajo coste, pero habitualmente con una pérdida de propiedades mecánicas si se la compara con tecnologías alternativas para obtener las mismas piezas. Sin embargo, mediante esta tecnología, también se pueden obtener piezas de altas prestaciones, dependiendo de la ruta de procesado y del nivel de porosidad. En este trabajo, se realiza una sucinta revisión de las posibilidades de la tecnología de polvos que permitirían obtener los mayores niveles de prestaciones en cuanto a propiedades mecánicas y físicas. Se pueden elegir distintas estrategias en el procesado: actuar sobre el nivel de densidad/porosidad y las propiedades de los poros, actuar sobre mecanismos de endurecimiento distintos a la densidad (el sistema de aleación, la microestructura, el tamaño de grano,…, mejorar la activación durante la sinterización y utilizar técnicas que inhiban el tamaño de grano durante la sinterización.

  20. Strategy Guideline. Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. This guide is intended for use by all parties associated in the design and construction of high performance homes. It serves as a starting point and features initial tools and resources for teams to collaborate to continually improve the energy efficiency and durability of new houses.

  1. High performance parallel I/O

    CERN Document Server

    Prabhat

    2014-01-01

    Gain Critical Insight into the Parallel I/O EcosystemParallel I/O is an integral component of modern high performance computing (HPC), especially in storing and processing very large datasets to facilitate scientific discovery. Revealing the state of the art in this field, High Performance Parallel I/O draws on insights from leading practitioners, researchers, software architects, developers, and scientists who shed light on the parallel I/O ecosystem.The first part of the book explains how large-scale HPC facilities scope, configure, and operate systems, with an emphasis on choices of I/O har

  2. Commercial Buildings High Performance Rooftop Unit Challenge

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-12-16

    The U.S. Department of Energy (DOE) and the Commercial Building Energy Alliances (CBEAs) are releasing a new design specification for high performance rooftop air conditioning units (RTUs). Manufacturers who develop RTUs based on this new specification will find strong interest from the commercial sector due to the energy and financial savings.

  3. A High-performance Small Signal Amplifier

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    According to questions in the design of high quality small signal amplifier, this paper gave a new-type high performance small signal amplifier. The paper selected the operational amplifier of ICL Company and designed a new-type circuit with simple, low cost and excellent performance.

  4. High Performance Networks for High Impact Science

    Energy Technology Data Exchange (ETDEWEB)

    Scott, Mary A.; Bair, Raymond A.

    2003-02-13

    This workshop was the first major activity in developing a strategic plan for high-performance networking in the Office of Science. Held August 13 through 15, 2002, it brought together a selection of end users, especially representing the emerging, high-visibility initiatives, and network visionaries to identify opportunities and begin defining the path forward.

  5. Miniaturized high-performance MEMS accelerometer detector

    Science.gov (United States)

    Gonseth, Stephan; Rudolf, Felix; Eichenberger, Christoph; Durrant, Dick; Airey, Phil

    2015-06-01

    In the framework of the demonstration of European capabilities for future space exploration mission, a high-performance miniaturized MEMS accelerometer detector is developed by Colibrys for incorporation into a compact inertial measurement unit (IMU). The envisaged missions where a miniaturized IMU is under development by SEA should cover: Aerobraking;

  6. High performance computing on vector systems

    CERN Document Server

    Roller, Sabine

    2008-01-01

    Presents the developments in high-performance computing and simulation on modern supercomputer architectures. This book covers trends in hardware and software development in general and specifically the vector-based systems and heterogeneous architectures. It presents innovative fields like coupled multi-physics or multi-scale simulations.

  7. High Performance Work Systems for Online Education

    Science.gov (United States)

    Contacos-Sawyer, Jonna; Revels, Mark; Ciampa, Mark

    2010-01-01

    The purpose of this paper is to identify the key elements of a High Performance Work System (HPWS) and explore the possibility of implementation in an online institution of higher learning. With the projected rapid growth of the demand for online education and its importance in post-secondary education, providing high quality curriculum, excellent…

  8. Project materials [Commercial High Performance Buildings Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-01-01

    The Consortium for High Performance Buildings (ChiPB) is an outgrowth of DOE'S Commercial Whole Buildings Roadmapping initiatives. It is a team-driven public/private partnership that seeks to enable and demonstrate the benefit of buildings that are designed, built and operated to be energy efficient, environmentally sustainable, superior quality, and cost effective.

  9. Research on High Performance New Refractories

    Institute of Scientific and Technical Information of China (English)

    Zhong Xiangchong

    2007-01-01

    @@ At the age of 86,Prof.Zhong Xiangchong has his new book-"Research on High Performance New Refractories" published by Henan Science and Technology Publishing House to commemorate his 65 years service in the refractories science and technology including the recent 6 years at High Temperature Ceramics Institute which he founded in Zhengzhou University in 2001.

  10. An Introduction to High Performance Fortran

    Directory of Open Access Journals (Sweden)

    John Merlin

    1995-01-01

    Full Text Available High Performance Fortran (HPF is an informal standard for extensions to Fortran 90 to assist its implementation on parallel architectures, particularly for data-parallel computation. Among other things, it includes directives for specifying data distribution across multiple memories, and concurrent execution features. This article provides a tutorial introduction to the main features of HPF.

  11. Teacher Accountability at High Performing Charter Schools

    Science.gov (United States)

    Aguirre, Moises G.

    2016-01-01

    This study will examine the teacher accountability and evaluation policies and practices at three high performing charter schools located in San Diego County, California. Charter schools are exempted from many laws, rules, and regulations that apply to traditional school systems. By examining the teacher accountability systems at high performing…

  12. Debugging a high performance computing program

    Science.gov (United States)

    Gooding, Thomas M.

    2013-08-20

    Methods, apparatus, and computer program products are disclosed for debugging a high performance computing program by gathering lists of addresses of calling instructions for a plurality of threads of execution of the program, assigning the threads to groups in dependence upon the addresses, and displaying the groups to identify defective threads.

  13. Using LEADS to shift to high performance.

    Science.gov (United States)

    Fenwick, Shauna; Hagge, Erna

    2016-03-01

    Health systems across Canada are tasked to measure results of all their strategic initiatives. Included in most strategic plans is leadership development. How to measure leadership effectiveness in relation to organizational objectives is key in determining organizational effectiveness. The following findings offer considerations for a 21(st)-century approach to shifting to high-performance systems.

  14. Toward High Performance in Industrial Refrigeration Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, Roozbeh; Niemann, H.

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design in industr...... in industrial refrigeration systems....

  15. Towards High Performance in Industrial Refrigeration Systems

    DEFF Research Database (Denmark)

    Thybo, C.; Izadi-Zamanabadi, Roozbeh; Niemann, H.

    2002-01-01

    Achieving high performance in complex industrial systems requires information manipulation at different system levels. The paper shows how different models of same subsystems, but using different quality of information/data, are used for fault diagnosis as well as robust control design in industr...... in industrial refrigeration systems....

  16. Performance, Performance System, and High Performance System

    Science.gov (United States)

    Jang, Hwan Young

    2009-01-01

    This article proposes needed transitions in the field of human performance technology. The following three transitions are discussed: transitioning from training to performance, transitioning from performance to performance system, and transitioning from learning organization to high performance system. A proposed framework that comprises…

  17. High Performance Builder Spotlight: Imagine Homes

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-01

    Imagine Homes, working with the DOE's Building America research team member IBACOS, has developed a system that can be replicated by other contractors to build affordable, high-performance homes. Imagine Homes has used the system to produce more than 70 Builders Challenge-certified homes per year in San Antonio over the past five years.

  18. High performance cloud auditing and applications

    CERN Document Server

    Choi, Baek-Young; Song, Sejun

    2014-01-01

    This book mainly focuses on cloud security and high performance computing for cloud auditing. The book discusses emerging challenges and techniques developed for high performance semantic cloud auditing, and presents the state of the art in cloud auditing, computing and security techniques with focus on technical aspects and feasibility of auditing issues in federated cloud computing environments.   In summer 2011, the United States Air Force Research Laboratory (AFRL) CyberBAT Cloud Security and Auditing Team initiated the exploration of the cloud security challenges and future cloud auditing research directions that are covered in this book. This work was supported by the United States government funds from the Air Force Office of Scientific Research (AFOSR), the AFOSR Summer Faculty Fellowship Program (SFFP), the Air Force Research Laboratory (AFRL) Visiting Faculty Research Program (VFRP), the National Science Foundation (NSF) and the National Institute of Health (NIH). All chapters were partially suppor...

  19. Evaluation of high-performance computing software

    Energy Technology Data Exchange (ETDEWEB)

    Browne, S.; Dongarra, J. [Univ. of Tennessee, Knoxville, TN (United States); Rowan, T. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    The absence of unbiased and up to date comparative evaluations of high-performance computing software complicates a user`s search for the appropriate software package. The National HPCC Software Exchange (NHSE) is attacking this problem using an approach that includes independent evaluations of software, incorporation of author and user feedback into the evaluations, and Web access to the evaluations. We are applying this approach to the Parallel Tools Library (PTLIB), a new software repository for parallel systems software and tools, and HPC-Netlib, a high performance branch of the Netlib mathematical software repository. Updating the evaluations with feed-back and making it available via the Web helps ensure accuracy and timeliness, and using independent reviewers produces unbiased comparative evaluations difficult to find elsewhere.

  20. High-performance liquid chromatography of biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, F.E.

    1983-10-21

    The ability to separate biological macromolecules with good resolution on liquid chromatographic columns has depended on the development of suitable packing materials. In size exclusion chromatography, molecules are separated by size on the basis of differential permeation of the packing. Ion exchange, hydrophobic interaction (or reversed-phase), and affinity chromatography are all surface-mediated separation methods, although they depend on different retention mechanisms. High-performance liquid chromatographic columns designed for biopolymers offer major advantages over conventional columns in both speed and resolving power. The exponential growth of literature on the high-performance separation of peptides and proteins in particular indicates that the techniques will become the dominant form of column liquid chromatography. 92 refs., 4 figs.

  1. Evaluation of high-performance computing software

    Energy Technology Data Exchange (ETDEWEB)

    Browne, S.; Dongarra, J. [Univ. of Tennessee, Knoxville, TN (United States); Rowan, T. [Oak Ridge National Lab., TN (United States)

    1996-12-31

    The absence of unbiased and up to date comparative evaluations of high-performance computing software complicates a user`s search for the appropriate software package. The National HPCC Software Exchange (NHSE) is attacking this problem using an approach that includes independent evaluations of software, incorporation of author and user feedback into the evaluations, and Web access to the evaluations. We are applying this approach to the Parallel Tools Library (PTLIB), a new software repository for parallel systems software and tools, and HPC-Netlib, a high performance branch of the Netlib mathematical software repository. Updating the evaluations with feed-back and making it available via the Web helps ensure accuracy and timeliness, and using independent reviewers produces unbiased comparative evaluations difficult to find elsewhere.

  2. High performance microsystem packaging: A perspective

    Energy Technology Data Exchange (ETDEWEB)

    Romig, A.D. Jr.; Dressendorfer, P.V.; Palmer, D.W.

    1997-10-01

    The second silicon revolution will be based on intelligent, integrated microsystems where multiple technologies (such as analog, digital, memory, sensor, micro-electro-mechanical, and communication devices) are integrated onto a single chip or within a multichip module. A necessary element for such systems is cost-effective, high-performance packaging. This paper examines many of the issues associated with the packaging of integrated microsystems, with an emphasis on the areas of packaging design, manufacturability, and reliability.

  3. Basic prinicipal of high performance liquid chromatography

    OpenAIRE

    Ivanova, Violeta

    2016-01-01

    High-performance liquid chromatography (HPLC) is an analytical technique based on the separation of molecules due to differences in their structure and/or composition. Separation is performed between two phases, mobile and stationary. The molecules in the sample have different affinities and interactions with the stationary support, leading to separation of molecules. Compounds which are longer retained at the stationary phase will elute later, compared to those which are distributed into the...

  4. High-Performance Liquid Chromatography: An Overview

    OpenAIRE

    Tandia N; Singh SK1; Kumar N; Singh S

    2013-01-01

    Chromatography is considered extremely powerful separation technique for variety of samples. Thecommon feature of all these techniques is that the different components in a sample mixture aredistributed between two phases, one of which remains stationary while the other the mobile phase, runsthrough the interstices or over the surface of the fixed phase. The movement of the mobile phase resultsin differential migration of the sample components. High performance thin layer chromatography is an...

  5. Failure analysis of high performance ballistic fibers

    OpenAIRE

    Spatola, Jennifer S

    2015-01-01

    High performance fibers have a high tensile strength and modulus, good wear resistance, and a low density, making them ideal for applications in ballistic impact resistance, such as body armor. However, the observed ballistic performance of these fibers is much lower than the predicted values. Since the predictions assume only tensile stress failure, it is safe to assume that the stress state is affecting fiber performance. The purpose of this research was to determine if there are failure mo...

  6. vSphere high performance cookbook

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    vSphere High Performance Cookbook is written in a practical, helpful style with numerous recipes focusing on answering and providing solutions to common, and not-so common, performance issues and problems.The book is primarily written for technical professionals with system administration skills and some VMware experience who wish to learn about advanced optimization and the configuration features and functions for vSphere 5.1.

  7. Optics of high-performance electron microscopes*

    OpenAIRE

    H H Rose

    2016-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by...

  8. Failure analysis of high performance ballistic fibers

    OpenAIRE

    Spatola, Jennifer S

    2015-01-01

    High performance fibers have a high tensile strength and modulus, good wear resistance, and a low density, making them ideal for applications in ballistic impact resistance, such as body armor. However, the observed ballistic performance of these fibers is much lower than the predicted values. Since the predictions assume only tensile stress failure, it is safe to assume that the stress state is affecting fiber performance. The purpose of this research was to determine if there are failure mo...

  9. High Performance Interconnect Network for Tianhe System

    Institute of Scientific and Technical Information of China (English)

    廖湘科; 庞征斌; 王克非; 卢宇彤; 谢旻; 夏军; 董德尊; 所光

    2015-01-01

    In this paper, we present the Tianhe-2 interconnect network and message passing services. We describe the architecture of the router and network interface chips, and highlight a set of hardware and software features effectively supporting high performance communications, ranging over remote direct memory access, collective optimization, hardware-enable reliable end-to-end communication, user-level message passing services, etc. Measured hardware performance results are also presented.

  10. Achieving High Performance Perovskite Solar Cells

    Science.gov (United States)

    Yang, Yang

    2015-03-01

    Recently, metal halide perovskite based solar cell with the characteristics of rather low raw materials cost, great potential for simple process and scalable production, and extreme high power conversion efficiency (PCE), have been highlighted as one of the most competitive technologies for next generation thin film photovoltaic (PV). In UCLA, we have realized an efficient pathway to achieve high performance pervoskite solar cells, where the findings are beneficial to this unique materials/devices system. Our recent progress lies in perovskite film formation, defect passivation, transport materials design, interface engineering with respect to high performance solar cell, as well as the exploration of its applications beyond photovoltaics. These achievements include: 1) development of vapor assisted solution process (VASP) and moisture assisted solution process, which produces perovskite film with improved conformity, high crystallinity, reduced recombination rate, and the resulting high performance; 2) examination of the defects property of perovskite materials, and demonstration of a self-induced passivation approach to reduce carrier recombination; 3) interface engineering based on design of the carrier transport materials and the electrodes, in combination with high quality perovskite film, which delivers 15 ~ 20% PCEs; 4) a novel integration of bulk heterojunction to perovskite solar cell to achieve better light harvest; 5) fabrication of inverted solar cell device with high efficiency and flexibility and 6) exploration the application of perovskite materials to photodetector. Further development in film, device architecture, and interfaces will lead to continuous improved perovskite solar cells and other organic-inorganic hybrid optoelectronics.

  11. High Performance Electronics on Flexible Silicon

    KAUST Repository

    Sevilla, Galo T.

    2016-09-01

    Over the last few years, flexible electronic systems have gained increased attention from researchers around the world because of their potential to create new applications such as flexible displays, flexible energy harvesters, artificial skin, and health monitoring systems that cannot be integrated with conventional wafer based complementary metal oxide semiconductor processes. Most of the current efforts to create flexible high performance devices are based on the use of organic semiconductors. However, inherent material\\'s limitations make them unsuitable for big data processing and high speed communications. The objective of my doctoral dissertation is to develop integration processes that allow the transformation of rigid high performance electronics into flexible ones while maintaining their performance and cost. In this work, two different techniques to transform inorganic complementary metal-oxide-semiconductor electronics into flexible ones have been developed using industry compatible processes. Furthermore, these techniques were used to realize flexible discrete devices and circuits which include metal-oxide-semiconductor field-effect-transistors, the first demonstration of flexible Fin-field-effect-transistors, and metal-oxide-semiconductors-based circuits. Finally, this thesis presents a new technique to package, integrate, and interconnect flexible high performance electronics using low cost additive manufacturing techniques such as 3D printing and inkjet printing. This thesis contains in depth studies on electrical, mechanical, and thermal properties of the fabricated devices.

  12. Computational Biology and High Performance Computing 2000

    Energy Technology Data Exchange (ETDEWEB)

    Simon, Horst D.; Zorn, Manfred D.; Spengler, Sylvia J.; Shoichet, Brian K.; Stewart, Craig; Dubchak, Inna L.; Arkin, Adam P.

    2000-10-19

    The pace of extraordinary advances in molecular biology has accelerated in the past decade due in large part to discoveries coming from genome projects on human and model organisms. The advances in the genome project so far, happening well ahead of schedule and under budget, have exceeded any dreams by its protagonists, let alone formal expectations. Biologists expect the next phase of the genome project to be even more startling in terms of dramatic breakthroughs in our understanding of human biology, the biology of health and of disease. Only today can biologists begin to envision the necessary experimental, computational and theoretical steps necessary to exploit genome sequence information for its medical impact, its contribution to biotechnology and economic competitiveness, and its ultimate contribution to environmental quality. High performance computing has become one of the critical enabling technologies, which will help to translate this vision of future advances in biology into reality. Biologists are increasingly becoming aware of the potential of high performance computing. The goal of this tutorial is to introduce the exciting new developments in computational biology and genomics to the high performance computing community.

  13. High performance computing and communications panel report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    In FY92, a presidential initiative entitled High Performance Computing and Communications (HPCC) was launched, aimed at securing U.S. preeminence in high performance computing and related communication technologies. The stated goal of the initiative is threefold: extend U.S. technological leadership in high performance computing and computer communications; provide wide dissemination and application of the technologies; and spur gains in U.S. productivity and industrial competitiveness, all within the context of the mission needs of federal agencies. Because of the importance of the HPCC program to the national well-being, especially its potential implication for industrial competitiveness, the Assistant to the President for Science and Technology has asked that the President's Council of Advisors in Science and Technology (PCAST) establish a panel to advise PCAST on the strengths and weaknesses of the HPCC program. The report presents a program analysis based on strategy, balance, management, and vision. Both constructive recommendations for program improvement and positive reinforcement of successful program elements are contained within the report.

  14. High performance HRM: NHS employee perspectives.

    Science.gov (United States)

    Hyde, Paula; Sparrow, Paul; Boaden, Ruth; Harris, Claire

    2013-01-01

    The purpose of this paper is to examine National Health Service (NHS) employee perspectives of how high performance human resource (HR) practices contribute to their performance. The paper draws on an extensive qualitative study of the NHS. A novel two-part method was used; the first part used focus group data from managers to identify high-performance HR practices specific to the NHS. Employees then conducted a card-sort exercise where they were asked how or whether the practices related to each other and how each practice affected their work. In total, 11 high performance HR practices relevant to the NHS were identified. Also identified were four reactions to a range of HR practices, which the authors developed into a typology according to anticipated beneficiaries (personal gain, organisation gain, both gain and no-one gains). Employees were able to form their own patterns (mental models) of performance contribution for a range of HR practices (60 interviewees produced 91 groupings). These groupings indicated three bundles particular to the NHS (professional development, employee contribution and NHS deal). These mental models indicate employee perceptions about how health services are organised and delivered in the NHS and illustrate the extant mental models of health care workers. As health services are rearranged and financial pressures begin to bite, these mental models will affect employee reactions to changes both positively and negatively. The novel method allows for identification of mental models that explain how NHS workers understand service delivery. It also delineates the complex and varied relationships between HR practices and individual performance.

  15. Toward a theory of high performance.

    Science.gov (United States)

    Kirby, Julia

    2005-01-01

    What does it mean to be a high-performance company? The process of measuring relative performance across industries and eras, declaring top performers, and finding the common drivers of their success is such a difficult one that it might seem a fool's errand to attempt. In fact, no one did for the first thousand or so years of business history. The question didn't even occur to many scholars until Tom Peters and Bob Waterman released In Search of Excellence in 1982. Twenty-three years later, we've witnessed several more attempts--and, just maybe, we're getting closer to answers. In this reported piece, HBR senior editor Julia Kirby explores why it's so difficult to study high performance and how various research efforts--including those from John Kotter and Jim Heskett; Jim Collins and Jerry Porras; Bill Joyce, Nitin Nohria, and Bruce Roberson; and several others outlined in a summary chart-have attacked the problem. The challenge starts with deciding which companies to study closely. Are the stars the ones with the highest market caps, the ones with the greatest sales growth, or simply the ones that remain standing at the end of the game? (And when's the end of the game?) Each major study differs in how it defines success, which companies it therefore declares to be worthy of emulation, and the patterns of activity and attitude it finds in common among them. Yet, Kirby concludes, as each study's method incrementally solves problems others have faced, we are progressing toward a consensus theory of high performance.

  16. High performance forward swept wing aircraft

    Science.gov (United States)

    Koenig, David G. (Inventor); Aoyagi, Kiyoshi (Inventor); Dudley, Michael R. (Inventor); Schmidt, Susan B. (Inventor)

    1988-01-01

    A high performance aircraft capable of subsonic, transonic and supersonic speeds employs a forward swept wing planform and at least one first and second solution ejector located on the inboard section of the wing. A high degree of flow control on the inboard sections of the wing is achieved along with improved maneuverability and control of pitch, roll and yaw. Lift loss is delayed to higher angles of attack than in conventional aircraft. In one embodiment the ejectors may be advantageously positioned spanwise on the wing while the ductwork is kept to a minimum.

  17. High Performance Network Security Using NIDS Approach

    Directory of Open Access Journals (Sweden)

    Sutapa Sarkar

    2014-06-01

    Full Text Available Ever increasing demand of good quality communication relies heavily on Network Intrusion Detection System (NIDS. Intrusion detection for network security demands high performance. This paper gives a description of the available approaches for a network intrusion detection system in both software and hardware implementation. This paper gives a description of the structure of Snort rule set which is a very popular software signature and anomaly based Intrusion Detection and prevention system. This paper also discusses the merit of FPGA devices to be used in network intrusion detection system implementation and the approaches used in hardware implementation of NIDS.

  18. Playa: High-Performance Programmable Linear Algebra

    Directory of Open Access Journals (Sweden)

    Victoria E. Howle

    2012-01-01

    Full Text Available This paper introduces Playa, a high-level user interface layer for composing algorithms for complex multiphysics problems out of objects from other Trilinos packages. Among other features, Playa provides very high-performance overloaded operators implemented through an expression template mechanism. In this paper, we give an overview of the central Playa objects from a user's perspective, show application to a sequence of increasingly complex solver algorithms, provide timing results for Playa's overloaded operators and other functions, and briefly survey some of the implementation issues involved.

  19. Strategy Guideline. High Performance Residential Lighting

    Energy Technology Data Exchange (ETDEWEB)

    Holton, J. [IBACOS, Inc., Pittsburgh, PA (United States)

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  20. Applications of modern high performance networks

    CERN Document Server

    Zubairi, Junaid Ahmed

    2009-01-01

    This Ebook presents state-of-the-art solutions in applications of modern high performance networks. The topics covered in this Ebook include mobile ad-hoc networks, clusters for distance computing, clustering technologies and deployment, emerging wireless sensor network technologies, ultra wideband wireless sensor networks, and smart agriculture with sensor networks. This Ebook stands out from others in the field by bringing together the most diverse applications of networks under one title. It is aimed at academicians, students and working professionals in hospitals, agriculture, government,

  1. Dawning4000A high performance computer

    Institute of Scientific and Technical Information of China (English)

    SUN Ninghui; MENG Dan

    2007-01-01

    Dawning4000A is an AMD Opteron-based Linux Cluster with 11.2Tflops peak performance and 8.06Tflops Linpack performance.It was developed for the Shanghai Supercomputer Center (SSC)as one of the computing power stations of the China National Grid (CNGrid)project.The Massively Cluster Computer (MCC)architecture is proposed to put added-value on the industry standard system.Several grid-enabling components are developed to support the running environment of the CNGrid.It is an achievement for a high performance computer with the low-cost approach.

  2. High Performance Single Nanowire Tunnel Diodes

    DEFF Research Database (Denmark)

    Wallentin, Jesper; Persson, Johan Mikael; Wagner, Jakob Birkedal;

    for planar growth, many new materials combinations can be grown in a single NW. This opens up exciting opportunities for NW-based high-performance solar cells, where previously inaccessible materials combinations can now be chosen to match the solar spectrum. A key component of a multi-junction solar cell......Semiconductor nanowires (NWs) have emerged as a promising technology for future electronic and optoelectronic devices. Epitaxial growth of III-V materials on Si substrates have been demonstrated, allowing for low-cost production. As the lattice matching requirements are much less strict than...

  3. High-performance computing in seismology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The scientific, technical, and economic importance of the issues discussed here presents a clear agenda for future research in computational seismology. In this way these problems will drive advances in high-performance computing in the field of seismology. There is a broad community that will benefit from this work, including the petroleum industry, research geophysicists, engineers concerned with seismic hazard mitigation, and governments charged with enforcing a comprehensive test ban treaty. These advances may also lead to new applications for seismological research. The recent application of high-resolution seismic imaging of the shallow subsurface for the environmental remediation industry is an example of this activity. This report makes the following recommendations: (1) focused efforts to develop validated documented software for seismological computations should be supported, with special emphasis on scalable algorithms for parallel processors; (2) the education of seismologists in high-performance computing technologies and methodologies should be improved; (3) collaborations between seismologists and computational scientists and engineers should be increased; (4) the infrastructure for archiving, disseminating, and processing large volumes of seismological data should be improved.

  4. Building Trust in High-Performing Teams

    Directory of Open Access Journals (Sweden)

    Aki Soudunsaari

    2012-06-01

    Full Text Available Facilitation of growth is more about good, trustworthy contacts than capital. Trust is a driving force for business creation, and to create a global business you need to build a team that is capable of meeting the challenge. Trust is a key factor in team building and a needed enabler for cooperation. In general, trust building is a slow process, but it can be accelerated with open interaction and good communication skills. The fast-growing and ever-changing nature of global business sets demands for cooperation and team building, especially for startup companies. Trust building needs personal knowledge and regular face-to-face interaction, but it also requires empathy, respect, and genuine listening. Trust increases communication, and rich and open communication is essential for the building of high-performing teams. Other building materials are a shared vision, clear roles and responsibilities, willingness for cooperation, and supporting and encouraging leadership. This study focuses on trust in high-performing teams. It asks whether it is possible to manage trust and which tools and operation models should be used to speed up the building of trust. In this article, preliminary results from the authors’ research are presented to highlight the importance of sharing critical information and having a high level of communication through constant interaction.

  5. High-performance computing for airborne applications

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, Heather M [Los Alamos National Laboratory; Manuzzato, Andrea [Los Alamos National Laboratory; Fairbanks, Tom [Los Alamos National Laboratory; Dallmann, Nicholas [Los Alamos National Laboratory; Desgeorges, Rose [Los Alamos National Laboratory

    2010-06-28

    Recently, there has been attempts to move common satellite tasks to unmanned aerial vehicles (UAVs). UAVs are significantly cheaper to buy than satellites and easier to deploy on an as-needed basis. The more benign radiation environment also allows for an aggressive adoption of state-of-the-art commercial computational devices, which increases the amount of data that can be collected. There are a number of commercial computing devices currently available that are well-suited to high-performance computing. These devices range from specialized computational devices, such as field-programmable gate arrays (FPGAs) and digital signal processors (DSPs), to traditional computing platforms, such as microprocessors. Even though the radiation environment is relatively benign, these devices could be susceptible to single-event effects. In this paper, we will present radiation data for high-performance computing devices in a accelerated neutron environment. These devices include a multi-core digital signal processor, two field-programmable gate arrays, and a microprocessor. From these results, we found that all of these devices are suitable for many airplane environments without reliability problems.

  6. Optimizations for High Performance Network Virtualization

    Institute of Scientific and Technical Information of China (English)

    Fan-Fu Zhou; Ru-Hui Ma; Jian Li; Li-Xia Chen; Wei-Dong Qiu; Hai-Bing Guan

    2016-01-01

    The increasing requirements of intensive interoperaterbility among the distributed nodes desiderate the high performance network connections, owing to the substantial growth of cloud computing and datacenters. Network I/O virtualization aggregates the network resource and separates it into manageable parts for particular servers or devices, which provides effective consolidation and elastic management with high agility, flexibility and scalability as well as reduced cost and cabling. However, both network I/O virtualization aggregation and the increasing network speed incur higher traffic density, which generates a heavy system stress for I/O data moving and I/O event processing. Consequently, many researchers have dedicated to enhancing the system performance and alleviating the system overhead for high performance networking virtualization. This paper first elaborates the mainstreaming I/O virtualization methodologies, including device emulation, split-driver model and hardware assisted model. Then, the paper discusses and compares their specific advantages in addition to performance bottlenecks in practical utilities. This paper mainly focuses on the comprehensive survey of state-of-the-art approaches for performance optimizations and improvements as well as the portability management for network I/O virtualization. The approaches include various novel data delivery schemes, overhead mitigations for interrupt processing and adequate resource allocations for dynamic network states. Finally, we highlight the diversity of I/O virtualization besides the performance improvements in network virtualization infrastructure.

  7. Strategy Guideline: Partnering for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Prahl, D.

    2013-01-01

    High performance houses require a high degree of coordination and have significant interdependencies between various systems in order to perform properly, meet customer expectations, and minimize risks for the builder. Responsibility for the key performance attributes is shared across the project team and can be well coordinated through advanced partnering strategies. For high performance homes, traditional partnerships need to be matured to the next level and be expanded to all members of the project team including trades, suppliers, manufacturers, HERS raters, designers, architects, and building officials as appropriate. In an environment where the builder is the only source of communication between trades and consultants and where relationships are, in general, adversarial as opposed to cooperative, the chances of any one building system to fail are greater. Furthermore, it is much harder for the builder to identify and capitalize on synergistic opportunities. Partnering can help bridge the cross-functional aspects of the systems approach and achieve performance-based criteria. Critical success factors for partnering include support from top management, mutual trust, effective and open communication, effective coordination around common goals, team building, appropriate use of an outside facilitator, a partnering charter progress toward common goals, an effective problem-solving process, long-term commitment, continuous improvement, and a positive experience for all involved.

  8. High performance pattern matching on heterogeneous platform.

    Science.gov (United States)

    Soroushnia, Shima; Daneshtalab, Masoud; Plosila, Juha; Pahikkala, Tapio; Liljeberg, Pasi

    2014-10-23

    Pattern discovery is one of the fundamental tasks in bioinformatics and pattern recognition is a powerful technique for searching sequence patterns in the biological sequence databases. Fast and high performance algorithms are highly demanded in many applications in bioinformatics and computational molecular biology since the significant increase in the number of DNA and protein sequences expand the need for raising the performance of pattern matching algorithms. For this purpose, heterogeneous architectures can be a good choice due to their potential for high performance and energy efficiency. In this paper we present an efficient implementation of Aho-Corasick (AC) which is a well known exact pattern matching algorithm with linear complexity, and Parallel Failureless Aho-Corasick (PFAC) algorithm which is the massively parallelized version of AC algorithm without failure transitions, on a heterogeneous CPU/GPU architecture. We progressively redesigned the algorithms and data structures to fit on the GPU architecture. Our results on different protein sequence data sets show that the new implementation runs 15 times faster compared to the original implementation of the PFAC algorithm.

  9. Achieving high performance on the Intel Paragon

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, D.S.; Maccabe, B.; Riesen, R.; Wheat, S.; Womble, D.

    1993-11-01

    When presented with a new supercomputer most users will first ask {open_quotes}How much faster will my applications run?{close_quotes} and then add a fearful {open_quotes}How much effort will it take me to convert to the new machine?{close_quotes} This paper describes some lessons learned at Sandia while asking these questions about the new 1800+ node Intel Paragon. The authors conclude that the operating system is crucial to both achieving high performance and allowing easy conversion from previous parallel implementations to a new machine. Using the Sandia/UNM Operating System (SUNMOS) they were able to port a LU factorization of dense matrices from the nCUBE2 to the Paragon and achieve 92% scaled speed-up on 1024 nodes. Thus on a 44,000 by 44,000 matrix which had required over 10 hours on the previous machine, they completed in less than 1/2 hour at a rate of over 40 GFLOPS. Two keys to achieving such high performance were the small size of SUNMOS (less than 256 kbytes) and the ability to send large messages with very low overhead.

  10. The path toward HEP High Performance Computing

    CERN Document Server

    Apostolakis, John; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro

    2014-01-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a 'High Performance' implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on th...

  11. Hybrid ventilation systems and high performance buildings

    Energy Technology Data Exchange (ETDEWEB)

    Utzinger, D.M. [Wisconsin Univ., Milwaukee, WI (United States). School of Architecture and Urban Planning

    2009-07-01

    This paper described hybrid ventilation design strategies and their impact on 3 high performance buildings located in southern Wisconsin. The Hybrid ventilation systems combined occupant controlled natural ventilation with mechanical ventilation systems. Natural ventilation was shown to provide adequate ventilation when appropriately designed. Proper control integration of natural ventilation into hybrid systems was shown to reduce energy consumption in high performance buildings. This paper also described the lessons learned from the 3 buildings. The author served as energy consultant on all three projects and had the responsibility of designing and integrating the natural ventilation systems into the HVAC control strategy. A post occupancy evaluation of building energy performance has provided learning material for architecture students. The 3 buildings included the Schlitz Audubon Nature Center completed in 2003; the Urban Ecology Center completed in 2004; and the Aldo Leopold Legacy Center completed in 2007. This paper included the size, measured energy utilization intensity and percentage of energy supplied by renewable solar power and bio-fuels on site for each building. 6 refs., 2 tabs., 6 figs.

  12. Laser materials based on transition metal ions

    Science.gov (United States)

    Moncorgé, Richard

    2017-01-01

    The purpose of this presentation is to review the spectroscopic properties of the main laser materials based on transition metal ions which lead to noticeable laser performance at room temperature and, for very few cases, because of unique properties, when they are operated at cryogenic temperatures. The description also includes the materials which are currently being used as saturable absorbers for passive-Q-switching of a variety of other near- and mid-infrared solid state lasers. A substantial part of the article is devoted first to the description of the energy levels and of the absorption and emission transitions of the transition metal ions in various types of environments by using the well-known Tanabe-Sugano diagrams. It is shown in particular how these diagrams can be used along with other theoretical considerations to understand and describe the spectroscopic properties of ions sitting in crystal field environments of near-octahedral or near-tetrahedral symmetry. The second part is then dedicated to the description (positions and intensities) of the main absorption and emission features which characterize the different types of materials.

  13. High performance nano-composite technology development

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Whung Whoe; Rhee, C. K.; Kim, S. J.; Park, S. D. [KAERI, Taejon (Korea, Republic of); Kim, E. K.; Jung, S. Y.; Ryu, H. J. [KRICT, Taejon (Korea, Republic of); Hwang, S. S.; Kim, J. K.; Hong, S. M. [KIST, Taejon (Korea, Republic of); Chea, Y. B. [KIGAM, Taejon (Korea, Republic of); Choi, C. H.; Kim, S. D. [ATS, Taejon (Korea, Republic of); Cho, B. G.; Lee, S. H. [HGREC, Taejon (Korea, Republic of)

    1999-06-15

    The trend of new material development are being to carried out not only high performance but also environmental attraction. Especially nano composite material which enhances the functional properties of components, extending the component life resulting to reduced the wastes and environmental contamination, has a great effect on various industrial area. The application of nano composite, depends on the polymer matrix and filler materials, has various application from semiconductor to medical field. In spite of nano composite merits, nano composite study are confined to a few special materials as a lab, scale because a few technical difficulties are still on hold. Therefore, the purpose of this study establishes the systematical planning to carried out the next generation projects on order to compete with other countries and overcome the protective policy of advanced countries with grasping over sea's development trends and our present status. (author).

  14. [High-performance society and doping].

    Science.gov (United States)

    Gallien, C L

    2002-09-01

    Doping is not limited to high-level athletes. Likewise it is not limited to the field of sports activities. The doping phenomenon observed in sports actually reveals an underlying question concerning the notion of sports itself, and more widely, the society's conception of sports. In a high-performance society, which is also a high-risk society, doping behavior is observed in a large number of persons who may or may not participate in sports activities. The motivation is the search for individual success or profit. The fight against doping must therefore focus on individual responsibility and prevention in order to preserve athlete's health and maintain the ethical and educational value of sports activities.

  15. High-Performance, Low Environmental Impact Refrigerants

    Science.gov (United States)

    McCullough, E. T.; Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.

    2001-01-01

    Refrigerants used in process and facilities systems in the US include R-12, R-22, R-123, R-134a, R-404A, R-410A, R-500, and R-502. All but R-134a, R-404A, and R-410A contain ozone-depleting substances that will be phased out under the Montreal Protocol. Some of the substitutes do not perform as well as the refrigerants they are replacing, require new equipment, and have relatively high global warming potentials (GWPs). New refrigerants are needed that addresses environmental, safety, and performance issues simultaneously. In efforts sponsored by Ikon Corporation, NASA Kennedy Space Center (KSC), and the US Environmental Protection Agency (EPA), ETEC has developed and tested a new class of refrigerants, the Ikon (registered) refrigerants, based on iodofluorocarbons (IFCs). These refrigerants are nonflammable, have essentially zero ozone-depletion potential (ODP), low GWP, high performance (energy efficiency and capacity), and can be dropped into much existing equipment.

  16. High Performance OLED Panel and Luminaire

    Energy Technology Data Exchange (ETDEWEB)

    Spindler, Jeffrey [OLEDWorks LLC, Rochester, NY (United States)

    2017-02-20

    In this project, OLEDWorks developed and demonstrated the technology required to produce OLED lighting panels with high energy efficiency and excellent light quality. OLED panels developed in this program produce high quality warm white light with CRI greater than 85 and efficacy up to 80 lumens per watt (LPW). An OLED luminaire employing 24 of the high performance panels produces practical levels of illumination for general lighting, with a flux of over 2200 lumens at 60 LPW. This is a significant advance in the state of the art for OLED solid-state lighting (SSL), which is expected to be a complementary light source to the more advanced LED SSL technology that is rapidly replacing all other traditional forms of lighting.

  17. Heteroarenes as high performance organic semiconductors.

    Science.gov (United States)

    Jiang, Wei; Li, Yan; Wang, Zhaohui

    2013-07-21

    The design, synthesis, and characterization of new organic semiconductors (OSCs) are important aspects for the development of next-generation optoelectronic devices. Structurally, organic semiconductors based on π-conjugated molecules can be easily modified via rational synthesis to tune multi-level self-assembled structures and discover novel chemical, optical, and electronic properties. Heteroarenes, which contain chalcogens and nitrogens in fused aromatic rings, are being developed as promising semiconducting materials for applications in a variety of electronic devices due to their outstanding optoelectronic properties. We highlight recent approaches toward realizing high performance p-channel field effect transistors based on linear heteroacenes and heteroatom annulated polycyclic aromatics (PAHs) as key functional components. These comprehensive, but carefully orchestrated approaches simultaneously address (i) practical synthesis, (ii) tunable self-assembled packing arrangement as well as (iii) high electronic performance.

  18. Flexible high-performance IR camera systems

    Science.gov (United States)

    Hoelter, Theodore R.; Petronio, Susan M.; Carralejo, Ronald J.; Frank, Jeffery D.; Graff, John H.

    1999-07-01

    Indigo Systems Corporation has developed a family of standard readout integrated circuits (ROIC) for use in IR focal plane arrays (FPAs) imaging systems. These standard ROICs are designed to provide a compete set of operating features for camera level FPA control, while also providing high performance capability with any of several detector materials. By creating a uniform electrical interface for FPAs, these standard ROICs simplify the task of FPA integration with imaging electronics and physical packages. This paper begins with a brief description of the features of four Indigo standard ROICs and continues with a description of the features, design, and measured performance of indium antimonide, quantum well IR photo- detectors and indium gallium arsenide imaging system built using the described standard ROICs.

  19. High Performance Database Management for Earth Sciences

    Science.gov (United States)

    Rishe, Naphtali; Barton, David; Urban, Frank; Chekmasov, Maxim; Martinez, Maria; Alvarez, Elms; Gutierrez, Martha; Pardo, Philippe

    1998-01-01

    The High Performance Database Research Center at Florida International University is completing the development of a highly parallel database system based on the semantic/object-oriented approach. This system provides exceptional usability and flexibility. It allows shorter application design and programming cycles and gives the user control via an intuitive information structure. It empowers the end-user to pose complex ad hoc decision support queries. Superior efficiency is provided through a high level of optimization, which is transparent to the user. Manifold reduction in storage size is allowed for many applications. This system allows for operability via internet browsers. The system will be used for the NASA Applications Center program to store remote sensing data, as well as for Earth Science applications.

  20. Optics of high-performance electron microscopes.

    Science.gov (United States)

    Rose, H H

    2008-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described.

  1. Linear algebra on high-performance computers

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J.J.; Sorensen, D.C.

    1986-01-01

    This paper surveys work recently done at Argonne National Laboratory in an attempt to discover ways to construct numerical software for high-performance computers. The numerical algorithms are taken from several areas of numerical linear algebra. We discuss certain architectural features of advanced-computer architectures that will affect the design of algorithms. The technique of restructuring algorithms in terms of certain modules is reviewed. This technique has proved successful in obtaining a high level of transportability without severe loss of performance on a wide variety of both vector and parallel computers. The module technique is demonstrably effective for dense linear algebra problems. However, in the case of sparse and structured problems it may be difficult to identify general modules that will be as effective. New algorithms have been devised for certain problems in this category. We present examples in three important areas: banded systems, sparse QR factorization, and symmetric eigenvalue problems. 32 refs., 10 figs., 6 tabs.

  2. High performance robotic traverse of desert terrain.

    Energy Technology Data Exchange (ETDEWEB)

    Whittaker, William (Carnegie Mellon University, Pittsburgh, PA)

    2004-09-01

    This report presents tentative innovations to enable unmanned vehicle guidance for a class of off-road traverse at sustained speeds greater than 30 miles per hour. Analyses and field trials suggest that even greater navigation speeds might be achieved. The performance calls for innovation in mapping, perception, planning and inertial-referenced stabilization of components, hosted aboard capable locomotion. The innovations are motivated by the challenge of autonomous ground vehicle traverse of 250 miles of desert terrain in less than 10 hours, averaging 30 miles per hour. GPS coverage is assumed to be available with localized blackouts. Terrain and vegetation are assumed to be akin to that of the Mojave Desert. This terrain is interlaced with networks of unimproved roads and trails, which are a key to achieving the high performance mapping, planning and navigation that is presented here.

  3. Intel Xeon Phi coprocessor high performance programming

    CERN Document Server

    Jeffers, James

    2013-01-01

    Authors Jim Jeffers and James Reinders spent two years helping educate customers about the prototype and pre-production hardware before Intel introduced the first Intel Xeon Phi coprocessor. They have distilled their own experiences coupled with insights from many expert customers, Intel Field Engineers, Application Engineers and Technical Consulting Engineers, to create this authoritative first book on the essentials of programming for this new architecture and these new products. This book is useful even before you ever touch a system with an Intel Xeon Phi coprocessor. To ensure that your applications run at maximum efficiency, the authors emphasize key techniques for programming any modern parallel computing system whether based on Intel Xeon processors, Intel Xeon Phi coprocessors, or other high performance microprocessors. Applying these techniques will generally increase your program performance on any system, and better prepare you for Intel Xeon Phi coprocessors and the Intel MIC architecture. It off...

  4. Parallel Algebraic Multigrid Methods - High Performance Preconditioners

    Energy Technology Data Exchange (ETDEWEB)

    Yang, U M

    2004-11-11

    The development of high performance, massively parallel computers and the increasing demands of computationally challenging applications have necessitated the development of scalable solvers and preconditioners. One of the most effective ways to achieve scalability is the use of multigrid or multilevel techniques. Algebraic multigrid (AMG) is a very efficient algorithm for solving large problems on unstructured grids. While much of it can be parallelized in a straightforward way, some components of the classical algorithm, particularly the coarsening process and some of the most efficient smoothers, are highly sequential, and require new parallel approaches. This chapter presents the basic principles of AMG and gives an overview of various parallel implementations of AMG, including descriptions of parallel coarsening schemes and smoothers, some numerical results as well as references to existing software packages.

  5. PREFACE: High Performance Computing Symposium 2011

    Science.gov (United States)

    Talon, Suzanne; Mousseau, Normand; Peslherbe, Gilles; Bertrand, François; Gauthier, Pierre; Kadem, Lyes; Moitessier, Nicolas; Rouleau, Guy; Wittig, Rod

    2012-02-01

    HPCS (High Performance Computing Symposium) is a multidisciplinary conference that focuses on research involving High Performance Computing and its application. Attended by Canadian and international experts and renowned researchers in the sciences, all areas of engineering, the applied sciences, medicine and life sciences, mathematics, the humanities and social sciences, it is Canada's pre-eminent forum for HPC. The 25th edition was held in Montréal, at the Université du Québec à Montréal, from 15-17 June and focused on HPC in Medical Science. The conference was preceded by tutorials held at Concordia University, where 56 participants learned about HPC best practices, GPU computing, parallel computing, debugging and a number of high-level languages. 274 participants from six countries attended the main conference, which involved 11 invited and 37 contributed oral presentations, 33 posters, and an exhibit hall with 16 booths from our sponsors. The work that follows is a collection of papers presented at the conference covering HPC topics ranging from computer science to bioinformatics. They are divided here into four sections: HPC in Engineering, Physics and Materials Science, HPC in Medical Science, HPC Enabling to Explore our World and New Algorithms for HPC. We would once more like to thank the participants and invited speakers, the members of the Scientific Committee, the referees who spent time reviewing the papers and our invaluable sponsors. To hear the invited talks and learn about 25 years of HPC development in Canada visit the Symposium website: http://2011.hpcs.ca/lang/en/conference/keynote-speakers/ Enjoy the excellent papers that follow, and we look forward to seeing you in Vancouver for HPCS 2012! Gilles Peslherbe Chair of the Scientific Committee Normand Mousseau Co-Chair of HPCS 2011 Suzanne Talon Chair of the Organizing Committee UQAM Sponsors The PDF also contains photographs from the conference banquet.

  6. The path toward HEP High Performance Computing

    Science.gov (United States)

    Apostolakis, John; Brun, René; Carminati, Federico; Gheata, Andrei; Wenzel, Sandro

    2014-06-01

    High Energy Physics code has been known for making poor use of high performance computing architectures. Efforts in optimising HEP code on vector and RISC architectures have yield limited results and recent studies have shown that, on modern architectures, it achieves a performance between 10% and 50% of the peak one. Although several successful attempts have been made to port selected codes on GPUs, no major HEP code suite has a "High Performance" implementation. With LHC undergoing a major upgrade and a number of challenging experiments on the drawing board, HEP cannot any longer neglect the less-than-optimal performance of its code and it has to try making the best usage of the hardware. This activity is one of the foci of the SFT group at CERN, which hosts, among others, the Root and Geant4 project. The activity of the experiments is shared and coordinated via a Concurrency Forum, where the experience in optimising HEP code is presented and discussed. Another activity is the Geant-V project, centred on the development of a highperformance prototype for particle transport. Achieving a good concurrency level on the emerging parallel architectures without a complete redesign of the framework can only be done by parallelizing at event level, or with a much larger effort at track level. Apart the shareable data structures, this typically implies a multiplication factor in terms of memory consumption compared to the single threaded version, together with sub-optimal handling of event processing tails. Besides this, the low level instruction pipelining of modern processors cannot be used efficiently to speedup the program. We have implemented a framework that allows scheduling vectors of particles to an arbitrary number of computing resources in a fine grain parallel approach. The talk will review the current optimisation activities within the SFT group with a particular emphasis on the development perspectives towards a simulation framework able to profit best from

  7. High performance anode for advanced Li batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Carla [Applied Sciences, Inc., Cedarville, OH (United States)

    2015-11-02

    The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI’s Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI’s patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

  8. High performance compound semiconductor SPAD arrays

    Science.gov (United States)

    Harmon, Eric S.; Naydenkov, Mikhail; Bowling, Jared

    2016-05-01

    Aggregated compound semiconductor single photon avalanche diode (SPAD) arrays are emerging as a viable alternative to the silicon photomultiplier (SiPM). Compound semiconductors have the potential to surpass SiPM performance, potentially achieving orders of magnitude lower dark count rates and improved radiation hardness. New planar processing techniques have been developed to enable compound semiconductor SPAD devices to be produced with pixel pitches of 11 - 25 microns, with thousands of SPADs per array.

  9. High performance computing: Clusters, constellations, MPPs, and future directions

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, Jack; Sterling, Thomas; Simon, Horst; Strohmaier, Erich

    2003-06-10

    Last year's paper by Bell and Gray [1] examined past trends in high performance computing and asserted likely future directions based on market forces. While many of the insights drawn from this perspective have merit and suggest elements governing likely future directions for HPC, there are a number of points put forth that we feel require further discussion and, in certain cases, suggest alternative, more likely views. One area of concern relates to the nature and use of key terms to describe and distinguish among classes of high end computing systems, in particular the authors use of ''cluster'' to relate to essentially all parallel computers derived through the integration of replicated components. The taxonomy implicit in their previous paper, while arguable and supported by some elements of our community, fails to provide the essential semantic discrimination critical to the effectiveness of descriptive terms as tools in managing the conceptual space of consideration. In this paper, we present a perspective that retains the descriptive richness while providing a unifying framework. A second area of discourse that calls for additional commentary is the likely future path of system evolution that will lead to effective and affordable Petaflops-scale computing including the future role of computer centers as facilities for supporting high performance computing environments. This paper addresses the key issues of taxonomy, future directions towards Petaflops computing, and the important role of computer centers in the 21st century.

  10. A high performance scientific cloud computing environment for materials simulations

    CERN Document Server

    Jorissen, Kevin; Rehr, John J

    2011-01-01

    We describe the development of a scientific cloud computing (SCC) platform that offers high performance computation capability. The platform consists of a scientific virtual machine prototype containing a UNIX operating system and several materials science codes, together with essential interface tools (an SCC toolset) that offers functionality comparable to local compute clusters. In particular, our SCC toolset provides automatic creation of virtual clusters for parallel computing, including tools for execution and monitoring performance, as well as efficient I/O utilities that enable seamless connections to and from the cloud. Our SCC platform is optimized for the Amazon Elastic Compute Cloud (EC2). We present benchmarks for prototypical scientific applications and demonstrate performance comparable to local compute clusters. To facilitate code execution and provide user-friendly access, we have also integrated cloud computing capability in a JAVA-based GUI. Our SCC platform may be an alternative to traditi...

  11. SISYPHUS: A high performance seismic inversion factory

    Science.gov (United States)

    Gokhberg, Alexey; Simutė, Saulė; Boehm, Christian; Fichtner, Andreas

    2016-04-01

    In the recent years the massively parallel high performance computers became the standard instruments for solving the forward and inverse problems in seismology. The respective software packages dedicated to forward and inverse waveform modelling specially designed for such computers (SPECFEM3D, SES3D) became mature and widely available. These packages achieve significant computational performance and provide researchers with an opportunity to solve problems of bigger size at higher resolution within a shorter time. However, a typical seismic inversion process contains various activities that are beyond the common solver functionality. They include management of information on seismic events and stations, 3D models, observed and synthetic seismograms, pre-processing of the observed signals, computation of misfits and adjoint sources, minimization of misfits, and process workflow management. These activities are time consuming, seldom sufficiently automated, and therefore represent a bottleneck that can substantially offset performance benefits provided by even the most powerful modern supercomputers. Furthermore, a typical system architecture of modern supercomputing platforms is oriented towards the maximum computational performance and provides limited standard facilities for automation of the supporting activities. We present a prototype solution that automates all aspects of the seismic inversion process and is tuned for the modern massively parallel high performance computing systems. We address several major aspects of the solution architecture, which include (1) design of an inversion state database for tracing all relevant aspects of the entire solution process, (2) design of an extensible workflow management framework, (3) integration with wave propagation solvers, (4) integration with optimization packages, (5) computation of misfits and adjoint sources, and (6) process monitoring. The inversion state database represents a hierarchical structure with

  12. NCI's Transdisciplinary High Performance Scientific Data Platform

    Science.gov (United States)

    Evans, Ben; Antony, Joseph; Bastrakova, Irina; Car, Nicholas; Cox, Simon; Druken, Kelsey; Evans, Bradley; Fraser, Ryan; Ip, Alex; Kemp, Carina; King, Edward; Minchin, Stuart; Larraondo, Pablo; Pugh, Tim; Richards, Clare; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2016-04-01

    The Australian National Computational Infrastructure (NCI) manages Earth Systems data collections sourced from several domains and organisations onto a single High Performance Data (HPD) Node to further Australia's national priority research and innovation agenda. The NCI HPD Node has rapidly established its value, currently managing over 10 PBytes of datasets from collections that span a wide range of disciplines including climate, weather, environment, geoscience, geophysics, water resources and social sciences. Importantly, in order to facilitate broad user uptake, maximise reuse and enable transdisciplinary access through software and standardised interfaces, the datasets, associated information systems and processes have been incorporated into the design and operation of a unified platform that NCI has called, the National Environmental Research Data Interoperability Platform (NERDIP). The key goal of the NERDIP is to regularise data access so that it is easily discoverable, interoperable for different domains and enabled for high performance methods. It adopts and implements international standards and data conventions, and promotes scientific integrity within a high performance computing and data analysis environment. NCI has established a rich and flexible computing environment to access to this data, through the NCI supercomputer; a private cloud that supports both domain focused virtual laboratories and in-common interactive analysis interfaces; as well as remotely through scalable data services. Data collections of this importance must be managed with careful consideration of both their current use and the needs of the end-communities, as well as its future potential use, such as transitioning to more advanced software and improved methods. It is therefore critical that the data platform is both well-managed and trusted for stable production use (including transparency and reproducibility), agile enough to incorporate new technological advances and

  13. Material-Device-Circuit Co-optimization of 2D Material based FETs for Ultra-Scaled Technology Nodes.

    Science.gov (United States)

    Agarwal, Tarun Kumar; Soree, Bart; Radu, Iuliana; Raghavan, Praveen; Iannaccone, Giuseppe; Fiori, Gianluca; Dehaene, Wim; Heyns, Marc

    2017-07-10

    Two-dimensional (2D) material based FETs are being considered for future technology nodes and high performance logic applications. However, a comprehensive assessment of 2D material based FETs has been lacking for high performance logic applications considering appropriate system level figure-of-merits (FOMs) e.g. delay, and energy-delay product. In this paper, we present guidelines for 2D material based FETs to meet sub-10 nm high performance logic requirements focusing on material requirement, device design, energy-delay optimization for the first time. We show the need for 2D materials with smaller effective mass in the transport direction and anisotropicity to meet the performance requirement for future technology nodes. We present novel device designs with one such 2D material (monolayer black-phosphorus) to keep Moore's alive for the HP logic in sub-5 nm gate length regime. With these device proposals we show that below 5 nm gate lengths 2D electrostatistics arising from gate stack design becomes more of a challenge than direct source-to-drain tunneling for 2D material-based FETs. Therefore, it is challenging to meet both delay and energy-delay requirement in sub-5 nm gate length regime without scaling both supply voltage (V DD ) and effective-oxide-thickness (EOT) below 0.5 V and 0.5 nm respectively.

  14. 24 CFR 902.71 - Incentives for high performers.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Incentives for high performers. 902... DEVELOPMENT PUBLIC HOUSING ASSESSMENT SYSTEM PHAS Incentives and Remedies § 902.71 Incentives for high performers. (a) Incentives for high performer PHAs. A PHA that is designated a high performer will be...

  15. Durability of High Performance Color Hardener

    Institute of Scientific and Technical Information of China (English)

    MA Bao-guo; DONG Rong-zhen; ZHU Hong-bo; ZHANG Li; JIAN Shou-wei

    2004-01-01

    The properties of high performance color hardener (HPCH) and the mechanism were studied.HPCH is a composite system, which is composed of cementitious and auxiliary cementing materials, composite additives, abrasion resistance component (aggregate) and pigment. The porosity and pore structure of the material are obviously improved due to the activation, filling and adsorption of auxiliary cementing materials, thus resulting in a great increase of binding capacity for ions in HPCH and the obstacles of ion migrating.The density of material structure, bonding capacity of cementitious material to the abrasion-resisting component and the corrosion resistance are greatly and effectively improved by adding the auxiliary cementing materials and compound additives. According to the tests of dry shrinkage, sulphate resistance, chloride permeability and Ca(OH)2 content distribution, the property superiority of HPCH is analyzed.The mechanism of materials modification of HPCH is explained from the microscopic point of view by testing the pore structure and pore distribution via the mercury intrusion pressure method.

  16. Automatic Energy Schemes for High Performance Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sundriyal, Vaibhav [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Although high-performance computing traditionally focuses on the efficient execution of large-scale applications, both energy and power have become critical concerns when approaching exascale. Drastic increases in the power consumption of supercomputers affect significantly their operating costs and failure rates. In modern microprocessor architectures, equipped with dynamic voltage and frequency scaling (DVFS) and CPU clock modulation (throttling), the power consumption may be controlled in software. Additionally, network interconnect, such as Infiniband, may be exploited to maximize energy savings while the application performance loss and frequency switching overheads must be carefully balanced. This work first studies two important collective communication operations, all-to-all and allgather and proposes energy saving strategies on the per-call basis. Next, it targets point-to-point communications to group them into phases and apply frequency scaling to them to save energy by exploiting the architectural and communication stalls. Finally, it proposes an automatic runtime system which combines both collective and point-to-point communications into phases, and applies throttling to them apart from DVFS to maximize energy savings. The experimental results are presented for NAS parallel benchmark problems as well as for the realistic parallel electronic structure calculations performed by the widely used quantum chemistry package GAMESS. Close to the maximum energy savings were obtained with a substantially low performance loss on the given platform.

  17. Optimizing High Performance Self Compacting Concrete

    Directory of Open Access Journals (Sweden)

    Raymond A Yonathan

    2017-01-01

    Full Text Available This paper’s objectives are to learn the effect of glass powder, silica fume, Polycarboxylate Ether, and gravel to optimizing composition of each factor in making High Performance SCC. Taguchi method is proposed in this paper as best solution to minimize specimen variable which is more than 80 variations. Taguchi data analysis method is applied to provide composition, optimizing, and the effect of contributing materials for nine variable of specimens. Concrete’s workability was analyzed using Slump flow test, V-funnel test, and L-box test. Compressive and porosity test were performed for the hardened state. With a dimension of 100×200 mm the cylindrical specimens were cast for compressive test with the age of 3, 7, 14, 21, 28 days. Porosity test was conducted at 28 days. It is revealed that silica fume contributes greatly to slump flow and porosity. Coarse aggregate shows the greatest contributing factor to L-box and compressive test. However, all factors show unclear result to V-funnel test.

  18. Development of a High Performance Spacer Grid

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kee Nam; Song, K. N.; Yoon, K. H. (and others)

    2007-03-15

    A spacer grid in a LWR fuel assembly is a key structural component to support fuel rods and to enhance the heat transfer from the fuel rod to the coolant. In this research, the main research items are the development of inherent and high performance spacer grid shapes, the establishment of mechanical/structural analysis and test technology, and the set-up of basic test facilities for the spacer grid. The main research areas and results are as follows. 1. 18 different spacer grid candidates have been invented and applied for domestic and US patents. Among the candidates 16 are chosen from the patent. 2. Two kinds of spacer grids are finally selected for the advanced LWR fuel after detailed performance tests on the candidates and commercial spacer grids from a mechanical/structural point of view. According to the test results the features of the selected spacer grids are better than those of the commercial spacer grids. 3. Four kinds of basic test facilities are set up and the relevant test technologies are established. 4. Mechanical/structural analysis models and technology for spacer grid performance are developed and the analysis results are compared with the test results to enhance the reliability of the models.

  19. High-performance computers for unmanned vehicles

    Science.gov (United States)

    Toms, David; Ettinger, Gil J.

    2005-10-01

    The present trend of increasing functionality onboard unmanned vehicles is made possible by rapid advances in high-performance computers (HPCs). An HPC is characterized by very high computational capability (100s of billions of operations per second) contained in lightweight, rugged, low-power packages. HPCs are critical to the processing of sensor data onboard these vehicles. Operations such as radar image formation, target tracking, target recognition, signal intelligence signature collection and analysis, electro-optic image compression, and onboard data exploitation are provided by these machines. The net effect of an HPC is to minimize communication bandwidth requirements and maximize mission flexibility. This paper focuses on new and emerging technologies in the HPC market. Emerging capabilities include new lightweight, low-power computing systems: multi-mission computing (using a common computer to support several sensors); onboard data exploitation; and large image data storage capacities. These new capabilities will enable an entirely new generation of deployed capabilities at reduced cost. New software tools and architectures available to unmanned vehicle developers will enable them to rapidly develop optimum solutions with maximum productivity and return on investment. These new technologies effectively open the trade space for unmanned vehicle designers.

  20. High performance hand-held gas chromatograph

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.M.

    1998-04-28

    The Microtechnology Center of Lawrence Livermore National Laboratory has developed a high performance hand-held, real time detection gas chromatograph (HHGC) by Micro-Electro-Mechanical-System (MEMS) technology. The total weight of this hand-held gas chromatograph is about five lbs., with a physical size of 8{close_quotes} x 5{close_quotes} x 3{close_quotes} including carrier gas and battery. It consumes about 12 watts of electrical power with a response time on the order of one to two minutes. This HHGC has an average effective theoretical plate of about 40k. Presently, its sensitivity is limited by its thermal sensitive detector at PPM. Like a conventional G.C., this HHGC consists mainly of three major components: (1) the sample injector, (2) the column, and (3) the detector with related electronics. The present HHGC injector is a modified version of the conventional injector. Its separation column is fabricated completely on silicon wafers by means of MEMS technology. This separation column has a circular cross section with a diameter of 100 pm. The detector developed for this hand-held GC is a thermal conductivity detector fabricated on a silicon nitride window by MEMS technology. A normal Wheatstone bridge is used. The signal is fed into a PC and displayed through LabView software.

  1. Initial rheological description of high performance concretes

    Directory of Open Access Journals (Sweden)

    Alessandra Lorenzetti de Castro

    2006-12-01

    Full Text Available Concrete is defined as a composite material and, in rheological terms, it can be understood as a concentrated suspension of solid particles (aggregates in a viscous liquid (cement paste. On a macroscopic scale, concrete flows as a liquid. It is known that the rheological behavior of the concrete is close to that of a Bingham fluid and two rheological parameters regarding its description are needed: yield stress and plastic viscosity. The aim of this paper is to present the initial rheological description of high performance concretes using the modified slump test. According to the results, an increase of yield stress was observed over time, while a slight variation in plastic viscosity was noticed. The incorporation of silica fume showed changes in the rheological properties of fresh concrete. The behavior of these materials also varied with the mixing procedure employed in their production. The addition of superplasticizer meant that there was a large reduction in the mixture's yield stress, while plastic viscosity remained practically constant.

  2. A high performance thermoacoustic Stirling-engine

    Energy Technology Data Exchange (ETDEWEB)

    Tijani, M.E.H.; Spoelstra, S. [Energy research Centre of the Netherlands (ECN), PO Box 1, 1755 ZG Petten (Netherlands)

    2011-11-10

    In thermoacoustic systems heat is converted into acoustic energy and vice versa. These systems use inert gases as working medium and have no moving parts which makes the thermoacoustic technology a serious alternative to produce mechanical or electrical power, cooling power, and heating in a sustainable and environmentally friendly way. A thermoacoustic Stirling heat engine is designed and built which achieves a record performance of 49% of the Carnot efficiency. The design and performance of the engine is presented. The engine has no moving parts and is made up of few simple components.

  3. Experience with high-performance PACS

    Science.gov (United States)

    Wilson, Dennis L.; Goldburgh, Mitchell M.; Head, Calvin

    1997-05-01

    Lockheed Martin (Loral) has installed PACS with associated teleradiology in several tens of hospitals. The PACS that have been installed have been the basis for a shift to filmless radiology in many of the hospitals. the basic structure for the PACS and the teleradiology that is being used is outlined. The way that the PACS are being used in the hospitals is instructive. The three most used areas for radiology in the hospital are the wards including the ICU wards, the emergency room, and the orthopedics clinic. The examinations are mostly CR images with 20 percent to 30 percent of the examinations being CT, MR, and ultrasound exams. The PACS are being used to realize improved productivity for radiology and for the clinicians. For radiology the same staff is being used for 30 to 50 percent more workload. For the clinicians 10 to 20 percent of their time is being saved in dealing with radiology images. The improved productivity stems from the high performance of the PACS that has been designed and installed. Images are available on any workstation in the hospital within less than two seconds, even during the busiest hour of the day. The examination management functions to restrict the attention of any one user to the examinations that are of interest. The examination management organizes the workflow through the radiology department and the hospital, improving the service of the radiology department by reducing the time until the information from a radiology examination is available. The remaining weak link in the PACS system is transcription. The examination can be acquired, read, an the report dictated in much less than ten minutes. The transcription of the dictated reports can take from a few hours to a few days. The addition of automatic transcription services will remove this weak link.

  4. High-performance phase-field modeling

    KAUST Repository

    Vignal, Philippe

    2015-04-27

    Many processes in engineering and sciences involve the evolution of interfaces. Among the mathematical frameworks developed to model these types of problems, the phase-field method has emerged as a possible solution. Phase-fields nonetheless lead to complex nonlinear, high-order partial differential equations, whose solution poses mathematical and computational challenges. Guaranteeing some of the physical properties of the equations has lead to the development of efficient algorithms and discretizations capable of recovering said properties by construction [2, 5]. This work builds-up on these ideas, and proposes novel discretization strategies that guarantee numerical energy dissipation for both conserved and non-conserved phase-field models. The temporal discretization is based on a novel method which relies on Taylor series and ensures strong energy stability. It is second-order accurate, and can also be rendered linear to speed-up the solution process [4]. The spatial discretization relies on Isogeometric Analysis, a finite element method that possesses the k-refinement technology and enables the generation of high-order, high-continuity basis functions. These basis functions are well suited to handle the high-order operators present in phase-field models. Two-dimensional and three dimensional results of the Allen-Cahn, Cahn-Hilliard, Swift-Hohenberg and phase-field crystal equation will be presented, which corroborate the theoretical findings, and illustrate the robustness of the method. Results related to more challenging examples, namely the Navier-Stokes Cahn-Hilliard and a diusion-reaction Cahn-Hilliard system, will also be presented. The implementation was done in PetIGA and PetIGA-MF, high-performance Isogeometric Analysis frameworks [1, 3], designed to handle non-linear, time-dependent problems.

  5. High-performance laboratories and cleanrooms

    Energy Technology Data Exchange (ETDEWEB)

    Tschudi, William; Sartor, Dale; Mills, Evan; Xu, Tengfang

    2002-07-01

    The California Energy Commission sponsored this roadmap to guide energy efficiency research and deployment for high performance cleanrooms and laboratories. Industries and institutions utilizing these building types (termed high-tech buildings) have played an important part in the vitality of the California economy. This roadmap's key objective to present a multi-year agenda to prioritize and coordinate research efforts. It also addresses delivery mechanisms to get the research products into the market. Because of the importance to the California economy, it is appropriate and important for California to take the lead in assessing the energy efficiency research needs, opportunities, and priorities for this market. In addition to the importance to California's economy, energy demand for this market segment is large and growing (estimated at 9400 GWH for 1996, Mills et al. 1996). With their 24hr. continuous operation, high tech facilities are a major contributor to the peak electrical demand. Laboratories and cleanrooms constitute the high tech building market, and although each building type has its unique features, they are similar in that they are extremely energy intensive, involve special environmental considerations, have very high ventilation requirements, and are subject to regulations--primarily safety driven--that tend to have adverse energy implications. High-tech buildings have largely been overlooked in past energy efficiency research. Many industries and institutions utilize laboratories and cleanrooms. As illustrated, there are many industries operating cleanrooms in California. These include semiconductor manufacturing, semiconductor suppliers, pharmaceutical, biotechnology, disk drive manufacturing, flat panel displays, automotive, aerospace, food, hospitals, medical devices, universities, and federal research facilities.

  6. Study of High Performance Coronagraphic Techniques

    Science.gov (United States)

    Crane, Phil (Technical Monitor); Tolls, Volker

    2004-01-01

    The goal of the Study of High Performance Coronagraphic Techniques project (called CoronaTech) is: 1) to verify the Labeyrie multi-step speckle reduction method and 2) to develop new techniques to manufacture soft-edge occulter masks preferably with Gaussian absorption profile. In a coronagraph, the light from a bright host star which is centered on the optical axis in the image plane is blocked by an occulter centered on the optical axis while the light from a planet passes the occulter (the planet has a certain minimal distance from the optical axis). Unfortunately, stray light originating in the telescope and subsequent optical elements is not completely blocked causing a so-called speckle pattern in the image plane of the coronagraph limiting the sensitivity of the system. The sensitivity can be increased significantly by reducing the amount of speckle light. The Labeyrie multi-step speckle reduction method implements one (or more) phase correction steps to suppress the unwanted speckle light. In each step, the stray light is rephased and then blocked with an additional occulter which affects the planet light (or other companion) only slightly. Since the suppression is still not complete, a series of steps is required in order to achieve significant suppression. The second part of the project is the development of soft-edge occulters. Simulations have shown that soft-edge occulters show better performance in coronagraphs than hard-edge occulters. In order to utilize the performance gain of soft-edge occulters. fabrication methods have to be developed to manufacture these occulters according to the specification set forth by the sensitivity requirements of the coronagraph.

  7. Scalable resource management in high performance computers.

    Energy Technology Data Exchange (ETDEWEB)

    Frachtenberg, E. (Eitan); Petrini, F. (Fabrizio); Fernandez Peinador, J. (Juan); Coll, S. (Salvador)

    2002-01-01

    Clusters of workstations have emerged as an important platform for building cost-effective, scalable and highly-available computers. Although many hardware solutions are available today, the largest challenge in making large-scale clusters usable lies in the system software. In this paper we present STORM, a resource management tool designed to provide scalability, low overhead and the flexibility necessary to efficiently support and analyze a wide range of job scheduling algorithms. STORM achieves these feats by closely integrating the management daemons with the low-level features that are common in state-of-the-art high-performance system area networks. The architecture of STORM is based on three main technical innovations. First, a sizable part of the scheduler runs in the thread processor located on the network interface. Second, we use hardware collectives that are highly scalable both for implementing control heartbeats and to distribute the binary of a parallel job in near-constant time, irrespective of job and machine sizes. Third, we use an I/O bypass protocol that allows fast data movements from the file system to the communication buffers in the network interface and vice versa. The experimental results show that STORM can launch a job with a binary of 12MB on a 64 processor/32 node cluster in less than 0.25 sec on an empty network, in less than 0.45 sec when all the processors are busy computing other jobs, and in less than 0.65 sec when the network is flooded with a background traffic. This paper provides experimental and analytical evidence that these results scale to a much larger number of nodes. To the best of our knowledge, STORM is at least two orders of magnitude faster than existing production schedulers in launching jobs, performing resource management tasks and gang scheduling.

  8. High-Performance Monopropellants and Catalysts Evaluated

    Science.gov (United States)

    Reed, Brian D.

    2004-01-01

    The NASA Glenn Research Center is sponsoring efforts to develop advanced monopropellant technology. The focus has been on monopropellant formulations composed of an aqueous solution of hydroxylammonium nitrate (HAN) and a fuel component. HAN-based monopropellants do not have a toxic vapor and do not need the extraordinary procedures for storage, handling, and disposal required of hydrazine (N2H4). Generically, HAN-based monopropellants are denser and have lower freezing points than N2H4. The performance of HAN-based monopropellants depends on the selection of fuel, the HAN-to-fuel ratio, and the amount of water in the formulation. HAN-based monopropellants are not seen as a replacement for N2H4 per se, but rather as a propulsion option in their own right. For example, HAN-based monopropellants would prove beneficial to the orbit insertion of small, power-limited satellites because of this propellant's high performance (reduced system mass), high density (reduced system volume), and low freezing point (elimination of tank and line heaters). Under a Glenn-contracted effort, Aerojet Redmond Rocket Center conducted testing to provide the foundation for the development of monopropellant thrusters with an I(sub sp) goal of 250 sec. A modular, workhorse reactor (representative of a 1-lbf thruster) was used to evaluate HAN formulations with catalyst materials. Stoichiometric, oxygen-rich, and fuelrich formulations of HAN-methanol and HAN-tris(aminoethyl)amine trinitrate were tested to investigate the effects of stoichiometry on combustion behavior. Aerojet found that fuelrich formulations degrade the catalyst and reactor faster than oxygen-rich and stoichiometric formulations do. A HAN-methanol formulation with a theoretical Isp of 269 sec (designated HAN269MEO) was selected as the baseline. With a combustion efficiency of at least 93 percent demonstrated for HAN-based monopropellants, HAN269MEO will meet the I(sub sp) 250 sec goal.

  9. High Efficiency, High Performance Clothes Dryer

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pescatore; Phil Carbone

    2005-03-31

    This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for both dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a

  10. Integrating advanced facades into high performance buildings

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, Stephen E.

    2001-05-01

    Glass is a remarkable material but its functionality is significantly enhanced when it is processed or altered to provide added intrinsic capabilities. The overall performance of glass elements in a building can be further enhanced when they are designed to be part of a complete facade system. Finally the facade system delivers the greatest performance to the building owner and occupants when it becomes an essential element of a fully integrated building design. This presentation examines the growing interest in incorporating advanced glazing elements into more comprehensive facade and building systems in a manner that increases comfort, productivity and amenity for occupants, reduces operating costs for building owners, and contributes to improving the health of the planet by reducing overall energy use and negative environmental impacts. We explore the role of glazing systems in dynamic and responsive facades that provide the following functionality: Enhanced sun protection and cooling load control while improving thermal comfort and providing most of the light needed with daylighting; Enhanced air quality and reduced cooling loads using natural ventilation schemes employing the facade as an active air control element; Reduced operating costs by minimizing lighting, cooling and heating energy use by optimizing the daylighting-thermal tradeoffs; Net positive contributions to the energy balance of the building using integrated photovoltaic systems; Improved indoor environments leading to enhanced occupant health, comfort and performance. In addressing these issues facade system solutions must, of course, respect the constraints of latitude, location, solar orientation, acoustics, earthquake and fire safety, etc. Since climate and occupant needs are dynamic variables, in a high performance building the facade solution have the capacity to respond and adapt to these variable exterior conditions and to changing occupant needs. This responsive performance capability

  11. High Performance Commercial Fenestration Framing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Mike Manteghi; Sneh Kumar; Joshua Early; Bhaskar Adusumalli

    2010-01-31

    A major objective of the U.S. Department of Energy is to have a zero energy commercial building by the year 2025. Windows have a major influence on the energy performance of the building envelope as they control over 55% of building energy load, and represent one important area where technologies can be developed to save energy. Aluminum framing systems are used in over 80% of commercial fenestration products (i.e. windows, curtain walls, store fronts, etc.). Aluminum framing systems are often required in commercial buildings because of their inherent good structural properties and long service life, which is required from commercial and architectural frames. At the same time, they are lightweight and durable, requiring very little maintenance, and offer design flexibility. An additional benefit of aluminum framing systems is their relatively low cost and easy manufacturability. Aluminum, being an easily recyclable material, also offers sustainable features. However, from energy efficiency point of view, aluminum frames have lower thermal performance due to the very high thermal conductivity of aluminum. Fenestration systems constructed of aluminum alloys therefore have lower performance in terms of being effective barrier to energy transfer (heat loss or gain). Despite the lower energy performance, aluminum is the choice material for commercial framing systems and dominates the commercial/architectural fenestration market because of the reasons mentioned above. In addition, there is no other cost effective and energy efficient replacement material available to take place of aluminum in the commercial/architectural market. Hence it is imperative to improve the performance of aluminum framing system to improve the energy performance of commercial fenestration system and in turn reduce the energy consumption of commercial building and achieve zero energy building by 2025. The objective of this project was to develop high performance, energy efficient commercial

  12. High Efficiency, High Performance Clothes Dryer

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pescatore; Phil Carbone

    2005-03-31

    This program covered the development of two separate products; an electric heat pump clothes dryer and a modulating gas dryer. These development efforts were independent of one another and are presented in this report in two separate volumes. Volume 1 details the Heat Pump Dryer Development while Volume 2 details the Modulating Gas Dryer Development. In both product development efforts, the intent was to develop high efficiency, high performance designs that would be attractive to US consumers. Working with Whirlpool Corporation as our commercial partner, TIAX applied this approach of satisfying consumer needs throughout the Product Development Process for both dryer designs. Heat pump clothes dryers have been in existence for years, especially in Europe, but have not been able to penetrate the market. This has been especially true in the US market where no volume production heat pump dryers are available. The issue has typically been around two key areas: cost and performance. Cost is a given in that a heat pump clothes dryer has numerous additional components associated with it. While heat pump dryers have been able to achieve significant energy savings compared to standard electric resistance dryers (over 50% in some cases), designs to date have been hampered by excessively long dry times, a major market driver in the US. The development work done on the heat pump dryer over the course of this program led to a demonstration dryer that delivered the following performance characteristics: (1) 40-50% energy savings on large loads with 35 F lower fabric temperatures and similar dry times; (2) 10-30 F reduction in fabric temperature for delicate loads with up to 50% energy savings and 30-40% time savings; (3) Improved fabric temperature uniformity; and (4) Robust performance across a range of vent restrictions. For the gas dryer development, the concept developed was one of modulating the gas flow to the dryer throughout the dry cycle. Through heat modulation in a

  13. High Performance Computing in Science and Engineering '15 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2015. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  14. Compact high performance spectrometers using computational imaging

    Science.gov (United States)

    Morton, Kenneth; Weisberg, Arel

    2016-05-01

    Compressive sensing technology can theoretically be used to develop low cost compact spectrometers with the performance of larger and more expensive systems. Indeed, compressive sensing for spectroscopic systems has been previously demonstrated using coded aperture techniques, wherein a mask is placed between the grating and a charge coupled device (CCD) and multiple measurements are collected with different masks. Although proven effective for some spectroscopic sensing paradigms (e.g. Raman), this approach requires that the signal being measured is static between shots (low noise and minimal signal fluctuation). Many spectroscopic techniques applicable to remote sensing are inherently noisy and thus coded aperture compressed sensing will likely not be effective. This work explores an alternative approach to compressed sensing that allows for reconstruction of a high resolution spectrum in sensing paradigms featuring significant signal fluctuations between measurements. This is accomplished through relatively minor changes to the spectrometer hardware together with custom super-resolution algorithms. Current results indicate that a potential overall reduction in CCD size of up to a factor of 4 can be attained without a loss of resolution. This reduction can result in significant improvements in cost, size, and weight of spectrometers incorporating the technology.

  15. Intelligent Facades for High Performance Green Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Progress Towards Net-Zero and Net-Positive-Energy Commercial Buildings and Urban Districts Through Intelligent Building Envelope Strategies Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring onsite solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building

  16. High-performance commercial building systems

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, Stephen

    2003-10-01

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to

  17. Yap: A High-Performance Cursor on Target Message Router

    Science.gov (United States)

    2014-09-01

    Yap: A High-Performance Cursor on Target Message Router by Jesse Kovach ARL-TR-7096 September 2014...High-Performance Cursor on Target Message Router Jesse Kovach Computational and Information Sciences Directorate, ARL...

  18. High Performance Home Building Guide for Habitat for Humanity Affiliates

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey Marburger

    2010-10-01

    This guide covers basic principles of high performance Habitat construction, steps to achieving high performance Habitat construction, resources to help improve building practices, materials, etc., and affiliate profiles and recommendations.

  19. High-performance commercial building systems

    Energy Technology Data Exchange (ETDEWEB)

    Selkowitz, Stephen

    2003-10-01

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to

  20. High Performance Computing in Science and Engineering '98 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    1999-01-01

    The book contains reports about the most significant projects from science and industry that are using the supercomputers of the Federal High Performance Computing Center Stuttgart (HLRS). These projects are from different scientific disciplines, with a focus on engineering, physics and chemistry. They were carefully selected in a peer-review process and are showcases for an innovative combination of state-of-the-art physical modeling, novel algorithms and the use of leading-edge parallel computer technology. As HLRS is in close cooperation with industrial companies, special emphasis has been put on the industrial relevance of results and methods.

  1. High Performance Input/Output Systems for High Performance Computing and Four-Dimensional Data Assimilation

    Science.gov (United States)

    Fox, Geoffrey C.; Ou, Chao-Wei

    1997-01-01

    The approach of this task was to apply leading parallel computing research to a number of existing techniques for assimilation, and extract parameters indicating where and how input/output limits computational performance. The following was used for detailed knowledge of the application problems: 1. Developing a parallel input/output system specifically for this application 2. Extracting the important input/output characteristics of data assimilation problems; and 3. Building these characteristics s parameters into our runtime library (Fortran D/High Performance Fortran) for parallel input/output support.

  2. High Performance Computing in Science and Engineering '99 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    2000-01-01

    The book contains reports about the most significant projects from science and engineering of the Federal High Performance Computing Center Stuttgart (HLRS). They were carefully selected in a peer-review process and are showcases of an innovative combination of state-of-the-art modeling, novel algorithms and the use of leading-edge parallel computer technology. The projects of HLRS are using supercomputer systems operated jointly by university and industry and therefore a special emphasis has been put on the industrial relevance of results and methods.

  3. High Performance Liquid Chromatography/Video Fluorometry. Part I. Instrumentation.

    Science.gov (United States)

    1981-09-30

    High Performance Liquid Chromatography /Video...PERIOD COVERED High Performance Liquid Chromatography /Video .. / Fluorometry. Part I. Instrumentation. . Interim/ echnicaliepart,. 6. PERFORMING ORG...34Entered SECURITY CLASSIFICATION OF THIS OlAGE (When Data Entered) II1| III I I I I E I II ... .. High Performance Liquid Chromatography

  4. Fast and environmentally friendly quantitative analysis of active agents in anti-diabetic tablets by an alternative laser-induced breakdown spectroscopy (LIBS) method and comparison to a validated reversed-phase high-performance liquid chromatography (RP-HPLC) method.

    Science.gov (United States)

    Contreras, Victor Ulises; Meneses-Nava, Marco A; Ornelas-Soto, Nancy; Barbosa-García, Oracio; López-de-Alba, Pedro L; Maldonado, José L; Ramos-Ortiz, Gabriel; Acevedo-Aguilar, Francisco J; López-Martínez, Leticia

    2012-11-01

    Laser-induced breakdown spectroscopy (LIBS) is evaluated as a potential analytic technique for rapid screening and quality control of anti-diabetic tablets. This paper proposes a simple LIBS-based method for the quantitative analysis of two active pharmaceutical ingredients (APIs): metformin (Met) and glybenclamide (Gly). In order to quantify both APIs, chlorine (Cl) concentration was estimated by employing the Cl/Br optical emission ratio, where Br was introduced as internal standard. Calibration curves were prepared, achieving linearity higher than 99%. On the other hand, for comparison to the proposed method, an isocratic reversed-phase high-performance liquid chromatography (RP-HPLC) method was also developed for quantitative determination of the same analytes by ultraviolet (UV) detection. The chromatographic separation was achieved on a Phenomenex Hypersil C18, 250 mm × 4.6 mm, 5 μm column. The mobile phase was K(2)HPO(4)/H(3)PO(4)-CH(3)OH and flow rate was 1.0 mL min(-1). The method is linear over a range of 10-60 μg mL(-1) for Gly and 5-30 μg mL(-1) for Met and the correlation coefficients were ≥0.99. Recoveries were found to be in the range of 95-101%. Furthermore, four different commercial brands of each active agent were evaluated by both proposed LIBS and chromatographic methods and results were compared with each other. The comparison was satisfactorily validated by analysis of variance (ANOVA).

  5. Development of high performance hybrid rocket fuels

    Science.gov (United States)

    Zaseck, Christopher R.

    In this document I discuss paraffin fuel combustion and investigate the effects of additives on paraffin entrainment and regression. In general, hybrid rockets offer an economical and safe alternative to standard liquid and solid rockets. However, slow polymeric fuel regression and low combustion efficiency have limited the commercial use of hybrid rockets. Paraffin is a fast burning fuel that has received significant attention in the 2000's and 2010's as a replacement for standard fuels. Paraffin regresses three to four times faster than polymeric fuels due to the entrainment of a surface melt layer. However, further regression rate enhancement over the base paraffin fuel is necessary for widespread hybrid rocket adoption. I use a small scale opposed flow burner to investigate the effect of additives on the combustion of paraffin. Standard additives such as aluminum combust above the flame zone where sufficient oxidizer levels are present. As a result no heat is generated below the flame itself. In small scale opposed burner experiments the effect of limited heat feedback is apparent. Aluminum in particular does not improve the regression of paraffin in the opposed burner. The lack of heat feedback from additive combustion limits the applicability of the opposed burner. In turn, the results obtained in the opposed burner with metal additive loaded hybrid fuels do not match results from hybrid rocket experiments. In addition, nano-scale aluminum increases melt layer viscosity and greatly slows the regression of paraffin in the opposed flow burner. However, the reactive additives improve the regression rate of paraffin in the opposed burner where standard metals do not. At 5 wt.% mechanically activated titanium and carbon (Ti-C) improves the regression rate of paraffin by 47% in the opposed burner. The mechanically activated Ti C likely reacts in or near the melt layer and provides heat feedback below the flame region that results in faster opposed burner regression

  6. High performance computing in power and energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Khaitan, Siddhartha Kumar [Iowa State Univ., Ames, IA (United States); Gupta, Anshul (eds.) [IBM Watson Research Center, Yorktown Heights, NY (United States)

    2013-07-01

    The twin challenge of meeting global energy demands in the face of growing economies and populations and restricting greenhouse gas emissions is one of the most daunting ones that humanity has ever faced. Smart electrical generation and distribution infrastructure will play a crucial role in meeting these challenges. We would need to develop capabilities to handle large volumes of data generated by the power system components like PMUs, DFRs and other data acquisition devices as well as by the capacity to process these data at high resolution via multi-scale and multi-period simulations, cascading and security analysis, interaction between hybrid systems (electric, transport, gas, oil, coal, etc.) and so on, to get meaningful information in real time to ensure a secure, reliable and stable power system grid. Advanced research on development and implementation of market-ready leading-edge high-speed enabling technologies and algorithms for solving real-time, dynamic, resource-critical problems will be required for dynamic security analysis targeted towards successful implementation of Smart Grid initiatives. This books aims to bring together some of the latest research developments as well as thoughts on the future research directions of the high performance computing applications in electric power systems planning, operations, security, markets, and grid integration of alternate sources of energy, etc.

  7. High Performance GPU-Based Fourier Volume Rendering.

    Science.gov (United States)

    Abdellah, Marwan; Eldeib, Ayman; Sharawi, Amr

    2015-01-01

    Fourier volume rendering (FVR) is a significant visualization technique that has been used widely in digital radiography. As a result of its (N (2)log⁡N) time complexity, it provides a faster alternative to spatial domain volume rendering algorithms that are (N (3)) computationally complex. Relying on the Fourier projection-slice theorem, this technique operates on the spectral representation of a 3D volume instead of processing its spatial representation to generate attenuation-only projections that look like X-ray radiographs. Due to the rapid evolution of its underlying architecture, the graphics processing unit (GPU) became an attractive competent platform that can deliver giant computational raw power compared to the central processing unit (CPU) on a per-dollar-basis. The introduction of the compute unified device architecture (CUDA) technology enables embarrassingly-parallel algorithms to run efficiently on CUDA-capable GPU architectures. In this work, a high performance GPU-accelerated implementation of the FVR pipeline on CUDA-enabled GPUs is presented. This proposed implementation can achieve a speed-up of 117x compared to a single-threaded hybrid implementation that uses the CPU and GPU together by taking advantage of executing the rendering pipeline entirely on recent GPU architectures.

  8. High Performance GPU-Based Fourier Volume Rendering

    Directory of Open Access Journals (Sweden)

    Marwan Abdellah

    2015-01-01

    Full Text Available Fourier volume rendering (FVR is a significant visualization technique that has been used widely in digital radiography. As a result of its O(N2log⁡N time complexity, it provides a faster alternative to spatial domain volume rendering algorithms that are O(N3 computationally complex. Relying on the Fourier projection-slice theorem, this technique operates on the spectral representation of a 3D volume instead of processing its spatial representation to generate attenuation-only projections that look like X-ray radiographs. Due to the rapid evolution of its underlying architecture, the graphics processing unit (GPU became an attractive competent platform that can deliver giant computational raw power compared to the central processing unit (CPU on a per-dollar-basis. The introduction of the compute unified device architecture (CUDA technology enables embarrassingly-parallel algorithms to run efficiently on CUDA-capable GPU architectures. In this work, a high performance GPU-accelerated implementation of the FVR pipeline on CUDA-enabled GPUs is presented. This proposed implementation can achieve a speed-up of 117x compared to a single-threaded hybrid implementation that uses the CPU and GPU together by taking advantage of executing the rendering pipeline entirely on recent GPU architectures.

  9. Stacked Polymer nanofiber array for high-performance supercapacitors

    Science.gov (United States)

    Wang, Shiren; Qiu, Jenny

    2015-03-01

    The vertically aligned polyaniline (PANI) nanowires arrays and monolayer graphene sheets were layer-by-layered deposited to specific substrate for tailored structures. Driven by external voltage, aniline molecules and graphene oxide were alternatively assembled for hierarchical porous three-dimensional nanostructures while graphene oxide was in-situ reduced to graphene during the assembly process. As-produced stacked arrays were used as the electrodes of an ultra-capacitor, and an unusual electrochemical behavior was discovered. The capacitance increases as the stack of nanowire arrays increases, resulting in high energy density and high power density at same time. Further analysis found that the distinctive electrochemical behavior originates from the electrode/electrolyte interactions and the dependence on the diffusion and charge transferring process. The specific energy density was as high as 137 Wh/Kg while power density is in excess of 2000 W/Kg. This work pointed a simple pathway to tailor polymer structure and electrochemistry for robust design of high-performance ultra-capacitor at a limited lateral size. National Science Foundation.

  10. High Performance Computing in Science and Engineering '02 : Transactions of the High Performance Computing Center

    CERN Document Server

    Jäger, Willi

    2003-01-01

    This book presents the state-of-the-art in modeling and simulation on supercomputers. Leading German research groups present their results achieved on high-end systems of the High Performance Computing Center Stuttgart (HLRS) for the year 2002. Reports cover all fields of supercomputing simulation ranging from computational fluid dynamics to computer science. Special emphasis is given to industrially relevant applications. Moreover, by presenting results for both vector sytems and micro-processor based systems the book allows to compare performance levels and usability of a variety of supercomputer architectures. It therefore becomes an indispensable guidebook to assess the impact of the Japanese Earth Simulator project on supercomputing in the years to come.

  11. High performance GPU processing for inversion using uniform grid searches

    Science.gov (United States)

    Venetis, Ioannis E.; Saltogianni, Vasso; Stiros, Stathis; Gallopoulos, Efstratios

    2017-04-01

    Many geophysical problems are described by systems of redundant, highly non-linear systems of ordinary equations with constant terms deriving from measurements and hence representing stochastic variables. Solution (inversion) of such problems is based on numerical, optimization methods, based on Monte Carlo sampling or on exhaustive searches in cases of two or even three "free" unknown variables. Recently the TOPological INVersion (TOPINV) algorithm, a grid search-based technique in the Rn space, has been proposed. TOPINV is not based on the minimization of a certain cost function and involves only forward computations, hence avoiding computational errors. The basic concept is to transform observation equations into inequalities on the basis of an optimization parameter k and of their standard errors, and through repeated "scans" of n-dimensional search grids for decreasing values of k to identify the optimal clusters of gridpoints which satisfy observation inequalities and by definition contain the "true" solution. Stochastic optimal solutions and their variance-covariance matrices are then computed as first and second statistical moments. Such exhaustive uniform searches produce an excessive computational load and are extremely time consuming for common computers based on a CPU. An alternative is to use a computing platform based on a GPU, which nowadays is affordable to the research community, which provides a much higher computing performance. Using the CUDA programming language to implement TOPINV allows the investigation of the attained speedup in execution time on such a high performance platform. Based on synthetic data we compared the execution time required for two typical geophysical problems, modeling magma sources and seismic faults, described with up to 18 unknown variables, on both CPU/FORTRAN and GPU/CUDA platforms. The same problems for several different sizes of search grids (up to 1012 gridpoints) and numbers of unknown variables were solved on

  12. High Performance Liquid Chromatography/Video Fluorometry. Part II. Applications.

    Science.gov (United States)

    1981-09-30

    HIGH PERFORMANCE LIQUID CHROMATOGRAPHY /VIDEO FLUOROMETRY. PART...REP«T_N&:-ŗ/ High Performance Liquid Chromatography /Video Fluorometry» Part II. Applications« by | Dennis C./Shelly* Michael P./Vogarty and...Data EnlirtdJ REPORT DOCUMENTATION PAGE t. REPORT NUMBER 2 GOVT ACCESSION NO 4. T1TI.F (and Submit) lP-^fffsyva High Performance Liquid Chromatography

  13. High Performance Monopropellants for Future Planetary Ascent Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. proposes to design, develop, and demonstrate, a novel high performance monopropellant for application in future planetary ascent vehicles. Our...

  14. Nanoporous CuS nano-hollow spheres as advanced material for high-performance supercapacitors

    Science.gov (United States)

    Heydari, Hamid; Moosavifard, Seyyed Ebrahim; Elyasi, Saeed; Shahraki, Mohammad

    2017-02-01

    Due to unique advantages, the development of high-performance supercapacitors has stimulated a great deal of scientific research over the past decade. The electrochemical performance of a supercapacitor is strongly affected by the surface and structural properties of its electrode materials. Herein, we report a facile synthesis of high-performance supercapacitor electrode material based on CuS nano-hollow spheres with nanoporous structures, large specific surface area (97 m2 g-1) and nanoscale shell thickness (nano-hollow spheres electrode exhibits excellent electrochemical performance including a maximum specific capacitance of 948 F g-1 at 1 A g-1, significant rate capability of 46% capacitance retention at a high current density of 50 A g-1, and outstanding long-term cycling stability at various current densities. This work not only demonstrates the promising potential of the CuS-NHS electrodes for application in high-performance supercapacitors, but also sheds a new light on the metal sulfides design philosophy.

  15. High Performance Computing in Science and Engineering '08 : Transactions of the High Performance Computing Center

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2009-01-01

    The discussions and plans on all scienti?c, advisory, and political levels to realize an even larger “European Supercomputer” in Germany, where the hardware costs alone will be hundreds of millions Euro – much more than in the past – are getting closer to realization. As part of the strategy, the three national supercomputing centres HLRS (Stuttgart), NIC/JSC (Julic ¨ h) and LRZ (Munich) have formed the Gauss Centre for Supercomputing (GCS) as a new virtual organization enabled by an agreement between the Federal Ministry of Education and Research (BMBF) and the state ministries for research of Baden-Wurttem ¨ berg, Bayern, and Nordrhein-Westfalen. Already today, the GCS provides the most powerful high-performance computing - frastructure in Europe. Through GCS, HLRS participates in the European project PRACE (Partnership for Advances Computing in Europe) and - tends its reach to all European member countries. These activities aligns well with the activities of HLRS in the European HPC infrastructur...

  16. Introducing high performance distributed logging service for ACS

    Science.gov (United States)

    Avarias, Jorge A.; López, Joao S.; Maureira, Cristián; Sommer, Heiko; Chiozzi, Gianluca

    2010-07-01

    The ALMA Common Software (ACS) is a software framework that provides the infrastructure for the Atacama Large Millimeter Array and other projects. ACS, based on CORBA, offers basic services and common design patterns for distributed software. Every properly built system needs to be able to log status and error information. Logging in a single computer scenario can be as easy as using fprintf statements. However, in a distributed system, it must provide a way to centralize all logging data in a single place without overloading the network nor complicating the applications. ACS provides a complete logging service infrastructure in which every log has an associated priority and timestamp, allowing filtering at different levels of the system (application, service and clients). Currently the ACS logging service uses an implementation of the CORBA Telecom Log Service in a customized way, using only a minimal subset of the features provided by the standard. The most relevant feature used by ACS is the ability to treat the logs as event data that gets distributed over the network in a publisher-subscriber paradigm. For this purpose the CORBA Notification Service, which is resource intensive, is used. On the other hand, the Data Distribution Service (DDS) provides an alternative standard for publisher-subscriber communication for real-time systems, offering better performance and featuring decentralized message processing. The current document describes how the new high performance logging service of ACS has been modeled and developed using DDS, replacing the Telecom Log Service. Benefits and drawbacks are analyzed. A benchmark is presented comparing the differences between the implementations.

  17. Control switching in high performance and fault tolerant control

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2010-01-01

    The problem of reliability in high performance control and in fault tolerant control is considered in this paper. A feedback controller architecture for high performance and fault tolerance is considered. The architecture is based on the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization. By usi...

  18. Mechanical Properties of High Performance Cementitious Grout Masterflow 9300

    DEFF Research Database (Denmark)

    Sørensen, Eigil V.

    The present report describes tests carried out on the high performance grout MASTERFLOW 9300, developed by BASF Construction Chemicals A/S.......The present report describes tests carried out on the high performance grout MASTERFLOW 9300, developed by BASF Construction Chemicals A/S....

  19. Building Synergy: The Power of High Performance Work Systems.

    Science.gov (United States)

    Gephart, Martha A.; Van Buren, Mark E.

    1996-01-01

    Suggests that high-performance work systems create the synergy that lets companies gain and keep a competitive advantage. Identifies the components of high-performance work systems and critical action steps for implementation. Describes the results companies such as Xerox, Lever Brothers, and Corning Incorporated have achieved by using them. (JOW)

  20. High performance 3D printed electronics using electroless plated copper

    OpenAIRE

    Jin Rong Jian; Taeil Kim; Jae Sung Park; Jiacheng Wang; Woo Soo Kim

    2017-01-01

    This paper presents design and performance validation of 3D printed electronic components, 3D toroidal air-core inductors, fabricated by multi-material based Fused Deposition Modelling (FDM) 3D printing technology and electroless copper plating. Designs of toroidal inductor is investigated with different core shapes and winding numbers; circular and half-circular cores with 10 and 13 turns of windings...

  1. High Performance Low Mass Nanowire Enabled Heatpipe Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Heat pipes are widely used for passive, two-phase electronics cooling. As advanced high power, high performance electronics in space based and terrestrial...

  2. Energy Design Guidelines for High Performance Schools: Tropical Island Climates

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-11-01

    Design guidelines outline high performance principles for the new or retrofit design of K-12 schools in tropical island climates. By incorporating energy improvements into construction or renovation plans, schools can reduce energy consumption and costs.

  3. A High Performance Delta-Sigma Modulator for Neurosensing

    National Research Council Canada - National Science Library

    Xu, Jian; Zhao, Menglian; Wu, Xiaobo; Islam, Md Kafiul; Yang, Zhi

    2015-01-01

    ... to achieve and would require excessive circuit area and power for implementation. In this paper, we present a high performance Delta-Sigma modulator along with several design techniques and enabling blocks to reduce circuit area and power...

  4. High Performance Low Mass Nanowire Enabled Heatpipe Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Illuminex Corporation proposes a NASA Phase I SBIR project to develop high performance, lightweight, low-profile heat pipes with enhanced thermal transfer properties...

  5. Innovative Deep Throttling, High Performance Injector Concept Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Science and Technology Applications, LLC's (STA) vision for a versatile space propulsion system is a highly throttleable, high performance, and cost effective Liquid...

  6. High Performance Computing Assets for Ocean Acoustics Research

    Science.gov (United States)

    2016-11-18

    that make them easily parallelizable in the manner that, for example, atmospheric or ocean general circulation models (GCMs) are parallel. Many GCMs...Enclosed is the Final Report for ONR Grant No. NOOO 14-15-1-2840 entitled "High Performance Computing Assets for Ocean Acoustjc Research," Principal...distribution is unlimited. ONR DURIP Grant Final Report High Performance Computing Assets for Ocean Acoustics Research Timothy F. Dud a Applied Ocean

  7. High performance pipelined multiplier with fast carry-save adder

    Science.gov (United States)

    Wu, Angus

    1990-01-01

    A high-performance pipelined multiplier is described. Its high performance results from the fast carry-save adder basic cell which has a simple structure and is suitable for the Gate Forest semi-custom environment. The carry-save adder computes the sum and carry within two gate delay. Results show that the proposed adder can operate at 200 MHz for a 2-micron CMOS process; better performance is expected in a Gate Forest realization.

  8. Variational formulation of high performance finite elements: Parametrized variational principles

    Science.gov (United States)

    Felippa, Carlos A.; Militello, Carmello

    1991-01-01

    High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.

  9. Engineering high performance intermediate temperature solid oxide fuel cells

    Science.gov (United States)

    Ahn, Jin Soo

    Solid oxide fuel cells (SOFCs) are an efficient, fuel flexible energy conversion device, capable of operating on fuels ranging from natural gas to gasoline, diesel, and biofuels, as well as hydrogen. However, to this point the marketability of SOFCs has been limited by their high operating temperatures. Achieving high power at intermediate temperatures (IT, 500 -- 700 °C) would be a significant breakthrough, as low temperature operation would result in better stability and allow for a broader range of material options for the SOFC components as well as the balance of plant, such as stainless steel interconnects (which are only viable at open circuit potential (OCP) by more than 0.1 V resulting in a 140 % increase in power. Further investigations into this molecular AFL showed that a multilayered AFL can further reduce the ASR and increase the maximum power density. Secondly, the potential use of Sm0.075Nd0.075Ce0.85O 2-delta as an electrolyte has been investigated. The current-voltage (I-V) performance of the cell exhibits a maximum power density reaching 1.38 W/cm2 with an area specific resistance (ASR) of 0.087 Ocm 2 at 650 °C with 90 sccm of air and wet hydrogen. Also, the high OCP achieved at 500 °C (0.96 V) as well as the high performance confirmed the viability of Sm0.075Nd0.075Ce0.85 O2-delta as an alternative electrolyte material. The cathode used for this study was La0.6Sr0.4Co0.2Fe 0.8O3 (LSCF) -- Gd0.1Ce0.9O 2 (GDC) composite. Finally, Er0.8Bi1.2O3 (ESB)/GDC bilayered electrolyte combined with recently developed ESB/Bi2Ru2O7 (BRO) composite cathodes was tested. In this work a maximum power density of 2 W/cm2 was achieved at 650 °C with the help of the novel AFL and tapecast anode supports. This is the highest power yet achieved in the IT range and I believe redefines the expectation level for maximum power under IT-SOFC operating conditions.

  10. Novel hybrid materials based on the vanadium oxide nanobelts

    Science.gov (United States)

    Zabrodina, G. S.; Makarov, S. G.; Kremlev, K. V.; Yunin, P. A.; Gusev, S. A.; Kaverin, B. S.; Kaverina, L. B.; Ketkov, S. Yu.

    2016-04-01

    Novel hybrid materials based on zinc phthalocyanine and nanostructured vanadium oxides have attracted extensive attention for the development of academic research and innovative industrial applications such as flexible electronics, optical sensors and heterogeneous catalysts. Vanadium oxides nanobelts were synthesized via a hydrothermal treatment V2O5·nH2O gel with surfactants (TBAB, CTAB) used as structure-directing agents, where CTAB - cetyltrimethylammonium bromide, TBAB - tetrabutylammonium bromide. Hybrid materials were prepared decoration of (CTA)0.33V2O5 flexible nanobelts with cationic zinc phthalocyanine by the ion-exchange route. Investigations of the thermal stability, morphologies and structures of the (CTA)0.33V2O5, (TBA)0.16V2O5 nanobelts and zinc phthalocyanine exchange product were carried out. The hybrid materials based on the nanostructured vanadium oxide and zinc phthalocyanine were tested as photocatalysts for oxidation of citronellol and 2-mercaptoethanol by dioxygen.

  11. Progress and Challenges in High Performance Computer Technology

    Institute of Scientific and Technical Information of China (English)

    Xue-Jun Yang; Yong Dou; Qing-Feng Hu

    2006-01-01

    High performance computers provide strategic computing power in the construction of national economy and defense, and become one of symbols of the country's overall strength. Over 30 years, with the supports of governments, the technology of high performance computers is in the process of rapid development, during which the computing performance increases nearly 3 million times and the processors number expands over 10 hundred thousands times. To solve the critical issues related with parallel efficiency and scalability, scientific researchers pursued extensive theoretical studies and technical innovations. The paper briefly looks back the course of building high performance computer systems both at home and abroad,and summarizes the significant breakthroughs of international high performance computer technology. We also overview the technology progress of China in the area of parallel computer architecture, parallel operating system and resource management,parallel compiler and performance optimization, environment for parallel programming and network computing. Finally, we examine the challenging issues, "memory wall", system scalability and "power wall", and discuss the issues of high productivity computers, which is the trend in building next generation high performance computers.

  12. Resource estimation in high performance medical image computing.

    Science.gov (United States)

    Banalagay, Rueben; Covington, Kelsie Jade; Wilkes, D M; Landman, Bennett A

    2014-10-01

    Medical imaging analysis processes often involve the concatenation of many steps (e.g., multi-stage scripts) to integrate and realize advancements from image acquisition, image processing, and computational analysis. With the dramatic increase in data size for medical imaging studies (e.g., improved resolution, higher throughput acquisition, shared databases), interesting study designs are becoming intractable or impractical on individual workstations and servers. Modern pipeline environments provide control structures to distribute computational load in high performance computing (HPC) environments. However, high performance computing environments are often shared resources, and scheduling computation across these resources necessitates higher level modeling of resource utilization. Submission of 'jobs' requires an estimate of the CPU runtime and memory usage. The resource requirements for medical image processing algorithms are difficult to predict since the requirements can vary greatly between different machines, different execution instances, and different data inputs. Poor resource estimates can lead to wasted resources in high performance environments due to incomplete executions and extended queue wait times. Hence, resource estimation is becoming a major hurdle for medical image processing algorithms to efficiently leverage high performance computing environments. Herein, we present our implementation of a resource estimation system to overcome these difficulties and ultimately provide users with the ability to more efficiently utilize high performance computing resources.

  13. A Component Architecture for High-Performance Scientific Computing

    Energy Technology Data Exchange (ETDEWEB)

    Bernholdt, D E; Allan, B A; Armstrong, R; Bertrand, F; Chiu, K; Dahlgren, T L; Damevski, K; Elwasif, W R; Epperly, T W; Govindaraju, M; Katz, D S; Kohl, J A; Krishnan, M; Kumfert, G; Larson, J W; Lefantzi, S; Lewis, M J; Malony, A D; McInnes, L C; Nieplocha, J; Norris, B; Parker, S G; Ray, J; Shende, S; Windus, T L; Zhou, S

    2004-12-14

    The Common Component Architecture (CCA) provides a means for software developers to manage the complexity of large-scale scientific simulations and to move toward a plug-and-play environment for high-performance computing. In the scientific computing context, component models also promote collaboration using independently developed software, thereby allowing particular individuals or groups to focus on the aspects of greatest interest to them. The CCA supports parallel and distributed computing as well as local high-performance connections between components in a language-independent manner. The design places minimal requirements on components and thus facilitates the integration of existing code into the CCA environment. The CCA model imposes minimal overhead to minimize the impact on application performance. The focus on high performance distinguishes the CCA from most other component models. The CCA is being applied within an increasing range of disciplines, including combustion research, global climate simulation, and computational chemistry.

  14. A Component Architecture for High-Performance Scientific Computing

    Energy Technology Data Exchange (ETDEWEB)

    Bernholdt, David E; Allan, Benjamin A; Armstrong, Robert C; Bertrand, Felipe; Chiu, Kenneth; Dahlgren, Tamara L; Damevski, Kostadin; Elwasif, Wael R; Epperly, Thomas G; Govindaraju, Madhusudhan; Katz, Daniel S; Kohl, James A; Krishnan, Manoj Kumar; Kumfert, Gary K; Larson, J Walter; Lefantzi, Sophia; Lewis, Michael J; Malony, Allen D; McInnes, Lois C; Nieplocha, Jarek; Norris, Boyana; Parker, Steven G; Ray, Jaideep; Shende, Sameer; Windus, Theresa L; Zhou, Shujia

    2006-07-03

    The Common Component Architecture (CCA) provides a means for software developers to manage the complexity of large-scale scientific simulations and to move toward a plug-and-play environment for high-performance computing. In the scientific computing context, component models also promote collaboration using independently developed software, thereby allowing particular individuals or groups to focus on the aspects of greatest interest to them. The CCA supports parallel and distributed computing as well as local high-performance connections between components in a language-independent manner. The design places minimal requirements on components and thus facilitates the integration of existing code into the CCA environment. The CCA model imposes minimal overhead to minimize the impact on application performance. The focus on high performance distinguishes the CCA from most other component models. The CCA is being applied within an increasing range of disciplines, including combustion research, global climate simulation, and computational chemistry.

  15. ANALYSIS OF AMINO ACIDS BY HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

    Directory of Open Access Journals (Sweden)

    Qurat E Noor Baig

    2016-06-01

    Full Text Available Amino acids are the building blocks of proteins and are considered as the key precursors for the formation of hormones and low molecular weight nitrogenous substances with biological importance. Since the analysis of amino acids has been carried out for both qualitative and quantitative purposes with an aim to study their levels in the plasma concentration, the quantitative determination, in particular, also helps in the diagnosis of different diseases associated with their deficiency. This review article deals with the determination of amino acids by chromatographic methods which include ion-exchange chromatography (IEC, high performance liquid chromatography (HPLC, reverse phase-high performance liquid chromatography (RP-HPLC and ultra-performance liquid chromatography (UPLC. The review will also give an idea for the preparation of samples, derivatization methods for the analysis of amino acids (direct and indirect methods and separation of amino acids by high performance liquid chromatographic technique.

  16. Software Tools for High-Performance Computiing: Survey and Recommendations

    Directory of Open Access Journals (Sweden)

    Bill Appelbe

    1996-01-01

    Full Text Available Applications programming for high-performance computing is notoriously difficult. Al-though parallel programming is intrinsically complex, the principal reason why high-performance computing is difficult is the lack of effective software tools. We believe that the lack of tools in turn is largely due to market forces rather than our inability to design and build such tools. Unfortunately, the poor availability and utilization of parallel tools hurt the entire supercomputing industry and the U.S. high performance computing initiative which is focused on applications. A disproportionate amount of resources is being spent on faster hardware and architectures, while tools are being neglected. This article introduces a taxonomy of tools, analyzes the major factors that contribute to this situation, and suggests ways that the imbalance could be redressed and the likely evolution of tools.

  17. High Performance Fiber Reinforced Cement Composites 6 HPFRCC 6

    CERN Document Server

    Reinhardt, Hans; Naaman, A

    2012-01-01

    High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, desi...

  18. Visualization and Data Analysis for High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, Christopher Meyer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-27

    This is a set of slides from a guest lecture for a class at the University of Texas, El Paso on visualization and data analysis for high-performance computing. The topics covered are the following: trends in high-performance computing; scientific visualization, such as OpenGL, ray tracing and volume rendering, VTK, and ParaView; data science at scale, such as in-situ visualization, image databases, distributed memory parallelism, shared memory parallelism, VTK-m, "big data", and then an analysis example.

  19. A DRAM compiler algorithm for high performance VLSI embedded memories

    Science.gov (United States)

    Eldin, A. G.

    1992-01-01

    In many applications, the limited density of the embedded SRAM does not allow integrating the memory on the same chip with other logic and functional blocks. In such cases, the embedded DRAM provides the optimum combination of very high density, low power, and high performance. For ASIC's to take full advantage of this design strategy, an efficient and highly reliable DRAM compiler must be used. The embedded DRAM architecture, cell, and peripheral circuit design considerations and the algorithm of a high performance memory compiler are presented .

  20. High performance computing and communications: FY 1997 implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    The High Performance Computing and Communications (HPCC) Program was formally authorized by passage, with bipartisan support, of the High-Performance Computing Act of 1991, signed on December 9, 1991. The original Program, in which eight Federal agencies participated, has now grown to twelve agencies. This Plan provides a detailed description of the agencies` FY 1996 HPCC accomplishments and FY 1997 HPCC plans. Section 3 of this Plan provides an overview of the HPCC Program. Section 4 contains more detailed definitions of the Program Component Areas, with an emphasis on the overall directions and milestones planned for each PCA. Appendix A provides a detailed look at HPCC Program activities within each agency.

  1. Flex Fatigue Property and Fractography of High Performance Fibers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hua-peng; LIU Xiao-yan; SHI Mei-wu; ZHANG Jian-chun; LAI Kan; WANG Shan-yuan

    2002-01-01

    The effects of pre-stress and bending angle on the flex fatigue lifetimes of para- aramds have been studied choosing the Twaron 2000 high performance filament as the studying subject by use of the self-developed flex fatigue apparatus. The fractography of the fatiguebreaking end of the single filaments has been obtained and the fatigue-breaking mechanisms have been analyzed using the LM and SEM. The differences of the fatigue properties and fractography of a variety of high performance fibers such as Kevlar 129, Kevlar 29 and UHMW PE have been discussed.

  2. CRPC research into linear algebra software for high performance computers

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.; Walker, D.W. [Oak Ridge National Lab., TN (United States). Mathematical Sciences Section; Dongarra, J.J. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Computer Science]|[Oak Ridge National Lab., TN (United States). Mathematical Sciences Section; Pozo, R. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Computer Science; Sorensen, D.C. [Rice Univ., Houston, TX (United States). Dept. of Computational and Applied Mathematics

    1994-12-31

    In this paper the authors look at a number of approaches being investigated in the Center for Research on Parallel Computation (CRPC) to develop linear algebra software for high-performance computers. These approaches are exemplified by the LAPACK, templates, and ARPACK projects. LAPACK is a software library for performing dense and banded linear algebra computations, and was designed to run efficiently on high-performance computers. The authors focus on the design of the distributed-memory version of LAPACK, and on an object-oriented interface to LAPACK.

  3. DEVELOPING A NEW GENERATION OF HIGH PERFORMANCE COMPOSITE CEMENT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper proposed a new generation of high performance composite cement which is designed according to the optimization of composition and structure of cement paste and is manufactured by blending the different components with special composite techniques. Each of these components has its different special property, and should be compatible with each other and match each other, and the properties of them are complementary mutually. At present, such kind of high performance composite cement can be manufactured with high reactivity cement clinker, ground granulated blast-furnace slag, high grade fly ash, silica fume etc.

  4. Contemporary high performance computing from petascale toward exascale

    CERN Document Server

    Vetter, Jeffrey S

    2013-01-01

    Contemporary High Performance Computing: From Petascale toward Exascale focuses on the ecosystems surrounding the world's leading centers for high performance computing (HPC). It covers many of the important factors involved in each ecosystem: computer architectures, software, applications, facilities, and sponsors. The first part of the book examines significant trends in HPC systems, including computer architectures, applications, performance, and software. It discusses the growth from terascale to petascale computing and the influence of the TOP500 and Green500 lists. The second part of the

  5. Evaluation of GPFS Connectivity Over High-Performance Networks

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Jay; Canon, Shane; Andrews, Matthew

    2009-02-17

    We present the results of an evaluation of new features of the latest release of IBM's GPFS filesystem (v3.2). We investigate different ways of connecting to a high-performance GPFS filesystem from a remote cluster using Infiniband (IB) and 10 Gigabit Ethernet. We also examine the performance of the GPFS filesystem with both serial and parallel I/O. Finally, we also present our recommendations for effective ways of utilizing high-bandwidth networks for high-performance I/O to parallel file systems.

  6. DEVELOPMENT OF NEW VALVE STEELS FOR APPLICATION IN HIGH PERFORMANCE ENGINES

    Directory of Open Access Journals (Sweden)

    Alexandre Bellegard Farina

    2013-12-01

    Full Text Available UNS N07751 and UNS N07080 alloys are commonly applied for automotive valves production for high performance internal combustion engines. These alloys present high hot resistance to mechanical strength, oxidation, corrosion, creep and microstructural stability. However, these alloys presents low wear resistance and high cost due to the high nickel contents. In this work it is presented the development of two new Ni-based alloys for application in high performance automotive valve as an alternative to the alloys UNS N07751 and UNS N07080. The new developed alloys are based on a high nickel-chromium austenitic matrix with dispersion of γ’ and γ’’ phases and containing different NbC contents. Due to the nickel content reduction in the developed alloys in comparison with these actually used alloys, the new alloys present an economical advantage for substitution of UNS N07751 and UNS N0780 alloys.

  7. High-performance computational condensed-matter physics in the cloud

    Science.gov (United States)

    Rehr, J. J.; Svec, L.; Gardner, J. P.; Prange, M. P.

    2009-03-01

    We demonstrate the feasibility of high performance scientific computation in condensed-matter physics using cloud computers as an alternative to traditional computational tools. The availability of these large, virtualized pools of compute resources raises the possibility of a new compute paradigm for scientific research with many advantages. For research groups, cloud computing provides convenient access to reliable, high performance clusters and storage, without the need to purchase and maintain sophisticated hardware. For developers, virtualization allows scientific codes to be pre-installed on machine images, facilitating control over the computational environment. Detailed tests are presented for the parallelized versions of the electronic structure code SIESTA ootnotetextJ. Soler et al., J. Phys.: Condens. Matter 14, 2745 (2002). and for the x-ray spectroscopy code FEFF ootnotetextA. Ankudinov et al., Phys. Rev. B 65, 104107 (2002). including CPU, network, and I/O performance, using the the Amazon EC2 Elastic Cloud.

  8. High-performance bidiagonal reduction using tile algorithms on homogeneous multicore architectures

    KAUST Repository

    Ltaief, Hatem

    2013-04-01

    This article presents a new high-performance bidiagonal reduction (BRD) for homogeneous multicore architectures. This article is an extension of the high-performance tridiagonal reduction implemented by the same authors [Luszczek et al., IPDPS 2011] to the BRD case. The BRD is the first step toward computing the singular value decomposition of a matrix, which is one of the most important algorithms in numerical linear algebra due to its broad impact in computational science. The high performance of the BRD described in this article comes from the combination of four important features: (1) tile algorithms with tile data layout, which provide an efficient data representation in main memory; (2) a two-stage reduction approach that allows to cast most of the computation during the first stage (reduction to band form) into calls to Level 3 BLAS and reduces the memory traffic during the second stage (reduction from band to bidiagonal form) by using high-performance kernels optimized for cache reuse; (3) a data dependence translation layer that maps the general algorithm with column-major data layout into the tile data layout; and (4) a dynamic runtime system that efficiently schedules the newly implemented kernels across the processing units and ensures that the data dependencies are not violated. A detailed analysis is provided to understand the critical impact of the tile size on the total execution time, which also corresponds to the matrix bandwidth size after the reduction of the first stage. The performance results show a significant improvement over currently established alternatives. The new high-performance BRD achieves up to a 30-fold speedup on a 16-core Intel Xeon machine with a 12000×12000 matrix size against the state-of-the-art open source and commercial numerical software packages, namely LAPACK, compiled with optimized and multithreaded BLAS from MKL as well as Intel MKL version 10.2. © 2013 ACM.

  9. Enabling High-Performance Computing as a Service

    KAUST Repository

    AbdelBaky, Moustafa

    2012-10-01

    With the right software infrastructure, clouds can provide scientists with as a service access to high-performance computing resources. An award-winning prototype framework transforms the Blue Gene/P system into an elastic cloud to run a representative HPC application. © 2012 IEEE.

  10. Mallow carotenoids determined by high-performance liquid chromatography

    Science.gov (United States)

    Mallow (corchorus olitorius) is a green vegetable, which is widely consumed either fresh or dry by Middle East population. This study was carried out to determine the contents of major carotenoids quantitatively in mallow, by using a High Performance Liquid Chromatography (HPLC) equipped with a Bis...

  11. Determination of Caffeine in Beverages by High Performance Liquid Chromatography.

    Science.gov (United States)

    DiNunzio, James E.

    1985-01-01

    Describes the equipment, procedures, and results for the determination of caffeine in beverages by high performance liquid chromatography. The method is simple, fast, accurate, and, because sample preparation is minimal, it is well suited for use in a teaching laboratory. (JN)

  12. Multichannel Detection in High-Performance Liquid Chromatography.

    Science.gov (United States)

    Miller, James C.; And Others

    1982-01-01

    A linear photodiode array is used as the photodetector element in a new ultraviolet-visible detection system for high-performance liquid chromatography (HPLC). Using a computer network, the system processes eight different chromatographic signals simultaneously in real-time and acquires spectra manually/automatically. Applications in fast HPLC…

  13. High-Performance Liquid Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Vestal, Marvin L.

    1984-01-01

    Reviews techniques for online coupling of high-performance liquid chromatography with mass spectrometry, emphasizing those suitable for application to nonvolatile samples. Also summarizes the present status, strengths, and weaknesses of various techniques and discusses potential applications of recently developed techniques for combined liquid…

  14. Analysis of Tocopherols by High Performance Liquid Chromatography

    OpenAIRE

    Edison, B.

    2009-01-01

    : Gas chromatography is the key technique for organic components and also for tocopherols analysis. High performance liquid chromatography has an important role to take part in applications such as the handling of less usual samples, prevention of degradation of heat sensitive functional groups and for micro preparative purposes. Many approaches for development of improved methods are suggested, especially for reversed phase applications.

  15. Ultra high performance liquid chromatography of seized drugs

    NARCIS (Netherlands)

    Lurie, I.S.

    2010-01-01

    The primary goal of this thesis is to investigate the use of ultra high performance liquid chromatography (UHPLC) for the analysis of seized drugs. This goal was largely achieved and significant progress was made in achieving improved separation and detection of drugs of forensic interest.

  16. High Performance Computing tools for the Integrated Tokamak Modelling project

    Energy Technology Data Exchange (ETDEWEB)

    Guillerminet, B., E-mail: bernard.guillerminet@cea.f [Association Euratom-CEA sur la Fusion, IRFM, DSM, CEA Cadarache (France); Plasencia, I. Campos [Instituto de Fisica de Cantabria (IFCA), CSIC, Santander (Spain); Haefele, M. [Universite Louis Pasteur, Strasbourg (France); Iannone, F. [EURATOM/ENEA Fusion Association, Frascati (Italy); Jackson, A. [University of Edinburgh (EPCC) (United Kingdom); Manduchi, G. [EURATOM/ENEA Fusion Association, Padova (Italy); Plociennik, M. [Poznan Supercomputing and Networking Center (PSNC) (Poland); Sonnendrucker, E. [Universite Louis Pasteur, Strasbourg (France); Strand, P. [Chalmers University of Technology (Sweden); Owsiak, M. [Poznan Supercomputing and Networking Center (PSNC) (Poland)

    2010-07-15

    Fusion Modelling and Simulation are very challenging and the High Performance Computing issues are addressed here. Toolset for jobs launching and scheduling, data communication and visualization have been developed by the EUFORIA project and used with a plasma edge simulation code.

  17. High-performance perovskite-graphene hybrid photodetector.

    Science.gov (United States)

    Lee, Youngbin; Kwon, Jeong; Hwang, Euyheon; Ra, Chang-Ho; Yoo, Won Jong; Ahn, Jong-Hyun; Park, Jong Hyeok; Cho, Jeong Ho

    2015-01-01

    A high-performance novel photodetector is demonstrated, which consists of graphene and CH3 NH3 PbI3 perovskite layers. The resulting hybrid photodetector exhibits a dramatically enhanced photo responsivity (180 A/W) and effective quantum efficiency (5× 10(4) %) over a broad bandwidth within the UV and visible ranges.

  18. Dynamic Social Networks in High Performance Football Coaching

    Science.gov (United States)

    Occhino, Joseph; Mallett, Cliff; Rynne, Steven

    2013-01-01

    Background: Sports coaching is largely a social activity where engagement with athletes and support staff can enhance the experiences for all involved. This paper examines how high performance football coaches develop knowledge through their interactions with others within a social learning theory framework. Purpose: The key purpose of this study…

  19. Manufacturing Advantage: Why High-Performance Work Systems Pay Off.

    Science.gov (United States)

    Appelbaum, Eileen; Bailey, Thomas; Berg, Peter; Kalleberg, Arne L.

    A study examined the relationship between high-performance workplace practices and the performance of plants in the following manufacturing industries: steel, apparel, and medical electronic instruments and imaging. The multilevel research methodology combined the following data collection activities: (1) site visits; (2) collection of plant…

  20. Seeking Solution: High-Performance Computing for Science. Background Paper.

    Science.gov (United States)

    Congress of the U.S., Washington, DC. Office of Technology Assessment.

    This is the second publication from the Office of Technology Assessment's assessment on information technology and research, which was requested by the House Committee on Science and Technology and the Senate Committee on Commerce, Science, and Transportation. The first background paper, "High Performance Computing & Networking for…

  1. High-Performance Matrix-Vector Multiplication on the GPU

    DEFF Research Database (Denmark)

    Sørensen, Hans Henrik Brandenborg

    2012-01-01

    In this paper, we develop a high-performance GPU kernel for one of the most popular dense linear algebra operations, the matrix-vector multiplication. The target hardware is the most recent Nvidia Tesla 20-series (Fermi architecture), which is designed from the ground up for scientific computing...

  2. High performance current controller for particle accelerator magnets supply

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Bidoggia, Benoit; Munk-Nielsen, Stig;

    2013-01-01

    The electromagnets in modern particle accelerators require high performance power supply whose output is required to track the current reference with a very high accuracy (down to 50 ppm). This demands very high bandwidth controller design. A converter based on buck converter topology is used in ...

  3. Behavioural dynamics in high-performing continuous improvement teams

    NARCIS (Netherlands)

    van Dun, Desirée Hermina; van Eck, Tim; van Vuuren, Hubrecht A.; Wilderom, Celeste P.M.

    2011-01-01

    We have explored from an Organisational-Behavioural perspective, why a Continuous Improvement (CI) team performs well. We report on the first part of a longitudinal study on intra-team behaviour of five, carefully selected, high-performing CI teams in five major Dutch organizations. Not only did we

  4. Design and Modeling of High Performance Permanent Magnet Synchronous Machines

    NARCIS (Netherlands)

    Van der Geest, M.

    2015-01-01

    The electrification of transportation, and especially aerospace transportation, increases the demand for high performance electrical machines. Those machines often need to be fault-tolerant, cheap, highly efficient, light and small, and interface well with the inverter. In addition, the development

  5. Sensitivity Study of Strapdown Inertial Sensors in High Performance Applications

    Science.gov (United States)

    1980-12-01

    system error varied with a change in heading 7K. ( xii 1 SENSITIVITY STUDY OF STRAPDOWN INERTIAL SENSORS IN HIGH PERFORMANCE APPLICATIONS I. Introduction...given in Tabla 10. 23 State Meaning o Basic Altitude Damped INS x(1) Error in East Longitude 5.7735 x 1O Ŗ arc min x(2) Error in North Latitude

  6. Dynamic Social Networks in High Performance Football Coaching

    Science.gov (United States)

    Occhino, Joseph; Mallett, Cliff; Rynne, Steven

    2013-01-01

    Background: Sports coaching is largely a social activity where engagement with athletes and support staff can enhance the experiences for all involved. This paper examines how high performance football coaches develop knowledge through their interactions with others within a social learning theory framework. Purpose: The key purpose of this study…

  7. Teacher and Leader Effectiveness in High-Performing Education Systems

    Science.gov (United States)

    Darling-Hammond, Linda, Ed.; Rothman, Robert, Ed.

    2011-01-01

    The issue of teacher effectiveness has risen rapidly to the top of the education policy agenda, and the federal government and states are considering bold steps to improve teacher and leader effectiveness. One place to look for ideas is the experiences of high-performing education systems around the world. Finland, Ontario, and Singapore all have…

  8. Developments on HNF based high performance and green solid propellants

    NARCIS (Netherlands)

    Keizers, H.L.J.; Heijden, A.E.D.M. van der; Vliet, L.D. van; Welland-Veltmans, W.H.M.; Ciucci, A.

    2001-01-01

    Worldwide developments are ongoing to develop new and more energetic composite solid propellant formulations for space transportation and military applications. Since the 90's, the use of HNF as a new high performance oxidiser is being reinvestigated. Within European development programmes, signific

  9. Quantification of Tea Flavonoids by High Performance Liquid Chromatography

    Science.gov (United States)

    Freeman, Jessica D.; Niemeyer, Emily D.

    2008-01-01

    We have developed a laboratory experiment that uses high performance liquid chromatography (HPLC) to quantify flavonoid levels in a variety of commercial teas. Specifically, this experiment analyzes a group of flavonoids known as catechins, plant-derived polyphenolic compounds commonly found in many foods and beverages, including green and black…

  10. Managing School Districts for High Performance: Instructor's Guide

    Science.gov (United States)

    Childress, Stacey, Ed.; Elmore, Richard F., Ed.; Grossman, Allen, Ed.; Johnson, Susan Moore, Ed.

    2007-01-01

    This companion Instructor's Guide to "Managing School Districts for High Performance: Cases in Public Education Leadership" includes detailed teaching notes on each case in the coursebook, with an emphasis on making cases drawn from other disciplines relevant to education administrators. Both experienced instructors and those new to the…

  11. Computer science of the high performance; Informatica del alto rendimiento

    Energy Technology Data Exchange (ETDEWEB)

    Moraleda, A.

    2008-07-01

    The high performance computing is taking shape as a powerful accelerator of the process of innovation, to drastically reduce the waiting times for access to the results and the findings in a growing number of processes and activities as complex and important as medicine, genetics, pharmacology, environment, natural resources management or the simulation of complex processes in a wide variety of industries. (Author)

  12. The Case for High-Performance, Healthy Green Schools

    Science.gov (United States)

    Carter, Leesa

    2011-01-01

    When trying to reach their sustainability goals, schools and school districts often run into obstacles, including financing, training, and implementation tools. Last fall, the U.S. Green Building Council-Georgia (USGBC-Georgia) launched its High Performance, Healthy Schools (HPHS) Program to help Georgia schools overcome those obstacles. By…

  13. Training Needs for High Performance in the Automotive Industry.

    Science.gov (United States)

    Clyne, Barry; And Others

    A project was conducted in Australia to identify the training needs of the emerging industry required to support the development of the high performance areas of the automotive machining and reconditioning field especially as it pertained to auto racing. Data were gathered through a literature search, interviews with experts in the field, and…

  14. Replica-Based High-Performance Tuple Space Computing

    DEFF Research Database (Denmark)

    Andric, Marina; De Nicola, Rocco; Lluch Lafuente, Alberto

    2015-01-01

    We present the tuple-based coordination language RepliKlaim, which enriches Klaim with primitives for replica-aware coordination. Our overall goal is to offer suitable solutions to the challenging problems of data distribution and locality in large-scale high performance computing. In particular,...

  15. Contemporary high performance computing from petascale toward exascale

    CERN Document Server

    Vetter, Jeffrey S

    2015-01-01

    A continuation of Contemporary High Performance Computing: From Petascale toward Exascale, this second volume continues the discussion of HPC flagship systems, major application workloads, facilities, and sponsors. The book includes of figures and pictures that capture the state of existing systems: pictures of buildings, systems in production, floorplans, and many block diagrams and charts to illustrate system design and performance.

  16. High-Performance Timing-Driven Rank Filter

    Directory of Open Access Journals (Sweden)

    Péter Szántó

    2008-01-01

    Full Text Available This paper presents an FPGA implementation of a high-performance rank filter for video and image processing. The architecture exploits the features of current FPGAs and offers tradeoffs between complexity and performance. By maximizing the operating frequency, the complexity of the filter structure can be considerably reduced compared to previous 2D architectures.

  17. High-performance inhoudsstoffen vinden hun weg naar de markt

    NARCIS (Netherlands)

    Meer, van der I.M.; Vollebregt, M.

    2015-01-01

    High-performance inhoudsstoffen uit biomassa ontstijgen de onderzoekslaboratoria en duiken op in proefprojecten met bedrijven en concrete toepassingen in eindproducten. Het tempo waarmee dit gebeurt en de onderliggende markt drivers verschillen per productgebied, zo blijkt uit een rondje langs bioba

  18. Two Profiles of the Dutch High Performing Employee

    Science.gov (United States)

    de Waal, A. A.; Oudshoorn, Michella

    2015-01-01

    Purpose: The purpose of this study is to explore the profile of an ideal employee, to be more precise the behavioral characteristics of the Dutch high-performing employee (HPE). Organizational performance depends for a large part on the commitment of employees. Employees provide their knowledge, skills, experiences and creativity to the…

  19. Optical interconnection networks for high-performance computing systems.

    Science.gov (United States)

    Biberman, Aleksandr; Bergman, Keren

    2012-04-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.

  20. Resolution of RNA using high-performance liquid chromatography

    NARCIS (Netherlands)

    Mclaughlin, L.W.; Bischoff, Rainer

    1987-01-01

    High-performance liquid chromatographic techniques can be very effective for the resolution and isolation of nucleic acids. The characteristic ionic (phosphodiesters) and hydrophobic (nucleobases) properties of RNAs can be exploited for their separation. In this respect anion-exchange and reversed-p

  1. Maintaining High-Performance Schools after Construction or Renovation

    Science.gov (United States)

    Luepke, Gary; Ronsivalli, Louis J., Jr.

    2009-01-01

    With taxpayers' considerable investment in schools, it is critical for school districts to preserve their community's assets with new construction or renovation and effective facility maintenance programs. "High-performance" school buildings are designed to link the physical environment to positive student achievement while providing such benefits…

  2. Material-based engineering strategies for cardiac regeneration.

    Science.gov (United States)

    Marion, Mieke H van; Bax, Noortje A M; Spreeuwel, Ariane C C van; van der Schaft, Daisy W J; Bouten, Carlijn V C

    2014-01-01

    Cardiac tissue is composed of muscle and non-muscle cells, surrounded by extracellular matrix (ECM) and spatially organized into a complex three-dimensional (3D) architecture to allow for coordinated contraction and electrical pulse propagation. Despite emerging evidence for cardiomyocyte turnover in mammalian hearts, the regenerative capacity of human cardiac tissue is insufficient to recover from damage, e.g. resulting from myocardial infarction (MI). Instead, the heart 'repairs' lost or injured tissue by ongoing synthesis and remodeling of scar tissue. Conventional therapies and timely (stem) cell delivery to the injured tissue markedly improve short-term function and remodeling, but do not attenuate later stage adverse remodeling, leading to functional deterioration and eventually failure of the heart. Material-based therapies have been successfully used to mechanically support and constrain the post-MI failing heart, preventing it from further remodeling and dilation. When designed to deliver the right microenvironment for endogenous or exogenous cells, as well as the mechanical and topological cues to guide neo-tissue formation, material-based therapies may even reverse remodeling and boost cardiac regeneration. This paper reviews the up-to-date status of material-based cardiac regeneration with special emphasis on 1) the use of bare biomaterials to deliver passive constraints that unload the heart, 2) the use of materials and cells to create engineered cardiac constructs for replacement, support, or regeneration of damaged myocardium, and 3) the development of bio-inspired and bioactive materials that aim to enhance the endogenous regenerative capacity of the heart. As the therapies should function in the infarcted heart, the damaged host environment and engineered in vitro test systems that mimic this environment, are reviewed as well.

  3. Rapid determination of succinylcholine in human plasma by high-performance liquid chromatography with fluorescence detection.

    Science.gov (United States)

    Lagerwerf, A J; Vanlinthout, L E; Vree, T B

    1991-10-04

    A high-performance liquid chromatographic method with fluorometric detection has been developed for the determination of succinylcholine in human plasma. Succinylcholine shows fluorescence at 282 nm with an excitation at 257 nm. The assay is sensitive, reproducible and linear for concentrations ranging from 100 ng/ml to 100 micrograms/ml of succinylcholine. In a pilot study the plasma concentration-time curve showed a triphasic elimination, with half-lives of 0.4, 1.2 and 8 min, respectively. In a clinical setting, drugs commonly administered during anaesthesia did not interfere with the assay. This method provides a simple and time-saving alternative to existing methods.

  4. Novel hybrid materials based on the vanadium oxide nanobelts

    Energy Technology Data Exchange (ETDEWEB)

    Zabrodina, G.S., E-mail: kudgs@mail.ru [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Makarov, S.G.; Kremlev, K.V. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation); Yunin, P.A.; Gusev, S.A. [Institute for Physics of Microstructures Russian Academy of Sciences, Nizhny Novgorod 603087 (Russian Federation); Kaverin, B.S.; Kaverina, L.B. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Ketkov, S.Yu. [G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences, Nizhny Novgorod 603950 (Russian Federation); Lobachevsky State University, Nizhny Novgorod 603950 (Russian Federation)

    2016-04-15

    Graphical abstract: - Highlights: • Flat and curved vanadium oxide nanobelts have been synthesized. • Hybrid material was prepared via decoration of flexible nanobelts with zinc phthalocyanine. • Investigations of the thermal stability, morphologies and structures were carried out. - Abstract: Novel hybrid materials based on zinc phthalocyanine and nanostructured vanadium oxides have attracted extensive attention for the development of academic research and innovative industrial applications such as flexible electronics, optical sensors and heterogeneous catalysts. Vanadium oxides nanobelts were synthesized via a hydrothermal treatment V{sub 2}O{sub 5}·nH{sub 2}O gel with surfactants (TBAB, CTAB) used as structure-directing agents, where CTAB – cetyltrimethylammonium bromide, TBAB – tetrabutylammonium bromide. Hybrid materials were prepared decoration of (CTA){sub 0.33}V{sub 2}O{sub 5} flexible nanobelts with cationic zinc phthalocyanine by the ion-exchange route. Investigations of the thermal stability, morphologies and structures of the (CTA){sub 0.33}V{sub 2}O{sub 5}, (TBA){sub 0.16}V{sub 2}O{sub 5} nanobelts and zinc phthalocyanine exchange product were carried out. The hybrid materials based on the nanostructured vanadium oxide and zinc phthalocyanine were tested as photocatalysts for oxidation of citronellol and 2-mercaptoethanol by dioxygen.

  5. High performance computing and communications: FY 1996 implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-16

    The High Performance Computing and Communications (HPCC) Program was formally authorized by passage of the High Performance Computing Act of 1991, signed on December 9, 1991. Twelve federal agencies, in collaboration with scientists and managers from US industry, universities, and research laboratories, have developed the Program to meet the challenges of advancing computing and associated communications technologies and practices. This plan provides a detailed description of the agencies` HPCC implementation plans for FY 1995 and FY 1996. This Implementation Plan contains three additional sections. Section 3 provides an overview of the HPCC Program definition and organization. Section 4 contains a breakdown of the five major components of the HPCC Program, with an emphasis on the overall directions and milestones planned for each one. Section 5 provides a detailed look at HPCC Program activities within each agency.

  6. Materials integration issues for high performance fusion power systems.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. L.

    1998-01-14

    One of the primary requirements for the development of fusion as an energy source is the qualification of materials for the frost wall/blanket system that will provide high performance and exhibit favorable safety and environmental features. Both economic competitiveness and the environmental attractiveness of fusion will be strongly influenced by the materials constraints. A key aspect is the development of a compatible combination of materials for the various functions of structure, tritium breeding, coolant, neutron multiplication and other special requirements for a specific system. This paper presents an overview of key materials integration issues for high performance fusion power systems. Issues such as: chemical compatibility of structure and coolant, hydrogen/tritium interactions with the plasma facing/structure/breeder materials, thermomechanical constraints associated with coolant/structure, thermal-hydraulic requirements, and safety/environmental considerations from a systems viewpoint are presented. The major materials interactions for leading blanket concepts are discussed.

  7. A Debugging Standard for High-Performance Computing

    Directory of Open Access Journals (Sweden)

    Joan M. Francioni

    2000-01-01

    Full Text Available Throughout 1998, the High Performance Debugging Forum worked on defining a base level standard for high performance debuggers. The standard had to meet the sometimes conflicting constraints of being useful to users, realistically implementable by developers, and architecturally independent across multiple platforms. To meet criteria for timeliness, the standard had to be defined in one year and in such a way that it could be implemented within an additional year. The Forum was successful, and in November 1998 released Version 1 of the HPD Standard. Implementations of the standard are currently underway. This paper presents an overview of Version 1 of the standard and an analysis of the process by which the standard was developed. The status of implementation efforts and plans for follow-on efforts are discussed as well.

  8. Flexible nanoscale high-performance FinFETs

    KAUST Repository

    Sevilla, Galo T.

    2014-10-28

    With the emergence of the Internet of Things (IoT), flexible high-performance nanoscale electronics are more desired. At the moment, FinFET is the most advanced transistor architecture used in the state-of-the-art microprocessors. Therefore, we show a soft-etch based substrate thinning process to transform silicon-on-insulator (SOI) based nanoscale FinFET into flexible FinFET and then conduct comprehensive electrical characterization under various bending conditions to understand its electrical performance. Our study shows that back-etch based substrate thinning process is gentler than traditional abrasive back-grinding process; it can attain ultraflexibility and the electrical characteristics of the flexible nanoscale FinFET show no performance degradation compared to its rigid bulk counterpart indicating its readiness to be used for flexible high-performance electronics.

  9. A HIGH PERFORMANCE OPTIMIZATION TECHNIQUE FOR POLE BALANCING PROBLEM

    Directory of Open Access Journals (Sweden)

    Bahadır KARASULU

    2008-02-01

    Full Text Available High performance computing techniques can be used effectively for solution of the complex scientific problems. Pole balancing problem is a basic benchmark tool of robotic field, which is an important field of Artificial Intelligence research areas. In this study, a solution is developed for pole balancing problem using Artificial Neural Network (ANN and high performance computation technique. Algorithm, that basis of the Reinforcement Learning method which is used to find the force of pole's balance, is transfered to parallel environment. In Implementation, C is preferred as programming language and Message Passing Interface (MPI is used for parallel computation technique. Self–Organizing Map (SOM ANN model's neurons (artificial neural nodes and their weights are distributed to six processors of a server computer which equipped with each quad core processor (total 24 processors. In this way, performance values are obtained for different number of artificial neural nodes. Success of method based on results is discussed.

  10. High Performance Computing in Science and Engineering '14

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2015-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS). The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and   engineers. The book comes with a wealth of color illustrations and tables of results.  

  11. Building and measuring a high performance network architecture

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, William T.C.; Toole, Timothy; Fisher, Chuck; Dugan, Jon; Wheeler, David; Wing, William R; Nickless, William; Goddard, Gregory; Corbato, Steven; Love, E. Paul; Daspit, Paul; Edwards, Hal; Mercer, Linden; Koester, David; Decina, Basil; Dart, Eli; Paul Reisinger, Paul; Kurihara, Riki; Zekauskas, Matthew J; Plesset, Eric; Wulf, Julie; Luce, Douglas; Rogers, James; Duncan, Rex; Mauth, Jeffery

    2001-04-20

    Once a year, the SC conferences present a unique opportunity to create and build one of the most complex and highest performance networks in the world. At SC2000, large-scale and complex local and wide area networking connections were demonstrated, including large-scale distributed applications running on different architectures. This project was designed to use the unique opportunity presented at SC2000 to create a testbed network environment and then use that network to demonstrate and evaluate high performance computational and communication applications. This testbed was designed to incorporate many interoperable systems and services and was designed for measurement from the very beginning. The end results were key insights into how to use novel, high performance networking technologies and to accumulate measurements that will give insights into the networks of the future.

  12. Conference on High Performance Software for Nonlinear Optimization

    CERN Document Server

    Murli, Almerico; Pardalos, Panos; Toraldo, Gerardo

    1998-01-01

    This book contains a selection of papers presented at the conference on High Performance Software for Nonlinear Optimization (HPSN097) which was held in Ischia, Italy, in June 1997. The rapid progress of computer technologies, including new parallel architec­ tures, has stimulated a large amount of research devoted to building software environments and defining algorithms able to fully exploit this new computa­ tional power. In some sense, numerical analysis has to conform itself to the new tools. The impact of parallel computing in nonlinear optimization, which had a slow start at the beginning, seems now to increase at a fast rate, and it is reasonable to expect an even greater acceleration in the future. As with the first HPSNO conference, the goal of the HPSN097 conference was to supply a broad overview of the more recent developments and trends in nonlinear optimization, emphasizing the algorithmic and high performance software aspects. Bringing together new computational methodologies with theoretical...

  13. Micromachined high-performance RF passives in CMOS substrate

    Science.gov (United States)

    Li, Xinxin; Ni, Zao; Gu, Lei; Wu, Zhengzheng; Yang, Chen

    2016-11-01

    This review systematically addresses the micromachining technologies used for the fabrication of high-performance radio-frequency (RF) passives that can be integrated into low-cost complementary metal-oxide semiconductor (CMOS)-grade (i.e. low-resistivity) silicon wafers. With the development of various kinds of post-CMOS-compatible microelectromechanical systems (MEMS) processes, 3D structural inductors/transformers, variable capacitors, tunable resonators and band-pass/low-pass filters can be compatibly integrated into active integrated circuits to form monolithic RF system-on-chips. By using MEMS processes, including substrate modifying/suspending and LIGA-like metal electroplating, both the highly lossy substrate effect and the resistive loss can be largely eliminated and depressed, thereby meeting the high-performance requirements of telecommunication applications.

  14. WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code

    Science.gov (United States)

    Mendygral, P. J.; Radcliffe, N.; Kandalla, K.; Porter, D.; O’Neill, B. J.; Nolting, C.; Edmon, P.; Donnert, J. M. F.; Jones, T. W.

    2017-02-01

    We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.

  15. Designing high-performance layered thermoelectric materials through orbital engineering

    Science.gov (United States)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.; Fischer, Karl F. F.; Zhang, Wenqing; Shi, Xun; Iversen, Bo B.

    2016-03-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials.

  16. Laser additive manufacturing of high-performance materials

    CERN Document Server

    Gu, Dongdong

    2015-01-01

    This book entitled “Laser Additive Manufacturing of High-Performance Materials” covers the specific aspects of laser additive manufacturing of high-performance new materials components based on an unconventional materials incremental manufacturing philosophy, in terms of materials design and preparation, process control and optimization, and theories of physical and chemical metallurgy. This book describes the capabilities and characteristics of the development of new metallic materials components by laser additive manufacturing process, including nanostructured materials, in situ composite materials, particle reinforced metal matrix composites, etc. The topics presented in this book, similar as laser additive manufacturing technology itself, show a significant interdisciplinary feature, integrating laser technology, materials science, metallurgical engineering, and mechanical engineering. This is a book for researchers, students, practicing engineers, and manufacturing industry professionals interested i...

  17. GPU-based high-performance computing for radiation therapy.

    Science.gov (United States)

    Jia, Xun; Ziegenhein, Peter; Jiang, Steve B

    2014-02-21

    Recent developments in radiotherapy therapy demand high computation powers to solve challenging problems in a timely fashion in a clinical environment. The graphics processing unit (GPU), as an emerging high-performance computing platform, has been introduced to radiotherapy. It is particularly attractive due to its high computational power, small size, and low cost for facility deployment and maintenance. Over the past few years, GPU-based high-performance computing in radiotherapy has experienced rapid developments. A tremendous amount of study has been conducted, in which large acceleration factors compared with the conventional CPU platform have been observed. In this paper, we will first give a brief introduction to the GPU hardware structure and programming model. We will then review the current applications of GPU in major imaging-related and therapy-related problems encountered in radiotherapy. A comparison of GPU with other platforms will also be presented.

  18. Designing high-performance layered thermoelectric materials through orbital engineering.

    Science.gov (United States)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K H; Fischer, Karl F F; Zhang, Wenqing; Shi, Xun; Iversen, Bo B

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited insight into the underlying bonding orbitals of atomic structures. Here we propose a simple yet successful strategy to discover and design high-performance layered thermoelectric materials through minimizing the crystal field splitting energy of orbitals to realize high orbital degeneracy. The approach naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth-abundant elements. Moreover, the approach can be extended to several other non-cubic materials, thereby substantially accelerating the screening and design of new thermoelectric materials.

  19. High Performance Descriptive Semantic Analysis of Semantic Graph Databases

    Energy Technology Data Exchange (ETDEWEB)

    Joslyn, Cliff A.; Adolf, Robert D.; al-Saffar, Sinan; Feo, John T.; Haglin, David J.; Mackey, Greg E.; Mizell, David W.

    2011-06-02

    As semantic graph database technology grows to address components ranging from extant large triple stores to SPARQL endpoints over SQL-structured relational databases, it will become increasingly important to be able to understand their inherent semantic structure, whether codified in explicit ontologies or not. Our group is researching novel methods for what we call descriptive semantic analysis of RDF triplestores, to serve purposes of analysis, interpretation, visualization, and optimization. But data size and computational complexity makes it increasingly necessary to bring high performance computational resources to bear on this task. Our research group built a novel high performance hybrid system comprising computational capability for semantic graph database processing utilizing the large multi-threaded architecture of the Cray XMT platform, conventional servers, and large data stores. In this paper we describe that architecture and our methods, and present the results of our analyses of basic properties, connected components, namespace interaction, and typed paths such for the Billion Triple Challenge 2010 dataset.

  20. Storage Area Networks and The High Performance Storage System

    Energy Technology Data Exchange (ETDEWEB)

    Hulen, H; Graf, O; Fitzgerald, K; Watson, R W

    2002-03-04

    The High Performance Storage System (HPSS) is a mature Hierarchical Storage Management (HSM) system that was developed around a network-centered architecture, with client access to storage provided through third-party controls. Because of this design, HPSS is able to leverage today's Storage Area Network (SAN) infrastructures to provide cost effective, large-scale storage systems and high performance global file access for clients. Key attributes of SAN file systems are found in HPSS today, and more complete SAN file system capabilities are being added. This paper traces the HPSS storage network architecture from the original implementation using HIPPI and IPI-3 technology, through today's local area network (LAN) capabilities, and to SAN file system capabilities now in development. At each stage, HPSS capabilities are compared with capabilities generally accepted today as characteristic of storage area networks and SAN file systems.

  1. Reliable Generation of High-Performance Matrix Algebra

    CERN Document Server

    Belter, Geoffrey; Nelson, Thomas; Norris, Boyana; Siek, Jeremy G

    2012-01-01

    Scientific programmers often turn to vendor-tuned Basic Linear Algebra Subprograms (BLAS) to obtain portable high performance. However, many numerical algorithms require several BLAS calls in sequence, and those successive calls result in suboptimal performance. The entire sequence needs to be optimized in concert. Instead of vendor-tuned BLAS, a programmer could start with source code in Fortran or C (e.g., based on the Netlib BLAS) and use a state-of-the-art optimizing compiler. However, our experiments show that optimizing compilers often attain only one-quarter the performance of hand-optimized code. In this paper we present a domain-specific compiler for matrix algebra, the Build to Order BLAS (BTO), that reliably achieves high performance using a scalable search algorithm for choosing the best combination of loop fusion, array contraction, and multithreading for data parallelism. The BTO compiler generates code that is between 16% slower and 39% faster than hand-optimized code.

  2. Progress on high-performance rapid prototype aluminum mirrors

    Science.gov (United States)

    Woodard, Kenneth S.; Myrick, Bruce H.

    2017-05-01

    Near net shape parts can be produced using some very old processes (investment casting) and the relatively new direct metal laser sintering (DMLS) process. These processes have significant advantages for complex blank lightweighting and costs but are not inherently suited for producing high performance mirrors. The DMLS process can provide extremely complex lightweight structures but the high residual stresses left in the material results in unstable mirror figure retention. Although not to the extreme intricacy of DMLS, investment casting can also provide complex lightweight structures at considerably lower costs than DMLS and even conventional wrought mirror blanks but the less than 100% density for casting (and also DMLS) limits finishing quality. This paper will cover the progress that has been made to make both the DMLS and investment casting processes into viable near net shape blank options for high performance aluminum mirrors. Finish and figure results will be presented to show performance commensurate with existing conventional processes.

  3. Design Of High Performance CMOS Dynamic Latch Comparator

    Directory of Open Access Journals (Sweden)

    G.Saroja

    2016-10-01

    Full Text Available High performance analog to digital converters (ADC, memory sense amplifiers, and Radio Frequency identification applications, data receivers with less area and power efficient designs has attracted a broad range of dynamic comparators. This paper presents an ameliorate design for a dynamic latch based comparator in attaining high performance. The comparators accuracyis mainly defined by two factors they are speed and power consumption. The latch based comparator has two different stages encompassing of a dynamic differential input gain stage and an output latch.The output node in the differential gain stage of proposed comparator requires lesser time to regain higher charge potential. The proposed comparator hasbeen designed and simulated using 130nm CMOS 1P2M technology by using mentor graphics tools with a supply voltage of 1V. Proposed dynamic latch comparator iscompared with existing conventional dynamic latch comparator and with other comparators and the results are discussed in detail.

  4. High performance installation for drill and blast advance Mitholz, Switzerland

    Institute of Scientific and Technical Information of China (English)

    Jost Wenk

    2004-01-01

    The section Mitholz of the L tschberg Alp - Transit tunnel consists basically of 3 drill & blast advances with a cross section of 63 - 69m2 and a total length of 25 km.The high - performance back - up installation in use distinguishes itself by the following substantial innovations:The joint venture SATCO ( STRABAG AG, Rothpletz, Lienhard & Cie. , Walo Bertschinger AG, Vinci Construction,Skanska Europe AB), the c ontractor in charge, is achieving very high rates of advance, thanks to the high - performance back - up installations.- The chosen heading system has a positive effect on the entire construction program. Supplementary work can be done within the planned time schedule - Owing to the excellent performance, the joint venture SATCO is ahead on the construction program by about 700m.- The high rates of advance result for the customer in a positive return on investment - The installed equipment results in a higher safety at the workplace for the workers

  5. Digital control of high performance aircraft using adaptive estimation techniques

    Science.gov (United States)

    Van Landingham, H. F.; Moose, R. L.

    1977-01-01

    In this paper, an adaptive signal processing algorithm is joined with gain-scheduling for controlling the dynamics of high performance aircraft. A technique is presented for a reduced-order model (the longitudinal dynamics) of a high performance STOL aircraft. The actual controller views the nonlinear behavior of the aircraft as equivalent to a randomly switching sequence of linear models taken from a preliminary piecewise-linear fit of the system nonlinearities. The adaptive nature of the estimator is necessary to select the proper sequence of linear models along the flight trajectory. Nonlinear behavior is approximated by effective switching of the linear models at random times, with durations reflecting aircraft motion in response to pilot commands.

  6. High-Performance, Reliable Object-Based NVRAM Devices

    OpenAIRE

    Kang, Yangwook

    2014-01-01

    Non-volatile memory (NVRAM) storage devices are increasingly used in both consumer and enterprise systems, providing high performance and low energy consumption compared to hard drives. Unfortunately, an inflexible block interface and multiple I/O subsystems designed for slow hard drives make it difficult to utilize NVRAMs in a portable and efficient manner. For example, in the OS storage stack, I/O workloads are reshaped and throttled to generate a small number of concurrent I/O requests, th...

  7. Temperature-Modulated Array High-Performance Liquid Chromatography

    OpenAIRE

    Premstaller, Andreas; Xiao, Wenzhong; Oberacher, Herbert; O'Keefe, Matthew; Stern, David; Willis, Thomas; Huber, Christian G.; Peter J. Oefner

    2001-01-01

    Using novel monolithic poly(styrene-divinylbenzene) capillary columns with an internal diameter of 0.2 mm, we demonstrate for the first time the feasibility of constructing high-performance liquid chromatography arrays for the detection of mutations by heteroduplex analysis under partially denaturing conditions. In one embodiment, such an array can be used to analyze one sample simultaneously at different temperatures to maximize the detection of mutations in DNA fragments containing multiple...

  8. An Object Oriented and High Performance Platform for Aerothermodynamics Simulation

    OpenAIRE

    Lani, Andrea

    2008-01-01

    This thesis presents the author's contribution to the design and implementation of COOLFluiD,an object oriented software platform for the high performance simulation of multi-physics phenomena on unstructured grids. In this context, the final goal has been to provide a reliable tool for handling high speed aerothermodynamic applications. To this end, we introduce a number of design techniques that have been developed in order to provide the framework with flexibilityand reusability, allowing ...

  9. Achieving High Performance on the i860 Microprocessor

    Science.gov (United States)

    Lee, King; Kutler, Paul (Technical Monitor)

    1998-01-01

    The i860 is a high performance microprocessor used in the Intel Touchstone project. This paper proposes a paradigm for programming the i860 that is modelled on the vector instructions of the Cray computers. Fortran callable assembler subroutines were written that mimic the concurrent vector instructions of the Cray. Cache takes the place of vector registers. Using this paradigm we have achieved twice the performance of compiled code on a traditional solve.

  10. Functional Verification of High Performance Adders in COQ

    OpenAIRE

    Qian Wang; Xiaoyu Song; Ming Gu; Jiaguang Sun

    2014-01-01

    Addition arithmetic design plays a crucial role in high performance digital systems. The paper proposes a systematic method to formalize and verify adders in a formal proof assistant COQ. The proposed approach succeeds in formalizing the gate-level implementations and verifying the functional correctness of the most important adders of interest in industry, in a faithful, scalable, and modularized way. The methodology can be extended to other adder architectures as well.

  11. MULTITEXCO - high performance smart multifunctional technical textiles for tensile structures

    OpenAIRE

    Heyse, P.; Buyle, G; Beccarelli, Paolo

    2016-01-01

    In recent years, the textile industry developed a new generation of advanced textile materials for the construction sector designed to address the needs of one of the largest markets for textile products. Examples of the advanced textiles developed include fabrics for the rehabilitation of buildings, geotextiles for the consolidation of a wide range of soil structures and the high performance technical textiles for tensile structures. When combine with innovative sensors the fabrics provide a...

  12. High-performance metasurface polarizers with extinction ratios exceeding 12000.

    Science.gov (United States)

    Kurosawa, Hiroyuki; Choi, Bongseok; Sugimoto, Yoshimasa; Iwanaga, Masanobu

    2017-02-20

    High-performance ultrathin polarizers have been experimentally demonstrated employing stacked complementary (SC) metasurfaces, which were produced using nanoimprint lithography. It is experimentally determined that the metasurface polarizers composed of Ag and Au have large extinction ratios exceeding 17000 and 12000, respectively, in spite of the subwavelength thickness. It is also shown that the ultrathin polarizers of the SC structures are optimized at telecommunication wavelengths.

  13. Nuclear Forces and High-Performance Computing: The Perfect Match

    Energy Technology Data Exchange (ETDEWEB)

    Luu, T; Walker-Loud, A

    2009-06-12

    High-performance computing is now enabling the calculation of certain nuclear interaction parameters directly from Quantum Chromodynamics, the quantum field theory that governs the behavior of quarks and gluons and is ultimately responsible for the nuclear strong force. We briefly describe the state of the field and describe how progress in this field will impact the greater nuclear physics community. We give estimates of computational requirements needed to obtain certain milestones and describe the scientific and computational challenges of this field.

  14. Analysis of Tocopherols by High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    B. Edison

    2009-01-01

    Full Text Available : Gas chromatography is the key technique for organic components and also for tocopherols analysis. High performance liquid chromatography has an important role to take part in applications such as the handling of less usual samples, prevention of degradation of heat sensitive functional groups and for micro preparative purposes. Many approaches for development of improved methods are suggested, especially for reversed phase applications.

  15. High Performance Object-Oriented Scientific Programming in Fortran 90

    Science.gov (United States)

    Norton, Charles D.; Decyk, Viktor K.; Szymanski, Boleslaw K.

    1997-01-01

    We illustrate how Fortran 90 supports object-oriented concepts by example of plasma particle computations on the IBM SP. Our experience shows that Fortran 90 and object-oriented methodology give high performance while providing a bridge from Fortran 77 legacy codes to modern programming principles. All of our object-oriented Fortran 90 codes execute more quickly thatn the equeivalent C++ versions, yet the abstraction modelling capabilities used for scentific programming are comparably powereful.

  16. Inorganic nanostructured materials for high performance electrochemical supercapacitors.

    Science.gov (United States)

    Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng

    2014-02-21

    Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.

  17. Porting AUTOSAR to a high performance embedded system

    OpenAIRE

    Zhang, Shuzhou

    2013-01-01

    Automotive embedded systems are going through a major change, both in terms of how they are used and in terms of software and hardware architecture. Much more powerful and rapidly evolvable hardware is expected, paralleled by an accelerating development rate of the control software. To meet these challenges, a software standard, AUTOSAR, is gaining ground in the automotive field. In this work, experiences from porting AUTOSAR to a high performance embedded system, Raspberry Pi, are collected....

  18. High Performance Work Systems, Performance and Innovativeness in Small Firms

    OpenAIRE

    Jan Kok; Deanne den Hartog

    2006-01-01

    The research presented in this paper focuses on the effectiveness of a high performance work system. This system is comprised of practices in the areas of extensiveness of staffing, performance based pay, pay level, job rotation, training and participation. In particular, this study focuses on the effects of such a system on the performance of small and medium-sized enterprises. Results of our study, among small and medium size enterprises in the Netherlands, show that firms with such a syste...

  19. Development of high performance vinyl acetate monomer (VAM) catalysts

    OpenAIRE

    2009-01-01

    The focus of this study was to develop high performance catalysts for the synthesis of vinyl acetate monomer (VAM). By systematic variation of different preparation parameters a multitude of shell catalysts consisting of PdAu nanoparticles supported on a bentonite carrier was explored. In order to investigate the influence of these alterations on catalytic performance, a catalyst classification was accomplished in a high-throughput Temkin test unit by comparison with a highly efficient commer...

  20. Intro - High Performance Computing for 2015 HPC Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Klitsner, Tom [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    The recent Executive Order creating the National Strategic Computing Initiative (NSCI) recognizes the value of high performance computing for economic competitiveness and scientific discovery and commits to accelerate delivery of exascale computing. The HPC programs at Sandia –the NNSA ASC program and Sandia’s Institutional HPC Program– are focused on ensuring that Sandia has the resources necessary to deliver computation in the national interest.

  1. TOPICAL REVIEW: Optics of high-performance electron microscopes

    OpenAIRE

    H H Rose

    2008-01-01

    During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by...

  2. Accelerating R with high performance linear algebra libraries

    Directory of Open Access Journals (Sweden)

    Bogdan Oancea

    2015-09-01

    Full Text Available Linear algebra routines are basic building blocks for the statistical software. In this paper we analyzed how can we improve R performance for matrix computations. We benchmarked few matrix operations using the standard linear algebra libraries included in the R distribution and high performance libraries like OpenBLAS, GotoBLAS and MKL. Our tests showed the best results are obtained with the MKL library, the other two libraries having similar performances, but lower than MKL.

  3. High-Performance, Reliable Solar Power for Smallsat Constellations

    OpenAIRE

    Stern, Theodore; Walmsley, Nick

    2013-01-01

    Small satellites used in satellite constellations require high-performance, reliable solar power. Even with constellation redundancy, the risk to mission performance of solar panel failure is significant, and so extensive qualification and acceptance testing is normally implemented to assure reliability of customized solar panel designs To minimize these costs and risks, a modular, laminated solar panel design has been developed that combines highefficiency solar cells and space-qualified mat...

  4. The Corrosion Fatigue Properties of High Performance Concrete

    Institute of Scientific and Technical Information of China (English)

    CHEN Shuanfa; ZHENG Mulian; LIAO Weidong; WANG Binggang

    2005-01-01

    With the loading test equipment of corrosion fatigue specially designed, the corrosion fatigue characteristics of high performance concrete (HPC) withstanding the interaction of third point fatigue loading and Na2SO4 solution were investigated and analyzed. The experimental results indicate that water-binder ratio evidently influences the corrosion fatigue characteristics of HPC, and a moderate quantitative fine mineral admixture enhances the corrosion fatigue resistance of HPC. The effect is more significant when fly ash and silica fume are added.

  5. Optical Thermal Characterization Enables High-Performance Electronics Applications

    Energy Technology Data Exchange (ETDEWEB)

    2016-02-01

    NREL developed a modeling and experimental strategy to characterize thermal performance of materials. The technique provides critical data on thermal properties with relevance for electronics packaging applications. Thermal contact resistance and bulk thermal conductivity were characterized for new high-performance materials such as thermoplastics, boron-nitride nanosheets, copper nanowires, and atomically bonded layers. The technique is an important tool for developing designs and materials that enable power electronics packaging with small footprint, high power density, and low cost for numerous applications.

  6. High Performance Walls in Hot-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, M.; Springer, D.; Dakin, B.; German, A.

    2015-01-01

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist, and reducing the amount of wood penetrating the wall cavity.

  7. Automated Fabrication Technologies for High Performance Polymer Composites

    Science.gov (United States)

    Shuart , M. J.; Johnston, N. J.; Dexter, H. B.; Marchello, J. M.; Grenoble, R. W.

    1998-01-01

    New fabrication technologies are being exploited for building high graphite-fiber-reinforced composite structure. Stitched fiber preforms and resin film infusion have been successfully demonstrated for large, composite wing structures. Other automatic processes being developed include automated placement of tacky, drapable epoxy towpreg, automated heated head placement of consolidated ribbon/tape, and vacuum-assisted resin transfer molding. These methods have the potential to yield low cost high performance structures by fabricating composite structures to net shape out-of-autoclave.

  8. High Performance Networks From Supercomputing to Cloud Computing

    CERN Document Server

    Abts, Dennis

    2011-01-01

    Datacenter networks provide the communication substrate for large parallel computer systems that form the ecosystem for high performance computing (HPC) systems and modern Internet applications. The design of new datacenter networks is motivated by an array of applications ranging from communication intensive climatology, complex material simulations and molecular dynamics to such Internet applications as Web search, language translation, collaborative Internet applications, streaming video and voice-over-IP. For both Supercomputing and Cloud Computing the network enables distributed applicati

  9. Wavy channel transistor for area efficient high performance operation

    KAUST Repository

    Fahad, Hossain M.

    2013-04-05

    We report a wavy channel FinFET like transistor where the channel is wavy to increase its width without any area penalty and thereby increasing its drive current. Through simulation and experiments, we show the effectiveness of such device architecture is capable of high performance operation compared to conventional FinFETs with comparatively higher area efficiency and lower chip latency as well as lower power consumption.

  10. Trajectory optimization and applications using high performance solar sails

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The high performance solar sail can enable fast missions to the outer solar system and produce exotic non-Keplerian orbits.As there is no fuel consumption,mission trajectories for solar sail spacecraft are typically optimized with respect to flight time.Several investigations focused on interstellar probe missions have been made,including optimal methods and new objective functions. Two modes of interstellar mission trajectories,namely "direct flyby" and "angular momentum reversal trajectory",are compare...

  11. Dynamic Resource Management and Job Scheduling for High Performance Computing

    OpenAIRE

    2016-01-01

    Job scheduling and resource management plays an essential role in high-performance computing. Supercomputing resources are usually managed by a batch system, which is responsible for the effective mapping of jobs onto resources (i.e., compute nodes). From the system perspective, a batch system must ensure high system utilization and throughput, while from the user perspective it must ensure fast response times and fairness when allocating resources across jobs. Parallel jobs can be divide...

  12. The role of interpreters in high performance computing

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, Axel; /CERN; Canal, Philippe; /Fermilab

    2008-01-01

    Compiled code is fast, interpreted code is slow. There is not much we can do about it, and it's the reason why interpreters use in high performance computing is usually restricted to job submission. We show where interpreters make sense even in the context of analysis code, and what aspects have to be taken into account to make this combination a success.

  13. Scalable High Performance Message Passing over InfiniBand for Open MPI

    Energy Technology Data Exchange (ETDEWEB)

    Friedley, A; Hoefler, T; Leininger, M L; Lumsdaine, A

    2007-10-24

    InfiniBand (IB) is a popular network technology for modern high-performance computing systems. MPI implementations traditionally support IB using a reliable, connection-oriented (RC) transport. However, per-process resource usage that grows linearly with the number of processes, makes this approach prohibitive for large-scale systems. IB provides an alternative in the form of a connectionless unreliable datagram transport (UD), which allows for near-constant resource usage and initialization overhead as the process count increases. This paper describes a UD-based implementation for IB in Open MPI as a scalable alternative to existing RC-based schemes. We use the software reliability capabilities of Open MPI to provide the guaranteed delivery semantics required by MPI. Results show that UD not only requires fewer resources at scale, but also allows for shorter MPI startup times. A connectionless model also improves performance for applications that tend to send small messages to many different processes.

  14. HPC-NMF: A High-Performance Parallel Algorithm for Nonnegative Matrix Factorization

    Energy Technology Data Exchange (ETDEWEB)

    2016-08-22

    NMF is a useful tool for many applications in different domains such as topic modeling in text mining, background separation in video analysis, and community detection in social networks. Despite its popularity in the data mining community, there is a lack of efficient distributed algorithms to solve the problem for big data sets. We propose a high-performance distributed-memory parallel algorithm that computes the factorization by iteratively solving alternating non-negative least squares (NLS) subproblems for $\\WW$ and $\\HH$. It maintains the data and factor matrices in memory (distributed across processors), uses MPI for interprocessor communication, and, in the dense case, provably minimizes communication costs (under mild assumptions). As opposed to previous implementation, our algorithm is also flexible: It performs well for both dense and sparse matrices, and allows the user to choose any one of the multiple algorithms for solving the updates to low rank factors $\\WW$ and $\\HH$ within the alternating iterations.

  15. Biodegradation of pitch-based high performance carbon fibers

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T. (Yamaguchi Univ., Yamaguchi, (Japan). Faculty of Education)

    1992-09-10

    Although carbon fibers are widely used in various purposes because of their excellent mechanical properties, their behavior under biodegradation by microorganisms has not been elucidated. To elucidate the process of biodegradation of carbon fibers is important for understanding thoroughly the durability and the functionality of the fibers. In this article, a study has been made on biodegradation of pitch-based high performance carbon fibers by microorganisms. The fiber which was degraded has been examined with a scanning electron microscope. Aspergillus flavus has broken surface areas of high performance carbon fibers in 60 days and the fibril structure under the surface layer of the fiber has been exfoliated by degradation. The fibrils on the second layer have been 100-110nm wide. The fibrils have been in line nearly parallel to the fiber axis. The above carbon fibers are carbon type, but in case of graphite type high performance carbon fibers, its broken areas have not been shown and they have shown much stronger resistance against microbial attacks. 11 refs., 8 figs., 2 tabs.

  16. High Performance Walls in Hot-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, David [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, Bill [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, Alea [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2015-01-01

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist. To support this activity, in 2013 the Pacific Gas & Electric Company initiated a project with Davis Energy Group (lead for the Building America team, Alliance for Residential Building Innovation) to solicit builder involvement in California to participate in field demonstrations of high performance wall systems. Builders were given incentives and design support in exchange for providing site access for construction observation, cost information, and builder survey feedback. Information from the project was designed to feed into the 2016 Title 24 process, but also to serve as an initial mechanism to engage builders in more high performance construction strategies. This Building America project utilized information collected in the California project.

  17. Design of High Performance Permanent-Magnet Synchronous Wind Generators

    Directory of Open Access Journals (Sweden)

    Chun-Yu Hsiao

    2014-11-01

    Full Text Available This paper is devoted to the analysis and design of high performance permanent-magnet synchronous wind generators (PSWGs. A systematic and sequential methodology for the design of PMSGs is proposed with a high performance wind generator as a design model. Aiming at high induced voltage, low harmonic distortion as well as high generator efficiency, optimal generator parameters such as pole-arc to pole-pitch ratio and stator-slot-shoes dimension, etc. are determined with the proposed technique using Maxwell 2-D, Matlab software and the Taguchi method. The proposed double three-phase and six-phase winding configurations, which consist of six windings in the stator, can provide evenly distributed current for versatile applications regarding the voltage and current demands for practical consideration. Specifically, windings are connected in series to increase the output voltage at low wind speed, and in parallel during high wind speed to generate electricity even when either one winding fails, thereby enhancing the reliability as well. A PMSG is designed and implemented based on the proposed method. When the simulation is performed with a 6 Ω load, the output power for the double three-phase winding and six-phase winding are correspondingly 10.64 and 11.13 kW. In addition, 24 Ω load experiments show that the efficiencies of double three-phase winding and six-phase winding are 96.56% and 98.54%, respectively, verifying the proposed high performance operation.

  18. High performance flexible CMOS SOI FinFETs

    KAUST Repository

    Fahad, Hossain M.

    2014-06-01

    We demonstrate the first ever CMOS compatible soft etch back based high performance flexible CMOS SOI FinFETs. The move from planar to non-planar FinFETs has enabled continued scaling down to the 14 nm technology node. This has been possible due to the reduction in off-state leakage and reduced short channel effects on account of the superior electrostatic charge control of multiple gates. At the same time, flexible electronics is an exciting expansion opportunity for next generation electronics. However, a fully integrated low-cost system will need to maintain ultra-large-scale-integration density, high performance and reliability - same as today\\'s traditional electronics. Up until recently, this field has been mainly dominated by very weak performance organic electronics enabled by low temperature processes, conducive to low melting point plastics. Now however, we show the world\\'s highest performing flexible version of 3D FinFET CMOS using a state-of-the-art CMOS compatible fabrication technique for high performance ultra-mobile consumer applications with stylish design. © 2014 IEEE.

  19. Integrating Reconfigurable Hardware-Based Grid for High Performance Computing

    Directory of Open Access Journals (Sweden)

    Julio Dondo Gazzano

    2015-01-01

    Full Text Available FPGAs have shown several characteristics that make them very attractive for high performance computing (HPC. The impressive speed-up factors that they are able to achieve, the reduced power consumption, and the easiness and flexibility of the design process with fast iterations between consecutive versions are examples of benefits obtained with their use. However, there are still some difficulties when using reconfigurable platforms as accelerator that need to be addressed: the need of an in-depth application study to identify potential acceleration, the lack of tools for the deployment of computational problems in distributed hardware platforms, and the low portability of components, among others. This work proposes a complete grid infrastructure for distributed high performance computing based on dynamically reconfigurable FPGAs. Besides, a set of services designed to facilitate the application deployment is described. An example application and a comparison with other hardware and software implementations are shown. Experimental results show that the proposed architecture offers encouraging advantages for deployment of high performance distributed applications simplifying development process.

  20. Fabricating high performance lithium-ion batteries using bionanotechnology

    Science.gov (United States)

    Zhang, Xudong; Hou, Yukun; He, Wen; Yang, Guihua; Cui, Jingjie; Liu, Shikun; Song, Xin; Huang, Zhen

    2015-02-01

    Designing, fabricating, and integrating nanomaterials are key to transferring nanoscale science into applicable nanotechnology. Many nanomaterials including amorphous and crystal structures are synthesized via biomineralization in biological systems. Amongst various techniques, bionanotechnology is an effective strategy to manufacture a variety of sophisticated inorganic nanomaterials with precise control over their chemical composition, crystal structure, and shape by means of genetic engineering and natural bioassemblies. This provides opportunities to use renewable natural resources to develop high performance lithium-ion batteries (LIBs). For LIBs, reducing the sizes and dimensions of electrode materials can boost Li+ ion and electron transfer in nanostructured electrodes. Recently, bionanotechnology has attracted great interest as a novel tool and approach, and a number of renewable biotemplate-based nanomaterials have been fabricated and used in LIBs. In this article, recent advances and mechanism studies in using bionanotechnology for high performance LIBs studies are thoroughly reviewed, covering two technical routes: (1) Designing and synthesizing composite cathodes, e.g. LiFePO4/C, Li3V2(PO4)3/C and LiMn2O4/C; and (2) designing and synthesizing composite anodes, e.g. NiO/C, Co3O4/C, MnO/C, α-Fe2O3 and nano-Si. This review will hopefully stimulate more extensive and insightful studies on using bionanotechnology for developing high-performance LIBs.

  1. Two failures to replicate high-performance-goal priming effects.

    Directory of Open Access Journals (Sweden)

    Christine R Harris

    Full Text Available Bargh et al. (2001 reported two experiments in which people were exposed to words related to achievement (e.g., strive, attain or to neutral words, and then performed a demanding cognitive task. Performance on the task was enhanced after exposure to the achievement related words. Bargh and colleagues concluded that better performance was due to the achievement words having activated a "high-performance goal". Because the paper has been cited well over 1100 times, an attempt to replicate its findings would seem warranted. Two direct replication attempts were performed. Results from the first experiment (n = 98 found no effect of priming, and the means were in the opposite direction from those reported by Bargh and colleagues. The second experiment followed up on the observation by Bargh et al. (2001 that high-performance-goal priming was enhanced by a 5-minute delay between priming and test. Adding such a delay, we still found no evidence for high-performance-goal priming (n = 66. These failures to replicate, along with other recent results, suggest that the literature on goal priming requires some skeptical scrutiny.

  2. Challenges in building high performance geoscientific spatial data infrastructures

    Science.gov (United States)

    Dubros, Fabrice; Tellez-Arenas, Agnes; Boulahya, Faiza; Quique, Robin; Le Cozanne, Goneri; Aochi, Hideo

    2016-04-01

    One of the main challenges in Geosciences is to deal with both the huge amounts of data available nowadays and the increasing need for fast and accurate analysis. On one hand, computer aided decision support systems remain a major tool for quick assessment of natural hazards and disasters. High performance computing lies at the heart of such systems by providing the required processing capabilities for large three-dimensional time-dependent datasets. On the other hand, information from Earth observation systems at different scales is routinely collected to improve the reliability of numerical models. Therefore, various efforts have been devoted to design scalable architectures dedicated to the management of these data sets (Copernicus, EarthCube, EPOS). Indeed, standard data architectures suffer from a lack of control over data movement. This situation prevents the efficient exploitation of parallel computing architectures as the cost for data movement has become dominant. In this work, we introduce a scalable architecture that relies on high performance components. We discuss several issues such as three-dimensional data management, complex scientific workflows and the integration of high performance computing infrastructures. We illustrate the use of such architectures, mainly using off-the-shelf components, in the framework of both coastal flooding assessments and earthquake early warning systems.

  3. High-Performance Java Codes for Computational Fluid Dynamics

    Science.gov (United States)

    Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.

  4. Radio Synthesis Imaging - A High Performance Computing and Communications Project

    Science.gov (United States)

    Crutcher, Richard M.

    The National Science Foundation has funded a five-year High Performance Computing and Communications project at the National Center for Supercomputing Applications (NCSA) for the direct implementation of several of the computing recommendations of the Astronomy and Astrophysics Survey Committee (the "Bahcall report"). This paper is a summary of the project goals and a progress report. The project will implement a prototype of the next generation of astronomical telescope systems - remotely located telescopes connected by high-speed networks to very high performance, scalable architecture computers and on-line data archives, which are accessed by astronomers over Gbit/sec networks. Specifically, a data link has been installed between the BIMA millimeter-wave synthesis array at Hat Creek, California and NCSA at Urbana, Illinois for real-time transmission of data to NCSA. Data are automatically archived, and may be browsed and retrieved by astronomers using the NCSA Mosaic software. In addition, an on-line digital library of processed images will be established. BIMA data will be processed on a very high performance distributed computing system, with I/O, user interface, and most of the software system running on the NCSA Convex C3880 supercomputer or Silicon Graphics Onyx workstations connected by HiPPI to the high performance, massively parallel Thinking Machines Corporation CM-5. The very computationally intensive algorithms for calibration and imaging of radio synthesis array observations will be optimized for the CM-5 and new algorithms which utilize the massively parallel architecture will be developed. Code running simultaneously on the distributed computers will communicate using the Data Transport Mechanism developed by NCSA. The project will also use the BLANCA Gbit/s testbed network between Urbana and Madison, Wisconsin to connect an Onyx workstation in the University of Wisconsin Astronomy Department to the NCSA CM-5, for development of long

  5. High-performance insulator structures for accelerator applications

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, S.E.; Caporaso, G.J.; Sanders, D.M.; Stoddard, R.D.; Trimble, D.O. [Lawrence Livermore National Lab., CA (United States); Elizondo, J.; Krogh, M.L.; Wieskamp, T.F. [Allied Signal, Inc., Kansas City, MO (United States). Federal Mfg. and Technologies

    1997-05-01

    A new, high gradient insulator technology has been developed for accelerator systems. The concept involves the use of alternating layers of conductors and insulators with periods of order 1 mm or less. These structures perform many times better (about 1.5 to 4 times higher breakdown electric field) than conventional insulators in long pulse, short pulse, and alternating polarity applications. We describe our ongoing studies investigating the degradation of the breakdown electric field resulting from alternate fabrication techniques, the effect of gas pressure, the effect of the insulator-to-electrode interface gap spacing, and the performance of the insulator structure under bi-polar stress.

  6. Public subscription project for international joint research proposals in fiscal 2000 - public subscription of international proposal (Substitution No.2). Report on achievements in developing technologies to produce oil-alternative energies from fibrous material based biomass and industrial wastes; 2000 nendo kokusai kyodo kenkyu teian kobo jigyo - kokusai teian kobo (daitai No.2). Sen'ishitsukei biomass oyobi sangyo haikibutsu kara no sekiyu daitai energy seisan gijutsu no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Development has been advanced on technologies to manufacture methanol efficiently by combining a technology to convert selectively fibrous material based biomass into sugar under high concentration sulfuric acid condition with the immobilized enzyme flash fermentation process, both being developed in the United States. Activities have been taken in the following three fields: 1) establishment of an optimal biomass treatment condition by using concentrated sulfuric acid, 2) chromatographic separation of sugar and sulfuric acid, and 3) discussions on conditions to apply the immobilized enzyme flash fermentation process. In Item 1), discussions were given, using rice straw and waste woods as the object, on effects of biomass particle size, sulfuric acid to biomass feeding ratio, sulfuric acid concentration, reaction temperature and time on the cellulose to hemicellulose reaction ratio and the sugar conversion factor, whereas it was revealed that the governing factors are the biomass/sulfuric acid contact area and the reaction temperature. In Item 2), a chromatographic device filled with anion ion exchange resin was used to set the sugar recovery rate of 100% and the sulfuric acid recovery rate of 93%. (NEDO)

  7. Design of biomimetic camouflage materials based on angiosperm leaf organs

    Institute of Scientific and Technical Information of China (English)

    LIU ZhiMing; WU WenJian; HU BiRu

    2008-01-01

    The micro structures and reflectance spectra of angiosperm leaves were compared with those of angiosperm petals. The study indicated that angiosperm leaf organs had identical micro structures and reflectance characteristics in the wave band of near infrared. Micro structures and compositions of leaf organs were the crucial factors influencing their reflectance spectra. The model of biomimetic materials based on angiosperm leaf organs was introduced and verified. From 300 to 2600 nm, the similarity coefficients of reflectance spectra of the foam containing water and Platanus Orientalis Linn. leaves were all above 0.969. The biomimetic camou-flage material exhibited almost the same reflectance spectra with those of green leaves in ultraviolet, visible and near infrared wave bands, And its "concolor and conspectrum" effect might take on reconnaissance of hyperspectral and ultra hyperspectral imaging.

  8. Design of biomimetic camouflage materials based on angiosperm leaf organs

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The micro structures and reflectance spectra of angiosperm leaves were compared with those of angiosperm petals. The study indicated that angiosperm leaf organs had identical micro structures and reflectance characteristics in the wave band of near infrared. Micro structures and compositions of leaf organs were the crucial factors influencing their reflectance spectra. The model of biomimetic materials based on angiosperm leaf organs was introduced and verified. From 300 to 2600 nm, the similarity coefficients of reflectance spectra of the foam containing water and Platanus Orientalis Linn. leaves were all above 0.969. The biomimetic camou- flage material exhibited almost the same reflectance spectra with those of green leaves in ultraviolet, visible and near infrared wave bands. And its "concolor and conspectrum" effect might take on reconnaissance of hyperspectral and ultra hy- perspectral imaging.

  9. Designing Listening Material Based on Visual Multimodality Compositions

    Directory of Open Access Journals (Sweden)

    Jepri Ali Saiful

    2015-06-01

    Full Text Available In recent decades, multimodality has eventually augmented into the realm of language teaching and learning known as Applied Multimodality. This interdisciplinary approach draws on a multiplicity of communication or representation modes, all of which contribute to meaning. Accordingly, images, colors, and sounds within a text are catalysts to increase an audience’s reception of an idea or concept of the text, that is, a message. Thus, the present article intends to make a contribution to the field of material development in English language teaching. The aim of this article is therefore to provide guidelines for ELT teachers on how to design listening materials based on visual multimodal compositions of image and text. The result is that the compositions of image and text in designing listening materials rests upon three main principles: information value, salience and framing. These principles enable students’ L2 acquisition through listening as proved by recent research.

  10. High Performance Computing in Science and Engineering '16 : Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2016

    CERN Document Server

    Kröner, Dietmar; Resch, Michael

    2016-01-01

    This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2016. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance. The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

  11. Alternative energies; Energies alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Bonal, J.; Rossetti, P

    2007-07-01

    The earth took millions years to made the petroleum, the gas the coal and the uranium. Only a few centuries will be needed to exhaust these fossil fuels and some years to reach expensive prices. Will the wold continue on this way of energy compulsive consumption? The renewable energies and some citizen attitudes are sufficient to break this spiral. This book proposes to discuss these alternative energies. It shows that this attitude must be supported by the government. It takes stock on the more recent information concerning the renewable energies. it develops three main points: the electricity storage, the housing and the transports. (A.L.B.)

  12. High performance 3D printed electronics using electroless plated copper

    Science.gov (United States)

    Jian, Jin Rong; Kim, Taeil; Park, Jae Sung; Wang, Jiacheng; Kim, Woo Soo

    2017-03-01

    This paper presents design and performance validation of 3D printed electronic components, 3D toroidal air-core inductors, fabricated by multi-material based Fused Deposition Modelling (FDM) 3D printing technology and electroless copper plating. Designs of toroidal inductor is investigated with different core shapes and winding numbers; circular and half-circular cores with 10 and 13 turns of windings. Electroless plated copper thin film ensures 3D printed toroidal plastic structures to possess inductive behaviors. The inductance is demonstrated reliably with an applied source frequency from 100 kHz to 2 MHz as designs vary. An RL circuit is utilized to test the fabricated inductors' phase-leading characteristics with corresponding phase angle changes.

  13. High performance 3D printed electronics using electroless plated copper

    Directory of Open Access Journals (Sweden)

    Jin Rong Jian

    2017-03-01

    Full Text Available This paper presents design and performance validation of 3D printed electronic components, 3D toroidal air-core inductors, fabricated by multi-material based Fused Deposition Modelling (FDM 3D printing technology and electroless copper plating. Designs of toroidal inductor is investigated with different core shapes and winding numbers; circular and half-circular cores with 10 and 13 turns of windings. Electroless plated copper thin film ensures 3D printed toroidal plastic structures to possess inductive behaviors. The inductance is demonstrated reliably with an applied source frequency from 100 kHz to 2 MHz as designs vary. An RL circuit is utilized to test the fabricated inductors’ phase-leading characteristics with corresponding phase angle changes.

  14. Embedded systems to high performance computing using STT-MRAM

    OpenAIRE

    Senni, Sophiane; Delobelle, Thibaud; Coi, Odilia; Péneau, Pierre-Yves; Torres, Lionel; Gamatié, Abdoulaye; Benoit, Pascal; Sassatelli, Gilles

    2017-01-01

    International audience; The scaling limits of CMOS have pushed many researchers to explore alternative technologies for beyond CMOS circuits. In addition to the increased device variability and process complexity led by the continuous decreasing size of CMOS transistors, heat dissipation effects limit the density and speed of current systems-on-chip. For beyond CMOS systems, the emerging memory technology STT-MRAM is seen as a promising alternative solution. This paper shows first how STT-MRA...

  15. High performance APCS conceptual design and evaluation scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Soelberg, N.; Liekhus, K.; Chambers, A.; Anderson, G.

    1998-02-01

    This Air Pollution Control System (APCS) Conceptual Design and Evaluation study was conducted to evaluate a high-performance (APC) system for minimizing air emissions from mixed waste thermal treatment systems. Seven variations of high-performance APCS designs were conceptualized using several design objectives. One of the system designs was selected for detailed process simulation using ASPEN PLUS to determine material and energy balances and evaluate performance. Installed system capital costs were also estimated. Sensitivity studies were conducted to evaluate the incremental cost and benefit of added carbon adsorber beds for mercury control, specific catalytic reduction for NO{sub x} control, and offgas retention tanks for holding the offgas until sample analysis is conducted to verify that the offgas meets emission limits. Results show that the high-performance dry-wet APCS can easily meet all expected emission limits except for possibly mercury. The capability to achieve high levels of mercury control (potentially necessary for thermally treating some DOE mixed streams) could not be validated using current performance data for mercury control technologies. The engineering approach and ASPEN PLUS modeling tool developed and used in this study identified APC equipment and system performance, size, cost, and other issues that are not yet resolved. These issues need to be addressed in feasibility studies and conceptual designs for new facilities or for determining how to modify existing facilities to meet expected emission limits. The ASPEN PLUS process simulation with current and refined input assumptions and calculations can be used to provide system performance information for decision-making, identifying best options, estimating costs, reducing the potential for emission violations, providing information needed for waste flow analysis, incorporating new APCS technologies in existing designs, or performing facility design and permitting activities.

  16. RAID-M: A high performance RAID Matrix mass storage

    Institute of Scientific and Technical Information of China (English)

    LIU Peng; LI Sanli; Francis C.M.Lau; SHI Yao; HUANG Feng

    2005-01-01

    In the light of the increasingly serious I/O bottleneck problem, the paper puts forward a method named RAID-M (RAID Matrix) to build high performance mass storage from cheap PC components based on the idea of multi-channel I/O and parallel access.Theoretical analyses prove that different RAID-M configurations vary their performance,space utilization and reliability, meeting various application goals. Experiments show that both the sequential read performance and sequential write performance of a RAID-M prototype machine have broken through the limitation of 32 bit/33 MHz PCI bus.

  17. Silicon photonics for high-performance interconnection networks

    Science.gov (United States)

    Biberman, Aleksandr

    2011-12-01

    We assert in the course of this work that silicon photonics has the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems, and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. This work showcases that chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, enable unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of this work, we demonstrate such feasibility of waveguides, modulators, switches, and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. Furthermore, we leverage the unique properties of available silicon photonic materials to create novel silicon photonic devices, subsystems, network topologies, and architectures to enable unprecedented performance of these photonic interconnection networks and computing systems. We show that the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers. Furthermore, we explore the immense potential of all-optical functionalities implemented using parametric processing in the silicon platform, demonstrating unique methods that have the ability to revolutionize computation and communication. Silicon photonics

  18. Quantification of tryptophan in plasma by high performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Renata Romanholi Pinhati

    2012-01-01

    Full Text Available A simple, rapid and selective method using high-performance liquid chromatography with ultraviolet detection (267 nm was applied for the determination of tryptophan in plasma. Separation was carried out on a C18 column (150 x 4.6 mm internal diameter in 6 min. The mobile phase consisted of 5 mM the sodium acetate and acetonitrile (92:8, v/v. The method was shown to be precise and accurate, and good recovery of analyte was achieved, characterizing the method as efficient and reliable for use in laboratory analysis.

  19. Component-based software for high-performance scientific computing

    Science.gov (United States)

    Alexeev, Yuri; Allan, Benjamin A.; Armstrong, Robert C.; Bernholdt, David E.; Dahlgren, Tamara L.; Gannon, Dennis; Janssen, Curtis L.; Kenny, Joseph P.; Krishnan, Manojkumar; Kohl, James A.; Kumfert, Gary; Curfman McInnes, Lois; Nieplocha, Jarek; Parker, Steven G.; Rasmussen, Craig; Windus, Theresa L.

    2005-01-01

    Recent advances in both computational hardware and multidisciplinary science have given rise to an unprecedented level of complexity in scientific simulation software. This paper describes an ongoing grass roots effort aimed at addressing complexity in high-performance computing through the use of Component-Based Software Engineering (CBSE). Highlights of the benefits and accomplishments of the Common Component Architecture (CCA) Forum and SciDAC ISIC are given, followed by an illustrative example of how the CCA has been applied to drive scientific discovery in quantum chemistry. Thrusts for future research are also described briefly.

  20. RESEARCH ON THE HIGH PERFORMANCE COMPOSITE ROAD CONCRETE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Ordinary concrete presents short service life when used for building and repairing high-grade road with heavy traffic due to its large brittleness, poor bending flexibility and serious shrinkage on drying. In this paper,a new kind of high performance concrete has been designed by means of combination of organic, inorganic material as well as metal material.The research and application have shown that this new concrete can significantly counteract the deficiency of ordinary concrete and give excellent mechanical properties and pavement performances. The application of this new kind of concrete is of great social and economic significance.

  1. High performance protection circuit for power electronics applications

    Science.gov (United States)

    Tudoran, Cristian D.; Dǎdârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan

    2015-12-01

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a "sensor" or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  2. TRIAXIAL COMPRESSIVE STRENGTH OF ULTRA HIGH PERFORMANCE CONCRETE

    Directory of Open Access Journals (Sweden)

    Radoslav Sovják

    2013-12-01

    Full Text Available The aim of this work is to describe the strength of Ultra High Performance Concrete (UHPC under triaxial compression. The main goal is to find a trend in the triaxial compressive strength development under various values of confinement pressure. The importance of triaxial tests lies in the spatial loading of the sample, which simulates the real loading of the material in the structure better than conventional uniaxial strength tests. In addition, the authors describe a formulation process for UHPC that has been developed without using heat treatment, pressure or a special mixer. Only ordinary materials available commercially in the Czech Republic were utilized throughout the material design process.

  3. QsNetII : Defining High-Performance Network Design

    Energy Technology Data Exchange (ETDEWEB)

    Beecroft, Jon; Addison, David; Hewson, David; McLaren, Moray; Roweth, Duncan; Petrini, Fabrizio; Nieplocha, Jarek

    2005-07-05

    Cluster computers—parallel computers built from commodity processors—are becoming the predominant supercomputer architecture because of their combined scalable performance and attractive price. As of June 2005, 61 percent of the world’s top-500 supercomputers were clusters (http://www.top500.org). This is a significant paradigm shift from a few decades ago, when supercomputers were special purpose, like the Cray vector machines, and designers built them from expensive, custom components. Clusters that use commodity processors still require high-performance, low-latency networks, if their applications are fine-grained, or if the cluster has many processors. Clusters can use commodity networks, such as Gigabit Ethernet, but these fall short in many scalability and performance aspects.1 Consequently, the core of several successful cluster-based supercomputers is a highperformance network. On the one hand, this component interfaces with standard I/O buses, such as peripheral component interconnect (PCI), its extended version (PCI-X), and PCI-Express, thus everaging commodity computing nodes. On the other hand, it provides scalable erformance and cluster aggregation through specialized protocols.2 Thus, in a sense, the high-performance network in a cluster computer is the computer because it largely defines achievable performance, widening the range of the applications a cluster can efficiently execute, as well as defining its scalability, fault tolerance, system software, and overall usability. Because of their key performance-enhancing role, cluster computer networks must meet high standards in four design spects—performance, scalability, reliability, and programmability. The “Four Critical Design Criteria” sidebar describes these in more detail. QsNetII, the latest generation Quadrics interconnect, meets these standards, extending previous work on high-performance networks with an aggressive design to achieve ultra-low latency. At the design’s core are

  4. Language interoperability mechanisms for high-performance scientific applications

    Energy Technology Data Exchange (ETDEWEB)

    Cleary, A; Kohn, S; Smith, S G; Smolinski, B

    1998-09-18

    Language interoperability is a difficult problem facing the developers and users of large numerical software packages. Language choices often hamper the reuse and sharing of numerical libraries, especially in a scientific computing environment that uses a breadth of programming languages, including C, c ++, Java, various Fortran dialects, and scripting languages such as Python. In this paper, we propose a new approach to langauge interoparability for high-performance scientific applications based on Interface Definition Language (IDL) techniques. We investigate the modifications necessary to adopt traditional IDL approaches for use by the scientific community, including IDL extensions for numerical computing and issues involved in mapping IDLs to Fortran 77 and Fortran 90.

  5. Designing high-Performance layered thermoelectric materials through orbital engineering

    DEFF Research Database (Denmark)

    Zhang, Jiawei; Song, Lirong; Madsen, Georg K. H.

    2016-01-01

    Thermoelectric technology, which possesses potential application in recycling industrial waste heat as energy, calls for novel high-performance materials. The systematic exploration of novel thermoelectric materials with excellent electronic transport properties is severely hindered by limited...... naturally leads to design maps for optimizing the thermoelectric power factor through forming solid solutions and biaxial strain. Using this approach, we predict a series of potential thermoelectric candidates from layered CaAl2Si2-type Zintl compounds. Several of them contain nontoxic, low-cost and earth...

  6. A high-performance, low-cost, leading edge discriminator

    Indian Academy of Sciences (India)

    S K Gupta; Y Hayashi; A Jain; S Karthikeyan; S Kawakami; K C Ravindran; S C Tonwar

    2005-08-01

    A high-performance, low-cost, leading edge discriminator has been designed with a timing performance comparable to state-of-the-art, commercially available discriminators. A timing error of 16 ps is achieved under ideal operating conditions. Under more realistic operating conditions the discriminator displays a timing error of 90 ps. It has an intrinsic double pulse resolution of 4 ns which is better than most commercial discriminators. A low-cost discriminator is an essential requirement of the GRAPES-3 experiment where a large number of discriminator channels are used.

  7. High performance deformable image registration algorithms for manycore processors

    CERN Document Server

    Shackleford, James; Sharp, Gregory

    2013-01-01

    High Performance Deformable Image Registration Algorithms for Manycore Processors develops highly data-parallel image registration algorithms suitable for use on modern multi-core architectures, including graphics processing units (GPUs). Focusing on deformable registration, we show how to develop data-parallel versions of the registration algorithm suitable for execution on the GPU. Image registration is the process of aligning two or more images into a common coordinate frame and is a fundamental step to be able to compare or fuse data obtained from different sensor measurements. E

  8. Synthesis and Characterization of Boron Trifluoride Doped High Performance Polyaniline

    Directory of Open Access Journals (Sweden)

    K. Basavaiah

    2012-01-01

    Full Text Available We report simple synthesis of boron trifluoride (BF3 doped defect free high performance polyaniline (HPPANI in two step method. Firstly, HPPANI was prepared via self-stabilization dispersion polymerization method in a heterogeneous reaction medium. Second step involves doping of emeraldine base form of HPPANI with boron trifluoride under reduced vacuum. The resultants BF3 doped HPPANI have been well characterized by using UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM and thermogravimetry. The spectroscopic data indicated that the interaction between HPPANI and BF3.Thermogravimetry studies revealed that the BF3 doping improved the thermal stability of defects free PANI.

  9. High-Performance Tiled WMS and KML Web Server

    Science.gov (United States)

    Plesea, Lucian

    2007-01-01

    This software is an Apache 2.0 module implementing a high-performance map server to support interactive map viewers and virtual planet client software. It can be used in applications that require access to very-high-resolution geolocated images, such as GIS, virtual planet applications, and flight simulators. It serves Web Map Service (WMS) requests that comply with a given request grid from an existing tile dataset. It also generates the KML super-overlay configuration files required to access the WMS image tiles.

  10. Gas and high-performance liquid chromatography of phenols

    Energy Technology Data Exchange (ETDEWEB)

    Tesarova, E.; Pacakova, V.

    1983-05-01

    Gas (GC) and high-performance liquid chromatographic (HPLC) methods in the analysis of phenols are reviewed. Among the great number of phenolic compounds analyzed, alkylphenols, chlorophenols, dihydroxy-and trihydroxy-benzenes and biphenols are chiefly considered. The advantages and drawbacks of the methods are discussed. Relationships between the structural characteristics of phenols, the stationary phase structure, the mobile phase composition and the retention data are treated. Typical examples of the conditions for GC and HPLC analysis are summarized in tables. 276 references

  11. High Performance Small Optically Pumped Caesium Beam Frequency Standard

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-Wei; YANG Dong-Hai

    2007-01-01

    An experiment of a high performance small optically pumped caesium (Cs) beam frequency standard is reported. An extended cavity diode laser works as the probing laser, of which the frequency is stabilized by the Zeeman modulation method. The running parameters of the frequency standard are dynamically optimized via digital servo electronics. The experimental setup improves the frequency stability up to 1.8 × 10-12 atτ= 1 s and about 1.0 × 10~13 at τ= 105 s (Allan deviation).

  12. High performance, durable polymers including poly(phenylene)

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Cy; Pratt, Harry; Anderson, Travis Mark

    2017-02-28

    The present invention relates to functionalized polymers including a poly(phenylene) structure. In some embodiments, the polymers and copolymers of the invention include a highly localized concentration of acidic moieties, which facilitate proton transport and conduction through networks formed from these polymers. In addition, the polymers can include functional moieties, such as electron-withdrawing moieties, to protect the polymeric backbone, thereby extending its durability. Such enhanced proton transport and durability can be beneficial for any high performance platform that employs proton exchange polymeric membranes, such as in fuel cells or flow batteries.

  13. High-Performance Management Practices and Employee Outcomes in Denmark

    DEFF Research Database (Denmark)

    Cristini, Annalisa; Eriksson, Tor; Pozzoli, Dario

    2013-01-01

    High-performance work practices are frequently considered to have positive effects on corporate performance, but what do they do for employees? After assessing the correlation between organizational innovation and firm performance, this article investigates whether high-involvement work practices...... affect workers in terms of wages, wage inequality and workforce composition. The analysis is based on a survey directed at Danish firms matched with linked employer–employee data and also examines whether the relationship between high-involvement work practices and employee outcomes is affected...

  14. High-Performance Management Practices and Employee Outcomes in Denmark

    DEFF Research Database (Denmark)

    Cristini, Annalisa; Eriksson, Tor; Pozzoli, Dario

    High-performance work practices are frequently considered to have positive effects on corporate performance, but what do they do for employees? After showing that organizational innovation is indeed positively associated with firm performance, we investigate whether high-involvement work practices...... are associ- ated with higher wages, changes in wage inequality and workforce composition, using data from a survey directed at Danish private sector firms matched with linked employer-employee data. We also examine whether the relationship be- tween high-involvement work practices and employee outcomes...

  15. Building and managing high performance, scalable, commodity mass storage systems

    Science.gov (United States)

    Lekashman, John

    1998-01-01

    The NAS Systems Division has recently embarked on a significant new way of handling the mass storage problem. One of the basic goals of this new development are to build systems at very large capacity and high performance, yet have the advantages of commodity products. The central design philosophy is to build storage systems the way the Internet was built. Competitive, survivable, expandable, and wide open. The thrust of this paper is to describe the motivation for this effort, what we mean by commodity mass storage, what the implications are for a facility that performs such an action, and where we think it will lead.

  16. Strategy Guideline: Advanced Construction Documentation Recommendations for High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Lukachko, A.; Gates, C.; Straube, J.

    2011-12-01

    As whole house energy efficiency increases, new houses become less like conventional houses that were built in the past. New materials and new systems require greater coordination and communication between industry stakeholders. The Guideline for Construction Documents for High Performance Housing provides advice to address this need. The reader will be presented with four changes that are recommended to achieve improvements in energy efficiency, durability and health in Building America houses: create coordination drawings, improve specifications, improve detail drawings, and review drawings and prepare a Quality Control Plan.

  17. High performance hybrid magnetic structure for biotechnology applications

    Science.gov (United States)

    Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  18. The Hedgehog Effect The Secrets of Building High Performance Teams

    CERN Document Server

    Kets de Vries, Manfred F R

    2011-01-01

    In The Hedgehog Effect, Manfred Kets de Vries presents the case for leadership group coaching as an experiential training ground for learning to function as a high performance team. His group coaching model, incorporating living case studies, has been developed over more than 20 years of delivering programs to top-level executives and sets the standard in the field of leadership group coaching. Written for coaches, consultants, leadership development directors, and anyone working in or with teams, The Hedgehog Effect begins with an in-depth analysis of what teams and groups are all about. The

  19. Micro-crack detection in high-performance cementitious materials

    DEFF Research Database (Denmark)

    Lura, Pietro; Guang, Ye; Tanaka, Kyoji

    2005-01-01

    of high-performance cement pastes in silicone moulds that exert minimal external restraint. Cast-in steel rods with varying diameter internally restrain the autogenous shrinkage and lead to crack formation. Dimensions of the steel rods are chosen so that the size of this restraining inclusion resembles...... aggregate size. Gallium intrusion of the cracks and subsequent examination by electron probe micro analysis, EPMA, are used to identify the cracks. The gallium intrusion technique allows controllable impregnation of cracks in the cement paste. A distinct contrast between gallium and the surrounding material...

  20. Carbonation Resistance of Sulphoaluminate Cement-based High Performance Concrete

    Institute of Scientific and Technical Information of China (English)

    ZHANG Decheng; XU Dongyu; CHENG Xin; CHEN Wen

    2009-01-01

    The influences of water/cement ratio and admixtures on carbonation resistance of sulphoaluminate cement-based high performance concrete(HPC)were investigated.The experimental results show that with the decreasing water/cement ratio,the carbonation depth of sulphoaluminate cement-based HPC is decreased remarkably,and the carbonation resistance capability is also improved with the adding admixtures.The morphologies and structure characteristics of sulphoaluminate cement hydration products before and after carbonation were analyzed using SEM and XRD.The analysis results reveal that the main hydration product of sulphoaluminate cement,that is ettringite(AFt),de-composes after carbonation.

  1. Advanced Modified High Performance Synthetic Jet Actuator with Curved Chamber

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Su, Ji (Inventor); Jiang, Xiaoning (Inventor)

    2014-01-01

    The advanced modified high performance synthetic jet actuator with optimized curvature shape chamber (ASJA-M) is a synthetic jet actuator (SJA) with a lower volume reservoir or chamber. A curved chamber is used, instead of the conventional cylinder chamber, to reduce the dead volume of the jet chamber and increase the efficiency of the synthetic jet actuator. The shape of the curvature corresponds to the maximum displacement (deformation) profile of the electroactive diaphragm. The jet velocity and mass flow rate for the ASJA-M will be several times higher than conventional piezoelectric actuators.

  2. Design of Ultra High Performance Fiber Reinforced Concrete Shells

    DEFF Research Database (Denmark)

    Jepsen, Michael S.; Lambertsen, Søren Heide; Damkilde, Lars

    2013-01-01

    Fiber Reinforced Concrete shell. The major challenge in the design phase has been securing sufficient stiffness of the structure while keeping the weight at a minimum. The weight/stiffness issue has been investigated by means of the finite element method, to optimize the structure regarding overall......The paper treats the redesign of the float structure of the Wavestar wave energy converter. Previously it was designed as a glass fiber structure, but due to cost reduction requirements a redesign has been initiated. The new float structure will be designed as a double curved Ultra High Performance...

  3. Ultra High Performance, Highly Reliable, Numeric Intensive Processors and Systems

    Science.gov (United States)

    1989-10-01

    to design high-performance DSP/IP systems using either off-the-shelf components or application specific integrated circuitry [ ASIC ]. -9 - HSDAL . ARO...are the chirp-z transform ( CZT ) [13] and (Rader’s) Prime Factor Transform (PFT) [11]. The RNS/ CZT is being studied by a group a MITRE [14] and is given...PFT RNS/CRNS/QRNS implementation has dynamic range requirements on the order of NQ2 (vs NQ4 for the CZT and much higher for the FFT). Therefore, the

  4. High performance protection circuit for power electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Tudoran, Cristian D., E-mail: cristian.tudoran@itim-cj.ro; Dădârlat, Dorin N.; Toşa, Nicoleta; Mişan, Ioan [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, PO 5 Box 700, 400293 Cluj-Napoca (Romania)

    2015-12-23

    In this paper we present a high performance protection circuit designed for the power electronics applications where the load currents can increase rapidly and exceed the maximum allowed values, like in the case of high frequency induction heating inverters or high frequency plasma generators. The protection circuit is based on a microcontroller and can be adapted for use on single-phase or three-phase power systems. Its versatility comes from the fact that the circuit can communicate with the protected system, having the role of a “sensor” or it can interrupt the power supply for protection, in this case functioning as an external, independent protection circuit.

  5. High-performance silicon photonics technology for telecommunications applications.

    Science.gov (United States)

    Yamada, Koji; Tsuchizawa, Tai; Nishi, Hidetaka; Kou, Rai; Hiraki, Tatsurou; Takeda, Kotaro; Fukuda, Hiroshi; Ishikawa, Yasuhiko; Wada, Kazumi; Yamamoto, Tsuyoshi

    2014-04-01

    By way of a brief review of Si photonics technology, we show that significant improvements in device performance are necessary for practical telecommunications applications. In order to improve device performance in Si photonics, we have developed a Si-Ge-silica monolithic integration platform, on which compact Si-Ge-based modulators/detectors and silica-based high-performance wavelength filters are monolithically integrated. The platform features low-temperature silica film deposition, which cannot damage Si-Ge-based active devices. Using this platform, we have developed various integrated photonic devices for broadband telecommunications applications.

  6. Alternative additives; Alternative additiver

    Energy Technology Data Exchange (ETDEWEB)

    2007-08-15

    In this project a number of industrial and agricultural waste products have been characterised and evaluated in terms of alkali-getter performance. The intended use is for biomass-fired power stations aiming at reducing corrosion or slagging related problems. The following products have been obtained, characterised and evaluated: 1) Brewery draff 2) Danish de-gassed manure 3) Paper sludge 4) Moulding sand 5) Spent bleaching earth 6) Anorthosite 7) Sand 8) Clay-sludge. Most of the above alternative additive candidates are deemed unsuitable due to insufficient chemical effect and/or expensive requirements for pre-treatment (such as drying and transportation). 3 products were selected for full-scale testing: de-gassed manure, spent bleaching earth and clay slugde. The full scale tests were undertaken at the biomass-fired power stations in Koege, Slagelse and Ensted. Spent bleaching earth (SBE) and clay sludge were the only tested additive candidates that had a proven ability to react with KCl, to thereby reduce Cl-concentrations in deposits, and reduce the deposit flux to superheater tubes. Their performance was shown to nearly as good as commercial additives. De-gassed manure, however, did not evaluate positively due to inhibiting effects of Ca in the manure. Furthermore, de-gassed manure has a high concentration of heavy metals, which imposes a financial burden with regard to proper disposal of the ash by-products. Clay-sludge is a wet clay slurring, and drying and transportation of this product entails substantial costs. Spent bleaching does not require much pre-treatment and is therefore the most promising alternative additive. On the other hand, bleaching earth contains residual plant oil which means that a range of legislation relating to waste combustion comes into play. Not least a waste combustion fee of 330 DKK/tonne. For all alternative (and commercial) additives disposal costs of the increase ash by-products represents a significant cost. This is

  7. High Performance Activity Practices in Small Firms in Romania

    Directory of Open Access Journals (Sweden)

    Gabriela ŢUŢUEANU

    2014-12-01

    Full Text Available High Performance Activity Practices in Small Firms in Romania Abstract: High performance activity practices (HPAPs are human resource management activities aimed at stimulating employee and organisational performance. The application of HPAPs is not widespread in small organisations. We examine whether the implementation of coherent bundles of HPAPs (aimed at employee ability, employee motivation or at the opportunity to perform depends on the scarcity of resources, as reflected in the size of the company, and on strategic decision-making in small firms related to the owner’s expertise and attitudes. In our research, a total of 224 employees from 50 small organisations were asked to rate the presence of HPAPs in their organisation. These averaged perceptions were linked to information provided by the owner–managers on the size of their firm and their own expertise and attitudes. The findings support that smaller but coherent bundles of HPAPs can be found in small organisations and that the implementation of these bundles depends on available resources, strategic decision-making and the combination of the two. These findings highlight the need to integrate the notions of resource poverty and strategic decision-making to understand the uptake of bundles of HPAPs within small firms.

  8. High-Performance Ducts in Hot-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chitwood, Rick [National Renewable Energy Laboratory (NREL), Golden, CO (United States); German, Alea [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Weitzel, Elizabeth [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-07-30

    Duct thermal losses and air leakage have long been recognized as prime culprits in the degradation of heating, ventilating, and air-conditioning (HVAC) system efficiency. Both the U.S. Department of Energy’s Zero Energy Ready Home program and California’s proposed 2016 Title 24 Residential Energy Efficiency Standards require that ducts be installed within conditioned space or that other measures be taken to provide similar improvements in delivery effectiveness (DE). Pacific Gas & Electric Company commissioned a study to evaluate ducts in conditioned space and high-performance attics (HPAs) in support of the proposed codes and standards enhancements included in California’s 2016 Title 24 Residential Energy Efficiency Standards. The goal was to work with a select group of builders to design and install high-performance duct (HPD) systems, such as ducts in conditioned space (DCS), in one or more of their homes and to obtain test data to verify the improvement in DE compared to standard practice. Davis Energy Group (DEG) helped select the builders and led a team that provided information about HPD strategies to them. DEG also observed the construction process, completed testing, and collected cost data.

  9. Next High Performance and Low Power Flash Memory Package Structure

    Institute of Scientific and Technical Information of China (English)

    Jung-Hoon Lee

    2007-01-01

    In general, SAND flash memory has advantages in low power consumption, storage capacity, and fast erase/write performance in contrast to NOR flash. But, main drawback of the SAND flash memory is the slow access time for random read operations. Therefore, we proposed the new SAND flash memory package for overcoming this major drawback. We present a high performance and low power SAND flash memory system with a dual cache memory. The proposed SAND flash package consists of two parts, i.e., an SAND flash memory module, and a dual cache module. The new SAND flash memory system can achieve dramatically higher performance and lower power consumption compared with any conventional NAND-type flash memory module. Our results show that the proposed system can reduce about 78% of write operations into the flash memory cell and about 70% of read operations from the flash memory cell by using only additional 3KB cache space. This value represents high potential to achieve low power consumption and high performance gain.

  10. Data of high performance precast external walls for warm climate.

    Science.gov (United States)

    Baglivo, Cristina; Maria Congedo, Paolo

    2015-09-01

    The data given in the following paper are related to input and output information of the paper entitled Design method of high performance precast external walls for warm climate by multi-objective optimization analysis by Baglivo et al. [1]. Previous studies demonstrate that the superficial mass and the internal areal heat capacity are necessary to reach the best performances for the envelope of the Zero Energy Buildings located in a warm climate [2-4]. The results show that it is possible to achieve high performance precast walls also with light and ultra-thin solutions. A multi-criteria optimization has been performed in terms of steady and dynamic thermal behavior, eco sustainability score and costs. The modeFRONTIER optimization tool, with the use of computational procedures developed in Matlab, has been used to assess the thermal dynamics of building components. A large set of the best configurations of precast external walls for warm climate with their physical and thermal properties have been reported in the data article.

  11. High Performance Parallel Methods for Space Weather Simulations

    Science.gov (United States)

    Hunter, Paul (Technical Monitor); Gombosi, Tamas I.

    2003-01-01

    This is the final report of our NASA AISRP grant entitled 'High Performance Parallel Methods for Space Weather Simulations'. The main thrust of the proposal was to achieve significant progress towards new high-performance methods which would greatly accelerate global MHD simulations and eventually make it possible to develop first-principles based space weather simulations which run much faster than real time. We are pleased to report that with the help of this award we made major progress in this direction and developed the first parallel implicit global MHD code with adaptive mesh refinement. The main limitation of all earlier global space physics MHD codes was the explicit time stepping algorithm. Explicit time steps are limited by the Courant-Friedrichs-Lewy (CFL) condition, which essentially ensures that no information travels more than a cell size during a time step. This condition represents a non-linear penalty for highly resolved calculations, since finer grid resolution (and consequently smaller computational cells) not only results in more computational cells, but also in smaller time steps.

  12. Study on durability of high performance concrete with industrial wastes

    Directory of Open Access Journals (Sweden)

    Jeyaraj R

    2010-08-01

    Full Text Available Long-term performance of structures has become vital to the economies of all nations. Concrete has been the major instrument for providing stable and reliable Infrastructure. Deterioration, long term poor performance, and inadequate resistance to hostile environment, coupled with greater demands for more sophisticated architectural form, led to the accelerated research into the microstructure of cements and concretes and more elaborate codes and standards. As a result, innovations of supplementary materials and composites have been developed.In other side, India has an enormous growth in the steel and copper industries. The following are major by products from these industries: copper slag - a by-product of copper refinery, and ground granulated blast furnace slag (GGBS - a by-product in the manufacture of iron in steel industry. If they are not disposed off properly, they may cause environmental hazards to the surrounding area. Considering the long term performance and stability of structures, this study suggests replacing some percentage of fine aggregate with copper slag and some percentage of cement with GGBS to develop high performance concrete. This paper presents an experimental investigation to assess the durability parameters of high performance concrete with the industrial wastes. Durability parameters such as water absorption and chloride penetration are to be studied.

  13. High performance computing and communications: FY 1995 implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-01

    The High Performance Computing and Communications (HPCC) Program was formally established following passage of the High Performance Computing Act of 1991 signed on December 9, 1991. Ten federal agencies in collaboration with scientists and managers from US industry, universities, and laboratories have developed the HPCC Program to meet the challenges of advancing computing and associated communications technologies and practices. This plan provides a detailed description of the agencies` HPCC implementation plans for FY 1994 and FY 1995. This Implementation Plan contains three additional sections. Section 3 provides an overview of the HPCC Program definition and organization. Section 4 contains a breakdown of the five major components of the HPCC Program, with an emphasis on the overall directions and milestones planned for each one. Section 5 provides a detailed look at HPCC Program activities within each agency. Although the Department of Education is an official HPCC agency, its current funding and reporting of crosscut activities goes through the Committee on Education and Health Resources, not the HPCC Program. For this reason the Implementation Plan covers nine HPCC agencies.

  14. Incorporation of Mineral Admixtures in Sustainable High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Nima Farzadnia

    2011-07-01

    Full Text Available Concrete is a widely used construction material around the world, and its properties have been undergoing changes through technological advancement. Numerous types of concrete have been developed to enhance the different properties of concrete. So far, this development can be divided into four stages. The earliest is the traditional normal strength concrete which is composed of only four constituent materials, which are cement, water, fine and coarse aggregates. With a fast population growth and a higher demand for housing and infrastructure, accompanied by recent developments in civil engineering, such as high-rise buildings and long-span bridges, higher compressive strength concrete was needed. At the beginning, reducing the water-cement ratio was the easiest way to achieve the high compressive strength. Thereafter, the fifth ingredient, a water reducing agent or super plasticizer, was indispensable. However, sometimes the compressive strength was not as important as some other properties, such as low permeability, durability and workability. Thus, high performance concrete was proposed and widely studied at the end of the last century. Currently, high-performance concrete is used in massive volumes due to its technical and economic advantages. Such materials are characterized by improved mechanical and durability properties resulting from the use of chemical and mineral admixtures as well as specialized production processes. This paper reviews the incorporation of mineral admixtures in binary, ternary and quaternary blended mortars in concrete.

  15. High-performance teams and the physician leader: an overview.

    Science.gov (United States)

    Majmudar, Aalap; Jain, Anshu K; Chaudry, Joseph; Schwartz, Richard W

    2010-01-01

    The complexity of health care delivery within the United States continues to escalate in an exponential fashion driven by an explosion of medical technology, an ever-expanding research enterprise, and a growing emphasis on evidence-based practices. The delivery of care occurs on a continuum that spans across multiple disciplines, now requiring complex coordination of care through the use of novel clinical teams. The use of teams permeates the health care industry and has done so for many years, but confusion about the structure and role of teams in many organizations contributes to limited effectiveness and suboptimal outcomes. Teams are an essential component of graduate medical education training programs. The health care industry's relative lack of focus regarding the fundamentals of teamwork theory has contributed to ineffective team leadership at the physician level. As a follow-up to our earlier manuscripts on teamwork, this article clarifies a model of teamwork and discusses its application to high-performance teams in health care organizations. Emphasized in this discussion is the role played by the physician leader in ensuring team effectiveness. By educating health care professionals on the fundamentals of high-performance teamwork, we hope to stimulate the development of future physician leaders who use proven teamwork principles to achieve the goals of trainee education and excellent patient care.

  16. A high-performance workflow system for subsurface simulation

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Vicky L.; Chen, Xingyuan; Finsterle, Stefan A.; Freshley, Mark D.; Gorton, Ian; Gosink, Luke J.; Keating, Elizabeth; Lansing, Carina; Moeglein, William AM; Murray, Christopher J.; Pau, George Shu Heng; Porter, Ellen A.; Purohit, Sumit; Rockhold, Mark L.; Schuchardt, Karen L.; Sivaramakrishnan, Chandrika; Vesselinov, Velimir V.; Waichler, Scott R.

    2014-02-14

    Subsurface modeling applications typically neglect uncertainty in the conceptual models, past or future scenarios, and attribute most or all uncertainty to errors in model parameters. In this contribution, uncertainty in technetium-99 transport in a heterogeneous, deep vadose zone is explored with respect to the conceptual model using a next generation user environment called Akuna. Akuna provides a range of tools to manage environmental modeling projects, from managing simulation data to visualizing results from high-performance computational simulators. Core toolsets accessible through the user interface include model setup, grid generation, parameter estimation, and uncertainty quantification. The BC Cribs site at Hanford in southeastern Washington State is used to demonstrate Akuna capabilities. At the BC Cribs site, conceptualization of the system is highly uncertain because only sparse information is available for the geologic conceptual model, the physical and chemical properties of the sediments, and the history of waste disposal operations. Using the Akuna toolset to perform an analysis of conservative solute transport, significant prediction uncertainty in simulated concentrations is demonstrated by conceptual model variation. This demonstrates that conceptual model uncertainty is an important consideration in sparse data environments such as BC Cribs. It is also demonstrated that Akuna and the underlying toolset provides an integrated modeling environment that streamlines model setup, parameter optimization, and uncertainty analyses for high-performance computing applications.

  17. Characterization of the crosslinking reaction in high performance phenolic resins

    Science.gov (United States)

    Patel, Jigneshkumar; Zou, Guo Xiang; Hsu, Shaw Ling; university of massachusetts/Polymer science; Engineering Team

    In this study, a combination of thermal analysis, infrared spectroscopy (near and mid) in conjunction with low field NMR, was used to characterize the crosslinking reaction involving phenol formaldehyde resin and a crosslinking agent, Hexamethylenetetramine (HMTA). The strong hydrogen bonds in the resin and the completely crystalline HMTA (Tm = 280 °C) severely hamper the crosslinking process. Yet the addition of a small amount of plasticizer can induce a highly efficient crosslinking reaction to achieve the desired mechanical properties needed in a number of high performance organic-inorganic composites. The infrared spectroscopy clarifies the dissolution process of the crystalline crosslinker and the specific interactions needed to achieve miscibility of the reactants. The thermal analysis enabled us to follow the changing mobility of the system as a function of temperature. The low field NMR with the T1 inverse recovery technique allowed us to monitor the crosslinking process directly. For the first time, it is now possible to identify the functionality of the plasticizer and correlate the crosslinked structure achieved to the macroscopic performance needed for high performance organic-inorganic composites.

  18. Optimum selection of high performance mirror substrates for diamond finishing

    Science.gov (United States)

    Woodard, Kenneth S.; Comstock, Lovell E.; Wamboldt, Leonard; Sutherland, James S.

    2016-05-01

    Due to advances in manufacturing processes, the substrate options for high performance diamond machined mirrors are expanding. Fewer compromises have to be made to achieve the needed weight, stiffness and finish while maintaining reasonable costs. In addition to the traditional mirror materials like aluminum and beryllium, there are some less common materials that can now be included in the trade space that fill the cost and performance continuum between wrought aluminum and beryllium mirrors. Aluminum and beryllium, respectively, had been the low cost/fair performance and very high cost/very high performance bounds for substrate selection. These additional substrates provide multiple near net shape blank options and processes, mostly within these bounds, that can be considered in a mirror cost versus performance trade analysis. This paper will include a summary of some advances in manufacturing processes that provide more substrate options for diamond machined mirrors with some sample performance analysis and data. This is merged with the traditional substrate options to illustrate the now larger mirror substrate trade space. Some benchmark structural analysis is provided to back up a generic mirror design trade study.

  19. Developing Flexible, High Performance Polymers with Self-Healing Capabilities

    Science.gov (United States)

    Jolley, Scott T.; Williams, Martha K.; Gibson, Tracy L.; Caraccio, Anne J.

    2011-01-01

    Flexible, high performance polymers such as polyimides are often employed in aerospace applications. They typically find uses in areas where improved physical characteristics such as fire resistance, long term thermal stability, and solvent resistance are required. It is anticipated that such polymers could find uses in future long duration exploration missions as well. Their use would be even more advantageous if self-healing capability or mechanisms could be incorporated into these polymers. Such innovative approaches are currently being studied at the NASA Kennedy Space Center for use in high performance wiring systems or inflatable and habitation structures. Self-healing or self-sealing capability would significantly reduce maintenance requirements, and increase the safety and reliability performance of the systems into which these polymers would be incorporated. Many unique challenges need to be overcome in order to incorporate a self-healing mechanism into flexible, high performance polymers. Significant research into the incorporation of a self-healing mechanism into structural composites has been carried out over the past decade by a number of groups, notable among them being the University of I1linois [I]. Various mechanisms for the introduction of self-healing have been investigated. Examples of these are: 1) Microcapsule-based healant delivery. 2) Vascular network delivery. 3) Damage induced triggering of latent substrate properties. Successful self-healing has been demonstrated in structural epoxy systems with almost complete reestablishment of composite strength being achieved through the use of microcapsulation technology. However, the incorporation of a self-healing mechanism into a system in which the material is flexible, or a thin film, is much more challenging. In the case of using microencapsulation, healant core content must be small enough to reside in films less than 0.1 millimeters thick, and must overcome significant capillary and surface

  20. Characteristics and Applications of a High Performance, Miniaturized, Infrasound Sensor

    Science.gov (United States)

    Rothman, J. L.; Marriott, D. A.

    2015-12-01

    Infrasound Sensors have been used for many years to monitor a large number of geophysical phenomena and manmade sources. Due to their large size and power consumption these sensors have typically been deployed in fixed arrays, portable arrays have required trucks to transport the sensors and support equipment. A high performance, miniaturized, infrasound microphone has been developed to enable mobile infrasound measurements that would otherwise be impractical. The new device is slightly larger than a hockey puck, weighs 200g, and consumes less than 150mW. The sensitivity is 0.4V/Pa and self noise at 1Hz is less than 0.63μPa²/Hz. The characteristics were verified using a calibrator tracable to the Los Alamos calibration chamber. Field tests have demonstrated the performance is comparable to a Chaparral model 25. Applications include man portable arrays, mobile installations, and UAV based measurements.

  1. Overview of Parallel Platforms for Common High Performance Computing

    Directory of Open Access Journals (Sweden)

    T. Fryza

    2012-04-01

    Full Text Available The paper deals with various parallel platforms used for high performance computing in the signal processing domain. More precisely, the methods exploiting the multicores central processing units such as message passing interface and OpenMP are taken into account. The properties of the programming methods are experimentally proved in the application of a fast Fourier transform and a discrete cosine transform and they are compared with the possibilities of MATLAB's built-in functions and Texas Instruments digital signal processors with very long instruction word architectures. New FFT and DCT implementations were proposed and tested. The implementation phase was compared with CPU based computing methods and with possibilities of the Texas Instruments digital signal processing library on C6747 floating-point DSPs. The optimal combination of computing methods in the signal processing domain and new, fast routines' implementation is proposed as well.

  2. An Effective Storage Mechanism for High Performance Computing (HPC

    Directory of Open Access Journals (Sweden)

    Fatima El Jamiy

    2015-10-01

    Full Text Available All over the process of treating data on HPC Systems, parallel file systems play a significant role. With more and more applications, the need for high performance Input-Output is rising. Different possibilities exist: General Parallel File System, cluster file systems and virtual parallel file system (PVFS are the most important ones. However, these parallel file systems use pattern and model access less effective such as POSIX semantics (A family of technical standards emerged from a project to standardize programming interfaces software designed to operate on variant UNIX operating system., which forces the MPI-IO implementations to use inefficient techniques based on locks. To avoid this synchronization in these techniques, we ensure that the use of a versioning-based file system is much more effective.

  3. High Performance Data mining by Genetic Neural Network

    Directory of Open Access Journals (Sweden)

    Dadmehr Rahbari

    2013-10-01

    Full Text Available Data mining in computer science is the process of discovering interesting and useful patterns and relationships in large volumes of data. Most methods for mining problems is based on artificial intelligence algorithms. Neural network optimization based on three basic parameters topology, weights and the learning rate is a powerful method. We introduce optimal method for solving this problem. In this paper genetic algorithm with mutation and crossover operators change the network structure and optimized that. Dataset used for our work is stroke disease with twenty features that optimized number of that achieved by new hybrid algorithm. Result of this work is very well incomparison with other similar method. Low present of error show that our method is our new approach to efficient, high-performance data mining problems is introduced.

  4. Next-generation sequencing: big data meets high performance computing.

    Science.gov (United States)

    Schmidt, Bertil; Hildebrandt, Andreas

    2017-02-02

    The progress of next-generation sequencing has a major impact on medical and genomic research. This high-throughput technology can now produce billions of short DNA or RNA fragments in excess of a few terabytes of data in a single run. This leads to massive datasets used by a wide range of applications including personalized cancer treatment and precision medicine. In addition to the hugely increased throughput, the cost of using high-throughput technologies has been dramatically decreasing. A low sequencing cost of around US$1000 per genome has now rendered large population-scale projects feasible. However, to make effective use of the produced data, the design of big data algorithms and their efficient implementation on modern high performance computing systems is required.

  5. Achieving Mixtures of Ultra-High Performance Concrete

    Directory of Open Access Journals (Sweden)

    Mircea POPA

    2013-07-01

    Full Text Available Ultra-High Performance Concrete (UHPC is a relatively new concrete. According to [11] UHPC is that concrete which features compressive strength over C100/115 class. Up to this point standards for this type of concrete were not adopted, although its characteristic strength exceeds those specified in [33]. Its main property is high compressive strength. This provides the possibility of reducing the section of elements (beams or columns made of this type of concrete, while the load capacity remains high. The study consists in blending mixtures of UHPC made of varying proportions of materials. The authors have obtained strengths of up to 160 MPa. The materials used are: Portland cement, silica fume, quartz powder, steel fibers, superplasticiser, sand and crushed aggregate for concrete - andesite.

  6. A review of High Performance Computing foundations for scientists

    CERN Document Server

    Ibáñez, Pablo García-Risueño Pablo E

    2012-01-01

    The increase of existing computational capabilities has made simulation emerge as a third discipline of Science, lying midway between experimental and purely theoretical branches [1, 2]. Simulation enables the evaluation of quantities which otherwise would not be accessible, helps to improve experiments and provides new insights on systems which are analysed [3-6]. Knowing the fundamentals of computation can be very useful for scientists, for it can help them to improve the performance of their theoretical models and simulations. This review includes some technical essentials that can be useful to this end, and it is devised as a complement for researchers whose education is focused on scientific issues and not on technological respects. In this document we attempt to discuss the fundamentals of High Performance Computing (HPC) [7] in a way which is easy to understand without much previous background. We sketch the way standard computers and supercomputers work, as well as discuss distributed computing and di...

  7. High-Performance Cloud Computing: A View of Scientific Applications

    CERN Document Server

    Vecchiola, Christian; Buyya, Rajkumar

    2009-01-01

    Scientific computing often requires the availability of a massive number of computers for performing large scale experiments. Traditionally, these needs have been addressed by using high-performance computing solutions and installed facilities such as clusters and super computers, which are difficult to setup, maintain, and operate. Cloud computing provides scientists with a completely new model of utilizing the computing infrastructure. Compute resources, storage resources, as well as applications, can be dynamically provisioned (and integrated within the existing infrastructure) on a pay per use basis. These resources can be released when they are no more needed. Such services are often offered within the context of a Service Level Agreement (SLA), which ensure the desired Quality of Service (QoS). Aneka, an enterprise Cloud computing solution, harnesses the power of compute resources by relying on private and public Clouds and delivers to users the desired QoS. Its flexible and service based infrastructure...

  8. Probabilistic performance-based design for high performance control systems

    Science.gov (United States)

    Micheli, Laura; Cao, Liang; Gong, Yongqiang; Cancelli, Alessandro; Laflamme, Simon; Alipour, Alice

    2017-04-01

    High performance control systems (HPCS) are advanced damping systems capable of high damping performance over a wide frequency bandwidth, ideal for mitigation of multi-hazards. They include active, semi-active, and hybrid damping systems. However, HPCS are more expensive than typical passive mitigation systems, rely on power and hardware (e.g., sensors, actuators) to operate, and require maintenance. In this paper, a life cycle cost analysis (LCA) approach is proposed to estimate the economic benefit these systems over the entire life of the structure. The novelty resides in the life cycle cost analysis in the performance based design (PBD) tailored to multi-level wind hazards. This yields a probabilistic performance-based design approach for HPCS. Numerical simulations are conducted on a building located in Boston, MA. LCA are conducted for passive control systems and HPCS, and the concept of controller robustness is demonstrated. Results highlight the promise of the proposed performance-based design procedure.

  9. High-performance work systems and occupational safety.

    Science.gov (United States)

    Zacharatos, Anthea; Barling, Julian; Iverson, Roderick D

    2005-01-01

    Two studies were conducted investigating the relationship between high-performance work systems (HPWS) and occupational safety. In Study 1, data were obtained from company human resource and safety directors across 138 organizations. LISREL VIII results showed that an HPWS was positively related to occupational safety at the organizational level. Study 2 used data from 189 front-line employees in 2 organizations. Trust in management and perceived safety climate were found to mediate the relationship between an HPWS and safety performance measured in terms of personal-safety orientation (i.e., safety knowledge, safety motivation, safety compliance, and safety initiative) and safety incidents (i.e., injuries requiring first aid and near misses). These 2 studies provide confirmation of the important role organizational factors play in ensuring worker safety.

  10. High-Performance Image Synthesis for Radio Interferometry

    CERN Document Server

    Muscat, Daniel

    2014-01-01

    A radio interferometer indirectly measures the intensity distribution of the sky over the celestial sphere. Since measurements are made over an irregularly sampled Fourier plane, synthesising an intensity image from interferometric measurements requires substantial processing. Furthermore there are distortions that have to be corrected. In this thesis, a new high-performance image synthesis tool (imaging tool) for radio interferometry is developed. Implemented in C++ and CUDA, the imaging tool achieves unprecedented performance by means of Graphics Processing Units (GPUs). The imaging tool is divided into several components, and the back-end handling numerical calculations is generalised in a new framework. A new feature termed compression arbitrarily increases the performance of an already highly efficient GPU-based implementation of the w-projection algorithm. Compression takes advantage of the behaviour of oversampled convolution functions and the baseline trajectories. A CPU-based component prepares data ...

  11. High Performance Embedded System for Real-Time Pattern Matching

    CERN Document Server

    Sotiropoulou, Calliope Louisa; The ATLAS collaboration; Gkaitatzis, Stamatios; Citraro, Saverio; Giannetti, Paola; Dell'Orso, Mauro

    2016-01-01

    We present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics (HEP) and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturized version of this complex system is being developed for pattern matching in generic image processing applications. The design uses the flexibility of Field Programmable Gate Arrays (FPGAs) and the powerful Associative Memory Chip (ASIC) to achieve real-time performance. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain.

  12. A High-Performance Communication Service for Parallel Servo Computing

    Directory of Open Access Journals (Sweden)

    Cheng Xin

    2010-11-01

    Full Text Available Complexity of algorithms for the servo control in the multi-dimensional, ultra-precise stage application has made multi-processor parallel computing technology needed. Considering the specific communication requirements in the parallel servo computing, we propose a communication service scheme based on VME bus, which provides high-performance data transmission and precise synchronization trigger support for the processors involved. Communications service is implemented on both standard VME bus and user-defined Internal Bus (IB, and can be redefined online. This paper introduces parallel servo computing architecture and communication service, describes structure and implementation details of each module in the service, and finally provides data transmission model and analysis. Experimental results show that communication services can provide high-speed data transmission with sub-nanosecond-level error of transmission latency, and synchronous trigger with nanosecond-level synchronization error. Moreover, the performance of communication service is not affected by the increasing number of processors.

  13. High performance coronagraphy for direct imaging of exoplanets

    Directory of Open Access Journals (Sweden)

    Guyon O.

    2011-07-01

    Full Text Available Coronagraphy has recently been an extremely active field of research, with several high performance concepts proposed, and several new coronagraphs tested in laboratories and telescopes. Coronagraph concepts can be grouped in a few broad categories: Lyot-type coronagraphs, pupil apodization and nulling interferometers. Among existing coronagraph concepts, several approach the fundamental performance limit imposed by the physical nature of light. To achieve their full potential, coronagraphs require exquisite wavefront control and calibration. This has been, and still is, the main bottleneck for the scientifically productive use of coronagraphs on ground-based telescopes. New and promising wavefront sensing techniques suitable for high contrast imaging have however been developed in the last few years and are started to be realized in laboratories. I will review some of these enabling technologies, and show that coronagraphs are now ready for “prime time” on existing and future telescopes.

  14. Trends in High Performance Liquid Chromatography for Cultural Heritage.

    Science.gov (United States)

    Degano, Ilaria; La Nasa, Jacopo

    2016-04-01

    The separation, detection and quantitation of specific species contained in a sample in the field of Cultural Heritage requires selective, sensitive and reliable methods. Procedures based on liquid chromatography fulfil these requirements and offer a wide range of applicability in terms of analyte types and concentration range. The main applications of High Performance Liquid Chromatography in this field are related to the separation and detection of dyestuffs in archaeological materials and paint samples by reversed-phase liquid chromatography with suitable detectors. The relevant literature will be revised, with particular attention to sample treatment strategies and future developments. Reversed phase chromatography has also recently gained increasing importance in the analysis of lipid binders and lipid materials in archaeological residues: the main advantages and disadvantages of the new approaches will be discussed. Finally, the main applications of ion chromatography and size exclusion chromatography in the field of Cultural Heritage will be revised in this chapter.

  15. High performance infrared fast cooled detectors for missile applications

    Science.gov (United States)

    Reibel, Yann; Espuno, Laurent; Taalat, Rachid; Sultan, Ahmad; Cassaigne, Pierre; Matallah, Noura

    2016-05-01

    SOFRADIR was selected in the late 90's for the production of 320×256 MW detectors for major European missile programs. This experience has established our company as a key player in the field of missile programs. SOFRADIR has since developed a vast portfolio of lightweight, compact and high performance JT-based solutions for missiles. ALTAN is a 384x288 Mid Wave infrared detector with 15μm pixel pitch, and is offered in a miniature ultra-fast Joule- Thomson cooled Dewar. Since Sofradir offers both Indium Antimonide (InSb) and Mercury Cadmium Telluride technologies (MCT), we are able to deliver the detectors best suited to customers' needs. In this paper we are discussing different figures of merit for very compact and innovative JT-cooled detectors and are highlighting the challenges for infrared detection technologies.

  16. High performance/low cost accelerator control system

    Science.gov (United States)

    Magyary, S.; Glatz, J.; Lancaster, H.; Selph, F.; Fahmie, M.; Ritchie, A.; Timossi, C.; Hinkson, C.; Benjegerdes, R.

    1980-10-01

    Implementation of a high performance computer control system tailored to the requirements of the Super HILAC accelerator is described. This system uses a distributed structure with fiber optic data links; multiple CPUs operate in parallel at each node. A large number of the latest 16 bit microcomputer boards are used to get a significant processor bandwidth. Dynamically assigned and labeled knobs together with touch screens allow a flexible and efficient operator interface. An X-Y vector graphics system allows display and labeling of real time signals as well as general plotting functions. Both the accelerator parameters and the graphics system can be driven from BASIC interactive programs in addition to the precanned user routines.

  17. High-performance quantitative robust switching control for optical telescopes

    Science.gov (United States)

    Lounsbury, William P.; Garcia-Sanz, Mario

    2014-07-01

    This paper introduces an innovative robust and nonlinear control design methodology for high-performance servosystems in optical telescopes. The dynamics of optical telescopes typically vary according to azimuth and altitude angles, temperature, friction, speed and acceleration, leading to nonlinearities and plant parameter uncertainty. The methodology proposed in this paper combines robust Quantitative Feedback Theory (QFT) techniques with nonlinear switching strategies that achieve simultaneously the best characteristics of a set of very active (fast) robust QFT controllers and very stable (slow) robust QFT controllers. A general dynamic model and a variety of specifications from several different commercially available amateur Newtonian telescopes are used for the controller design as well as the simulation and validation. It is also proven that the nonlinear/switching controller is stable for any switching strategy and switching velocity, according to described frequency conditions based on common quadratic Lyapunov functions (CQLF) and the circle criterion.

  18. 5th International Conference on High Performance Scientific Computing

    CERN Document Server

    Hoang, Xuan; Rannacher, Rolf; Schlöder, Johannes

    2014-01-01

    This proceedings volume gathers a selection of papers presented at the Fifth International Conference on High Performance Scientific Computing, which took place in Hanoi on March 5-9, 2012. The conference was organized by the Institute of Mathematics of the Vietnam Academy of Science and Technology (VAST), the Interdisciplinary Center for Scientific Computing (IWR) of Heidelberg University, Ho Chi Minh City University of Technology, and the Vietnam Institute for Advanced Study in Mathematics. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and practical applications. Subjects covered include mathematical modeling; numerical simulation; methods for optimization and control; parallel computing; software development; and applications of scientific computing in physics, mechanics and biomechanics, material science, hydrology, chemistry, biology, biotechnology, medicine, sports, psychology, transport, logistics, com...

  19. High Performance Fe-Co Based SOFC Cathodes

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent; Hansen, Karin Vels; Mogensen, Mogens Bjerg

    2010-01-01

    With the aim of reducing the temperature of the solid oxide fuel cell (SOFC), a new high-performance perovskite cathode has been developed. An area-specific resistance (ASR) as low as 0.12 Ωcm2 at 600 °C was measured by electrochemical impedance spectroscopy (EIS) on symmetrical cells. The cathode...... is a composite between (Gd0.6Sr0.4)0.99Fe0.8Co0.2O3-δ (GSFC) and Ce0.9Gd0.1O1.95 (CGO10). Examination of the microstructure of the cathodes by scanning electron microscopy (SEM) revealed a possibility of further optimisation of the microstructure in order to increase the performance of the cathodes. It also...

  20. High-Performance Astrophysical Simulations and Analysis with Python

    CERN Document Server

    Turk, Matthew J

    2011-01-01

    The usage of the high-level scripting language Python has enabled new mechanisms for data interrogation, discovery and visualization of scientific data. We present yt, an open source, community-developed astrophysical analysis and visualization toolkit for data generated by high-performance computing (HPC) simulations of astrophysical phenomena. Through a separation of responsibilities in the underlying Python code, yt allows data generated by incompatible, and sometimes even directly competing, astrophysical simulation platforms to be analyzed in a consistent manner, focusing on physically relevant quantities rather than quantities native to astrophysical simulation codes. We present on its mechanisms for data access, capabilities for MPI-parallel analysis, and its implementation as an in situ analysis and visualization tool.

  1. 3rd International Conference on High Performance Scientific Computing

    CERN Document Server

    Kostina, Ekaterina; Phu, Hoang; Rannacher, Rolf

    2008-01-01

    This proceedings volume contains a selection of papers presented at the Third International Conference on High Performance Scientific Computing held at the Hanoi Institute of Mathematics, Vietnamese Academy of Science and Technology (VAST), March 6-10, 2006. The conference has been organized by the Hanoi Institute of Mathematics, Interdisciplinary Center for Scientific Computing (IWR), Heidelberg, and its International PhD Program ``Complex Processes: Modeling, Simulation and Optimization'', and Ho Chi Minh City University of Technology. The contributions cover the broad interdisciplinary spectrum of scientific computing and present recent advances in theory, development of methods, and applications in practice. Subjects covered are mathematical modelling, numerical simulation, methods for optimization and control, parallel computing, software development, applications of scientific computing in physics, chemistry, biology and mechanics, environmental and hydrology problems, transport, logistics and site loca...

  2. TOPICAL REVIEW: Optics of high-performance electron microscopes

    Directory of Open Access Journals (Sweden)

    H H Rose

    2008-01-01

    Full Text Available During recent years, the theory of charged particle optics together with advances in fabrication tolerances and experimental techniques has lead to very significant advances in high-performance electron microscopes. Here, we will describe which theoretical tools, inventions and designs have driven this development. We cover the basic theory of higher-order electron optics and of image formation in electron microscopes. This leads to a description of different methods to correct aberrations by multipole fields and to a discussion of the most advanced design that take advantage of these techniques. The theory of electron mirrors is developed and it is shown how this can be used to correct aberrations and to design energy filters. Finally, different types of energy filters are described

  3. Design of a High-Performance IP Switching Architecture

    Directory of Open Access Journals (Sweden)

    Hattab Guesmi

    2006-01-01

    Full Text Available In this study we present the architecture for use in high-performance switching networks with support quality of service (QoS guarantees. Quality of services guarantees in terms of delay, through-put and loss rate can be provided by using mechanism's support like scheduling and buffer management at switching architecture in packet switching networks. Our architecture is based on a new data structure for the scheduling and memories management which is the circular linked list and the pipeline for the active queues elements. In addition to being very fast, the architecture also scales very well to a large number of priority levels and to large queue size. We give a detailed description of the block that support QoS guarantees. However our proposed architecture is composed of three parts: input controller, backplane and output controller. And we give the corresponding algorithms and the corresponding implementation of this architecture.

  4. All-optical high performance graphene-photonic crystal switch

    Science.gov (United States)

    Hoseini, Mehrdad; Malekmohammad, Mohammad

    2017-01-01

    The all-optical switch is realized based on nonlinear transmission changes in Fano resonance of 2D photonic crystals (PhC) which enhances the light intensity on the graphene in PhC; and in this study, the graphene layer is used as the nonlinear material. The refractive index change of graphene layer leads to a shift in the Fano resonance frequency due to the input light intensity through the Kerr nonlinear effect. Through finite-difference time-domain simulation, it is found that the high performance of all-optical switching can be achieved by the designed structure with a threshold pump intensity as low as MW/cm2. This structure is featured by optical bistability. The obtained results are applicable in micro optical integrated circuits for modulators, switches and logic elements for optical computation.

  5. Self-desiccation mechanism of high-performance concrete

    Institute of Scientific and Technical Information of China (English)

    杨全兵; 张树青

    2004-01-01

    Investigations on the effects of W/C ratio and silica fume on the autogenous shrinkage and internal relativehumidity of high performance concrete (HPC), and analysis of the self-desiccation mechanisms of HPC showed that the autogenous shrinkage and internal relative humidity of HPC increases and decreases with the reduction of W/C respectively; and that these phenomena were amplified by the addition of silica fume. Theoretical analyses indicated that the reduction of RH in HPC was not due to shortage of water, but due to the fact that the evaporable water in HPC was not evaporated freely.The reduction of internal relative humidity or the so-called self-desiccation of HPC was chiefly caused by the increase in mole concentration of soluble ions in HPC and the reduction of pore size or the increase in the fraction of micro-pore water in the total evaporable water (Tr/Tte ratio).

  6. ABOUT THE SUITABILITY OF CLOUDS IN HIGH-PERFORMANCE COMPUTING

    Directory of Open Access Journals (Sweden)

    Harald Richter

    2016-01-01

    Full Text Available Cloud computing has become the ubiquitous computing and storage paradigm. It is also attractive for scientists, because they do not have to care any more for their own IT infrastructure, but can outsource it to a Cloud Service Provider of their choice. However, for the case of High-Performance Computing (HPC in a cloud, as it is needed in simulations or for Big Data analysis, things are getting more intricate, because HPC codes must stay highly efficient, even when executed by many virtual cores (vCPUs. Older clouds or new standard clouds can fulfil this only under special precautions, which are given in this article. The results can be extrapolated to other cloud OSes than OpenStack and to other codes than OpenFOAM, which were used as examples.

  7. Superconducting Vacuum-Gap Crossovers for High Performance Microwave Applications

    CERN Document Server

    Denis, Kevin L; Chang, Meng-Ping; Hu, Ron; U-Yen, Kongpop; Wollack, Edward

    2016-01-01

    The design and fabrication of low-loss wide-bandwidth superconducting vacuum-gap crossovers for high performance millimeter wave applications are described. In order to reduce ohmic and parasitic losses at millimeter wavelengths a vacuum gap is preferred relative to dielectric spacer. Here, vacuum-gap crossovers were realized by using a sacrificial polymer layer followed by niobium sputter deposition optimized for coating coverage over an underlying niobium signal layer. Both coplanar waveguide and microstrip crossover topologies have been explored in detail. The resulting fabrication process is compatible with a bulk micro-machining process for realizing waveguide coupled detectors, which includes sacrificial wax bonding, and wafer backside deep reactive ion etching for creation of leg isolated silicon membrane structures. Release of the vacuum gap structures along with the wax bonded wafer after DRIE is implemented in the same process step used to complete the detector fabrication

  8. Frequency selective surfaces based high performance microstrip antenna

    CERN Document Server

    Narayan, Shiv; Jha, Rakesh Mohan

    2016-01-01

    This book focuses on performance enhancement of printed antennas using frequency selective surfaces (FSS) technology. The growing demand of stealth technology in strategic areas requires high-performance low-RCS (radar cross section) antennas. Such requirements may be accomplished by incorporating FSS into the antenna structure either in its ground plane or as the superstrate, due to the filter characteristics of FSS structure. In view of this, a novel approach based on FSS technology is presented in this book to enhance the performance of printed antennas including out-of-band structural RCS reduction. In this endeavor, the EM design of microstrip patch antennas (MPA) loaded with FSS-based (i) high impedance surface (HIS) ground plane, and (ii) the superstrates are discussed in detail. The EM analysis of proposed FSS-based antenna structures have been carried out using transmission line analogy, in combination with the reciprocity theorem. Further, various types of novel FSS structures are considered in desi...

  9. The architecture of the High Performance Storage System (HPSS)

    Energy Technology Data Exchange (ETDEWEB)

    Teaff, D.; Coyne, B. [IBM Federal, Houston, TX (United States); Watson, D. [Lawrence Livermore National Lab., CA (United States)

    1995-01-01

    The rapid growth in the size of datasets has caused a serious imbalance in I/O and storage system performance and functionality relative to application requirements and the capabilities of other system components. The High Performance Storage System (HPSS) is a scalable, next-generation storage system that will meet the functionality and performance requirements of large-scale scientific and commercial computing environments. Our goal is to improve the performance and capacity of storage systems by two orders of magnitude or more over what is available in the general or mass marketplace today. We are also providing corresponding improvements in architecture and functionality. This paper describes the architecture and functionality of HPSS.

  10. High performance cutting of aircraft and turbine components

    Science.gov (United States)

    Krämer, A.; Lung, D.; Klocke, F.

    2012-04-01

    Titanium and nickel-based alloys belong to the group of difficult-to-cut materials. The machining of these high-temperature alloys is characterized by low productivity and low process stability as a result of their physical and mechanical properties. Major problems during the machining of these materials are low applicable cutting speeds due to excessive tool wear, long machining times, and thus high manufacturing costs, as well as the formation of ribbon and snarled chips. Under these conditions automation of the production process is limited. This paper deals with strategies to improve machinability of titanium and nickel-based alloys. Using the example of the nickel-based alloy Inconel 718 high performance cutting with advanced cutting materials, such as PCBN and cutting ceramics, is presented. Afterwards the influence of different cooling strategies, like high-pressure lubricoolant supply and cryogenic cooling, during machining of TiAl6V4 is shown.

  11. Pore Size Distribution of High Performance Metakaolin Concrete

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The Compressive strength, porosity and pore size distribution of high performance metakaolin (MK) concrete were investigated. Concretes containing 0,5%,10% and 20% metakaolin were prepared at a water/cementitious material ratio (W/C) of 0.30. In parallel, concrete mixtures with the replacement of cement by 20% fly ash or 5 and 10% silica fume were prepared for comparison. The specimens were cured in water at 27℃ for 3 to 90 days. The results show that at the early age of curing (3 days and 7 days), metakaolin replacements increase the compressive strength, but silica fume replacement slightly reduces the compressive strength. At the age of and after 28 days, the compressive strength of the concrete with metakaolin and silica fume replacement increases.A strong reduction in the total porosity and average pore diameter were observed in the concrete with MK 20% and 10% in the first 7 days.

  12. Power/energy use cases for high performance computing.

    Energy Technology Data Exchange (ETDEWEB)

    Laros, James H.,; Kelly, Suzanne M; Hammond, Steven; Elmore, Ryan; Munch, Kristin

    2013-12-01

    Power and Energy have been identified as a first order challenge for future extreme scale high performance computing (HPC) systems. In practice the breakthroughs will need to be provided by the hardware vendors. But to make the best use of the solutions in an HPC environment, it will likely require periodic tuning by facility operators and software components. This document describes the actions and interactions needed to maximize power resources. It strives to cover the entire operational space in which an HPC system occupies. The descriptions are presented as formal use cases, as documented in the Unified Modeling Language Specification [1]. The document is intended to provide a common understanding to the HPC community of the necessary management and control capabilities. Assuming a common understanding can be achieved, the next step will be to develop a set of Application Programing Interfaces (APIs) to which hardware vendors and software developers could utilize to steer power consumption.

  13. Towards High Performance Processing In Modern Java Based Control Systems

    CERN Document Server

    Misiowiec, M; Buttner, M

    2011-01-01

    CERN controls software is often developed on Java foundation. Some systems carry out a combination of data, network and processor intensive tasks within strict time limits. Hence, there is a demand for high performing, quasi real time solutions. Extensive prototyping of the new CERN monitoring and alarm software required us to address such expectations. The system must handle dozens of thousands of data samples every second, along its three tiers, applying complex computations throughout. To accomplish the goal, a deep understanding of multithreading, memory management and interprocess communication was required. There are unexpected traps hidden behind an excessive use of 64 bit memory or severe impact on the processing flow of modern garbage collectors. Tuning JVM configuration significantly affects the execution of the code. Even more important is the amount of threads and the data structures used between them. Accurately dividing work into independent tasks might boost system performance. Thorough profili...

  14. Determination of pyrazinamide in human by high performance liquid chromatography.

    Directory of Open Access Journals (Sweden)

    Revankar S

    1994-01-01

    Full Text Available A facile and sensitive high performance liquid chromatographic (HPLC technique has been developed for the determination pyrazinamide (PZA in human plasma. Nicotinamide(NIA is used as internal standard(IS. Plasma is deproteinized with 0.7 M perchloric acid; clear supernatant is neutralized with 1M NaOH and injected onto HPLC. The separation of pyrazinamide and the internal standard is carried out on a Supelco LC-18 (DB column with a basic mobile phase. Pyrazinoic acid, the major metabolite, other anti-tuberculous drugs and endogenous components do not interfere with measurement of pyrazinamide. The limit of detection of pyrazinamide with this method is 0.2 mg/0.2 ml plasma (CV 8.2%.

  15. High-Performance Beam Simulator for the LANSCE Linac

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Xiaoying [Los Alamos National Laboratory; Rybarcyk, Lawrence J. [Los Alamos National Laboratory; Baily, Scott A. [Los Alamos National Laboratory

    2012-05-14

    A high performance multiparticle tracking simulator is currently under development at Los Alamos. The heart of the simulator is based upon the beam dynamics simulation algorithms of the PARMILA code, but implemented in C++ on Graphics Processing Unit (GPU) hardware using NVIDIA's CUDA platform. Linac operating set points are provided to the simulator via the EPICS control system so that changes of the real time linac parameters are tracked and the simulation results updated automatically. This simulator will provide valuable insight into the beam dynamics along a linac in pseudo real-time, especially where direct measurements of the beam properties do not exist. Details regarding the approach, benefits and performance are presented.

  16. A compression scheme for radio data in high performance computing

    CERN Document Server

    Masui, Kiyoshi; Connor, Liam; Deng, Meiling; Fandino, Mateus; Höfer, Carolin; Halpern, Mark; Hanna, David; Hincks, Adam D; Hinshaw, Gary; Parra, Juan Mena; Newburgh, Laura B; Shaw, J Richard; Vanderlinde, Keith

    2015-01-01

    We present a procedure for efficiently compressing astronomical radio data for high performance applications. Integrated, post-correlation data are first passed through a nearly lossless rounding step which compares the precision of the data to a generalized and calibration-independent form of the radiometer equation. This allows the precision of the data to be reduced in a way that has an insignificant impact on the data. The newly developed Bitshuffle lossless compression algorithm is subsequently applied. When the algorithm is used in conjunction with the HDF5 library and data format, data produced by the CHIME Pathfinder telescope is compressed to 28% of its original size and decompression throughputs in excess of 1 GB/s are obtained on a single core.

  17. A High Performance Image Authentication Algorithm on GPU with CUDA

    Directory of Open Access Journals (Sweden)

    Caiwei Lin

    2011-03-01

    Full Text Available There has been large amounts of research on image authentication method. Many of the schemes perform well in verification results; however, most of them are time-consuming in traditional serial manners. And improving the efficiency of authentication process has become one of the challenges in image authentication field today. In the future, it’s a trend that authentication system with the properties of high performance, real-time, flexible and ease for development. In this paper, we present a CUDA-based implementation of an image authentication algorithm with NVIDIA’s Tesla C1060 GPU devices. Comparing with the original implementation on CPU, our CUDA-based implementation works 20x-50x faster with single GPU device. And experiment shows that, by using two GPUs, the performance gains can be further improved around 1.2 times in contras to single GPU.

  18. High Performance Nano-Ceria Electrodes for Solid Oxide Cells

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Martinez Aguilera, Lev; Sudireddy, Bhaskar Reddy

    2016-01-01

    In solid oxide electrochemical cells, the conventional Ni-based fuel-electrodes provide high electrocatalytic activity but they are often a major source of long-term performance degradation due to carbon deposition, poisoning of reaction sites, Ni mobility, etc. Doped-ceria is a promising mixed...... ionic-electronic conducting oxide that could solve these issues if it can be integrated into an appropriate electrode structure. Two new approaches to obtain high-performance nanostructured doped-ceria electrodes are highlighted. The first is an infiltration-based architecture with Ce0.8Pr0.2O2-δ...... an unprecedented electrode polarization resistance of ~0.01 Ω cm2 at 650 °C in H2/H2O. These results demonstrate that nano-ceria has the ability to achieve higher performance than Ni-based electrodes and show that the main challenge is obtaining sufficient electronic current collection without adding too much...

  19. Do Danes enjoy a high performing chronic care system?

    DEFF Research Database (Denmark)

    Hernández-Quevedo, Christina; Olejaz, Maria; Juul, Annegrete

    2012-01-01

    The trends in population health in Denmark are similar to those in most Western European countries. Major health issues include, among others, the high prevalence of chronic illnesses and lifestyle related risk factors such as obesity, tobacco, physical inactivity and alcohol. This has pressed th...... in a recent report, the fragmented structure of the Danish health system poses challenges in providing effectively coordinated care to patients with chronic diseases....... the health system towards a model of provision of care based on the management of chronic care conditions. While the Chronic Care Model was introduced in 2005, the Danish health system does not fulfil the ten key preconditions that would characterise a high-performing chronic care system. As revealed...

  20. High Performance Multivariate Visual Data Exploration for Extremely Large Data

    Energy Technology Data Exchange (ETDEWEB)

    Rubel, Oliver; Wu, Kesheng; Childs, Hank; Meredith, Jeremy; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Ahern, Sean; Weber, Gunther H.; Messmer, Peter; Hagen, Hans; Hamann, Bernd; Bethel, E. Wes; Prabhat,

    2008-08-22

    One of the central challenges in modern science is the need to quickly derive knowledge and understanding from large, complex collections of data. We present a new approach that deals with this challenge by combining and extending techniques from high performance visual data analysis and scientific data management. This approach is demonstrated within the context of gaining insight from complex, time-varying datasets produced by a laser wakefield accelerator simulation. Our approach leverages histogram-based parallel coordinates for both visual information display as well as a vehicle for guiding a data mining operation. Data extraction and subsetting are implemented with state-of-the-art index/query technology. This approach, while applied here to accelerator science, is generally applicable to a broad set of science applications, and is implemented in a production-quality visual data analysis infrastructure. We conduct a detailed performance analysis and demonstrate good scalability on a distributed memory Cray XT4 system.

  1. A Component Architecture for High-Performance Computing

    Energy Technology Data Exchange (ETDEWEB)

    Bernholdt, D E; Elwasif, W R; Kohl, J A; Epperly, T G W

    2003-01-21

    The Common Component Architecture (CCA) provides a means for developers to manage the complexity of large-scale scientific software systems and to move toward a ''plug and play'' environment for high-performance computing. The CCA model allows for a direct connection between components within the same process to maintain performance on inter-component calls. It is neutral with respect to parallelism, allowing components to use whatever means they desire to communicate within their parallel ''cohort.'' We will discuss in detail the importance of performance in the design of the CCA and will analyze the performance costs associated with features of the CCA.

  2. Software Systems for High-performance Quantum Computing

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S [ORNL; Britt, Keith A [ORNL

    2016-01-01

    Quantum computing promises new opportunities for solving hard computational problems, but harnessing this novelty requires breakthrough concepts in the design, operation, and application of computing systems. We define some of the challenges facing the development of quantum computing systems as well as software-based approaches that can be used to overcome these challenges. Following a brief overview of the state of the art, we present models for the quantum programming and execution models, the development of architectures for hybrid high-performance computing systems, and the realization of software stacks for quantum networking. This leads to a discussion of the role that conventional computing plays in the quantum paradigm and how some of the current challenges for exascale computing overlap with those facing quantum computing.

  3. High Performance Embedded System for Real-Time Pattern Matching

    CERN Document Server

    Sotiropoulou, Calliope Louisa; The ATLAS collaboration; Gkaitatzis, Stamatios; Citraro, Saverio; Giannetti, Paola; Dell'Orso, Mauro

    2016-01-01

    In this paper we present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics (HEP) and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturised version of this complex system is being developed for pattern matching in generic image processing applications. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain. The pattern matching can be executed by a custom designed Associative Memory (AM) chip. The reference patterns are chosen by a complex training algorithm implemented on an FPGA device. Post processing algorithms (e.g. pixel clustering...

  4. Designing High Performance Factory Automation Applications on Top of DDS

    Directory of Open Access Journals (Sweden)

    Isidro Calvo

    2013-04-01

    Full Text Available DDS is a recent specification aimed at providing high-performance publisher/subscriber middleware solutions. Despite being a very powerful flexible technology, it may prove complex to use, especially for the inexperienced. This work provides some guidelines for connecting software components that represent a new generation of automation devices (such as PLCs, IPCs and robots using Data Distribution Service (DDS as a virtual software bus. More specifically, it presents the design of a DDS-based component, the so-called Automation Component, and discusses how to map different traffic patterns using DDS entities exploiting the wealth of QoS management mechanisms provided by the DDS specification. A case study demonstrates the creation of factory automation applications out of software components that encapsulate independent stations.

  5. High Performance Computing - Power Application Programming Interface Specification.

    Energy Technology Data Exchange (ETDEWEB)

    Laros, James H.,; Kelly, Suzanne M.; Pedretti, Kevin; Grant, Ryan; Olivier, Stephen Lecler; Levenhagen, Michael J.; DeBonis, David

    2014-08-01

    Measuring and controlling the power and energy consumption of high performance computing systems by various components in the software stack is an active research area [13, 3, 5, 10, 4, 21, 19, 16, 7, 17, 20, 18, 11, 1, 6, 14, 12]. Implementations in lower level software layers are beginning to emerge in some production systems, which is very welcome. To be most effective, a portable interface to measurement and control features would significantly facilitate participation by all levels of the software stack. We present a proposal for a standard power Application Programming Interface (API) that endeavors to cover the entire software space, from generic hardware interfaces to the input from the computer facility manager.

  6. [Determination of amygdalin in hawthorn by high performance liquid chromatography].

    Science.gov (United States)

    Lü, Weifeng; Ding, Mingyu

    2005-09-01

    A suitable method for extraction of amygdalin from hawthorn has been established. At first, the lipophilic components were removed with petroleum ether by ultrasonic extraction. The amygdalin was then extracted by methanol in a Soxhlet's apparatus. For quantitation, a high performance liquid chromatographic method was developed by using a reversed-phase C18 column, mobile phase of methanol-water (15:85, v/v) and a detection wavelengh of 215 nm. It can be concluded that the content of amygdalin is higher in the seeds than that in the hawthorn powder without the seeds and the yield of amygdalin is higher in the hawthorn pieces than that in the hawthorn powder.

  7. Revisit of Energy Use and Technologies of High Performance Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cheng; Hong, Tianzhen

    2014-03-30

    Energy consumed by buildings accounts for one third of the world?s total primary energy use. Associated with the conscious of energy savings in buildings, High Performance Buildings (HPBs) has surged across the world, with wide promotion and adoption of various performance rating and certification systems. It is valuable to look into the actual energy performance of HPBs and to understand their influencing factors. To shed some light on this topic, this paper conducted a series of portfolio analysis based on a database of 51 high performance office buildings across the world. Analyses showed that the actual site Energy Use Intensity (EUI) of the 51 buildings varied by a factor of up to 11, indicating a large scale of variation of the actual energy performance of the current HPBs. Further analysis of the correlation between EUI and climate elucidated ubiquitous phenomenon of EUI scatter throughout all climate zones, implying that the weather is not a decisive factor, although important, for the actual energy consumption of an individual building. On the building size via EUI, analysis disclosed that smaller buildings have a tendency to achieving lower energy use. Even so, the correlation is not absolute since some large buildings demonstrated low energy use while some small buildings performed opposite. Concerning the technologies, statistics indicated that the application of some technologies had correlations with some specific building size and climate characteristic. However, it was still hard to pinpoint a set of technologies which was directly correlative with a group of low EUI buildings. It is concluded that no a single factor essentially determines the actual energy performance of HPBs. To deliver energy-efficient buildings, an integrated design taking account of climate, technology, occupant behavior as well as operation and maintenance should be implemented.

  8. High Performance Regenerated Cellulose Membranes from Trimethylsilyl Cellulose

    KAUST Repository

    Ali, Ola

    2013-05-01

    Regenerated cellulose (RC) membranes are extensively used in medical and pharmaceutical separation processes due to their biocompatibility, low fouling tendency and solvent resistant properties. They typically possess ultrafiltration and microfiltration separation characteristics, but recently, there have been attempts to widen their pool of applications in nanofiltration processes. In this work, a novel method for preparing high performance composite RC membranes was developed. These membranes reveal molecular weight cut-offs (MWCO) of less than 250 daltons, which possibly put them ahead of all commercial RC membranes and in competition with high performance nanofiltration membranes. The membranes were prepared by acidic hydrolysis of dip-coated trimethylsilyl cellulose (TMSC) films. TMSC, with a degree of silylation (DS) of 2.8, was prepared from microcrystalline cellulose by reaction with hexamethyldisilazane under the homogeneous conditions of LiCl/DMAC solvent system. Effects of parameters, such as coating solution concentration and drying rates, were investigated. It was concluded that higher TMSC concentrations as well as higher solvent evaporation rates favor better MWCOs, mainly due to increase in the selective layer thickness. Successful cross-linking of prepared membranes with glyoxal solutions, in the presence of boric acid as a catalyst, resulted in MWCOs less than 250 daltons. The suitability of this crosslinking reaction for large scale productions was already proven in the manufacturing of durable-press fabrics. For us, the inexpensive raw materials as well as the low reaction times and temperatures were of interest. Moreover, the non-toxic nature of glyoxal is a key advantage in medical and pharmaceutical applications. The membranes prepared in this work are strong candidates for separation of small organic solutes from organic solvents streams in pharmaceutical industries. Their hydrophilicity, compared to typical nanofiltration membranes, offer

  9. A High Performance QDWH-SVD Solver using Hardware Accelerators

    KAUST Repository

    Sukkari, Dalal E.

    2015-04-08

    This paper describes a new high performance implementation of the QR-based Dynamically Weighted Halley Singular Value Decomposition (QDWH-SVD) solver on multicore architecture enhanced with multiple GPUs. The standard QDWH-SVD algorithm was introduced by Nakatsukasa and Higham (SIAM SISC, 2013) and combines three successive computational stages: (1) the polar decomposition calculation of the original matrix using the QDWH algorithm, (2) the symmetric eigendecomposition of the resulting polar factor to obtain the singular values and the right singular vectors and (3) the matrix-matrix multiplication to get the associated left singular vectors. A comprehensive test suite highlights the numerical robustness of the QDWH-SVD solver. Although it performs up to two times more flops when computing all singular vectors compared to the standard SVD solver algorithm, our new high performance implementation on single GPU results in up to 3.8x improvements for asymptotic matrix sizes, compared to the equivalent routines from existing state-of-the-art open-source and commercial libraries. However, when only singular values are needed, QDWH-SVD is penalized by performing up to 14 times more flops. The singular value only implementation of QDWH-SVD on single GPU can still run up to 18% faster than the best existing equivalent routines. Integrating mixed precision techniques in the solver can additionally provide up to 40% improvement at the price of losing few digits of accuracy, compared to the full double precision floating point arithmetic. We further leverage the single GPU QDWH-SVD implementation by introducing the first multi-GPU SVD solver to study the scalability of the QDWH-SVD framework.

  10. High performance thin layer chromatography profile of Cassytha filiformis

    Institute of Scientific and Technical Information of China (English)

    Mythili Sathiavelu; Sathiavelu Arunachalam

    2012-01-01

    Objective: To study the phenols, flavonoids, saponin profile of the medicinal plant Cassytha filiformis (C. filiformis) using high performance thin layer chromatography (HPTLC). Methods:The extracts were tested to determine the presence of various phytochmeicals like alkaloids, phenolic compounds, flavonoids, carbohydrates, glycosides, saponins, terpenoids, tannins, fixed oils, fats and protein and aminoacids (Harborne and Harborne, 1998). HPTLC studies were carried out by Harborne and Wagner et al method. Different compositions of the mobile phase for HPTLC analysis were tested in order to obtain high resolution and reproducible peaks. Results: The results of the preliminary phytochemical studies confirm the presence of phenols, alkaloids, carbohydrates, saponins, flavanoids, terpenoids and tannins in the methanolic extracts of C. filiformis. The methanolic extracts of C. filiformis displayed the presence of 13 types of phenolic substances with 13 different Rf values ranging from 0.01 to 0.96. The results illustrated the presence of 9 different types of flavonoides with 9 different Rf values ranging from 0.01 to 0.97. The results of HPTLC analysis of saponins demonstrated the presence of 11 different types of saponins with 11 different Rf values ranging from 0.04 to 0.92. Conclusions: In the present study we observed the phenols, flavonoids, saponin profile of the medicinal plant C. filiformis using high performance thin layer chromatography (HPTLC). Hence it was concluded that the phenolic compounds present in the methonolic extract could be responsible for antioxidant activities. Plant derived antioxidants, especially phenols and flavonoids, have been described to have various properties like anticancer, antiaging and prevention of cardiovascular diseases. Furthur, separation and characterization of the bioactive compound from the plant is to be evaluated and reported in near future.

  11. Intelligent Facades for High Performance Green Buildings. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Anna [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-03-01

    Intelligent Facades for High Performance Green Buildings: Previous research and development of intelligent facades systems has been limited in their contribution towards national goals for achieving on-site net zero buildings, because this R&D has failed to couple the many qualitative requirements of building envelopes such as the provision of daylighting, access to exterior views, satisfying aesthetic and cultural characteristics, with the quantitative metrics of energy harvesting, storage and redistribution. To achieve energy self-sufficiency from on-site solar resources, building envelopes can and must address this gamut of concerns simultaneously. With this project, we have undertaken a high-performance building- integrated combined-heat and power concentrating photovoltaic system with high temperature thermal capture, storage and transport towards multiple applications (BICPV/T). The critical contribution we are offering with the Integrated Concentrating Solar Façade (ICSF) is conceived to improve daylighting quality for improved health of occupants and mitigate solar heat gain while maximally capturing and transferring on- site solar energy. The ICSF accomplishes this multi-functionality by intercepting only the direct-normal component of solar energy (which is responsible for elevated cooling loads) thereby transforming a previously problematic source of energy into a high- quality resource that can be applied to building demands such as heating, cooling, dehumidification, domestic hot water, and possible further augmentation of electrical generation through organic Rankine cycles. With the ICSF technology, our team is addressing the global challenge in transitioning commercial and residential building stock towards on-site clean energy self-sufficiency, by fully integrating innovative environmental control systems strategies within an intelligent and responsively dynamic building envelope. The advantage of being able to use the entire solar spectrum for

  12. New high performance nanoadditives for photocatalytic concrete: synthesis and study

    Directory of Open Access Journals (Sweden)

    FALIKMAN Vyacheslav Ruvimovich

    2015-02-01

    Full Text Available Nanotechnologies open up broad prospects for the creation of nanocatalysts, which are being more and more used in solving many problems associated with the protection of environment. Their behavior is directly related to the unique physical and chemical properties that are provided by quantum size effects, as well as the large specific surface area. It is known that the presence of photo catalysts in the construction segment of nanomaterials is becoming more prominent. One of the most significant achievements of the last years are photo catalytic active cement composites, including cements and concretes produced with the use of nanoparticles of titanium dioxide TiO₂ sensibilized through a nanotechnology . Currently they are widely used in practice to produce selfcleaning structures and to make clean an air of megacities. Further research in the field of development of new high-performance photo catalysts based on TiO₂ nanoparticles seems to be very relevant, because such R&D could significantly improve the technical characteristics of photo catalytic cements and concrete. In this paper an improved method to produce photo catalysts has been proposed. New synthesized products are based on TiO₂ nanoparticles applied on different inert carriers, including nanosilica. It was showed that these products can be used as a high performance photo catalyst in cement and cement-gypsum composites suitable for the onversion processes of nitric oxide and volatile organic substances, and air purification. It was determined that performance of the cementitious composites containing synthesized samples is 1,5…3,0 times higher than that for the commercial sample of the nanotitanium dioxide. The use of mechanical mixture of nanotitanium dioxide and inert supports is less effective and subjected to the «dilution law», in general.

  13. Thermal expansion pump for capillary high-performance liquid chromatography.

    Science.gov (United States)

    Tao, Qian; Wu, Qian; Zhang, Xiangmin

    2010-02-01

    A thermal expansion pump (TEP) based on a principle of liquid thermal expansion for capillary high-performance liquid chromatography has been developed. The novel pump is capable of generating a continuous flow at high pressure for constant and stable delivery of binary solvents from nanoliters to microliters per minute without splitting. Theoretical equations for controlling fluidic output of this pump have been established and validated by a series of experiments. Factors affecting flow rate, such as density discrepancy, liquid compressibility, and mass loss in output, were taken into account. An assembly of the pump system employing two groups of thermal expansion pumps (TEPs) working in turns were fabricated, and a controlling strategy for the pump system to maintain a continuous delivery without pressure fluctuation even at switching points was also developed. Both isocratic and gradients of binary solvent delivery by the TEPs were performed. Reproducibility and standard deviation at different flow rates were determined. A capillary high-performance liquid chromatography (micro-HPLC) system consisting of the TEPs, an injection valve, a homemade packed capillary column (20 cm x 100 microm i.d. with 5 microm C18), and a laser-induced fluorescence detector was set up, and sample separations were carried out. Results of RSD = 4% for flow and RSD = 2% for retention times at 500 nL/min were achieved. Such a pump system has almost no moving parts except for the solvent switches. Its overall costs of manufacture and running are very low. It is proven that the TEPs system has great potential and competitive capabilities in capillary liquid chromatography.

  14. Coal-fired high performance power generating system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-31

    As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

  15. Novel solid – solid phase change material based on polyethylene glycol and cellulose used for temperature stabilisation

    Directory of Open Access Journals (Sweden)

    Wojda Marta

    2014-01-01

    Full Text Available Thermal management is one of crucial issues in the development of modern electronic devices. In the recent years interest in phase change materials (PCMs as alternative cooling possibility has increased significantly. Preliminary results concerning the research into possibility of the use of solid-solid phase change materials (S-S PCMs for stabilisation temperature of electronic devices has been presented in the paper. Novel solid-solid phase change material based on polyethylene glycol and cellulose has been synthesized. Attempt to improve its thermal conductivity has been taken. Material has been synthesized for the purpose of stabilisation of temperature of electronic devices.

  16. The use of high-performance liquid chromatography in the quality control of oxytocin, vasopressin and synthetic analogues.

    Science.gov (United States)

    Maxl, F; Siehr, W

    1989-01-01

    Optimized C18 reversed-phase systems for oxytocin, desamino-oxytocin, lysine-vasopressin, ornithine-vasopressin and felypressin with gradient elution are discussed, focussing on precision, selectivity and ruggedness of the methods. Data from collaborative studies are presented, demonstrating the equivalence of high-performance liquid chromatography (HPLC) assays to bioassays. The findings suggest that HPLC is an excellent alternative to the time-consuming and less reliable animal testing.

  17. NCI's High Performance Computing (HPC) and High Performance Data (HPD) Computing Platform for Environmental and Earth System Data Science

    Science.gov (United States)

    Evans, Ben; Allen, Chris; Antony, Joseph; Bastrakova, Irina; Gohar, Kashif; Porter, David; Pugh, Tim; Santana, Fabiana; Smillie, Jon; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2015-04-01

    The National Computational Infrastructure (NCI) has established a powerful and flexible in-situ petascale computational environment to enable both high performance computing and Data-intensive Science across a wide spectrum of national environmental and earth science data collections - in particular climate, observational data and geoscientific assets. This paper examines 1) the computational environments that supports the modelling and data processing pipelines, 2) the analysis environments and methods to support data analysis, and 3) the progress so far to harmonise the underlying data collections for future interdisciplinary research across these large volume data collections. NCI has established 10+ PBytes of major national and international data collections from both the government and research sectors based on six themes: 1) weather, climate, and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology, and 6) astronomy, social and biosciences. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. The data is largely sourced from NCI's partners (which include the custodians of many of the major Australian national-scale scientific collections), leading research communities, and collaborating overseas organisations. New infrastructures created at NCI mean the data collections are now accessible within an integrated High Performance Computing and Data (HPC-HPD) environment - a 1.2 PFlop supercomputer (Raijin), a HPC class 3000 core OpenStack cloud system and several highly connected large-scale high-bandwidth Lustre filesystems. The hardware was designed at inception to ensure that it would allow the layered software environment to flexibly accommodate the advancement of future data science. New approaches to software technology and data models have also had to be developed to enable access to these large and exponentially

  18. High Performance Infiltrated Backbones for Cathode-Supported SOFC's

    DEFF Research Database (Denmark)

    Gil, Vanesa; Kammer Hansen, Kent

    2014-01-01

    The concept of using highly ionic conducting backbones with subsequent infiltration of electronically conducting particles has widely been used to develop alternative anode-supported SOFC's. In this work, the idea was to develop infiltrated backbones as an alternative design based on cathode......-supported SOFC. The cathodes are obtained by infiltrating LSM into a sintered either thick (300 μm) yttria stabilized zirconia (YSZ) backbone or a thin YSZ backbone (10-15 μm) integrated onto a thick (300 μm) porous strontium substituted lanthanum manganite (LSM) and YSZ composite. Fabrication challenges...... printed symmetrical cells. Samples with LSM/YSZ composite and YSZ backbones made with graphite+PMMA as pore formers exhibited comparable Rp values to the screen printed LSM/YSZ cathode. This route was chosen as the best to fabricate the cathode supported cells. SEM micrograph of a cathode supported cell...

  19. Metal chloride-treated graphene oxide to produce high-performance polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Su; Noh, Yong-Jin; Kwon, Sung-Nam; Na, Seok-In, E-mail: nsi12@jbnu.ac.kr [Professional Graduate School of Flexible and Printable Electronics and Polymer Materials Fusion Research Center, Chonbuk National University, 664-14, Deokjin-dong, Deokjin-gu, Jeonju-si, Jeollabuk-do 561-756 (Korea, Republic of); Jeon, Ye-Jin [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Seok-Soon, E-mail: sskim@kunsan.ac.kr [Department of Nano and Chemical Engineering, Kunsan National University, Kunsan, Jeollabuk-do 753-701 (Korea, Republic of); Kim, Tae-Wook [Soft Innovative Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology, San 101, Eunha-ri, Bongdong-eup, Wanju-gun, Jeollabuk-do 565-905 (Korea, Republic of)

    2015-07-13

    We introduce a simple but effective graphene oxide (GO) modification with metal chloride treatments to produce high-performance polymer solar cells (PSCs). The role of various metal chlorides on GO and their effects on device performances of PSCs was investigated. X-ray photoelectron spectroscopy, ultraviolet photoemission spectroscopy, and current-voltage measurement studies demonstrated that metal chloride can induce a p-doping effect and increase the GO work-function, thus resulting in an improved built-in potential and interfacial resistance in PSCs. The resultant PSCs with metal chloride exhibited improved device efficiency than those with the neat GO. Furthermore, with the metal chloride-doped GO, we finally achieved an excellent PSC-efficiency of 6.58% and a very desirable device stability, which constitute a highly similar efficiency but much better PSC life-time to conventional device with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). This study could be a valuable way to produce various PEDOT:PSS alternatives and beneficial for producing high-performance and cost-efficient polymeric devices.

  20. Development of high performance casting analysis software by coupled parallel computation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Up to now, so much casting analysis software has been continuing to develop the new access way to real casting processes. Those include the melt flow analysis, heat transfer analysis for solidification calculation,mechanical property predictions and microstructure predictions. These trials were successful to obtain the ideal results comparing with real situations, so that CAE technologies became inevitable to design or develop new casting processes. But for manufacturing fields, CAE technologies are not so frequently being used because of their difficulties in using the software or insufficient computing performances. To introduce CAE technologies to manufacturing field,the high performance analysis is essential to shorten the gap between product designing time and prototyping time.The software code optimization can be helpful, but it is not enough, because the codes developed by software experts are already optimized enough. As an alternative proposal for high performance computations, the parallel computation technologies are eagerly being applied to CAE technologies to make the analysis time shorter. In this research, SMP (Shared Memory Processing) and MPI (Message Passing Interface) (1) methods for parallelization were applied to commercial software "Z-Cast" to calculate the casting processes. In the code parallelizing processes,the network stabilization, core optimization were also carried out under Microsoft Windows platform and their performances and results were compared with those of normal linear analysis codes.

  1. Development of high performance casting analysis software by coupled parallel computation

    Directory of Open Access Journals (Sweden)

    Sang Hyun CHO

    2007-08-01

    Full Text Available Up to now, so much casting analysis software has been continuing to develop the new access way to real casting processes. Those include the melt flow analysis, heat transfer analysis for solidification calculation, mechanical property predictions and microstructure predictions. These trials were successful to obtain the ideal results comparing with real situations, so that CAE technologies became inevitable to design or develop new casting processes. But for manufacturing fields, CAE technologies are not so frequently being used because of their difficulties in using the software or insufficient computing performances. To introduce CAE technologies to manufacturing field, the high performance analysis is essential to shorten the gap between product designing time and prototyping time. The software code optimization can be helpful, but it is not enough, because the codes developed by software experts are already optimized enough. As an alternative proposal for high performance computations, the parallel computation technologies are eagerly being applied to CAE technologies to make the analysis time shorter. In this research, SMP (Shared Memory Processing and MPI (Message Passing Interface (1 methods for parallelization were applied to commercial software "Z-Cast" to calculate the casting processes. In the code parallelizing processes, the network stabilization, core optimization were also carried out under Microsoft Windows platform and their performances and results were compared with those of normal linear analysis codes.

  2. ENGINEERING DEVELOPMENT OF COAL-FIRED HIGH PERFORMANCE POWER SYSTEMS PHASE II AND III

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-30

    This report presents work carried out under contract DE-AC22-95PC95144 "Engineering Development of Coal-Fired High Performance Systems Phase II and III." The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) that is capable of: à thermal efficiency (HHV) >47%; à NOx, SOx, and particulates <10% NSPS (New Source Performance Standard); à coal providing >65% of heat input; à all solid wastes benign; à cost of electricity <90% of present plants. Phase I, which began in 1992, focused on the analysis of various configurations of indirectly fired cycles and on technical assessments of alternative plant subsystems and components, including performance requirements, developmental status, design options, complexity and reliability, and capital and operating costs. Phase I also included preliminary R&D and the preparation of designs for HIPPS commercial plants approximately 300 MWe in size. This phase, Phase II, involves the development and testing of plant subsystems, refinement and updating of the HIPPS commercial plant design, and the site selection and engineering design of a HIPPS prototype plant. Work reported herein is from: à Task 2.2 HITAF Air Heaters; à Task 6 HIPPS Commercial Plant Design Update.

  3. Impaired jump landing after exercise in recreational and in high-performance athletes.

    Science.gov (United States)

    Kuni, Benita; Cárdenas-Montemayor, Eloy; Bangert, Yannic; Rupp, Rüdiger; Ales, Janez; Friedmann-Bette, Birgit; Schmitt, Holger

    2014-08-01

    The risk of sustaining injuries increases with fatigue. The aim of this study was to analyze the influence of fatigue on dynamic postural control in jump landing and stabilization (ST) in athletes of different levels. In all, 18 high-performance ball sports athletes and 24 recreationally active subjects performed a jump test (JT) before and at 1, 5, 10, 15, and 20 minutes after a 30-minute treadmill run at the individual anaerobic threshold. An overhead ball switch hit during a forward jump triggered indicator lamps on either side of a force plate. After landing on the plate, ST on 1 leg (no light cue) or a second jump sideways (toward a light cue) was required. The ST force integral index was calculated for the ST trials. Dynamic postural control was significantly impaired in jump landing and ST in the first minute after the run: mean difference ± SD: 0.25 ± 0.48 m·s-1 (95% confidence interval: 0.10-0.40 m·s-1, p = 0.043; analysis of variance). No significant group differences were found. Under fatigued conditions, dynamic postural control in jump landing was impaired in an unexpected ST task. Not only recreational but also high-performance athletes were affected. Ball sports athletes could add a training exercise to their workout, which alternates between periods of high effort and neuromuscular training. Resistance to fatigue effects should be checked on a regular basis using JTs.

  4. Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications

    Science.gov (United States)

    Zhang, Yu Shrike; Chang, Jae-Byum; Alvarez, Mario Moisés; Trujillo-de Santiago, Grissel; Aleman, Julio; Batzaya, Byambaa; Krishnadoss, Vaishali; Ramanujam, Aishwarya Aravamudhan; Kazemzadeh-Narbat, Mehdi; Chen, Fei; Tillberg, Paul W.; Dokmeci, Mehmet Remzi; Boyden, Edward S.; Khademhosseini, Ali

    2016-03-01

    To date, much effort has been expended on making high-performance microscopes through better instrumentation. Recently, it was discovered that physical magnification of specimens was possible, through a technique called expansion microscopy (ExM), raising the question of whether physical magnification, coupled to inexpensive optics, could together match the performance of high-end optical equipment, at a tiny fraction of the price. Here we show that such “hybrid microscopy” methods—combining physical and optical magnifications—can indeed achieve high performance at low cost. By physically magnifying objects, then imaging them on cheap miniature fluorescence microscopes (“mini-microscopes”), it is possible to image at a resolution comparable to that previously attainable only with benchtop microscopes that present costs orders of magnitude higher. We believe that this unprecedented hybrid technology that combines expansion microscopy, based on physical magnification, and mini-microscopy, relying on conventional optics—a process we refer to as Expansion Mini-Microscopy (ExMM)—is a highly promising alternative method for performing cost-effective, high-resolution imaging of biological samples. With further advancement of the technology, we believe that ExMM will find widespread applications for high-resolution imaging particularly in research and healthcare scenarios in undeveloped countries or remote places.

  5. A high-performance reconfigurable computing solution for Peptide mass fingerprinting.

    Science.gov (United States)

    Coca, Daniel; Bogdan, Istvan; Beynon, Robert J

    2010-01-01

    High-throughput, MS-based proteomics studies are generating very large volumes of biologically relevant data. Given the central role of proteomics in emerging fields such as system/synthetic biology and biomarker discovery, the amount of proteomic data is expected to grow at unprecedented rates over the next decades. At the moment, there is pressing need for high-performance computational solutions to accelerate the analysis and interpretation of this data.Performance gains achieved by grid computing in this area are not spectacular, especially given the significant power consumption, maintenance costs and floor space required by large server farms.This paper introduces an alternative, cost-effective high-performance bioinformatics solution for peptide mass fingerprinting based on Field Programmable Gate Array (FPGA) devices. At the heart of this approach stands the concept of mapping algorithms on custom digital hardware that can be programmed to run on FPGA. Specifically in this case, the entire computational flow associated with peptide mass fingerprinting, namely raw mass spectra processing and database searching, has been mapped on custom hardware processors that are programmed to run on a multi-FPGA system coupled with a conventional PC server. The system achieves an almost 2,000-fold speed-up when compared with a conventional implementation of the algorithms in software running on a 3.06 GHz Xeon PC server.

  6. Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications.

    Science.gov (United States)

    Zhang, Yu Shrike; Chang, Jae-Byum; Alvarez, Mario Moisés; Trujillo-de Santiago, Grissel; Aleman, Julio; Batzaya, Byambaa; Krishnadoss, Vaishali; Ramanujam, Aishwarya Aravamudhan; Kazemzadeh-Narbat, Mehdi; Chen, Fei; Tillberg, Paul W; Dokmeci, Mehmet Remzi; Boyden, Edward S; Khademhosseini, Ali

    2016-03-15

    To date, much effort has been expended on making high-performance microscopes through better instrumentation. Recently, it was discovered that physical magnification of specimens was possible, through a technique called expansion microscopy (ExM), raising the question of whether physical magnification, coupled to inexpensive optics, could together match the performance of high-end optical equipment, at a tiny fraction of the price. Here we show that such "hybrid microscopy" methods--combining physical and optical magnifications--can indeed achieve high performance at low cost. By physically magnifying objects, then imaging them on cheap miniature fluorescence microscopes ("mini-microscopes"), it is possible to image at a resolution comparable to that previously attainable only with benchtop microscopes that present costs orders of magnitude higher. We believe that this unprecedented hybrid technology that combines expansion microscopy, based on physical magnification, and mini-microscopy, relying on conventional optics--a process we refer to as Expansion Mini-Microscopy (ExMM)--is a highly promising alternative method for performing cost-effective, high-resolution imaging of biological samples. With further advancement of the technology, we believe that ExMM will find widespread applications for high-resolution imaging particularly in research and healthcare scenarios in undeveloped countries or remote places.

  7. The implementation of integrated science teaching materials based socio-scientific issues to improve students scientific literacy for environmental pollution theme

    Science.gov (United States)

    Yenni, Rita; Hernani, Widodo, Ari

    2017-05-01

    The study aims to determine the increasing of students' science literacy skills on content aspects and competency of science by using Integrated Science teaching materials based Socio-scientific Issues (SSI) for environmental pollution theme. The method used in the study is quasi-experiment with nonequivalent pretest and posttest control group design. The students of experimental class used teaching materials based SSI, whereas the students of control class were still using the usual textbooks. The result of this study showed a significant difference between the value of N-gain of experimental class and control class, whichalso occurred in every indicator of content aspects and competency of science. This result indicates that using of Integrated Science teaching materials based SSI can improve content aspect and competency of science and can be used as teaching materials alternative in teaching of Integrated Science.

  8. Current devices for high-performance whole-body hyperthermia therapy.

    Science.gov (United States)

    Jia, Dewei; Liu, Jing

    2010-05-01

    For late-stage cancer, whole-body hyperthermia (WBH) is highly regarded by physicians as a promising alternative to conventional therapies. Although WBH is still under scrutiny due to potential toxicity, its benefits are incomparable, as diversified devices and very promising treatment protocols in this area are advanced into Phase II and III clinical trials. Following the introduction of the WBH principle, this paper comprehensively reviews the state-of-art high-performance WBH devices based on the heat induction mechanisms - radiation, convection and conduction. Through analyzing each category's physical principle and heat-induction property, the advantages and disadvantages of the devices are evaluated. Technical strategies and critical scientific issues are summarized. For future developments, research directions worth pursuing are presented in this article.

  9. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells

    Science.gov (United States)

    Bae, Kiho; Jang, Dong Young; Choi, Hyung Jong; Kim, Donghwan; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won; Shim, Joon Hyung

    2017-02-01

    In reducing the high operating temperatures (>=800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells.

  10. Quantitative determination of acetaminophen, phenylephrine and carbinoxamine in tablets by high-performance liquid chromatography

    Directory of Open Access Journals (Sweden)

    Carina de A. Bastos

    2009-01-01

    Full Text Available An alternative methodology for analysis of acetaminophen (Ace, phenylephrine (Phe and carbinoxamine (Car in tablets by ion-pair reversed phase high performance liquid chromatography was validated. The pharmaceutical preparations were analyzed by using a C18 column (5 μm, 300 mm, 3.9 mm and mobile phase consisting of 60% methanol and 40% potassium monobasic phosphate aqueous solution (62.46 mmol L-1 added with 1 mL phosphoric acid, 0.50 mL triethylamine and 0.25 g sodium lauryl sulfate. Isocratic analysis was performed under direct UV detection at 220 nm for Phe and Car and at 300 nm for Ace within 5 min.

  11. Development of High-Performance Cast Crankshafts. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Mark E [General Motors, Detroit, MI (United States)

    2017-03-31

    The objective of this project was to develop technologies that would enable the production of cast crankshafts that can replace high performance forged steel crankshafts. To achieve this, the Ultimate Tensile Strength (UTS) of the new material needs to be 850 MPa with a desired minimum Yield Strength (YS; 0.2% offset) of 615 MPa and at least 10% elongation. Perhaps more challenging, the cast material needs to be able to achieve sufficient local fatigue properties to satisfy the durability requirements in today’s high performance gasoline and diesel engine applications. The project team focused on the development of cast steel alloys for application in crankshafts to take advantage of the higher stiffness over other potential material choices. The material and process developed should be able to produce high-performance crankshafts at no more than 110% of the cost of current production cast units, perhaps the most difficult objective to achieve. To minimize costs, the primary alloy design strategy was to design compositions that can achieve the required properties with minimal alloying and post-casting heat treatments. An Integrated Computational Materials Engineering (ICME) based approach was utilized, rather than relying only on traditional trial-and-error methods, which has been proven to accelerate alloy development time. Prototype melt chemistries designed using ICME were cast as test specimens and characterized iteratively to develop an alloy design within a stage-gate process. Standard characterization and material testing was done to validate the alloy performance against design targets and provide feedback to material design and manufacturing process models. Finally, the project called for Caterpillar and General Motors (GM) to develop optimized crankshaft designs using the final material and manufacturing processing path developed. A multi-disciplinary effort was to integrate finite element analyses by engine designers and geometry-specific casting

  12. Approaches for Making High Performance Polymer Materials from Commodity Polymers

    Institute of Scientific and Technical Information of China (English)

    Xu Xi

    2004-01-01

    A brief surrey of ongoing research work done for improving and enhancing the properties of commodity polymers by the author and author's colleagues is given in this paper. A series of high performance polymers and polymer nanomaterials were successfully prepared through irradiation and stress-induced reactions of polymers and hydrogen bonding. The methods proposed are viable, easy in operation, clean and efficient.1. The effect of irradiation source (UV light, electron beam, γ -ray and microwave), irradiation dose, irradiation time and atmosphere etc. on molecular structure of polyolefine during irradiation was studied. The basic rules of dominating oxidation, degradation and cross-linking reactions were mastered. Under the controlled conditions, cross-linking reactions are prevented, some oxygen containing groups are introduced on the molecular chain of polyolefine to facilitate the interface compatibility of their blends. A series of high performance polymer materials: u-HDPE/PA6,u-HDPE/CaCO3, u-iPP/STC, γ-HDPE/STC, γ-LLDPE/ATH, e-HDPE, e-LLDPE and m-HDPEfilled system were prepared (u- ultraviolet light irradiated, γ- γ-ray irradiated, e- electron beam irradiated, m- microwave irradiated)2. The effect of ultrasonic irradiation, jet and pan-milling on structure and changes in properties of polymers were studied. Imposition of critical stress on polymer chain can cause the scission of bonds to form macroradicals. The macroradicals formed in this way may recombine or react with monomer or other radicals to form linear, branched or cross-linked polymers or copolymers. About 20 kinds of block/graft copolymers have been synthesized from polymer-polymer or polymer-monomer through ultrasonic irradiation.Through jet-milling, the molecular weight of PVC is decreased somewhat, the intensity of its crystalline absorption bonds becomes indistinct. The processability, the yield strength, strength at break and elongation at break of PVC get increased quite a lot after

  13. High-performance VGA-resolution digital color CMOS imager

    Science.gov (United States)

    Agwani, Suhail; Domer, Steve; Rubacha, Ray; Stanley, Scott

    1999-04-01

    This paper discusses the performance of a new VGA resolution color CMOS imager developed by Motorola on a 0.5micrometers /3.3V CMOS process. This fully integrated, high performance imager has on chip timing, control, and analog signal processing chain for digital imaging applications. The picture elements are based on 7.8micrometers active CMOS pixels that use pinned photodiodes for higher quantum efficiency and low noise performance. The image processing engine includes a bank of programmable gain amplifiers, line rate clamping for dark offset removal, real time auto white balancing, per column gain and offset calibration, and a 10 bit pipelined RSD analog to digital converter with a programmable input range. Post ADC signal processing includes features such as bad pixel replacement based on user defined thresholds levels, 10 to 8 bit companding and 5 tap FIR filtering. The sensor can be programmed via a standard I2C interface that runs on 3.3V clocks. Programmable features include variable frame rates using a constant frequency master clock, electronic exposure control, continuous or single frame capture, progressive or interlace scanning modes. Each pixel is individually addressable allowing region of interest imaging and image subsampling. The sensor operates with master clock frequencies of up to 13.5MHz resulting in 30FPS. A total programmable gain of 27dB is available. The sensor power dissipation is 400mW at full speed of operation. The low noise design yields a measured 'system on a chip' dynamic range of 50dB thus giving over 8 true bits of resolution. Extremely high conversion gain result in an excellent peak sensitivity of 22V/(mu) J/cm2 or 3.3V/lux-sec. This monolithic image capture and processing engine represent a compete imaging solution making it a true 'camera on a chip'. Yet in its operation it remains extremely easy to use requiring only one clock and a 3.3V power supply. Given the available features and performance levels, this sensor will be

  14. STUDY ON A HIGH PERFORMANCE INTEGRATED BEEKEEPING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    A POPESCU

    2003-10-01

    Full Text Available This study aimed to make an economic evaluation of a high performance modern beekeeping technology leading to an increased bee family capacity. The new technology removes the disadvantages of the traditional one utilising just natural picking based on Robinia, Lime, sunflower and wild flora, most of times deeply affected by unfavourable climate conditions (drought, rainfalls and conducting to important bee losses during the winter season and mainly during the critical period till the next picking. The modern technology assures 75 % more bees per family, an increased queen laying capacity by 33 %,, a 50 % reduction of bee loss in winter season, by 20 % more honey , by 50 % more propolis, by 33 % more pollen, by 50 % more swarms, by 60 % more royal jelly and by 50 % more bee venom. The modern technology is based on a scientific feeding management applying a stimulating, completing and proteinic feeding (pollen cake and/or pollen substitutes such as: degreased powder milk 30 % and soya bean cake, involving peculiar costs ranking between USD 9.73-10.06 per family/year. The total bee rearing costs have been estimated at USD 17.83 in average per family/year, of which: 55.5 % feeding costs, 6.8 % queen replacement cost, 3.2 % treatments cost, 13.5 % costs for supplying new frames and combs,17.4 % transportation costs for moving of bee families and the remaining of 3.6 % labour costs. Taking into account a standard apiary (100 bee families of an increased power, a beekeeper can obtain an USD 12,100.4 annual income, by 55.9 % higher than in case of the traditional beekeeping technology. As a conclusion, the new technology assures a higher biological and economical efficiency, USD 3,350 profit gain that is a profit by 48 % higher than in case of the classic technology. For this reason, we recommend this modern technology to be implemented by beekeepers if they would like to transform their apiaries into high performance commercial farms.

  15. High-Performance, Radiation-Hardened Electronics for Space Environments

    Science.gov (United States)

    Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.

    2007-01-01

    The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog

  16. Alternative Medicine

    Science.gov (United States)

    ... Involved News About Us Donate In This Section Alternative Medicine en Español email Send this article to a ... Dr. Yvonne Ou on Lifestyle Modifications and Glaucoma Alternative medicine may be defined as non-standard, unconventional treatments ...

  17. High-performance image processing on the desktop

    Science.gov (United States)

    Jordan, Stephen D.

    1996-04-01

    The suitability of computers to the task of medical image visualization for the purposes of primary diagnosis and treatment planning depends on three factors: speed, image quality, and price. To be widely accepted the technology must increase the efficiency of the diagnostic and planning processes. This requires processing and displaying medical images of various modalities in real-time, with accuracy and clarity, on an affordable system. Our approach to meeting this challenge began with market research to understand customer image processing needs. These needs were translated into system-level requirements, which in turn were used to determine which image processing functions should be implemented in hardware. The result is a computer architecture for 2D image processing that is both high-speed and cost-effective. The architectural solution is based on the high-performance PA-RISC workstation with an HCRX graphics accelerator. The image processing enhancements are incorporated into the image visualization accelerator (IVX) which attaches to the HCRX graphics subsystem. The IVX includes a custom VLSI chip which has a programmable convolver, a window/level mapper, and an interpolator supporting nearest-neighbor, bi-linear, and bi-cubic modes. This combination of features can be used to enable simultaneous convolution, pan, zoom, rotate, and window/level control into 1 k by 1 k by 16-bit medical images at 40 frames/second.

  18. The design of linear algebra libraries for high performance computers

    Energy Technology Data Exchange (ETDEWEB)

    Dongarra, J.J. [Tennessee Univ., Knoxville, TN (United States). Dept. of Computer Science]|[Oak Ridge National Lab., TN (United States); Walker, D.W. [Oak Ridge National Lab., TN (United States)

    1993-08-01

    This paper discusses the design of linear algebra libraries for high performance computers. Particular emphasis is placed on the development of scalable algorithms for MIMD distributed memory concurrent computers. A brief description of the EISPACK, LINPACK, and LAPACK libraries is given, followed by an outline of ScaLAPACK, which is a distributed memory version of LAPACK currently under development. The importance of block-partitioned algorithms in reducing the frequency of data movement between different levels of hierarchical memory is stressed. The use of such algorithms helps reduce the message startup costs on distributed memory concurrent computers. Other key ideas in our approach are the use of distributed versions of the Level 3 Basic Linear Algebra Subprograms (BLAS) as computational building blocks, and the use of Basic Linear Algebra Communication Subprograms (BLACS) as communication building blocks. Together the distributed BLAS and the BLACS can be used to construct higher-level algorithms, and hide many details of the parallelism from the application developer. The block-cyclic data distribution is described, and adopted as a good way of distributing block-partitioned matrices. Block-partitioned versions of the Cholesky and LU factorizations are presented, and optimization issues associated with the implementation of the LU factorization algorithm on distributed memory concurrent computers are discussed, together with its performance on the Intel Delta system. Finally, approaches to the design of library interfaces are reviewed.

  19. Determination of Finasteride in Tablets by High Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    K. Basavaiah

    2007-01-01

    Full Text Available A rapid, highly sensitive high performance liquid chromatographic method has been developed for the determination of finasteride(FNS in bulk drug and in tablets. FNS was eluted from a ODS C18 reversed phase column at laboratory temperature (30 ± 2°C with a mobile phase consisting of methanol and water (80+20 at a flow rate of 1 mL min-1 with UV detection at 225 nm. The retention time was ∼ 6.1 min and each analysis took not more than 10 min. Quantitation was achieved by measurement of peak area without using any internal standard. Calibration graph was linear from 2.0 to 30 μg mL-1 with limits of detection (LOD and quantification (LOQ being 0.2 and 0.6 μg mL-1, respectively. The method was validated according to the current ICH guidelines. Within-day co efficients of variation (CV ranged from 0.31 to 0.69% and between-day CV were in the range 1.2-3.2%. Recovery of FNS from the pharmaceutical dosage forms ranged from 97.89 – 102.9 with CV of 1.41-4.13%. The developed method was compared with the official method for FNS determination in its tablet forms.

  20. Rigid, Conjugated Macrocycles for High Performance Organic Photodetectors.

    Science.gov (United States)

    Zhang, Boyuan; Trinh, M Tuan; Fowler, Brandon; Ball, Melissa; Xu, Qizhi; Ng, Fay; Steigerwald, Michael L; Zhu, X-Y; Nuckolls, Colin; Zhong, Yu

    2016-12-21

    Organic photodetectors (OPDs) are attractive for their high optical absorption coefficient, broad wavelength tunability, and compatibility with lightweight and flexible devices. Here we describe a new molecular design that enables high performance organic photodetectors. We use a rigid, conjugated macrocycle as the electron acceptor in devices to obtain high photocurrent and low dark current. We make a direct comparison between the devices made with the macrocyclic acceptor and an acyclic control molecule; we find that the superior performance of the macrocycle originates from its rigid, conjugated, and cyclic structure. The macrocycle's rigid structure reduces the number of charged defects originating from deformed sp(2) carbons and covalent defects from photo/thermoactivation. With this molecular design, we are able to suppress dark current density while retaining high responsivity in an ultrasensitive nonfullerene OPD. Importantly, we achieve a detectivity of ∼10(14) Jones at near zero bias voltage. This is without the need for extra carrier blocking layers commonly employed in fullerene-based devices. Our devices are comparable to the best fullerene-based photodetectors, and the sensitivity at low working voltages (<0.1 V) is a record for nonfullerene OPDs.

  1. Fault tolerant, radiation hard, high performance digital signal processor

    Science.gov (United States)

    Holmann, Edgar; Linscott, Ivan R.; Maurer, Michael J.; Tyler, G. L.; Libby, Vibeke

    1990-01-01

    An architecture has been developed for a high-performance VLSI digital signal processor that is highly reliable, fault-tolerant, and radiation-hard. The signal processor, part of a spacecraft receiver designed to support uplink radio science experiments at the outer planets, organizes the connections between redundant arithmetic resources, register files, and memory through a shuffle exchange communication network. The configuration of the network and the state of the processor resources are all under microprogram control, which both maps the resources according to algorithmic needs and reconfigures the processing should a failure occur. In addition, the microprogram is reloadable through the uplink to accommodate changes in the science objectives throughout the course of the mission. The processor will be implemented with silicon compiler tools, and its design will be verified through silicon compilation simulation at all levels from the resources to full functionality. By blending reconfiguration with redundancy the processor implementation is fault-tolerant and reliable, and possesses the long expected lifetime needed for a spacecraft mission to the outer planets.

  2. Determination of saffron quality by high-performance liquid chromatography.

    Science.gov (United States)

    Valle García-Rodríguez, M; Serrano-Díaz, Jéssica; Tarantilis, Petros A; López-Córcoles, Horacio; Carmona, Manuel; Alonso, Gonzalo L

    2014-08-13

    The aim of this work was to propose a high-performance liquid chromatography with diode array detection (HPLC-DAD) method for determining the three main compounds responsible for determining the quality of saffron (crocetin esters, picrocrocin, and safranal) by preparing an aqueous extract according to the ISO 3632 standard to solve the difficulty that this standard has for aroma and taste determination by ultraviolet-visible spectroscopy. Toward this aim, laboratory-isolated picrocrocin, a safranal standard with a purity of ≥ 88%, trans-crocetin di(β-D-gentiobiosyl) ester (trans-4-GG) and trans-crocetin (β-D-glucosyl)-(β-D-gentiobiosyl) ester (trans-3-Gg) standards, both with a purity of ≥ 99%, and 50 different saffron spice samples from Italy, Iran, Greece, and Spain were used in the intralaboratory validation of the HPLC method. The analytical method proposed was adequate in terms of linearity, selectivity, sensitivity, and accuracy for determining the three foremost parameters that define the quality of saffron using only a saffron solution prepared according to the ISO 3632 standard.

  3. Three-step labyrinth seal for high-performance turbomachines

    Science.gov (United States)

    Hendricks, Robert C.

    1987-01-01

    A three-step labyrinth seal with 12, 11, and 10 labyrinth teeth per step, respectively, was tested under static (nonrotating) conditions. The configuration represented the seal for a high-performance turbopump (e.g., the space shuttle main engine fuel pump). The test data included critical mass flux and pressure profiles over a wide range of fluid conditions at concentric, partially eccentric, and fully eccentric seal positions. The seal mass fluxes (leakage rates) were lower over the entire range of fluid conditions tested than those for data collected for similar straight and three-step cylindrical seals, and this conformed somewhat to expectations. However, the pressure profiles for the eccentric positions indicated little, if any, direct stiffness for this configuration in contrast to significant direct stiffness reported for the straight and three-step cylindrical seals over the range of test conditions. Seal dynamics depend on geometric configuration, inlet and exit parameters, fluid phase, and rotation. The method of corresponding states was applied to the mass flux data, which were found to have a pressure dependency for helium.

  4. Straight cylindrical seal for high-performance turbomachines

    Science.gov (United States)

    Hendricks, Robert C.

    1987-01-01

    A straight cylindrical seal configuration representing the seal for a high-performance turbopump (e.g., the space shuttle main engine fuel pump) was tested under static (nonrotating) conditions. The test data included critical mass flux and pressure profiles over a wide range of inlet temperatures and pressures for fluid nitrogen and fluid hydrogen with the seal in concentric and fully eccentric positions. The critical mass fluxes (or leakage rates) for the concentric and fully eccentric configurations were nearly the same when based on stagnation conditions upstream of the seal. The fully eccentric configuration pressure profiles of the gas and liquid were different. Further, the pressure differences between the maximum and the minimum clearance positions were highly dependent on the geometric conditions, the temperature, and the absolute pressure at both the inlet and the exit. The pressure differences were greatest in the inlet region. The results, although complex, tend to follow the corresponding-states principles for critical flows. Gaseous injection near the seal exit plane significantly altered the pressure profiles and could be used to control turbomachine instabilities.

  5. Dietary supplementation practices in Canadian high-performance athletes.

    Science.gov (United States)

    Lun, Victor; Erdman, Kelly A; Fung, Tak S; Reimer, Raylene A

    2012-02-01

    Dietary supplementation is a common practice in athletes with a desire to enhance performance, training, exercise recovery, and health. Supplementation habits of elite athletes in western Canada have been documented, but research is lacking on supplement use by athletes across Canada. The purpose of this descriptive study was to evaluate the dietary supplementation practices and perspectives of high-performance Canadian athletes affiliated with each of the country's eight Canadian Sport Centres. Dietitians administered a validated survey to 440 athletes (63% women, 37% men; M=19.99±5.20 yr) representing 34 sports who predominantly trained≥16 hr/wk, most competing in "power" based sports. Within the previous 6 months, 87% declared having taken≥3 dietary supplements, with sports drinks, multivitamin and mineral preparations, carbohydrate sports bars, protein powder, and meal-replacement products the most prevalent supplements reported. Primary sources of information on supplementation, supplementation justification, and preferred means of supplementation education were identified. Fifty-nine percent reported awareness of current World Anti-Doping Agency legislation, and 83% subjectively believed they were in compliance with such anti-doping regulations. It was concluded that supplementation rates are not declining in Canada, current advisors on supplementation for this athletic population are not credible, and sports medicine physicians and dietitians need to consider proactive strategies to improve their influence on supplementation practices in these elite athletes.

  6. Measurement of luminescence decays: High performance at low cost

    Science.gov (United States)

    Sulkes, Mark; Sulkes, Zoe

    2011-11-01

    The availability of inexpensive ultra bright LEDs spanning the visible and near-ultraviolet combined with the availability of inexpensive electronics equipment makes it possible to construct a high performance luminescence lifetime apparatus (˜5 ns instrumental response or better) at low cost. A central need for time domain measurement systems is the ability to obtain short (˜1 ns or less) excitation light pulses from the LEDs. It is possible to build the necessary LED driver using a simple avalanche transistor circuit. We describe first a circuit to test for small signal NPN transistors that can avalanche. We then describe a final optimized avalanche mode circuit that we developed on a prototyping board by measuring driven light pulse duration as a function of the circuit on the board and passive component values. We demonstrate that the combination of the LED pulser and a 1P28 photomultiplier tube used in decay waveform acquisition has a time response that allows for detection and lifetime determination of luminescence decays down to ˜5 ns. The time response and data quality afforded with the same components in time-correlated single photon counting are even better. For time-correlated single photon counting an even simpler NAND-gate based LED driver circuit is also applicable. We also demonstrate the possible utility of a simple frequency domain method for luminescence lifetime determinations.

  7. A High Performance Delta-Sigma Modulator for Neurosensing.

    Science.gov (United States)

    Xu, Jian; Zhao, Menglian; Wu, Xiaobo; Islam, Md Kafiul; Yang, Zhi

    2015-08-07

    Recorded neural data are frequently corrupted by large amplitude artifacts that are triggered by a variety of sources, such as subject movements, organ motions, electromagnetic interferences and discharges at the electrode surface. To prevent the system from saturating and the electronics from malfunctioning due to these large artifacts, a wide dynamic range for data acquisition is demanded, which is quite challenging to achieve and would require excessive circuit area and power for implementation. In this paper, we present a high performance Delta-Sigma modulator along with several design techniques and enabling blocks to reduce circuit area and power. The modulator was fabricated in a 0.18-µm CMOS process. Powered by a 1.0-V supply, the chip can achieve an 85-dB peak signal-to-noise-and-distortion ratio (SNDR) and an 87-dB dynamic range when integrated over a 10-kHz bandwidth. The total power consumption of the modulator is 13 µW, which corresponds to a figure-of-merit (FOM) of 45 fJ/conversion step. These competitive circuit specifications make this design a good candidate for building high precision neurosensors.

  8. A High Performance Delta-Sigma Modulator for Neurosensing

    Directory of Open Access Journals (Sweden)

    Jian Xu

    2015-08-01

    Full Text Available Recorded neural data are frequently corrupted by large amplitude artifacts that are triggered by a variety of sources, such as subject movements, organ motions, electromagnetic interferences and discharges at the electrode surface. To prevent the system from saturating and the electronics from malfunctioning due to these large artifacts, a wide dynamic range for data acquisition is demanded, which is quite challenging to achieve and would require excessive circuit area and power for implementation. In this paper, we present a high performance Delta-Sigma modulator along with several design techniques and enabling blocks to reduce circuit area and power. The modulator was fabricated in a 0.18-µm CMOS process. Powered by a 1.0-V supply, the chip can achieve an 85-dB peak signal-to-noise-and-distortion ratio (SNDR and an 87-dB dynamic range when integrated over a 10-kHz bandwidth. The total power consumption of the modulator is 13 µW, which corresponds to a figure-of-merit (FOM of 45 fJ/conversion step. These competitive circuit specifications make this design a good candidate for building high precision neurosensors.

  9. Multi-Language Programming Environments for High Performance Java Computing

    Directory of Open Access Journals (Sweden)

    Vladimir Getov

    1999-01-01

    Full Text Available Recent developments in processor capabilities, software tools, programming languages and programming paradigms have brought about new approaches to high performance computing. A steadfast component of this dynamic evolution has been the scientific community’s reliance on established scientific packages. As a consequence, programmers of high‐performance applications are reluctant to embrace evolving languages such as Java. This paper describes the Java‐to‐C Interface (JCI tool which provides application programmers wishing to use Java with immediate accessibility to existing scientific packages. The JCI tool also facilitates rapid development and reuse of existing code. These benefits are provided at minimal cost to the programmer. While beneficial to the programmer, the additional advantages of mixed‐language programming in terms of application performance and portability are addressed in detail within the context of this paper. In addition, we discuss how the JCI tool is complementing other ongoing projects such as IBM’s High‐Performance Compiler for Java (HPCJ and IceT’s metacomputing environment.

  10. Low Cost High Performance Nanostructured Spectrally Selective Coating

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Sungho [Univ. of California, San Diego, CA (United States)

    2017-04-05

    Sunlight absorbing coating is a key enabling technology to achieve high-temperature high-efficiency concentrating solar power operation. A high-performance solar absorbing material must simultaneously meet all the following three stringent requirements: high thermal efficiency (usually measured by figure of merit), high-temperature durability, and oxidation resistance. The objective of this research is to employ a highly scalable process to fabricate and coat black oxide nanoparticles onto solar absorber surface to achieve ultra-high thermal efficiency. Black oxide nanoparticles have been synthesized using a facile process and coated onto absorber metal surface. The material composition, size distribution and morphology of the nanoparticle are guided by numeric modeling. Optical and thermal properties have been both modeled and measured. High temperature durability has been achieved by using nanocomposites and high temperature annealing. Mechanical durability on thermal cycling have also been investigated and optimized. This technology is promising for commercial applications in next-generation high-temperature concentration solar power (CSP) plants.

  11. SULFATE RESISTANCE MECHANISM OF HIGH-PERFORMANCE CONCRETE CONTAINING NCI

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    It is found that the incorporation of Nitrite Corrosion Inhibitor (NCI) greatly weakens the resistance of mixtures to sulfate attack.To study the mechanism of this phenomenon,in this paper,the influence of NCI additionon on the cement paste and microstructure change of high performance concrete specimens is studied by means of quantitative XRD,SEM tests.The results demonstrate that the incorporation of NCI accelerates the formation of calcium hydroxide and ettringite crystals,and weakens the pore refinement effect caused by the secondary hydration reaction of fly ash and microsilica.At the age up to one year,the relative crystal quantity in mixture containing NCI is always higher than that in control mixture.The reasons for the degradation in sulfate resisitance of mixtures may be attributed to the increase and stability of the calcium hydroxide and ettringite crystals formed and the weakening of secondary hydration reaction.Based on the results,conclusion can be drawn that NCI should be used cautiously in practical engineering where high resistance to sulfate attack is required.

  12. Pressurized metallurgy for high performance special steels and alloys

    Science.gov (United States)

    Jiang, Z. H.; Zhu, H. C.; Li, H. B.; Li, Y.; Liu, F. B.

    2016-07-01

    The pressure is one of the basic parameters which greatly influences the metallurgical reaction process and solidification of steels and alloys. In this paper the history and present situation of research and application of pressurized metallurgy, especially pressurized metallurgy for special steels and alloys have been briefly reviewed. In the following part the physical chemistry of pressurized metallurgy is summarized. It is shown that pressurizing may change the conditions of chemical reaction in thermodynamics and kinetics due to the pressure effect on gas volume, solubility of gas and volatile element in metal melt, activity or activity coefficient of components, and change the physical and chemical properties of metal melt, heat transfer coefficient between mould and ingot, thus greatly influencing phase transformation during the solidification process and the solidification structure, such as increasing the solidification nucleation rate, reducing the critical nucleation radius, accelerating the solidification speed and significant macro/micro-structure refinement, and eliminating shrinkage, porosity and segregation and other casting defects. In the third part the research works of pressured metallurgy performed by the Northeastern University including establishment of pressurized induction melting (PIM) and pressurized electroslag remelting (PESR) equipments and development of high nitrogen steels under pressure are described in detail. Finally, it is considered in the paper that application of pressurized metallurgy in manufacture of high performance special steels and alloys is a relatively new research area, and its application prospects will be very broad and bright.

  13. Way Forward for High Performance Payload Processing Development

    Science.gov (United States)

    Notebaert, Olivier; Franklin, John; Lefftz, Vincent; Moreno, Jose; Patte, Mathieu; Syed, Mohsin; Wagner, Arnaud

    2012-08-01

    Payload processing is facing technological challenges due to the large increase of performance requirements of future scientific, observation and telecom missions as well as the future instruments technologies capturing much larger amount of data. For several years, with the perspective of higher performance together with the planned obsolescence of solutions covering the current needs, ESA and the European space industry has been developing several technology solutions. Silicon technologies, radiation mitigation techniques and innovative functional architectures are developed with the goal of designing future space qualified processing devices with a much higher level of performance than today. The fast growing commercial market application have developed very attractive technologies but which are not fully suitable with respect to their tolerance to space environment. Without the financial capacity to explore and develop all possible technology paths, a specific and global approach is required to cover the future mission needs and their necessary performance targets with effectiveness.The next sections describe main issues and priorities and provides further detailed relevant for this approach covering the high performance processing technology.

  14. High-Performance Optical Frequency References for Space

    Science.gov (United States)

    Schuldt, Thilo; Döringshoff, Klaus; Milke, Alexander; Sanjuan, Josep; Gohlke, Martin; Kovalchuk, Evgeny V.; Gürlebeck, Norman; Peters, Achim; Braxmaier, Claus

    2016-06-01

    A variety of future space missions rely on the availability of high-performance optical clocks with applications in fundamental physics, geoscience, Earth observation and navigation and ranging. Examples are the gravitational wave detector eLISA (evolved Laser Interferometer Space Antenna), the Earth gravity mission NGGM (Next Generation Gravity Mission) and missions, dedicated to tests of Special Relativity, e.g. by performing a Kennedy- Thorndike experiment testing the boost dependence of the speed of light. In this context we developed optical frequency references based on Doppler-free spectroscopy of molecular iodine; compactness and mechanical and thermal stability are main design criteria. With a setup on engineering model (EM) level we demonstrated a frequency stability of about 2·10-14 at an integration time of 1 s and below 6·10-15 at integration times between 100s and 1000s, determined from a beat-note measurement with a cavity stabilized laser where a linear drift was removed from the data. A cavity-based frequency reference with focus on improved long-term frequency stability is currently under development. A specific sixfold thermal shield design based on analytical methods and numerical calculations is presented.

  15. Contribution of Nanostructures in High Performance Solar Cells

    Science.gov (United States)

    Aly, Abouelmaaty M.; Ebrahim, Essamudin A.; Sweelem, Emad

    2017-08-01

    Nanotechnology has great contributions in various fields, especially in solar energy conversion through solar cells (SCs). Nanostructured SCs can provide high performance with lower fabrication costs. The transition from fossil fuel energy to renewable sustainable energy represents a major technological challenge for the world. In the last years, the industry of SCs has grown rapidly due to strong attention in renewable energy in order to handle the problem of global climate change that is now believed to occur due to use of the fossil fuels. Cost is an influential factor in the eventual success of any solar technology, since inexpensive SCs are needed to produce electricity, especially for rural areas and for third world countries. Therefore, new developments in nanotechnology may open the door for the production of inexpensive and more efficient SCs by reducing the manufacturing costs of SCs. Utilizing nanotechnology in cheaper SCs will help maintain the environment. This article covers a review of the progress that has been made to-date to enhance efficiencies of various nanostructures used in SCs, including utilizations of all the wavelengths present in of the solar spectrum.

  16. High Performance Data Transfer for Distributed Data Intensive Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Chin [Zettar Inc., Mountain View, CA (United States); Cottrell, R ' Les' A. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hanushevsky, Andrew B. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Kroeger, Wilko [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yang, Wei [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2017-03-06

    We report on the development of ZX software providing high performance data transfer and encryption. The design scales in: computation power, network interfaces, and IOPS while carefully balancing the available resources. Two U.S. patent-pending algorithms help tackle data sets containing lots of small files and very large files, and provide insensitivity to network latency. It has a cluster-oriented architecture, using peer-to-peer technologies to ease deployment, operation, usage, and resource discovery. Its unique optimizations enable effective use of flash memory. Using a pair of existing data transfer nodes at SLAC and NERSC, we compared its performance to that of bbcp and GridFTP and determined that they were comparable. With a proof of concept created using two four-node clusters with multiple distributed multi-core CPUs, network interfaces and flash memory, we achieved 155Gbps memory-to-memory over a 2x100Gbps link aggregated channel and 70Gbps file-to-file with encryption over a 5000 mile 100Gbps link.

  17. Realizing High-Performance Buildings; NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-03-02

    High-performance buildings (HPBs) are exceptional examples of both design and practice. Their energy footprints are small, and these are buildings that people want to work in because of their intelligent structure, operations, and coincident comfort. However, the operation of most buildings, even ones that are properly constructed and commissioned at the start, can deviate significantly from the original design intent over time, particularly due to control system overrides and growing plug and data center loads. With early planning for systems such as submetering and occupant engagement tools, operators can identify and remedy the problems. This guide is a primer for owners and owners’ representatives who are pursuing HPBs. It describes processes that have been successful in the planning, procurement, and operation of HPBs with exceptional energy efficiency. Much of the guidance offered results from a series of semi-structured conference calls with a technical advisory group of 15 owners and operators of prominent HPBs in the United States. The guide provides a prescription for planning, achieving, and maintaining an HPB. Although the guide focuses on the operations stage of buildings, many of the operations practices are specified during the planning stage.

  18. New method for high performance multiply-accumulator design

    Institute of Scientific and Technical Information of China (English)

    Bing-jie XIA; Peng LIU; Qing-dong YAO

    2009-01-01

    This study presents a new method of 4-pipelined high-performance split multiply-accumulator (MAC) architecture,which is capable of supporting multiple precisions developed for media processors. To speed up the design further, a novel partial product compression circuit based on interleaved adders and a modified hybrid partial product reduction tree (PPRT) scheme are proposed. The MAC can perform 1-way 32-bit, 4-way 16-bit signed/unsigned multiply or multiply-accumulate operations and 2-way parallel multiply add (PMADD) operations at a high frequency of 1.25 GHz under worst-case conditions and 1.67 GHz under typical-case conditions, respectively. Compared with the MAC in 32-bit microprocessor without interlocked piped stages (MIPS), the proposed design shows a great advantage in speed. Moreover, an improvement of up to 32% in throughput is achieved.The MAC design has been fabricated with Taiwan Semiconductor Manufacturing Company (TSMC) 90-nm CMOS standard cell technology and has passed a functional test.

  19. Scalable, high performance, enzymatic cathodes based on nanoimprint lithography

    Directory of Open Access Journals (Sweden)

    Dmitry Pankratov

    2015-06-01

    Full Text Available Here we detail high performance, enzymatic electrodes for oxygen bio-electroreduction, which can be easily and reproducibly fabricated with industry-scale throughput. Planar and nanostructured electrodes were built on biocompatible, flexible polymer sheets, while nanoimprint lithography was used for electrode nanostructuring. To the best of our knowledge, this is one of the first reports concerning the usage of nanoimprint lithography for amperometric bioelectronic devices. The enzyme (Myrothecium verrucaria bilirubin oxidase was immobilised on planar (control and artificially nanostructured, gold electrodes by direct physical adsorption. The detailed electrochemical investigation of bioelectrodes was performed and the following parameters were obtained: open circuit voltage of approximately 0.75 V, and maximum bio-electrocatalytic current densities of 18 µA/cm2 and 58 µA/cm2 in air-saturated buffers versus 48 µA/cm2 and 186 µA/cm2 in oxygen-saturated buffers for planar and nanostructured electrodes, respectively. The half-deactivation times of planar and nanostructured biocathodes were measured to be 2 h and 14 h, respectively. The comparison of standard heterogeneous and bio-electrocatalytic rate constants showed that the improved bio-electrocatalytic performance of the nanostructured biocathodes compared to planar biodevices is due to the increased surface area of the nanostructured electrodes, whereas their improved operational stability is attributed to stabilisation of the enzyme inside nanocavities.

  20. Shape-controlled porous nanocarbons for high performance supercapacitors

    KAUST Repository

    Chén, Wěi

    2014-01-01

    Porous activated nanocarbons with well-controlled dimensionality and morphology (i.e. 0D activated carbon nanoparticles, 1D activated carbon nanotubes, and 2D activated carbon nanosheets) were derived successfully from different template-induced polyaniline nanostructures by facile carbonization and activation processes. The obtained nanocarbons show large specific surface areas (1332-2005 m2 g-1), good conductivities, and highly porous nanoscale architectures. The supercapacitors fabricated using the shape-controlled nanocarbons exhibit high specific capacitance, excellent rate capability, and superior long-term cycling stability in both aqueous and ionic liquid electrolytes. More importantly, a very high energy density of 50.5 W h kg-1 with a power density of 17.4 kW kg-1 can be obtained from the activated carbon nanotube based supercapacitors in an ionic liquid electrolyte (with a charge time of ∼10 s), making the shape-controlled nanocarbons promising candidates for high-performance energy storage devices. © 2014 the Partner Organisations.

  1. High-Performance Coherent Population Trapping Clock with Polarization Modulation

    Science.gov (United States)

    Yun, Peter; Tricot, François; Calosso, Claudio Eligio; Micalizio, Salvatore; François, Bruno; Boudot, Rodolphe; Guérandel, Stéphane; de Clercq, Emeric

    2017-01-01

    We demonstrate a vapor-cell atomic-clock prototype based on a continuous-wave interrogation and double-modulation coherent population trapping (DM-CPT) technique. The DM-CPT technique uses a synchronous modulation of polarization and the relative phase of a bichromatic laser beam in order to increase the number of atoms trapped in a dark state, i.e., a nonabsorbing state. The narrow resonance, observed in the transmission of a Cs vapor cell, is used as a narrow frequency discriminator in an atomic clock. A detailed characterization of the CPT resonance versus numerous parameters is reported. A short-term fractional-frequency stability of 3.2 ×10-13τ-1 /2 up to a 100-s averaging time is measured. These performances are more than one order of magnitude better than industrial Rb clocks and are comparable to those of the best laboratory-prototype vapor-cell clocks. The noise-budget analysis shows that the short- and midterm frequency stability is mainly limited by the power fluctuations of the microwave used to generate the bichromatic laser. These preliminary results demonstrate that the DM-CPT technique is well suited for the development of a high-performance atomic clock, with the potential compact and robust setup due to its linear architecture. This clock could find future applications in industry, telecommunications, instrumentation, or global navigation satellite systems.

  2. Novel nano materials for high performance logic and memory devices

    Science.gov (United States)

    Das, Saptarshi

    After decades of relentless progress, the silicon CMOS industry is approaching a stall in device performance for both logic and memory devices due to fundamental scaling limitations. In order to reinforce the accelerating pace, novel materials with unique properties are being proposed on an urgent basis. This list includes one dimensional nanotubes, quasi one dimensional nanowires, two dimensional atomistically thin layered materials like graphene, hexagonal boron nitride and the more recently the rich family of transition metal di-chalcogenides comprising of MoS2, WSe2, WS2 and many more for logic applications and organic and inorganic ferroelectrics, phase change materials and magnetic materials for memory applications. Only time will tell who will win, but exploring these novel materials allow us to revisit the fundamentals and strengthen our understanding which will ultimately be beneficial for high performance device design. While there has been growing interest in two-dimensional (2D) crystals other than graphene, evaluating their potential usefulness for electronic applications is still in its infancies due to the lack of a complete picture of their performance potential. The fact that the 2-D layered semiconducting di-chalcogenides need to be connected to the "outside" world in order to capitalize on their ultimate potential immediately emphasizes the importance of a thorough understanding of the contacts. This thesis demonstrate that through a proper understanding and design of source/drain contacts and the right choice of number of MoS2 layers the excellent intrinsic properties of this 2D material can be harvested. A comprehensive experimental study on the dependence of carrier mobility on the layer thickness of back gated multilayer MoS 2 field effect transistors is also provided. A resistor network model that comprises of Thomas-Fermi charge screening and interlayer coupling is used to explain the non-monotonic trend in the extracted field effect

  3. Design and implementation of a high performance network security processor

    Science.gov (United States)

    Wang, Haixin; Bai, Guoqiang; Chen, Hongyi

    2010-03-01

    The last few years have seen many significant progresses in the field of application-specific processors. One example is network security processors (NSPs) that perform various cryptographic operations specified by network security protocols and help to offload the computation intensive burdens from network processors (NPs). This article presents a high performance NSP system architecture implementation intended for both internet protocol security (IPSec) and secure socket layer (SSL) protocol acceleration, which are widely employed in virtual private network (VPN) and e-commerce applications. The efficient dual one-way pipelined data transfer skeleton and optimised integration scheme of the heterogenous parallel crypto engine arrays lead to a Gbps rate NSP, which is programmable with domain specific descriptor-based instructions. The descriptor-based control flow fragments large data packets and distributes them to the crypto engine arrays, which fully utilises the parallel computation resources and improves the overall system data throughput. A prototyping platform for this NSP design is implemented with a Xilinx XC3S5000 based FPGA chip set. Results show that the design gives a peak throughput for the IPSec ESP tunnel mode of 2.85 Gbps with over 2100 full SSL handshakes per second at a clock rate of 95 MHz.

  4. High performance embedded system for real-time pattern matching

    Science.gov (United States)

    Sotiropoulou, C.-L.; Luciano, P.; Gkaitatzis, S.; Citraro, S.; Giannetti, P.; Dell'Orso, M.

    2017-02-01

    In this paper we present an innovative and high performance embedded system for real-time pattern matching. This system is based on the evolution of hardware and algorithms developed for the field of High Energy Physics and more specifically for the execution of extremely fast pattern matching for tracking of particles produced by proton-proton collisions in hadron collider experiments. A miniaturized version of this complex system is being developed for pattern matching in generic image processing applications. The system works as a contour identifier able to extract the salient features of an image. It is based on the principles of cognitive image processing, which means that it executes fast pattern matching and data reduction mimicking the operation of the human brain. The pattern matching can be executed by a custom designed Associative Memory chip. The reference patterns are chosen by a complex training algorithm implemented on an FPGA device. Post processing algorithms (e.g. pixel clustering) are also implemented on the FPGA. The pattern matching can be executed on a 2D or 3D space, on black and white or grayscale images, depending on the application and thus increasing exponentially the processing requirements of the system. We present the firmware implementation of the training and pattern matching algorithm, performance and results on a latest generation Xilinx Kintex Ultrascale FPGA device.

  5. Sensor fusion methods for high performance active vibration isolation systems

    Science.gov (United States)

    Collette, C.; Matichard, F.

    2015-04-01

    Sensor noise often limits the performance of active vibration isolation systems. Inertial sensors used in such systems can be selected through a wide variety of instrument noise and size characteristics. However, the most sensitive instruments are often the biggest and the heaviest. Consequently, high-performance active isolators sometimes embed many tens of kilograms in instrumentation. The weight and size of instrumentation can add unwanted constraint on the design. It tends to lower the structures natural frequencies and reduces the collocation between sensors and actuators. Both effects tend to reduce feedback control performance and stability. This paper discusses sensor fusion techniques that can be used in order to increase the control bandwidth (and/or the stability). For this, the low noise inertial instrument signal dominates the fusion at low frequency to provide vibration isolation. Other types of sensors (relative motion, smaller but noisier inertial, or force sensors) are used at higher frequencies to increase stability. Several sensor fusion configurations are studied. The paper shows the improvement that can be expected for several case studies including a rigid equipment, a flexible equipment, and a flexible equipment mounted on a flexible support structure.

  6. High performance supercapacitors using metal oxide anchored graphene nanosheet electrodes

    KAUST Repository

    Baby, Rakhi Raghavan

    2011-01-01

    Metal oxide nanoparticles were chemically anchored onto graphene nanosheets (GNs) and the resultant composites - SnO2/GNs, MnO2/GNs and RuO2/GNs (58% of GNs loading) - coated over conductive carbon fabric substrates were successfully used as supercapacitor electrodes. The results showed that the incorporation of metal oxide nanoparticles improved the capacitive performance of GNs due to a combination of the effect of spacers and redox reactions. The specific capacitance values (with respect to the composite mass) obtained for SnO2/GNs (195 F g-1) and RuO 2/GNs (365 F g-1) composites at a scan rate of 20 mV s-1 in the present study are the best ones reported to date for a two electrode configuration. The resultant supercapacitors also exhibited high values for maximum energy (27.6, 33.1 and 50.6 W h kg-1) and power densities (15.9, 20.4 and 31.2 kW kg-1) for SnO2/GNs, MnO2/GNs and RuO2/GNs respectively. These findings demonstrate the importance and great potential of metal oxide/GNs based composite coated carbon fabric in the development of high-performance energy-storage systems. © 2011 The Royal Society of Chemistry.

  7. Gallium arsenide pilot line for high performance components

    Science.gov (United States)

    1990-01-01

    The Gallium Arsenide Pilot Line for High Performance Components (Pilot Line III) is to develop a facility for the fabrication of GaAs logic and memory chips. The first thirty months of this contract are now complete, and this report covers the period from March 27 through September 24, 1989. Similar to the PT-2M SRAM function for memories, the six logic circuits of PT-2L and PT-2M have served their functions as stepping stones toward the custom, standard cell, and cell array logic circuits. All but one of these circuits was right first time; the remaining circuit had a layout error due to a bug in the design rule checker that has since been fixed. The working devices all function over the full temperature range from -55 to 125 C. They all comfortably meet the 200 MHz requirement. They do not solidly conform to the required input and output voltage levels, particularly Vih. It is known that these circuits were designed with the older design models and that they came from an era where the DFET thresholds were often not on target.

  8. Brain inspired high performance electronics on flexible silicon

    KAUST Repository

    Sevilla, Galo T.

    2014-06-01

    Brain\\'s stunning speed, energy efficiency and massive parallelism makes it the role model for upcoming high performance computation systems. Although human brain components are a million times slower than state of the art silicon industry components [1], they can perform 1016 operations per second while consuming less power than an electrical light bulb. In order to perform the same amount of computation with today\\'s most advanced computers, the output of an entire power station would be needed. In that sense, to obtain brain like computation, ultra-fast devices with ultra-low power consumption will have to be integrated in extremely reduced areas, achievable only if brain folded structure is mimicked. Therefore, to allow brain-inspired computation, flexible and transparent platform will be needed to achieve foldable structures and their integration on asymmetric surfaces. In this work, we show a new method to fabricate 3D and planar FET architectures in flexible and semitransparent silicon fabric without comprising performance and maintaining cost/yield advantage offered by silicon-based electronics.

  9. Transport studies in high-performance field reversed configuration plasmas

    Science.gov (United States)

    Gupta, S.; Barnes, D. C.; Dettrick, S. A.; Trask, E.; Tuszewski, M.; Deng, B. H.; Gota, H.; Gupta, D.; Hubbard, K.; Korepanov, S.; Thompson, M. C.; Zhai, K.; Tajima, T.

    2016-05-01

    A significant improvement of field reversed configuration (FRC) lifetime and plasma confinement times in the C-2 plasma, called High Performance FRC regime, has been observed with neutral beam injection (NBI), improved edge stability, and better wall conditioning [Binderbauer et al., Phys. Plasmas 22, 056110 (2015)]. A Quasi-1D (Q1D) fluid transport code has been developed and employed to carry out transport analysis of such C-2 plasma conditions. The Q1D code is coupled to a Monte-Carlo code to incorporate the effect of fast ions, due to NBI, on the background FRC plasma. Numerically, the Q1D transport behavior with enhanced transport coefficients (but with otherwise classical parametric dependencies) such as 5 times classical resistive diffusion, classical thermal ion conductivity, 20 times classical electron thermal conductivity, and classical fast ion behavior fit with the experimentally measured time evolution of the excluded flux radius, line-integrated density, and electron/ion temperature. The numerical study shows near sustainment of poloidal flux for nearly 1 ms in the presence of NBI.

  10. High performance fluoride optical coatings for DUV optics

    Science.gov (United States)

    Zhang, Lichao; Cai, Xikun

    2014-08-01

    In deep ultraviolet region that typical applications are used on the ArF wavelength, coated optics should meet stringent requirements of optical systems. To meet these requirements, systematical researches are carried out on fabrication and characterization methods of fluoride coatings. First, by optimizing of deposition processes, dense coatings with the refractive index of ~1.7 for LaF3 and ~1.4 for MgF2, together with extinction coefficients of ~2×10-4 on 193nm were realized. The transmission of AR coating for 193nm achieved by using optimized deposition techniques is 99.8%. Second, a method of designing shadowing masks was developed to solve the problem of correcting coating thickness distributions for complex DUV systems. By using the method, the thickness distribution error specification of 3% PV has been achieved on substrates with ~300mm diameters and large curvatures. Finally, the laser calorimetry method is used to evaluate the laser radiation stability of fluoride coatings. It is turned out that the damage coefficients of fluoride coatings, which are defined as the values of unrecoverable increase of the absorption during the laser irradiation process, are much lower than that of fused silica substrates. The above progresses could further support the realization of high performance DUV optical systems.

  11. High Performance Thin-Film Composite Forward Osmosis Membrane

    KAUST Repository

    Yip, Ngai Yin

    2010-05-15

    Recent studies show that osmotically driven membrane processes may be a viable technology for desalination, water and wastewater treatment, and power generation. However, the absence of a membrane designed for such processes is a significant obstacle hindering further advancements of this technology. This work presents the development of a high performance thin-film composite membrane for forward osmosis applications. The membrane consists of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation onto a thin (40 μm) polyester nonwoven fabric. By careful selection of the polysulfone casting solution (i.e., polymer concentration and solvent composition) and tailoring the casting process, we produced a support layer with a mix of finger-like and sponge-like morphologies that give significantly enhanced membrane performance. The structure and performance of the new thin-film composite forward osmosis membrane are compared with those of commercial membranes. Using a 1.5 M NaCl draw solution and a pure water feed, the fabricated membranes produced water fluxes exceeding 18 L m2-h-1, while consistently maintaining observed salt rejection greater than 97%. The high water flux of the fabricated thin-film composite forward osmosis membranes was directly related to the thickness, porosity, tortuosity, and pore structure of the polysulfone support layer. Furthermore, membrane performance did not degrade after prolonged exposure to an ammonium bicarbonate draw solution. © 2010 American Chemical Society.

  12. Gradient chromatofocusing high-performance liquid chromatography. I. Practical aspects.

    Science.gov (United States)

    Liu, Y; Anderson, D J

    1997-02-21

    In this work, a versatile method for generating linear pH gradients using weak anion-exchange HPLC has been developed, which is termed gradient chromatofocusing high-performance liquid chromatography. This method utilizes a linear external pH gradient generated in the mobile phase entering the column (inlet pH gradient), superimposed on an internally-generated pH gradient within the column (column pH gradient), which results from the buffering action of the ion exchanger on the mobile phase and vice versa. The method shows significant advantages over conventional chromatofocusing, including: decreased expense due to the use of common buffer components, ease of adjusting the slope of the pH gradient produced at the outlet of the column (outlet pH gradient) through the manipulation of the inlet pH gradient and the ability of using high concentration buffers in the mobile phase. Chromatography of fibrinogen degradation products was done using gradient chromatofocusing. Bandwidths comparable to conventional chromatofocusing were obtained in the separation of fibrinogen degradation products.

  13. Gradient chromatofocusing high-performance liquid chromatography. II. Theoretical aspects.

    Science.gov (United States)

    Liu, Y; Anderson, D J

    1997-02-21

    This article is Part II of a series describing a newly-developed gradient chromatofocusing high-performance liquid chromatography (HPLC) technique. Theoretical aspects of the technique are discussed. In gradient chromatofocusing, the column pH gradient with respect to column distance can be varied without necessarily affecting the outlet pH gradient with respect to time. Factors influencing the value of the slope of the column pH gradient are identified through derived equations and a computer simulation model. A newly-identified parameter is introduced, column travel time, which can be uniquely varied in gradient chromatofocusing. Experiments show increased conversion of fibrinogen to denatured forms with increased column travel time. Another unique aspect of gradient chromatofocusing is that the mobile phase buffer concentration can be manipulated without necessarily affecting the outlet pH gradient slope, giving the technique expanded versatility for optimizing the separation. In the present work, the pIapparent for fibrinogen is found to increase with increased mobile phase buffer concentration.

  14. High-performance MCT and QWIP IR detectors at Sofradir

    Science.gov (United States)

    Reibel, Yann; Rubaldo, Laurent; Manissadjian, Alain; Billon-Lanfrey, David; Rothman, Johan; de Borniol, Eric; Destéfanis, Gérard; Costard, E.

    2012-11-01

    Cooled IR technologies are challenged for answering new system needs like compactness and reduction of cryo-power which is key feature for the SWaP (Size, Weight and Power) requirements. This paper describes the status of MCT IR technology in France at Leti and Sofradir. A focus will be made on hot detector technology for SWAP applications. Sofradir has improved its HgCdTe technology to open the way for High Operating Temperature systems that release the Stirling cooler engine power consumption. Solutions for high performance detectors such as dual bands, much smaller pixel pitch or megapixels will also be discussed. In the meantime, the development of avalanche photodiodes or TV format with digital interface is key to bringing customers cutting-edge functionalities. Since 1997, Sofradir has been working with Thales and Research Technologies (TRT) to develop and produce Quantum Well Infrared Photodetectors (QWIP) as a complementary offer with MCT, to provide large LW staring arrays. A dualband MW-LW QWIP detector (25μm pitch 384×288 IDDCA) is currently under development. We will present in this paper its latest results.

  15. Enabling Efficient Climate Science Workflows in High Performance Computing Environments

    Science.gov (United States)

    Krishnan, H.; Byna, S.; Wehner, M. F.; Gu, J.; O'Brien, T. A.; Loring, B.; Stone, D. A.; Collins, W.; Prabhat, M.; Liu, Y.; Johnson, J. N.; Paciorek, C. J.

    2015-12-01

    A typical climate science workflow often involves a combination of acquisition of data, modeling, simulation, analysis, visualization, publishing, and storage of results. Each of these tasks provide a myriad of challenges when running on a high performance computing environment such as Hopper or Edison at NERSC. Hurdles such as data transfer and management, job scheduling, parallel analysis routines, and publication require a lot of forethought and planning to ensure that proper quality control mechanisms are in place. These steps require effectively utilizing a combination of well tested and newly developed functionality to move data, perform analysis, apply statistical routines, and finally, serve results and tools to the greater scientific community. As part of the CAlibrated and Systematic Characterization, Attribution and Detection of Extremes (CASCADE) project we highlight a stack of tools our team utilizes and has developed to ensure that large scale simulation and analysis work are commonplace and provide operations that assist in everything from generation/procurement of data (HTAR/Globus) to automating publication of results to portals like the Earth Systems Grid Federation (ESGF), all while executing everything in between in a scalable environment in a task parallel way (MPI). We highlight the use and benefit of these tools by showing several climate science analysis use cases they have been applied to.

  16. Electrospun Metal Nanofiber Webs as High-Performance Transparent Electrode

    KAUST Repository

    Wu, Hui

    2010-10-13

    Transparent electrodes, indespensible in displays and solar cells, are currently dominated by indium tin oxide (ITO) films although the high price of indium, brittleness of films, and high vacuum deposition are limiting their applications. Recently, solution-processed networks of nanostructures such as carbon nanotubes (CNTs), graphene, and silver nanowires have attracted great attention as replacements. A low junction resistance between nanostructures is important for decreasing the sheet resistance. However, the junction resistances between CNTs and boundry resistances between graphene nanostructures are too high. The aspect ratios of silver nanowires are limited to ∼100, and silver is relatively expensive. Here, we show high-performance transparent electrodes with copper nanofiber networks by a low-cost and scalable electrospinning process. Copper nanofibers have ultrahigh aspect ratios of up to 100000 and fused crossing points with ultralow junction resistances, which result in high transmitance at low sheet resistance, e.g., 90% at 50 Ω/sq. The copper nanofiber networks also show great flexibility and stretchabilty. Organic solar cells using copper nanowire networks as transparent electrodes have a power efficiency of 3.0%, comparable to devices made with ITO electrodes. © 2010 American Chemical Society.

  17. Chip-to-board interconnects for high-performance computing

    Science.gov (United States)

    Riester, Markus B. K.; Houbertz-Krauss, Ruth; Steenhusen, Sönke

    2013-02-01

    Super computing is reaching out to ExaFLOP processing speeds, creating fundamental challenges for the way that computing systems are designed and built. One governing topic is the reduction of power used for operating the system, and eliminating the excess heat generated from the system. Current thinking sees optical interconnects on most interconnect levels to be a feasible solution to many of the challenges, although there are still limitations to the technical solutions, in particular with regard to manufacturability. This paper explores drivers for enabling optical interconnect technologies to advance into the module and chip level. The introduction of optical links into High Performance Computing (HPC) could be an option to allow scaling the manufacturing technology to large volume manufacturing. This will drive the need for manufacturability of optical interconnects, giving rise to other challenges that add to the realization of this type of interconnection. This paper describes a solution that allows the creation of optical components on module level, integrating optical chips, laser diodes or PIN diodes as components much like the well known SMD components used for electrical components. The paper shows the main challenges and potential solutions to this challenge and proposes a fundamental paradigm shift in the manufacturing of 3-dimensional optical links for the level 1 interconnect (chip package).

  18. Strategic options towards an affordable high-performance infrared camera

    Science.gov (United States)

    Oduor, Patrick; Mizuno, Genki; Dutta, Achyut K.; Lewis, Jay; Dhar, Nibir K.

    2016-05-01

    The promise of infrared (IR) imaging attaining low-cost akin to CMOS sensors success has been hampered by the inability to achieve cost advantages that are necessary for crossover from military and industrial applications into the consumer and mass-scale commercial realm despite well documented advantages. Banpil Photonics is developing affordable IR cameras by adopting new strategies to speed-up the decline of the IR camera cost curve. We present a new short-wave IR (SWIR) camera; 640x512 pixel InGaAs uncooled system that is high sensitivity low noise ( 500 frames per second (FPS)) at full resolution, and low power consumption (market adoption by not only demonstrating high-performance IR imaging capability value add demanded by military and industrial application, but also illuminates a path towards justifiable price points essential for consumer facing application industries such as automotive, medical, and security imaging adoption. Among the strategic options presented include new sensor manufacturing technologies that scale favorably towards automation, multi-focal plane array compatible readout electronics, and dense or ultra-small pixel pitch devices.

  19. Miniature high-performance infrared spectrometer for space applications

    Science.gov (United States)

    Kruzelecky, Roman V.; Haddad, Emile; Wong, Brian; Lafrance, Denis; Jamroz, Wes; Ghosh, Asoke K.; Zheng, Wanping; Phong, Linh

    2004-06-01

    Infrared spectroscopy probes the characteristic vibrational and rotational modes of chemical bonds in molecules to provide information about both the chemical composition and the bonding configuration of a sample. The significant advantage of the Infrared spectral technique is that it can be used with minimal consumables to simultaneously detect a large variety of chemical and biochemical species with high chemical specificity. To date, relatively large Fourier Transform (FT-IR) spectrometers employing variations of the Michelson interferometer have been successfully employed in space for various IR spectroscopy applications. However, FT-IR systems are mechanically complex, bulky (> 15 kg), and require considerable processing. This paper discusses the use of advanced integrated optics and smart optical coding techniques to significantly extend the performance of miniature IR spectrometers by several orders of magnitude in sensitivity. This can provide the next-generation of compact, high-performance IR spectrometers with monolithically integrated optical systems for robust optical alignment. The entire module can weigh under 3 kg to minimize the mass penalty for space applications. Miniaturized IR spectrometers are versatile and very convenient for small and micro satellite based missions. They can be dedicated to the monitoring of the CO2 in an Earth Observation mission, to Mars exobiology exploration, as well as to vital life support in manned space system; such as the cabin air quality and the quality of the recycled water supply.

  20. Halide Perovskites: Poor Man's High-Performance Semiconductors.

    Science.gov (United States)

    Stoumpos, Constantinos C; Kanatzidis, Mercouri G

    2016-07-01

    Halide perovskites are a rapidly developing class of medium-bandgap semiconductors which, to date, have been popularized on account of their remarkable success in solid-state heterojunction solar cells raising the photovoltaic efficiency to 20% within the last 5 years. As the physical properties of the materials are being explored, it is becoming apparent that the photovoltaic performance of the halide perovskites is just but one aspect of the wealth of opportunities that these compounds offer as high-performance semiconductors. From unique optical and electrical properties stemming from their characteristic electronic structure to highly efficient real-life technological applications, halide perovskites constitute a brand new class of materials with exotic properties awaiting discovery. The nature of halide perovskites from the materials' viewpoint is discussed here, enlisting the most important classes of the compounds and describing their most exciting properties. The topics covered focus on the optical and electrical properties highlighting some of the milestone achievements reported to date but also addressing controversies in the vastly expanding halide perovskite literature. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.